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This special issue focuses on mobile robotic systems, where we are seeing a widespread
increase in current applications as well as promising future applications enabled by the
latest technologies in sensor development. Mobile robots are already making their way
into our homes, modern manufacturing and warehousing systems are hard to imagine
without driverless transport systems. Self-driving cars are already driving on normal roads,
flying taxis are about to take off and offer new travel experiences and drones already have
applications in delivery and remote sensing. There are also applications in agriculture,
construction, medical care, surveillance, entertainment and other areas, some of which
will also develop in unforeseen ways, all of which offer an emerging market with great
potential. Advanced sensor technologies are critical in mobile robotics—a multidisciplinary
field of research—to achieve automated or autonomous operation of mobile robots in
these applications. They play a role in any navigation, motion control, action planning,
decision making, environmental recognition, localisation, perception, object recognition,
target tracking or object manipulation.

This special issue on advanced sensor technologies contains contributions on the
latest developments in mobile robotic systems and related research. Various topics with
different ideas and applications from mobile robotics have found their place in this special
issue. They can be grouped into the three main areas of localisation and situational
awareness, path planning and control algorithms. The three areas fit well with the Sense-
Plan-Act architecture, which describes the most important basic activities required for the
implementation of cognitive autonomous systems.

1. Sensing for Localisation

In [1], a novel method for calculating the odometry of a 3D LiDAR range image in
real time is presented. Ego-motion is computed by iteratively imposing a coplanarity
constraint between pairs of detected planner objects in the first step and their associated
keypoints in the second step. In [2], humanoid robot control is reported using state-of-
the-art motion capture systems in the high-frequency feedback control loop of humanoid
robots. This can be an alternative in cases where state estimation is not reliable. Such
external estimators can serve as a reference for the internal estimators, as presented in
this work. Fingerprinting-based indoor 2D positioning method is proposed in [3], which
utilizes the fusion of RSSI and magnetometer measurements. Autonomous navigation in
mining tunnels based on artificial passive landmarks is addressed in [4]. The geometry
has been optimized in order to ensure drift-free localization of mobile units equipped with
LiDAR scanners. Computationally efficient high-level B-spline features extraction from 2D
LiDAR is proposed in [5] with application to mapping problems. This work also provides
a new benchmark for evaluating and comparing different feature generators.

2. Sensing for Situation Awareness

The identification and classification of attention deficit hyperactivity disorder (ADHD)
in children is outlined in [6]. This is done through a game in which a mobile robot animates a
child who must follow the robot’s path. Using five Azure Kinect units equipped with depth

Sensors 2023, 23, 2958. https://doi.org/10.3390/s23062958 https://www.mdpi.com/journal/sensors1
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sensors, the recorded skeletal data is analysed and classified using deep neural networks
to output a diagnosis while the child carelessly plays the game. Article [7] presents an
innovative strategy for collecting dirt samples for cleaning robots by combining geometric
feature extraction and swarm algorithms. This combined approach generates an efficient
optimal path that covers all identified dirt locations for an efficient cleaning mission. In
addition, article [8] provides an annotated comprehensive dataset for dirt analysis. Nine
classes of common domestic dirt and a labelled dataset of 3000 microscope dirt images
taken from a semi-domestic environment. In [9], an AI-assisted system for predictive
maintenance of mobile cleaning robots is presented that uses vibration signals to detect
performance degradation and operational safety issues. A four-layer 1D convolutional
neural network framework was developed and trained on a dataset of vibration signals
generated by a self-developed autonomous steam mopping robot with different levels of
degradation and hazardous operating environments. In [10], an approach is implemented
to enable a drone to autonomously clean insulators on a power line. The algorithm for
detecting and tracking dirty insulators is implemented and a special cleaning hardware is
developed. In [11], a framework for false ceiling deterioration detection and mapping using
deep neural network based object detection algorithm and teleoperated robot is presented.
The object detection algorithm was trained on our custom false ceiling damage detection
dataset consisting of four classes: structural defects (spalling, cracks, pitted surfaces and
water damage), HVAC system damage (corrosion, mould and pipe damage), electrical
damage (frayed wires) and pest infestation (termites and rodents).

3. Path Planning

Complete coverage path planning algorithm that generates smooth paths based on
clothoids that allow a non-holonomic mobile robot to move in optimal time while following
the path is described in [12]. This algorithm significantly reduces the coverage time,
path length and overlap area, and increases the coverage rate compared to state-of-the-
art full coverage algorithms. In [13], a novel solution for a spline path of a 5th order
Bézier curve is proposed to obtain smooth trajectory planning with minimum time for
wheeled mobile robots. The proposed trajectory optimisation considers constraints on the
environmental space and constraints on the velocity, acceleration and jerk. In [14], a smooth
navigation function combining Dijkstra-based discrete static potential field evaluation with
bilinear interpolation is proposed. Modifications of the bilinear interpolation method are
proposed to make it applicable to path-planning applications. In [15], a method based
on gait biomechanics is presented for short-term prediction of pedestrian trajectories for
real-time applications. This method relies on a single biomechanical variable and has
a low computational cost, making it a viable solution for implementation in low-cost
wearable devices.

4. Control Algorithms

An adaptive manipulator prescribed performance tracking motion control with global
finite-time stability guarantees is proposed in [16]. In [17], a visual servo control approach
is presented that enables an unmanned aerial vehicle to land autonomously on a fast-
moving platform of another vehicle. In [18], the modelling and control of a spherical
robot are proposed and tested with different control strategies. The model and examples
with different control scenarios are available online. In [19], a global navigation function
for model predictive control (MPC) of autonomous mobile robots with application to
warehouse automation is proposed. The navigation function is based on a potential
field derived from an E* graph search algorithm on a discrete occupancy grid and by
bicubic interpolation.

This special issue brings innovative ideas that apply sensor technologies in mobile
robotics in their own way. New ideas are presented for mobile robots that specialise in
cleaning floors, power lines and HVAC systems. We also find innovative approaches to
navigation path planning using local-minima-free potential fields, novel path primitives
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and/or their parameterisation for minimum-time planning, and various control approaches
ranging from visual servoing to model predictive and adaptive trajectory tracking, applied
to wheeled robots, humanoid manipulators and flying robots. Localisation approaches
using LiDAR, motion capture systems, fingerprint-based and biomechanical gait systems
are also discussed. In addition to advances in methodology, applications in healthcare,
mining tunnels, cleaning, warehouses and other areas are mentioned. We believe that the
works collected in the special issue Advanced Sensors Technologies Applied in Mobile
Robot and its results will inspire other researchers in solving future research questions and
applications in mobile robotics.
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13. Benko Loknar, M.; Klančar, G.; Blažič, S. Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using Bézier Curves
with Constraints on Velocity, Acceleration and Jerk. Sensors 2023, 23, 1982. [CrossRef] [PubMed]
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Article

Efficient 3D Lidar Odometry Based on Planar Patches

Andres Galeote-Luque, Jose-Raul Ruiz-Sarmiento * and Javier Gonzalez-Jimenez

Machine Perception and Intelligent Robotics Group (MAPIR-UMA), Malaga Institute for Mechatronics
Engineering and Cyber-Physical Systems (IMECH.UMA), University of Malaga, 29071 Malaga, Spain
* Correspondence: jotaraul@uma.es

Abstract: In this paper we present a new way to compute the odometry of a 3D lidar in real-
time. Due to the significant relation between these sensors and the rapidly increasing sector of
autonomous vehicles, 3D lidars have improved in recent years, with modern models producing
data in the form of range images. We take advantage of this ordered format to efficiently estimate
the trajectory of the sensor as it moves in 3D space. The proposed method creates and leverages a
flatness image in order to exploit the information found in flat surfaces of the scene. This allows
for an efficient selection of planar patches from a first range image. Then, from a second image,
keypoints related to said patches are extracted. This way, our proposal computes the ego-motion
by imposing a coplanarity constraint between pairs <point, plane> whose correspondences are
iteratively updated. The proposed algorithm is tested and compared with state-of-the-art ICP
algorithms. Experiments show that our proposal, running on a single thread, can run 5× faster than
a multi-threaded implementation of GICP, while providing a more accurate localization. A second
version of the algorithm is also presented, which reduces the drift even further while needing less
than half of the computation time of GICP. Both configurations of the algorithm run at frame rates
common for most 3D lidars, 10 and 20 Hz on a standard CPU.

Keywords: mobile robots; localization and SLAM; 3D lidar; range sensing

1. Introduction

For the safe navigation of autonomous vehicles it is essential to have an accurate esti-
mation of their pose, that is, their position and orientation with respect to a given reference
frame. These vehicles are typically equipped with sensors such as Inertial Measurement
Units (IMUs), lidars or cameras, that allow them to perceive the vehicle and environment
states and estimate their ego-motion. Regarding cameras, the most common approach for
addressing this issue is Visual Odometry (VO), which consists of estimating the relative
pose of the sensor along a sequence of images [1]. Similarly, 3D lidar odometry permits the
recovery of the vehicle motion along consecutive scans provided by a 3D lidar.

Particularly, 3D lidars stand out for yielding accurate geometric information from
the scene in the form of point clouds, also known as scans, while performing reliably
under changes in lighting conditions, which frequently occur in real-world scenarios [2].
The development of cheaper and more advanced 3D lidars has led to an increase in
the popularity of these sensors for mobile platforms, especially autonomous vehicles.
Examples of this are the autonomous driving platforms found in state-of-the-art projects
such as Waymo [3,4] and Argoverse [5,6], as well as in datasets such as KITTI [7] or KAIST
Urban [8].

The data points provided by traditional 3D lidars come in the form of unordered
point clouds (i.e., a set of points defined by their Cartesian <X, Y, Z> coordinates, stored
in an arbitrary manner). This brings 3D lidar odometry closer to the 3D registration
problem: the issue of finding the rigid transformation between two consecutive point
clouds, which, assuming a static world, corresponds to the sensor motion. In this regard, the
Iterative Closest Point (ICP) algorithm [9], and its variants [10,11], are the most widespread

Sensors 2022, 22, 6976. https://doi.org/10.3390/s22186976 https://www.mdpi.com/journal/sensors5
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methods mainly because they are effective and simple to implement. However popular,
ICP algorithms are computationally expensive given the way the required calculations
scale with the size of the point clouds. In a nutshell, ICP is based on finding, for every
point in the source point cloud, the nearest point in the target point cloud, which requires
calculating the distance between each possible pair of points. Thus, denser point clouds
result in more distance calculations and, hence, a greater running time [12]. In order to
obtain a correct convergence of the method, a high amount of points is needed, as the
error yielded by each pair of points is averaged over the whole point cloud. This usually
results in ICP running slower than the sensor frame rate, and therefore being forced to
register a pair of non-consecutive scans with a greater relative motion. This becomes more
of a limitation because of the serious chances of falling in local minima if the motion to
recover is large, and/or no prior information about the motion is available for a good
method initialization.

3D lidar sensors have seen an important improvement in recent years, with some
modern models, especially those employing solid state technology, being able to produce
an ordered point cloud, also referred to as ordered scan. These are composed of 3D points
stored in a structured and consistent fashion. For example, the horizontal and vertical
angles (polar and azimuth, respectively) of the spherical representation of the points can be
equally distributed along the field of view. This enables the ordered scan to be represented
as a range image, where the row and column relate to the azimuth (θ) and polar (φ) angles,
respectively, and the value of each pixel represents the distance to the sensor. Having
access to the geometric information of the scene with this new format paves the way for the
development of novel odometry methods, which can capitalize on ordered point clouds to
achieve a higher efficiency. In addition to this, nowadays the move of autonomous vehicles
towards optimizing Size, Weight and Power (SWaP) [13] is clear, resulting in systems with
scarce computing resources available to share between the different processes running
on the platform. As a consequence, the usage of fast and efficient algorithms becomes a
strong requirement.

In this paper we propose an efficient 3D lidar odometry method that performs at a
high frame rate by taking advantage of the structure of ordered scans provided by modern
3D lidars. These data come in the form of range images, allowing us to leverage techniques
popular in traditional Visual Odometry, especially in depth VO, which tend to be more
efficient than ICP-like 3D registration methods. In the proposed method, the motion
is recovered by imposing the coplanarity constraint [14] between pairs <point, plane>
extracted from the input images. This reduces to finding the rigid transformation that
minimizes the point-to-plane distance between pairs of features, similar to indirect/feature-
based VO methods [15,16]. However, we skip solving for correspondences (e.g., using a
minimum distance criterion) since the matches are iteratively established based on the
projection function of the sensor, similar to what is adopted in direct methods such as [17,18].
The result is a hybrid algorithm that combines techniques from both direct and indirect VO
methods to obtain the odometry of a 3D lidar by exploiting the flatness of surfaces present
in most scenes, typically in man-made environments, both indoors and outdoors. Because
we are imposing the coplanarity constraint to pairs <point, plane>, we are assuming that
each point comes from its counterpart planar patch. This holds when the planar patches
are sufficiently flat to be approximated by a plane, and their supporting regions are large
enough with respect to the sensor relative pose. Thus, selecting planar patches that satisfy
these requirements is essential in our method, and occupies much of the computation
time. Also notice that, as the method approaches convergence, the motion to recover
becomes smaller, making it more probable for the coplanarity constraint to be fulfilled.
With each iteration of the algorithm, each point slides along their corresponding planar
patch towards its centroid. In an ideal case, the points becomes coincidental with the
centroid of their matched planar patch at convergence. Figure 1 shows a representation
of the proposed technique applied to a simple scene, with consecutive iterations of the
algorithm being shown.
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It is worth mentioning that the applicability of the method could be extended to any
sensor that delivers any kind of point cloud, such as traditional 3D lidar and even depth
cameras, by creating a range image representation through the projection of the point cloud
onto a spherical surface.

Iteration 0 Iteration 1 Iteration 2

Figure 1. Consecutive iterations of the proposed algorithm. First, certain areas of the ordered scan S0

(dark blue line) are selected based on their flatness. Planar patches defined by their center (c, blue
dot) and normal (n, blue arrow) are fitted to the selection. These centers are projected (gray dashed
lines) based on the current motion estimation onto S1 (light green line), where the point (pk, red cross)
related to said plane can be extracted (with k representing the iteration). By imposing the coplanarity
constraint [14], the relative pose of the sensor can be calculated as the rigid transformation that
minimizes the point-to-plane distances (d, red line) between each pair <point, plane>. In the next
iteration, the estimated motion is used to update the point to which each plane is matched. This
improves the probability of each pair fulfilling the coplanarity constraint, and thus results in a more
accurate estimation of the movement. Notice how the selected point becomes closer and closer to its
corresponding centroid (c∗, dark green dots) with each iteration.

To validate the presented method, we have compared different configurations of it
with state-of-the-art techniques over the dataset presented in VelodyneSLAM [19]. The
results show how our method is capable of running in a single thread at real-time (∼30 Hz),
five times faster than a multi-threaded GICP competitor, also outperforming the accuracy of
other methods at a fraction of the computational cost. An alternative multi-threaded config-
uration has been also studied, reporting a higher accuracy while halving the computation
time of GICP.

2. Related Work

For the purpose of clarity this section will be divided into two subsections: Depth Visual
Odometry and 3D Lidar Odometry. The proposed method leverages techniques found in
depth VO, and in order to contextualize said techniques the state of the depth VO literature
will be presented first. We will then proceed to review the state of the art regarding 3D
lidar odometry, to correctly establish the place of the proposed method in the literature.

2.1. Depth Visual Odometry

Depth visual odometry applied to RGB-D cameras has been broadly researched since
the appearance of these sensors. The approaches found in the literature can be divided into
two main categories: indirect and direct methods. The former, also known as feature-based,
are characterized for reducing the input images to a set of features which are matched
by solving correspondences between them. The motion of the sensor is estimated by
minimizing the distance between pairs of features. Examples of features studied in the
literature are points [20], a combination of points and lines [21], and planes [15,16]. The
correct finding of correspondences among features is essential in indirect methods; hence,
most of the computation time is spent in this step. In particular for planar features, a plane
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segmentation algorithm is usually applied, which tends to slow the system down due to it
being time-consuming.

On the contrary, direct methods avoid extracting features and instead minimize an
energy function that is usually related to the difference between consecutive depth and/or
RGB images when one of them is reprojected back against the other. Steinbrücker et al. [22]
presented this concept applied to both RGB and depth images, where the photometric
error is minimized, while the only purpose of the geometric information is to reproject one
image against the other. This work was extended in [17] by introducing a new probabilistic
formulation that produced better results. The work presented by Jaimez and Gonzalez-
Jimenez [18] only utilizes the geometric information found in the depth image, estimating
the motion by applying the range flow constraint densely. The result is a very fast and
accurate depth odometry method, outperforming similar approaches found in the literature
at the time.

Although not an odometry method, the Iterative Closest Point [9] has served as the
comparison baseline to most of the depth odometry approaches. ICP was formulated for
the registration of two unordered point clouds. Since depth images are a representation
of an ordered point cloud, ICP can be applied to obtain the relative pose of the sensor
given a pair of frames. Different versions of the ICP algorithm have been developed
through the years: in [10] the point-to-plane distance is minimized instead of the original
point-to-point; Generalized ICP [11] combines the two previous methods into a single
probabilistic framework. The same idea was then expanded by Servos et al. [12] by adding
more information in the form of channels, such as color or intensity, to reduce the ambiguity
of the solution.

The method proposed in this paper could be categorized as indirect because it makes
use of features (points and planes). As explained before, solving for correspondences is an
essential procedure in traditional feature-based methods, because having features matched
incorrectly usually results in a detriment in accuracy. We circumvent this critical step by
iteratively matching the features based on the current relative pose, as in direct methods,
thus allowing for more leniency in the pairing of the features and a faster execution time.

2.2. 3D Lidar Odometry

Despite 3D lidars producing geometric information too, such as RGB-D cameras, the
unordered point clouds provided by early technology could not be represented as an image,
rendering the previously mentioned VO methods unusable. The localization problem
related to 3D lidar was seen closer to 3D registration, and thus the ICP algorithm and its
variations dominated the literature. Nonetheless, over the years, other approaches have
been developed, such as the 3D Normals Distributions Transform (NDT) [23], which stands
out for offering an alternative to ICP. NDT was originally conceived for 2D localization [24],
where the model is represented by a combination of normal distributions, describing
the probability of finding a surface point at a certain position. Similar to the previously
mentioned indirect methods, the proposal of Velas et al. [25] matches line features to
estimate the odometry of a 3D lidar sensor.

One of the most common applications of 3D lidar odometry is as the front-end of
SLAM systems, and even though it has not been as studied as depth odometry, the literature
displays a wide collection of 3D lidar SLAM algorithms. In spite of the fact that there are
SLAM methods where a custom feature-based odometry has been implemented [26,27],
most of the 3D lidar SLAM systems perform the scan-to-scan alignment with some variation
of ICP (see [19,28–31]).

In recent years, 3D lidars have been developed to produce ordered point clouds which
can be represented as a range image, specially with the introduction of solid state lidar.
This new representation of the geometric information of the scene fosters the creation of
new methods that exploit its advantages. Given the novelty of these 3D lidars capable of
generating ordered scans, the literature does not yet reflect this trend. In our proposal, we
leverage the image representation of the ordered point clouds by employing techniques
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found in depth VO. This allows it to be a fast 3D lidar odometry method, which is desirable
for various reasons. First, as the front-end of a SLAM system, having the localization
available at a higher frame rate means the SLAM algorithm has more information to
work with, while leaving more computational resources free for other processes running
alongside. Additionally, the development of fast odometry methods suits the advance in
robotics and autonomous vehicles towards optimizing Size, Weight and Power (SWaP).

3. Method Overview

This section summarizes how the proposed method estimates the motion of a 3D lidar
over a sequence of range images. Thus, the objective is to find the relative pose of the
sensor between two consecutive frames, defined by the rotation matrix and translation
vector (R, t), with R ∈ SO(3) and t ∈ R3. The input is a pair of ordered scans, represented
as range images, S0 and S1, where Si : (Ω ∈ N2) → R is defined on the image domain Ω.
Figure 2 shows the general workflow of our method.
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Figure 2. Overview graph showing the workflow of the proposed method. As a preprocessing step, a
flatness image is computed from the first ordered scan S0 to find the pixels most likely located in flat
surfaces of the scene. Once planes have been fit to the selected pixels, the iterative motion estimation
process can begin. It consists of reprojecting the selected planes onto S1 based on the current motion
estimation, which yields their corresponding pixel coordinates. From these image coordinates, the
point related to the selected plane can be extracted, completing the feature pair <point, plane>. The
relative pose estimation is then obtained by minimizing the point-to-plane distance of feature pairs.
This is repeated until convergence.

The main idea of this method is to create pairs of planar and point features from S0 and
S1 respectively, to then impose the coplanarity constraint to each pair. When this hypothesis
holds true, the rigid transformation that minimizes the point-to-plane distance between
them corresponds to the sensor motion [14]. Note that the supporting flat surface from
which the planar patch is extracted does not need to be completely flat for the coplanarity
constraint to apply. The bigger the supporting flat surface of the planar features, the higher
the probability of fulfilling the hypothesis. Thus, a selection algorithm is employed to
choose the pixels more probable of belonging to large flat surfaces.

The approach followed in the proposed algorithm consists of creating a flatness image
(as seen in Figure 3) that holds the information of how flat the neighborhood around each
point is, so pixels can be selected based on this score. Once the pixels from S0 located in flat
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surfaces have been selected, a planar patch is fitted to the neighborhood of each one. The
details of this selection process will be further explained in Section 3.1.

Figure 3. Flatness image (right) generated from S0 (left) applying the LSF method. Flat surfaces such
as the ground and walls appear darker, while non-planar pixels are displayed brighter. Images below
are zoomed in areas of the panoramic images above.

The next step consists of finding the 3D points from S1 related to each selected plane.
This is an iterative process, since the points are extracted from the pixel coordinates obtained
by reprojecting the planes onto S1 based on the current motion estimation. For the first
estimation, the movement is assumed to be zero, resulting in matching each planar feature
with the 3D point in S1 located in the same pixel coordinates. This will be expanded on
Section 3.2.

This reprojection-based matching results in a set of planes from S0 defined by their
center and normal vector (ci, ni), and their corresponding points pi from S1, with ci ∈ C,
ni ∈ N and pi ∈ P. The relative pose (R, t) that minimizes the distance between the pairs
of features also represents the motion between the input scans. It is possible, as long as the
coplanarity constraint is fulfilled and each point belongs to the corresponding plane, to
register both scans this way. Section 3.3 will delve into this estimation process.

As explained before, this is an iterative process, so the estimated motion is fed back to
recalculate the points associated to each plane. This increases the probability of the paired
features fulfilling the coplanarity constraint, which in turn improves the estimation of the
relative pose. This can be repeated until convergence.

3.1. Flatness-Based Selection

This section describes the preprocessing step which reduces the input frame S0 to
a set of selected planar patches defined by their centers C and normal vectors N. These
planar patches will be, at a later stage, matched with points P from S1. This pairing will
be considered valid if both features belong to the same surface of the scene, satisfying the
coplanarity constraint. The fulfillment of this hypothesis depends on two main factors: the
size of the selected planar patches and the movement to recover. Note that the latter is
given by the speed of the sensor and cannot be controlled, unlike the former. To increase
the probability of planar features being correctly matched, they are selected based on
how flat their neighborhoods are. The bigger the supporting region of the selected plane
(ci,ni), the higher the probability for the point pi to lie within it in the next frame, even
after big movements. Some form of plane segmentation could be applied here to improve
the selection, but these algorithms tend to be computationally expensive, preventing the
method from running at real time. However, as previously discussed, opting for a faster
alternative has the advantages of working with smaller movements, having the solution
(pose estimation) available more often.

Considering this, the proposed selection approach is based on obtaining a flatness
image, which holds information about how planar the area around each pixel of S0 is. An
example of a flatness image is shown in Figure 3. In this article, two ways of obtaining the
flatness images are presented, each one prioritizing accuracy or efficiency, respectively:

10



Sensors 2022, 22, 6976

• Least Squares Fitting (LSF): For each pixel, a plane is fitted to its neighborhood using
LSF. Then, the error between the fit plane and the surrounding points is used as
the value in the flatness image. This technique is very accurate at the cost of being
computationally more expensive.

• Curvature-based (Fast method): This approach exploits the function obtained by
representing a 3D plane in the spherical coordinates of the range image. These images
describe each point in spherical coordinates, where the value of each pixel is the
distance (r) from the point to the sensor, and the image row and column relate to the
azimuthal (θ) and polar (φ) angles, respectively. When a simple plane such as (1) is
represented in said spherical coordinates system, the distance r of a point in the plane
can be described as a function of φ and θ as in (2).

ax + by + cz = 1 (1)

r(φ, θ) =
1

a cos φ cos θ + b sin φ cos θ + c sin θ
(2)

Thus, the inverse of the distance function is a sine wave (3).

d(φ, θ) =
1
r
= a cos φ cos θ + b sin φ cos θ + c sin θ (3)

Instead of trying to fit a sine wave to check for flat areas, the curvature of the neigh-
borhood can be tested. The curvature of a function can be approximated by its second
derivative [32], which means that the second derivative of the inverse of the distance
d along both φ and θ should be low for pixels located in flat surfaces. However, non-
planar areas, such as the intersection of two planes, will result in an abrupt change in
curvature. The derivatives along both image axes can be efficiently calculated with the
use of 2D convolutions, applying the Sobel operator. The value stored in the flatness
image is the curvature (k) of each pixel, calculated as the sum of the absolute value of
the second derivative of d along each axis (4).

k = | ∂2d
∂φ2 |+ |∂

2d
∂θ2 | (4)

Regardless of the technique used to obtain the flatness image, a Gaussian filter is
applied to blur it afterwards, which helps to deal with pixels located near non-planar areas
by leveraging the score of their neighborhoods.

Once the flatness image has been created, it is then used to select pixels from S0 based
on their score. To ensure a good distribution of pixels around the scene, the image is
divided into blocks, and the best pixels from each block are selected. This also serves as a
non-maximum suppression step.

A planar patch (ci, ni) is fitted to each neighborhood around the selected pixels in
the image S0, with the centroid of the group being the center of the plane. For the normal
vector, the singular value decomposition is applied to the matrix created by stacking the
difference of each point of the neighborhood and the centroid. The normal vector is then
the left singular vector corresponding to the least singular value. A measurement of the
fitness fi, how planar the group of points is, is also estimated as the least singular value.
Low values of this variable mean the group of points actually form a planar surface.

Take into account that it is no guarantee that the selected pixels are located in a planar
surface just from the flatness image, but once the planes are fit into their neighborhood, the
fitness fi can be used to downweight selected pixels found near occlusions or in curved
surfaces (see Section 3.3).

3.2. Iterative Projection-Based Matching

After the planar patches have been obtained from S0, their corresponding points pi
have to be extracted from S1. In traditional indirect methods, the features from both frames
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are matched based on some descriptor. Instead, in the proposed method, an iterative
approach is implemented, inspired by direct methods. It consists of reprojecting the centers
of the selected planes onto S1 based on the current motion estimation, to find the pixels in
S1 that are more probable of representing the same scene surface as their corresponding
planar region. This process works as follows:

1. The center of each plane ci is transformed using the motion estimation (R, t) to
obtain c∗i :

c∗i = [xc, yc, zc]
T = R−1(ci − t) (5)

2. The spherical coordinates of the transformed center are then calculated:⎧⎪⎨⎪⎩
ri =

√
x2

c + y2
c + z2

c

φi = arctan2(yc, xc)

θi = arcsin(zc/ri)

(6)

3. The row (v) and column (u) on the image are obtained based on the spherical coordi-
nates: ⎧⎨⎩ vi = arg min

j
|θvec(j)− θi|

ui = [(columns − 1)(π − φi)/(2π)]
(7)

where θvec represents the vector of the azimuthal angles related to the row numbers,
and [ ] is the rounding operator, which returns the integer number closest to the
input value.

4. These pixel coordinates can then be used to obtain the points pi from S1. A Gaussian
filter is applied over the neighboring points to reduce negative effect of noise.

During the first iteration, the relative pose between both range images is considered
to be composed by the identity rotation R = I and no translation t = 0, which means that
the points pi are located in the same image coordinates as the centers ci of the selected
planes, but in the next image. Note that by imposing the coplanarity constraint the only
requisite is that the points and planes selected belong to the same surface of the 3D scene,
so there is no need for a perfect point-to-point matching. By selecting a pixel in S0 located
in a planar surface as explained in the previous section, there is a high probability that the
point located at the same image coordinates in both frames lies on the same surface.

3.3. Relative Pose Estimation

This section describes how the relative pose between the two range images is calculated
given the set of matching <point, plane> pairs, assuming they satisfy the coplanarity
constraint. The objective is to find the rigid transformation (R, t) that minimizes the point-
to-plane distance of each pair of features, as shown in Equation (8). This is optimized by
the Levenberg–Marquardt implementation from the well-known Ceres Solver [33]:

(R, t) = arg min
R,t

∑
i

ρ
(
‖αini · (Rpi + t − ci)‖2

)
(8)

where αi = (1 − fi) serves as a weight of the residual based on the fitness of the selected
plane. This way, selected pixels located in surfaces with lower flatness have less impact on
the final result. The Huber loss function ρ is applied to the residual to deal with outliers,
which are pixels that do not fulfill the hypotheses, whether because they move with respect
to the static scene or because they do not lie in the same surface in both frames. Along with
the relative pose, the covariance of the solution is calculated, which holds the information
of the uncertainty of each parameter of the rigid transformation.

The motion estimation is part of the iterative process previously mentioned (recall
Figure 2), so the resulting transformation is fed back to update the points P in S1 corre-
sponding to each planar region. This improves the matching of the features by making it
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more probable that both of them belong to the same surface of the scene, improving in turn
the motion estimation. This procedure is repeated until the convergence of the solution.

As a final process, a motion filter is applied to the resulting relative pose, similar to
the one found in [18], in which the motion estimation from the previous pair of frames is
leveraged if the covariance of the current solution is high. This has proven to be helpful in
scenes with low planar information, improving the accuracy of the localization as will be
proven in Section 4.4.

4. Experiments and Results

In this section, we evaluate the performance of our method resorting to sequences of
3D lidar scans from the widely-used Velodyne SLAM dataset [19] (see Section 4.1). The
obtained results are compared with different implementations of the state-of-the-art GICP
algorithm [11], including single-thread and multi-thread alternatives (Sections 4.2 and 4.3).
For all the experiments, the test platform used is a standard PC with 8GB of RAM, running
Ubuntu 20.04 with an Intel Core i7-7700HQ CPU with four cores and eight execution
threads at 2.8 GHz. We also present an ablation study exploring different configurations
of the proposed method (Section 4.4) and discuss the limitations of the proposal (see
Section 4.5).

4.1. Testbed

The proposed method was evaluated on the two outdoor sequences provided by the
Velodyne SLAM dataset [19], captured by a vehicle driving around town in a closed loop
over a kilometer in length. The Velodyne HDL-64E sensor, running at 10 Hz, provides the
geometric information in two formats: point clouds and 870 × 64 range images.

The error metric employed to compare the different methods is the one proposed
in [34], known as relative pose error (RPE). Although the RMSE of the error will be shown
because of its popularity in the odometry literature, the mean RPE will be used to compare
the methods based on the arguments presented in [35].

The proposed method is configured with the following parameters:

• Neighborhoods are 3 × 3 blocks of pixels.
• The flatness image is divided into 16 × 16 blocks, and the four best pixels are selected

from each block.

4.2. Time Performance

The performance of our method is compared to the widely popular GICP
algorithm [11] as implemented in two different C++ libraries: PCL [36] and Open3D
(O3D) [37]. The former is a basic single-thread (ST) implementation, while the latter applies
a loss function to reduce the effect of outliers, and performs at a higher rate because of
multi-threading.

The proposed method is tested with both versions of the flatness image introduced
in Section 3.1, fast and LSF, with the second method being more accurate at the cost of
computation time. For a fair comparison with the GICP implementation of Open3D, a
multi-threaded (MT) implementation of the LSF variant is included. A breakdown of the
elapsed times for every part of the proposed algorithm is shown in Table 1 for both versions.
It is clear how the use of 2D convolutions in the fast version of the method greatly reduces
the computational cost. Regarding the threaded implementation of our method, the only
process worth parallelizing is the creation of the flatness image, resulting in a 59% reduction
of computation time.

With the goal of performing a balanced comparison, a pair of configurations were
employed in the GICP calculations, each one prioritizing accuracy or speed over the other
one. In summary, seven odometry methods are compared in this section, four of them
being a variation of GICP (PCL-fast, PCL-acc., Open3D-fast, Open3D-acc.), and three of
them being the different versions of the proposed method (Ours-fast, Ours-LSF-ST, Ours-
LSF-MT). The Open3D implementation of GICP and Ours-LSF-MT are multi-threaded,
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while the rest run on a single thread. Table 2 shows the computation time and frequency
of each method, where we can see how the slower implementation of our method, using
the LSF, outmatches the frame rate of the faster GICP (Open3D-fast), while the fast version
achieves 4× its speed. Note that 3D lidar sensors usually run at 10–20 Hz, so the presented
configurations of the proposed method work in real time. Figure 4a shows this information
in a more visual way.

(a) (b)

Figure 4. Frequency comparison of the different methods. (a) Frame rate of the different methods.
The usual working frequencies of 3D lidar, 10 and 20 Hz, are displayed along the data. (b) Frequency
of the different methods over the translational RPE. The usual working frequencies of 3D lidar, 10
and 20 Hz, are displayed along the data.

Table 1. Computation time breakdown of the proposed method.

Process Fast (ST) LSF (ST) LSF (MT)

Flatness image 2.5 ms 63.5 ms 26 ms

Plane select. and
fitting 3ms 3ms 3ms

Matching points
extraction 2.5 ms 2.5 ms 2.5 ms

Motion estimation 25 ms 25 ms 25 ms

Total 33 ms 94 ms 56.5 ms

Table 2. Computation time comparison between the different methods.

Threaded Method Time per Frame Frame Rate

No

PCL (fast) 5300 ms 0.188 Hz
PCL (acc.) 8800 ms 0.114 Hz
Ours (fast) 33 ms 30.30 Hz

Ours (LSF, ST) 94 ms 10.64 Hz

Yes
Open3D (fast) 138 ms 7.24 Hz
Open3D (acc.) 167 ms 5.98 Hz

Ours (LSF, MT) 56.5 ms 17.69 Hz
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4.3. Accuracy Results

Regarding the accuracy, Table 3 displays the translational and rotational error of the
six methods being compared along the two sequences of the dataset. Note that the results
obtained from Ours-LSF are the same whether or not it is multi-threaded. In said table
we can see how, when comparing the LSF version of our method with the competitor
showing the lowest error (Open3D-acc), our proposal is able to achieve a reduction in the
translational error of 5% and 19% of the mean and median value of the RPE, respectively,
while speeding up its frame rate by a factor of 2.9×. Even the proposed Ours-fast version,
which works five times faster than Open3D-acc., reaches a similar accuracy improvement.
Regarding the rotation error, a similar performance is achieved, with the difference between
GICP and our method being below 3%. Note that there is a notable difference between
comparing the RMSE, mean error, and median error of the different methods. We agree
with [35] that the RMSE is not able to correctly capture the general accuracy of the data
since it severely penalizes instances of big errors, however scarce they are. The mean
absolute error on the other hand allows for a fairer comparison of the accuracy of the
presented methods. In addition, the median absolute error conveys the accuracy obtained
in most of the frames along each sequence. Figure 5 shows a visual representation of
this evaluation, where we can check the superior performance of our proposal regarding
accuracy. Moreover, for a qualitative comparison, the trajectories computed by each method
are displayed in Figure 6.

Table 3. RPE comparison between the different methods.

(a) Translational RPE.

[cm/frame] PCL PCL O3D O3D Ours Ours
fast acc. fast acc. fast LSF

RMSE
Scen. 1 11.55 8.54 5.68 5.14 6.95 7.04
Scen. 2 14.68 9.22 7.47 7.54 7.98 7.83

Avg 13.12 8.88 6.58 6.34 7.47 7.44

Mean
Scen. 1 6.55 4.31 2.97 2.30 2.22 2.18
Scen. 2 7.07 4.09 2.79 2.06 2.01 1.96

Avg 6.81 4.20 2.88 2.18 2.12 2.07

Median
Scen. 1 3.79 2.58 2.31 1.77 1.47 1.44
Scen. 2 3.61 2.38 2.79 1.55 1.23 1.23

Avg 3.70 2.48 2.55 1.66 1.35 1.34

(b) Rotational RPE.

[deg/frame] PCL PCL O3D O3D Ours Ours
fast acc. fast acc. fast LSF

RMSE
Scen. 1 0.230 0.198 0.189 0.184 0.212 0.203
Scen. 2 0.228 0.177 0.168 0.163 0.257 0.324

Avg 0.229 0.188 0.179 0.174 0.235 0.263

Mean
Scen. 1 0.177 0.154 0.147 0.142 0.145 0.144
Scen. 2 0.171 0.140 0.131 0.126 0.128 0.129

Avg 0.174 0.147 0.139 0.134 0.137 0.136

Median
Scen. 1 0.134 0.119 0.112 0.109 0.108 0.107
Scen. 2 0.133 0.111 0.102 0.097 0.093 0.091

Avg 0.134 0.115 0.107 0.103 0.100 0.099

Figure 4b shows the running frequency of each method over their mean translation
RPE, allowing a comparison of accuracy and speed combined. For example, it can be seen
how Ours-fast only performs 3% better than O3D-acc in translation RPE, but runs 5× faster.
Compared to the faster version of GICP, Ours-fast works at 4x the speed, and the accuracy
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improvement goes up to 26%. Regarding the LSF version of the proposed method, it yields
a better accuracy, with a 5% and 28% improvement over the accurate and fast versions of
Open3D, respectively, while running 2.9× and 2.4× faster than them.

Figure 5. Comparison of the mean and median RPE of the different methods. Translational and
rotational error are displayed on the left and right, respectively.

Figure 6. Top view of the resulting trajectories of the tested methods over each sequence of the
dataset, along with the ground truth.

4.4. Ablation Study

The purpose of this section is to validate the contribution of the different processes
employed in our proposal to the resulting performance. Particularly, three procedures are
analyzed: the iterative update of the correspondences, the motion filter (see Section 3.3),
and the blurring of the flatness image (Section 3.1). Thus, the baseline for this test is the
base algorithm running a single iteration.

Based on Table 4, the effect of a second iteration proves to be worth it, reducing the
translation error over 70%. Allowing the system to iterate until convergence improves
the accuracy even further. Regarding the motion filter, it helps to mitigate the effect of
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scenes where not enough information is found (see Section 4.5), which happens sparsely
throughout the sequences, resulting in an improvement of the accuracy of 3%. Similarly,
applying a Gaussian filter to the flatness image helps with selecting pixels located far from
non-planar areas, reducing the error 2.6% further.

Table 4. Improvements in accuracy of the different versions of the proposed method.

Version
Translation: Mean RPE

(cm/frame)
Improvement over Previous

Version

Base (1 iteration) 11.27 -

Base (2 iterations) 3.24 71.25%

Iterations until convergence 2.31 28.70%

Prev. and motion filter 2.24 3.03%

Prev. and flatness image
blurring 2.18 2.68 %

4.5. Limitations

The formulation of the presented method entails the limitation caused by the aperture
problem [38], meaning that certain scenarios exist in which the motion cannot be estimated
caused by the lack of planes oriented in different directions. A clear example of these
undetermined scenes would be a corridor, in which the translation along it cannot be
recovered by imposing the coplanarity constraint. To solve this issue, in addition to
the motion filter, information from another sensor, like IMUs or RGB cameras, could be
leveraged to constrain the solution.

5. Conclusions

In this paper we have introduced a novel method for 3D lidar odometry that exploits
the structure of the range images that modern sensors provide, as well as information
from flat surfaces to achieve run-time operation and a low drift. These flat surfaces are
leveraged to extract planar patches, described by their centroid and normal vector, from
the first range image, which in turn are used to retrieve features in the second image in the
form of points. The utilization of a flatness image is proposed to efficiently select planar
patches, and two different ways to estimate it have been presented, each one prioritizing
speed or accuracy over the other. The coplanarity constraint is imposed to each <point,
plane> pair. This way the motion is estimated by minimizing the point-to-plane distance
between pairs of features. Their correspondences are updated iteratively based on the
current estimation of the relative pose, by employing the projection model of the sensor.
When the point related to each plane is updated based on the current pose estimation, the
coplanarity constraint becomes more probable to be fulfilled, thus improving the accuracy
of the solution. Gaussian and motion filters are used to reduce the negative influence of
noise and scenarios with limited information, respectively.

To test its viability, our approach has been compared with GICP, widely used in 3D
lidar SLAM systems. Two GICP configurations have been used in the comparison, one
focusing on accuracy and the other on speed, to match the two versions of the proposed
method. When comparing the fast version of both approaches, our method turns out to
be capable of achieving four times the frame rate using a single thread, while improving
the accuracy by 26%. Regarding the implementations where the goal is to maximize the
accuracy, our approach runs 2.95× faster than GICP, and yields 5% more accuracy. This
reduction in computation time allows the resources of the system to be shared between the
different processes running alongside.

In future works, the adaptability of the method parameters will be studied. For
example, the size of the neighborhood can change depending on the distance to the point,
or quadtrees can be used instead of fixed-size blocks in the selection. Being adaptive to
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the peculiarities of the scene at hand would permit the method to properly operate with a
wider range of real-world conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

ICP Iterative Closest Point
GICP Generalized Iterative Closest Point
VO Visual Odometry
SWaP Size, Weight and Power
NDT Normals Distribution Transform
SLAM Simultaneous Localization and Mapping
LIDAR Light Detection and Ranging
LSF Least Squares Fitting
RPE Relative Pose Error
RMSE Root Mean Square Error
ST Single Thread
MT Multi-Threaded
IMU Inertial Measurement Unit
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Abstract: Regardless of recent advances, humanoid robots still face significant difficulties in perform-
ing locomotion tasks. Among the key challenges that must be addressed to achieve robust bipedal
locomotion are dynamically consistent motion planning, feedback control, and state estimation of
such complex systems. In this paper, we investigate the use of an external motion capture system
to provide state feedback to an online whole-body controller. We present experimental results with
the humanoid robot RH5 performing two different whole-body motions: squatting with both feet in
contact with the ground and balancing on one leg. We compare the execution of these motions using
state feedback from (i) an external motion tracking system and (ii) an internal state estimator based
on inertial measurement unit (IMU), forward kinematics, and contact sensing. It is shown that state-
of-the-art motion capture systems can be successfully used in the high-frequency feedback control
loop of humanoid robots, providing an alternative in cases where state estimation is not reliable.

Keywords: humanoid robot; state estimation; motion capture; Whole-Body Control

1. Introduction

Humanoid robots are complex systems, both in terms of modeling and control. Bipedal
locomotion is particularly difficult due to the instability of the robot in walking phases with
double or single ground contacts. Balance is highly dependent on the control approaches
employed and the accuracy of the floating base state estimation. The latter is commonly
achieved using onboard sensors, which are subject to drift and noise. In contrast, external
tracking approaches provide a globally stable estimate of the robot’s state, independent of
inertial sensor drift and kinematic modeling errors such as leg flexibility.

Marker-based motion capture systems (MoCap) have been used for various robotic ap-
plications. One widely explored topic is human motion imitation. Motion data acquisition
enables humanoid robots to perform human-like movement sequences such as walking and
dancing. For instance, ref. [1] proposes a trajectory generation method for humanoid robots
to imitate human walking gaits captured with a marker-based motion capture system. The
human movements are adapted to match the kinematic structure, degrees of freedom, and
joint limits of the humanoid robot. The work in [2] presents the use of human motion data
to generate natural walking and turning motions on the humanoid robot HRP-4C, while
considering dynamic balance. Moreover, the work of [3] addresses the topic of human–
robot interaction by generating human-like locomotion trajectories for the humanoid robot
TALOS. Motion capture is used to compare the computed robot trajectories with previously
recorded human walking trajectories and to evaluate which walking pattern generation
model is more realistic. Dancing motion generation is a challenging task as well, since it
often requires quicker motions than walking. The work in [4] proposes a control approach,
which enables the HRP-2 humanoid robot to perform human-like dancing based on motion
capture data, while maintaining balance and enforcing actuation limits.

Sensors 2022, 22, 9853. https://doi.org/10.3390/s22249853 https://www.mdpi.com/journal/sensors21



Sensors 2022, 22, 9853

Another important application of motion capture systems is state estimation of mobile
robots. Very often, MoCap is used as precise ground truth to determine the position
and orientation of the floating base of a humanoid robot. For example, MoCap has been
used to evaluate different state estimation approaches based on proprioceptive sensors [5],
LiDAR and kinematic-inertial data fusion [6], as well as LiDAR fused with visual-inertial
odometry [7]. Less frequently, external motion capture systems have been used to provide
state feedback to the control loops of legged robots. The LittleDog quadruped robot [8]
uses a set of retroreflective markers placed both on the robot body and legs as well as
on the terrain surface to allow analysis of different locomotion strategies without robot
perception. The motion capture runs at a low frequency of approximately 100 Hz since the
speed of state estimation is not crucial for the balance of the robot with four contact points.
The hopping leg Salto-1P [9] executes precise hopping by using motion capture data to
estimate the position and orientation of the robot. However, the motion capture has a low
frequency of 100 Hz, which is not sufficient for a fast feedback control loop and requires an
additional Kalman filter for position estimation and fusion with the gyroscope readings
from the onboard IMU for attitude estimation. Moreover, marker-based motion capture has
been used to track the position and orientation of the HRP-2 humanoid robot’s chest, while
performing locomotion and pulling a fire hose, which acts as an external force on the robot’s
wrist [10]. The tracked robot pose is used as input to the walking pattern generator to
correct the orientation drift and improve the robot’s balance during locomotion. However,
the success rate of the HRP-2 humanoid robot experiments is only 50%, and the motion
capture system has a low acquisition frequency of 200 Hz.

In this work, we present an experimental study to demonstrate for the first time that it
is possible to employ a high-frequency motion capture system for online stabilization of
the humanoid robot RH5 [11]. We use motion capture as an alternative for proprioceptive
state estimation. The whole-body controller in [12] is used to stabilize legged motions such
as squats and balancing on one leg.

In particular, the paper presents (i) the usage of a high-frequency marker-based
motion capture framework for robot floating base tracking, (ii) Whole-Body Control of the
humanoid robot with motion capture position feedback, (iii) the experimental validation of
the proposed approach with the humanoid robot RH5 performing squats and balancing
on one leg and (iv) a comparison with a state estimation approach [13] based on internal
sensor measurements, namely IMU, leg kinematics and foot contact sensors. We believe
that motion capture can be a viable alternative to state estimation to address edge cases
of humanoid locomotion where state estimation is not reliable. As an alternative, the two
approaches could potentially be combined.

This paper is organized as follows. In Section 2, we describe the motion capture
framework and the Whole-Body Control algorithm. Section 3 presents the experimental
results of squatting and single leg balancing of the humanoid robot RH5. In Section 5, we
draw the conclusions and propose future research directions.

2. Materials and Methods

First, we briefly describe the humanoid robot RH5 used in practical experiments.
Second, we introduce the motion capture system and explain its application for tracking the
position and orientation of the robot’s floating base. Next, we describe the state estimation
approach based on proprioceptive sensors used in this work for comparison with our
motion capture system. Finally, we present the Whole-Body Control framework used
on the humanoid robot RH5. The interaction between these components is depicted in
Figure 1.
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Figure 1. The control architecture of the humanoid robot RH5 includes a Whole-Body Controller that
receives feedback from a state estimation module, based on either (i) external motion capture system
or (ii) proprioceptive sensors.

2.1. Humanoid Robot RH5

The robot RH5 [11] is a 2 m tall, 62.5 kg humanoid driven by a hybrid combination of
serial and parallel actuation modules. For example, the RH5 ankle joints are designed as
parallel submechanisms with 2 degrees of freedom (DOF), which are arranged in series with
the other leg actuation modules (see [14] for a comprehensive overview). The robot has
34 DOF and is equipped with various sensors, such as an inertial measurement unit, joint
encoders, force-torque sensors, foot contact sensors and a stereo camera. For proprioceptive
state estimation, we rely on the IMU sensor, joint encoders and foot contact sensors. The
IMU model used here is part of the Xsens MTI-300 series of attitude and heading reference
systems. The robot’s foot contact with the ground consists of 4 contact sensors located at
the corners of each foot. Additionally, there is a 6 DOF force/torque sensor on each foot. In
the parallel submechanism modules, an absolute encoder is installed in the independent
joints and a relative encoder in the linear actuators, ensuring correct forward and inverse
geometric mappings.

2.2. Motion Capture System

The motion capture system used for rigid body tracking consists of 3 Oqus 300+
Qualisys cameras connected to a Windows 10 computer. The Qualisys Track Manager
software allows tracking and streaming of rigid body poses over an Ethernet connection.
We stream rigid body data in real time without further pre-processing steps to the RoCK
software framework [15], which runs on the robot’s main control PC (Ubuntu 18.04). The
rigid body tracking has a frequency of 750 Hz and a variable latency of 2–4 ms.

System calibration is achieved by placing the calibration frame with the desired
position and orientation in the cameras’ field of view. The calibration process is fast and
accurate, with average residual values of less than 0.5 mm. A new system calibration
is only required after repositioning the cameras in the workspace, which means that
recalibration between successive experiments is not required. The cameras can be placed in
any configuration in the room as long as the markers are not occluded.

The motion capture system can be used to track any robotic platform and stream rigid
body data in real time over the network. In our work, we use the motion capture system
to track the robot {IMU} frame shown in Figure 2. In this way, we can retrieve the pose of
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the floating base of the humanoid and make a direct comparison with a state estimation
approach based on IMU data.

camera
world frame {C}

{R}

{B}

{C}

{IMU}
frame

robot
world frame {R}

robot base
frame {B}

{IMU} Tb
rTimu

b

Timu
c Tr

c

Figure 2. The coordinate frames used for robot floating base tracking are the camera world coordinate
frame {C}, robot world coordinate frame {R}, robot base frame {B} and robot {IMU} frame. The
corresponding transformation tree is depicted on the right hand side of the figure.

Three markers are required to determine the position and orientation of a rigid body.
For redundancy, we place 4 reflective markers on the robot torso as shown in Figure 3. This
ensures better tracking performance in case of occlusions and robustness against outliers
caused by reflective robot surfaces. We define the tracked IMU rigid body as follows:
(i) the origin corresponds to Marker 1 placed on the center of the IMU sensor, and (ii) the
orientation is aligned with the right-handed robot {IMU} frame (x-up, y-right, z-forward).

RH5 Robot

IMU Markers

1
2

3
4

Figure 3. Four reflective markers are placed on the humanoid robot torso in order to track the robot
IMU frame with a motion capture system.

Next, we apply a series of transformations to the IMU rigid body pose to (i) convert
the tracked IMU pose to robot world coordinates using the camera-to-robot transformation
Tr

c and (ii) obtain the robot’s floating base pose Tb
r in the robot world coordinate system.

The camera world frame {C} and robot world frame {R} are shown along with all other
relevant transformations in Figure 2.
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The camera world frame {C} is defined during the calibration procedure of the motion
capture system. The transformation of the robot world frame Tb,0

r is defined as the projection
of the base frame at the initial time t = 0 onto the ground plane. The z-position component
is set to zero and the orientation of the world frame is set to the initial orientation of the base
frame. Then, the transformation between camera and robot world frame Tr

c is computed
using the transformation chain rule in Equation (1):

Tr
c = Timu,0

c (Timu
b )−1 (Tb,0

r )−1, (1)

where Timu,0
c is the tracked IMU rigid body pose in camera coordinates at time t = 0 and

Timu
b is the fixed IMU frame transformation with respect to the robot base frame.

Finally, we can recover the tracked floating base pose of the robot Tb,i
r in robot world

coordinates {R} at time t = i. For this purpose, we apply a series of transformations from
(i) robot to camera frame (Tr

c)
−1, (ii) camera to IMU frame Timu,i

c at time t = i and (iii) IMU
to floating base frame of the robot (Timu

b )−1 as shown in Equation (2):

Tb,i
r = (Tr

c)
−1 Timu,i

c (Timu
b )−1. (2)

In Equation (2), the time index i denotes transformations of tracked rigid bodies, which
are updated at every time step. The other transformations are fixed frames that are constant
over time.

2.3. State Estimation

The proprioceptive state estimator uses the invariant extended Kalman filter (InEKF)
proposed by [13]. The filter fuses sensor information from IMU, leg odometry and foot
contact sensors. The IMU linear acceleration aimu and angular velocity ωimu data are used
as input to the prediction step of the InEKF. The update step is performed based on leg
kinematics q, q̇ and foot contact information f ext as shown in Figure 4.

Prediction
Step

Update
Step

InEKF

Figure 4. Prediction and update blocks of the InEKF proprioceptive state estimator.

The system state X ∈ R(n+5)×(n+5) estimated by the InEKF is defined in Equation (3):

X =

⎡⎢⎢⎢⎢⎢⎣
R v p pC1

. . . pCn
01,3 1 0 0 . . . 0
01,3 0 1 0 . . . 0

...
...

...
...

. . .
...

01,3 0 0 0 . . . 1

⎤⎥⎥⎥⎥⎥⎦
(n+5), (n+5)

, (3)

where R ∈ R3×3, v ∈ R3 and p ∈ R3 represent the orientation, velocity and position of the
robot’s floating base, and pCi

∈ R3 represents the position of the n foot contact points.
In contrast to the standard EKF, the InEKF [16] takes advantage of Lie Group the-

ory [17]. Lie Groups are collections of object symmetries, for instance, the collection of
rotation matrices of a 3D object in space, known as the Special Orthogonal Group SO(3).
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Instead of using Jacobians to linearize the system, the InEKF operates on a linear vector
space, namely the Lie algebra g of a given Lie Group G. The Lie algebra is defined as
the tangent to the Lie Group manifold at the identity element. The mapping from the Lie
algebra to the Lie Group is given by the exponential map exp in Equation (4), while the
reverse mapping is provided by the logarithmic map log from Equation (5):

exp : g → G; τ̂ �→ X = exp(τ̂) (4)

log : G → g; X �→ τ̂ = log(X), (5)

where τ̂ is the estimated state on the Lie algebra and the X is the state represented on the
matrix Lie Group manifold.

In the InEKF, the exponential map is used to update the state estimate and determine
the exact error on the Lie Group manifold. The filter has strong convergence provided
by the invariance properties of the Lie Group and allows linearization independent of
the current system state. However, when the IMU accelerometer and gyroscope biases
are added to the state matrix, it loses the group affine property required for a matrix Lie
Group. This leads to an “Imperfect InEKF”, and the estimation error cannot be exactly
retrieved anymore. Moreover, the filter still suffers from inertial drift, yaw unobservability
and uncertainties in forwards kinematics due to leg flexibility.

These shortcomings of the proprioceptive state estimator may hinder the execution
of complex and dynamic motions required for bipedal locomotion and affect the robot
stability during single leg support phases and in challenging environments. Hence, state
feedback through motion capture is proposed as an alternative for developing and testing
new controllers for the humanoid robot RH5.

2.4. Whole-Body Control

To stabilize the robot during motions such as squatting and balancing, we use a
velocity-based Whole-Body Control (WBC) framework ( https://github.com/ARC-OPT/
wbc, accessed on 11 December 2022) [12], which solves the following instantaneous
quadratic program (QP):

min
q̇

‖∑i wi(J
iq̇ − vi

d)‖2

s.t. J
j
cq̇ = 0, j = 1, . . . , K

q̇m ≤ q̇ ≤ q̇M,

(6)

where q̇ ∈ R6+n are the robot joint velocities, including 6-DOF virtual floating base, n
number of robot joints, vi

d ∈ R6 is the desired spatial velocity for the i-th task, Ji ∈ R6×(6+n)

is the associated task Jacobian and wi ∈ R6 the task weights that control the priority of
a task. The QP is subject to joint velocity limits q̇m, q̇M ∈ R6+n, as well as K rigid contact
constraints, where J

j
c ∈ R6×(6+n) is the contact Jacobian of the j-th contact point. The QP

in Equation (6) can be solved using any standard QP solver, e.g., [18]. Robot tasks are
specified by providing trajectories for vi

d, for instance, by means of feedback controllers
designed around the QP in Equation (6). For full pose control, this can be achieved as
follows:

vd = vr + Kp

(
xr − x

θω̂a
r

)
, (7)

where vr ∈ R6 is the feed forward spatial velocity, Kp ∈ R6×6 the feedback gain matrix,
xr, x ∈ R3 the reference and actual position of the robot and θω̂a

r ∈ R3 the difference in
orientation between actual and reference pose using a singularity-free representation [19].

The solution of Equation (6) is fed into an inverse dynamics solver [20] as shown
in Figure 5, which not only computes the joint torques τ ∈ Rn for the entire robot, but
also projects q, q̇, τ into the actuator space of the system, including all parallel kinematic
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mechanisms (PKM) of RH5. This avoids the usual mechanism-specific transformation
of the solution to the actuators of each PKM, e.g., to the linear actuators in the RH5
ankle mechanism. As a result, we obtain the reference actuator positions, velocities and
forces/torques u, u̇, τu,r ∈ Rp, where p is the number of actuators in the robot. On actuator
level, these are stabilized using a PD position controller with force/torque feed forward,
which runs at 1 kHz, as shown in Equation (8):

τu,d = τu,r + Kd,u(u̇r − u̇) + Kp,u(ur − u), (8)

where Kd,u, Kp,u ∈ Rp×p are again diagonal feedback gain matrices.
The controller in Equation (7) is used to control the center of mass (CoM) and the

orientation of the upper body of the humanoid robot, where the state feedback xb f of
the robot’s floating base is provided by either (i) the external motion capture framework
described in Section 2.2 or by using (ii) an internal state estimation approach as described
in Section 2.3.

Internal State
Estimation

WBC
qr , qr PD

Control
u ,d

u ,u

x fb

desired state

ID/IK
ur ,ur , u ,r

q ,q

Windows PC

Motion 
Capture

Ubuntu PC

Figure 5. Control architecture to stabilize the desired robot motions.

3. Results

In this section, we present experimental results obtained with the humanoid robot RH5.
The robot is supposed to perform two different whole-body motions, namely squatting and
balancing on one leg (please find the Supplementary Video S1 under https://www.youtube.
com/watch?v=bqiBvVHf2i0, accessed on 11 December 2022). The two sets of experiments
are performed using the whole-body controller in Section 2.4 with state feedback from
motion capture system and proprioceptive state estimation, respectively. In the squatting
experiments, tracking of the vertical motion of the robot is evaluated at two execution
speeds of 10 and 16 s per squat. In the single leg balancing experiments, CoM and foot
tracking are evaluated when the robot raises one leg at two different heights of 10 cm and
15 cm, respectively. At the beginning of each experiment, the robot is placed in its initial
joint configuration and stands freely on the floor with both feet in contact with the ground.
For safety reasons, a movable cord is attached to the robot’s torso, which is secured by a
crane and neither restricts the robot’s movement nor affects its stability.

3.1. Squatting Experiment

In the squatting experiments, the floating base of the robot performs a translation
along the vertical z-axis with a height difference of 14 cm, as shown in Figure 6. Using the
whole-body controller described in Section 2.4, we constrain the feet to be in contact with
the ground during motion execution. In addition, we split the squatting motion into two
control tasks, namely the root task and the CoM task, as shown in Table 1. The root task
is used to constrain the floating base of the robot to follow the desired vertical motion on
the z-axis and minimize the lateral motion on the y-axis. The position of the floating base
on the x-axis is not constrained to allow the root frame to move forward and backward
if necessary, similar to the human squat. Furthermore, the CoM task is used to keep the
ground projection of the robot CoM centered in the support polygon to enforce balance.
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14 cm

Figure 6. Time lapse of the humanoid robot RH5 performing squats with an amplitude of 14 cm.

We performed two experiments with five squat repetitions each. The execution speed
was constant in both scenarios, while the time interval for a squat varies, namely (i) experi-
ment S1 with one squat per 16 s and (ii) experiment S2 with one squat per 10 s. In this way,
we can evaluate the squat movement with and without a stabilization break between the
movement direction changes. Both sets of experiments were successfully conducted using
state feedback from (a) external motion tracking and (b) proprioceptive state estimation.

Table 1. Task weights used in the whole-body controller for squatting and single leg balancing.

Experiment Task
Weights

x y z θx θy θz

Squatting CoM 6 6 0 - - -
Root 0 1 1 1 1 1

Balancing
CoM 6 6 1 - - -
Feet 1 1 1 1 1 1

Wrists 1 1 0 0 0 0

Due to the initial yaw angle unobservability of the proprioceptive state estimator, the
reference frame of the estimator is arbitrarily rotated around the z-axis. We account for
this rotation by adjusting the setpoints accordingly. To obtain a rotation-invariant error
and compare the two state feedback approaches, i.e., MoCap and proprioceptive state
estimation, we compute the 3D Euclidean space root-mean-square error (RMSE) between
the desired and measured robot position, as shown in Equation (9):

Ec =
√
E2

c,x + E2
c,y + E2

c,z , (9)

where Ec,x and Ec,y represent the CoM tracking error on the x and y-axis, Ec,z represents
the floating base tracking error on the z-axis, and Ec represents the RMSE tracking error in
Euclidean space. Since the calibration residuals of the motion capture system are less than
or equal to ±0.5 mm, we evaluate the experimental data to an accuracy of 1 mm.

The tracking results of experiment S1 are shown in Figure 7. We observe slightly
better stability using external motion capture feedback compared to proprioceptive state
estimation. As shown in Table 2, proprioceptive feedback is responsible for larger errors
when the time interval between squats decreases in experiment S2. This shows that state
estimation becomes less accurate during fast movements, whereas performance does not
change significantly during squatting with external motion capture feedback.
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Table 2. Tracking error of the robot CoM position Ec along the three axes and foot position on
the z-axis (Ep) during the squatting and single leg balancing experiments. The highlighted values
represent the smallest CoM and foot position tracking errors for every set of experiments.

Experiment State Feedback
RMSE [m]

Ec Ec,x Ec,y Ec,z Ep

S1 (16 s) MoCap Tracking 0.004 0.004 0.001 0.001 -
State Estimation 0.008 0.007 0.004 0.001 -

S2 (10 s) MoCap Tracking 0.004 0.004 0.001 0.002 -
State Estimation 0.027 0.010 0.025 0.001 -

B1 (10 cm) MoCap Tracking 0.025 0.002 0.025 0.001 0.006
State Estimation 0.026 0.018 0.018 0.001 0.002

B2 (15 cm) MoCap Tracking 0.023 0.002 0.023 0.001 0.008
State Estimation 0.026 0.017 0.019 0.001 0.008
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Figure 7. Squatting experiments S1, where the robot CoM position on x and y-axis and the floating
base position on the z-axis are tracked by the whole-body controller using (a) motion capture state
feedback and (b) proprioceptive state estimation. (a) Squatting motion using external motion capture
state feedback with the respective RMSE as follows: Ec,x = 0.004, Ec,y = 0.001 and Ec,z = 0.001.
(b) Squatting motion using proprioceptive state estimation feedback with the respective RMSE as
follows: Ec,x = 0.007, Ec,y = 0.004 and Ec,z = 0.001.

3.2. One Leg Balancing Experiment

During the balancing experiments, the robot starts with both feet in contact with the
ground. From the double leg support phase, the robot switches to the single leg support
phase by shifting the CoM to the right foot and raising the left foot to a 15 cm height, as
shown in Figure 8.

We achieved this behavior using Whole-Body Control, with a Cartesian task for raising
the left foot and a CoM task for constraining the position of the robot’s center of mass. To
achieve human-like motion, both wrists are constrained by Cartesian tasks to keep them in
front of the torso. Moreover, the contact constraint of the left foot is dynamically disabled
during the lift-off phase and re-enabled during touchdown.

The setpoints for the tasks are generated using a trajectory interpolator and executed
at joint level using the PD position controller in [20]. To enforce static balance of the robot,
larger weights have been chosen for the x and y-axes of the CoM position with respect to
the CoM vertical axis, as shown in Table 1.

We successfully performed experiments on balancing on one leg by tracking the robot’s
floating base using (i) a motion capture system and (ii) proprioceptive pose estimation. We
defined two scenarios, namely experiment B1 and B2, in which the vertical setpoint of the
left foot reaches a height of 10 cm and 15 cm, respectively. In both experiments, the center
of mass has been lowered by 4 cm on the z-axis to increase stability.
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15 cm
Figure 8. Time lapse of the humanoid robot RH5 balancing on the right leg, while raising the left leg
at 15 cm above the ground.

The results of experiment B2 are shown in Figure 9. We notice larger oscillations on the
x and y-axis when using proprioceptive state estimation feedback, as opposed to external
motion capture feedback. In both balancing experiments with motion capture feedback, we
observe stable single leg balancing, as summarized in Table 2.
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Figure 9. Single leg balancing experiments B2, where the robot CoM position Cx, Cy, and Cz on the x,
y and z-axis, respectively, as well as the foot position Pz on the z-axis are tracked by the whole-body
controller using (a) motion capture state feedback and (b) proprioceptive state estimation. (a) One
leg balancing using external motion capture state feedback with the respective RMSE as follows:
Ec,x = 0.002, Ec,y = 0.023, Ec,z = 0.001 and Ep = 0.008. (b) One leg balancing using proprioceptive
state estimation feedback with the respective RMSE as follows: Ec,x = 0.017, Ec,y = 0.019, Ec,z = 0.001
and Ep = 0.008.

4. Discussion

The experiments with the RH5 humanoid on squatting and single leg balancing
compare two approaches for providing state feedback for Whole-Body Control, namely an
external motion capture system and proprioceptive state estimation.

Proprioceptive state estimation provides fast state estimates relying only on pro-
prioceptive sensors such as IMU, position readings from the joints and contact sensors.
However, it suffers from yaw unobservability, and we apply an additional transformation
to the desired COM trajectory to cope with the initial yaw estimation error. Moreover, the
results show that both squatting and single leg balancing motions with proprioceptive state
estimation feedback suffer from oscillations when the speed or complexity of the motion
increases. This might be caused by the uncertainties in the “Imperfect InEFK” estimation,
since the IMU biases from the state vector do not satisfy the matrix Lie group properties.
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In contrast, the external motion capture system consists of cameras tracking reflective
markers on the robot’s IMU frame. The employed motion capture system is able to provide
accurate and fast state feedback to the whole-body controller with minimal setup and
calibration efforts. The results show that external motion capture feedback contributes
to more stable motions in the squatting and single leg balancing experiments. Due to its
robustness and suitability for high-frequency closed-loop control, this method could enable
the robot to execute more complex motions in the future, such as walking, climbing stairs
and multi-contact tasks. Thus, external motion capture feedback can contribute to the
development and testing of robot capabilities and Whole-Body Control algorithms.

5. Conclusions

Floating base state estimation plays a key role in bipedal locomotion of a humanoid
robot since state estimation errors can affect the robot’s balance in double or single leg
support phases. In this work, we show investigations on the use of external motion capture
feedback for humanoid robot control and compare it with a state-of-the-art propriocep-
tive state estimation method. We perform two different whole-body motions with the
humanoid robot RH5, namely squatting and single leg balancing and track the robot’s
floating base using external cameras. We demonstrate that high-frequency external motion
capture feedback can be reliably used for Whole-Body Control of humanoid robots and
shows better stability than proprioceptive sensing, which is subject to noise and drift. As
possible applications, external motion capture could be used both in industrial workspaces
such as factories and in research laboratories in parallel with the development of better
proprioceptive state estimation approaches to improve Whole-Body Control algorithms
and explore the capabilities of humanoid robots.

In future work, we consider addressing possible MoCap errors such as outlier rejection
and marker placement in order to increase performance. Moreover, fusion of proprioceptive
state estimation and real-time motion capture data could reduce the state estimation drift
and enable the robot to perform robust bipedal locomotion or other multi-contact tasks.

Supplementary Materials: The following supporting information can be accessed at: https://www.
youtube.com/watch?v=bqiBvVHf2i0, Video S1: Experimental Investigations into Using Motion
Capture State Feedback for Real-Time Control of a Humanoid Robot.
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Abstract: Received signal strength indicator (RSSI)-based fingerprinting is a widely used technique
for indoor localization, but these methods suffer from high error rates due to various reflections,
interferences, and noises. The use of disturbances in the magnetic field in indoor localization methods
has gained increasing attention in recent years, since this technology provides stable measurements
with low random fluctuations. In this paper, a novel fingerprinting-based indoor 2D positioning
method, which utilizes the fusion of RSSI and magnetometer measurements, is proposed for mobile
robots. The method applies multilayer perceptron (MLP) feedforward neural networks to determine
the 2D position, based on both the magnetometer data and the RSSI values measured between the
mobile unit and anchor nodes. The magnetic field strength is measured on the mobile node, and
it provides information about the disturbance levels in the given position. The proposed method
is validated using data collected in two realistic indoor scenarios with multiple static objects. The
magnetic field measurements are examined in three different combinations, i.e., the measurements
of the three sensor axes are tested together, the magnetic field magnitude is used alone, and the
Z-axis-based measurements are used together with the magnitude in the X-Y plane. The obtained
results show that significant improvement can be achieved by fusing the two data types in scenarios
where the magnetic field has high variance. The achieved results show that the improvement can be
above 35% compared to results obtained by utilizing only RSSI or magnetic sensor data.

Keywords: position estimation; indoor positioning; localization; mobile robots; sensor fusion; RSSI;
magnetometer; fingerprint

1. Introduction

Indoor positioning techniques are utilized in a large variety of applications, such
as emergency management [1], smart energy management [2], heating, ventilation, and
air conditioning (HVAC) control systems [3], occupancy detection [4], and industrial
monitoring [5]. They can be used to determine the position of humans, mobile robots,
and objects, etc. In mobile robot applications, the localization problem is the first critical
task which needs to be solved in control algorithms, since it directly influences their
success. Localization provides the robot pose estimate using a sensor fusion framework,
where generally relative and absolute poses are fused with probabilistic approaches. The
accurate estimation of the absolute position plays a crucial role in these sensor fusion-
based localization methods. In an indoor environment, the GPS cannot provide reliable
measurement data, so other technologies have to be considered. Various technologies can
be used for this task, such as cameras, LiDAR [6], and radio communication modules [7],
etc. The fusion of these technologies was also widely used in related research [8].

In wireless sensor networks (WSN), wireless signal-based techniques are widely used
in indoor positioning [9]. These techniques can be based on different types of extracted
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parameters, such as time of arrival (ToA), time of flight (ToF), angle of arrival (AoA), time
difference of flight (TDoF), time difference of arrival (TDoA), received signal strength
indicator (RSSI), and channel state information (CSI) [10]. The used methods can be
divided into two major groups: geometric and fingerprint-based methods [10]. Geometric
approaches include trilateration, multilateration, and triangulation methods. Various
measurement parameters can be used in the case of these methods, such as ToA, ToF,
or AoA.

The most often applied data type is the RSSI, which can be read from the transceiver
modules. In the case of both method families, the position is estimated based on RSSI
measurements between multiple anchor nodes with a known position and a unit with an
unknown position. In geometric-based algorithms, the RSSI value is converted to distance
based on an appropriate model, and then the position is estimated using trilateration [11].
In the case of fingerprint-based methods, measurements are collected in a room at fixed
points with a given resolution, then a pattern recognition or pattern-matching algorithm
(e.g., artificial neural networks (ANN), k-nearest neighbor (k-NN), etc. [12]) is trained using
the measurement data, which is later utilized to determine the position of the unknown
point [10,13,14]. Deep learning-based methods also offer an alternative solution to the
problem [15,16], but they require much more computational and memory capacity than
other methods. This can affect the real-time operation of the system, which is particularly
important in cases of their use on mobile robots, where the embedded system must perform
other tasks also. RSSI-based technologies are affected by various reflections, interferences
and noises, which can influence their localization performance significantly, especially in
indoor applications [17]. Some methods even utilize the trilateration and fingerprint-based
results together in the fusion algorithm to improve the performance [18], while other
methods fuse fingerprinting and time-based techniques [19].

In an outdoor environment, magnetic sensors are mainly utilized as compasses, but
indoors they are almost useless in such form, since there are several hard iron and soft
iron sources that affect the measurements [20]. This geomagnetism-based technique has at-
tracted considerable attention in recent years [21,22], and has been shown to be a promising
technology for indoor localization, since the field is more stable with much lower random
fluctuation as compared to other signals [23,24]. Each building has its own unique ambient
magnetic field, and if these local anomalies have sufficient variability, then they can be
utilized during indoor localization [25].

Various approaches were previously proposed for indoor localization using geo-
magnetism, but these mainly consider human localization with smartphone-based sys-
tems [21,26]. The proposed methods are usually based on a sequence of geomagnetic data,
which are generally fused with other data, such as WiFi [23,27–30], CSI [31], inertial mea-
surement units (IMU) [32], pedestrian dead reckoning (PDR) [28,30,33], or pedometers [34].
In [33], a fusion algorithm was proposed which combined PDR and matching in a magnetic
fingerprint map. Some works utilized only the sequence of magnetic field measurements
with pattern recognition techniques [35–39]. In [24], the authors utilized the fingerprints
of the changes in the raw magnetic field during indoor localization, but the performance
can be largely affected by local distortions. Subbu et al. proposed an indoor localization
solution by classifying signatures based on their patterns, using a dynamic time warping
(DTW)-based approach [35]. The evaluation was performed using fingerprints containing
simulated signatures of different ferromagnetic objects. In [36], an indoor positioning
technique was proposed, which utilizes the differences in 2D magnetic field measurements
that are collected over a distance with a pattern-matching algorithm. A 3D accelerometer
was used to find the vertical direction. The authors assumed the following: the attitude
variation of the smartphone is small; the change in the user velocity occurs only locally
and sparsely; and the indoor environment is considered with no significantly varying
magnetic field. In [37], a 2D geomagnetic fingerprint-based method was proposed, which
uses point-to-point fingerprint matching. The method does not require an indoor map since
it generates an indoor geomagnetic map, including all the turning points and connecting
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links with a crowdsourcing data collection module. The method also includes step and
turning detection based on inertial sensors. The results based on experiments in a five-floor
office building showed an average error smaller than 1.5 m. Ashraf et al. used geomagnetic
field patterns with convolutional neural networks to perform indoor localization [38]. The
performance was evaluated using measurements in two buildings with different experi-
mental environments and path geometry. The results demonstrated that the users could
be localized within 1.01 m at 75%. In [39], the magnetic field positioning performance of
different machine learning methods was tested using pre-processed raw magnetic data.
The test area was a corridor, where magnetic fingerprints were captured for 30 points.

The magnetic sensor-based technology was also used for the localization of mobile
robots. In [25], global self-localization was considered for a mobile robot in one dimension
using only a three-axis magnetometer. The Monte Carlo localization (MCL)-based technique
was tested in experiments conducted in the corridors of four buildings. Both the three-
dimensional measurement vector and the magnitude were tested in the method. Lee et al.
proposed an indoor positioning system that recognizes magnetic sequence patterns by
using a deep neural network [40]. The location was estimated by detecting the patterns of
landmarks, using features extracted from the magnetic sequences. The achieved accuracy
was 0.8 m in a corridor and 2.3 m in an atrium. In [41], magnetic fingerprints collected
using a vision-based motion capture system were used together with odometry data in
the localization framework. A particle filter-based method was proposed and the reported
average errors achieved were 9 cm. The authors of [42] proposed a deep neural network-
based method, which utilizes magnetometer measurement sequences, and applied it for
both human and mobile robot localization. The method was tested with two public datasets
and provided a localization error of around 1 m for both setups.

The disturbances in the magnetic field measured at different points can be used to form
a fingerprint equivalent which is used in RSSI-based methods and carries additional infor-
mation that can improve the efficiency of the RSSI-based fingerprinting. This study deals
with indoor positioning using RSSI and magnetometer data together in a fingerprinting-
based system, and the evaluation of the improvement provided by the proposed data
fusion approaches. The contributions of this work can be summarized as follows:

• A novel 2D fingerprint-based positioning method is proposed, which fuses both
the RSSI and magnetometer fingerprints using multilayer perceptron (MLP) neu-
ral networks. The method utilizes fingerprints measured in one plane near to the
ground, since the goal is to provide absolute position information for the sensor fusion
framework of a mobile robot. To the authors’ best knowledge, no such method was
previously proposed.

• The proposed method is validated using measurements collected in two different
indoor scenarios. Both scenarios are realistic since they include static obstacles.

• Three different combinations of magnetometer data are tested in the study. In the
first version, the magnetometer measurements of the three sensor axes are tested.
The second version utilizes the Z-axis measurements together with the magnetic field
magnitudes in the X-Y plane, while the 3D magnitudes are utilized in the third version.

• The results obtained using the different fusion versions are compared with the results
provided by utilizing only RSSI or magnetometer data to examine the improvement
caused by the fusion of two data types.

The rest of the paper is organized as follows. Section 2 presents the proposed
fingerprinting-based method. The applied measurement data are presented in Section 3.
The experimental results are discussed in Section 4, while Section 5 summarizes the results
of the paper.

2. Position Estimation Using the Fusion of RSSI and Magnetic Fingerprints

The aim of the proposed positioning method is to fuse RSSI and magnetometer data,
thereby improving the overall positioning performance.

35



Sensors 2023, 23, 1855

2.1. RSSI-Based Positioning

RSSI is the calculation of real signal power received by a receiver and is typically
expressed in decibel milliwatts (dBm) [10]. This measure can be used to measure the
distance between transmitter and receiver devices, based on the transmitted and received
signal power differences. RSSI measurements can be used in two ways in positioning
methods. In geometric approaches, distances are calculated from the RSSI values using an
adequate model. Two propagation models have been generally used to convert the RSSI
to distance: the free-space models and the log-normal models. The free-space models are
simple, but they do not consider the obstacles between receivers and transmitters, so they
are often limited in real applications. The log-normal models are more suitable for different
applications due to their flexibility. In fingerprinting-based techniques, the measured RSSIs
of access points (AP) collected at given points of the area of interest are used to form
the fingerprint database. This fingerprint database is used with a pattern recognition or
pattern-matching algorithm, which can be later used to determine the position of a point
given by a new measurement vector. Although geometric approaches are largely affected
by obstacles, they do not have an effect on fingerprint-based techniques if they are static.

2.2. Magnetic Fingerprints

Vector magnetometers measure the magnetic field in three dimensions, and they are
mainly used as compasses based on Earth’s magnetic field. The measurements of these
sensors are affected by different factors, which can be classified into two groups. The
first group includes deterministic errors, which occur due to manufacturing imperfections,
and can be compensated for by calibrating the sensors. Such errors are the scale factor,
the bias, and the non-orthogonality error. Magnetic sensors are also affected by external
magnetic influences, which are caused by materials that generate or distort the magnetic
field. These are called hard iron and soft iron effects [22,43,44]. Hard iron errors are time-
invariant, undesired magnetic fields generated by ferromagnetic materials with permanent
magnetism, which are additive to Earth’s magnetic field. The hard iron distortion is
modeled by a 3× 1 vector (bHI). Soft iron distortion is the result of a material that influences
or distorts a magnetic field, but does not necessarily generate a magnetic field itself, and is
therefore not additive. The effect of the soft iron distortion is modeled by a 3 × 3 matrix
(ASI). The sensor model supposing that the deterministic errors are calibrated can be given
by Equation (1).

B = ASIm + bHI , (1)

where B =
[
Bx By Bz

]T is the measured output vector, while m =
[
mx my mz

]T is
the magnetic field vector.

In an indoor environment, the measured magnetic field affected by the distortions at
different points can be used to construct a fingerprint of an indoor space, which can be
applied during localization.

2.3. Proposed Positioning Method

The magnetic sensor readings cannot be used for distance calculation, but the provided
measurements of points with a known position can be utilized to construct a multidimen-
sional fingerprint. Thus, it is obvious that the RSSI and magnetometer data should be fused
in a fingerprinting-based method. The proposed method, which can be seen in Figure 1,
utilizes together the fingerprints of RSSI values and the fingerprints of magnetometer
measurements to train offline the MLP neural network. This trained MLP can be used in
real-time to compute the (x̂, ŷ) position of an unknown point based on the measurements
collected at the given point. The used RSSI values are measured between APs with a known
position and the mobile robot, while the magnetic field measurements are provided by a
magnetometer installed on the mobile robot. In Figure 1, the magnetometer is connected
with a dashed line to the fingerprinting algorithm since different versions of listed data
are tested.
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Figure 1. Architecture of the proposed method.

2.3.1. Magnetometer Data

In total, three different possibly usable versions of magnetometer data are tested in
the analysis:

• The first version utilizes the measurements on the three sensor axes, i.e., the Bx, By,
and Bz measurements. This kind of application of the magnetometer readings is only
possible if the orientation of the sensor in the global coordinate frame is known for
the given point, since different orientations at the same location result in different
sensor readings. This version can be used to examine the most achievable positioning
performance of the proposed method, since it contains the most information.

• In the second version, the 3D magnetic field magnitude (Bxyz), which can be com-
puted from the sensor outputs using Equation (2), is utilized since it is orientation
independent.

Bxyz =
√

B2
x + B2

y + B2
z , (2)

• If the mobile robot is moving on a flat surface, then the degree of freedom decreases
to three, i.e., (X, Y, θ). This makes the measurements in the Z-axis directly usable.
The magnetic field magnitude in the X-Y plane (Bxy), which can be calculated using
Equation (3), can also be utilized without the knowledge of the θ angle. Thus, this
version uses together the Bz and the Bxy.

Bxy =
√

B2
x + B2

y, (3)

2.3.2. Fingerprinting Algorithm

The proposed method applies MLP neural networks to perform positioning in 2D.
The MLP is a widely used technique and it has been shown to provide the best results
in RSSI-based fingerprint tasks compared to well-known methods, such as the weighted
K-nearest neighbor (WKNN) and the random forest (RF) algorithms [45].

The method applies measurements collected at grid points of an indoor space to
train the MLP. The measurement database of RSSI data used during the training process
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consists of WiFi RSSIi,(xc ,yc) measurements for i = 1, 2, . . . , N APs. The measurements
collected in a grid based on the (xc, yc) coordinates form a fingerprint for each AP. Similarly,
the Bx,(xc ,yc), By,(xc ,yc), and Bz,(xc ,yc) magnetometer measurements taken at the grid points
and the computed Bxy,(xc ,yc), and Bxyz,(xc ,yc) magnitudes also form fingerprints. These
fingerprints for the different data types are also utilized during the MLP training.

The developed MLP contains three layers: an input layer, a hidden layer, and an output
layer. An input vector is formed for each given location from the corresponding RSSIi
values measured between the mobile node and the N APs, together with the magnetic field
strengths used in different versions. The output layer has two neurons, which provide
the X and Y coordinates. For a given point in the training datasets, the target values
corresponding to the input vector are defined by the (xc, yc) coordinates. The optimal
number of neurons in the hidden layer should be defined by testing different configurations.
The proposed MLP uses tangent sigmoid activation functions in the hidden layer and linear
transfer functions in the output layer.

3. Applied Measurement Data

The proposed method was validated using measurements collected in two different
scenarios. In the case of both scenarios, RSSI values were measured between multiple
anchor nodes with a known position and one mobile node. The WiFi was chosen to provide
the RSSI measurements, since it is the most suitable and popular wireless standard, and it is
widely used in indoor localization methods [10,46]. The WiFi has high bitrate, high scalabil-
ity, and is relatively less affected by external factors compared to other wireless standards,
such as Bluetooth low energy (BLE), ZigBee, LoRaWAN, radio frequency identification
(RFID), and ultra-wideband (UWB). Other technologies also have their own advantages
and disadvantages. BLE is also a widely used technology in positioning applications [47,48].
The advantages of this technology are its low power consumption and fast connection
establishment between the modules, but the lower range is a big disadvantage in the
case of this technology [49]. Passive RFID technology-based systems are also popular in
localization applications. The main advantage of these systems is their low cost, but their
operation range is limited [50], which results in a high number of used tags [51]. The
UWB technology provides high precision and low loss [52], but the higher cost is a big
disadvantage of these systems.

Magnetometer measurements were also collected in the case of the mobile node. The
measurements were taken in one plane near to the ground, which would be the case if the
system was used with a mobile robot. Also, the disturbance sources are closer to the sensor,
so they provide greater effects.

3.1. Measurement System

The applied measurement system consists of five anchor nodes (N = 5) and one mobile
node. All six units are based on a NodeMCU ESP-32S V1.1 microcontroller board, which
is capable of WiFi communication. The mobile node is also equipped with a three-axis
magnetic sensor.

The used magnetometer is an HMC5883L type three-axis digital compass IC, which
utilizes Honeywell’s anisotropic magnetoresistive (AMR) technology. The directional
sensors feature precision in-axis sensitivity and linearity, and very low cross-axis sensitivity.
The measurement range of the magnetic sensor is ±810 μT in 12-bit resolution with a
160 Hz maximal sampling rate. It also contains an I2C interface, which can be used to both
configure the sensors and read the measurement values.

Since the data were processed offline, a central unit was used to collect the measure-
ment data. The mobile node forwarded the magnetometer readings and the RSSI values
read from the transceiver of the ESP32 board during communication with the APs.
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3.2. Data Acquisition

In the case of both scenarios, the measurements were collected at defined grid points.
At all points, 10 RSSI measurements were recorded for all APs and 10 magnetometer
measurements were also collected. The 10 samples were later averaged to decrease the
effect of noise.

During the data acquisition process, the WiFi channel was set to 1 and the antenna Tx
power was 19.5 dBm in the case of all wireless modules.

The version where the measurements of the three magnetometer axes are utilized
required the knowledge of the mobile unit’s orientation. To obtain usable magnetometer
data for this version, the orientation of the mobile unit was set to as constant as possible at
different points.

Besides the hard and soft iron effects, the magnetometer measurements are also af-
fected by deterministic errors, such as scale factors, bias, and non-orthogonality errors.
To compensate for these effects, the magnetometer was calibrated using an evolutionary
algorithm-based calibration method, which utilizes measurements taken in multiple ori-
entations to compute the calibration parameters [53]. This process was performed before
data acquisition.

3.2.1. First Scenario

In the first scenario, a smaller room was chosen, which had enclosing dimensions of
6.6 m × 3.6 m. Figure 2 shows the measurement environment in the room and its schematic
drawing with the position of the anchor nodes. To make the setup realistic, multiple static
objects were left in the room, such as cabinets and tables. It is also important to note that
one of the walls was made from glass, moreover a concrete column could also be found in
the room. Some measurement points were none-line-of-sight (NLOS) due to the objects.

(a) (b)

Figure 2. Measurement setup of the first scenario: (a) environment; (b) schematic drawing.

In the grid, which was used to determine the measurement points, squares with a
side length of 20 cm were defined. The height of both the mobile unit and the APs was
4 cm. Altogether 426 points were used for data acquisition. The mobile node was moved
manually between the measurement points and there was no one in the room during the
measurements. The measurements were collected over the course of one day. The heatmaps
of the collected RSSI measurements for the 5 APs and the magnetometer data are shown
in Figure 3 and Figure 4, respectively. The white parts in the figures represent the places
where measurements could not be taken due to the obstacles, while the black rectangles
show the positions of the APs.
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(a) (b)

(c) (d)

(e)

Figure 3. Heatmap of RSSI values in the first scenario for: (a) AP1; (b) AP2; (c) AP3; (d) AP4; and
(e) AP5.
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(a) (b)

(c) (d)

(e)

Figure 4. Heatmap of the magnetic field strength in the first scenario for: (a) Bx; (b) By; (c) Bz; (d) Bxy;
and (e) Bxyz.
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3.2.2. Second Scenario

The measurements of the second scenario were collected in a larger laboratory with
enclosing dimensions of 12 m × 8 m. Both the measurement environment in the laboratory
and its schematic drawing with the position of the APs can be seen in Figure 5. Similarly to
the first scenario, static objects were present in the laboratory during the measurements,
such as tables, robotic cells, and a linear rail with a robotic arm. Due to the objects, many
points were NLOS to some APs.

(a) (b) (c)

Figure 5. Measurement setup of the second scenario: (a) environment of the laboratory; (b) environ-
ment with the mobile robot; and (c) schematic drawing.

The grid was also defined using 20 cm distances, as in the first scenario. Due to the
high number of points, the movement of the measurement unit between the grid points
was realized using a mobile robot. The height of the mobile unit and the APs was 10.8 cm
and 3.5 cm, respectively. Altogether, measurements were collected at 1408 points, defined
by the grid. Further measurements were taken at 20 random positions, which were later
used for the testing of the trained MLPs. These points were defined by random coordinates
and were not identical with any grid point coordinates. The measurements were collected
over the course of one day. Figure 6 shows the heatmaps of the RSSI values from the 5 APs,
while the heatmaps of the magnetic sensor data can be seen in Figure 7. The white parts in
both Figures 6 and 7 represent the places where measurements could not be taken due to
the obstacles, while black parts show the places of the APs.

42



Sensors 2023, 23, 1855

(a) (b)

(c) (d)

Figure 6. Cont.
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(e)

Figure 6. Heatmap of RSSI values in the second scenario for: (a) AP1; (b) AP2; (c) AP3; (d) AP4; and
(e) AP5.

(a) (b)

Figure 7. Cont.
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(c) (d)

(e)

Figure 7. Heatmap of the magnetic field strength in the second scenario for: (a) Bx; (b) By; (c) Bz;
(d) Bxy; and (e) Bxyz.

4. Experimental Results

It can be observed from Figures 3 and 4 for the first scenario and from Figures 6 and 7
for the second scenario, that the heatmaps of the RSSI data and magnetic field strengths
carry additional information when compared to each other. The histogram of the Bxyz
magnetic field magnitude for the two scenarios can be seen in Figure 8. The histograms
show that the variance of the magnetometer measurements is much higher in the case of
the second scenario, which is the laboratory.
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(a) (b)

Figure 8. Histogram of the Bxyz magnetic field magnitude for: (a) first scenario; and (b) second scenario.

4.1. Datasets and MLP Training

The data measured at the grid points were utilized to train the MLP neural networks
separately for the two scenarios. Since no test points were determined in the first scenario,
two separate datasets were defined. In the first dataset, all points were utilized as training
data without test data to examine the obtainable error levels at the grid points. In the second
dataset, a subset of points containing every second point was used in the training process,
while the remaining 50% of the points were applied for the testing of the trained MLPs.

Altogether, seven combinations of used data were tested to examine their performance
in the two scenarios. The tested combinations are listed as follows:

1. RSSI
2. Bx, By, Bz
3. Bxy, Bz
4. Bxyz
5. RSSI, Bx, By, Bz
6. RSSI, Bxy, Bz
7. RSSI, Bxyz

The training of the MLP neural networks for all datasets was tested with 1–100 hidden
layer neurons to find the necessary configuration. Since the achievable error rates largely
depend on the initial weights, all configurations were tested 10 times and the results
containing the lowest error rates were used later in the evaluation process. Multiple
performance metrics were utilized in the evaluation process. The mean absolute error
(MAE) was used as the main metric, which can be calculated using Equation (4),

MAE =
1
M ∑M

i=1 Ei, (4)

where M is the number of points, while Ei is the error corresponding to the ith point, which
can be calculated using Equation (5).

Ei =

√
(x̂ − xc)

2 + (ŷ − yc)
2 (5)

In Equation (5), x̂ and ŷ are the determined coordinates, while xc and yc are the real position
of the ith point.
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Other metrics corresponding to the lowest achieved MAE were also computed. These
were the standard deviation (STD) and the root mean squared error (RMSE), which can be
calculated using Equations (6) and (7), respectively.

STD =

√√√√ 1
M − 1

M

∑
i=1

(Ei − MAE)2 (6)

RMSE =

√
∑M

i=1 E2
i

M
(7)

The hyperparameters of the MLP training process can be found in Table 1. The training
was done offline in MATLAB on a PC with the following specifications: Intel Core i5-12600K
3.69 GHz CPU, 16 GB DDR4 3600 MHz RAM, M2 SSD, ASUS GeForce RTX 3080 10GB GPU.
The training process was time consuming since multiple hours were required, even for one
version. Although it is a complex and time-consuming process to find the optimal network
for a given version, it does not affect the real-time operation after implementation.

Table 1. Hyperparameters of the MLP training process.

Hyperparameter Value

training function Levenberg–Marquardt backpropagation
performance function mean squared error (MSE)

normalization minmax to range [−1, +1]
ratio of data used for training 70%

ratio of data used for validation 30%
maximum number of epochs to train 6000

performance goal 0
maximum validation failures 20

minimum performance gradient 10−7

maximum time to train in seconds inf

4.2. Evaluation of the First Scenario

The best achieved MAE results and the corresponding STD and RMSE results, using
different versions of data for the two datasets in the case of the first scenario, are summa-
rized in Table 2. It can be observed from the results that using the proposed method, the
errors significantly decrease in the case of the training data. Using datasets where all points
were used as training data, significant improvements were achieved using the versions
that utilized RSSI, Bx, By, Bz and RSSI, Bxy, Bz, compared to results where only RSSI was
used. Here, the MAE decreased from 50.71 cm to 34.64 cm and 41.68 cm, respectively. In
the datasets where every second point was utilized, the MAE using only RSSI was more
than 10 cm lower than when all points were used. The improvement caused by the fusion
with magnetometer data was 7–10 cm, using any version. It should be noticed that when
using the RSSI, Bxy, Bz version, an MAE more than 2 cm lower was achieved than with the
other two fusion-based versions. In the case of test data, no improvement can be noticed
since the RSSI and the fusion-based versions provided nearly the same results. This can be
caused by the low variance of the magnetic field measurements in this scenario, and the
large distances between the points due to the usage of every second point. The achieved
results using only magnetometer data in this scenario show a much lower performance
than the other versions.
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Table 2. Best achieved MAE and the corresponding STD and RMSE results for different datasets in
the first scenario using different versions of data.

Used Data

All Points in the Grid
(Training Data)

Every Second Point in the Grid
(Training Data)

Every Second Point in the Grid
(Test Data)

MAE ± STD [cm] RMSE [cm] MAE ± STD [cm] RMSE [cm] MAE ± STD [cm] RMSE [cm]

RSSI 50.71 ± 44.05 67.13 40.04 ± 37.39 56.91 75.43 ± 58.12 97.06
Bx, By, Bz 96.88 ± 60.38 118.01 87.48 ± 54.95 104.86 141.48 ± 76.47 161.10

Bxy, Bz 119.01 ± 65.28 138.07 105.52 ± 65.93 126.61 145.12 ± 73.04 163.54
Bxyz 159.19 ± 74.25 175.72 149.67 ± 75.32 167.64 167.02 ± 76.12 183.48

RSSI, Bx, By, Bz 34.64 ± 32.87 51.86 32.44 ± 37.27 49.35 76.67 ± 56.20 96.81
RSSI, Bxy, Bz 41.68 ± 36.58 55.42 29.07 ± 41.18 52.58 75.03 ± 55.33 93.14

RSSI, Bxyz 49.86 ± 45.38 67.39 32.54 ± 39.17 50.85 77.79 ± 58.17 97.05

Figure 9 shows the best achieved MAE using different setups, based on the hidden
layer neuron numbers with different versions of used data. It can be seen from the results
that the MAE starts to converge around 40–50 neurons in the case of the training data. Only
slight improvements can be noticed with higher neuron numbers. In the case of the test
data, the MAE converges around 20 neurons.

The cumulative density functions (CDF) of errors for the different used versions of
data can be seen in Figure 10. The errors larger than 300 cm were truncated. It can be
noticed that the proposed method significantly improves the error distribution in the case
of the training data. For example, when using all grid points for training, around 60%
of points give below 50 cm errors with only RSSI, which increases to ~70% and ~80%
using RSSI, Bxy, Bz and RSSI, Bx, By, Bz, respectively. With the test data, the fused versions
provide almost identical curves, as with using only RSSI.

4.3. Evaluation of the Second Scenario

Table 3 presents the best achieved MAE and the corresponding STD and RMSE
results in the second scenario for the different combinations of used data. Much higher
improvements can be noticed with the proposed method compared to the results achieved
in the first scenario, which is obviously the cause of the higher variance of the magnetic
field readings. It is very important to note that approximately 20 cm better results were
obtained in the case of both the training and test data using Bx, By, Bz, compared to the
results achieved using only RSSI. It is also important to notice that the MAE for almost
all versions was lower in the case of the test data than with the training data. This can be
caused by lower error rates in the areas where the random locations were defined. The
proposed method resulted in significantly lower error rates for all three versions compared
to both RSSI and Bx, By, Bz, in the case of both the training and test data. The best results
were provided by the version utilizing RSSI, Bx, By, Bz, for which the achieved MAE was
99.59 cm and 77.27 cm for the training and test data, respectively. The improvement with
this combination of used data resulted in more than 35% improvement compared to the
results obtained using only RSSI or Bx, By, Bz. The version using RSSI, Bxy, Bz, which
can be used in the case of flat surfaces without knowledge of orientation, resulted in
approximately 10 cm worse results than using RSSI and the measurements of the three
sensor axes together. Compared to the results based on only RSSI, this version resulted in
more than 35 % improvement. The worst results of the three fused versions were provided
by utilizing RSSI with the 3D magnetic field magnitude together. The provided results with
this orientation-independent version were 128.96 cm for the training data and 126.25 cm
for the test data. Compared to the RSSI-based results, the improvement was 25.37% and
16.71%, respectively.
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(a)

(b)

(c)

Figure 9. Results achieved in the first scenario using different number of hidden layer neurons with
different versions of used data for: (a) all points in the grid (training data); (b) every second point in
the grid (training data); and (c) every second point in the grid (test data).
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(a)

(b)

(c)

Figure 10. CDFs of errors achieved in the first scenario with different versions of used data for: (a) all
points in the grid (training data); (b) every second point in the grid (training data); and (c) every
second point in the grid (test data).
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Table 3. Best achieved MAE and corresponding STD and RMSE results for different versions of used
data in the second scenario.

Used Data
Grid Points (Training Data) Test Points (Test Data)

MAE ± STD [cm] RMSE [cm] MAE ± STD [cm] RMSE [cm]

RSSI 172.80 ± 111.14 205.43 151.58 ± 116.25 199.00
Bx, By, Bz 152.67 ± 129.81 200.37 130.49 ± 113.16 172.51

Bxy, Bz 228.28 ± 166.67 284.65 232.86 ± 172.64 295.42
Bxyz 285.20 ± 176.22 338.88 255.07 ± 193.52 317.23

RSSI, Bx, By, Bz 99.59 ± 78.93 127.06 77.27 ± 76.75 110.47
RSSI, Bxy, Bz 110.19 ± 86.44 140.03 87.63 ± 94.27 137.01

RSSI, Bxyz 128.96 ± 96.54 161.07 126.25 ± 115.66 175.58

The achieved MAE using a different number of neurons in the hidden layer, for the
various versions of used data recorded in the second scenario, can be seen in Figure 11. It
can be seen from the results that most versions converge with 30–40 neurons in the case of
the training data and with 20 neurons using the test data, but slight improvements can also
be noticed with a higher number of hidden layer neurons in both cases.

(a)

(b)

Figure 11. Achieved results in the second scenario using different number of hidden layer neurons
with different versions of used data for: (a) grid points (training data); and (b) test points.
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The CDFs of error for the best setups, using different versions of used data in the
case of the second scenario, can be seen in Figure 12. The errors larger than 600 cm were
truncated. It can be observed from the results that significant improvements can be achieved
in the error distributions using the different versions of the proposed method.

(a)

(b)

Figure 12. CDFs of errors achieved in the first scenario with different versions of used data for:
(a) grid points (training data); and (b) test points.
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5. Conclusions

In this work, a novel fingerprinting-based positioning method was proposed, which
fuses the RSSI data measured between anchor nodes and a mobile node with the magnetic
field measurements collected from the mobile unit. In total, three different versions of used
magnetometer data were tested in the proposed method. The position is determined using
three-layer MLP neural networks.

The method was validated using data collected in two different realistic indoor sce-
narios, i.e., in a smaller room and a larger laboratory. Multiple static objects were present
in both scenarios. The MLP ANNs were tested with a various number of hidden layer
neurons to find the optimal configuration.

The achieved results show that significant improvement, even above 35%, can be
achieved using the proposed method, compared to the results achieved using only the RSSI
or magnetic sensor data, if the variance of the magnetic field measurements is high in the
observed indoor space. In the first scenario, where the variance of magnetometer readings
was lower, improvement could be noticed only in the case of the training data. In the second
scenario, where the variance in the magnetic field strength was much higher, significant
improvements were achieved. The best results were obtained by fusing RSSI data with
magnetometer measurements in the three axes, but this version requires knowledge of
the orientation of the mobile unit in the global coordinate frame. The version using the
RSSI data, together with the magnetometer measurements in the Z-axis and the magnitude
in the X-Y plane, provided more than 35% better results compared to only RSSI-based
error rates. This version can be used in the case of flat surfaces without knowledge of
the orientation. Utilizing the RSSI data together with the 3D magnetometer magnitudes
resulted in approximately 25% and 15% improvement in the case of the training and test
data, respectively.

The limitations of the proposed approach include that the magnetic sensor needs
to be close to the objects causing the disturbances. Another limitation is that some ver-
sions depend on the orientation, which should be solved by implementing an orientation
estimation framework that can provide the necessary information. Further future goals
include achieving further improvements in the error rates by incorporating other data and
its application in a sensor fusion-based localization framework.
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Abstract: Autonomous navigation in mining tunnels is challenging due to the lack of satellite
positioning signals and visible natural landmarks that could be exploited by ranging systems. Solu-
tions requiring stable power feeds for locating beacons and transmitters are not accepted because of
accidental damage risks and safety requirements. Hence, this work presents an autonomous naviga-
tion approach based on artificial passive landmarks, whose geometry has been optimized in order
to ensure drift-free localization of mobile units typically equipped with lidar scanners. The main
contribution of the approach lies in the design and optimization of the landmarks that, combined
with scan matching techniques, provide a reliable pose estimation in modern smoothly bored mining
tunnels. A genetic algorithm is employed to optimize the landmarks’ geometry and positioning, thus
preventing that the localization problem becomes ill-posed. The proposed approach is validated both
in simulation and throughout a series of experiments with an industrial skid-steer CAT 262C robotic
excavator, showing the feasibility of the approach with inexpensive passive and low-maintenance
landmarks. The results show that the optimized triangular and symmetrical landmarks improve the
positioning accuracy by 87.5% per 100 m traveled compared to the accuracy without landmarks. The
role of optimized artificial landmarks in the context of modern smoothly bored mining tunnels should
not be understated. The results confirm that without the optimized landmarks, the localization error
accumulates due to odometry drift and that, contrary to the general intuition or belief, natural tunnel
features alone are not sufficient for unambiguous localization. Therefore, the proposed approach
ensures grid-based SLAM techniques can be implemented to successfully navigate in smoothly bored
mining tunnels.

Keywords: underground mining robots; scan matching; localization and SLAM in tunnels; 2D lidar
navigation; GPS-denied environment

1. Introduction

Improving underground mining productivity requires loaders with increased levels
of autonomy in hauling and excavation tasks [1,2]. The capability of a machine to solve
its pose both locally and globally in the network of tunnels is essential to achieve high
autonomy levels.

The pioneering work [3] shows the feasibility of using simultaneous localization and
mapping (SLAM) techniques to map old abandoned mines. At the heart of the approach
in [3] is the scan matcher [4], which delivers locally consistent maps and estimates of
the robot’s motion relying on the existence of structural elements, such as pillars and
beams, that facilitate the data association. However, modern tunnel boring techniques
produce smooth tunnels in hard rock or soft ground, with new techniques that even
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avoid traditional support pillars [5]. This makes correct scan matching infeasible without
landmarks, unlike cases such as that of abandoned coal mines [3] or silver mines [6] several
decades old. Hence, an approach is proposed here that employs optimized artificial passive
landmarks that ensure correct data association for consistent mapping and can be cheaply
manufactured, installed, require little or no maintenance, and may be easily replaced if
damaged. Our results show that in environments such as smooth mining tunnels without
landmarks, the localization problem becomes the ill-posed environments, and SLAM cannot
be solved without the aid of landmarks or beacons, as noted by [7].

The design of a landmark’s optimized geometry and spacing is essential to ensure its
identifiability, as well as an accurate and reliable localization of existing semi-autonomous
tele-operated mining loaders equipped with standard 2D lidar scanners. Two landmark
models are proposed and evaluated, one which employs shape primitives and another
with a completely free shape described by a piecewise linear function. Hence, the main
contributions of this work are in the landmark parameters’ optimization using a genetic
algorithm, identifying suitable landmark shapes, and validating the localization approach
for loaders in underground tunnels. The methodology was implemented in a simulated
environment and validated experimentally using the semi-autonomous industrial CAT
262C skid-steer loader developed by the authors for research purposes [2]. The machinery
used is shown in Figure 1a, and the mock-up tunnel used for experimental validation can
be appreciated in Figure 1b,c.

(a)

(b) (c)

Figure 1. Experimental setup showing the semi-autonomous CAT 262C and the mock-up tunnel:
(a) CAT 262C and the front lidar Sick LMS 511; (b) Tunnel mock-up without landmarks; (c) Tunnel
mock-up with landmarks.

The applicability of the landmark-based localization approach and SLAM in real
mining environments is demonstrated in Section 5.3 using an accurate 3D model of a
100 m tunnel segment from the El Teniente mine located in Chile [8], which is the largest
underground copper mine in the world.

This paper is organized as follows. Section 2 discusses the related work concerning
autonomous navigation for robots in mining tunnels. Section 3 explains the preliminary
mathematical notions of localization by scan matching. Section 4 presents the proposed
approach, including the landmark models and their parametric description for optimiza-
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tion by means of a search strategy based on a genetic algorithm. The fifth section dis-
cusses the results obtained in simulations and experiments with an industrial skid-steer
compact excavator CAT 262C. Finally, the discussion and conclusions are mentioned in
Sections 6 and 7, respectively.

2. Related Work

Since the first Automated Guided Vehicles (AGVs) were introduced to the market in
1950s, AGVs have evolved from pure wire or magnetic tape following mobile platforms into
more sophisticated laser-guided vehicles (LGVs) or Autonomous Mobile Robots (AMRs).
Navigation strategies have become particularly important because they enable the local-
ization of mobile platforms by determining position and orientation. Early approaches
used beacons, barcodes, and a combination of sensors for wheel odometry and evolving
into more sophisticated laser scanning and vision systems for environmental recognition.
Landmarks are useful for mobile robot navigation because they provide references for
localization strategies that determine the position and orientation of mobile platforms.
Humans use landmarks as a spatial representation of the environment to locate themselves
and provide references to others. It is common to use landmarks to define the location
of other objects/regions or in the creation of maps [9]. A landmark is a building, place,
or object that is used for location and can be easily recognized. Robots, like humans, can
recognize landmarks from their environment, and according to Thrun [10] landmarks can
be those artificially placed in the environment or natural landmarks, which need to be
discovered through algorithms to detect walls, corners, colors, etc. The first studies in
the literature concerning localization methods for load-haul and dump (LHD) vehicles
considered dead reckoning and artificial beacons [11]. The beacons used to correct the
cumulative error from the odometry were retro-reflective markers in the roof detected
using passive optical switches or passive LC (inductive-capacitive) resonators detected
with simple antennas. Later developments included gyro sensors and laser-based guidance
control systems (GCS). Gyros provide heading information, while GCS laser sensors allow
locating the vehicles relative to the beacons using the beacons’ bearing angle [12]. This
approach requires the beacons’ position to be known in the map the environment. An
approach that combines RFID beacons as landmarks [13] combined with 2D lidar scanners
for accurate mapping with the aim of using the maps in later localization technology.

Recent publications [14,15] propose the use of lidar-based SLAM approaches for
autonomous navigation of LHDs. SLAM with laser scanners requires distinctive features
in the environment that could serve as natural landmarks or anchor points without which
the correct alignment of scans is not possible [16,17]. Unfortunately, unlike natural caves,
mining tunnels are relatively straight or slowly curving, with walls that do not have
distinctive uniquely identifiable elements, either because the walls have a repetitive coarse
texture or are relatively smooth because modern tunnel boring machines and shotcrete
spraying are employed in their construction.

Androulakis [18] uses a 2D lidar scanner to extract two types of features from pillar
coal mine: linear segments for modeling entrance ribs and significant points for modeling
intersection corners; however, between mine corners or entrances may be hundreds of
meters where platforms will not have a robust reference or landmark. Therefore, landmarks,
beacons, or some other kind of marker must be introduced in order to make SLAM-based
approaches truly feasible. Based on the above, artificial landmarks can be justified for
practical application in the navigation of mobile robots in harsh environments, and although
the approach may be considered somewhat old and rudimentary, there are some basic
issues in the design of optimized artificial landmarks that have not yet been resolved. In
particular, the design of the optimized shape and spacing of landmarks must be studied to
ensure their identifiability, as well as accurate and reliable localization of mobile robotic
platforms. It is worth mentioning that the localization problem by means of scan matching
can also be solved using different registration algorithms, such as the Iterative Closest Point
(ICP) algorithm [19] or the Normal Distribution Transform (NDT) [20], but its analysis is
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out of the scope of this work. For a comparison of scan-matching approaches applied to
the 3D mapping of underground mines, see, for example, the in-depth study by [21].

Others fields where landmarks are applied for robot localization include:

• Navigation in fruit groves with large tree canopies that create tunnel-like conditions [22];
• Visual place recognition (VPR) in changing environments for autonomous navigation

exploiting landmarks to improve matching between images [23–25];
• Robotic guidance using sonar systems aided by landmarks that are inspired by the

shape of flowers that act as sonar reflectors to improve localization and navigation [26];
• Indoor navigation [10,27];
• Outdoor urban navigation [28–30].

Methods using landmarks, such as poles or trees, for localization in GPS-denied
agricultural and urban environments can be found in previous work by the authors [22,31]
and references therein.

3. Preliminary Notions of Localization by Scan Matching

Let qt = (xt, yt, θt) denote the pose vector of the mobile platform, composed by the
position coordinates (xt, yt) in the 2D plane and its orientation θt measured with respect
to the horizontal axis of the world reference frame at time t. Denote by Zt = {(rs

t,k, θs
t,k):

k = 1, 2, . . . , m} the set of lidar sensor measurements at time t expressed as a set of
points with polar coordinates of the sensor’s frame of reference, which, for simplicity of
exposition, is assumed to be coincident with the mobile platform’s frame of reference. Thus,
rs

t,k represents the k-th measured distance from the mobile robot’s center of mass to the
object reflecting the laser’s beam and θs

t,k the direction of the corresponding beam. For a
platform that is estimated to be located at q̂ = (x̂t, ŷt, θ̂t) at time t, the measurements in Zt
imply that that the estimated locations of objects in the map have Cartesian coordinates in
the world reference frame are given by:

m̂(q̂,Zt,k) =

[
(rs

t,k + nr) cos(θ̂t + θs
t,k + nθ) + x̂t + nx

(rs
t,k + nr) sin(θ̂t + θs

t,k + nθ) + ŷt + ny

]

where nr, nθ represent measurement noises in range and bearing, while nx and ny are
position estimate uncertainties. Thus, the set of coordinates corresponding to the esti-
mated location of objects in the world surrounding the robot is Mt(q̂,Zt) = {ẑ(q̂,Zt,k):
k = 1, 2, . . . , m}. The robot localization problem can now be formulated as the problem of
finding an estimated pose vector q̂∗ that minimizes the matching error between the true
object locations in the map in the set M = {(xm,i, ym,i) : i = 1, 2, . . . , p} and the estimated
location of the objects in set Mt(q̂,Zt):

q̂∗ = (x̂∗, ŷ∗, θ̂∗) = arg min
(x̂,ŷ,θ̂)

h̄K(M,Mt(q̂,Zt,k)) =
1
K

K

∑
i=1

hi(M,Mt(q̂,Zt)) (1)

where h̄K(A,B) is the modified Hausdorff distance computed with the K best-matching
object coordinates between sets of coordinates A and B. For further details, please see [4].

Scan matching (1) based on the Iterative Closest Point (ICP) algorithm [32] as a metric
for the distance between points in the map and the measurements set can also be employed
instead of the modified Hausdorff distance to solve the localization problem.

4. Proposed Approach for Reliable Localization

A key aspect of the navigation in tunnels using the Hausdorff-based localization ap-
proach is the adequate definition of landmarks that ensure that the scan-matching problem
can be solved unambiguously. To this end, the optimization of the landmarks’ geometry
and positioning requires adequate parametrization. Two landmark models were considered
and evaluated. Their characteristics are explained in the next subsections, together with the
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implementation aspects concerning the genetic algorithm search strategy, the simultaneous
localization and mapping strategy, and the optimized landmark search process.

The optimization of the parameters that define a landmark’s geometrical characteristics
for a given model is carried out using a genetic algorithm search strategy. The parameters
of each landmark model, such as height, width, spacing of shape primitives, or the steps
of a piecewise linear function (see Section 4.1 for specific details) are treated like genes
that characterize an individual in a population of living organisms. The goal is to find
a set of parameters (genes), which define the optimized genome or chromosome in the
sense that the optimized genome is the one that delivers the best value of a fitness function
(a performance or objective function of the optimization problem). In the context of robot
localization, the fitness function can be defined as the total localization mean square
error (MSE):

E =
1
N

N

∑
i=1

(xg
i − x̂∗i )

2 + (yg
i − ŷ∗i )

2 + (θ
g
i − θ̂∗i )

2 (2)

where (xg
i , yg

i , θ
g
i ) are the ground truth values, and (x∗i , y∗i , θ∗i ) are the estimated pose values

for samples i = 1, 2, . . . N of the robot’s trajectory along the tunnel with landmarks whose
optimized geometry was found by the genetic algorithm search strategy. The ground
truth values are available in simulation. In the validation experiments, the ground truth
data are generated with an RTK-DGPS (real-time kinematic differential GPS) that delivers
centimeter-level positioning accuracy (see Section 5 for specification details).

4.1. Landmark Parametrization

Two approaches for landmark generation are considered. The first one employs shape
primitives as the basis for the definition of the genome. With this approach, the genetic
algorithm seeks a combination of shape primitive that minimize the localization error
in the solution of (1). The second approach defines the landmark as a piecewise linear
function with points of varying heights. In this case, the genetic algorithm finds the height
values that minimize the localization error. A difference with the approach based on shape
primitives is that, in this second approach, the shape of the landmark is initially completely
free and not conditioned by the selection of primitives.

Before introducing the landmark models, it is convenient to introduce the following

definitions and notation. Let H(x)
de f
= {0 ∀x < 0; 1 ∀x ≥ 0} denote the Heaviside step

function, the boxcar function of height h and width δ centered at x can then be defined

as: �h,δ(x)
de f
= h · (H(x + δ/2)− H(x − δ/2)). Define the linear segment over interval

(−δ/2, δ/2] starting at a height a and ending at height b as lδ(x; a, b) = [((b − a)/δ)(x −
δ/2) + a] �1,δ (x).

4.1.1. Landmarks Based on Shape Primitives

To model a landmark using shape primitives the following four functions were considered:

• Shape 1 (triangular): s1(x; W, H)
de f
= ∧(x; W) = (1 − |2x/W|) �H,W (x);

• Shape 2 (rectangular): s2(x; W, H)
de f
= �H,W(x);

• Shape 3 (parabolic): s3(x; W, H)
de f
= ∩(x; W) = (1 − (2x/W)2) �H,W (x);

• Shape 4 (linear): s4(x; W, H)
de f
= lW(x; 0, 1)H �H,W (x)

The chromosome (sometimes called genotype or genome in the genetic algorithms
literature) that represents an individual (a realization of a particular landmark) is defined
in terms of genes that characterize the individual. A landmark model built using shape
primitives has the following genome:

GP = {W, H, D} (3)
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where the genes correspond to the landmark’s width W, its height H, and the separation
distance D between consecutive landmarks. The graphic representation of the width,
height, and separation between landmarks is shown in Figure 2. Regardless of the shape
geometry, whether it corresponds to a triangle, rectangle, parabola, or line, the shape can
be bounded by a box of width W and height H, as shown in the case of the triangle in
Figure 2a. Additionally, the separation between landmarks is defined by the reference
distance D, which can be the same between all landmarks, as shown in Figure 2b or defined
to randomly vary in a interval [D∗ − 0.625, D∗ + 0.625] m, where D∗ is the optimized
separation distance found with the search strategy explained in Section 4.4. In contrast,
piecewise linear landmarks have six positions whose heights must be optimized together,
with the overall width W and height H parameters, to produce an optimized shape with
more degrees of freedom as illustrated in Figure 2c and explained in more detail in the
next subsection.

(a)

(b) (c)

Figure 2. General size parameters of landmarks in terms of height H, width W in (a) and separation
between landmarks D in (b). Shape parameters hi, i = 1, 2, . . . , 6 of the piecewise linear free shape
landmarks define segment height (c).

4.1.2. Landmarks Based on Piecewise Linear Functions

The n-segments landmark of width W can be defined as a piecewise linear function
with points of height hi, i = 1, 2, . . . , n as:

L(x; W, H, h1, h2, . . . , hn)
de f
=

n

∑
k=1

H l(W/n)(x − (k − 1)W/n + W/2; hk−1, hk)

where h0 = 0. It is to be noted that the landmark model L(x; W, H, h1, h2, . . . , hn) is centered
at x = 0.

A landmark model built using a piecewise linear function has the following genome:

GL = {W, H, D, h1, h2, h3, h4, h5, h6} (4)
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where the genes correspond to the landmark’s height points hi, i = 1, 2, . . . , 6, its width
scaling W, its height scaling H, and the separation distance D between consecutive land-
marks. A graphical representation of the piecewise linear landmark model is shown in
Figure 2c. The range of values for each gene is summarized in Table 1 of the next section.
The number of sections in the piecewise linear function considers the fact that polygonal
shapes with more points for a given width W can be made smoother, but given sensor
noise, additional smoothness does not provide additional distinctiveness. Using two or
three segments would result in linear, triangular, or rectangular shapes already considered
as part of the shape primitives. Therefore, to determine whether two consecutive shapes,
e.g., two triangles or a triangle and a rectangle, offer an additional advantage, the piecewise
linear free shape must have at least six parameters. Of course, it is possible to explore even
more intricate geometries at the expense of an increased computational burden. Here, it
was decided to limit the number of segments to six, but to compensate this limitation by
also testing variants that can be easily computed, such as the horizontal symmetry and the
vertically inverted landmark variations, as will be shown in the numerical computations
and simulation Section 5.1.

Table 1. Minimum and maximum parameter values for the landmark models.

Parameter Values (Genes)

Landmark Model Units H W D h1 h2 h3 h4 h5 h6

Primitive shape Min. m 0.01 0.01 0 - - - - - -
Max. m 0.30 0.60 100 - - - - - -

Piecewise linear Min. m 0.01 0.05 0 −2.00 −2.00 −2.00 −2.00 −2.00 −2.00
Max. m 0.35 0.150 750 2.00 2.00 2.00 2.00 2.00 2.00

4.2. Genetic Algorithm Implementation

Once N individuals characterized by chromosomes Gi = {gi,1, gi,2, . . . , gi,n},
i = 1, 2, . . . , N of the form (3) or (4) have been initially created by sampling from a uniform
distribution U[gmin

j , gmax
j ] with lower and upper bound values gmin

j , gmax
j from Table 1 for

each gene gi,j to build an initial population, the genetic algorithm implemented iterates
over the standard steps of fitness evaluation of each individual, selection of individuals,
crossover (recombination) of individuals, mutation individuals, and insertion of offspring
into the new generation as explained in [33,34]. The population size employed was of
N = 100 individuals. This number of individuals was empirically found to provide a good
trade-off between ensuring a sufficiently large population for convergence while, at the
same time, keeping computation time as low as possible.

The fitness evaluation function is the total localization MSE (2). The fitness score
of each individual is employed to rank individuals, i.e., sort them in terms of ascending
MSE. The selection of individuals employs a stochastic sampling known as stochastic
universal sampling or systematic resampling [35,36], in which an initial random number
p0 ∈ U[0, 1/N] is generated. Individuals laying along a line in which each one has a
length proportional to its fitness value are selected by a pointer that takes constant size
steps according to pk = (k − 1)F/N + p0, where F is the total fitness (the sum of each
individuals’ fitness) [35]. The reproduction step selects the best 5% of the total population
and employs 75% of the remaining population for crossover. The crossover rule selects
the genes (parameters) of consecutive parents according to a selection function in which a
random binary vector of the length of the chromosome containing 0’s and 1’s is generated
to indicate whether the gene value must be taken from one parent or the other. Next, the
mutation step generates small random variations δi,j of the i-th child gene j by sampling
a normal distribution δi,j ∼ N(0, σ2), where σ = (gmax

j − gmin
j )/2, and sets the gene gi,j of

offspring i to a new value gi,j + δi,j. The reinsertion step simply creates a new population
which includes the best 5% individuals and the remaining reproduced population. The
number of offsprings generated in each iteration by crossover and mutation is such that
the total amount of individuals N is kept constant from one iteration to the other. The
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stopping condition included a maximum number of iterations of 100, which was never
reached because the condition on average relative decrease of the fitness function of 0.1%
was met first, as shown in the results Section 5.

4.3. Simultaneous Localization and Mapping

For fast online computation, we employ an Extended Kalman filter and a likelihood
field for map probability; see [37,38] for further details. The approach in [37], known as
GMapping, is a popular algorithm that employs a Rao–Blackwellized particle filter to
estimate the joint posterior. Our approach is similar to that of [38] in that it combines the
scan matching and an adaptive update of the likelihood field instead of particle filters
proposed in [37] to achieve similar results in terms of the root mean square (RMS) error
and low execution time for practical real-time implementation.

In order to make the localization more efficient and accurate, the tunnel walls are
removed in order to extract the landmarks and improve the localization’s accuracy. Tunnel
walls may have some variability or roughness, but this variability is insufficient for unam-
biguous localization because the magnitude of the variability is comparable to the accuracy
of commercially available lidars. Thus, tunnel walls are perceived as practically smooth
straight or gradually curving walls. The background removal for landmark extraction is
performed using the Random Sample and Consensus (RANSAC) algorithm [27,39]. To
account for the possible curvature of the tunnel trajectory, tunnel walls are modeled as a cu-
bic polynomial [40]. All points in the measurements set that do not fit the cubic polynomial
within a tolerance margin are labeled as landmark points, as shown in Figure 3b, and are
employed in the solution of the localization problem (1).

(a)

(b) (c)

Figure 3. Top view of an ideal tunnel with triangular landmarks showing the matching of noisy lidar
measurements to the map (a), the classification of landmark and wall points (b), and the estimated
position using the proposed methodology (c).
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A top view of a machine moving along a tunnel is presented in Figure 3, which shows
the matching of lidar measurements to the triangular landmarks in the map, and the
resulting pose estimated using the Hausdorff-based scan-matching approach. To illustrate
the matching process, Figure 3a presents an ideal predefined map consisting of lateral
tunnel walls with symmetrically and equally spaced triangular landmarks. Despite these
landmarks not being optimized in shape and separation, the simulated lidar measurements,
including noise in range, are matched, minimizing the modified Hausdorff distance (1).
Once the matching has been carried out, the landmarks are classified into wall and landmark
measurements. The black points in Figure 3b correspond to wall points as detected by the
RANSAC algorithm. The remaining points are treated as landmarks. The matching process
considering only the landmarks yields the pose, i.e., position and orientation, thus solving
the localization of the machine relative to the landmarks. The pose measurements obtained
with the matching procedure can be filtered to generate position and orientation estimates,
which are compared in Figure 3c.

4.4. Optimized Landmark Search Process

The process implemented to find the best landmark shapes and spacing is illustrated
in Figure 4. The process starts by considering a reference tunnel without landmarks T , a
known state trajectory of the robot moving along the tunnel x, and a set G1 containing N in-
dividuals whose chromosomes or genomes define N tentative geometries and distances be-
tween landmarks. The initial set of chromosomes G1 is employed to generate a first set M1
containing N variations of tunnel T populated with landmarks according to the separation
distance parameter. When creating the map, the spacing between consecutive landmarks
d�, � = 1, 2, 3, . . ., is drawn from a uniform distribution d� ∼ U[D∗ − 0.625, D∗ + 0.625] m,
where the value D∗ is the value of the optimized landmark separation found in the previous
iteration. Hence, the position of landmark � = 1, 2, 3, . . . , is defined as p� = p�−1 + d�
with p0 = 0. The randomly varying distance in a bounded interval is important in order
to avoid ambiguous matching of consecutive landmarks due to repeating landmark sep-
arations. Then, the SLAM problem is solved for the simulated robot following trajectory
x in the N maps in M1. The fitness function for the pose error (2) is evaluated for the N
maps. Unless the stopping conditions explained in the subsection concerning the genetic
algorithm implementation are met, the genetic algorithm must select the best candidates,
produce crossover, and iterate until a chromosome G∗ defining the optimized landmark
geometry is returned.
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Generate landmaks and maps

Generate N different landmark shapes 
from Gk    and a set of N maps Mk as 

variations of tunnel T.

Solve SLAM for N maps

Initial data
1. Robot State Trajectory: x.

2. Reference tunnel T.
3. Initial set of N chromosomes G1  .

4. Set iteration counter k=0.

Genetic Algorithm
 Select or crossover landmark 

chromosomes from Gk    according to the 
associated N fitness values and generate 

a new set of chromosomes Gk+1.

Evaluate fitness

 Evaluate fitness function for each N 

maps in set Mk.

GA
stopping

conditions
met?

Update iteration counter
k=k+1

Optimized landmark found

Return optimal landmrk, i.e. optimal 
chromosome G*   .

No 

Yes

Figure 4. Implemented search scheme for optimized landmark geometries and spacing.

5. Results

The proposed approach is evaluated both in simulations and experimentally. The
implementation of the robot trajectory simulation and SLAM, as well as the genetic al-
gorithm, were implemented in Python without using other libraries than the standard
mathematical function libraries NumPy and SciPy for numerical computations with arrays
and matrices, integration of the ordinary differential equation of the robot’s dynamics
using the odeint function. The motion model equations are explained in detail in [2] and
describe motion dynamics of a semi-autonomous industrial compact skid-steer loader CAT
262C employed in the experiments. The simulations use a grid map with a 1 cm2 per pixel
resolution and a position sensor model with a distance RMS error of 5 cm, which means
95% of the measurements are contained in an 8.65 m radius circle. The sampling frequency
of the simulated system is 1 kHz and it is assumed that the same clock rate is employed
for all sensors and the control loop. For the visualization of results, we use PyGame and
Matplotlib libraries.

The experiments employ a semi-autonomous industrial compact skid-steer loader CAT
262C equipped with one Sensor STIM300 inertial measurement unit (IMU), two VectorNav
IMU’s, one Piksi SwiftNav RTK-DGPS, two torque sensors by Manner Sensortelemetrie,
four Sick LMS 511 lidars, wheel encoders, TE Connectivity MEAS inclination sensors,
control, and navigation computer (running ROS Melodic, sampling sensors at 100 Hz)
and wireless communication interfaces. The Sick LMS 511 lidar is designed for industrial
operation outdoors even with dust or rain, allowing for multiple echoes and materials
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with different absorption/reflectance levels. The reflectance of soil/rocks is typically
in the range of 50–60% [41,42], and given the laser beam power employed by LMS 511
and the manufacturer specifications [43], this lidar can scan soil or rocks up to 60–65 m
without the aid of retro-reflective markers. In the experiments, we used common cardboard
landmarks, which have a reflectance in the operating wavelength of lidar equivalent to that
of soil/rocks [41].

The skid-steer loader in the test site is shown in Figure 1. The experiments were
carried out in a mock-up of the tunnel without and with the optimized landmarks found in
simulation to validate the approach. Following previously published work [44], we have
selected the RMS error to assess the localization error.

The Hausdorff scan matching implemented in this work considered 80% of the best
matching points that minimize the modified directed Hausdorff distance with respect
to the reference model in order to improve the data association following the tuning
recommendations in [4], i.e., K in (1) is set K = 0.8m, where m is the total number of
measurements. Since the scan matching procedure sorts the lidar measurements starting
with the best fitting points, discarding the worst 20% of the matched points removes the
matching bias and ensures sufficient measurements are available so that the matching
does not become an ill-posed problem. An adaptive threshold K may be implemented in
terms of an expectation-maximization strategy, but this aspect necessitates new theoretical
developments beyond the scope of the current work to ensure the optimality of a dynami-
cally adjusted threshold. To show that the choice of the fixed 80% threshold is adequate
for practical applications, consider Figure 5, which presents the outcome of a simulation
experiment in which 300 noisy lidar measurement points must be aligned to a reference
model. The lidar ranging error is considered to have zero-mean Gaussian distribution with
standard deviation σ = 0.05 cm, which is a typical value for the Sick LMS 511 employed in
our experimental validation. The Sick LMS 511 can deliver 720 scan points with an angular
resolution of 0.25◦ covering a 180◦ field-of-view. Here, we are using less than half the points
that may be obtained using Sick LMS 511 for testing purposes. In practice, the number of
scan points covering a landmark will depend on the distance to the landmark and scanning
angular resolution, which can be adjusted to different values between 0.042◦ and 1◦ in the
case of Sick LMS 511. As shown in Figure 5a, when a 100% of the lidar measurements are
employed, there exists a bias in the final alignment due to spurious measurements. On
the other hand, when the 80% best-matching points are selected in the computation of
the modified Hausdorff distance (1), the noisy point cloud is fitted more accurately to the
reference model, as shown in Figure 5b.
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Figure 5. Scan-matching results using Hausdorff distance considering all measurements (a) and 80%
of the best matching points (b).
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5.1. Numerical Computation and Simulation Results

The robot simulation and the genetic algorithm to find the optimized landmarks were
implemented in Python. The following trials were considered: P1—triangular primitive;
P2—rectangular primitive; P3—parabolic primitive; P4—linear primitive; F1—piecewise
linear free shape; F2—piecewise linear inverted free shape; F3—piecewise linear symmetric
free shape; and F4—piecewise linear symmetric inverted free shape. If s(x) is a shape, then
the inverted shape is 1 − s(x). A symmetric shape is a shape that is an even function, i.e.,
s(x) is symmetric if s(x) = s(−x). In the implementation of the genetic algorithm, the
parameters (genes of each individual’s chromosome) were allowed to take values in an
interval whose lower and upper bounds are summarized in Table 1.

The convergence of the RMS position error component of fitness function for each
iteration of the genetic algorithm while searching for an optimized landmark geometry
and separation is shown in Figure 6. The resulting piecewise linear models are shown
in Figure 7. The different curves that are shown in each graph of Figure 7 represent a
realization of the best individual’s chromosome for a given generation. After several
iterations, the best individuals of each generation evolve and converge to overlapping
shapes that strongly coincide, thus confirming that an optimized geometry minimizing
the pose error (2) exists. It is to be noted that the relative average decrease in the fitness
function (2) becomes less than 0.1% for either the ICP or Hausdorff matching approaches
after 20 iterations when using the shape primitives and at least 40 iterations when using
the linear piecewise landmark model because it has more parameters. The optimized
landmarks found in iteration 45 for the different shapes and models were selected when
testing the localization performance to make a fair comparison and remove the differing
amount of iterations as a possible advantage factor.
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Figure 6. Convergence of the square root of the trace of the matching error covariance matrix for shape
primitives (a,c) and piecewise linear functions (b,d) using ICP and Hausdorff matching, respectively.
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Figure 7. Optimized piecewise linear shapes found by the genetic algorithm after 45 iterations:
F1—free (a,b); F2—inverted (c,d); F3—symmetric free shape (e,f); F4—symmetric inverted (g,h). The
graphs show the evolution of multiple iterations superimposed showing the convergence to the
optimized landmark geometry.

Regardless of the type of landmark, the results Figure 6 show that the Hausdorff
matching converges with less variability than ICP. The genetic algorithm not only identified
the best shapes for accurate matching, but also identified the optimal distance D between
the landmarks, which was found to be between 8 and 10 m. Figure 8 shows that for the
different landmarks, the initial proposed distance values D are approximately uniformly
distributed. Regardless of the matching approach (ICP or Hausdorff), the distribution after
41 iterations of the gene associated to the separation D between landmarks concentrates
around 9–10 m when using the shape primitives P1, P2, P3, or P4 landmarks, and they
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around 7–8 m when using the piecewise linear free shape landmarks F1, F2, F3, and F4. It
is to be noted that in the case of landmarks F1, F2, F3, and F4, ICP tends to prefer closer
landmarks with D ≈ 7 m, while the Hausdorff matching produces lower RMS localization
errors with landmarks separated by D ≈ 8 m, as shown in Figure 8.
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Figure 8. Histogram of the optimized distances between landmarks found by the genetic algorithm
after 41 iterations (G41) compared to the initial distribution of distance genes (G1) for the primitive
shapes P1, P2, P3, P4 (a,c,e,g), and the free piecewise linear shapes F1, F2, F3, F4 (b,d,f,h).
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From the simulations presented in Table 2, it is possible to confirm that the triangular
shape model (P1) yields the smallest RMS localization error for the robot in a simulated tun-
nel that was 10 m long, with an error of 22 mm using the Hausdorff matching strategy. The
second best landmark is the symmetric inverted piecewise linear model (F4) resembling an
inverted double triangular shape or “W” shown in Figure 7h, which yields an RMS localiza-
tion error of 24 mm using the Hausdorff matching strategy. The results in Table 2 show that
the best results are achieved with the Hausdorff matching strategy when compared to the
ICP method. Even if ICP had a better performance than the Hausdorff matching strategy
with two of the linear piecewise models, the Hausdorff matching technique delivers better
results in all other cases because the RMS errors are 30–70% smaller.

Table 2. RMS localization error for each type of landmark found by the genetic algorithm.

RMS Error [m] RMS Error [m]

Primitive
Shape Models

ICP Hausdorff
Piecewise

Linear Model
ICP Hausdorff

P1 0.042 0.022 F1 0.073 0.052
P2 0.091 0.026 F2 0.043 0.064
P3 0.063 0.028 F3 0.033 0.068
P4 0.065 0.026 F4 0.035 0.024

5.2. Experimental Validation

The experimental validation using the semi-autonomous CAT 262C skid-steer loader
consisted of 15 repetitions each, first in a 10 m mockup tunnel without landmarks (ex-
periment 1), then using the triangular shape primitive model P1 identified by the genetic
algorithm (experiment 2), and, finally, the symmetric inverted piecewise linear landmark
model F4 (experiment 3). The localization was solved with both the ICP and the Hausdorff
matching strategy. The results in terms of average RMS localization error and 95% confi-
dence intervals are summarized in Table 3. The experimental results reported in Table 3
employed the best landmarks evaluated in simulation as reported in Table 2, which are
landmarks P1 (triangular shape primitive) and F4 (symmetric inverted piecewise linear
free shape).

Table 3. RMS localization error using the optimized landmarks during experimental validation.

RMS Localization Error [m]

Experiment ICP Hausdorff

1 Without landmarks 20.765 ± 0.074 19.748 ± 0.113
2 P1—Triangular shape landmark 0.258 ± 0.046 0.235 ± 0.035
3 F4—Symmetric inverted landmark 0.206 ± 0.096 0.219 ± 0.093

The experimental results confirm that the symmetric inverted landmark F4 is slightly
better compared to the triangular shape landmark model P1. However, the 26 mm differ-
ence on average is within the 95% confidence interval, which for the symmetric inverted
landmark, is 93 mm. Compared to the case with no landmarks, which has an RMS localiza-
tion error of almost twice the traveled distance (10 m) in the experiments, the localization
approach with the proposed landmarks is very accurate and proves to be suitable for the
localization of underground mining loaders and trucks. It is also to be noted that ICP
performed better with an RMS localization error 13 mm smaller than the RMS localiza-
tion error obtained with the Hausdorff matching strategy using the symmetric inverted
landmark model F4. However, with the simpler triangular landmark model P1, ICP yields
an RMS localization error that is 23 mm larger. Comparing the RMS errors presented
in Tables 2 and 3, it is possible to observe that the experimental RMS positioning error is
approximately 10 times larger than the RMS positioning error obtained in the simulations.
This is mainly explained by the fact that the performance of the RTK-DGPS had, in practice,
an RMS error of 8.3 cm, which means that about 95% of the measurements fall within a
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circle with a 14.4 cm radius. On the other hand, the clock rate of the different subsystems
is different. The control loop was implemented at 100 Hz, but the RTK-DGPS provides
measurements at 10 Hz, while the lidar and RTK-DGPS have 10 Hz sampling rates. Since
the RTK-DGPS measurements are employed as ground truth, the practical RMS error
includes the GPS error, but also the lidar’s accuracy, which are approximately 5 cm.

5.3. Validation with an Underground Mine Dataset

A validation of the approach and the optimized landmarks is also carried out using the
publicly available 3D point cloud dataset of the El Teniente copper mine located in Chile [8].
A 100 m section of one of the tunnels was extracted from the dataset and artificial landmarks
P1 were added with randomly varying distances D ∼ U[9.25, 10.5] m around the optimized
value found by the genetic algorithm to ensure non-uniform spacing between landmarks
and thus avoid ambiguous matching of consecutive landmarks due to repeating landmark
separations. The triangular landmark geometry P1 was chosen for validation with the data
underground mine data set because it is a simpler geometry to manufacture and because
it yielded an RMS localization error in the real-world experiments that is similar to that
of the best landmark geometry F4 (see Table 3). Furthermore, the RMS localization error
obtained in the runs of the Genetic Algorithm give a slight advantage to P1 over F4, when
using the Hausdorff matching strategy, as shown in Table 2. A physically accurate model
of the skid-steer loader developed in [2] was simulated to evaluate the effectiveness of the
landmarks for SLAM using the scan matching procedure based on the modified Hausdorff
distance [4]. The results are shown in Figure 9, which shows the traversed trajectory in
Figure 9a, the matched point clouds in Figure 9b, the distance transform of the point
clouds employed for matching using the modified Hausdorff distance in Figure 9c, and the
resulting map and measured trajectory (red) compared to the trajectory ground truth (blue)
in Figure 9d. The ground truth corresponds to the skid-steer loader’s trajectory obtained
by the model simulation assuming noise-free position sensors. On the other hand, the map
considers a grid with a resolution of 10 × 10 cm2 per pixel, while the measurement model
considers the ranging error to be zero-mean Gaussian distributed with standard deviation
σ = 0.05 cm, which is a typical value for the Sick LMS 511. An RMS localization error
between the true position and the measured position of 0.163 ± 0.072 m was obtained after
15 repetitions, i.e., the simulation was repeated 15 times with a virtual machine driving in
the tunnel considering the sensor noise parameters. The obtained localization error was
registered to compute the RMS error across the 15 realizations and the 95% confidence
interval of the RMS localization error. It is to be noted that without the landmarks, it is not
possible to solve the SLAM problem correctly because the tunnel walls are almost smooth,
thus causing the matching to diverge due to the lack of anchor points that could be used
for reliable scan alignment. The RMS localization error in the dataset without landmarks
obtained with the Hausdorff matching approach was 194.3 ± 0.22 m, while IPC resulted in
an RMS localization error of 201.7 ± 0.15 m.
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Figure 9. SLAM solution of the El Teniente tunnel showing the ground truth map, trajectory, and
distance between landmarks (a); the laser rangefinder scan (b); the Voronoi distance transform of the
scan (c); and the estimated grid map and trajectory results (d).

6. Discussion

The main findings after the experimental validation of the proposed strategy for
navigation in mining tunnels are discussed as follows, considering both their significance
and limitations:

1. The approach based on optimized artificial landmarks’ geometry and spacing is
suitable for localization and mapping in smoothly bored underground mining tunnels,
where no GPS signal is available and where deploying and maintaining a network of
active RF or optical beacons is costly and difficult.

2. Without landmarks, it is not possible to solve the localization problem using lidar
information in smooth tunnels because the localization problem becomes ill-posed,
as evidenced by the cumulative error of the positioning without landmarks reported
in Table 3. Even if different SLAM techniques have been developed to reduce the
well-known localization slip or drift problem [45], reliable underground localization
and mapping requires accurate positioning drift-free strategies [7] to ensure industrial
grade safety standards. Therefore, artificial landmarks are an essential part of the
proposed solution for operation in adverse and challenging underground mining
conditions. Other solutions, relying on SLAM algorithms and variants that employ
natural landmarks may work partially and exhibit drift sporadically; thus, the use of
natural landmarks is still not applicable for 24/7 working schedules required by the
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mining industry. On the other hand, passive artificial landmarks may be cheaper to
manufacture, install, and maintain compared to active RFID or IR beacons.

3. The optimization of landmark geometries for the different models (shape primitives
and piecewise linear) yields expected positioning errors in the range 20–90 mm de-
pending on the geometry. Considering the approximately 50 mm difference between
the worst and best model, it is possible to conclude that adequate landmark design
and optimization is worth the effort.

4. In addition to the development of an optimization scheme for the landmarks’ ge-
ometry and spacing presented in Section 4.4) to improve localization, important
contributions that are of practical relevance are the validation of: (i) the feasibility of
the approach through experimental validation for localization in relatively smooth
tunnels, in which traditional scan matching and visual features do not work due to the
lack of sufficiently distinctive features that could be matched without ambiguity (see
Table 3); (ii) the advantage of Hausdorff-based matching compared to the ICP method
(see Table 2); and (iii) the gains in localization accuracy than can be achieved by
optimizing the geometry and spacing of landmarks by means of a genetic algorithm
search strategy (see Table 2).

5. The experiments were conducted with a mock-up of a smooth tunnel both with and
without landmarks. Modern machine-bored tunnels are relatively smooth and lack
features. Thus, the mock-up replicates a challenging geometry for matching and
localization rather than visual appearance. In order to further validate the approach,
an accurate 3D model of a 100 m section of one of the tunnels of the Chilean El Teniente
copper mine from the dataset by [8] was employed. Fifteen iterations assuming
typical motion disturbances and sensor noise, with magnitudes equivalent to those
of the CAT 262C [2] and Sick LMS 511 lidar, were carried out to ensure statistical
significance. Future work considers creating a new dataset and additional testing in
different underground tunnels, which during this research has not been possible due
to increased restrictions to access mining sites during the pandemic.

6. The RMS positioning error obtained in the experimental validation of Section 5.2 is
influenced by the accuracy of the RTK-DGPS (RMS error of approximately 8.3 cm),
which was employed as the ground truth. Another limitation arises from the accuracy
and resolution of the lidar scanner, which is approximately 5 cm. We expect that the
positioning accuracy measured in our experiments should improve with ongoing
technological advances and the development of more accurate lidar and GPS sensors.

7. Concerning the practical implementation of the approach, two important aspects need
to be considered: (i) the execution time and (ii) the environment’s visibility conditions.
The results presented in Section 5.3 show that the execution time is adequate for
real-time implementation applicable to underground machines operating at standard
speeds of 20 to 30 km/h. The effects of environmental visibility due to dust were not
tested as part of this study. However, there exist laser range scanners and other vision
systems that have been successfully employed in commercial collision avoidance
systems for mining equipment, e.g., SICK’s MINESIC100 EPS, MINESIC100 TCW or
Visionary-B.

8. The accurate localization of artificial landmarks on the map does not need to be
performed using accurate georeferencing or topographic stations since the landmark’s
location can be jointly estimated with the position. Once the landmarks have been
deployed, practically no maintenance is required unless some are damaged and need
to be replaced. The low-maintenance requirements are an advantage of the proposed
solution compared to systems requiring energy supply and network connectivity for
active optical and RF beacons.

9. Our ongoing research efforts are focused on improving the proposed approach with
deep learning techniques and neural networks for different purposes, which include
visual feature extraction, scene recognition, ego-motion estimation, and map matching.
Techniques based on deep neural networks have shown promising results to improve
lidar matching, e.g., OverlapNet by Chen et al. (2021) [46], and optical flow estimation,
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e.g., Flownet by Fischer et al. (2015) [47], including RGB-D SLAM with convolutional
neural networks [48] and 3D indoor scene mapping [49]. Hence, these techniques
may improve the accuracy and robustness of lidar and visual matching, as well as
motion estimation, which are essential for SLAM in underground tunnels. It is to
be noted that an important challenge for the application of visual techniques in the
harsh mining environments is the poor visibility in tunnels due to low illumination
conditions and dust, as well as machine vibrations, which are typically not a problem
in indoor or urban robotics.

7. Conclusions

An approach for reliable autonomous navigation in modern smoothly bored mining
tunnels which ensures drift-free localization and consistent mapping has been developed
and validated. The approach relies on the optimization landmark geometry and positioning
(distance between landmarks). Finding the optimized parameters was achieved with a
genetic algorithm search strategy. The results show that optimizing a free shape using a
piecewise linear function leads to a inverted double triangular shaped landmark, while
very similar results are obtained with the optimized triangular shape primitive. From a
practical perspective, it may be more convenient to use simple optimized triangular-shaped
landmarks because the positioning accuracy is on average around 22 cm, with a small
difference of 2.6 cm, which is within the ±9.3 cm confidence interval of the piecewise
linear inverted double triangular shape. The experimental validation using a compact
skid-steer excavator CAT 262C shows that without landmarks, the cumulative drift error
steadily grows, and correct localization is not possible due to the ambiguity in lidar scan
matchings. The experimental results thus confirm that using shape-optimized passive
landmarks are a reliable alternative for localization and navigation in modern underground
smoothly bored mining tunnels, for which electrically powered active optical or RF beacons
are less likely to be accepted by the underground mining industry due to concerns on
maintenance cost involved to prevent malfunctioning risks and ensure operational safety
in case of a loss of power supply. The applicability of the localization approach for SLAM
in real underground mines was verified using an accurate 3D model of a 100 m tunnel
section of El Teniente mine in Chile, which is the largest underground copper mine in
the world. Ongoing research is concerned with improving the accuracy and robustness
of the proposed localization and mapping approach with deep learning techniques for
ego-motion estimation, map matching, and the extraction of visual features that could be
used as landmarks. An important challenge for the application of visual techniques in
the harsh mining environments is the poor visibility in tunnels due to low illumination
conditions and dust, as well as machine vibrations, which are typically not a problem
in indoor or urban robotics. Our work in progress also considers improvements to the
proposed approach for navigation in fruit groves and forests with large tree canopies that
create tunnel-like conditions.
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Abbreviations

The following abbreviations are used in this paper:
AGV Automated Guided Vehicle
AMR Autonomous Mobile Robot
DGPS Differential GPS
EKF Extended Kalman Filter
EM Expectation-maximization algorithm
F1 Piecewise linear free shape
F2 Piecewise linear inverted free shape
F3 Piecewise linear symmetric free shape
F4 Piecewise linear symmetric inverted free shape
GCS Guidance control system
GPS Global Positioning System
ICP Iterative Closest Point
IMU Inertial measurement unit
LC Inductive-capacitive
LGV Laser-guided vehicle
LHD Load-haul and dump
MSE Mean square error
NDT Normal Distribution Transform
P1 Triangular primitive
P2 Rectangular primitive
P3 Parabolic primitive
P4 Linear primitive
RANSAC Random Sample and Consensus
RMS Root mean square
RTK Real time kinematic
SLAM Simultaneous localization and mapping
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Abstract: Light-weight and accurate mapping is made possible by high-level feature extraction from
sensor readings. In this paper, the high-level B-spline features from a 2D LIDAR are extracted with a
faster method as a solution to the mapping problem, making it possible for the robot to interact with
its environment while navigating. The computation time of feature extraction is very crucial when
mobile robots perform real-time tasks. In addition to the existing assessment measures of B-spline
feature extraction methods, the paper also includes a new benchmark time metric for evaluating
how well the extracted features perform. For point-to-point association, the most reliable vertex
control points of the spline features generated from the hints of low-level point feature FALKO were
chosen. The standard three indoor and one outdoor data sets were used for the experiment. The
experimental results based on benchmark performance metrics, specifically computation time, show
that the presented approach achieves better results than the state-of-the-art methods for extracting
B-spline features. The classification of the methods implemented in the B-spline features detection
and the algorithms are also presented in the paper.
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1. Introduction

The simultaneous localization and mapping of SLAM are already acknowledged as form-
ing a discipline; therefore, the optimization of its specific modules (localization and mapping)
is the focus of research these days. The main focus has been moved to the optimization and
overall assimilation of these components. Localization tasks can be performed efficiently by
using the extraction of distinctive regions or point features from the sensor data. The distinc-
tive regions or points allow the computation of signatures for place recognition, which enables
effective robot localization. Only a small group of point-features obtained from a local map
was used in point-to-point associations for localization purposes. Three state-of-the-art point
feature detectors designed for 2D laser scans are FLIRT [1], FALKO [2], and BID [3]. These low-
level features are also used as landmarks for a lightweight map. The map represented using
point features ignores the structural information of the surroundings and makes it challenging
for robots to interact with that environment. The high-resolution structural information can
be attained using occupancy grids [4]. However, to create a dense map using occupancy grids,
a large state space is required. The high-level features also enable dense mappings with lesser
state space requirements. The extraction of numerous high-level geometric features such as
lines [5], polylines [6], circle features [7], and curve segments [8] has also been presented in
the literature. Due to a single geometric feature extraction model, the approaches still require
a more reliable and robust solution for environments with various shapes.

A comprehensive approach to express the curved and straight features has been
presented in vision-based Curve SLAM [9]. A stereo camera image of paths was used to
detect the left and right edges, and later, these edges were represented as Bezier curves
features. The major drawback of using Bezier curves as features is that the degree of the
polynomial is confined to the total number of control points. The degree of the polynomial
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is always one less than the number of control points. Therefore, the multifaceted shapes are
hard to represent using a single Bezier curve. Another limitation of the Bezier curve is that
displacing any of the control points changes the curve’s shape completely, which makes it
tough to manipulate the control point for curve modifications. A better alternative [10] is
the utilization of B-splines in the description of straight and curved-shaped data obtained
from a 2D laser scan.

The B-spline representation of a scan is found by the segmentation of the scanned data
and then approximating the B-spline curve on the segments [10]. However, the segmen-
tation methodology used in [10] results in the extreme breakdown and depletion of scan
data. The curve-fitting method [10] also lacks the appropriate choice with respect to the
total number of control points and the derived knot vector. In contrast, a better method for
segmentation and the active B-spline curve-fitting approach with corner representations is
presented in [3]. Although it results in a highly compact representation of the environment
but the approach is computationally very expensive.

In this article, we proposed a novel methodology of B-spline feature extraction. In the
existing state-of-the-art approach of B-spline feature extractions, the B-spline-based interest
point detection (BID) is used for corner detection from laser scans. In BID, all points are
tried as the candidates of the interest points by the active B-spline curve-fitting method
using its neighbor points. The application of active B-spline approximation on every data
point is a time-consuming practice, which greatly increases the time of the B-spline feature
representation of the complete scan. The proposed approach is based on FALKO [2] interest
point detection, which is a quicker method for corner detection. It reduces the overall
execution time of the B-spline approximation of the complete scan. The performance of
the novel approach was compared with the state-of-the-art methodology using the set
of benchmark metrics presented in [3]. In the experimentation, the standard data sets
of different indoor and outdoor environments are used. We not only suggested names
for existing extraction methodologies based on the techniques used for the segmentation
and the B-spline approximation but the algorithms of all approaches are also presented in
our paper.

Contributions

The main contributions of this article are as follows:

• We proposed a novel method for the fast extraction of high-level B-spline features,
which can be used for the accurate mapping of the environment suited for both curved
and straight-line geometric shapes.

• The computation time of feature extraction is very crucial for mobile robots when they
perform real-time tasks. Therefore, we added a new benchmark time metric in the
existing set of metrics used for the evaluation of the B-spline feature extraction approach.

• The classification of B-spline feature extraction approaches based on the techniques
used for segmentation, corner detection, and B-spline approximation is also presented
in the paper.

• Finally, we also presented algorithms for all approaches that can be very effective
when implementing the procedures.

The remaining paper is organized as follows: Section 2 provides the literature on low-
level and high-level features detection approaches for LIDAR data, and Section 3 provides
the problem’s definition and methodology, Section 4 introduces B-Spline theory, Section 5
presents B-spline features extraction approaches, and Section 6 explains the experiments
and the results. Finally, the conclusion is provided in Section 7.

2. Related Work

The robot’s pose and the map are depicted by the modules of SLAM. Mapping is
the process of estimating the map, and localization is referred to as the process of esti-
mating the robot’s pose. The localization of landmarks or features, which can be used
to determine the exact location of a robot on a global map, is a problem that localization
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addresses. Environmental features, both artificial and natural, are shown on landmark
maps. Smith et al. [11] came up with the ground-breaking solution of landmark-based
EKF-SLAM. Although comprehensively studied [12] and more accurate visual keypoint-
based place recognition techniques have their own set of difficulties regarding scalability,
viewpoint, and slight variations. The object-based localization frameworks [13,14] provide
a compromise between accurate keypoint localization and the capacity to take contextual
and semantic information into account.

LiDAR-based Localization techniques can be classified and rely mostly on matching
geometries. Numerous point registration techniques, the most well-known of which is
iterative closest point (ICP) [15], involve a high pose prior and are, hence, unsuitable for
global localization. Even though there are methods for global registration that operate
outside of the local context [16,17], they still require keeping at least some of the point
cloud data. This can be partially concentrated by simply collecting compact descriptors
during map construction and localization. There are various low-level features or keypoints,
such as the corner points, which have already been proposed specifically for the planer
rangefinders. In [18], Bosse proposed the centroids of the clusters and the points of the large
positive curvature as point features for the task of place recognition. Li and Olson in [19]
suggested an approach that builds upon the method used in image processing: Kanade–
Tomasi is a variant of the Harris corner detector. This method was applied to the laser
scan data. The scan data were first converted into an image from which the point features
were extracted. Later [20], they improved the point feature detector for LIDAR data, which
was also based on the computer vision approach by computing the structure tensor of the
surface’s normal. The main concern is the proportional change in computational complexity
of the image-processing-based approaches with the change in the size of the converted
image from the scanned data. In FLIRT [1], a discrete framework of scale-space theory was
used for re-scaling the scanned data; then, the point features were searched on different
scales depending on the parameters such as the range, normal, or curvature. However,
the single parameter-based detection of the point features may result in unstable points
in FLIRT. Kallasi et al. proposed a point feature detector FALKO [2], which used the idea
of edge intersection. The first step of the corner detection was the rough guess that was
based on the evaluation of the parameters of the triangle generated by two boundary data
points in a specific neighborhood and the corner point candidate. Therefore, it is likely
to select the unstable candidates or will skip the possible candidates of the point features.
In the B-spline-based interest point detector BID [3], the idea of neighborhood selection
was taken from [2] but used in a better way by applying active B-spline approximation to
the neighbor data points for the detection of point features.

Other than low-level feature extraction techniques, high-level feature extraction ap-
proaches such as lines and curve segments are also used for LIDAR data. High-level features
have been included in many SLAM algorithms to address the limitations of point-based
SLAM. Planes, image moments, line segments, office chairs, tables [21–23], objects, and rivers
are a few examples of high-level features. The ability to compactly create a map of the
environment is a desirable quality of the high-level structure. The outline of a door, the struc-
ture of an inside hallway, or other objects one may expect to find in the mapped place are
represented by lines [24,25]. Additionally, lines give a sparse picture of the surroundings.
For instance, each line is represented by only two points [23]: the start and end points of a line
segment. The line features have also been implemented by [23] to map the environment using
a vision-based sensor. The start and end points were represented by using line segments.
High-level feature detectors presented for 2D laser data contain dynamic mappings based
on circles and lines features [26], curve features based on adaptive curvature estimation [8],
and weighted line fitting [27]. One of the foremost needed properties of high-level features
is that they enable a compact method of mapping the structural details of the environment.
A generalized method of representing the curve or line feature using the Bezier curves was
explained in CurveSLAM [9] to create an efficient map of the stereo vision sensor’s data.
The methodology was used to create the straight and curved pathways as well as the yellow
road lanes. A more comprehensive method of high-level features description for the varied
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and complex environments using B-splines was presented in [10]. However, the approach
lacks smart segmentation procedures, choosing an initial number of control points and the
parametrization for the B-spline’s feature demonstration. In [3], active B-splines features
extraction was implemented with efficient segmentation to reduce the wastage of data points
and accurate representation of the line or curved segments. However, it is a computationally
very expensive and slow approach.

3. Problem Definition and Methodology

In 2D LIDAR data, point features such as corners are taken as landmarks in the
environment. These landmarks can also be used to represent a light-weight map of the
environment. However, the structural information of the environment is not contained
in the landmarks based on point features. Therefore, the robots are unable to interact
with the actual environment by using the point-feature-based map. The occupancy grids
used for map representations in [28] produced the structural details of the environment
shown in Figure 1, but every grid requires dedicated memory to store each laser data point.
The higher the resolution, the more space will be required to save the map.

Figure 1. The occupancy grids used in [28] for a laser scan.

Various high-level features have been used in the literature to represent the map for
using laser data points; however, these features are used for dedicated shapes such lines
or curves. The B-splines are not only used for straight as well curved shapes to represent
the map by fewer control points. However, in the literature, the methodologies used for
B-spline representation still lacked an efficient approach.

In B-spline extractions, the two main steps are as follows: One is segmentation, and
the second is the B-spline approximation of the segments. An additional step involving
corner detection was presented in our previous work [3], which enabled not only light-weight
representations of the map but also the corner representation. The detailed methodology [3] is
presented in Section 5.3. The corner representation can also be used for B-spline associations.
However, this [3] approach is computationally very expensive.
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We proposed a faster method for representing laser data using B-splines. FALKO-
based corner detection [2] significantly reduces the overall execution time of the B-
spline representation and does not affect the other performance metrics of the approach.
The three steps includes FALKO-based interest point detection, segmentation, and fi-
nally, B-spline curve fitting. It is represented in Figure 2.

Figure 2. The three steps of proposed approach applied on a scan: FALKO interest point detection,
segmentation, and finally, B-spline curve fitting. Note: Control points of B-splines are not shown in
the figure.

The detailed explanation of the approach is presented in a later section of the paper.
Firstly, the B-spline theory is presented.

4. B-Spline Theory

In this section, some basic concepts of B-spline, spline continuity, and the computation
of an active B-spline curve to approximate the data points in a plane are presented.

4.1. B-Spline Curve

The B-spline curve is represented as a linear combination of basis functions that are
also known as B-spline basis functions. An l-dimensional curve S(t) composed of basis
functions Bi,k of degree k(order = k + 1) and control points PiεRl(i = 0, . . . , n) can be
expressed as a function of parameter tεR such as

S(t) =
n

∑
i=0

Bi,k(t)Pi (1)

where basis functions Bi,k are defined by the Cox–de Boor recursion formulas [29,30]

Bi,0(t) =

{
1, if ξi ≤ t ≤ ξi+1

0, otherwise.
(2)

and for all k > 0

Bi,j(t) =
t − ξi

ξi+j − ξi
Bi,j−1(t) +

ξi+j+1 − t
ξi+j+1 − ξi+1

Bi+1,j−1(t) (3)

where knot vector Ξ = ξ0, . . . , ξn+k is any non-decreasing sequence of real numbers.
The multiplicity of the extreme values of the knot vector equal to the curve’s order makes it
a clamped B-spline; otherwise, it is an unclamped one.
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4.2. Continuity

With respect to the knot value, the continuity, which is also known as the degree of
smoothness of the B-spline of order O, is at its maximal value, that is, CO−2 continuity of all
derivatives up to (O − 2)th [31]. Continuity at a knot multiplicity m is reduced to CO−m−1.
In contrast, coinciding n consecutive control points reduce the continuity of the B-spline
curve by n − 1. For example, two control points of the quadratic (O = 3) B-spline coincide
to form a hinge (discontinuous first derivative) at the point of coincidence on the curve.

4.3. Active B-Spline Curve Fitting

Approximating a noise-contaminated or non-uniformly distributed set of data points
XsεR2, s = 1, . . . , N by using an active B-spline curve can be formulated as a non-linear
optimization problem. A data point Xs that lies on the B-spline must satisfy

Xs = B0,k(ts)P0 + . . . + Bn,k(ts)Pn (4)

The process of finding ts is known as data parameterization. The main approach of
approximation is based on the idea of starting an active B-spline with an appropriately
chosen initial curve and converging via iterative optimizations towards targeted data
points [32]. The knot vector and the order of the curve are assumed to be fixed throughout
the fitting procedure. At first, keeping the parameter values constant, control points
Pi, i = 0, . . . , n are found such that objective function

f =
1
2

N

∑
s=1

d2(S(t), Xs) + λ freq (5)

is minimized, where d(S(t), Xs) is the orthogonal distance from data point Xs to the point
on the initial curve, S(t). This scheme of minimization is called point distance minimization
(PDM) [32]. Secondly, control points produced in the minimization step are kept fixed while
the data parameterization method is used to select ts such that Sts (also known as footpoint
of Xs) is the nearest point on the updated curve from data point Xs. Regularization term
freg governs the smoothness by looking at the differential Σ and curvature ρ of curve at
every point, whereas positive constant λ represents its weight. Differential operations or
stretching of the curve are defined as

Σ =
∫

‖S
′
(t)‖2 dt (6)

and the bending or curvature energy, ρ, of the curve is defined as

ρ =
∫

‖S”(t)‖2 dt (7)

In our implementation, only the bending energy has been considered. The approxi-
mation error of the curve can be calculated as the root mean squared error Ecurve, which is
defined as

Ecurve =

[
1
m

m

∑
q=1

‖S(tq)− cq‖2

]1/2

(8)

where m is the total number of data points cq upon which curve approximation is applied.

5. B-Spline Feature Extraction

In this section, we present the various types and methods of finding the B-spline fea-
tures from 2D laser scan data. In a laser scan, the state-of-the-art low-level features or corner
detectors FALKO [2] and BID [3] can be used to detect stable and view-point-invariant
interest points. The high-level B-spline feature extraction approaches are presented in [3,10].
The B-spline feature, which has at least one associated corner (interest point) or vertex in
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its representation, is defined as an auxiliary B-spline. In contrast, the B-splines that do
not have any associated corner (interest point) or vertex in the representation are called
bleak B-splines [3]. The B-spline feature extraction involves two important steps that are a
segmentation of the scan data and B-spline curve fitting on the segmented data.

5.1. Segmentation

The data points obtained from the laser scan may not be represented using a single
B-spline feature. Therefore, the first step in the extraction of high-level B-spline features
is the segmentation step. The B-spline feature extraction approaches can be categorized
based on the segmentation methodology they adopt.

5.1.1. Relative Position and Orientation-Based Segmentation (RPOS)

The segmentation methodology based on the relative position and orientation between
two consecutive data points was presented in [10]. It can be called the relative position and
orientation-based segmentation (RPOS). The RPOS is centered on the evaluation of the rela-
tive positions of two successive laser data points, as shown in Figure 3, and mathematically
represented as follows.

pi = di − di−1 (9)

Figure 3. An RPOS-based segmentation presented in [10].

Then, the following assessments were performed.

|αi| ≤ αmax ↔ cos(αmax) ≤ cos(αi) (10)

max(‖pi‖, ‖pi+1‖) ≤ ηmin(‖pi‖, ‖pi+1‖) (11)

When a set of successive data points fulfills both relationships described above, they
are taken to be part of the same feature. In RPOS, the proposed value for angular threshold
αmax = [0, π/4] results in the extraction of bleak segments only. The larger values of αmax
may associate the corner points in the segment, but it results in an incorrect and excessive
number of corners identified in scanned data [10]. Therefore, the values for parameters
αmax = π/4 and η = 1.5 were chosen for implementation.
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5.1.2. Segmentation Using Varying Euclidean Distances (SVEDs)

Another segmentation approach presented in [3] is based on Euclidean cluster ex-
traction [33], as shown in Figure 4. Instead of using a constant distance [33], a varying
Euclidean distance threshold was used in [3]. It can be called segmentation using varying
Euclidean distance SVED-based cluster extraction. For every point, the neighborhood-
radius rq is the function of the datapoint distance ‖dq‖ from a sensor’s origin, and it is
represented in [2] as

rq = a exp(b‖dq‖) (12)

Figure 4. The Euclidean cluster extraction methodology [33] adopted in [3] with varying rq.

Parameters a = 0.2 and b = 0.07 were selected for scan ranges between 0.5 and 30 m.
Radius rq is taken as the varying euclidean distance. The SVED approach may produce
both auxiliary and bleak segments [3], as shown in Figure 5.

Figure 5. An SVED segmentation-based approach containing the Bleak segment (purple datapoints
with no interest points in blue) and auxiliary segments (with associated Interest points in blue color)
where the wasted data points are shown in red. The BID-based interest point detection approach was
used to detect corners (shown in blue).

5.2. B-Spline Features

The flexibility of splines curves to approximate noise-contaminated data is one of
their main attractions. Every segment in a scan is represented by the B-spline curve
approximation. The two curve-fitting approaches for LIDAR data are presented. The first
is a least-squares B-spline approximation LSBA in [10], and tje other is point distance
minimization PDM in [3].
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5.2.1. Least-Squares B-Spline Approximation (LSBA)

The B-spline curve fitting of a set of data points XsεR2, s = 1, . . . , N by using a least-
squares solution can be devised as an approximation problem. If a data point, Xs, lies on
the B-spline, then it must satisfy Equation (13) as follows:

Xs = B0,k(ts)P0 + . . . + Bn,k(ts)Pn (13)

The problem can be represented by using the equations as follows:

X = BP

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X =
[

X0 X1 . . . XN

]T

P =
[

P0 P1 . . . PN

]T

B =

⎡⎢⎢⎣
B0,k(t0) . . . Bn,k(t0)

. . .
. . . . . .

B0,k(tm) . . . Bn,k(tm)

⎤⎥⎥⎦
(14)

where matrix B is the collocation matrix. The process of finding ts, which is the position of
datapoint along the curve, is known as data parameterization. The cumulated chord length
can be used to find the position between consecutive datapoints as follows.{

t0 = 0
tj = ∑i

s=1 ‖Xs − Xs−1‖
(15)

The total length of the curve, l, which is the maximum value of the knot vector, can be
calculated as follows.

l =
m

∑
s=1

‖Xs − Xs−1‖ (16)

Finally, the least-squares solution of the approximation problem can be calculated by
using the pseudoinverse matrix of B.

P = [BT B]−1BTX (17)

In the case of bleak segments, the order (or degree) of the B-spline curve, the number
of control points, and the parameter values along the curve are predefined to approximate
the segments using the least-squares solution [10]. It provides a solution for bleak segments
only, because in this approximation, the corner position cannot be provided, and only the
number of control points is given.

5.2.2. Point Distance Minimization (PDM)

Another method for representing the segments using B-splines is active B-spline curve
fitting, which is presented in Section 4. The approach involves two steps. The first one is
the initialization of a B-spline curve of a specific order and shape using a known position
and the number of control points and secondly, the point distance minimization (PDM)
scheme [32] is applied to the initial curve to approximate the segments. The main appeal of
this approach is that not only bleak segments but the point distance minimization scheme
can also be used to approximate auxiliary segments that have at least one associated corner
detected in the laser scan, as shown in Figure 5.

The significant idea of the auxiliary segments is the representation of the corners. In the
quadratic B-spline curve, a corner can be represented by the knot multiplicity Mknot = 2 or
the control point multiplicity Mcp = 2 [31]. The knot multiplicity approach was used in [3]
to minimize the number of control points used in the B-spline’s representation. However,
representing the corner using control point multiplicity Mcp results in the part of the curve on
either side of the corner constrained to be linear [31]. The importance of linearity constraints
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on either sides of the corner is significant for the representation of corners in most of the
building’s structures.

The control points in the auxiliary segment are categorized into three types. The control
point used in the representation of the corner is defined as a vertex control point [3]. The bound-
ary control points are initialized at the boundary data points, whereas the precision control
points are used in the representation of the fragments [3]. The fragment is the region of the
B-spline curve between two vertex control points or the region between the boundary control
point and the vertex control point [3]. The precision control points define the accuracy of
the B-spline approximation of a segment. Therefore, the number of precision control points
was proposed to be chosen as a function of the Euclidean distance between the fragment’s
endpoints [3]. Once the curve is initialized using the control points, the PDM scheme is applied
to approximate the segment.

5.3. Extraction Methodologies

Various approaches can be used in the extraction of B-spline features from 2D laser
scan data. The approaches are categorized on the basis of the phenomena they adopt.

5.3.1. RPOS-LSBA

The RPOS-LSBA [10] used a typical approach involving B-spline extraction, which
involved the segmentation of the laser scan and then B-spline curve fitting on the seg-
ments. In the segmentation step, it employed the relative position and orientation-based
segmentation RPOS, which is based on the relative position of di and orientation αi of the
two consecutive scan data points, as shown in Figure 3. As segmentation relies on the
geometrical (angle and distance) property of the two very next neighboring data points,
therefore, a distant point from the neighbors not only creates a new segment but also limits
the upcoming neighbor in becoming a part of a segment rather than isolating it. This
increases wasted data points. Segments containing less than five data points are considered
wasted. The second step is the application of the least-square solution [10] to the segments
obtained in RPOS to obtain a B-spline approximation. It is named least square B-spline
approximation LSBA. This B-spline feature extraction approach not only increases wasted
data points but also lacks a representation of stable points (corners) in the scan. The B-spline
feature extraction based on RPOS-LSBA is presented in Algorithm 1.

Algorithm 1: RPOS-LSBA Features Etraction
SEGMENTATION
rpos_seg(rth, αmax) // position and orientation thresholds
for each datapoint di in scan S do

if position_and_orientation < (rth, αmax) then

φn ← di
end if

end for

return φ // creates and return Bleak segments
B-SPLINE APPROXIMATION
lsba_curve(φ)
for each segment φn in scan S do

BSplines = least_square_Approx(Pc, Ordercurve, φn) // no. of control points Pc
end for

return BSplines

5.3.2. BID-SVED-PDM

Another method for B-spline feature extraction was presented in [3]. In this approach,
an additional step of corner detection was proposed. Firstly, the stable and state-of-the-art
B-spline-based interest point detector BID [3] was used for corner detection, as shown in
Figure 6. Roughly, a set of a uniform number of neighbor data points N(cq) is acquired
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using radius rq = a exp(b‖dq‖). The clamped and uniform quadratic B-spline curve is
initialized with four control points evenly spaced along the axis defined by the largest
eigenvector of the covariance matrix of N(cq), as shown in red color in Figure 6 (left). Then,
the point distance minimization (PDM) method is used to estimate the shape specified by
the data points, as in Figure 6 (middle). Finally, the inverse of the normalized Euclidean
distance, Nq, among two median control points, Pq1 and Pq2, of the estimated curve, Sq(t),
is taken as the measure of corner occurrence as in Figure 6 (right).

Figure 6. The B-spline-based interest point detection BID method with initialization step (left), PDM
(middle) step for the corner data point, and the normalized Euclidean distance Nq values (right)

calculated for candidates of the interest points around the actual corner points [3]. The four control
points are represented in red color.

Nq =
‖Pq1 − Pq2‖

∑2
i=0 ‖Pqi − Pq(i+1)‖

(18)

The local maxima of N−1
q beyond threshold Tth can be employed to detect the in-

dices of scan points and ultimately corner point Ip by using non-maxima suppression
NMS. The data points with Nq values 0.249 and 0.250 in Figure 6 (right) are the detected
interest points.

In the second step, segmentation using a varying Euclidean distance-based cluster
extraction (SVED) approach was used [3] and derived from [33], which produces segments
with a minimum wastage of data points. Finally, the active B-spline curve approximation
based on point distance minimization PDM [32] was used for the representation of the
segments using B-spline features. The active B-spline approach enables the representation
of detected corners in the laser scan. Algorithm 2 shows the B-spline feature extraction
based on BID-SVED-PDM.
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Algorithm 2: BID-SVED-PDM Feature Extraction
CORNER DETECTION
bid_Ip(Tth) // Tth normalized Euclidean distance threshold [3]
for each datapoint di with its neighbors in scan S do

if E−1
q > Tth then

Ip ← dq
end if

end for

I ← Non_Maxima_Suppression(Ip)
return I // returns I set of interest points
SEGMENTATION
sved_seg(rq) // varying Euclidean radius rq
for each datapoint di in scan S do

if Euclidean_distance ≤ rq then

φn ← dq
end if

end for

return φ // creates and return Bleak segments
ACTIVE B-SPLINE APPROXIMATION
active_Bspline_curve(φ)
for each segment φn in scan S do

(Aux, Bleak) = find_aux_bleak(φi, Ip) // search for Auxiliary and Bleak Segments
end for

Bleak Segments B-spline Approximation
for each bleak segment φn in scan S do

Bcp ← Find_Boundary_Control_Points (φn)
Pcp ← Find_Precision_Control_Points (Bcp)
curveinit ← Curve_Initialization (Bcp, Pcp, ordercurve)
Bspline ← point_distance_minimization (curveinit, φi)

end for

Auxiliary Segments B-spline Approximation
for each Auxiliary segment φn in scan S do

Bcp, Vcp ← Find_Boundary_Vertex_Cntrl_Pnts (φn, Ip)
Pcp ← Find_Precision_Control_Points (Bcp)
curveinit ← Curve_Initialization (Bcp, Vcp, Pcp, ordercurve)
Bspline ← point_distance_minimization (curveinit, φi)

end for

return BSplines

5.3.3. FALKO-SVED-PDM

The B-spline-based interest point or corner detection is a computationally very expen-
sive and time-consuming approach. Therefore, in this section, we proposed to use the fast
adaptive laser keypoint orientation-invariant FALKO [2] for corner detection. It manipu-
lates the simple idea of edge crossing in 2D range data, as shown in Figure 7, which makes
it faster. After finding the potential corner candidates based on the minimum number of
neighbors (cardinality) on each side, they are evaluated geometrically (by measuring the
height of the triangle as in Figure 7) to obtain a rough approximation of the corner. Then,
for each candidate point, a cornerness score is computed.

score(pi) = scoreL(pi) + scoreR(pi) (19)
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Figure 7. A FALKO-based corner detection example presented in [2].

This score function measures the alignment of the two point sets on each side of the
candidate point as follows:

scoreL(pi) =
jmin

∑
h=i−1

jmin

∑
k=h−1

|dθ(φh), φk| (20)

scoreL(pi) =
jmin

∑
h=i+1

jmin

∑
k=h+1

|dθ(φh), φk| (21)

where dθ is the distance function of the quantized orientations φ1 and φ2 concerning the
candidate point as

dθ(φ1, φ2) = (φ1 + φ2 +
sn

2
)mod(sn)−

sn

2
(22)

where the number of circular sectors in the polar grid is represented as sn. Secondly,
segmentation SVED and, finally, the active B-spline curve approximation using PDM are
employed. This approach can be named FALKO-SVED-PDM. Although, FALKO detects a
few suporious interest points, it is fast; therefore, the proposed methodology considerably
reduces the overall execution time of the extraction of the B-spline curve. The FALKO-based
corner detection algorithm is shown in Algorithm 3.

Algorithm 3: FALKO-Based Corner Detection.
CORNER DETECTION
falko_Ip(scoreth) // scoreth FALKO score threshold
for each datapoint di using its neighbors in scan S do

if cardinality ≥ 2 then

potential_candidate ← dq
end if

end for

for each potential candidate dc with its neighbors in scan S do

compute_corner_score()
if corner_score ≥ scoreth then

Ip ← dq
end if

I ← Non_Maxima_Suppression(Ip)
return I // returns I set of interest points

end for
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6. Experiments

In this section, the experimental setup and results are presented based on the per-
formance evaluation of the B-spline feature extraction approach for compact and faster
mapping using B-spline features extracted from the 2D range data. The data sets, three
indoor (Intel, Fr079, and MIT-csail) and one outdoor (Fr-clinic), provided by [1] are tested
in our experiments. The data sets given in [1] contain both the corrected ground truth and
the corresponding original scans.

6.1. Experimental Setup

The method of B-spline features extraction is evaluated based on the four metrics of
performance, which are retrievability, compactness, accuracy, and time. Although the first
three metrics were proposed in [3], the fourth metric time is proposed in this paper as the
execution time becomes very important when the robot performs real time tasks.

6.1.1. Retrievability (Γ)

It determines the extent of scan data points that are allotted to the extracted B-spline
features. It is described by the percentage of the data points designated for the B-spline
features over the total number of data points N in a scan. It can be represented as

Γ =
1
N

m

∑
i=1

ΞΦi (23)

where Ξ shows the number of data points in a non-discarded segment (which has more
than five data points), and m represents the total number of non-discarded segments in a
scan. It can be used as the measure of the wasted data points in a scan.

6.1.2. Compactness (η)

The second metric of performance is the compactness η of the depiction of a laser scan
using B-spline features. It is calculated by the ratio of the total number of control points of
B-splines to the total number of data points allocated to those B-splines in a scan as follows:

η =
∑m

i=1 Ncpi

∑m
i=1 ΞΦi

(24)

where Ncpi shows the number of control points in the ith B-spline feature of φi in a scan.
The smaller value of η means that it is a more precise and compact representation of a scan.
This means that lesser control points are used in the representation of a scan.

6.1.3. Accuracy (∧)
The accuracy ∧ of the representation of the scan using B-spline features is assessed

by the fitting error, Ecurve, of the curves. The approximation error, Ecurve, of the extracted
features in the scan is calculated and then the average of the approximation error was taken
as a measure of accuracy. It can be represented as follows

∧ =
1
m

m

∑
i=1

Ecurvei (25)

where m shows the number of B-spline features of non-discarded segments, and Ecurvei is
the approximation error of the ith feature in the scan.

6.1.4. Execution Time (t)

The execution time t of the B-spline curve approximation is the time taken by the
method in the representation of a laser scan using B-spline features. The B-spline extraction
time of complete data set is averaged over the total number of scan in the set to determine
the average time of one scan.
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6.2. Results Evaluation

By contrasting it with the approaches described in [2,10] using the performance
criteria presented, the suggested B-spline features extraction approach was evaluated.
Additionally, feature extraction execution time criteria were also proposed to assess the
performance of all approaches. For segmentation, the parameter values were set exactly
as suggested in [10], but for feature representation, a least-square uniform quadratic
B-spline approximation was employed. In the SVED approach of segmentation, the
same values of the parameters were set for varying radius rq, as shown in [3]. The
same parameter values that were chosen for FALKO [2] and BID [3] were set for the
assessment of both methodologies. Only the Bleak segments are produced by the RPOS
method described in [10]. Therefore, four control points were used in the approximation
of all B-splines in RPOS-LSBA-based approach.

Figures 8 and 9 show the segmentation results of RPOS and SVED approaches, respec-
tivey. The noisy scan was taken from the Intel data set. For the same scan, RPOS produces
a lot more wasted data points (red markers), as shown in Figure 6, whereas SVED produce
few wasted data points (red markers), as shown in Figure 9. The green and purple markers
are shown to represent two separate and consecutive segments. The wasted data points
will not be used in the representation of B-splines; therefore, it will be taken as empty space
in the environment.

Figure 8. The relative position and orientation-based segmentation RPOS approach with red marks
representing wasted datapoints, which are not part of any segment in the scan. A total of 12 green
and purple segments were created by this approach. The green and purple colors are used to show
the data points of two consecutive segments.

Figure 10a shows the implementation of RPOS-LSBA methodology representing the
retrievability and compactness performance measures. In a noise-free scan taken as a
sample, 34 out of 180 data points were wasted, whereas in SVED, only 14 data points
were wasted, as shown in Figure 10b,c. The number of wasted data points increases
significantly in the case of noise scan data, as shown in Figure 6. The retrievability increased
significantly in BID-SVED-PDM and FALKO-SVED-PDM. Figure 10a also shows that
40 control points were used in the representation of 144 data points, whereas 43 control
points were used in the representation of 166 data points, as shown in Figure 10b. In noisy
scan data, a significantly larger value of η is achieved while using RPOS-LSBA, which
shows poor performance.
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Figure 9. The segmentation using varying Euclidean-distance-based cluster extraction (SVED) ap-
proach with red marks representing lesser wasted datapoints, which are not part of any segment in
the scan. The green and purple colors are used to show the data points of two consecutive segments.

Figure 11 shows the resultant map of the Intel data set created using the FALKO-
SVED-PDM approach. It not only accuratly approximated the straight but also the curved
features. The map contains the B-spline segments with approximation error Ecurve ≤ 0.01.

For all data sets, the graphical results of all performance measures are shown in
Figure 9 every time the datasets were scanned and all four metrics were computed. Af-
ter that, the outcomes are averaged across all scans.

In all four data sets, the state-of-the-art [3] approach results in two outstanding metrics:
retrievability and compactness; however [3], they have very poor execution times. The bar
graph demonstrates that our proposed approach’s performance significantly improved
in terms of execution times when compared with the state-of-the-art approach [3], as
shown in Figure 12d. In terms of retrievability and compactness, the proposed approach’s
performance is comparable with the state-of-the-art method and significantly better than
the RPOS-LSBA. However, the performance of FALKO-SVED-PDM and BID-SVED-PDM
in the approximation error (accuracy) is slightly low but within an acceptable range.

Table 1 lists the summarized outcomes of the three methods. The results reveal our
proposed approach’s superior performance in contrast to the RPOS-LSBA [10] in terms
of retrievability and compactness across all datasets, which is analogous to BID-SVED-
PDM [3]. However, in the three data sets, the computation time of the proposed method
has been reduced by more than 300% if we compare it with the execution time of the
state-of-the-art approach [3]. Although the proposed method’s approximation accuracy
was slightly low, the overall curve-fitting results are still good and are within the acceptable
range. All tests were performed on an Intel Core i7-750 CPU at 2.70 GHz 8 GB RAM with
an Ubuntu 16.04 LTS and ROS Kinetic operating system.
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Figure 10. The retrievability and compactness results of (a) RPOS-LSBA, (b) BID-SVED-PDM, and
(c) FALKO-SVED-PDM feature extraction approaches. White datapoints show wasted data, and
green points are the control points used to represent the B-splines in the scan.
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Figure 11. The map of a part of the Intel data set showing the curved and straight walls repre-
sented using FALKO-SVED-PDM. The map contains the B-spline segments with approximation error
Ecurve ≤ 0.01.

Figure 12. The retrievability (a), compactness (b), accuracy (c), and execution time (d) results of
complete data sets for all three approaches using all three methods. The vertical axis shows the
quantitative measure of the performance of all three methods, and the horizontal axis shows data
set types.
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Table 1. B-spline features assessement.

Data Set Methodology Γ η ∧ t (s)

Intel
RPOS-LSBA
BID-SVED-PDM
FALKO-SVED-PDM

68.4
86.4
86.4

0.284
0.187
0.192

0.0049
0.0163
0.0158

0.00028
0.00600
0.00190

MIT-csail
RPOS-LSBA
BID-SVED-PDM
FALKO-SVED-PDM

30.0
91.4
91.4

0.395
0.133
0.142

0.0045
0.0221
0.0207

0.00022
0.00557
0.00148

Fr-079
RPOS-LSBA
BID-SVED-PDM
FALKO-SVED-PDM

33.9
91.9
91.9

0.445
0.158
0.169

0.0041
0.0230
0.0214

0.00018
0.00590
0.00122

Fr-Clinic
(1000 Scan)

RPOS-LSBA
BID-SVED-PDM
FALKO-SVED-PDM

30.0
57.1
57.1

0.425
0.402
0.405

0.0157
0.0501
0.0501

0.00020
0.00329
0.00159

7. Conclusions

The properties of high-level features and low-level point features, respectively, were
used in this article to address the mapping and localization issues for the 2D range data.
We presented the classification of the B-spline feature extraction approaches based on their
techniques. We proposed a method for the fast and accurate mapping of the environment
based on high-level characteristics such as B-splines suited for both curved and straight-
line geometric shapes. We also proposed a benchmark time metric for the evaluation of
the proposed methodology and compared it with the state-of-the-art methods. It was
found that the performance of the proposed approach was comparable in retrievability
and compactness for all indoor and outdoor data sets compared with the state-of-the-art
approach [3] of B-spline feature extractions; however, this was obtained at the cost of a
slight reduction in the accuracy of the curves that was still satisfactory. The time taken
for the approximation of B-spline features was greatly reduced in the proposed method
compared with the state-of-the-art methodology. We finally presented algorithms for all
methods that were very effective when implementing the procedure. In future, we will
explore more efficient methods for B-spline approximations, test our method for B-spline
associations, and expand the application of our work for the 3D range sensors as well as
for the visual SLAM.
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Abbreviations

The following abbreviations are used in this manuscript:

RPOS Relative position- and orientation-based segmentation;
SVED Segmentation based on varying Euclidean distance;
BID B-spline-based interest point detector;
FALKO Fast adaptive laser keypoint orientation-invariant;
PDM Point distance minimization.
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Abstract: The identification of attention deficit hyperactivity disorder (ADHD) in children, which
is increasing every year worldwide, is very important for early diagnosis and treatment. However,
since ADHD is not a simple disease that can be diagnosed with a simple test, doctors require a
large period of time and substantial effort for accurate diagnosis and treatment. Currently, ADHD
classification studies using various datasets and machine learning or deep learning algorithms are
actively being conducted for the screening diagnosis of ADHD. However, there has been no study of
ADHD classification using only skeleton data. It was hypothesized that the main symptoms of ADHD,
such as distraction, hyperactivity, and impulsivity, could be differentiated through skeleton data.
Thus, we devised a game system for the screening and diagnosis of children’s ADHD and acquired
children’s skeleton data using five Azure Kinect units equipped with depth sensors, while the game
was being played. The game for screening diagnosis involves a robot first travelling on a specific path,
after which the child must remember the path the robot took and then follow it. The skeleton data
used in this study were divided into two categories: standby data, obtained when a child waits while
the robot demonstrates the path; and game data, obtained when a child plays the game. The acquired
data were classified using the RNN series of GRU, RNN, and LSTM algorithms; a bidirectional layer;
and a weighted cross-entropy loss function. Among these, an LSTM algorithm using a bidirectional
layer and a weighted cross-entropy loss function obtained a classification accuracy of 97.82%.

Keywords: ADHD; deep learning; screening; skeleton

1. Introduction

Attention deficit hyperactivity disorder (ADHD) is a disorder that occurs frequently in
childhood and refers to a condition in which attention is continuously insufficient, resulting
in distraction, hyperactivity, and impulsivity [1]. ADHD patients range from children to
adults, but the proportion of adolescents and children among ADHD patients accounts
for more than 80% of the total number of patients. In addition, the number of children
and adolescents with ADHD is increasing every year [2]. If ADHD is left untreated, its
symptoms can lead to difficulties throughout childhood [3], and children with ADHD
symptoms have a 70% chance of developing ADHD into adolescence. Furthermore, if the
condition remains untreated, it can persist into adulthood for more than 50% of children.
For these reasons, early diagnosis and treatment of ADHD are important [4,5].

ADHD is a psychiatric disease, not a fracture or cancer that can be diagnosed relatively
simply using MRI or CT scan results. Psychiatric diseases are not simple diseases that can
be diagnosed with simple tests or symptoms, and therefore, doctors require a large amount
of time and effort for diagnosis. Currently, the most commonly used method for diagnosis
of ADHD by doctors in hospitals involves aggregating the results of consultations with
child patients, consultations with their parents or teachers, and survey results such as the
child behavior checklist (CBCL) [6,7]. In addition, the results of audio–visual attention tests
such as the continuous performance test (CPT) are used as auxiliary data for the diagnosis
of ADHD [8,9]. However, it is not easy to make an accurate diagnosis only on the basis
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of the above results because surveys and counseling, which have the greatest influence
on diagnosis, involve a large number of subjective opinions of parents and the children’s
teachers [10]. In addition, since it takes a large amount of time to undertake counseling
and surveying, doctors require a great amount of effort to conduct ADHD diagnostic tests.
There is also a global shortage of trained specialists able to diagnose ADHD, which often
delays diagnosis.

As mentioned above, the existing method of diagnosing ADHD by synthesizing the
results of counseling and questionnaire results is based on the activity level of children
observed by parents or teachers, and thus subjective errors may occur depending on the ob-
server. In order to reduce errors due to subjective judgment, studies are underway to reduce
subjective errors by using accelerometers or simulators to objectively measure and judge
the activity level of children and to make more accurate diagnoses with objective results.

While various studies as above are being conducted, research on machine learning
and deep learning has accelerated, and we have started to apply machine learning and
deep learning and develop algorithms for classification in various fields in various medical
fields [11,12]. In particular, with the development of machine learning and deep learning
technologies, studies on the diagnosis of ADHD through artificial intelligence using a
variety of objective data have been actively conducted since 2010. Research is underway
for faster and more efficient ADHD diagnosis through machine learning and deep learning
using data acquired through accelerometers, simulators, and games, as well as biometric
data such as MRI, EEG, and ECG as input data. These research results are expected to
help doctors improve the accuracy of ADHD diagnosis and shorten the time taken for this
process. In particular, in the case of MRI, the Neuro Bureau ADHD-200 Dataset [13] was
released, and various research institutes are now actively conducting research to improve
the accuracy of ADHD diagnosis using this dataset by developing machine learning and
deep learning algorithms.

In this study, a game was developed for children to screen for ADHD in a child-friendly
environment such as a school without direct intervention from experts. While the children
were playing the game, the children’s skeleton data were acquired using five depth sensors.
Using the acquired skeleton data and deep learning algorithm, ADHD, ADHD-RISK, and
normal were screened with 97% accuracy. ADHD screening evaluation was conducted
using several simple models, and among them, it was verified that the LSTM-bidirectional
model had the highest accuracy. In particular, ADHD-RISK is a class that has not been
seen in other studies and is a taxon that is difficult for doctors to discriminate in actual
clinical practice. However, it is important to screen ADHD-RISK that has the potential to
develop into ADHD with high accuracy in actual ADHD clinical practice, and this system
is expected to be helpful in the future.

The detailed structure of this paper is as follows. The Introduction section introduces
the existing methods for screening ADHD. The Materials and Methods section introduces
the materials used in this study and the methods proposed. The Results section describes
the experimental results. The Discussion section describes the discussion in this study.
Finally, the Conclusion section presents the conclusion.

2. Related Work

Various data acquisition systems and artificial intelligence algorithms for the diagnosis
of ADHD are being developed. As a first example, various research teams have developed
deep learning or machine learning algorithms using the Neuro Bureau ADHD-200 Dataset
and have conducted studies on the diagnosis of ADHD. The ADHD-200 Dataset consists of
776 resting-state fMRI and structural MRI data [14–21].

The team of Peng et al. developed a CNN-based deep learning algorithm to obtain
an ADHD diagnosis accuracy of 72.9% [16]. In addition, the research team of Chen et al.
developed an SVM-based machine learning algorithm and acquired an ADHD diagnosis
accuracy of 88.1% [21]. Since a very good public dataset is publicly available for MRI-data-
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based ADHD diagnosis research, it is expected that many research teams will be able to
achieve higher accuracy research results through continuous algorithm development.

The second example comprises studies on the diagnosis of ADHD using EEG data [22–28].
The team of Tosun et al. obtained 92.2% ADHD classification accuracy using an LSTM-based
deep learning algorithm for 1088 ADHD patients and 1088 normal groups [25]. In addition,
the research team of Altinkaynak et al. obtained an accuracy of 91.3% using an MLP-based
machine learning algorithm using EEG data of 23 ADHD patients and 23 normal subjects [27].

A third related type of study involves the use of continuous performance test (CPT)
test results; this test is widely used for the diagnosis of ADHD in hospitals. CPT test results
are used as input data for ADHD classification research [29,30]. Using the CPT results of
213 ADHD patients and 245 normal subjects, the research team of Slobodin et al. obtained
an ADHD classification accuracy of 87% using a random-forest-based machine learning
algorithm [29].

The last related study was conducted by the research team of O’Mahony et al., who
classified ADHD using data measured during the TOVA test by having the children under
study wear two IMU sensors on their waist and ankle. A classification accuracy of 95.1%
was obtained using the SVM-based machine learning algorithm [31].

As mentioned above, various datasets and algorithms are being used and researched
for the classification of ADHD. However, studies on the classification of ADHD using
skeleton data have not yet been conducted. Skeleton data comprise the subject’s joint
movements. After giving children a specific task, we acquired skeleton data and RGB
images while the children were performing the task. After all data were acquired, four
psychiatrists divided the children into three categories on the basis of the RGB image
analysis results and the CBCL and K-ARS results: ADHD, ADHD-RISK, or normal. In
this study, it was assumed that there would be a significant difference in the behaviors of
children with ADHD, children with ADHD-RISK, and normal children while performing
tasks. Using the skeleton data measured on the basis of the above hypothesis as input
data, a deep-learning-based algorithm was used to classify the ADHD, ADHD-RISK, and
normal groups.

3. Materials and Methods

3.1. Description of the Game for the Screening Diagnosis of ADHD

In this study, an ADHD diagnosis game was used to acquire skeleton data for chil-
dren’s ADHD screening diagnosis.

The game consists of a total of five stages, comprising two practice games and three
main games. In the game, a robot first moves randomly on the nine numbered boards
marked on the floor, as shown in Figure 1a. At this time, the child memorizes the path
the robot takes while waiting in the wait zone, as shown in Figure 1b. After the robot has
completed moving on the path, the child has to follow the path the robot has taken after the
start signal given by the robot. While following the path, the child performs one more task.

As the child follows the path, the characters of the witch or the Wizard of Oz appear
on the screen. As shown in Figure 2a, when a witch appears, the children sit down, and
when a character appears, the children wave their hands, as shown in Figure 2b. The higher
the level, the more complex the path. For more information about the game, please see
Ref. [32].
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Figure 1. A game for the diagnosis of ADHD. (a) The robot moves on the numbered board first. (b) A
child waiting in the waiting zone for the robot to take a certain path remembers the path taken by the
robot and follows it.

Figure 2. Children perform additional tasks while following the robot’s path. (a) When the witch
appears on the floor, the child sits down. (b) When the character appears, the child waves both hands
over their head.

3.2. Skeleton Capture System Using Azure Kinect

As shown in Figure 3, five Azure Kinect (Microsoft Corp., Redmond, WA, USA) units
from Microsoft and a beam projector (HU85LA) from LG were used to acquire the children’s
skeleton data while the children were playing the game. Moreover, Robocare’s robot (Silbot)
was used to progress the game and follow the path. In this study, the human tracking and
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skeleton merge algorithm using Azure Kinect was adopted as in a previous study by this
research team (please refer to [33] for details).

 

Figure 3. Game setup for children, consisting of five Azure Kinect units to acquire the children’s
skeleton data, a beam projector to project the game screen, and a robot to help the game progress.

In the sensor system, a calibration procedure was performed to match the coordinate
system of each sensor. For this, trajectory data consisting of 3D centroid coordinates of
a sphere object with a specific color were used. The trajectory data recognized by each
subordinate sensor were used to calculate the rotation matrix using the trajectory data
extracted by the master sensor. In addition, the coordinate system of the entire system
calibrated with the coordinate system of the master sensor was converted to the world
coordinate system set by the user using the Aruco marker. After that, the skeleton data of
the target in the capturing area can be extracted from the depth image using Kinect Azure
Body Tracking SDK. The skeleton data extracted from each sensor are merged with the
skeleton data extracted from the other sensors that recognize objects from different angles
to overcome the occlusion problem that occurs in a single sensor. The merging procedure
is performed for each joint and includes a method of filtering the noise candidate group
using DBSCAN based on the location information of each joint. As a result, the system was
able to extract the skeleton data of the object in the capturing area of 3 m × 5 m from the
world coordinate system set by the user by using five sensors installed at a height of 2 m.
Finally, through the above system, the movement of each waiting stage and game stage
acquired continuous movement at 15 frames per second.

The beam projector was used to show the path for the main game and the witch
or character corresponding to the additional task. Finally, the robot was responsible for
explaining and demonstrating the game to the children.

3.3. Data Acquisition Methods and Target Candidates

For this study, elementary school students from first to sixth grade living in Seoul,
South Korea, were recruited. Data were acquired from October 2019 to December 2021
from a total of three elementary schools and one research center. All children participating
in the experiment were given parental consent and went through an ethical review process.

The children’s skeleton data and RGB image data were saved while the children played
the game. The data were largely divided into standby data, which were acquired while the
robot explained the game and demonstrated the path the child should follow, and game
data, which were acquired while the child played the game. All the children played the
game in five stages. Therefore, for each stage, two pieces of data were generated during
standby and during the game, resulting in a total of 10 pieces of data. Additionally, the

105



Sensors 2023, 23, 246

standby data acquired while the robot explained the whole game before the first game was
included. In conclusion, each child had six standby data points and five game data points,
totaling 11 data points. A total of 596 children participated in this study. By synthesizing
the CBCL and K-ARS results performed before the game for this study and the RGB image
viewing results among the obtained children’s data, four clinicians divided them into the
ADHD, ADHD-RISK, and normal groups.

As shown in Table 1, as a result of classification, 66 ADHD group children, 181 ADHD-
RISK group children, and 349 normal group children were classified.

Table 1. Number of children by ADHD class of children participating in this study.

Classes Number of Participants

ADHD 66
ADHD-RISK 181

Normal 349
Total 596

3.4. Deep Learning Model Using GRU, RNN, and LSTM for ADHD Classification

The RNN-based deep learning algorithm was used to classify the ADHD, ADHD-
RISK, and normal groups. The size of the data for each level was different because the
standby time and the completion time of the game were different for each level. Therefore,
the longest frame among all children’s step-by-step data was defined as the reference size.
If each data length was smaller than the standard size, the remaining frames were set to
zero. The Azure Kinect devices used in this study can provide data for a total of 32 joints.
However, in this study, a total of 18 joints were used, except for the low-accuracy and
unstable end point joints, as shown in Figure 4 [19].

Figure 4. Joints used to classify ADHD classes in children.
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A total of six standby skeleton data points and a total of five game data points were
used as input data. As shown in Figure 5, each sequential data point passed through
the RNN layer. Each feature extracted after passing through the RNN was concatenated.
Finally, they passed through the classification layer and children were finally classified as
ADHD, ADHD-RISK, or normal. The RNN models used were GRU, RNN, and LSTM.

 

Figure 5. Description of an RNN-based model designed to classify children’s ADHD class.

Moreover, as shown in Figure 6, we experimented by adding a bidirectional layer to
each model to improve performance. The final output y was obtained by concatenating the
hidden states →

h
and ←

h
of the t cell of the forward RNN-based model and the t−1 cell of

the backward RNN-based model. ReLU was used as the activation function. In addition,
as shown in Equation (1), a weighted cross-entropy loss function was used among the loss
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functions to prevent overfitting and to improve performance because the number of data
points for each class was different.

Weighted Cross Entropy Loss = −
C

∑
i=1

witi log(pi) (1)

Figure 6. Bidirectional layer description for improving the performance of the RNN-based ADHD
classification model.

In formula (1), ti is the truth label, pi is the Softmax probability for the ith class, and
wi represents the weight of the loss function. The weight is given as the inverse of the
rate of input data. In addition, this experiment was verified by leave-one-person-out
cross-validation.

4. Results

In this study, classification of ADHD, ADHD-RISK, and normal groups was performed
using the RNN model using skeleton data as input data. Three types of RNN models were
used: GRU, RNN, and LSTM, and each model used a bidirectional layer and a weighted
loss function to improve performance and prevent overfitting. Moreover, in this paper,
accuracy, precision, recall, and the F1-score were used to evaluate the model. The formula
for each parameter is as shown in the following Formulas (2)–(5):

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 =
2 × Precision × Recall

Precision + Recall
(5)

In the above formulas, TP (true positive) is the result of predicting an answer that is
actually true as true; FP (false positive) is the result of predicting an answer that is actually
false as true; FN (false negative) is the result of predicting an answer that is actually true as
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false; and finally, TN (true negative) is the result of predicting an answer that is actually
false as false.

As can be seen in Table 2, GRU, RNN, and LSTM showed 94.04%, 88.35%, and 88.35%
accuracy, respectively. However, it was confirmed that the F1-score of the ADHD and
ADHD-RISK classes did not exceed 90 and was low.

Table 2. Comparison of results of three RNN-based ADHD classification models using skeleton data
as input data.

GRU
Label Accuracy Precision Recall F1-Score

Normal

94.04

0.93 1 0.96

ADHD-RISK 1 0.70 0.82

ADHD 0.96 0.82 0.89

RNN
Label Accuracy Precision Recall F1-Score

Normal

88.35

0.87 1 0.93

ADHD-RISK 1 0.54 0.70

ADHD 0.89 0.48 0.62

LSTM
Label Accuracy Precision Recall F1-Score

Normal

88.35

0.86 1 0.92

ADHD-RISK 1 0.63 0.77

ADHD 1 0.34 0.51

Thus, in order to improve the performance, we used a bidirectional layer and a
weighted loss function in the above model.

As a result, as shown in Table 3, the accuracy of each model slightly increased to 96.81%,
96.81%, and 97.82% for GRU, RNN, and LSTM, respectively. The accuracy increased slightly,
but the F1-score increased significantly. Among the F1-scores of each model, the ADHD and
ADHD-RISK classes scored 51~89% before using the bidirectional layer and weighted loss
function but these scores increased significantly to 87~100% after using the bidirectional
layer and weighted loss function. In particular, the ADHD class of the GRU-bidirectional
weighted loss function recorded an F1-score of 100%.

Table 3. Using skeleton data as input data and comparing the results of adding a bidirectional layer
and a weighted loss function to three RNN-based ADHD classification models.

GRU-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score

Normal

96.81

0.95 1 0.97

ADHD-RISK 1 0.89 0.94

ADHD 1 1 1

RNN-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score

Normal

96.81

0.98 0.99 0.99

ADHD-RISK 0.99 0.90 0.94

ADHD 0.83 1 0.91

LSTM-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score

Normal

97.82

0.97 1 0.98

ADHD-RISK 1 0.93 0.96

ADHD 0.92 0.98 0.95
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After confirming the above results, we conducted one additional experiment. The
skeleton data used in this study were divided into two main categories: the skeleton data
of children waiting while the robot explained and demonstrated the game before the game
started, and skeleton data obtained while the children directly played the game. We verified
which of the above two large categories of data were helpful for the classification of ADHD.
This test used models that applied a bidirectional layer and a weighted loss function to
each RNN model on the basis of the previous experiment. Table 4 below shows the results
of using only the skeleton data during standby and the game.

Table 4. ADHD class classification results when using the skeleton data acquired during waiting and
skeleton data acquired during the game as input data.

Standby Skeleton Game Skeleton

GRU-Bidirectional with Weighted Loss GRU-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score Label Accuracy Precision Recall F1-Score

Normal

95.57

0.96 0.98 0.97 Normal

95.39

0.95 1 0.97

ADHD-RISK 0.97 0.78 0.86 ADHD-RISK 1 0.69 0.81

ADHD 0.87 0.97 0.91 ADHD 0.89 1 0.94

RNN-Bidirectional with Weighted Loss RNN-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score Label Accuracy Precision Recall F1-Score

Normal

96.14

0.95 0.99 0.97 Normal

95.12

0.98 1 0.99

ADHD-RISK 1 0.90 0.94 ADHD-RISK 1 0.67 0.80

ADHD 0.89 0.93 0.91 ADHD 0.81 1 0.89

LSTM-Bidirectional with Weighted Loss LSTM-Bidirectional with Weighted Loss
Label Accuracy Precision Recall F1-Score Label Accuracy Precision Recall F1-Score

Normal

94.85

0.94 1 0.97 Normal

94.85

0.95 1 0.97

ADHD-RISK 0.95 0.70 0.81 ADHD-RISK 1 0.65 0.79

ADHD 0.94 0.91 0.92 ADHD 0.83 1 0.90

When only the skeleton data were used during standby, the RNN model obtained
the highest accuracy with 96.14%, and when only the skeleton data were used during the
game, the GRU model obtained the highest accuracy with 95.39%. The accuracy was similar
for standby data and game data, but there was a significant difference in the F1-scores
of ADHD and ADHD-RISK. We think that it is more important to screen ADHD-RISK or
ADHD than to screen children in the normal group in the ADHD screening diagnosis. This
is because, if a child with ADHD is screened as normal, an opportunity for early treatment
may be missed [18]. When only waiting data were used, the F1-Score of ADHD-RISK was
higher by at least 5% to maximum 14% for each model. In addition, in the case of ADHD,
the F1-Score of the waiting data was 2% higher, except for the GRU model. On the basis of
the above results, it was judged that the skeleton data during waiting were more helpful
in classifying ADHD and ADHD-RISK. Since the validation method of the model used in
this study is leave-one-out cross-validation, in order to obtain the standard deviation of the
model result, it is necessary to check the results of learning several times for each model.
The standard deviation of accuracy after learning five times for each model is 0.17~0.67%.

5. Discussion

We classified ADHD, ADHD-RISK, and normal groups using only the skeleton data of
children acquired through games. Currently, there are no studies using skeleton data among
studies for the screening diagnosis of children’s ADHD. All children who participated in
the experiment for this study performed the same task in the same limited environment.
The advantage of the children’s data collected under these conditions was that they were
objective and that high-quality data could be acquired in a much shorter time than the
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method of acquiring data by wearing an IMU device for a long period of time. This study
is expected to serve as a cornerstone for future research on the screening and diagnosis
of ADHD in children using skeleton data. Since the data used in this study were time
series data, they were compared using an RNN-type model, and as a result, an accuracy of
97.82% was obtained. High accuracy was verified in this study, even when compared with
the results of other studies that classified ADHD using various data. The model with the
highest accuracy was an LSTM model with a bidirectional layer added, and the confusion
matrix obtained through the model is shown in Figure 7 below.

Figure 7. The confusion matrix of the GRU, RNN, and LSTM model with the best classification results.

Figure 7 is the confusion matrix of the best results obtained using the GRU, RNN, and
LSTM models with bidirectional layers added and the entire skeleton data, respectively. All
models correctly selected the normal group and the ADHD group. However, differences in
overall accuracy occurred due to differences in ADHD-RISK screening results. In particular,
the LSTM model classified all 349 out of 349 people into the normal group, and 65 out
of 66 people into the ADHD group. However, in the case of ADHD-RISK, 7 out of a
total of 181 ADHD-RISK patients were classified into the normal group, and 5 people
were classified into the ADHD group. Classifying the ADHD-RISK group into the ADHD
group is not a major problem but classifying the ADHD-RISK group as normal is to be
overcome through future research on the performance improvement of the model. The
diagnosis of ADHD is actually conducted in hospitals with various indicators. ADHD is
not a disease that can be objectively diagnosed through the results of MRI or CT scans
such as with cancer, but instead requires a mental evaluation. For this reason, this study
was established, and the deep learning algorithm used in this study and the skeleton data
obtained through the game comprised a system created to selectively diagnose ADHD in
order to help doctors prior to diagnosis. The goal of this study was to enable children to
easily perform screening tests through games, not only in schools but also in educational
centers, before receiving an accurate diagnosis by a doctor using this system. Through this
system, it is possible to judge the situation of children on the basis of the children’s ADHD
screening results, to recommend hospital treatment to children with ADHD, and to guide
parents and teachers in charge of ADHD-RISK children to monitor those children.

This study used a restricted game environment to observe children’s behavior. During
the game, the children’s skeleton data were acquired. ADHD, ADHD-RISK, and normal
were classified using the RNN-based deep learning algorithm using the acquired children’s
skeleton data. ADHD-RISK was used as a new class in this paper. When doctors diagnose
ADHD and normal, the difference between the two taxa is clear, but ADHD-RISK, which
lies on the border between ADHD and normal, is difficult to classify. In fact, by classifying
ADHD-RISK, which is more needed by doctors in clinical practice, we have developed a
system that can help doctors screen for ADHD in future clinical practice.

6. Conclusions

In this study, we classified ADHD, ADHD-RISK, and normality by using children’s
skeleton data acquired through a game for the screening and diagnosis of children’s ADHD.

111



Sensors 2023, 23, 246

The performance of various RNN models was compared, and among them, the LSTM-
bidirectional model showed the best results. In the future, we plan to conduct research
on performance improvement using various models such as the GCN model optimized
for skeleton data. We also intend to analyze which joints affect the model at any point in
time using the attention layer. On the basis of the above results, we would like to simplify
the skeleton data acquisition system used in this study by utilizing a different number of
existing sensors and proposing a new game system that can focus on the major joints in
ADHD classification.
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Abstract: Robot-aided cleaning auditing is pioneering research that uses autonomous robots to assess
a region’s cleanliness level by analyzing the dirt samples collected from various locations. Since the
dirt sample gathering process is more challenging, adapting a coverage planning strategy from a
similar domain for cleaning is non-viable. Alternatively, a path planning approach to gathering dirt
samples selectively at locations with a high likelihood of dirt accumulation is more feasible. This
work presents a first-of-its-kind dirt sample gathering strategy for the cleaning auditing robots by
combining the geometrical feature extraction and swarm algorithms. This combined approach gener-
ates an efficient optimal path covering all the identified dirt locations for efficient cleaning auditing.
Besides being the foundational effort for cleaning audit, a path planning approach considering the
geometric signatures that contribute to the dirt accumulation of a region has not been device so
far. The proposed approach is validated systematically through experiment trials. The geometrical
feature extraction-based dirt location identification method successfully identified dirt accumulated
locations in our post-cleaning analysis as part of the experiment trials. The path generation strategies
are validated in a real-world environment using an in-house developed cleaning auditing robot
BELUGA. From the experiments conducted, the ant colony optimization algorithm generated the
best cleaning auditing path with less travel distance, exploration time, and energy usage.

Keywords: audit robot; geometrical feature; cleaning auditing; swarm algorithms

1. Introduction

Cleanliness is one of the inevitable factors that span from an individual’s living space to
the growth index of developing and developed nations. The professional cleaning industry
is a steeply growing field, valued at over $46 Billion U.S Dollars in 2020 forecast to grow
10% by the end of 2026 [1]. Amidst coping with pandemics like COVID-19, the demand
for cleaning services has increased steeply in recent years [2]. For the past decade, we
can observe a successful usage of leading-edge technologies, including robots for efficient
cleaning in both domestic and professional cleaning domains [3–6]. The necessity for
high-quality performance, efficiency, and favorable factors from the industry has paved the
way for the successful application of robotics technology in the field of automated cleaning.

A vast volume of research has been reported on enhancing the quality of robot-aided
cleaning for the past five years. Most reported research focuses on complete coverage
planning, energy-aware cleaning, multi-robot cooperation, etc. For instance, a scalable
approach for full coverage planning for cleaning robots has been reported [7]. Furthermore,
a sector-based online complete coverage planning to bridge the shortcomings of cleaning
robots with limited sensing and computation resource is proposed by Lee et al. [8]. The
problem of ensuring cleaning efficiency is addressed from a different perspective by intro-
ducing optimal footprint for robots alongside the conventional complete coverage path
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planning approaches [9]. The work mentioned above is validated on a vertical surface
cleaning robot by performing an effective hydro-blasting for ship-hull cleaning.

Noh et al. [10] presented an energy-aware cleaning path to enhance the cleaning
efficiency using deep reinforcement learning-based approach for energy-aware cleaning.
Besides the coverage planning, multi-robot collaboration is another area widely utilized for
improving the cleaning quality. The work mentioned in [11] proposed an online hetero-
geneous multi-robot collaboration system for cleaning robots. The work discussed above
highlights a scalable approach for robots with limited sensing capabilities to maximize
cleaning performance. The concept of a multi-robot system for cleaning is also explored in
the case of oil spill cleaning [12]. The system mentioned above proposes an aerial multi-
robot system for an optimal strategy for the contaminated area with minimal wastage of
dispersants. The efforts towards improving automated cleaning are centered on improving
the efficiency of cleaning robots or machines rather than analyzing the cleaning quality
it delivers. Even though the technical advancements in the field of automated cleaning
are significant, the analysis of cleaning quality provided by the cleaning robots remains as
naive as manual inspection.

Auditing the cleanliness of a region is an important factor to be considered in every clean-
ing and maintenance task. The attempts to audit the cleanliness are reported in the field of
food processing industries and hospitals. For example, the work presented by Giske et al. [13]
explores a comparative study between the quality of cleaning delivered by robots and manual
cleaning methods. As mentioned earlier, the research discusses validating the effectiveness of
cleaning using micro-biological analysis. An Adenosine Triphosphate (ATP) bioluminescence
technique is another method used to assess the quality of cleaning by estimating the microbial
colony presence on the surface of interest. Lewis et al. presented the usage of ATP biolumines-
cence to benchmark the quality of cleanliness [14]. In the work mentioned above, the authors
benchmarked the quality of cleanliness for hospitals in relative light units (RLU). Similarly,
Asgharian et al. presented the systematic procedures and guidelines for cleaning quality analysis
in the pharmaceutical industry [15].

Similarly, a cleaning assessment report generation based on surface swabbing followed
by a laboratory analysis as detailed in [16]. Even though the cleaning quality assessment
is regarded as an essential practice in every domain, effort towards establishing a quality
assessment is reported in a few areas and is limited to hospitals, pharmaceuticals, and food
processing industries [17,18]. Besides, the current methods for micro-biological analysis
are laborious and not scalable for cleaning auditing for built infrastructure and domestic
cleaning. The primary effort to establish a scalable cleaning auditing is reported in [19]
which is the robot-aided cleaning auditing framework using a sample auditing sensor.
The sample audit sensor performs adhesive dust-lifting followed by visual analysis to
provide a sample audit score for a sample region of 2 cm × 2 cm. The framework uses
repeated sample auditing for a vast area using an audit robot that carries the sample
auditing sensor as the functional payload. Using the approach mentioned above, the levels
of cleanliness for a region are estimated by combining the result of all the sample audits
performed in the area of operation. Besides computing the overall auditing score for
a region, the work mentioned above provides an empirical estimation of the quality of
cleaning. The autonomous robot-aided cleaning auditing can be a potential solution for
performing cleanliness inspection effectively without human interventions and laboratory-
oriented procedures compared to the existing cleaning quality analysis. A significant
challenge in the development of robot-aided cleaning auditing is the formulation of an
efficient exploration strategy for inspection. The work mentioned in [19] used a frontier
exploration strategy for the robot to explore its area of operation and periodic pattern to
determine the region for auditing. However, in work mentioned above, frontier exploration
does not guarantee the robot to explore dirt-accumulated areas. The shortcomings of the
frontier-exploration-based auditing strategy and sampling decision are improved using
reinforcement learning-based exploration [20]. In the research mentioned above, the audit
robot uses its experience learned from the modeled environment for exploration and
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making sampling decisions. This work presents a first-of-its-kind path planning approach
dedicated to cleaning auditing robots. The autonomous mobile robots that perform similar
tasks to the auditing, especially floor cleaning and ground patrolling robots, use the
complete coverage planning strategy using an optimization technique to yield the best
path [21,22]. However, adopting a similar complete coverage planning for audit robots is
not effective because:

• for a large environment, collecting samples uniformly across the complete region are
not time-efficient

• the dirt accumulation pattern is chaotic and often clustered in regions left unattended
by cleaning robots.

• lack of an effective method that determines from where to gather dirt samples for an
effective cleaning auditing.

This research work bridges the challenges mentioned above by proposing a novel
path planning strategy that is driven by geometric signatures of the environment for
cleaning auditing robots. To the best of the author’s knowledge, a path-planning approach
considering geometrical signatures of the environment has not been explored in the domain
of cleaning robots or cleaning audit robots so far. Due to less accessibility and the inherent
navigation behavior of cleaning robots to avoid obstacles, the walls and corners often
become the site for possible dirt accumulation compared to the other regions for a regularly
cleaned area. Therefore, a geometrical feature extraction framework is devised to identify
the probable dirt accumulation region from a 2D map. Swarm algorithms are exploited to
plan an efficient way to cover the sample locations.

The general objective of this research work is subdivided into three:

1. formulate the dirt location identification method by extracting the geometrical signa-
tures from the environment

2. devise an efficient path that connects all the identified dirt location (i.e., sample
locations) by minimizing the energy cost

3. validate the geometry-based dirt location identification in a real environment after
repeated cleaning trials

4. experimentally validate the optimal path generated by the proposed method in a real
environment using an in-house developed cleaning audit robot

The rest of the article is structured as the Section 2 provides the background study
conducted for devising the proposed approach. This is followed by Section 3 that presents
a bird’s eye view of the proposed approach. The detailed description of path generation
strategy is provided in Sections 4 and 5. The Section 6 provides a detailed description of
the conducted validation trials, followed by the Section 7.

2. Related Works

Two significant aspects of the proposed path planning strategy are (1) identification
of probable dirt locations in a 2D map using geometrical features and (2) generating an
optimal path through probable dirt locations using swarm algorithms.

2.1. Geometrical Feature Extraction

Feature extraction and description is a key element in perception for autonomous
robots. Moreover, a geometrical feature like line segments, curvature, and corners is used
over the conventional feature extraction techniques like SIFT [23], ORB [24], AKAZE, [25]
etc. A SLAM algorithm that uses descriptors for line segments is reported in [26]. Similarly,
the curvature property of road lane is used as a key feature for pose estimation for au-
tonomous vehicles is reported in [27]. Yan et al. used corner features for two-dimensional
SLAM [28]. Besides, the geometrical feature extraction methods are also widely used for
hand gesture recognition [29], finger-knuckle-print verification [30], etc. Among the applica-
tions of geometrical feature extraction, the classical method for the extraction of boundaries
in a 2D matrix is canny edge detection [31]. Another popular approach is estimating
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the boundaries based on Hough transformation for the line geometry detection [32–34].
The popular approach for corner detection is the Harris Corner detector [35]. Similarly,
a robust Anisotropic Directional Derivative (ANDD) filter-based corner detection is another
classic method for corner extraction [36]. Chord-to-Point Distance Accumulation (CPDA)
is another method reported to have low localization error and high repeatability [37]. Sim-
ilarly, machine learning-based detectors have known for accuracy and repeatability in
detecting corners from a given 2D image [38,39].

2.2. Optimal Path Generation

Swarm algorithms and evolutionary algorithms are widely adopted for solving the
optimal path planning algorithms with multiple constraints [40–44]. Whale optimization
(WO) based path planning for an underwater robot is mentioned in [45], where the opti-
mization techniques are used for generating a path with safe and minimal fuel consumption.
An improved sparrow search algorithm for path-planning for a mobile robot is reported
in [46]. Furthermore, hybrid Quantum-behaved Particle Swarm Optimization (HQPSO),
a variant of classical PSO, has been used for path generation for an unmanned underwater
vehicle (UUV) [47]. Modified ant-colony optimization (ACO) is used for path planning for
AGV-based parking system is detailed in [48].

3. System Overview

3.1. Cleaning Auditing Overview

The robot-aided cleaning auditing is a three-step procedure detailed in [19]. For com-
pleteness, we briefly explain the process of the robot-aided cleaning auditing framework.
Figure 1d shows the overview of robot-aided cleaning auditing. The first step in robot-
aided cleaning auditing is called sample auditing, where the cleanliness of a sample area
is determined. The second step is space auditing, where repeated sample auditing for a
larger area is performed. The space auditing is facilitated by an in-house developed audit
robot called BELUGA, facilitated by exploration algorithms to achieve efficient sample
auditing in different locations. The BELUGA robot is a differential drive mobile robot
equipped with sensors for navigation and perception (shown in Figure 1c). The robot maps
a given area and does localization within the map using Adaptive Monte Carlo Localization
(AMCL) method. The perception, localization, and control algorithm are executed using
an onboard embedded computer. The key payload carried by the BELUGA robot is the
sample auditing sensor (shown in Figure 1a). The sensor consists of adhesive tape for
dust-lifting and a digital microscope for analyzing the adhesive tape surface. The field of
view of the digital microscope has an active light source to maintain constant ambient light
throughout the operation such that variation in light intensity does not affect the sensor
operation. Figure 1b shows the dust extracted by the sample audit sensor viewed by its
built-in digital microscope. The sensor uses the structural similarity index(SSIM) of the
tape surface images before and after dust-lifting to estimate the magnitude of dirtiness of
the surface [19]. The sensor reports the magnitude of cleanliness as a sample audit score to
evaluate the overall cleanliness of the sample region (sample auditing). The comprehensive
cleanliness estimation is done by conducting repeated sample auditing for a larger area
with the help of the BELUGA robot (space auditing). With the exploration strategies,
the robot goes to specific locations to perform sample auditing.
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Figure 1. The dust extracted by the sample audit sensor (a), the dust particles viewed by the
microscope of the sample audit sensor (b), the BELUGA audit robot equipped with sample audit
sensor (c), and the overview of robot-aided cleaning auditing framework [19] (d).

3.2. Path Generation Overview

A bird’s eye view of the proposed path planning framework is detailed in this sec-
tion. Figure 2 shows the overall architecture of the proposed path generation frame-
work. The process pipeline has three components—geometry extraction, sample selection,
and path generation. The input to the system is the 2D occupancy grid of the environment,
which is generated by the simultaneous localization and mapping (SLAM), a.k.a mapping
method. From the 2D occupancy grid, the locations for sampling are selected based on
the environment’s geometrical signatures that contribute to the dirt accumulation. The ge-
ometry extraction and sample selection procedures achieve the process mentioned above
for dirt location identification. The geometry extraction procedure comprises boundary
extraction, corner extraction, and free-space extraction from the given occupancy grid.
The sample selection procedure selects the sample locations in the nearest proximity to
boundary maps and corner maps. The general sample points are a set of locations in the
occupancy grid obtained by uniform grid sampling. The sample locations are identified
by combining the boundary samples, corner samples, and random samples. The random
samples are a few random locations in the free space. A detailed information regarding the
dirt location identification strategy mentioned above is presented in Section 4.
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Figure 2. The overview of the proposed path generation strategy for dirt sample gathering using
geometrical signatures extracted from the 2D map of the environment combined with an optimal
path generator.

Once the sample locations are identified, the robot can visit the locations in any order
to do sampling and auditing. However, choosing the optimal way to visit the locations and
perform the sample auditing is important. The optimal path generator in the proposed
framework takes in the locations identified after the sample selection procedure and
generates an efficient path with minimum time and energy. With the help of navigation
algorithms, [49], the robot follows the path and performs auditing for a given area.

4. Dirt Location Identification

This section presents the identification of probable dirt locations (sample audit locations)
from a given occupancy grid. Considering the natural tendency of dirt accumulation nearer
to the corners and wall, the probable dirt locations are identified by selecting sample points
in close proximity to walls and corners. To identify the dirt locations for the robot to perform
sample auditing, the entire occupancy grid is evenly sampled with a resolution proportional to
the robot footprint and locations corresponding to the samples are regarded as general sample
locations. We defined the general sample locations as the set of locations that are equally spaced
in the free-space region in an occupancy grid Figure 3c. While generating the general sample
locations, the occupied cells and unknown cells in the grid are discarded. The sample audit
locations are a subset of the general sample location that lies closer to the corners and boundaries
in the occupancy grid. Hence, the main task involved in sample location identification or the
probable dirt location is to extract the corners and boundaries from the occupancy grid. Since
the occupancy grid a.k.a map is represented as a two-dimensional 8-bit matrix, where each
element represent the three states of occupancy (occupied, free and unknown). Hence the
conventional image processing algorithms can be applied over an occupancy grid. Figure 3a
shows the representation of an occupancy grid.
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Figure 3. The representation of occupancy grid (a), corner location extraction (b), general sample
locations after uniform sampling (c), and boundary location extraction (d).

4.1. Boundary Sample Extraction

The Figure 3d illustrates the critical operations involved in the boundary extraction
procedure. For boundary extraction, we performed the following methods:

1. General sample location identification: The general sample locations are obtained by
sampling the free space in a uniform fashion. The general sample location Pgeneral is
obtained by grid sampling the occupancy grid Si,j in intervals Δu and Δv along rows
and columns.

2. Occupancy grid thresholding: Each cell in an occupancy grid shows the probability of
occupancy. A two state binary map B has been generated by applying a thresolding
such that B(i, j) = 1 if S(i, j) < Tmax else B(i, j) = 0, where S(i, j) is the occupancy
grid and Tmax is the maximum occupancy threshold.

3. Boundary extraction: On the binary map, we used Zhang-Suen thinning algorithm [50]
for extracting the contours. However, the contour extraction results in detecting all
closed contours in the occupancy grid, including the undesirable contours that form
over the obstacles. The largest contour Clarge from all the set of contours Ci is regarded
as the boundary region.

4. Selection of boundary location: The contour corresponding to the boundary region
Clarge is sampled in a regular interval to obtain a set of points Bi,j that lies on the
contour. The boundary locations Lboundary are selected from the general sample S(i, j)
points that lie in the distance less than Rb.

The location Lboundary is the sample location that lies closer to the walls such that per-
forming sample auditing at Lboundary will result in analyzing dirt accumulations contributed
by the walls in a region. The distance Rb decides how many samples closer to the walls
have to be considered for sample auditing.

4.2. Corner Sample Extraction

The corner Sample extraction follows a similar approach to boundary extraction.

1. The general sample location Pgeneral is identified by performing uniform sampling of
occupancy grid Si,j.
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2. Corner extraction: The machine learning-based fast corner extraction algorithm [39]
is used for identifying the corner locations.

3. Selection of corner location: Similar to the boundary location identification, the corner
locations Lcorner are selected from the general sample S(i, j) points that lie in the
distance less than Rc.

The distance Rc decides how many samples closer to the sharp corners have to be
considered for sample auditing.

Random Samples

Few random locations Lrandom are selected from the general sample location Pgeneral

for spanning auditing to the complete area. However, the random locations are smaller
in number, and it is selected based on the size of the occupancy grid. The locations for
auditing are a combination of corner locations, boundary locations, and random locations.
The Equation (1) represented the set of locations for auditing.

S = Lcorner ∪ Lboundary ∪ Lrandom (1)

where Lcorner, Lboundary, and Lrandom represents corner locations, boundary locations and
random locations respectively.

5. Optimal Path Planing

After determining the probable dirt locations, the robot has to visit each location once
and perform the auditing. Here, the determined probable dirt locations (Pi) are considered
as the waypoints of the robot’s navigation path. The robot is assumed to be initialized at
a designated starting location in the workspace (denoted as P1). Two example scenarios
are depicted in Figure 4, where there is N number of locations to be visited, including the
starting point. Similarly, there can be many sequences of waypoints where the robot can
visit all the locations at one time.

Figure 4. Examples for waypoint sequences that can be followed by the robot for auditing process.

The robot must determine an optimum sequence of these waypoints that minimizes
the energy usage for an efficient auditing process, as the energy-efficient coverage is vital for
a robot deployed in maintenance and inspection domains [51,52]. The optimum sequence
of waypoints is defined as {Wk} such that k = 1 to N, where N is the number of waypoints,
including the starting position. The energy used by the robot for navigation is proportional
to the distance traveled by the robot in the event of a level workspace. The energy usage of
navigating from kth waypoint to lth waypoint, Ek,l can be estimated as (2) where D(Wi, Wj)
represents the navigation distance between kth and lth waypoints, and M is a proportional
constant. The navigation distance D(Wi, Wj) is estimated considering the A∗ algorithm for
a collision-free path between Wi to Wj.

Ek,l = MD(Wk, Wl) where k �= l (2)
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The total energy usage of the robot, E, for accomplishing the navigation for auditing
can be formulated as in (3).

E =
N−1

∑
k=1

Ek,k+1 (3)

The energy usage of the robot for navigation between all the pairs of the waypoints
could be estimated, and the total energy requirement could be estimated by considering
all the possible sequences to find the sequence that results in the lowest energy usage.
However, the number of possible pairs of waypoints becomes N(N − 1)/2. There exist
(N − 1)! combinations for joining these waypoint pairs. Thus, determining the path of
lowest energy usage through evaluating the energy usage for all the possible paths becomes
inefficient and complex when N is high. Moreover, this problem is a no polynomial-time
known solution problem (NP hard problem).

Swarm optimization algorithms are effective techniques for finding a proper solution
for this kind of problem [53,54]. Two versatile swarm algorithms, Ant Colony Optimization
(ACO) [55] and Particle Swarm Optimization (PSO) [56] are used here to find the optimal
sequence of waypoints considering the minimization of the cost function given in (3). These
two optimization techniques are selected since they are well known for the convergence to
the global optima in similar problems.

The path generation problem considered here is analogous to the classical Travelling
Salesman Problem (TSP). However, in most of the off the shelf tools for classical TSP, it is
assumed that there are no obstacles in between the nodes and hence Euclidean distances
between the nodes are considered for the optimization. In contrast, for the cleaning auditing, the
robot has to operate in obstacle-cluttered environments where the robot must find a collision-free
path between two nodes. The A∗ algorithm is used to find the collision-free path between two
nodes. The distance of the A∗ path is used as the distance between two nodes.

5.1. Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) is inspired by the social behavior of birds flock
or fish school. The cooperation of individuals in a swarm based on individual and group
knowledge toward finding a goal is utilized in this technique. The flow of the PSO algorithm
is given in Figure 5. Here, each individual is considered as a particle with a position and
a moving velocity. Each particle is randomly initialized with a velocity and a position at
the start. Then, the algorithm iteratively attempts to find the optimal solution. The fitness
of each particle is evaluated for the current solution, and the global and the local best
positions are updated as per the evaluated finesses. Then, the new velocity and position of
each particle in the swarm are calculated. This process is repeated until a stopping criterion
is met. The global best at the time of stopping the iteration is the final optimum solution.

Start

Initialize
positions and velocities of the particles 

Evaluate 
fitness of each particle

Update 
global and local best positions 

Stopping 
criteria 

met

Optimal solution

Yes

No

Update 
Position and velocity of each particle  

Figure 5. Flow of the PSO algorithm.
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The parameters of the PSO algorithm have been set as follows in this work by observ-
ing the performance variation. The population size was chosen as 100. The inertial weight
and the inertial weight damping ratio were configured to 0.9 and 0.95, respectively. Global
and local learning coefficients were set to 0.85. Reaching 1000 iterations was defined as the
stopping criterion.

5.2. Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) is inspired by the foraging behavior of some ant
species. The ants lay pheromone on the ground to mark direct peer ants toward resources
such as food sources while exploring the habitat. The flow of the ACO algorithm is depicted
in Figure 6. At the start, ants and the pheromone trails are initialized. Each ant represents a
solution. Then, the paths found by ants are compared. In other words, the fitness value of
each ant is evaluated. Subsequently, the pheromones are updated based on their fitness
levels. This process is iterated until a stopping criterion is met. The best solution at the
termination of the algorithm is the optimal solution.

Start

End

Termination 
condition

True

False

Set parameters

Update Pheromones

Ants search for the 
path

Figure 6. Flow of the ACO algorithm.

The parameters of the ACO algorithm have been configured as follows based on
performance observations. The number of ants was set to 100. The evaporation coefficient
was set to 0.15. The effect of ant sight and traces were chosen as 1 and 4, respectively.
Reaching 1000 iterations is defined as the stopping criterion.

6. Results and Discussion

We have carried out multiple experiment trials to validate the proposed approach. We
conducted two sets of experiments to analyze the performance of the proposed approach.
The first set of experiments quantifies the performance of dirt sampling with proposed
geometrical feature-based dirt location identification in real-time. The second set of ex-
periments analyzes the behavior of the path generated by the proposed framework in
different environments.

124



Sensors 2022, 22, 5317

6.1. Trial-1: Sample Location Identification

The performance of sampling with geometrical features based on dirt location is
analyzed by defining the dirt gathering efficiency, which is the ratio of the number of dirt
samples collected to the total samples collected as given in Equation (4),

ηdirt =
Nd

Nd + Nc
(4)

where Nd and Nc represent the number of dirt samples collected and the number of clean
samples collected. The factors Nd and Nc are determined by counting the number of
dirt particles gathered using dirt lifting followed by computer vision-based dirt counting.
The dirt specks on the adhesive tape are treated as the connected pixels on the images (also
known as blobs) captured by the microscope. Steps involved in computer vision-based dirt
counting include:

1. Apply thresholds on the source image and convert the image to binary
2. Using contour extraction, identify the connected pixels from the binary image and

estimate blob centroid
3. The blob centroid is regarded as the location of the dirt particle
4. The number of centroids is regarded as the dirt count

The blob detection algorithm is implemented using OpenCV libraries given in [57,58].
The Figure 7 shows the dirt speck identified and counted using blob detection. Our

first set of the experiment consists of two trials, trial-1.a and trial-1.b, in which the trials
replicates a cleaning routine carried out using a commercial cleaning robot that does a
zig-zag path planning. For validating the probable dirt location identification, we created a
sample environment of dimensions 4.5 m × 4.5 m. The domestic floor cleaning robot with
autonomous navigation capabilities is operated for 15 min to replicate a cleaning routine.
To analyze the dirt accumulation, dirt particles are uniformly distributed (fine ground
tea powder with a particle size 0.5 mm–1 mm) before the operation of the cleaning robot.
The cleaning routine is repeated for five rounds. After five rounds of cleaning operation,
the dirt samples are gathered based on uniform sampling and at the location candidates
obtained from the proposed geometrical features.

The comparison of dirt particle counts at locations provided by the algorithm with the
locations selected by uniform sampling is recorded. The trial-1.a and trial-1.b differ in terms
of the obstacle density. Figure 8a shows the sample locations identified for the trial-1.a.
Figure 8b shows the locations identified by the proposed geometrical feature-based dirt
location identification.

Figure 8c shows the dirt counts recorded for uniform sample gathering and Figure 8d
shows dirt count obtained from the proposed approach. Similarly, Figure 9a shows the
sample locations identified for the trial-1.b and Figure 9b shows the locations identified
by the proposed method. Figure 9c shows the dirt counts recorded for uniform sample
gathering and Figure 8d shows the dirt count obtained from the proposed approach. In both
trials, a dirt count equal to 10 is regarded as the threshold for classifying the gathered
sample as dirty or clean. This implies that all gathered samples having a count above 10
is regarded as dirt sample. The dirt gathering efficiency (Equation (4)) is computed for
trial-1.a and trial-1.b. The result of dirt gathering efficiency calculation for trial-1.a and
trial-1.b is tabulated in Tables 1 and 2, respectively.
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Figure 7. The dirt particles gathered from a dense dirt accumulated region (a), the dirt particles
gathered from a sparse dirt accumulated region (b).

Figure 8. The environment chosen for trial-1.a (a), identified sample locations based on the proposed
approach (b), dirt counts recorded corresponding to locations in a uniform grid sampling (c), dirt
counts recorded corresponding to identified sample locations based on the proposed approach (d).
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Figure 9. The environment chosen for trial-1.b (a), identified sample locations based on the proposed
approach (b), dirt counts recorded corresponding to locations in a uniform grid sampling (c), dirt
counts recorded corresponding to identified sample locations based on the proposed approach (d).

Table 1. The sampling efficiency for a dirt count threshold 10 in trial-1a.

Trial-1a

Uniform Sampling Proposed Approach

Number of dirt samples Nd 22 47
Number of clean samples Ns 29 4

Total sampling
(Nd + Ns)

51 51

Dirt gathering efficiency
Nd/(Nd + Ns)

0.43 0.92

In trial-1.a, the sample locations identified using the geometrical signatures extracted
from the maps were more concentrated toward the walls and corners. In trial-1.a, 51 loca-
tions are identified for using the proposed approach. The locations closer to the wall and
corners had more relatively dirt counts than other locations. It is also observed that few
locations near the walls, the robot cleaned well and left fewer dirt counts. However, the gen-
eral pattern observed is the dense accumulation of dirt nearer to the location identified by
the proposed approach. The dirt gathering efficiency of 0.92 for the proposed approach
confirms the above-mentioned observations. In trial-1.a and trial-1.b, we have observed
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sample locations are not identified by the proposed approach in certain regions around
the walls. This is because of the imperfections in the LiDAR scan while generating the
map. In trial-1.b, the sample locations identified using the geometrical signatures extracted
from the maps were also more concentrated towards the walls and corners and sparse
dirt accumulation in the central locations. In trial-1.b, 59 locations are identified using the
proposed approach. The proposed method showed more number of locations for trial-1.b
because of more number of walls and corners introduced by additional obstacles in the
environment. Similar to the previous trial, with few locations near the walls, the robot
cleaned well, leaving fewer dirt counts. However, the dirt accumulation was dense near
the location identified by the proposed approach. A dirt gathering efficiency of 0.74 is
recorded for the proposed approach, and 0.54 is recorded for the uniform sampling method.
We observed the robot took more turns near the region bounded between two obstacles
and walls, resulting in multiple passes through the same location. This resulted in a drop
in dirt gathering efficiency for the proposed approach. However, there is a significant
improvement in dirt gathering efficiency in both experiment trials.

Table 2. The sampling efficiency for a dirt count threshold 10 in trial-1b.

Trial-1b

Uniform Sampling Proposed Approach

Number of dirt samples Nd 29 44
Number of clean samples Ns 24 15

Total sampling
(Nd + Ns)

53 59

Dirt gathering efficiency
Nd/(Nd + Ns)

0.54 0.74

6.2. Trial-2: Path Generation

Our second set of experiment trials validates our proposed path generation frame-
work. Trial-2 consists of experiments conducted in three real-world environments with the
BELUGA robot. Each environment is different regarding the area of operation for cleaning
auditing. The first environment (environment-1) is an indoor lab space with approximately
58 m2 of the total area accessible. The obstacle density in environment-1 is higher; however,
the obstacles are placed in a well-ordered manner. The environment-2 is a semi-indoor
pantry area. The obstacle density in environment-2 is slightly more than in environment-1.
The third environment, environment-3 is a ramp entrance where the environment is more
complex in terms of shape and orientation of obstacles. The Figure 10 shows the operation
of the BELUGA robot in all three environments. Four sets of experiment trials are con-
ducted in each environment considering PSO, ACO, Zig-Zag, and random path planning.
The test environments considered for the experiments have a moderate number of points
to visit. However, we are targeting the cleaning audit in the large environment such as
shopping malls. In that case, the number of points will be much higher, and swarm-based
optimization methods would be more suitable than the other approaches. Zig-zag path
planning is one of the common path planning methods used in the domain of cleaning
robotics. Hence, it would be worthy of considering zig-zag path planning as a baseline
for comparison in cleaning auditing applications along with random path selection. Here,
Zig-zag path planning is considered along the Y-axis where the robot starts the selection of
the point which it has the least coordinate in Y-axis. Then, the point with the second least Y
coordinate is selected as the second point. This ordering pattern is continued until all the
points are selected.
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Figure 10. BELUGA robot operating in different environments (map given in inset). Environment-1
(a), environment-2 (b), and environment-3 (c).

In every experiment trial, the total path covered by the robot, the total time taken
for completing the sampling, and the current consumption from the robot are recorded.
The total energy taken for the exploration is computed using the Equation (5):

E =
∫ T

0
v(t)i(t) dt (5)

where v(t) is the terminal voltage of the battery, T is the total exploration time, and i(t)
is the instantaneous current reading from the battery management system of the robot.
The overall observations recorded in trial-2 are tabulated in Table 3. The convergence
results of the PSO and ACO algorithms are given in Figure 11.

Table 3. The overall observations from trial-2.

Algorithm Parameter

Validation Trials

Environment-1
N = 29

Environment-2
N = 39

Environment-3
N = 59

PSO
Path length (D) 12.27 m 37.66 m 58.21 m
Time taken (T) 470 s 889 s 1320 s

Total energy (E) 23.72 kJ 44.82 kJ 66.84 KJ

ACO
Path length (D) 9.5 m 17.04 m 23.8 m
Time taken (T) 427 s 642 s 951 s

Total energy (E) 22.55 kJ 32.35 kJ 47.89 KJ

Zig-Zag
Path length (D) 16.33 m 17.85 m 53.42 m
Time taken (T) 511 s 665 s 1248 s

Total energy (E) 27.98 kJ 35.13 kJ 65.88 KJ

Random
Path length (D) 25.15 m 73.31 m 106.75 m
Time taken (T) 602 s 1220 s 1785 s

Total energy (E) 31.78 kJ 64.44 kJ 94.39 KJ

In environment-1, the algorithm has identified 29 sample points. The experiment trials
in environment-1 are represented as trial-2.a, trial-2.b, trial-2.c and trial-2.d. In trial-2.a,
the robot did sample auditing in the identified locations by selecting the points randomly
and following an A∗ path connecting the selected points (shown in Figure 12a). In trial-2.b,
the robot did sample auditing in the identified locations by selecting the points in a zig-zag
fashion along the Y-axis. Similar to the previous trial, the robot followed an A∗ path
connecting the selected points (shown in Figure 12b). In trial-2.c the point selection is made
based on the PSO algorithm; in trial-2.d, the point selection is made based on the ACO
algorithm. From trial-2.a to trial-2.d, we could observe that the optimal path generated by
the ACO algorithm has a shorter path length than all other methods. The most sub-optimal
strategy was a random selection of points. The robot took 427 s to complete the path
generation in the case of the ACO algorithm with a total energy consumption of 22.55 kJ
(Kilo-Joule). From the observations made from environment-1, it is evident that ACO shows
the best convergence in terms of optimizing the path length and energy consumption.
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The convergence results shown in Figure 11a,b also verify the proper convergence of the
ACO and PSO algorithms in this case.
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Figure 11. Convergence results of ACO and PSO. (a): Environment 1 using ACO, (b): Environment 1
using PSO, (c): Environment 2 using ACO, (d): Environment 2 using PSO, (e): Environment 3 using
ACO, and (f): Environment 3 using PSO.

In environment-2, the algorithm has identified 41 sample points from 93 m2 of area.
However, the robot could access only 39 points and 2 points were too close to the obstacle
and omitted during navigation.

Four sets of experiment trials are conducted in environment-2, represented as trial-2.e,
trial-2.f, trial-2.g, and trial-2.h, respectively. Similar to environment-1, the robot did sample
auditing by selecting the sample points randomly and following an A∗ path connecting
the selected points in trial-2.e (as shown in Figure 13a). Similarly, the robot did sample
auditing in the identified locations by selecting the points in a zig-zag fashion along
the y-axis in trial-2.f. The path followed by the robot is generated using the A∗ path
connecting the selected points (as shown in Figure 13b). In trial-2.f, the point selection is
done based on the PSO algorithm and in trial-2.d (Figure 13b), the point selection is done
based on the ACO algorithm (Figure 13b). From trial-2.e to trial-2.h, we could observe
that the optimal path generated by the ACO algorithm has a shorter path length than all
other methods. The most sub-optimal strategy was a random selection of points. In the
case of the ACO algorithm, the robot took 642 s to complete the exploration with a total
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energy consumption of 32.35 kJ. In environment-2, ACO shows the best convergence in
optimizing the path length and energy consumption. Another important observation
is zig-zag selection (trial-2.f) has outperformed PSO (trial-2.g) in yielding a shorter path
length and less energy consumption. Similar to environment-1, the random selection of
points recorded the most energy-expensive path generation strategy.

Figure 12. The path followed by the robot in environment-1 using random selection of points (a),
using zig-zag selection of points (b), PSO algorithm (c), and ACO algorithm (d).

Environment-3 is the biggest area among all other environments where the algorithm
has identified 59 sample points from 124 m2 of area. The trials conducted in environment-3
is represented as trial-2.i, trial-2.j, trial-2.k and trial-2.l respectively. In trial-2.i, the robot did
sample auditing in the identified locations by selecting the points randomly and following
an A∗ path connecting the selected points (shown in Figure 14a). In trial-2.j, the robot
did sample auditing in the identified locations by selecting the points in a zig-zag fashion
along the y-axis. Similar to the previous trial, the robot followed an A∗ path connecting the
selected points (shown in Figure 14b). In trial-2.k, the point selection is made based on the
PSO algorithm and in trial-2.d, the point selection is made based on the ACO algorithm.
From trial-2.i to trial-2.l, we could observe that the optimal path generated by the ACO
algorithm has a shorter path length compared to all other methods. The most sub-optimal
strategy was the random selection of points. The robot took 951 s to complete the path
generation in the case of the ACO algorithm with a total energy consumption of 47.89 kJ.
From the observations made from environment-3, it is evident that ACO shows the best
convergence in optimizing the path length and energy consumption.
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Figure 13. The path followed by the robot in environment-2 using random selection of points (a),
using zig-zag selection of points (b), PSO algorithm (c) and ACO algorithm (d).

From the experiments conducted in environment-1, environment-2 and environment-3,
ACO showed a better performance in yielding shorter and energy-optimized paths for
sample auditing. After ACO, the second-best path generation in terms of shorter path
length and less energy consumption is given by PSO for environment-1 and Zig-Zag
for environment-2 and environment-3. In larger environments, the PSO algorithm was
showing a sub-optimal performance. The robot skipped few sampling points during the
audit process since navigation algorithms in BELUGA robot was not allowing the robot to
visit the narrow location. However, skipping a few samples (2 out of 39) while auditing has
a negligible effect on the overall auditing process. Besides, the compact dimension of the
sample-audit sensor allows using compact robot platforms to perform auditing in narrow
space by trading-off requirements for large power sources and computation modules.
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Figure 14. The path followed by the robot in environment-3 using random selection of points (a),
using zig-zag selection of points (b), PSO algorithm (c) and ACO algorithm (d).

7. Conclusions and Future Works

A novel path planning strategy for robot-aided cleaning auditing has been devised
by extracting the geometrical features from the map. Considering the boundaries and
corners as the geometrical signatures that contributes to the dirt accumulation in an indoor
environment, the locations for performing the auditing process are identified as part of
the path planning strategy. To generate an optimal path that covers the identified sample
locations, swarm algorithms like ACO and PSO are utilized. The optimization algorithm
identified an efficient path covering all the sampling locations by minimizing the energy
consumption by the robot. The dirt gathering efficiency of formulated geometry-based
sampling locations and the behavior of the paths generated by the proposed approach are
evaluated in real-time. Experiment results show that the geometry feature-based sample lo-
cation identification aligned with dirt accumulation spots after multiple cleaning iterations
in the same environment. The ACO-based path generation showed better performance
by yielding the shortest exploration path with the smallest energy footprint compared to
PSO and other path generation strategies like zig-zag and random point selection in our
in-house developed BELUGA robot.

The future works of this research will be focusing on:

• Study the effect of variation of dirt patterns in auditing algorithms and consider dirt
pattern distribution for audit path planning

• A comprehensive dirt dataset generation for machine learning-based sample auditing
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• Inclusion of more geometrical signatures that contribute to the dirt accumulation in a region
• Extending the present cleaning auditing framework by including olfactory sensing techniques
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Abstract: Cleaning is an important task that is practiced in every domain and has prime importance.
The significance of cleaning has led to several newfangled technologies in the domestic and profes-
sional cleaning domain. However, strategies for auditing the cleanliness delivered by the various
cleaning methods remain manual and often ignored. This work presents a novel domestic dirt image
dataset for cleaning auditing application including AI-based dirt analysis and robot-assisted cleaning
inspection. One of the significant challenges in an AI-based robot-aided cleaning auditing is the
absence of a comprehensive dataset for dirt analysis. We bridge this gap by identifying nine classes
of commonly occurring domestic dirt and a labeled dataset consisting of 3000 microscope dirt images
curated from a semi-indoor environment. The dirt dataset gathered using the adhesive dirt lifting
method can enhance the current dirt sensing and dirt composition estimation for cleaning auditing.
The dataset’s quality is analyzed by AI-based dirt analysis and a robot-aided cleaning auditing task
using six standard classification models. The models trained with the dirt dataset were capable
of yielding a classification accuracy above 90% in the offline dirt analysis experiment and 82% in
real-time test results.

Keywords: domestic dirt; dirt dataset; audit robot; cleaning benchmark; dirt classification;
robot-aided cleaning auditing

1. Introduction

Cleaning is an inevitable routine associated with every domain. According to the
recent market studies, the professional cleaning industry is steeply growing and expected
to reach a market size of USD 88.9 billion by 2025 [1,2]. The growth of the cleaning industry
is further boosted up by the increasing demand during the pandemic outbreak. A plethora
of leading edge technologies have been introduced to the field of domestic and profes-
sional cleaning to enhance the performance of cleaning and maximize the productivity
for the past decade [3–5]. This includes the usage of novel cleaning strategies using floor
cleaning robots [3], Ultra-Violet-C (UVC) disinfection robots [4], cable-driven wall cleaning
robots [5], etc. Currently, the reported studies about the cleaning performance enhance-
ment are centered on the development of novel classes of cleaning robots and its associated
components including robot efficient navigation, control, multi-robot cooperation, etc. For
example, a morphology switching strategy for maximizing the area coverage in reconfig-
urable cleaning robots is reported [6]. Fuzzy inference systems used for enhanced adhesion
awareness in vertical glass wall cleaning robots are reported [7]. An adaptive floor cleaning
strategy by analyzing the human density is detailed in [8]. The research work mentioned
in [9] presents an efficient charging mechanism for cleaning robots using infrared spots
and neural network-based location estimators. A novel functional footprint-based efficient
ship hull cleaning method using evolutionary algorithms is reported in [10]. The preceding
analysis shows that a significant amount of research has focused on adapting the latest
technologies for enhancing the performance of cleaning. However, a systematic method
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for assessing the quality of cleaning delivered by various cleaning methods has not been
studied predominantly.

Dirt analysis is one of the critical elements for cleanliness auditing. The major chal-
lenges in the field of dirt analysis targeting cleaning auditing include the following:

• Even though there are proven AI models that could yield superior accuracy, there
is no comprehensive dataset that the experts can use to train the AI models for dirt
analysis.

• The dirt particles are often detected by typical computer vision-based analysis. How-
ever, capturing the finer features of the dirt is essential for AI-based analysis.

• The domestic dirt has identical visual features, which makes classification challenging
for the AI models, which demands a high-quality dataset highlighting the visually
distinct features of the dirt particles.

This research work presents a novel domestic dirt image dataset for cleaning auditing
application including AI-based dirt analysis and robot-assisted cleaning inspection. Unlike
the conventional vision-based dirt detection algorithms, whose application is limited to
cleaning robots, the proposed method presents a dirt detection and classification strategy
for cleaning auditing, where an audit sensor gathers the dirt samples via adhesive dirt
lifting. As part of this work, a comprehensive dataset consisting of microscope images of
commonly occurring domestic dirt is acquired using the sample audit sensor. To distinguish
the features, each dirt image is analyzed in under 10× magnification. In addition, the
selected dataset’s usability is further analyzed using training and validation accuracy in
different deep-learning architectures that enable deep-learning-based dirt analysis. To the
best of the author’s knowledge, a dataset of microscopic domestic dirt images has not
been reported so far. The proposed research work opens the door toward new fronts for
AI-driven dirt analysis targeting the domain of cleaning auditing. The The general objective
of this research work is subdivided into the following:

1. Gathering of magnified images of domestic dirt particles using adhesive dirt lifting;
2. Analyze the usability of an acquired dataset in training and classifying the domestic

dirt in standard classification models, using a cross-validation technique;
3. Analyze the performance of the proposed scheme in a real-time scenario by rolling

out the trained classification model for real-time dirt composition estimation for an
in-house developed audit robot.

The rest of the article is structured as follows. Section 2 provides a detailed study
on the related works, Section 3 provides a birds-eye view of the adopted methods and
methodology; Section 4 reports a detailed description of our analysis and experiments
conducted in this research effort followed by Section 6, which concludes our findings.

2. Related Works

Despite the importance, cleaning auditing is analyzed in very few domains. For
example, the formation of tests for cleaning quality analysis in the fish processing industry is
reported in [11]. Lewis et al. proposed a modified adenosine triphosphate (ATP) benchmark
for estimating the quality of cleaning for hospital environments [12]. Efforts toward
establishing cleaning standards for the hospital environment are reported [13]. Similarly,
Aziz et al. proposed microbiological monitoring for cleaning analysis targeting hospital
contamination estimation [14]. The state-of-the-art cleaning auditing methods are centered
around microbiological analysis and the ATP bioluminescence method [15]. However, the
analysis method mentioned above is not scalable to most domains, including professional
and domestic floor cleaning. The pioneering effort in cleaning auditing is proposed by
Pathmakumar et al., where cleaning auditing is done with the help of a autonomous mobile
robot and a sample audit sensor [16]. The research work mentioned above uses a cleaning
auditing sensor that extracts the dirt from the floor by adhesive dust lifting followed by
analysis using computer vision-based techniques. The auditing of a larger area is achieved
with the audit robot using dirt exploration methods [17]. The robot-aided cleaning auditing
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is a viable approach for post-cleaning analysis compared to the laborious microbiological
methods, which are limited only to a specific domain. The robot-aided cleaning auditing
executes the cleaning auditing in a fully automated fashion, which bridges the lack of
proper post-cleaning analysis in the domain of automated cleaning. One of the main
challenges in robot-aided cleaning auditing is the development of an effective method for
dirt analysis. Conventionally, visual detection methods are often used for dirt identification.
For instance, Grunauer et al. proposed an unsupervised dirt spot detection where the
problem is addressed as a binary classification problem [18]. Similarly, Bormann et al.
proposed a training-free dirt detection framework in an office environment [19]. The
above-mentioned method is further improved by a multi-class machine learning-based
dirt detection method using a modified YOLOv3 framework [20]. A similar approach is
reported where a cascaded neural network is used for multi-class debris detection for floor
cleaning robots [21]. The current dirt detection algorithms are reported in [18–21]; here,
the dirt detection is targeted at a cleaning robot to perform a selective cleaning. However,
for the concerned scenario of cleaning auditing, a microscopic analysis of domestic dirt
sampled after a dust-lifting process is inevitable. However, the present dirt detection
frameworks are not designed for the above-mentioned application.

3. Methodology

This work adopts our in-house developed cleaning auditing robot (BELUGA) for
dirt dataset collection. In order to classify the domestic dirt, it is essential to build a
comprehensive dataset of domestic dirt. The domestic dirt is referred to as particulate
contaminates (usually measured in microns) that are carried by the airflow and settled
down in undisturbed air. The samples are collected from indoor and semi-indoor regions
by attaching the sensors to the BELUGA robot. The overview of the sample collection
procedures and method for dirt inference is depicted in Figure 1. The sample collection
procedure involves the gathering of different sets of dirt samples from floor surfaces. The
samples can be collected either by using the sample audit sensor in a standalone way or by
using an autonomous robot carrying a auditing sensor payload. The sample audit sensor
gather images using the adhesive dirt lifting principle, which is an established principle
used for forensic trace collection [22,23]. For the analysis part, the images of the adhesive
tape are taken using a microscopic camera with 10× magnification. The images gathered
using the sample audit sensor are stored in a remote database on a cloud server. In case
of limited connectivity to the remote server, the captured images are enhanced and stored
locally onboard the robot. The sample collection is controlled and monitored using a web
application hosted on the local device that serves as an interface for the user to control the
process. In the remote server, the images are stored in a labeled manner.

Figure 1. Proposed overview for domestic dirt collection using autonomous robot.
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3.1. Robot Architecture

The audit robot is the carrier of a sample audit sensor, and it helps perform the dirt
sample gathering from a vast area of space where the manual sample gathering is not
feasible. The audit robot called BELUGA is an in-house developed autonomous cleaning
audit robot integrated with the sample audit sensor. The Figure 2 shows BELUGA robot
and mounting of sample audit sensor onto the robot. The BELUGA robot is comprised of
a locomotion module, power distribution module, navigation module, audit sensor and
processing module (shown in Figure 3).

Figure 2. Cleaning audit robot—BELUGA (a); Attaching of sample audit sensor with BELUGA (b).

Figure 3. The system architecture of the BELUGA robot with the main subsystems.

The locomotion unit of the robot is composed of a pair of brushless DC (BLDC)
motors that form a differential drive wheel configuration. The third point of contact of the
robot is made using a free rotating castor wheel. The BLDC motor drivers established a
closed-loop velocity control for the driving wheels. The velocity feedback is obtained from
the BLDC motor drivers using the incremental encoders associated with the motor. The
velocity feedback from the motors is used for computing the odometry information. The
communication with the drive motors is established using MODBUS-RTU communication.
The robot uses a 24 V DC lithium-ion phosphate battery to power all subsystems. The main
supply from the battery is regulated and distributed further to power-sensitive components.
A 2D LiDAR is the primary perception sensor associated with the robot, which is supported
by a depth camera to add 3D perception capabilities and detect obstacles below the level of
LiDAR. The LiDAR used in the robot is SICK TIM 581 with a range of 20 m in semi-outdoor
conditions. The Intel Real-sense D435i is the depth camera with a resolution of 640 × 480
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and 87◦ × 58◦ angular field of view. Using Kalman filter-based state-estimation techniques,
the wheel odometry information is generated by fusing the wheel velocity feedback from
the motor drivers and the inertial measurement unit (IMU). The IMU used in the BELUGA
robot is VectorNav VN100, which is a nine-axis IMU with built-in noise filtration.

The robot performs autonomous navigation in real time using the input from the
perception sensors and odometry information. The robot possesses an embedded computer
with an Intel core i7 processor and runs with an operating system of Ubuntu 20.04. The
perception and navigation algorithms run alongside the ROS middleware in the embedded
computer. Apart from the navigation sensors, the robot is integrated with the sample audit
sensor. The communication between the sample audit sensor and the embedded PC is
established through USB and RS485 communication. The USB established a communication
link with the digital microscope, and RS485 is used to control the servo motors’ actuation
inside the sensor. On the BELUGA robot, the sensor is attached to a removable sensor bay,
which allows detaching the sensor from the robot.

3.2. Sample Audit Sensor

The major components associated with the sample audit sensor are the adhesive tape,
winding motor, pressing motor, pressing ramp, and a digital microscope. The gathering
of the dirt samples is done by the synchronized motion of winding motors and pressing
motors. The winding motors and pressing motors are digital servos that can be position-
controlled according to the data passed over the RS485 communication protocol. The
winding motor of the sensor rotates an adhesive tape, and the pressing motor actuates
the pressing ram that exerts downward force to press and release the sticking surface of
the tape against the surface. The winding motor displaces the tape surface toward the
field of view of the digital microscope to capture the magnified image of the surface of
the tape. The pressing of the adhesive tape is completed for a 2 cm × 2 cm area; hence,
analysis of the dirt is localized to the same surface area. Every sampling completed by the
BELUGA robot takes 13 to 16 s, which includes 4 s to lower the sensor bay to the floor,
2 s to conduct a pre-sampling winding, 4 s for stamping action, and 3 to 6 s to perform a
post-sampling winding. The post-sampling winding varies from 3 to 6 s since the length to
displace varies as the adhesive tape radius decreases linearly as more and more samples
are taken. The movement of the adhesive tape is guided through silicon idlers so that
the adhesive tape will not become stuck while displacing the stamped area to the field of
view of the microscope. Figure 4 shows the sample collection sensor module. The sensor
consists of the (a) collection mechanism to gather dirt from the floor and pass it to the (b)
microscope camera to capture, transfer and process the sample images.

Figure 4. The sample audit sensor with major components (a) and the extracted dirt particles under
the view of the microscope (the 10× magnified image captured in the inset) (b).
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4. Experiments and Analysis

This section describes the experimental and analysis procedure of dirt dataset collec-
tion and evaluation methods. The experiment has been performed in four phases. The
first phase involves dataset curation. The second phase validates the collected dirt dataset
through a k-fold cross-validation scheme and converging time of the various image clas-
sification algorithm. The third phase involves validation of the dirt dataset through the
AI-based dirt classifier algorithm. The final phase involves validating the trained dirt
classification models with the BELUGA robot on a real-time field trail.

4.1. Dataset Curation

The BELUGA robot is set to exploration mode, where it explores the region using the
frontier exploration method, and the sample gathering is completed every 10 s. Figure 5
shows sample collection performed at different locations using the BELUGA robot. We
selected a food court (Figure 5a), semi-indoor walkway (Figure 5b), office pantry (Figure 5c),
long corridor (Figure 5d), office space (Figure 5e) and warehouse (Figure 5f) as the sites for
data collection. Once the robot explores 98% of the deployed area, the robot resets its map
and completes the frontier exploration again.

Figure 5. The dirt sample collection using the BELUGA robot in different locations such as a food court
(a), semi-indoor walkway (b), office pantry (c), long corridor (d), office space (e), and warehouse (f).

4.2. Dirt Class Identification

The sample collection procedure is repeated for 2 days in each location, and the
composition of dirt is analyzed. The main dust particles lifted by the adhesive tape include
ashes, hair (mostly from walkways and corridors), tiny bits of paper, sand, soil, etc. The
bits of paper are collected from all the six locations taken for the data collection. The traces
of sand and soil particles were also captured from all locations—however, the sand and
soil particle concentration was higher in the walkways and corridors. The traces of food
particles were also identified from every location; however, the most frequent occurrence of
food particles in the collected samples was from the food court and pantry. Paint particles
are captured in the sample collection completed in warehouses often, and it is observed
that more traces are captured when the robot completes sampling near the corners and
walls of the warehouse. Traces of seeds, lint, etc. were also identified from the collected
samples across all locations. From the observations made from the dirt sample collection,
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the specified classes for the dirt data includes ash, hair, sand, soil, paper, paint, food, and
fiber. These classes are finalized for the dirt dataset considering the following:

• Frequent occurrence during sample collection;
• Presence in every location;
• The health and environmental factors associated with identified dirt particles [24–26].

The identified dirt classes for the dataset are provided in the Table 1.

Table 1. The classes of identified domestic dirt.

Class
(Number) Sample Images

Ash

Hair

Sand

Soil

Paper

Paint

Food

Fibre

No-dirt

4.3. Dataset Preparation and Training

Upon identifying the distinct dirt classes, the image captured by the microscope at a
resolution of 1280 × 720 was decimated to 16 image samples, each of size 320 × 120 images.
The dirt samples collected by the robot as well as the samples manually collected were
labeled and formed the dataset for domestic dirt. The samples where the dirt is spread less
than 60% in the image area are discarded. Images overlapping with different classes are
also discarded. After discarding the invalid images, a dataset of 3000 samples from each
class is curated. From every class of labels images, 2500 images are taken for training and
cross-validation, and the remaining 500 are used for offline testing.

4.4. Dirt Dataset Validation

The quality of the dataset is analyzed by inspecting the accuracy of the state-of-the-art
AI-based image classification models trained using it. The quality of the collected dirt
dataset was evaluated through training accuracy with a k-fold cross-validation scheme and
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statistical measure. For analysis, we choose two sets of classification models. The first set is
composed of three less dense neural network architectures, and the second set is composed
of three dense-layer neural networks. For the less dense models, we took VGG-11 [27,28],
VGG-16 [27] and MobileNetV2 [29]. For the second set, for the dense-layer models, we
choose ResNet50 [30,31], ResNet101 [30] and Darknet53 [32].

4.4.1. K-Fold Cross-Validation Method

The k-fold cross-validation is completed by following the procedures given below:

1. Select the fold k = 5.
2. Split the dataset to k groups, which are also known as folds.
3. Select k − 1 folds for training the model and one fold for testing.
4. For every iteration, a new model is trained independent of the previous iteration.
5. Repeat the training and cross-validation k times; in every iteration, the remaining fold

will serve as the test set.
6. The accuracy is determined on the kth iteration as the average of all iterations.

The six-image classifier model was trained with an early stopping condition to avoid
the over-fitting of the model. The models are trained in NVIDIA GeForce 3080 GPU with a
batch size of 32 and a learning rate of 4 × 10−3. Cross-entropy loss is used to estimate the
model’s prediction performance in every forward pass [33]. Comparing the accuracy of
every iteration provides insight into the curated dataset’s reliability and trustworthiness.
However, a k-fold gives a more stable and trustworthy result since training and testing are
performed on multiple combinations of test–train set decimation from the dataset.

Figure 6 reports the convergence profile for the models for the first 30 epochs of
training. All models converged above 90% accuracy in every fold for all the six models.
The average accuracy of every fold of training in VGG-11, VGG-16, and MobleNetV2 is
observed in the first 10 epochs of training. A slightly delayed convergence is observed for
dense-layer models such as ResNet50, ResNet101, and Darknet53. The dense-layer models
took 15–20 epochs to see a consistency in the convergence trend. This trend is attributed
to the relatively complex nature of ResNet50, ResNet101, and Darknet53 compared to the
other models. One of the key indicators that is attributed to the quality of the dataset is the
deviation of accuracy in every fold of training. The average training accuracy for k-fold and
standard deviation in accuracy is tabulated in Table 2. All models show a small standard
deviation in the k-fold training, which indicates a non-biased and balanced dataset. The
variation in accuracy in different folds of training is comparatively less when it comes to
dense-layer models. The minimal deviation is reported by ResNet101 (1.89), and maximum
accuracy in training is reported by ResNet50 (96.58%).

Table 2. Statistical measures for dirt classification.

Model Average
Accuracy (%)

K-Fold
Standard Deviation

VGG-11 94.77 5.82
VGG-16 92.77 3.90
MobileNetV2 94.65 3.44
ResNet50 96.58 2.05
ResNet101 96.54 1.89
Darknet53 95.801 3.06
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Figure 6. The accuracy profile for different classification models trained using curated dirt dataset;
VGG-16 (a), VGG-11 (b), MobileNetV2 (c), Resnet50 (d), Resnet101 (e), Darknet53 (f).

4.4.2. Dirt Dataset Validation Through Statistical Measure

The dirt dataset’s efficiency was validated through a statistical measure function.
Here, the models trained using our dirt dataset classification accuracy were chosen as
the evaluation matrix to assess the dirt dataset quality. Accuracy Equation (1), precision
Equation (2), recall Equation (3) and Fmeasure Equation (4) were used to evaluate the trained
model’s classification accuracy. The confusion matrix function was used to find the variables
tp (true positives), f p (false positives), tn (true negatives) and f n (false negatives) through
which accuracy, precision, recall and Fmeasure were calculated. The evaluation metrics
includes:

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(1)

Precision(Prec) =
tp

tp + f p
(2)
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Recall(Rec) =
tp

tp + f n
(3)

Fmeasure(F1) =
2 × precision × recall

precision + recall
(4)

A set of 500 images from each class is used to compute the confusion matrix parameter
(tp (true positives), f p (false positives), tn (true negatives) and f n (false negatives)), and
these images were not used for training the image classifier. Table 3 gives the statistical
measures results computed through the confusion matrix parameter.

Table 3. Statistical measures for dirt classification.

Model Class
Measurements

Precision Recall F1 Accuracy %

VGG-16

Ash 0.9803 0.9970 0.9886 99.70

Food 0.9918 0.9675 0.9795 96.65

Fibre 0.9559 0.9644 0.9601 96.44

Paper 0.8621 0.9336 0.8964 89.64

Paint 0.9689 0.9291 0.9485 92.91

Soil 0.9993 0.9970 0.9981 99.70

Sand 0.9878 0.9943 0.9910 99.43

Hair 0.9897 0.9998 0.9948 99.99

No-dirt 0.9971 0.9941 0.9956 99.41

VGG-11

Ash 0.9900 0.9960 0.9930 99.60

Food 0.9709 0.9787 0.9748 97.87

Fibre 0.9847 0.9555 0.9699 95.55

Paper 0.8482 0.9458 0.8944 94.58

Paint 0.9914 0.9110 0.9495 91.10

Soil 0.9983 0.9985 0.9982 99.85

Sand 0.9906 0.9820 0.9863 98.20

Hair 0.9622 0.9977 0.9796 99.77

No-dirt 0.9798 0.9985 0.9891 99.85

MobileNet
V2

Ash 0.9950 0.9920 0.9935 99.20

Food 0.9907 0.9638 0.9770 96.38

Fibre 0.9700 0.9585 0.9642 95.85

Paper 0.9108 0.9038 0.9073 90.38

Paint 0.9707 0.9516 0.9610 95.16

Soil 0.9963 0.9993 0.9978 99.93

Sand 0.9843 0.9970 0.9906 99.70

Hair 0.9589 0.9954 0.9768 99.54

No-dirt 0.9812 0.9956 0.9883 99.56
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Table 3. Cont.

Model Class
Measurements

Precision Recall F1 Accuracy %

ResNet50

Ash 0.9930 0.9880 0.9905 99.30

Food 0.9956 0.9606 0.9778 96.06

Fibre 0.9761 0.9703 0.9732 97.03

Paper 0.9454 0.9392 0.9423 93.92

Paint 0.9660 0.9758 0.9709 97.58

Soil 0.9991 0.9985 0.9993 99.85

Sand 0.9825 0.9973 0.9899 99.73

Hair 0.9852 0.9965 0.9908 99.65

No-dirt 0.9963 0.9985 0.9974 99.85

ResNet101

Ash 0.9990 0.9970 0.9980 99.70

Food 0.9919 0.9755 0.9836 97.55

Fibre 0.9910 0.9822 0.9866 98.22

Paper 0.9016 0.9624 0.9310 96.24

Paint 0.9889 0.9499 0.9690 94.99

Soil 0.9997 0.9985 0.9993 99.85

Sand 0.9899 0.9970 0.9934 99.70

Hair 0.9730 0.9965 0.9846 99.65

No-dirt 0.9971 0.9985 0.9978 99.85

Darknet53

Ash 0.9979 0.9699 0.9837 96.99

Food 0.9382 0.9307 0.9344 93.07

Fibre 0.9939 0.9614 0.9774 93.07

Paper 0.9001 0.6681 0.7570 66.81

Paint 0.9861 0.9583 0.9720 95.83

Soil 0.9901 0.9993 0.9996 99.93

Sand 0.9568 0.9111 0.9334 91.11

Hair 0.6506 0.9965 0.7872 99.65

No-dirt 0.9728 0.9985 0.9855 99.65

The offline test results show that all the six classification frameworks show an accuracy
above 90%. Among the classes, ash, soil, sand, and hair showed the best classification accu-
racy, since the images were visually distinct in color and texture. The lowest classification
accuracy was reported for the class paper and paint, since a scrap of paint and paper bit
possesses almost the same visual features under 10× magnification by the camera. The
darknet53 model showed the lowest classification accuracy for the class paper with 66.81%.
On the other hand, the no-dirt class representing the samples devoid of dirt, which is a
critical factor in determining the surface’s cleanliness, showed high accuracy in all trained
models. Even though the evaluation is performed on GPU, the ResNet101, Darknet53,
and ResNet50 reported comparatively lower inference time than VGG-16, VGG-11, and
MobileNetV2. The difference in inference time is attributed to the number of operations
within the network. Regarding ResNet50, ResNet101, and Darknet53, there are 23 M,
44.5 M, and 40.5 M parameters, respectively. Whereas in the case of VGG-11, VGG-16, and
MobilenetV2, there were 133 M, 138 M, and 3.4 M parameters trained, respectively. The
statistical measurements reported in the offline test results show that the dataset gathered
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for dirt classification is un-biased between the classes and it can be used alongside the
standard deep-learning models.

4.5. Real-Time Robot-Aided Cleaning Inspection

In addition to the offline test, the usability of the curated dataset is analyzed in a real-
time cleaning inspection use case with the BELUGA robot. We have chosen an environment
for testing which is similar to the chosen regions for data collection. DarkNet53 was used
for rolling out the real-time inference considering the best performance in k-fold cross-
validation and offline testing. Since the BELUGA robot’s embedded computer is devoid
of GPU, the inference is completed by establishing a communication with a remote server
running with GPU. Using the BELUGA robot, the five dirt samples are collected each from
the food court, walkway and indoor office space. For every sample image captured by the
digital microscope after dust lifting, the sample image is divided into 16 images, matching
the training dataset. The models loaded with weights were trained, and the classification of
dirt is completed for every 16 images from the collected sample. Figure 7 shows the images
classified from the dirt sample and the estimated dirt composition.

Figure 7. The test images collected in real time using the BELUGA robot (a), classified images (b),
histogram of classified dirts from single sample (c), an exmple for wrongly classified image (d), and
overlapping of dirt specks (e).

Comparison with Offline Test Results

Out of the 15 sample images, which were divided into 240 test image samples, 203 sam-
ples reported the right classification with an admissible accuracy of 84.58%. The model’s
real-time accuracy was less than the offline test results. Despite the above-mentioned

148



Sensors 2022, 22, 5201

shortcomings, the model trained with the curated dataset showed a good accuracy, which
is acceptable for the dirt composition estimation in cleaning auditing.

5. Discussion

The experiments results conducted showed the prepared dataset’s usability on popular
deep learning models such as VGG-16, VGG-11, MobileNet V2, ResNet50, ResNet101, and
Darknet53. Upon rolling out the trained with the prepared dataset for real-time inference,
an admissible accuracy was observed. During the course of our dataset curation, certain
limitations identified include the narrow field of view of the camera and the overlapping
of multiple dirt classes in the sample image. Moreover, certain dirt particles share similar
textures, making them difficult to be distinguished. Although the data inference is sub-
stantially faster, the dirt data collection is found to be slow, since it involves adhesive dirt
lifting. Unlike the offline test results, false-positive occurrences are reported in the real-time
test results (shown in Figure 7d), which are contributed to the following factors:

• Overlapping of multiple specks of dirt classes in a sample image (shown in Figure 7e);
• The shaking of adhesive tape during the actuation of the sensor may result in blur

images that eventually lead to a wrong classification;
• Encountered dirt specks with very close visual resemblance make it indistinguishable

for the model to classify.

6. Conclusions and Future Works

A dirt image dataset was proposed for AI-based dirt classification for automated
cleaning auditing. Our in-house developed cleaning inspection robot BELUGA was used
to gather the dirt sample images from a semi-indoor environment. We identified nine
visually distinct dirt classes, and 3000 10× magnified microscope images for each class
are gathered for the dataset. The usability of the collected dirt dataset was evaluated
by analyzing the training and evaluation accuracy in six state-of-the-art image classifier
models. The k-fold cross-validation method with a cross-entropy loss function was used to
compute the model’s training accuracy, and the statistical measure function was used to
assess the classification accuracy of models trained using our dirt image dataset. During
the training, a minimal standard deviation for training accuracy for every k-fold cross-
validation iteration is observed, which indicates the unbiased nature of the collected dataset.
The offline test results indicate that all the trained models scored above 90% accuracy for
all classes. The quality of the dataset is further validated by rolling out the trained dataset
for real-time cleaning auditing using an in-house developed BELUGA robot. The accuracy
of real-time testing was comparatively less compared to the offline test results, which is
mainly attributed to the overlapping of multiple specks in the same region of the sample
image. The motion blur was also introduced in the dirt lifting process, which diminished
the accuracy of real-time dirt analysis. In addition, the time taken for overall dirt sample
collection was slower because the adhesive dirt-lifting process was time-consuming. Our
future research will be focused on the following areas:

• Combining microbial and chemical analysis in the process of sample auditing;
• Incorporating novel autonomous algorithms toward dirt exploration;
• A comprehensive study comparing the different algorithms with respect to cleaning

auditing;
• Exploring the usability of the current dataset for instance segmentation of dirt particles;
• Improving the current dataset by expanding the number of dirt classes and open-

sourcing the dataset.
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Abstract: Vibration is an indicator of performance degradation or operational safety issues of mo-
bile cleaning robots. Therefore, predicting the source of vibration at an early stage will help to
avoid functional losses and hazardous operational environments. This work presents an artificial
intelligence (AI)-enabled predictive maintenance framework for mobile cleaning robots to identify
performance degradation and operational safety issues through vibration signals. A four-layer 1D
CNN framework was developed and trained with a vibration signals dataset generated from the
in-house developed autonomous steam mopping robot ‘Snail’ with different health conditions and
hazardous operational environments. The vibration signals were collected using an IMU sensor
and categorized into five classes: normal operational vibration, hazardous terrain induced vibration,
collision-induced vibration, loose assembly induced vibration, and structure imbalanced vibration
signals. The performance of the trained predictive maintenance framework was evaluated with
various real-time field trials with statistical measurement metrics. The experiment results indicate
that our proposed predictive maintenance framework has accurately predicted the performance
degradation and operational safety issues by analyzing the vibration signal patterns raised from the
cleaning robot on different test scenarios. Finally, a predictive maintenance map was generated by
fusing the vibration signal class on the cartographer SLAM algorithm-generated 2D environment map.

Keywords: artificial intelligence; mobile cleaning robot; vibration source classification; predictive
maintenance; deep learning; 1D CNN

1. Introduction

Mobile cleaning robots with various capacities are ubiquitous today, for instance in
food courts, hypermarkets, hospitals, industries, airports, and homes, and are used for
vacuuming, mopping, and sanitizing the environment. Market studies show that the
personal and professional mobile cleaning robot growth is expected to reach 24 billion USD
by 2026 [1]. However, proper maintenance and deployment in a robot-friendly workspace
are crucial for autonomous mobile cleaning robots to avoid malfunction, catastrophic failure,
and environmental-related safety issues, including customer dissatisfaction. Currently,
manual supervision is widely used to monitor professional cleaning robots’ performance
degradation and safety-related issues. However, it is time-consuming, labor and skill-set-
dependent, and challenging to deploy due to the lack of historical failure data, especially for
the newly developed advanced cleaning robots. Moreover, this periodical manual approach
may trigger other issues such as extended downtime, the under-utilization of components,
safety issues due to abrupt failure, and high operational and maintenance costs.

Automated predictive maintenance strategies overcome these pitfalls. They are widely
used in industrial robots and autonomous vehicles for continuous health monitoring,
performance degradation prediction, hazardous operational environment identification,
and safety system failure indication. Various methods and techniques were proposed
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in the literature to implement automated predictive maintenance. A fuzzy inference
approach is used in [2] to predict battery power status of robotics systems, and a non-
intrusive methodology using torque sensor data for monitoring industrial robot joints in [3].
Similarly, a programmable motion-fault detection method for collaborative robots in [4], a
framework to assess the future dynamic behavior and the remaining useful life of industrial
robots in [5], and a data-driven predictive maintenance methodology using time-series
electrical power data is used to detect manipulator errors in [6].

In recent years, artificial intelligence (AI) powered predictive maintenance (PdM) has
been widely studied for automated PdM design. It adopts Machine Learning (ML) and
Deep Learning (DL) algorithms for fault detection and classification. These works include
a K-means clustering algorithm-based PdM for wafer transfer robot to avoid unplanned
downtime proposed in [7], an automatic ML tool based health monitoring system to predict
safe stops in a collaborative robot in [8], an Artificial Neural Network (ANN) model to
predict the system failure of a packaging robot in [9], an ML-based PdM to detect drive belt
looseness in a Cartesian robot in [10], and a DL-based fault diagnosis of industrial robots
in [11] using multi-sensor fusion technology. Similarly, an ML-based fault diagnosis for the
vehicle brake system is studied in [12] using wavelet applications, a terrain classification
study for the autonomous ground vehicles is conducted in [13] adopting a probabilistic
neural network, a hierarchical component-based diagnosis and prognosis system proposed
for autonomous vehicles in [14] using a Dynamic Bayesian Network (DBN) model, and a
DL-model developed to forecast the health of multi-sensor autonomous vehicles by training
health index networks in [15].

Though several works are available for industrial robots and autonomous vehicle
applications, predictive maintenance of autonomous mobile cleaning robots is not widely
studied yet. The PdM system is a mandate function to autonomous mobile cleaning robots
to deliver a safe and efficient service when operating in a complex and dynamic change
environment, identify any performance degradation, and avoid operational safety issues.
Generally, vibration is a key indicator for industrial robots and autonomous vehicles to
predict performance degradation and hazardous operating environment identification,
which is applicable for autonomous mobile cleaning robot platforms.

This work proposes an AI-powered predictive maintenance framework using vibra-
tion as a source for autonomous mobile cleaning robots. A one-dimensional Convolutional
Neural Network- (1D CNN) based vibration source classification model was developed and
trained to classify the vibration signals arising from mobile cleaning robots. An in-house de-
veloped autonomous steam mopping robot–‘Snail’ is used to test and validate the proposed
framework with different health conditions and hazardous operational environments.

The rest of this paper is organized as follows: Section 2 explains the literature survey
on various vibration signal-based PdM works. Section 3 states the problem definition and
motivation of this work. Section 4 gives an overview of the proposed system. Section 5
presents various experiments conducted and the results. Finally, Section 6 concludes the
summary of the works.

2. Literature Survey

Currently, advanced industries use vibration-based health monitoring systems to
detect early signs of the failure of machines and industrial robots. The vibration signals,
measured using various vibration measuring sensors like piezoelectric or micro-electro-
mechanical systems (MEMS) accelerometers, contain the health information of the equip-
ment. In the literature, many reviews and research works have been conducted on vibration
signal-based PdM using DL techniques, primarily for machine components, and industrial
robots. The 1D CNN based vibration signal analysis studies for PdM includs a survey on 1D
CNN benefits and applications in [16], fault diagnosis of machine components in [17–19],
structural health monitoring in [20–22], and real-time fault diagnosis for power assets
in [23]. Toh and Park reported the impact of vibration responses for early structural health
monitoring in [24]. The study uses different DL architectures for vibration analysis. Pham
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et al. applied CNN for fault diagnosis of bearings operated under different shaft speeds
in [25]. They represented vibration signals as spectrograms to classify faults with high
accuracy. Kolar et al. in [26] proposed a vibration signal-based fault diagnosis framework
using the CNN algorithm. The authors used a three-axis accelerometer-generated vibration
signal to detect and classify the faults. In [27], Chen et al. evaluated three deep neural
networks models, including Deep Boltzmann Machines (DBM), Deep Belief Networks
(DBN), and Stacked Auto-Encoders (SAE), to detect rolling bearing faults using vibration
signals. Chen and Lee discussed in [28] a DL approach for vibration signal analysis for
machining applications. Their study covers the optimisation method for CNN, 1D CNN,
and 2D CNN structures with different types of inputs such as raw signal data and time-
frequency spectra images. A DL model was developed by Luo et al. to detect early faults
of a CNC machine in [29]. The authors used impulse responses from the vibration signals
to detect the early mechanical fault under time-varying conditions. A fault diagnosis for
the industrial robot was proposed by Wu et al. in [30]. Here, the authors combined three
algorithms, including Manifold learning, Treelet Transform, and Naive Bayes, to detect the
fault in industrial robots.

The studies mentioned above show that vibration signals are the decisive analyzing
element, and DL-based techniques are suitable for the feature extraction from vibration
signals for predicting a system’s performance degradation. However, most of the works
available are focused on finding a specific fault, severity, or its remaining useful life, and do
not consider the external factors for degradation. Moreover, the works are intended mainly
for various machine components and industrial robots only. Hence, there is a research
gap for monitoring autonomous cleaning robots’ health status and identifying hazardous
environmental factors.

3. Problem Definition

A properly designed and developed cleaning robot works as required in its planned
work environment without abnormal vibration. However, due to continuous operation or
the impact of various internal and external environmental factors, the robot performance
degrades and generates abnormal vibration signals. In most indoor cleaning robots, exter-
nal terrain factors such as rough pebble pathways or tactile pavers produce high amplitude
vibrations that cause performance degradation issues, such as assembly looseness, sensor
misalignment, and faster component deterioration, for example. Vibration due to collisions
with walls and other obstacles is an indicator of hazardous operation. It may arise due to the
failure or malfunction of obstacle avoidance sensors or the misalignment of safety sensors,
or the absence of hazardous object registration in the robot navigation map, such as tiny
objects and glass walls (LiDAR sensor is sometimes not accurate in detecting tiny objects
below object detection range or glass walls in [31–33]). A structural imbalance vibration
signal is another indicator for both performance degradation and a hazardous operational
environment. It may arise due to wheel damage, wear, a loose assembly of heavier compo-
nents (battery, water tank), or a robot operating in a poor ground clearance area. Hence,
identifying the vibration signal source is mandated to predict the cause of failure or perfor-
mance degradation and identify the operational safety issues. It will enhance the predictive
maintenance actions, for instance, isolating the potential hazardous region quickly, deter-
mining the severity and fixing the issues, redirecting to its intended workspace, securing a
robot-friendly environment, and includes design improvement planning.

4. Overview of the Proposed System

Figure 1 shows an overview of the AI-enabled PdM framework for an autonomous
cleaning robots platform. It uses vibration signals to predict cleaning robot performance
degradation and any hazardous operational environment. The overview of the framework
is explained as follows. This involves the robot platform details used for tests, the vibration
data acquisition unit, the four-layer 1D CNN algorithm, the vibration source mapping
module, and the remote monitoring unit.
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Figure 1. Overview of the proposed DL-based PdM framework.

4.1. Autonomous Steam Mopping Robot ‘Snail’

An in-house autonomous steam mopping robot (Snail) designed for cleaning and
disinfection of indoor floors is used in this case study, as shown in Figure 2. The overall size
of the robot is 40 × 40 × 38 cm, and the total weight is 18 Kg, including inverter, battery,
steam boiler, and mop head assembly. An NVIDIA Jetson AGX single-board computer is
used to steer the entire operation of the robot, including autonomous navigation, executing
predictive maintenance framework, and controlling all other sensors. In addition, the
RPLIDAR A2 scanner is used for localization and mapping of the environment, and the
Inertial Measurement Unit (IMU) Vectornav VN-100 sensor is used to estimate the motion,
orientation, and heading angles of the robot. The robot locomotion was accomplished by a
differential wheel drive mechanism with two supporting caster wheels. A D-Link 4G/LTE
mobile router is used to control the robot remotely and monitor the robot’s health.

Figure 2. Autonomous steam mopping robot ‘Snail’.

4.2. Vibration Data Acquisition Unit

In our study, five vibration classes are used as critical indicators for mobile cleaning
robots’ performance degradation and operational safety issues. It is classified under three
categories: normal, external factors, and internal factors, as shown in Figure 3. Here,
terrain and collision-induced vibration belong to external factors, while assembly and
structure-induced vibrations are due to internal factors.

Figure 3. Vibration source classification—Normal and Potential source of failure.
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The linear and angular motion of the robot will be affected due to internal or external
causes of vibration. Hence, we measured the linear acceleration (X, Y, and Z-axis) and
angular velocity (roll, pitch, and yaw) of the robot using the onboard IMU sensor (Vectornav
VN-100), which reflects the vibration level of the robot. Our IMU data subscription includes
angular acceleration calculated from each instance’s current and previous angular velocity.
Hence, the robot measures three signal data (linear acceleration, angular velocity, and
angular acceleration) in three axes. This total of nine-sensor data collected during the
exposure of five vibration source classes was used as the vibration signal data (feature
values). The IMU subscription rate was set at 40 Hz, and each sample is grouped into 128
(time steps) data elements, which is every 3.2 s. The collected data is converted into a three-
dimensional input array comprising samples, time steps, and features values. Figure 4
shows the data acquisition unit details, mainly the sensor position on the chassis at the
center of the differential wheel drive axis.

Figure 4. Data acquisition system and Linear-rotational motion of the Snail robot.

4.3. 1D Convolutional Neural Network (1D CNN)

A 1D CNN model is adopted to build the proposed vibration source classification
framework. The 1D CNN is formulated by convolution operations on data vectors as
explained in [23]. It consists of signal input data vector x (length N), a filter vector ω
(length L), a bias term b to best fit for given data, and a nonlinear activation function. The
input vector is convolved with the filter vector, and its output layer is represented as in
Equation (1). This representation of output layer c, of length (N − L + 1) is without zero
padding. To reduce the number of parameters and highlight the key feature, a max pooling
output vector d is defined, after each convolution layer, with a kernel size m × 1, window
function u, and filter moving stride s as in Equation (2).

c(j) = f

(
L−1

∑
i=0

ω(i)x(j − i) + b

)
, j = 0, 1, . . . , N − 1 (1)

d = max(u(m × 1, s)c) (2)

Figure 5 shows the structure of the predictive maintenance 1D CNN framework. It
involves mainly an input layer, four convolutional layers, a Fully Connected (FC) layer,
and an output layer. The raw sensor data of the 3D array [n × 128 × 9] gets normalised
first. Then each sample is flattened to a 1D array [1 × 1152] for feeding into the CNN. The
first two CNN layers use 64 filters and follow kernel size (convolution window) 3. The
following two CNN layers use 32 filters and apply the same kernel size. A Rectified Linear
Activation Unit (ReLU) is applied to each convolutional layer to learn complex nonlinear
patterns in the signal data. After each convolutional layer, max pooling with a stride size of
2 and a dropout layer (dropout rate 0.2) is applied to reduce the feature map dimension
and avoid over-fitting. Finally, a flattening function is used to convert the pooled feature
map into a 1D array and pass it into the FC layer. A softmax layer is added as the final
activation function in the output layer that predicts the multinomial probability. The output
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layer contains five neurons for the five vibration classes. Table 1 shows the details of the 1D
CNN architecture.

Figure 5. 1D CNN Structure.

Table 1. 1D CNN Architecture.

Layer Kernel Size Stride Filters Data Shape

Input (1152, 1)
Conv. 1D-1 3 × 1 1 64 (1150, 64)

Max Pool 1D-1 2 × 1 2 × 1 (575, 64)
Conv. 1D-2 3 × 1 1 64 (573, 64)

Max Pool 1D-2 2 × 1 2 × 1 (287, 64)
Conv. 1D-3 3 × 1 1 32 (285, 32)

Max Pool 1D-3 2 × 1 2 × 1 (143, 32)
Conv. 1D-4 3 × 1 1 32 (141, 32)

Max Pool 1D-4 2 × 1 2 × 1 (71, 32)
Fully Connected (100)
Output (Softmax) (5)

4.4. Vibration Source Mapping Module

The mapping module performs 2D mapping of the environment using the onboard
RPLidar and fuses the CNN predicted vibration source class on the 2D map generated.
The Cartographer SLAM (Simultaneous Localisation and Mapping) algorithm is used to
generate the 2D environment. It builds a grid-based map for the given environment. The
prediction algorithm-generated vibration source classes are fused continuously into this
grid map to generate a predictive maintenance map (PdM map). The user or maintenance
team can visualize the type of performance degradation and safety-related issues on
deployment space through the PdM map.

4.5. Remote Monitoring Unit

A smartphone app is developed to visualize the Snail robot’s real-time prediction
results for remote health monitoring and control the robot in teleoperation mode, as
shown in the overview layout Figure 1. The app is connected through the robot using
the MQTT messaging protocol and collects the predicted information in request-based or
continuous mode.

5. Experiments and Results

This section describes the experimental methods and results. The experiments were
performed in four phases: dataset preparation, training the predictive maintenance CNN
framework, validating the trained model with test dataset, and real-time field trials.
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5.1. Data-Set Preparation and Pre-Processing

The dataset preparation involves collecting the vibration signals from the robot with
different health states deployed on varying surface conditions, operational speeds, and
cleaning patterns. Figure 6 shows the robot test set up for collecting the five classes of
vibration including normal operational vibration, rough terrain induced vibration, collision-
induced vibration, loose assembly induced vibration, and structure imbalance vibration.

Here, the normal operational and rough surface-induced vibrations were collected by
deploying the robot over smooth indoor floors and rough terrain, respectively. Collision-
induced vibrations were collected by hitting the robot on different obstacles, including walls
and other static and dynamic (human) objects in the environment. The loose assembly-
induced vibrations were collected by loosening the robot’s components, such as wheel
coupling and mounting brackets. Finally, the unbalanced load-induced (structure) vibration
data has been collected by using damaged/worn out wheels, asymmetrically placing
heavier components, and operating the robot in a poor ground clearance area. The above
mentioned five vibration classes were collected under different surface conditions (tile,
concrete, carpet, wooden, vinyl, small and medium-size pebble pathways, and tactile
pavers), operational speeds (linear 0.02–0.4 m/s and angular 0.3–1.3 rad/s), and cleaning
patterns (straight, zig-zag, and spiral).

Figure 6. Robot test set up for vibration data collection of five classes.

The Figures 7–11 shows the time-amplitude graph for the vibration signals raw data
collected for all the five classes across each signal type (linear acceleration, angular velocity,
angular acceleration) and its three-axis. The graphs provide a visual representation of how
the signals vary through different vibration source classes. It is plotted for one sample
(128 data), i.e., captured in 3.2 s.

Figure 7. Vibration signals—Normal class.
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Figure 8. Vibration signals—Terrain class.

Figure 9. Vibration signals—Collision class.

Figure 10. Vibration signals—Assembly class

Figure 11. Vibration signals—Structure class.

Data normalisation is applied in the pre-processing stage. The normalisation process
involves bringing the raw data into a standard scale without losing information. In our
case, the collected data x of all the nine features of each class is normalised into −1 to +1
using the Equation (3). Then, the pre-processed dataset is split into training, validation,
and test data sets. The training and validation datasets are used to train the model, and the
test dataset is used to evaluate the model after training. A total of 2500 samples for each
class were recorded and split into 80% for training and 20% for validation. Furthermore, for
evaluating the model, a total of 500 samples were collected for each class as test data sets.

xNormalised = 2
x − min(x)

max(x)− min(x)
− 1 (3)

5.2. Training and Validation

A supervised learning strategy was used in this PdM framework using our unique
dataset. Tensorflow [34] deep learning library was used to develop the predictive mainte-
nance CNN framework, and Nvidia GeForce GTX 1080 Ti-powered workstation was used
to train the model with the collected dataset. Table 2 shows the hyperparameter settings
for training the model. Momentum with gradient descent was used as the optimising
strategy to speed up learning and not get stuck with local minima. Adam optimiser (adap-
tive moment optimization) [35] with three parameters showed better training results: a
learning rate of 0.001, the exponential decay rate for the first moment of 0.9, and for the
second moment of 0.999. Different epochs were used for testing, and better accuracy was
found with 100 epochs and a batch size of 32. The categorical cross-entropy loss function
is used while compiling the model to reduce the loss during training and to improve
prediction probability.
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Table 2. HyperParameters setting.

Parameter Values/Function

Optimizer Adam
Learning rate 0.001

Batch Size 32
Epochs 100

In the training phase, a K-fold (in our study, K = 5) cross-validation technique is used
to evaluate the dataset’s quality, improve generalization, avoid over-learning, and choose
the best model for this application. In k-fold cross-validation, the datasets are split into k
subsets and k-1 subsets to train the model. The remaining one is for evaluating the model’s
performance.

5.3. Prediction with Test Dataset

The vibration class prediction efficiency of the trained model is evaluated with the
test dataset. A total of 500 test samples were used for each class to evaluate the model.
These test datasets have not been used in the training and cross-validation of the model.
Accuracy, precision, recall, and F1 Score (Equations (4)–(7)) statistical measure metrics [36]
were used to assess the model performance. Here, TP, FP, TN, FN represents the true posi-
tives, false positives, true negatives, and false negatives, respectively, as per the standard
confusion matrix.

Accuracy =
TP + TN

TP + FP + TN + FN
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F1Score =
2 × Precision × Recall

Precision + Recall
(7)

Table 3 shows the statistical measure result for the test dataset. Accordingly, the model
classifies the normal operational vibration class with 89% accuracy, and the hazardous
terrain-induced vibration and collision-induced vibration accuracy were predicted with
95% and 92% accuracy, respectively. Furthermore, loose assembly-induced vibration and
structure imbalance vibration classes were predicted with 94% and 91% accuracy. The
model’s overall classification accuracy (average of five classes) is 92.2%. The above analysis
shows that the trained model has accurately classified the five vibration classes collected
from the mobile cleaning robot run on different surfaces. Hence, this proposed model is
suitable for real-time deployment in mobile cleaning robots for performance degradation
and hazardous operational region prediction.

Table 3. Offline test result.

Vibration Source Precision Recall F1 Score Accuracy

Normal 0.86 0.90 0.89 0.89
Terrain 0.97 0.95 0.96 0.95

Collision 0.92 0.92 0.92 0.92
Assembly 0.93 0.94 0.94 0.94
Structure 0.86 0.92 0.93 0.91

5.4. Comparison with Other Algorithms

The performance of the proposed predictive maintenance 1D CNN framework was
compared with other commonly used ML/DL classifier models, such as Support Vector Ma-
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chine (SVM) [37], Multilayer Perceptron (MLP) [38], Long Short-Term Memory (LSTM) [39],
and CNN-LSTM [40]. The same training and test dataset, processing resources, and condi-
tions used for the 1D CNN model have been applied for a fair comparison. The CNN-LSTM,
LSTM, and MLP models were trained using the TensorFlow library and SVM with Scikit-
learn [41] package. The key parameter settings such as optimiser (Adam), learning rate
(0.001), and loss function (categorical cross-entropy) for the CNN-LSTM, LSTM, and MLP
comparison models were used the same as 1D CNN. For the SVM comparison model, the
key parameters ‘C’ and ‘gamma’ values used 100 and 0.01, respectively, and the Radial
Basis Function (RBF) kernel was applied. The overall accuracy of each model over five
classes and the inference time (millisecond) to process one sample data are given in Table 4.

Table 4. Accuracy comparison with other models.

Model Accuracy (%) Inference Time (ms)

1D CNN 92.2 0.162
CNN-LSTM 88.1 0.258

LSTM 85.4 0.276
MLP 79.8 0.193
SVM 77.5 1.675

The comparison results show that our proposed predictive maintenance 1D CNN
framework has scored better classification accuracy and took less inference time than the
other four algorithms. Hence, it is evident that our proposed system is an optimal algorithm
to predict the performance degradation and hazardous operational environment.

5.5. Real-Time Prediction

The real-time prediction experiment was tested with the Snail robot in four differ-
ent environments at the SUTD campus include the lobby, food court, corridor, and lab
workspace. These environments were not used for the training data-set collection process.
Before the real-time prediction experiment, all the environments were mapped by the
cartographer SLAM algorithm using the on-board RPLIDAR A2 for autonomous navi-
gation and predictive maintenance map generation. In our experiment, the continuous
field trial was conducted on multiple days to observe the robot performance degradation
and hazardous operational prediction. The trained model was configured in robot on-
board computer NVIDIA Jetson AGX. Its prediction results (terrain, collision, assembly, or
structure-induced vibrations signals) were fused into the cartographer SLAM generated
environment map with different colors to identify performance degradation and hazardous
operational prediction.

The first case study was trialed in a lobby environment consisting of a glass sidewall
and carpet floor. Here, collision-induced vibrations were registered in the cartographer
SLAM algorithm-generated map due to incorrect mapping of the glass wall. The glass wall
was covered with a raising curtain in the original map during the mapping time, whereas
it was removed while testing. As a result, the robot lost the previously mapped navigation
awareness, and RPLidar could not locate the glass as an obstacle. The robot hit on the glass
randomly, and the repeated collision-induced vibration marks were captured in the lobby
environment 2D map as shown in Figure 12a.
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Figure 12. Real time field test case studies.

The SUTD food court was our second case study testbed. The food court environment
has smooth concrete flooring with dining furniture. The robot trial was conducted during
different operational times, including peak hours. Figure 12b shows the SUTD food court
set up and its cartographer SLAM map registered with predicted vibration signals. Here,
the collision-induced vibration and hazardous surface-induced (terrain) vibrations were
recorded in the environment map. Specifically, collision-induced vibration was registered
primarily during peak business hours, which arises due to accidental collision with humans,
undetected furniture legs, and changes in the position of the dining furniture. Similarly,
tactile pavers and cables set on the floor caused hazardous terrain-induced vibrations.

Case study three was conducted in a corridor environment with mixed style flooring
with a smooth concrete floor, and a pebble paved rough surface. During our experiment, the
robot was first deployed to clean the smooth concrete floor. Here, no abnormal vibrations
were reported in the 2D environment map. Later, when the robot started cleaning rough
pebbled surfaces, hazardous terrain-induced vibrations marks were seen on the map. When
the robot was deployed for a ten day trial on the pebbled surface, a mix of terrain and loose
assembly-induced vibrations were registered, as shown in Figure 12c. This is mainly due to
the loose assembly of mechanical systems such as loosening of mounting brackets screws
and deterioration of mop cloth.

The fourth case study was performed in our SUTD ROAR lab workspace, where
the environment filled dynamic objects and the terrain consisted of vinyl flooring. The
experiment lasted for four weeks, and its cumulative results in the lab environment were
observed. In the first three weeks, the map showed regular drive without capturing any
abnormal vibration signature. However, the fourth-week map showed a loose assembly
pattern observed from the wobbled wheels due to the loosening of the wheel coupling
set screws. The test continued in this wheel-wobbled state and noticeable imbalanced
structural vibrations arose due to the battery becoming detached from its bracket and
creating an unbalanced weight distribution. Figure 12d shows the four-week test results
for case study four, where the environment map depicts loose assembly and unbalanced
weight structural patterns.

As per the experimental results, we observed that one source of failure might lead
to another if no action is taken. This way, if several sources of failure are present, the
model will predict the predominant failure of the robot in that particular instance. Hence,
through the mobile app, the maintenance person can remotely stop the robot as soon as the
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initial abnormal class is registered, avoiding chances for multiple failures or hazards to the
environment.

Table 5 shows the statistical measure result for 100 test samples collected from the
real-time case study. Here, the sample data were collected from the Snail robot through the
mobile app on request-based sample mode and performed the statistical measure using the
confusion matrix function. The table results indicate that the algorithm classified the five
different vibration sources with an average accuracy of 88.9%, 93.5%, 91.8%, 92.1%, and
88.7% for normal, terrain, collision, assembly, and structure, respectively. In contrast with
offline results, the model average prediction accuracy of five classes in real-time tests is
slightly less (91%) due to external noise and various sampling periods. However, it can be
reduced by fussing multiple IMU sensors or adding a noise cancellation function in the
preprocessing stage.

Table 5. Real-time prediction accuracy of five classes.

Vibration Source Normal Terrain Collision Assembly Structure

Prediction (%) 88.9 93.5 91.8 92.1 88.7

6. Conclusions

An AI-enabled predictive maintenance framework was proposed for mobile cleaning
robots to monitor performance degradation and identify operational safety issues. The
proposed framework was tested and validated with our in-house developed autonomous
steam mopping robot ‘Snail’. A four-layer 1D CNN model was developed using Tensor-
Flow API and trained with five vibration signal datasets generated from the Snail robot
with different health conditions. The efficiency of the proposed predictive maintenance
framework was evaluated with offline and real-time field tests. The experimental results
show that the model scored 92.2% accuracy for classifying the performance degraded and
hazardous operational vibration signals in offline tests and took 0.162 ms to process one
test sample. In the real-time field test, the algorithm accurately predicted robot perfor-
mance degradation and operational safety issues with an accuracy of 91%. The predicated
vibration signal class was fused into the cartographer SLAM-generated environment map
to track the performance degradation and identify the operational safety issues. This will
help manufacturers and cleaning maintenance companies to choose the right maintenance
strategy, rental policy, or improve the robot design and assembly.
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Received: 21 November 2021

Accepted: 16 December 2021

Published: 20 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

GRVC Robotics Laboratory, University of Seville, Avenida de los Descubrimientos, S/N, 41092 Seville, Spain;
ricloplop2@us.es (R.L.L.); manbatsan@alum.us.es (M.J.B.S.); mpjimenez@us.es (M.P.J.); aollero@us.es (A.O.)
* Correspondence: barrue@us.es

Abstract: The inspection and maintenance tasks of electrical installations are very demanding.
Nowadays, insulator cleaning is carried out manually by operators using scaffolds, ropes, or even
helicopters. However, these operations involve potential risks for humans and the electrical structure.
The use of Unmanned Aerial Vehicles (UAV) to reduce the risk of these tasks is rising. This paper
presents an UAV to autonomously clean insulators on power lines. First, an insulator detection and
tracking algorithm has been implemented to control the UAV in operation. Second, a cleaning tool
has been designed consisting of a pump, a tank, and an arm to direct the flow of cleaning liquid.
Third, a vision system has been developed that is capable of detecting soiled areas using a semantic
segmentation neuronal network, calculating the trajectory for cleaning in the image plane, and
generating arm trajectories to efficiently clean the insulator. Fourth, an autonomous system has been
developed to land on a charging pad to charge the batteries and potentially fill the tank with cleaning
liquid. Finally, the autonomous system has been validated in a controlled outdoor environment.

Keywords: UAVs; inspection and maintenance; mobile robots; insulators

1. Introduction

The inspection and maintenance of power lines represent a significant economic cost
for electricity supply companies. These tasks need to be performed periodically and can
result in failures, leading to economic and material losses.

The power transmission system often has to cover long distances, and it has routes
that are difficult to access by land.

Moreover, maintenance tasks are performed at high altitudes and require the use of
helicopters, ropes, and elevating platforms for tasks such as the installation of bird flight
diverters or cleaning power line devices. Particularly, power line insulators are cleaned
while the line is energized.

An electrical flash-over may occur through the air between the tower and the con-
ductor, causing blackouts, brownouts, and damage to the installation if the insulators are
contaminated. The aim of cleaning it is to remove oxidation and other deposits using a
water jet.

Research in aerial robotics for industrial inspection is providing autonomous solutions
to traditional methods. The performance of aerial robotics has been proven in fields such
as civil engineering [1,2], agriculture [3], the mining industry [4], or conveying systems [5].

In addition, the use of UAVs for tasks that are not purely inspection has increased.
Particularly, UAVs are already being used for agriculture monitoring and the spraying of
crops [6].

Moreover, in [7], a low-cost fumigation system which has been redesigned and imple-
mented in a UAV is shown. The results show that there is a big difference in application
costs between using the system on UAVs or using a conventional hydro-pneumatic sprayer.
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Visual inspection operations of power lines are of relevance due to the cost, complexity,
and risk of human inspection caused by the need to cover large areas using manned
helicopters.

Traditional monocular [8,9] and stereo [10] cameras have been implemented in aerial
platforms to detect power line defects. For instance, landing algorithms on power lines
have been developed and validated in real environments with an aerial system composed
of a LiDAR and a monocular camera for inspection and maintenance [11]. Thermal cameras
have been widely used to detect damaged components with an over-heating problem [12]
including insulators [13,14]. The recent advances in the computational power of onboard
computers have led to real-time applications on UAVs. It is common to find applications in
which neural networks are used to detect or recognize elements to interact with them [15].
The detection of insulators has been addressed by different approaches. Due to the different
aspect ratios and scales, a faster region-based convolutional neuronal network (R-CNN)
model has been implemented [16]. Moreover, the detection of composite and porcelain
insulators has been developed on cluttered backgrounds with a single shot multibox
detector (SSD) [17].

Despite the considerable potential of UAVs for inspection and maintenance, flight
autonomy has been a major constraint. A wide range of wireless charging systems has been
developed [18]. A platform for UAVs consisting of two coils transmitting energy using
an oscillating magnetic field [19] has been designed. In addition, a self-leveling platform
for small UAVs that can be installed on any type of surface [20] has been implemented.
Usually, vision-based control is needed to ensure the necessary precision to land on the
charging pad [21].

The use of control algorithms for landing UAVs on platforms is well studied. Image-
based visual servoing algorithms have been developed to control the UAV while tracking
the platform [22]. Moreover, a model of predictive control for autonomous landing under
wind disturbances on a moving platform [23] has been developed.

The main contribution of this paper is the design and experimental validation of a
fully autonomous application for cleaning insulators on power lines. First, a lightweight
cleaning tool that can be installed on a UAV has been designed. Second, the soiled areas
of the insulator have been segmented, and an algorithm has been developed to obtain a
sequence of optimal points to clean the insulator. Finally, an algorithm has been developed
that estimates the fluid trajectory to hit the soiled areas.

The remainder of the paper is organized as follows. Section 2 describes the application
and how the cleaning tool was designed and developed, the insulator detection and soil
segmentation, and the descent algorithm to land on the charging pad. Section 3 shows
the experimental validation of the system in an outdoor environment. Finally, Section 4
outlines the conclusions of this work.

2. System Description

The main goal of this work is to develop an autonomous UAV system for insulator
cleaning in power lines as shown in Figure 1. First, the system uses a global positioning sys-
tem (GPS) point to approach the target area. Then, a vision algorithm using a convolutional
neuronal network (CNN) provides the location of the insulator to control the UAV. The
cleaning tool aims and shoots a water jet on a point sequence given by an algorithm with
a semantic segmentation neuronal network that detects the soiled areas of the insulator.
The maximum payload that the UAV can carry will be mostly used for storing the cleaning
liquid. For that reason, the tool developed for cleaning the insulators has been designed to
minimize weight. When the battery or liquid tank level is low, the system returns to the
charging pad. Finally, a vision-based algorithm for autonomous landing on a charging pad
has been developed. The overall system structure can be seen in Figure 2.
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Figure 1. Conceptual design of the operation. (1) The UAV is sent to the GPS position of an insulator.
(2) Visual local control is performed while locating and cleaning the areas that need the maintenance
of the insulator. (3) When the operation is finished or batteries need to be recharged, the UAV
returns to the GPS position of a charging station. (4) When it reaches the position, an autonomous
vision-based descent is performed.

Figure 2. Conceptual scheme of the systems involved in the application.

2.1. Insulator Cleaning Tool

This section describes the custom tool used to clean the insulators. It has been designed
to be small and lightweight, so it can be embedded even in small aerial robots.

The cleaning tool has been built with two Dynamixel AX-12A servomotors that
provide the necessary degrees of freedom (DOFs) and a good power-to-weight ratio. The
purpose of these DOFs is to allow the tool to aim at the insulator while flying, compensating
for the oscillations and disturbances that the UAV might suffer.

Meanwhile, the cleaning liquid is driven by a water pump through a flexible rubber
tube to the nozzle.
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A micro board and a relay have been implemented to activate the water pump to
control the flow of the liquid. Given the capacity of the tank, 0.44 L, and the flow rate of
the water pump, 240 L/H, the algorithm estimates when the tank is going to be empty and
activates a signal to decide whether to return to the charging pad or not.

In addition, a custom nozzle has been designed to increase the range and horizontal
jet dispersion as shown in Figure 3.

Figure 3. Nozzle with variable cross-section design to increase range and dispersion.

The tool has been printed in polylactic acid (PLA). It is designed to aim downwards
to prevent droplets of water from reaching critical systems such as propellers or the
electronics.

One of the main elements to prevent a breakage of the yaw servomotor and maintain
its performance is the red part in Figure 4, which holds the servomotor. The movement
is transmitted to the purple piece, and as can be seen, if there were torsional moments,
the blue piece that surrounds the previous ones would prevent the possible breakage of
the servomotor. The purple piece at the bottom is the one that holds the cleaning tool to
the UAV. This system has four silicone dampers, which connect the UAV body with the
pointing tool, to avoid excessive vibrations between the UAV and the tool.

Figure 4. Design of the two-DOF cleaning tool.

To move the described system, an analysis of its kinematics was carried out. The
direct (2) and inverse (2) kinematics were obtained using the Denavit–Hartenberg method
[24,25]. The scheme used can be seen in Figure 5, and the parameters are shown in Table 1.
These parameters were applied to obtain the direct kinematics of the tool, which is used
to know the transformation from the camera to the end-effector. In the equations, θ0, and
θ1 are the joints that control the yaw and pitch, and P = (Xe

0, Ye
0, Ze

0) is the position of the
end-effector from the tool coordinate frame.

Xe
0 = L1 cos θ0 cos θ1

Ye
0 = L1 cos θ1 sin θ0 (1)

Ze
0 = L0 + L1 sin θ1
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θ0 = arctan Ye
0

Xe
0

θ1 = arcsin Ze
0−L0
L1

(2)

Figure 5. Schematic used to calculate the kinematics of the system along with the reference axes
employed.

Table 1. Denavit–Hartenberg parameters of the manipulator.

θi di αi ai

Link 1 θ0 L0 90º 0
Link 2 θ1 0 0 L1

2.2. Targeting System

The targeting system has two goals: to evaluate whether the target point for clean-
ing can be reached and to minimize the distance between the fluid trajectory and the
target point.

The flow trajectory is determined by the velocity that the pump is capable of trans-
mitting to the fluid at the nozzle outlet. Therefore, the fluid outlet parameters have been
estimated experimentally to choose a mathematical model. Due to the low velocity of
the fluid, the air resistance can be neglected. Therefore, it has been determined that the
parabolic trajectory can be accurate for the range where the UAV is at least 1.5 m away
from the insulator [26,27]. The deviation from the estimated trajectory is mostly caused by
the wind.

The algorithm starts when the system detects a point to clean that is less than 1.5 m
from the UAV. First, the target point is transformed to the reference frame of the cleaning
tool. Second, the joints θ0 and θ1 are defined to evaluate the best configuration. Third,
using direct kinematics, the point of the end-effector is obtained using direct kinematics.
Then, the parabolic trajectory of the fluid is calculated for that configuration. A point
is obtained from the intersection of the trajectory in the horizontal plane (Πh) with the

target point. This algorithm attempts to minimize the distance d =
√

δ2
x + δ2

y , as shown in
Figure 6. Finally, when the entire workspace has been covered, the joints are sent to the
cleaning tool. Algorithm 1 summarizes the process.
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Figure 6. Diagram of the targeting system for choosing the optimal joint variables to hit the target
point of the insulator.

Algorithm 1 Algorithm to obtain the optimal joints to hit the target.

1: TargetPointcamera ← CleaningZoneDetection(RGB, Deph)
2: TargetPointtool ← Trans f ormToTool(TargetPointcamera)
3: MinDistance ← 0.5m
4: for θi

0 = Min(θ0) to Max(θ0) do

5: for θ
j
1 = Min(θ1) to Max(θ1) do

6: Joints ← (θi
0, θ

j
1)

7: WorkSpacePoint ← DirectKinematic(Joints)
8: Pointtool ← FluidTrajectory(WorkSpacePoint)
9: Distance ← (TargetPointtool , Pointtool)

10: if Distance < MinDistance then
11: MinDistance ← Distance
12: Final Joints ← Joints

2.3. Insulator Detection

The cleaning task requires the UAV to be positioned close enough to the insulator for
the cleaning liquid jet to reach the desired point. For this purpose, a vision algorithm to
detect and track the insulator has been developed. The detection has been implemented by
a CNN. Then, a NVIDIA Jetson Xavier AGX was chosen, which allows the detection to be
performed with a low inference time.

To locate the insulator, a positioning system has been developed. First, the YOLO
v4 Tiny neural network [28] is used to detect the device in the image. The CNN has been
trained using open datasets and around 4000 additional images of insulators that have
been collected in several environments with the aerial platform.

This detection system is executed in real-time on the UAV’s onboard computer. To
improve the detection rate, an implementation with TensorRT has been used, providing a
higher frequency of the bounding box, which improves the control loop. Table 2 shows a
comparison between the different implementations on a validation dataset.
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Table 2. Inference time between different object detector models.

Inference Time (ms)

YOLO v4 Tiny 29.4
YOLO v4 Tiny + TensorRT 20.4

Once the device is detected, the resulting bounding box is used to feed a lightweight
Kalman tracker [29].

This tracker ensures continuity when the detection is lost between a few frames of
real detection, and it reduces the effect of outliers. Figure 7 shows the bounding box of
the implemented Kalman tracker in blue and the detection provided by the YOLO v4 Tiny
network in green.

Figure 7. Insulator detection using YOLO v4 Tiny with TensorRT implementation (green bounding
box) and tracker result (blue bounding box).

Then, a foreground extraction algorithm has been applied on the bounding box to
segment the insulator and to obtain its centroid in the depth image. RGB and depth images
have been aligned using CUDA, which reduces the processing time.

Finally, to improve the continuity of the detected position, another Kalman filter is
implemented. This filter provides a smoother estimation of the 3D position of the device
and reduces the noise effect introduced by the depth estimation of the camera.

2.4. Cleaning Zone Detection

Once the UAV maintains its position close enough to the insulator, a segmentation
network is used to differentiate the areas that need to be cleaned from the ones that are
already clean.

The semantic segmentation network used is based on a fully convolutional network
FCN-ResNet101 and has been implemented using the Nvidia inference library for Jetson
that allows the use of TensorRT and FP16 precision to decrease the inference time. A dataset
has been created with about 2000 images of the insulator in various states of soiling that
have been manually labeled. The network has been trained with 80% of the images and
validated with the remaining 20%.

Using the segmentation mask obtained from the network, a system that defines the
path to follow by the cleaning tool was developed. To generate this path, the image
resulting from the segmentation of the soiled areas has been divided into equal horizontal
segments as can be seen in Figure 8. The centroids of these divisions are used alongside
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the aligned depth image to obtain the points to be followed by the tool. This algorithm is
performed online at a rate of 40 ms, so these points and the path calculated dynamically
change during the cleaning operation. The points delivered to the cleaning tool are fed
from the bottom up, as the cleaning of electrical equipment is carried out in this way.

Figure 8. Soiled area segmentation and cleaning trajectory generated by the algorithm.

2.5. Autonomous Landing on Charging Pad

The application relies on the ability of the UAV to charge itself, since cleaning multiple
insulators would drain the battery. Therefore, a platform that integrates a commercial
charging pad [30] has been designed and built. The platform is designed to be clearly
visible from a high altitude to facilitate landing, as shown in Figure 9a.

(a) (b)

Figure 9. Two-phase detection algorithm. (a) Phase 1; (b) Phase 2.

The descent maneuver is performed using a position-based visual servoing (PBVS)
algorithm [31]. Due to the low velocity during the descent maneuver, it has been assumed
that the image plane is parallel to the ground and the depth has been estimated using the
depth image provided by the camera.

The detection and tracking of the platform are essential to make a stable and reliable
landing maneuver. In many cases, the platform will be located at a distance of more than
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7 m from the UAV. A lightweight algorithm is required to make it feasible to maneuver the
vehicle even in adverse wind conditions that require responsive control. The detection of
the charging pad was performed using an algorithm with two phases.

During the first phase, the camera sees the target partially or completely, at a minimum
distance of two meters. Color segmentation [32] and shape matching were performed using
HSV (hue, saturation, value) thresholding to detect the outside contour. To be able to
start charging, the landing gear must be within the inner boundary of the platform. It is
necessary to estimate the relative yaw difference between the platform and the UAV. Due
to the small available area, a safe landing can only be achieved if the yaw difference is less
than 15º and the distance to the center is less than 15 cm.

In the second phase, the algorithm tracks the platform center and yaw misalignment
in close range. The system detects multiple inner squares using the HSV threshold and
the Hough transform. Since the cells of the charging platform are highly reflective, an
online algorithm has been developed to maximize the number of squares it detects by
preprocessing the image by applying convolutional filters with different kernel sizes and
changing HSV thresholds. The two phases can be seen in Figure 9.

A landing state machine has been developed to control the UAV through the descent.
When the system needs to return to the charging pad, the state machine is started along
with the first detection phase. The algorithm consists of three stages as can be seen in
Figure 10.

Figure 10. State machine used for the descent and landing maneuver.

The first stage detects the landing station for the first time and controls the UAV to
center the target in the X–Y plane. When the UAV has succeeded in reducing the distance to
the center of the platform by a threshold, it continues to the next stage. The second is used
to align the UAV with the platform by adding to the control a yaw rotation. The third stage
initiates when the X–Y distance and yaw rotation thresholds are reached. Then, the descent
maneuver commences while keeping the platform centered and aligned, controlling four
DOFs. If any of the conditions are not fulfilled, the system will return to the previous stage
until they are satisfied. When the distance to the platform is less than 50 cm on the Z-axis,
the landing is performed. The limits set for switching between stages are dynamically
calculated depending on the height of the UAV.

3. Experimental Validation

This section shows the experimental results and analyzes each subsystem that com-
poses the application. The autonomous insulator cleaning system has been validated in a
controlled outdoor environment. This work does not attempt to analyze the interaction
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of flight systems with electromagnetic interference generated in proximity [33] or in con-
tact [34] with high-voltage power lines. Thus, an insulator has been placed in a controlled
outdoor environment.

The multirotor used in this work has been developed specifically for this application.
A T-motor Navigator MN4014 of 330 KV motor has been integrated into the Tarot XS690
frame. The autopilot implemented is the Pixhawk 2. The power supply consists of a LiPo
6 s 7000 mAh battery for the motors and a LiPo 4 s 3000 mAh battery that supplies the
onboard computer, the arm, the Arduino, and the pump. The total weight of the platform
is 4.5 kg plus 0.44 kg of cleaning liquid that the tank holds. This setup delivers a nominal
thrust of 1.5–1.6 kg per axis with a maximum flight time of 7 min. Figure 11 shows the
hardware setup of the UAV.

Figure 11. UAV hardware setup.

3.1. Visual Control

The experiments have been performed in an outdoor environment using the Intel
RealSense D435i camera as described in Section 2.3 at a resolution of 640 × 480 px. A
mission has been conducted in which the UAV takes off from the landing platform. Then,
the system performs an approaching maneuver to the insulator. At a distance where the
insulator can be reached, the local control algorithm begins, as can be seen in Figure 12.
The targeting system is reliant on the visual control performed by the multirotor; thus, the
local control has to be precise and stable to achieve the proper cleaning of the insulator.

Figure 12. Path followed by the UAV.
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The visual guidance has been performed using a cascade control that applies a simple
PID algorithm [35] for controlling the multirotor. The position controller is fed with the
position of the insulator. To have a wider range of vision, the camera has been positioned
with a 30º pitch rotation. Then, it has been estimated that the optimum distance for
cleaning is 1.5 m on the Y-axis and −0.5 m on the Z-axis in an ENU (east–north–up)
coordinate system.

The control signal and the position of the insulator can be seen in Figure 13. First, the
insulator is detected at a distance of 4.5 m on the Y-axis and the UAV starts the approach
maneuver, saturating the forward velocity. On the X-axis, an overshoot of at most 20 cm
of error, which is within the reach of the cleaning tool, occurs. When the visual control
manages to stabilize the UAV between an error of 20 cm on the X-axis, 30 cm on the Y-axis,
and 10 cm on Z-axis for 3 s, the cleaning phase starts.

Figure 13. Visual control of the UAV with the control signal (blue line), position estimation of the insulator (black line),
and reference (dotted red line). Once the insulator is detected, the UAV performs the approach phase indicated by the
green area. When the UAV is stabilized on the three axes below a threshold for three seconds, the cleaning phase indicated
by the yellow area begins.

Then, during the cleaning phase, the targeting and cleaning system is capable of
performing the task while the UAV compensates for the weight dumped from the cleaning
liquid tank. The drift in the X-axis and Y-axis is less than 30 cm. Moreover, the insulator is
always in sight, and the tracking that feeds the position control is stable.

Finally, the results show that the UAV can be controlled with the payload during the
approach and cleaning phase.

3.2. Targeting System and Cleaning Insulator Results

The targeting and cleaning system starts when the UAV comes within range of the
insulator. First, the relay is activated. Then, the arm is driven in pitch to prune the air
bubbles in the liquid transmission system. Therefore, a sequence of calibration points is
performed at the start-up. This makes the cleaning liquid jet start at maximum pressure so
that it can reach the estimated point from the beginning. Second, the system described in
Section 2.4 estimates the points to be reached by the water jet to clean the insulator. Third,

177



Sensors 2021, 21, 8488

the arm guided by the points of the vision system sequentially reaches the point and clears
the soiled area. Finally, the cleaning task ends when it has been detected that there is no
soil in the insulator or the tank cleaning liquid has been completely emptied.

Figure 14 shows the onboard camera view of the insulator during the cleaning process,
where it can be better appreciated how the cleaning tool works.

The cleaning tool is able to sequentially reach the target point and decrease the soil.
The graph shows the path followed by the tool and the path generated from the coordinates
of the camera transformed to the reference system of the tool. The UAV is in constant motion
during cleaning, so the joints are compensating such motion to impact the target. However,
the inertia of the lines means that when it varies in X, Y, or Z directions, there is the same
variation in the tool to compensate for this new movement towards the achievable position.

Figure 14. Evolution of soiled areas in the insulator.

The percentage of the area that is cleaned has been measured using the area in pixels
from the segmentation of the clean and soiled areas. As can be seen in Figure 15, about
90% of the soil is removed from the insulator. However, during the first three estimated
points, the soil appears to be spread out. Although, once the next points are reached, this is
significantly reduced as more cleaning liquid is applied to the surface.

Figure 15. Joint variables and percentage of soiled area cleaned over time by the cleaning tool.

It should be noted that the parabolic trajectory estimation has been essential to obtain
the best configuration of the joints, since the drop of the water jet is significant due to the
low pressure and velocity of the fluid at the nozzle outlet. Nearly 30 cleaning experiments
have been carried out under different soiling states, of which an average of about 70% of
the dirty area of the insulator has been reduced.
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3.3. Landing System

After cleaning the insulator, the UAV moves to a safe position and returns near
the charging station via GPS waypoints. The algorithm described in Section 2.5 is then
activated, and the descent maneuver begins once the platform is detected. We chose to use
a resolution of 640 × 480 px, since the Intel RealSense D435i camera can stream images
at 60 Hz with this resolution. This configuration is optimal because the detection and
tracking algorithm can estimate the position of the center of the platform in around 25 ms
and therefore send the control signal at 40 Hz.

During the descent maneuver, the arm is placed in a symmetrical position to minimize
the moments that can be generated by the weight distribution. In addition, the cleaning
liquid tank is empty or nearly empty. Therefore, the descent control system is more precise
due to inertia reduction. This is a key factor since the landing maneuver must be precise
(around 20 cm in the horizontal plane) due to the dimensions of the platform, so control in
the horizontal plane of the UAV becomes crucial.

Figure 16 shows the trajectory followed by the UAV during the descent maneuver.
The state machine and the safety cone that is applied ensure that the UAV cannot land if
the safety conditions are not satisfied.

Figure 16. Trajectory followed by the UAV during landing—example of the cone made for a safer de-
scent.

Nearly 30 descent maneuvers have been made. The visual descent control can be
seen in Figure 17. The mean error obtained during the experiments in the X and Y axes
is 12 cm from the center of the platform. This range is acceptable for the platform to
charge since at least one leg must be within the cell. The results show that the landing
is safe and robust. However, the UAV manages to land at an altitude of 7 m on aver-
age in 25 s. The autonomous cleaning operation video of an insulator can be seen in
Supplementary Materials.
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Figure 17. Control signals sent to the autopilot during landing (blue line) and charging pad position (black line) with the
reference (dotted red line). The UAV aligns with the platform in the horizontal plane while descending at a constant speed.
The second phase of detection begins at 1.8 m, slowing the descent speed and waiting for the optimum horizontal plane
alignment to achieve a safe landing.

4. Conclusions and Future Work

The work presented in this article shows a completely autonomous cleaning system
for power line insulators. This system offers an alternative to reduce risk exposure during
power line maintenance. Additionally, the system can detect when it needs to recharge its
batteries or cleaning liquid, return to the charging station, and land autonomously.

Due to the interference caused by power lines, this system offers more precise local
positioning than GPS in the proposed environment. Given the ability of UAVs to move
nimbly, a good position for cleaning the insulators can be obtained. The system is adaptable
from small to larger aerial robots. Furthermore, any controller for UAVs that allows the
vehicle to be moved using speed commands can be used.

Nevertheless, the application has to be validated with insulators on an energized
power line. The system has been developed not to be dependent on GPS signals near the
power line due to electromagnetic interference; therefore, it is necessary to measure the
optimal range to start local control for cleaning. If a longer range is required, the UAV must
be equipped with a higher resolution camera. In addition, the segmentation network has
to be trained with more images of soiled insulators. Hence, the creation of a larger dataset
is necessary.

Future work should focus on increasing the pump pressure to improve the cleaning.
However, this would change the estimation of the fluid trajectory. By increasing the
velocity at the nozzle outlet, the trajectory would no longer look like a parabola, becoming
an ellipsoid that increasingly depends on air resistance. Therefore, it would be necessary to
replace the method developed in this work with a more detailed study of the jet. It should
be noted that the UAV must compensate this force. This disturbance can be predicted,
which would increase the need for a model-based control that would combine the UAV
model and the model of the force caused by the fluid outflow. In addition, fluid loss in the
tank can be taken into consideration and added to the model. Moreover, it is necessary to
carry out experiments with insulator cleaning liquids to validate the flow transmission and
pump system.
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The system has a margin for improvement. The system will refill the liquid au-
tonomously by targeting an onshore reservoir, reversing the flow in the transmission
system. The landing camera can be replaced by a higher resolution camera with a higher or
equal streaming rate to increase the distance at which the platform is detected. The servo
motors used in the targeting system will be replaced by more precise and smaller encoder
motors. Finally, an application with a simple user interface will be developed to tune the
cleaning, control, and charging parameters.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21248488/s1, Video S1: Autonomous UAV System for Cleaning Insulators in Power Line
Inspection and Maintenance.
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The following abbreviations are used in this manuscript:

UAV Unmanned aerial vehicle
DOF Degrees of freedom
R-CNN Region-based convolutional neuronal network
SSD Single shot multibox detector
GPS Global positioning system
CNN Convolutional neuronal network
PLA Polylactic acid
CAD Computer-aided design
CNN Convolutional neuronal network
PBVS Position-based visual servoing
HSV Hue, saturation, value
ENU East–north–up
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Abstract: Periodic inspection of false ceilings is mandatory to ensure building and human safety.
Generally, false ceiling inspection includes identifying structural defects, degradation in Heating,
Ventilation, and Air Conditioning (HVAC) systems, electrical wire damage, and pest infestation.
Human-assisted false ceiling inspection is a laborious and risky task. This work presents a false
ceiling deterioration detection and mapping framework using a deep-neural-network-based object
detection algorithm and the teleoperated ‘Falcon’ robot. The object detection algorithm was trained
with our custom false ceiling deterioration image dataset composed of four classes: structural defects
(spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems (corrosion,
molding, and pipe damage), electrical damage (frayed wires), and infestation (termites and rodents).
The efficiency of the trained CNN algorithm and deterioration mapping was evaluated through
various experiments and real-time field trials. The experimental results indicate that the deterioration
detection and mapping results were accurate in a real false-ceiling environment and achieved an
89.53% detection accuracy.

Keywords: defect detection; Faster R-CNN; deep learning; object detection; IoRT; inspection robot

1. Introduction

False ceiling inspection is one of the most required inspections for essential mainte-
nance and repair tasks in commercial buildings. Generally, a false ceiling is built with
material such as Gypsum board, Plaster of Paris, and Poly Vinyl Chloride (PVC) and used
to hide ducting, messy wires, and Heating, Ventilation, and Air Conditioning (HVAC)
systems. However, poor construction and the use of substandard material in false ceilings
require periodic inspection to avoid deterioration. Structural defects, degradation in HVAC
systems, electrical damage, and infestation are common potential building and human
safety hazards. Human visual inspection is a common technique used by building main-
tenance companies, where trained safety inspectors will audit the environment of a false
ceiling. However, deploying human visual inspection for a false ceiling environment has
many practical challenges. It requires a highly skilled inspector to access a complex false
ceiling environment. Workforce shortage due to safety issues and low wages is another
challenge faced by false ceiling maintenance companies. These facts highlight the need
for an automated, cost-effective, and exhaustive inspection of false ceilings to prevent
such risks.

Hence, the aim of this research is to automate the inspection process to detect and map
various deterioration factors in false ceiling environments. Further, the literature survey
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(Section 2) confirms a research gap between robot-assisted inspection and deep learning
frameworks for false ceiling inspection and maintenance. Thus, this work presents an
automated false ceiling inspection framework using a convolutional neural network trained
with our false ceiling deterioration image dataset composed of four classes, structural
defects (spalling, cracks, pitted surfaces, and water damage), degradation in HVAC systems
(corrosion, molding, and pipe damage), electrical damage (frayed wires), and infestations
(termites and rodents). Further, the inspection task is performed with the help of our
in-house-developed crawl class robot, known as the ‘Falcon’, with a deterioration mapping
function using Ultra-Wideband (UWB) modules. The deterioration mapping function
marks the class of deteriorations with locations on a map for the inspection and maintenance
of false ceilings.

This manuscript is organized as follows; after explaining the importance and contribu-
tions of the study in Section 1, Section 2 presents a literature review, and Section 3 presents
an overview of the proposed system. Section 4 discusses the experimental setup and the
results. Section 5 includes a discussion. Section 6 concludes.

2. Related Work

In recent years, various semi- or fully automated techniques have been reported in the
literature for narrow and enclosed space inspections for building maintenance tasks. Here,
computer vision algorithms were used for automatically detecting defects from images
collected by inspection tools such as borescope cameras [1,2] and drones [3,4]. However,
borescope cameras and drone-based methods have many practical difficulties when used
as inspection tools in false ceiling environments. Because false ceiling environments have
many protruding elements such as electrical wire networks, gas pipes, and ducts, it is also
difficult to fly drones to inspect the complex environment of a false ceiling.

Robot-based inspection is a better solution than borescope cameras and drone-based
inspection. It has been widely used for various narrow and enclosed space inspection
applications, such as crawl space inspection [5,6], tunnel inspection [7,8], drain inspection
[9,10], defect detection in glass facade buildings [11,12], and power transmission line fault
detection [13]. Gary et al. proposed a q-bot inspection robot for autonomously surveying
underfloor voids (floorboards, joists, vents, and pipes). It uses a mask Region Convolutional
Neural Network (mask-RCNN) approach with a two-stage transferring learning method.
It was able to detect with an accuracy of 80% [5]. Self-reconfigurable robot ’Mantis’ was
used for crack detection, and glass facade cleaning in high-rise buildings [11,14], where a
CNN-based deep learning framework with 15 layers is used for detecting cracks on glass
panels. Similarly, a steel climbing robot was developed for steel infrastructure monitoring.
The authors developed a steel crack detection algorithm using steel surface image-stitching
and a 3D map building technique. The steel crack detection algorithm was able to achieve a
success rate of 93.1% [15]. In [16], Gui et al. automated a defect detection and visualization
task for airport runway inspection. The proposed novel robotic system employed a camera,
Ground Penetrating Radar (GPR), and a crack detection algorithm based on images and
GPR data. An F1-measure of 70% and 67% was achieved for crack detection and subsurface
defect detection, respectively. In [17], Perez et al. aimed at detecting building defects
(mold, deterioration, and stains) using convolutional neural networks (CNNs). The authors
presented a deep-learning-based detection and localization model employing VGG-16 to
extract and classify features. The tests demonstrated an overall detection accuracy of 87.50%.
Xing et al., in [18], proposed a CNN-based method for workpiece surface defect detection.
The authors designed a CNN model with symmetric modules for feature extraction and
optimized the IoU to compute the loss function of the detection method. The average
detection accuracy of the CNN on the Northeastern University-Surface Defect Database
(NEU-CLS) and on self-made datasets was 99.61% and 95.84%, respectively. Similary,
Xian et al. (in [19]) presented automatic metallic surface defect detection and recognition
using a CNN. The authors designed a novel Cascaded Autoencoder (CASAE) architecture
for segmenting and localizing defects. The segmentation results demonstrated an IoU score
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of 89.60%. Cheon et al. presented an Automatic Defect Classification (ADC) system for
wafer surface defect classification and the detection of unknown defect class [20]. The
proposed model adopted a single CNN model and achieved a classification accuracy of
96.2%. Finally, Civera et al. proposed video processing techniques for the contactless
investigation of large oscillations to deal with geometric nonlinearities and light structures.

Though several works are available for narrow and enclosed space inspection applica-
tions using robot and computer vision algorithms, the defect detection and mapping of
false ceilings are not yet widely studied. In the literature, very few works have reported
robot-assisted ceiling inspection. Robert et al. in [21] introduced a fully autonomous
industrial aerial robot using a top-mounted omni wheel drive system and an AR marker
system. The proposed system can perform high precision localization and positioning to
perform an ink-marker placement task for measuring and maintaining the ceiling. In [22],
a flexible wall and ceiling climbing robot with six permanent magnetic wheels is proposed
by Yuanming et al. to climb vertical walls and reach overhead ceilings. In [23], Ozgur et al.
developed a 16-legged palm-sized climbing robot using flat bulk tacky elastomer adhesives.
The proposed robot has a passive peeling mechanism for energy-efficient and vibration-free
detachment to climb in any direction in 3D space. In [24], a self-reconfigurable false ceiling
inspection robot is presented using an induction approach [25,26] and a rodent activity
detection task [6]. A Perimeter-Following Controller (PFC) based on fuzzy logic was in-
tegrated into the robot to follow the perimeter of the false ceiling autonomously, and an
AI-enabled remote monitoring system was proposed for rodent activity detection in false
ceilings. All of these robots used for various purposes are summarized in Table 1. However,
this research mainly focused on the robot design for various crawl spaces and does not
involve the deterioration detection and mapping of false ceilings.

Table 1. Summary of research.

Reference Typology of the Platform Aim

Gary et al. [5] Wheeled Robot Detect common features of
underfloor void

Balakrishnan et al. [6] Tracked Robot Rodent Activity Monitoring

Protopapadakis et al. [7] Wheeled Robot Crack detection for
tunnel inspection

Menendez et al. [8] Wheeled Robot Tunnel structural inspection

Palanisamy et al. [9] Wheeled Robot Drain Structural
Defect Detection

Melvin et al. [10] Wheeled Robot Drain blockage inspection

Kouzehgar et al. [11] Wheeled Robot Automatic glass
crack detection

Hung et al. [15] Wheeled Robot Inspection of steel structures
and bridges

Gui et al. [16] Wheeled Robot Airport runway inspection

Ladig et al. [21] Aerial Robot Platform to do high precision
localization and positioning

Ozgur et al. [23] Sixteen-legged climbing robot To climb in any direction in
3D space

Hayat et al. [24] Reconfigurable wheeled robot False-ceiling inspection

The literature survey indicates that there is a research gap in the robot-assisted false
ceiling inspection field. Therefore, this work proposes a false ceiling inspection and deteri-
oration mapping framework using a Deep-Learning (DL)-based deterioration detection
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algorithm and our in-house-developed teleoperated reconfigurable false ceiling inspection
robot, known as the ‘Falcon’.

3. Overview of the Proposed System

Figure 1 shows an overview of the false ceiling inspection and deterioration mapping
framework. Our in-house-developed crawl class Falcon robot was used for false ceiling
inspection, and a deep-learning-based object detection algorithm was trained for deteriora-
tion detection from robot captured images. Further, a UWB localization module was used
to localize the deterioration location and generate a deterioration map of a false ceiling.
The detail of each module and functional integration is given as follows.

Figure 1. Overview of the proposed system.

3.1. The Falcon Robot

A false ceiling panel is built using a fragile material such as Gypsum board or Plaster
of Paris. Moreover, a false ceiling environment is crowded with components such as piping,
electrical wiring, suspended cables, and protruding elements. Therefore, the Falcon was
designed as a lightweight robot that can easily traverse obstacles. Furthermore, the camera
used for image capturing or recording videos of the false ceiling environment is able to tilt
the angle from 0 to 90 degrees for better accessibility in the crawled spaces. During the
development stage, three versions of the Falcon robot were built due to changing require-
ments and design considerations, shown in Figure 2. In Version 2, the track mechanism is
reinforced with a fork structure to avoid slippage while crossing obstacles in a false ceiling
environment. Furthermore, a closed-form design approach was applied due to excessive
dust-settling on electronic components. In Version 3 (as shown in Figure 3), a more precise
IMU and more powerful motor is used. The robot height was further reduced to travel in
spaces with an 80 mm height. All of the specifications of the Falcon robots are detailed in
Table 2. The Falcon robot was powered with a 3 × 3.7 V, 3400 mAh battery that operates
between 0.5 to 1.5 h with full autonomy functionalities. The operating range of the Falcon
robot is directly determined by energy consumed by sensors and actuators, such as cameras,
IMUs, cliffs, and motors. During autonomous operations, the motor operating at 1.6 A
and 12 V consumes 33.2 W. Considering the battery power of 65.3 W, motors consume the
highest fraction of the energy used for locomotion and to overcome tall obstacles. Further,
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the exploration tasks during false ceiling inspection also drain the energy, affecting the
range of autonomy.

Figure 2. Different Version of Falcon Robot (Version 1, 2 and 3).

(a) Front View (b) Side View

(c) Isometric View

Figure 3. Different view of the Falcon Robot (Version 3).

Locomotion Module: An important design consideration for a false ceiling robot is
the form factor to overcome obstacles with a height of 55 mm and to traverse through
low hanging spaces under 80 mm. In order to overcome these narrow spaces and tall
obstacles, a locomotion module in the form of tracks that has maximized the contact area
was used. The tracks extended along the dimension of the vehicle and were configured to
be 236 (L) × 156 (W) × 72 (H) [mm × mm × mm]. The Falcon can operate regardless of
the direction it flips over, as both sides of the locomotion modules are consolidated with
hemispherical attachments to avoid stabilizing laterally. However, the operational terrain
of the false ceiling may impose uncertainty on the Falcon robot. Therefore, the motors with
higher specifications were chosen; e.g., a safety factor of 2 on a maximum inclined slope of
12 degrees.

Control system: A small-footprint, low-power ARM, Cortex-M7-powered, Teensy-
embedded computing system was used as the onboard processor for the Falcon robot.
It processes the velocity commands from the user and computes motor speeds using an
inverse kinematic model. The MQTT server was employed to send the velocity command
from the control station. In addition, the control unit is responsible for vital safety layer
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functionality to prevent the free-fall of the robots. Thus, the processor calibrates the
IMU and cliff sensors to differentiate openings in the ceilings from the false noises while
overcoming obstacles.

Table 2. Technical specifications of the Falcon robot.

Description Specification

Dimension [L × W × H] 0.236 m × 0.156 m × 0.072 m

Weight (including battery) 1.3 kg

Type of Locomotion Drive Track

Top & Bottom Ground Clearance 0.011 m, 0.011 m

Operating Speed 0.1 m/s

Maximum Obstacle Height 0.055 m

Operational Duration 0.5 h–0.75 h

Battery 3-cell Lithium Ion

Operation Mode Teleoperation (with integrated sensors to detect
falls and stops autonomously)

Communication Mode Wi-Fi through a local MQTT server

Camera Specifications (onboard light source) VGA 640 × 480, up to 30 fps, 60 degree view
angle, 20 cm-infinity focusing range

System Architecture

Figure 4 illustrates the system architecture of the Falcon robot. It consists of the
following units: (1) a locomotion module, (2) a control unit, (3) a power distribution
module, (4) a wireless communication module, and (5) a perception sensor.

Figure 4. System architecture of the Falcon.

Perception Module The WiFi camera module operates with a 5 V power rating and a
640 × 480 pixel density at 30 fps. The encoded video feed is a recorder and is additionally
used to process the data through computer vision and machine learning algorithms to iden-
tify defects. Since the perception system relies heavily on lighting conditions, a NeoPixel
stick with an 8∼50 RGB LED strip is used as the robot’s light source. Furthermore, a
dedicated router is used to avoid data loss and for improved data security. Finally, a titling
camera (up to 90 degrees) was incorporated considering broader field of view requirements
using a servo motor controlled by A Teensy-embedded computing system.
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3.2. Deterioration Detection Algorithm

Generally, deterioration factors in false ceiling environments are tiny and cover only a
small number of the pixels of an image. Therefore, there is a requirement of a detection
algorithm able to detect small objects to mitigate overlap or pixelated issues. Furthermore,
the information extracted from images is lost due to multiple layers of the convolution
neural network. The inspection algorithm needs an extensive, accurate, and apt framework
with a small object detection capability. A Faster R-CNN model is an optimal framework
when compared with similar CNN architectures and was used to detect small deterioration
factors of the false ceiling environment in our case study [9,10]. Figure 5 shows an overview
of the Faster R-CNN framework. Its architecture comprises three main components: the
feature extractor network, the Region Proposal Network (RPN), and the detection network.
All three components are briefly described in the following section.

Figure 5. Functional block diagram of the deterioration detection algorithm.

3.2.1. Feature Extractor Network

In our case study, Inception v2 performed the feature extraction task. It is an upgraded
version of Inception v1, providing better accuracy and reducing computational complexity.
Here, the input image size was 768 × 1024, and a total of 42 deep convolutional layers
were used to build the feature extractor network. The number of feature maps directly
controlled the task complexity, so an optimal 1024-size feature map (extracted from Layer
37 via a transfer learning scheme on a pre-trained dataset of COCO [27]) was fed into the
Faster R-CNN. Further, in Inception v2, filter banks were expanded to reduce the loss of
information, known as a ’representational bottleneck.’ Finally, the convolution 5 × 5 and
3 × 3 was factorized into two 3 × 3 convolutions and a combination of 1 × 3 and 3 × 1
convolutions, respectively, to boost the performance and reduce the computational cost.
Further, Table 3 summarizes the layer details and input dimensions.
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Table 3. Inception v2 backbone.

Layer Details Input Dimensions

Conv 299 × 299 × 3

Conv 149 × 149 × 32

Conv 147 × 147 × 32

Pool 147 × 147 × 64

Conv 73 × 73 × 64

Conv 71 × 71 × 80

Conv 35 × 35 × 192

3× Inception module A 35 × 35 × 288

5× Inception module B 17 × 17 × 768

2× Inception module C 8 × 8 × 1280

Pool 8 × 8 × 2048

Linear 1 × 1 × 2048

Softmax 1 × 1 × 1000

3.2.2. Region Proposal Network

The Region Proposal Network (RPN) shares the output of the feature extractor network
to the object detection and classification network. The RPN takes the feature map as an
input (the output of the feature extractor network) and generates a bounding box with an
objectness score using the anchor box technique first proposed by Shaoqing Ren et al. [28].
The anchor boxes are predefined, fixed-size boxes and detect objects of varying sizes and
overlapping objects. It performs a 3× 3 sliding window operation to generate anchor boxes
in a 256-size feature map. Nine anchor boxes can be created from the combinations of sizes
and ratios. Further, a stride of 8 (each kernel is offset by eight pixels from its predecessor)
is used to determine the actual position of the anchor box in the original image. The output
of the above convolution is fed into two parallel convolution layers, one for classification
and the other for the boundary box regression. Finally, Non-Max Suppression (NMS) is
applied to filter out the overlapping bounding boxes based on their objectness scores.

3.2.3. Detection Network

The detection network consists of the Region of Interest (RoI) pooling layer and a fully
connected layer. The shared feature map from the feature network and the object proposals
generated by the RPN are fed into the RoI pooling layer to extract fixed-sized feature maps
for each object proposal generated by the RPN. The fixed-sized feature maps are then fed
two different fully connected layers with a softmax function. The first fully connected layer
seeks to classify the object proposals into one of the object classes, plus a background class
for removing bad proposals (N + 1 units, where N is the total number of object classes).
The second fully connected layers seeks to better adjust the bounding box for the object
proposal according to the predicted object class (4N units for a regression prediction of the
xcenter, ycenter, widthcenter, and heightcenter of each of the N possible object classes). Similar
to the RPN, NMS is applied to filter out redundant bounding boxes and retain a final list of
objects using a probability threshold and a limit on the number of objects for each class.

3.3. Deterioration Mapping

In our case study, the deterioration mapping function was accomplished using the
UWB module. Explicitly, the UWB module was employed to track the mobile robot and
localize the deterioration position. This location estimation feature was utilized and com-
bined with the object detection module to identify, locate, and mark the deteriorations
on the map of the false ceiling. At least three beacons must be installed where the actual
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number of beacons required is dependent on the complexity of the false ceiling infrastruc-
ture. In addition, sensor fusion was used to reduce localization errors and to calculate
the exact position. It combines wheel odometry, IMU data, and UWB localization data to
offer a more accurate location estimate. The beacon map was generated with the origin
(0,0) as the location of the first beacon initiated and the relative position of other stationary
beacons as landmarks. The mobile beacons within this relative map reflect the real-world
location of the Falcon robot. As the robot explores and identifies deteriorations using the
deterioration detection module, the location of the detected deterioration’s class is marked
on the beacon map with their corresponding color code. It marks the deterioration’s class
with an accuracy of a 30 cm radius on the map and is useful for the efficient inspection and
maintenance of false ceilings.

3.4. Remote Console

The remote console is used to monitor and control the mobile Falcon robot for per-
forming experiments. The primary mode of interaction happens via a transmitter and
receiver system and directly in nature. The user controls the machine by sending signals
that are transmitted through a remote. In our case study, the Taranis Q X7 from FrSky was
used considering full telemetry capabilities as well as the RSSI signal strength feedback.
The battery compartment uses two 18650 Li-Ion batteries and can be balance-charged via
the Mini USB interface.

4. Experiments and Results

This section elaborates on the experimental setup and results of the proposed false
ceiling deterioration detection and mapping framework. The experiments were carried out
in five steps: dataset preparation, training and validation, prediction with a test dataset, a
real-time field trial, and a comparison with other models.

4.1. Data-Set Preparation

The false ceiling deterioration training dataset was prepared by collecting images from
various online sources and defect image dataset libraries (a surface defect database [29] and
a crack image dataset [30,31]). In our dataset collection process, the common false ceiling
deteriorations are categorized into four classes, namely, structural defects (spalling, cracks,
and pitted surfaces), infestation (termites and rodents), electrical damage (frayed wires),
and degradation in HVAC systems (molding, corrosion, and water leakage). Five thousand
images were collected from an online source, and around 800 images were collected from a
real false ceiling environment to train the deep learning algorithm. The CNN model was
trained and tested using images with a 768 × 1024 pixel resolution. The “LabelImg” GUI
was used for bounding boxes and class annotations. Annotations were recorded as XML
files in the PASCAL Visual Object Classes (VOC) format.

Further, the data augmentation process was applied on labeled images to help control
the over-fitting and class imbalance issues in the model training stage. Data augmentation
processes such as horizontal flips, scaling, cropping, rotations of the image, blurring,
grayscale colors, and color enhancing were applied to the collected images. Figure 6 shows
a sample of the data augmentation of one image. Further, Table 4 elaborates the settings of
the various types of augmentations applied.

4.2. Training and Validation

The object detection model, the Faster R-CNN, was built using the TensorFlow (v1.15)
API and the Keras wrapper library. The pre-trained Inception V2 model was used as a
feature extraction module. It was trained on the COCO dataset. A Stochastic Gradient
Descent (SGD) optimizer was used for the training of the Faster R-CNN module. The
hyper-parameters used were 0.9 for momentum, an initial learning rate of 0.0002, which
decays over time, and a batch size of 1.
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(a) Blurred (b) Gray Scale Color (c) Enhance Color

(d) Horizontal Flip (e) Scale (f) Rotated

Figure 6. Sample of data augmentation of one image.

Table 4. Augmentation types and settings.

Augmentation Type Augmentation Setting

Blurring gaussianblur (from sigma 1.0× to 3.0×)

Grayscale individual rgb spectrum (from factor 0 to 1.5×)

Color Enhancing contrast (from 0.5× to 1.5×)

Horizontal Flip flip the image horizontally

Scaling 0.5× to 1.5×
Rotation from −45 degree to +45 degree

Translation X-axis (−0.3× to 0.3×) Y-axis (−0.3× to 0.3×)

The model was trained and tested on the Lenovo ThinkStation P510. It consists of an
Intel Xeon E5-1630V4 CPU running at 3.7 GHz, 64 GB of Random Access Memory (RAM),
and a Nvidia Quadro P4000 GPU (1792 Nvidia CUDA Cores and 8 GB GDDR5 memory
size running at a 192.3 GBps bandwidth). The same hardware is used to run as a local
server to allow the Falcon robot to carry out inference during real-time testing.

The K-fold (here K = 10) cross-validation technique was used for validating the dataset
and model training accuracy. In this evaluation, the dataset was divided into K subsets,
and K−1 subsets were used for training. The remaining subset was used for evaluating
the performance. This process was run K times to obtain the mean accuracy and other
quality metrics of the detection model. K-fold cross-validation was performed to verify
that the images reported were accurate and not biased towards a specific dataset split. The
images shown were attained from the model with good precision. In this analysis, the
model scored a 91.5% mean accuracy for k = 10. This indicates that the model is not biased
towards a specific dataset split.

4.3. Prediction with the Test Dataset

The trained model’s deterioration detection and classification accuracy were evaluated
using the test dataset. In this evaluation process, 100 images were tested from each class.
These test datasets were not used in the training and cross-validation of the model. Figure 7
shows the detection results of the given test dataset.
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The experimental results show that the deterioration detection algorithm accurately
detected and classified the deterioration in the given test images with a high confidence
level average of 88%. Further, the model classification accuracy was evaluated using
standard statistical metrics such as accuracy (Equation (1)), precision (Equation (2)), recall
(Equation (3)), and Fmeasure (Equation (4)).

Accuracy(Acc) =
tp + tn

tp + f p + tn + f n
(1)

Precision(Prec) =
tp

tp + f p
(2)

Recall(Rec) =
tp

tp + f n
(3)

Fmeasure(F1) =
2 × precision × recall

precision + recall
(4)

Here, tp, f p, tn, f n represent the true positives, false positives, true negatives, and false
negatives, respectively, as per the standard confusion matrix. Table 5 provides the statistical
measure results of the offline test. Figure 8 demonstrates the graphical representation of
Table 5 for improved visualization.

Table 5. Statistical measures for the deterioration detection framework (the proposed framework).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 93.60 92.77 93.16 88.70
Crack 94.77 95.32 95.04 91.50

Pitted Surface 95.70 93.13 94.39 89.70
Water Damage 92.11 89.74 90.91 86.00

Degradation in HVAC
Molding 91.95 94.74 93.32 90.20

Corrosion 91.88 93.63 92.74 88.50
Pipe Damage 91.89 90.67 91.28 87.00

Infestation Termite 96.59 92.39 94.44 90.10
Rodent Activity 95.01 93.63 94.31 91.52

Electrical Damage Fray wires 96.13 93.29 94.69 92.23

The statistical measures experimental result indicate that the proposed framework
detected structural defects with an average accuracy of 88.9%, degradation in the HVAC
system at an 88.56% accuracy, infestation at a 90.75% accuracy, and electrical damage at a
92.2 % accuracy.

4.4. Real-Time Field Trial

The real-time field trial experiments were performed in two different false ceiling
environments, including the Oceania Robotics prototype false ceiling testbed and the SUTD
ROAR laboratory real false ceiling. The false ceiling testbed consists of frames, dividers,
pipes, and other common false ceiling elements. For experimental purposes, various
deteriorations in false ceilings such as frayed wire, damaged pipes, and termite damage
were manually created and placed in the prototype environment. Some of the defects, such
as pitted surfaces and spalling, were fabricated using printed images of these defects. These
printed images were glued at various locations in a false ceiling testbed for experimental
purposes. Further, to track the robot position and identify the false ceiling deterioration
location, a mobile beacon was placed on the top of the Falcon, and stationary beacons
were mounted on projecting beams or sidewalls. The mobile beacons were the transmitters
operating in unique frequencies, while all of the stationary beacons operated in the same
frequency and behaved as receivers. The location of the moving beacons was calculated
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based on triangulating the distances from stationary beacons, and the current location
was updated at a frequency of 16 Hz. With an accuracy of up to 2 cm and a bandwidth
accommodating up to six mobile devices seamlessly, the beacon system implemented was
used for false ceiling deterioration mapping and localization.

(a) Spalling (b) Crack (c) Pitted Surface

(d) Water Damage

(e) Corrosion (f) Molding (g) Pipe Damage

(h) Termite

(i) Rodent (j) Fray Wire

Figure 7. Structural Defects (a–d), degradation in HVAC system (e–g), infestation (h,i), electrical
damage (j) during Offline Testing.
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Figure 8. Graphical representation of the statistical measures of the proposed framework.

Figures 9 and 10 show the Falcon robot in the prototype of the false ceiling (Oceania
Robotics test bed), while Figure 11 shows the robot in a real false ceiling environment
(SUTD ROAR Laboratory). During the inspection, the robot was controlled by a mobile
GUI interface, and the robot’s position and the defect region were localized through UWB
modules fixed in the false ceiling environment. The robot was paused at each stage for a
few seconds to capture better quality images in these real-time field experiments.

(a) False Ceiling Testbed (b) Robot Falcon in Testbed

Figure 9. Falcon and the false ceiling testbed prototype.
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(a) (b) (c)

(d)

Figure 10. Falcon’s performance on the false ceiling prototype at Oceanica Robotics. (a) Falcon in
Prototype of False Ceiling (Camera at 0 degree); (b) Falcon in Prototype of False Ceiling (Camera at
90 degree); (c) Image collected by Falcon; (d) Falcon in Prototype of False Ceiling (Zoomed out).

(a) Falcon at Location 1 (b) Falcon at Location 2

Figure 11. Falcon’s performance on the false ceiling at the SUTD ROAR Laboratory.
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The captured images were transferred to a high-powered GPU-enabled local server for
false inspection tasks via WiFi communication. Figure 12 depicts the real-time filed trial de-
terioration detection results of the false ceiling testbed, and its localization results are shown
in Figure 13. These deterioration-detected image frame locations were identified by fusing
the beacon coordinates, wheel decoder data, and IMU sensor data on the Marvel Mind
Dashboard tracking software. Figure 13 also shows the deterioration location mapping
results for the real-time field trials, where the color codes indicate the class of deterioration.

(a) Spalling (b) Crack (c) Pitted Surface (d) Molding

(e) Pipe Damage (f) Termite (g) Rodent (h) Fray Wire

Figure 12. Structural defects (a–c), degradation in the HVAC system (d,e), infestation (f,g), and
electrical damage (h) during online testing.

Figure 13. Beacon maps with static beacons and a mobile beacon.
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The findings of the experiment reveal that the Falcon robot’s maneuverability was
stable. It could move around a complex false ceiling environment and accurately capture
it for false ceiling deterioration identification. The detection algorithm detected most of
the false ceiling deterioration in the real-time field trial with a good confidence level and
scored an 88% mean detection accuracy. Furthermore, the Falcon robot’s position on the
false ceiling could be reliably tracked using the UWB localization results. This will further
help inspection teams to identify defects and degradation efficiently.

5. Discussion

The proposed system’s performance is discussed in this section by a comparison with
two models (Faster Inception ResNet and Faster Resnet 152) and other existing studies.
The comparison analysis findings are shown in Tables 6–8. The three detection frameworks
were trained on the same image dataset and with the same number of epochs. Here, overall
detection accuracies of 86.8% for the Faster Resnet 152 and 86.53% for the Faster Inception
Resnet were observed. The detection accuracy of these two models was relatively low due
to a high false-positive rate and misclassification issues due to similar deterioration factors
and the impact of object illumination. These issues can be further resolved by retraining
the algorithm with misclassified classes and applying nonlinear detrending techniques [32].
Further, Figure 14 shows a graphical representation of Table 8 for improved visualisation.

Table 6. Statistical measures for the deterioration detection framework (Faster Resnet 152).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 87.12 86.11 86.61 86.4
Crack 90.87 90.47 90.67 90.2

Pitted Surface 85.61 84.8 85.2 84.2
Water Damage 86.79 87 86.89 84.6

Degradation in HVAC
Molding 90.69 91.09 90.89 89.8

Corrosion 88.86 89.27 89.07 87.6
Pipe Damage 85.51 84.89 85.2 83.4

Infestation Termite 85.55 86.56 86.05 84.8
Rodent Activity 90.38 88.99 89.68 90.8

Electrical Damage Fray wires 90.54 88.86 89.7 86.2

Table 7. Statistical measures for the deterioration detection framework (Faster Inception Resnet).

Category Class Precision Recall F1 Accuracy

Structural Defect

Spalling 88.19 88.81 88.5 85.8
Crack 92.51 92.92 92.72 90.4

Pitted Surface 86.57 85.95 86.26 83.9
Water Damage 87.8 86.97 87.38 84.3

Degradation in HVAC
Molding 92.05 92.46 92.27 90.2

Corrosion 88.84 87.61 88.22 87.2
Pipe Damage 86.76 87.17 86.97 84.1

Infestation Termite 85.16 84.13 84.64 83.2
Rodent Activity 93.16 92.54 92.85 91.1

Electrical Damage Fray wires 87.21 88.03 87.62 85.1
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Table 8. Comparison with other object detection frameworks.

Class Precision Recall F1 Overall Accuracy

Faster Inception Resnet 94.92 93.3 94.11 86.5

Faster Resnet 152 92.9 93.21 93.05 86.8

Faster Inception (Proposed Model) 93.96 92.93 93.43 89.53

Figure 14. Graphical representation of the comparison with other detection frameworks.

The cost of training and testing is shown in Table 9. In that analysis, we found that the
proposed model also had a lower execution time compared to the Faster Inception Resnet
and Faster Resnet 152 models. Because of this, the framework that has been proposed is
better suited for false ceiling deterioration detection tasks.

Table 9. Computational cost analysis.

Algorithm
Training Time

(Hours:Minutes)
Speed (Milliseconds)

Faster Inception Resnet 23:20 647

Faster Resnet 152 19:48 135

Faster Inception
(Proposed Model) 16:18 68

Table 10 shows the accuracy of various defect detection algorithms based on different
classes. However, a fair comparison is lacking because their algorithm, datasets, and
training parameters are not the same. Finally, the proposed method involves robotic
inspection, which is another contribution with respect to the state of the art.
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Table 10. Comparison of results with other methodologies in related work.

Reference Algorithm Accuracy

Gary et al. [5] Mask-RCNN 80.00%

Hung La et al. [15] CNN-based image stitching and 3D registration 93.10 %

Gui et al. [16] CNN-based 70.00 %

Perez et al. [17] VGG-16 87.50 %

Xing et al. [18] CNN model (SCN) and optimised IoU 85.84%

Xian et al. [19] Cascaded encoder (CASAE) 89.60%

Cheon et al. [20] Single CNN 96.20 %

Proposed Method Faster R-CNN Inception 89.53%

6. Conclusions

False ceiling defect detection and mapping were presented using our in-house-developed
Falcon robot and the Faster Inception object detection algorithm. The efficiency of the pro-
posed system was tested through a robot maneuverability test and showed defect detection
accuracy in offline and real-time field trials. The robot’s maneuverability was tested in two
different false ceiling environments: the Oceania Robotics prototype false ceiling testbed
and the SUTD ROAR laboratory real false ceiling. The experimental results proved that the
Falcon robot’s maneuverability was stable and that its defect mapping was accurate in a
complex false ceiling environment. Further, the defect detection algorithm was tested on
a test dataset, and real-time false ceiling images were collected by the Falcon robot. The
experimental results show that Faster Inception has a good trade-off between detection
accuracy and computation time, with a detection accuracy of 89.53% for detecting deterio-
ration in real-time Falcon-collected false-ceiling-environment video streams, whereas the
average detection accuracies of Faster Resnet 152 and Faster Inception Resnet were 86.8%
and 86.53%, respectively. Further, Faster Inception required only 68 ms to process one
image on the local server, which is lower compared with other algorithms, including Faster
Inception Resnet and Faster Resnet 152. Further, the mapping results precisely indicated the
location of deterioration on the false ceiling. Thus, it can be concluded that the suggested
method is more suited for defect detection in false ceiling environments and can improve
inspection services. In our future work, we plan to add more features to the false ceiling
inspection framework, such as olfactory contamination detection.
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Abstract: The complete coverage path planning is a process of finding a path which ensures that a
mobile robot completely covers the entire environment while following the planned path. In this
paper, we propose a complete coverage path planning algorithm that generates smooth complete
coverage paths based on clothoids that allow a nonholonomic mobile robot to move in optimal
time while following the path. This algorithm greatly reduces coverage time, the path length, and
overlap area, and increases the coverage rate compared to the state-of-the-art complete coverage
algorithms, which is verified by simulation. Furthermore, the proposed algorithm is suitable for
real-time operation due to its computational simplicity and allows path replanning in case the robot
encounters unknown obstacles. The efficiency of the proposed algorithm is validated by experimental
results on the Pioneer 3DX mobile robot.

Keywords: mobile robot; complete coverage; path planning; path smoothing; velocity profile optimization

1. Introduction

The task of a Complete Coverage Path Planning (CCPP) algorithm is to generate such a
path for a mobile robot that ensures that the robot completely covers the entire environment
while following the planned path. There are many real-world applications that require a
CCPP algorithm, such as floor cleaning [1–3], demining [4,5], automated harvesting [6],
lawn mowing [7], autonomous underwater exploration [8,9], etc. To achieve efficient
coverage in these applications, the planned path must satisfy some requirements, where the
most important ones are maximizing the coverage rate, minimizing the complete coverage
time, path length, overlap area, and energy consumption of the robot, and rapid path
replanning if the environment changes during the execution of the coverage task. Many
CCPP algorithms have been developed, but none of them meet all the above requirements,
so there is still room for improvement.

In this paper, we propose a CCPP algorithm which generates smooth complete cover-
age paths that allow nonholonomic mobile robots to move in optimal time while following
them (we called it SCCPP). Moreover, the proposed SCCPP algorithm is suitable for real-
time operation due to its computational simplicity and allows path replanning in case the
robot encounters unknown obstacles. The existing coverage algorithms in the literature
are either non-smooth so they have increased coverage redundancy due to the non-ideal
path following, or they have slow path planning and replanning. The SCCPP algorithm
combines two of our previous works: the fast coverage planning algorithm [10] with the
fast clothoid calculation [11]. The first algorithm is our replanning spanning tree coverage
(RSTC) algorithm that generates a path in a low-resolution occupancy grid map to reduce
the computational complexity and minimize the overlap rate. The path is the shortest
possible coverage path in the corresponding graph, which contains sharp 90° turns. To
avoid stopping and rotating the robot at turning points, we used clothoids to smooth the
path generated by the RSTC algorithm. The main advantage of the clothoids is the linear
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change in their curvature, which allows the nonholonomic robot to move in a time-optimal
manner while following such a smoothed path.

The SCCPP is the real-time traversable collision-free complete coverage path plan-
ning algorithm based on clothoids, which gives minimal path length, the coverage time,
and overlap area and maximal coverage rate compared to the state-of-the-art coverage
algorithms. Such a path is suitable and feasible for nonholonomic mobile robots.

The remaining of the paper is structured as follows. Section 2 presents the overview of
the complete coverage path planning algorithms. The proposed smooth complete coverage
path planning algorithm is described in Section 3. The simulation and experimental results
are given in Sections 4 and 5, respectively, followed by the conclusion of the paper.

2. Related Work

One of the earliest works on complete coverage path planning is presented in [12],
which defines requirements for covering a continuous two-dimensional (2D) environment.
Typically, methods for CCPP tasks assume that the environment is known, including the
obstacle configuration. A number of methods perform an exact cell decomposition of the
environment, e.g., [13–15], where free space is decomposed into trapezoidal, rectangular, or
triangular cells. The path that completely covers each cell (regarding their shape) can lead
to increased coverage redundancy and is time-consuming when the environment changes.
Simpler and faster are methods that perform an approximate cell decomposition where the
environment is represented with a 2D occupancy grid map, i.e., equally distributed square
grid of discrete cells [16–19].

The size of the square grid cells directly affects the replanning rate and the coverage
rate. These two requirements are opposite, i.e., larger cell sizes allow real-time replanning
due to lower computational complexity, while smaller ones ensure higher coverage rate
at the cost of higher computational complexity. Fast replanning algorithms usually select
the cell size equal to the footprint of the robot, while the cell size is much smaller in the
algorithms that ensure a high coverage rate, usually from 2 to 10 cm for the cell side [20,21].

A graph can be constructed from the occupancy grid map, where the grid cells are
the nodes and the connections between adjacent grid cells are the edges. An optimal
CCPP would ensure that the robot completely covers the entire environment by visiting
all nodes in the graph only once, but this is a NP -hard problem, known as the Traveling
Salesman Problem (TSP) [22]. Therefore, CCPP algorithms use approximate or heuristic
solutions (see Figure 1). The complete coverage path planning algorithm based on a numeric
potential field approach called the path transform (PT) can be used for the TSP solution [16].
Ant colony optimization (ACO) [23,24] is based on artificial ants colony that are able to
generate the shortest feasible path of the TSP successively. Another solution for TSP can
be determined by using the Hopfield neural network (HNN) for an optimization that
consists of a single layer containing one or more fully connected recurrent neurons [25–27].
The Spanning Tree Coverage (STC) algorithm [28] and the Replanning Spanning Tree
Coverage (RSTC) algorithm [10] produce the optimal coverage path in linear time. The
CCPP algorithms on a high-resolution occupancy grid map have increased coverage rate.

The Complete Coverage D* (CCD*) algorithm [2] has a high coverage rate, which leads
to increased coverage redundancy when the environment changes. The hex-decomposition-
based coverage planning (HDCP) algorithm [29] for unknown environments plans smooth
paths for Dubins vehicles to follow at constant velocity in real-time. Adaptive coverage path
planning [30] is aiming to achieve complete coverage with minimal path length and it is
efficient in dynamic environments. Complete coverage path planning based on biologically
inspired neural network [31] plans collision-free trajectory for real-time coverage task
in dynamic environments. The energy constrained online coverage path planning [32]
is based on contour following, which causes sharp turns in rectangular environments.
The drawbacks of the above algorithms are that the coverage redundancy is increased
when dynamic obstacles are present, and a trade-off exists between a higher coverage rate
and higher coverage redundancy. Moreover, the energy consumption and the coverage
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time are high because most of these algorithms generate the path with straight lines that
form sharp turns. When the nonholonomic robot follows such a path, it must stop and
reorient itself so that the heading of the robot matches the path direction [33]. Authors
in [34] do a complete 2D sweep coverage, but their approach does not produce smooth
paths, is not computationally efficient, and does not consider dynamic obstacles but only
static environments.

To provide optimal and feasible paths with curvature continuity that are easy to fol-
low by nonholonomic mobile robots, path smoothing algorithms are used. A smoothing
algorithm provides motion continuity and reduces the execution time of coverage tasks.
The first research on finding the shortest curvature constrained smooth paths consisting
of straight lines and arcs was done by Dubin in [35]. The presence of discontinuities at
the intersection of the straight lines and circular arcs makes them infeasible for real ap-
plications. Backman et al. [36] presented a curvature continuous CCPP algorithm using
the Dubin curve for agricultural vehicles. The generated path is easy to follow for real-
world applications and the algorithm is efficient in coverage time but computationally
complex. Yu et al. [37] proposed Dubin’s vehicle-based coverage algorithm, which min-
imizes the non-working distance in CCPP, reduces the number of turns of the vehicle,
maximizes the coverage area, but increases the overlap area. Jin and Tang [38] developed a
coverage path planning algorithm which respects the kinematic constraints of the robot,
but it is specialized for agricultural or similar purposes and is computationally complex.
Lee et al. [39] presented a smooth CCPP algorithm based on Bézier curve, wall follow-
ing, and high-resolution grid map representation. The algorithm maximizes coverage
rate and minimizes energy consumption, but has increased coverage redundancy. All
the above smoothing algorithms are not suitable for changing environments due to high
computational complexity.
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Figure 1. Solution examples of different methods for the TSP problem. (a) The RSTC algorithm,
(b) The PT algorithm, (c) The ACO algorithm, (d) The HNN algorithm.
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3. The Proposed Smooth Complete Coverage Path Planning Algorithm

The pipeline of the SCCPP algorithm, shown in Figure 2, consists of four sequentially
computed modules. The first module is the replanning spanning tree coverage algorithm
(RSTC), which generates a path composed of straight-line path segments perpendicular to
each other (Section 3.1). The algorithm initially requires the map of the environment and
the starting pose of the robot. The initial map can be a CAD map or a map created with a
simultaneous localization and mapping algorithm (SLAM). The second module is the path
smoothing algorithm, which smooths the path generated by the RSTC algorithm using
clothoids (Section 3.2). The third module is the velocity profile optimization algorithm,
which computes the highest admissible velocity profile along the smoothed path accounting
for kinematic and dynamic constraints of the robot (Section 3.3). The fourth module is the
trajectory tracking algorithm, which ensures that the robot tracks the optimal 5D trajectory
generated by the third module (Section 3.3).

Figure 2. The pipeline of the smooth complete coverage path planning algorithm.

3.1. The Replanning Spanning Tree Coverage Algorithm

We use the replanning spanning tree coverage (RSTC) algorithm [10], which we briefly
describe here. A map of the environment, given in the Portable Network Graphics (PNG)
format, was edited to align the walls with the grid for better performance of the coverage
algorithm and downsampled to a low-resolution occupancy grid with equally sized square
cells (Figure 3a). Each cell contains occupancy information depending on the obstacle
position. Only completely free cells were considered in the path planning and they are
divided into four equal subcells of size D, where D is the diameter of the circumscribed
circle around the robot’s footprint (Figure 3b).

To create an optimal path, which visits each subcell exactly once, a spanning tree is
constructed (Figure 3c). Free 2D-size cells induce an undirected graph structure whose
nodes are the centers of the cells, while the edges are the connecting lines between centers
of the adjacent cells that share a common cell side. A spanning tree of an undirected graph
is a subgraph that includes all nodes of the graph, with a minimum possible number of
edges. A spanning tree is found in linear time by using the Breadth First Search (BFS)
algorithm, meaning that the candidate neighbor nodes are kept in a queue. The pseudocode
for spanning tree determination is given by Algorithm 1. The construction of the spanning
tree starts from the node which contains the robot’s position. All its neighbor nodes are
inserted into the queue. The second node of the tree defines the first edge of the spanning
tree, which has a direction aligned with the robot’s orientation, if possible. The spanning
tree continues to grow by removing from the queue and connecting to the last added node
of the tree the node that is its neighbor. If this node has no neighbors in the queue, the node
added one step earlier is compared to the queue, and so on. The tree is constructed when
there are no nodes in the queue.
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Algorithm 1 Pseudocode for the spanning tree

1: Input: occupancyGridMap, currentPose
2: Output: spanningTree
3: insert starting cell which contains the robot’s position in the queue spanningTree
4: while all free cells in occupancyGridMap have been visited do
5: determine all orthogonal and unvisited neighbors of the current cell moving coun-

terclockwise and add them to the queue neighbor
6: for all cells in queue neighbor do
7: if distance of current cell in spanningTree and neighbor ≤ 1 then
8: add current cell to the queue spanningTree
9: set current cell in occupancyGridMap as visited

10: go to the neighbor cell
11: end if
12: end for
13: if distance of current cell in spanningTree and neighbor > 1 then
14: for cells in queue spanningTree do
15: if distance of current cell in spanningTree and neighbor ≤ 1 then
16: go to the neighbor cell
17: else
18: move to the previous cell in queue spanningTree
19: end if
20: end for
21: end if
22: end while
23: return the spanning tree

Once the spanning tree is created, the coverage path computation begins. The pseu-
docode for the path planning is given by Algorithm 2. The robot is assumed to follow
the path around the spanning tree, always on the right side, until it completely covers
all subcells. The coverage ends when the robot gets to the start subcell. The result is the
complete coverage path, which consists of a series of connected lines (Figure 3d).

Algorithm 2 Pseudocode for the path planning

1: Input: spanningTree, currentPose
2: Output: RSTCpath
3: while it reaches the starting subcell again do
4: calculate the direction of the spanning tree form current cell to the next first neighbor

which is connected with the edge in the spannning tree
5: mark current subcell as visited
6: add subcell center coordinates in the queue RSTCpath
7: go to neighbor cell
8: if dynamic obstacle is detected then
9: end the path planning algorithm

10: end if
11: end while
12: return the RSTC path

Figure 1 shows a comparison of the RSTC algorithm with heuristic methods that
solve TSP: the PT, ACO, and HNN algorithms. The length of the path for all methods
is 76 m. The RSTC path has the smallest number of turning points (42 turning points
compared to 48 for PT, 56 for ACO, and 50 for HNN). The higher number of turns results
with longer coverage execution time. Therefore, our algorithm produces the coverage path
more suitable for nonholonomic robots than other TSP solutions. The RSTC path has the
lowest computational time (measured in Matlab/Python implementation) (0.32 s compared
to 1.56 s for PT, 124 s for ACO, and 0.6 s for HNN).
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Figure 3. Example of the complete coverage path planning for the known environment step-by-step.
The real obstacles collected by SLAM algorithm are presented with green dots. (a) Low resolution
occupancy grid map, (b) Subdividing of grid cells, (c) The spanning tree (blue line), (d) Complete
coverage path (black line).

While the robot follows the planned path and visits subcells one by one, it may
encounter an unknown obstacle (Algorithm 3). In such a case, the new spanning tree
is created for the rest of the unvisited grid cells and the path is recomputed. The robot
continues to follow the new path from the right side of the spanning tree until it returns to
the cell where the replanning started. It then continues to follow the previously planned
path. If all cells are visited then the shortest path around the obstacle is determined and
connected with the previously planned path. If the unknown obstacles free occupied
cells, set these cells as free in the occupancy grid map. Add these cells to the previously
determined spanning tree if the current cell is the diagonal neighbor of the occupied cells.
The new path around this spanning tree is determined. The complete coverage algorithm
ends when the robot returns to the start subcell of the initial path. Since only completely
free cells are considered, the coverage path is optimal and minimizes the overlap area.

In summary, the main advantages of the RSTC algorithm are that it generates the
shortest path, minimizes the overlap area, and allows real-time path replanning in changing
environments. However, its drawbacks are sharp turns of the planned path where a robot
has to stop and reorient itself to continue, which is inefficient regarding the task duration
and energy consumption.
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Algorithm 3 Pseudocode for the complete coverage path planning

1: Input: Map, currentPose
2: Output: RSTCpath
3: determine occupancy grid map based on png map image
4: determine spanning tree based on Algorithm 1
5: determine the RSTC path based on Algorithm 2
6: while it reaches the starting subcell again do
7: if unknown obstacle is detected then
8: occupy cells in which unknown obstacle is detected
9: if exist the unvisited grid cells then

10: determine the new spanning tree based on Algorithm 1 for the rest unvisited
grid cells

11: determine the new RSTC path based on Algorithm 2 for the rest unvisited
grid cells

12: else
13: determine the RSTC path around the obstacle so that the minimum number

of double-covered subcells is obtained and connect it with previously planned path
14: end if
15: end if
16: if unknown obstacle cleared occupied cells then
17: set these cells as free in the occupancy grid map
18: if current cell is diagonal neighbor of the occupied cell then
19: add these cells in the previously determined spanning tree
20: determine the new RSTC path based on Algorithm 2
21: end if
22: end if
23: end while
24: return the RSTC path

3.2. Path Smoothing

The task of the path smoothing algorithm is to smooth the path generated by the RSTC
algorithm at the sharp turns to allow continuous motion of the robot without stopping. The
path smoothing algorithm [11] is used, which uses clothoids to smoothly connect adjacent
lines of the path.

The coordinates of a general clothoid are:

x(s) = x0 +
∫ s

0
cos (θ0 + κ0ξ +

1
2

cξ2)dξ, (1a)

y(s) = y0 +
∫ s

0
sin (θ0 + κ0ξ +

1
2

cξ2)dξ, (1b)

where (x0, y0, θ0) is the initial robot pose, the parameter κ0 is the initial curvature at s ≥ 0,
which denotes the arc length, and the parameter c is the sharpness, which describes how
much the curvature changes with traveled distance. Curvature κ can be expressed as a
linear function of the arc length s:

κ(s) = κ0 + cs. (2)

The Equation (1) contain Fresnel integrals, which are transcendental functions that
cannot be solved analytically, making them difficult to use in real-time applications. To
enable the use of clothoids in real-time, various methods have been developed and we
use the one that is particularly fast and thus very suitable for real-time applications [11].
It is based on a so-called basic clothoid with bounded approximation error [40] whose
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coordinates can be stored in a lookup table, and the coordinates of any other clothoid can be
determined based on the points of the basic clothoid by rescaling, rotating, and translating.

An example of the smoothed sharp turn is shown in Figure 4, where the points S, T,
and G denote the start, sharp turn, and the goal position, respectively. The smooth path is
shown as a red curve consisting of four parts: a straight line SC1, the first clothoid from
C1 to C2, the second clothoid from C2 to C3, and a straight line C3G. The two clothoids are
symmetric–the second one is obtained by mirroring the first one at the bisector of the angle
spanned by the lines ST and TG.
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Figure 4. Illustration of the sharp turn smoothing by two clothoids.

The parameter e is the deviation from the planned path. If it is high, the path curvature
is low and the robot can drive at a higher velocity. Since for our problem, each sharp turn is
at a 90◦ angle, the same deviation parameter e, and consequently the same pair of symmetric
clothoids can be applied for all of them, which additionally simplifies the smoothing.

We determined the maximum deviation emax to ensure that the robot’s footprint does
not collide with the obstacle cell at the point of maximal deviation, i.e.:

emax ≤ D
√

2 − D
2

, (3)

where D
√

2 is the subcell diagonal, and D is the diameter of the circumscribed circle around
the robot’s footprint. In our setup it is D = 0.5 m, so we choose emax = 0.1 m. From emax
it is possible to determine the maximum curvature in point C2 (see [11]), so we obtain
κmax = 6.4 m−1.

From the radial acceleration, which is aradial = v × ω = v2κ, where v and ω are the
linear and angular velocity of the robot, respectively, we can get the velocity limit at the
curvature extrema as:

vmin =

√
aradialmax

κmax
. (4)

Since aradialmax is characteristic of the mobile robot, and in our setup it is
aradialmax = 0.1 m/s2, this gives the velocity limit vmin = 0.125 m/s, which is used later in
the velocity profile optimization module.

Figure 5 shows a part of the original and smoothed path with two positions of the
robot. It can be noticed that the robot’s circular footprint when moving along the smoothed
path is always within the free subcells of size D. It does not collide with the obstacle cell
even at points where a deviation of the smoothed path from the original path is the largest
(noted with e).
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As described in Section 3.1, the RSTC algorithm recalculates the path for the unvisited
grid subcells when the robot encounters an unknown obstacle in the neighboring cells. Due
to the computational simplicity of the proposed path smoothing algorithm, the smoothing
of the replanned path can be conducted online so that the robot does not need to slow
down or stop.
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Figure 5. The enlarged part of the coverage path with two positions of the robot: (1) the robot’s
starting position and (2) the robot’s position at the obstacle corner. The obstacle cell is shown in gray,
the robot’s positions in dashed circles, the robot’s orientation in green, the spanning tree in blue, the
RSTC path in black, and the smoothed path in red.

3.3. Velocity Profile Optimization and Trajectory Tracking

Although the path smoothing algorithm takes into account the kinematic and dynamic
constraints of the robot, it only outputs x and y coordinates and curvature of the smooth
complete coverage path. To ensure time-optimal robot motion along the smooth path, the
velocity profile with maximum allowable velocities should be calculated. The turning
points of the smoothed path (e.g., as point C2 in Figure 4) are the local extrema points of the
smooth path curvature, i.e., at these points, the turning radius reaches a local minimum,
and consequently, the velocity is locally lowest. The maximum allowable velocity of the
robot at a turning point is determined by the radial acceleration limit aradial. The robot
must decelerate and accelerate before and after the turning point as much as maximally
tangentially allowed by the acceleration limit. The robot should always remain within its
acceleration limits. The overall acceleration is calculated as:

a =
√

a2
radial + a2

trans (5)

where aradial = v2κ is the radial acceleration of the robot and atrans =
dv
dt is the translation

acceleration.
We used the velocity profile optimization algorithm described in detail in [41]. It

outputs the optimal linear and angular velocities of the robot based on the points of the
smooth complete coverage path and the driving limitations. Linear and angular velocities,
together with the robot position and orientation, result in the 5D trajectory (x, y, θ, v, ω)T .
This trajectory is the input to the trajectory tracking algorithm based on the Kanayama
controller [42]. This controller ensures that the robot tracks the optimal 5D trajectory by
dumping perturbations of the robot pose provided by the localization module and velocity
measurements from the wheel encoders.

The kinematic model of the differential drive mobile robot can be represented as follows:⎡⎣ẋ(t)
ẏ(t)
θ̇(t)

⎤⎦ =

⎡⎣cosθ(t) 0
sinθ(t) 0

0 1

⎤⎦[ v(t)
ω(t)

]
, (6)
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where t is time, (x(t), y(t)) is position, θ(t) is orientation, v(t) is linear velocity, and ω(t) is
the angular velocity of the mobile robot. For the system (6), the nonholonomic constraint is:

− ẋ(t) · sinθ(t) + ẏ(t) · cosθ(t) = 0, (7)

which constrains the drive wheels to roll and prevents slippage. A path is feasible for
nonholonomic mobile robot if it can follow the path with the reference velocity commands.

The main task of the tracking control for mobile robots is to find appropriate velocities
v(t) and ω(t) to achieve the control objective. Inputs for the Kanayama controller are the
reference configuration pr = (xr, yr, θr)T , which is taken from the 5D trajectory at the current
time instant, and the measured current configuration pc = (xc, yc, θc)T . The Kanayama
controller outputs are the corrected reference linear and angular velocities. The first step
of the control law is to compute the error configuration pe as the difference between pr

and pc, which must converge to zero. For the kinematic model given by (6) and (7), the
expression for the error configuration is:

pe =

⎡⎣xe
ye
θe

⎤⎦ =

⎡⎣ cosθc sinθc 0
−sinθc cosθc 0

0 0 1

⎤⎦(pr − pc). (8)

Using the error configuration pe, the reference linear and angular velocities vr and ωr,
the corrected linear and angular velocities v and ω can be calculated as follows:[

v
w

]
=

[
vrcosθe + Kxxe

ωr + vr(Kyye + Kθsinθe)

]
, (9)

where Kx, Ky and Kθ are the positive constant parameters of the controller.
Figure 6 shows the smoothed path and the tracked trajectory for the example shown

in Figure 4. There is no significant deviation of the tracked trajectory from the smoothed
path and the mobile robot moves smoothly from one segment of the path to another.
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Figure 6. The smoothed path from Figure 4 (red line) and the tracked trajectory (green diamonds).

Figure 7 shows linear and angular velocities for the example shown in Figure 4
calculated by the velocity profile optimization procedure (blue line) and the real linear and
angular velocity profile, while the robot tracked the trajectory (magenta diamonds). The
corrected reference velocities calculated by Kanayama’s algorithm are shown with black
diamonds. The robot in the simulation reached exactly the corrected reference velocity
with a delay of one control time step.
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Figure 7. The calculated linear and angular velocities (blue line) and real linear and angular velocities
(magenta diamonds) at which the robot tracked the trajectory.

4. Simulation Results

We tested the proposed motion planning approach in three scenarios: the Lab scenario
(Section 4.1), Aula scenario (Section 4.2), and Gallery scenario (Section 4.3). For each scenario,
the proposed SCCPP algorithm is compared with the original RSTC algorithm without
smoothing (called the CCPP algorithm in the following), and the results are discussed in
Section 4.4. We also compared SCCPP with CCD* and HDCP algorithms for the Gallery
scenario. CCD* was selected for comparison because it is a graph search method based
on D* search of the high resolution grid map of the environment. HDCP was selected for
comparison because it plans smooth paths based on Dubins curve, which is followed at
constant velocity in real-time.

We used a receding horizon control (RHC) algorithm developed within our research
group [43] for the path following of the the CCPP without smoothing. This algorithm can
adapt to dynamic changes in the environment. If the selected subgoal is too close to the
detected obstacle, a new subgoal is chosen in the local vicinity from the critical one. With
this procedure, the robot follows the planned path with a minimal drift.

The simulations were performed on an Asus ROG Strix SCAR II (Intel i7-8750H, 16 GB
DDR4 RAM). The algorithms were implemented and tested in the Robot Operating System
(ROS). The stage simulator was used for the simulations.

To create the environment map, for each test scenario the environment was explored
through sensors on the Pioneer 3DX robot and data was collected by the slam_gmapping
ROS package. Then, the map was created and post-processed to align walls to the grid
for better performance of the coverage algorithm. The post-processed map is resampled
to an occupancy grid map with low resolution. The size of the cells is 1 × 1 m and each
cell is divided into four 0.5 × 0.5 m sub-cells, which are approximately of the same size
as the robot’s footprint. The amcl ROS package was used for the robot localization in
created maps.

The Lab scenario tests how the algorithm works in a small room with static and dynamic
obstacles. The Aula scenario tests how the algorithm works in a large hallways with a
large number of static obstacles. The third scenario is the Gallery scenario, which tests the
algorithm performances in narrow spaces. To validate the performances of the SCCPP
algorithm and to compare it with other algorithms, the path length and execution time
were measured, and the coverage rate and coverage redundancy were calculated.

The coverage rate is calculated as:

Coverage rate = Ap/(At − Ao) · 100%, (10)
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where At is the total area of the environment, Ao is the area of obstacles, and Ap is the
area covered by the driven trajectory of the robot. The coverage redundancy is calculated
as follows:

Coverage redundancy = Ar/Ap · 100%, (11)

where Ar is the overlap area, calculated as the sum of all subcells visited more than once.
In all figures below that show the paths or trajectories, static obstacles are shown with

green dots, and if they partially occupy a cell, the entire cell is shown as occupied (gray
cells), the spanning tree is shown as a blue line, the RSTC path as a black line, the smoothed
RSTC path as a red line, and the tracked trajectory as a green line.

4.1. The Lab Scenario

The coverage starts at cell (7, 4) which is the starting cell for the spanning tree construc-
tion and the path circumnavigates around the constructed spanning tree (see Figure 8a).
The robot follows the path from the right side of the spanning tree and covers each subcell
exactly once. The coverage is complete when the robot returns to the start subcell.

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

(b)

50 100 150 200
0

0.2

0.4

0.6

50 100 150 200

-0.5

0

0.5

(c)

0 50 100 150
0

0.2

0.4

0.6

0 50 100 150

-0.5

0

0.5

(d)

Figure 8. The comparison of the CCPP and SCCPP algorithms in the Lab scenario with the presented
RSTC spanning tree (blue line), the RSTC path (black line), the smoothed path by the SCCPP algorithm
(red line), the executed path by the CCPP and SCCPP algorithm (green line), the reference velocity
profile (blue line), and the actual velocity profile (red line). (a) The CCPP path in the Lab scenario.
(b) The SCCPP path in the Lab scenario. (c) The CCPP velocity profile in the Lab scenario. (d) The
SCCPP velocity profile in the Lab scenario.

The path is created with straight lines that form sharp turns. In each turn for the CCPP
variant, the robot must stop and reorient itself so that the robot heading is equal to the
path direction. For this reason, the linear velocity is zero and the angular velocity is close
to the maximal value. On straight sections of the path, the linear velocity is maximal and
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the angular velocity is zero. Figure 8c shows the calculated linear and angular velocities
(blue line) and the real linear and angular velocities of the robot executed by the motors
(red line).

To improve the coverage and reduce the execution time, the smoothed variant–the
SCCPP algorithm is used. The output of this algorithm is the smoothed path that circum-
navigates around the constructed spanning tree (see Figure 8b). In this way, sharp turns
are now smoothed and the robot can travel without stopping.

The execution of the SCCPP algorithm can be examined from the linear and angular
velocities shown in Figure 8d. The blue lines are the linear and angular velocities calculated
by the optimization process, and the red lines show how the linear and angular velocities
changed as the robot tracked the trajectory. It can be observed that the linear velocity is not
zero while the robot has to overcome the turn as opposed to zero velocities in Figure 8c,
where the smoothing algorithm is not used.

The replanning SCCPP algorithm is executed in a dynamic environment. Dynamic
changes can be detected by the robot in neighboring cells of the current cell where the robot
is currently located; see Figure 9a for an example where the obstacle is detected in cell (4, 4).
All unvisited cells are considered as nodes for the new spanning tree calculation and the
visited subcells are not part of the new path coverage, see Figure 9b. After the new spanning
tree is determined for the rest of the unvisited grid cells, the new path is determined. The
path always follows the spanning tree counterclockwise. When the robot returns to the
cell where the replanning started, it continues to follow the path from the right side of the
spanning tree that was already formed during the previous path planning. Therefore, this
part of the spanning tree is not shown in Figure 9b from cell (4, 4) to starting cell (7, 5). The
robot traverses these visited grid cells by visiting only subcells that are not yet visited. The
complete coverage algorithm ends when the robot gets to the starting subcell. The red dots
in Figure 9 are the position of the robot where the replanning algorithm is executed. In this
example, the replanning process is fast enough that the robot does not need to stop for the
recalculation of the smoothed path. The recalculation of the smoothed RSTC path takes
less than 1 ms on average.
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Figure 9. The RSTC algorithm in the Lab scenario with the presented RSTC spanning tree (blue line),
the RSTC path (black line), the smoothed path by the SCCPP algorithm (red line), and the executed
path by the smoothed RSTC algorithm (green line). Red points are the robots’ position where the
replanning algorithm is executed. (a) The smoothed RSTC path in the Lab scenario before replanning.
(b) The smoothed RSTC path in the Lab scenario after replanning.

4.2. The Aula Scenario

Similar behavior of the CCPP and SCCPP algorithms can be observed in the example
with few hallways and more static obstacles; see Figure 10. Static obstacles are shown with
green dots and if they partially or fully occupy a cell, the cell is presented as occupied
(gray cells). Some static obstacles are detected by the laser outside the building boundaries
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because there are windows in parts of the hallway and these grid cells are represented as
occupied. The direction of the first segment of the complete coverage path is −90° due to
the initial orientation of the robot. The coverage starts at cell (6, 32), which is the starting
cell for the spanning tree construction and the path circumnavigates around the constructed
spanning tree, but this is not represented in Figure 10. Due to the transparency of the figure
we presented, only a smoothed path (red line) and driven trajectory (green line). The
smoothed path does not contain sharp turns and the robot can drive the trajectory without
stopping and reorienting itself to align heading with the path direction. This improves
the coverage rate and reduces the execution time of the coverage task. The SCCPP variant
outperforms the CCPP algorithm here as well.
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Figure 10. The SCCPP algorithm in the Aula scenario, which presents the smoothed path with red line
and the executed path with green line.

4.3. The Gallery Scenario

This scenario has the most turns due to the narrow dimensions of the environment.
The starting cell for the spanning tree construction and the RSTC path is (11, 3), see Figure 11.
Again, the SCCPP algorithm variant is faster than the CCPP variant.
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Figure 11. The SCCPP algorithm in the Gallery scenario: the RSTC spanning tree (blue line), the
smoothed path (red line), and the executed path (green line).

The SCCPP algorithm is compared to the CCD* and HDCP algorithms in this scenario.
The complete coverage path of the CCD* algorihm is shown in Figure 12 with the black
line, and visited cells are marked by different colors according to the number of visits, so
some parts of the map are visited nine times.
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Figure 12. The complete coverage of the CCD* algorithm with the path and noted redundant numbers
of cell visits (from 1 to 9).

The complete coverage path of the HDCP algorithm is shown in Figure 13 with the
green line. Partially occupied cells are shown in gray hexagons and only completely free
hexagonal cells are used for the coverage task. The path begins in the cell (11, 3) and ends
in the cell (6, 2). Some cells are visited more than once due to the narrow environment and
low resolution occupancy grid map.

0 5 10 15 20 25
0

1

2

3

4

5

6

Figure 13. The complete coverage of the HDCP algorithm with hexagonal cell grid.

4.4. Discussion

The results of the CCPP and SCCPP comparison in all three scenarios are given
in Table 1. When the smoothing algorithm is used, the length of the tracked trajectory
is shorter and the execution time is reduced compared to the results obtained without
smoothing. In the Gallery scenario, the RSTC algorithm provides a path with many sharp
turns and because of the discontinuity during the motion, the execution time for the
complete coverage is about 10% longer for CCPP than for SCCPP. It can be noted that the
environment configuration and the position of the obstacles can affect the execution time
and the total length of the tracked trajectory. In addition, the CCPP algorithm has higher
localization errors at points where the robot rotates in place. These cause higher uncertainty
in the robot’s pose and the deviation from the tracked trajectory is larger than in the SCCPP
examples. This also leads to an increase in the coverage redundancy.

Table 1. Table of comparison of CCPP and SCCPP algorithms.

Lab CCPP Lab SCCPP Gallery CCPP Gallery SCCPP Aula CCPP Aula SCCPP

Coverage path length 77.22 m 72.46 m 141.04 m 129.44 m 1255.91 m 1191.22 m
Coverage time 217.30 s 193.26 s 453.99 s 409.58 s 3479.51 s 2834.23 s
Coverage rate 71.48% 74.42% 66.37% 72.11% 79.03% 79.84%
Coverage redundancy 35.53% 7.89% 48.19% 5.79% 39.23% 3.37%
Nodes number 61 61 97 97 744 744
Path calculation time 0.5 ms 0.9 ms 0.6 ms 1.2 ms 5 ms 10 ms

From these three scenarios, it can be observed that the SCCPP algorithm has, on
average, a 6.5% shorter tracked trajectory, an 8.8% reduction in coverage execution time,
a 4.5% better coverage rate, and an 82.34% lower coverage redundancy than the original
CCPP algorithm. The better coverage rate of the SCCPP compared to the CCPP can be
explained by higher path following accuracy, while accuracy of the CCPP is worsened
by sharp turns. To provide the scalability of the proposed algorithm, each scenario has
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a different size of the environment, which leads to different number of nodes (cells) in a
spanning tree construction. Because the number of nodes is proportional to the computation
time, Lab scenario has the smallest and Aula scenario has the biggest elapsed time required
to calculate the complete coverage path. For each scenario, SCCPP has a larger time than
CCPP for the time required to calculate the smooth path. The time increases linearly
with the number of nodes, while the number of nodes increases quadratically with the
map dimensions.

The SCCPP algorithm is compared to the CCD* and HDCP algorithms, and the results
are shown in Table 2. Compared to CCD* and HDCP, SCCPP has the shortest coverage
path length (42% shorter than CCD* and 21% shorter than HDCP), the shortest coverage
time (47% shorter than CCD* and 53% shorter than HDCP), and the smallest coverage
redundancy (82% smaller than CCD* and 40% smaller than HDCP). However, SCCPP has
worse coverage rate compared to CCD* (27% lower), and better coverage rate compared to
HDCP (15% higher). The reason of the lower coverage rate of both the SCCPP and HDCP
algorithm is the used low resolution occupancy grid map. However, the high resolution
occupancy grid map results with higher coverage redundancy in CCD*.

Table 2. Comparisons of the SCCPP, CCD* and HDCP algorithms for the Gallery scenario.

SCCPP CCD* HDCP

Coverage path length 129.44 m 222.79 m 163.48 m
Coverage time 409.58 s 768.22 s 879.65 s
Coverage rate 72.11% 98.85% 57.38%

Coverage redundancy 5.79% 87.48% 46.15%

The coverage rate for the SCCPP algorithm can be increased if a wall following method
is used, but this also increases the redundancy. The wall following algorithm used after
SCCPP is presented in Figure 14 with driven trajectory (red line) and robot’s footprint
at every point on the trajectory (degradation from black to gray). The coverage rate is
increased to 97.64% with the use of the wall following, and the coverage redundancy is
increased to 24.64%.

Figure 14. The wall following algorithm after SCCPP: driven trajectory (red line), and robot’s footprint
in every point on the trajectory is presented degraded from black to gray.

The advantages of our SCCPP algorithm are completeness of coverage, robustness
to environmental shape and initial robot pose, optimal path that visits all subcells exactly
once, time efficiency, low coverage redundancy, and fast replanning. The coverage rate can
be significantly increased if the wall following method is used. The limitation is that the
algorithm requires a priori knowledge about the workspace. The execution of the proposed
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smooth complete coverage path planning algorithm is around 10 ms and it is suitable for
real-time operation due to its computational simplicity.

5. Experiments on a Real Robot

The experiment (the experiments are demonstrated in the accompanying video avail-
able here: https://youtu.be/VEAGHIAIpRA accessed on 18 October 2022) was performed
on the Pioneer 3DX robot with a SICK laser sensor LMS200. To have a similar scenario as in
the simulation, the experiment was performed in the Lab scenario, where a new map had to
be created due to some minor changes in the placement of the furniture. First, the Lab was
explored using the laser sensor on the robot, and the data of the environment was collected
using the slam_gmapping ROS package. After the environment was explored, the map was
created and the package amcl ROS was used for robot localization in the created map.

The SCCPP algorithm was executed and the results are shown in Figure 15. The static
obstacle configuration is represented as green dots, which are shown as occupied cells (gray
cells in Figure 15) in the occupancy grid map. The initial position of the robot (x = 5.25 [m],
y = 2.75 [m]) is marked with a blue star and this is the starting position for the coverage of
the environment. The blue line is the spanning tree determined by RSTC algorithm, the red
line is the smoothed RSTC path, and the green line is the driven trajectory by the Pioneer
3DX robot.
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Figure 15. The calculated SCCPP path (red line) and trajectory tracked by the Pioneer 3DX robot
(green line).

There are some deviations between the smoothed path determined by the SCCPP
algorithm (red line) and the real trajectory tracked by the robot (green line), especially
when dealing with parts of the path that are curved. This problem is due to the inaccurate
and noisy localization of the robot. Another problem is the hardware setup. We used serial
communication between the robot and the laptop with ROS, which caused a delay of three
cycles in sending the calculated velocities to the robot. In Figure 16, the calculated linear
and angular reference velocity profile are shown with blue lines and the actual linear and
angular velocity profile of the robot during trajectory tracking is shown with magenta lines.
For the experiment with the real robot, we used 0.5 m/s and 0.75 rad/s as the maximal
linear and angular velocities, respectively. The delay of three cycles caused the corrected
reference velocity by the Kanayama tracking algorithm to deviate from the optimized
velocity profile of the smoothed path. This is shown in Figure 17, where the first 1.5 s of the
linear velocity profile from Figure 16 are shown magnified.
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Figure 16. Calculated linear and angular velocities (blue line) and linear and angular velocities, while
the Pioneer 3DX robot is tracking the trajectory (magenta line).
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Figure 17. Real linear velocity, while the robot Pioneer 3DX is following the trajectory (magenta line),
deviates from the applied linear velocity (blue line).

Table 3 presents the experimental evaluation of the SCCPP algorithm efficiency on the
Pioneer 3DX robot for the Lab scenario. The coverage path length is 53.85 m, the coverage
execution time is 179.5 s, the coverage rate is 77.7%, and the coverage redundancy is 12.96%.
The trajectory tracking error is determined as the difference of the calculated trajectory
(Figure 15 red dotted line) and tracked trajectory (Figure 15 green line) and it is 6.43 m2.
When compared with simulation results in Table 1 for the Lab scenario, although the maps
are slightly different, it can be observed that the coverage rate in both cases is approximately
equal, which confirms that our algorithm is equally efficient in the real robot setup. The
coverage redundancy is slightly worse on a real robot, which is mainly caused by noisy
localization and delay in the control loop.

Table 3. SCCPP algorithm on the Pioneer 3DX robot for the Lab scenario.

SCCPP

Coverage path length 53.85 m
Coverage time 179.5 s
Coverage rate 77.7%

Coverage redundancy 12.96%
Tracking error 6.43 m2
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6. Conclusions

The proposed SCCPP algorithm is the online algorithm that generates a traversable
collision-free trajectory based on clothoids with low computational cost. Such a path is
suitable and feasible for nonholonomic mobile robots since it does not contain sharp turns.
By using a smoothing technique on the proposed coverage path, the coverage efficiency
can be significantly improved in terms of the time required and energy consumption
during the coverage tasks and has very low overlap redundancy. The complexity of the
environment affects the coverage efficiency, and the experimental results evaluated the
efficiency of the CCPP algorithms on maps with different complexity levels. By using the
SCCPP algorithm, the trajectory followed by the robot can be executed faster and with
higher accuracy than without the smoothing algorithm. The SCCPP algorithm produces
the shortest coverage path, takes the shortest time for coverage execution, and has the
smallest coverage redundancy compared to the CCD* and HDCP algorithms. The SCCPP
algorithm takes advantage of the large size of the grid cells to ensure real-time operation
and minimization of overlapping areas, but at the cost of a lower coverage rate due to the
uncovered areas around obstacles and walls. However, the coverage rate could be easily
increased by simply combining our SCCPP algorithm with a wall following algorithm.

As future work, more experiments are planned for other robot designs such as om-
nidirectional mobile robots and Ackermann steering vehicles. Furthermore, we consider
the extension of this work to multiple robots in the form of a decentralized solution for
the coordinated multi-robot complete coverage task. This will decrease the total task time
significantly due to the division of workload overall robots, while decentralization will
prevent a single point of failure.
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Abstract: This paper considers the problem of minimum-time smooth trajectory planning for wheeled
mobile robots. The smooth path is defined by several Bézier curves and the calculated velocity profiles
on individual segments are minimum-time with continuous velocity and acceleration in the joints.
We describe a novel solution for the construction of a 5th order Bézier curve that enables a simple
and intuitive parameterization. The proposed trajectory optimization considers environment space
constraints and constraints on the velocity, acceleration, and jerk. The operation of the trajectory
planning algorithm has been demonstrated in two simulations: on a racetrack and in a warehouse
environment. Therefore, we have shown that the proposed path construction and trajectory gen-
eration algorithm can be applied to a constrained environment and can also be used in real-world
driving scenarios.

Keywords: wheeled mobile robots; trajectory generation; velocity profile; trajectory optimization;
Bézier curves

1. Introduction

Path planning and trajectory planning are fundamental topics in autonomous mobile
robotics and even more broadly in the context of automation [1]. Path planning algorithms
generate a path through predefined points with the main goal of finding a continuous
path that minimizes the distance between the starting point and an end point without
colliding with obstacles [2,3]. While path planning is a geometric problem, trajectory
planning additionally parameterizes the resulting path by time. Consequently, defining
time moments along a path affects the kinematic and dynamic properties of the motion
of a mobile system. Forces and torques depend on acceleration along a trajectory, while
vibrations of its mechanical structure are mainly determined by values of jerk, the time
derivative of acceleration [4].

The aim of our work was to solve the problem of minimum-time trajectory generation
for wheeled mobile systems with constraints on velocity, acceleration, and jerk in a limited
planar space without obstacles. The idea we propose is to apply an optimization method to
determine the construction parameters of a Bézier curve primitive such that the resulting
travel time on a complete smooth path is minimal. The algorithm we use to compute the
minimum-time velocity profile is presented in Ref. [5]. It computes the velocity profile on a
predefined path under specified constraints on velocity, radial and tangential acceleration,
and radial and tangential jerk.

This paper is organized as follows. Section 2 gives a general overview of the related
work. Section 3 introduces the research problem and our main objectives, and Section 4
briefly lists the main contributions. The novel methodology of constructing and parameter-
izing the fifth-order Bézier curves that make up the resulting geometric path is detailed in
Section 5.1. In Section 6, we present two applications of our proposed trajectory generation
algorithm, namely the computation of the minimum-time trajectory of a wheeled mobile
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system on a racetrack (Section 6.1) and in a warehouse (Section 6.2). Our conclusions are
drawn in the last section.

2. Related Work

The problem of minimum-time trajectory planning remains relevant due to the grow-
ing demands for optimal operation of mobile systems, robots, and automated machines.
Trajectory planning or, more generally, the planning of the motion of mobile systems can
be divided into two parts: velocity profile optimization and path search [6].

The problem of velocity profile optimization is to determine the time-optimal speed
law that satisfies certain kinematic or dynamic constraints, and was considered in Refs. [7,8].
The authors in Ref. [9] have provided a comprehensive review of the consideration of jerk
in science and engineering, where it is used as a design factor to ensure ride comfort (e.g.,
amusement park rides, watercraft, elevators, and autonomous buses), and also reference
jerk-related ISO standards. As a result, jerk has established its relevance in numerous
scientific and engineering applications. Much of the research is dedicated to limiting or
minimizing jerk to reduce vibration, decrease positional errors, or improve the overall
performance of machine tools [10], robotic manipulators [11–15], and autonomous mobile
robots [5,16–19].

Numerous path planning strategies have been designed and implemented in the
literature [20–22]. To meet the kinematic limits of the vehicle and successfully transport
a hazardous, fragile, or valuable load, the resulting path must be smooth [23]; it must
be feasible at high speeds while being harmless to the mechanical system by avoiding
vibration and excessive acceleration of the actuators. Often, path planning techniques must
also comply with geometric constraints [3,24]. A significant part of path planning methods
is the choice of geometric curves, which can be polynomials [25], Bézier curves [6,26–28],
cubic splines [29], B-splines [30], Dubins curves, clothoids [31], hypocycloids [32], and
others, as presented in Ref. [23].

In this work, we have utilized Bézier curves due to their favorable properties, including
low computational cost and flexibility. The authors in Refs. [33–36] also used quintic Bézier
curves and various optimization approaches in an attempt to improve the efficiency and
accuracy of path planning for autonomous vehicles. In Ref. [33], the author described
the cubic and quintic (trigonometric) Bézier curves using a few shape parameters, which
makes the method flexible for use in cluttered environments. However, the author only
evaluated and compared the values of velocity, radial acceleration, longitudinal and radial
jerks on given unit speed curves. In Ref. [34], the authors proposed a real-time motion
planning approach for automated driving in urban environments. Similar to our case, they
used a decoupled method by separating path and speed planning. While their trajectory
generation approach is suitable for environments with obstacles, the generated velocity
profiles do not include jerk constraints. In Ref. [35], the presented method combines jump
point search with Bézier curves. However, their approach only ensures C2 continuity and
considers velocity and acceleration constraints. In Ref. [36], the authors proposed an
optimization approach for path planning for driverless vehicles in parallel parking using
a radial basis function neural network. The authors optimized performance to ensure
curve continuity, safety, and compliance with curvature constraints, but did not address
the problem of velocity planning or compliance with other dynamic constraints.

Mobile robots are finding broader application and have become an integral part of a
variety of environments: in manufacturing, medicine, and many other robotics-based ser-
vices, including automated warehouses [37–40]. In work environments where simple and
labor-intensive tasks of workers are replaced by mobile robots, labor efficiency, scalability,
adaptability, and warehouse visibility increase, and turnaround time decreases.

3. Problem Formulation

Let the motion of a mobile system along a three times continuously differentiable
plane curve C be described as a function of time t ∈

[
0, t f

]
by the position vector r(t)
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measured from a given fixed origin. The velocity vector v(t), the acceleration vector a(t),
and the jerk vector j(t) in the tangential-normal form are:

v(t) = v(t) · T̂, (1a)

a(t) = aT(t) · T̂ + aR(t) · N̂ = v̇ · T̂ + v2κ · N̂, (1b)

j(t) = jT(t) · T̂ + jR(t) · N̂ =
(

v̈ − v3κ2
)
· T̂ +

1
v

(
d
dt

(v3κ)

)
· N̂, (1c)

where T̂ and N̂ are the unit tangential and the unit normal vector, respectively, and κ is
the curvature of the path at time t. In Equation (1a), v is called speed, and the tangential
and normal components of the acceleration (Equation (1b)) are called acceleration along
the path and centripetal acceleration (also called radial acceleration), respectively. The
expression (1c) is obtained by differentiating Equation (1b) and applying the Frenet–Serret
formulas for movement in two-dimensional Euclidean space R2 [41].

The maximum allowable value of velocity vMAX is determined by the capabilities of
the robot actuators and also the environmental conditions (e.g., surface type). Driving in the
reverse direction is not permitted. The maximum values of radial acceleration aRMAX and
tangential acceleration aTMAX can be set based on the dynamic constraints of a mobile robot
(e.g., maximum centripetal force and rolling resistance in a turn) [6]. Similarly, we imposed
third-order constraints jRMAX and jTMAX, whose values can be derived from ride comfort
criteria [9]. Although we could limit the acceleration and jerk components separately (and
treat them individually), we additionally restricted their values to the range within an
ellipse (similar to researchers in [5,6,35,42]:

0 ≤ |v(t)| ≤ vMAX, (2a)

a2
R(t)

a2
RMAX

+
a2

T(t)
a2

TMAX

≤ 1, (2b)

j2R(t)
j2RMAX

+
j2T(t)
j2TMAX

≤ 1. (2c)

Treating the tangential and radial components of acceleration (Equation (2b)) and jerk
(Equation (2c)) together is more rigorous than limiting the individual components. It also
provides greater ride comfort by constraining the overall norms. The goal of this research
was to develop a trajectory planning method for a mobile system operating in a constrained,
obstacle-free, planar environment while subject to kinematic constraints. Although motion
planning algorithms have been the subject of extensive research, dealing with third-order
constraints still proves challenging.

4. Contributions

The main contributions of this paper can be summarized as follows:

• We describe an innovative construction method for 5th order Bézier curves. The
proposed parameterization is simple and intuitive, yet effective for generating smooth
paths consisting of multiple splines (Section 5);

• The above smooth path generation basis is coupled with an algorithm that computes
a minimum-time velocity profile with velocity, acceleration, and jerk constraints on a
predefined path (see Ref. [5]). Together they form a powerful trajectory generation
algorithm (Section 6). The resulting trajectories thus provide continuous velocity and
acceleration profiles;

• To prove the applicability of our approach to trajectory optimization, we performed sim-
ulation experiments on a racetrack and in a warehouse environment (Sections 6.1 and 6.2).
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In the warehouse simulation, we identified and analyzed realistic situations with different
dynamic constraints to investigate and propose the most appropriate driving scenarios.

5. Curve Primitives

A Bernstein–Bézier curve (or Bézier curve) is defined by a set of control points
P0, P1, . . . Pb, b ∈ N :

rb(λ) =
b

∑
i=0

piBi,b(λ), (3)

where λ is a normalized time variable (0 ≤ λ ≤ 1) and pi denotes the position vector of a
control point Pi. The polynomials Bi,b(λ):

Bi,b(λ) =

(
b
i

)
λi(1 − λ)b−i =

b!
i!(b − i)!

λi(1 − λ)b−i, (4)

are known as Bernstein basis polynomials of degree b. Bézier curves can be defined for
N-dimensional space, N ∈ N. In planar space, the curve rb(λ) and the vectors pi are
two-element vectors: rb(λ) = [X(λ), Y(λ)]T and pi = [xi, yi]

T . These curves have several
useful properties for path planning. The first and last points of the Bézier curves introduced
in Equation (3) are their endpoints:

rb(0) = p0 and rb(1) = pb. (5)

The N-dimensional, b-th order Bézier curve also lies within the convex hull defined
by its control points. Furthermore, the beginning and the end of the curve are tangent to
the first and the last section of the convex polygon, respectively (Figure 1).

drb
dλ

∣∣∣∣
λ=0

= b(p1 − p0), (6)

drb
dλ

∣∣∣∣
λ=1

= b(pb − pb−1). (7)

P
0

P
1

P
2

P
3

P
4

P
5

Figure 1. Fifth order Bernstein–Bézier curve within its convex hull (dashed lines). The curve is
tangent to the sides of the convex hull, line segments P0P1 and P4P5.

Other properties of Bernstein polynomials (derivatives, calculation of definite integrals,
the de Casteljau algorithm, degree elevation, etc.) fall outside the scope of this article; more
details on this topic can be found in Ref. [28].

Bézier curves constructed by a large number of control points are computationally
intensive. For this reason, in path planning, it is desirable to construct a smooth path
by connecting low-degree Bézier curves [6]. The authors in Ref. [43] proposed a new
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parameterization of motion primitives based on Bézier curves for path planning appli-
cations of wheeled mobile robots. However, the method was presented for third-order
polynomials and the algorithm does not guarantee the existence of the curve for all possible
parameterizations. We used fifth-order Bézier curves because this is the degree of Bézier
curves that always satisfies the curvature continuity requirement (C2) in the joints. The 5th
order Bézier curve r5(λ) is defined by six control points Pi:

r5(λ) = (1 − λ)5 p0 + 5λ(1 − λ)4 p1 + 10λ2(1 − λ)3 p2 + 10λ3(1 − λ)2 p3

+ 5λ4(1 − λ)p4 + λ5 p5. (8)

5.1. Construction of 5th Order Bézier Curves

It is very important to choose the appropriate construction parameters that would
efficiently define the Bézier curves and facilitate the search for the minimum-time trajectory.

With the above notation, let us mark the distances between consecutive control points
d(Pi, Pi+1) as di+1 and the angles between (Pi, Pi+1) and the positive direction of the x-axis
as ϕi+1 (Figure 2), i = {0, 1 . . . , 4}. For the coordinates of two consecutive control points, it
follows that:

xi+1 − xi = di+1 cos ϕi+1, (9a)

yi+1 − yi = di+1 sin ϕi+1. (9b)

We evaluate (9a) and (9b) for i ∈ {0, 1} using the sum and difference formulas for sine
and cosine. This gives the following expression for the value of the curvature in P0:

lim
λ→0

κ(λ) = κ0 =
4
5

d2

d2
1

sin(ϕ2 − ϕ1). (10)

The derivative of curvature κ0 in P0 with respect to λ is:

lim
λ→0

dκ

dλ
=

12
5

1
d2

1
d3 sin(ϕ3 − ϕ1) + κ0

(
−12

d2

d1
cos(ϕ2 − ϕ1) + 6

)
. (11)

We choose the parameters of the curve so that the second term in Equation (11)
becomes 0. This happens when:

d2

d1
=

1
2 cos(ϕ2 − ϕ1)

. (12)

The curvature κ0 from Equation (10) and its derivative κ′0 in P0 from Equation (11)
then become:

κ0 =
4
10

tan(ϕ2 − ϕ1)

d1
, (13a)

κ′0 =
12
5

d3 sin(ϕ3 − ϕ1)

d2
1

. (13b)

The purpose of introducing notations for di and ϕi and deriving expressions for κ0
and κ′0 is to make the process of path construction as efficient and intuitive as possible. This
also takes into account that the path ultimately consists of several Bézier curves. Thus, the
parameters needed to generate a 5th order Bézier curve are P0, P5, ϕ1, ϕ5, κ0, κ5, d1, d5, and
κ′0. However, how would one set the value of κ′0? It could be simply set to zero, but perhaps
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it is also useful to examine Equation (1c) and choose such a value for κ′0 that the value of
the radial component (in P0) of the jerk vector is zero.

A 5th order Bézier curve is therefore constructed in the following steps (Figure 2):

1. Outline the first control point and mark it as P0. In the direction of ϕ1, measure out
the distance d1 and mark the second point as P1.

2. In the direction ϕ1, measure out the distance d||2 (from Equation (12)):

d||2 = d2 cos(ϕ2 − ϕ1) =
1
2 d1. (14)

3. Measure in the perpendicular direction the distance d⊥2 (from Equation (10)):

d⊥2 = 5
4 d2

1κ0. (15)

and mark the third point as P2.
4. All points away from P2 for d⊥3 (Equation (11)) in the same direction (perpendicular

to the line segment P0P1) lie on the red dashed line.

d⊥3 = 5
12 d2

1κ′0. (16)

5. Mark the last point as P5. Measure out the distance d5 in the opposite direction from
ϕ5 and mark the fifth point as P4.

6. All points away from P4 for d⊥4 (Equations (9a), (9b) and (10) for i = 4) in the same
direction (perpendicular to the line segment P4P5) lie on the green dashed line:

d⊥4 = 5
4 d2

5κ5. (17)

7. The fourth control point P3 lies on the intersection of the red and green dashed lines.
The Bézier curve is now completely defined.

Figure 2. The proposed construction of a Bézier curve that enables efficient parameterization.

6. Generation of Minimum-Time Trajectories

We have shown the use of the proposed trajectory planning algorithm in two environ-
ments. On a racetrack, the focus was on demonstrating path construction and ensuring
that it is within the corridor boundaries. In a warehouse, we demonstrated the benefits of
our proposed methods in a real-world application. All simulations were performed using
the Matlab programming environment on a computer with an Intel(R) Core(TM) i7-8700
CPU 3.2 GHz processor with 16 GB RAM memory.

232



Sensors 2023, 23, 1982

A minimum-time trajectory is computed by applying an algorithm that generates a
minimum-time velocity profile (proposed in Ref. [5]) to Bézier curve splines. The algorithm,
which considers velocity, acceleration, and jerk constraints along a given path, consists
of two steps. In the first step of the algorithm, the velocity and acceleration constraints
are considered. In the second step, the algorithm modifies the original velocity profile to
include the jerk constraints, with the process varying depending on the type of violation
(single-point or interval jerk violations). The simulation methodology for computing the
minimum-time velocity profile, described in detail in Ref. [5], can essentially be described
as solving the presented ordinary differential equation with a given initial value. In our
own implementation, numerical methods (Euler’s method and trapezoidal integration)
were used to calculate the required values in the discrete time samples.

We then used a nonlinear gradient optimization method, an optimization routine
built into Matlab, to change the construction parameters of the Bézier curves. Using
this method, we found a solution where the travel time reached a minimum. Since the
simulated environments were static and free of obstacles, we divided the environments into
several individual sections. This was done primarily to reduce the number of optimization
parameters and consequently speed up the minimization process.

6.1. Racetrack Environment

The model of a racetrack that we used in our simulations is shown in Figure 3. It is
defined by the centerline. The left and right edges of the racetrack are at a distance w/2
from the centerline and represent the corridor boundaries. The shape of the racetrack can
in general be arbitrary complex and is therefore divided into segments. This is done by
analyzing the curvature of the centerline. Points where the curvature reaches local extrema
are denoted by the sequence Ci, i ∈ {1, . . . , Nparts + 1} where Nparts is the number of
segments. Then perpendicular lines to the centerline are drawn in Ci. These lines represent
the edges of individual segments. The first and last control points of the Bézier curves
lie somewhere on the segment edges. For simplicity, we represent the positions of Pi

0 and
Pi

5, i ∈ {1, . . . , Nparts}, by the parameter p ∈ [−1, 1]. The sign of p indicates whether the
control point lies somewhere between the centerline and the right (+) or left (−) edge of
the racetrack.

Figure 3. The racetrack model we used for the simulations. Shown are points Ci on the centerline
where the curvature is locally highest, and lines mi where Pi

1 and Pi
5 lie.

Thus, each curve in a segment is completely defined by the positions, angles, and
curvatures in the first and last control points (p0, ϕ1, κ0, p5, ϕ5, κ5), d1, and d5. Note that the
angles are measured from a tangent to the centerline in Ci (Figure 4). To find a reasonable
starting point for the optimization, we devised a simple heuristics. In each segment, a line
� is drawn from Pi

0 through the outermost edge of the inner side of the corridor at the end
of the (i + 1)th segment. The intersection of lines � and mi is the initial estimate for the
position pi

5,init of the last control point P′i
5 . If the intersection point is outside the corridor

(as in Figure 5), pi
5,init is set to its edge. The initial estimate for the angle ϕi

5,init is the angle
between the line � and the line perpendicular to mi+1, while κi

5,init is the curvature of the
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centerline in Ci+1. The values of di
1 and di

5 were set to the value of a certain fraction of the
distance between Pi

0 and P′i
5 . The heuristic procedure described is shown in Figure 5. To

simplify the notation, we will from now on omit the superscript i.

Figure 4. A segment with a Bézier curve. ϕ1 and ϕ5 are measured from the line perpendicular to mi.

Figure 5. An example of heuristic determination of initial guesses for construction of Bézier curve(s).

We devised a series of separate simulation experiments to demonstrate the operation
and efficiency of the proposed Bézier curve construction and trajectory planning algorithm.

Let Nfree denote the number of optimization parameters on each corridor segment. It
is expected that the higher the number of (free) curve construction parameters Nfree, the
more versatile a curve is. Thus a better solution can be provided. However, in this way
the optimization problem becomes more computationally expensive and the solution more
difficult to obtain due to the complex form of the objective function.

Another problem is the gradual generation of the final trajectory. A Bézier curve can be
constructed for each segment separately and have the criterion assigned to it. Alternatively,
multiple Bézier curves spanning several segments can be constructed together, and the
objective is the travel time along all of them. Then only the solution on the first segment
is kept and this procedure is repeated in a receding horizon manner. Let us denote by
Nseg the number of segments that are treated simultaneously. If only a one-segment
optimization is performed (Nseg = 1), the solution does not take into account the corridor
shape in the following segment, e.g., when a sharp turn follows. On the other extreme, the
complete curve (on all corridor segments) can be generated in each run of the optimization,
but since the dimension of the optimization problem is the product of the construction
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parameters, namely Nfree × Nseg, it is reasonable not to exaggerate the two values and to
find a sensible compromise.

Simulations were performed for Nfree ∈ {2, 5} and Nseg ∈ {1, 2, 3}. Therefore, in one
group of experiments, the two optimization parameters are d1 and d5, while the other three
necessary parameters for curve construction (p5, ϕ5, and κ5) are given by the heuristics
discussed above and shown in Figure 5. In the other set of simulations, there are five
optimization parameters, namely d1, d5, p5, ϕ5, and κ5. Certainly, both simulation scenarios
also include cases with different Nseg. The data obtained from the simulation experiments
are compiled in Table 1, where ti represents the travel time at the end of a given corridor
segment and ∑6

i=1 ti is the total travel time on a resulting path.

Table 1. Resulting travel times on segments and total travel times. Simulations were performed
for different numbers of optimization parameters Nfree ∈ {2, 5}, and different numbers of seg-
ments Nseg ∈ {1, 2, 3}, whose geometry was taken into account when calculating the solution for
the current segment.

Nseg Nfree
t1 t2 t3 t4 t5 ∑6

i=1 ti
[s] [s] [s] [s] [s] [s]

1 2 2.91 4.20 7.18 9.73 11.24 12.11
5 2.34 2.87 5.44 7.89 9.42 10.20

2 2 2.87 4.15 7.14 9.69 11.19 12.03
5 2.34 2.88 5.54 7.90 9.27 9.66

3 2 2.89 4.16 7.13 9.68 11.22 12.07
5 2.34 2.90 5.52 7.68 8.87 9.17

Figures 6–11 show the resulting paths in the racetrack and the corresponding velocity
profiles. We imposed the following constraints: vMAX =1.75 m/s (represented by the dashed
horizontal lines), aRMAX = 1.6 m/s2, aTMAX = 0.8 m/s2, jRMAX = 16 m/s3, jTMAX = 12 m/s3.

Figure 6. Resulting path as optimization result for Nfree = 2 and Nseg = 1 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 7. Resulting path as optimization result for Nfree = 5 and Nseg = 1 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.
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Figure 8. Resulting path as optimization result for Nfree = 2 and Nseg = 2 (left) with the correspond-
ing velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 9. Resulting path as optimization result for Nfree = 5 and Nseg = 2 (left) with corresponding
velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches its
maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches its
maximum allowable value.

Figure 10. Resulting path as optimization result for Nfree = 2 and Nseg = 3 (left) with the corre-
sponding velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches
its maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches
its maximum allowable value.

Figure 11. Resulting path as optimization result for Nfree = 5 and Nseg = 3 (left) with the corre-
sponding velocity profile (right). Blue vertical bands indicate intervals where the acceleration reaches
its maximum allowable values. Similarly, red vertical bands indicate intervals where the jerk reaches
its maximum allowable value.

As expected, the results in Table 1 show that the travel times decrease when either Nseg or
Nfree increases. The shortest travel time is calculated for the case where Nseg = 3 and Nfree = 5.
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6.2. Warehouse Environment

The enormous technological capabilities of automated guided vehicles (AGVs) and
other autonomous mobile robots (AMRs) are facilitating the launch of fully automated
warehouses. Common warehouse tasks performed by mobile robots include loading and
unloading goods, stacking and retrieving items, picking and sorting orders, inventory
tracking, and warehouse maintenance.

We tested the proposed trajectory planning algorithm in a simple warehouse environ-
ment by simulating the task of moving between three rows of storage racks, picking up
and dropping off loads from specific locations (Figure 12). Warehouses are usually very
confined environments, so we assumed that movement in the two aisles is restricted to a
straight line. To avoid collisions of AGVs with storage racks, the straight segments on both
sides protrude slightly beyond the edges (black solid dots in Figure 13). The optimization
problem is to find the most suitable path shape between the aisles.

Figure 12. The warehouse floor plan with three pairs of pick-up and drop-off points: A and A′, A
and B, A and C.

The simulation experiment was designed as follows. An AGV travels clockwise along
a circular route from the pick-up point (PUP) to the drop-off point (DOP) and back to the
starting point. At the pick-up and drop-off points, the speed is set to zero. As the load is
delicate, the dynamic constraints on the mobile system are more severe in the first part of
the path, as shown in Table 2.

Table 2. Constraints on velocity, acceleration, and jerk for a fully loaded (�) and an unloaded (×)
mobile system.

Load
vMAX aRMAX

aTMAX
jRMAX

jTMAX

[m/s] [m/s2] [m/s2] [m/s3] [m/s3]

� 1.0 2.0 1.0 4.0 4.0
× 2.25 4.0 2.0 16 16

We proposed that the continuous curvature path between a pick-up point and a drop-
off point (and vice versa) consists of two straight lines and two 5th order Bézier curves.
The coordinates of the control points were determined by an optimization process that
minimizes travel time. Since the velocity is set to zero at the symmetrically placed drop-off
point A′, the optimizations can be performed only on one half of the circular route (thus on
four segments instead of eight). The free optimization parameters for the construction of the
Bézier curves were d1 and d5 (Section 5.1 for a full explanation) and the x coordinate of the
joint between them, which is P5 of the first Bézier curve and P0 of the second Bézier curve.
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First, we computed the minimum-time trajectories for symmetrically placed pair of
pick-up and drop-off point (A and A′). Let us denote the path representing the full-load
optimization solution for the symmetrically placed pair A and A′ by F . Similarly, let N be
the path representing the no-load optimization solution for the symmetrically placed pair
A and A′ (Figure 13).

Figure 13. The drawn paths F and N are the result of an optimization that minimizes travel time.
The filled dots mark the points where the straight segments meet the Bézier curves.

We then conducted a comparative travel time analysis. The main question was whether
travel times differ in cases where a fully loaded/unloaded AGV travels along a path that
is not optimized for a load of the same type. Normally, AGVs in warehouses travel along
predefined trajectories. So with the simulation experiment, we wanted to test whether it is
possible to reduce travel time if each curve segment is optimized for the actual load being
carried. We also included examples with different ratios of travel times (or path lengths) of
fully loaded or unloaded mobile systems by adding drop points B and C. Essentially, we
calculated travel times for the three pick-up and drop-off pairs where the AGV was fully
loaded on the first part (PUP→DOP) and unloaded on the second part (DOP→PUP) of the
circular path, but traveling on either F or N . The travel times are given in Table 3, where
the subscripts indicate the load type of the AGV. By μ, we denote the relative increase (in
percent) in travel time in a given route case scenario compared to the travel time when the
AGV travels on a path optimized for a load of the same type (the last three rows in Table 3).

The results in Table 3 show that the travel time is indeed the shortest when the
mobile system travels along the route optimized for the actual load (PUP→DOP: FF, and
DOP→PUP: NN). Moreover, it can be seen that when the default path is F (rows 4–6
in Table 3), the corresponding travel times are always shorter than in the case when the
default path is N (rows 1–3 in Table 3). However, generally, the travel times are not radically
different and this observation is not entirely unexpected. We could achieve more obvious
travel time differences if we increased the ratio of fully loaded to unloaded constraint
values (see Table 2) or chose a more complex arrangement of pick-up and drop-off points
spanning multiple rows of storage racks. Nevertheless, the selected values for velocity,
acceleration, and jerk constraints (and the ratio between the two load types) should reflect
reality. Additionally, the examples presented can be viewed as the smallest units for which
this analysis can be performed. These subtle differences in travel times (approximately
1% reduction) imply significant absolute time differences when the presented trajectories
are combined into larger trajectories. Or if one considers that a warehouse robot would
traverse the same trajectories over and over again during its entire operation.
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Table 3. Travel times of the AGV on a circular route for different placements of pick-up (PUP)
and drop-off points (DOP). For the symmetrically placed pair A − A′, F and N denote the paths
representing the optimization solutions full-load and no-load, respectively. Similarly, the indices F
and N denote the type of load on the AGV. We write μ for the increase in travel time according to the
last three rows, expressed as a percentage.

Circular Route Case Pick Up
Point

Drop off
Point

Travel
Time

μ

PUP → DOP DOP → PUP (PUP) (DOP) [s] [%]

NF NN

A A′ 20.74 1.49
A B 19.08 1.62
A C 22.40 1.38

FF FN

A A′ 20.65 1.04
A B 18.99 1.13
A C 22.25 0.66

FF NN

A A′ 20.44 0
A B 18.78 0
A C 22.10 0

Figure 14 shows the velocity profiles for all three pairs of pick-up and drop-off points
for the case where FF is on the first part and NN is on the second part of the circular route.

Figure 14. Velocity profiles of AGV traveling on a circular route for different placements of pick-up
and drop-off points: A and A′ (top), A and B (middle), A and C (bottom). The graphs show the
results for PUP→DOP: FF, and DOP→PUP: NN. Dashed horizontal lines represent the velocity
limit values. Blue vertical bands indicate intervals where the acceleration reaches its maximum
allowable values. Similarly, red vertical bands indicate intervals when the jerk reaches its maximum
allowable values.
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7. Conclusions

In this paper, we present a new minimum-time optimization-based approach for
planning the trajectory of a mobile robot in a planar constrained environment. We assumed
that a mobile system has constraints on velocity, acceleration, and jerk. The resulting
smooth path consists of 5th order Bézier curves, for whose construction we propose a new
method that allows efficient parameterization.

We analyzed the results of the proposed approach for generating trajectories in a simu-
lated automated warehouse. Different sets of dynamic constraints led to different solutions
for trajectories. We have shown that it is possible to achieve noticeable improvements
in travel times by choosing the appropriate trajectories. The approach is applicable for
trajectory and velocity planning of a single wheeled robot, but could be extended for the
use of multiple robots to take into account evasive maneuvers or cooperation on a given
task. It can also be used by various other mobile systems moving in a plane (e.g., track
robots, robotic manipulators), especially non-holonomic systems.

Our findings may be especially useful and have great potential for determining
minimum-time trajectories in automated warehouses, where the dynamic constraints
imposed on autonomous mobile robots may depend on the type of load the mobile system
is transporting. Our approach could also be applied to other planar environments with
similar requirements.

The values of the constraints in the warehouse environment were conservatively
estimated to ensure the vertical stability of a mobile system. However, the stability of the
system (mobile robot with load) itself was not the subject of our research. Future studies
should aim to describe the characteristics of the load in more detail, as this could impose
additional or more demanding constraints on a mobile system. For a specific mobile
system with known load characteristics (mass, mass distribution, dimensions, contact
area conditions) it would be possible to calculate the tipping angle and consequently
determine the allowable accelerations. The use of higher order Bézier curves or other
curve primitives would also be of particular interest. More broadly, research is needed to
apply the proposed trajectory planning approach to environments with static or dynamic
obstacles to demonstrate the proposed idea using global or local path planning methods.
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Abstract: The original concept of the artificial potential field in robot path planning has spawned a
variety of extensions to address its main weakness, namely the formation of local minima in which
the robot may be trapped. In this paper, a smooth navigation function combining the Dijkstra-
based discrete static potential field evaluation with bilinear interpolation is proposed. The necessary
modifications of the bilinear interpolation method are developed to make it applicable to the path-
planning application. The effect is that the strategy makes it possible to solve the problem of the
local minima, to generate smooth paths with moderate computational complexity, and at the same
time, to largely preserve the product of the computationally intensive static plan. To cope with
detected changes in the environment, a simple planning strategy is applied, bypassing the static plan
with the solution of the A* algorithm to cope with dynamic discoveries. Results from several test
environments are presented to illustrate the advantages of the developed navigation model.

Keywords: robot navigation; path planning; potential field; bilinear interpolation; dynamic local
re-planning

1. Introduction

The main goal of a navigation function is to create feasible, safe paths that avoid
obstacles and allow a robot to move from its start configuration to its goal configuration [1].
Online robot navigation and path planning consists of two complementary aspects. In
the global path-planning phase, the task is to find an optimal path to the intended goal,
starting from the robot’s starting position and using all the previous information about
the environment. This plan takes into account the need to avoid obstacles but only those
that are assumed to be present before the robot starts to move towards the goal. This is
coupled with the local obstacle avoidance phase in which the robot avoids new obstacles
detected by its sensors while navigating the planned path. The former can be thought of as
proactive, while the latter is reactive. With this understanding comes the acceptance that
the former is usually more optimal than the latter in some sense. The biggest challenge in
real-world applications is the ability to handle unanticipated changes in both structured
and unstructured environments. Because the discovery of new obstacles is an evolutionary
process, it cannot be assumed that the overall path that is eventually completed will
be as optimal as a path that was planned with the knowledge of all the aspects of an
unchanged environment at the beginning. However, this is not a fair comparison because
new map situations are usually discovered after the robot has begun to execute the original
plan. Moreover, due to these new discoveries, the robot may find itself in situations
where it seems to be trapped if it continues to follow the global plan while only imposing
a requirement to avoid collisions with the new obstacles. The goal is then to develop
strategies to overcome the new obstacles in an effective and situationally appropriate way
while the robot continues to head towards its original goal.
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It is important to understand the trade-off involved in the above situation, which can
be thought of as a see-and-react strategy when dealing with new discoveries. In contrast to
this approach, there is the alternative of re-implementing the global path-planning strategy
at the point where new environmental discoveries are made. However, implementing a full-
featured online global path-planning strategy is usually not feasible due to computational
costs. Speed is essential because potential delays in reacting could affect the ability to deal
with new discoveries safely and efficiently unless one is willing to slow down or stop until
a new plan is available. This is particularly true when considering that changes in the
environment relative to prior assumptions are quite likely in actual navigation applications.
It is to address this need that several incremental methods have been developed [2–6],
which reduce computational and storage costs by reusing existing planning information.

An extensive survey of path planning algorithms has been carried out in [7]. Algo-
rithms are divided into categories and sub-categories within them, based on the modality of
their development. This work falls in the sub-category of graph search , which supports a
variety of path-planning approaches, but here specifically, a graph search based on the use
of a uniform grid. It combines this with the adoption of a variant of the original artificial
potential fields (APF) method [8]. According to [7], the APF is categorised as reactive
manoeuvring. Thus, essentially, a uniform grid-based graph search is combined with a
reactive manoeuvring technique to carry out global and local path planning.

The environment can be represented as a graph using cell decomposition or roadmaps.
Examples of the latter approach are the Voronoi graph [9], which can produce optimum
clearance from the obstacles, and the tangent graph [10], which contains the optimal
solution and requires less memory than the visibility graph, its superset. In [11], a tangent
graph is constructed for obstacles described with analytic curves in which a finite search
algorithm can be used to find the optimal path. The optimal path found in the tangent graph
may not be smooth. The authors in [11] combine the tangent graph with online reactive
navigation to generate smooth paths for the unicycle drive. Although the algorithm always
finds a path, the path may not be optimal. The computational complexity of roadmap-based
path-planning algorithms depends on the number of obstacles and the complexity of the
obstacle shapes (i.e., the number of the primitives describing all obstacles). The problem
of reducing the computational complexity of constructing a tangent graph was addressed
in [12]. Among the cell decomposition approaches, grid-based tessellation is the most
common and is also used in this work. In grid-based approaches, the complexity mainly
depends on the number of cells—a smaller cell size leads to a higher path resolution. The
cell size must be small enough to describe the environment with sufficient detail, but must
not be too small, as this significantly increases the computational complexity of the search
algorithms. The proposed approach introduces an interpolation that can produce smooth
paths even at a coarse map resolution.

The earliest graph-theoretic path-planning algorithm is arguably the one developed
by Dijkstra [13], which inspired many subsequent variations. It has two aspects associated
with its basic construction that could make it less suitable for use in some real-world robot
navigation problems. Firstly, it finds the optimal paths between a source node and all
destination nodes (or equivalently, between multiple source nodes and a single destination
node). In many applications involving only a single robot and a single destination, it
increases the computational burden in doing much more than is needed. Secondly, it does
not accommodate new discoveries made as the robot’s sensor horizon advances on the way
to the goal. Yet, in other applications involving several missions originating at different
locations, with the need to converge to a single destination such as in warehouses [14,15], or
games [16,17], Dijkstra’s algorithm matches the need. The computational burden associated
with it then becomes justifiable, especially if it is required to be exercised occasionally and
the results reused with different starting locations. The focus then shifts to the second issue
mentioned above, as to how to make the Dijkstra paths viable even when dealing with
environmental changes.
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The A* algorithm [18] and its derivatives, such as D*Lite [4], are computationally
efficient algorithms compared to Dijkstra in the specific task that they address of finding a
path between a single source and goal nodes. This reduced task allows an informed search
strategy in the form of a heuristic to be deployed, which leads to the computational savings.
The one-source–one-goal paradigm can be identified with a single robot trying to get to
a single destination. Both A* and D*Lite accommodate new obstacle discoveries, but the
latter is an incremental algorithm which makes it suitable when there are continuing map
changes while navigating to the same goal.

Some of the prior efforts of other researchers that use methods related to our path
planning and navigation strategy are now discussed. The concept of artificial or virtual
potential functions (APF) was first proposed in [8]. They are called artificial because
these are not actual electric potentials but are only conceptualised as such. In the original
formulation, as explained in Choset [19], the two attractive and repulsive potential functions
were algebraically summed to obtain the overall potential function. In practice, the ad hoc
parametric choices of the model could set up local minima at which the net force on the
robot is zero, resulting in the robot being trapped on its way to the goal.

Let us now turn our attention from the core APF concept to how it was actually
realised in prior robot navigation research. Ratering and Gini [20] proposed a hybrid
potential field consisting of the combination of a global potential field calculated with
a variant of Dijkstra’s algorithm and a local potential field synthesised with the help
of sonar measurements. Wang et al. [21] also constructed the global and local planners
separately. Distance transformation, another variant of Dijkstra’s algorithm, is used for
the global planner, while an APF-based method is used for the local planner. The overall
navigation strategy is characterised by a mediation between the strict need to achieve the
subgoals of the global plan and the freedom of the APF-based local planner, so that local
minima are avoided. Azmi and Ito [22] propose a technique to handle the local minima
problem, in this case, a repetitive oscillatory excursion between two local minima. A
map transformation operation was proposed that resulted in the stalemate being resolved
through the rotation of the environment space. Lazarowska [23] devised the planning of
trajectories for autonomous ships navigating amongst both static and dynamic obstacles.
The static APF model accounted for the compliance of special maritime rules that prescribed
deliberate actions to avoid collisions between ships. Similarly, Klančar and Seder [15]
combined the static APF with local reactive model–predictive planning to avoid collisions
among multiple robotic vehicles in warehouse navigation. Amiryan and Jamzad [24]
used the APF to complement a pre-determined path generated by a sampling-based path
planner such as Rapidly-exploring Random Tree (RRT) [6] to avoid local minima problems.
In [25], a hybrid planning method is proposed that combines a particle swarm optimisation
algorithm with the APF for static obstacles and the potential field prediction for dynamic
obstacles. Several solutions have been proposed to overcome problems with local minima,
such as representing concave obstacles by convex representations [26], adding virtual
obstacles to move away from local minima [27] or by small perturbations of the APF based
on the input-to-state stability property [28]. Alternatively, a robot navigation function
can be determined using deep neural networks with reinforced learning as in [29], ant
colony optimisation [30], simulated annealing, particle swarm optimisation [25], genetic
algorithms and fuzzy logic [31] or the like.

The sampling of the APF-based literature discussed above indicates that the APF
concept continues to play a role in robot navigation. Specific use cases range from the
original concept of an integrated formulation premised on attractive/repulsive forces to
separate formulations addressing the static and dynamic planning phases, to dealing with
dynamic moving obstacles and other variations.

The main contributions of this paper are the following.

• A new navigation function is proposed that generates smooth and collision-proof paths
by using the bilinear interpolation (BiLI) method to obtain an artificial potential field
gradient-descent navigation function from a discrete cost-to-goal (CtG) map obtained
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by an optimal discrete grid-based search method. The approach is computationally
efficient as it relies on a coarse discrete graph search that can be precomputed for
static environments and known goals and can be easily reused for multiple missions
from different parts of the environment that need to navigate to a common goal. The
bilinear interpolation method implements a continuous potential field and driving
direction from a discrete grid-based search.

• Although BiLI is commonly used in computer vision applications, its use for robot
planning requires some enhancements, such as handling occupied cells whose values
are not defined, interpolating at the environmental boundaries and ensuring con-
tinuous gradient descent, which are the main novelties of this work. The resulting
path is collision-proof, continuous and close to the optimum, even at the course grid
resolution used. It also avoids the problems with local minima that are common in
general APF-based methods.

• BiLI can be applied in dynamic environments where incremental graph search meth-
ods such as D∗ or similar [2,4,5,32] can be used to efficiently account for the changes
in the environment. In this work, a simple strategy is proposed using Dijkstra for the
global CtG map planning and A∗ for dealing with locally sensed environment changes.
When different types of map changes are detected that affect the CtG values, the
proposed model uses the A* algorithm to find an emergency bypass path to areas of
the environment where the old CtG values are still valid. The bypass path is followed
by the determination of a final gradient-descent path segment to the overall goal.
Then, a situational decision is made whether to take the additional path segments
at the point of the map change or to keep the original path. Using A* to determine
the diversion path is relatively fast compared to regenerating the CtG values with
Dijkstra, as usually only a few cells need to be examined.

The remaining parts of the article are organised as follows. The first part of the path-
planning model developed in this effort is explained in Sections 2 and 3, with the help of a
test environment scenario. The reactive strategy to negotiate a blockage of the global path
is formulated in Section 4 with the same environment. Section 5 contains a description
of additional test scenarios formulated to evaluate this model and the attendant results.
Finally, Section 6 contains a brief summarising discussion of the work and suggests further
steps, while Section 7 draws some broad conclusions.

2. The Environment and APF Generation

Following a description of the environment, the formulation of the APF values for
each cell of the grid-based discretisation is discussed in this section.

2.1. The Environment

A sample environment is shown in Figure 1 which represents the static map in one
experiment. Appropriate modifications to it will be subsequently made that reflect the
dynamic discovery of new obstacles. Moreover, other obstacle configurations will be
created later that represent additional challenges addressed in this work.

The environment consists of a walled-off 10 by 10 m field of play. It can be scaled up
to any size, as desired. The entire area is divided into 400 cells (20 by 20), with each cell
being 0.5 m square. The environment features four prominent symmetrically positioned
“obstacle islands” that, given the starting and goal locations (also shown), block line of
sight to the goal for significant portions of a possible path.

The broad characteristics of the environment are:

• Even when an obstacle only overlaps part of a cell, the entire cell is considered
occupied. Thus, the map of the environment is in the form of a binary occupancy grid,
which also factors in obstacle inflation.

• Dynamic changes in the environment over the initial static knowledge are assumed to
be small and localised.
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• They can be in the form of additions or subtractions. That is, cells that were unoccupied
might be occupied as well as the opposite.
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Figure 1. Static map of environment with start (S) and goal (G) locations, discrete CtG values assigned
to the free cells (white cells, gray cells belong to obstacles) and some different smooth paths that
connect the start and the goal locations.

2.2. Formulation of APF

A variant of the original APF (artificial or virtual potential functions) concept [8] is
used to fulfill the global path-planning function. As pointed out earlier, the original APF
was conceived as a function that is continuous with respect to space, that addressed both
goal seeking and obstacle avoidance in an integrated manner. It followed from attractive
and repulsive forces between artificial electrical charges. However, that approach is known
to potentially spawn local minima trapping the robot.

As opposed to the classical approach, the floor space is tessellated into a suitable
x–y grid to accommodate the use of a standardised discrete occupancy map to represent
obstacles. The Dijkstra algorithm is used to generate the cost-to-goal (CtG) value for all
cells in the environment, which constitutes the global cost map. In doing this, diagonal
cell-to-cell transitions are given appropriate differential weights relative to horizontal and
vertical transitions. The CtG values are shown overlaid in Figure 1 within each cell for the
assumed environment. For example, the CtG is zero for the goal cell and 10.8 m for the
starting cell.

Within the grid map, the Dijkstra algorithm can be used to obtain the shortest path. In
Figure 1, the cells that lead from the start to the goal cell are shaded with a light blue colour.
A smooth path can then be obtained if a spline (using, e.g., Bézier curves or clothoid curves)
is fitted over the centres of the cells that comprise the path. In Figure 1, the Automated
Driving Toolbox in Matlab is used to smooth the paths using cubic splines as shown in two
examples (Smoothed Dijkstra path 1 and Smoothed Dijkstra path 2). This approach does
not ensure that the smooth path does not go too close or even over the obstacles unless
collision checking is also made during spline fitting. In Figure 1 is also an example of the
path obtained by the approach proposed in this paper. This is a smooth path that is obtained
based on the interpolated gradient of the APF that takes obstacles into account implicitly.
Figure 1 also presents a smooth path that is obtained with Rapidly-exploring Random Tree
(RRT*) [33]. In this case, RRT* uses Dubins’ curves [1] to obtain the path from the start to
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the goal, and the obtained path is further smoothed by fitting a cubic Bézier spline. The
shape of the curve depends on many constraints (e.g., path curvature, segment length,
safety distance, vehicle constraints, etc.) that can be given to the algorithm to optimise;
therefore, paths with different shapes and smoothness can be obtained. Moreover, the RRT
approach is stochastic; therefore, a completely different solution can be obtained in every
run of the algorithm even if the input conditions do not vary. Some smoothed paths can
be very oscillatory or make large turns around the obstacles, or path smoothing can also
produce infeasible paths that collide with obstacles. The proposed approach in this paper
is deterministic and produces smooth and near optimal paths that ensure a minimum safe
distance from the obstacles, and it is also computationally efficient because it produces
satisfactory results even when the cell size is relatively large.

The CtG numbers serve as the classical APF values that are the basis of the global
planning within the environment, after some refinement discussed shortly. Just as in the
classic APF method, a gradient descent determines the direction of motion. If the static
map does not change, a gradient-descent approach based on the CtG values can be used
to move the robot all the way to the goal. However, details need to be addressed, such as
how the gradients are calculated and smoothed for a function that is discrete over the floor
space, as well as how dynamic discoveries in the environment are handled, etc.

3. Interpolation and Smoothing of Potentials and Gradients for Path Planning

The discretisation of the floor—a decision made to contain the computational cost as
well as to simplify the consideration of obstacle occupancy—correspondingly creates a
discrete CtG surface. This then restricts the resolution of the gradient determination which
affects the smooth navigation. To address this, a refinement is introduced through the use of
a well-known technique of image resampling known as bilinear interpolation (BiLI) [34,35],
which operates on pixels that are like the cells in our environment, as discussed below.

3.1. Bilinear Interpolation

The conceptual basis of BiLI is explained using Figure 2 [35]. BiLI uses a 2 by 2
cell window to interpolate CtG values within the centred unit square region within this
window (dashed square in Figure 2), thus creating new data points in an educated manner.
It does so by using linear functions to perform the interpolation in what is essentially a
planar extension of 1D linear interpolation. The spline-based function representing the
interpolating surface is associated with 4 parameters whose values need to be estimated.
This is achieved using the CtG cell values at the corners of the unit square.

According to location of a point [x, y]T in a cell M , a 2 by 2 region of cells around it is
chosen for the interpolation, whose centres are connected by a dashed square in Figure 2.
Normalised coordinates are found by centres of these cells as:

xn = x−x0
dc

, yn = y−y0
dc

, (1)

where [x0, y0] is the origin of the normalised coordinates defined by the lower left corner
of the dashed square and dc is the cell size. The interpolated and discrete CtG value
(potential in the sequel) in normalised coordinates are expressed as Pn(xn, yn) = P(x, y)
and Un(xn, yn) = U(x, y), respectively. The potential for the four adjacent cell centres
(corners of dashed square in Figure 2) are

pcr = Un(xn, yn)

∣∣∣∣
xn=c, yn=r

, (2)

where c, r ∈ {0, 1} and Un(xn, yn) = U(x, y).
The interpolated potential Un(xn, yn) at any given normalised position [(xn, yn)]T

inside the quadrant of cell M delineated by the unit square is defined as [35]:

Pn(xn, yn) = w00 p00 + w01 p01 + w10 p10 + w11 p11, (3)
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where the BiLI weights are given by: w00 = (1 − xn)(1 − yn), w01 = (1 − xn)yn,
w10 = xn(1 − yn) and w11 = xnyn.

Figure 2. Basis of bilinear interpolation. Interpolated potential at a given point [x, y]T is defined by
the discrete potential at centres (black dots) of four cells connected by the dashed square. Gray dots
denote centres of cells.

By following the negative gradient of interpolated potential P(x, y) = Pn(xn, yn), the
safe path from everywhere in the environment towards the goal location (with potential 0)
can be obtained. The negative gradient of P(x, y) in [x, y]T can be obtained as :

g(x, y) = −∇P(x, y) = −
[

∂P(x,y)
∂x , ∂P(x,y)

∂y

]T
− 1

dc

[
∂Pn(xn ,yn)

∂xn
, ∂Pn(xn ,yn)

∂yn

]T

= − 1
dc

[
p11yn − p01yn + p00(yn − 1)− p10(yn − 1)
p11xn − p10xn + p00(xn − 1)− p01(xn − 1)

]
.

(4)

3.2. Adjustments of Bilinear Interpolation for Path Planning

Before applying the interpolation of Equation (3), a check needs to be performed if
any of the three neighbour cells of the cell M (see Figure 2) involved in the interpolation
are occupied. Note that cell M is never occupied as we are interpolating potential at a
point [x, y]T inside it. For occupied cells, the potential is typically infinite or undefined, as
motion over the obstacles towards the goal should not be possible/permitted. The potential
for occupied cell U(xm, ym) (with centre at xm, ym) is reconstructed from the eight-cell
neighbourhood by finding the unoccupied cell with the largest potential, as:

{c, r} = argmax
c,r

{U(xm + dcc, ym + dcc) �= ∞}

U(xm, ym) = U(xm + dcc, ym + dcr) + dc
√

c2 + r2
, (5)

where c, r ∈ {−1, 0, 1}.
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Additionally, a check needs to be performed if any of the four cells needed for the inter-
polation (also interpolation cells, see Equation (3) and Figure 2) is outside the environment.
A simple solution to this could be that the grid cell area is always at least one cell larger than
the area we are interpolating. More general solution applies calculation of the potential
and gradient for a nearby location [xt, yt]T , where all four cells used in the interpolation are
inside the environment. For a position [x, y]T , where one or more interpolation cells are
outside the environment, the nearby location is determined by translating the position from
the border for dc

2 in x and/or y direction towards the inside of the environment as follows:

xt =

⎧⎨⎩
x ; xmin ≤ x ≤ xmax

xmin +
dc
2 ; x < xmin

xmax − dc
2 ; x > xmax

yt =

⎧⎨⎩
y ; ymin ≤ y ≤ ymax

ymin +
dc
2 ; y < ymin

ymax − dc
2 ; y > ymax

, (6)

where environment borders are defined by xmin, xmax, ymin, ymax. For translated nearby loca-
tion, interpolated potential is computed from (3) noted as P(xt, yt) and the gradient from (4)
noted as gt(xt, yt). Finally, the appropriate potential for each interpolating cell outside the
environment (noted as P∗) are reconstructed using Lie derivative (also direction derivative):

P∗ = P(xt, yt) + gt(xt, yt)× [x − xt, y − yt]
T . (7)

Figure 3 (top-left image) shows the resulting potential (CtG values) surface obtained
through application of the BiLI technique, corresponding to the environment of Figure 1.
Notice how the CtG surface slopes continuously downward from the start point to the goal
point, with the four “islands” represented by infinite potentials. This follows from the fact
that the CtG values will monotonically decrease from any cell in the environment towards
the goal. Moreover, a few sample paths obtained by following the negative gradient
(computed from Equation (4)) from different locations towards the goal are shown in the
top-right image with blue line. Notice discontinuous change of the negative gradient
direction near occupied cells, which can also be observed by checking gradients near
obstacle (the cells near the central obstacle in the bottom-left image from Figure 3 with
enlarged cell at obstacle corner). To improve this and obtain smoother paths (as illustrated
in the top-right figure by purple line), we additionally propose interpolation of the negative
gradients in Section 3.3.

3.3. Interpolation of Gradients

The resulting potential in Figure 3 is continuous, but its negative gradient may be
discontinuous especially in the vicinity of obstacles, as seen from the bottom-left image
in Figure 3 where, at the boundaries between the quadrants of a cell, the gradient shows
discontinuities. The negative gradient indicates the required driving direction to reach the
goal in optimal manner. Every discontinuity of the gradient is problematic, as a wheeled
robot would need to stop and rotate on the spot to reliably follow the course of the negative
gradient towards the goal. To improve this, we propose interpolation of the negative
gradient, similar to what was performed for the potential field.

For chosen location [x, y]T in cell M, we estimated the interpolated potential P(x, y)
and its negative gradient g using Equations (3) and (4). Interpolated potential is obtained
from the four interpolation cells centre potentials as indicated by Figure 2. In the following,
we will use the same interpolation principle to also obtain the interpolated negative gradient
h(x, y) with continuous course as shown in the right images of Figure 3. The gradient
for the centres of the four interpolating cells can be estimated from (4), which for each
cell considers only the left neighbour (xn = 0) to obtain x element of the gradient g or
only the upper neighbour (yn = 0) to obtain y element of g. Therefore, we estimate the
cell centre gradient considering the smallest discrete potential (valid for the cell centre) of
both neighbour cells in x or y axis. Denote the interpolating cell centre gradients (similarly
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as their potential in (2)) by hcr = [hxcr, hycr]T where c, r ∈ {0, 1}. For a cell with centre
coordinates xm = x0 + dcc, ym = y0 + dcr the cell gradient reads

hcr = −

⎧⎪⎪⎨⎪⎪⎩
1
dc

[
e(U(xm + dce, ym)− pcr)
f (U(xm, ym + dce)− pcr)

]
; U(xm, ym) < ∞,

1
dc

[
Sx(U(xm + dcSx, ym)− p∗cr)
Sy
(
U
(

xm, ym + dcSy
)
− p∗cr

) ]
; U(xm, ym) = ∞,

(8)

where
e = argmin

s
{U(xm + dcs, ym)} ; s ∈ {−1, 0, 1}

f = argmin
s

{U(xm, ym + dcs)} ; s ∈ {−1, 0, 1} (9)

and Sx = sgn(x − xm), Sy = sgn(y − ym) where sgn(.) denotes the sign function. The first
part of (8) relates to the case where the cell is free and the second for the case when cell is
occupied. If the cell is occupied (U(xm, ym) = ∞), then its potential is updated (noted as
p∗cr in (8)) from already known potential P(x, y) and the gradient g(x, y) in current position
[x, y]T as follows:

p∗cr = P(x, y) + g(x, y)× [xm − x, ym − y]T .
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Figure 3. Interpolated potential surface Pn(xn, yn) (CtG values, darker colours denote lower CtG
values) obtained through bilinear interpolation with contours of equal potential, corresponding to
the discrete CtG values of environment of Figure 1 (top-left). Obtained paths following the negative
gradient (blue line) and interpolated negative gradient (purple line) are shown (top-right). Part of
the environment near the goal with negative gradients (red lines going from black dots outwards)
computed from (4) (bottom-left) and interpolated negative gradients (bottom-right).

Before computing the cell gradients in (8) and (9), a check needs to be made if any of
the neighbour cells is outside the environment. If this is the case, the potential of this cell is
reconstructed similarly as in (7) considering the known interpolated potential P(x, y) and
gradient g(x, y) for the point [x, y]T .

From estimated cell gradients h00, h01, h10 and h11 (Equation (8)), the final interpolated
gradient in current position is obtained by:

h(x, y) = w00h00 + w01h01 + w10h10 + w11h11, (10)
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where the same weights w00, w01, w10, w11 as in (3) are used. The comparison of the gradient
field g and the improved interpolated gradient h is shown in Figure 3 in the lower graphs.
The obtained planned paths by following the interpolated gradient of the potential field
result in collision safe and smooth paths as shown in the top-right graph of Figure 3.

Bilinear interpolation can therefore be elegantly used to obtain continuous potential
field as well as appropriate desired driving directions (the interpolated negative gradients
h) based on a discrete grid-based cost map (discrete CtG potential field). The obtained
paths in path planning are collision safe, without local minima and with continuous
course of driving direction, which is important for robotic vehicles. Note that Bicubic
interpolation [15,36] could also produce smoother interpolations, but it requires 4 by 4
neighbourhood, which is problematic in the vicinity of obstacles or in narrow corridors,
as the occupied cells have infinite CtG value. Occupied cells require special treatment
before they are used in the interpolation. This becomes even more challenging for bigger
neighbourhoods (e.g., 4 by 4 as opposed to 2 by 2). Therefore, for the path planning, we
propose the use of bilinear interpolation with appropriate preprocessing of occupied cells
and with additional gradient interpolation to obtain smooth paths. The path is smooth,
even as it is intuitive and optimal. As mentioned earlier, no local minima will exist in the
CtG contour, unlike in the classical APF formulation, because of the inherent manner of its
construction. However, if the static map is augmented by new obstacles put in play after
its creation, this could change. This eventuality is dealt with in the next section.

Let us analyse the computational complexity of the proposed smooth path planning.
The path is obtained with a gradient-descent method. The number of steps that are required
to reach the goal is dependent on the size of the sampling step. The sampling step can be
lower bounded to prevent oversampling and upper bounded to obtain desired smoothness
of the path. Consider that a particular path passes over M cells and that the sampling step
is selected in a way that on average (or at maximum) L iterations of the gradient descent are
made in each of the cells. This means that computational complexity of gradient descent is
O(LM), and it is therefore dependent on the sampling step and path length. In each step
of the gradient-descent calculation, an interpolated value of the gradient is obtained from
the four nearest surrounding cells (see Equation (10)) around the current path point. The
gradient in each of these four cells is calculated from the APF of the four neighbouring
cells (Equation (8)). Therefore, to compute the interpolated gradient for a given cell, a
neighbourhood of twelve cells is needed in total. Hence, the gradient does not need to
be determined for every cell, but only for the cells that are along the path. We assume
that the gradient calculations can be cached; therefore, the computational time and space
complexity of obtaining the gradients in the cells around the path are O(M). Note that
cell gradient calculations could also be made in parallel if calculation speed is crucial. We
calculate the values of the APF for the entire map with N cells using Dijkstra algorithm,
which in case of a grid map has a computational time complexity of O(N log(N)) and final
space complexity of O(N). The values of the potential field could also be determined only
for the cells in the vicinity of the path that are sufficient for gradient calculation. This is
a viable option when we would like to quickly determine only a single path, especially
if the map is very large. In this case, the Dijkstra algorithm can be stopped once the goal
is reached (in this step, it is also beneficial to use A*) and then the Dijkstra algorithm is
resumed only if the value of the potential for an unknown cell needs to be known and only
until the final value of the cell potential is known. However, in our case, we calculate the
APF for the entire map, as this enables fast recalculation of various paths that lead to a
single goal (or begin at a common start), which is beneficial for the cases when part of the
map changes, as presented in the next section.

4. Discovery of New Obstacles and Reactive Avoidance Manoeuvre

A change in the environment is shown in Figure 4 with the addition of an L-shaped
obstacle (in Figure 4 (top-right)) cluster roughly halfway through the initially planned
path in Figure 4 (top-left). The detection of these additional obstacles is assumed to take
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place when the robot’s sensor horizon includes the region, through an iterative comparison
between what it sees with its sensor and what it expects to see from the initial static map.
The range of the sensor used will have some effect on when any reactive manoeuvre is
initiated, but this detail is not critically relevant to our model development.
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Figure 4. Augmented environment with new discoveries. Static map of environment with planned
path in blue line towards goal (top-left). Change of environment with new L-shaped obstacle where
robot (shown by the sky blue line and its sensor range by the gray dots) is blocked at stuck cell
(highlighted by yellow) if continuing based on static CtG map. Replanned CtG values for new
environment with highlighted light purple cells where CtG values have changed and new gradient-
descent path in green (top-right). Interpolated potential (CtG, darker color denote lower values)
surface before (bottom-left) and after the environment change (bottom-right).

It should be noted that if the new obstacle does not impede motion, then nothing
needs to change. However, following the initially planned global path here will stop the
robot at the “stuck cell” (see the global path in Figure 4 (top-left) in conjunction with the
“stuck cell” shown in yellow in Figure 4 (top-right)), which is effectively a local minimum
forced by the new obstacle. Essentially, the robot ends up in a trap in pursuing gradient
descent based on the initial plan. In fact, the discovery—here, an addition to the static
obstacle map—can be taken as an indication that the CtG values in the vicinity are no
longer reliable.

The results of repeating the Dijkstra algorithm to refresh the CtG values of the entire
environment with the new obstacles included are also shown in Figure 4 (top-right). The
cells with modified CtG values are highlighted (in comparison to plot (top-left)), which
clearly reveals that the new obstacles only influence the CtG values (increases them) of
a small subset of the cells that are upstream of the new obstacles. The downstream CtG
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values are unaltered, as would be expected. The new interpolated CtG surface is shown in
Figure 4 (bottom-right) and is in accordance with the updated map.

The new gradient-descent path from the original starting point is also shown in
Figure 4 (top-right) with the green line, which confirms that if we had been aware of these
new obstacles at the very beginning, the global path planning would have accounted for it
and the CtG numbers would have been monotonic again. This recalculation could have
also been performed from the trapped position of the robot to the goal. However, this is
the calculation that is to be avoided because of the associated computational burden. The
new path is just presented here to make a point.

Thus, the challenge is to come up with a reactive strategy that enables the robot
to get around the obstruction through developing a bypass path that involves minimal
computation effort. This path should lead the robot to an area where the old CtG values can
be used again to continue travel. The flowchart shown in Figure 5 is a broad representation
of the core method adopted. There are minor case-based variations stemming from the type
of map change encountered, which are not included in this basic flowchart for simplicity.
The explanation that follows is with reference to this flowchart as well as the two in
Figures 6 and 7 that follow, dealing with lower-level steps in the algorithm.

Find Dijkstra cost to 
goal from all cells

Specify start/goal 
positions & static map

Use BiLinear Interpolation 
to interpolate CtG surface

Apply smoothed Gradient 
Descent for optimal 

path to goal

Drive robot on path 
to goal

Map change?

Proceed to 
final goal

Find suitable local 
bypass path goal

Determine A* 
bypass path

Use Gradient
Descent to predict
final path segment 

No Yes

Decide choice of path
to final goal based on
type of map change

Establish early
leave point if it

exists

Figure 5. Core flowchart of algorithm (some variations based on case). Leave point determination
applies only when current path is blocked.
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Tag earliest as
suitable leave

point 
Follow A* path 
till bypass goal

A* bypass
path cells

Any with 1 or 2
unobstructed cells

towards goal?

Yes No

Closer to goal than  
via bypass goal?

Yes No

Figure 6. Finding suitable leave point. Leave point is established if cell on A* path has immediate
unobstructed cells in original goal direction and is closer to it than path via bypass goal.

Leave 
Cell

Goal 
Cell

Goal 
Cell

Goal cell
direction

Goal cell
direction

Leave 
Cell

Cells to
check for

obstruction

Figure 7. Checking blockage condition for leave cell candidates. Based on alignment of potential
leave cell with original goal cell, occupancy status of either one or two cells is checked to determine
whether obstruction is present.

A predefined, 5 by 5 search window of cells (see the yellow dashed square in Figure 8
(top-right)), which can be thought of as a “fishing net”, is centred at the stuck robot cell
(the yellow cell in Figure 8 (top-right)). The cells within the window are examined to find
the lowest CtG value that is smaller than the CtG value at the stuck cell, as per the original
static map, to use as a temporary intermediate goal (the green cell in Figure 8 (top-right)
to help negotiate the blockage caused by the newly discovered obstacles with a sensor
(e.g., LiDAR). An inherent assumption is that the size of the search window is sufficient
to uncover a cell with a CtG value that is on the other side of the blockage, and hence
unaffected by it. This is facilitated by centring the net at the stuck robot cell right next to the
new obstacles blocking the path, even though the blockage may have been detected even
further away by the robot’s LiDAR. If this step does not uncover a satisfactory temporary
local goal, larger nets are cast iteratively until a suitable cell is found. Moreover, it might be
possible to get more creative with the footprint adopted for this search window, which is
beyond the scope of this work.
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Figure 8. Strategy to negotiate dynamic obstacles. Original planned path based on the static environ-
ment map shown is shown with blue line (top-left). New obstacle blocking path initiates A∗ bypass
(red line) calculation from stuck cell (highlighted in yellow) to the temporary intermediate goal cell
(highlighted in green) (top-right). The leave point and final overall path is shown with A∗ bypass
(bottom-left) and in by smoothed bypass (green line) using BiLI interpolation (bottom-right).

With the stuck cell and the temporary goal identified, the A* algorithm is then run
to find a diversionary path from the robot’s stuck location to the temporary local goal
identified, as described above. This step should not result in an “unreachable goal” being
returned, as the algorithm is executed with the known map at the time. The resulting
path obtained is also shown in Figure 8 (bottom-left). It should be noted that using D*Lite
instead of A* will not result in any computational savings, because the algorithm needs
to be run just once, in which case there is no advantage of one over the other. Whether it
is necessary to follow the A* bypass path all the way to completion would depend on the
situation. The reason is that if in negotiating the obstacle via the A* path the robot finds
itself in a cell that is closer to the final goal, completing the A* path and then proceeding to
it is not as efficient compared to treating the cell as a leave point. This additional condition
built into the algorithm is laid out in the flowchart extension presented in Figure 6.

A good leave cell must also satisfy another condition. It should also be one for which
there is at least one unobstructed cell within its 8-cell neighbourhood in the direction of the
goal. This is illustrated in Figure 7 for the two situations that represent all the possibilities
that can occur. Essentially there are two cases, because of the quantisation imparted by
the discretised cell structure. Either one or two cells need to be checked, depending on the
relative positioning of the goal cell and the candidate leave cell. That is, are they vertically
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or horizontally aligned or at a different angle, in which case the line joining them will
be straddled by two cells. In the latter case, only one needs to be free to meet the leave
condition. If none of the leave cells pass the dual tests, the bypass path is followed all the
way to the temporary bypass goal.

When a leave cell is established, it is taken to mean that the local obstruction has been
satisfactorily bypassed and the old CtG values are valid again. The algorithm reverts to
the gradient descent using the old CtG values. It should be noted that it is possible to
determine a suitable leave point and the final gradient-descent segment even before the
robot moves from the stuck cell. This enables the path to be evaluated before travel. The
leave point and the final overall path of the robot between the original starting point and
goal location are also shown in Figure 8 with A∗ bypass (bottom-left) and by the smoothed
bypass path using BiLI interpolation (bottom-right).

The use of the CtG values and gradient descent as an overarching method to drive
to the goal and the separate handling of unexpected obstructions through a bypass path
ensures that, unlike in the classical formulation of the APF, local minima cannot be formed
at the global path planning with static map phase. That is, the two-step approach results in
local minima being caused only by newly discovered obstacles and transfers the burden of
resolving them to the local path-planning phase. This is a key element of the path-planning
strategy used here.

The planning model discussed here was evaluated in additional experiments. The
environments used and the attendant results obtained are discussed in the next section.

5. Additional Experiments and Results

5.1. Obstacle Missing from Static Map within Sensor View

A new environment is shown in Figure 9 (top-left) with the start (lower left) and
goal (upper right) locations, as well as the path resulting from the global path-planning
phase. As the robot travels towards the goal and its sensor horizon advances, it discovers a
change in the static map on which the planning was premised. A cell in the “wall” that was
thought to be blocked is found to be clear from the robot’s sensor view. Here, the change is
a subtraction as compared to the earlier example. The cleared cell as well as the cell where
the discovery was made are shown in Figure 9 (bottom-left).

This can be used to trigger an opportunistic strategy—when a blockage is removed,
there is a possibility that a shorter path to the goal exists and needs to be investigated. The
A* algorithm is invoked to determine a path to the region of the cell, which is now open,
so that the old CtG surface can be used again. This is accomplished by setting the target
cell for the A* bypass path to an unblocked cell beyond the cleared cell in the direction
of the goal. The potential A* bypass path is shown in Figure 9 (bottom-left) in red and
the corresponding smoothed version by the green line in Figure 9 (bottom-right). The
remaining path from that cell to the original goal cell is again obtained through using the
CtG values and gradient descent and is shown in Figure 9 (bottom-right) in which the
overall path from the original starting position to the goal is also evident.

If there are multiple occupied cells that are now clear, all of them need to be assessed
in the same manner as discussed above. Before taking a bypass path, a check needs to be
conducted to see whether the modified path (made up of an A* segment followed by a
gradient-descent segment) is shorter than the remaining current path to the goal. Only if
the newer path is better should the robot use it to get to the goal instead of the original
path. In the environment considered, this happens to be the case.
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Figure 9. Path planning with obstacle clearance within sensor view. Initial path planned (blue
line) based on knowledge of global static map is followed (top-left and top-right). Robot detects
change in static map using sensor view (cleared cell) and computes A* bypass path (red line) to an
unblocked cell beyond cleared cell (bottom-left). The smoothed bypass path (green line) connects to
the gradient-descent path (blue line above the obstacle) based on CtG (bottom-right).

5.2. Obstacle Missing from Static Map Outside of Sensor View

It is also possible to conceptualise a situation where the robot comes to know about the
removal of an obstacle from the static map in a region of the environment outside the sensor
range of the robot while it is in motion on the current path to the goal. For example, this
could happen when another robot passing by that region notices and relays the change(s) to
a central station and/or all agents. While this could be a corrected error in the map creation,
it could also be the result of a temporary obstacle (for example, a fallen tree) being cleared.

This situation can be handled in the same way as the previous one. A potential A*
bypass path can be estimated from the robot’s current position to a target cell just beyond
the cell whose occupancy status has changed. This serves as a bridge to an area where
the old CtG values are still valid. As before, the next segment of the path is established
using the gradient descent from the temporary bypass goal on to the original destination.
Then, based on whether this new alternate route is shorter than the remaining part of the
current route, the robot can decide whether to switch to the alternate path or continue on
the current one.

An example of this case is shown in the environment in Figure 10. The various parts
of the figure are in line with Figure 9 and can be understood with the help of the caption.
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In the environment of Figure 10, the information on the map change helps chart a shorter
route to the goal.
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Figure 10. Path planning with obstacle cleared outside the robot sensor view. Initial path (blue line)
planned based on knowledge of global static map is followed (top-left). Robot is informed of cleared
obstacle cells (outside robot’s sensor view) and A* bypass path (red line) to an unblocked cell beyond
cleared cell is computed (top-right). The composite alternative path made up of final gradient-descent
path (blue line above the obstacle) using the original CtG (bottom-left) and smoothed bypass version
(green line) (bottom-right) is shorter than the one in the (top-left) figure and robot switches to it.

5.3. U-Shaped Trap

The last environment considered is one which incorporates the classic U-shaped
concave trap. The static map is initially empty and the planned path between the start
position and the goal is shown in Figure 11 (top-left), before the blockage is discovered, and
is as expected. Even when the lower part of the U-shaped particle is discovered (Figure 11
(top-right)), the robot continues to proceed on the initial straight path recommended by
global path planning. It does this until it encounters the core structure of the trap and
the attendant local minima created (Figure 11 (bottom-left)). The ability to resolve an
unexpected concave obstacle configuration on the planned path is a good test of the ability
of an algorithm, because those that are purely combinatorial will fail this test.
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Figure 11. Path planning with appearance of unexpected U-shaped trap. Robot initially plans path
(blue line) in empty static map (top-left) and starts to travel on it (top-right). When blockage is
within sensor range, a bypass path is computed by a red line (bottom-left). The path is smoothed
(green line) and connects with the final gradient-descent path (blue line) using CtG (bottom-right).

In accordance with the algorithm, a 5 by 5 window of cells is examined around the
stuck cell (the yellow cell in Figure 11 (bottom-left) where the robot’s initial gradient-
descent path is blocked by the obstacle) to find the lowest CtG value below the current
one (temporary intermediate goal cell marked by green in Figure 11 (bottom-left)). As
explained earlier, such a cell is considered as being in an area where the CtG values are
unaffected by the new blockage. If in some other case, the chosen 5 by 5 search window
size does not produce a suitable target, because the cell with a minimum CtG value smaller
than the current value lies within the trap zone, the search can be repeated using a larger 7
by 7 window and so on. This will eventually yield a temporary bypass goal outside the
trap. The A* bypass path to this cell is also shown in Figure 11 (bottom-left) in red. The
smoothed version obtained by the bilinear gradient interpolation in green, the post-bypass
path segment based on the gradient descent, and the overall composite path between the
start and goal points is shown in Figure 11 (bottom-right). Note that the path follows the
computed bypass only until the leave point where the old CtG values and its interpolated
gradient-descent path can be followed again.

6. Discussion

Although bilinear interpolation and the calculation of gradients from a discrete grid are
well-established in image processing, their direct application to a discrete APF can lead to
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several problems. At the points where the cell is connected to its neighbour, discontinuities
can occur in the gradients, making the use of a gradient descent problematic. This can lead
to undesirable zigzag paths when following the direction of the gradient descent. This
problem is much more pronounced near obstacles. The potential of occupied cells is not
defined by the CtG assignment and can be considered infinite, as the cell should not be part
of a path to the goal. This can lead to problems with local minima near obstacles where the
direction of the gradient descent could change by more than 90°.

To interpolate the potential appropriately, one could also use some other higher-order
interpolation technique, such as the bicubic interpolation [15,36]. The advantage of this
technique would be a smooth gradient transition at the cell border because it uses third-
order polynomials for the interpolation, which are continuous up to the second derivative
(C2). However, bicubic interpolation requires the use of a 4 by 4 neighbourhood, which
becomes problematic near obstacles or in narrow corridors because the occupied cells
have infinite (undefined) potential values. These occupied cells need special treatment
before they can be used in the interpolation. Therefore, bicubic interpolation brings its own
problems, as it requires a neighbourhood of 16 cells for the interpolation, in contrast to
bilinear interpolation, which only requires 4 cells.

An additional problem that plagues bicubic interpolation is the occurrence of anoma-
lies such as surface oscillations and the possibility of local minima near obstacles. Third-
order polynomials have a continuous gradient which, while fitting the equidistant cell
centres near obstacles (e.g., obstacle corners), causes oscillations in between (a common
problem in the interpolation where the fit is perfect at the data point but could be oscillatory
in between, known as the Runge phenomenon).

In image processing, the gradient is normally computed with the convolution of
the image with the gradient operator. There are various gradient operators, such as
one-dimensional operators (e.g., [1, − 1], [1, 0 − 1]) and Robert’s cross or the Prewitt,
Sobel and Scharr operators [37], which are more robust to noise. Some of these filters
introduce gradient shifting and/or smoothing. In our case, averaging is not required, as
the APF inherently does not contain noise. The proposed method for calculating the APF
gradient is therefore different from the gradient methods used in image processing because
it is designed in a way that the gradient in the cell centres always points towards the
neighbouring cell with the lowest potential, or the gradient is zero if the current cell has
the lowest potential. This ensures that the interpolated gradient points towards the cells
with the lowest potential, regardless of the potential magnitude in the cell neighbourhood
(without an undesired gradient shift and averaging). Therefore, an optimum smooth path
from the start to the goal can be obtained, because the obtained path accurately follows the
bottom of the valley that is defined by the APF.

The calculation of the potential field and the gradient in the free space away from
the obstacles is straightforward, but in the vicinity of the obstacles, special care is needed
to determine the appropriate potential and gradient, as presented in the paper. In the
cells surrounding the obstacles, the gradient is calculated from the potential field of the
neighbouring cells. If some of these adjacent cells are occupied by obstacles, the potential
in these cells may be different depending on which side of the obstacle the gradient is
calculated—this occurs in the case of thin or diagonally touching obstacles. Therefore,
the batch calculation of the APF can only be performed for the cells that do not touch the
obstacles. Moreover, to determine the optimal path, the proposed approach can calculate
the gradients online only for the cells that are surrounding the tip of the path while it is
being generated. One could resample the grid to double/quadruple the resolution of the
map to alleviate the problems encountered near thin obstacles. However, this would require
more computational resources (by a factor of four in the case of a double resolution) to
calculate the APF and its gradient. However, because the gradient is interpolated, smooth
paths are obtained even if the resolution of the map is low.

The proposed bilinear interpolation is applied to the path planning in a static and
dynamic environment. A simple model for combining the global and local path planning
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that also derives from the original potential fields concept is used. Its key aspects are as
follows. A method is needed for multiple missions that could potentially require navigation
to the same destination in the environment. A static APF is therefore interpolated based on
the pre-calculated CtG values for the cells navigating the path to the goal. A global plan is
created based on these CtG values using a gradient descent on the static APF. Along its
path, local map changes in the environment can be detected in various ways. A bypass
strategy is formulated that enables the robot to find and evaluate a temporary bypass path
through the use of the A* algorithm. A case-based decision is made whether to take the
alternate path. Obtaining the diversionary path is relatively fast compared to regenerating
CtG values for the entire environment. The benefits will be proportionately even greater
for larger and less constricted environments.

In summary, the proposed approach introduces the following contributions/modifications
in APF-based path planning: a small required neighbourhood (2 ×2, compared to other in-
terpolations), an easier treatment of the occupied cells in the interpolation, and no anomalies
that could result in local minima or the oscillating direction of the gradient-descent path near
obstacles. The basic bilinear interpolation has a discontinuous gradient between cells, which
we take into account by our proposed additional interpolation for gradients. Standard image
processing techniques usually apply a batch calculation to the entire image, which simplifies
the algorithmic flow in an obstacle-free area. However, additional special care is required to
determine the appropriate potential and gradient near the obstacles. The proposed approach
reduces the computational effort as the interpolation is only performed on cells along the path
and not for the entire environment as is usually the case with batch image processing algorithms.

Due to the applied interpolation in the potential function, good quality paths are
obtained even at a rough grid resolution of the environment. These contribute to the
computational and memory requirement efficiency of the approach.

7. Conclusions

This work proposes a new approach to construct a navigation function in a variant
of artificial potential fields (APF) that can be applied to navigation, path planning and
the control of a mobile robot. The navigation function guarantees safe guidance to a
goal without local minima in concave traps, which is a common problem with APFs.
Optimality and convergence are inherited from an optimal grid-based search which results
in a discrete APF.

To obtain a smooth navigation function and the associated gradient-descent driving
direction, we apply a bilinear interpolation with several novel extensions that allow an
efficient application to path planning. First, we propose a reconstruction of the discrete
potential for the neighbourhood of cells used in the interpolation that belong to obstacles
or are outside the environment. Second, we introduce an additional interpolation of the
gradient-descent directions from the estimated discrete gradients of the interpolated cells.
This leads to a smooth, optimal and collision-safe path or navigation towards the goal.
Third, the proposed interpolation approach can be performed online and is computationally
efficient as it only interpolates the discrete cell potentials along the planned path.

Several path planning results are provided to illustrate the performance of the naviga-
tion function. To illustrate the application in dynamic environments, we propose a simple
strategy to combine global and local path planning to bypass detected dynamic changes.
The strategy enables a robot to find and evaluate a temporary bypass path around newly
detected obstacles through the use of the A* algorithm.
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Abstract: The short-term prediction of a person’s trajectory during normal walking becomes nec-
essary in many environments shared by humans and robots. Physics-based approaches based on
Newton’s laws of motion seem best suited for short-term predictions, but the intrinsic properties of
human walking conflict with the foundations of the basic kinematical models compromising their
performance. In this paper, we propose a short-time prediction method based on gait biomechanics
for real-time applications. This method relays on a single biomechanical variable, and it has a low
computational burden, turning it into a feasible solution to implement in low-cost portable devices.
We evaluate its performance from an experimental benchmark where several subjects walked steadily
over straight and curved paths. With this approach, the results indicate a performance good enough
to be applicable to a wide range of human–robot interaction applications.

Keywords: motion trajectory prediction; kinematical models; gait biomechanics

1. Introduction

Human motion trajectory prediction (HMTP) is a critical technology in applications
where people share their workspace with autonomous moving machines. That is needed,
for example, in collaborative robotics for obstacle avoidance [1,2], in automatic driving
assistance systems for safety assurance [3,4], in prostheses or exoskeletons for better per-
formance [5], or in virtual reality to improve the sensation of immersion perceived by the
user [6]. The strong interest in all these application fields explains the exponential growth
of scientific communications devoted to this problem in the last few years [7].

A basic instance of the problem of HMTP can be described as how to estimate the
future location of a specific mark in the body of a walking human within a given short
temporal window (see Figure 1). With that prediction, the possibilities of enhancing
intelligent human–robot collaborative environments increase. Robots can plan their motion
to adjust their actions better for more efficient and safe collaboration with humans [8]. The
prediction is based on information coming from the monitorisation of the human with
environmental sensors, or sensors mounted on the robot, or wearables [9–11]. A viable
real-time prediction of human trajectory must consider the sensors and signals that will be
available and whether it will be possible to achieve the reactivity or fast response that the
application demands.

As will be discussed below, there are different proposals in the literature for short-
range anticipation of a walker’s position in real-time. All of them differ in both the amount
of sensory information that needs to be provided and the type of information processing
needed to solve the problem. In this paper, we propose a method with the following
characteristics: (1) it is designed for close-proximity applications, with prediction windows
around 1 s, (2) it relays on a single biomechanical variable that can be measured with
inexpensive wearable sensors, and (3) it has a low computational load and is therefore
feasible to implement in low-cost portable devices.

Sensors 2022, 22, 5828. https://doi.org/10.3390/s22155828 https://www.mdpi.com/journal/sensors265
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Figure 1. An instance of the problem of human motion trajectory prediction: the location of a specific
landmark in the walking human body (green dot) is projected to its future location (red dot) within
a given prediction horizon. The overall person’s mark movement (solid green line) results in an
estimated walk trajectory (red dots line).

In the following section, we will present the relevant state-of-the-art. After describing
the method details in Section 3, we evaluate its performance from an experimental bench-
mark where several subjects walked steadily over straight and curved paths, Section 4. We
show that the main error source of the estimations has a specific biomechanical source: the
left-to-right fluctuations of the position of the subject in the direction of the displacement
induced by the alternation of the step. This effect is adequately compensated in our algo-
rithm by introducing a sensor-based biomechanical compensation. The results in Section 5
indicate a performance good enough to be applicable to a wide range of human–robot
interaction applications.

2. Related Work

Following the general taxonomy of HMTP tools proposed in [7], physics-based ap-
proaches based on Newton’s laws of motion seem best suited for real-time sensor-based
short-term predictions because they operate within a reactive sense–predict scheme, avoid-
ing intermediate processing time. For that reason, together with simplicity, we have ruled
out methods that involved a higher level of cognition, such as learning based on data [12]
or planning based on reasoning about motion intent [13].

Physics-based estimators, however, being useful to predict the motion of vehicles, fall
short of capturing the quite complex dynamics of human walking. This has been addressed
by resorting to a blending of a mixture of multiple dynamic models, but no performance
improvement was found [14].

A similar strategy is to combine dynamic models with other learning or planning
algorithms, even if, in principle, it goes against the speed of response of dynamic methods.
A learning approach in [15] conveys promising results, but its performance on ambulatory
motions such as walking has not been evaluated.

A third approach is to combine dynamic models with other information coming
from the target agent himself. In [16], the short-term trajectory prediction is improved by
tracking the user’s head in the context of virtual reality applications. Head orientation
anticipates the trajectory, but it is also heavily influenced by other ambient-related impulses
or distractions [17]. The authors suggest the use of eye trackers to overcome this problem,
but this technology is too expensive to be used in more general intelligent environments.
Our work is framed in this line but seeks to improve the prediction with the measurement
of biomechanical signals that are easily implementable in practice.

3. Formulation of the Prediction Method

For the short-term prediction of the pedestrian, we will adopt a kinematic model and
a sensor-based biomechanical compensation method as described below.

3.1. Kinematical Trajectory Prediction Models

Kinematical models are a good approach for the short-term prediction of the position
of moving objects [18,19]. They are derived by applying the Newton laws from an initial
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position (x, y) (see Figure 2), considering a set of initial conditions defined by the orienta-
tion of the displacement φ, the linear velocity v, the angular velocity w and the tangential
acceleration at as follows:

.
x(t) = v(t) cos(φ(t)) (1)
.
y(t) = v(t)sen(φ(t)) (2)

.
φ(t) = w(t) (3)
.
v(t) = at(t) (4)

Figure 2. Geometry of motion for the 2-dimensional kinematical model of a moving object.

Depending on the assumptions taken about the translational and rotational velocities
and the accelerations of the moving object, several particularisations can be formulated [18]
(see Figure 3):

(i) Constant Velocity (CV) model (w = a = 0),
(ii) Constant Acceleration (CA) model (w = 0, a = constant �= 0),
(iii) Constant Turn Rate and Velocity (CTRV) model (w = constant �= 0, a = 0) and
(iv) Constant Turn Rate and Acceleration (CTRA) model (w = constant �= 0,

a = constant �= 0).

Figure 3. Relationship between common movement patterns defined from simplifying assumptions
over the general model: CV (straight displacement at Constant Velocity), CA (straight displacement
at Constant Acceleration), CTRV (curved displacement, at constant displacement and rotational
velocities), and CTRA (curved displacement, at constant rotational velocity and constant acceler-
ated displacement).

Defining the model state space vector as [x, y, φ, v, a, w]′, which includes the velocity
vector [v, φ]′, we can obtain the discrete version of the kinematical Equations (1)–(4). As-
suming that in the time interval Δt, the rotational velocity and the translational acceleration
are constant (CTRA model) and results in:

⎡⎢⎢⎢⎢⎢⎢⎣

xk+1
yk+1
φk+1
vk+1
ak+1
wk+1

⎤⎥⎥⎥⎥⎥⎥⎦
CTRA

=

⎡⎢⎢⎢⎢⎢⎢⎣

xk
yk
φk
vk
ak
wk

⎤⎥⎥⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

a
w2

k
cos(φk + wkΔt)− a

w2
k

cos(φk) +
vk+aΔt

wk
sin(φk + wkΔt)− vk

wk
sin(φk)

a
w2

k
sin(φk + wkΔt)− a

w2
k

sin(φk)− vk+aΔt
wk

cos(φk + wkΔt) + vk
wk

cos(φk)

wk·Δt
ak·Δt

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5)
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From this discrete CTRA model, the equations of the other three can be calculated by sub-
stituting their respective values of translational and rotational velocities and the accelerations:⎡⎢⎢⎢⎢⎣

xk+1
yk+1
φk+1
vk+1
wk+1

⎤⎥⎥⎥⎥⎦
CTRV

=

⎡⎢⎢⎢⎢⎣
xk
yk
φk
vk
wk

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
vk
wk

sin(φk + wkΔt)− vk
wk

sin(φk)

− vk
wk

cos(φk + wkΔt) + vk
wk

cos(φk)

wk·Δt
0
0

⎤⎥⎥⎥⎥⎥⎦ (6)

⎡⎢⎢⎢⎢⎣
xk+1
yk+1
φk+1
vk+1
ak+1

⎤⎥⎥⎥⎥⎦
CA

=

⎡⎢⎢⎢⎢⎣
xk
yk
φk
vk
ak

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
(
vkΔt + a

2 Δt2) cos(φk)(
vkΔt + a

2 Δt2) sin(φk)
0

ak·Δt
0

⎤⎥⎥⎥⎥⎦ (7)

⎡⎢⎢⎣
xk+1
yk+1
φk+1
vk+1

⎤⎥⎥⎦
CV

=

⎡⎢⎢⎣
xk
yk
φk
vk

⎤⎥⎥⎦+

⎡⎢⎢⎣
vk cos(φk)Δt
vk sin(φk)Δt

0
0

⎤⎥⎥⎦ (8)

At every sampling time, k, the model state vector [xk, yk, φk, vk, ak, wk], must be com-
puted to apply it to the model. The actual orientation of the displacement (φr

k) and the
translational (vr

k) are estimated from the position (xr
k, yr

k):

φr
k = tan−1((yr

k − yr
k−1

)
/
(
xr

k − xr
k−1

))
(9)

vr
k = sqrt

((
xr

k − xr
k−1

)2
+
(
yr

k − xr
k−1

)2
)

/Δt (10)

The rotational velocities (wr
k) and translational acceleration (ar

k) of the displacement
are estimated from

(
φr

k, vr
k
)
:

ar
k =

(
vr

k − vr
k−1

)
/Δt (11)

wr
k =

(
φr

k − φr
k−1

)
/Δt (12)

In the following, we will refer to the sequence
(

xr
k, yr

k, φr
k, vr

k, ar
k, wr

k
)

as the raw
trajectory since its variables are obtained recursively directly from the kinematic models,
without any other consideration of the biomechanics of human walking. As discussed
above, the predictive power of these equations alone can be expected to be unsatisfactory.

3.2. Offline Compensations

To correct the predictable limitations of the model discussed above, we will resort to
studying the effects induced in it by gait biomechanics. It is known that in normal walking,
the pelvis moves from side to side once per cycle, the trunk being over each leg to maintain
balance. Similarly, the forward movement is not constant, and it produces variations in
velocity according to the phase of the step. The resulting velocity and orientation signals
corresponding to the pelvis have a sinusoidal shape [20,21].

To include that fact in the model, we propose offline filtering of the whole raw tra-
jectory signals

(
xr

k, yr
k
)

to remove their waviness. We applied a polynomial regression,

defining the offline estimated trajectories
(

xb
k , yb

k

)
for each of the experiments.

From the corrected position
(

xb
k , yb

k

)
, we calculated the orientation of the displacement

(φb
k), the translational and rotational velocities (vb

k and wb
k , respectively), and translational

acceleration (ab
k) of the displacement with previous Equations (9)–(12). By removing the

undulations from the positions
(

xb
k , yb

k

)
, the undulations will, in turn, be removed from the

signals
(

φb
k , vb

k, ab
k, wb

k

)
.
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In the following, we will refer to the sequence
(

xb
k , yb

k, φb
k , vb

k, ab
k, wb

k

)
as the offline

trajectory since its variables cannot be computed in real-time conditions. However, they
could be taken as an instrumental way to test the utility of the proposed compensation.

3.3. Real-Time Sensor-Based Biomechanical Compensations

Assuming that the previous compensation will produce better estimations, it has
the disadvantage of requiring filtering that induces time lags. We propose a real-time
alternative to the offline compensation, which modifies the translational velocity and
orientation signals

[
vr

k, φr
k
]

considering previous knowledge about gait biomechanics.
The global velocity of the centre-of-mass velocity of the body, vr

k, is an oscillatory
signal whose average value coincides approximately with the value it takes in the initial
and final contacts of the feet, as described in gait studies [22]. Therefore, the displacement
velocity can be better computed from signals taken from the initial contact of the ipsilateral
foot (Figure 4(A)) to the subsequent final contact of the contralateral foot (Figure 4(B)), and
then to the subsequent initial contact of the contralateral foot (Figure 4(C)).

A               B                 C 

Figure 4. Forward real-time estimated velocity (red line) and offline estimated velocity (green
line). The estimation of the forward velocity is addressed by holding the actual value of the raw
velocity (continuous blue line) at the initial contact of the ipsilateral foot until the final contact of
the contralateral foot and vice–versa. Initial and final contacts are detected from local maxima and
minima of the derivative of the velocity (dashed blue line).

This way, we can fix the raw displacement velocity, vr
k (Equation (10)), measured

between initial and final contact foot events. We will refer to this sequence, ṽk, as the
real-time estimated velocity. Notice that the initial and final foot contacts can be detected
from local maximums and minimums of the derivative of the raw velocity [23,24], so this
correction does not require specific new sensors. The acceleration in these segments, ãk, can
also be corrected and computed as the increment of velocity between consecutive events.

Regarding the orientation of the displacement φk, it is known in gait biomechanics
that the body trunk and the pelvis orientation evolve in counter-phase [21] (see Figure 5).
Therefore, the raw position signal, φr

k, can be corrected by measuring the pelvis orientation
φh

k . A proportional average can cancel the oscillations [25] and return the basic signal trend,
φ̃k, closer to the actual forward orientation:

φ̃k =
(

K·φh
k + (1 − K) φr

k

)
(13)
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Figure 5. Orientation estimation (red line) and offline estimated orientation (green line). The real-time
estimation is based on a proportional combination of the counter–phase signals pelvic orientation
(continuous blue line) and the orientation estimated from the sampled raw spatial position of the
subject (dashed blue line).

The calibration gain K has to be experimentally calculated for each subject to minimise
the least square error between the raw and the baseline trajectories. From the estimated
orientation, φk, we can compute the corresponding rotational velocity:

w̃k =
(
φ̃k − φ̃k−1

)
/Δt (14)

From the point of view of the real-time implementation, we have introduced the need
for a sensor that measures hip orientation. As in the previous case of trunk velocity, it is
possible to make this estimate with an IMU sensor placed on the hip [26].

In the following, we will refer to the sequence
(

xr
k, yr

k, φ̃k, ṽk, ãk, w̃k
)

as the estimated
trajectory. This sequence defines the initial conditions for the application of the kinematical
models in real time to forecast the position of the walking subject. From the discussion
above, it is expected that this model will produce a better trajectory estimation than the
raw trajectory and close to the offline trajectory.

In the following, we will test this proposed method to evaluate and compare the
performance of the raw, offline estimated and real-time estimated trajectories.

4. Evaluation

4.1. Experimental Setup

For the evaluation of the models, an experimental benchmark was designed involv-
ing five adult subjects aged between 21 and 52. Two types of trajectories, straight and
curved, were defined (see Figure 6). For the straight trajectories, participants walked in
a straight line 5.4 m in length. Participants were instructed to perform a normal gait
while maintaining a constant walking velocity. This trajectory was repeated five times per
individual. For the curved trajectories, participants walk in circles around a central point,
1.5 m radius, again five repetitions. They were instructed to keep the turning radius as
constant as possible with the help of a guide painted on the floor, increasing the speed as
the experiment progressed.

An Optitrack system composed of 10 Flex3 cameras was used to monitor the exper-
iments with a sampling frequency of 100 Hz. Calibration of the system was performed
following the recommendations of the manufacturer, and the nominal residual errors
achieved were 1.4 mm (mean). Following [27] (see Figure 7), we used the bidimensional
raw position (xk, yk) of the centroid of the rigid body formed from five markers placed
around the waist as the subject position. Pelvis orientation, φh

k , was estimated from the ac-
tual orientation of the rigid body from the defined reference system. A 3rd-order low-pass
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Butterworth filter with a cut-off frequency of 6 Hz was applied during the acquisition to
remove frequential components above those pertinent for the human gait.

Figure 6. Experiments involved displacements over straight (5.4 m length) and circular trajectories
(1.5 m radius). Straight trajectories ran from point A to B. For curved trajectories, participants describe
a circle starting and ending at point C.

  
Figure 7. Five reflective markers were placed around the waist of the subject (left) for the esti-

mation of the 2-dimensional spatial position of the body (xk, yk) and the orientation
(

θh
k

)
of the

pelvis (right).

4.2. Model Application and Error Analysis

Data from the curved experiment was divided into five trajectory segments corre-
sponding to each of the individual turns. This way, we defined for each subject five straight
trajectory segments and five curved trajectory segments (each corresponding to a whole
turn). To form the offline estimated trajectories, we use linear regression for straight
segments and for the curved segments, a grade 8 polynomial regression.

The four prediction models (CV, CA, CTRV, CTRA) were then sequentially applied to
the sequence

(
xr

k, yr
k, φ̃k, ṽk, ãk, w̃k

)
starting at every sample from k = 1 to k = N − 100,

being N the length of the current trajectory data. Each sample is predicted to have a horizon
of 1 s (100 samples) (see Figure 8). For this purpose, the models are applied recursively by
introducing as input the output of the previous iteration until the 1-s horizon is raised.

Similarly, these models are applied directly to the signals without removing the
wavelets

(
xr

k, yr
k, φr

k, vr
k, ar

k, wr
k
)

and on the post-processed signal with offline compensa-

tion
(

xb
k , yb

k, φb
k , vb

k, ab
k, wb

k

)
.

For every application of a model starting at sample k, the prediction error sequence ek
was defined as the sequence of Euclidean distances between the predicted (x̂k...k+99, ŷk...k+99)

and actual position values
(

xr
k...k+99, yr

k...k+99

)
of the raw trajectory.
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Figure 8. The figure describes the application of a prediction model starting at the third sample
(k = 3) of a raw trajectory

(
xr

k, yr
k, φr

k, vr
k, ar

k, wr
k
)
. Predictions are sequentially extended for one

second (100 samples, k = 3 . . . 102) using the initial state vector highlighted in the blue column (left).
The prediction error sequence is then defined from the Euclidean distance of predicted and actual
positions of the subject (k = 3 . . . 102).

5. Results

Figure 9 shows the Root Mean Square of the error sequences (predictions from one
sample to one hundred samples, i.e., 0.01 s to 1 s) for each model (CV, CA, CTRV, CTRA)
for the raw trajectories (top), offline estimated trajectories (centre), and real-time estimated
trajectories (bottom).

We have found that prediction errors present an exponential growth with time, charac-
teristic of the usual drift present in estimations based on integral procedures, with different
growth rates for the different models. RMS prediction error at 1-s length is the biggest for
predictions from the raw trajectories, with RMS error of predictions from offline estimated
trajectories the lowest in general.

Figure 9. Cont.
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Figure 9. RMS prediction errors up to a prediction horizon of 1 s from the raw (top), offline estimated
(centre), and real-time estimated (bottom) trajectories.

Table 1 contains the RMS error at a one-second prediction length from each trajectory
(raw, offline estimated, and real-time estimated) and each prediction model. In general, as
could be expected, curved models (CTRV, CTRA) perform better for curved trajectories, and
straight models (CV, CA) perform better for straight trajectories. We found an exception
in predictions from offline estimated trajectories, where there was no difference between
the four prediction models for the straight trajectories. The translational acceleration and
rotational velocity estimated for these trajectories were almost zero, as planned with the
design of the experiment, which implies that all models adopted the behaviour of the
CV model. Results also show that accelerated models perform in general worse than
non-accelerated models, especially in the raw trajectories. In aggregated terms, the CTRV
performs the best in all situations. Considering the type of path (straight, curved), the CTRV
still performs the best except for prediction for straight real-time estimated trajectories,
where straight models (CV, CA) perform better than the CTRV model.

To further analyse the performance of the prediction models, a multiway analysis of
the variance (ANOVA) was carried out using MATLAB® R2020b from MathWorks to check
if the mean prediction at a horizon of prediction of 1 s was affected by the intervening
factors: the subject performing the test, the type of path (straight or curved), and the
model applied for the prediction (CV, CA, CTRV, CTRA). The subject factor was treated as
a random effect, while the type of path and model factors were treated as a fixed effect.

The results showed that mean prediction errors were not affected by the subject
performing the test (p-value > 0.01) for the raw, offline estimated, and real-time estimated
trajectories. On the contrary, the type of path and the prediction model significantly affected
the mean prediction error for the raw, offline estimated, and real-time estimated trajectories
(p-value < 0.01). A multiple comparison test was then carried out to analyse significant
differences in the mean prediction error for pairs of type of trajectory/model.

273



Sensors 2022, 22, 5828

Table 1. RMS error [mm] of the prediction on the theoretical offline estimated, raw and real-time
estimated trajectories at a one-second prediction horizon. Results are shown for each prediction
model and each type of trajectory (straight/curved). Aggregated values show the RMS prediction
error considering straight and curved trajectories together.

CV CA CTRV CTRA

Offline
estimated

Aggregated 360.83 363.80 78.15 82.83
Curved 445.13 448.82 92.1 98.17

Straights 40.12 40.12 40.12 40.12

Raw
Aggregated 379.52 646.16 294.27 568.33

Curved 454.5 718.52 305.17 579.13
Straights 160.28 480.28 272.44 547.31

Real-time
estimated

Aggregated 357.5 369.04 113.33 130.59
Curved 434.66 447.78 106.2 127.94

Straights 110.2 120.29 125.73 135.44

For the offline estimated trajectories, we found four groups with mean prediction
errors that were not significantly different among them and were significantly different
from errors from the other three groups. These groups, expressed in ascending order or the
averaged prediction error, were:

• Group 1: CV and CA in straight segments.
• Group 2: CTRV and CTRA in straight segments.
• Group 2: CTRV and CTRA in curved segments.
• Group 3: CV and CA in curved segments.

For the real-time estimated trajectories, we identified two different groups:

• Group 1: CV in straight segments; CTRV in straight and curved segments.
• Group 2: CA in straight segments; CTRA in straight and curved segments.

Regarding the raw trajectories, the test showed that the mean prediction error was
significantly different for all type of trajectory/model pairs.

6. Discussion

6.1. Experiments Design

Experiments were designed to evaluate the performance of the proposed model during
normal walking and, therefore, they comprised walks in straight and curved trajectories.
We designed experiments for the extreme cases, straight trajectories at a constant velocity
and circular trajectories with increasing velocity of displacement. The prediction results
of the proposed model are compared with those obtained by applying the kinematic
models directly to the raw data and to the post-processed data to be able to quantify the
improvement achieved.

6.2. Impact of Velocity and Orientation on Predictions

Kinematical models based on the well-known Newton Laws have been used in the
state-of-the-art as a general approach to forecasting the position of general moving objects.
For instance, in [28], the authors perform a comparative study of several dynamical models
(CV, CA, CTRV) and a multi-model algorithm combining such basic models. Particularly in
terms of single motion models, they observe benefits for the CV model in some scenes and
CTRV in others, making complex models inefficient. Similarly, we have observed that these
models have usually been applied as a complement to other advanced techniques [15]. For
our proposal prediction method, we chose to use the four models describing four types
of trajectories where the occurrence of translational accelerations and angular velocities
are combined.

The results of applying these models to our raw data confirm how the left-to-right
fluctuations of the position of the subject in the direction of the displacement induced by the

274



Sensors 2022, 22, 5828

alternation of the step affect the performance of the basic kinematical models. Prediction on
the raw data has the worst performance. On these, we can distinguish two effects. Firstly,
the RMS of the accelerated models is significantly higher than that of the non-accelerated
models for both curves and straight lines, in contrast to the offline prediction. This is the
result of the influence of using the sinusoidal velocity in the kinematic models. A similar
effect can also be found for straight versus curved models on straight trajectories. While
in the offline prediction, all models have the same mean error, with the raw data, the
CTRV model outperforms the RMS of the CV and the CTRA of the CA. This is due to the
oscillation of the orientation, which is picked up by the curvilinear models.

6.3. Impact of Basic Kinematic Models on Predictions

The best model to apply in a general situation is the CTRV model. It shows the best
prediction errors in aggregated terms. We have also found that the use of accelerated models
supposes a concern. On the one side, we have found that for offline curved trajectories,
curved models, accelerated and non-accelerated (CTRV, CTRA) performed equally. This
finding was unexpected, as subjects were told to accelerate during the development of
the curved experiments to analyse the performance of accelerated models (CA, CTRA)
compared to non-accelerated models (CV, CTRV). However, we found that the acceleration
estimated from the curved baseline trajectories (ab

k) was on average 0.04 ± 0.09 m/s2,
coherent with reference data for normal walking reported in the literature [9]. This value
was possibly too small to make a difference in performance between the two groups of
models, as confirmed by the multiple comparison test. Therefore, this finding supports
the idea that accelerated models do not provide a real improved performance over non-
accelerated models in the context of predicting position during human walking. Moreover,
the use of the acceleration in the models may suppose an issue, as the estimated prediction
seems to present a higher error to this parameter, even with the velocity compensation.

In general terms, for the reasons stated above, the CTRV performs the best for uncon-
strained trajectories. We provide a statistical analysis that reveals the model most efficient
for each type of path. In case the type of path is known in advance, the taxonomy of models
may help to choose the most appropriate for a given application framework.

6.4. Performance of Real-Time Sensor-Based Compensation Method

The increased performance of predictions from offline filtered trajectories compared
to predictions from raw trajectories confirms the necessity of a technique to remove the
fluctuations from the raw signals before applying the prediction kinematical models. For
this work, we have made batch filtering considering the whole raw signals to define
the offline filtered trajectories. However, in a real application scenario of prediction of
the subject position, such undulations should be removed in real-time, considering only
the signal sampled to the actual moment. Future positions of the subject would not be
available, and processing like the one performed to define the baseline trajectories would
not be possible.

Classical frequential filters would be an option to remove the gait-induced undulations
found in the sampled signals. In certain situations, these filters could perform properly. For
instance, if the trajectory is essentially straight or the velocity is essentially constant, a low
pass filter of a few seconds in length could be adequate. However, they may present some
drawbacks, as the low step frequencies of human gait (between 0.74 and 1.3 two-step/s [29])
would require slow filters that would introduce a delay too high for a short-time prediction
(a four-pole Butterworth filter with a cutting frequency of 1 Hz is expected to add a delay
about 0.5 s [30]). So, for changing orientations and eventually changing velocities, these
filters could not be very efficient. Recent results [25] confirm that this approach may
lead to erroneous results and that a different approach is needed for a general solution to
the problem.

In this paper, we propose to address the elimination of the undulations in the orienta-
tion and the velocity from the consideration of the biomechanical characteristics of human
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gait. We aimed to provide a general approach applicable to unconstrained trajectories
mixing straight and curved paths and eventually different linear and rotational velocities
and accelerations. With this approach, we show how prediction errors are considerably
reduced from predictions from raw trajectories, making them comparable to the prediction
from baseline estimations. Anyway, there is still room for improvement. Regarding the
use of the acceleration in the models, it is true that the biomechanical inspired corrections
made over the acceleration reduce the neglecting effect they present of the prediction from
the raw trajectories. However, as acceleration makes a big impact on error and acceleration
in human walking is low, the use of accelerated models may not be very profitable.

Comparing the results with those of other works, we find results in the same range
of values. An example is the case of [15], where the proposed prediction method achieves
an average error between 100 and 200 mm for predictions at a horizon of 0.5 s. The result
obtained by individually applying a CV model (called as Velocity-Based Position Projection
Method) gives a mean error of 250 mm. In our case, the RMS for the four kinematic models
at a prediction horizon of 0.5 s is between 50 and 100 mm, as opposed to an RMS of
≈120 mm by the CV model applied to the raw data.

7. Conclusions

In a human–robot collaborative space, the short-term prediction of a person’s walking
position becomes necessary from a real and perceived safety point of view. In this paper,
we propose a human trajectory prediction method for real-time application based on the
biomechanical characteristics of human gait. This approach can be applied with inexpen-
sive wearable sensors, and it has a low computational load. Experiments were designed
to evaluate the performance of the proposed method during normal walking, comprising
straight and curved paths. The results confirm how the left-to-right fluctuations of the
position of the subject in the direction of the displacement induced by the alternation of
the step affect the performance of the basic kinematical models to predict by themselves.
We have found that if such undulations are removed, prediction performance would be
improved and propose a prediction method that compensates the body swing by correcting
velocity and orientation based on the initial and final contacts of the feet and the pelvic
motion. The results show that, as acceleration makes a big impact on error and acceleration
in human walking is low, the use of accelerated models may not be very profitable. De-
spite this, the performance of the proposed prediction method improves the use of basic
kinematical models and produces results compatible with real-time applications.
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Abstract: In this paper, the problem of an APPTMC for manipulators is investigated. During the
robot’s operation, the error states should be kept within an outlined range to ensure a steady-state
and dynamic attitude. Firstly, we propose the modified PPFs. Afterward, a series of transformed
errors is used to convert “constrained” systems into equivalent “unconstrained” ones, to facilitate
control design. The modified PPFs ensure position tracking errors are managed in a pre-designed
performance domain. Especially, the SSE boundaries will be symmetrical to zero, so when the
transformed error is zero, the tracking error will be as well. Secondly, a modified NISMS based on
the transformed errors allows for determining the highest acceptable range of the tracking errors in
the steady-state, finite-time convergence index, and singularity elimination. Thirdly, a fixed-time
USOSMO is proposed to directly estimate the lumped uncertainty. Fourthly, an ASTwCL is applied
to deal with observer output errors and chattering. Finally, an observer-based-control solution is
synthesized from the above techniques to achieve PCP in the sense of finite-time Lyapunov stability.
In addition, the precision, robustness, as well as harmful chattering reduction of the proposed
APPTMC are improved significantly. The Lyapunov theory is used to analyze the stability of closed-
loop systems. Throughout simulations, the proposed PPTMC has been shown to perform well and
be effective.

Keywords: Uniform Second-Order Sliding Mode Observer; Prescribed Performance Control; robot
manipulators; finite-time Stability

1. Introduction

Increasing performance requirements are put into practice with a wide range of the
robot’s applications [1] such as fire prevention, medical support, industrial assembly, etc.
However, some general problems of mechanical systems the dynamical uncertainties such
as state constraints, frictions, high nonlinearity, parametric variations, etc., are unavoidable
in reality [2]. They can be also exterior disturbances leading to the robot system may per-
form poorly in transient and steady-state states, causing instability in the robot’s operation.
Moreover, system uncertainties have highly complicated dynamics since their dynamics
are influenced by the state of the system, its derivatives, and its inputs. Thus, it remains
an open problem to determine an effective compensation method for system uncertainties
in robot manipulators’ trajectory tracking control. Under the influence of time-varying
disturbances, the traditional PID controllers [3,4] have difficulty in maintaining accurate
tracking. Therefore, a few more advanced controllers such as the modified PID control [5,6],
Sliding Mode Control (SMC) [7–9], Computed Torque Control (CTC) [10], Back-stepping
Control Method (BsCM) [11], Adaptive Control Method (ACM) [12], and so on, have been
widely used in control design to reduce the effects of system uncertainty. SMC is most
used by the control community due to its robustness, accuracy, and ease of implementation.
However, unknown terms must be suppressed by the SMC’s switching terms to ensure the
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existence of the sliding surface-reaching motion, leading to large chattering [13]. Moreover,
it is unfortunate that most of these methods, including SMC, can only asymptotically
converge to the neighborhood equilibrium points.

To obtain effective anti-disturbance ability and high tracking accuracy for robot sys-
tems with complicated dynamics and external disturbances, there are a lot of distur-
bance rejection control methods in the literature such as Sliding Mode Observer-based
Control Method (SMO-CM) [14–18], Time-Delay Estimation-based Control Method (TDE-
CM) [9,19], Disturbance Observer-based Control Method (DO-CM) [20], Active Disturbance
Rejection Control Method (ADRCM) [21], and so on. In addition to removing the unrea-
sonable assumption as H2 norm-bounded assumption [22], the SMO-CMs possess the
robust control performance of the SMC methods. Using the SMC in conjunction with an
observer, its switching part with a small sliding gain can compensate for the estimation
error of Disturbance Observer (DO) along with minimizing chattering. This has prompted
SMO-CM studies to become increasingly popular. Despite the fact that the SMO-CMs
can offer powerful performance for controlled uncertain systems, most SMO-CMs em-
ploy asymptotical stability theory for their design. Therefore, those schemes only achieve
asymptotical convergence. In control systems, fast/finite-time/fixed-time convergence
is an important performance property. Finite-time/fixed-time convergence differs from
asymptotic convergence in that the system states converge to zero in a finite amount of
time or in fixed time. Therefore, the Finite-Time Control Method (FnTCM) [23,24] or the
Fixed-Time Control Method (FxTCM) [17,25] could be achieved a better convergence rate
and tracking precision.

Recently, a series of SMC with finite-time/fixed-time convergence have been intro-
duced along with the expansion of FnTCM and FxTCM theory, such as Integral SMC
(ISMC) [26,27], Terminal SMC (TSMC) [28,29], Non-singular TSMC (NTSMC) [30,31], Fast
TSMC (FTSMC) [29,32,33], Fast NTSMC (FNTSMC) [34,35], and so on. Therefore, the Finite-
Time Disturbance Observers (FnTDOs) or Fixed-Time Disturbance Observers (FxTDOs) have
been developed such as Second-Order Sliding Mode Observer (SOSMO) [16,36], Uniform
SOSMO (USOSMO) [37,38], or Third-Order Sliding Mode Observer (TOSMO) [14,39,40]. It
can be seen from a comparison between FnTDO and FxTDO that under the same observer’s
gains, FnTDO cannot achieve a similar fast convergence performance as FxTDO. With the
FxTDO, system states and estimation errors have uniform convergence time, and their upper
bounds are not affected by the system’s initial condition. The FxTDO is therefore a good
candidate for handling unknown components. In addition, a combination of the FxTDO and
the SMC also can minimize the effects of the chattering, as mentioned above.

In stabilization and tracking problems, transient performance is an important index
for controlled systems that we need to concentrate on it. Though all of the conventional
control methodologies can manipulate the state error variables to a residual set with
an unknown size, it is not guaranteed convergence of trajectory states within a small
maximum overshoot and maintained the steady states in a predefined boundary because
of the lack of suitable techniques. The concept of the Prescribed Performance Control (PPC)
was first proposed in [41] for satisfying transient behavior. That means both transient
performance and steady-state performance are guaranteed with the following conditions:
(1) tracking errors are limited to a small residual set; (2) the convergence rate is not less
than a predetermined constant; (3) the maximum overshoot is limited to a predetermined
space. Most current PPC studies [41–43] used a single Prescribed Performance Function
(PPF) to generate boundaries of specific performance. For example, ref. [41] used a PPF
P(t) to determine the operating space in which P(t) is prescribed as the upper boundary
and −NP(t) (0 < N < 1) is prescribed as the lower boundary. This method has some
drawbacks, as follows: the operating domain of specified performance be scaled down over
a specified static error value because the lower boundary will be N times smaller than the
upper boundary. In the steady state, these two boundaries will not be symmetrical about
each other through zero if a ratio of PPF is used to create the lower boundary. Therefore,
the transformed error can be converged to zero but the tracking error differs from zero.
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This situation presents a real challenge in choosing an Error Transformation Function (ETF).
In addition, some ETFs [44–46] have a singularity problem, which negatively affects the
operation of the real system.

Inspired by the mentioned investigation, we propose an Adaptive Prescribed Perfor-
mance Tracking Motion Control (APPTMC) for robotic manipulators with global finite-time
stability. Our achievements include:

• the proposed PPFs ensure position tracking errors are managed in a pre-designed
performance domain. Especially, the Steady-State Error (SSE) boundaries will be
symmetrical to zero, so when the transformed error is zero, the tracking error will be
as well;

• a fixed-time USOSMO is proposed to directly estimate the lumped uncertainty;
• in addition to determining the highest acceptable range of tracking errors at the steady

state, the modified Non-singular Integral Sliding Mode Surface (NISMS) can also
eliminate singularities and achieve finite-time convergence;

• the Adaptive Super-twisting Control Law (ASTwCL) is applied to deal with observer
output errors and chattering. In this way, the control design clears the upper boundary
requirement of all uncertainty.

• the proposed APPTMC ensures the effective reduction of harmful chattering behaviors
by active compensations;

• guarantees prescribed performance in the sense of finite-time Lyapunov stability;
• the effectiveness of the APPTMC has been fully confirmed through simulations.

Following is a summary of the rest of the article. Section 2 describes the related
preliminaries and mathematical formulas for robot dynamics. Throughout Section 3, the
USOSMO design and the APPTMC design are presented along with their combination to
solve the tracking control problems. A discussion of innovative features is presented in
Section 4 through simulation examples on a 3-Degrees of Freedom (DOF) robot manipulator.
As a result of this research, we draw some important conclusions and look ahead to future
research directions in Section 5.

A list of nomenclature is provided in Table 1 for the reader’s convenience. In addition,
some other physical symbols will be fully defined in the paper.

Table 1. List of nomenclature.

Description Notation

the real n-dimensional space Rn

the set of m by n real matrices Rn×m

the transpose of ·T

Euclidean norm of ‖·‖
absolute value of |·|

vector of joint angular acceleration p̈ ∈ Rn×1

vector of joint angular velocity ṗ ∈ Rn×1

vector of joint angular position p ∈ Rn×1

vector of system state z = [z1, z2]
T = [p, ṗ]T ∈ Rn×1

vector of tracking error ze =
[
zT

e1
, zT

e2

]T
∈ R2n×1

vector of the desired trajectory zd ∈ Rn×1

vector of NISMS s ∈ Rn×1

the first-order derivative of x ẋ

the second-order derivative of x ẍ

Euler’s number e
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2. Problem Statement

2.1. Dynamic Modeling of Robotic Manipulators

Dynamic modeling of an n-DOF robot manipulator is described as [2]:

H(p) p̈ + C(p, ṗ) ṗ + g(p) + Fr( ṗ) = τ − τd, (1)

where H(p) = H0(p) + δH(p) ∈ Rn×n is an inertial matrix that is nonsingular. C(p, ṗ) =
C0(p, ṗ) + δC(p, ṗ) ∈ Rn×n represent Centripetal and Coriolis matrix and g(p) = g0(p) +
δg(p) ∈ Rn×1 is gravity vector. H0(p) ∈ Rn×n, C0(p, ṗ) ∈ Rn×n, and g0(p) ∈ Rn×1 symbol-
ize the computed dynamic function of H(p), C(p, ṗ), and g(p), respectively. δH(p) ∈ Rn×n,
δC(p, ṗ) ∈ Rn×n, and δg(p) ∈ Rn×1 symbolize undefined dynamic function of H(p),
C(p, ṗ), and g(p), respectively. Friction forces, external disturbances, and control torques
are represented by the vectors Fr( ṗ) ∈ Rn×1, τd ∈ Rn×1, and τ ∈ Rn×1 , respectively.

Let z = [z1, z2]
T = [p, ṗ]T and u = τ. then, the robot dynamics (1) can be described in

form of the second-order state-space formula:{
ż1 = z2
ż2 = J(z)u + W(z)− Δ(z, δ, τd)

, (2)

where J(z) = H−1
0 (p), W(z) = −H−1

0 (p)(C0(p, ṗ) ṗ + g0(p)) stands for the calculable
or measurable terms and Δ(z, δ, τd) = H−1

0 (p)(Fr( ṗ) + δH(p) p̈ + δC(p, ṗ) ṗ + δg(p) + τd)
stands for the lumped unknown terms.

Let ze =
[
zT

e1
, zT

e2

]T
=

[
[z1 − zd]

T , [z2 − żd]
T
]T

. So, Equation (2) is rewritten as:

{
że1 = ze2

że2 = J(z)u + W(z)− Δ(z, δ, τd)− z̈d
, (3)

For improvements in the overall control performance, our article develops an APPTMC
with global finite-time stability for robots that ensures transient performance and Prescribed
Control Performance (PCP) within the prescribed domain.

A subsection below discusses mathematical statements, assumptions, lemmas, and
definitions that will confirm the stability and convergence of the APPTMC.

2.2. Related Definitions and Lemmas

Some notations are described as follows: [z]0 = sign(z) =

⎧⎨⎩
1 ifz > 0
0ifz = 0
−1otherwise

and

[z]φ = |z|φsign(z) with φ > 0.

Assumption 1. Suppose that the desired trajectory zd and their higher order time derivatives are
continuous and bounded.

Assumption 2. Suppose that
∣∣Δ̇i(z, δ, τd)

∣∣ ≤ Δ̄i, in which Δ̄i > 0 is a predefined positive constant,
i = 1, · · · , n.

Consider the differential formula:

ż = f (z(t)), f (0) = 0, z(0) = z0, z ∈ D (4)

where f : D → Rn is continuous.

Definition 1 ([47]). It is defined that Equation (4)’s origin point is global finite time stable if the
following two conditions are met: (1) Equation (4) is globally asymptotically stable; (2) any solution
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z(z0, t) approach to the origin point at some finite time moments, i.e., z(z0, t) = 0, ∀t ≥ T(z0),
where T(z0) presents the settling-time function.

Lemma 1 ([37]). Consider the following dynamic system:{
q̇0 = −Π1Ψq0 + q1
q̇1 = −Π2Ψq1 − Δ̇

(5)

where Ψq0 and Ψq1 are given by:{
Ψq0 = [q0]

1
2 + A[q0]

3
2

Ψq1 = 1
2 [q0]

0 + 2Aq0 +
3
2 A2[q0]

2

If A > 0,
∣∣Δ̇∣∣ ≤ Δmax, Δmax > 0 is a predefined positive constant, and Π1 and Π2 are selected in

the set below:

Π =

{
(Π1, Π2) ∈ R2

∣∣∣0 < Π1 ≤ 2
√

Δmax , Π2 >
Π2

1
4

+
4Δ2

max

Π2
1

}
∪
{
(Π1, Π2) ∈ R2

∣∣∣Π1 > 2
√

Δmax , Π2 > 2Δmax

}
.

Then q0 = 0 and q1 = 0 can be achieved in fixed time T0 [37].

Lemma 2 ([48]). Consider the differential formula with the following origin:

[
Q(j)

] β
h−j

+ λj−1

{[
Q(j−1)

] β
h−j+1

+ . . . + λ2

[[
Q̈
] β

h−2 + λ1

([
Q̇
] β

h−1 + λ0[Q]
β
h

)]
. . .

}
= 0 , (6)

If β is a positive scalar, h ≥ 2 is an integer, and λk, (k = 0, . . . , h − 1) are chosen sufficiently
large then, Equation (6) is finite-time stable for each j = 1, . . . , h − 1.

Lemma 3 ([49]). Consider the system:{
�̇ = −ν1(t)[�]1/2 − ν2(t)� + γ

γ̇ = −ν3(t)[�]0 − ν4(t)� + χ(t)
. (7)

Suppose that |χ(t)| ≤ δχ with unknown scalar δχ ≥ 0. The time-varying gains νm(t),
(m = 1, 2, 3, 4) are obtained by:

ν1(t) = ν10
√

ρ0(t); ν3(t) = ν30ρ0(t);
ν2(t) = ν20ρ0(t); ν4(t) = ν40ρ2

0(t),
(8)

where positive constants νm0 that satisfy the condition: 4ν30ν40 ≥ (8ν30 + 9ν2
10)ν

2
20. ρ0(t) is a

positive function and is tuned by the below adaptive law:

ρ̇0(t) =
{

ε if |�| ≥ δ�

0 otherwise
, (9)

where ε, δ� is arbitrary positive scalar.
Thus, the states in Equation (7) converge towards the origin within a finite amount of time.

3. Development of the Proposed Strategy

3.1. Design of an USOSMO

This subsection designs a USOSMO to estimate directly all uncertain terms. For
bounded uncertain terms, the developed observer converges exactly in finite time, and also
with a convergence time that is uniformly bounded for all initial conditions.
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Using Equation (2), the observer is designed as follows:⎧⎪⎨⎪⎩
z̃2 = z2 − ẑ2

˙̂z2 = J(z)u + W(z)− Δ̂ + θ1Ψ1(z̃2)
˙̂Δ = −θ2Ψ2(z̃2)

(10)

where Ψ1(z̃2) and Ψ2(z̃2) are selected as:{
Ψ1(z̃2) = [z̃2]

1
2 + α[z̃2]

3
2

Ψ2(z̃2) =
1
2 [z̃2]

0 + 2αz̃2 +
3
2 α2[z̃2]

2 (11)

z2 has an approximate value of ẑ2. θ1, θ2, and α represent user-designed parameters of
observer. θ1 and θ2 are selected respectively with Π1 and Π2 in the set as stated in Lemma 1.

The following theorem describes the design procedure of the observer.

Theorem 1. The proposed observer’s estimate errors will converge towards zero in a fixed time
regardless of the initial conditions and of bounded uncertain terms Δ(z, δ, τd).

Proof of Theorem 1. The proposed observer’s estimate errors can be rewritten in the below
expression. {

z̃2 = z2 − ẑ2
Δ̃ = Δ̂ − Δ

(12)

Taking time derivative of Equation (12) and using Equation (10) yields{
˙̃z2 = −θ1Ψ1(z̃2) + Δ̃
˙̃Δ = −θ2Ψ2(z̃2)− Δ̇

(13)

where Δ̃ represents the estimation error of the lumped uncertainty.
According to Lemma 1, it is concluded that the differentiator (13) is uniformly exact

convergent, z̃2 = 0 and Δ̃ = 0 are achieved in fixed time T0 regardless of the initial
conditions and of bounded uncertain terms. For the sake of brevity, the definition of T0
could be found in the study [37]. T0 was defined in Equation (12), as an upper bound for
the convergence time of any trajectory of Equation (3) in the study [37].

This proof is completed.

Remark 1. Comparing with some recently proposed observers such as [16,36,39] we found that all
three observers achieve only finite time convergence i.e., the convergence time of the observer depends
on the initial condition whereas the proposed observer achieves uniform convergence in fixed time.
In addition, refs. [16,36] require a measured value of the acceleration, which is not usually available,
ref. [39] is known as a TOSMO and the feature of this observer is slow convergence. Therefore, the
proposed observer can improve some shortcomings of the three observers.

3.2. Design of the PPC

Based on the theory of the PPC, the tracking error ze is constrained to the following
domain:

−Pl(t) < zesign(ze(0)) < Pu(t) (14)

where ze(0) is the initial error, the PPFs are Pu(t) = (P0 − P∞)e−rt + P∞ and Pl(t) =
(P1 − P∞)e−rt + P∞, and the Pu(t) and Pl(t) are defined as: Pu(t) and Pl(t) : R+ → R+ are
smoothly, positive, and decreasing functions which respectively satisfying lim

t→∞
Pu(t) =
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P∞ > 0, lim
t→∞

Pl(t) = P∞ > 0. P0 > |ze(0)| > 0, P0 � P1 � P∞, r are design constants to

adjust the specified performance domain.
Different from the existing PPC studies [41–46], two separate PPFs including Pu(t)

and Pl(t) are proposed to manage the tracking errors in our paper. When the sign of the
initial error changes, the lower and upper bounds will be reversed through the signum
function. Pu(t) and Pl(t) represent upper and lower bounds for the performance domain,
respectively. The upper boundary Pu(t) sets the maximum allowable tracking error ze
at steady-state and limits the convergence rate while the lower boundary Pl(t) sets the
allowable maximum boundary of the overshoot and limits the allowable maximum size
of the SSE ze at the lower boundary. Because both PPFs are set the same boundary of the
control error at a steady state lead to the specified performance space is increased compared
to the classical PPC. Furthermore, the SSE boundaries will be symmetrical to zero, so when
the transformed error is zero, the tracking error will be as well. Using the above proposal,
ETFs can be designed more easily. The designed ETF does not suffer from singularity issues.
Figure 1 shows the description of the prescribed performance definition that is proposed in
our paper.

Figure 1. Description of the prescribed performance definition.

Remark 2. It is prescribed that the allowable maximum size of tracking steady state error ze is P∞,
that its maximum overshoot must be smaller than P1, and that convergence rate of ze depends on
the decreasing rate of Pu(t) adjusted by r. The output trajectory of the system is determined by the
appropriate selection of Pu(t) and Pl(t).
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The constrained error dynamics are converted to their equivalent unconstrained
dynamics by the following ETF:

ze1 = P(t)T(�1) (15)

where �1 is a transformed error, T(�1) is an ETF, and

P(t) =

{
Pu(t) if sign(ze.ze(0)) > 0

Pl(t) if sign(ze.ze(0)) < 0
.

T(�1) has the properties:

• it is a smooth and strictly increasing function;
• −1 < T(�1) < 1;
• T(�1) = 0 if �1 = 0;

•

⎧⎪⎨⎪⎩
lim

�1→−∞
T(�1) = −1

lim
�1→+∞

T(�1) = 1
.

Considering all possible scenarios, as follows:
If ze(0) > 0 and ze > 0 then 0 � T(�1) < 1 and Pu(t) > 0. Hence, 0 � Pu(t)T(�1) <

Pu(t); If ze(0) > 0 and ze < 0 then −1 < T(�1) � 0 and Pl(t) > 0. Hence, −Pl(t) <
Pl(t)T(�1) � 0. It is concluded that whenever ze(0) > 0, then −Pl(t) < ze < Pu(t).

If ze(0) < 0 and ze < 0 then −Pu(t) < Pu(t)T(�1) < 0. If ze(0) < 0 and ze > 0 then
0 < Pl(t)T(�1) < Pl(t). It is concluded that whenever ze(0) < 0 then −Pu(t) < ze < Pl(t)

Consequently, Equation (14) can be obtained fully which means the tracking error
behavior will be prescribed over transient and steady-state scenarios.

The ETF in Equation (15) is proposed as

T(�1) =
2
π

arctan(�1) (16)

As a result, the transformed error �1 is given by:

�1 = tan
(

πze1

2P(t)

)
(17)

Calculating the first-order derivative of arctan(�1) with respect to time obtains

(arctan(�1))
′ =

�̇1

1 + �2
1

(18)

Using Equations (16) and (18), the first-order derivative of ze1 is

że1 = Ṗ(t)T(�1) + P(t)Ṫ(�1)

= Ṗ(t)
2
π

arctan(�1) + P(t)
2
π

�̇1

1 + �2
1

(19)

where Ṗ(t) =

{
Ṗu(t) if sign(ze.ze(0)) > 0

Ṗl(t) if sign(ze.ze(0)) < 0
.

Therefore, the first-order derivative of �1 is derived from Equation (19):

�̇1 =
π
(
1 + �2

1
)

2P(t)

(
że1 −

2Ṗ(t)
π

arctan(�1)

)
(20)
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Calculating the second-order derivative of arctan(�1) with respect to time obtains

(arctan(�1))
′′ =

�̈1
(
1 + �2

1
)
− 2�1�̇2

1(
1 + �2

1
)2 (21)

Using Equations (16), (18), and (21), the second-order derivative of ze1 is

z̈e1 =
(

Ṗ(t)T(�1) + P(t)Ṫ(�1)
)′

= P̈(t)T(�1) + 2Ṗ(t)Ṫ(�1) + P(t)T̈(�1)

=
2
π

(
P̈(t) arctan(�1) +

2Ṗ(t)�̇1

1 + �2
1

− 2P(t)�1�̇2
1(

1 + �2
1
)2

)
+

2P(t)
π

�̈1(
1 + �2

1
) (22)

where P̈(t) =

{
P̈u(t) if sign(ze.ze(0)) > 0

P̈l(t) if sign(ze.ze(0)) < 0
.

Therefore, the second-order derivative of �1 is derived from Equation (22):

�̈1 =
π
(
1 + �2

1
)

2P(t)

(
z̈e1 −

2
π

(
P̈(t) arctan(�1) +

2Ṗ(t)�̇1

1 + �2
1

− 2P(t)�1�̇2
1(

1 + �2
1
)2

))
(23)

with
π(1+e2)

2P(t) > 0.
Referring Equations (3) and (23), the robot dynamics can be presented in unconstrained

dynamics: {
�̇1 = �2
�̇2 = Θ(J(z)u + W(z)− Δ(z, δ, τd)− z̈d − P̄)

. (24)

where Θ =
π(1+e2)

2P(t) > 0 and P̄ = 2
π

(
P̈(t) arctan(�1) +

2Ṗ(t)�̇1
1+�2

1
− 2P(t)�1 �̇2

1

(1+�2
1)

2

)
.

3.3. Design of NISMS

A modified NISMS is proposed to control the transformed errors to be skated on its
surface in finite time, as follows:

s = �2 − �2(0) +
t∫

0

[
σ1

(
[�2]

β
h−1 + σ0[�1]

β
h

)] h−2
β

dι, (25)

where ι is the variable according to time, σ0 and σ1 are design constants. Due to its integral
form, the proposed NISMS does not have any singularity issues.

If s = 0 and ṡ = 0, then the proposed system is in sliding mode. Equation (25) provides
the following results:

�̇2 = −
[

σ1

(
[�2]

β
h−1 + σ0[�1]

β
h

)] h−2
β

. (26)

Then, Equation (26) can be presented in the following form:⎧⎨⎩
�̇1 = �2

[�̈1]
β

h−2 + σ1

(
[�2]

β
h−1 + σ0�1

)
= 0

. (27)

With β = h = 3 and j = 2, Equation (27) can be obtained the results as Equation (6);
According to Lemma 2, for any initial states �0, the states �(t) of the system (27) will approach
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the origin within a finite period. Therefore, for any initial states ze(0), the tracking errors ze(t)
will also converge to its origin within a finite period.

Remark 3. As a result of designing the NISMS (25), the second-order sliding mode for s variable,
i.e., s = ṡ = 0 leads to a third-order sliding mode of �1(t) variable, i.e., �1 = �2 = �̇2 = 0, (r = 3).
Therefore, the proposed controller can achieve 3-sliding accuracy even when measurement noise or
sampling effects are existing [50].

3.4. Proposed Controller Design

This subsection presents the process of the strategy being synthesized and its stabil-
ity proof.

Calculating the first-order derivative of s and noting the dynamics (24) yields:

ṡ = Θ(J(z)u + W(z)− Δ(z, δ, τd)− z̈d − P̄) +

[
σ1

(
[�2]

β
h−1 + σ0[�1]

β
h

)] h−2
β

(28)

The proposed strategy is designed with the control torques as follows:

u = −J−1Θ−1(z)(u0 + uob + uastw), (29)

where the term u0 is designed as:

u0 = Θ(W(z)− z̈d − P̄) +

[
σ1

(
[�2]

β
h−1 + σ0[�1]

β
h

)] h−2
β

,

the term uob is obtained from the observer’s output as

uob = −ΘΔ̂ ,

and the reaching term uastw is designed according to Lemma 2, as follows:

uastw = ν1(t)[s]
1
2 + ν2(t)s +

t∫
0

[
ν3(t)[s]

0 + ν4(t)s
]
dι.

Figure 2 illustrates the control system’s block diagram.
The below theorem summarizes the control design process.

Theorem 2. For the unconstrained system of the robot system, the sliding mode motions, s = 0,
�1 = 0, and ze1 = 0, will take place in finite-time if the control torque (29) is designed based on the
observer’s output (10), the proposed NISMS (25), and Lemma 3.

Proof of Theorem 2. Applying the control torque (29) to dynamic (28) obtains

ṡ = ΘΔ̃ − uastw

= ΘΔ̃ − ν1(t)[s]
1
2 − ν2(t)s −

t∫
0

[
ν3(t)[s]

0 + ν4(t)s
]
dι

. (30)

Dynamic (30) can be represented by:{
ṡ = −ν1(t)[s]

1
2 − ν2(t)s + γ

γ̇ = −ν3(t)[s]
0 − ν4(t)s + Θ̇ ˙̃Δ

. (31)
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where γ = −
t∫

0

[
ν3(t)[s]

0 + ν4(t)s
]
dι + ΘΔ̃. Suppose that

∣∣∣Θ̇ ˙̃Δ
∣∣∣ is bounded by

∣∣∣Θ̇ ˙̃Δ
∣∣∣ < K

which is a Lipschitz continuous function according to time, K > 0.
According to Lemma 3, the convergence of Equation (31) is finite time. Therefore,

s = 0 and γ = 0 will be achieved within a finite amount of time.

 Definition  
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Figure 2. Algorithm diagram for the proposed control procedure.

4. Simulations

The performance of the trajectory tracking motion control is simulated in this sec-
tion to show the effectiveness of the APPTMC. Simulations were performed in MAT-
LAB/SIMULINK environment to evaluate aspects including maximum overshoot, conver-
gence index, transient response, and SSEs. In addition, approximation ability, chattering
reduction, accuracy, and robustness of the control proposal also are considered thoroughly
via comparison to other equivalent solutions including the SMC [7], the TSMC [29] and
the FTSMC [29]. All controllers are applied to a 3-DOF robotic manipulator to investigate
their effectiveness. The dynamic mathematics and kinematic design of this robot are de-
rived from studies [2,51]. The system parameters of the robot are selected from [15,25].
In the studies [15,25], we describe in detail how the robot system was built using MAT-
LAB/SIMULINK, and SOLIDWORKS software. In MATLAB/SIMULINK, the differential
equations are solved using Euler’s method with a sampling time of ts = 10−3.

4.1. Configuration of the Robot System and Control Parameter Selection

The basic design parameters of the robot system including the length and weight of
links, the center of mass, and inertia are reported in Table 2. A geometric representation of
the robot model is shown in Figure 3.

Assigning a trajectory to the robot’s end-effector is the robot’s primary objective:⎧⎨⎩
X = 0.85 − 0.01t
Y = 0.2 + 0.2 sin(0.5t)
Z = 0.7 + 0.2 cos(0.5t)

(m). (32)

To evaluate the robustness and the effectiveness of the developed scheme in presence of
uncertain terms including calculated-dynamical errors, frictions, and exterior disturbances,
they are assumed in Table 3.
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Figure 3. Geometric representation of the robot model.

Table 2. Basic design parameters of a 3-DOF robot system.

Description Link 1 Link 2 Link 3

Link Length (m) l1 = 0.25 l2 = 0.7 l3 = 0.6

Link Weight (kg) m1 = 33.429 m2 = 34.129 m3 = 15.612

Center of Mass (mm) lc1x = 0
lc1y = 0

lc1z = −0.7461

lc2x = 0.3477
lc2y = 0
lc2z = 0

lc3x = 0.3142
lc3y = 0
lc3z = 0

Inertia (kg.m2) I1xx = 0.7486
I1yy = 0.5518
I1zz = 0.5570

I2xx = 0.3080
I2yy = 2.4655
I2zz = 2.3938

I3xx = 0.0446
I3yy = 0.7092
I3zz = 0.7207

Table 3. Assumed Uncertain Terms.

Type of the Assumed Uncertainty Functions

Calculated-Dynamical Errors δH(p) = 0.2H(p)
δC(p, ṗ) = 0.2C(p, ṗ)

δg(p) = 0.2g(p)

Frictions Fr( ṗ) (N. m) Fr1( ṗ) = 0.1sign( ṗ1) + 2ṗ1
Fr2( ṗ) = 0.1sign( ṗ2) + 2ṗ2
Fr3( ṗ) = 0.1sign( ṗ3) + 2ṗ3

Exterior Disturbances τd (N. m) τd1 = 4 sin(t)
τd2 = 5 sin(t)
τd3 = 6 sin(t)

Following is a specific guide to choosing the control parameters.

Remark 4. The parameters of the proposed sliding surface including β, h, j, σ0, σ1 are chosen
according to Lemma 2. The parameters of the term uastw including ν1, ν2, ν3 and ν4 are chosen
according to Lemma 3. The parameters of the observer including θ1, θ2 are chosen based on the set,
as stated in Lemma 1 while α is chosen to be greater than zero. The parameters of the PPF including
P0, P1, P∞, r are chosen to specify preset performance, as mentioned in Remark 1.

Each controller’s parameters are selected to optimize performance within its capabili-
ties. Accordingly, Table 4 provides the control parameters selected for each algorithm.
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Table 4. Control parameter selection for the proposed scheme.

Description Symbol Value

USOSMO (10) θ1, θ2, α 10, 60, 2
√

30

PPF (14) P0, P1, P∞ , r 0.023, 0.006, 0.0015, 3

NISMS (25) β, h, j, σ0, σ1 3, 3, 2, 50, 10

Proposed Control Law (29) ε, ν10, ν20, ν30, ν40 3, 2, 6, 10, 100

4.2. Simulation Results and Discussion

We first investigate the efficiency and approximation of the proposed observer. We
compare the estimation accuracy of the proposed FxTDO (USOSMO) with that of the
FnTDO (TOSMO) [39]. The description of performance estimation from the FnTDO
and the proposed FxTDO can be found in Figure 4. The estimated errors of the two
observers are also plotted in Figure 5 to facilitate comparisons between them. According
to Figures 4 and 5, both observers seem to achieve the same good accuracy. However, the
proposed observer provides much faster convergence than the FnTDO. The convergence of
the FnTDO was achieved in finite time, thus, the FnTDO depended on the initial value. In
contrast, the proposed FxTDO provided fixed-time uniform convergence of the estimation
errors. The displayed advantages of the proposed observer have a major contribution to
improving overall control performance for robot manipulators.

We will then investigate the simulation results in terms of regulatory issues and track-
ing issues. Based on the results displayed in Figures 6–8, we analyze the regulation problem.

Figure 4. The description of performance estimation from the FnTDO and the proposed FxTDO.

291



Sensors 2022, 22, 7834

Figure 5. The comparison of the estimated errors between the FnTDO and the proposed FxTDO.

Figure 6. Tracking error of the first joint versus the desired trajectory.
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Figure 7. Tracking error of the second joint versus the desired trajectory.

Figure 8. Tracking error of the third joint versus the desired trajectory.

For a fair investigation, the system states are considered with the same initial condi-
tions. We investigate two terms in the approach stage (from the 0th second to the 0.6th
second), including convergence rate and maximum overshoot, and find that the proposed
strategy fulfills these both performance indices with a prescribed performance defined
by Equation (14). By adjusting the design parameters including P0, P1, P∞, and r we can
control the output trajectory of the system within a predefined performance domain as
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described in Remark 2. However, the zoomed-in portions of Figures 6–8 clearly show that
none of the other three methods satisfy both of the above performance indices.

Consider the trajectory tracking problems when controlling the robotic arm to follow
the desired trajectory, as stated in Equation (32). Tracking accuracy and control performance
can be evaluated by analyzing SSEs after the convergence period to equilibrium. Therefore,
the time used to calculate the SSE can be calculated from the 2nd to 20th seconds through
the Roots-Mean-Square Method (RMSM) as introduced below.

EX =

√
1
S

S
∑

i=1
|(Xri−Xi)|2; EY =

√
1
S

S
∑

i=1
|(Yri − Yi)|2; EZ =

√
1
S

S
∑

i=1
|(Zri−Zi)|2;

E1 =

√
1
S

S
∑

i=1
|(pr1i − p1i)|2; E2 =

√
1
S

S
∑

i=1
|(pr2i − p2i)|2; E3 =

√
1
S

S
∑

i=1
|(pr3i − p3i)|2,

(33)

where S denotes the number of the calculated samples. Roots-Mean-Square Errors (RMSEs)
for joint 1, joint 2, and joint 3 are E1, E2, and E3, respectively. RMSEs for X axis,Y axis,
and Z axis are EX EY, and EZ respectively. [Xi, Yi, Zi]

T denotes the actual position and
[Xri, Yri, Zri]

T denotes the reference position at time index i. [p1i, p2i, p3i]
T denotes the

actual joint angle and [pr1i, pr2i, pr3i]
T denotes the reference joint angle at time index i.

Figure 9 depicts the trajectory of the effective point of the robot arm separately con-
trolled by four different methods. It is generally possible to control the robotic arm using
each of the four methods to complete orbital tracking well. According to Figures 6–8,
tracking errors are compared between the real robot trajectory and the reference trajectory
at each joint. Based on Figure 10, the end effector’s position and the reference trajectory are
compared in terms of X-axis, Y-axis, and Z-axis errors. Using RMSE levels for joint errors,
X-axis, Y-axis, and Z-axis errors, tracking accuracy was evaluated. The results pointed in
Figures 6–8, 10, and Table 5 show that the proposed strategy has obtained the highest track-
ing accuracy and the smallest steady-state errors. Overall, both controllers including TSMC,
and FTSMC have proven their effectiveness in trajectory tracking when they could provide
relatively high tracking accuracy. Their SSEs can be within predetermined performance
boundaries while the SSEs of the SMC sometimes cross performance boundaries.

Figure 9. The real trajectories under all controllers versus the desired trajectory.
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Table 5. RMSEs via four Control Strategies.

Control System EX EY EZ E1 E2 E3

SMC [7] 1.1565 × 10−4 8.4785 × 10−5 2.1955 × 10−4 6.6134 × 10−5 1.4889 × 10−4 3.3847 × 10−4

TSMC [29] 1.4363 × 10−5 2.4533 × 10−5 5.8271 × 10−5 2.5713 × 10−5 4.6512 × 10−5 5.1967 × 10−5

FTSMC [29] 1.3054 × 10−5 2.2247 × 10−5 5.2373 × 10−5 2.3968 × 10−5 3.9330 × 10−5 5.0069 × 10−5

Proposed
Controller 1.2158 × 10−7 2.9631 × 10−7 2.2370 × 10−7 3.4814 × 10−7 2.3686 × 10−7 1.9566 × 10−7

Figure 11 shows the control torque provided by the four different control schemes.
The proposed scheme achieved smoother control torques for the robot as a result of esti-
mating uncertainty terms from observers and using the ASTwCL for the reaching phase,
as well as robustness that allowed it to cope with the effects of uncertain elements and
preserve tracking precision despite uncertain components. As a result of the application
of a high-frequency reaching control law, the three remaining control schemes produced
control torques with harmful chattering phenomena. Although those control schemes still
guarantee robustness as well as provide a good level of tracking performance. In reality,
chattering may result in arm vibrations, moving parts in actuators, mechanical abrasions,
and even heat generation in the controlled systems [13,52]. Therefore, chattering should be
removed/reduced its effects.

Figure 10. X-axis, Y-axis, and Z-axis error comparisons between the position of the end effector and
the reference trajectory.
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Figure 11. The control torque of the four different strategies.

To prove the universality of the algorithm, the robot manipulator is controlled to
follow a different trajectory. This trajectory tracking performance of the robot is presented
in Figure 12. Through the obtained simulation results, we observed that they have the
results as those of the first example. Therefore, to avoid repeated analysis, we only present
briefly the tracking control performance as shown in Figure 12.

Figure 12. Performance of the control system in tracking another trajectory.
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5. Conclusions

The proposed APPTMC with the capability of obtaining prescribed performance has
been presented to solve the tracking control problem of robot manipulators under the
influence of disturbances and dynamical uncertainties. The modified PPFs have been
proposed to manipulate position tracking errors in a pre-designed performance domain.
Especially, the SSE boundaries will be symmetrical to zero with the modified PPFs, so when
the transformed error is zero, the tracking error will be as well. A new NISMS based on the
transformed errors allows knowing the allowable maximum size of the control errors in
the steady-state, finite-time convergence speed, and singularity elimination. A fixed-time
USOSMO was proposed to directly estimate the lumped uncertainty. The integration of the
designed USOSMO, the suggested sliding mode surface based on the transformed errors,
and the transformed errors formed an APPTMC for robotic manipulators with global finite-
time stability. The developed control solution provided prescribed performance, chattering
reduction ability, and robustness in coping with the effects of uncertain elements. The
stability of the whole closed-loop system of the tracking control method has been carried
out by Lyapunov theory. The effectiveness and robustness of the proposed method have
been fully confirmed through numerical simulations.

We examined the robot system in our paper with matched uncertain terms, including
dynamic uncertainties, external disturbances, and frictions. Therefore, we plan to extend the
consideration of time-varying mismatched as well as time-varying matched uncertainties
to robot systems in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

CTC Computed Torque Control
ACM Adaptive Control Method
BsCM Back-stepping Control Method
SMC Sliding Mode Control
ISMC Integral Sliding Mode Control
SSE Steady-State Error
SOSMC Second-Order Sliding Mode Control
TSMC Terminal Sliding Mode Control
NTSMC Non-singular Terminal Sliding Mode Control
FTSMC Fast Terminal Sliding Mode Control
FNTSMC Fast Non-singular Terminal Sliding Mode Control
NISMS Nonsingular Integral Sliding Mode Surfac
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FnTCM Finite-Time Control Method
FxTCM Fixed-Time Control Method
DO Disturbance Observer
FnTDO Finite-Time Disturbance Observer
FxTDO Fixed-Time Disturbance Observer
SOSMO Second-Order Sliding Mode Observer
USOSMO Uniform Second-Order Sliding Mode Observer
TOSMO Third-Order Sliding Mode Observer
ASTwCL Adaptive Super-twisting Control Law
PPC Prescribed Performance Control
PCP Prescribed Control Performance
PPF Prescribed Performance Function
ETF Error Transformation Function
DOF Degrees of Freedom
RMSM Roots-Mean-Square Method
RMSE Roots-Mean-Square Error
SMO-CM Sliding Mode Observer-based Control Method
TDE-CM Time-Delay Estimation-based Control Method
DO-CM Disturbance Observer-based Control Method
ADRCM Active Disturbance Rejection Control Method
APPTMC Adaptive Prescribed Performance Tracking Motion Control
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Abstract: Many aerial robotic applications require the ability to land on moving platforms, such as
delivery trucks and marine research boats. We present a method to autonomously land an Unmanned
Aerial Vehicle on a moving vehicle. A visual servoing controller approaches the ground vehicle
using velocity commands calculated directly in image space. The control laws generate velocity
commands in all three dimensions, eliminating the need for a separate height controller. The method
has shown the ability to approach and land on the moving deck in simulation, indoor and outdoor
environments, and compared to the other available methods, it has provided the fastest landing
approach. Unlike many existing methods for landing on fast-moving platforms, this method does
not rely on additional external setups, such as RTK, motion capture system, ground station, offboard
processing, or communication with the vehicle, and it requires only the minimal set of hardware and
localization sensors. The videos and source codes are also provided.

Keywords: visual servoing; autonomous landing; monocular vision; aerial robotics

1. Introduction

The recent advances in Unmanned Aerial Vehicles (UAVs) have allowed innovative
applications ranging from package delivery to infrastructure inspection, early fire detection,
and cinematography [1–3]. While many of these applications require landing on the ground
and static platforms, the ability to land on dynamic platforms is essential for some other
applications. A typical example of a real-world scenario is an autonomous landing on a
ship deck [4] or maritime Search and Rescue operations [5].

The autonomous landing of Unmanned Aerial Vehicles (UAVs) on known patterns has
been an active area of research for several years [6–12]. Some of the key challenges of the
problem include dealing with environmental conditions, such as changes in light and wind,
and robust detection of the landing zone. The subsequent maneuver in trying to land also
needs to take care of the potential ground effects at the proximity of the landing surface.

The Mohamed Bin Zayed International Robotics Challenge (MBZIRC) is a set of real-
world robotics challenges happening every few years [13]. Challenge 1 took place in March
2017, focusing on landing UAVs on a moving platform. In this challenge, there was a
ground vehicle (truck) moving on an 8-shaped road in a 90 × 60 m arena with a predefined
speed of 15 km/h (4.17 m/s). On top of the truck, at 1.5 m height, there was a flat horizontal
ferromagnetic deck with a predefined 1.5 × 1.5 m pattern (Figure 1) printed on top of it [14].

Sensors 2022, 22, 6549. https://doi.org/10.3390/s22176549 https://www.mdpi.com/journal/sensors301
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The goal was to land the UAV on this deck autonomously. To make the challenge realistic,
no communication between the UAV and the ground vehicle was allowed, no precise state
estimation sensors such as RTK or Motion Capture were provided, and finally, the location
of the vehicle was not given to the UAV, requiring a visual detection of the pattern, which
could result in false and imperfect detections among other issues.

Figure 1. Landing zone pattern utilized at the MBZIRC competition [14].

This paper describes our approach to landing on moving platforms, which uses only a
single monocular camera, a point Lidar, and an onboard computer. The method is based
on a visual-servoing controller and has been successfully tested for landing on moving
ground vehicles at speeds of up to 15 km/h (4.17 m/s).

Our contributions include proposing a method that does not depend on a special
environment setup (e.g., IR markers and communication channels), can work with the
minimal UAV sensor setup, only requires a monocular camera, has minimum processing
requirements (e.g., a lightweight onboard computer), and approaches the landing platform
with high certainty. We also provide our source codes and simulation environment to assist
with future developments. The videos of our experiments and all the codes are available at
http://theairlab.org/landing-on-vehicle.

The paper is organized as follows: Section 2 reviews the relevant work and state of
the art; Section 3 explains our method for autonomous landing; Section 4 describes the
architecture and the experiments performed and discusses the results from simulation,
indoor and outdoor tests.

2. Background and Relevant Research

A review of the existing research reveals several approaches to solving this problem.
One of the earliest vision-based approaches introduced an image moment-based method
to land a scale helicopter on a static landing pad that has a distinct geometric shape [15].
This work further extends to the helicopter landing on a moving target [6]. However, a
limitation of the approach is that it tracks the target in a single dimension, and the image
data are processed offboard.

A more recent work tries to land a quadcopter on top of a ground vehicle traveling at
high speed using an AprilTag fiducial marker for landing pad detection [16]. They devise a
combination of Proportional Navigation (PN) guidance and Proportional-Derivative (PD)
control to execute the task. The UAV has landed on a target moving at up to 50 km/h
(13.89 m/s). However, the PN guidance strategy used to approach the target has to rely on
the wireless transmission of GPS and IMU measurements from the ground vehicle to the
UAV, which is impractical in most applications. In addition, two cameras are used for the
final approach to detect the AprilTag from far and near.

Visual servoing control is another approach that can be applied to this problem.
In [17], it is used to generate a velocity reference command to the lower level controller
of a quadrotor, guiding the vehicle to a target landing pad moving at 0.07 m/s. It is
computationally cheaper to compute the control signals in image space than in 3D space.
However, this work relies on offboard computing as well as a VICON motion capture
system for accurate position feedback during its patrol to search for the target. Another

302



Sensors 2022, 22, 6549

closed-loop approach for landing was proposed in [18]. In this paper, the authors presented
a landing vector field. Unlike visual servoing, the method’s main advantage is that the
vector field can enforce the shape of the vehicle’s trajectory during landing. In addition,
different from visual servoing, the 3D localization of the UAV is necessary.

Some other works emphasize the design of a landing pad that is robust to detection,
which simplifies the task by eliminating the detection uncertainty [19–21]. In [7], a Wii
(IR) camera is used to track a T-shaped 3D pattern of infrared lights mounted on the
vehicle, and, in [22], an IR beacon is placed on the landing pad. Reliable detection enables
a ground-based system to estimate the position of the UAV relative to the landing target.
Xing et al. [21] propose a notched ring with a square landmark inside to enable robust
detection of the landing zone, then it uses a minimum-jerk trajectory to land on the detected
pattern. Finally, the method presented in [23] localizes the vehicle using two nested ArUco
markers [24] in an illuminated landing pad, allowing landing during the night using
visual servoing.

Optical flow is another technique used to provide visual feedback for guiding the
UAV. Ruffier and Franceschini [25] developed an autopilot that uses a ventral optic flow
regulator in one of its feedback loops for controlling lift (or altitude). The UAV can land
on a platform that moves along two axes. The method in [26] also uses the optical flow
information obtained from a textured landing target but does not attempt to reconstruct
velocity or distance to the goal. Instead, the approach chooses to control the UAV within
the image-based paradigm.

The method in [27] transfers all the computing power to the ground station eliminating
the need for an onboard computer. They only report results for very slow vehicle speeds
(10–15 cm/s), and the method cannot extend to higher speeds due to communication delays.

Several approaches were introduced for the MBZIRC challenge. The method used
by [10] tries to follow the platform until the pattern detection rate is high enough for
landing. Then, it continues to follow the platform on the horizontal plane while slowly
decreasing the altitude of the UAV. A Lidar (Light Detection and Ranging sensor) is used to
determine if the UAV should land on the platform or not. The landing is performed by a
fast descent followed by switching off the motors. The state estimation uses monocular
VI-Sensor data fused with GPS, IMU, and RTK data.

Researchers from the University of Catania implemented a system that detects and
tracks the target pattern using a Tracking-Learning-Detection-based method integrated
with the Circle Hough Transform to find the precise location of the landing zone. Then, a
Kalman filter is used to estimate the vehicle’s trajectory for the UAV to follow and approach
it for landing [28,29].

Baca et al. [30] took advantage of a SuperFisheye high-resolution monocular camera
with a high FPS rate for pattern detection. They used adaptive thresholding to improve the
method’s robustness to the light intensity, followed by undistorting the image. Then, the
circle and the cross are detected to find the landing pattern in the frame. After applying a
Kalman filter on the detected coordinates to estimate and predict the location of the ground
vehicle, a model-predictive controller (MPC) is devised to generate the reference trajectory
for the UAV in real-time, which is tracked by a nonlinear feedback controller to approach
and land on the ground vehicle.

Researchers at the University of Bonn have achieved the fastest approach for landing
among the other successful runs in the MBZIRC competition (measured from the time of
detection to the successful landing). They used two cameras for the landing pattern detec-
tion, a Nonlinear Model Predictive Control (MPC) for time-optimal trajectory generation
and control, and a separate proportional controller for yaw [11].

Tzoumanikas et al. [31] used an RGB-D camera for visual-inertial state estimation.
After the initial detection, the UAV flies in the vehicle’s direction until it reaches the velocity
and position close to the ground vehicle. Then, the UAV starts descending toward the target
until a certain altitude, when it will continue descending in an open-loop manner. During
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the landing, the UAV uses pattern detection feedback only to decide between aborting the
mission or not and not for correcting controller commands.

University of Zurich researchers have introduced a system in [32] that first finds
the quadrangle of the pattern and then searches for the ellipse or the cross, validating
the detection using RANSAC. Then, the platform’s position is estimated from its relative
position to the UAV, and an optimal landing trajectory is generated to land the UAV on
the vehicle.

An ultimate goal in robotics’ real-world applications is to achieve good results while
reducing the robot’s costs and the amount of the prior setup. Dependence on the additional
hardware or external hardware (e.g., motion capture systems, RTK, multiple cameras) is
costly and not always feasible in real-world applications. In contrast with other available
methods, our approach uses only a single monocular camera (with comparatively low
resolution and low frame rate), a point Lidar, and an onboard computer to land on the
moving ground vehicle at high speeds (tested at 15 km/h (4.17 m/s)) using a visual-
servoing controller. The approach does not depend on accurate localization sensors (e.g.,
RTK or motion capture systems) and can work with the state estimation provided by a
commercial UAV platform (obtained only using GPS, IMU, and barometer data). Our
real-time elliptic pattern detection and tracking method can track the landing deck in
challenging environment conditions (e.g., changes in lighting) with a high frequency [33].

3. Materials and Methods

This section explains our approach to sensing the vehicle passing below the UAV and
then landing the quadrotor on the vehicle. Our system was developed in the MBZIRC
Challenge 1 context, discussed in Section 1. Therefore, our primary goal was to land on a
known platform (see Figure 1) fixed on top of a vehicle moving at a fixed speed.

3.1. General Strategy

In our approach, we assume that the drone is hovering above the point where the
moving vehicle is expected to pass (which can be any point on the road if the vehicle is
in a loop). In addition, we assume that the direction and the speed of the moving vehicle
are known, which can be previously obtained, for example, from some consecutive deck
pattern detections. We further assume that the vehicle is almost moving in a straight line
during the few seconds when the UAV attempts to land.

A time-optimal trajectory to landing is theoretically possible, while in practice, there
is a variation in the speed of the moving vehicle (which is driven by a human driver),
and there are delays and errors in state estimation. Therefore, an approach with constant
feedback to correct the trajectory would work better than an open-loop landing using an
optimal trajectory. The method we chose is to continually measure the target’s position,
size, and orientation directly in the image space and translate it to velocity commands for
the UAV using visual servoing. This approach is described in Section 3.3.

Given the assumptions mentioned above, the defined strategy is as follows:

1. The quadrotor hovers at the point at the height of h meters until it senses the passing
ground vehicle.

2. As soon as the ground vehicle is sensed, the UAV starts flying in the direction of move-
ment with a predefined speed slightly higher than the vehicle speed to compensate
for the distance between the UAV and the vehicle. This gap results from the delays in
processing the sensors and dynamics of the UAV in getting up to the vehicle speed.

3. After the initial acceleration, the UAV flies with a feed-forwarding speed equal to
the ground vehicle speed. Then, the visual servoing controller tries to decrease the
remaining gap between the UAV and the target.

4. After successfully landing, magnets at the bottom of the UAV legs stick to the metal
platform, and the propellers are shut down.

Figure 2 depicts the steps of the described strategy. The following subsections explain
the main components of the landing strategy in greater detail.
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We used a path tracker similar to the one proposed by [34] to fly to the hover point
and to fly the straight lines.

Figure 2. Our strategy for landing on a moving vehicle. The vehicle hovers above the road until it
senses the passing vehicle. Then, it accelerates to catch up with the vehicle and tries to land using the
visual servoing method. As soon as the landing is detected, all the motors are turned off.

3.2. Sensing the Passing Vehicle

We considered two strategies for detecting the passing vehicle below the UAV when it
is hovering above the road on the vehicle’s path: the camera or using laser sensors. Due to
the reliability of our pattern detection method, using the camera gives more reliable results.
The chosen hovering altitude can range from a few to tens of meters, where the pattern
detection is reliable. The lower altitude allows for a faster approach to landing, while the
higher altitude results in more flight time required to catch up with the vehicle (box 4 in
Figure 2).

The strategy of sensing the vehicle using a camera worked well in our tests; however,
for higher vehicle speeds, we developed a laser-based solution to avoid the delays intro-
duced by the image processing and to get an even lower reaction time. We used three
point-laser sensors on the bottom of the UAV (as described in Section 4.1) to detect the
vehicle passing below it. If the distance measured by any of the three lasers has a sudden
drop of more than a certain threshold within a specified period, we assume that the vehicle
is passing below the quadrotor, and the landing system is triggered.

The choice of the number of the lasers and the ideal height of the hovering depend
on the road’s width and the vehicle’s width and height. For our tests, the road was 3 m
wide, the vehicle was 1.5 m wide, and its height was 1.5 m. In order to capture this
vehicle, the center laser points directly downwards, and the other two lasers are angled
at approximately 30 degrees on each side. With this configuration, at the altitude of 4 m,
two additional laser rays will hit the ground at a distance of 1.44 m from the center laser.
When the moving vehicle (with a width and height of 1.5 m) passes on the road below the
quadrotor, at least one of the three lasers will sense the change in the measured height.
Algorithm 1 illustrates the method.
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Algorithm 1: Approach for sensing the passing vehicle using three point lasers.

1: function DETECTPASSINGVEHICLE
2: � Keep reading the sensors until the vehicle is sensed
3: while true do
4: � Read the laser measurements
5: distl , distc, distr ← READLASERS()
6: � Check if we have a sudden decrease in the measured distance
7: � thr is set to a large number smaller than the vehicle’s height
8: if (lastl - distl) > thr or (lastc - distc) > thr or (lastr - distr) > thr then
9: return true

10: else
11: lastl ← distl , lastc ← distc, lastr ← distr
12: end if
13: end while
14: end function

Figure 3 shows examples of a laser triggering after sudden measurement changes.

Figure 3. Plot of laser distance measurements during a flight in our trials. The passing vehicle is
detected in several moments, indicated by the red ellipses. Detection by this laser fails in the third
trial due to vehicle misalignment with the laser direction.

3.3. Landing Using Visual Servoing

After the vehicle is detected (using the lasers or the visual pattern detection), the next
task is trying to land on the defined pattern on the deck of the moving ground vehicle. In
our strategy, the UAV follows and lands the moving deck using visual servoing. Visual
servoing consists of techniques that use information extracted from visual data to control
the robot’s motion. Assuming that the camera is attached to the drone through a gimbal,
the vision configuration is called an eye-in-hand configuration. We used an Image-Based
Visual Servoing scheme (IBVS), in which the error signal is estimated directly based on
the 2D features of the target, which we considered to be the center of the target ellipse and
the corners of its circumscribed rectangle. The error is then computed as the difference (in
pixels) between the features’ positions when the UAV is right above the target, at the height
of about 50 cm, and the current features’ positions given by the deck detection algorithm
(discussed in Section 3.6). Since the robot operates in task space coordinates, there must be
a mapping between the changes in image feature parameters and the robot’s position. This
mapping is applied using the image Jacobian, also known as the Interaction Matrix [35].

3.3.1. Interaction Matrix

If τ represents the task space and F represents the feature parameter space, then the
image Jacobian Lv is the transformation from the tangent space of τ at r to the tangent space
of F at f , where r and f are vectors in task space and feature parameter space, respectively.
This relationship could be represented as:
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ḟ = Lv(r)ṙ, (1)

which implies

Lv(r) =
[

∂ f
∂r

]
. (2)

In practice, ṙ needs to be calculated given the value of ḟ and the interaction matrix at
r. Depending on the size and rank of the interaction matrix, different approaches can be
used to calculate the inverse or pseudo-inverse of the interaction matrix, which gives the
required ṙ [36].

3.3.2. Calculating Quadrotor’s Velocity

The developed visual servoing controller for this project assumes the presence of five
2D image features: the center of the detected ellipse sc and the four corners of the rectangle
that circumscribes the detected elliptic target. Since the gimbal has faster dynamics than
the quadrotor, two separate controllers were developed. The first controller is a simple
proportional controller for the gimbal pitch angle to keep the deck in the center of the image:

δ = k‖s�c − sc‖, (3)

where k is a positive gain, s�c is the desired location of the deck center in the image, and
‖ · ‖ stands for the Euclidean distance. Since the gimbal is not mounted at the center of the
quadrotor, position s�c has an offset to compensate for this.

The second control problem, which relies on image features s = [x, y]T , is a traditional
visual servoing problem, which is solved using the following control law:

v = −λ
(

Ls
cVb

bJb

)+
(s� − s) + vff (4)

where v is the quadrotor velocity vector in the body control frame, λ is a positive gain, Ls is
the interaction matrix, cVb is a matrix that transforms velocities from the camera frame to
the body frame, bJb is the robot Jacobian, ()+ is the pseudo-inverse operator, (s� − s) is the
error computed in the feature space and vff is a feed-forward term obtained by transforming
the truck velocity to the body reference frame [37]. In our case, the error (s� − s) is
minimized using only linear velocities and yaw rate. Therefore, v = [vx, vy, vz, ω]T , which
forces the Jacobian matrix to be written as:

bJb =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. (5)

This matrix is responsible for the transformation from the general six-dimensional
velocity space to a four-dimensional space that the UAV can indeed follow.

The interaction matrix Ls(s�, Z�) in our method is constant, and is computed at the
target location using image features (s� = [x�, y�]T) and the distance of the camera to the
deck (Z�) as [35]:

Ls =

[
−1/Z� 0 x�/Z� x�y� −(1 + x�2) y�

0 −1/Z� y�/Z� 1 − y�2 −x�y� −x�

]
. (6)

It is essential to mention that, ideally, the interaction matrix should be computed
online using the current features and height information. However, in our approach, we
use a constant matrix to be more robust regarding the errors related to the UAV position
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estimation and information necessary to compute Z. For the same reason, the distance from
the deck is not used as part of the feature, as is done in some visual servoing approaches [37].
In addition, a constant matrix causes the system to be less sensitive to eventual spurious
detection of the target. On the other hand, since the camera is mounted on a gimbal, matrix
cVb must be computed online as:

cVb =

[ cRb [ctb]×cRb
03×3

cRb

]
(7)

where cRb is the rotation matrix between the image and the robot body, which is a function
of the gimbal angles, ctb is the corresponding constant translation vector, and [t]× is the
skew-symmetric matrix related to t.

Since we are dealing with a moving deck, the feed-forward term vff in Equation (4)
is necessary to reduce the error (s� − s) to zero [38]. In our case, vff originates from the
ground vehicle velocity vector, which is a vector tangent to the moving vehicle’s path.
Thus, the precise estimation of this vector would require the localization of the vehicle with
respect to the track, which is a challenging task. To make such an estimation more robust
to sensor noise, we relaxed this problem to compute vff only on the straight line segments
of the track, where we assume the ground vehicle speed vector to be constant for several
seconds. This restriction causes our UAV to land only on such segments.

All the visual servoing control laws in Equations (1)–(7) are implemented using the
Visual Servoing Platform (ViSP) [37] version 3.0.1, which provides a suitable data structure
for the problem and efficiently computes the required pseudo-inverse matrix.

3.4. Initial Quadrotor Acceleration

As described in Section 3.1, the quadrotor will hover until it senses the ground vehicle
passing below it. Due to the relatively slow dynamics of the quadrotor controller, it takes
some time to accelerate to the ground vehicle’s speed. By this time, the deck is already out
of the camera’s sight, and the visual servoing procedure cannot be used for landing.

To compensate for the delay in reaching the ground vehicle’s speed and to gain sight
of the deck again, an initial period of high acceleration is set right after sensing the passing
ground vehicle. In this period, the desired speed is set to a value higher than the vehicle’s
speed until the quadrotor compensates for the created gap with the vehicle. After this time,
the quadrotor switches to the visual servoing procedure described in Section 3.3 with a
feed-forward velocity lowered to the current ground vehicle’s speed.

We tested two different criteria for switching from the higher-speed flight to the visual
servoing (box 5 in Figure 2) procedure: vision-based and timing-based. In the vision-based
approach, the switch to visual servoing happens when the pattern on the moving vehicle is
detected again. In the timing-based approach, depending on the processing and dynamics
delays of the sensing and considering the known speed of the vehicle and the set speed for
the UAV, it is possible to calculate a fixed time ta that is enough for catching up with the
vehicle. After this time, the UAV can start the visual servoing landing.

3.5. Final Steps and Landing

When the UAV gets too close to the ground vehicle, the camera can no longer see
the pattern. To prevent the UAV from stopping when the target detector (described in
Section 3.6) is unable to detect the deck during landing, the UAV is still commanded to move
with the known vehicle’s speed for a few sampling periods. If using one of its point lasers,
the UAV detects that it has the correct height to land, it increases its downward vertical
velocity and activates the drone landing procedure, which shuts down the propellers.

Note that the “blind” approach can only work due to the low delays between losing
the pattern and landing (generally 30–70 ms). This approach may fail if the ground vehicle
aggressively changes its direction or velocity. However, for many applications, the vehicle’s
motion (e.g., a ship or a delivery truck) can be reasonably assumed stable for such a
short time.
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3.6. Detection and Tracking of the Deck

Figure 1 shows the target pattern on top of the deck. There are some challenges in the
detection of this pattern from the camera frames, including:

• This algorithm is used for landing the quadrotor on a moving vehicle. Therefore,
it should work online (with a frequency greater than 10 Hz) on a resource-limited
onboard computer.

• The shape details cannot be seen in the video frames when the quadrotor is flying far
from the deck.

• The shape of the target is transformed by a projective distortion, which occurs when
the shape is seen from different points of view.

• There is a wide range of illumination conditions (e.g., cloudy, sunny, morning, evening).
• Due to the reflection of the light (e.g., from sources like the sun or bulbs), the target

may not always be seen in all the frames, even when the camera is close to the vehicle.
• In some frames, there may be shadows on the target shape (e.g., the shadow of the

quadrotor or trees).
• In some frames, only a part of the target shape may be seen.

Considering these challenges and the shape of the pattern, different participants of
the MBZIRC challenge chose different approaches for detection. For example, in [10], the
authors implemented a quadrilateral detector for detecting the pattern from far distances
and a cross detector for close-range situations. The method in [11] uses the line and circular
Hough-transform algorithms to calculate a confidence score for the pattern for the initial
detection and then uses the rectangular area around the pattern for the tracking. In [39],
a Convolutional Neural Network is developed to detect the elliptic pattern, which was
trained with over 5000 images collected from the pattern moving at a maximum of 15 km/h
(4.17 m/s) at various heights. In [40] the cross and the circle are detected for far images,
and only cross detection is used for the closer frames. The method uses the [41] method for
ellipse detection. In [31], the outer square is detected first, and then the detection is verified
by a template matching algorithm.

In our work, we developed a novel method to overcome the problem challenges men-
tioned above, which detects and tracks the pattern by exploiting the structural properties of
the shape without the need for any training [33]. More specifically, the deck detector system
detects and tracks the circular shape (seen as an ellipse due to the projective transformation)
on top of the deck, while ignoring the cross in the middle and then verifying that the
detected ellipse belongs to the deck pattern. The developed real-time ellipse detection
method can also detect the ellipses with partial occlusion or the ellipses that are exceeding
the image boundaries.

Figure 4 shows results for the detection of the deck in some sample frames. A more
detailed description of the methods, database, and results are provided in [33].

(a) (b)
Figure 4. Cont.
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(c) (d)
Figure 4. (a–d) Result of the deck detection and tracking algorithm on sample frames. The red ellipse
indicates the detected pattern on the deck of the moving vehicle.

4. Experiments and Results

This section outlines the architecture of our proposed landing method from both
hardware and software perspectives and presents the results obtained from the tests in
different conditions: simulation, indoor testing, and outdoor testing. Some videos of
experiments and sequences shown in this section are available at http://theairlab.org/
landing-on-vehicle.

4.1. Hardware

The aerial platform chosen for this project is a DJI Matrice 100 quadrotor. This UAV
is programmable, can carry additional sensors, is fast, provides velocity commands, and
is accurate enough for this problem. Using an off-the-shelf vs. home-built platform
vastly increased the speed of the development, reducing the time needed for dealing
with hardware bugs. The selected platform has a GPS module for state estimation and
is additionally equipped with an ARM-based DJI Manifold onboard computer (based on
NVIDIA Jetson TK1 computer), a DJI Zenmuse X3 Gimbal and Camera system, a set of
three SF30 altimeters, and four permanent magnets at the bottom of legs. One altimeter
is pointed straight down to measure the current height of the flight with respect to the
ground. The other two altimeters are mounted on the two sides of the quadrotor, pointing
down with approximately 30 degrees outward skew to measure the sudden changes in
the height on the sides of the quadrotor for the detection of the truck passing next to the
quadrotor. The camera is mounted on a three-axis gimbal and outputs grayscale images at
a frequency of 30 Hz with a resolution of 640 × 360 pixels.

A wireless adapter allows communication between the robot computer and the ground
station for development and monitoring. For indoor tests, a set of propeller guards and a
DJI Guidance System, a vision-based system able to provide indoor localization, velocity
estimation, and obstacle avoidance, are used to provide velocity estimation and improve
the safety of the testing. The guards and the Guidance system are removed for outdoor
tests to reduce the weight and increase the robustness to the wind. Figure 5 shows the
picture of the robot.
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Figure 5. The robot developed for our project. The figure shows our DJI Matrice 100 quadrotor
equipped with the indoor testing parts (DJI Guidance System and the propeller guards), as well
as the DJI Zenmuse X3 Gimbal and Camera system, the SF30 altimeter, and the DJI Manifold
onboard computer.

The main characteristics of the robot are summarized in Table 1.

Table 1. The main characteristics and parameters of the UAV.

Parameter Value

Maximum time of flight 19 min

Maximum horizontal speed 17 m/s (61 km/h)

Maximum vertical speed 4 m/s (14.4 km/h)

External diameter (with propeller guards) 1.2 m

Height 0.46 m

Processor Quad-core ARM CORTEX-A15

RAM Memory 2 GB

Maximum robot speed 8.33 m/s (30 km/h)

4.2. Software

The robot’s software is developed using the Robot Operating System (ROS) to achieve
a modular structure. The modularity allowed the team members to work on different parts
of the software independent of each other and reduced the debugging time. DJI’s Onboard
SDK is used to interact with the quadrotor’s controller. The software is constructed in a
way that it can control both the simulator and the actual robot with just a few modifications.
Figure 6 shows a general view of the system architecture.

In Figure 6, the main block of our architecture (implemented as a ROS node), called
“Mission Control”, dictates the robot’s behavior, informing the other blocks of the current
task (mission status) using a ROS Parameter. The Mission Control block also generates
trajectories for the robot when the current mission mode requires the robot to fly to a
different position. To dictate the robot’s behavior, Mission Control relies on the robot’s
odometry information and the robot’s distance to the ground or target.

The other blocks in Figure 6 are:

• Deck tracking—detects the deck target and provides its position and orientation in the
image reference frame;

• Visual Servoing—controls the UAV to track and approach the deck;
• Trajectory controller—provides velocity commands to the robot so it can follow the

trajectories generated by the Mission Control node;
• Mux—selects the velocities to be sent to the quadrotor, depending on the mission status.
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Figure 6. System architecture used in the development of the system.

The implementation of the project and the datasets used for our tests are provided as
open-source for public use on our website.

4.3. Test Results

Before testing the landing outdoors, we performed several indoor experiments to
develop and validate our visual servoing approach. We performed experiments both with
a static and moving deck using this setup at speeds up to 2 m/s. Figure 7 shows snapshots
of one of our experiments. A video of the continuous sequence of experiments can be
accessed from our website.

(a) (b)

(c) (d)
Figure 7. Cont.
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(e) (f)
Figure 7. (a–f) Screenshots from a video sequence showing our quadrotor landing on a moving
platform. In this experiment, the quadrotor is additionally equipped with a DJI Guidance sensor for
safe operation in the indoor environment.

Out of 19 recorded trials to land indoors on a platform moving at a speed of 5–10 km/h
(1.39–2.78 m/s), there were 17 successful landings on the platform. One failure was due to
loss of detection of the pattern, which happened midway to landing and the other failure
was due to loss of the pattern at the last stage, which resulted in trying to land behind
the deck.

We developed a simulation environment using Gazebo [42]. It has a ground vehicle
(truck) of 1.5 m in height with the target pattern on top of it. The truck’s motion is controlled
by a ROS node that is parameterized by the truck speed and the direction of movement.

Our UAV is simulated using the Hector Quadrotor [43], which provides a velocity-
based controller similar to the one provided by DJI’s ROS SDK. The simulated quadrotor
is also equipped with a (non-gimbaled) camera and a height sensor. Since the simulator
has no gimbal, we fixed the camera on 45◦. The odometry of the drone provides position
estimates in the same message type provided by DJI. This similarity allows testing the
entire software in simulation before actually flying the UAV. Therefore, the same software
could be used both in simulation and on real hardware, provided that some parameters
related to target detection were changed. Due to the kinematic nature of our controller, it is
possible to run the trajectory controller with unchanged parameters.

Figure 8 shows a snapshot of the simulator when the quadrotor is about to land on the
moving deck. The upper-left corner of the figure shows the UAV’s view of the deck.

Figure 8. A snapshot of the Gazebo simulation. The quadrotor’s camera view is shown in the top
left corner.

To test the system in the real scenarios, a Toro MDE eWorkman electric vehicle was
modified to support the pattern at the height of 1.5 m (Figure 9). A ferromagnetic deck with
a painted landing pattern was attached to the top as the landing zone for the quadrotor.
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Figure 9. The Toro Workman ground vehicle used for our tests.

The ground vehicle was manually driven with an approximate speed of 15 km/h
(4.17 m/s) measured by a GPS device. Visual servoing gains were empirically calibrated,
and the robustness of the approach to landing was evaluated.

Although we did not collect detailed statistics on the landing procedure, there were
several successful landings on the vehicle at the speed of 15 km/h (4.17 m/s). It is hard
to compare our method’s success rate with the other methods, as none of the publications
from the MBZIRC challenge have reported their success rates and have only reported
limited results from the attempts during the challenge trials.

Figure 10 shows a successful autonomous landing of the quadrotor on the moving
vehicle used in our experiments at 15 km/h (4.17 m/s) speed.

Out of 22 recorded trials, visual servoing was successful in bringing the UAV to the
deck in 19 cases. All three failure cases were due to the extreme sun reflection where
the pattern was no longer seen in the frame; therefore, the visual servoing lost track of
the pattern, and the mission was aborted. The cases where the switching from initial
acceleration to visual servoing happened too soon or too late (which results in the loss of
the target even at the beginning) were excluded from the analysis, as they were irrelevant to
the study of the visual servoing performance. The results show the successful development
of our visual servoing approach in bringing the UAV to the vicinity of the moving vehicle.

The time from the first detection of the platform to the stable landing varied between
different runs from 5.8 to 6.5 s, which is less than the reported times of approaches claiming
to be the fastest methods (7.65 s reported by [31] and 7.8 s reported by [11]). This timing
can also be seen in the accompanying videos on our website.

(a) (b)
Figure 10. Cont.
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(c) (d)

(e) (f)
Figure 10. (a–f) Screenshots from a video sequence showing our quadrotor landing on the moving
vehicle at 15 km/h (4.17 m/s) speed. The video is available on our website.

5. Conclusions

This paper presented our approach to landing an autonomous UAV on a moving
vehicle. With a few modifications, such as close-range landing zone detection and vehicle
turn estimation, the proposed methods can work for a generalized autonomous landing
scenario in a real-world application.

The visual servoing controller showed the ability to approach and land on the moving
deck in simulation, indoor environments, and outdoor environments. The controller can
work with a different set of localization sensors like GPS and DJI Guidance and does not
rely on very precise sensors (e.g., motion capture system).

The visual servoing controller showed promising results in reliably approaching the
moving vehicle. A potential way to improve the landing efficiency further and tackle the
loss of visual target problem is to divide the landing task into two subtasks: approaching
the vehicle and landing from a short distance. After reaching the vehicle, the visual servoing
approach can switch to a short-range landing algorithm. We believe that, by extending this
approach, it can be used in a wide range of applications.

The robustness of the approach to occasional false positives in tracking the target
and nondeterministic target detection rate has allowed us to use monocular vision with
a real-time general-purpose ellipse detection method developed for this work (see [33]),
further reducing the overall cost and weight of the system. However, as discussed in
Section 4.3, this has caused the UAV to stop the landing procedure due to the sun reflection
in 13.6% of our outdoor tests. If this compromise cannot be accepted in an application, a
more reliable target tracking method (such as infrared or radio markers) can be devised, or
another attempt should be made at finding and approaching the vehicle.

While the approach has been tested for a range of vehicle velocities up to 15 km/h,
using the estimated vehicle speed as a feed-forwarding velocity means that the maximum
ground vehicle’s speed for UAV landing is mainly limited by the maximum speed of the
UAV platform. However, the other potentially limiting factor can be the target detection
rate and the gust factor, which at higher speeds can result in higher errors between two
detections with insufficient time to correct the course.
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Abstract: This article presents the development of a model of a spherical robot that rolls to move
and has a single point of support with the surface. The model was developed in the CoppeliaSim
simulator, which is a versatile tool for implementing this kind of experience. The model was tested
under several scenarios and control goals (i.e., position control, path-following and formation control)
with control strategies such as reinforcement learning, and Villela and IPC algorithms. The results
of these approaches were compared using performance indexes to analyze the performance of the
model under different scenarios. The model and examples with different control scenarios are
available online.

Keywords: spherical robot; model; simulation; CoppeliaSim (V-REP)

1. Introduction

The field of robotics is very extensive with respect to robot design, as it is necessary to
investigate and analyse the different types of mechanisms that a robot could eventually
integrate. Mobile robots can move around their environment using different mechanisms,
such as wheels, caterpillars and others [1–4]. Mobile robots include robots with a spherical
shape, that roll to move, like a football. This type of robot represents a particular challenge
because it must roll with all of its components inside [5,6]. Examples of this kind of robot
can be found in the literature with different driving/steering mechanisms, including single
wheels [7,8], pendulums [9–11], and omnidirectional wheel mechanisms [12].

It is well-known that, currently, advanced robots are very expensive and can be
exposed to damage during laboratory experimentation. For this reason, simulators are very
important in this field. Virtual laboratories using these simulators offer significant benefits
for robotics education [13]. Using such virtual laboratories, students can test and gain an
understanding of concepts that are not easy to follow in the classroom, at any time and
pace, and from anywhere [14,15]. They can also design and test control strategies before
implementing them in an actual robot in the laboratory without risk of damage to the
physical device.

Currently, there are many simulators for different areas of robotics. For example,
Argos [16], Webots [17], RFCSIM [18], and CoppeliaSim (formerly V-REP) [19], to mention
only those most used. Some of these platforms have licenses that can be used free of
charge for educational purposes. They have competitive functionalities with various
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components that can interact with each other and can be programmed with different
programming languages.

The CoppeliaSim simulator deserves special attention for being one of the most widely
used for pedagogical purposes today. This simulator provides a versatile and scalable
framework for creating 3D simulations in a relatively short period of time. CoppeliaSim has
an integrated development environment (IDE) that is based on a distributed and scripted
architecture—each scene object can have a built-in script attached, all operating at the same
time, in the form of threads. CoppeliaSim contains a wealth of examples, robot models,
sensors, and actuators to create and interact with a virtual world at run-time. New models
can be designed and added to CoppeliaSim to implement custom-designed simulation
experiments [20,21]. CoppeliaSim has an extensive list of mobile robots, among which
there is no spherical robot. Therefore, it would be interesting to add a model of a spherical
robot so that it would be available and could be used by the community for experiments.

In our laboratory, we have recently developed a spherical mobile robot that can be
easily reproduced with a 3D-printer and some basic electronic components. Our idea was
to develop and test the simulation model for this robot, as we did in previous investi-
gations [14,15] with a model of the Khepera IV robot in the CoppeliaSim simulator. In
the model, the physical properties and components, such as mass, dimensions, and other
variables were carefully taken into account. This model was tested with several control
strategies under different scenarios. The results obtained with the model were very similar
to those obtained with the actual Khepera IV robot with the same control algorithms and
experimental conditions [22]. We expect the resulting new model to be very similar to the
physical robot, based on our previous results obtained with the Khepera IV robot.

This paper presents the development and testing of a model of a spherical robot whose
movement is based on an internal pendulum. The robot consists of a spherical-shaped
cover that protects the pendulum and the internal circuitry and allows it to roll to move
from one place to another. This type of morphology has a fundamental advantage in that
there is no possibility of the robot tipping over, which gives it certain stability in movement.
At the same time, it has certain disadvantages with respect to sliding on the surface and
difficulties with the presence of obstacles or irregularities in the terrain [9,12,23].

The main contribution of this article is the modelling and control of a non-linear
model of a spherical robot that does not exist in the CoppeliaSim simulator. This is a
challenging task due to the complexity of the spherical robot model. The developed model
is controlled under different scenarios with several control algorithms implemented by the
authors in previous studies, including Villela [24], IPC (integral proportional controller) [25],
and reinforcement learning (RL) [26,27]. The experiments undertaken to test the robot
model included investigation of position control, path-following and formation control.
As a result of this work, the model and some examples are available online for use by the
community that works with mobile robots.

The article is organised as follows: Section 2 describes the model of the spherical
robot and its design and implementation in CoppeliaSim. Section 3 describes the control
laws and experiments implemented with the spherical robot. Section 4 shows the tests
performed on position control, path-following and formation control. Finally, Section 5
presents the conclusions and discusses future work.

2. Spherical Robot Model

This section presents the details of the mathematical model of the spherical robot in
different situations.

2.1. Robot Description

A spherical robot is a mobile machine that has a spherical casing with a single contact
with the surface on which it rests. The housing not only allows the robot to be in a balanced
state, but also enables the robot to roll from one place to another without sliding. Figure 1
shows a picture of the actual robot in the laboratory.
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Figure 1. Actual spherical robot.

For practical purposes, the mechanism that moves the robot and maintains balance is
based on a pendulum and three motors. One motor operates the pendulum and modifies
the centre of gravity of the robot; the other motors are connected to the casing-sphere, which
allows its movement using rotation. The design of this robot is based on [28]. Figure 2
shows a schematic view of the robot, where the right side is the front view and the left
side is the lateral view. The components are as follows: (1) casing sphere, a 3D-printed
shell which is the body of the robot; (2) bearings, the joins of the case with the shaft;
(3) pendulum, which is a stick that allows the robot to turn; (4) counterweights, which are
two body masses to improve the stability of the robot; (5) circuitry box, is a small space that
contains all the electronic components; (6) shaft (fixed axle), which is the join between the
circuit box and the case; and (7) articulation, which is the join between the pendulum and
the shaft.

Figure 2. Details of the spherical robot.
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2.2. Horizontal Motion Equations

A simplified model of the robot can be seen in Figure 3, which is based on [28]. The
model considers moments of inertia, the radius of the sphere, masses of the elements that
make up the robot, angles, and the direction of linear velocity.

Positive

e

2, 2
2

1

Body Frame
Reference Line

1, 1

Inertial Frame
Reference Line

r

Figure 3. Simplified scheme of the horizontal movement of the robot (1 rotation angle of the ball, 2
rotation angle of the pendulum with respect to the ball).

In this model, it is considered that the casing is always in contact with the surface,
which allows the robot to roll without slipping. The dynamic model of the spherical robot
for a horizontal movement considers the balance of potential energy, kinetic energy and
rotational energy, respectively, as can be seen in Equations (1)–(3):{

U1 = 0
U2 = −M2ge cos(θ1 + θ2)

(1)

{
K1 = 1

2 M1(rw1)
2

K2 = 1
2 M2

{
(rω1 − e cos(θ1 + θ2)(ω1 + ω2))

2 (2)

{
T1 = 1

2 J1ω2
1

T2 = 1
2 J2(ω1 + ω2)

2 (3)

where the main variables are the following:
U1: is the potential energy of the spherical housing with respect to the height of its centroid.
U2: is the potential energy of the pendulum with respect to the height of the centroid of the
spherical casing.
K1: is the kinetic energy of the spherical shell.
K2: is the kinetic energy of the pendulum.
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T1: is the rotational energy of the spherical shell.
T2: is the rotational energy of the pendulum.
e: is the distance between the centroid of the spherical shell and the pendulum.
M1: is the mass of the spherical shell.
M2: is the mass of the pendulum.

The Lagrange equations are calculated as follows:

L = K1 + K2 + T1 + T2 − U1 − U2 (4)

d
dt

(
∂L

∂ω1

)
− ∂L

∂θ1
= −T + Tf (5)

d
dt

(
∂L

∂ω2

)
− ∂L

∂θ2
= T (6)

where t is the independent variable of time, T is the torque applied between the casing and
the circuitry, and Tf is the torque that appears with the friction force that occurs between
the casing and the ground. Solving the Equations (5) and (6), we obtain:

T = a1(J2 − M2re cos(θ1 + θ2) + M2e2) + a2(J2 + M2e2) + M2ge sin(θ1 + θ2) (7)

This last equation is useful to determine which motor may be used for the construction
of the spherical robot and to consider its design.

2.3. Robot Turning Equations

The motion that allows changing the direction of the spherical robot is based on the
mass of the pendulum using a CMG (control moment gyroscope). The calculation of this
motion is based on a torsion pendulum, as shown in Figure 4.

Figure 4. Pendulum schema reaction wheel.

Where Tp is the torque of the pendulum; Rp is the radius of the pendulum; ωp is the
angular velocity of the pendulum; Ac is the swing acceleration of the pendulum; and M2
is the mass of the pendulum. The equation of the rotational motion of the pendulum is
as follows:

Tp = 4Rp M2 Ac (8)

Figure 5 shows an angle θ corresponding to the angular position of a spherical mobile
robot, whose orientation is controlled by varying the speed of a reaction wheel. The angular
velocity of the reaction wheel, relative to the spherical mobile robot, can be varied by
varying the voltage applied to the electric motor. This means that, if the motor rotates
clockwise, the spherical robot will orient itself in the opposite direction. The effect is
achieved by analysing the angular momentum at the axis of rotation; as the speed of the
wheel varies, the speed of the mobile robot will also start to vary so that the momentum
remains constant.
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Figure 5. Top view of the robot for rotational movement.

The equations governing this phenomenon are obtained after analysing the momentum
of the spherical robot and the reaction wheel around the axis of rotation. As shown below:

θ̇ = ω (9)

ω̇ = −B1

J1
ω +

B2

J1
Ω − 1

J1
τm (10)

Ω̇ = − B2

Jeq
Ω +

1
Jeq

τm (11)

where the main variables are the following: θ is the angle of the spherical robot casing
(robot angle); ω is the angular velocity of the spherical robot; Ω is the angular velocity of
the pendulum wheel; J1 is the moment of inertia of the spherical robot casing; J2 is the
moment of inertia of the pendulum wheel of the spherical robot; and Jeq is the equivalent
moment of inertia where: 1

Jeq
= 1

J1
+ 1

J2
.

2.4. Building the Model of the Robot

The parts of the spherical robot were designed using the 3D design software Autodesk
Fusion 360 [29] based on the actual robot shown in Figure 2. These parts were then imported
into the CoppeliaSim simulator [30] working environment and the robot was assembled
manually. Figure 6 shows the process of building the robot.

As can be seen, on the right side, the imported parts of the robot are shown (i.e.,
housing, pendulum motor, housing motors). On the left side, the result of the robot
assembly is shown. The total diameter of the robot is 18 centimetres. Note that the motors
and internal elements were built in the same software.
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Figure 6. Assembling the robot in CoppeliaSim.

3. Experiments with the Spherical Robot

In this section, some tests/experiments implemented with the robot are presented and
commented on.

3.1. Position Control

This experiment consisted of getting the robot to move from one point C (current
position) to another Tp (target point) in the most efficient way possible, which implies that
it does so by following the shortest path to the destination point. Note that this robot can
rotate without displacement, which means that its model is holonomic. To add complexity
to the experiment, we imposed non-holonomic constraints on the model. This means that
the robot has to move in order to rotate (it cannot rotate about its own position). Figure 7
shows a representation of this experiment.

Figure 7. Position control experiment.

As can be seen, the variables involved in this experiment were, on one hand, the pose
C(x, y, θ), which includes the position (x,y) and the orientation angle (θ) of the robot; on the
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other hand, the distance (d) and the angle (α) at which the target point is located. These
variables are calculated as follows:

d =

√(
yp − yc

)2
+
(

xp − xc
)2 (12)

α = tan−1
(

yp − yc

xp − xc

)
(13)

The control law is calculated using the angular error as input (αe = θ − α) and
obtaining as outputs the linear velocity (ν) and the angular velocity of the robot (ω). Then
the corresponding values for the housing motor and pendulum are calculated for the robot
to move with these angular and linear velocities. As a result, the robot is positioned in
a new pose C (x,y,θ), which is used to recalculate the values described above. Figure 8
shows the block diagram of the control loop for this experiment. Where the block Compute
implements Equations (12) and (13); while the Control Law block can be implemented in
different ways, with artificial intelligence or conventional control law approaches, as is
explained in the next subsections.

Compute Control Law

RobotController

Position Sensor

Tp
d
α ω

x, y, θ

C

ν

Figure 8. Position control block diagram.

In the case of the spherical robot, the linear velocity (ν) is applied as a voltage to the
servomotors of Figure 2, which allows movement of the pendulum backwards or forwards
to change the centre of gravity of the robot and to make the robot move in one of those
directions. The angular velocity (ω) is applied to the DC motor of the pendulum, which
allows the robot to rotate clockwise or counter-clockwise.

In addition to this experiment, the model was tested with other approaches: (1) path-
following and (2) formation control. In the first case, the robot must control its position
by following a trajectory received as a reference. In the second experiment, more robots
were added to the scenario. One of them acts as the leader and the rest as followers.
The followers use the position of the leader to make a formation around the leader.

3.2. Reinforcement Learning Approach

Reinforcement learning is able to provide an optimal solution despite the complexity
of the system. The system learns by acting on the environment while operating in real-time.
This is an advantage of traditional optimization methods that rely on a mathematical model
and are tuned backwards in time [31,32].

The reinforcement learning approach for this research, called Q-learning, is based on
solving the Bellman equation, and the principle of optimality. This technique allows an
optimal learning process to be carried out during regular operation, based on the robot’s
dynamics, and continuous-time signals. In the limit, the Q-matrix captures a discretized
version of the optimal action-state combination in terms of the highest long-term reward.
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Given a system described by the dynamics xk+1 = f (xk, uk) and a reward function
σ(xk, uk), where xk is the state of the system, and uk = π(xk) the control policy, a long-term
reward can be defined by Equation (14):

∞

∑
k=0

γkσ(xk, uk) =
∞

∑
k=0

γkσ(xk, π(xk)) (14)

where 0 < γ < 1 is a discount factor required to penalize future rewards and to ensure
convergence of the summation. This expression represents the discounted accumulated
rewards starting from the current state x0 and the application of the policy π.

To apply Bellman’s optimality principle, the previous long-term reward expression (14)
is redefined in terms of the function Q(xk, uk), called action-value, which allows for the
splitting of the reward assignment into two consecutive steps. This action-value function
conveys the long-term reward by the contribution of the immediate reward due to applying
an arbitrary action uk while in the state xk, and by the discounted accumulated reward
continuing with the control policy π. This is as shown in (15) starting from x0:

Qπ(x0, u0) = σ(x0, u0) +
∞

∑
k=1

γkσ(xk, π(xk)) = σ(x0, u0) + γ
∞

∑
k=0

γkσ(xk+1, π(xk+1)) (15)

The optimal value is obtained by maximizing the future rewards; using the optimal
policy defined by π∗, a recursive equation is obtained:

Q∗(xk, uk) = σ(xk, uk) + γ max
μ

Q∗(xk+1, μ) (16)

This equation captures the optimal principle by stating that future optimal control
actions are not specified by past optimal values, but, instead, only by the current state. The
major advance in these calculations is the viability of forward-in-time learning, as opposed
to a standard optimal search performed backwards-in-time. This method is also known as
Q-learning. From (16), the following recursive equation can be devised that asymptotically
converges to the fixed manifold Q∗ [33,34]:

Qi+1(xk, uk) = Qi(xk, uk) + α(σ(xk, uk) + γ max
μ

Qi(xk+1, μ)− Qi(xk, uk)). (17)

The term σ(xk, uk) + γ maxμ Qi(xk+1, μ)− Qi(xk, uk) is typically labeled temporal dif-
ference TDi(xk, uk), or error between the target value σ(xk, uk) + γ maxμ xk+1, μ and the
current value Qi+1(xk, uk), with 0 < α < 1 a learning rate. The expression (17) resem-
bles a gradient descend numerical search. Another interpretation of (17) is the structure
of a low-pass filter, by rearranging it as Qi+1(xk, uk) = αTDi(xk, uk) + (1 − α)Qi(xk, uk).
The learning rate α, or numerical search step size, establishes the effect of new information
overriding previous information. A small value will reduce the rate of learning, while a
larger value will rely more heavily on new data, despite what was previously learned.

3.3. Control Laws: Villela and IPC Approaches

As was mentioned before, the Control Law block of Figure 9 can be implemented
with traditional control laws or with a machine learning approach. In this subsection, we
show both control laws that will later be implemented in the robot. For example, the Villela
control law [24], named after its author, was used previously with different kinds of robots
with good results [15,18,22]. It calculates the linear velocity (ν) and the angular velocity (ω)
of the robot, as shown in Equations (18).
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ν =

{
νmax i f |d| > kr

d
(

νmax
kr

)
i f |d| ≤ kr

ω = ωmax sin(αe)

(18)

where νmax is the maximum linear velocity, kr is the radius of a docking area (around the
target point) and ωmax is the maximum angular velocity of the robot.

Based on the Villela control law, in a previous study, we developed what we term an
integral proportional controller IPC [25], which was compared with the Villela algorithm
and was found to produce better results. The controller implements the velocities as follows
in Equation (19):

v = min{Kv p(αe)d, vmax}

ω = Kp sin(αe) + Ki

t∫
0

αedt
(19)

where p(αe) = 1 − |αe|/π, for αe ∈ [−π, π] and Kv, Kp, and Ki are tuning parameters of
the control law. We tested this control law with a differential wheeled mobile robot, so it is
challenging to implement this controller with a spherical robot.

Figure 9. Obtained trajectories for different values of iteration in RL algorithm.

4. Results

In this section, the results of the implementation of the control experiments with the
developed model are presented.

4.1. Reinforcement Learning Results

This subsection shows the simulation results for different tests in several iterations to
build the Q-matrix. The Q-matrix was obtained in MATLAB during the learning stage and
exported to Python (Spyder-Anaconda IDE). The CoppeliaSim software was connected
to Spyder via remote API, which ensured it was compatible with Python programming.
The experiments were performed with the CoppeliaSim simulator using the developed
spherical robot model.
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In the learning stage, the algorithm builds the Q-matrix to learn how to reach the
destination point. To this end, the angle error (αe) is used to obtain the angular velocity
(ω) in order to control the position of the robot. Note that, initially, the linear velocity (ν) is
kept constant at its maximum value until the robot reaches the docking area.

The Q-matrix is composed of the sets (state, action), where the state is the angle error
(αe), and the action is the angular velocity (ω). The criterion for obtaining the rewards of
the Q-matrix is to penalize significant changes in the angle error and small changes in the
angular velocity of the pendulum. In this case, the matrix Q has a size of 126 × 41, where
126 states are generated linearly spaced between −π and π, and 41 actions linearly spaced
between −π/2 and π/2. The array is made up of initial reward values. These initial values
are adjusted according to the number of iterations of the algorithm based on a learning
rate, a discount rate and a coefficient of relationship between exploration and use. They
explore and use values to allow the robot to explore the space to complete knowledge of it
and later use that knowledge.

Figure 9 shows the results of the position control experiment for different iterations
of the RL algorithm (RL 500 m-500.000 iterations, RL 1M-1.000.000 iterations, and so
on). The lines describe the trajectories followed by the robot for each value of iteration.
The initial position of the robot is represented by the base of the red arrow at (0; 0), and the
target point is represented by the red cross located at (5; 0). The direction of the arrow
represents the initial orientation of the robot.

Figure 10 shows the distance to the destination point for these experiments. The y-axis
represents the distance in meters and the x-axis represents the time in seconds. As can be
seen, for all experiences, the time to arrive at the destination was similar, around 14 s. This
would be expected given the similarity between the trajectories shown in the figure above.

Figure 10. Distance vs. time of all experiences/iterations.

The quality of each control algorithm can be evaluated using performance indexes.
These indexes use the integral of the error, which is, in our case, the distance to the target
point. The performance indexes considered in this work are the following: (1) integral
square error (ISE), (2) integral absolute error (IAE), (3) integral time squared error (ITSE),
and (4) integral time absolute error (ITAE). Note that the last two also include the time in
the analysis [35]. Table 1 shows the performance indexes to compare the results of each
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algorithm. Note that all the indexes showed similar results, which is logical in view of the
above results. The best performance was shown by the RL4M algorithm. For that reason,
we selected this algorithm to compare with the other approaches.

Table 1. Performance indexes for each algorithm. In bold, the better case.

Index RL 500 m RL 1M RL 3M RL4M RL 5M RL 8M RL 10M

IAE 46.81 45.84 46.25 45.19 45.67 45.66 45.52
ISE 198.29 195.68 197.05 191.79 194.27 194.47 194.23

ITSE 804.22 781.07 791.03 755.07 775.13 776.11 771.11
ITAE 234.15 222.85 227.18 217.66 221.73 221.49 219.67

4.2. Comparison between Different Approaches (RL, Villela and IPC)

To establish a basis for comparison of the results of the different control algorithms with
the spherical robot, in addition to the RL, the Villela and the IPC algorithms were selected.
In both algorithms, the parameters were selected based on our previous experience with the
implementation of these experiments with the Khepera IV robot (see for example [25,27]).
In the Villela algorithm, the parameters were the following: Vmax = 1 and ωmax = π/2.
For the IPC algorithm, the parameters were the following: Kv = 0.15, Kp = 1.5, Ki =
0.000001, Vmax = 1 and ωmax = π/2.

Figure 11 shows the results of the position control experiment for the different algo-
rithms (Villela, IPC, and RL). As in the previous case, the red arrow represents the initial
orientation of the robot and the red cross represents the target point. The lines describe the
trajectories followed by the robot for each control law. The initial position of the robot is
represented by the base of the arrow at (0; 0), and the target point located at (5; 0).

Figure 11. Obtained trajectories for each control algorithm (Villela, IPC and RL4M).

As can be seen, the IPC and RL4M algorithms describe similar trajectories, while
Villela’s approach shows the worst trajectory. In order to provide a better comparison, we
can analyze the graph of distance vs. time. Figure 12 shows the distance to the destination
point for these experiments. The y-axis represents the distance in meters and the x-axis
represents the time in seconds.
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Figure 12. Distance vs. time of all experiences (RL, Villela and IPC).

As can be seen, the better performance was demonstrated by the RL4M algorithm,
which took around 14 s to reach the destination point. Note that, in the previous figure, it
appears that IPC had a similar trajectory to RL4M, but when the time is taken into account
in the analysis, the differences are clearer. With the IPC algorithm, the robot took more than
20 s to reach the destination point. So the trajectory was similar but took more time and the
performance was the worst of all, while RL4M showed the best behaviour.

Table 2 shows the performance indexes for all algorithms. As can be seen, as was
expected, the best performance was shown by the RL4M algorithm, which confirms the
previous results.

Table 2. Performance indexes for each algorithm in the position control experiment. In bold, the bet-
ter case.

Index Villela RL4M IPC

IAE 58.59 45.39 85.28
ISE 273.33 191.93 388.68

ITSE 1.334.0 754.55 2.985.5
ITAE 338.50 220.96 743.39

4.3. Path Following

To test the control strategies in a different scenario, we implemented a path-following
example [36–38]. This experiment is widely known in the field of mobile robot control
because it is used to demonstrate the behaviour of the implemented control algorithm. It
consists of “dynamic” position control of the robot in which the reference point constantly
changes to describe a trajectory by joining all points. The result is that the robot follows
the points one by one to create the trajectory. Figure 13 shows the implementation of this
experiment with the spherical robot in CoppeliaSim.

331



Sensors 2022, 22, 6020

Figure 13. Path following of a Lissajous figure.

Figure 14 shows the trajectories described by the robot for different control algorithms:
RL4M (red line), Villela (green line) and IPC (violet line). The dashed line represents the
trajectory that the robot receives as a reference. As can be seen, the robot follows the
trajectory with different behaviours for all the algorithms.

Figure 14. Path following example for Villela, IPC and RL4M.

At first glance, it appears that the best performance was shown by the Villela algorithm.
To perform a better comparison, we calculated the performance indexes for all algorithms.
Table 3 shows these results.

As can be seen, the lowest values in all indexes were for the Villela algorithm, which
means that, for this algorithm, the robot followed the trajectory better.
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Table 3. Performance indexes for each algorithm in the path-following experiment. In bold, the bet-
ter case.

Index RL4M Villela IPC

IAE 87.79 85.12 212.07
ISE 162.91 162.12 384.11

ITSE 4.18 × 103 3.78 × 103 2.34 × 104

ITAE 2.25 × 103 2.02 × 103 1.32 × 104

4.4. Multi-Agent Formation Control

This experiment was based on [22,39] and consisted of making a formation in a
cooperative and decentralized way. One robot acted as the leader and the rest as followers.
The positions of the follower’s robots were controlled as in the previous experiment.
To make a formation, the followers’ robots have to reach a position using the leader position
as the reference. Equation (20) shows how the velocity of the leader robot is calculated as a
function of its own position error (Epm) and the followers’ errors in the formation (Ef ).

νm(t) = KpEpm(t)− K f Ef (t) (20)

The values of Kp and K f are manually adjusted to control the influence of each error
in the velocity of the leader robot. If K f = 0, the errors of the followers in the formation
are not taken into account, and the control is made in a non-cooperative way because the
leader robot does not consider the errors of the followers. Equation (21) shows how the
formation error is calculated.

Ef (t) =
N

∑
i=1

Epi(t) (21)

Figure 15 shows this experiment in the CoppeliaSim simulator for the RL algorithm.
For the leader robot, the reference is the target point at the left of the image (red semi-
sphere) and, for the followers, the target points are their positions in the formation. In this
case, the followers use the position of the leader to make a triangular formation around
it. Both followers are situated at a fixed 4 m from the leader and 30◦ and −30◦ behind it,
respectively.

Figure 15. Formation control experiment.
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As can be seen, initially, the robots make a triangle using the leader robot as a reference.
At the end of the experiment, the followers maintain the formation around the leader robot.
Figure 16 shows the data for this experiment. The blue small circle represents the initial
position of the leader robot and the green cross represents the destination point. The blue
line represents the trajectory described by the leader robot and the red and orange lines
represent the trajectories described by the following robots. As can be seen, the robots
maintain the formation during the experiment.

Figure 16. Results of the formation control experiment.

Figure 17 shows the results of this experiment for all the algorithms. The y-axis
represents the distance travelled by the robots. The leader robot is represented by the
blue lines and they show the distance from the robot to its target point. The followers are
represented by the red and orange lines, which show the distance between each follower
and the leader.

Figure 17. Positions of the robots for all algorithms.

As can be seen, at the beginning, the leader robot moves away from the target because,
initially, the target is at its back. After a few seconds, the leader reaches the destination
point, while the followers maintain a constant distance to the leader (4 m), which means
that the formation is maintained during the experience.

By simple visual inspection, it can be observed that the RL algorithm showed better
performance because the leader robot reached the destination point in less time and trav-
elled the shortest distance. However, to be on the safe side, we calculated the performance
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indexes for each experiment to establish a more accurate comparison. Tables 4–6 show the
performance indexes for each algorithm and robot in each experiment.

Table 4. Performance indexes for the Villela algorithm in the formation control experiment.

Robot IAE ISE ITSE ITAE

Leader 57.97 271.45 1.32 × 103 332.37
Follower 1 68.41 268.24 2.34 × 103 599.01
Follower 2 68.90 272.06 2.38 × 103 603.86
Sum 195.28 811.76 6049.30 1535.24

Table 5. Performance indexes for the RL4M algorithm in the formation control experiment.

Robot IAE ISE ITSE ITAE

Leader 46.00 197.80 802.10 224.79
Follower 1 58.41 235.35 1.72 × 103 427.47
Follower 2 56.12 217.32 1.57 × 103 408.16
Sum 160.53 650.48 4103.30 1060.42

Table 6. Performance indexes for the IPC algorithm in the formation control experiment.

Robot IAE ISE ITSE ITAE

Leader 95.52 377.80 3.11 × 103 1.04 × 103

Follower 1 129.12 506.93 8.24 × 103 2.11 × 103

Follower 2 129.44 509.42 8.38 × 103 2.13 × 103

Sum 354.09 1394.17 19,747.70 5297.60

All experiences were generated with the same initial conditions, and only the control
algorithm was changed in each case. We can then compare the results using Equation (21),
which is shown in the row Sum in Tables 4–6. As can be seen, the least values in all cases
for the Sum row were observed for the RL experiment, which confirms that the better
performance was produced by this algorithm.

5. Conclusions

This article presents the design and implementation of a model of an actual spherical
robot, the method of movement of which is based on an internal pendulum. The design of
the model was developed using the 3D-design and modeling software, Autodesk Fusion
360. The model was incorporated piece-by-piece into the CoppeliaSim simulator where the
hardware was assembled; the position control strategy was programmed in the LUA and
Python programming languages to verify its operation. Different experiments, concerning
position control, path-following, and multi-robot formation control were performed. The re-
sults obtained with the different control laws and experiments showed that the design and
implementation of the robot model were satisfactory since its behaviour was similar to
that previously obtained with a differential model of the Khepera IV robot. Future work
will include performing these experiments with the actual robot in the platform previously
implemented in our laboratory [22]. This is a challenging task due to the complexity of
obtaining the absolute position of the robot in the platform.
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Abstract: In this paper, we propose a global navigation function applied to model predictive control
(MPC) for autonomous mobile robots, with application to warehouse automation. The approach
considers static and dynamic obstacles and generates smooth, collision-free trajectories. The naviga-
tion function is based on a potential field derived from an E* graph search algorithm on a discrete
occupancy grid and by bicubic interpolation. It has convergent behavior from anywhere to the target
and is computed in advance to increase computational efficiency. The novel optimization strategy
used in MPC combines a discrete set of velocity candidates with randomly perturbed candidates
from particle swarm optimization. Adaptive horizon length is used to improve performance. The
efficiency of the proposed approaches is validated using simulations and experimental results.

Keywords: navigation; model predictive control; path planing; mobile robots; warehouse automation

1. Introduction

Mobile robotic platforms have found numerous applications over the past decade, a
significant portion of which can be attributed to intralogistics and transportation in modern
manufacturing, warehousing, and utility markets [1–3]. Although numerous sites have
been automated by either automated guided vehicles (AGV) or autonomous mobile robots
(AMR) with impressive deployments, the market is expected to grow by about 30% over
the next five years [4,5].

Since the first AGV was built in 1953 [3], AGVs have evolved into today’s solution,
which is the standard in automating internal logistics. Typically, AGVs move along pre-
defined paths and can only deliver to fixed points along the path. This makes these
transportation systems simpler and more robust. Since movement is limited to fixed paths,
the complexity of path planning and coordinating multiple AGVs is reduced. Neverthe-
less, planning collision-proof safe paths for a group of AGVs and creating and optimizing
schedules to achieve better performance (higher throughput and less likely occurrence of
conflicts) remains a challenging task [6]. Path planning is usually solved using graph-based
search algorithms such as A*-based search, where optimal approaches [7,8] are feasible for
a smaller number of vehicles since the computational complexity is exponential with the
number of vehicles. The coordination overhead in multi-AGV systems is further reduced by
suboptimal approaches, where the problem is decoupled from finding individual vehicles
and conflicts are resolved by assigning traffic rules, priorities, or distributed multi-agent
negotiations [6,9,10].

AMRs (unlike AGVs) are more flexible (in terms of their navigation capabilities and
the services they can provide) and can move freely in dynamic environments where they
locate, navigate, and act autonomously [4]. Free space is mapped based on knowledge
of static obstacles, and dynamic obstacles are avoided using sensors. Since movement is
not restricted to predefined paths but is possible in the continuum of obstacle-free space,
the complexity of path planning must be reduced. A common approach is to discretize
the environment into cells of equal size and use grid-based path planning [11,12]. Since
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pathfinding usually examines only 4 or 8 neighbourhood directions, the paths obtained are
not smooth.

Another approach is to apply a discrete set of motion primitives or actions that a
vehicle can apply to advance to new locations. The motion primitives can be Bezier
curves [13,14], clothoids [15], or other smooth curvature curves [16–18]. This usually results
in smoother paths that a vehicle can easily follow. Different optimization strategies can
be used to select suitable motion primitives. In high-dimensional spaces, randomised
planners such as the Rapid Exploring Random Tree (RRT*) and the kinodynamic RRT*
are popular choices [3,19]. A state lattice graph can be constructed from a discrete set of
motion primitives that have smooth curvature transitions in the joints [20,21]. Graph search
algorithms such as A* [22,23], D* [11,24], and E* [25] can be used to find the final path. The
computational complexity can be addressed by hybrid search approaches such as Hybrid
A* or HE * [14,26], where a computationally efficient discrete graph-based search is applied
to obtain the heuristics for more efficient construction and search of the lattice graph, where
the motion primitives form the edges of the graph.

Potential field-planning methods are also popular, where the potential function for
online navigation can be used to guide the search or control algorithm. The goal with
minimum potential value can be achieved by simply following the direction of the steepest
descent of the potential field. A common problem of the potential field is local minima in
which the robot may be trapped. Several approaches have been proposed to avoid local
minima. Concave obstacles can be simply modelled as convex [27] in the environment map,
or an adaptive potential field can be generated using multiple points of attraction instead
of just one in the target [28]. It is also possible to modify the potential field in unstable
equilibrium by introducing perturbations into the field [29] or adding virtual obstacles to
repel the robot from the local minima [30]. The potential field can also be interpolated from
a discrete cost map obtained from an optimal grid-based search [31,32]. Relying only on the
reactive behavior of a potential field may result in unwanted oscillations in the presence
of obstacles where alternating repulsive and attractive fields may cause approaching and
moving-away behavior [33]. Therefore, prediction capabilities are needed to achieve more
deliberative actions where planning and control are combined in receding dynamic window
approaches or trajectory roll-out algorithms considering convergent navigation function,
such as in [31,34–36]. Here, the obtained performance depends on a control law and uses an
objective function, which needs to incorporate mapped static obstacles and sensed dynamic
obstacles to find feasible optimal trajectories in a prediction horizon.

Moving obstacle avoidance is required for efficient multiple vehicle navigation. Coor-
dinated motion of multiple vehicles can be dealled by assigning traffic rules in decentralised
manner as in [10] or by combining a centralized supervisor, which detects collisions and
assignes priorities for decentralised planner and scheduling for collision avoidance [37].
The decentralised decoupled approach is proposed in [18], where vehicles first plan optimal
paths independently; then, conflict resolution is performed based on a priority scheme.
In [38], a model predictive scheme is proposed where local deviations from the existing
reference path are optimized considering collision avoidance with static and moving ob-
stacles. In [39], an integration of the focused D* graph search algorithm for path planning
and the dynamic window algorithm for generating admissible robot trajectories around
the planned global path is proposed.

In this paper, the main contributions are the following. We propose a global navigation
function applied in model predictive control to safely navigate the vehicle to the goal
destination. The navigation function depends on a potential field for the environment
layout and the driving direction. The potential function for a known target is computed in
advance by an E* graph search algorithm on a discrete rectangular grid. A smooth surface
with arbitrary potential values and slope directions is obtained by bicubic interpolation. It
allows navigation from any location to the target and can be precomputed for any known
target to which AMR must deliver.

Constrained Model Predictive Control (MPC) is a method of finding optimal trajectories
given the proposed navigation function and constraints on robot kinematics, maximum veloc-
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ities and accelerations, convergent behavior, and the coordination of multiple robots. MPC
combines local motion planning and control in the presence of static and dynamic obstacles.

Adaptive horizon length is introduced in MPC to improve performance in terms of
safety and achieved curve optimality.

A novel optimization strategy for MPC is proposed that combines a discrete set of
command velocities proposed in [36] with randomly perturbed particle swarm optimization
candidates. This approach extends the navigation of a single robot [32] to multiple robots.

Coordinated navigation in the presence of multiple vehicles is obtained locally as a
constraint in the MPC objective function. The approach assumes that cooperative vehicles
share their planned trajectories within the prediction horizon. For non-cooperative objects,
the motion trajectories must be estimated from measurements.

The performance of the proposed approaches is illustrated by several examples.

2. Vehicle Autonomous Navigation and Control

For an example of a simple production layout, see Figure 1, where robots typically
need to transport material between known, fixed locations. Suppose a destination is the
dropoff point shown in Figure 1, to which robots must deliver material from several other
locations, such as pickup point, workstations, and storage aria. A navigation function
can be created to guide the robot safely from any starting point in the environment to the
desired destination.

Figure 1. Production layout with multiple known and fixed delivery points and defined free corridors.
Shown are robot delivery paths from three starting locations to the same destination. The paths can
be effectively determined by a single navigation function, as shown in Figure 6.

Basic idea of applied navigation and control diagram is illustrated in Figure 2.
In Figure 1, three paths are shown that are automatically determined based on the

derived navigation function shown in Figure 6, which is interpolated at runtime from a
stored discrete potential field of the layout, as shown in Figure 3. Other navigation functions
are determined for other desired frequent destinations such as pickup belts, workstations,
or battery charging arias. Such navigation functions can be computed in advance if the
pickup and drop-off locations are fixed and the robots can move in predefined corridors.
This leads to a computationally efficient approach with high-quality trajectories that takes
static obstacles into account during design and can also be extended to include detected
dynamic obstacles. Further details of the navigation function and control algorithm are
presented below.
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Figure 2. Basic idea of navigation and control of multiple vehicles based on the proposed navigation
function and model predictive control.

2.1. Concept of Navigation

The navigation function N(x, y, ϕ) is used to drive a wheeled robot with position x, y
and orientation ϕ) safely between obstacles to the goal. A control algorithm therefore steers
the robot to locations where N(x, y, ϕ) decreases. The unimodal potential function is a
good choice for N(x, y, ϕ) because it has a single minimum (N(x, y, ϕ) = 0) at the goal and
no local minima where the control algorithm might get stuck. Additionally, N(x, y, ϕ) must
have the highest values at the obstacles. A graph search algorithm such as D∗ for dynamic
environments can be used to obtain such a potential function U(x, y) as shown in Figure 3.
The value of U(x, y) represents the distance to the target cell, which is computed as the
sum of the distances between cells (dc) along the path. Such a search is computationally
efficient since it is performed on a discrete grid of the environment but is not suitable for
a control algorithm since U(x, y) is constant for any robot position within a discrete cell.
Therefore, the grid-based navigation function must be modified to obtain a unique value
for each position within a cell that retains the property of a single minimum [31]. In the
following, we propose a bicubic interpolation approach.
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Figure 3. 3D view of the discrete potential function from obtained a grid-based search with 0.5 m
resolution, a target position at x = 9.25 m, y = 5.25 m, and occupied cells with U(x, y) = ∞ (grey cells).
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2.2. Bicubic Interpolation

To obtain a smooth interpolated potential P(x, y) from a discrete potential U(x, y),
bicubic interpolation [40] is used. For a given arbitrary position [x, y]T within a cell M,
an interpolated potential is calculated based on a 4 × 4 cell neighborhood, as shown in
Figure 4. Depending on the quadrant of cell M in which the point [x, y]T is located, an
appropriate four-cell neighborhood is determined whose centers form a square, as shown
in Figure 4 shown by a dashed line.

Figure 4. Selection of the cell neighbourhood for the bicubic interpolation of the potential field based
on a point [x, y]T within the cell M.

The normalized coordinates xn, yn ∈ [0, 1] are defined as xn = x−x0
dc

, yn = y−y0
dc

, where
the origin [x0, y0] is defined by the lower left corner of the dashed square and dc is the
cell size. The interpolated and discrete potential in normalized coordinates are expressed
as Pn(xn, yn) = P(x, y) and Un(xn, yn) = U(x, y), respectively. Define the potential and
estimated partial derivatives for the four adjacent cell centers (corners of a dashed square
in Figure 4)

prc = Un(xn, yn)

∣∣∣∣
xn=r, yn=c

fxrc =
∂Pn

∂xn

∣∣∣∣
xn=r, yn=c

≈ Un(r + 1, c)− Un(r − 1, c)
2

fyrc =
∂Pn

∂yn

∣∣∣∣
xn=r, yn=c

≈ Un(r, c + 1)− Un(r, c − 1)
2

fxyrc =
∂2Pn

∂xn∂yn

∣∣∣∣
xn=r, yn=c

≈ Un(r+1,c+1)−Un(r−1,c+1)−Un(r+1,c−1)−Un(r−1,c−1)
4 ,

where r, c ∈ {0, 1} and Un(xn, yn) = U(x, y).
For a given arbitrary position, the interpolated potential is then defined by bicubic

interpolation as follows

Pn(xn, yn) =
[
1 xn x2

n x3
n

]
A
[
1 yn y2

n y3
n

]T
, (1)

where the matrix of coefficients is

A =

[
1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

]⎡⎣ p00 p01 fy00 fy00
p10 p11 fy10 fy11
fx00 fx01 fxy00 fxy01
fx10 fx11 fxy10 fxy11

⎤⎦[ 1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1

]
.
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And negative gradient of P(x, y) in [x, y]T is computed in a closed-form as

−→g (x, y) = −∇P(x, y) = −
[

∂P(x,y)
∂x , ∂P(x,y)

∂y

]T
=

= − 1
dc

[
∂P(xn ,yn)

∂xn
, ∂P(xn ,yn)

∂yn

]T . (2)

For non-holonomic robots (with the kinematics given in 6), the final navigation function
depends on the interpolated potential P(x, y) and on the robot orientation ϕ

N(x, y, ϕ) = P(x, y) + ξe(ϕ)
e(ϕ) = min

k={0,1,−1}
|∠−→g (x, y)− ϕ + 2kπ|, (3)

where e(ϕ) is the absolute orientation error, ξ > 0, and ∠−→g (x, y) is the orientation of the
negative gradient .

In Figure 5, the interpolated potential function P(x, y) of the free space and the cen-
trally located target is shown for discrete potentials obtained by A∗ and E∗ grid-based
searches. Since A∗ uses 4 and 8 neighbourhood connections, respectively, the gradients of
P(x, y) remain multiples of 90◦ and 45◦, respectively (see contours of the same potential
in Figure 5). The E∗ [25] is a dynamic path planning algorithm that can approximate
continuous gradients (and contours). It uses 4 neighbour connectivity (such as A∗ or D∗),
but instead of one, two parent nodes in orthogonal directions are used to get a better
cost-to-goal estimate for each cell. Using the discrete potential field obtained from the E∗

algorithm, the interpolated potential function (1) is smoother with arbitrary direction of the
negative gradient (2).
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Figure 5. Interpolated potential function P(x, y) based on the discrete potential obtained by A∗

with 4 and 8 neighbour cells connections and by E∗. The obtained gradient is in the directions
of multiples of 90◦ or 45◦ when 4 or 8 neighbourhood connections are used in A∗. While E∗ can
have arbitrary directions, which can be seen from the contours of equal potentials orthogonal to the
gradient direction.
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An example of an occupied space and its computed interpolated smooth navigation
function is given in Figure 6. Additionally, three paths are drawn from different starting
points following the negative gradient towards the target with the lowest potential. The
obtained paths are orthogonal to the contours of the same potential (see the lower part of
Figure 6).
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Figure 6. 3D view of the interpolated navigation function N(x, y, ϕ). For clarity, e(ϕ) is set to zero in
Equation (3). Three paths are drawn from different starting points, following the negative gradient
towards the goal location with the lowest potential value.

3. Coordinated Model Predictive Control

The proposed interpolated potential function Equation (1) allows the simple appli-
cation of control of a single robot to safely navigate from anywhere to the target while
automatically avoiding obstacles. The vehicle only needs to follow the given negative gra-
dient direction Equation (2), and since the gradient has soft transitions (see e.g., Figure 3),
feasible trajectories result. Such an approach lacks predictive capabilities and assumes a
static environment without any other vehicles.

Therefore, the control behavior is defined as follows. The simple gradient-following
reactive behavior is improved by incorporating prediction, so that the current control
action also depends on the future states of the vehicles. The navigation function already
includes knowledge of a static map in which the space occupied by obstacles has infinite
potential. However, observed dynamic obstacles (cooperative obstacles such as other
transport vehicles or non-cooperative obstacles such as humans or forklifts controlled by
humans, etc.) are not included in the navigation function as this would require constant
replanning. Dynamic obstacles are observed by sensors (laser range finder, camera, etc.),
and their movement is estimated in the prediction horizon of the controller. A feasible
trajectory is determined in the prediction horizon that is consistent with the navigation
function, does not conflict with other vehicles or other detected obstacles, and is within the
kinematic and dynamic constraints of the vehicle.
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3.1. Control Definition

Model predictive control (MPC) is defined as an optimization problem with constraints.
Optimal controls u(t) = [v(t), ω(t)]T are found for a differential robot over a prediction
horizon h that minimize the objective function J at the current robot state s(t) = [x, y, ϕ]T

J(s(t)) = min
u(i−1)

∑h
i=1

(
N(s(i)) + uT(i − 1)Ru(i − 1)

)
subject to:
- free configuration space (Equation (5))
- driving constraints (Equation (7))
- convergent behavior (Equation (11))
- collision-free with dynamic obstacles (Equation (12))

(4)

where v and ω are translational and angular velocity, i is a shorthand notation for time
t + iTs, Ts is the sampling time, and R is the weighting matrix. Note that MPC considers
the robot’s motion model and the environment model, where the target and static obstacles
are already considered in the navigation function. However, due to kinematic constraints,
collisions with static obstacles may still occur. Therefore, a valid trajectory in the horizon
must lie in the free configuration space of the static map Q f ree

s(i) ∈ Q f ree , i = 1, . . . , h. (5)

Similarly, collisions with dynamic obstacles are considered. For more details, see the
Section 3.1.4. The future state of the robot s(i) = [x(i), y(i), ϕ(i)]T is predicted using
differential drive kinematics

x(i + 1) = x(i) + v(i)Ts cos
(

ϕ(i) + ω(i)Ts
2

)
y(i + 1) = y(i) + v(i)Ts sin

(
ϕ(i) + ω(i)Ts

2

)
ϕ(i + 1) = ϕ(i) + ω(i)Ts.

(6)

3.1.1. Driving Constraints

Control actions are constrained by maximum velocities and accelerations by

0 ≤ v(i) ≤ vmax , |ω(i)| ≤ ωmax
|v(i)−v(i−1)|

Ts
≤ amax , |ω(i)−ω(i−1)|

Ts
≤ αmax,

(7)

where vmax, ωmax, amax, and αmax are maximum allowable translational and rotational
velocities and accelerations.

3.1.2. Length of the Horizon

During the horizon, let the robot travel on an arc, where v(i)/ω(i) is its radius. A
constant arc in the horizon is convenient because it reduces the computational cost of the
MPC problem since it only requires the optimization of two parameters. The choice of
horizon length affects the driving performance, safety, and computational cost of MPC.

The minimum horizon length (h = hmin) is chosen so that the robot travelling at
maximum speed can safely decelerate to a stop at the end of the prediction horizon

hmin =

⌈
max

(
vmax

amaxTs
,

wmax

αmaxTs

)⌉
+ 1. (8)
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This prevents the worst case collision with the maximum robot speed and the newly ob-
served (static) object at the end of the prediction horizon. The control u(i), i ∈ 0, 1, . . . , h − 1
in the horizon therefore decreases linearly to zero at the end of the horizon, as follows

u(i) =

{
u(0) , 0 ≤ i ≤ h − 1 − Ndec

u(0) h−1−i
Ndec

, h − 1 − Ndec < i ≤ h − 1. (9)

where the required number of deceleration samples at the end of the horizon is Ndec =⌈
max

(
v(0)

amaxTs
,

w(0)
αmaxTs

)⌉
at the current robot velocity u(0) = [v(0), ω(0)]T .

Choosing a larger horizon (h > hmin) also increases safety for moving objects because
the motion of the obstacle is predicted early enough to find alternative trajectories that
efficiently avoid the collision. However, too large a horizon increases the computational
cost and may lead to worse trajectories in free space due to the averaging effect since a
longer constrained trajectory does not fit as optimally on the surface of the navigation
function.

As a compromise, we choose a larger horizon (h > hmin) and allow the robot to stop
even before the end of the horizon (e.g. at hstop ≤ h) and keep the remaining number of
samples h − hstop still. This effectively makes the horizon variable (with variable stopping
time), and since all optimised trajectories have the same number of samples (h), their
objective functions in Equation (11) are still comparable. The velocity profile in the horizon
is then

u(i) =

⎧⎪⎨⎪⎩
u(0) , 0 ≤ i ≤ hstop − 1 − Ndec

u(0) hstop−1−i
Ndec

, hstop − 1 − Ndec < i < hstop

[0, 0]T , hstop ≤ i ≤ h − 1
(10)

where the candidates for hstop are selected according to the previous optimal curve by
evaluating four possibilities hstop → hstop + {0,−1,−2,+1} that need to be in range (Ndec +
1) ≤ hstop ≤ h. Initial value is set to hstop = hmin.

Optimal control sequence u(0), u(1), . . . , u(h − 1), which minimizes Equation (4),
defines the best feasible future trajectory, and its first control action is applied to the robot
in the current time. In the next time sample, the procedure repeats.

3.1.3. Convergent Behavior

To ensure convergent behavior of the MPC control, the summands V(s(i)) = N(s(i))+
uT(i − 1)Ru(i − 1) in the criteria Equation (4) will have to decrease in the horizon. This
follows from the convergence constraint in Equation (4)

N(s(i)) ≥ N(s(h)), i = 1, . . . , h. (11)

In the worst case, if all the candidate control actions in Equation (4) result in trajectories
that violate the convergence constraint Equation (11), the robot can still choose the optimal
trajectory from the previous control step, shifted by one sample. Since the trajectory slows
down at the end of the horizon (see Equations (9) and (10)), the robot will start slowing
down earlier. This can happen if some dynamic (non-cooperative) objects block its path.

3.1.4. Preventing Conflicts with Dynamic Obstacles

The environment may contain dynamic obstacles that can be treated as cooperative
objects (e.g., other robots) and non-cooperative objects (e.g., forklifts operated by humans).
Cooperative objects are assumed to have intentions and trajectories known to the robot for
at least a prediction horizon h. The intentions of non-cooperative objects can be estimated
from sensor observations (e.g., laser range scans) of their past movements by estimating
their velocities and predicting the most likely trajectories in the horizon.

For a given control u(i) in Equation (4), the robot trajectory s(i) is collision-safe
(CS) if it does not collide with any moving object trajectory (static obstacles are already
considered in Equation (5)). Let o ∈ O denote all other moving objects from a set O,

347



Sensors 2022, 22, 1455

and let so(i) = [xo(i), yo(i), ϕo(i)]T be the location of an object at horizon prediction time
i ∈ 1, . . . , h

CS =⇒ �o ∈ O : (||s(i)− so(i)|| < dsa f e) and |ϕ(i)− arctan( yo(i)−y(i)
xo(i)−x(i) )| < ϕsa f e, (12)

dsa f e is the required safety distance between the robot and an object o, and ϕsa f e is the range
of angular deviation from the robot’s forward motion that can lead to a collision, arctan(·)
is the four-quadrant inverse tangent version. Any robot trajectory that is not collision safe
to moving objects is rejected in Equation (4).

The same procedure is followed for all cooperative robots. After one robot determines
optimal controls (and trajectory in the horizon), the other robots can adapt by finding
collision-proof trajectories to the previous robot. To prevent chattering behavior (where
two robots can switch between different optimal controls while avoiding collisions), the
selection of optimal controls (trajectories) is done sequentially, which is natural if all robots
are controlled from a central computer. If the first robot determines an optimal trajectory
that avoids all other robots (taking into account the predicted trajectories of the others),
the next robot will adapt by finding collision-safe paths (e.g., swerving to the other side
or slowing down). This will automatically lead to consensus since the current predicted
trajectories are inherited and known to the others in the same sample. When robots plan
and control autonomously, if there is a possibility of collision, they need to only negotiate
the order in which they compute their trajectories. Alternatively, they can consider priorities
when they are assigned (e.g., for priorities for transportation tasks), as in [10] and [18]. In
this way, the first robot computes the optimal trajectory in the prediction horizon, which
takes into account the previous trajectories of the others. Additional traffic rules (e.g.,
swerving to the right for head-on collisions) can also be used [9].

The proposed navigation approach is computationally efficient since the navigation
function is precomputed for a static environment, and collisions with dynamic obstacles in
the control (Equation (4)) are avoided at runtime.

Note that local minima can still occur (but this is unlikely in practise) if another robot
(the second robot or the moving object) approaches another robot (the first robot) exactly
from the direction opposite to the negative gradient of the first robot’s navigation function.
This also means that the second robot uses a different navigation function, to a different
destination whose gradient is in the opposite direction to that of the first robot. When this
happens, both robots may slow down as this can be cheaper (according to the MPC control
cost (Equation (4)) than driving with the increased values of the navigation functions while
avoiding a collision.

In this particular case, it may be a good choice to perform a dynamic replanning of the
navigation functions with the detected possible collision position of the other robot. In this
way, no slowdown or local minima can occur since the navigation function also considers
moving obstacles. This replanning requires additional computation time and should
therefore be performed incrementally using the dynamic E* algorithm [25]. Moreover,
a relatively fine grid should be chosen (e.g., at most half the robot size) to reduce the
discretization error when the predicted collision location is snapped to a grid. Therefore,
replanning can only occur if an object is in the collision with the robot in the predicted
horizon. Note that the presented MPC approach remains the same if replaned navigation
function is used in (Equation (4)), where the objects contained in the navigation function
will no longer appear as dynamic collision constraints (Equation (12).

4. Optimisation Strategy in MPC Control

In the following, we propose a novel optimization strategy for solving (Equation (4))
that combines optimization with a fixed set of control action candidates and particle swarm
optimization.
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4.1. Fixed Candidate Optimization

To reduce the computational cost, Fixed Candidate Optimization (FCO) is introduced
in [36] to solve the MPC problem. Given the current velocities uc = [vc, ωc]T (applied
to the robot at time t − Ts), a set of possible discrete accelerations ac ∈ {−amax, 0, amax},
αc ∈ {−αmax, 0, αmax} is defined to produce a set of 9 candidate velocities for optimization

u(t) = uc + Ts[ac, αc]
T (13)

constrained by Equation (7).
The main strengths of the proposed MPC with FCO are the low computational com-

plexity and the generation of near-optimal trajectories with a guaranteed convergence, as
shown in [36]. However, the obtained velocity profile contains higher noise due to the
coarse set of possible accelerations.

4.2. Particle Swarm Optimization

Particle swarm optimization (PSO) uses a stochastic strategy with a swarm of randomly
perturbed particles to find a solution. Applying PSO to the MPC problem yields arbitrary
velocities u(t) sampled from a continuum and constrained by Equation (7). Each particle
k is parameterized by a parameter vector pk = [vk, ωk]

T defining its velocities and an
increment vector Δpk defining the change in velocities. During MPC optimization, the
population of all particles is iteratively updated and validated according to the objective
function (4). Each particle keeps track of its parameters and remembers its best previously
achieved parameter pBk, along with its associated objective function Jk = f (pBk), where
f is the function that is minimized in Equation (4). During optimization, the global best
parameter vector of the entire swarm gB is also remembered.

In each sample time, the particles are iteratively updated according to the following
rules

Δpk ← γΔpk + c1rand(0, 1) · (pBk − pk) + c2rand(0, 1) · (gB − pk)
pk ← pk + Δpk,

(14)

where γ > 0 is the inertia factor, c1 > 0 is the self-cognitive constant, c2 > 0 is the social
constant, and rand(0, 1) is a vector of uniformly distributed values in the range [0, 1]. At
the end of the optimization, the best parameter is applied to the robot u(t) = gB(t).

MPC with PSO produce smoother velocity profiles and can find better solutions
since no velocity discretization is used. However, the computational complexity becomes
much higher (compared to MPC with FCO) due to multiple required iterations with more
particles. Due to the random nature of PSO, both the solution and the convergence of the
search are not guaranteed.

4.3. Combined Deterministic-Stochastic Optimization

The main idea is to combine FCO and PSO in the so-called combined deterministic-
stochastic optimization (CDS) and to exploit the advantages of both algorithms to generate
trajectories with a smooth speed profile, with guaranteed convergence and low computa-
tional complexity.

CDS is a modified PSO algorithm (shown in Algorithm 1) that executes KF = 9
fixed particles and KC changing particles in parallel. Fixed particles are initialized by
Equation (13) and are not updated during optimization. These fixed particles provide
good starting parameters that can be used by other changing particles through gB when
iteratively updated through Equation (14). In this way, CDS provides a better (more optimal
and smoother) or at least as good a solution as FCO itself. MPC with CDS is guaranteed to
converge to the goal in a finite time from any unoccupied location in the environment where
the goal is reachable (N(x, y, ϕ) < ∞). The algorithm is computationally efficient since the
number of changing particles KC in CDS can be much smaller than in the corresponding PSO.
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Algorithm 1 Combined deterministic-stochastic optimization.

Require: List of particles k = 1, · · · , K where first k = 1, . . . , KF are fixed particles.
for each particle k = 1, · · · , KF do

Initialize pk by Equation (13).
end for
for each particle k = KF + 1, · · · , K do

Randomly initialize pk, Δpk = [0, 0]T , pBk = pk.
end for
Jbest = ∞, iter = 1
repeat

for each particle k = 1, · · · , k do
if k > KF | iter == 1 then

Compute objective Jk by (4) considering ramp down (Equation (9) and add penalty for
Equation (7), Equation (12) violation.
Set convergent condition by Equation (11).
if Jk < f (pBk) then

pBk = pk
end if
if f (pBk) < Jbest & convergent then

gB = pBk, Jbest = f (gB)
end if

end if
end for
for each particle k = KF + 1, · · · , K do

Update pk and Δpk by Equation (14) constrained by Equation (7).
end for

until iter ≤ MAXiter

5. Simulation Results

5.1. Single Robot Navigation

The performance of a single robot in the environment from Figure 1 is first illustrated
when the robot needs to transport products or materials from different starting locations
to different destinations. A possible scenario could be that the robot has to deliver a semi-
finished product to workstation 1 and then transport it to the dropoff location (see top left
image in Figure 7).

The navigation functions are computed in advance for known locations, which mini-
mizes the online computational overhead (no online planning is required) and makes the
system robust to disturbances during control (e.g., deviations from the original desired
path due to errors in robot location, control performance, or dynamic obstacles). Since only
a discrete cost map needs to be stored to interpolate the navigation values from it, this is
also not memory-intensive (20 × 20 cost-to-goal for the environment in Figure 1) with the
cell size dc = 0.5 m.

In Figure 7, the desired target is at x = 3.1 m, y = 8.3 m (e.g., workstation 1 in Figure 1)
for red paths. The destination can be safely reached from any location considering the
navigation function (the top right image in Figure 7) in the proposed MPC control. For a
different desired destination (e.g., drop-off location at x = 9.3 m, y = 5.1 m in Figure 1), a
different navigation function is used for all green paths (the bottom right image in Figure 7).
The simulation results are obtained using the following parameters. The interpolation of
the navigation function is performed on the grid-based search with a cell size resolution of
dc = 0.5 m. As the interpolation is applied, good navigation and control performance can
be obtained even at coarse resolutions. Optimization in MPC is performed using a fixed
horizon length h = 14 (with deceleration at the end, as shown in Equation (9)) and sample
time Ts = 0.1 s, and by considering the constraints on velocities and accelerations vmax = 1
ms−1, ωmax = 6 s−1, amax = 1 ms−2, and αmax = 6 s−2.
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Figure 7. Examples of navigation and control of a single robot in two different destinations defined
by the minimum values of the navigation functions in the right column. All red paths are obtained by
the navigation function in the top right image, while the green paths are obtained by the navigation
function in the bottom right image.

The performance of model predictive control with the proposed combined deterministic-
stochastic optimization (MPC-CDS) is compared with the results of fixed candidate opti-
mization (MPC-FCO) and particle swarm optimization (MPC-PSO). In addition, MPC-based
algorithms are compared with the kinodynamic stable sparse RRT planning approach (SST)
approach [19]. The results are shown in Figures 8 and 9 for the U-obstacle map, Maze
map, and the Random-obstacle map. All MPC trajectories are computed for the bicubic
interpolation function and also collected in Table 1. The results are compared in terms of
obtained trajectories, velocity profiles, length of trajectory L, travel time tgoal , cumulative
navigation AN , and normalized computational efficiency Ecomp (according to MPC-FCO).
The computational complexity of MPC-FCO depends on its implementation. In our case,
it allows for real-time operation with a refresh rate of at least 50 Hz on a 2.80 GHz Intel
dual-core processor with C++ implementation.

The best performance of MPC is obtained by the PSO optimization approach
(Figures 8 and 9 and Table 1), where the obtained trajectories are short and fast and the
velocities have a smooth profile. However, the computational complexity of MPC-PSO
is higher (than MPC-FCO or MPC-CDS) because it uses 25 particles and 20 iterations to
optimize each control sample. Similar performance in terms of trajectory length and travel
time is obtained with MPC-CDS, which uses nine fixed particles and only two changing
particles. The results of CDS are a compromise between the quality of trajectories gener-
ated by PSO and the computational complexity of FCO. CDS produces smoother velocity
profiles than FCO and requires much less computational effort than PSO. SST produces
similarly long trajectories, sometimes shorter since it does not take into account safety costs
around the obstacles, but with much slower velocity profiles due to the randomness of
velocity selection during the search process. Unlike the MPC-based algorithms, the SST
algorithm computes the entire trajectory to the goal before the robot begins execution.
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Figure 8. Trajectory comparison for the U-obstacle map (left), the Maze map (middle), the Random-
obstacle map (right), the bicubic interpolated navigation, and the SST algorithm.
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Figure 9. Comparison of velocity profiles for the U-obstacle map (left), the Maze map (middle), and
the Random-obstacle map (right).

Table 1. Algorithms validation on three different maps.

Alg. L [m] tgoal [s] AN [1] Ecomp [1]

U
m

a
p

MPC-CDS 16.88 17.90 230.39 1.61
MPC-FCO 16.95 18.10 230.84 1.00
MPC-PSO 16.79 17.80 228.68 13.11

SST 13.82 19.18 n/a n/a

M
a

z
e

m
a

p MPC-CDS 13.63 14.80 111.30 1.73
MPC-FCO 13.64 14.90 111.66 1.00
MPC-PSO 13.65 14.80 111.73 13.63

SST 12.87 19.09 n/a n/a

R
n

d
m

a
p MPC-CDS 42.69 43.70 1090.24 2.90

MPC-FCO 42.78 43.90 1092.28 1.00
MPC-PSO 42.59 43.60 1091.18 28.01

SST 46.07 65.59 n/a n/a

5.2. Multiple Robot Coordinated Navigation

Analysis of the selection of the horizon length in MPC performance is first explained.
The minimum horizon length hmin (Equation (8)) is sufficient for navigation in static
environment (obstacles mapped or unknown in the navigation function), but it may not
be good enough for moving obstacles. For moving obstacles and h > hmin, safety and
navigation performance increases because collision threats can be predicted early enough
so that better avoidance routes can be found. The analysis of the varying horizon length
(where the moment of deceleration can also occur before the end of the horizon, as defined
in Equation (10)) for the navigation of two robots approaching a head-on collision and a
cross collision ([9]) is shown in Figure 10 and Table 2. In a head-on collision (left image in
Figure 10), the robots stop to avoid collision when the minimum horizon h = hmin = 11 is
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chosen, while the robots can safely navigate to the target for h > hmin. This scenario is more
difficult than the cross-collision (right part of Figure 10) since the other robots move in the
opposite direction of the negative gradient of the navigation function. A larger horizon can
provide better collision avoidance but increases the computational cost of navigation (Ecomp
increases in Table 2). Ecomp is the normalized computational load corresponding to the
computational time at h = hmin (where in the first line the value Ecomp = 1 is normalized by
the computational time of the ignored collision, since the robots do not reach the goals). A
larger horizon can slightly reduce both the distance traveled (joint distance ∑ L in Table 2)
and the travel time (joint travel time ∑ T in Table 2), which means that the robots do not
need to wait or slow down to avoid a collision. Note that the improvement in travel time
and distance is relatively small compared to the increased computational cost. Therefore,
the main reason for increasing the horizon is safety and collision avoidance performance.

Table 2. Performance at variable horizon.

h/hmin ∑ L [m] ∑ T [s] Ecomp [1]

h
e

a
d

-o
n 11/11 / / 1.00

16/11 14.27 16.40 1.46
22/11 14.26 16.40 2.05

cr
o

ss

11/11 13.48 16.20 1.00
16/11 13.38 15.90 1.63
22/11 13.33 15.80 2.27
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Figure 10. Analysis of horizon length in frontal collision avoidance (left) and cross collision avoidance
(right). The target locations are indicated by a cross. A larger prediction horizon can find better
trajectories than the minimum horizon hmin = 11.

Some other examples of coordinated navigation and control of multiple robots can be
found in Figure 11, where the navigation results are shown without collision avoidance (left
images, where the robots drive over each other) and with coordinated collision avoidance
navigation (right images). The starting position of the i-th robot is marked with Ri, and
its target position coincides with the final robot position. The occurrence of collisions is
marked (left image in Figure 11) by ellipses Ci, where C1 is the first collision between
robots 2 and 4; C2 between robots 2, 3 and 4; C3 between robots 1 and 3; and C4 between
robots 4 and 5. The controller with coordinated predictive collision avoidance (right image
in Figure 11) successfully avoids all collisions.
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Figure 11. Coordinated collision avoidance. Obtained robot path without using collision avoidance
in MPC (where robots drive over each other), with collision cases marked by ellipses (left image).
Collision avoidance with prediction horizon h = 20 finds safe routes with similar travel times (right
image).

Coordinated collision avoidance for symmetric initial locations and congested traffic
in the centre of the map is shown in Figure 12. The obtained control with avoidance and
prediction horizon h = 15 fails to navigate the robots to the destinations as the robots stop
safely to avoid collisions (Figure 12, left image). Increasing the horizon to h = 25 results in
safe trajectories to the targets (Figure 12, right image).
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Figure 12. The obtained control with avoidance and prediction horizon h = 15 cannot steer the robots
towards the destinations since the robots stop safely to prevent collision (left image). Increasing the
horizon to h = 25 leads to safe trajectories towards the target locations (right image).

5.3. Experiments

Navigation is performed also in the real map shown in Figure 15 and 16 (floor plan
of our laboratory). The map is an occupancy grid with 10 cm resolution created with
the Sick LMS200 laser range finder. Four target locations GN1 = [2.4, 7]T , GN2 = [6, 6]T ,
GN3 = [10.5, 6]T , GN4 = [15, 4]T (e.g., locations of workstations) are defined on the map.
A robot can reach a desired goal through MPC control (Equation (4)) by following the
navigation function (Equation (3)), which consists of an appropriate interpolated potential
field. Figure 13 shows potential fields for the defined targets.
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Figure 13. Four interpolated potential fields are used in the navigation functions Ni(y, x, ϕ) (i ∈
1, . . . , 4) to find one of the desired target positions GN1 = [2.4, 7]T , GN2 = [6, 6]T , GN3 = [10.5, 6]T ,
and GN4 = [15, 4]T from any initial position. The targets are located at the lowest value of the
potential field (darkest region) and are marked by a cross.

In experiments, Roomba cleaning robots (Figure 14) are used to simulate transportation
tasks between desired workstations. For localization, a camera is used to detect Aruco markers
on the ceiling placed at known locations. The robots are controlled by a built-in Raspberry Pi,
which sends velocity commands with an update frequency of 10 Hz (Ts = 0.1 s).

Figure 14. Roomba robots used to simulate transportation tasks in the laboratory layout from
Figures 15 and 16. View of the robots (left) and closer robot view with integrated Raspberry Pi and
camera (right).

During navigation, velocities and accelerations are constrained by vmax = 0.45 ms−1,
ωmax = 3 s−1, amax = 0.5 ms−2, and αmax = 3 s−2. To predict collision hazards with other
robots, the horizon h = 20 > hmin (hmin = 11 according to Equation (8)) is chosen and
safety distance and angle are set to dsa f e = 0.35 m and φsa f e = π/2.

In Figure 15, the first robot uses the first navigation function (the upper left image in
Figure 13) to get to the destination G1 = GN1. Similarly, the destination for the second
robot is reached by the third navigation function (G2 = GN3) and the destination for the
third robot is reached by the second navigation function (G3 = GN2).
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Figure 15. Robot paths in the laboratory layout. The start location of the i-th robot is denoted by Si

and the destination locations by Gi. Safe navigation during collision avoidance is represented by
dark gray circles belonging to passing robots at the same time (the left pair of circles belongs to time
t = 8.8 s and the right pair to time t = 18.2 s).

In Figure 16, the first robot uses the second navigation function (the upper left image
in Figure 13) to reach the destination G1 = GN2. Similarly, the destination for the second
robot is reached by the fourth navigation function (G2 = GN4) and the destination for the
third robot is reached by the third navigation function (G3 = GN3).
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Figure 16. Robot paths in the laboratory layout. The start location of the i-th robot is denoted by Si

and the destination locations by Gi. Safe navigation during collision avoidance is represented by
dark gray circles belonging to the robots passing simultaneously (the right pair of circles belongs to
time t = 7 s and the left pair to time t = 9.5 s).

6. Discussion

From simulations and experiments, the proposed interpolated navigation function
combined with MPC computes collision-safe paths for a single vehicle that are near-optimal
considering static obstacles. Moreover, the completeness of the system is guaranteed since
the potential field does not contain local minima. The approach assumes that the global
information about the system layout is known and static. This allows a discrete potential
function (e.g., a distance-to-goal cost map) to be computed in advance and bicubic interpo-
lation to be performed only at runtime to obtain a computationally efficient continuous
estimate of the potential field values and their negative gradients. In manufacturing or
similar applications, vehicles need to deliver cargo between several defined destinations.
For each destination, a suitable navigation function can be precomputed, which increases
the computational efficiency.
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Good trajectories are also obtained when avoiding collisions with multiple robots.
Other robots or moving objects are only considered locally within the prediction horizon.
Choosing a minimum horizon (hmin) ensures that the robot navigates safely while moving
past other robots and, in the worst case, stops to avoid a collision. Extending the prediction
horizon (e.g., to 2hmin or more) allows the robots to navigate safely without unnecessary
emergency stops to prevent collision. Since local information is considered, optimality is
not guaranteed, although good results are obtained in practice. The robot could navigate
into a narrow corridor (following the negative gradient) based on the static navigation
function, although there is not enough space to avoid collision with another vehicle. MPC
will try to follow the direction that reduces the potential while searching among the possible
trajectories to avoid collision with another approaching vehicle. In the worst case, if there
is not enough free space, the robots would safely stop before a collision occurs.

It would also be possible to globally take into account information about other moving
objects and re-create the navigation function. This would require dynamic replanning of
the discrete potential field, which is computationally more challenging. However, since
the future positions of other objects are not known in advance (they can only be predicted
within the sensor’s field of view ), the navigation function would need to be modified early
enough for the robot to safely follow the modified negative gradient of the re-planned
potential, which would prevent a collision. The same requirements apply to the length of
the prediction horizon as for the static potential field (the horizon must be long enough
according to hmin). Additionally, the resolution of the discrete grid would need to be fine
(much smaller than the size of the robot) to allow for more accurate updating for detected
moving obstacles, which is important for narrow passages. A finer resolution of the grid
would further increase the computational complexity.

7. Conclusions

In this work, we proposed a novel navigation function obtained from a discrete graph
search and smoothed by bicubic interpolation. The navigation function has no local minima
and decreases monotonically in the direction of a target, allowing a mobile robot to safely
navigate from an arbitrary initial configuration to a desired target. For environments where
a set of desired targets is known and fixed, such as on the shop floor or in a warehouse, the
appropriate navigation functions can be precomputed. This allows for computationally
efficient navigation with rather modest memory requirements. The navigation function is
coupled with model predictive control (MPC), which extends navigation to multiple robots
and introduces variable horizon and combined stochastic and deterministic search in the
optimization to improve performance. Coordination of multiple vehicles is solved locally
in MPC as a constrained optimization problem where the cooperating vehicles must share
their trajectories in the horizon, while for other objects the trajectories must be estimated
from observations. The applicability of the proposed solutions is illustrated by several
simulations and experiments. In the future, we will explore alternative approaches for
interpolating navigation function. In addition, coordination overhead could be reduced
by introducing traffic guidelines and a one-way option in the navigation function, which
would improve performance and reduce coordination overhead in narrow corridor areas.
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