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1. Introduction

The management of groundwater resources commonly involves challenges and com-
plexities, which are taken on by researchers using a variety of different strategies. In
particular, groundwater numerical modelling is a widely-used and effective approach to
simulating and analysing groundwater dynamics under varying conditions. Models are set
up to investigate particular features of the groundwater system that need to be better under-
stood; they are generally implemented in order to test conceptual hypotheses arising from
field observations of the system. For this reason, numerical models need to be supported
by proper field data acquisition and elaboration, a correct conceptualization of the natural
system, optimal selection of the computer code and solver, and an effective calibration
process. Despite their wide use, each model is different from the others, and modellers
must find the best technique to solve specific problems and meet specific objectives. One
area that has especially promoted innovation in modelling technique is the study of cli-
mate change—it poses new challenges and requires investigation techniques to adapt to
new needs.

This Special Issue aims to gather contributions emphasising different aspects of
groundwater modelling, focusing on the latest developments and applications for wa-
ter resources management, including innovative applications of traditional models, the
implementation of new open source platforms for groundwater modelling, and the use of
artificial intelligence to explore data and expedite the calibration process.

The Special Issue comprises 10 articles and 1 review paper, with contributions from
over 47 authors. Geographically, the case studies concern 5 countries extending over
4 continents (United States of America (North America); Ethiopia and Tunisia (Africa);
Italy (Europe); Nauru (Oceania)), with very different features (e.g., urban environment,
carbonate mountain areas, coastal aquifers).

Specifically, the topics covered by the contributions collected in this SI include:

• the interactions between groundwater and the underground infrastructures in
urban areas;

• the use of groundwater models to determine the origin of groundwater contamination;
• the testing of modelling approaches to simulate the impact of climate change;
• the testing of modelling techniques to optimize groundwater management;
• the development of open source software and tools to manage groundwater models;
• application of geostatistical tools to reduce model error and improve predictions;
• comparative studies among numerical models and machine learning techniques.

The SI offers a wide overview of recent applications of groundwater modelling har-
nessing a variety of techniques. The common goal of all the studies is to test methodologies
that can be used to find optimal solutions for supporting stakeholders in adopting proper
measures to manage groundwater. Depending on the case study, these measures are aimed
at: reducing the damage due to flooding of urban structures; ensuring water supply while
guaranteeing a sustainable water balance; evaluating and managing the effect of climate
change on sensitive ecosystems; preventing the degradation of good-quality resources;
reducing the threat of saltwater intrusion.

Water 2023, 15, 822. https://doi.org/10.3390/w15040822 https://www.mdpi.com/journal/water1
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2. Overview of the Contributions of the Special Issue

The paper “Quantifying Groundwater Infiltrations into Subway Lines and Under-
ground Car Parks Using MODFLOW-USG” [1] investigates the interaction between ground-
water and underground infrastructures in a portion of urban Milan (Italy). The authors
developed a steady-state MODFLOW-USG model which combined the use of Wall (HFB)
and Drain (DRN) packages, for simulating underground infrastructures (i.e., subway lines
and public car parks). The model was calibrated against a condition of high water levels.
The quantification of groundwater infiltration shows agreement with historical informa-
tion about submerged structures, giving confidence that the model can be used to predict
infiltration related to water table oscillation and, thus, be a support in the design of de-
watering systems or other proposed solutions to secure urban structures from potential
infiltration damages.

In the contribution “Differentiating Nitrate Origins and Fate in a Semi-Arid Basin
(Tunisia) via Geostatistical Analyses and Groundwater Modelling” [2], a MODFLOW-2005
groundwater flow model and a MODPATH advective particle tracking model have been
combined with geostatistical analyses based on data from hydrochemical and hydrogeolog-
ical characterization. Modelling is applied to a multi-aquifer groundwater flow system to
verify the hypothesis of geogenic origin of NO3− in the semi-confined aquifer. While the
uppermost unconfined aquifer is contaminated by NO3− by anthropic activities, models
result show that the leakage of NO3− through the aquitard is negligible. Authors conclude
that the high NO3− concentration in the deepest aquifer is associated with pre-Triassic
evaporite dissolution and, thus, has a natural origin. These findings based on the model
application should help guide proper management of the contaminated aquifers.

The paper “Groundwater Modelling with Process-Based and Data-Driven Approaches
in the Context of Climate Change” [3] investigates the application of alternative modelling
approaches (process-based, data-driven, and integrated data-driven/process-based) to
simulate the effects of different climate scenario on three porous aquifers. Results dis-
tinguish key characteristics for each aquifer, such as the ability of storage capacity to
mitigate the effects of dry climate conditions or the dramatic sensitivity of a system to
climate extremes. In general, the study highlights that choosing the modelling approach
based on the specific aquifer features is fundamental to obtaining a modelling tool effi-
cient in supporting groundwater management actions aimed at mitigation of the effects of
climate change.

In the paper “Simulation of heat flow in a synthetic watershed: The role of the unsat-
urated zone” [4], the authors applied a coupled flow (MODFLOW-NWT) and transport
(MT3D-USGS) model for simulating unsaturated/saturated heat transport due to atmo-
spheric warming via a synthetic three-dimensional representative watershed. An important
novelty of the research is the focus on the unsaturated zone (UZ) and the effect of variable
depth–to–water table on heat flow to the water table and surface-water features. The
approach is computationally efficient and gives rise to a flexible tool for evaluating the
temperature response to warming and trends of heat transport across the watershed. The
research highlighted that: (1) the heat flow forcing function is the product of infiltration
temperatures and infiltration rates; (2) the UZ has a strong damping effect on the warming
signal; (3) the warming is buffered also at discharge points, where shallow and deep flow
converge; (4) the stream baseflow response to heat forcing is influenced by the lateral extent
of the riparian zone. The authors conclude that explicit representation of the UZ in models
is important to realistically evaluating the impacts of climate change on fragile ecosystems
such as riparian zones or stream habitats.

The paper “Evaluation of Fresh Groundwater Lens Volume and Its Possible Use in
Nauru Island” [5] presents a particular case study concerning the groundwater system
characterization and modelling of the Nauru Atoll Island (Pacific Ocean). After a large-scale
study for detecting the location of freshwater lenses, a local-scale study was made, aimed
at quantifying the freshwater lens thickness and volume for supply uses through a geo-
electrical tomography survey, and a 3D density-dependent numerical model implemented
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in SEAWAT. The main scientific finding is that freshwater in small islands can unexpectedly
accumulate right along the seashore and not in the centre of the island. Furthermore, the
calibrated model can be used to design sustainable groundwater exploitation systems that
avoid the exacerbation of saltwater intrusion.

The paper “ORGANICS: A QGIS Plugin for Simulating One-Dimensional Transport
of Dissolved Substances in Surface Water” [6] describes the development and testing of a
QGIS plugin, which simulates the concentration of a contaminant along the profile of the
watercourse. Attempting to embed surface water solute transport modelling into GIS by
inputting the entry point concentration and the average speed of surface water, this tool
allows GIS experts to perform first level yet fast simulations of the concentration of the
pollutant in surface water bodies. The code is open source and free, which facilitates the
reproducibility of the run analyses.

The paper “Simulation of Heat Flow in a Synthetic Watershed: Lags and Dampen-
ing across Multiple Pathways under a Climate-Forcing Scenario” [7] is a continuation of
companion research already presented in [4]. The processes of overland flow, infiltration
through an unsaturated zone (UZ) and groundwater flow discharge to a surface-water
network are simulated by a synthetic flow and transport watershed model under a 30-year
warming signal. Quantitative results for the transient distribution of heat flow conditions
demonstrate the dampening effect of the UZ in the warming transferred to the water table
(about 40% of the warming applied to watershed infiltration) and the dampening effect
of the aquifer on the heat discharged to the stream network (about 10% of the original
warm-up signal). Despite the subsurface lag and storage effects, simulated temperatures
in surface waters increase due to the addition of heat by storm runoff which bypasses
the UZ. The relevance of this study lies in the fact that provides a possible workflow
for climate-change modelling application, allowing for a detailed analysis of warming
trends at the groundwater/surface water interface, which are areas of great importance for
aquatic ecosystems.

In the paper “A Stepwise Modelling Approach to Identifying Structural Features That
Control Groundwater Flow in a Folded Carbonate Aquifer System” [8], the authors set up a
procedure to test a numerical modelling technique in a carbonate aquifer characterized by
a complex geological structure that constitutes a source of good quality water for human
consumption. Three models were implemented by gradually adding complexity to the
model grid using an equivalent porous medium approach: single layer (2D), three layers
(quasi-3D), and five layers (fully 3D). This was done in order to find the best match with the
observed aquifer outflow to the river. The Newton–Raphson formulation for MODFLOW-
2005 was used to solve numerical instabilities. Results demonstrated that folded and faulted
geological structure control groundwater flow dynamics, and thus need to be adequately
represented by a full-3D model. These findings are relevant in applications involving
the management of groundwater in corrugated carbonate, which are often exploited for
water supply.

In the paper “Using GIS and Remote Sensing Techniques: Case Study of West Arsi
Zone, Ethiopia” [9], remote sensing data and geographic information system tools are used
to evaluate the groundwater potential of the study area. By means of a chain of GIS tools,
parameters influencing groundwater were extracted, mapped, and elaborated in a GIS
environment; the procedure was validated by means of borehole data. Results show that
the method provides a fast and accurate technique to detect the groundwater potential of
an area, furnishing a tool for optimize the planning of groundwater exploitation.

The paper “Minimizing Errors in the Prediction of Water Levels Using Kriging Tech-
nique in Residuals of the Groundwater Model” [10] describes an application of the kriging
geostatistical tool to the groundwater level residuals of a MODFLOW model developed
in the Edwards–Trinity (Plateau) aquifer (Texas), aimed at improving predictions at un-
sampled locations. The average absolute model error was reduced from 31 m to 5 m,
while the average residual standard error decreased from 9.7 to 4.7 m. The authors ar-
gue that their procedure makes model results more reliable, allowing design of more
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informative monitoring systems, and ultimately leading to more efficient management of
groundwater resources.

The paper “Improving Results of Existing Groundwater Numerical Models Using Ma-
chine Learning Techniques: A Review” [11] presents a review of papers comparing the use
of numerical and machine learning methods for groundwater level modelling. The review
highlights the advantages or disadvantages of both techniques, depending on the objectives
of the model. A promising strategy is to use both methods as complementary to each other:
machine learning techniques can improve the calibration of numerical models whereas
process-based numerical models are suitable to understand the physical system and, on
turn, select proper input variables for machine learning models. Furthermore, machine
learning models can provide rapid and effective solutions for groundwater management
and are computationally efficient tools to correct head error prediction of numerical models.

The approaches and techniques featured in this SI are a sample of the many innovations
being applied to groundwater modelling in order improve water management and to
respond to short- and long-term threats to water supply.

Conflicts of Interest: The author declare no conflict of interest.
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Quantifying Groundwater Infiltrations into Subway Lines and
Underground Car Parks Using MODFLOW-USG

Davide Sartirana *, Chiara Zanotti , Marco Rotiroti , Mattia De Amicis, Mariachiara Caschetto, Agnese Redaelli,

Letizia Fumagalli and Tullia Bonomi

Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1,
20126 Milan, Italy
* Correspondence: d.sartirana1@campus.unimib.it

Abstract: Urbanization is a worldwide process that recently has culminated in wider use of the
subsurface, determining a significant interaction between groundwater and underground infras-
tructures. This can result in infiltrations, corrosion, and stability issues for the subsurface elements.
Numerical models are the most applied tools to manage these situations. Using MODFLOW-USG and
combining the use of Wall (HFB) and DRN packages, this study aimed at simulating underground
infrastructures (i.e., subway lines and public car parks) and quantifying their infiltrations. This issue
has been deeply investigated to evaluate water inrush during tunnel construction, but problems
also occur with regard to the operation of tunnels. The methodology has involved developing a
steady-state groundwater flow model, calibrated against a maximum groundwater condition, for
the western portion of Milan city (Northern Italy, Lombardy Region). Overall findings pointed out
that the most impacted areas are sections of subway tunnels already identified as submerged. This
spatial coherence with historical information could act both as validation of the model and a step
forward, as infiltrations resulting from an interaction with the water table were quantified. The
methodology allowed for the improvement of the urban conceptual model and could support the
stakeholders in adopting proper measures to manage the interactions between groundwater and the
underground infrastructures.

Keywords: urban hydrogeology; rising groundwater levels; shallow aquifer; 3D geodatabase;
horizontal flow barrier; Milan; Italy

1. Introduction

Urban hydrogeology is a specific branch of research [1,2] that has been constantly
developed in recent years as a consequence of rapid urbanization phenomena that have
been witnessed in most parts of the world [3]. Considering that 70% of the world population
is expected to live in urban areas by 2050 [4], urbanization can be defined as a world-wide
process [5]. Thus, it is reasonable to think that in the next few years a huge effort will be
allocated to research into urban hydrogeology [6].

Overexploitation and deterioration of urban water resources act as the main conse-
quences of this rapid urbanization [7]. To put a brake on urban sprawl, a vertical urban
development has occurred, determining an augmented use of urban underground [8–12].
However, the construction of ever-deeper structures [13] can impact groundwater (GW)
with regards to flow, quality, and thermal issues [5,14,15].

With respect to GW flow, different cities around the world have observed rising water
table levels, as a consequence of the deindustrialization process, that have generated some
interference between GW and underground infrastructures (UIs) such as basements, car
parks, and subway lines [16–23]. Numerical GW flow modeling was widely adopted as the
main tool to evaluate the barrier effect of UIs to flow patterns, GW budget [14], and the
possible side effects on the underground elements (i.e., corrosion and stability issues).

Water 2022, 14, 4130. https://doi.org/10.3390/w14244130 https://www.mdpi.com/journal/water5
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Concerning engineering issues, GW inflow into tunnels has been predicted in urban
areas by adopting analytical solutions [24], synthetic modeling [25], and steady-state
numerical modeling on real cases [26,27] to properly design the tunnel drainage system
during the construction phase. In fact, water inrush is a challenging issue to face, causing
negative impacts on tunnel stability, generating subsidence damage [25,28], heavy financial
losses, and losing construction time [26,29].

At the same time, the problem of damages in operating tunnels, as water seepage or
lining cracking, requires consideration [30–33]. Despite the lower water amounts penetrat-
ing inside the UIs over a long period, GW could determine severe issues, such as temporary
unusability, which require waterproofing works and lead to economic losses. Thus, quan-
tifying infiltrations could help to assess proper mitigation strategies [34], supporting the
stakeholders in the complex task of urban GW management. To do so, among the different
approaches applied in the literature, groundwater infiltrations into subsurface elements
have been evaluated by modeling the underground infrastructures by means of the DRN
package [34–36]. Recently, a single model layer was developed by Golian et al. [37] to
restore groundwater levels after tunneling. In this work, an unsealed and a sealed un-
derground tunnel were modeled using RIV and HFB packages, respectively. The latter
has been applied in various fields of groundwater modeling: from coastal areas to model
slurry walls containing seawater intrusion [38,39], to geophysical modeling to simulate
faults [40,41], to urban contexts in industrial sites [42], or to evaluate the impact of under-
ground infrastructures on groundwater levels [43,44].

The existence of 3D geodatabases, gathering information on underground struc-
tures [45,46] and frequently scattered over many institutions and stakeholders [1,47–49],
could support the adoption of these packages to properly model UIs. In this way, it should
be possible to precisely define their relationship with the water levels, thus improving the
urban conceptual model.

Based on these assumptions, the aim of this study has been to quantify GW infiltrations
into different categories of UIs (i.e., subway lines and underground car parks), considering
different UI conditions (i.e., intact, saturated, and leaky walls). The methodology that has
been applied involves developing a local 3D GW numerical flow model for the western
area of Milan metropolitan city (Lombardy, Northern Italy). Through this model, the
most critical portions of the subsurface network suffering from GW infiltrations have been
evaluated. Interactions with the water table and possible infiltrations in subway line M4
(to be inaugurated in 2023) and two public car parks that are currently under construction
were also analyzed.

By means of this model, the stakeholders would be able to design management
solutions to secure the infrastructures from being flooded in the future. The model has
been realized as steady-state with MODFLOW-USG [50] and calibrated using a trial and
error approach against a GW maximum condition that was defined in a previous work
as documented by Sartirana et al. [51]. HFB and DRN packages have been coupled to
model the UIs, reproducing their geometries and volumes through the adoption of grid
refinement, contributing to the quantification of GW infiltrations into subsurface elements.
In particular, the top and the bottom of the UIs were modeled through the HFB package; to
the best of the authors’ knowledge, this application of the HFB package could represent
an improvement in modeling the UIs. In fact, the relation between GW and the UIs along
the vertical sides of a model cell could be thus considered. Moreover, as for Milan city, this
is the first time that car parks have been considered in a 3D GW numerical flow model,
while being studied for the adoption of GW-level time-series clustering to suggest targeted
guidelines for the construction of new underground public car parks [51].

The methodology presented here could be implemented for other urban realities,
serving as a way of managing a documented interaction between GW and the UIs that may
lead to a planned subsurface infrastructure development with possibly great potential for
an integrated management strategy.
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2. Urban Conceptual Model of the Study Area

The study area covers 100 km2 inside the Milan metropolitan area (Figure 1). Human
activities have always characterized this area, especially through industrial and agricultural
activities that are still conducted in the western and southern areas of Milan [52,53]. The city
hosts 1.4 million inhabitants [54] and is currently undergoing an important urban transfor-
mation [55]. It is located in the middle of the Po Valley, whose hydrogeologic structure has
been deeply examined both in the past [56] and recently [57]. Three main hydro structures
were identified: a shallow hydro structure (ISS), an intermediate (ISI), and a deep (ISP)
hydro structure. Within the model domain, an ISS has a medium thickness of 40 m with
a bottom surface ranging from 100 m above sea level (a.s.l.) (to the north) to about 60 m
a.s.l. (to the south). It hosts a shallow aquifer (Figure 2) (i.e., Aquifer Group A1, Regione
Lombardia and ENI Divisione AGIP 2002 [56]), where all the underground infrastructures
are located. This aquifer is not exploited for drinking needs. Sands and gravels mainly
characterize this hydro structure. The same lithologies, but with an increasing presence of
silty and clayey horizons, constitute the ISI, that mostly corresponds to Aquifer Groups A2
and B of Regione Lombardia and ENI Divisione AGIP 2002 [56]. An ISP, having a more
uncertain lithological composition, was not modeled within this study.

 

Figure 1. (a) Geographical setting of the study area; (b) main hydrogeologic features (lowland
springs) Color coding for the subway lines respects the color coding used by the subway managing
company. Public car parks have been represented as triangles to differentiate them from wells. (Image
readapted from Sartirana et al. [51]).
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Figure 2. Hydrogeologic schematic cross sections AA’ (N–S) of the study area, showing the location
of some UIs and their relationship with the groundwater condition of Mar 2015 [51]. For their location
on map, please refer to Figure 1.

Industrial needs triggered an extensive groundwater withdrawal since the early 1960s.
Consequently, the water table reached its maximum depth of more than 30 m in the northern
part of the city around 1975, thus determining the minimum GW levels due to significant
water exploitation [58,59]. During the same time frame, some UIs (car parks, subway lines
M1 and M2) were built, sometimes without proper lining methods, without consideration
for a possible future GW level rise. Subsequently, since the beginning of the 1990s, the
decommissioning of many industrial sites, mainly located in the northern sector of the city,
generated a rise in GW level, determining flooding episodes for these oldest and shallowest
subway lines and for some underground car parks built starting from the middle of the
1980s [60,61]. Consequently, the most recent and deepest subway lines (M3, M4 to be
inaugurated in 2023, and M5) have been designed with lining systems. As for underground
car parks, 126 public car parks are now listed in the city [51]: 65 out of 126 are located in
the model domain. The construction of two new underground car parks (Figure 1b) is
currently taking place close to the Gelsomini and Frattini stations of subway line M4. These
car parks are named Brasilia (placed just northward of the stations) and Scalabrini (to the
south of the stations), respectively; both have been designed to be two floors deep (i.e., 8 m
depth as calculated by Sartirana et al, 2020).

The water table rise occurred differently among different areas of the town, with a
maximum rise of about 10–15 m in the north, and a more dampened effect in the other
sectors [51]. Particularly, a low significant rising trend was evidenced in the west and south,
respectively, due to local geological conditions and the hydraulic gradient that constrains
the water table close to the ground level, thus reducing the water table oscillations.

In the downtown area, an increasing presence of open-loop groundwater heat pumps
(GWHPs) for geothermal needs (Figure 1b), together with the presence of a huge number
of UIs, could induce an anthropogenic control on water table rising; due to extraction and
injection wells systems, the water withdrawn is usually returned to the shallow aquifer,
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thus determining a non-consumptive use of the resource [62]. These systems sometimes
discharge exploited water to surface water bodies to control the GW rise.

Public-supply well fields withdraw water used for drinking needs, and have screens
to tap the semi-confined and confined aquifer units. A total of 261 wells, belonging to
13 well fields, are located inside the considered domain.

The construction of new underground car parks takes place in the framework of the
adoption of the Plan of Government for the Territory (PGT) [63], that regulates further
subsurface occupation as a measure against excessive soil consumption. In this context,
numerical modeling, possibly combined with the application of other techniques aimed
at better understanding the urban conceptual model [51], could represent a valid tool
to coordinate urban underground development, thus supporting stakeholders in their
decision-making process.

3. Materials and Methods

The numerical model was built considering an already-existing urban conceptual
model [51], integrating its contents, when possible, with Open Data information [64]. The
core of the methodology was the modeling of the UIs (see Underground Infrastructures
Modeling) to evaluate GW infiltrations. Different scenarios of conductance were realized to
quantify infiltrations simulating different wall conditions; the results have been examined
in order to discuss possible strategies to manage GW/UI interactions.

3.1. Numerical Model

A steady-state numerical flow model was developed using MODFLOW-USG [50], and
Groundwater Vistas 8 [65] was used as the graphical user interface.

3.1.1. Grid Discretization

The model grid (Figure 3) was composed of 1,668,348 cells and was horizontally
structured by applying a quadtree refinement: cell dimension ranges were from 100 m in
the peripheral areas, up to 12.5 m around subway lines and public car parks (i.e., fourth
level of refinement); in proximity to public car parks currently under construction, a fifth
quadtree level of refinement was applied (i.e., 6.25 m) (Figure 3a). The grid was rotated by
35◦ from the offset (X = 1,509,407, Y = 5,026,235, Monte Mario Italy 1; ESPG: 3003) to be
perpendicular to the general NW–SE groundwater flow direction of the domain [58,66].

The vertical discretization (Figure 3c) consisted of 18 layers. The first 8 layers, with
an average thickness of three meters, included all the UIs lying in the shallow aquifer
(layers 1–10, ISS/Aquifer Group A1); layers 11 to 14 had a medium thickness of seven
meters to model the first portion of the ISI (Aquifer Group A2). Layers 15 to 17 (with a
medium thickness of 6 m) were adopted to represent the aquitard (AQ), while the last
layer, with a medium thickness of 20 m, aimed at modeling the final portion of the ISS
(Aquifer Group B).

3.1.2. Boundary Conditions

Boundary conditions (Figure 4), used to outline the hydrogeologic system, were
represented through Neumann and Cauchy conditions:

• General Head Boundary (GHB) was used to model the initial heads along the borders
around the study area, at their real distance from the analyzed domain. As for their
hydraulic head values, the initial information was taken from a piezometric map of
March 2015 (Mar15) for the study area [51]. In addition, the main quarries located
inside the domain (Figure 4) have been represented as GHBs.

• WELL (WEL) was used to model the 261 public wells and 785 groundwater heat
pumps (GWHPs) described in Section 2. Information on well discharge was readapted
from De Caro et al. [61] with regard to public wells, and from Regione Lombardia [64]
for GWHPs. Finally, a further 384 private wells fell within the analyzed domain; as
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their well discharge was mostly unknown, a discharge value of -432 m3/d was initially
attributed to these wells.

• Recharge (RCH): 5 zones, based on land use, were identified from the geographic
database Dusaf 6.0 [67]; their values were calculated as the contribution of precipita-
tions, irrigations, and runoff. The initial values for each zone were calculated starting
from the precipitation data of Paderno Dugnano rain gauge (located just northward of
the city of Milan), monitored by the regional environmental protection agency [68].
Precipitations amounted to 1496.2 mm/yr for the twelve months before Mar15, the
period chosen for model calibration. Absence of infiltration was considered for urban
areas and for surface water elements (i.e., quarries), while 20% of infiltration was
attributed to the other recharge areas; moreover, an additional contribution from
recharge infiltration was attributed to irrigational areas.

 

Figure 3. (a) Grid horizontal discretization; the red rectangle points to the sector area represented
in (b); (b) example of quadtree refinement close to Lotto exchange station (see Figure 2); (c) grid
vertical discretization. Please note that for (b), the same color coding of Figure 1b has been used for
subway lines.

Underground Infrastructures Modeling

The underground railway (Figure 1b) occupies only a small portion of the north-
western area; thus, it was not considered within the study. All the UIs (Figure 4) were
conceptualized and modeled by coupling the Wall (HFB) [69] and the DRN [70] packages.
The capabilities of both packages were combined to properly simulate and evaluate the
exchange between the UIs and the surrounding aquifer. HFB offers the ability to isolate
individual components to consider how water is passed between an engineered element
such as a subway line and the aquifer. On the other hand, the DRN package enables the
modeler to assign a head inside the engineered structures. In this case, the DRN package
was adopted to simulate a fictitious water-collection system within the UIs. Combining the
capabilities of these two packages is the core of the proposed methodology. To support and
validate the adopted methodology, the model domain was discretized into 187 zones: the
aquifer of interest, and all the UIs’ elements. Thus, water exchanged between neighboring
zones, based on the MODFLOW solution [71,72], was quantified.
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To properly model the depth of the UIs, information regarding the UIs’ bottom and
the diameter of the subway tunnels has been obtained from an already-existing 3D GDB
of the subsurface elements for the study area [46]. Subsequently, the following rule was
adopted as the main constraint to model the UIs: if an UI occupied a layer of more than 50%
of its thickness, the UI was then represented inside that layer; otherwise, if this constraint
was not respected, the UI was then modeled in the overlying layer.

The wall usually goes along any of the four horizontal sides of each cell, but in
MODFLOW-2005 there is no option to specify a vertical barrier. Notwithstanding, the
adoption of MODFLOW-USG allowed for wider flexibility in using the HFB package, as the
barrier could be aligned along any face of the unstructured grid [50]; thus, HFB cells could
also be placed at the intersection between two nodes sharing the same X and Y coordinates,
in contiguous layers. This enabled the reproduction not only of the lateral sides, but also
the top and the bottom of all the subsurface elements. To do so, the initial information
about the lateral sides of the UIs was integrated by “manually” compiling the HFB package,
adding the position of the top/bottom of the UIs.

The drainage network was placed inside the UI and positioned at the bottom layer
of each section of the UI. The drain head (i.e., drain elevation) was fixed as equal to the
bottom elevations of the UI. In this way, the possible groundwater inflow into the UIs could
be drained, quantifying the amount of water to be withdrawn to dry the infrastructure. The
conceptual model of the adopted approach to simulate the underground infrastructures
network is represented in Figure 5.

 

Figure 4. Model boundary conditions. GHBs’ distance from the model area has been indicated.
Please note that color coding of the infrastructural elements (subway lines and underground public
car parks) refers to the HFB package color in Groundwater Vistas 8. Public car parks have been
represented as triangles to differentiate them from wells.
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Figure 5. (a) Traditional application scheme for HFBs cell; insertion mask taken from Groundwater
Vistas 8; (b) conceptual model of the adopted approach to model all the UIs.

At the exchange stations, lines were positioned at their real depth, thus properly
separating the deepest and more recent lines (i.e., M3, M4, and M5) from the shallowest
and older ones (M1 and M2).

Conductance, which can be defined as the ratio between hydraulic conductivity (K)
and the wall thickness (d), is the single parameter that controls the ability of the wall to
transmit water. The absence/presence of lining systems was represented through different
conductance values. With regard to the wall thickness, a value of 1 m was considered
representative of all the modeled UIs.

The drainage system was assumed to provide no resistance to GW flow, imposing a
value of conductance higher than the wall conductance and the aquifer conductivity [25,35].

3.1.3. Further Modeling Aspects

The hydraulic conductivity parametrization was readapted from a previous project
on the study area developed within the same research group [73], where the lithological
information, stored within the Tangram database [74] in the form of stratigraphic data and
pumping tests, was numerically coded and interpolated into GOCAD software using the
kriging method [75]. Initial values to the continuous distribution of hydraulic conductivity
were assigned from Tangram reference tables. A refined investigation was conducted which
analyzed 3 cross-sections built along public-supply well fields from Airoldi and Casati [76],
to infer the spatial distribution of fine materials (i.e., clay lenses).

With regard to calibration, sensitivity analysis using different multiplying factors
(from 0.5 to 1.5) and a “trial and error” method were adopted to calibrate the steady-state
model, focusing on GHB values and conductance, aquifer recharge (3 out of 5 zones),
hydraulic conductivity, and well discharge. A total of 30 head targets, representing field
water table measurements, were considered, showing an uneven distribution over the
entire domain, with a limited amount of information for the western sector. The calibration
process was conducted against the maximum groundwater condition of Mar15, the highest
in the last 30 years [51], evaluating the goodness of the obtained results and analyzing the
model statistics (i.e., residual sum of squares, scaled RMSE). In this way, the most critical
situation for the UIs should be considered; this is also recommended for UIs currently
under construction.

3.2. Decision Management Support

Different scenarios were analyzed to quantify GW infiltrations into UIs. Further
engineering aspects, such as possible subsidence issues due to the drainage effect, or
potential negative effects determined by buoyancy as a result of the aquifer pressure (i.e.,
uplift risks), were not considered within the aims of the project.
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The conductance value for waterproofed subway lines (Table 1) was defined from the
literature references [43,77,78]. Different conductance values (S1–S3) were tested for subway
lines M1 and M2 due to a higher uncertainty; considering the absence of lining systems,
the conductance was modified simulating possible deteriorations due to a prolonged
interaction with the water table over time. In fact, infiltrations may be regarded as a
gradual process, ranging from an unsaturated to a saturated flow induced by groundwater
flow [79]. Since for public car parks’ conductance no information was available, it was
decided to attribute the lowest conductance value to all car parks.

Table 1. Conductance value for all the considered scenarios.

UI Waterproofed
Initial Conductance (m2/d)

(S1-S2-S3)
Fractures Conductance (m2/d)

(S4-S5-S6)

M1 No 1.16 × 10−11/10−10/10−9 1.16 × 10−7/10−6/10−5

M2 No 1.16 × 10−11/10−10/10−9 1.16 × 10−7/10−6/10−5

M3 Yes 1.16 × 10−13 1.16 × 10−13

M4 Yes 1.16 × 10−13 1.16 × 10−13

M5 Yes 1.16 × 10−13 1.16 × 10−13

Car Parks — 1.16 × 10−13 1.16 × 10−9

The most impacted locations of S1–S3 were then analyzed, locally increasing the
conductance value of the HFB cells to simulate possible wall fractures. A focus was
provided only for subway lines M1, M2, and car parks, as historically they have shown the
most revealed interference. To reproduce fractures, wall conductance was only modified
close to the infiltration area, increasing the initial value of four order magnitudes, as
considered in studies on fractured rocks [80]. The change in the conductance was applied
to the minimum model dimension (i.e., one cell). In this way, it was possible to compare
the amounts of infiltration of intact and leaky walls.

The identified infiltrations were then analyzed to discuss some management proposals
with regard to the design of dewatering systems in the most critical locations of the
subsurface network, and also proposing the implementation of monitoring systems to
manage possible infiltration issues in advance.

4. Results

4.1. Model Calibration and Statistics

The final values of GHBs were 127 m a.s.l. for the northern GHB and 102.2 m a.s.l. in
the south, while the western and the eastern boundaries varied from 126 to 103 m a.s.l. and
from 124 to 103 m a.s.l. from north to south, respectively. Calibrated values of hydraulic
conductivity ranged from 235 to 1.15 × 10−3 m/d, as visible in Figure 6.

Final recharge values, and their spatial distribution, are represented in Figure 7. Finally,
well discharge was reduced by 25% for the GWHPs and private wells, while for well fields,
the reduction, when applied, ranged from 25% up to 50% (for the southernmost well field)
of the initial value.

With regard to the calibration, the calibrated model generally provided good statistics
(Table 2, Figures 8 and 9) for most of the 30 head targets considered. The most critical
targets were located in the western and southernmost portions of the domain, quite far
from the subsurface network that was the main focus of the study. Although these values
could represent some modeling issues for some local areas of the domain, the scaled RMSE
(4.6%) respects the international criteria that indicate the goodness of a solution in a scaled
RMSE to be less than 8% [81,82].
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Figure 6. Hydraulic conductivity values for layers (a) 1 (b) 4 (c) 11 (d) 14. Please note that subway
line tracks are plotted inside all layers to provide refence points, since the grid is not rotated in
these images.

 

Figure 7. Areal distribution of the 5 recharge zones; final recharge values are provided in legend.
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Table 2. Model statistics for the considered head targets. Statistics refer to S1.

Statistical Parameter Target Value

Absolute Residual Mean 0.32
Residual Sum of Squares (RSS) 21.8

RMSE 0.85
Minimum Residual −1.15
Maximum Residual 2.16

Range of Observations 18.39
Scaled RMSE (nRMSE) 0.046

 

Figure 8. Comparison of (a) observed (m a.s.l.) vs. computed (m a.s.l.) values and (b) observed
values (m a.s.l.) vs. residuals (m).

Figure 9. GW potentiometric map of the study area.
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The potentiometric map for the shallow aquifer is represented in Figure 9. From
the visualization of the head targets, it is visible that the water table map is generally
well represented close to the subsurface network, thus allowing for proper assessment of
GW/UI interactions and the consequent infiltrations. In the eastern part of the models,
located close to Milan’s downtown area, the contour lines’ behavior is influenced by the
pumping effect of both public well fields and GWHPs (Figure 4).

Model mass balance (Table 3) evidences the importance of well discharge inside the
domain, both for the outflows and the inflows; the latter are exclusively due to the injection
wells of GWHP systems. The water amounts withdrawn by the drains indicate the GW
infiltration into the UIs; despite being a limited amount of water, quantification of the
water amounts is important to compare them with the results of the other scenarios in
the framework of urban underground management. Model percentage discrepancy is
considered to be low (4.59 × 10−3). A good coherence was detected between the drain
outflows and the mass balance with neighboring zones (i.e., surrounding aquifer and the
UIs), thus validating the obtained results.

Table 3. Model mass balance.

Mass Balance Inflow (m3/d) Outflow (m3/d) % Error

GHB 419,633.07 72,039.06
Wells 115,743.33 515,438.32
Drain — 2.93 × 10−5

Recharge 52,101.25 —
Total 587,477.65 587,477.38 4.59 × 10−5

4.2. Modeling Scenarios

Groundwater inflow for all the UIs was calculated, and results are summarized in
Figure 10. As can be seen in Figure 10, an absence of inflow was detected for some
subway line branches, as the water table level was lower than the bottom of the UIs [29].
Particularly, these inflow gaps were visible in the north, along subway line M1, and in
the central portion of the domain, close to Cadorna exchange station (subway lines M1
and M2). The tunnel sections more exposed to GW inflows are the westmost stretch of
M1, towards Bisceglie Station (M1-a), and the stretches close to Uruguay station (M1-b)
and between QT8 and Lotto (M1-c) for line M1; and the sections from Porta Genova to
Sant’Agostino station (M2-a) and from Lanza to Moscova (M2-b) for subway line M2.
Due to their major depth, subway lines M3 and M4 were completely submerged by the
water table, which also occurred for subway line M5 (Table 4). With regard to public car
parks, 34 out of 67 resulted in infiltration; in the central area, Washington/Piemonte (P-a)
and Carducci (P-b) turned out to be among the most impacted infrastructures, while, for
example, Betulle Est was impacted in the west (P-c). Critical sections for M1 and M2 were
already identified as areas where a historical interaction (i.e., submersion) with the water
table was evidenced [46,83]. In particular, Sant’Agostino (M2-a) was impacted for both GW
minimum and maximum conditions.

As summarized in Table 4, groundwater inflows for S1-S3 are limited, with low orders
of magnitude. The highest values of inflows (10−5/10−3 order of magnitude) were detected
for the oldest subway lines M1 and M2, modeled with higher conductance values to
simulate the absence of waterproofing systems and a progressive saturation of the walls
over time. As for the deepest lines, such small values are attributable to the low conductance
representing lining systems. The spatial distribution of these infiltrations is different, as for
shallow lines the infiltrations are detected only at certain spots, as visible in Figure 10, thus
evidencing local but more critical situations to manage.
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Figure 10. Areas showing GW infiltrations into UIs.

Table 4. GW inflows into UIs (m3/d) for S1–S3. Please remember that for M3, M4, M5, and parks,
K was always set equal to 1.16 × 10−3 m/d. Percentage below the water table is intended as the
sections of UIs where the bottom of the infrastructure is lower than the hydraulic head.

UI Category Amount of Infiltration (m3/d)
% Below the
Water Table

S1 (K = 1.16 × 10−11 m/d) S2 (K = 1.16 × 10−10 m/d) S3 (K = 1.16 × 10−9 m/d)
M1 3.70 × 10−6 5.83 × 10−5 4.23 × 10−4 8.37
M2 2.00 × 10−5 2.34 × 10−4 2.27 × 10−3 71.38

S1–S3 (K = 1.16 × 10−13 m/d)
M3 6.24 × 10−7 100
M4 1.94 × 10−6 100
M5 2.70 × 10−6 100

Car Parks 3.00 × 10−7 50.75

At the most critical points highlighted in S1–S3 (Figure 10) for subway lines M1 and
M2, and for some public car parks, locally punctual wall fractures have been simulated
to quantify the variation in GW infiltrations. The results of these spots are summarized
in Table 5. As is visible, the most critical effects, also considering the features of the UIs
(i.e., depth, volume), have been identified for M2-a, around Sant’Agostino station. The
infiltration for these points generally increased linearly to one or two orders of magnitude.

As for the two public car parks under construction (Figure 1b), an absence of infiltration
was detected in both cases, with respect to the considered groundwater maximum condition,
due to a lack of interaction with the water table (Figure 11) which was contrastingly
evidenced for the close branches of subway line M4.
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Figure 11. (a) 3D geographical setting of the area close to the car parks currently under construction.
The car parks and the subway line M4 are visible below the road network; the names of some roads
are indicated to provide more geographic details. Three-dimensional underground reconstruction
of (b) Brasilia car park, (d) Scalabrini car park, (f) Lorenteggio 124 intervention point. GW/UIs
interaction for (c) Brasilia car park, (e) Scalabrini car park, (g) Lorenteggio 124 intervention point.
(b,c) refer to point 1 in (a); (d,e) refer to point 2 in (a); (f,g) refer to point 3 in (a). Transparency has
been adopted to represent the volumes submerged by the water table; as visible in (c,e,g) this occurs
only for subway line M4, and not for public car parks. The red arrows indicate the viewpoints and
the view directions adopted in the 3D visualization of the subsurface elements. Images were realized
using ArcGIS Pro.
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Table 5. Comparison of GW inflows into UIs (m3/d) for the initial scenario (S1–S3, intact walls) and
their corresponding final scenario (S4–S6, leaky walls). Please remember that, for car parks, K was
always set equal to 1.16 × 10−13 m/d for S1–S3 and to 1.16 × 10−9 m/d for wall fractures in S4–S6. S
means station, T means tunnel, P means park. Depth (m) has been provided for subway stations and
parks, as they are designed from the ground field; as for tunnels, since they are not designed from the
ground field, thickness was provided rather than depth.

Type Name
Thickness/
Depth (m)

Volume × 10
(m3)

Amount of
Infiltration

(m3/d) (S1–S4)

Amount of
Infiltration

(m3/d) (S2–S5)

Amount of
Infiltration

(m3/d) (S3–S6)

S Bisceglie (M1-a) 11.93 33.49 1.13 × 10−7/
4.35 × 10−6

1.12 × 10−6/
4.35 × 10−5

2.04 × 10−4/
4.35 × 10−4

T Bisceglie—Inganni (M1-a) 6.5 42.88 2.04 × 10−6/
2.71 × 10−5

2.04 × 10−5/
2.71 × 10−4

4.30 × 10−5/
2.71 × 10−3

S Inganni (M1-a) 10.92 26.77 3.98 × 10−7/
1.14 × 10−5

3.98 × 10−6/
1.15 × 10−4

1.20 × 10−4/
1.15 × 10−3

T Bonola—Uruguay (M1-b) 6.5 42.81 1.75 × 10−7/
4.05 × 10−6

2.43 × 10−6/
4.50 × 10−5

1.81 × 10−5/
3.94 × 10−4

T QT8—Lotto (M1-c) 6.5 71.89 9.92 × 10−7/
1.06 × 10−6

9.34 × 10−6/
1.77 × 10−5

9.34 × 10−5/
1.17 × 10−4

T Romolo—Porta Genova (M2-a) 7 55.77 5.67 × 10−6/
2.37 × 10−5

5.67 × 10−5/
2.37 × 10−4

5.33 × 10−4/
2.71 × 10−3

T Porta Genova—Sant’Agostino
(M2-a) 7 37.05 5.34 × 10−6/

5.86 × 10−5
5.34 × 10−5/
5.86 × 10−4

8.04 × 10−5/
5.86 × 10−3

S Sant’Agostino (M2-a) 17.35 23.77 8.24 × 10−7/
5.29 × 10−5

8.24 × 10−6/
5.29 × 10−4

2.64 × 10−4/
5.29 × 10−3

T Lanza—Moscova (M2-b) 7 36.41 1.03 × 10−6/
6.03 × 10−6

1.03 × 10−5/
6.03 × 10−5

2.84 × 10−5/
6.02 × 10−4

P Washington/
Piemonte 20 60.38 1.72 × 10−8/1.49 × 10−6

P Carducci Olona 17 58.14 1.32 × 10−8/4.82 × 10−7

P Betulle Est 5 23.02 2.56 × 10−9/3.04 × 10−7

5. Discussion

Managing GW/UIs interaction in urban areas is a challenging issue. Different prob-
lems can arise regarding GW quality, quantity, and thermal issues [5,6,15], but stability,
erosion, and infiltration for UIs are some further topics to consider. With regard to GW
infiltration into UIs, the scientific literature deals both with water inrush calculation during
the construction of tunnels [26,27] and problems regarding already-operating underground
tunnels [31,33]; in this study, a local scale numerical model was developed for the western
sector of Milan city, applying a methodology to quantify GW infiltrations into completed
and operative UIs.

5.1. Modeling Scenarios

Model results in terms of calibration were generally acceptable (Table 2, Figures 8 and 9).
However, some head targets did not show an optimal result. This happened for a couple
of targets in the north-western portion of the domain, and for one target in the south.
In the north-west, not far from the critical targets, the behavior of the water table is
presumably influenced by a multitude of local situations. The proximity of a group of
quarries and a public-supply well field with high discharge (Figure 4), and the presence of
clay lenses determining the existence of perched aquifers with seasonal oscillations [51,52]
make predictions more uncertain. This response could highlight the presence of local
mechanisms, possibly uniformed by the targets, that have been neglected. In this sense,
the model provides a guide for future data collection, that could allow the improvement
of the appropriateness of the conceptual model [84]. In addition, acquiring further data
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could contribute to making more effective predictions, thus improving the model use in
supporting management decisions [85].

Identifying the areas more exposed to infiltrations is important to predicting future
risks due to a more severe water inrush; thus, adopting strategies to ensure these in-
frastructures are preserved is vital [86,87]. Some of the impacted areas (i.e., M1-a, M1-b,
M1-c, M2-a) have already been identified as critical in previous works [46,83]. In this case,
only a qualitative GW–UIs interaction was detected through a GIS methodology. This
spatial coherence among the results could be considered as a validation of the numerical
model. At the same time, model findings could represent a step forward in the definition
of the urban conceptual model; through this approach, GW infiltrations resulting from
GW/UI interactions could be estimated. As for M2-a, P-a, and P-b, the highest depth of
downtown infrastructures (Table 5) plays a key role in influencing GW/UI interactions.
This is due both to a high population density, thus requiring more space for subsurface
infrastructures [88], and to the adoption of specific construction methods; as an example,
Sant’Agostino station was built with two overlapping pipes [61]. As for the western sec-
tor, the complex geological situation explained above could be a possible driver of the
infiltrations both for subway lines (M1-a) and underground car parks (P-c), despite their
limited depth (Table 5). To counteract this situation, in the framework of creating a more
sustainable and resilient city [5], some residential constructions have been designed with
superficial car parks occupying the first floors of the buildings. With regard to public car
parks, the new buildings currently under construction have been designed as two floors
deep; at this time, this results in an absence of impact even considering a groundwater
maximum condition (Figure 11). However, prolonged monitoring should be useful to
cope with the evolution of GW/UI interactions. Finally, in the north, a reduced GW/UIs
interaction is attributable to a wide unsaturated thickness of the shallow aquifer [51], with
the water table located around 10–12 m from the ground field.

5.2. Considerations of the Adopted Modeling Approach

The applied modeling strategy aimed to quantitatively evaluate the interaction be-
tween the GW system and the subsurface structures. With regard to the calibration process,
it is not tied to the prediction of interest; in fact, it is based on head targets whose hydraulic
measures are not directly connected to the final goal (i.e., GW infiltrations into UIs). The
information content on which the head targets are based is not informative about the
degree of connection between the UIs and the water table. In technical terms, the K of the
walls is completely in the null space and outside the solution space of the model. This
does not mean that the calibration is useless, but it does mean that the model could not
be so much a predictive tool as a way to understand a phenomenon (inflow across leaky
walls) in general terms. The geometry of the UIs is realistic [46], but one can only make
hypotheses about the permeability of the intact and leaky walls that are not in any way
informed by the calibration. To limit this uncertainty, a literature analysis was conducted
to choose the initial conductance values for subsurface impervious structures [78] and the
conductance to simulate isolated fractures [80]. Moreover, an ensemble of scenarios [89]
was defined to deal with non-lined systems, testing different conductance values. In this
way, stakeholders are enabled to visualize a range of impacts and they could consider them
to apply different management options [90,91]. As for S1–S3 (Table 4), GW infiltrations
are very limited, especially for waterproofed subway lines; thus, the model allowed for
the gaining of insights into the conductance values that are needed to simulate an almost
impermeable element.

Anyway, obtaining good calibration results was crucial, since they allow GW/UI
interactions to be well represented and, consequently, they allow the obtaining of a more
reliable estimate of the infiltrations originated by the relationship between the aquifer and
the subsurface infrastructures. As visible in Figures 8 and 9, this is mostly true for this
specific case, especially for the targets located in the central part of the domain that lie in
proximity of the main UIs’ elements.
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Using MODFLOW-USG as numerical code allowed the refining of the grid horizon-
tally, therefore properly representing the UIs. Moreover, through the implementation of the
unstructured grid, the key numerical computations could be limited within the required
bounds [50], making the simulations less computationally intensive. Above all, the adop-
tion of MODFLOW-USG was pivotal to model the UIs, as it allowed the WALL package to
be used to represent not only the cells’ lateral sides through HFB, but also the top and the
bottom of the UIs. In this way, the subsurface elements could be modeled with their real
depth and volumes, thus refining previous applications of the HFB package to simulate
UI fully penetrating single-layered models [37,43,44]; hence, a precise estimate of further
modeling aspects (i.e., evaluation of the barrier effect on groundwater flow paths) should
also be guaranteed. In MODFLOW-USG, to reduce numerical instability, desaturated cells
(i.e., dry cells) are not inactivated, so there could be a small amount of flow from one
cell to another. The adoption of the DRN package helped to solve this possible issue,
especially in the upper portion of the domain where unsaturated aquifer was present. As
a drain is activated only when the hydraulic head is at least equal to the drain elevation,
it was possible to unravel where an effective infiltration was present. The choice of the
DRN package also came after its previous applications to quantifying flooding episodes
during the construction of tunnels [34,36]. Through the developed methodology, modeling
GW/UI interactions could be enhanced. In fact, combining the use of HFB, DRN, and mass
balance zones to quantify infiltrations depending on different conductance values is possi-
ble, instead of deactivating cells of impervious structures. Thus, a step forward could be
taken in the development of the urban conceptual model, supporting previous approaches
conducted within the same domain [92,93], or in other areas [94] where different aspects of
GW/UI interactions have been investigated but GW infiltrations into subsurface elements
were not quantified.

The methodology has been tested on a steady-state numerical model. Future appli-
cations on transient numerical models would be possible depending on long-term data
collections [95]; this could raise awareness about infiltration issues, supporting a deeper
interpretation of GW/UI interactions and making the model a useful management tool to
make long-term predictions [84].

5.3. Decision Management

The infiltration issue of UIs in Milan city is historical. Different episodes have been
documented over time [46,60,83], leading both to economic and management problems
for Metropolitana Milanese Spa, the subway managing company. For example, the sec-
tion between Piola and Lambrate stations, along subway line M2 (outside the numerical
model domain), was closed during summer 2019 to complete lining works because of GW
infiltrations, thus forcing the use of surface public transport. Although the water inflow is
small with respect to water inrush into subway tunnels during their construction [28,80,96],
this situation could trigger further issues over a long time period (i.e., corrosion of founda-
tions), resulting in a decline of the subway system efficiency; thus, this problem should not
be underestimated.

To ensure sustainable development of GW/UI interactions, effective engagement
of the stakeholders should be of great value [97–99]. Open communication is needed to
raise awareness about the importance of data to describe the system and conceptualize
and develop a model [91,100] with increased predictive capabilities. For this specific case,
monitoring, estimation, and control are essential aspects for tunnel management [96].
Having access to existing infiltration measures, if available, or implementing monitoring of
the punctual inflows along the tunnels or for car parks would also improve the calibration
process; in this way, model uncertainty would be reduced, thus strengthening the usefulness
of hydrogeologic models for decision-making bodies [84,85]. The collection of field data
could focus on the most critical sectors highlighted (i.e., M1-a, M2-a) by the model results.
Amongst these areas, dewatering solutions could be adopted to manage the issue, thus
contributing to preserving the status of the subway network, avoiding the development of
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more serious issues as occurred for the surrounding areas of Piola and Lambrate stations.
In particular, the historical issues of Sant’Agostino station, also due to the adoption of
specific construction methods [61], impose an increased degree of attention for this limited
branch of subway line M2.

However, applying these solutions would be a consequence of effective GW infiltra-
tions into UIs. A move away from reacting and correcting measures, focusing on preventive
actions [6] to secure the UIs, should be evaluated. In a previous work by Sartirana et al. [51],
underground car parks were classified as possibly critical for different GW conditions if the
difference between the reference plan (i.e., bottom) of the UI and the water table was less
than one meter. To avoid infiltration issues, activating localized pumping when a certain
threshold is locally exceeded would be a possible measure [101]. To do so, early warning
monitoring solutions, such as integrating GIS, BIM, and GPS techniques [102,103], with
continuous online data measurements should be implemented in proximity of the most
critical UIs.

Moreover, groundwater is not only an annoyance for its side effects, but it is also
a heritage [6] in urban frameworks; therefore, further management strategies could be
proposed. For example, as GW is a valuable energy reservoir [15,93], increasing the
adoption of GWHP systems, possibly only due to extraction wells, could keep the water
table levels controlled close to the UIs, thus not only limiting the infiltration issues but also
exploiting the thermal potential of these subsurface elements [104].

Finally, in the framework of the goals of the Plan of Government for the Territory, this
local-scale urban model could help the decision makers to understand and manage the
relationship between new UIs and water table levels, testing possible urban underground
development scenarios.

6. Conclusions

This work aimed to adopt a methodology to quantify GW infiltrations into UIs (subway
lines and public car parks) with the view of assisting urban underground management. In
this sense, the realization of a local-scale, urban numerical model allowed the following:

• Verification of the usefulness of the applied methodology to model the UIs, quantifying
GW infiltrations through the combination of HFB and DRN packages. In particular,
the adoption of MODFLOW-USG allowed the use of the HFB package to model the
top and the bottom of the UIs, thus considering the interaction with the water table
along the vertical direction as well. The existence of a 3D GDB of the UIs for the city
of Milan helped to accurately model the UIs’ depth.

• Identification of the UI sectors more exposed to GW infiltrations under different
conductance scenarios (from intact to leaky walls), providing a qualitative and quanti-
tative overview intended for both the municipality decision makers and the subway
managing company. The westmost stretch of subway line M1 and the sector around
Sant’Agostino station for line M2 were among the most critical areas. Moreover, for
the first time, public car parks have been deeply considered in a 3D groundwater
flow numerical model for the city of Milan. Groundwater infiltrations were detected
both for deep car parks in the central portion of the domain and shallow car parks in
the western sectors. This resulted in an improvement of the already-existing urban
conceptual model of the area.

• Support for the decision makers in designing possible dewatering systems, also propos-
ing early warning monitoring systems and proactive solutions to secure the UIs from
potential groundwater infiltration damages.

The overall findings of this study could provide a useful tool to the stakeholders to
properly design new UIs in the framework of the planned underground development
of the city. In this sense, the numerical model could be used to realize different GW
scenarios, testing their effects on the designed UIs. Furthermore, modeling their tops and
bottoms through the HFB package could improve the evaluation of their barrier effect
on groundwater flow paths. For future applications, reasoning the combination of the
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HFB package with different third-type boundary conditions (i.e., River, GHB) to model
other subsurface elements (i.e., sewer systems, buried channels, etc., to evaluate their
leakance) could represent a challenging task. The methodology has been tested for the
city of Milan—nonetheless it should be worth considering its application to other urban
realities to enhance the analysis of GW/UI interactions.
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Abstract: Despite efforts to protect the hydrosystems from increasing pollution, nitrate (NO3
−)

remains a major groundwater pollutant worldwide, and determining its origin is still crucial and
challenging. To disentangle the origins and fate of high NO3

− (>900 mg/L) in the Sidi Bouzid North
basin (Tunisia), a numerical groundwater flow model (MODFLOW-2005) and an advective particle
tracking (MODPATH) have been combined with geostatistical analyses on groundwater quality and
hydrogeological characterization. Correlations between chemical elements and Principal Component
Analysis (PCA) suggested that groundwater quality was primarily controlled by evaporite dissolution
and subsequently driven by processes like dedolomitization and ion exchange. PCA indicated
that NO3

− origin is linked to anthropic (unconfined aquifer) and geogenic (semi-confined aquifer)
sources. To suggest the geogenic origin of NO3

− in the semi-confined aquifer, the multi-aquifer
groundwater flow system and the forward and backward particle tracking was simulated. The
observed and calculated hydraulic heads displayed a good correlation (R2 of 0.93). The residence
time of groundwater with high NO3

− concentrations was more significant than the timespan during
which chemical fertilizers were used, and urban settlements expansion began. This confirmed the
natural origin of NO3

− associated with pre-Triassic embankment landscapes and located on domed
geomorphic surfaces with a gypsum, phosphate, or clay cover.

Keywords: groundwater hydrochemistry; principal component analysis; multi-aquifer system; flow
model; contaminant sources

1. Introduction

Groundwater is the main source of water supply worldwide, especially in arid and
semi-arid regions, where it also plays a key role for their proper economic and social
development [1,2]. Groundwater suitable for human consumption or crop irrigation must
contain mineral salts in a well-balanced quantity. However, groundwater is most often sub-
ject to natural and/or anthropogenic constraints affecting its quality degradation. Globally,
the main issue related to groundwater quality degradation is nutrients and/or chemical
enrichment from a chemical such as nitrate (NO3

−), which is recognized as the main water
pollutant [3,4]. There are several sources of NO3

− in groundwater, and anthropogenic
activities are indeed the main ones. Diffuse agricultural pollution due to the development
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of intensive practices, new methods of cultivation and breeding characterized by a massive
spreading of effluents and fertilizers, and urban and industrial discharges contribute to
groundwater pollution and quality degradation [5–8]. Bioavailable nitrogen (N) deposition
at the land surface constitutes a natural origin of NO3

− [9,10]. The main source of N
resides in the atmosphere in the molecular form (N2), representing approximately 78%
of the atmospheric composition [11]. Another natural source of NO3

−, is represented by
the accumulations of NO3

− rich salts which have also been found in regions with an arid
climate and/or deserts, such as the Death Valley of the Mojave Desert, southern Califor-
nia [12]. Regardless of the NO3

−’s origin, this ion has harmfully affected groundwater
quality, biodiversity, and ecosystem functioning worldwide [13,14].

The Sidi Bouzid basin (Central Tunisia, North Africa) is an example of a semi-arid
area that is characterized by an aquifer system with high concentrations of NO3

−, which
often exceed the standard of the World Health Organization for drinking water of 10 mg-
N/L [15,16]. Previous research on this aquifer system has already focused on groundwater
quality [13], groundwater vulnerability to NO3

− pollution [17,18], and on the health risk as-
sessment of NO3

− in groundwater [9]. Additionally, some studies have used stable isotopes
to assess groundwater recharge [19]. Nevertheless, none of the aforementioned studies
focused on the origin of NO3

− in groundwater. Numerous methods have been proposed to
identify the NO3

− sources around the world, including: (i) geophysical approaches [20],
(ii) statistical techniques [21], (iii) and via stable isotopes [22–25]. Petelet-Giraud et al. [20]
used detailed geological and geophysical profiles, such as electric tomography, to improve
a local structural model. The authors in this case studied the heterogeneity of the hy-
drogeological system, where some compartments were disconnected from the general
groundwater flow and explained the presence of young and old groundwater via NO3

−
concentrations and environmental tracers. Kendall and Aravena [26] defined the use of
the stable N and O isotopes of NO3

− molecules as tracers to evaluate the sources and
processes that affect NO3

− in groundwater. Widory et al. [27] investigated the viability
of an isotopic multi-tracer approach (δ15N, δ11B, 87Sr/86Sr) to determine the source(s) of
NO3

− pollution in groundwater in the Arguenon watershed (France). Xuan et al. [25] in
southern China also applied N isotope analyses to identify the source and transformations
of NO3

− in groundwater in a mixed land use watershed, but the studies of the isotopes
are limited to knowing an area punctually. However, most of the previous studies did
not explicitly model the retention time within the aquifer and possible different sources
of NO3

− except for small field sites [28–30]. One of the few exceptions is the study of
Koh et al. [31] that modelled an aquifer system characterized by complex hydrogeology
and mixing of groundwater with different ages via environmental tracers, but a single
source of NO3

− from fertilizers was employed. To the best of authors’ knowledge, no
environmental studies have evaluated NO3

− origins (anthropogenic versus geogenic) in an
aquifer system in a semi-arid region using a combined approach of geostatistical analysis
on hydrochemical data and numerical flow and advective modeling. Here, two popular
codes, MODFLOW-2005 v.11 [32] and MODPATH v.7 [33], have been used for the Sidi
Bouzid North basin in central Tunisia. The objectives of this study are: (1) to evaluate
the spatial distribution of NO3

− in the aquifer system of the Sidi Bouzid basin; and (2) to
identify possible NO3

− sources in groundwater.

2. Study Area

2.1. Geography and Climate

The study area, situated between longitudes 9◦10′00” E to 9◦45′00” E and latitudes
34◦55′00” N to 35◦20′00” N, constitutes the Sidi Bouzid North basin located in central
Tunisia. It covers an area of approximately 1508 Km2 (Figure 1) and extends from Jebel
Rakhmet, Jebel Hamra, and Jebel Mghila in the West to the North-South axis (NOSA) in
the East, and from the Zawiya-Roua chain in the North to Jebel Kebar in the South. To the
Southwest, it is limited by the Jebel Al Hfay. The study area is made of three sub-basins:
(i) the Southern part: Sidi Bouzid, (ii) the Western part: Awled Asker, and (iii) the Eastern
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part: Oued El Hjal. The overall elevation of the area ranges between 238 m and 640 m
above sea level (a.s.l.). This area belongs to a semi-arid Mediterranean climate with a mean
annual precipitation of 223 mm and an average yearly temperature of 19 ◦C [34]. The
average annual evapotranspiration is 180 mm.

 
Figure 1. Location of the study area: Sidi Bouzid basin.

2.2. Geology

The exposed geological units in the study area include: (i) Mesozoic (Triassic, Jurassic,
and Cretaceous) and (ii) Cenozoic (Paleogene, Neogene, and Quaternary) aged rocks. The
oldest rocks are Triassic and Jurassic in age and outcrop on raised structures bordering the
study area. The Triassic strata consist of diapiric intrusions of a complex combination of
gypsum, clays, and dolomites. Jurassic aged rocks are calcareous-dolomitic deposits of
the Nara Formation. The Cretaceous aged rocks begin with clay and sandstone deposits
and continue with a series of limestones, dolomites, clays, and gypsums (Figure 2). The
Paleogene rocks in the study area include a succession of gypsum, marl, phosphate, and
limestone [35,36]. The Neogene is characterized by a variety of continental and lagoon facies
with red clayey silts, small calcareous concretions, and gypsum. Finally, the Quaternary
strata constituting diversified fluvial deposits of sandy clays, silts, gypsum crust, sandy
silts, and sands are distributed throughout the study area.
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Figure 2. Geological map of the study area (modified from the geological map of Tunisia at
1/500,000) [37].

2.3. Hydrogeology

The conceptual model of the Sidi Bouzid basin has been schematized and presented
in Figure 3. The Sidi Bouzid basin is a detrital Mio-Plio-Quaternary complex hosting two
aquifers. The borehole cross-section represents the superposition of three layers. The first
layer, widely distributed throughout the study area, constitutes the shallow reservoir (with
an average thickness of 40 m) made of sand with gravel and clayey intercalations. The
second layer is an impermeable and sometimes semi-permeable aquitard with an average
thickness of 45 m, while the third layer is the deeper aquifer with an average thickness
of 25 m. Groundwater is recharged through atmospheric precipitation, supplemented
by lateral runoff and irrigation return flow. Groundwater discharge occurs by lateral
outflow, evapotranspiration, evaporation areas, and artificial extraction (for domestic
and agricultural use). The groundwater flows from the mountainous boundary area to
the northeast of the study area. Finally, it discharges to the evaporation area (Negada
and Al Akarich) and El Hjal Wadi, for both aquifers shallow and deep [38]. Lastly, the
communication between the aquifers is only downstream of the basin. The hydrodynamics
of the water are influenced by the aquifer geometry and the tectonic structures. The
groundwater flow converges from Miocene outcrops in two directions: (i) the main direction
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is from West to East, while (ii) the secondary flow is from NW to SE. The groundwater
overexploitation is intense in the central and downstream parts, and it has experienced a
constant increase during the last years [36].

Figure 3. Simplified cross section elaborated from lithostratigraphic sections of boreholes.

3. Materials and Methods

3.1. Groundwater Flow Simulation
Governing Equations and Groundwater Model Selection

The worldwide popular groundwater flow numerical model MODFLOW-2005 v.11, based
on Darcy’s law and mass conservation concept has been used in this study. MODFLOW-2005
employs a three-dimensional simulation of groundwater flow circulation in porous media,
for both aquifers, shallow and deep, which is represented by the mathematically following
equation [32]:

∂

∂x

[
Kx

∂h
∂x

]
+

∂

∂y

[
Ky

∂h
∂y

]
+

∂

∂y

[
Kz

∂h
∂z

]
− w = Ss

∂h
∂t

(1)

where Kx, Ky, and Kz are the hydraulic conductivity values along the x, y, and z coordinate
axes, which are assumed to be parallel to the major hydraulic conductivity axes, w is the
volumetric flow per unit volume and represents the sources (negative values) and/or the
sinks (positive values) of water per unit time, h is the hydraulic head, Ss is the specific
storage of the porous material if the aquifer is confined or specific yield if the aquifer is
unconfined, and t is the time.

Following the groundwater flow field calculated by MODFLOW-2005, an advective
particle tracking numerical code MODPATH v.7 was employed to define the direction of
solute particles’ migration and their retention time within the aquifers system.

3.2. Data Collection and Processing

In this study, a two-step approach was employed: (i) the first step aimed at identifying
the relationship between NO3

− and other chemical elements in groundwater, and (ii)
the second step aimed at identifying the different NO3

− origins developing a numerical
model to simulate the groundwater flow and particle circulation (Figure 4). This approach
was used to test two hypotheses to explain NO3

− accumulation in groundwater. The
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first hypothesis describes a “top-down” mechanism where NO3
− is thought to be of

anthropogenic origin and infiltrated from the surface through stratified layers of sand and
sandstone. In this hypothesis, the particles (nitrates in our case) reach the groundwater
and migrate inside it according to the existing flow in a transient state. It is determined by
the circulation time of the particles from surface to groundwater. The second hypothesis
is a “bottom-up-laterally” mechanism where NO3

− is deposited onto a stable soil surface
through aerosol deposition and has concentrated in the subsoil over time. In this hypothesis,
it is considered that the nitrates are of natural origin (linked to sedimentation) and are
found in the subsurface. This mechanism has been used to explain NO3

− reservoirs found
in arid and semi-arid areas [39].

 

Figure 4. Flowchart showing the methodology adopted for the determination of the NO3
− origin in

groundwater.

Temperature, pH, and electrical conductivity (EC) were measured in the field using
a HI 99301 multiparameter analyzer. A total of 103 water samples were collected from
38 shallow wells and 65 deep wells to describe the physicochemical characteristics of
groundwater in 2019. The samples were collected in sterilized bottles after purging at
least 3 volumes from the well casing. Water samples were delivered to the Laboratory of
Physico-chemical Analyses of Soil and Water of the Regional Commissariat of Agricultural
Development of Sidi Bouzid for major ions analysis. NO3

− concentrations were also
measured directly in the field using a portable NO3

− meter (LAQUAtwin B-743) after two-
point calibration. The reliability of the results of the chemical analyzes was determined by
the calculation of the ionic balance (IB% = (∑ cations − ∑ anions)/(∑ cations+∑ anions)).
The analysis is declared acceptable if −6 ≤ BI ≤ 6%.

The data used to develop the conceptual and numerical models of the groundwater
flow circulation (piezometric and exploitation histories since 1990 and the hydrodynamic
data of the aquifer) were collected from the Regional Commissariat for Agricultural Devel-
opment (CRDA). Groundwater was exploited by 6970 wells for the shallow aquifer and
195 boreholes for the deep aquifer in 2020. The observation wells used are 53 and 39 wells
for the phreatic and deep aquifer, respectively.

ArcGIS v.10.5 was used to prepare input data maps. The DEM to define the vadose
zone thickness and ground elevation was obtained from STRM, while the digital geologic
map and borehole cross-section were used to determine the distribution of rock and vadose
zone types.

The statistical analysis was carried out by using SPSS v21.0. The Principal Component
Analysis (PCA) with varimax rotation was conducted to assess the strength of relationships
between variables (NO3

− and other major ions) in the study area. Processing MODFLOW-
2005 v11.0 [40] and MODPATH v.7 was used to simulate groundwater flow modeling and
particle tracking, respectively.
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4. Results and Discussion

4.1. Hydrochemical Characteristics
4.1.1. NO3

− Concentrations in Groundwater

Figure 5, generated using distribution of NO3
− concentrations in groundwater through

Kriging interpolation technique, shows that the lowest NO3
− concentrations are in the

western area of the Sidi Bouzid North basin and in the Awled Asker sub-basin. While
towards the East of the study area, NO3

− concentrations become very high, often exceeding
300 mg/L in both the shallow (Figure 6a) and deep (Figure 6b) aquifers. In the south, NO3

−
concentrations vary from 30 mg/L to 120 mg/L. The highest levels of NO3

− are around
930 mg/L and are recorded in the Oued El Hjal sub-basin. This differentiation of spatial
concentration distributions of nitrate is due to the hydrodynamic functioning of the aquifer
system which is also influenced by lithostratigraphic variations.

Figure 5. Spatial distribution of NO3
− concentrations in groundwater: (a) shallow aquifer and (b)

deep aquifer.

4.1.2. Comparison Nitrate with Other Ions

The relationship between the nitrate concentration and chemical elements was investi-
gated for geochemical characterization of groundwater and to trace the origin of NO3

−.
Cl− and Na+ in groundwater are often linked to halite dissolution (NaCl). The evolution of
Na+ has been studied as a function of Cl−, which is considered a stable and conservative
tracer of evaporites [41]. The graph in Figure 6a shows that several samples line up on
the slope line 1:1, indicating coexistence of the two ions and possible NaCl dissolution.
Other samples, especially from the deep aquifer of the Oued El Hjal sub-basin, have an
excess of Cl− compared to Na+, this can also be explained by the dissolution of halite, but
with subsequent sorption of Na+ via cation exchange. The role of carbonate and evaporite
dissolution on groundwater composition was investigated through the scatter plots of
(Ca2+ + Mg2+) versus (HCO3

− + SO4
2−) as shown in Figure 6b. Most water samples are

located near and below the slope line 1:1 on the side of HCO3
− + SO4

2−, indicating no
preferential dissolution of evaporitic or carbonate rocks as major hydrochemical process of
the entire aquifer system of the study area. One exception is the deep aquifer of Oued El
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Hjal sub-basin, in which the excess of Ca2+ and Mg2+ could be due to cation exchange with
Na+, as previously postulated.

Figure 6. Scatter plots of major ions in the deep and shallow aquifers.

The predominance of SO4
2− over HCO3

− and the lack of a strong link between the
species Ca2+, HCO3

−, and SO4
2− indicate that other processes control the water chemistry,

such as dedolomitization, which involves dissolution reactions with carbonate minerals and
gypsum. Dedolomitization is often caused by gypsum-to-anhydrite conversion [42] accom-
panied by the dissolution of dolomite and the precipitation of calcite (CaMg(CO3)2 + Ca2+

2CaCO3 + Mg2+). The dissolution of gypsum consequently increased the concentration
of Ca2+ by the same Ca2+/Mg2+ ratio. This ratio once greater than 0.5 thermodynamically
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causes dedolomitization [43]. All samples from the study area show a Ca2+/Mg2+ ratio
greater than 0.5, thus explaining that the dedolomitization process seems to mark the water
chemistry. The dissolution of dolomite consequently led to an increase in the concentration
of Mg2+ in groundwater. This process, which includes the dissolution of gypsum, is high-
lighted through the correlation (Ca2+ + Mg2+) vs. (SO4

2− + 0.5HCO3
−), where most of the

samples are organized along the straight line 1:1 (Figure 6c), except the ones pertaining to
the deep aquifer of the Oued El Hjal sub-basin, in which the excess of Ca2+ and Mg2+ could
be due to cation exchange with Na+ which takes place within and on colloid particles. The
overall reaction of the dedolomitization process can be written as follows:

CaMg(CO3)2(s) + CaSO4x2H2O(s) + H+ = CaCO3(s) + Ca2+ + Mg2+ + SO4
2− + HCO3

− + 2H2O (2)

To better discriminate all the cation exchange phenomena within the aquifers system, a
plot of Na+ vs. Mg2+ is shown (Figure 6d). Cation exchange takes place with the colloids of
organic matter and rich clay minerals present in the aquifer matrix, which release Na+ and
adsorb Ca2+ and Mg2+, leading to an increase in Na+ concentrations in groundwater. Here,
all samples show a slight abundance of Na+ with respect to Mg2+, except for the samples
from the deep aquifers of Oued El Hjal, in which excess of Mg2+ is released in groundwater
via dedolomitization which triggers Na+ adsorption. Finally, Figure 6e shows that the
sum of Ca2+ and Mg2+ correlates very poorly with HCO3

−, excluding simple dolomite
dissolution mechanism as the main driver of the observed patterns.

4.1.3. Principal Component Analysis

The PCA was applied to the chemical elements (the variables) of groundwater in
the study area for the three sub-basins, reducing the dimensions of the data to two main
components (F1 and F2) (Table 1), which are visualized graphically in Figure 7. The
correlations between the variables and the main axes show that the first two axes F1 and F2
express 69.6%, 69.6%, and 82.0% of the total variance for the sub-basins of Awled Asker,
Oued El Hjal, and Sidi Bouzid, respectively.

The NO3
− content in the Awled Asker and Oued El Hjal basins is found to be asso-

ciated with other dissolved species, which explains a common origin between them, and
thus a geogenic origin (Figure 7). While in the Sidi Bouzid, NO3

− content is associated
with HCO3

− that is often related to an increase in inorganic carbon due to heterotrophic
denitrification, thus suggesting fertilizer application is the source.

Table 1. The contribution of the factorial axes in the total values and the attributed eigenvalues of
groundwater in the three sub-basins of the study area.

F1 F2

Oued El Hjal
Eigenvalue 5.227 1.737

Variance (%) 52.268 17.374
Cumulated variance (%) 52.268 69.642

Sidi Bouzid
Eigenvalue 7.151 1.051

Variance (%) 71.508 10.510
Cumulated variance (%) 71.508 82.018

Awled Asker
Eigenvalue 4.637 2.326

Variance (%) 46.369 23.263
Cumulated variance (%) 46.369 69.633
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Figure 7. Projection of observations and variables into the factorial plane (F1 × F2): (a) sub-basin
of Awled Asker (13 samples), (b) sub-basin of Oued El Hjal (36 samples), and (c) sub-basin of Sidi
Bouzid (57 samples).

4.2. Model Discretization and Calibration

The numerical model domain covers an area of 1508 km2 (43 km × 41 km). The
UTM global coordinate system has been used to create the model and the database. The
modeling grid consists of a cell dimension of 500 m × 500 m and 4 layers (Figure 8), the
shallow aquifer was subdivided into 2 layers to better represent the surface features, while
layer 3 represented the confining unit and layer 4 the deep aquifer. The grid cells are
designated as inactive outside the model domain and in the impermeable areas, and as
active inside the model domain. The regional Shuttle Radar Topography Mission (STRM)
Digital Elevation Model (DEM) with a spatial resolution of 20 m × 20 m cells was used
and interpolated over the model grid to reproduce the basin topography. The hydraulic
conductivity (K) of lithological units was obtained from pumping tests: 41 pumping tests
were performed in the shallow aquifer and 30 in the deep aquifer. The resulting mean K
values and the respective standard deviation were 5.35 × 10−4 ± 3.54 × 10−4 m/s for the
shallow aquifer and 1.44 × 10−3 ± 7.73 × 10−4 m/s for the deep aquifer. Thus, the deep
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aquifer is more permeable than the shallow one, and both are characterized by relatively
homogeneous K distributions. The confining unit was simulated with a K of 1.0 × 10−9 m/s
to ensure sealing among the unconfined and confined aquifers to maintain the observed
heads differences among the aquifers. The vertical anisotropy was set equal to 1:10 in all
layers as suggested by the PM11 manual [40].

 

Figure 8. 3D discretization and boundary conditions of the Mio-Plio-Quaternary aquifer system: drain
cells representing the Wadis (yellow), pumping wells (red), General Head Boundary representing
the inflow and outflow from the basin (blue), and HFB representing the major faults (olive green).
Vertical exaggeration is 1:20.

The boundary conditions are presented by assumed or known supplies and/or
flows [33]. The lateral contribution from the nearby basins were determined based on
the hydraulic potentials and were simulated via the General Head Boundary package
(Figure 8), as well as the contribution of the Sidi Saad dam to the supply of the down-
stream part of the basin. To ensure a good connection with the aquifers, a very high value
(0.1 m2/s) of water supply from Sidi Saad dam was set up. The Well package was employed
to distribute an average pumping rate in more than 300 wells scattered throughout the
model domain in both aquifers. Groundwater drainage from the beds of wadis (El Fekka,
Sarigh Dhiba, Sbitla, and Jilma) was simulated with the Drain package (Figure 8), using
a conductance of 0.001 m2/s to allow a good drainage from the nearby cells and setting
the elevation of the drain 2 m below the topographic surface. Recharge was initially set to
43 mm/y (approximately 20% of precipitation) and multiplied by an altitude factor of 1.44
over 100 m. This factor was calculated comparing 12 meteorological stations ranging from
297 to 413 m a.s.l. to include the higher recharge from the mountain ranges that border the
basin. The Evapotranspiration package was used to simulate the evapotranspiration from
groundwater, using the mean value for the area from 1990 to 2010 [44] as maximum uptake
rate (630 mm/y) and an average extinction depth of 3 m. The horizontal flow barrier (HFB)
package was used to simulate the compressive faults, using a thickness of 1 m and an
equivalent K of 1.0 × 10−9 m/s (Figure 8).
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The model calibration was initially obtained manually by a trial-and-error approach,
then employing PEST for an automated calibration and sensitivity analysis [45]. The vertical
K were tied to the horizontal K parameters that were log transformed, and their minimum
and maximum values were set using the observed ones (see Supplementary Information of
K values in Table S3), while the recharge and evapotranspiration rates were calibrated as
relative parameters. The observations used in the model calibration include the observed
hydraulic heads in the 53 observation wells for the shallow aquifer and 38 observation wells
for the deep aquifer. Quantitatively, the model calibration performance was evaluated by
the criterion of the mean error (ME), the mean square error (MSE), and the determination
coefficient (R2).

The model calibration was carried out by automatically tuning the K values and other
parameters like maximum evapotranspiration rate, recharge rate, and drain conductance,
reported in Table 2 with their composite sensitivities. The comparison between observed
and simulated head for both the shallow and the deep aquifers is shown in Figure 9. The
points are scattered along the 1:1 line, with no apparent pattern. However, there is a slight
underestimation in the calculated heads as suggested by the mean error (ME) that denotes
approximately −0.26 m of error, which is acceptable compared to the whole piezometric
range simulated here (more than 150 m) with the R2 being higher than 0.9 (Figure 9).
The relatively large MSE of calculated heads could have been due to local variability of
hydraulic conductivity here not considered to maintain the simplicity of the model as much
as possible.

Table 2. Calibrated parameters values and their composite sensitivity via PEST.

Parameter Value Composite Sensitivity

K layer 1 Shallow aquifer (m/s) 8.50 × 10−5 4705
K layer 2 Shallow aquifer (m/s) 1.00 × 10−3 364
K layer 4 Deep aquifer (m/s) 1.37 × 10−3 707
Recharge rate (mm/y) 38.7 134
Evapotranspiration rate (mm/y) 625 13
GHB Conductance (m2/s) 0.1 22
Drain Conductance (m2/s) 0.24 122

 

Figure 9. Scatter diagram of the observed versus calculated head values (dots) for the simulated
aquifers system.

The most sensitive parameter was the K of the first layer which was mostly unsat-
urated, followed by the K value of the deep aquifer indicating that the most uncertain
parameters are the hydraulic conductivities of the aquifers.

For the shallow aquifer, the hydraulic head ranged between 350 and 260 m, and high
values were observed in the western part of the Awled Asker sub-basin (Figure 10a). The
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main flow direction goes from the Southwest and the West draining Mghila and Al Rakhmet
mountains to the discharge area in the evaporation areas and the El Hjal Wadi in the north
and the Centre-East of the study area.

 

Figure 10. Contours of the calculated groundwater heads for the shallow (a) and deep aquifers
(b). The backward particle trajectories from the zones with high NO3

− concentration for the period
1990–2020, in blue for the shallow aquifer and red for the deep aquifer; black points delineate the
NO3

− source zones in 1990.
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For the deep aquifer, the hydraulic head map (Figure 10b) shows values between
270 m and 210 m, thus potentially draining the shallow aquifer. The flow direction is mostly
from the West and Southwest towards Northeast. From the model, the flow converges
in the south of Lessouda mountain (here simulated as no flow boundary and the center
of the model). Then it is divided into two directions: (1) to the East of the study area
where discharge is in the evaporation area of Al Akarich and Negada, and (2) to the North
towards the El Hjal Wadi where the drainage takes place. This division of the flow in the
two directions imposes the assumption of the existence of the deep faults of Lessouda
Boudinar and Kassrine that act as horizontal flow barriers. Without using the HFB package,
it was not possible to reach an acceptable calibration due to groundwater heads that were
too low or too high with respect to the measured ones near faults.

In the Sidi Bouzid North basin, the groundwater budget, in the steady state condition,
shows a good balance between input and output flows with a percent error equal to 0.16%
and −0.35% for the shallow and deep aquifers, respectively (Table 3). The main input to the
shallow aquifer is the recharge through porous deposits, which is estimated at 2.78 m3/s
and constitutes 71.5% of the total inflow of the shallow aquifer and the 36% of the whole
aquifers system. The contribution of the GHB estimated by the model are: (1) for the
inputs, 1.106 m3/s and 3.59 m3/s for the shallow and deep aquifer, respectively; and (2)
for the outputs, 8.55 × 10−2 m3/s towards the Sidi Saad dam for the shallow aquifer and
0.80 m3/s for the deep aquifer towards the basin located in the north of the study area. For
the vertical groundwater leakage between the aquifers, the input from the shallow to the
deep aquifer is estimated at 0.300 m3/s. The main outflow of the aquifers system is divided
into exploitation by wells (1.01 m3/s from the shallow aquifer and 3.1 m3/s from the deep
aquifer), drainage towards the wadis, and evapotranspiration which is found only in the
shallow aquifer with estimated values of 2.34 m3/s and 0.157 m3/s, respectively. It can
be noticed that the actual overexploitation from wells is not sustainable by the recharge
occurring in the study area; in fact, a water table drawdown (approximately 20 m) has been
experienced by both the shallow and the deep aquifer in the last decades.

Table 3. Groundwater balance of the shallow and deep aquifers: GHB (Head Dependent flux Boundaries).

Shallow Aquifer Deep Aquifer

Flow in m3/s % m3/s %

GHB 1.106 28.5 3.59 92.0
Recharge 2.78 71.5 0 0

From Shallow aquifer 0 0 0.300 8.0

Flow out m3/s % m3/s %

Wells 1.01 25.7 3.10 79.4
Drains 2.34 60.3 0 0

Evapotranspiration 0.157 4.0 0 0
GHB 8.55×10−2 2.2 0.80 20.5

To Deep aquifer 0.300 8.7 0 0

Total 3.88 100 3.90 100

IN-OUT 6.39 × 10−3 −1.35 × 10−2

Percent error 0.16 −0.35

4.3. Particle Tracking Results

The results of MODPATH via forward particle transport highlighted that it was not
possible to bypass the thick aquitard between the shallow and deep aquifer since the
beginning of urban settlement growth and use of synthetic fertilizers since the early 1970s.
Moreover, it must be stressed that the choice of a steady state model is a conservative
option, since the overexploitation of the aquifer experienced a dramatic increase in the last
30 years.
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The simulation shown in Figure 10 backtracked particles from the NO3
− enriched

zones (see Figure 5 for location) towards their possible origin before the overexploitation of
the aquifer system for a period of 30 years (from 1990 to 2020). This approach allows the
interpretation of flow directions and travel times and possibly reconstructs the location of
the source zones. The flow paths of advective transport in the shallow aquifer differ from
those obtained in the deep aquifer. While the shallow aquifer has the NO3

− source zones
located near the contaminated zones and within agricultural areas, the source zone for the
deep aquifer is located approximately 10 to 15 m upgradient and southward to Oued El
Hjal sub-basin (between Jebel Lessouda and Jebel Faidh), where no agricultural fields are
present, since the small valley is a former Sabkha.

In the Sidi Bouzid basin, the NO3
− accumulations are associated with pre-Triassic

embankment landscapes and occur on domed geomorphic surfaces with a gypsum, phos-
phate or clay cover. The rough surfaces of surficial materials trap fine textured aeolian
sediments rich in organic matter, which are then washed under or over the sides of the
syncline during intense episodic rainfall events. For thousands of years, the eolian deposits
accumulated and raised a fine mosaic of an alluvial embankment to form a desert stone
pavement. These deposits stabilized over time, decreasing infiltration, increasing surface
runoff, and allowing soluble salts to accumulate below the surface. Heaton [40] suggested
that the high NO3

− concentrations in groundwater result from N fixation by cyanobacteria
and subsequent mineralization and nitrification of the organic matter over time. However,
the first hypothesis could not be confirmed with the available data. The hydrochemical data
and Figure 10 indicate that the NO3

− in the deep aquifer of Oued El Hjal is likely to have
come from natural sources and could not have been derived from anthropogenic sources.

As reported by Kaplan et al. [46], according to the logic of nature, the accumulation
of contaminants that comes from the surface takes place in the unconfined aquifer, which
is not the case of this study where the highest NO3

− concentrations were found in the
deep aquifer. Also, the examination of the land cover map shows that the areas with the
highest NO3

− concentrations coincide with bare land or olive trees that do not require
excessive use of N fertilizers. Thus, the above-mentioned features suggest that the first
hypothesis is far from being accepted. Nevertheless, new data on groundwater ages and
environmental tracers should be collected in future studies to independently confirm or
reject this conceptual model.

5. Conclusions

In this study, NO3
− origin in groundwater of the Mio-Plio-Quaternary aquifer of

Sidi Bouzid North basin was assessed. To evaluate the origin of extremely high NO3
−

concentrations in deep groundwater samples, hydrochemical investigations and ground-
water flow modeling were employed. Geostatistical analyses were used for hydrochemistry
assessment, and the correlation among solute species showed that groundwater is affected
by evaporite dissolution and water quality changes in the whole studied area. PCA showed
that NO3

− in most samples have origins associated with other chemical elements related to
evaporitic salts dissolution. Groundwater flow modeling highlighted that recharge was the
most important groundwater inflow into the aquifer system, while exploitation by wells is
the most important outflow. Moreover, the particle tracking simulation showed that leak-
age of NO3

− through the aquitard between the shallow unconfined aquifer and the deep
aquifer was negligible, which further suggested that the NO3

− origin in the deep aquifer is
geogenic. On the contrary, the NO3

− origin in the shallow aquifer is anthropogenic and
mainly due to fertilizers leaching.

The approach developed in this study can be a valuable decision support tool for
groundwater resource managers in the Sidi Bouzid North basin, and the approach can be
replicated in similar environmental settings. However, to make the implemented model
a more robust tool for integrated water resources management in the study area, future
simulations must be applied using transient state models based on several scenarios and
new data on groundwater age and origin must confirm the proposed conceptual model.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14244124/s1, Table S1: Factor Loadings, Table S2: Hydrochemical
data, Table S3: Transmissivity thickness and K.
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Abstract: In the context of climate change, the correct management of groundwater, which is strategic
for meeting water needs, becomes essential. Groundwater modeling is particularly crucial for the
sustainable and efficient management of groundwater. This manuscript provides different types of
modeling according to data availability and features of three porous aquifer systems in Italy (Empoli,
Magra, and Brenta systems). The models calibrated on robust time series enabled the performing of
forecast simulations capable of representing the quantitative and qualitative response to expected
climate regimes. For the Empoli aquifer, the process-based models highlighted the system’s ability
to mitigate the effects of dry climate conditions thanks to its storage capability. The data-driven
models concerning the Brenta foothill aquifer pointed out the high sensitivity of the system to climate
extremes, thus suggesting the need for specific water management actions. The integrated data-
driven/process-based approach developed for the Magra Valley aquifer remarked that the water
quantity and quality effects are tied to certain boundary conditions over dry climate periods. This
work shows that, for groundwater modeling, the choice of the suitable approach is mandatory, and it
mainly depends on the specific aquifer features that result in different ways to be sensitive to climate.
This manuscript also provides a novel outcome involving the integrated approach wherein it is a
very efficient tool for forecasting modeling when boundary conditions, which significantly affect the
behavior of such systems, are subjected to evolve under expected climate scenarios.

Keywords: water management; groundwater forecasting; foothill aquifers; Brenta River plain; Empoli
plain; Magra Valley

1. Introduction

Most of the available freshwater sources on Earth are stored underground; therefore,
groundwater represents the main source of water supply [1]. Worldwide, more than
2 billion people depend on groundwater for their daily water use [2]. In many areas,
groundwater bodies represent the most important and safest source of drinking water [3,4].
In European countries, for example, groundwater exploitation provides water for human
consumption for 70% of the population on average [5]. Groundwater withdrawals supply
40% of industrial water [6], and groundwater use for irrigation is also significant and
increasing. Siebert et al. [7] estimated that, globally, 38% of the area equipped for irrigation
is provided by groundwater.

The reliance on this resource is continuously growing [8], given the key role that
groundwater plays in mitigating climate change/variability and in addressing the signifi-
cant increase in the global water demand, which has been predicted as a consequence of
the future economic expansion, population growth, and urbanization [1,9].
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Both present observations and simulations of climate conditions point out that changes
are occurring or will occur in several regions in terms of higher temperatures, lower precip-
itation, increases in climatic extremes, and climate types [10–14]. Although groundwater
systems are more resilient to climate change than surface waters, they are affected both
directly and indirectly [15,16], especially when referring to local groundwater flow with
low travel time [17].

Despite this, and unlike surface waters, groundwater bodies have not been widely
studied, and there is a general paucity of quantitative information, especially in relation to
climate change. The estimation of the entity of these effects is mandatory for the reliable
management of this crucial resource, which must be protected by suitable actions in order
to guarantee a safe water supply for the next generations [18].

Groundwater modeling is particularly crucial for the sustainable and efficient man-
agement of groundwater resources, even more in the context of expected climate change.
Process-based or empirical (data-driven) numerical models can be used to model groundwater.

For the implementation of process-based models, it is necessary to know the boundary
conditions, hydrogeological variables, and structural complexities of the aquifers [19]; in
other words, it is necessary to know the conceptual model that is the synthesis of what is
known and quantified on the system [20]. These models use deterministic and spatially
distributed data, which must be characterized by significant accuracy. Their application
to heterogeneous aquifers and particular situations within the hydrogeological domain
(e.g., groundwater–river interactions) can lead to significant uncertainty associated with
the number and complexity of parameters, as well as with the type of modeling itself based
on the head-oriented approach (HOA) [21,22]. In such cases, aside from the alternative
of the MODFLOW-based velocity-oriented approach (VOA) [22], an additional possible
approach is to use the stochastic approach in defining the aquifer parameters [23].

In contrast, data-driven models involve mathematical equations that are not derived
from prior knowledge of the physical process. Rather, they are based on the analysis of
input/output relationships in the process under observation [24–26], even if the knowledge
of the general conceptual model of the systems can significantly steer the development of
the data-driven approach. To perform such analysis, mathematical tools, often involving
machine-learning techniques, are used to approximate the behavior of the physical process
on the basis of available datasets that describe its input/output transfer functions (e.g.,
linear regressions, multilinear regressions, neural network models, etc.). Therefore, data-
driven models can be efficiently used to describe particular and specific processes [27,28]
that are hard to determine with a physically based approach and can eventually be incor-
porated into larger physically based models [29–31].

Generally, process-based models are preferred over data-driven models because the
first can make acceptable forecasts when a large number of observations are not available
and when future conditions lie outside the range of stresses in the historical record, such as
responses to climate change [19]. Moreover, the data-driven approach has the limitation
of referring to punctual situations or specific processes in the groundwater system (e.g.,
relationships between superficial water and groundwater) and not to the entire volume
or significant portions of the aquifer, as in the case of process-based models. Additionally,
for this reason, the latter is generally preferred by decision-makers to steer groundwater
management actions.

This manuscript provides different experiences of groundwater modeling applied
to porous aquifer systems, with the aim of emphasizing the criteria of the methodology
choice, its advantages and disadvantages, and the potentiality of a combined approach.

All the presented models represent operational tools for the reliable management of
the water resource, as well as diagnostic tools to understand the functioning of the aquifer
system better and how the effects of climate change in the short and long term affect the
water resource quantity and quality.
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2. Materials and Methods

Three case studies are presented (Figure 1): the Empoli plain aquifer system, which was
modeled using a process-based model; the foothill aquifer system of the Brenta River plain,
where a mathematical regression model was applied; and the Magra Valley aquifer system,
where a combined approach with process-based and data-driven modeling was developed.

 
Figure 1. Location of the three case studies.

The considered case studies encompass different combinations of recharge mecha-
nisms, thus providing cases with different implications of climate change for groundwater
systems [32]. Particularly, we analyzed situations in which the diffuse recharge is domi-
nant and situations in which the focused recharge (i.e., losing rivers) is from significant to
principal and, therefore, very sensitive to changes in the weather and climate regime, both
in terms of quantity availability and water quality [33].

The first step was to collect data on meteo-climatic parameters, geology, hydrogeology,
geochemistry and isotope signatures, as well as on the main items entering or leaving the
system (e.g., well withdrawal). All the data collected were processed and compared in
order to define a conceptual model that summarizes and quantifies the main processes and
constraints of the aquifer for the purpose of developing the mathematical model.

Most geological, hydrogeological, and geochemical information used to elaborate the
conceptual model of the different areas derive from the numerous studies that the authors
carried out in cooperation with local authorities (Tuscany Region, Water Authorities, Water
Managers) and/or in the frame of doctoral theses.

As a consequence of the hydrogeological and hydrodynamic features of the systems
and data availability, different types of mathematical modeling were chosen: process-based
modeling, data-driven modeling, and a combined approach.

2.1. Process-Based Model

The process-based model uses processes and principles of physics to represent flow,
and it consists of: (i) a governing equation that describes the physical process within the
problem domain; (ii) boundary conditions that specify heads or flow along the boundaries;
and (iii) for time-dependent problems, initial conditions that specify head at the beginning
of the simulation [19]. Groundwater flow models can be solved analytically or numerically
for the distribution of heads in space and in time for transient problems. Assumptions
built into analytical solutions limit their application to relatively simple systems [34], and
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usually, they are inappropriate for real groundwater problems. Typically, numerical models
based on finite differences are used to simulate groundwater flow.

In this work, the codes used to process the input data and solve the process-based
equation that describes the groundwater system are MODFLOW [35] and related codes.
Groundwater Vistas [36] and Groundwater Modeling Systems [37] were used as graphical
user interfaces.

The model creation started with the implementation phase, where the domain in space
and time was discretized, hydraulic parameters applied, and boundary conditions defined
based on the conceptual model previously defined. Subsequently, the model was calibrated
on the basis of a comparison between the simulated and collected data. The calibration was
performed manually (trial-and-error method) and automatically using specific code, like
the PEST code [38].

Once a sufficiently calibrated model was obtained, forecast simulations were then
carried out with the aim of assessing how the expected extreme climatic regimes would
affect the groundwater quantity and quality.

The development of this type of model requires a large amount of information and
input data evenly distributed over the domain. In particular, it is necessary to know the
geometries of the system under study, the hydraulic parameters of the various lithotypes
that make it up and to identify and quantify the main components entering and leaving the
system. Moreover, the representativeness of the model itself is inextricably linked to the
availability and reliability of the data required in the calibration phase.

The process-based modeling was applied to a porous multilayer system (Empoli plain
aquifer system) in the central part of the Arno River catchment (Central Italy, Tuscany)
because previous knowledge and available data were deemed sufficient and suitable for
the development of this type of model.

2.2. Data-Driven Model

Data-driven models use empirical or statistical equations derived from the available
data to approximate the input/output relationships between physical variables characteriz-
ing a system without quantifying its process and physical properties [19].

Initially, a site-specific equation is developed by fitting parameters either empirically
or statistically to reproduce the historical data (e.g., piezometric level) in response to other
parameters (e.g., surface water level, precipitation). This equation is subsequently used to
calculate the response to future stresses.

This type of modeling requires a large number of observations of heads that ideally
encompass the range of all expected stresses to the system, but it is independent of the
knowledge of numerous parameters distributed over the territory that is often difficult to
find, as well as the hydrogeological processes taking place in the aquifer system. Data-
driven models are very powerful, but they only estimate a given variable on one or more
individual points and do not return information on a domain scale (e.g., water balance).

Considering the very long time series of numerous continuous monitoring stations
of precipitation, hydrometric, and piezometric levels in the foothill aquifer system of the
Brenta River (North-East Italy, Veneto), and pending a more detailed reconstruction of the
hydro-structures, the first attempt of a mathematical regression model was developed for
this system. In particular, a Multiple Linear Analysis (MLRA) was performed, considering
dependent and independent variables; in this case, piezometric levels were estimated by
means of hydrometric level and rainfall quantity.

Various regression models were carried out using transformation of the raw variable
(e.g., moving average, shift) to maximize the correlation coefficient between the dependent
and independent variables. The main steps of the workflow can be summarized as follows:
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(1) Gap filling;
(2) Trend and outlier analysis;
(3) Autocorrelation and cross-correlation;
(4) MLRA;
(5) Residual analysis;
(6) Validation and forecasting.

All of these procedures were applied by selecting one piezometer and one hydrometric
station that are representative of the main hydrological process occurring in the Brenta
aquifer system, consisting of the groundwater–streamwater exchanges.

2.3. Process-Based and Data-Driven Models Combined

To develop a predictive flow and transport process-based model in order to evaluate
the behavior of the aquifer in anticipated climate scenarios, it is often necessary to imple-
ment the value of expected precipitation plus expected values for additional constraints
that are strongly related to the rainfall itself, such as river levels or heads of boundary
conditions. This is particularly important in the systems where the groundwater flow
response is deeply affected by such local constraints (e.g., losing a river whose feeding rate
is relevant to the total water budget of the aquifer system) in comparison with the effects
of diffuse rainwater infiltration. In order to address these issues, a possible solution is to
realize a data-driven model able to reproduce over time boundary conditions (e.g., rivers
and constant head or general head boundaries) of the physical model under hypothetic (or
“synthetic”) future climate scenarios.

The production of synthetic scenarios is a fundamental step in this type of approach,
as it permits the analysis and evaluation of situations that are plausible but not necessarily
recorded in historical data series. More in detail, the basic concept is to produce a synthetic
time series inspired by historical series, to establish hypothetical but plausible trends of
parameters that are insufficiently monitored or not monitored at all, and to thicken the
statistical database used for training machine learning algorithms.

This type of combined approach, therefore, requires not only an appropriate knowl-
edge of the aquifer system, as well as the availability of reliable data appropriately dis-
tributed throughout the territory for correct implementation and calibration of the process-
based numerical model, but also the availability of robust data sets on strategic continuous
monitoring points for the development of data-driven models.

The aquifer system of the Magra River plain (North-West Italy, Liguria) was taken as a
case study for this type of approach due to the great number of measurement points and
the availability of robust time series for significant boundary conditions. The first step was
to create a suitably calibrated flow and transport process-based model. Subsequently, in
order to create a useful dataset to implement the boundary conditions of the forecasting
model, fully synthetic datasets were generated as a training set of the data-driven scheme,
with input variables inspired by selected climate models and input/output relationships
estimated by past observations (Figure 2). In particular, the rainfall time series was gen-
erated stochastically by means of the WeaGETS package [39], using as input the rainfall
time series actually measured at a rain gauge located in the area of interest, whereas the
synthetic time series of temperature was based on the MarkSim simulation system [40]. An
experimental run of the flow-transport model for 30 years ahead was therefore performed
based on such hypothetic scenarios.
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Figure 2. Block diagram describing the approach for developing a flow and transport model dedicated
to specific parameters based on machine learning.

3. Results

3.1. Process-Based Models of the Empoli Aquifer System

As previously mentioned, given the knowledge degree of the Empoli aquifer system
and considering the available data, it was decided to develop process-based models in order
to provide the water manager with a tool for planning a sustainable use of the resource
under possible future weather and climate conditions.

3.1.1. Conceptual Model

The Empoli aquifer system develops in the plain of the middle part of the River
Arno catchment (Figure 3). From a geological point of view, the area corresponds to a
wide depression filled by Neogene-Quaternary deposits and recent alluvium sediments
that reaches a maximum thickness of around 40 m lying on a substratum of Pliocene
marine deposits, mainly made up of clays. Overall, the aquifer system consists of two
main permeable layers characterized by a significant lateral extension, to which lower
permeability deposits are interbedded (Figure 3).

 
Figure 3. Geometrical reconstruction of the horizons constituting the Empoli aquifer system.

Based on the 3D reconstruction of the subsoil (Figure 3), it can be stated that:
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• The chiefly confined lower aquifer layer consists of sandy gravels and gravels with an
average thickness of approx. 7 m (maximum 14 m). The base of the aquifer is repre-
sented by the Pliocene substratum. This aquifer is separated from the upper aquifer by
a clayey layer of variable thickness (average 7 m) and spatially discontinuous. Locally,
where the clayey septum is not present, this aquifer level is hydraulically connected to
the shallower one.

• The upper aquifer was reconstructed with continuity over the entire domain and
represented the main aquifer in volumetric terms. It is composed of sand and gravel,
often in mixed components; the grain size varies from predominantly gravelly sandy
in the sectors facing the Arno River to a sandy loamy in the more distal areas. The
average thickness of the aquifer is approx. 10 m, with varying values up to 20 m.

• Generally, a horizon defined in the reconstruction as an aquitard/aquiclude is above
the most superficial aquifer, but its grain composition, typically consisting of clayey
and sandy silts, is such that it does not impart a purely confined character to the most
superficial aquifer.

Based on hydraulic tests performed on a lot of drinkable wells in the Empoli area,
transmissivity values characterizing the aquifer horizons vary between about 2 × 10−3

and 2 × 10−2 m2/s and hydraulic permeability values between about 2 × 10−4 and
2 × 10−3 m/s, in accordance with the gravelly sandy grain sizes.

Based on previous multidisciplinary studies [41–43] that involved geological, hydro-
geological, and isotopic-hydrochemistry elaborations, the recharge of the system is mainly
from direct infiltration. Furthermore, there are significant contributions from rivers (in
particular from the Arno and Pesa rivers), as well as secondary underground transfers
from the hill system along the foothill margins. As regards meteoric recharge, on the basis
of historical data [44], it is possible to calculate an average annual value (data from 2000
to 2018) of 776 mm of rainfall and an average evapotranspiration value of 456 mm with
an effective rainfall value of 320 mm [45]. The main outflows from the system are wells
withdrawal, the drainage action of the Arno River in limited sectors, and natural under-
ground outflowing of the modeled domain at the west. As far as outflows are concerned,
the wells have been subdivided according to the use (domestic, agricultural, industrial,
drinkable use) on the basis of available information and land use. For wells of drinking
water supply, the consumptions were provided by Acque SpA (average annual flow rates
for the period 2011–2016; average monthly flow rates for 2017), whereas for the wells used
in agricultural and industrial activities, the pumping rates were estimated from a study of
the Tuscan Region’s Hydrological Service [46]. Table 1 shows the estimated consumption
for each type of use in the model domain.

Table 1. Annual water consumption of each type of well.

Water Consumption (Mm3) Use

8 Drinkable
0.2 Domestic
2.2 Industrial
0.5 Agricultural

3.1.2. Models Implementation

The model domain is shown in Figure 4. The space has been discretized by 108 rows
and 291 columns with cells of 50 × 50 m and four layers for a total of 125,712 cells, of
which 81,856 are active. The thickness of the cells varies according to the geometry of
the geological model (Figure 4). Specifically, the first layer is mainly representative of the
horizon defined in the reconstruction as an aquitard/aquiclude; the second and fourth
layers are representative of the shallower and deeper aquifers, respectively; the third layer
was implemented to represent the impermeable interlayer separating the two main aquifers
when present. The assigned hydraulic conductivity is also shown in Figure 4.
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Figure 4. Spatial discretization in raw and column (cells of 50 × 50 m) and in 4 layers, and hydraulic
properties (K in m/day) assigned.

From a temporal point of view, a steady-state model was initially implemented, thus
taking into account the average values of all input data; subsequently, a transient-state
model was implemented with monthly stress periods covering the period from January
2016 to December 2017.

The main components entering or leaving the system were mathematically represented
through boundary conditions (Figure 5). Boundary conditions of the first type (Constant
Head) were set in those sectors (boundaries to the south) where previous studies [42,43]
indicate a significant feed component, as well as in the boundary to the west of the model
to represent the natural subterranean outflow through that sector (downstream zone). The
values assigned to these boundaries were defined on the basis of available monitoring data
and subsequently refined during the calibration phase.

The main watercourses were represented using a third type of boundary condition
(River). The implemented water level data are derived from those recorded by monitoring
stations in the area (data available online at www.sir.toscana.it, accessed on 1 March
2018), the river bed elevation and width data from Lidar images (data available online at
http://www502.regione.toscana.it/geoscopio/cartoteca.html, accessed on 1 March 2018).
For the permeability of the river bed sediments, a value between 0.86 and 8.64 m/d was
set, whereas their thickness was arbitrarily set at 1 m.

The effective rainfall value (precipitation-evapotranspiration) was used and multi-
plied by an infiltration coefficient related to land use to represent the effective infiltration
(0.25 in an urban environment and 0.4 in a rural environment). For the steady-state model,
the average effective rainfall value calculated for the period (2000–2018) was used, and for
the transient-state model, the monthly values were calculated.

The initial conditions of hydraulic loading in the aquifer were set equal to the ground
level elevation for the steady-state simulation, while for the transient-state model, they
correspond to the piezometric surface returned by the steady-state model.
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Figure 5. Boundary conditions and calibration target.

3.1.3. Models Calibration, Validation, and Output

For the calibration of the models, the data of three stations belonging to the continuous
monitoring network of the SIR were used (Isola, Giardino Val Gardena, and Via Giusti,
respectively named Isola, Giard, and Giusti in Figure 5), as well as the piezometric levels
measured on some monitoring points provided by Acque SpA (Figure 5), which perform a
monitoring activity on a network defined as the ‘Empoli profile’.

For the steady-state model, the average values of all available data were used. For the
transient-state model, on the other hand, monthly average values were calculated with the
daily data of the SIR stations [44], while for the other points, the discrete measurement was
attributed to the stress period in which it fell.

In conjunction with the calibration process, a sensitivity analysis was carried out in
order to make the identification of those parameters whose changes have the greatest influ-
ence on the results of the simulations possible. Specifically, the most sensitive parameters
were found to be the hydraulic conductivity of zone four and zone seven, representative of
the surface semi-permeable horizon and the deep aquifer, respectively.

Following an initial coarser calibration using the trial-and-error method, the PEST
code was subsequently used to better calibrate the model by varying the most sensitive
parameters by no more than 10% compared to what was defined on the basis of the
conceptual model.

The results of the calibrated steady-state model are shown in Figure 6a,b, whereas in
the diagrams of Figure 6c,d, it is possible to observe the variations over time of the experimen-
tal piezometric levels in comparison to the level evolution simulated with the transient-state
model in selected monitoring points during the calibration and validation periods.
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(a) (b) 

  
(c) (d) 

Figure 6. Calibration and validation of the model: (a) graph of observed vs. simulated level (in m
a.s.l.) and (b) calibration statistics of the steady-state model; (c) piezometric level (in m a.s.l.) over
time (day) measured (in red) and simulated (in blue) in the Isola target continuous monitoring point
and (d) piezometric level (in m a.s.l.) over time (day) measured (in red) and simulated (in blue) in the
6A target point of the Empoli profile (only one experimental datum is available for the 6A piezometer
over the validation period).

From the analysis of these diagrams (Figure 6), it can be observed that the model as a
whole is sufficiently representative in terms of both absolute values and monthly trends,
obviously in the areas where calibration targets are present. The modeled levels of the
Isola target are very consistent in terms of evolution with respect to the experimental data.
However, the residual values are significant (about 1 m), likely because of local conditions
that do not allow knowing the available information.

The water balance of the steady-state model (Figure 7a) indicates that the main
recharge component of the aquifer is the diffuse infiltration water (Rch). The rivers seep-
age (Riv in red) is also significant, and this component is particularly important in the
area close to the Empoli wellfield (Figure 3), as shown in the section of Figure 7c, thus
confirming the indications from water isotopes and hydro-chemical tracers analyzed in
previous studies [42,43]. The main outflow component from the aquifer is the wells’ with-
drawal and, secondarily, with similar quantities, stream drainage (Riv in green) and natural
subterranean outflow through the west sector (downstream zone).

By analyzing the water balance of the transient simulation (Figure 7b), the diffuse
recharge occurring in the rainy periods is confirmed to be the most important input for
the system. In the rainy seasons, almost 70% of such input contributes to water storage,
which is then consumed in part during the dry season. However, in the period covered
by the transient model (2016–2017 period, significantly rainy), there is a general increase
in water storage with an accumulation of more than 2 million m3 of water resources. The
water pumping is the main output from the aquifer (well in green).
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(a) (b) 

(c) 

Figure 7. Water balance for (a) steady-state and (b) transient-state models in the dry and rainy
seasons, and (c) section with flow line of the Empoli aquifer (for the section trace see Figure 5; CH:
constant head, Riv: river, Rch: recharge).

3.1.4. Forecast Simulations

Based on the groundwater models of the Empoli aquifer system, forecast simulations
were then carried out with the aim of assessing how the expected extreme climatic regimes
would affect groundwater. In particular, it was assumed that a weather-climate regime
similar to that of the current year and previous ones (i.e., 2003 and 2017), with several
months of drought conditions, can repeat for five consecutive years.

A transient-state flow model was then created with 20 quarterly stress periods. Stress
periods relating to the April–June and July–September periods were implemented with
zero recharge, as occurred in 2022, whereas the stress periods in the January–March and
October–December periods were implemented with low rainfall amounts similar to those
of the 2003 and 2017 years. Considering that diffuse infiltration is the most important
recharge component of the system, all other boundary conditions were kept constant with
average values used for the steady-state model.

In Figure 8, the evolution of groundwater level at targets (wells 6A, Giardino, A and
B; see Figure 5 for the location) and storage inflow in the domain during the simulation
period are represented. Most observation wells (wells 6A, Giardino and B) present a more
or less constant and low decrease rate that, over the entire period, results in about 1 m of
drawdown. For well A, the forecasted drawdown appears more important, amounting to
about 3 m in total over the period of simulation. The inflow of water storage in the ground-
water flux also decreases over the entire period, reducing by about 50%, even if it presents
a sub-cycle of increasing-decreasing correspondence to rainy and dry season alternations.
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Figure 8. Simulated evolutions of storage inflow into the domain and piezometric level at observation
wells A, B, and Giardino, 6A (wells location is in Figure 5).

3.2. Data-Driven Model of the Brenta Aquifer System

A consistent, continuous monitoring network made up of several meteoric, hydro-
metric, and piezometric stations is available for the foothill aquifer system of the River
Brenta. The availability of a very long time series allowed for the development of an
MLRA of the piezometric levels of groundwater in the middle-high plain. The regression
model aims to make predictions on the development of the groundwater level in expected
weather and climate conditions in order to provide useful information for steering the best
water management practices in a zone where strategic groundwater exploitation systems
are located.

3.2.1. Conceptual Model

The middle-high plain of the River Brenta is located in the Veneto region between the
Pre-Alps, and a series of aligned springs called the “Linea delle Risorgive” (Figure 9a). The
plain is mainly made up of glacio-fluvial and fluvial sediments (Late Pleistocene-Holocene)
deposited by Astico, Brenta, and Piave rivers from the west to east [47].

 
(a) (b) 

Figure 9. (a) Middle-high plain of the Brenta River and (b) schematic section of the aquifer system
(modified after [48]).

In particular, the high plain is essentially made up of a very thick layer of unconsoli-
dated conglomerates (gravels and pebbles), whereas the middle plain consists of gravelly
deposits intercalated by levels of sporadic cemented sands and silt and clay [49–52]. Thanks
to the general high permeability of deposits and to the high amount of annual rainfall, which
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varies between 1200 and 1500 mm/year, an important foothill aquifer system develop in
this area. The northernmost portion of the aquifer system is substantially unconfined, being
hosted into the thick single-layer of gravelly pebbly alluvial deposits (Figure 9b), whereas
the southern portion of the aquifer becomes semi-confined and multilayer consisting of
gravelly deposits intercalated by level with low permeability [49,51,53]. The inhomoge-
neous hydrogeological conditions are not only moving north–south, from downward the
foothill zone, but also laterally, in the east–west direction, for the presence of other foothill
alluvium fan systems belonging to different rivers. The recharge of groundwater resources
depends on different mechanisms, whose prevalence varies according to the sectors of the
aquifer system. The focused recharge is dominant in the zone crossed by the River Brenta
over the high plain, where this watercourse loses important water quantity towards the
aquifer [49,51,53]. Local rainfall infiltration becomes the main recharge mechanism away
from the main river path.

3.2.2. Model Implementation and Validation

The MLRA of the piezometric level has been realized using data recorded by: one
pluviometry station (PS), one hydrometric station (HS) and one piezometer (Figure 9a).
These points were chosen based on the conceptual model discussed above in order to
represent the relationship between surface water and groundwater that significantly affect
the groundwater flow in the system. the selected pluviometry station is located at Bassano
del Grappa (127 m a.s.l.), whereas the used hydrometric station is located in Barziza, near
Bassano del Grappa, at an altitude of 106 m a.s.l. and immediately downstream of the
mountain area. The selected piezometer is located on the hydrographic left of the River
Brenta in the middle-high part of the plain, near Tezze sul Brenta, in a zone where the river
feeds the aquifer and a few kilometers upstream with respect to a wells field of regional
importance. The monthly data from 2010 to 2022 recorded from rainfall and hydrometric
stations have been collected on the ARPAV website [54]. The piezometric levels derive from
continuative monitoring performed by ETRA SpA, which has provided the hourly data
from 2010 to 2020. The hourly piezometric level data has been transformed into average
monthly data to compare them with rainfall and hydrometric level data.

To implement the MLRA of piezometric level, the first step of the data processing
was the gaps filling by linear interpolation method, which mainly concerned the rainfall
series. The second step was to obtain the maximum correlation between dependent and
independent variables performing the transformation of raw data. In particular, rainfall
(Rf) and the hydrometric level (HL) have been identified as independent variables, whereas
the piezometric level (PL) is the dependent variable. The maximum correlation coefficient
between PL and Rf has been obtained by shifting of 1 lag (i.e., 1 month) and by using the
moving average at 12 months of the Rf series. On the other hand, the maximum correlation
coefficient between PL and HL has been obtained only by shifting 1 lag (i.e., 1 month) in the
HL series. Moreover, in order to obtain a more reliable model, the multicollinearity between
the independent variables was taken into account. Multicollinearity exists whenever two
or more of the independent variables in a regression model are moderately or highly
correlated. For this reason, the VIF (Variation Inflation Factor [55,56]) has been calculated
in Equation (1):

VIFk = 1/(1 − R2
k) (1)

where R2 represents the unadjusted coefficient of determination for regressing, and k, the
predictor variable, on the remaining ones. In practice, VIF is calculated by performing a
linear regression of predictor variables and then obtaining R2 (coefficient of determination)
from that regression.

Taking into account the correlation coefficient between Rf and HL, the VIF value is 1.8.
Up to now, there is not an accepted cutoff value for VIF; nevertheless, values greater than
10 are generally considered indicators of multicollinearity problems.
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The best MLRA model has been chosen by comparing the observed vs. predicted data
(Figure 10). Data from January 2010 to December 2019 of the PL, HL and Rf have been used,
and the mathematical expression is represented by the following equation:

PL = HL × 3.225 + Rf × 0.031 − 295.897 (2)

 

 

 
(a) (b) 

Figure 10. (a) Error values between the predicted and observed data along the regression line and
(b) distribution of residuals.

Equation (2) shows that the River Brenta is more influential than the rainfall on the
piezometric level variations at the selected point of monitoring.

The scatterplot in Figure 10a shows the regression line between predicted and observed
values with R2 = 0.69, and the regression bands and the ellipse with 95% confidence
interval [57], whereas the Figure 10b shows that residuals have a Normal distribution
(Lilliefors and Shapiro–Wilk tests) at 0.05 significance level. Moreover, no data exceed the
threshold of ±2.5 σ.

The model has been validated using rainfall and hydrometric level data from August
2019 to December 2020. Even for validation, a residual analysis has been performed, and it
results in a Normal distribution (Lilliefors and Shapiro–Wilk tests) of residuals that have a
0.05 significance level and values that do not exceed the limit of ±1.5 σ.

The MLR model replicates quite well the general trend and behavior of the piezometric
level (Figure 11), aside from slight existing errors for the absolute value in a few sub-periods
(e.g., 2016–2018).

3.2.3. Forecasting Simulation

The implemented MLR results are sufficiently reliable to perform a forecasting simu-
lation of the piezometric level 6 months ahead. The forecast has been elaborated for the
prospective of simulating a particularly dry period, such as the summer of 2003 and 2022.
Data on hydrometric levels and rainfall similar to the dry periods of 2003 and 2022 have
been used to achieve this goal. Figure 12 displays the model with the results of forecasting
simulation (green line) and used data rainfall. The simulation shows that, in the case
of a particularly dry period (monthly rainfall lower than 100 mm), the piezometric level
abruptly decreases, reaching very low-level values in a few months. It is important to
note that when rainfall occurs, even though in medium-low quantity, the groundwater
level increases very quickly. However, such as recovering is not sufficient for return in the
hydrodynamic state ante-dry period.
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Figure 11. Calibration and validation of the piezometric level model.

 

Figure 12. Forecasting simulation of 6 months using fictitious rainfall and hydrometric level data.
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3.3. Combined Approach of Data-Driven and Process-Based Models for the Magra Lower-Valley
Aquifer System

The aquifer of the Lower Magra Valley is the main source of water for drinking, indus-
trial and agricultural purposes in the area of La Spezia (SE Liguria, Italy). Groundwater
flow is, for a significant part, controlled by streamwater infiltration, which affects both
groundwater level and quality [58]. So, the groundwater system is exposed to high vulner-
ability, both in terms of quality and quantity, not only in relation to human activities but
also towards climate conditions.

In view of its importance, as well as vulnerability, the system has been the subject
of numerous quantitative and qualitative monitoring activities appropriately distributed
throughout the territory and with a robust time series of historical data. This availability,
and the recharge mechanisms, made it possible and necessary to perform the data-driven
and process-based combined approach, thus aspiring to a process-based model that, un-
der anticipated climate conditions, predicts all groundwater systems response but also
takes into account the climate-dependent evolutions of some boundary conditions of the
same model.

This study is aimed to develop this kind of predictive flow and transport model in
order to achieve information on the vulnerability “sensu lato” of the Magra Valley aquifer
system and to evaluate its behavior in anticipated climate scenarios.

3.3.1. Conceptual Model

The aquifer of the Magra Lower Valley extends in a flat plain, within which two main
rivers (Magra and Vara) flow. These rivers are characterized by a wide variation of water
level and chemical composition due to the combination of rainfall regime and the presence
of thermal springs in the inner part of the catchment area, which are characterized by a
sulphate-dominant chemical composition [58,59].

The conceptual model was achieved by elaborating and comparing geology, stratig-
raphy, hydrogeology, geochemistry, and isotope data (Figure 13). The aquifer is mostly
unconfined and made up of gravel and sand (K ranging from 10−5 to 10−3 m/s). The
groundwater flow results show it is widely controlled by stream water infiltration, which
affects water levels and water quality. In particular, the wide range of variation of some
particular chemical species in the stream water influences groundwater chemistry on a
seasonal basis (Figure 13d). Based on data elaboration, main recharge components and
their mixing processes have been identified (Figure 14) and subsequently mathematically
represented in the process-based model.

3.3.2. Process-Based and Data-Driven Models Implementation and Calibration

Based on the conceptual model, flow and transport process-based models were imple-
mented and developed using MODFLOW and MT3DMS codes and have been calibrated
in both steady-state and transient conditions over the 2004–2011 period (in which the
experimental data are available). For more details on the implementation of flow and
transport process-based models, see the work of El Mezouary et al. [60].

The calibration of the models showed a high congruence with the observed data for
both piezometric levels and chemical concentrations (Figure 15), thus indicating very good
representativeness of the models. The results of the process-based models confirmed the
importance of the Magra river in the water balance of the aquifer (input of about 66%) and
in the chemical composition of groundwater.
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(a) (b) 

 

 

(c) (d) 

Figure 13. Multidisciplinary data elaboration to develop the conceptual model [58,59]: (a) 3D
reconstruction by mean borehole information (where A is available boreholes used, B is 3-D solid
of Magra Aquifer and C is an example of 3-D stratigraphic cross section); (b) Piezometric map (m)
a.s.l. for the “2004 May–June” period; (c) Cl + SO4 vs. HCO3 diagram (A–D letters indicate the main
recharge components of the groundwater system in Figure 14 and M1–3 indicate mixing processes);
(d) SO4 concentrations in the Magra River (station MAS-017) and in a drinking water well (P030-1r)
located very close to the river.

Given the strong dependence of the aquifer on river waters, both quantitatively
and qualitatively, the implementation of river-related boundary conditions is, therefore,
essential for carrying out forecast simulations. This justifies the need to create plausible
data sets of hydrometric level and concentration of chemical species in the river water, to
investigate their dependence on the expected weather and climate data and implement
such analysis in the forecasting simulations performed with the process-based model.
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For this purpose, fully synthetic datasets have been generated as a training set of
the data-driven scheme, with input variables inspired by selected climate models and
input/output relationships estimated by past observations (Figure 2).

 

Figure 14. Simplified sketch map showing the main recharge components of the groundwater
system [53]: A—feeding from River Magra and its alluvial fan; B—feeding from River Vara and its
alluvial fan; C—groundwater transfer from western hills and secondary input from minor creeks;
D—groundwater transfer from northern hills; E and F—groundwater recharge from secondary creeks
flowing in the western sectors.

 
 

(a) (b) 

Figure 15. Calibration of flow and transport model: (a) Observed and simulated piezometric head [60]
(b) SO4 and Cl observed and simulated value at their respective time (2004–2011) [60].

In Figure 16, a good agreement between modeled and real data (in this case, ground-
water SO4 concentration in the River Magra) is shown, derived by the application of the
data-driven model for the calibration period 2004–2011.
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Figure 16. Observed SO4 concentration (in grey) and calculated (in red) by the model for observation
points of the Magra River.

3.3.3. Forecasting Simulation

As previously stated, to develop predictive flow and transport models in order to
evaluate the aquifer behavior in anticipated climate scenarios, a process-based and data-
driven modeling combined approach was applied. The data-driven models were built
in order to determine boundary conditions (e.g., rivers and constant head or general
head boundaries) of the process-based model under hypothetic future climate scenarios
(Figure 17), characterized by some dry and low-rainy periods.

 

Figure 17. Rainfall and Magra hydrometric level for the calibration period (2004–2011) and forecasting
simulation period (2012–2042).

Based on such hypothetic scenarios, an experimental and exemplified run of the flow-
transport model for 30 years ahead was performed. In Figure 18, it is possible to observe an
SO4 concentration map of the aquifer and SO4 time series of specific points. From the map,
the strong chemical influence of the River Magra waters on groundwater quality is evident,
especially close to Fornola wellfield, which attracts even more surface water. This influence
can also be observed at the two representative points of the aquifer outside the wellfield
(Figure 18), where a variation in the concentration of sulphates can be observed, mainly
linked to the rainfall regime, especially at the point closest to the wellfield. It is interesting
to observe how the sulphate value at the point located furthest from the wellfield remains
higher and approximately constant over time following dry periods.
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Figure 18. Map and time series of SO4 concentration in the calibration and prediction periods.

Finally, by observing the piezometric level and sulphate concentration in a well for
drinking water (Fornola 3) in the wellfield (Figure 19), it is possible to observe how, after a
medium-long period characterized by a low value of rainfall (e.g., 2025–2030), the aquifer
system reacts with significant decreasing of piezometric level and relative increasing of
SO4 solute concentration. After these periods, the sulphate concentration continues to vary
greatly depending on the rainfall regime, although it generally seems to increase or at least
fluctuate around a higher average value.

(a) 

(b) 

Figure 19. Time series of piezometric value (a) and SO4 concentration (b) for Fornola Well 3 in the
calibration and prediction periods.
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4. Discussion and Conclusions

The performed groundwater modeling for the three different systems first provides
information about the main hydrological processes and elements regulating the groundwa-
ter flow in the systems themselves. On the other hand, the different approaches adopted
accordingly to the specificities of the sites enabled the forecasting of groundwater behavior
under anticipated climate conditions.

The calibrated process-based model of the Empoli aquifer system as the diffuse
recharge represents the main highlighted input in this case. Rivers also contribute to
groundwater flow, but this component appears secondary with respect to diffuse infil-
tration. Furthermore, the system denotes a good capability for water storage, which is
an important part of the total water budget (Figure 7). Such as hydrodynamic features
are favorable for mitigating, at least in short periods (a few years), the effects of drought
events, which have become more and more frequent in the last decades and also in the
Mediterranean regions [61]. The forecasting provided by the model seems to confirm these
characteristics and behaviors for the Empoli aquifer system. Under drought conditions
(very similar to those that occurred in recent periods) repeated for some consecutive years,
the model, in general, highlighted that the decreasing groundwater level is moderate. It is
very likely that the storage capability of the system that is capitalizing the small amount
of effective yearly rainfall attenuates and dilutes over time the groundwater drawdown
(Figure 8).

The Brenta River’s aquifer system is extensive, strategic for water supply, and char-
acterized by inhomogeneity in terms of hydrogeology, recharge components, and water
exploitation distribution as well. In these conditions, it becomes important to provide
models able to describe the local groundwater behavior over time. This is the case of the
data-driven model developed for a significant piezometric monitoring point sited near the
losing River Brenta. The groundwater level evolution has been well-reproduced, starting
from precipitation and hydrometric data as input. The equation describing the model
confirms the close dependence of groundwater from the river in the analyzed zone and,
therefore, the high sensitivity of the aquifer with respect to the meteo-climate regime, which
directly and abruptly affects the regime of the River Brenta. In view of this high sensitivity,
the forecast of groundwater level evolution under a relatively dry period of six months,
similar to what occurred during the 2022 and 2003 years, was performed. Results point
out a drawdown of groundwater level of more than 3 m (Figure 12) in a few months, thus
remarking the very high sensitivity of the aquifer to climate extremes, as well as the need
to plan actions for mitigating risks for water supply, given the regional importance of the
wellfields present in this zone. Given the straight dependence of the local groundwater
quantity from the hydrometric level, an advantage in making available a model that an
equation estimates, such as a relationship, is the possibility of solving the same equation
for a set of minimum progressive hydrometric levels with respect to when the piezometric
levels do not decrease under safety threshold values. In this way, a water manager can
provide actions over the catchment for maintaining the hydrometric levels over certain
critical values once the territory dotes specific hydro-infrastructures able to regulate the
dynamics of the watercourse.

For what concerns the aquifer of the River Magra Lower Valley, here a combined
approach of modeling has been proposed in order to obtain more efficient information
through the developed model. Indeed, the aquifer system is well-described by means of
data from geology, hydrogeology and geochemistry, enough to develop a process-based
model able to reproduce the overall behavior of the system for groundwater quantity
and quality. At the same time, and as the same process-based calibrated models confirm,
the groundwater flow and transport deeply depend on some boundary conditions very
sensitive to the hydro-climate regime, such as the River Magra. In these situations, to
provide hypothetic sets of data for such boundaries (e.g., streamwater level or streamwater
chemical concentration) in case of forecasting by a process-based model can be a real risk
of failure, given the probable incongruence between such input data and the input data
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concerning the diffuse recharge directly deducible from the anticipated climate condition.
In this kind of context, it is therefore evident that the use of a data-driven model able to
link the evolution of certain boundary conditions with the anticipated climate conditions
represents a significant advantage in terms of the efficiency and reliability of the predictive
model. The so-developed model for the River Magra aquifer demonstrates that, under
relatively dry climate conditions, the river is responsible for a relative worsening of the
water quality, mainly tied to an increase or a relatively high and constant value of sulphate
in groundwater. The dry weather results in a sort of persistent base flow in the River Magra,
which is mainly dependent on the mountain thermal springs with sulphate chemical
facies. The losing character of the river and the general groundwater flow path network
promote the diffusion of such sulphate components into the aquifer for an extensive sector
(Figure 18).

All models developed in this work enable a better understanding of the aquifer
systems’ functioning and the sensitivity of groundwater flow to climate change. Generally
speaking, the applicability, limitations and accuracy of the different modeling approaches
are deeply dependent on the aquifer systems’ features, functioning, and data availability
as well.

The process-based model requires a large amount of information (e.g., the geometry of
the main hydrogeological units) and data (e.g., hydraulic parameters value) well-distributed
over the domain and time in order to achieve accurate results. At the same time, this type
of approach makes it possible to model the behavior of the whole groundwater system
under study.

The data-driven models require a number of observations that ideally encompass the
values range of all expected stresses to the system, but it is independent of the knowledge
of numerous parameters that are often difficult to find. Data-driven models are powerful,
but they only estimate a given variable on one or more individual points and do not return
information on a domain scale (e.g., water balance).

The integrated approach of data-driven/process-based modeling represents a novel
outcome resulting in a very efficient tool for forecasting aquifer systems’ evolution when
also boundary conditions significantly affecting the behavior of such systems are subjected
to evolve under expected climate scenarios. As these conditions are frequent in aquifer
systems, the proposed integrated modeling represents a very powerful approach, even if it
needs a deep knowledge of the system as a whole and large datasets.

As a general outcome, this manuscript remarks that, for modeling groundwater
resources and forecasting its evolution with respect to climate change, the choice of the
suitable numerical modeling methodology is mandatory, and it mainly depends on the
specific aquifer features that result in different ways to be sensitive to climate. Only through
this approach is it possible to provide efficient groundwater forecasts that are able to steer
water management plans and actions aimed at mitigating the effects of climate change.

Author Contributions: Conceptualization, M.M. and M.D.; Methodology, M.M., B.R. and A.S.;
Validation, M.M., L.F. and A.S.; Data curation, M.M., L.F., A.S. and M.D.; Writing—original draft
preparation, M.M., M.D. and L.F.; Writing—review and editing, M.M., M.D. and L.F.; Visualization,
M.M. and G.M.; Supervision, M.D. and M.M.; Project coordination, M.D. and M.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was co-funded in part by Tuscany Water Authorities, Brenta Basin Council
and the Italian national project ACQUASENSE (Industria2015- Project number: MI01_00223).

Data Availability Statement: Data are available upon request to the corresponding author.

Acknowledgments: The authors would like to thank the Tuscan Water Authority (AIT) and the
Brenta Basin Council for co-funding this study and Ingegnerie Toscane and ETRA water service
for sharing their data. The authors would also like to thank the five referees and the editors who
contributed to improving the manuscript with their advice.

Conflicts of Interest: The authors declare no conflict of interest.

68



Water 2022, 14, 3956

References

1. United Nations. The United Nations World Water Development Report 2022: Groundwater: Making the Invisible Visible; UNESCO:
Paris, France, 2022; p. 225, ISBN 978-92-3-100507-7.

2. Hiscock, K.M. Groundwater in the 21st century—meeting the challenges. In Sustaining Groundwater Resources: A Critical Element
in the Global Water Crisis, in International Year of Planet Earth; Anthony, J., Jones, A., Eds.; Springer: Dordrecht, Netherlands, 2011;
pp. 207–225. [CrossRef]

3. Zhu, Y.; Balke, K.D. Groundwater protection: What can we learn from Germany? J. Zhejiang Univ. Sci. 2008, 9, 227–231. [CrossRef]
[PubMed]

4. Baoxiang, Z.; Fanhai, M. Delineation methods and application of groundwater source protection zone. In Proceedings of the
Water Resource and Environmental Protection (ISWREP), 2011 International Symposium, (IEEE Conference Publications), Xi’an,
China, 20–22 May 2011; Volume 1, pp. 66–69. [CrossRef]

5. Martınez Navarrete, C.; Grima Olmedo, J.; Duran Valsero, J.J.; Gomez, J.D.; Luque Espinar, J.A.; de la Orden, G.J.A. Groundwater
protection in Mediterranean countries after the European water framework directive. Environ. Geol. 2008, 54, 537–549. [CrossRef]

6. WBCSD Facts and Trends–Water. World Business Council for Sustainable Development. Available online: https://www.wbcsd.
org/Programs/Food-and-Nature/Water/Resources/Water-Facts-and-trends (accessed on 1 September 2022).

7. Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global
inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [CrossRef]

8. Wada, Y.; Van Beek, L.P.H.; Van Kempen, C.M.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater
resources. Geophys. Res. Lett. 2010, 37, L20402. [CrossRef]

9. Rosegrant, M.W.; Cai, X.; Cline, S.A. World Water and Food to 2025: Dealing with Scarcity; International Food Policy Research
Institute: Washington, DC, USA, 2002; p. 322.

10. Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V. Global pattern of trends in streamflow and water availability in a changing climate.
Nature 2005, 438, 347–350. [CrossRef]

11. Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk
under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [CrossRef]

12. Chan, D.; Wu, Q. Significant anthropogenic-induced changes of climate classes since 1950. Sci. Rep. 2015, 5, 13487. [CrossRef]
13. Turco, M.; Palazzi, E.; von Hardenberg, J.; Provenzale, A. Observed climate change hotspots. Geophys. Res. Lett. 2015, 42,

3521–3528. [CrossRef]
14. Tollefson, J. IPCC climate report: Earth is warmer than it’s been in 125,000 years. Nature 2021, 596, 171–172. [CrossRef]
15. Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.;

et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [CrossRef]
16. Ohba, M.; Arai, R.; Sato, T.; Imamura, M.; Toyoda, Y. Projected future changes in water availability and dry spells in Japan:

Dynamic and thermodynamic climate impacts. Weather. Clim. Extremes 2022, 38, 100523. [CrossRef]
17. Fan, Y. Groundwater. How much and how old? News Views. Nat. Geosci. 2015, 9, 93–94. [CrossRef]
18. Doveri, M.; Menichini, M.; Scozzari, A. Protection of groundwater resources: Worldwide regulations, scientific approaches and

case study. In The Handbook of Environmental Chemistry: Threats to the Quality of Groundwater Resources: Prevention and Control;
Scozzari, A., Dotsika, E., Eds.; Springer-Verlag: Berlin/Heidelberg, Germany, 2016; Volume 40, pp. 13–30.

19. Anderson, M.P.; Woessner, W.W.; Hunt, R.J. Applied Groundwater Modeling: Simulation of Flow and Advective Transport; Academic
Press: Amsterdam, The Netherlands, 2015; p. 564.

20. Krešic´, N.; Mikszewski, A. Hydrogeological Conceptual Site Model: Data Analysis and Visualization; CRC Press: Boca Raton, FL,
USA, 2013.

21. Reilly, T.E.; Harbaugh, A.W. Guidelines for Evaluating Ground-Water Flow Models; U.S. Geological Survey Scientific Investigations
Report: Reston, VA, USA, 2004; Volume 5038, p. 30.

22. Grodzka-Łukaszewska, M.; Nawalany, M.; Zijl, W. A Velocity-Oriented Approach for Modflow. Transp. Porous Media 2017,
119, 373–390. [CrossRef]

23. Ginn, T.R.; Cushman, J.H. Inverse methods for subsurface flow: A critical review of stochastic techniques. Stoch. Hydrol. Hydraul.
1990, 4, 1–26. [CrossRef]

24. Shapiro, A.M.; Day-Lewis, F.D. Reframing groundwater hydrology as a data-driven science. Groundwater 2022, 60, 455–456.
[CrossRef]

25. Curtis, Z.K.; Li, S.-G.; Liao, H.-S.; Lusch, D. Data-Driven Approach for Analyzing Hydrogeology and Groundwater Quality
Across Multiple Scales. Groundwater 2017, 56, 377–398. [CrossRef] [PubMed]

26. Xu, T.; Valocchi, A.J. Data-driven methods to improve baseflow prediction of a regional groundwater model. Comput. Geosci.
2015, 85, 124–136. [CrossRef]

27. Bakker, M.; Maas, K.; Schaars, F.; von Asmuth, J.R. Analytic modeling of groundwater dynamics with an approximate impulse
response function for areal recharge. Adv. Water Resour. 2007, 30, 493–504. [CrossRef]

28. Sun, J.; Hu, L.; Li, D.; Sun, K.; Yang, Z. Data-driven models for accurate groundwater level prediction and their practical
significance in groundwater management. J. Hydrol. 2022, 608, 127630. [CrossRef]

29. Gusyev, M.; Haitjema, H.; Carlson, C.; Gonzalez, M. Use of Nested Flow Models and Interpolation Techniques for Science-Based
Management of the Sheyenne National Grassland, North Dakota, USA. Groundwater 2012, 51, 414–420. [CrossRef]

69



Water 2022, 14, 3956

30. Demissie, Y.K.; Valocchi, A.; Minsker, B.; Bailey, B.A. Integrating a calibrated groundwater flow model with error-correcting
data-driven models to improve predictions. J. Hydrol. 2009, 364, 257–271. [CrossRef]

31. Szidarovszky, F.; Coppola, E.A.; Long, J.; Hall, A.D.; Poulton, M.M. A Hybrid Artificial Neural Network-Numerical Model for
Ground Water Problems. Groundwater 2007, 45, 590–600. [CrossRef] [PubMed]

32. Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.;
Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016,
534, 124–138. [CrossRef]

33. Menichini, M.; Doveri, M. Modelling tools for quantitative evaluations on the Versilia coastal aquifer system (Tuscany, Italy)
in terms of groundwater components and possible effects of climate extreme events. Acque Sotter. Ital. J. Groundw. 2020, 9, 475.
[CrossRef]

34. Hunt, R.J. Ground Water Modeling Applications Using the Analytic Element Method. Groundwater 2006, 44, 5–15. [CrossRef]
35. Harbaugh, A.W. MODFLOW-2005, the US Geological Survey Modular Ground-Water Model: The Ground-Water Flow Process

Reston, VA, USA, 6-A16, 2005: US Department of the Interior, US Geological Survey. Available online: http://pubs.er.usgs.gov/
publication/tm6A16 (accessed on 1 May 2022).

36. Rumbaugh, J.O.; Rumbaugh, D.B. Groundwater Vistas; Environmental Simulations Inc.: Leesport, PA, USA, 2011; p. 213.
37. Jones, N.L. GMS Reference Manual. In Aquaveo; Brigham Young University: Provo, UT, USA, 2014; p. 662.
38. Gallagher, M.; Doherty, J. Parameter estimation and uncertainty analysis for a watershed model. Environ. Model. Softw. 2007, 22,

1000–1020. [CrossRef]
39. Chen, J.; Brissette, F.P.; Leconte, R. A daily stochastic weather generator for preserving low-frequency of climate variability.

J. Hydrol. 2010, 388, 480–490. [CrossRef]
40. Jones, P.G.; Thornton, P.K.; Heinke, J. Generating Characteristic Daily Weather Data Using Downscaled Climate Model Data from

the IPCC’s Fourth Assessment; Project Report. 2009, p. 19. Available online: http://dspacetest.cgiar.org/handle/10568/2482
(accessed on 1 May 2022).

41. Menichini, M.; Da Prato, S.; Doveri, M.; Ellero, A.; Lelli, M.; Masetti, G.; Nisi, B.; Raco, B. An integrated methodology to define
Protection Zones for groundwaterbased drinking water sources: An example from the Tuscany Region, Italy. Acque Sotter. Ital. J.
Groundw. 2015, 4, 21–27. [CrossRef]

42. Menichini, M.; Doveri, M.; Ellero, A.; Raco, B.; Masetti, G.; Da Prato, S.; Lelli, M.; Nisi, B. Delimitazione delle Zone di Protezione
Risorse Idriche destinate al consumo umano. Campo pozzi “Empoli” (FI-ATO2). In Delimitation of Water Resources Protection
Zones for Human Consumption. Empoli” well field (FI-ATO2); IGG-CNR Confidential Internal Technical Report n 10988; IGG-CNR:
Pisa, Italy, 2013.

43. Da Prato, S.; Doveri, M.; Ellero, A.; Lelli, M.; Masetti, G.; Menichini, M.; Nisi, B.; Raco, B. Integrazioni alla Caratterizzazione
geologica, idrogeologica e idrogeochimica dei Corpi Idrici Sotterranei Significativi della Regione Toscana (CISS). 11AR025
Corpo idrico del Valdarno Inferiore e Piana Costiera Pisana-zona Empoli. In Integrations to the Geological, Hydrogeological and
Hydrogeochemical Characterisation of the Significant Underground Water Bodies of the Region of Tuscany (CISS) Valdarno Inferiore and
Piana Costiera Pisana Water Body-Empoli Area; Technical Report IGG n◦ 10976; IGG-CNR: Pisa, Italy, 2012; p. 18.

44. SIR-Regional Hydrological and Geological Sector. Available online: www.sir.toscana.it (accessed on 1 March 2018).
45. Doveri, M.; Da Prato, S.; Masetti, G.; Menichini, M.; Raco, B.; Vivaldo, G.; Scozzari, A. Relazione Sulle Attività Svolte Nell’ambito

Dell’Accordo di Collaborazione Scientifica AIT-LaMMA-IGG/CNR del 13 March 2017 IGG-CNR Confidential Internal Technical Report n◦
12306; IGG-CNR: Pisa, Italy, 2020; p. 35.

46. SIR-Regional Hydrological and Geological Sector. Available online: www.idropisa.it/consumi_idrici (accessed on 1 March 2018).
47. Cisotto, A.; Rusconi, A.; Baruffi, F. Regional Studies of the North Adriatic Basin Authority on the Aquifers of the Veneto-Friuli

Plain. Mem. Descr. Carta Geol. d’It. 2007, 76, 117–124.
48. Carraro, A.; Fabbri, P.; Giaretta, A.; Peruzzo, L.; Tateo, F.; Tellini, F. Arsenic anomalies in shallow Venetian Plain (Northeast Italy)

groundwater. Environ. Earth Sci. 2013, 70, 3067–3084. [CrossRef]
49. Dal Prà, A.; Veronese, F. Gli acquiferi dell’alta pianura alluvionale del Brenta e i loro rapporti col corso d’acqua. Atti Istituto Veneto

Sc. Lett. Arti. 1972, 5, 189–222.
50. Pilli, A.; Sapigni, M.; Zuppi, G. Karstic and alluvial aquifers: A conceptual model for the plain – Prealps system (northeastern

Italy). J. Hydrol. 2012, 464–465, 94–106. [CrossRef]
51. Sottani, A.; Vielmo, A. Groundwater conservation and monitoring activities in the middle Brenta River plain (Veneto Region,

Northern Italy): Preliminary results about aquifer recharge. Acque Sotter. Ital. J. Groundw. 2014, 3, 3. [CrossRef]
52. Mayer, A.; Sültenfuß, J.; Travi, Y.; Rebeix, R.; Purtschert, R.; Claude, C.; Salle, C.L.G.L.; Miche, H.; Conchetto, E. A multi-tracer

study of groundwater origin and transit-time in the aquifers of the Venice region (Italy). Appl. Geochem. 2014, 50, 177–198.
[CrossRef]

53. Bullo, P.; Dal Prà, A. Lo sfruttamento ad uso acquedottistico delle acque sotterranee dell’alta pianura alluvionale veneta. Geol.
Romana 1994, 30, 371–380.

54. ARPAV–Regional Agrncy for Environmental Prevention and Protection of Veneto. Available online: www.arpa,veneto.it (accessed
on 1 January 2020).

55. Freund, R.J.; Wilson, W.J. Regression Analysis: Statistical Modeling of a Response Variable; Academic Press: New York, NY, USA, 1998.

70



Water 2022, 14, 3956

56. Adnan, N.; Ahmad, M. A comparative study on some method for handling multicollinearity problems. Matematika 2006,
22, 109–119. [CrossRef]

57. Tracy, N.D.; Young, J.C.; Mason, R.L. Multivariate Control Charts for Individual Observations. J. Qual. Technol. 1992, 24, 88–95.
[CrossRef]

58. Brozzo, G.; Accornero, M.; Marini, L. The alluvial aquifer of the Lower Magra Basin (La Spezia, Italy): Conceptual
hydrogeochemical–hydrogeological model, behavior of solutes, and groundwater dynamics. Carbonates Evaporites 2011,
26, 235–254. [CrossRef]

59. Menichini, M.; Doveri, M.; El Mansoury, B.; El Mezouary, L.; Lelli, M.; Raco, B.; Scozzari, A.; Soldovieri, F. Groundwater
vulnerability to climate variability: Modelling experience and field observations in the lower Magra Valley (Liguria, Italy). In
EGU General Assembly Conference Abstracts; EGU: Vienna, Austria, 2016.

60. El Mezouary, L.; El Mansouri, B.; Kabbaj, S.; Scozzari, A.; Doveri, M.; Menichini, M.; Kili, M. Modélisation numérique de la
variation saisonnière de la qualité des eaux souterraines de l’aquifère de Magra, Italie. Houille Blanche 2015, 101, 25–31. [CrossRef]

61. Mathbout, S.; Lopez-Bustins, J.; Royé, D.; Martin-Vide, J. Mediterranean-Scale Drought: Regional Datasets for Exceptional
Meteorological Drought Events during 1975–2019. Atmosphere 2021, 12, 941. [CrossRef]

71





Citation: Morway, E.D.; Feinstein,

D.T.; Hunt, R.J. Simulation of Heat

Flow in a Synthetic Watershed: The

Role of the Unsaturated Zone. Water

2022, 14, 3883. https://doi.org/

10.3390/w14233883

Academic Editor: Cristina Di Salvo

Received: 23 June 2022

Accepted: 17 October 2022

Published: 28 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Simulation of Heat Flow in a Synthetic Watershed: The Role of
the Unsaturated Zone

Eric D. Morway 1,*, Daniel T. Feinstein 2 and Randall J. Hunt 3

1 U.S. Geological Survey, Nevada Water Science Center, 2730 N. Deer Run Rd. Suite 3,
Carson City, NV 89701, USA

2 U.S. Geological Survey, Upper Midwest Water Science Center, Milwaukee Office,
3209 North Maryland Avenue, Milwaukee, WI 53211, USA

3 U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive,
Madison, WI 53726, USA

* Correspondence: emorway@usgs.gov

Abstract: Future climate forecasts suggest atmospheric warming, with expected effects on aquatic
systems (e.g., cold-water fisheries). Here we apply a recently published and computationally efficient
approach for simulating unsaturated/saturated heat transport with coupled flow (MODFLOW) and
transport (MT3D-USGS) models via a synthetic three-dimensional (3D) representation of a temperate
watershed. Key aspects needed for realistic representation at the watershed-scale include climate
drivers, a layering scheme, consideration of surface-water groundwater interactions, and evaluation
of transport parameters influencing heat flux. The unsaturated zone (UZ), which is typically neglected
in heat transport simulations, is a primary focus of the analysis. Results from three model versions
are compared—one that neglects UZ heat-transport processes and two that simulate heat transport
through a (1) moderately-thick UZ and (2) a UZ of approximately double thickness. The watershed
heat transport is evaluated in terms of temperature patterns and trends in the UZ, at the water table,
below the water table (in the groundwater system), and along a stream network. Major findings are:
(1) Climate forcing is the product of infiltration temperatures and infiltration rates; they combine into
a single heat inflow forcing function. (2) The UZ acts as a low-pass filter on heat pulses migrating
downward, markedly dampening the warming recharge signal. (3) The effect of warming on the
watershed is also buffered by the mixing of temperatures at discharge points where shallow and
deep flow converge. (4) The lateral extent of the riparian zone, defined as where the water table
is near land surface (<1 m), plays an important role in determining the short-term dynamics of
the stream baseflow response to heat forcing. Runoff generated from riparian areas is particularly
important in periods when rejected infiltration during warm and wet periods generates extra runoff
from low-lying areas to surface water.

Keywords: heat transport; watershed modeling; temperature; unsaturated zone

1. Introduction

Most future climate forecasts suggest atmospheric warming [1]. As a result, how
warming affects aquatic systems is of societal interest. For example, climatic warming is
expected to increase the amount of time that humid temperate streams exhibit conditions
not suited to cold-water fisheries [2,3]. Such forecasts, however, typically do not fully
represent processes that play an important role in how climatic warming is expressed
within watersheds. That is, each part of the watershed’s subsurface system may alter the
extent and timing of how heat is transported within a watershed. From the standpoint
of recharge processes, the water table is typically separated from the land surface by an
unsaturated zone (UZ) of variable thickness. Because the thickness of the UZ is spatially
variable, its combined (or integrated) effect on the amount and timing of recharging water
and heat associated with a changing climate signal is highly uncertain. Also, short and
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long groundwater flow paths commonly discharge to surface-water bodies which host
temperature-sensitive plant and animal communities. The combined action of multiple
groundwater pathways determines the amount of heat transported through the subsurface
and delivered to surface water systems. Thus, accurately forecasting the effects of a
warming climate on terminal surface water discharge points and associated ecosystems in
a watershed requires a quantitative tool that incorporates both unsaturated and saturated
zone processes.

The approaches used here build on two previous publications. Using the Unsaturated-
Zone Flow (UZF1) package [4] within MODFLOW-NWT [5], Hunt et al. (2008) [6] demon-
strated the importance of the UZ on the distribution, magnitude and timing of recharge
at the watershed scale, and showed how each of these are impacted differently by the
buffering effects of a variably thick UZ. This study expands on the results presented
in Hunt et al. (2008) [6], by considering unsaturated zone heat transport over a range
of infiltration signals across a range of water table depths. The second publication,
Morway et al. (2022) [7], documents and verifies the mathematical framework for new
computationally efficient heat transport capabilities within MT3D-USGS, using a combi-
nation of steady and transient flow and transport simulations. However, the examples
in Morway et al. (2022) [7] are limited to a one-dimensional profile extending from the
top of the UZ to the water table. In this study, we use the revised MT3D-USGS code to
simulate heat transport at the watershed scale, following the heat influx from its entry point
below the root zone as deep percolation, through the unsaturated and saturated zones, and
finally to the terminal surface water discharge points. This work focuses on the ground-
water system, however; temperature processes within the surface water discharge points
themselves (e.g., heat changes from precipitation and shading, evaporative cooling) are not
investigated, to highlight the importance of processes operating in the unsaturated zone.

The watershed used for testing can be considered quasi-hypothetical (see, for example,
Anderson and Bowser (1986) [8] for an example in the context of the subsurface propagation
of the effects of acid rain). That is, a homogeneous synthetic groundwater model was
constructed to allow for control of important system characteristics at a scale typical of
a humid temperate watershed (HUC10 size [9]), with realistic land surface and surface
water configurations. The imposed transient forcing function, used to account for heat
influx under conditions of warming, is also synthetic. In addition, the specified infiltration
rates and temperatures vary temporally, to facilitate the exploration of watershed response
relations. In effect, our experimental design pairs spatially uniform subsurface properties
with temporally variable forcing functions of infiltration rates and temperatures.

Thus, this article has three principal objectives. The first is to extend the method
presented in Morway et al. (2022) [7] for simulating unsaturated/saturated heat transport
with MODFLOW [5,10] and MT3D-USGS [11] from a one-dimensional column to a three-
dimensional surficial aquifer system, with groundwater—surface-water exchange. The
second objective assesses the importance of explicitly representing UZ heat transport
processes in watershed scale models. Finally, the third objective explores temperature
patterns and trends within the UZ, at the water table, within the groundwater (saturated)
system, and along the stream network, as the synthetic watershed warms. The warming
signal migrating through and being stored in the subsurface is subject to lags (that is, change
of phase), to dampening (that is, change of amplitude), and mixing (that is, convergence of
flow lines), which jointly giving rise to subsurface thermal buffering. Of particular interest
is the effect of the UZ as a low-pass filter, flattening high frequency and high amplitude
temperature events before the heat in the percolating water reaches the water table.

2. Methods

The following four sub-sections describe the setup of the MODFLOW and MT3D-
USGS models. In order, the sections focus on (1) how the warming climate is represented
within the model, (2) a description of the MODFLOW model setup, including various
boundary conditions (e.g., streams, lakes, etc.), (3) an in-depth discussion of three different
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UZ configurations for elucidating how the role of the UZ as a warming climate may impact
groundwater temperatures, and (4) a description of the MT3D-USGS heat transport model.
Additional details also may be found in the Supplementary Material Sections S1 and S2.

2.1. Representation of Warming Conditions

The infiltration of “warm” water is an important, if not dominant, pathway by which
atmospheric heat enters the subsurface. As a result, changes to watershed heat loading
must consider two factors—(1) the amount of infiltration, and (2) the temperature of the
infiltration below the bottom of the root zone. Since both are temporally variable, it is the
product of these time series that represents a major component of the total heat influx at
the top of the UZ. Periods of high infiltration combined with elevated temperatures (e.g., a
prolonged warm spring rain or particularly high infiltration event during the hottest part
of summer) will significantly increase the influx of heat into the subsurface system. By
contrast, if the same elevated atmospheric temperatures that control the temperature of the
infiltration are paired with reduced infiltration rates, the influx of heat to the subsurface
is reduced.

For the synthetic watershed developed in this study, the top of the UZ corresponds
to the bottom of the root zone and extends to the water table. As such, the specified
infiltration rates and temperatures correspond to the bottom of the root zone, which is the
same as the top of the unsaturated zone. In addition, the specified infiltration rates and
temperatures vary on a monthly basis, to capture seasonal cycling. Monthly infiltration
rates and associated temperature input into the models include a constant 30-year spin-up
period, to ensure a dynamic equilibrium is established prior to the start of a variable 30-year
warm-up period.

During the 30-year spin-up period, the monthly infiltration rates specified at the top
of the UZ total 8.0 in/year (0.20 m/year) and are held constant in each monthly stress
period, at 0.66 in/month (0.02 m/month; Figure 1A). In contrast, the infiltration rate varies
monthly during the 30-year warm-up period, commensurate with typical seasonal change,
but also includes random noise generated from a uniform distribution. The average annual
infiltration rate during the 30-year warm-up period is 8.84 in/year (0.224 m/year) and
does not include an underlying trend, although the annual totals do vary. The infiltration
rates used during the spin-up and warm-up periods are similar to other modeling efforts
investigating climate change impacts in humid temperate watersheds, located in Wisconsin,
USA [e.g., Table 3 of Hunt et al. (2016) [3]].

During the spin-up period, the temperatures assigned to the monthly infiltration
rates vary, but the same sequence of monthly temperatures are repeated every January in
order to generate a constant annual average value (Figure 1B). By contrast, the monthly
temperatures assigned to the infiltration rates during the 30-year warm-up period reflect
three sources of variability: (1) seasonal oscillations, (2) random noise, and (3) an underlying
linear warming trend of 0.0025 ◦C/month (Figure 1B), which equates to 0.9 ◦C after 30 years,
and is commensurate with predicted warming under a high-emission scenario downscaled
for southern Wisconsin for the period 2022–2051 [12].

The use of spin-up and warm-up periods results in relative heat influx values that are
in a thermal dynamic equilibrium by the end of the spin-up period, and then transition
to an unsteady condition during the warm-up period (Figure 1C). Although the warming
trend contained within the infiltration temperature time series of the warm-up period is
relatively modest, when combined with the variability of the monthly infiltration rates
(absent during the spin-up portion of the synthetic simulations), an appreciable increase in
the amount of heat added to the system occurs in some stress periods.
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Figure 1. Forcing function applied to a synthetic model for a high emission (RCP8.5) warming
scenario, corresponding to representative watershed in southern Wisconsin for warming period
2022–2051 (adapted with permission from Ref. [12]). (A) Monthly infiltration rates during the spin-up
and warm-up periods. (B) Monthly infiltration temperatures during spin-up and warm-up periods.
(C) A time series of the relative heat influx. Relative heat influx is calculated as the product of the
monthly infiltration rates and temperatures for any given month in the warm-up period, divided by
the average monthly heat influx during the spin-up period, resulting in a ratio that is referred to as
the relative heat influx.

The unsteady heat forcing represented in the model during the warm-up period is cal-
culated as the monthly infiltration rate multiplied by the monthly infiltration temperature.
The result, after further multiplying by the heat capacity and density of water, results in
units of energy/time. Figure 1C shows the ratio of the heat influx for any month, which is
calculated as the heat influx for a given month divided by the average heat influx during
the last year of spin-up. Hereafter, this ratio is referred to as the relative heat influx. In
Figure 1C, seasonal oscillations around a stationary average are present during the spin-up
period. During the warm-up period, the relative heat influx shows a considerably more
variable pattern. Monthly episodes of significant forcing, or high relative heat influx, are
noted throughout Figure 1C, but especially toward the end of the warming period when
high monthly infiltration rates are paired with high monthly temperatures (simulation
years 52, 55–56; Figure 1C). Additional discussion of the forcing function, and the ramifi-
cations of assumptions used to construct them are given in the Supplementary Material
Section S1.

2.2. Model Construction: Groundwater Flow

The quasi-hypothetical watershed-scale model covers an area of about 290 square
miles (about 750 square kilometers), corresponding in size to a HUC-10 [9] watershed
designation (Figure 2). The domain is conceived as a homogeneous (hydraulic conductivity
and specific yield) sandy aquifer, with the water table at variable depth below a spatially
varying land surface elevation (resulting in variable UZ thickness from cell to cell). The
model grid is 300 rows by 300 columns by 8 layers. Laterally, grid cells are 300 ft (91.4 m)
on each side and vary in thickness. Aquifer parameters are uniform throughout the domain
(Table 1). Boundary condition parameters, controlling sources and sinks of water, are also
spatially homogeneous (Table 1).
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Figure 2. Plan view of synthetic model setup, showing boundary conditions (SFR: streamflow
routing package; GHB: general-head boundary package; No Flow: no-flow boundary), locations
for monitoring output, and the locations of cross-sections shown in the Supplementary Material
(Figures S1–S9). Numbers associated with SFR gage locations correspond to IDs used later in the text.

Table 1. Flow parameter values used in synthetic water model are spatially homogeneous.

MODFLOW-NWT Package Parameter Name Value

UPW

Horizontal hydraulic conductivity 42.5 ft/day (12.95 m/day)

Vertical hydraulic conductivity 1 ft/day (0.30 m/day)

Specific yield 0.26 (unitless)

Specific storage 1 × 10−5 1/day

UZF1

Vertical hydraulic conductivity 1 ft/day (0.30 m/day)

Surface infiltration hydraulic conductivity 0.1 ft/day (0.0305 m/day)

Saturated water content 0.30 (unitless)

Residual water content 0.04 (unitless)

Brooks-Corey epsilon 3.87 (unitless)

Monthly infiltration rate See Figure 1A

SFR2

Channel width 25 ft (7.62 m)

Channel bed thickness 1 ft (0.30 m)

Channel bed hydraulic conductivity 20 ft/day (6.10 m/day)

Channel slope 0.0002 (ft/ft)

Channel incision (streambed elevation below top of cell) 2.5 ft (0.76 m)
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Table 1. Cont.

MODFLOW-NWT Package Parameter Name Value

DRN

Conductance 90,000 ft2/day (8362 m2/day)

LAK

Lakebed conductance 90,000 ft2/day (8362 m2/day)

GHB

Conductance 11.37 ft2/day (1.06 m2/day)

The General-Head Boundary (GHB) package [10] simulates flow entering the north
perimeter boundary and exiting the south perimeter boundary of the model domain.
No-flow conditions are imposed along the eastern and western sides of the model at all
elevations, and on the bottom of the model. Stream networks are represented by the
Streamflow Routing (SFR2) package [13] (Figure 2). Three wetlands are simulated using
the Drain (DRN) package [10] and a lake is represented by the Lake (LAK) package [14]
(Figure 2). Simulated baseflows within the synthetic model are the sum of (1) direct
groundwater discharge to the channel, (2) groundwater discharge to the land surface
in riparian areas that subsequently runs off and into the surface-water network, and
(3) rejected infiltration resulting from saturation excess in riparian areas that runs off and
into the surface-water network. The model is configured so that groundwater–surface-water
interaction is one-way as groundwater discharge to the stream; there are no losing reaches.
Transient forcing functions and the geometry of surface water sinks, result in appreciable
complexity within the flow system, despite the spatially homogeneous parameterization.
Additional information on the overarching groundwater model design is provided in
Supplementary Material Section S1.

2.3. Representation of Unsaturated Zone Processes

Hunt et al. (2008) [6] demonstrate the importance of including UZ flow processes in
steady-state and transient regional-scale groundwater flow models. However, a paucity
of data for parameterizing Richards’ equation-based approaches, as well as the compu-
tational demands of implementing the approach in numerical models, makes alternative
approaches such as that of UZF1, highly attractive [15]. At the time of writing, UZF1 is
now a common alternative for simulating UZ flow in regional-scale models [2,3,16–22].
Hunt et al. (2008) [6] go on to show how UZ flow and the corresponding changes in UZ
storage result in lags between the timing of infiltration at the top of the UZ and recharge
to the water table. In addition, because of transient water table elevations, the UZ may
at times pinch out as the water table rises, resulting in Dunnian overland flow [23]. This,
in turn, reduces net infiltration rates which further alters the individual components of a
watershed budget. Thus, approaches that omit UZ processes result in infiltration being
transmitted instantaneously to the water table at rates that may not be supported by the sys-
tem. Such over-simplification can confound the use of head data to estimate recharge and
can be problematic where timing of infiltration-related recharge is vital for understanding
a process of concern (for example, studies involving solute loading to the water table [24]
lagged by the unsaturated zone).

Niswonger et al. (2006) [4] offer a detailed explanation of UZF1. Of particular note is
that UZF1 neglects capillary forces, an assumption that provides computational efficiencies
for regional-scale models [15]. Moreover, UZF1 is equipped to simulate groundwater dis-
charge to land surface when groundwater heads rise to within a user-specified proximity of
the land surface [20]. Additionally, UZF1 simulates rejected infiltration when the specified
infiltration rate exceeds the vertical hydraulic conductivity (Hortonian overland flow), or
when the UZ becomes saturated (Dunnian overland flow). Options are available for routing
both the rejected infiltration and groundwater discharge to land-surface to nearby surface
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water features, which are often important components of the overall water budget [20].
Although supported by the UZF1 package, evapotranspiration was not simulated from
the UZ in the synthetic watershed presented herein; rather, evapotranspiration loss is
accounted for in the net infiltration rate specified at the top of the UZ. Additional UZF1
information is available in the Supplementary Material Section S1.

Just as with the calculation of infiltration leading to recharge [6], the UZ also acts
as a low-pass filter for heat transport, as it migrates downward from near the land
surface toward the water table. Equipped with the enhancements described in Mor-
way et al. (2022) [7], MT3D-USGS can simulate heat transport from the top of the UZ,
through the UZ and saturated zones, and exchange with surface-water features (repre-
sented with different packages). The focus herein is on variably saturated and saturated
water temperature, whereas a companion paper focuses on transmission of total energy [25].

Hunt et al. (2008) [6] demonstrated how the thickness of the UZ is a major control on
the timing and magnitude of recharge. This investigation goes a step further, and explores
how UZ thickness, as well as the parameterization of the UZ, modulate the timing and
magnitude of the infiltrating heat signal, prior to becoming recharge. To this end, the
synthetic watershed was constructed using three alternative configurations:

• NO_UZ_THK: no UZ processes are simulated by the model. Instead, a monthly
infiltration of water and heat is applied directly to the water table, using the Recharge
(RCH) [10] and Source/Sink Mixing (SSM) [26] packages, respectively. Note that
the NO_UZ_THK and MID_UZ_THK models (explained below) are dimensionally
identical (i.e., cell geometries (thicknesses) are the same), meaning that an overlying
UZ is present in the NO_UZ_THK, although the grid cells above the water table are
inactive. The NO_UZ_THK designation does not imply that the water table is near the
land surface throughout the model domain.

• MID_UZ_THK: a model with the same grid cell dimensions as the NO_UZ_THK
simulation but simulates UZ processes with the UZF1 and unsaturated zone transport
(UZT) [11,27] packages. The UZ average thickness is approximately 11 ft, with a
maximum of 62 ft. The land surface slope from surface water features to “upland”
locations is low (1.5 ft/300 ft, or 0.005 ft/ft; Figure 3A).

• HI_UZ_THK: the UZ is approximately three times thicker than the MID_UZ_THK
setup, averaging approximately 31 ft thick with a maximum thickness of approxi-
mately 150 ft. The land surface slope from surface water features is steeper than the
MID_UZ_THK model (3.0 ft/300 ft, or 0.01 ft/ft; Figure 3B).

Figure 3. A comparison of the land surface elevations for the (A) MID_UZ_THK and (B) HI_UZ_THK
models. Land surface elevation for each model cell is proportional to its distance from the nearest
surface water body. The proportionality constant is 1.5 ft/300 ft (0.005) for the MID_UZ_THK
simulation and 3.0 ft/300 ft (0.01) for the HI_UZ_THK simulation. The land surface does not directly
enter into the NO_UZ_THK solution, since the UZ is not simulated and therefore no attenuation of
the infiltrating signal is realized. The riparian zone contours correspond to conditions at the end of
spin-up.
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Differences between the MID_UZ_THK and HI_UZ_THK simulations are evidenced
by the water table residing in layer 1 across more than 20% of the MID_UZ_THK simula-
tion domain, while residing only in less than 5% of the layer 1 cells in the HI_UZ_THK
simulation (Supplementary Material Section S1).

As with any groundwater solute transport simulation, careful consideration of the
model layering (i.e., vertical discretization) scheme is an important part of a heat transport
simulation. Too many layers can result in overly lengthy model run-times with untenable
linker file [28] sizes that do not offer meaningful gains in simulation accuracy. However,
too few model layers can misrepresent heat transport processes, most notably conduction.
For example, overly thick grid cells cannot accurately account for thermal gradients that
drive conduction and therefore the spread of heat.

The simulations in this analysis use a minimum of eight layers, although sensitivity
runs with two additional layers dedicated to the UZ were also explored, using both the
MID_UZ_THK and HI_UZ_THK configurations (see Supplementary Material). All models
employ a 3 ft thick top layer, referred to below as the “receptor” layer, which functionally
serves to receive the heat signal in a spatially consistent manner. The alternative of applying
a heat signal to layer 1 cells with spatially varying thicknesses would complicate the
interpretation of the relative temperatures in layer 1, since the amount of stored heat would
also be a function of the thickness of each cell. Furthermore, keeping layer 1 predominately
unsaturated (except when adjacent to surface water features), allows a thermal gradient
to develop in the upper UZ for simulating conduction between the UZ layers. The logic
for deciding the thickness of layers 2 and 3 was determined after a preliminary run of
the model. Both layers were assigned a minimum thickness of 6 ft where the water table
reached a minimum depth of less than 15 ft sometime during the simulation (the receptor
plus the minimum thickness of 6 ft for layers 2 and 3). Where the minimum water table
depth was greater than 15 ft, the thickness of layers 2 and 3 was increased, such that
the additional UZ thickness was divided equally among them while layer 1 remained a
constant 3 ft thick (see for example Figure S3-2). Where the UZ was greater than 15 ft, the
water table resided in layer 4. Layers 5 through 8 were fully saturated for the duration of
the simulation and were present to enable differing temperature with depth.

2.4. Model Construction—Heat Transport

The mathematical framework and equations for simulating heat transport in the
synthetic watershed discussed herein are presented in detail for a one-dimensional sys-
tem in Morway et al. (2022) [7]. This study adopts a similar approach but applies the
methodology at a watershed scale. Table 2 lists the transport and heat flux parameters
applied to all three versions of the model. Heat sorption in the matrix is assumed to
act instantaneously, portioning the thermal energy between the solid and fluid phases
according to a ratio that varies with water content. The partitioning of the total thermal
energy between the aqueous and solid phases is commonly referred to as the retardation
factor in MT3D-USGS. A retardation factor of 2.0, for example, implies that half of the
thermal energy is “sorbed” to the solid phase, and, therefore, the heat moves at half the
advective fluid velocity. For unsaturated flow conditions, the retardation factor depends
not only on a linear distribution coefficient, but also on the water content. Additional
discussion of the treatment of sorption and the selection of parameter values is provided in
the Supplementary Material Section S2.

An aspect of heat transport that is often quite different from solute transport is the
relative contribution of the mechanical dispersion and molecular diffusion terms that
contribute to the overall hydrodynamic dispersion term. In solute transport, mechanical
dispersion is generally orders of magnitude greater than molecular diffusion, especially
in advection-dominated settings [29]. In heat transport simulations, however, the thermal
conduction as represented by the molecular diffusion term can exceed the mechanical
dispersion term. In MT3D-USGS, the thermal conduction is a bulk process, representing
the movement of heat fronts through both the solid (not explicitly simulated) and fluid
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phase [7]. In this modeling exercise, a relatively modest longitudinal dispersivity value of
3 ft is assumed. Although advection in the UZ is downward only, as implemented by the
kinematic wave approximation within the UZF1 package, conduction and dispersion may
still occur in all directions, including upward, in both the saturated and unsaturated zones
(see parameters listed for the DSP Package, Table 2).

Table 2. Transport parameter values for synthetic watershed model, spatially homogeneous.

MT3D-USGS Package Parameter Name Value

BTN

Porosity 0.3 (unitless)

DSP

Saturated thermal conductivity 52,669 Joules/(day·ft·◦C) [2.0 Joules/(sec·m ◦C)]

Residual thermal conductivity 13,167 Joules/(day·ft ◦C) [0.5 Joules/(sec·m ◦C)]

Fluid density 28.3166 kg/ft3 (1000 kg/m3)

Fluid heat capacity 4183 Joules/(kg ◦C)

Residual water content 0.04 (unitless)

Longitudinal dispersivity 3.0 ft (0.91 m)

Transverse horizontal dispersivity 0.30 ft (0.091 m)

Transverse vertical dispersivity 0.30 ft (0.091 m)

UZT

Monthly infiltration temperature see Figure 4

RCT

Bulk density of solid 51.849 kg/ft3 (1830 kg/m3)

Distribution coefficient 2.68 × 10−3 ft3/kg (7.59 × 10−5 m3/kg)

SSM

Source temperature 8.55 ◦C during spin-up (raised 0.03 ◦C/yr during warm-up)

SFT

Initial temperature 8.55 ◦C

LKT

Initial temperature 8.55 ◦C

Precipitation temperature

see Figure 4 (temperature the same as infiltration, with
following exceptions)

April: +0.5 ◦C; May: +1.0 ◦C; June: +1.5 ◦C; July: +2.0 ◦C;
August: +1.5 ◦C; September: +1.0 ◦C; October: +0.5 ◦C

Table 3. Additional information pertaining to subplots shown in Figure 4.

Figure 4
Subplot ID

Warming
Year

Month
Relative Heat Influx
for Current Month

Relative Heat Influx for
Proceeding 12 Months

Infiltration Rate
(in/mo)

Infiltration
Temperature (◦C)

A–C 0.00 December 0.07 1.00 0.75 0.02

D–F 2.75 September 3.48 1.30 1.58 12.60

G–I 10.17 February 0.24 1.51 1.13 1.24

J–L 15.17 February 0.00 1.71 0.00 2.62

M–O 24.67 August 0.00 1.20 0.00 17.31

P–R 25.67 August 7.79 2.12 2.25 19.78
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Figure 4. Simulated heads (contour lines) and temperatures (color-filled) for the water table layer
through time for the NO_UZ_THK (A,D,G,J,M,P), MID_UZ_THK (B,E,H,K,N,Q) and HI_UZ_THK
models (C,F,I,L,O,R). Water table temperatures are shown for (A–C) end of spin-up, (D–F) after
2.75 years of warm-up, (G–I) after 10.17 years of warm-up, (J–L) after 15.17 years of warm-up,
(M–O) after 24.67 years of warm-up, and (P–R) after 25.67 years of warm-up. Additional details for
each subplot are provided in Table 3.

Within MT3D-USGS, the streamflow transport (SFT) and lake transport (LKT) pack-
ages simulate heat transport in the surface water network, including the exchange of
heat between surface water and groundwater [11]. SFT solves a 1D advection-dispersion
equation for calculating the temperature within each stream reach. In LKT, a single, in-
stantaneously mixed temperature is calculated for each lake interacting with the aquifer.
Groundwater discharged directly to surface water features as well as groundwater runoff
(i.e., groundwater discharge to land surface adjacent to streams combined with rejected
infiltration from the top of UZ, both instantaneously transferred to the nearest stream
or lake feature) is routed through the surface-water network in a way that integrates all
upstream discharge for any downstream point. As a result, the stream temperature at a
particular location may be realistically simulated as higher or lower than the temperature of
the ambient groundwater at that same location. The ability to simulate spatially distributed
surface water temperatures at specific points within a watershed is increasingly important
for resource management.

3. Results

Simulation results are described here and in the Supplementary Material Section S3.
Results are grouped under three main subsections that discuss (1) groundwater temper-
atures near the water table (where recharge occurs) as they relate to the thickness of the
UZ, relative heat influx, and time of year, (2) deeper groundwater temperatures, and (3) the
cooling influence of groundwater discharge on surface water temperatures after accounting
for the temperature changes occurring in the subsurface.
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3.1. Water Table Temperatures

A snapshot of simulated water table temperature for the month of December at
the end of the 30-year spin-up period shows nearly identical and uniform conditions of
8.55 ◦C across all three base models (Figure 4A–C). In the 30 years following the spin-up
period (i.e., the warm-up period), the effect of the UZ on the relative heat influx results
in a complex spatial and temporal temperature response near the top of the saturated
groundwater system, as shown by the monthly snapshots of water table temperatures
at 2.75 (Figure 4D–F), 10.17 (Figure 4G–I), 15.17 (Figure 4J–L), 24.67 (Figure 4M–O), and
25.67 years (Figure 4P–R). The relative heat influx ratio for each date displayed in Figure 4
are provided in Table 3. A relative heat influx ratio of 1.0 signifies that the heat loading
rate for the month or year, depending on which value is considered, is equivalent to the
heat loading rate during the last year of spin-up. In Figure 4D–F, for example, the relative
heat loading rate for the second year of the 30-year warm-up period (year 2.75) is 1.30.
This suggests that 30% more heat flux (infiltration rate multiplied by the temperature of
the infiltration) entered the subsurface, relative to the last year of the spin-up period. In
general, the monthly heat flux rates vary by an approximate value of 1.0 over the course of
a year, while the annual values gradually increase over the 30-year warming period.

The effect of the UZ is demonstrated by comparing the water table temperature maps
for the three test models. For the NO_UZ_THK model (recharge is applied directly to
groundwater system rather than routed through the UZ) the map for 2.75 years (September)
shows mostly homogeneous water-table conditions, averaging a little above 9 ◦C early in
the warm-up period (Figure 4D). In contrast to Figure 4D, the temperatures in the water
table layer of the MID_UZ_THK model (Figure 4E) persist at cooler temperatures (~8.55 ◦C)
where the UZ is thick and are prevalent throughout the model domain at the end of the
spin-up period (Figure 4B). However, where the UZ is thin and the infiltration quickly
converts to recharge (~1 stress period, equivalent to 1 month), simulated warming at the
water table is similar in magnitude to the NO_UZ_THK model, for example along the
riparian corridor (Figure 4E). The same is true for the HI_UZ_THK model, except that the
effect along the riparian corridors is narrower, due to the steeper slope leading away from
the streams and water bodies (Figure 4F).

The expression of warming within a particular model layer depends partly on which
month is chosen for closer inspection. For example, after 10.17 years of warm-up (relative
heat influx of 1.51), which corresponds to February (relative heat influx of 0.24), the water
table temperatures in the NO_UZ_THK model (Figure 4G) remain mostly homogeneous,
although the water table temperature has cooled, relative to the temperatures at 2.75 years
(Figure 4D). The overall cooling between 2.75 and 10.17 years reflects the direct input of
colder water to the water table rather than mixing with warmer water through a thicker UZ,
as simulated by the UZT package. For the MID_UZ_THK model (Figure 4H) at 10.17 years,
the water table temperatures generally increased from year 2.75. However, the groundwater
temperatures are inverted compared to what they were at 2.75 years—the riparian corridor
is now cooler than the non-riparian corridor areas (i.e., compare Figure 4E to Figure 4H).
Similar temperatures are exhibited in the HI_UZ_THK model (i.e., compare Figure 4F to
Figure 4I). In another February snapshot from five years later (15.17 years; Figure 4J–L), all
three models show similar patterns, as seen at 10.17 years of generally warmer water table
temperatures, because the warming trend applied to the temperature of the infiltration
begins to affect the overall ambient temperature of the water table.

At 24.67 years into warming, corresponding to August, the NO_UZ_THK and
MID_UZ_THK results (Figure 4M,N) show a similar and fairly uniform water table tempera-
ture across the model domain. For the same simulated period, the water table temperatures
in the HI_UZ_THK model (Figure 4O) appreciably depart from the NO_UZ_THK and
MID_UZ_THK model results. That is, the water table temperature is less uniform—areas
below a thicker UZ are cooler, for example, at the UPLAND location. The final set of
water table temperature maps (Figure 4P–R), also corresponding to August, show the
groundwater temperature at 25.67 years. This period is characterized by the highest
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monthly relative heat influx during the entire warming period (7.79; Figure 1C) as well
as a very high average annual relative heat influx (2.12). The NO_UZ_THK model shows
warmer temperatures over most of the domain, at nearly 10 ◦C (Figure 4P). In contrast, the
MID_UZ_THK model shows warmer riparian corridors and cooler temperatures under the
uplands (Figure 4Q). The HI_UZ_THK model for year 25.67 (Figure 4R) is cooler under the
uplands and along the river corridors than either of the other two models. A comparison of
the water table temperatures after 24.67 and 25.67 years of warming shows that appreciable
warming occurred during the elapsed year in the NO_UZ_THK and MID_UZ_THK models
(i.e., comparing Figure 4M to Figure 4P, and Figure 4N to Figure 4Q, respectively) and
only a small amount of warming in the HI_UZ_THK model (i.e., comparing Figure 4O to
Figure 4R). Given that the only difference between these models is the thickness of the UZ,
the cooler temperatures in the HI_UZ_THK model suggest meaningful thermal buffering
in the UZ before infiltrating heat reaches the water table.

3.2. Groundwater System Temperatures

Time series plots of the simulated temperature at the UPLAND location show markedly
different behavior for each layer of the three base models (Figure 5). For example, the
temperature response in the water table layer (layer 4) of the NO_UZ_THK model exhibits
higher frequencies and amplitudes compared with the MID_ and HI_UZ_THK models.
This result is expected, since the UZ is not simulated and therefore unable to buffer the
infiltrating heat signal. Thus, the layer 4 response at the UPLAND location is notably
flashier in the NO_UZ_THK model (Figure 5A). The temperature response in layer 4 for the
other two models with thicker unsaturated zones is much smoother, and the total warm-up
in layer 4 of the MID_UZ_THK (Figure 5B) model is approximately 0.3 ◦C less by the
end of the simulation, compared with the HI_UZ_THK model (Figure 5C). The simulated
temperatures also trend upward at the VALLEY location in all layers Figure 5D–F), albeit
with different behaviors. For example, the amplitude of the temperature swings in layer 1 at
the UPLAND location is greater than at the VALLEY location; however, larger amplitudes
are seen at the VALLEY location in layers 2 and 4, compared with the UPLAND location.
Additional cross-sectional results are provided in the Supplementary Material Section S3.

Figure 5. Simulated temperature hydrographs by model layer at the (A–C) UPLAND well and
(D–F) VALLEY well locations for the spin-up and warm-up periods. Groundwater temperature
hydrographs are further organized as follows: (A,D) NO_UZ_THK, (B,E) MID_UZ_THK, and
(C,F) HI_UZ_THK models. Depths of the various layers for both locations are shown in the Supple-
mentary Material Section, Figures S1–S9.
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3.3. Stream Baseflow Temperatures

Groundwater discharge plays an import role in cooling streamflow temperatures, par-
ticularly during late summer, when its proportional contribution to streamflow is greatest
(i.e., baseflow conditions). Because groundwater discharge is comprised of an ensemble
of subsurface flow paths, streamflow temperature during baseflow largely reflects the
(1) thermal buffering that occurred within the UZ prior to the infiltrating water becoming
recharge, (2) buffering within the saturated zone as groundwater flow paths of different
temperature converge, (3) thermal buffering that occurred within the UZ prior to it becom-
ing recharge, and (4) other processes not specifically addressed in this paper, including
direct atmospheric effects on surface water. Heat in storm runoff from the land surface,
not addressed here but incorporated in a companion paper by Feinstein et al. (2022) [25],
does not affect baseflow temperatures, but rather acts on total streamflow temperatures.
The key point is that simulated baseflow temperatures for a given location within a stream
network represent a composite of heat accumulated from upstream in the watershed. In
particular, the baseflow temperature responds to dampened heat flows through the UZ and
the saturated system, along with the undampened heat contribution from groundwater
runoff (by way of rapid transfers from groundwater discharge to the land surface plus
rejected infiltration from the top of the unsaturated zone).

The hypothetical stream gage locations used in this investigation to describe baseflow
conditions are divided into two groups of three (Figure 6): the first group consists of
upgradient gages (Figure 2) corresponding to a headwater location (site 235), a tributary
outlet (site 285), and an upper confluence location (site 492), while the second group of
downgradient gages consists of a lake outlet (site 615), a lower confluence (site 692), and
the model outlet (site 864). Temperatures in the lake outlet gage reflect a single temperature
computed for a well-mixed lake through time. Temperatures at the model outlet gage
reflect the integrated response of an entire upgradient surface-water network over time.

For the upgradient gages, results of the NO_UZ_THK model (Figure 6B) show a
seasonal temperature frequency and a rising magnitude trend, but with little temperature
separation at the three gage locations (Figure 6A). The MID_UZ_THK model (Figure 6C)
shows seasonality and rising trends in stream temperatures similar to the NO_UZ_THK
model (Figure 6D), but with increased separation among the thermal hydrographs. For
example, the 95th percentile temperature increase is greatest at the tributary location and
lowest at the upstream headwater location. In contrast to the other simulations, stream
temperatures generated by the HI_UZ_THK model are virtually identical across the three
upgradient locations, and the upward trend is notably dampened, compared with the
NO_UZ_THK and MID_UZ_THK models.

For the three downgradient gage locations (Figure 7A), the streamflow temperature
response is different from that of the upgradient locations. For example, in all three test mod-
els, the lake outlet gage (Figure 7A) shows a pronounced yearly oscillation superimposed
on the rising trend. Although the codes used in this work do not simulate all components
of the lake temperature budget, the lake outlet results have heuristic value. Annual tem-
perature swings of roughly 0.3 ◦C are simulated at the lake outlet, where the lake acts as a
well-mixed reservoir, integrating discharge from its groundwater contributing area, which
largely consists of areas with little UZ thickness. That is, the simulated streamflow temper-
ature at the lake outlet reflects the solitary temperature simulated for the entire lake. The
lower confluence location (ID 692) is somewhat dampened for all three base model versions.
However, the results at the model outlet gage are less flashy in the NO_UZ_THK model
(Figure 7B) compared to the flashier temperatures in the MID_UZ_THK model (Figure 7C),
with the 95th percentile stream baseflow temperature increase for the moderately thick UZ
model exceeding 0.6 ◦C, and an excursion (maximum minus minimum) exceeding 1.0 ◦C.
Results of the HI_UZ_THK model (Figure 7D), by contrast, show a dampened response in
the streams for both the lower confluence and model outlet locations.
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Figure 6. Simulated stream baseflow temperature response to warming (A) at the upgradient gage
locations for the (B) NO_UZ_THK, (C) MID_UZ_THK, and (D) HI_UZ_THK model simulations.

For the NO_UZ_THK and MID_UZ_THK simulations, the flashiest stream temper-
ature response is at the model outlet gage (Figure 7B,C respectively)—an initially coun-
terintuitive result, considering that this location integrates contributions from the largest
portion of the watershed. However, because the model outlet is flanked by riparian ar-
eas (the water table resides in the top 3-foot-thick layer), there is minimal UZ buffering
for the MID_UZ_THK model, and no buffering for the NO_UZ_THK model; therefore,
direct runoff contributed by precipitation will immediately (that is, within the same model
monthly time step) influence the stream temperature. The extent of the riparian area varies
within the contributing area of each gage, where a rough trend of increasing riparian area
at more downstream gage locations is observed (Table 4). For the NO_UZ_THK model,
the specified recharge volumes (as opposed to simulating infiltration with UZF) result
in elevated water levels near the streams and (unrealistic) high groundwater gradients,
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which, in turn, facilitate rapid lateral groundwater flow to nearby streams that discharge
appreciable amounts of flow and heat in a short period of time. In the MID_UZ_THK
model, an extensive riparian area exists within the contributing area, that is, between the
lower confluence (gage 692) and model outlet (gage 864). In this circumstance, a thin UZ
associated with a water table near the land surface facilitates rejected infiltration; that is,
the ability of the groundwater system to accept infiltration is significantly reduced and
it is therefore shunted as runoff to the nearby stream. Conversely, the reduced riparian
area in the HI_UZ_THK simulation, along with more dampening of a thick UZ, results in a
smoother stream temperature response.

Figure 7. Simulated stream baseflow temperature response to warming (A) at the downgradient gage
locations for the (B) NO_UZ_THK, (C) MID_UZ_THK, and (D) HI_UZ_THK models.
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Table 4. Percent of the contributing area above each stream gage (Figure 2) that is classified as
riparian zone.

Base Model Version Stream Gage
Contributing Area (Fraction

of Model Domain)
Riparian Area (Percent of

Contributing Area)

NO_UZ_THK

285-tributary 0.042 20.6%

492-upper confluence 0.202 25.4%

692-lower confluence 0.353 27.6%

864-model outlet 0.447 31.8%

MID_UZ_THK

285-tributary 0.042 16.9%

492-upper confluence 0.202 22.1%

692-lower confluence 0.353 22.6%

864-model outlet 0.447 24.9%

HI_UZ_THK

285-tributary 0.042 0.8%

492-upper confluence 0.202 1.6%

692-lower confluence 0.353 3.2%

864-model outlet 0.447 4.4%

By the end of the 30-year warm-up period (i.e., the end of the simulations), an overall
increase in the stream baseflow temperature of approximately 0.5 ◦C is simulated at all
three of the downgradient gage locations (Figure 7). This increase is roughly half of the
1.0 ◦C rise in the simulated water table temperature at the VALLEY well location (the
shallowest layer for each UZ model; Figure 5D–F), an area with a similarly shallow water
table. Thus, there is a thermally dampened response in the stream temperatures relative
to the groundwater system, which is suggestive of groundwater mixing—the upwelling
of cooler groundwater from deeper groundwater flow paths combining with shallower
and warmer flow paths—before discharging into the stream. It is important to emphasize
that at the end of the 30-year warm-up period, simulated temperatures throughout the
system have not reached a new dynamic equilibrium. In other words, the UZ continues to
buffer the underlying warming signal applied to the infiltration during the last 30 years of
the simulation. Additionally, cooler groundwater from deeper parts of the aquifer mixes
with the warmer groundwater near the water table to further dampen the effect of the
warming signal on the stream temperatures. Finally, longer flow paths, unaffected by
30 years of warming, may begin to show signs of more significant warming, given enough
time. For example, the simulated groundwater temperatures in layer 8 do show signs of
warming by the end of the simulations (Figure 5), although it is the most muted response
across all layers. Therefore, the overall watershed residence time, and the distribution of
residence times within a watershed, influence the thermal resiliency of a watershed subject
to warming.

Additional UZ layers for further resolving UZ flow and transport had little effect on the
final temperatures, indicating that the kinematic wave approximation within the UZF1 pack-
age provides sufficient information to capture lags in the infiltrating heat flux. However,
including at least one completely unsaturated layer above the water table enables MT3D-
USGS to simulate lags in heat reaching the water table, since MT3D-USGS instantaneously
mixes the unsaturated and saturated temperatures (i.e., “concentrations”) in cells containing
the water table [11]. A parameter sensitivity analysis (Supplementary Material Section S3)
showed that the simulated water table temperatures responded more strongly to pertur-
bations than the stream temperatures. Table S3-1 lists the parameters that were adjusted.
Parameters related to flow of water (UZ vertical hydraulic conductivity and saturated
water content) had modest sensitivity, while heat transport-related parameters (i.e., distri-
bution coefficient, thermal conductivity) were more sensitive. However, a highly reduced
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UZ vertical hydraulic conductivity did appreciably reduce the amount of groundwater
recharge, which was balanced by an increase in rejected infiltration, leading to an increase
in the amount of overland flow to surface water, which in turn affected the heat balance of
the system.

4. Discussion and Implications for Watershed Heat Transport Modeling

The simulated temperatures throughout the watershed may be evaluated in terms of
how the infiltrating heat signal’s amplitude, frequency, and phase are modified first by
the UZ, and secondly by the saturated zone. For example, seasonal swings in the average
simulated temperature of layer 1 can be as high as 2.5 ◦C (Figure 5B,C,E,F), although they are
frequently less than that. When the heat signal reaches the bottom of the UZ (represented
by layers 1–3), the amplitudes of the seasonal swings in temperatures have almost entirely
disappeared, although small seasonal swings in the groundwater temperature are still
evident at the VALLEY location in layer 4 of the MID_UZ_THK simulation (Figure 5E).
The existence of some seasonality in temperature for layer 4 in the MID_UZ_THK model
(Figure 5E) compared with the HI_UZ_THK model (Figure 5F) further demonstrates the
dampening effect of the UZ. Thus, the temperature swings assigned to the infiltration at
the top of the UZ (Figure 1) are largely smoothed by the unsaturated and saturated zones.

By the end of the warm-up period, the simulated average temperature increase in
layer 4—representative of the shallow part of the groundwater system—is approximately
0.75 ◦C at the UPLAND location in the MID_UZ_THK model (Figure 5B). At the VALLEY
location, the average temperature of layer 4 increased by nearly 1.0 ◦C (Figure 5E). The
average temperature increase in the deeper aquifer, represented by layer 8, was only
approximately 0.25 ◦C and 0.40 ◦C at the UPLAND (Figure 5B) and VALLEY (Figure 5E)
locations, respectively, in the MID_UZ_THK model. In general, layer 8 is representative of
groundwater temperatures roughly 100 ft (30 m) below the water table.

The behavior of stream baseflow temperatures during warming is shown for down-
stream gages in Figure 7. At the end of the 30-year warm-up period, the stream tempera-
tures rose between 0.5–0.6 ◦C in the three models, compared with the end of the spin-up
period. Thus, the model, as expected, simulates less overall warm-up in the stream tem-
peratures compared with the amount of warm-up applied to the infiltrating water (2 ◦C,
Figure 1B). The dampened stream temperature response is sustained by the discharge of
colder groundwater from deeper in the aquifer mixing with the groundwater discharge.
Moreover, the effect of UZ thickness on stream temperatures also is likely evident in the
results; for the upgradient locations, the HI_UZ_THK stream temperatures (Figure 6D) are
much smoother and considerably more muted, compared with the MID_UZ_THK stream
temperatures (Figure 6C).

A final consideration in evaluating infiltrating heat in a watershed is the phase, or lag
time, between the forcing boundary condition (i.e., the temperature of the infiltration) and
the downgradient response. The effects of lag time are most clearly seen during periods
of high heat inflow, where the response is felt relatively quickly in the MID_UZ_THK
simulation (i.e., warmer temperatures below the UPLAND area in Figure 4Q), whereas
cooler temperatures persist for the same location in the HI_UZ_THK simulation (Figure 4R).

These findings have implications for watershed heat transport simulations in humid
temperate climates. They are:

1. A potential effect of warming climate on groundwater temperatures in a watershed
depends on the relative heat flux—the product of infiltration rate and associated
temperature—that determines the amount of heat entering the subsurface. For exam-
ple, if the temperature of infiltrating water increases during a warming climate, the
net change in groundwater temperature may be lessened if drought conditions cause
the rate of infiltration to be reduced;

2. The UZ acts as a low-pass filter. Both the magnitude and timing of water and heat
pulses entering the subsurface and migrating downward to the water table, are atten-
uated by the UZ. Neglecting the UZ from a model simulation (as in the NO_UZ_THK
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version of the synthetic model) effectively “short circuits” the dampening and lag
time influences of the UZ;

3. The effect of a warming climate is buffered in a watershed by the total thickness of
the groundwater system. A relatively thick groundwater system gives rise to mixed
water temperatures at natural discharge points where shallow and deep flow lines
converge. The convergence of flow lines dampens the heat signal carried by recharge
that eventually discharges as baseflow to surface water;

4. The spatial extent of riparian zones plays an important role in determining the flashi-
ness of a stream’s response to heat forcing. That is, the riparian zone sheds (or shunts)
precipitation to the surface water network, without the low-pass filtering of the UZ;

5. Additional vertical discretization to more accurately simulate the movement of
wetting and heat fronts did not change simulation results. However, omission
of the UZ and its effects on heat transport in a watershed-scale model produces
erroneous results;

6. A sensitivity analysis of the flow and heat transport parameters showed an appreciable
influence on simulated temperatures in both the saturated and unsaturated compo-
nents of the subsurface, as well as on simulated stream temperatures (Supplementary
Material Section S3).

5. Limitations of the Methodology

A discussion of the limitations and assumptions used in this work are provided in
Supplementary Material Section S3, with a brief summary here.

• Root zone processes (i.e., evapotranspiration) are neglected; therefore, the infiltration
rate is equated with the water that drains out of the root zone and enters the top of
the UZ.

• As noted above, the UZF1 package in MODFLOW implements simplifying assump-
tions that neglect capillary forces. As a result, UZF1 simulates downward-only grav-
itational flow. This simplification is generally considered acceptable at a watershed
scale [30].

• With the UZF1 package active in MODFLOW, one of three potential states is simu-
lated for any active cell. They are either (1) unsaturated (i.e., partially-saturated over
the entire thickness of the active grid cell), (2) a mix of unsaturated and saturated
conditions (i.e., the water table is present within the cell), or (3) fully saturated. For
water table cells, a single water content value is calculated that is equivalent to a
volume average of both the unsaturated and saturated portions of the cell. Ambi-
guity arising from this mixed condition appears to have minimal effect on the heat
flux solution, insofar as refined layer discretization hardly changes model results
(Supplementary Material Section S3).

• Although conduction occurs through the matrix material of an aquifer and may
transport heat more rapidly than in the fluid phase in low convection environments,
MT3D-USGS simulates a single “bulk” diffusion term that approximates heat transport
through both phases. In other words, the conductive propagation of heat through the
solid and fluid phases is represented as a conjoined movement that is slower than
thermal diffusion through a pure solid but faster than thermal diffusion through a pure
fluid. In a predominantly horizontal flow-field, the upward or downward thermal
diffusion is generally secondary, compared with the convection in humid temperate
climates [25]. It is conceivable that the conductive flux through matrix material is
dominant when the temperature gradient is unusually strong.

• The methods applied in this study were designed for temperate climate regions.
It neglects processes such as mountain-front recharge in settings with deep water
tables (>30 m), long flow paths (>2–3 km), and long UZ residence times, which are
characteristic of arid and semi-arid regions.
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• The effects of changes in viscosity owing to temperature changes are not considered
in this study. However, variations in viscosity over the relatively small temperature
changes simulated in the model are expected to be small.

A second group of limitations that are not related to the methodology chosen, but
instead arise from the way the synthetic watershed model was constructed, include:

• Temporal smoothing of system dynamics via the use of a monthly climate forcing.
• Simplification of the thermal influence of storm runoff to streams was ignored/not simu-

lated: that is, the restriction of the simulation to monthly average baseflow conditions.
• Inadequate representation of lake energy budget considerations as important for lake

temperature. For example, neglecting the formation of ice during the winter months,
energy changes related to evaporation, and lake thermal stratification.

Finally, it is important to note that the heat forcing function used to represent wa-
tershed warming in this study was designed to illustrate the components of watershed
heat transport rather than represent an expected future condition. A companion paper,
Feinstein et al. (2022) [25], incorporates a heat forcing function derived from predictions of
climate trends.

6. Conclusions

This study developed a methodology for simulating watershed scale heat transport in
a humid temperate climate. Beyond the use of the modified MT3D-USGS code described in
Morway et al. (2022) [7], the applied methodology relies on two aspects of the model design:

• Whereas specification of infiltration is critical for representative groundwater flow
models, specification of the heat forcing function, represented by the product of the
infiltration rate added to the top of UZ multiplied by the infiltration temperature (the
relative heat influx) is critical for developing a representative heat transport model.

• Heat transport in watershed models stand to benefit from a discretization scheme with
at least one unsaturated layer. This approach enables the simulation to store, dampen,
and/or lag the heat pulse before it is mixed with an underlying water table cell.

By the end of each simulation, the increase in the stream baseflow temperature
(approximately 0.5 ◦C) is approximately half of the temperature increase at the water table
(approximately 1.0 ◦C). Even with simulating monthly average conditions, the spatial ex-
tent of the riparian zone (water table < 1 m deep) plays an important role in determining the
temperature ‘flashiness’ of the stream response to heat forcing. Thin UZs in riparian areas
are more likely to generate rejected infiltration (runoff), which effectively short-circuits the
dampening effects of a thicker UZ.

The methods applied in this study of a synthetic watershed highlight the importance
of including the UZ in heat transport models. The UZ acts a low-pass filter that dampens
the simulated effect of an infiltrating heat signal over time. That is, the thickness of the UZ
can modify the amplitude, frequency, and phase change of the infiltrating heat signal as it
migrates down to the water table. Moreover, because the thickness of the UZ varies across
the active model domain, explicit representation of the UZ within a watershed model better
captures the spatially-varying effect of the UZ on heat fluxes delivered to the water table.
Equipped with a spatially and temporally refined recharging heat flux simulated by the
model, the subsequent heat-buffering effects of the groundwater (saturated) system on
a migrating heat signal are better accounted for. For example, as the shallow and deep
flow paths converge near discharge points, the respective temperatures associated with
each flow path mix. In this way, the cumulative and combined effects of the unsaturated
and saturated zones on the temperature of the discharge to surface water features is more
accurately simulated. Thus, heat transport models that consider the unsaturated and
saturated zones are better equipped to evaluate the impacts of a changing climate on
ecologically sensitive endpoints such as stream habitats.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/w14233883/s1. Figure S1-1: Monthly and average yearly infiltration
rates over warming period; Figure S1-2: Average yearly infiltration rate over warming period;
Figure S1-3: Monthly temperature signal for spin-up; Figure S1-4: Forcing function component:
Monthly temperature; Figure S1-5: Forcing function component: Relative monthly heat influx;
Figure S1-6: Relative heat influx: 12-month averages during warming; Figure S1-7: Average relative
heat influx by month for 30-year spin-up and 30-year warming; Figure S1-8: Synthetic model;
Figure S1-9: Model layering and water-table elevation for UPLAND and VALLEY locations at end of
spin-up period; Figure S1-10: Depth to water table at end of spin-up; Figure S2-1: Linear relations
between thermal conductivity and volumetric moisture content; Figure S3-1: Head hydrographs for
base model layers 1-8 at UPLAND and VALLEY locations; Figure S3-2: Temperature and water-table
elevation in cross section through UPLAND location for three base models, layers 1-8, at selected times
during warming period; Figure S3-3: Stream baseflow temperature for three base models in response
to warming at selected gages; Figure S3-4: Cross sections showing layering for 8-layer base model
version and 10-layer revised base model version of MID-UZ-THK; Figure S3-5: Cross sections showing
layering for 8-layer base model version and 10-layer revised base model version of HI-UZ-THK;
Figure S3-6: Temperature hydrographs comparing results for 8-layer and 10-layer model versions
for the UPLAND location; Figure S3-7: Temperature hydrographs comparing results for 8-layer and
10-layer model versions for VALLEY location; Figure S3-9: Sensitivity results for MID_UZ_THK
model as a percentage of model domain for August, by year, with water-table temperature at or above
9.5◦C; Figure S3-10: Sensitivity results for MID_UZ_THK model for stream temperatures at the model
outlet gage during warming period; Table S1-1: Infiltration rates over warming period in inches/year;
Table S1-2: Vertical distribution of water-table elevations and corresponding temperatures at selected
times during warming. Units for average temperature are degrees Celsius; Table S2-1: Spatially
homogeneous transport and heat flux parameters; Table S3-1: Summary of changes to parameter
values for sensitivity simulations using the MID_UZ_THK base model. References [31–34] at the end
of the reference list are cited in the Supplementary Materials.
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Abstract: A proper management of fresh groundwater lenses in small islands is required in order to
avoid or at least limit uncontrolled saltwater intrusion and guarantee the availability of the resource
even during drought occurrences. An accurate estimation of the freshwater volume stored in the
subsoil is a key step in the water management decision process. This study focused on understanding
the hydrogeological system behaviour and on assessing the sustainable use of the groundwater
resource in Nauru Atoll Island (Pacific Ocean). A first phase, concerning the hydrogeological charac-
terization of the island, highlighted the occurrence of few drought-resilient freshwater lenses along
the seashore. The second part of the study focused on the characterization of a freshwater lens found
in the northern coastal area and identified such area as the most suitable for the development of
groundwater infrastructures for water withdrawal. The characterization activities allowed quantify-
ing the freshwater lens thickness and volume in order to assess the capability to satisfy the population
water demand. A geo-electrical tomography survey was carried out, and a 3D density-dependent
numerical model was implemented in SEAWAT. The model results demonstrated that in small islands
freshwater can unexpectedly accumulate underground right along the seashore and not in the centre
of the island as is commonly believed. Furthermore, the model can constitute a useful tool to manage
the groundwater resources and would allow the design of sustainable groundwater exploitation
systems, avoiding saltwater intrusion worsening.

Keywords: small island; groundwater storage; groundwater management; geo-electrical survey;
density-dependent model; SEAWAT; water security

1. Introduction

The management of freshwater reserves is nowadays becoming increasingly important.
Freshwater stored in coastal aquifers is particularly vulnerable to degradation because of its
proximity to seawater. Coastal aquifers often must face environmental problems related to
seawater intrusion as the result of indiscriminate and unplanned groundwater exploitation
for fulfilling the freshwater need of the growing global population [1–5].

Small islands, consisting of extremely small surface areas [6] and maximum elevations
approaching only a few metres [7], have a particular physical structures and unique
hydrological systems. This category includes the small coral islands of the Caribbean Sea
and the coral atolls of the Pacific and Indian Oceans, where the surface water does not
exist in an exploitable form, and fresh groundwater resources are limited. On these islands,
conventional options for freshwater supplies are limited to groundwater development and
rainwater harvesting [8]. The groundwater in small islands is located into the subsoil in the
form of lenses, relatively thin layers of freshwater floating above the denser seawater. The
mixing zone separating freshwater and seawater influences the depth at which freshwater
is available [9]. Usually, in small islands’ subsoil, the mixing zone contains a gradual
transition in salinity from freshwater to seawater as well [6,10,11], and its thickness is
related to the tidal fluctuations [12,13]. Buddemeier and Oberdorfer [14] suggested that the
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mixing zone, defined by salinities between 2.5% and 95% of seawater concentration, can
occupy a significant volume of atoll island aquifers compared to the freshwater component.
Water infiltrates into the ground and becomes recharged to groundwater that moves from
the inner parts of the island towards the coast and discharges along the coastline, where the
outflow is usually not regular but varies according to changes in permeability and aquifer
thickness [8,15,16]. Fresh groundwater lenses’ salinization due to seawater intrusion is
a main issue and has a great impact on groundwater quality and can even prevent the
utilization of the underground resource [6–8,17]. Werner et al. [18] found that the combined
effects of complex geology, tides, episodic ocean events, strong climatic variability, and
human pressures strongly influence the extension of fresh groundwater lenses. Thus,
these underground water resources are particularly vulnerable to saline contamination
but, on the other hand, are the unique water supply sources for many island populations.
Furthermore, the freshwater supply security is threatened by the sea level rise due to the
effects of climate change [19,20]. A correct knowledge of the hydrogeological system and
the fresh groundwater lens availability is fundamental for the water resources management
of many small islands [2,21,22]. Numerical modelling is a very useful tool and able to solve
many hydrogeological issues: from the interpretation of the contamination sources to their
path in the aquifer [23] to the study of the best remediations strategies [24,25]. In this case,
numerical modelling is a tool used to quantify freshwater availability range, starting from
simple empirical relationships to three-dimensional density-dependent models [18,26].
Using a variable-density numerical model, Underwood et al. [27] discussed the effect
of various hydrogeological parameters, already identified by Falkland [8], on the size
of the fresh groundwater lenses on small islands. Bailey et al. [28] also started from
Falkland’s study [8] and carried out a sensitivity analysis of atoll fresh groundwater lens
thickness, providing an insight into some of the fresh groundwater lens-controlling factors.
Alberti et al. [15] implemented a 2D numerical density-dependent model to understand the
phenomenon of freshwater accumulation in the sandy part of Nauru coastal belt. Similarly,
Babu et al. [29] presented a quasi-3D sharp interface finite element model to investigate the
saltwater intrusion dynamics in Tongatapu Island, Kingdom of Tonga, Polynesia. As an
example of groundwater resource management in island aquifers using numerical models,
Coulon et al. presented first a parameter estimation framework [30] and then a numerical
model to optimize the pumping rates while avoiding saltwater intrusion in the Magdalen
Islands, Quebec, Canada [31].

Vulnerability studies focused on many small islands in the Pacific: Houghton et al. [32]
showed that the costs of general infrastructure for water supply (e.g., reverse osmosis (RO)
desalination plant) and protection are often well beyond the financial possibilities of most
small island states. The need to implement measures for reducing vulnerability and
increasing resilience of systems to climate variability in small islands was highlighted by
Nurse and Moore [33]. The objective for small islands is then to look at alternative sources
of water in the long run [34–36].

Nauru is an isolated raised coral-limestone island located 41 km south of the Equa-
tor in the central Pacific Ocean, standing 4300 m above the ocean floor. The National
Sustainable Development Strategy (NSDS) for Nauru was prepared in November 2005.
In the document the government identified sustainable supply of power and water as
fundamental for supporting the island economic growth. In the past, Nauru imported
water from the neighbouring islands (Marshall Islands and Solomon Islands), but this is
very expensive and is no longer an option. At present, Nauru’s main sources of water are
rainfall and desalination (RO). These water supplies are enough in normal rainfall year
but become insufficient in case of prolonged drought or when the desalination plants are
not in operation. On the other hand, the RO is expensive in terms of energy consumption
and needs expertise for its maintenance. Thus, the best option is to look for alternative
water resources such as groundwater, which could turn out to be a potential source of
water for Nauru and that has not yet been exploited accordingly to its possibilities. Several
studies were focused on the groundwater potential for Nauru, such as Falkland’s study [37]
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that reports the activities needed to inspect this water resource in the island and make it
available for the people.

In this context, Politecnico di Milano was in charge of a project concerning the assess-
ment of the practicability of infrastructural actions for sustainable usage of groundwater
resources in the island [38]. The project consisted of three steps: (1) development of the
conceptual site model (CSM) through the geological and hydrogeological characterization
of the island; (2) implementation of 2D and 3D density-dependent flow and transport
groundwater numerical models focused on the island’s part more suitable for the ground-
water development; and (3) study and preliminary design of infrastructural actions for
groundwater sustainable exploitation. Alberti et al. [15] presented the first step of the
project, describing both the island geological structure, its climate, the activities carried out
to identify the hydrogeological setting, the seawater intrusion occurrence in Nauru aquifer,
and, at last, implemented the 2D numerical model. The present paper mainly focused
on the second project step concerning the 3D modelling and the survey carried out. The
main challenges concerned: (a) better understanding the behaviour of the hydrogeological
system and why groundwater accumulates along the coast rather than in the centre of the
island and (b) quantifying the thickness and volume of the freshwater lens in the northern
sector of the island to evaluate the possibility, aiming to satisfy, at least in part, the water
demand of the population. The study shows, as a proper combination of hydrogeological
investigations and density-dependent groundwater modelling, all the necessary steps to
correctly manage groundwater resources on small islands prone to saltwater intrusion and
long drought periods.

2. Materials and Methods

The Republic of Nauru (Figure 1) is an isolated, uplifted limestone island located
41 km south of the equator (0◦32′ S, 166◦56′ E). This island represents a raised atoll standing
4300 m above the ocean floor, with a maximum land-surface altitude of 70 m above the
sea level (cross section in Figure S1 in Supplementary Materials). The total land area of
Nauru is only 22 km2, surrounded by a fringing coral reef between 150 and 250 m wide.
The land area consists of a narrow coastal plain (Bottomside) 100 to 300 m wide and with
an elevation ranging from 0 to 10 m a.s.l., which encircles a limestone escarpment rising
some 30 m to a central plateau (named Topside). The Bottomside consists of a sandy or
rocky beach on the seaward edge and a beach ridge or foredune, behind which are either
relatively flat ground or, in some places, low-lying small lagoons filled by brackish water.
The high plateau consists of a matrix of coral-limestone pinnacles and limestone outcrops,
between which lie extensive deposits of soil and high-grade tricalcic phosphate rock, which
was extensively mined in the past century. On the southwest-central part of the island, there
is a wide and fertile depression (about 120,000 m2), where a brackish water lake, known
as Buada Lagoon, is located (Figure 1). This is the only surface water body (38,000 m2)
existing on the entire island. Jacobson and Hill [39], in 1987, led the first hydrogeological
survey in Nauru, basing all their measurements on a reference point called the reduced
level (RL). Groundwater level measurements of all the following hydrogeological studies
on the island [6,15] were referred to as RL [40].

Most of the wells and monitoring wells in Nauru are located along the coastline [15],
where most people live, and the groundwater is mainly exploited. Methods used for
water extraction are pumping or bailing. In detail, along the coastline, there are about
350 domestic wells, 126 of which are used as monitoring wells [15,41]; referring to the
measurements carried out by Nauru government, most of these wells present electrical
conductivity (EC) values definitely higher than 2200 μS/cm, which is the drinkable limit
(1.5 g/L of TDS) defined by Nauru government [42]. Only in the northern part of the
island, in Anetan and Ewa districts, the EC values in multipipe monitoring well S1 (5 pipes)
and S18 (4 pipes) are lower than the drinkable limit in the shallow part (Figure 2a,b). The
surveys show that in this zone, freshwater depth ranges between 6 m (June 2008) and 8 m
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(April 2010) below the ground level. In other areas, the common EC values are always
higher, as shown in Figure 2c,d for monitoring wells S21 and S23.

Figure 1. Nauru position at 0◦32′ S and 166◦56′ E and aerial photo of the island in 2009 with its
districts.

Figure 2. EC values over the depth of the following monitoring wells: (a) well S1, (b) well S18,
(c) well S21, and (d) well S23.

For a better understanding of the geological and hydrogeological setting of the island,
Alberti et al. [15] discussed in detail its hydrogeological structure and the activities carried
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out to identify the related properties and the seawater intrusion occurrence in Nauru
aquifer.

2.1. Hydraulic Tests

During a first characterization phase, Politecnico’s researchers tried to perform some
pumping tests, but the small size of the pumps available in Nauru did not allow the
adequate stressing of the aquifer. Consequently, none of these provided satisfactory results,
and during the last visit to Nauru, 12 pneumatic slug tests were performed focusing on
the northern sector of the island. The tests were carried out in situ, pushing the Geoprobe
systems ®rods in the aquifer to the desired depth and pumping air into the rods to lower
the water level. Once reached, the system equilibrium air was released, and the sensor
registered the groundwater recovery inside the rods. The duration of each test was about
20 min. The slug tests allowed obtaining hydraulic conductivity values in the proximity
of the piezometers S1 and S18. For the slug tests, the method used for the interpretation
was derived from Bouwer and Rice [43], whereas for the pumping test, the interpretative
approach was derived from the adaptation for unconfined aquifer of Neumann [44]. In
detail, the test carried out 10 m north of the piezometer S1 provided a hydraulic conductivity
value of 11.98 m/d at 5 m depth, while the slug tests carried out next to the piezometers
S1 and S18 showed the common feature of having a greater permeability with increasing
depth. Close to S1, the hydraulic conductivity increases from 3.46 m/d to a depth of 7 m
from the ground level and up to 29 m/d at a depth of 15 m from the ground level; next to
S18 instead, the measured hydraulic conductivity is 0.38 m/d at 14 m depth and increases
up to 7.08 m/d at a depth of 17 m. The tests allowed to achieve the hydraulic conductivity
values for the Bottomside for the Anetan district. All the tests performed are summarized
in Table 1.

Table 1. Hydraulic conductivity value measured through slug tests.

Slug Test On Depth (m) Hydraulic Conductivity (m/d)

S18 10.2–13 0.4
S18 13.1–15 7.1

Near to S18 4.8–5.1 12.0
S1 6.7–7.7 3.5
S1 7.9–9.7 32.0
S1 9.8–11.2 12.6
S1 11.3–13.6 12.3
S1 13.8–15 30.0

S21 33.08–35.11 26.0
S21 35.11–36.98 42.5
S21 36.98–39.17 37.7
S21 39.17–46.08 14.0

Average value 19.2
Median value 13.3
Std. deviation 13.8

2.2. Geo-Electrical Investigation

For the Nauru project [38], the researchers of Politecnico di Milano, in partnership
with the National Research Council (Consiglio Nazionale delle Ricerche—CNR), carried
out a geoelectrical survey in order to define in detail the thickness and quantity of the
freshwater lens present in the northern area of Nauru, in the Capelle zone belonging to
Anetan and Ewa districts (Figure 2). The results of the Nauru project’s first phase [15] show
that this area presents a freshwater lens that maintains significant thickness over the years
and has been resilient even in drought periods. The 2D numerical model [15] allowed to
interpret the cause of the freshwater presence in the proximity of the seashore.

The geoelectrical prospections are part of the geophysical survey methods and, through
an indirect way, allow detecting and characterizing the shape, dimensions, and physical
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properties of the underground structures. The electrical resistivity tomography (ERT),
through vertical electrical sounding (VES), is the most used technique. A georesistivimeter
“PASI E3 Digit” (produced by Pasi s.r.l.) was used for the geo-electrical investigation,
while the software “Earthimager 2D” (Advanced Geosciensces Inc.) was used for the
tomographic inversion. It is based on the observation of the potential difference created by
the introduction of electrical current into the ground and on the evaluation of the electrical
resistivity. As this parameter is very sensitive to the presence of water in pores and to
salt concentration in water, its spatial variations give a hint of the freshwater thickness in
the subsoil. However, the data interpretation is difficult when the study is carried out in
thin aquifers affected by saltwater intrusion. Indeed, assuming these conditions, a sharp
surface separating the freshwater unit from the salty one does not exist, and a transition
zone is present, characterized by variable thickness and salt concentration (related also to
tidal fluctuations [12]). In the Nauru case, a clear evaluation of the freshwater thickness
of the transition zone and of the saltwater occurrence was carried out by means of the
integration of geoelectrical data with EC (electrical conductivity) and head measurements
in wells close to geo-electrical investigations. Tidal fluctuations turned out to affect the
tomographic data because their acquisition occurred in a time frame comparable with the
one of sea level variations. Thus, the collected hydrogeological data were used to link, at
known depth, the EC values to the geophysical resistivity data.

On April 2013, during the geophysical survey, 20 VES and 8 ERT were carried out in
the northern part of the island (Figure 3). The survey was mainly focused on the Bottomside,
where 16 VES were carried out at 8–10 m depth from the ground level, and 4 on the Topside
at a depth ranging from 17 to 27 m from the ground level. All the VES were performed by
means of the Schlumberger quadrupole using an AB/2 spacing of about 50 m. Differently,
all the ERT were carried out on the Bottomside along 4 cross-sections having a length
ranging from 100 to 150 m.

Figure 3. VES (blue points in map) and ERT (black lines) carried out in the Capelle area located in the
northern part of Nauru island at the border between Anetan and Ewa districts.

2.3. 3D Numerical Model Implementation

The evaluation of the available freshwater volume in the Nauru aquifer is the starting
point for the sustainable use of the groundwater resource. The next step of the study is the
implementation of the 3D numerical model. This is the tool to evaluate the effect on the
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characterized fresh groundwater lens related to the infrastructural actions for groundwater
sustainable exploitation that is planned at point 3 of the Nauru project. Infrastructures for
groundwater supply indeed have to be designed with great consideration of the system’s
impact on the natural groundwater resource. Pumping water infrastructure often involves
large-scale ground water withdrawals, which is not feasible in small islands such as Nauru,
where the saltwater intrusion phenomenon could be worsened by groundwater extraction
for the well-known up-coning effect. Infiltration galleries, horizontal wells, or skimming
wells could be appropriate methods of groundwater abstraction from small coral islands
aquifers: they avoid the problem of saline intrusion by spreading the impact of pumping
(head loss) over a larger area of the freshwater lens than wells normally do [45,46]. Nauru,
as many small islands, is vulnerable to water shortage, and the use of horizontal drains is
thought to be a suitable tool for a sustainable groundwater management.

The 2D model discussed in detail by Alberti et al. [15] was used as the basis for the
3D numerical model. A great number of layers was needed to simulate the saltwater
intrusion phenomenon. Since the freshwater occurs mostly in the northern zone, only
the northern half of the island was modelled (Figure 4). The model was created using
the MODFLOW-2000 and SEAWAT-2000 finite difference codes [47,48], by means of the
graphical user interface Groundwater Vistas. SEAWAT-2000 is a previous release of the
SEAWAT computer program for simulation of three-dimensional, variable-density, transient
ground-water flow in porous media. SEAWAT-2000 was designed by combining a modified
version of MODFLOW-2000 and MT3DMS into a single computer program. SEAWAT-
2000 contains all the processes distributed with MODFLOW-2000 and also includes the
variable-density flow process and the integrated MT3DMS transport process.

Figure 4. Modelling domain of the density-dependent 3D numerical model.

The model consisting of 117 rows and 144 columns has a uniform spacing of cells
(30 × 30 m) that cover a model domain of about 15 km2 (Figure 4). No-flow boundary
conditions were applied to the cells outside the area of interest (yellow cells in Figure 4),
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reducing to 9 km2 the model domain covered by active cells. Over the vertical direction, the
domain was subdivided by 22 layers (north-south section in Figure 5a), for which thickness
increases from the surface to the bottom, ranging from 0.5 m to 5 m. The choice to reproduce
the shallow layers through a strong refinement is justified since the concentration data in
monitoring wells showed greater changes in the upper part of the aquifer [15]. The bottom
of the model is set at the −70 m depth related to the reference level (RL) in order to have a
stable configuration of the saltwater wedge.

Figure 5. (a) Vertical discretization of the model domain (black cells are no-flow boundary conditions)
and (b) zoom on the Bottomside area, where blue cells are Dirichlet boundary conditions having the
same head and concentration values; the first seven thin layers were used to represent the sea bottom
deepening and the shallow lagoon.

Similar to the 2D numerical model [15], constant head and concentration (Dirichlet)
boundary conditions representing the sea were assigned in the cells surrounding the island
considering the sea bottom slope from the coastal line to the reef. In order to reproduce
the sea bottom slope, the first 7 layers were used assigning them the Dirichlet condition
at an increasing depth (Figure 5b). Then, at the border of the model domain from the
first layer to the deepest one, the same boundary conditions was assigned using the
following values (Figure S2 in Supplementary Materials): a constant head of 1.59 m above
RL (corresponding to average sea level [4]) and a concentration of 35.7 kg/m3 of total
dissolved solids (TDS) [49].

The hydrogeological and physical parameters values (i.e., hydraulic conductivity,
porosity, dispersivity, etc.) initially implemented in the 3D numerical model were the same
values implemented in the 2D numerical model [15] and reported here (Table 2).

Table 2. Hydrogeological parameters initially assigned to the 2D models [15].

Hydrogeological Parameter Value

Hydraulic conductivity
(m/d)—horizontal and vertical

800 for limestone (zone 1)
40 for sand (zone 1)

80 for limestone (zone 1)
4 for sand (zone 1)

Porosity 0.3
Specific storage (1/m) 0.0003

Specific yield 0.3

Longitudinal dispersivity (m) 50 for limestone
2 for sand

Transverse dispersivity (m) 5 for limestone
0.2 for sand

Vertical dispersivity (m) 0.2 for limestone
0.008 for sand

Recharge (mm/y) 540
Molecular diffusion (m2/d) 8.64 × 10−6

Sea water TDS concentration 35.7 kg/m3
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Before starting the calibration process, some of these values were changed considering
the hydrogeological investigations result and the specific hydrological data for each year
considered in the 3D simulation.

Concerning the hydraulic conductivity, the hydrogeological characterization and the
2D numerical model [15] highlighted (in many areas of the Bottomside) the presence of
sand sediments covering the karstified limestone for a depth ranging from 1 to 15 m below
the ground level depending on the direction of the oceanic currents. These sediments were
probably originated because of the erosion operated by the atmospheric agents and the
waves during the last phase of the island formation, when the sea level decreased, and the
cliff was created. Based on 67 available stratigraphic logs, the subsoil setting was imple-
mented into the numerical model through two different zones of hydraulic conductivity
and dispersivity. To the first zone, representing the sandy sediment of the Bottomside (lay-
ers 1–12), were assigned low values of dispersivity and hydraulic conductivity (Figure S2)
as in the 2D simulation [15] but decreasing in the latter (from 40 to 20 m/d) based on
hydraulic tests average results (Table 1); to the second zone, representing the Topside and
the deep limestone of the Bottomside, higher values of the two parameters (800 m/d and
50 m) were assigned, maintaining the same values used in the 2D simulation.

The parameters calibration of the density-dependent flow model was carried out
through the simulation of 3 different transient conditions (Figure 6).

Figure 6. Diagram scheme of the numerical modelling calibration phases.

Clearly, for each simulation, the recharge value was updated considering the specific
period of simulation. The calibration process followed a trial-and-error approach using
29 concentration and heads data collected at different depths in 12 monitoring wells shown
in Figure 7. Among these monitoring wells, 5 are multipipe (S1, S2, S18, S21, and S23) and
allow to detect the concentration at different aquifer depths.
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Figure 7. Available target points location for the model calibration.

The first phase (model n.1) provided a calibration of the hydraulic conductivity and
dispersivity parameters for a quasi-steady state simulation: a long transient simulation
(100 years) with the aim to recreate the heads and initial total dissolved solids (TDS)
concentration distribution observed in the model area during the November 2009 survey
(provided by CNR).

For model n.1, a recharge value slightly different from Ghassemi et al. [49] was used:
590 mm/year instead of 540 mm/year was calculated for the Topside (Thornthwaite
method) considering the total precipitation (2000 mm) and temperatures measured by
Nauru Government from December 2008 to November 2009. In the coastal zone, where the
large part of the population lives, the value was increased by 11% (reaching 657 mm/year).
This because Nauru’s villages are not equipped with sewer systems, and the habitants
dispose the used freshwater into sinkholes, which directly leak in groundwater. This
additional term of recharge is constituted both by the desalted water and the rainwater
stored in the harvesting systems the houses are usually equipped with. The study carried
out by Bouchet and Sinclair [41] highlighted that the population with access to a pumping
well used averagely about 114 l/d/pc of water (Table 3). However, in Anetan and Ewa
districts (the ones included in the model domain), only the 36% of the population has the
access to a well. For the remaining habitants, an average water consumption of about
88 l/d/pc was estimated, supplied by domestic rainwater harvesting and the desalting
plant.

Table 3. Water usage estimates 2010 for people in Nauru.

Parameter Minimum (l/d/pc) Maximum (l/d/pc) Average (l/d/pc)

Groundwater 68 121 94
Drinkable water
(desalination or

rainwater)
20 20 20

Total water needs 88 141 114

Part of this water, disposed in leaking sinkholes, represents an additional recharge
for the coastal aquifer system. From the data reported by SOPAC [41], 20 l/d/pc of
water was considered for food purposes. Consequently, the remaining and 68 l/d/pc
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was evaluated to potentially infiltrate in the subsoil, respectively, for people with access
to the well and without access. The additional recharge rate (91 m3/d) was assessed
considering the number of inhabitants (i.e., 1180) of Ewa and Anetan and the percentage of
people with/without well access. With the urbanised area in the model domain comprising
about 300,000 m2, a maximum additional recharge of about 111 mm/year was assessed.
During the calibration process, this value was considered as the upper limit because few
houses discharge waste waters directly into the sea, and the rainwater collected through
the harvesting systems is partially subtracted to the natural meteoric recharge. Finally,
the calibrated value was 67 mm/year and was applied to the entire urbanized part of the
Bottomside.

Once the numerical model n.1 satisfactorily reproduced the measured hydraulic heads
and concentration distributions, a 22-month unsteady-state simulation (model n.2) was run
to reproduce the TDS concentration variation and compare results with the TDS distribution
measured through 6 characterization surveys carried out from December 2009 to September
2011 (Figure S3). The model was implemented using 22 stress periods with 10 time steps
each and a multiplier of 1.2. The sea boundary condition was changed, assigning to each
SP the head value corresponding the average sea level in each specific month, while the
TDS concentration remained the same. The recharge was updated using rainfall and
temperature daily collected by the Nauru Rehabilitation Company. Along the Bottomside,
the same average additional recharge was maintained to consider house water infiltration.
In this second phase, the calibration process mainly focused on storage parameters (Sy and
Ss) to which the saline intrusion was shown to be more sensitive. Further, an update of
the previously determined hydraulic conductivity was needed, and because of this, the
transient model n.1 was run again.

Finally, the calibrated model resulting from the second step of the calibration (Figure S4)
process was applied for a 2-day unsteady-state simulation (model n.3) with the aim to
prove the model capacity in reproducing the tidal signal recorded during the 4–5 October
2011 survey [15]. In this case, there were no rainy events during groundwater and sea level
collection; consequently, the adopted recharge was null except for the Bottomside, where
only the additional recharge was maintained. Differently, as the sea level fluctuated during
the simulation, the head of the boundary condition representing the sea was changed using
a time variant constant head (Figure S5). Hence, hourly stress periods were adopted (total
48 SP) with 5 time steps each and a multiplier of 1.2. The boundary concentration was
maintained 35.7 kg/m3. In this modelling phase, the calibration process mainly focused
on specific yield values; nevertheless, some small changes of the previously determined
parameters were needed, and this meant to modify transient model n.2 to match again the
salinity distribution in the aquifer.

At the end of the calibration process achieved through the 3 models, the hydrogeologi-
cal parameters adopted are reported in Table 4.

Table 4. Hydrogeological parameters after the calibration processes.

Hydrogeological Parameter Topside Bottomside

Hydraulic conductivity (m/d) 800 10–15
Effective porosity (-) 0.02 0.15

Specific yield (-) 0.02 0.15
Specific storage (1/m) 1 × 10−5 3 × 10−4

Longitudinal dispersivity (m) 80 2
Transverse dispersivity (m) 5 0.2

Vertical dispersivity (m) 0.2 0.008
Recharge (mm/year) 590 657

Molecular diffusion (m2/d) 8.64 × 10−6 8.64 × 10−6
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3. Results

The assessment of the freshwater thickness was completed through two steps. Initially,
thanks the characterization activities (hydrogeological and geophysical surveys) focused
on the northern side of Nauru, the freshwater volume present under the Capelle area was
estimated.

Then, by means of the calibrated model, the freshwater thickness in a more extended
area surrounding the Capelle area (i.e., Ewa and Anetan districts) and in general in the
northern side of the island was evaluated.

3.1. Freshwater Thikness in Capelle Area

The analysis of the collected data (VES, ERT, and hydrogeological data) allowed to
evaluate the thickness and extension of the freshwater lens present in the Capelle area.
Ten VESs and eight ERTs (Figure 8) were performed in this zone and compared with the
collected hydrogeological data (EC and wells stratigraphic logs). The result of this analysis
showed a constant freshwater thickness from west to east, whereas it lessened northward
because of the presence of the saltwater edge. For instance, ERT 7 (Figure 9) indicates
fresh-brackish transition) showed the thickness decrease of freshwater moving from the
cliff toward the sea: from south to north, the thickness reduced from an average value
of 6 m to 0 m. The west-east ERT (N◦ 5, 6, and 8) showed a more constant thickness of
freshwater (Figures S6 and S7), for which the average values range from 1–2 m in the
western part to 5 m on the eastern side close to the cliff, where it seems to deepen. The
maximum thickness (12 m) was detected near well S1 (ERT N◦ 1, 2, 7 and VES 3, 4).

Figure 8. Depth distribution of the freshwater lens in Capelle area based on the geophysical survey
results.
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Figure 9. ERT n.7 section interpretation with VES monitoring wells positions; the 75 Ω·m value (light
blue) indicates fresh-brackish transition.

From the ERT, it also resulted that the wells used by the population in this area do
not substantially affect the freshwater distribution in the subsoil: the electrical data do
not show up-coning phenomena related to wells activity. Unfortunately, the four VES
performed on the Topside did not result as useful for this analysis because the thickness of
the unsaturated aquifer (about 30 m) and the limestone resistivity value (30,000 Ω·m) were
too high for the instruments used for the survey.

Finally, the combined analysis of VES, ERT, and hydrogeological data collected in
monitoring wells allowed to determine the volume of freshwater in subsoil. The scarp
was chosen as southern limit (given that the VESs on the Topside are not usable), and
the coastline was defined as the northern limit. Based on the EC values detected in the
monitoring wells, for the geoelectric investigations, a resistivity value of 75 Ω·m was
considered as the fresh-brackish water transition.

Figure 9 shows the freshwater bottom in the Capelle area. The depth where this
surface lays is significantly reduced moving westward (VES 17-18-19), while it reaches
the maximum depth close to VES 3 and 4. Moving eastwards, the freshwater thickness
increases (Figure S7), but the available data did not allow to identify if and where the
freshwater lens pinchouts.

For the evaluation of freshwater volume in the area, the hydraulic head measured in
multipipe monitoring well S1 and S18 (the only one where the tube elevation was known)
was used. Through the difference between the piezometric surface and the bottom of
freshwater, a lens volume equal to 300,000 m3 was evaluated: it led to a value of 45,000 m3

of freshwater considering an effective porosity of 15%.

3.2. Numerical Model Results

Figures 10 and 11 and Table 5 report concentration results for model n.1 (Figure S8):
the simulated concentration values are similar to the measured ones during the survey of
November 2009, with an absolute concentration mean of residuals equal to 1.87 kg/m3,
corresponding to a 5% error (i.e., standardized RMSE).

Table 5. Model n.1: statistical parameters between observed and simulated concentration data.

Statistic Value

Residual mean (kg/m3) 1.34
Absolute residual mean (kg/m3) 1.87

Residual standard deviation (kg/m3) 1.94
RMSE 1.15
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Figure 10. Comparison between observed (red profiles) and simulated (blue profiles) concentration
in the targets of the model n.1.

Figure 11. Observed vs. simulated concentrations for model n.1.

The observed vs. simulated graph (Figure 11) shows a good alignment of the points on
the 45◦ line with a slight tendency to underestimate the concentrations and a R2 coefficient
of 0.90 for the trend line (Figure 11). The 3D saltwater distribution simulated by the
calibrated model is shown in Figure S9, where along the coast, a freshwater lens (deep blue
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colour) is almost present everywhere. This lens in the Capelle area (Figure S9b) reaches
an average thickness of 6 m, confirming the results of EC and geophysical investigations.
Importing the model results in the Leapfrog software, a fresh groundwater volume stored in
November 2009 under the Capelle area was approximately evaluated equal to 120,500 m3.

While the model n.1 results represent an instantaneous picture (November 2009) of
the saltwater concentrations, the model n.2 allowed to understand how the concentrations
change over the time under different recharge patters. The results confirmed the hints
presented in the previous work [15]: they demonstrated that the freshwater can also be
stored on Topside during wet periods, but it suddenly disappears (Figure S10). This is
because it mixes with deeper salt waters and at the same time rapidly flows towards the
ocean by means of the high hydraulic conductivity of the limestone. Consequently, a
few months after the rainy period, the groundwater on the Topside becomes salty with
concentrations greater than 6 g/L from a depth greater than 2 m from the water table
(Figure S11 in Supplementary Materials, S23pipe2). Differently, the freshwater remains
stored in a strip located almost all along the entire coastline (Figure S11, S1pipe3). Along
the coast of the Anibare district (eastern coast), the lens is narrower and sometime almost
disappears because of the reduced width and thickness of the sand deposits (Figure S10).
Only between the Anetan and Anabar districts is the lens completely absent due to the
presence of a limestone outcrop that did not allow the deposition of sand.

The ability of the model in simulating the Nauru’s groundwater system and the
saltwater intrusion behaviour is also demonstrated by the results of model n.3. In Figure
S12, at the Topside and Bottomside monitoring wells, the comparison between measured
and simulated groundwater levels during a two-day transient simulation is shown. The tide
influence is evident, with a faster and higher groundwater heads variation on Bottomside
and a slower and more contained one on Topside. The model, on both sides, is able to
correctly simulate the groundwater levels variation (i.e., efficiency of the tide) and the tidal
lag [15].

4. Discussion

In Nauru, there are three main water supply sources: (1) groundwater, which supplies
the not-potable water needs for the population having access to a well (about the 36% of the
total population); (2) rainwater harvesting in tanks placed on house roofs, which furnish
the population with water used for potable and not-potable purposes; and (3) desalination,
which provides high-quality drinking water. Past experiences in Nauru demonstrated
that the current supply of drinking water is not able to meet the population needs when
extended droughts periods overlap with RO plant failures or power shortage. Due to
the island’s economic fragility, economic crises are frequent, and during these events,
the government cannot adequately maintain the RO plant or buy the necessary fuel for
its operation. In the past, such issues caused frequent water scarcity (e.g., in the period
2000–2010), considerably increasing the reliance on groundwater for the water supply.
From this comes the need to properly assess the fresh groundwater resource on the island
in order to increase Nauru’s resilience to climate change effects.

The results of previous investigation [15] highlighted in the Nauru aquifer the existence
of freshwater lenses stored close to the coastline that can be exploited sustainably. The
present study demonstrates that it is possible to quantify the freshwater stored underground
by properly combining hydrogeological investigations and density-dependent numerical
modelling. A general hydrogeological characterization of the island [15] and a more
detailed investigation in a smaller area, by means of geophysical and EC survey, allowed
to properly calibrate the numerical model in quasi-steady-state conditions (model n.1) and
in unsteady-state conditions (model n.2 and n.3). This led to obtain a general evaluation
of groundwater resources for the northern part of Nauru and a good assessment of the
freshwater stored in the Capelle area.

The fresh groundwater present in the subsoil of Capelle was assessed by means of
the model n.2 to range between 190,000 and 88,300 m3, respectively, in April 2010 (SP5)

111



Water 2022, 14, 3201

and April 2011 (SP17), corresponding to the end of a rainy period and of a dry period
(Figure S13). At the end of the simulation (SP22), after few rainy months (1086 mm in
6 months), the volume was the same (83,400 m3). The assessment is in compliance with
the geophysical investigations results that provided 45,000 m3 in April 2013 after a relative
dry period (885 mm in the previous 6 months). The difference is linked to three aspects:
(a) before April 2013, the rain was 20% less; (b) the model is unable to simulate the reduced
thickness west of Capelle probably due to some pumping well where the pumping rate
is unknown; and (c) as shown above, the model is inclined to underestimate the salt
concentrations.

Nevertheless, these results demonstrate that the model is an appropriate tool to obtain
a good first assessment of the fresh groundwater resource in Nauru, but once the suitable
areas are individuated, a detailed hydrogeological investigation is always necessary to
improve the model simulation capacity and to correctly design the water abstraction
system.

In addition to the estimation achieved for Capelle, an assessment for the remaining of
the Bottomside and for the Topside represented in the model can be evaluated. The total
fresh groundwater stored along the Bottomside from April 2010 to September 2011 changed
between 1,208,100 and 510,390 m3, with a decrease of about 58% during a drought period of
1.5 years. This result is similar to the Capelle area, where the decrease was 56%. Differently,
in the same period, on the Topside, the decrease was about 99%, with a variation from
5,040,500 to 570 m3, confirming the complete disappearance of freshwater in 18 months.

The amount of fresh groundwater present under the Capelle area could be sustain-
ably exploited to redistribute the water resource to satisfy the population demand in the
surrounding Anetan and Ewa districts and/or reduce the RO plants operation. From
the SOPAC report [41], the water usage estimated in Nauru for the population having
access to a private well (about the 36% of the total population) ranges from 88 l/d/pc to
141 l/d/pc (Table 3). Actually, groundwater supplies not-potable water needs, whereas
the RO plant and domestic rainwater harvesting provide the needed amount of drinking
water (estimated volume equal to 20 l/d/pc in Table 3). The inhabitants of the Ewa and
Anetan districts are approximately 1180 (i.e., 12% of the population of the entire island).
Keeping a conservative point of view, it is possible to assume an amount of 45,000 m3 for
the fresh groundwater lens present in Capelle area and to hypothesize it to entirely satisfy
the Ewa and Anetan water demand. Assuming a groundwater consumption pro-capita
equal to 68 or 121 l/d, the calculations estimated, respectively, the depletion time of the
groundwater resource in approximately 1.5 or 1 years in case of complete absence of rainfall
for that period. Differently, considering a low-recharge period and a volume of 83,000 m3,
the maximum depletion time would, respectively, increase up to 1.6 and 2.8 years.

The reported example is a simple calculation with the aim to show that even if a strong
groundwater abstraction is unsustainable in a long-term perspective, the groundwater
lenses stored along the Bottomside can play an important role in the case of emergency.
However, in greater generality, groundwater should be considered among the available
water resources in Nauru in order to implement a new water management system able to
increase the island’s resilience to climate change effects.

However, the water derived from the freshwater lenses has lower quality than the
desalted water or the rainwater because of the leakage from domestic sewage pits into the
subsoil and of the salt concentration increase, therefore potentially leading to the worsening
of health and environmental issues. For this reason, alternative strategies for a possible
sustainable use of fresh groundwater must be accompanied by sewage infrastructure
design, monitoring activities [50], and wellhead protection area definition.

Furthermore, fresh groundwater usage in a coastal area is a difficult issue, and an
accurate infrastructure design is needed to avoid the worsening of groundwater due to
the saltwater intrusion phenomenon. Because of their small extension and low elevation
above the sea level, the oceanic atolls are particularly vulnerable to saltwater intrusion,
which can be worsened in the future by the expected sea level rise due to the climate
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change. Groundwater exploitation in small limestone atoll islands occurs generally through
hand-dug wells, which are about 1 m deeper than the groundwater level. This kind of
wells is used just for domestic purposes and usually has very modest pumping rates [6].
On the other side, the groundwater extraction using vertical pumping wells in small
islands could lead to saltwater up-coning, causing the deterioration of groundwater quality.
Therefore, alternative infrastructures such as scavenger wells or infiltration galleries need
to be developed in such fragile environments, and density-dependent modelling represents
a useful tool for their design.

5. Conclusions and Future Perspectives

In small islands, groundwater can represent an important resource of freshwater.
However, fresh groundwater should not be exploited without a proper management, espe-
cially in those systems where aquifer vulnerability is high, such as small islands’ aquifers,
consisting of shallow and thin groundwater lenses. In these contexts, uncontrolled saltwa-
ter intrusion phenomena and the depletion of the groundwater lenses due to a potential
overexploitation of the resource necessitate a proper water management supported by
monitoring activities, a detailed study of the aquifer system behaviour, and an accurate
estimation of groundwater availability. In the present study, these objectives were fulfilled
through hydrogeological/geophysical investigations and numerical modelling.

Nauru is a very small island located in the Pacific Ocean, and the single use of
groundwater as freshwater supply is not adequate to satisfy the population demand. The
Nauru Water Plan suggested an integration of groundwater with other water sources:
currently, rainwater and desalted water in Nauru are used to satisfy the drinkable water
demand, whereas the groundwater is mainly used for non-potable purposes because it is
often contaminated. Improving the use of this last resource is essential for Nauru island to
guarantee future water security even during drought occurrences or in case of desalination
plant failure.

Previous studies investigated the groundwater system in the island, also considering
possible future issues such as climatic variations, potential sea level risings, and the increase
of extreme climate conditions. Nevertheless, a thorough understanding of the hydrogeo-
logical system behaviour and the definition of groundwater availability in Nauru was still
required. This study confirms the conceptual model proposed by Alberti L. et al. [15]: fresh
groundwater lenses are hosted into the sandy sediments of the coastal zone close to the
seashore, which is a result in contrast with the previous studies that had identified fresh-
water lenses in the limestone, forming the internal part of the island. This conceptual site
model has been verified through three unsteady-state, 3D, density-dependent numerical
models, which allowed to understand the system behaviour: low hydraulic conductivity of
sand makes the flow of groundwater slow down toward the sea, thus allowing freshwater
storage where salt water is expected to penetrate more easily. Furthermore, the collected
data and model results confirmed the resilience of those lenses in drought conditions.

In particular this study pointed out the presence, in the Bottomside of the northern
part of the island, of a fresh groundwater lens that could potentially represent a sustainable
solution in meeting the Nauru population’s water demand. The hydrogeological investi-
gations allowed the assessment of the freshwater volume stored in this part of the island,
and this led to suggest some possible use of this resource. The unsteady-state, 3D, density-
dependent model represents a useful tool available to assess the possible sustainable fresh
groundwater exploitation to prevent saltwater up-coning occurrences. The implemented
model has the capability to provide key information regarding the design and optimization
of new suitable groundwater abstraction systems, also assessing their impacts on fresh
groundwater availability and quality under different climate conditions. This ability allows
to perform an optimal design of the infrastructures by considering several parameters (i.e.,
number, position, depth, and pumping rates) and supporting public decision makers to set
up actions and plans to fulfil the goal of a sustainable groundwater management.
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Future research developments should mainly concern two aspects: (a) the extension of
the survey and modelling activities to the southern part of Nauru to reach a full assessment
of freshwater resources in the island and (b) the extension of a similar survey approach to
other smaller islands to find confirmation that even in different hydrogeological conditions,
freshwater can accumulate not only in the centre of the islands but in areas where the
hydrogeological properties promote a slow groundwater flow and a reduced saltwater
mixing process.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14203201/s1, Figure S1: Hydrogeological section profile of Nauru island, Figure S2: Plan
and 3D representation of the hydraulic conductivity distribution in the numerical model, Figure S3:
Recharge values (m/d) adopted in the model n.2 for each monthly Stress Period and the 6 monitoring
campaigns (red lines), Figure S4: Measured hydraulic heads compared with simulated hydraulic
heads after calibration process, Figure S5: Sea levels (RL) attributed at the boundary condition for the
model n.3 in order to reproduce the sea level variations, Figure S6: 3D representation of resistivity
values detected trough geoelectrical investigations at Capelle area, Figure S7: Freshwater thickness
distribution in Capelle area considering 75 m as separation limit between fresh and brackish water,
Figure S8: Observed concentration values compared with simulated ones, Figure S9: Model n.1, 3D
representation of salt concentrations in groundwater in November 2009 (a) in the model domain
and (b) along a cross section passing through Capelle area, Figure S10: Model n.2, 3D concentration
representation (g/l for unsteady-state simulation run from December 2009 (SP1) to September 2011
(SP22), Figure S11: Model n.2, simulated versus observed concentrations from December 2009
to September 2011 in (a) S1 and (b) S23 monitoring wells/respectively Bottomside and Topside,
Figure S12: Observed and simulated groundwater levels (RL) resulting from the 2 days simulations
in monitoring wells S1 (a) and S3 (b), Figure S13: Representation through Leapfrog of the model n.2
unsteady state results, in blue the fresh groundwater body along the Bottomside and in green under
the Topside; the view is from the bottom of the model and 1.5 Kg/m3 is the represented concentration
surface that shows the shrinking of the fresh groundwater in 1.5 years.
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Nomenclature

CSM Conceptual site model
CNR National research council
EC Electrical conductivity
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SP Stress periods
TDS Total dissolved solids
VES Vertical electrical sounding
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Abstract: Surface water in streams and rivers is a valuable resource and pollution events, if not
tackled in time, may have dramatic impacts on aquatic ecosystems. As such, in order to prepare
pollution prevention plans and measures or to set-up timely remedial options, especially in the early
stages of pollution incidents, simulation tools are of great help for authorities, with specific reference
to environmental protection agencies and river basin authorities. In this paper, we present the
development and testing of the ORGANICS plugin embedded in QGIS. The plugin is a first attempt
to embed surface water solute transport modelling into GIS for the simulation of the concentration
of a dissolved substance (for example an organic compound) in surface water bodies including
advection dispersion and degradation. This tool is based on the analytical solution of the popular
advection/dispersion equation describing the transport of contaminants in surface water. By pro-
viding as input data the concentration measured at the entry point of a watercourse (inlet boundary
condition) and the average speed of the surface water, the model simulates the concentration of a
substance at a certain distance from the entry point, along the profile of the watercourse. The tool is
first tested on a synthetic case. Then data on the concentration of the pharmaceutical carbamazepine
monitored at the inlet and outlet of a vegetated channel, in a single day, are used to validate the tool
in a real environment. The ORGANICS plugin aims at popularizing the use of simple modelling tools
within a GIS framework, and it provides GIS experts with the ability to perform approximate, but
fast, simulations of the evolution of pollutants concentration in surface water bodies.

Keywords: water pollution; solute transport modelling; Geographic Information System (GIS);
pollution prevention plans; pharmaceuticals; carbamazepine; longitudinal dispersion coefficient;
decay rate coefficient

1. Introduction

Surface water in streams and rivers is a valuable resource, and pollution events, if not
tackled in time, may have dramatic impacts on aquatic ecosystems [1–4]. As such, in order
to prepare pollution prevention plans or to set up timely remedial options, especially in
the early moment of pollution incidents, simulation tools are of great help for authorities,
with specific reference to environmental protection agencies and river basin authorities.
Modelling of solute transport in surface water is then a valuable and common option [5–9],
especially by means of analytical solutions simplifying system description and reducing
complexity [10–12], providing fast, even approximate, answers, particularly in cases of
insufficient data availability for the implementation of more complex numerical models.

In order to advance the use of modelling tools and to support the digitalization of the
technical sector these tools must be user-friendly, and built around free and open-source
codes. An open code may guarantee the reproducibility and the reliability of the analyses
performed [13,14] and their early deployment and impact [15,16].
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Geographic Information Systems (GISs) are worldwide mainstreaming tools and
methodologies for storing, managing/analyzing and visualizing large temporal, spatial and
non-spatial datasets (for both geometric and alphanumerical data). Hence, they are widely
applied to support environmental modelling [17,18]. The possibility of including modelling
tools in Geographic Information Systems (i.e., via plugins), and the existing community
of users and developers in constant growth, is potentially the most relevant strength of
such tools [18–20]. For thirty years GIS and water modelling codes/applications have
been successfully integrated. Vieux [21] presented an application of the GIS, ARC/INFO
and the finite element solution to the kinematic wave equations to process the spatially
variable terrain in a small watershed using a Triangular Irregular Network for the solution
of overland flow. Oliveira et al. [22] presented ArcGIS-SWAT, a geodata model and GIS
interface for the Soil and Water Assessment Tool (SWAT; [23]). Becker and Jiang [24]
developed a computationally efficient method for predicting contaminant mass flux to
a specified boundary, carrying out the method in a GIS and taking full advantage of
widely available digital hydrologic data. Akbar et al. [25] showed a GIS-based modelling
system called ArcPRZM-3 for the spatial modelling of pesticide leaching potential from
soil towards groundwater. Rossetto et al. [26] integrated a suite of groundwater modelling
tools in the gvSIG GIS application [27]. Oliveira and Martins [28] developed an application
for the preliminary characterisation of the river boundary condition for a MODFLOW [29]
finite difference groundwater flow numerical model. Bittner et al. [30] developed the
LuKARS GIS-based model for simulating the hydrological effects of land use changes on
karst systems.

Among GIS desktop applications, QGIS [31] is probably the most popular free geospa-
tial software. Rosas-Chavoya et al. [20] conducted a bibliometric analysis on the acceptance
of this application on documents published in Scopus from 2005 to 2020, considering
931 manuscripts. They observed a favorable trend in the acceptance of QGIS across the
world and the development of large collaborative networks.

Several plugins have been developed for QGIS within the hydrological or aquatic
domain. In particular, Nielsen et al. [32] developed the Water Ecosystems Tool, a workflow
implemented (as a plugin) in QGIS, for the application and evaluation of aquatic ecosystem
models. Ellsäßer et al. [33] developed the QWaterModel as an easy-to-use tool to make
evapotranspiration predictions available to broader audiences. The QWaterModel is a
QGIS plugin compatible with all versions of QGIS3. Dile et al. [34] developed an open-
source user interface for the SWAT [23], QSWAT, using various functionalities of the
QGIS application. Rossetto et al. [18] presented the FREEWAT plugin for managing the
groundwater resource, including tools for the management of hydrochemical data [35] and
nitrate leaching assessment [36].

In this paper, we present the development and testing of the ORGANICS plugin
as a first attempt to embed surface water solute transport modelling into GIS. This tool
allows users to simulate the concentration of a dissolved substance (for example an organic
compound) in surface water bodies by applying an analytical solution of the advection
dispersion equation, which includes also a first-order degradation term. By providing as
input the stepwise time-variant concentration measured at the entry point of a watercourse,
along with the related average water velocity, the concentration of a substance at a certain
distance from the entry point along the profile of the watercourse, is simulated. A sketch of
the presented problem is shown in Figure 1.

After presenting the theoretical and modelling approach, we show an example applica-
tion of the plugin (to be used as a tutorial), and then a real case study application to simulate
carbamazepine concentration in a vegetated channel collecting poorly treated wastewater.
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Figure 1. Schematic draw of contaminant movement along a surface water reach.

2. Materials and Methods

The model used in the ORGANICS plugin is based on the analytical solution of the
popular advection/diffusion/decay equation, in one-dimensional form, taken from [10,37]:
where:

∂C
∂t

+
∂vxC

∂x
= E

∂2C
∂x2 − kC (1)

C: is the solute concentration expressed as mass per unit volume of water [M/L3],
vx: longitudinal fluid flow velocity is the input velocity [L/T].
x: is the longitudinal coordinate [L],
t: is time [T],
E: is the longitudinal dispersion coefficient accounting for the combined effects of

ionic or molecular diffusion and hydrodynamic dispersion [L2/T].
k: is a first-order decay rate [T−1].
Using a constant concentration boundary condition at x0 = 0 [L] (the inlet point of

a surface water body reach) at the initial time (t0 = 0) [T], for each x > 0 and t > 0 the
Equation (1) may be reduced to the following analytical solution (2) [10,37].
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and U is the velocity module [L/T].
This approach entails the following assumptions:
(a) the flow is one-dimensional and oriented according to the main direction of the

flow in the surface water body;
(b) the concentration at the inlet remains constant for the specified simulated time

interval (first kind boundary condition);
(c) chemical interactions between different dissolved substances are not considered, nor

are reactive geochemical processes simulated with other components (i.e., riverbed matrix);
(d) the morphology of the bed of the surface water body does not affect the solution;
(e) no sorption processes or production terms are considered;
(f) at t0 = 0 [T] the initial condition is C(x,0) = 0 [M/L3] along all the simulated domains.
The developed code uses Equation (2) to calculate the concentration value along the

line input provided by the user to represent the selected surface water body. This input
can be given as a linear vector layer (for instance the common ESRI. shp file). The code
calculates the solution (concentration value) at nodes at homogeneous lengths from the
inlet point as specified by the user, and at selected homogeneous time-steps also defined by
the user.
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2.1. Software Development

The plugin was developed in Python3 [38] language, using the Qt5 [39] graphics
libraries and the QGIS [40] Application Program Interface. The solute transport code is
embedded in the QGIS desktop application. This means a full integration at programming
language level, with models using GIS data format included as full component of the host
GIS application [41,42].

The plugin can be used as an add-on to the QGIS desktop application, version 3.4 or
higher, once it has been installed on a PC. During the development phase, some specific
Python libraries were used, but each of them is already included in the official QGIS
desktop distribution. This choice allows the user to use the plugin without requiring
further software updates.

2.2. Data Needs

In order to use the plugin, the user has to prepare a set of input files. These are:

• a *.csv file specifying the water average longitudinal velocity (U) and concentration values
at the inlet of the watercourse (constant concentration boundary condition), and the time
these data refer to. The file must comply with the template format defined for the plugin.
In particular, the file must contain data relating to (at least) one dataset, specifying:

- starting date and time, in YYYY-MM-DD HH: MM: SS format;
- average flow velocity in the surface water body, in m · s−1. This value will be

used at all the node of the surface water body;
- the concentration of the source at the inlet point.

When considering time-varying boundary condition (that is the concentration input
changing with time), the user must specify for each different time all the above information
on consecutive lines of the. csv file.

• an ESRI linear Shapefile representing the surface water body. The file may consist
of one or more segments. The line must be digitized towards the flow direction.
When more segments are used, the topology must be respected (all the lines must be
connected).

An example of the required files to run a first test are provided in the template_files
folder of the plugin itself as Supplementary material.

2.3. Model Implementation and Run

Once data are prepared in the form of the required files, the first operation consists in
loading the Shapefile geographic layer of the line into the QGIS view.

By clicking on ORGANICS in the Plugin menu, the main window opens. This is
divided in four sections: (1) Run; (2) Plot Results; (3) Help; (4) About. By entering the Run
section, the user input the following data (Figure 2):

(a) the *.csv file. Upon the file selection, the drop-down menus will automatically
update. Through these menus the user must select the name of the fields in the *.csv file
corresponding to the required information;

(b) the linear shapefile representing the watercourse. At this step the user must specify the
length of the homogeneous reaches at whose ends the concentration values will be calculated;

(c) the value of the first-order decay rate coefficient (s−1);
(d) the value of the coefficient of longitudinal dispersion (m2/s);
(e) the length of the timestep (in minutes) at which the solution will be calculated over

a time interval (in minutes from the start of the simulation) at each point of the reach;
(f) the name of the output file (*.shapefile) and the directory where the file will be saved.

Should this field be left blank, the output will be saved as a temporary layer (memory layer)
in QGIS.

Although time data are input both in seconds and in minutes, all the calculations are
internally run in seconds, while results are provided in minutes or within hours.
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Figure 2. The ORGANICS plugin main window.

Once the simulation is run, the code will: (i) divide the line in several nodes, according
to the length specified by the user, and (ii) calculate the solution at each node at the end
of a reach, at each time step as specified by the user. The result consists in a *.shapefile
point layer in which the simulated concentration values at different times are saved at
each point. This layer can be used to visualize the results using the tools in QGIS. For
example, it can be themed with color scales depending on the level of the selected solute
concentration. Animations to visualize the evolution of the concentration in the various
points may be produced by applying the TimeManager plugin (plugin, downloadable from
the QGIS PluginManager).

A *.csv file of the output will also be saved in the previously defined destination folder.
This file can be used by the user to conduct further analyses externally to the plugin and/or
from QGIS (i.e., using spreadsheet).

Graphs of the solutions may be drawn opening the Plot Results section, where a
number of options for producing solution plots or further customizing the draw and to
save it in image format (i.e., as *.png file) are provided (Figure 3).

The user must choose the output layer to process. Graph drawing can be performed
at any time, even after the execution of the model, by selecting the output file from the
drop-down menu. However, in order for the desired layer to appear in the ORGANICS
menu, the layer must be loaded in the QGIS layer panel. Once the layer is selected, the
drop-down menus below will automatically update.

The following options for creating the graphs are available:

• Select a position (distance in m from the entry point): this option will create a graph
displaying the concentration trend in a point defined by the user at a certain distance
from the starting point, as a function of time (Figure 4);

• Use the selected position on the layer: this option allows to view the same result as above,
but in this case the position is provided by selecting, using the classic selection tools
on the map, one or more points of the output layer (Figure 5);

• Select a time: this graph will display the concentration values, at a given simulated
time, as a function of the distance from the inlet (Figure 6). The times available for
selection correspond to the discretization obtained with the time step chosen in input
by the user.
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Figure 3. The ORGANICS plugin Plot results section.

Figure 4. Example graph: solution at a selected point as function of time.

Figure 5. Example graph: solution at a selected points as function of time. Two points selected by
using the GIS selection tools.
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Figure 6. Example graph: solution at a selected time as function of distance from the inlet point.

3. Results and Discussion

3.1. Model Validation

We successfully validated the model implemented within the tool by simulating the
same case described by the analytical solution shown in [10]. The simulation results
(Figure 7) are obtained using the following parameters:

U = 1.0 m/s
k = 0 s−1 (no decay is simulated)
E = 5.0 m2/s
where:
C(0,0) = C0, and
C(x,0) = 0 at x > 0
The solution (concentration value) is provided at 100, and 1000 m from the source.

Figure 7. Computed simplified analytical solution implemented in Organics in time at x = 100 m and
x = 1000 m.

3.2. Example Problem

In this section, three tests are presented in order to show the behavior of the calculated
solution in different scenarios. The cases tested are:

(a) C0 mass injection, constant over time;
(b) time-limited pulse C0 mass injection;
(c) C0 mass input, variable over time (multi-pulse input condition).
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Concerning the cases with time-limited or time-varying input (cases b and c, respec-
tively), we implemented a solution using the principle of superimposition of the individual
analytical solutions at each stress period, as reported in [10,43,44]. The parameter values
used in the example problem are presented in Table 1. The .csv file and the .shp file are
provided in the Supplementary Material.

Table 1. Parameters values used in the example problem.

Parameter Value Units

Total length of the reach 1200 m
Simulation length 50 m

Time step 10 min
Velocity (U) 0.1 m/s

First order decay rate (k) 0.00005 s−1

Longitudinal dispersion (E) 5.0 m2/s
Initial time 28 May 2018 00:00 dd/mm/yyyy hh:mm

3.2.1. C0 Mass Injection, Constant over Time

In this test, we simulated the release of a mass with concentration C0 = 100 ng/L
constant over time. The solution is presented at the end of the simulation time, which is the
time needed for the mass to reach the outlet.

Figure 8 displays the solution at the beginning of the reach (x = 0 m), at x = 500 m, and
approximately at the end of the reach (x = 1100 m). In the middle of the reach (x = 500 m)
the solution tends to an asymptotic value, which is less than 100 ng/L due to the effect of
the simulated decay process.

Figure 8. C0 mass injection, constant over time: concentration values at selected points of the reach.

3.2.2. Time-Limited Pulse C0 Mass Injection

In this test we simulated a time-limited pulse C0 = 100 ng/L mass injection for a 2 h
duration. This time-limited pulse case, at constant concentration, can be implemented by
defining in the *csv file an initial period (of known duration, with concentration C0; first
line in the *csv file) followed by a second period with zero concentration (second line in
the *csv file). In this test, the second input is then two hours long with concentration set at
C2h = 0 ng/L. The solution is then displayed in Figure 9 at an infinite time (that is, the time
needed for the dissolved substance to reach the outlet of the water course considered). The
solution is presented at x = 500 m (Figure 9). At this distance, mass arrival is recorded after
30 min from the beginning of the simulation.
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Figure 9. Time-limited pulse C0 mass injection: concentration values at 500 m from the inlet.

3.2.3. C0 Mass Input, Variable over Time (Multi-Pulse Boundary Condition)

In this test, we simulated C0 mass input, variable over time (multi-pulse input condi-
tion) according to data presented in Table 2. The global solution works as the superposition
of the several pulses, each one having a constant condition for a specified time interval.
Superposing each “pulse-solution” makes the model able to consider time-dependent
boundary conditions. Results are shown at x = 400 m, x = 800 m, and x = 1200 m from the
inlet point for time step length of:

- 20 min (Figure 10);
- 10 min (Figure 11);
- 5 min (Figure 12);

from the beginning of the simulation, in order to present the impact of the different
time discretization on the solution (Figures 10–12).

Figure 10. Simulated concentration at x = 400 m, x = 800 m, and x = 1200 m from the inlet point with
20 min time step length.
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Figure 11. Simulated concentration at x = 400 m, x = 800 m, and x = 1200 m from the inlet point with
10 min time step length.

Figure 12. Simulated concentration at x = 400 m, x = 800 m, and x = 1200 m from the inlet point with
5 min time step length.

Table 2. Data used in the test presented in Section 3.2.3.

Date and Time C0 (ng/L)

28 May 2018 0:00 0

28 May 2018 0:20 100

28 May 2018 2:00 50

28 May 2018 2:30 25

28 May 2018 3:30 75

28 May 2018 4:00 0

3.3. Case Study Application

The ORGANICS plugin was then applied to compute the concentration of the pharma-
ceutical compound carbamazepine at a reach of a vegetated channel receiving poorly treated
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wastewater, in low-flow conditions, in the Pisa municipality (Tuscany, Italy, Figure 13).
Carbamazepine (CBZ) is an anticonvulsant or anti-epileptic drug commonly found in
poorly treated wastewater and consequently in surface- and ground-water [45,46]. Re-
moval efficiency in secondary wastewater treatment is typically less than 10% for CBZ [47].
Composite samples (2 volumes of 0.5 L every 30 min representative for one hour) were
collected approximatively every two hours during an experiment run on 28 May 2018 at
the inlet (point PSMw = 0 m) and the outlet (point PSMz = 420 m) of the channel reach
(Figure 13) in low-flow conditions. Analytical determinations were performed following
the method described in [48]. Mean longitudinal flow velocities were measured by means
of an acoustic digital current meter (OTT Messtechnik GmbH, Kempten; Germany). Data
for CBZ and mean longitudinal flow velocities are presented in Table 3.

 
Figure 13. Case study location, investigated channel reach, and monitored points.

Table 3. Carbamazepine concentrations at the inlet (PSMw) and outlet (PSMz) points of the vegetated
channel on 28 May 2018, and simulated results.

Time
Inlet (PSMw)

(ng/L)
Outlet

(PSMz)(ng/L)
Flow Velocity

(m/s)
Simulated Value
(PSMz_sim) (ng/L)

07:20 123 - 0.025 -

09:50 181 - 0.026 -

11:00 - 105 - 112

12:20 162 - 0.026 -

13:10 - 112 - 116

14:20 162 - 0.021 -

15:40 - 115 - 119

16:50 150 - 0.029 -

18:00 - 125 - 122

A multi-pulse boundary condition was prepared by exploiting data from the five
monitoring points. Figure 14 shows the simulated carbamazepine concentration at the
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outlet point, PSMz, 420 m from the inlet point. The Simulated value (PSMz_sim) column in
Table 3 presents the simulated value against the measured ones (Outlet (PSMz) column). In
Figure 13 CBZ simulated concentrations are themed with color scales depending on the
concentration value.

Figure 14. Simulated concentration at x = 20 m, and x = 420 m from the inlet point with 10 min time
step length.

The first-order decay rate and the longitudinal dispersion coefficients are relevant
parameters in our analyses, and, more in general, in surface water quality modelling [49,50].
No experimental data were available for these parameters. As such, the model was cal-
ibrated to get the best fit (R2 = 0.95) between simulated and measured concentrations
with values of the longitudinal dispersion coefficient of 35 m2/s and decay rate equal to
3 · 10−5 s−1. Good fit (R2 > 0,9) was also obtained varying these two parameters within
the range of 30 and 35 m2/s for longitudinal dispersivity and between 2.5 · 10−5 and
3 · 10−5 s−1 for the decay rate coefficient. The values of the longitudinal dispersion coeffi-
cient are coherent with values found in [49,50] for similar open channels. The calibrated
values of the decay rate are slightly higher than calculated values from half-life time data
for CBZ reported in [51].

4. Conclusions

The developed open-source and free plugin allows simulating transport of dissolved
substances in water courses following advection/dispersion, and degradation processes.
The present formulation combining a simple analytical solution of the advection dispersion
equation and GIS tools guarantees intuitive spatial data management. Authorities may
also benefit from the ease of use of such tools in order to set in place pollution prevention
measures. This solution, because few parameters are needed, could hence be applied to
data-scarce environments. Furthermore, using this tool values for longitudinal dispersivity
and first-order decay rate coefficients may be derived. In our case study application, we es-
timated the longitudinal dispersion coefficient and the decay rate coefficient to be 35 m2/s
and 3 · 10−5 s−1 for the pharmaceutical compound carbamazepine. Another potential ap-
plication could be in the feasibility stage of the design of water-related green infrastructures
for the improvement of water quality [46,52]. On the other hand, the increasing number of
integrated geographical databases (including surface water bodies characteristics) along
with the increasing availability of sensors gathering and distributing quasi real-time moni-
toring data (such as surface water heads) may allow for the combined use of monitoring
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and modelling to set up early warning systems to track pollution events [53–55]. To this
aim, further research and pilot experimental sites are needed.

The open and free characteristics of the developed code guarantee reproducibility of
the run analyses, and also use of the tool, one of the most important aspects of science,
making free software an ideal framework for scientific work. In this context, the use of free
software is consolidating in our societies in a gradual, but constant way [56]. Integration in
the FREEWAT plugin [18] and inclusion within the list of the official plugin of QGIS will
guarantee the dissemination and potentially the application of this research product.

In the present formulation, the ORGANICS tool does not allow users to simulate the
transport of substances under conditions where flow may increase/decrease downstream
not only by tributaries, but also by continuous groundwater drainage from the surrounding
domain. Nor does it allow for the spatial or time variability of the degradation rate. The
latter could be beneficial to differentiate, for example, the relative importance in time of
biodegradation from photodegradation processes [50,57,58]. Future development may
include integration of more complex analytical solutions, comprising also source terms.

The ORGANICS plugin is a first attempt to popularize the use of simple modelling
tools. For more complex solutions and the inclusion of time-varying source/sink terms, a
wide range of numerical tools exist [7,10]. We wish therefore to stress that the main element
of this tool resides in its simplicity. Finally, the ORGANICS plugin provides GIS experts
the ability to perform approximate, but fast simulations of the evolution of pollutants
concentration in surface water bodies at selected targets.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14182850/s1. The Supplementary Material folder contains: folder
organics: contains the plugin to be installed in QGIS v3.xx; folder example_problems: contains the files
used to run the Example problem described in Section 3.2 of the paper.
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Abstract: Although there is widespread agreement that future climates tend toward warming, the
response of aquatic ecosystems to that warming is not well understood. This work, a continuation of
companion research, explores the role of distinct watershed pathways in lagging and dampening
climate-change signals. It subjects a synthetic flow and transport model to a 30-year warming
signal based on climate projections, quantifying the heat breakthrough on a monthly time step along
connected pathways. The system corresponds to a temperate watershed roughly 27 km on a side and
consists of (a) land-surface processes of overland flow, (b) infiltration through an unsaturated zone
(UZ) above an unconfined sandy aquifer overlying impermeable bedrock, and (c) groundwater flow
along shallow and deep pathlines that converge as discharge to a surface-water network. Numerical
simulations show that about 40% of the warming applied to watershed infiltration arrives at the
water table and that the UZ stores a large fraction of the upward-trending heat signal. Additionally,
once groundwater reaches the surface-water network after traveling through the saturated zone, only
about 10% of the original warm-up signal is returned to streams by discharge. However, increases
in the simulated streamflow temperatures are of similar magnitude to increases at the water table,
due to the addition of heat by storm runoff, which bypasses UZ and groundwater storage and
counteracts subsurface dampening. The synthetic modeling method and tentative findings reported
here provide a potential workflow for real-world applications of climate-change modeling at the full
watershed scale.

Keywords: heat transport; watershed modeling; temperature; climate change

1. Introduction and Objectives

As the climate warms, researchers are increasingly focused on characterizing the
effects of atmospheric change on different parts of the natural environment, including
surface and subsurface pathways within a watershed (Figure 1). The warming of a
groundwater/surface-water system is conditioned by two primary factors. First, the
top of the system is separated from the warming atmosphere by an unsaturated zone
(UZ). The UZ transmits and stores water and heat as they move downward to the water
table [1,2]. It acts as a low-pass filter on water and heat impulses integrated over time by
lagging and dampening the thermal load after it leaves the bottom of the root zone. The
influence of this filtering is influenced by the thickness of the UZ [3]. Second, in temperate
regions, younger groundwater stored near the top of the saturated zone can have different
temperatures than older groundwater from deeper parts of the aquifer. As these flow paths
converge near stream, lake, and wetland discharge locations [4], the total amount of heat
transmitted back to the surface-water system is determined by the combined effect of all
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the water pathways. Such factors influence the timing, magnitude, and distribution of the
thermal energy that eventually discharges to the surface-water system through distinct
watershed pathways. Transient effects can be difficult to evaluate using qualitative analyses
of downstream receptors but are crucially important for realistically forecasting system
response to future temperature increases. Such increases—even when modest—can form
tipping points that transform surface-water ecology and habitats [5] and change subsurface
nutrient cycling [6].

Figure 1. Schematic of heat-flow pathways through watershed.

Because downstream aquatic habitats typically integrate influences from upstream,
understanding the potential effects of climate change on water resources requires studies
and simulations at a watershed scale. The conditions that influence watershed heat trans-
port pathways include the variable thickness of the UZ, variation of groundwater residence
time with depth, and topographic/geographic factors such as the width of riparian areas
and stream density of the surface-water system. In addition, quantitative studies must
also account for different flow and transport processes along these system pathways, for
example, the propagation of heat by convection, conduction, and dispersion.

The translation of atmospheric warming to aquatic resources has been a focus of previ-
ous work, including analytic [7], process-based watershed [8–10], regression-based [11–13],
remote sensing [14], and field measurement [15] approaches. Our work extends this rich
history through transient quantitative numerical simulation of salient watershed pathways
that store and transport heat. Specifically, this study leverages recent advances in quanti-
tative transient numerical methods detailed in Morway et al. [1] and builds upon initial
testing of the synthetic watershed presented in Morway et al. [2]. Here the previous work
is extended in three important ways:

1. Heat transport at monthly intervals is explicitly tracked at the watershed scale (1) be-
tween the top of the UZ and the water table, (2) between the water table and ground-
water discharge zones, and (3) from upstream to downstream in the surface-water
network fed by groundwater. The quantification of the heat-flow across various
boundaries within a watershed, for example, the water table, enables a more detailed
evaluation of the thermal response of a watershed to a changing climate, and in partic-
ular to warming infiltration. This type of analysis will be increasingly important as
the thermal impacts of a changing climate affect, for example, cold-water fisheries.
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2. Whereas Morway et al. [2] employed a heuristic synthetic heat inflow time series
to isolate distinct warming effects, this study uses a climate forcing function based
on the “mean model” Global Climate Model (GCM) high-emission scenarios [16].
The forcing combines the effects of, first, monthly temperature changes and, second,
monthly changes in precipitation that are carried into changes in the infiltration rate
through the root zone to the top of the UZ. Application of a specific climate scenario
permits a more realistic lag [17] and dampening assessment, which in turn facilitates
an extension of these methods to real-world decision support settings.

3. In most watersheds, stream flow is a combination of surface (e.g., overland runoff) and
subsurface flows. The transfer of heat to the stream network is therefore dependent
on both pathways. Variation and extremes observed in stream temperatures tend to
be much greater than what is observed in ambient groundwater temperatures-even in
baseflow-dominated systems [18,19]. The difference is attributable in large measure to
the influence of quick-flowpath additions of storm runoff during warm, wet months
that overprint slower/steadier rates of groundwater thermal discharge. Therefore,
this analysis expands upon Morway et al. [2] by simulating and analyzing the heat
load returned to the surface-water network from storm runoff in addition to the heat
load returned by the groundwater system.

The simulations under study use the groundwater flow model MODFLOW-NWT [20]
and a recently augmented version of the companion transport code MT3D-USGS [1,21].
Explicit simulation of heat transport through the UZ makes this work distinct from previous
watershed-scale efforts [22–24]. The model output includes the two dependent variables
head and temperature, as well as volumetric water and heat fluxes, all of which have utility
for watershed-scale assessments.

The methods, results and discussion presented in this article are accompanied by in-
formation in a Supplementary Material Section [25]. It consists of three appendices giving
additional detail (including Supplementary Figures and Tables) on subjects referenced below.

2. Methods

Heat flow travels through the watershed via linked thermal pathways (Figure 1). For
example, subsurface heat loading often begins with heat inflows that originate as infiltration
below the bottom of the root zone. The infiltrating heat next moves downward through
the UZ to the water table and, upon recharging the aquifer, begins migrating toward a
discharge location via shallow and deep groundwater flow paths. Heat associated with
precipitation that is unable to infiltrate the subsurface (when the water table is at/above
the land surface, or the precipitation rate is faster than the soil’s ability to infiltrate) flows
more quickly to surface-water features. In this effort, we simulate and analyze heat flow
pathways in the synthetic model to illustrate the occurrence and magnitude of lags (changes
in phase) and dampening (change in amplitude) of atmospheric warming applied at the
top of the UZ as it travels through the watershed and associated surface water system.

The pathways shown in Figure 1 correspond to the following flow and storage terms
simulated by the model:

• Groundwater runoff is defined as the sum of groundwater discharge to land sur-
face and rejected infiltration from the land surface under conditions of Hortonian or
Dunnian flow.

• Baseflow is defined as the sum of direct groundwater discharge to surface water plus
groundwater runoff.

• Total streamflow is defined as the sum of baseflow and storm runoff.
• From a watershed flow system perspective, the following partitioning occurs:
• Precipitation is partitioned into infiltration, storm runoff and evapotranspiration (ET)

from the root zone.
• Infiltration is partitioned into rejected infiltration, recharge and storage changes in the

UZ (no ET is simulated from the UZ since the infiltration is considered to be what
percolates below the root zone).
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• Recharge is partitioned into storage changes in the groundwater system, direct dis-
charge to surface water and discharge to land surface.

Note that some streamflow generation conceptualizations include an “interflow”
subsurface pathway reflecting late-storm seepage that contributes to a recessional limb of
a storm hydrograph [26]. Here, however, we focus on more time-integrated results from
the watershed (monthly to multi-decadal) and consider such interflow contributions as
included in the other subsurface components to streamflow. Moreover, although rejected
infiltration is a form of runoff, for purposes of this analysis it is included in the baseflow
term, leaving stormflow as the only remaining surface runoff component of total streamflow
(because direct precipitation on the stream surface is not simulated).

Figure 1 illustrates this framework by showing the pathways from precipitation and
infiltration through the various forms of runoff, recharge and discharge for both water
and heat.

2.1. Construction of Spin-Up and Climate Change Forcing Function

The amount of heat that enters the top of the UZ is the product of the infiltration rate
and its temperature. A brief description of how each time series was generated is offered
below. A more detailed description is provided in the Supplementary Material Section S1.

Because the effects of a warming climate cannot be represented by steady state con-
ditions, careful selection of the time discretization and initial conditions used within a
transient model are important. Because the time-integrated effects of warming infiltration
associated with climate change over a 30-year period of analysis was the focus of this
study, monthly timesteps were deemed sufficient to represent the seasonal, random, and
non-stationary aspects of the warming infiltration on temperatures in the subsurface. To
establish initial condition by the start of the 30-year warming period, a 30 year spin-up
period with annually-cyclic infiltration rates and temperatures (i.e., the same values were
specified for all 30 Januarys, for example) was employed to ensure a dynamic equilibrium
by the start of the warming period (see page 313 in Anderson et al. [27]). After spin-up, the
infiltration rates and temperatures continue to vary monthly with a seasonal periodicity,
but also have an underlying warming trend and a random noise component. As described
in detail in the Supplementary Material Section S1, initial conditions used here differ from
those used in the companion study [2]. In this work, both the monthly infiltration and its
specified temperature time series varied during spin-up. In the companion paper, tempera-
ture varied monthly while the infiltration rate was held constant during its spin-up period
at 0.2 m/yr. For this work, the average monthly infiltration rates and temperatures used
during spin-up are based on a watershed located in southern Wisconsin, USA [19].

After spin-up, infiltration rates and its accompanying temperature are based on the
high-emissions RCP-8.5 climate scenario [16] results for the Midwest United States, which
generally reflect wetter and warmer conditions compared to the spin-up period. Down-
scaled regional results from southern Wisconsin, USA (Figure 2) were applied to the
synthetic watershed, where simulated warming corresponds to the period 2022 through
2051. The warming trend applied to the infiltration temperature is imposed on the seasonal
signal, which also includes random noise generated from a uniform distribution centered
on 0 ◦C and a range of 4 ◦C. By the end of the 30-year warming period, the average annual
temperature of the infiltration is approximately 2 ◦C warmer relative to the end of the
spin-up period. The amount of heat inflow at the end of the warming period, which is the
product of the infiltration rate and its temperature, is roughly 25% higher than the amount
of heat inflow at the end of the spin-up period. For our simulations, this value effectively
represents an upper limit of the expected climate change in terms of the heat added to
the subsurface attributable to wetter and warmer conditions. Most of the increase in heat
inflow is due to the trend applied to the infiltration temperature; only a small part is due to
the trend applied to the infiltration rate (Supplementary Material Section S1). Because flow
and heat transport are simulated separately, spin-up infiltration rates are specified in the
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flow model via the UZF1 package [28] while the temperatures assigned to the infiltration
are specified in the UZT package of MT3D-USGS [21].

Figure 2. Climate forcing used in the synthetic model from high-emissions RCP8.5 scenario [16]
downscaled to southern Wisconsin. (A) Location of southern Wisconsin basin [29] to which [16] data
correspond, (B) the atmospheric temperature used to set the temperature of the infiltration (◦C), and
(C) precipitation and infiltration rate forcing (inch/year) where infiltration through the root zone is
assumed to be one quarter the precipitation. Equations on plots correspond to dashed linear trend
lines. RCP stands for Representative Concentration Pathway.

2.2. Model Construction

The synthetic model uses the same geometry, parameter values, and boundary con-
ditions as described in Morway et al. [2]. Additional detail of the model construction is
provided in Supplementary Material Section S2. In brief, the salient aspects of the model
design are characterized by:

1. spin-up specification of temporally varying infiltration rates and temperatures that,
when multiplied, result in a single time-dependent heat infiltration rate that represents
a warming climate signal;

2. the climate forcing described in (1) is applied in a spatially uniform manner to the en-
tire model domain; that is, infiltration rates and temperatures are temporally variable
but spatially uniform;

3. aquifer/flow and transport parameters [e.g., the hydraulic conductivity (flow) and
porosity (transport)], are spatially uniform across the model domain.

The model approximates a mid-sized watershed (about 290 square miles or 750 square km,
falling into the HUC10-size category according to the U.S. watershed scheme) that includes
streams, wetlands, and a lake (Figure 3). The surface-water system is strongly gaining (“base-
flow dominated”)-there is very little loss from streams to the aquifer. The subsurface system
consists of a sandy aquifer separated from the land surface by an UZ and overlying effectively
impermeable bedrock. No-flow boundaries are specified along the east, west, and bottom of
the model. Regional groundwater flow gradients from north to south are generated by general
head boundaries along the northern and southern model boundaries, but the flow system
is strongly influenced by local groundwater divides which reflect the effects of topography
and the surface-water network. Cells in layer 1 are typically unsaturated but may contain the
water table in riparian zones adjacent to surface-water features. Cells in layers 2 through 4 can

137



Water 2022, 14, 2810

be either unsaturated, partially, or fully saturated. Layers 5 through 8 are fully saturated for
the duration of the simulation. Parameter values for the flow and transport simulations are
listed in the Supplementary Material Section S1. Monthly stress periods are used in both the
flow and transport simulations.

Figure 3. Synthetic model setup showing domain and boundary conditions, as well as locations for
monitoring temperature results. Cross-sections are shown in Figure 4. [SFR: Stream Flow Routing;
GHB: General Head Boundary].

Figure 4. Layering through Upland and Valley locations; (a) MID_TRENDED model version, Upland
cross section. (b) MID_TRENDED model version, Valley cross section. (c) HI_TRENDED model
version, Upland cross section. (d) HI_TRENDED model version, Valley cross section. Cross section
locations are shown in Figure 3. Top black layer is 3-ft thick receptor layer for receiving infiltration.
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An important simplification incorporated in the proposed methodology is to equate
the heat signal with infiltration that has already passed the root zone. Root zone processes
in humid areas, which bear on both the movement of water and heat, include evaporation,
transpiration, and conduction, leading to flow that can be both downward and upward.
The key assumption in our methodology is that at a monthly transport time step, these
root zone processes can be neglected and the warming signal at the top of the UZ can be
equated with the average amount of water passing the root zone over the month and with
the average monthly atmospheric temperature. This assumption is discussed in detail in
Morway et al. [1].

To elucidate the importance of including the UZ in regional-scale heat transport
simulations, two versions of the model were constructed for highlighting the effects of UZ
thickness on heat transport:

1. MID_TRENDED model (Figure 4a,b): This version is designed to produce, on average,
a moderate water table depth (i.e., moderate UZ thickness) that varies from 0 m in
riparian areas (approximately 20% of the model domain) to about 15 m below land
surface in the upland areas.

2. HI_TRENDED model (Figure 4c,d): using steeper topography, this version simulates
a thicker UZ compared to the MID_TRENDED model. The water table depth varies
from 0 m in riparian areas (approximately 4% of the model domain) to more than 30 m
in the upland areas.

Thus, the main difference between the MID_ and HI_TRENDED models is the thick-
ness of layers 1 through 4; the deeper groundwater system represented by layers 5 through
8 is the same in both versions. More information on model construction and model versions,
including specification of model flow and transport parameters and selection of parameter
values, is provided in Morway et al. [2] and Supplementary Material Section S2.

One of the key differences in the model setup in this analysis compared to that docu-
mented in Morway et al. [2] is that surface-water runoff is here explicitly simulated using
options available in the UZF1 and SFR [30] packages (Supplementary Material Section S2).
Because overland runoff is passed to MT3D-USGS via the linker file [31], it automatically
accounts for the heat transported to streams and associated with runoff. Precipitation is
assumed partitioned into storm runoff, infiltration, and evapotranspiration. In the synthetic
model, storm runoff was set equal to 8.3% of the specified monthly precipitation rate, which
is equivalent to 33% of the infiltration rate since the infiltration rate is set to 25% of the
precipitation rate. The remaining precipitation is taken up by evapotranspiration rate,
equal to 67% of the precipitation. These ratios are intended to represent a porous/sandy
watershed where infiltration through the root zone is several times greater than storm
runoff. Figure 5 shows the flow budget fluxes for the most upgradient eastern stream
subbasin. Whereas the companion analysis [2] focused on understanding the impacts
of warming infiltration on baseflow temperatures, this study considers the effects of all
return flows on heat transport in the surface-water network, including runoff from the land
surface associated with stormflow. The model does not, however, simulate precipitation or
evaporation directly on or from the surface water, respectively.

The 75% of the total water and heat flux that enters the watershed over any year (net of
evapotranspiration) as infiltration is the source of recharge to the water table. The recharge
flux is divided among the following down-basin pathways: groundwater discharge to
the stream channels and water bodies, groundwater discharge to land surface (that is,
to riparian areas bordering surface water), and rejected infiltration from riparian areas.
The portion of these three down-basin terms that terminate as water and heat flux to
streams collectively sum to stream baseflow. Stormflow runoff contributes the remaining
25% of the water and heat that enters the watershed (net of evapotranspiration). It runs
off instantaneously to the surface-water feature that is directly downslope in the form
of a stream segment or lake (Supplementary Material Section S1). The infiltrating heat
across the model domain is therefore subject to the low-pass filtering effects (phase and
amplitude shifts) of heat transport through unsaturated and saturated flow pathways. Heat
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contributed to streams from stormflow runoff is not filtered by the subsurface pathways and
is therefore left un-modified (i.e., no lags or dampening is associated with this particular
heat transport pathway).

Figure 5. Flux terms for an example basin showing assumed relationships of precipitation, evapotran-
spiration, and storm runoff with infiltration rate at the end of the spin-up and warming periods. The
absolute fluxes correspond to amounts for basin contributing runoff to an example stream segment
(see Supplementary Material Figure S2-3a for the location of the basin comprising Segment 1 in the
synthetic model). Warming begins in Simulation Year 30.

3. Results and Discussion

The process-based modeling approach used here produces time series of simulated
temperatures throughout the model domain in response to climate forcing, including
above the water table (i.e., the UZ), at the water table, in the deep groundwater system,
and at various locations in the surface water network. Here, for both versions of the
synthetic model, we focus on: (1) the temperature trends along the pathways shown in
Figure 1, (2) the distribution, magnitude, and timing of heat transfers (fluxes and flows)
within subbasins of the watershed, and (3) the lag and dampening effect of the UZ on the
infiltrating heat signal at particular locations and across subbasins within the watershed as
well as the lag and dampening effects induced by down-system pathways.

3.1. Temperature Trends along Pathways

Although the annual average temperature during the spin-up period is 8.55 ◦C, the
flow-weighted (or infiltration-weighted) average temperature during spin-up is 9.97 ◦C.
At the end of the spin-up period, the simulated stream and lake temperatures converge
to about 10 ◦C for both the simulation with thinner and with thicker UZ thickness (the
MID_ and HI_TRENDED simulations, respectively). After reaching dynamic equilibrium
conditions by the end of the spin-up period, temperatures assigned to both the infiltration
and storm runoff followed the same time-series scheme described above (see section titled
“Construction of spin-up and climate forcing function”) in the warming period. The
average infiltration-weighted temperature over the 30-year warming period is 10.95 ◦C.
Our analysis focuses on the final 10 years of warming, where the infiltration-weighted
average temperature was 12.23 ◦C, a 2.26 ◦C rise compared to the last year of the spin-up
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period. If no lag or dampening occurred, the temperatures throughout the watershed
would reflect this higher 12.23 ◦C temperature.

Warming in the subsurface was observed in the water table at two locations hereafter
referred to as the Upland and Valley locations (Figure 3). The thinner UZ associated with
the MID_TRENDED model contributes to a greater thermal response at the water table by
the end of the simulation compared to the HI_TRENDED result (Figure 6A,B). In addition,
a thinner UZ contributes to a flashier thermal response at the water table where the UZ
thickness is even smaller (<15 ft) at the Valley location (Figure 6A). At the Upland location,
the water-table temperature is smooth and muted in both models with a subtle temperature
increase simulated at the water table for the first 22 years of the warming period. During
the final 8 years of the simulation period, the temperature response at the water table to
the overall warming trend is better defined with a clear rise in water table temperatures
in year 52 of the simulation. Before that, limited sensitivity to year-by-year fluctuations
in the temperature of the infiltration is shown in the MID_TRENDED simulation and no
sensitivity is evident in the HI_TRENDED simulation results (Figure 6B). At the Valley
location, where the water-table depth is approximately 3.3 m (11 ft), simulated temperatures
in the MID_TRENDED simulation exhibit a much more responsive behavior in the last 10
years of the simulation compared to the HI_TRENDED simulation where the water-table
depth averages 9.6 m (31 ft).

 

Figure 6. Time-series results for Synthetic Model at Upland and Valley Locations: (A,B) Depth to
water table for MID_TRENDED and HI_TRENDED simulations; (C,D) Water table temperature for
MID_TRENDED and HI_TRENDED simulations. Upland and Valley locations are shown in Figure 3.
Warming period begins in Simulation Year 30.

Figure 7 shows the percent of the model domain with a water-table temperature at a
given threshold (y-axis) over the warming period (x-axis). Red indicates the temperature
corresponding to the warmest 20% of the domain, blue correspond to the coolest 20% of
the domain. For example, at the beginning of the warming period in the MID_TRENDED
simulation (year 0 on the x-axis; Figure 7A), the water table temperature across entire model
domain is roughly 10 ◦C, but by the end of the warming period the water table temperature
is at or below 10.5 ◦C. Note also that the MID_TRENDED simulation (Figure 7A) because
of its thinner UZ consistently shows flashier water-table temperature responses for the
warmest (reds) and coolest (blues) parts of the watershed compared to the HI_TRENDED
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simulation (Figure 7B). Direct comparison of the median watershed temperatures through
time [represented by the dotted (MID_TRENDED) and solid (HI_TRENDED) contour lines
in Figure 7B] indicates that a thicker UZ yields, on average, a more subdued water-table
temperature response to warming infiltration, highlighting the ability of a thicker UZ to
store and filter heat transport to the water table. As a reminder, the annual average temper-
ature of the infiltration warmed by 2 ◦C during the 30-year warming period. In response,
the shallow groundwater temperatures in the MID_ and HI_TRENDED simulations rose
by more than 1 ◦C across about 20% of the model domain.

Figure 7. The percent water-table area of model domains that is simulated below increasing tempera-
ture thresholds (y-axis) over the time of the warming period (x-axis), for the (A) MID_TRENDED
and (B) HI_TRENDED simulations. The contours indicate the temperature for the 50% threshold.
The MID_TRENDED 50% contour displayed in (A) also is shown in (B) for comparison with the
HI_TRENDED 50% contour. Surface-water cells are excluded from calculations.

3.2. Heat Fluxes and Heat Flows

It is often instructive to evaluate the response to warming in terms of heat movement in-
stead of temperature change. Heat movement consists of three flux components–convection,
conduction and dispersion [1]. A component of heat flux (measured in Watts) normalized
by an area perpendicular to the flux direction yields the corresponding component of heat
flow (for example, in units of Watts/m2.) There are three main interfaces at the beginning
or end of watershed pathways where flux or flow components can be calculated: across the
top of the UZ (infiltration), across the water table (recharge) and across a streambed or lake
bed (baseflow). They are discussed in turn:

- In this study the thermal infiltration is equated with the heat movement downward
from the bottom of the root zone which occurs after runoff and evapotranspiration
have rerouted some of the water and heat along the land surface or to the atmosphere.
This net infiltrating heat flow is imposed as a purely downward convective process
into the top of the UZ. For our purposes, the combined effect of heat conduction and
dispersion at the root zone/UZ interface, either upward or downward, is considered
to be unimportant in comparison to the surface and root zone processes that determine
the average monthly rate of infiltrating heat flux.
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- Our analysis of the relative weight of simulated heat transport components out of
the UZ show that for the humid temperate conditions of the synthetic model, the
convective heat flow dominates the conductive and dispersive flow at the water-table
interface. This relation persists over time at the scale of individual model locations
(Supplementary Material Section S3 Figure S3-10) and when averaged over the entire
model domain (Figure 8). For the MID_TRENDED simulation, the absolute value
of the conductive heat flows at the water table average about 11% of the convective
heat flow, whereas the dispersive heat flow is only 0.05% of the convective heat
flow. For the HI_TRENDED simulation, incorporating a generally thicker UZ, the
corresponding ratios are 7% and 0.03%. It is worth noting that thermal dispersion is a
negligible heat flow component owing to the relatively small longitudinal dispersivity
specified (0.9 m) relative to the lateral grid spacing [91 m (300 ft)], a choice consistent
with a homogeneous synthetic aquifer. These findings suggest that there is in general
only minor loss of accuracy if the heat flow across the interface at the top of the
groundwater system is approximated by considering the convective heat flux alone.

- The temperature gradient across the streambed between the stream water in the
channel and the ambient groundwater could be incorporated in equations that yield
convective and dispersive components of heat flow. Thermal conduction would
occur whether the temperature gradient is in the same direction as baseflow or in
the opposite direction away from the stream; dispersion would occur only when
the gradient is in the same direction as the flow through the streambed. However,
the MT3D-USGS code neglects these theoretical components of heat flux and only
calculates the convective component, either as a function of groundwater temperature
in the presence of baseflow or as a function streamflow temperature in the presence
of stream.

Figure 8. Recharge heat flow components (W/m2) averaged monthly over the model domain for the
(A) MID_TRENDED, (B) HI_TRENDED, and (C) MID_TRENDED (riparian area only) simulations.
Heat flow components are shown for conduction and convection. Dispersive heat flow is negligible.
Warming period begins in Simulation Year 30.
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Given that heat flux across the major watershed interfaces is either imposed as con-
vective flux, approximated by convective flux, or only calculated for convective flux, it is
convenient in the pathway analysis of thermal lagging and dampening presented below
to define heat movement strictly in relation to the magnitude and direction of water flow,
neglecting the conductive and dispersive fluxes.

The convective flux of heat for any part of the model domain is calculated as the flux of
water through the model cells constituting the given volume multiplied by the temperature
of the water and by the density and heat capacity of fresh water. A convenient unit for the
convective heat flux accumulated over one second is Watts (W, equivalent to 1 joule/sec).
The rate of convective heat flow is the flux normalized by the area corresponding to the flow.
For example, the heat flow in recharge, baseflow and runoff associated with the upstream
areas of gages shown in Figure 3 is equal to the accumulated upstream heat flux divided
by the areas reported in Table 1 (also see Supplementary Material Section S2, Figure S2-3b
for map view of areas upstream of gages). A convenient unit for the rate of heat flow is
Watts per square m (W/m2). Interested readers are directed to Supplementary Material
Section S3 for a more detailed discussion of the calculation of the quantities heat flux and
heat flow.

Table 1. Topographic areas upstream of stream gages identified in Figure 3.

Stream Gage Number Gage Description Upstream Topographic Area

(equated with Gage Recharge, Baseflow and Runoff Areas)
mile2 km2

235 Headwater 2.07 5.35
285 Tributary 12.06 31.23
492 Upper Confluence 58.62 151.82
615 Lake Outlet 30.34 78.59
692 Lower Confluence 107.22 277.69
864 Model Outlet 134.38 348.04

Notes: Total area of model domain is 290.5 mile2 = 752.5 km2, taken to be extent of watershed. Upstream area
associated with Gage 864 includes entire eastern basin of watershed including all upstream gages.

Convective heat flux diminishes in strength as it moves through the subsurface. The
first reduction occurs in the UZ from where heat enters the simulation as infiltration to
where it recharges the groundwater system (Figure 9). This loss of heat is largely due to
changes in the amount of heat stored in the UZ. Additional losses to the total heat flux
through the watershed occur in the saturated zone or as recharge makes its way to discharge
locations, for example, as groundwater discharges directly to streams (Figure 9). In this case,
as the shallow groundwater is warmed by the recharge associated with warmer infiltration,
it mixes with cooler (and deeper) groundwater as it travels through the saturated zone. The
effect of mixing is evident in the heat flux results along pathways. In Figure 9, Gage 492
represents integrated conditions over the upper basin of the eastern part of the stream
network, and Gage 864 represents conditions for the entire eastern stream network (see
Figure 3 for locations). The simulated heat flux in the upgradient stream network (above
Gauge 492) is only a fraction of the flux integrated over the entire eastern basin (above
Gage 864). However, it is striking that for both gage locations (in both the MID_ and
HI_TRENDED versions of the model), the convective heat fluxes entering the subsurface as
infiltration, subsequently converted to recharge, increases appreciably over the 30 years due
to climate warming. By contrast, the simulated convective heat flux out of the subsurface
(i.e., baseflow) increases by a comparatively small amount in response to that warming,
pointing to the substantial dampening (from mixing as well as heat storage) that occurs in
the saturated zone (Figure 9).
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Figure 9. Convective heat flux (Watts) accumulated over contributing basins upgradient of two
gage locations. (A) MID_TRENDED simulation. (B) HI_TRENDED simulation. Infiltration flux
is compared to flux transmitted by down-system pathways. Convective flux for each pathway
corresponds to the average for last year of spin-up (“end of spin-up”) and to the average of last
10 years of warming (“end of warming”).

Visualization and comparison of results are facilitated by extending the analysis of
how simulated heat is propagated across pathways in terms of heat fluxes normalized by
the area of model cells or by the area of watershed subbasins. In what follows recharge and
discharge thermal transfers are analyzed in terms of heat flows. Heat transmission losses in
the UZ (that is, from infiltration to recharge) are primarily the result of heat storage effects
due to warming of water in the UZ. A secondary loss of heat can occur when cooler water
enters the UZ behind warmer water, producing an upward thermal gradient which gives
rise to upward thermal conduction from the deeper part of the system Recall that thermal
gradients drive conductive and dispersive flows and can be upward and downward in
the UZ whereas the convective flows, given the kinematic wave formulation in the UZF1
packages, only simulates downward flow [1,27,32].

Where the UZ is thin, for example, in riparian areas adjacent to the surface-water
features, the infiltrating heat flow readily warms the water table since there is little oppor-
tunity to store additional heat in the UZ (Figure 10). During a cool month with moderate
infiltration (e.g., March at 15.25 years), the heat flow to the water table is modest, i.e.,
less than 0.5 W/m2 in both the MID_ and HI_TRENDED models (Figure 10A,B). This is
not the case for a relatively warm and wet month (e.g., August at 25.67 years) when the
heat flow generally exceeds 2.0 W/m2 in the riparian areas adjacent the surface-water
features (Figure 10C,D), though the riparian area is much narrower in the HI_TRENDED
simulation. Thus, the spatial distribution of heat flow in the watershed is influenced by the
watershed topography, which affects the UZ thickness, as well as by the lateral extent of
the riparian area.
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Figure 10. Maps of total recharging heat flow at the water table in watts per square meter (W/m2)
for the (A) MID_TRENDED simulation in the month of March after 15.25 years of warming,
(B) HI_TRENDED simulation (also in March) after 15.25 years of warming, (C) MID_TRENDED
simulation in the month of August after 25.67 years of warming, and (D) HI_TRENDED simulation
(also in August) after 25.67 years of warming. The plotted total heat flow is the sum of the convective,
conductive and dispersive heat flows.

3.3. Lags and Dampening of Heat Signal

To understand better the role different parts of the hydrologic system have on lagging
convective heat transport in the subsurface (that is, changing the phase of the thermal
impulse), a lag analysis was performed in terms of correlation coefficients computed
at different monthly offsets. The time series of the (causal) infiltrating heat flow was
paired with the simulated convective heat flow time series at different locations within the
watershed, for example, at the water table, using a set of monthly lags (1, 2, 3, etc. monthly
offsets). Correlation coefficients were calculated for each monthly lag and compared across
months to yield a measure of the delay in heat transport through different parts of the
subsurface system. A separate dampening analysis (that is, the change of amplitude along
pathways with respect to the infiltrating signal) was performed by computing the ratio of
the average convective heat flow (or temperature in the case of baseflow and streamflow)
for the last 10 years of warming to the average convective heat flow (or temperature) value
during the last year of the spin-up period. The lag and dampening ratios were calculated
for the major pathways shown in Figure 1. Additional details on the calculation procedures
are offered in in Supplementary Material Section S3.

The lags (phase) and dampening (amplitude) applied to the infiltrating heat flow
prior to its recharging the aquifer is strongly influenced by the thickness of the UZ. The
phase and amplitude shifts associated with distinct UZ thicknesses are evident in Figure 11
when comparing the convective heat flow arriving at the water table (red and blue lines)
to the heat inflow at the top of the UZ (light blue bars). The heat flow associated with the
infiltration at the top of UZ is identical for both runs. At the Upland location, for example,
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where a relatively thick UZ exists (Figure 11A), lags are longer with more significant muting
compared to the Valley location where the UZ is relatively thin (Figure 11B). The effect of
the UZ is further highlighted by contrasting the recharging heat flow only at the Upland
location for the MID_ and HI_TRENDED simulations (Figure 11A). That is, the additional
UZ thickness in the HI_TRENDED simulation adds months to the arrival time of the
infiltrating heat flow at the water table and further subdues the magnitude of the heat flow
(Figure 11A, note the peaks of the red line are lower than the peaks of the blue line). The
dashed lines in Figure 11, corresponding to the temperature of the water table cell, reflect
the effects of the recharging heat flow mixing with water table. At the Upland location, the
simulated temperature at the water table is not as responsive (Figure 11A) as at the Valley
location (Figure 11B).

Figure 11. Convective heat flow (W/m2) and temperature (◦C) of the recharge at the (A) Upland and
(B) Valley locations for the MID_TRENDED and HI_TRENDED simulations for the last 10 years of
the warming period.

At the Upland location, the heat-flow lag in the MID_TRENDED simulation shown in
Figure 11 is quite long, about 7–8 months. (See also Supplementary Material Table S3-2).
In addition, the temperature response of the shallow groundwater in both the MID_
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and HI_TRENDED simulations is noticeably subdued (Figure 11A), attributable to UZ
thicknesses exceeding 40 ft (12 m; Figure 6A) and 100 ft (30 m; Figure 6B), respectively.

A clearer correspondence between the infiltrating and recharging heat flows is seen in
the shallow groundwater at the Valley location where the UZ is relatively thin (Figure 11B).
For example, the MID_TRENDED simulation, featuring relatively thin UZ thickness, shows
strong heat-flow correlation to infiltration changes, peaking at a one-month lag, while the
HI_TRENDED simulation, with relatively thick UZ thickness, shows a slightly less strong
correlation peaking at a two-month lag (Supplementary Material Table S3-2). The water-
table temperature time series at the Valley location, especially for the MID_TRENDED sim-
ulation, also shows a definite, if lagged, response to the infiltrating heat signal (Figure 11B).
This responsiveness is due to reduced UZ thickness at this location, and, therefore, to
reduced capacity for heat storage.

The local lagging and dampening of heat flow through the UZ evident in Figure 11 at
the scale of a single water-table cell can be integrated over basins within the watershed by
dividing the total heat flux recharging the basin by its area. In Figure 12A the heat-flow
behavior over time in recharge is compared to the infiltration forcing at a small headwater
basin upstream from Gage 235, 2 mile2 (5 km2) in extent (see Figure 3 and Table 1). The offset
and attenuation of the infiltration forcing in the recharge time series over the last 10 years
of warming, tends to be greater for the simulation with relatively thick UZ (HI_TRENDED)
than the simulation with relatively thin UZ (MID_TRENDED), but both model versions
show pronounced inertial effects due to the UZ. The lagging and dampening of heat flow
in recharge corresponding to the entire stream and lake network on the east side of the
domain (that is, to the area upstream of Gage 864, equal to 134 mile2 (348 km2)) is similar
to that registered for the small headwater basin, although slightly more attenuated (i.e.,
Figure 12A versus Figure 12B). This similarity is a reflection of the spatially homogeneous
conditions that obtain in the synthetic model.

Figure 12. Heat flow response (Watts/m2) along recharge pathway for (A) MID_TRENDED and
(B) HI_TRENDED simulations. Graphs compare impulse heat flow in INFILTRATION to response
heat flow in the pathway during last 10 years of warming for contributing basins corresponding to
headwater gage (235) and model outlet gage (864). Heat Flow = Heat Flux over basin normalized by
basin area.

Graphs similar to Figure 12 show the lagging and dampening behavior at the 235 and
864 gages for downgradient pathways associated with the stream interface (see Supple-
mentary Information Figure S3-11b–f). For all pathways, the amount of lagging between
the infiltration forcing and the downgradient heat flow or downgradient temperature
response is quantified over a series of nested basins upstream of gage locations, according
to the correlation method discussed in Supplementary Material Section S3. The tables
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accompanying the graphs contain an array of these calculations. The amount of dampening
for the same nested basins is also tabulated. Dampening is quantified based on a direct
comparison between the average heat flow or temperature amplitude over the last 10 years
of warming and the average amplitude over the last year of spin-up before warming. These
pathway results constitute the key hypothetical findings arising from the deployment of
the synthetic model.

Whereas distinct lag correlations between the infiltrating and recharging heat flows
are evident along the UZ pathway, there is less coherence when considering the longer
groundwater pathways that that terminates as direct groundwater discharge to streams
(Supplementary Material Table S3-3). This weakening is attributed to mixing of shallow
and deep groundwater flow paths and, to an expected lesser extent, changes in heat stored
in the aquifer matrix.

The total streamflow carries the heat contribution of both the baseflow components and
the storm runoff component. The temperature and heat flow in total streamflow at different
gage locations along the stream network show little lag with respect to the infiltration
temperature and heat flow (“From Inflow to Total Streamflow” row in Supplementary
Material Table S3-3). This result is expected given that storm runoff is the dominant
contributor of heat to the stream; that is, storm runoff carries heat quickly overland to
the streams with minimal lag and dampening along its path (Supplementary Material
Figure S3-10).

Watershed-scale dampening is expressed when incoming heat flow of the infiltration
is partially stored in the UZ first, with additional heat storage occurring later in the
groundwater system (Supplementary Material Section S3). Table 2 (top) and Figure 13
summarize the pathway dampening that occurs between the last year of spin-up and
the last 10 years of warming in terms of heat flow at the basin outlet Gage 864. The
climate forcing imposes a 31.3% average increase in the infiltrating heat flow within the
contributing area of the basin over the warming period. The recharge transmits a fraction of
that signal, producing about a 13% increase in heat flow relative to the spin-up conditions
for both the MID_TRENDED and HI_TRENDED simulations. That is, the recharge delivers
roughly four tenths of the warm-up entering at the top of the UZ to the water table. For
down-system pathways, there is a further and rather sharp reduction in heat propagation
through increased dampening of the original infiltrating heat signal. For example, where
groundwater discharges to the stream, only about one tenth of the original infiltrating
warm-up signal is simulated. There is comparatively less dampening when considering
the total baseflow discharge; only about two tenths of the infiltrating warm-up signal is
transported to the surface-water system. The baseflow to the stream network carries more
of the climate forcing than the direct discharge component because it also includes heat flow
from groundwater runoff, which is not subject to dampening. However, total streamflow at
the outlet gage, because it incorporates undampened storm runoff, shows less dampening
altogether–similar to that shown by recharge (about four tenths of the heat impulse–top
of Table 2 and Figure 13). Storm runoff is simulated to be a powerful driver of stream
heat-flow conditions.
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Table 2. Dampening of warming along watershed pathways: Attenuation of convective heat flow
and temperature along pathways contributing to the 864 gage location for MID_TRENDED and
HI_TRENDED simulations.

Heat Flow Pathway Unit Location Model Version
Amplitude Percent

Increase Due to Warming 1

Infiltration Heat flow (Watts/m2)
Uniform across

watershed
MID_Trended and

HI_Trended 31.3%

Recharge to Water
Table Heat flow (Watts/m2)

Contributing Basin for
Model Outlet (864)

MID_Trended
HI_Trended

13.3%
12.7%

Direct Discharge to
Streams Heat flow (Watts/m2)

Contributing Basin for
Model Outlet (864)

MID_Trended
HI_Trended

1.6%
3.7%

Baseflow to Streams Heat flow (Watts/m2)
Contributing Basin for

Model Outlet (864)
MID_Trended
HI_Trended

6.8%
4.4%

Total Streamflow Heat flow (Watts/m2)
Contributing Basin for

Model Outlet (864)
MID_Trended
HI_Trended

12.7%
11.1%

Heat Flow Pathway Unit Location Model Version
Amplitude Percent

Increase Due to Warming 1

Infiltration Flux-weighted
temperature (◦C)

Uniform across
watershed

MID_Trended and
HI_Trended 22.7%

Direct Discharge to
Streams

Flux-weighted
temperature (◦C)

Contributing Basin for
Model Outlet (864)

MID_Trended
HI_Trended

1.3%
1.3%

Total Streamflow Flux-weighted
temperature (◦C)

Contributing Basin for
Model Outlet (864)

MID_Trended
HI_Trended

5.6%
5.4%

Note: 1 Calculated from ratio of average values of last 10 years of warming to last one year of spinup.

Figure 13. Changes to convective heat flow for different watershed compartments within the simula-
tion are compared for the MID_TRENDED and HI_TRENDED model versions. An increase in heat
flow is calculated as the average heat flow over the last 10 years of the of the warming period minus
the average heat flow for last year of the spin-up period.

Dampening is also evident in the temperature response to the infiltrating heat flow
impulse for down-system pathways (bottom of Table 2). Recall that the flux-weighted
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temperature in the last year of spin-up averages 9.97 ◦C and rises to an average of 12.23 ◦C
for the last 10 years of warming, equivalent to a 23% increase (taking 0 ◦C as the reference
point). For both simulations, the direct groundwater discharge temperature increases by
only 1.3% of the spin-up average condition; the corresponding relative increase in total
streamflow temperature is about 5.5%.

3.4. Implications for Modeling Watershed Heat Transport

Several findings are important for watershed-scale heat transport simulations. First,
changes to temporal dynamics of the system in the form of heat storage, lags, and damp-
ening, can all be considered aspects of thermal inertia along watershed pathways. The
synthetic model shows how the inertial strength of the UZ and the full groundwater system
acts on phase responses to heat fluctuations and on amplitude responses to heat trends
originating at the top of the system. The mitigating effect is opposed by the quick heat
flows associated with groundwater runoff and, especially, storm runoff. The distinct inertial
strengths of watershed pathways combine to produce the complex down-system baseflow
and total streamflow responses.

Second, watershed heat transport must consider all heat transport pathways together
to accurately simulate the complexities of the down-system response to warming infiltration.
Consider the difference in system baseflow thermal response to warming as compared to
total streamflow. The total streamflow thermal response is dominated by the amount of
heat added to it by storm runoff, which during warm, wet months is conveyed rapidly (in
the model context, instantaneously) to stream segments. A baseflow-only characterization
would show much less effect of warming. Put otherwise: in the synthetic model, storm
runoff constitutes only one-quarter of total streamflow in these simulations, but its thermal
effect is disproportionally large due to the absence of any lag or dampening effects on its
contributed heat load. Thus, the thermal load contributed by storm runoff overwhelms
cooler thermal flows from direct groundwater discharge to the streams. It is worth noting,
however, that there are periods of the year (often ecologically important) when storm
runoff is largely absent and baseflow dominates total streamflow (and by extension its
thermal regime).

Third, this modeling exercise was limited to evaluating the response to a high-emission
climate scenario over 30 years. If the warming were to extend over a longer period, there
is an expectation that the ability of the UZ and groundwater system to store heat would
diminish over time and provide less dampening of the infiltrating heat flow before it reaches
a down-system discharge location. In addition, watersheds with lower storage capacity,
higher thermal conduction, lower thermal sorption, and higher UZ vertical hydraulic
conductivity are expected to produce less lagging and dampening. Thus, the transferability
of the results presented here should focus on the heat transport relationships between
watershed components (e.g., the UZ, or the saturated zone) rather than on the specific
percentages or absolute relative differences resulting from the use of the synthetic model.

3.5. Limitations and Suggestions for Future Work

The thrust of this study is to demonstrate that groundwater/surface-water models can
be combined with climate scenarios to simulate water and heat flow at the watershed scale
in ways that facilitate science-based forecasting of global warming effects on resources such
as stream habitats. There are several limitations and lessons from our hypothetical study
that may apply to future applications:

• The climate scenarios, appropriately downscaled, are a promising basis for forecasting
effects of climate change on watersheds. For the synthetic model, we imposed a linear
temperature rise in line with the high-emissions scenario for an area in the Upper
Midwest, USA. No effort was made here to partition the expected heat inflow increase
among the seasons or months–but this kind of refinement over and above simple linear
infiltration trends might be warranted in a real-world application based on different
statistical moments of the GCM results for the region under study.
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• Similarly, the present study imposed a linear trend on future precipitation and infiltra-
tion: expected changes in precipitation intensity and seasonal distribution patterns
were neglected but may be important for applications to real-world watersheds.

• A key expansion of the method presented in the companion paper [2] is the inclusion
of storm runoff as part of the watershed flow and heat budgets. However, certain
thermal mechanisms are still omitted, such as the effect of heat-bearing precipitation
and solar radiation on streams as well as the latent heat effects due to evaporation
from surface water bodies. Future developments could add these processes to the
MT3D-USGS code if sufficiently important for calibration and forecasting.

• This study presents a lagging and dampening analysis of heat flows performed strictly
in terms of the convective component. In a real-world application, this approximation,
justified for the synthetic model, might not always prove adequate because of the
particular importance of conductive and/or dispersive components at watershed
interfaces. In such cases, it might be necessary to expand the heat-flow analysis to
include all heat transport components, including possibly conduction and dispersion
across streambeds. However, it is worth noting that the lagging and dampening
analysis in terms of simulated temperature is not an approximation but reflects all
heat transport components.

• In this study, the temperature of infiltration at the bottom of the root zone is set equal
to the time series of the atmospheric temperature. The assumption may have its
validity reduced with time steps shorter than a month or for seasons subject to high
rates of evapotranspiration. Additional studies may be needed to determine if and
at what time scale temperatures at the top of the UZ can be reliably equated with
atmospheric conditions.

• The specific findings presented here regarding lags and dampening correspond to
assumed uniform sandy subsurface conditions. In a heterogeneous setting with finer
deposits and preferential flow, the phase and amplitude patterns might appreciably
change (consider, for example, the effect of confining beds in the unsaturated and/or
saturated systems).

• For the synthetic model under study, it was not necessary to impose a calibration
period between spin-up and warming periods: only two periods, in this case both
set to 30 years, were sufficient for demonstration purposes. However, a real-world
application would likely include calibration to historical observations of heads, flows
and temperatures. The length of the calibration period would depend on the available
data but would need to be long enough to represent properly the transition from the
dynamic equilibrium of the pre-calibration spin-up period to the more variable forcing
during the calibration and prediction phases.

• If the model setup were modified to extend the warming trends incorporated in
the heat inflow forcing function beyond 30 years, the amplitude of the energy and
temperature effects over time would of course be magnified. Any applications of the
method to real-world settings would likely simulate forecasts into the second half of
the 21st century. Given the large degree of uncertainty around future thermal forcing,
it is reasonable for applications of the proposed method to real-world watersheds that
a range of GCM emission scenarios be considered (as is done in Hunt et al. [18,19]) to
treat simulated heat flow findings in a more statistical fashion.

• Monthly time steps may not be sufficiently refined for some forecasts arising from
climate warming (for example, fish vulnerability to short-term stream temperature fluc-
tuations). In such cases, simulations with time discretization finer than a month might
be warranted, though practitioners may consider restricting temporal refinement of
the model to only those stress periods where it is needed.

• The surface-water network in the synthetic model is baseflow-dominated. Losing
streams might be more common in a given real-world watershed, but both the MOD-
FLOW and MT3D-USGS codes can handle any combination of gaining and losing
conditions with respect to both water and heat flow.
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• There are other simplifications adopted in this hypothetical approach that might
require more attention in a real-world application. We assumed a no-flow bound-
ary between an unconfined aquifer and underlying bedrock–in real-world settings,
the possibility of water and heat loss below an unconfined aquifer might require
explicit modeling of deeper units. We equated groundwater contributing area to
stretches of stream completely within their topographic basins (Supplementary Mate-
rial Figure S2-6)–in a real-world study the researcher might want to use the model to
delineate groundwater divides more precisely based on the simulated flow system.
We also assumed a small dispersivity value of about 0.91 m (3 ft) relative to a grid
spacing of 91 m (300 ft). Higher values of dispersivity or identification of preferential
pathways could have a strong influence on convection processes. Finally, an important
limitation arises from the primitive lake physics in current versions of MODFLOW and
MT3D-USGS, where mechanisms such as lake stratification, ice formation, and latent
heat transfers during evaporation from surface water are neglected. Such lake pro-
cesses continue to be subjects of active research that could lead to more sophisticated
treatment of water bodies within the watershed thermal regime.

4. Conclusions

The objectives of this research were as follows:

(a) to forge a robust approach for applying numerical models to study the hydrologic
effects of long-term climate change at the full watershed scale and at a monthly time
interval, as deemed appropriate for taking account of how a warming trend imposed
on background seasonal and random variability propagates through space from the
top of the unsaturated zone downward;

(b) to use a synthetic model of a temperate watershed to not only develop the method
but also to draw tentative conclusions about the degree of lagging and damping that a
future climate forcing would undergo along distinct surface and subsurface pathways,
resulting in predictable changes to the warming signal at unsaturated/saturated and
groundwater/surface-water interfaces.

The first phase of this work demonstrated the utility of recent model enhancements
for simulating how a climate signal is modified as water moves through the UZ and
the groundwater system, as well as over the land surface, on its way to a surface-water
network. The synthetic model was used to demonstrate the power of the widely used
MODFLOW and MT3D-USGS software to track the watershed response to warming. The
method yielded quantitative results for the transient distribution of heat flow conditions in
the water table, as determined by the propagation of convective and conductive energy
components, where it was shown that convection is more important than conduction
for the simulated system. The method also allowed us to perform detailed impulse-
response analyses of the convective heat signal integrated over time and its transient
effect on the groundwater/surface-water system. The dominant effect of UZ thickness,
highlighted in Morway et al. (2022b) [2], was confirmed when two model versions with
different water-table depths at the watershed scale were applied to the study of heat-flow
lags and dampening. The potential importance of the riparian zone was also evident
when comparing the direct groundwater discharge response to the more integrated total
baseflow response.

The time delays identified by the modeling exercise represented thermal inertia pro-
cesses resulting from travel through the UZ and the presence of long flow pathlines in
groundwater, as opposed to the quick flow resulting from groundwater discharge in ripar-
ian areas and storm runoff components. Lags in integrated response time for convective
heat flows and for temperature of the streamflow were very short due to the large heat
load carried rapidly to streams in warm wet months by undampened storm runoff. The
imposed increase in the heat impulse at the top of the UZ was appreciably dampened
along unsaturated, saturated, and surface-water pathways, but in complex ways. When
the average convective heat flow in the last 10 years of a 30-year warming period was
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compared to the dynamic equilibrium conditions at the onset of warming, the heat inflow
signal was reduced at the water table to 40% the original signal. The presence of both short
and long groundwater flow paths and variable path depths further reduced the strength
of the thermal loading such that at the stream interface, it was a small fraction of the
warming signal. However, when other components of the total baseflow to streams were
considered (stormflow, rejected infiltration and groundwater discharge to riparian areas),
the model simulated more efficient heat propagation, and the reductions in the warming
trend relative to the initial impulse were similar to what was seen at the water table. The
simulated dampening response in the streamflow itself could be evaluated in terms of both
convective heat flow (diminished by roughly half at the watershed scale with respect to the
initial warming impulse) and temperature (registering about one quarter the strength of
the assumed near-surface rise).

Because not all parts of a watershed are equal from an ecological standpoint, future
modeling studies will need to be tuned to simulate the lag and dampening effects of
the subsurface system at interfaces of biological importance. For example, the thermal
dynamics at the groundwater/surface-water interface will be of particular importance for a
portion of the life cycle of some benthic invertebrates. A holistic watershed representation,
i.e., one that includes the UZ, will likely prove useful for capturing complex water and
heat flow interactions along the various watershed pathways and through interfaces of
special importance.
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Abstract: This paper concerns a stepwise modelling procedure for groundwater flow simulation
in a folded and faulted, multilayer carbonate aquifer, which constitutes a source of good quality
water for human consumption in the Apennine Range in Central Italy. A perennial river acts as the
main natural drain for groundwater while sustaining valuable water-related ecosystems. The spatial
distribution of recharge was estimated using the Thornthwaite–Mather method on 60 years of climate
data. The system was conceptualized as three main aquifers separated by two locally discontinuous
aquitards. Three numerical models were implemented by gradually adding complexity to the model
grid: single layer (2D), three layers (quasi-3D) and five layers (fully 3D), using an equivalent porous
medium approach, in order to find the best solution with a parsimonious model setting. To overcome
dry-cell problems in the fully 3D model, the Newton–Raphson formulation for MODFLOW-2005
was invoked. The calibration results show that a fully 3D model was required to match the observed
distribution of aquifer outflow to the river baseflow. The numerical model demonstrated the major
impact of folded and faulted geological structures on controlling the flow dynamics in terms of flow
direction, water heads and the spatial distribution of the outflows to the river and springs.

Keywords: carbonate aquifer; faults and folds; groundwater modelling; multilayer aquifer; MODFLOW-
NWT formulation; Central Italy

1. Introduction

Carbonate aquifers are important groundwater resources worldwide due to their
high permeability and rapid groundwater velocities. Ford and Williams [1] estimate that
20% of the world population largely depends on groundwater from carbonate aquifers.
These are often defined as karst aquifers due to their “self-organized, high permeability
channel networks formed by positive feedback between dissolution and flow” [2]. An
important feature of the carbonate aquifers, especially when diffuse flow prevails, is their
capability to store large quantities of groundwater during humid periods and gradually
release them during dry periods. Hence, they are fundamental to sustain both human
uses and groundwater-related ecosystems in many parts of the world. Water quality in
carbonate aquifers is often excellent; hence, they are regarded as strategic both for human
consumption as well as to sustain environmental uses. The high permeability often results
in thick unsaturated zones, so exploitation of groundwater is often from low-elevation
springs, especially in mountainous areas [3]. Pumping wells located near the springs are
used to overcome spring discharge shortage in dry seasons [4].

These resources are very often exploited to supply large urban areas, and the evalua-
tion of the possible negative effects of climate changes on their discharge is challenging.
The decrease in annual precipitation and increase in temperature and evapotranspiration
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due to climate change in the Mediterranean area [5–9] is leading to a general decline both
in surface water discharge [10] and in groundwater recharge [11]. Preziosi and Romano
(2013) [12] highlighted that the spring discharge of large carbonate aquifers in Central Italy
has decreased by 6% to 42% in the period 1938–2011, the highest percentages estimated for
the smallest springs [13].

Recent advances in groundwater flow and level prediction include the application of
diverse methods including wavelet analysis, Gaussian process regression [14], machine
learning modes [15] and integrated numerical modeling [16].

The development of numerical models is considered a fundamental step for the
adoption of water management plans aiming to preserve groundwater resources and the
related ecosystems [17]. Many authors have focused on the numerical modelling of karst
systems to assess the risk of spring discharge shortage due to climate change [18,19] or to
evaluate the effects of withdrawals [4]. However, numerical modeling of carbonate aquifers
in folded and faulted terrains is a challenge due to the complexity of the hydrogeological
systems, and excessive simplification may lead to an unsatisfactory predictive capability
of the model. Carbonate aquifers are often characterized by highly conductive conduit
flow paths embedded in a less conductive fissured and fractured matrix [20]. In spite of
these strong permeability contrasts, the equivalent porous medium approach (EPM) can be
applied to karstified aquifers with some limitations; specifically, it may not be suitable for
deterministically modeling flow along faults, and it often fails to predict flow direction and
velocity. However, it can correctly approximate flow and spring discharge at the regional
scale [21]. Further, Abusaada and Sauter (2013) [22] affirm that EPM models can simulate
flow in karst aquifers as long as the simulated saturated volume is large enough to average
out the local influence of karst conduits. The significant influence of the geological structure
(especially folding and lithology) and the karst system on the location of the springs and
their flow regime has been addressed by [23,24]. Structural folds may divert groundwater
flow from the general hydraulic gradient. The presence of marl layers may sustain perched
sub-aquifers above the regional aquifer, and karstification may locally increase the hydraulic
conductivity by several orders of magnitude. Moreover, the complex geometry of model
layers can result in different thicknesses of saturated portions, which can imply the drying
and rewetting of cells during model iterations, leading to numerical instabilities, preventing
convergence and increasing numerical error [25]. Including all these characteristics in
the conceptual and numerical model requires the adequate definition of layer thickness,
dipping and hydraulic properties. Recent advances in groundwater numerical modeling
include the development of solvers which facilitate achieving convergence and/or reducing
computational errors due to model nonlinearities, as well as packages tailored for solving
specific problems [26]. This allows the development of fully 3D numerical models which
are able to reproduce complex settings with stable solutions. However, by increasing
model structure complexity, the number of input parameters increases as well as the related
uncertainty. A model with too many parameters is susceptible to over-fit the data [27–29].
The higher the complexity, the more accurate the calibration procedure should be, requiring
an adequate number of calibration targets. Simulating complexity not supported by the
data can be useless and misleading.

The aim of this research was to develop and test a modelling procedure for the
simulation of groundwater flow in a complex karst, folded, multilayer aquifer using the
EPM approach. In this framework, three steady-state numerical models of a carbonate
aquifer in Central Italy (Monte Coscerno) were developed with increasing complexity as
warranted by the inability of the simpler model to adequately reproduce observations [30].
A stepwise procedure was developed for testing the ability of the models to reproduce
observations. Seeking parsimony, we compare the results from a simple one-layer model
and more complex quasi-3D and fully 3D models with a different number of layers and
spatial variability of parameters.
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2. Conceptual Model

2.1. Geological and Hydrogeological Setting

The case study aquifer (Monte Coscerno, 230 km2) is located in the Apennine Range
in Central Italy (Figure 1). It can be described as a box-fold anticline with a nearly meridian
axis and a vertical-to-overturned forelimb [31] belonging to the frontal thrust ramp of
a regionally curved thrust known as the Mount Coscerno–Rivodutri thrust [32,33]. The
above mentioned thrust on the east and the Valnerina thrust [34] on the west, with an
approximately meridian direction, bound nearly all the aquifer and act as a no-flow bound-
ary (black solid line in Figure 1). The general groundwater flow is mainly in a south
to north direction, parallel to the prevailing tectonic lines [35–37]. The areas where the
recharge is most effective are the plateaus of Monte Coscerno, Monte Aspra and other
summits that exceed 1000 m a.s.l., reaching 1685 m a.s.l. at Monte Coscerno (Figure 2). A
sequence of Meso-Cenozoic calcareous formations interbedded with marl layers results
in a multilayer aquifer system, with three main sub-aquifers (from bottom to top: Calcare
Massiccio-Corniola, Maiolica, Scaglia limestone units) separated by two aquitards [36].
The aquitards are locally discontinuous due to depositional, erosional and tectonic effects,
favoring vertical leakage between the three aquifers [37,38]. The base of the aquifer is
represented by the top of the Triassic dolomitic evaporitic complex (“Marne a Rhaetavic-
ula contorta” marlstones and “Anidriti di Burano” anhydrites, [39,40], mostly dipping
westward. Groundwater is expected to flow according to the bedding attitudes in the
direction of the steepest structural descent. This may result in large unsaturated portions
in the eastern part of the aquifer (Figure 3); moving from east to west, the sub-aquifers 2
and 3 become confined, feeding the Scaglia sub-aquifer through vertical leakance upward.
The sub-aquifers 1 and 2 do not extend through all the model area due to erosional pro-
cesses which affected the anticline eastside where the more ancient formations outcrop
(Figures 1 and 3). For this reason, rainfall infiltrates through the uppermost outcropping
aquifer and flows westward and northward according to the dip of the layers.

Hourly hydrometric data and periodic discharge measurements of the Nera River in
two stream gauging stations (Vallo di Nera and Torre Orsina, Figure 1) have been made
available by the Umbria Region since 2006. The monthly discharge of the Lupa spring is
available for the period 1985–1997. Moreover, the Lupa spring daily discharge (since 1998)
and piezometric heads measured in the Scheggino well (since 2001) are available online
from the local Regional Environmental Agency [41]. Head data are very scarce, except for
the already mentioned Scheggino well and the very recently installed Renari di Capriglia
well (Figure 1). The Nera River is incised into the carbonate aquifer, increasing its discharge
from north to south. Several discharge measurements performed in the years 1991–1993 at
the 6 gauging stations in Figure 1 [42] indicate a conspicuous discharge increment, nearly
constant throughout the year, revealing gaining stream conditions between Vallo di Nera
and Umbriano (reaches R1 to R4, Figure 1). The river baseflow was estimated between
3.2 and 3.4 m3/s in the period 1991–1993 by Boni and Preziosi (1993) [35]. In addition, the
aquifer feeds several point springs (Scheggino, Lupa and Pacce) and the Precetto stream
(Figure 1, Table 1).

The aquifer discharge to the Nera River was estimated as the discharge increment
between two gauges (Vallo di Nera and Torre Orsina gauges, Figure 1) using spot measure-
ments in the years 1997–2012 provided by the Regional Environmental Agency [41]. The
average of the 83 spot measurements is 3.28 m3/s, ranging from 0.9 to 7.46 m3/s (Figure 4).
The total aquifer discharge was estimated at about 3.4–3.6 m3/s, with an extremely regular
seasonal regimen uncommon in karst areas [42]. However, there is no evidence in the area of
developed karst conduits despite the presence of likely fractured limestones. Consequently,
Monte Coscerno can be classified as a “diffuse flow aquifer” [44] i.e., a carbonate aquifer
system with dispersive circulation due to a micro-fractured interconnected network with
extremely reduced or even inexistent karstification without preferential drainage paths [45].
There is no concentration of flow towards localized springs, with the exception of the Lupa,
Pacce and Scheggino springs. The Nera River flows parallel to the Valnerina thrust, as
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shown in Figure 1, that represents the no-flow boundary of the aquifer on the eastern side
at the lowest topographic elevation, explaining the location of the springs between Vallo
di Nera and Umbriano. The depth of the incision of the NE and NW-trending valleys is
schematically shown in Figure 2 (left upper panel). Some of these valleys are very deep
and profoundly incised. Nevertheless, they do not intercept the water table.

 

Figure 1. (A): Hydrogeological setting, conceptual model. (B): distribution map of the potential
infiltration coefficients. Tectonic elements (faults, thrust, anticlinal axis) from [40].
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Figure 2. Topographic map of the study area. Elevation in meters above sea level.
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Figure 3. Schematic cross section and translation into model grid for the fully 3D model. Trace of
cross section and legend are in Figure 1. (Top panel): schematic hydrogeologic cross section. The
blue filling at the top and central panels represents the saturated zone; numbers 1, 2 and 3 refer
to the sub-aquifers. Dotted lines in central panel represent the potentiometric levels of confined
sub-aquifers. (Bottom panel): model grid for the fully 3D model; light blue arrows: recharge; blue
arrow: discharge to the RIV cells.

Table 1. Gauging stations and springs in the study area.

Site Name
Altitude
(m a.s.l.)

Average
Discharge (L/s)

Reference
Period

Reference

Borgo Cerreto 345 2451 1991–1993 [36]
Vallo di Nera 293 2887 1991–1993 [36]

Scheggino 275 4007 1991–1993 [36]
Ceselli 265 5117 1991–1993 [36]

Umbriano 242 5717 1991–1993 [36]
T.Orsina 211 6017 1991–1993 [36]

Scheggino
spring 276 190 1991–1993

(accounted for in
the Ceselli

gauging site)
[36]

Lupa spring 366 120 1997–2012 [41]

Pacce spring 480 60 2000–2001 Well field
excluded. [43]

Precetto stream 325 120 1991–1993 [36]
Borgo Cerreto 345 2451 1991–1993 [36]
Vallo di Nera 293 2887 1991–1993 [36]
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Figure 4. Estimated recharge to the aquifer (purple graph), with respect to the cumulated precipitation
(histogram) and the observed aquifer discharge (blue graph). Trend (black dashed line) and Sen’s
slope refer to the calculated recharge.

2.2. Recharge Estimation

Daily precipitation and mean temperature (period: 1950–2013) were collected over
the study area at the station locations of 16 and 7, respectively. Data were interpolated
over a 1 km2 regular grid through an ordinary kriging. Temperature data were previously
detrended from the local lapse rate. Observed semivariograms were fitted through a
spherical model at a monthly time step. The recharge to the aquifer was estimated, at a
daily time step, over a 1 km2 square grid, using the Thornthwaite–Mather model [46,47].
Recharge was assumed to be a fraction of water surplus when soil moisture exceeds the field
capacity. Soil moisture was estimated as the difference between precipitation and actual
evapotranspiration, the latter computed as a fraction of the potential evapotranspiration
when the soil was partially saturated. Field capacity was set to 100 mm [36]. The potential
infiltration coefficients have been ascribed to each hydrostratigraphic unit on the grounds
of existing technical reports on the study area [48] and on an expert judgement basis,
assuming that limestone formations have higher potential infiltration coefficients than marl
formations and range from 5 to 90% of the water surplus (Figure 1B). Both field capacity
and potential infiltration coefficients have been calibrated to match the observed aquifer
contribution to the river and springs (3.4–3.6 m3/s). The difference between water surplus
and infiltration was ascribed to runoff. The validation was based on the comparison of the
calculated annual infiltration with the observed aquifer discharge. The average estimated
infiltration rate after calibration is 480 mm/y, corresponding to an average discharge of
3.5 m3/s. Nonstationarity in the estimated recharge was assessed through a singular
spectrum analysis (SSA) for the past 60 years (1950–2012) indicating an approximately
linear reduction in the recharge without evident break points. The negative trend of the
recharge is 1.8 mm/y, which is significant at 90% (Figure 4). In Figure 4, the aquifer
discharge from 1997 to 2012, as estimated in Section 2.1, is also shown.

3. Numerical Model Description

3.1. Layers Discretization, Boundary Conditions and Codes

The steady-state models were implemented by gradually increasing the number of
layers, from a 1-layer (2D) to a 3-layer (quasi-3D) and then a 5-layer model (fully 3D) with a
uniform grid spacing of 100 × 100 m (Figure 5). The top and bottom of the layers were built
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using the available geological data (boreholes stratigraphy, geological maps, cross sections),
by means of an ordinary kriging algorithm, with a spherical semivariogram. No-flow
boundary conditions were assigned to the external boundary of the models. As the upper
layers do not cover the whole extent in the quasi-3D and fully 3D models, no-flow boundary
conditions (inactive cells) were assigned in the areas where the anticline is eroded (eastern
portion), leading to the lowermost layers to outcrop. This allows the partitioning of the
recharge into different layers according to the geological setting, assigning the calculated
recharge rates to each outcropping cell. Drain and river packages (DRN and RIV) were
used to simulate head-dependent flux boundary conditions for the springs, the Nera River
and the Precetto stream, respectively. Initial hydraulic conductivity and transmissivity
values were set based on the available on-site tests and on the results of previous numerical
simulations [36,48]. The 2D model features one layer only. Simulating a unique aquifer,
it neglects the behavior of the two aquitards. The groundwater flow is only in the x–y
direction. The hydraulic conductivity values (Kh) were set for each cell by considering the
average aquifer transmissivity divided by the cell thickness. The quasi-3D model consists
of three layers, representing the sub-aquifers. Aquitards are not explicitly represented;
the groundwater flow in each layer is in the x–y direction and exchanges between layers
are regulated through vertical conductance known as the term vertical leakage. Vertical
leakage is computed by the preprocessor Groundwater Vistas (Environmental Simulations
International®) based on the saturated thickness and vertical K assigned to the implicit
aquitard layer [49]. Finally, the fully 3D approach allows for vertical flow in aquifers and
aquitards through the explicit representation of the aquitards. The fully 3D model was set
up with five layers representing the three sub-aquifers and the two aquitards. Initially, the
hydraulic conductivity of the explicit aquitards was assumed to be 1/100 of the hydraulic
conductivity values set to each overlaying sub-aquifer. The mean estimated recharge
(3.5 m3/s, see Section 2.2) was uniformly assigned as the input recharge to the active cells
of the models. Two-dimensional and quasi-3D models were run using MODFLOW 88/98
with a preconjugated gradient 2 solver (PCG2). In order to overcome dry-cell problems
and reduce the model error in the fully 3D model, the Newton–Raphson formulation for
MODFLOW-2005 (MODFLOW2005-NWT, [26]) was invoked. MODFLOW2005-NWT uses
an alternative formulation of the GW-flow equation: the upstream weighting package
(UPW) treats nonlinearities of cell drying and rewetting by using a continuous function
of hydraulic head, instead of the discrete approach applied by the block-centered flow
and layer property flow packages in the previous MODFLOW versions. Application of
MODFLOW-NWT overcomes numerical problems by smoothing the transition from wet
to dry cells and keeps all cells active [50]. MODFLOW-NWT keeps all cells active that are
active at the start of the simulation. It assigns a head to unconfined cells even when the
head falls below the cell bottom, allowing vertical flow in the form of recharge. However,
dry cells no longer participate in horizontal aquifer flow. Use of the MODFLOW2005-NWT
avoids solver instability in the presence of dry cells and diminishes the sensitivity of the
solution to initial conditions.

In order to allow for a robust comparison of the 2D and quasi-3D simulations to the
fully 3D model, an equivalent transmissivity was calculated for each cell for the quasi-3D
and 2D models, taking account of the reduced number of layers:

T1 + T2 + T3 + T4 + T5 = T1′ + T2′ + T3′ = T2D = K1e1 + K2e2 + K3e3 + K4e4 + K5e5
= K1′ e1′ + K2′ e2′ + K3′ e3′ = K2De2D

(1)

• T1, T2, T3, T4, T5 = transmissivity of the fully 3D model (subscript indicates the layer)
• T1′ , T2′ , T3 ′ = transmissivity of the quasi-3D model (subscript indicates the layer)
• T2D = transmissivity of the 2D model
• Kn = permeability (subscript indicates the layer)
• en = thickness (subscript indicates the layer)
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Figure 5. Sketch of the three steady-state models implemented with 2D, quasi-3D and fully 3D
settings. Only active cells are shown.

3.2. Model Calibration

Models were calibrated in steady state through a manual trial-and-error procedure,
using the available data, which comprise:

• the discharge increment in Nera River reaches R1 to R4;
• the discharge of Precetto stream;
• the discharge of Lupa, Scheggino and Pacce springs (Table 1).
• the head measured in two wells (Renari di Capriglia and Scheggino, Figure 1)

Flux and head targets used for model calibration are listed in Table 2. The topography
elevation, especially in deep gorges, where the geological formations of the lower sub-
aquifers are outcropping provided additional head constraints. The calibrated parameters
were the horizontal and vertical hydraulic conductivities of each layer and river-bed
hydraulic conductivity and thickness (Tables 3 and 4). The streambed conductance, which
enters in the computation of the groundwater–surface water interaction, is computed by
the software as the ratio of riverbed hydraulic conductivity and thickness.
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Table 2. Flux and head targets used for model calibration.

Layer Head Target Flux Target

1 (sub-aquifer 1) Scaglia unit n.a.
Nera River reach R1, Lupa
spring, Scheggino spring,

Precetto stream

3 (sub-aquifer 2), Maiolica unit Scheggino well Nera River reach R2, R3 and
R4, Pacce spring

5 (sub-aquifer 3), Calcare
massiccio and Corniola Renari di Capriglia well n.a.

Table 3. Range of calibrated Kh and Kz values.

Model Setting
N of

Layers
N of Active

Cells
N of Calibrated K

Zones
Range of Kh Values, m/s Range of Kz Values, m/s

2D 1 23,248 3 1.1 × 10−5/2.8 × 10−5 1.15 × 10−6/2.8 × 10−6

Quasi-3D 3 50,959 6 0.1 × 10−6/4.6 × 10−5 1.1 × 10−7/2.8 × 10−6

Fully 3D 5 77,212 12 1.1 × 10−6/8.1 × 10−5 (high
K strip: 5.7 × 10−4 m/s)

1.1 × 10−7/8.1 × 10−5 (high
K strip: 6.3 × 10−4 m/s)

Table 4. Initial and calibrated values of riverbed hydraulic conductivity and thickness.

River Reach
Riverbed Kv (m/s) Riverbed Thickness (m)

Initial Calibrated Initial Calibrated

1–4 (Nera River) 5.7 × 10−5 2.3 × 10−3 1 3.0

5 (Precetto stream) 5.7 × 10−5 2.3 × 10−3 1 3.0

The calibration phase involved an iterative refining of both aquifer K values and
distribution and also riverbed Kv and thickness values, on the basis of a comparison
between simulation results and observations. The calibration of hydraulic conductivity in
each layer was performed by gradually modifying the K values by “zones”, with each zone
representing a homogeneous area of the layer. At first, the values from [36] were assigned
to the sub-aquifers of the fully 3D model. During the calibration phase, the number of
hydraulic conductivity zones was increased in order to refine the K distribution until the
simulated values were close to the observations. After each K value variation, the model
was rerun to compare results to the previous setting. Then, the pattern of K values was
progressively refined, and many different K zones were added. The most difficult task was
to reproduce the discharge of the river and maintain a sufficient discharge in the upper
reaches. In order to reproduce this discharge distribution, a high conductivity strip was
added, oriented N–S in layer 5 of the fully 3D model, which simulates faults bounding
Calcare Massiccio Fm, acting as a preferential flow zone. The transmissivity distribution
resulting in the fully 3D model after this calibration was transposed to the quasi-3D and 2D
models following the Equation (1). Two-dimensional and quasi-3D models were further
calibrated after this step in order to seek the best match using observations. In the final
setting, the numbers of the calibrated conductivity zones was 3, 6 and 12 for the 2D,
quasi-3D and fully 3D models, respectively (Table 3 and Figure 6).

The Nera River can be conceptualized as a bedrock stream with a limited thickness
of loose alluvial sediments, up to a few meters of gravels and sands with very high
permeability. In the calculation of the groundwater–surface water interaction, what really
matters is the ratio between the riverbed Kv/thickness. During calibration, in order to
obtain the observed high outflow to the river, this ratio was increased from 5.7 × 10−5 m/s
to 7.7 × 10−4 m/s to obtain a minimal resistance to the groundwater flow from the aquifer
to the river, assuming 3 m of riverbed thickness and 2.3 × 10−3 m/s for Kv (Table 4), which
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is consistent with the high permeability of the gravels and the presence of a few meters of
riverbed above the bedrock.

Figure 6. Distribution of K zones for fully 3D calibrated model. R1, R2, R3 and R4 indicates the river
reaches (see also Figure 1).

Time of calculation ranges from a few seconds for the 2D model to several minutes for
the fully 3D.

4. Results and Discussion

All the calibrated models give a good match between simulated and observed heads in
the two only available wells (Figure 7 and Table 5). However, the 2D model was never able
to match the observed distribution of river baseflow along each reach of the Nera River. In
fact, assuming a single aquifer, this model is not able to feed the upstream cells of the river,
and the groundwater converges toward the most downstream RIV cells (Figure 8A), which
does not correspond to the observed groundwater–surface water interaction. The upstream
reach R1 (Figure 1) loses water to the aquifer instead of gaining, while the downstream
reach R4 gains the double of the observed discharge (Table 5).

Figure 7. Target bias on the discharge (%).
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Table 5. Results of the three models and comparison with the observed values. The bias % is shown.

Element Observed 2D Quasi-3D Fully 3D

Well Scheggino, m a.s.l. 273 271.51 275.57 273.26
Well Renari, m a.s.l. 301 269.88 312.52 305.00

Nera R., R1, l/s 436 −322.00 351.92 238.56
Nera R., R2, l/s 1120 1557.82 812.62 778.68
Nera R., R3, l/s 1110 507.18 751.17 1445.15
Nera R., R4, l/s 609 1173.95 1760.49 669.35

springs, l/s 390 587.99 195.44 286.21
Precetto s., l/s 120 60.40 117.71 103.29

Figure 8. Simulated head for the 2D model (A) and for the layers 1, 3 and 5 in the fully 3D model (B).
Model cross sections at the top of figures (row 162, column 23). Approximate locations of Scheggino
well (S) and Renari well (R) are shown.

In order to reproduce the discharge correctly partitioned along the reaches, it was
necessary to construct multilayer models with consideration of system aquitards.

An important advantage of quasi-3D and fully 3D models with respect to the 2D model
is that the slope and dipping of single layers can be correctly reproduced, allowing flow to
be reliably simulated along the layers. In addition, the quasi-3D and fully 3D models are
able to represent localized areas of preferential upward flow with a nonuniform vertical
leakage array or by adding high vertical permeability zones to simulate discontinuities in
the aquitards, respectively.

Further, the quasi-3D and fully 3D models allow partitioning of the recharge into
different numerical layers according to the geological setting. For example, where the
anticline is eroded, the recharge is assigned to the outcropping layers; thus, each of the
sub-aquifers directly receive a share of the total recharge (Figure 5). In the quasi-3D and
fully 3D models, the simulations show that a large part of the anticline hosts dry cells due
to the high elevation of the aquifer bottom with respect to the calculated heads. When using
the PCG2 solver (quasi-3D model), the dry cells are excluded from the head calculations
and recharge is passed to an underlying active cell. Conversely, in the NWT upstream
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weighting package (fully 3D model), dry cells remain active with a calculated head value
that falls below the bottom of the cell; that head is used to set up the gradient to pass
recharge to an underlying cell hosting the water table or toward adjacent cells in the case of
the bottom layer. In particular, the quasi-3D model performs better than the 2D, but the
simulated discharge of the reach R4 is still not acceptable (Table 5). The fully 3D model
shows the best performance in terms of bias (Figure 7). The hydraulic heads calculated for
the three aquifers in the fully 3D model (Figure 8B) show the important role of the basal
sub-aquifer (layer five) to direct the high infiltration from the mountainous recharge areas
to the northern, downstream, sectors of the structure. Due to the complex geometry, sub-
aquifers one and two show extended dry cells areas, and the head potentials are strongly
influenced by the RIV cells.

Indeed, the use of five layers allows for a very detailed setting of the distribution of
K zones which, once calibrated, should reflect a possible pattern of permeability values,
making the model results consistent with the observed discharge rates and heads. Previous
runs, performed with relatively high K strips in the sub-aquifers three and five, e.g., the
NW–SE faults cutting the structure near Scheggino (see Figures 1 and 6), were unable to
drive the fluxes toward the northern part of the structure. Finally, the insertion of the high
conductivity strip in the sub-aquifer three (Figure 6) ameliorated by far the calibration
of the fully 3D model. Thus, the high hydraulic conductivity zones in a generalized
and simplified view of the geological setting are likely to reflect fractures or faults zones.
Tectonics also drive the vertical exchanges among the sub-aquifers through the aquitards.
A better match was achieved considering zones of relatively high vertical permeability
within the aquitards, simulating highly tectonized zones or stratigraphic gaps, for example
in correspondence of reach R2 (Figure 6), which allows the groundwater to flow vertically
upward from layer five to the upper layers.

However, high hydraulic conductivity zones alone were not sufficient to maintain the
hydraulic gradients steep enough to feed the most upgradient reach R1. The groundwater
mostly flows in the sub-aquifer three. Despite a prevalent diffuse circulation (which
justifies the EPM approach), the high hydraulic conductivity strip along the anticline axis
that facilitates the groundwater to flow from south to north is consistent with a discrete
groundwater circulation pattern. This was confirmed by observation during the perforation
of the Renari well for the Calcare Massiccio aquifer, which showed a prevalent circulation
through fractures. Table 5 lists the results of the three models after calibration. Figure 7
shows the bias %.

Ultimately, the calibration process points to the presence of structural elements in the
flow system that are not readily observable by other means. In this sense the stepwise
process is not meant to produce a unique representation of the subsurface, but rather
points to the existence of subsurface features that seem to be controlling flow to the river
according to the fully 3D model, but which are otherwise very difficult to characterize by
field work, i.e., the examination of outcrops or geophysical prospections. Such a model
can be considered as an interpretive model [44] in the sense of a screening model that
helps the modeler to develop an initial understanding of a groundwater system and/or
test hypotheses about the system. Calibration through manual trial-and-error proved that a
simple 2D model is not able to match field observations and thus is not an acceptable model
for the site. Further, it provided insights into how parameter changes in different areas of
the model could correspond to unknown subsurface features [51]. For example, the high
permeability strip in the deepest layer in the fully 3D model could suggest the existence
of a still unknown, developed karstic system. This manual process, although seemingly
unable to find a unique solution, might be the only way forward given the impossibility of
quantifying the “true uncertainty” in natural systems and the error inevitably associated
with a complex structural model with few data supporting observations [52]. As stated by
Fienen at al. (2009) [53], parsimonious models should avoid unnecessary or unsupported
complexity while accurately delineating flow paths given our state of knowledge about the
field setting.
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5. Conclusions

Modelling a complexly folded and faulted hydrogeological system requires a stepwise
procedure to reach the best solution with a parsimonious model setting. The inherent
complexity of the conceptual model was reproduced in the numerical model by progres-
sively adding elements to the model grid such as new layers from the 2D to the fully 3D
model and hydraulic conductivity zones, and by calibrating the steady-state solution by
manual trial and error. Furthermore, gradually increasing the model complexity can be a
useful approach for simulating groundwater flow when few head data are available as it
is common in karst aquifers. Due to the prevalent diffuse circulation, an EPM approach
was used; however, the calibrated setting of hydraulic conductivity zones suggests a dis-
crete groundwater circulation pattern, which was successfully simulated by adding a high
permeability longitudinal strip. The calibrated pattern of K zones both for sub-aquifers
and aquitards is likely to reflect the structural and stratigraphic setting. The quasi-3D
and the fully 3D models both allow for recharge partitioning into the sub-aquifers. The
vertical exchanges among the sub-aquifers are regulated by leakage coefficient or aquitards
parametrization, respectively. The higher number of layers compared to the 2D model
allows the 3D simulations to drive the groundwater flow towards the different parts of
the river. However, the fully 3D model best matches the observed flow distribution at the
different reaches along the river, simulating reliable flow paths and recharge partitioning
into layers. The Newton–Raphson formulation of MODFLOW2005 is required to achieve
convergence and reduce model error mainly due to cells drying and rewetting and pro-
ducing numerical instabilities. The numerical model demonstrated the major impact of
folded and faulted geological structures on controlling the flow dynamics in terms of flow
direction, water heads and spatial distribution of the outflows to the river and springs. The
stepwise process of model construction and calibration, even with a limited number of
head and flux targets, points to the presence of structural elements in the subsurface that
otherwise can escape observation in field studies of the terrain.
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Abstract: Groundwater is a crucial source of water supply due to its continuous availability, reason-
able natural quality, and being easily diverted directly to the poor community more cheaply and
quickly. The West Arsi Zone residents remain surface water dependent due to traditional exploration
of groundwater, which is a tedious approach in terms of resources and time. This study uses remote
sensing data and geographic information system techniques to evaluate the groundwater potential of
the study area. This technique is a fast, accurate, and feasible technique. Groundwater potential and
recharge zone influencing parameters were derived from Operational Land Imager 8, digital elevation
models, soil data, lithological data, and rainfall data. Borehole data were used for results validation.
With spatial analysis tools, the parameters affecting groundwater potential (LULC, soil, lithology,
rainfall, drainage density, lineament density, slope, and elevation) were mapped and organized. The
weight of the parameters according to percent of influence on groundwater potential and recharge
was determined by Analytical Hierarchy Process according to their relative influence. For weights
allocated to each parameter, the consistency ratio obtained was 0.033, which is less than 0.1, showing
the weight allocated to each parameter is acceptable. In the weighted overlay analysis, from a percent
influence point of view, slope, land use/cover, and lithology are equally important and account
for 24% each, while the soil group has the lowest percent of influence, which accounts only 2%
according to this study. The generated groundwater potential map has four ranks, 2, 3, 4, and 5, in
which its classes are Low, Moderate, High, and Very High, respectively, based on its groundwater
potential availability rank and class. The area coverage is 9825.84 ha (0.79%), 440,726.49 ha (35.46%),
761,438.61 ha (61.27%), and 30,748.68 ha (2.47%) of the study area, respectively. Accordingly, the west-
ern part of district is expected to have very high groundwater potential. High groundwater potential
is concentrated in the central and western parts whereas moderate groundwater potential distribution
is dominant in the eastern part of the area. The validation result of 87.61% confirms the very good
agreement among the groundwater record data and groundwater potential classes delineated.

Keywords: GIS; remote sensing; groundwater potential assessment; analytical hierarchy processes;
weight overlay analysis; West Arsi Zone

1. Introduction

Water is the most significant natural resource supporting human health, economic
development, and ecological diversity. Groundwater is part of the water cycle, and which
is stored in the saturated zones underneath the land surface and moves slowly through
geologic formations called aquifers. Water could remain in an aquifer for hundreds or
thousands of years. The existence and flow of groundwater is controlled by factors such as
geological formations, soil type, lineament density, slope, drainage density, rainfall form,
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morphology, land-use/land-cover characteristics, and the interrelation between them [1,2].
Most groundwater originates from precipitation that percolate through the rock strata.
Groundwater replenished, or recharged, by rain and snow melt that seep down in to the
cracks and crevices beneath the land’s surface. In different areas of the world, people face
solemn water scarcities because groundwater discharge for use is faster than its natural
replenishment (recharge). Due to the reason that groundwater is incessantly accessed and
its reasonable natural quality, it becomes a vital source of water supply, both in urban and
rural areas of any country. Indeed, due to groundwater being easily diverted directly to
poor communities far more cheaply and quickly than surface water, it helps in poverty
mitigation and reduction.

Lately, preparing a groundwater potential district map is crucial to delineate the
location of a new abstraction well to fit the increasing demand of water. Groundwater
resource thematic developing helps in the optimum use and appropriate safeguarding of
groundwater resources [3–5]. The usual method of preparing a groundwater potential
thematic depends on land surveying. Currently, GIS and RS techniques made groundwater
resource potential detection easier, accurate, and faster [6]. Demarking of groundwater
existence locations using RS data and GIS depends on indirect investigation of the directly
visible factors mentioned above. A blend of these methods had been considered to be
an effective instrument in locating and mapping groundwater potential [7,8]. The Geo-
graphic Information System is a very helpful and influential instrument in demarcation of
groundwater potential and scarcity zones, analyzing and quantifying multivariate features
of groundwater incidence [9]. It has the power of developing information in different
thematic layers and integrating them with adequate accuracy within a short period of
time. Satellite imageries are progressively used in groundwater investigation due to their
usefulness in categorizing various ground topographies, which may help as either direct
or indirect pointers of presence of groundwater [10–12]. Geospatial techniques help in
generating and analyzing thematic layers such as geology, topography, soil, and land use
for generating groundwater potential regions map [5,13,14].

Analytic Hierarchy Process (AHP) is a concept of measurement by pairwise compar-
isons, which depend on judgements of professionals to originate precedence scales. The
judgements are made by method of rank of absolute judgements which denotes how the
elements control each other with respect to an attribute given [15]. The AHP approach is a
very flexible for the reason that it produces an easy way to discover the relationship among
criteria and alternatives. AHP can be made in several ways, one of which is to use proficient
choice software, by which its operation and calculation stages are done automatically. In
the current study, Saaty’s Analytic Hierarchy Process (AHP), which is a broadly used Multi-
Criteria Decision Analysis (MCDA), was used to evaluate groundwater potential districts
of regions. Decision making comprises various criteria and sub-criteria used to rank the
alternatives of a decision. The criteria may be impalpable and have no measurements to
help as a guide to rank the alternatives. Creating priorities for the criteria themselves in
order to weigh the primacies of the options and add over all the criteria to gain the desired
overall ranks of the alternatives is a thought-provoking task. In groundwater potential and
recharge zone determination and groundwater potential zonation, the percent weight of
factors will be calculated and determined by the AHP Excel calculator in which experts’
experiences are deemed highly important and implemented. GIS techniques were used for
the weighted overlay analysis and integrated with multi-criteria analysis.

High relief and steep slopes impart higher runoff, while topographical depressions
and flat areas increase infiltration. Areas with a high drainage density increase surface
runoff more than areas with a low drainage density. A high lineament density produces
good groundwater potential and a low lineament density produces low groundwater
potential. Areas covered with forest, other vegetation, and agriculture provide cracks and
loosen the soil, so infiltration will be more and runoff will be less, whereas in urban areas
and bare land the rate of infiltration may decrease. Loam, silty-loam, silt, sandy-loam, sand,
and loamy-sand soil textures have high permeability whereas in clay, sandy-clay, silty-clay,
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clay-loam, sandy-clay-loam, and silty-clay-loam the permeability is poor; in coarse granule
loam the permeability is high and the flow is rapid. Areas having more rainfall have
a good groundwater prospect and the areas with low rainfall have poor groundwater
prospects. Geological formations that are deeply fractured, with cracks, fissures, folds, and
discontinuities, are porous, which indicates high groundwater recharge prospects.

The purpose of groundwater potential modeling in this study is to identify groundwater-
accessible locations throughout the study region in an easy and simple way. This will
increase the accuracy and efficiency, save time, and the economy during groundwater
resources management, planning, and developing by governmental and non-governmental
organizations. The study was aimed to conduct (i) the demarcation of groundwater poten-
tial districts and isolation of appropriate sites for groundwater development using weighted
overlay analysis techniques by means of AHP and ArcGIS; (ii) prepare thematic layers
(LULC, soil, geology/lithology, rainfall, drainage density, lineament density, elevation,
and slope) and reclassifying them for multicriteria overlay analysis; (iii) perform weighted
overlay analysis in ArcGIS to decide on a suitable site for groundwater potential districts
in the West Arsi Zone; and (iv) prepare well inventory data maps and in Excel to confirm
the groundwater potential districts layers generated from the weight overlay analysis.

2. Material and Methods

2.1. Study Area Description

This study was conducted in West-Arsi zone; one of 20 zones of the Oromia re-
gional government located in the central part of Ethiopia. It is situated between the
06◦00′ and 08◦00′ N latitudes and 38◦00′ and 39◦50′ E longitudes in the central part of
Ethiopia (Figure 1). It covers an approximate total area of about 1,246,851.15 hectares or
12,468.51 square kilometers.

Figure 1. Location map of West Arsi Zone.

It is sub-divided into 11 districts (woredas), namely, Adaba, Arsi-Negele, Dodola,
Gadab Asasa, Kokosa, Kofale, Kore, Shala, Siraro, Shashamane, and Nensebo.

The current (2019) population of West Arsi Zone is expected to be 2,761,464, as set
by the world population prospect. The area has monthly average temperatures that vary
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between 20 and 24 ◦C and annual average temperatures between 13 and 28 ◦C. An average
altitude of an area ranges between 1464 and 4171 m. a.s.l. The yearly average annual
rainfall varies between 700.5 mm and 1976.7 mm. The average sunshine hour of an area
varies between 3.8 and 8.8 h/day. Annual average relative humidity and wind speed of the
study area are about 71.4% and 1.4 m/s, respectively. The area is drained by three river
basins; the Rift Valley Lake basin, Wabe Shebele, and Genale Dewa (Figure 2).

Figure 2. Three river basins drain the West Arsi Zone and West Arsi districts.

Hydrologically the area has a number of perennial and intermittent rivers as well
as seasonal and non-seasonal springs. Lakes such as Shala, Abijata, and Langano are
found in this study area. The greater part of the area is farming land with some bare
land that is covered by sparsely populated natural plants (bushes; shrubs; thick, short,
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and long gasses; etc.) and eucalyptus plants; wheat, barley, potato, maize, teff, pea, and
bean are the main product of the farming activities. The soil group of the study area is
classified in to soil texture of clay, loam, sandy-loam, loamy-sand, sandy-clay, silty-clay-
loam, and silt. The rock formation porosities are secondary porosities that have been
developed due to weathering and tectonic fracture, which are suitable for groundwater
storage and movement. The water supply source of the West Arsi Zone is rivers, springs,
and hand dugs.

2.2. Methodology
2.2.1. Data Collection and Use

Data used for this study were collected from one-of-a-kind sectors, businesses, and
extraordinary internet site sources. For this study, eight major surface and sub-surface
groundwater potential-influencing criteria were separated and set for groundwater po-
tential assessment. These criteria were selected due to being commonly used in previous
literature [16–24] and advised by a number of experts to be used. Procedure followed to
arrive at about the main objective of this study is as shown in (Figure 3).

Figure 3. Research methodology flowchart.

Accordingly, based on accessible records and a literature review, eight groundwater-
controlling factors were identified as proxy data, namely, slope, elevation, drainage density,
lineament density, LULC, soil, rainfall, and lithology/geology. Groundwater stock records
for validation purpose were additionally used. A DEM file of 30 m spatial resolution
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was downloaded from Image, courtesy of the USGS Earth Explorer webiste (https://
earthexplorer.usgs.gov/ (accessed on 2 January 2020)) in the structure of Shuttle Radar
Topographic Mission (SRTM) 1Arcsecond Global.

Operational Land Imager (OLI8)/Thermal Infrared Sensor (TIRS) with path and row
of 168/055 scenes, received on 1 February 2019, and with a spatial resolution of 30 m
for the seen to infrared and 15 m for the panchromatic, were downloaded from Image,
courtesy of the USGS Earth Explorer (https://earthexplorer.usgs.gov/ (accessed on 22
November 2019)) website. From this source of data, slope, elevation, drain density, LULC,
and lineament density layers were generated. Rainfall records were gathered from National
Meteorological Agency of Ethiopia. The geology map used, at the scale of 1:1,000,000,
was collected from the Geological Survey of Ethiopia and NB-37-2, 3, 6, and 7, which
are the Dodola, Hosana, Asela and Dila hydrogeological maps, with notes downloaded
from website https://gis.gse.gov.et/hg-maps/ (accessed on 15 April 2020). Groundwater
inventory data (borehole, spring, and well data) of West Arsi Zone were from West Arsi
Water, Mineral and Energy Bureau (WAWMEB). Ethiopia Soil records were gathered in
the form of a shape file from the Food and Agricultural Organization [16] and Ministry of
Water, Irrigation and Energy (MoWIE). The shape file to learn about the region was bought
from West Arsi Zone Administrative Bureau and Oromia Administrative Bureau, used for
extraction of the groundwater potential-influencing thematic layers.

2.2.2. Developing Groundwater Potential-Influencing Thematic Layers and Reclassifying

Land Use Land Cover Thematic Layer: Landsat8 OLI/TIRS has a path 168 and row
055 with cloud cover of land 0.01, Roll Angle of –0.001, Sun Azimuth of 130.39029597,
Sun Elevation of 52.16321853, and spatial resolution/Cell Size of 30 m. Image composite
using the process tool box from bands 1, 2, 3, 4, 5, 6, and 7 was done and the West Arsi
Zone-representing image was extracted using the shapefile of study area with the help of
the extraction tool of the spatial analysis tools. The LULC classification was done with help
of the training sample manager tool, which was used to select the representative classes of
the LULC, and the base map was used. This classification was a supervised classification
because sample training was used.

The LULC classification accuracy was checked by a hundred random points (Table 1)
edited on LULC-generated maps (Figure 4a) and opened on Google Earth Professional
(Figure 4b). prediction accuracy, truth accuracy and overall accuracy were computed
(Table 2).

Table 1. Random points taken for LULC accuracy-checking purposes.

Water Body Built-Up Area Barren Landscape Forest Vegetation Cover Agriculture

10 10 6 19 24 31

Table 2. LULC accuracy-checking pivot table generated in Excel.

Sum of Value Column Labels

Row Labels 207 312 381 543 544 545 Grand Total
207 17 2 19
312 1 4 1 6
381 8 1 1 10
543 10 10
544 3 28 31
545 1 3 20 24

Grand Total 19 7 8 10 32 24 100
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(a) (b) 

Figure 4. (a) Random points plot on the LULC map. (b) Random points plotted on Google Earth Pro
in kml format.

The kappa coefficient was used as a degree of agreement between the model predic-
tions and reality [25] or to see if the values contained in a slip matrix represent a result
considerably better than random [26]. The supported rating criteria for the kappa coefficient
statistics, with the kappa coefficient ranging between 0.61 and 0.80 in strength agreement,
are substantial, and the 0.81–1.00 strength agreement is almost perfect [27] (Table 3).

Table 3. Kappa coefficient rating and strength of agreement.

Sr. No Kappa Coefficient Strength of Agreement

1 <0.00 Poor
2 0.00–0.20 Slight
3 0.21–0.40 Fair
4 0.41–0.60 Moderate
5 0.61–0.80 Substantial
6 0.81–1.00 Almost perfect

Where 207 is Forest, 312 is Barren Landscape, 381 is Built Up, 543 is Water Body, 544
is Agriculture, and 545 is Vegetation Cover. Finally, the Land-Use/Land-Cover (LULC)
layer of a district was ready and reclassified in line with the suitability of the parameters
for groundwater potential availability (Figure 5a,b).

OAA =

(
Total Properly classified pixels

Total number of reference pixels

)
100% (1)

where OAA is over all Accuracy

PA =

[
Correctly classified pixels in each category

Corresponding column total

]
100% (2)

where PA is prediction Accuracy

TA =

[
correctly classified pixels in every class

Corresponding row total

]
100% (3)

where TA is Truth Accuracy

Kappa coefficient(K) =

[
(TCS ∗ TS)− ∑(Ct ∗ Rt)

TS2 − ∑(Ct ∗ Rt)

]
100% (4)
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where Ct is column total, Rt is row total, TCS is total correct sample (87), and TS is total
sample (100).

Figure 5. LULC and groundwater potential prospect rank of the LULC map.

Rainfall Thematic Layer: Annual rain information of twenty-six years (1993–2019)
from thirty-four stations in and from neighbors of the study space were obtained from
National Earth Science Agency of the Federal Democratic Republic of Ethiopia. Annual
point rain measures were regenerated to surface rain information employing a geo process
tool of ArcGIS that interpolates a surface from points and rain map generated (Figure 6a).
This rain map categories were reclassified into 5 category values in line with its rank as
per the quality of the groundwater potential and the recharge victimization sort tool in the
spatial analyst tools (Figure 6b).

Slope Thematic Layer: Closely spaced contours represent vessel slopes and distributed
contours exhibit a light slope. The slope values area unit was calculated either in percentage
or degrees in each vector and formation forms. The study space DEM was extracted
applying the extraction tool of the spatial analyst tools from DEM file downloaded and
mosaicked to a single DEM. The slope layer of the study space was generated applying
3D analyst tools of ArcGIS from the DEM (Figure 7a). The slope tool calculates elevation
change at a degree applying elevations of the encircling [28]. The slope map classification
was created applying natural breaks and therefore the slope degree of the West Arsi Zone
ranges from 0◦ to 75.9◦. These slope map categories were reclassified into 5 category values,
in keeping with its rank as per the suitability for groundwater potential creation by means
of the class tool in the spatial analyst tools (Figure 7b).

Elevation Thematic Layer: The elevation layer of the study space was generated from
a DEM. Thus, the elevation information is required to be included in groundwater potential
studies. The elevation layer of the West Arsi district was assessed given the 5 categories
per its contribution to groundwater potential and recharge of the study space (Figure 8a).
These elevation layer categories were reclassified into 5 category values per its rank as per
the appropriateness for groundwater potential and recharge, applying the classify tool of
the spatial analysis tools (Figure 8b).
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Figure 6. Rainfall and groundwater potential prospect rank of the rainfall map.

Figure 7. Slope and groundwater potential prospect rank of the slope map.

Drainage Density Thematic Layer: The drain density (km/km2) expresses the nearness
of space of waterway conduits, so providing a quantitative measuring of the typical span of
waterway conduits of the entire basin [29]. To come up with a drain density map of a region,
a filling sink was performed initially to get rid of the highest elevation and lowest elevation
that lure the water applying the DEM manipulation tool of the terrain-preprocessing tool.
A flow direction map was generated from the fill sink applying the flow direction tool
of the land preprocessing tools. A flow accumulation map was generated from the flow
direction applying the flow accumulation tools of the land preprocessing in Arc Hydro
tools. The stream definition map was made from the flow accumulation data applying the
raster calculator tool of the map algebra tool in the spatial analysis tools. A sink may be
a cluster of 1 or a lot of cells that have lower elevations than all the encompassing cells
whereas a peak may be a cluster of 1 or a lot of cells that have higher elevations than all
the encompassing cells [30]. The drain density layer of the region has been created from a
dissolved stream network applying density tool in ArcGIS spatial analyst tools (Figure 9a).
The drain density layer of the study space was made applying the line density tool of the
spatial analysis tools in ArcGIS software. The line density tool calculates drain density by
dividing the span of the drain line by the encompassing watershed space, cells upstream
of the cell, for every cell within the input flow direction grid. These drain density map
categories were reclassified into 5 category values per its rank as per the suitability for
groundwater potential and recharge, applying the separate tool of the spatial analysis tools
(Figure 9b). Slope, elevation, and drain density maps of the space were extracted, processed,
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and generated from a Shuttle Radar Topographic Mission DEM of 12.5 m by 12.5 m spatial
resolution, downloaded from USGS Earth explorer.

Figure 8. Elevation and groundwater potential prospect rank of the elevation map.

  
(a) Drainage density map (b) GWP prospect drainage density rank 

Figure 9. Drainage density and groundwater potential prospect rank of the drainage density map.

Lineament Density Thematic Layer: Lineaments are unit straight linear parts visible at
the surface as a major “line of landscape” [31]. These are units primarily being a mirrored
image of the discontinuities on the Earth’s surface caused by geologic or geomorphic
processes [32]. Band 8 (0.50–0.68 μm), which is a panchromatic of the OLI8/TIRS image,
was downloaded from USGS Earth explorer (https://earthexplorer.usgs.gov/ (accessed on
22 November 2019)) website and had a spatial resolution of 15 m extracted applying the
West Arsi Zone shape file and exported in word format of the stretched sort. Lineament of
a picture was extracted mechanically from images exported in .tiff format applying PCI
Geomatica Banff applying the line tool in the algorithmic librarian tool saved as file sort
Arc read. Line split, line split at vertices, and lineament density maps were generated
applying the editor tool, feature tool of data management tool, and density tool of the
spatial analysis tool operation. Principal Component Image (PCI) carry most data and
is appropriate for lineament extraction functions. Band 8 of Landsat 8 was chosen and
used because of its ability to identify linear and curvilineal features and having higher
spatial resolution of 15 m and it is panchromatic mirrored band. Finally, the lineament
and reclassified lineament density layer was produced from the band 8 OLI8/TIRS image
(Figure 10a). These lineament density map categories were reclassified in to 5 category
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values in line with its rank as per suitable for groundwater potential and recharge zone
delineation, applying the reclassify tool of the spatial analysis tools (Figure 10b).

Figure 10. Lineament density and groundwater potential prospect rank of the lineament density map.

Soil Group Thematic Layer: Soil group map (Figure 11a) of West Arsi Zone was
generated from the dissolved shapefile of the study area clipped from the Ethiopia soil
group shapefile using the clip tool of the analysis tools and converted into a raster using
the polygon-to-raster tool of the conversion tools. This soil group map was regrouped into
different six soil group texture and permeability. These soil map classes were reclassified in
to five class values according to its rank as per the suitability for groundwater potential
formation using the reclassify tool of the spatial analyst tools and a new soil group map
was generated (Figure 11b).

Figure 11. Soil group and groundwater potential prospect rank of the soil group map.

Lithological Map Preparation: The lithology layer of the region was generated by
geo-referencing, digitizing, extracting of a region formation from the geological layer
of the Oromia 1:1,000,000 scale [33] obtained from the Geological Survey of Ethiopian
(GSE). The geology layer of Oromia was georeferenced applying geo-referencing tool of
ArcGIS and corrected, and projected to the WGS1984 UTM Zone 37, applying projection
and transformation tools of the data management tools. The West Arsi Zone geological
formation image was clipped applying the study space shapefile with the assistance of
clip tool of the analysis tools of ArcGIS. Study space lithology layer was generated from
dissolved geology shape file reborn to raster applying conversion using the polygon-
to-raster tool of the conversion tools (Figure 12a). The lithology layer categories were
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reclassified into 5 category values per its rank as per the suitableness for groundwater
potential formation applying the reclassify tool of the spatial analysis tools, and a new
lithology layer (Figure 12b) was generated.

Figure 12. Lithology and groundwater potential prospect rank of the lithology map.

Each influence layer was ready and reclassified in to 5 categories in an exceeding
manner, which will support the general goal of groundwater potential and recharge zone
mapping. These maps layers were projected onto an equivalent reference system, resampled
into an equivalent formation layer of 30 m cell size, and reclassifying all the thematic layers’
individual parameters as appropriate for groundwater potential zonation so as to be
acceptable for the weight overlay analysis. All the desired thematic maps were developed
from the collected datasets applying MS-Excel, ArcGIS 10.3.1 version, PCI geomatica Banff,
and the ERDAS IMAGINE 2015 package. The spatial resolution of reclassified precipitation,
slope, elevation, drain density, lineament density, LULCr, soil, and lithology map was
30 m × 30 m and with a 10,000 m2 to hectare conversion factor. Accordingly, the area
coverage of these categories will be calculated using the formula

Area(ha) =
Pixel Count × 30 m × 30 m

10, 000 m2 (5)

Area in percent will be calculated using the formula

Area(%) =
Row Area
Total Area

× 100 (6)

In groundwater potential influencing parameters (rainfall, slope, elevation/altitude,
drain density, and lineament density layers classification), there is no onerous and quick
rule for groundwater potential and recharge or runoff generation. Hence, merely the
natural break on the ArcGIS ArcMap classified, which show the kind that existed by
default, was applied.

2.2.3. Analytical Hierarchy Process to Assign Weight

Among the numerous techniques, the Analytical Hierarchy Process (AHP) enables
plenty to systematically discover the maximum influencing parameters [12,22,34–36]. The
Analytical Hierarchy Process (AHP), proposed by [37], is the regularly used approach for
groundwater potential mapping. The eight criteria/elements (rainfall, lithology, lineament
density, land use/land cover, soil group, slope, elevation, and drain density) predicted
to affect groundwater distribution of the West Arsi sector were separated and set for
weight overlay. A pairwise comparison matrix, P(m × m), of which m is the number of
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parameters to be in comparison, was changed to being built primarily based totally on
the quantity of the entered elements for delineation of the groundwater potential and
recharge zones [38]. Ordering and assigning a scale for parameters (elements) affecting the
groundwater potential calls for a review of the variety of literature, personal judgments,
and professional opinion.

The main purpose of AHP in this study was to determine the appropriate Normalized
Principal Eigen Vector (NPEV) or Percent Weight in ArcGIS environment in the weight over-
lay analysis. Generally, the procedure followed to determine and validate the normalized
principal eigenvector is shown in (Figure 13).

Figure 13. AHP Procedure to determine and validate the percent weight (NPEV).

Before placing the criterion into pairwise comparison and assigning the scale for
groundwater potential assessment, first all of the elements need to be in a logical order in
the AHP Excel sheet, primarily based on the degree of suitability for groundwater potential
and recharge zone contribution (Table 4). In this study, primarily based on the features
of the area under study and suitability of the criteria elements for groundwater potential
and recharge zone contribution, all of the parameters are ordered. Slope and elevation
decide the destiny of the water that reaches the floor of the earth. From slope conduct of the
west Arsi Zone, about 72.41% of the vicinity is appropriate for groundwater potential and
recharge of surface water whilst in comparison to the rest of the criteria under consideration.
This suggests that about 72.41% of a place is almost flat to mildly sloped, which permits
extra rainfall or surface water to percolate and infiltrate.
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Table 4. Analytical Hierarchy Process pairwise comparison matrix of the thematic layers and scale
assigned.

Criteria More Important? Scale

i j A B A or B (1–9)

1 2

Slope

LULC A 1
1 3 Lithology A 1
1 4 Elevation A 3
1 5 Drainage Density A 3
1 6 Lineament Density A 5
1 7 Rainfall A 7
1 8 Soil A 9
2 3

LULC

Lithology A 1
2 4 Elevation A 3
2 5 Drainage Density A 3
2 6 Lineament Density A 5
2 7 Rainfall A 7
2 8 Soil A 9
3 4

Lithology

Elevation A 3
3 5 Drainage Density A 3
3 6 Lineament Density A 5
3 7 Rainfall A 7
3 8 Soil A 9
4 5

Elevation

Drainage Density A 1
4 6 Lineament Density A 3
4 7 Rainfall A 3
4 8 Soil A 5
5 6

Drainage Density

Lineament Density A 1
5 7 Rainfall A 3
5 8 Soil A 5
6 7

Lineament Density
Rainfall A 1

6 8 Soil A 3
7 8 Rainfall Soil A 1

Therefore, consistent with this study, slope is located at the start order. Area protected
through water body, vegetation, and agricultural location are maximally appropriate for
surface water percolation. Especially agricultural and vegetation protected areas trap the
water, reduces runoff, and will increase infiltration. The overall sum of area protected
through a water body, agriculture, and vegetation makes a contribution to about 71.67% of
a place and puts LULC at the second order subsequent to slope in phrases of suitability of
the criteria for groundwater potential and recharge zone. Geology/lithology performs an
essential function in the occurrence and distribution of groundwater in any terrain [39] due
to the fact water might recharge aquifers directly. A 66.2% lithology of a place is appropriate
for groundwater potential, which places it in the third order in terms of suitability of the
criteria for groundwater potential. Elevation was 49.02% appropriate for groundwater
potential and thus placed in the fourth order accompanied by drainage density, which
contributes 46.32% to high and very high groundwater potential. In phrases of lineament
density, only 27.94% of a place is appropriate for surface water percolation, recharge,
and groundwater potential formation. Therefore, groundwater potential is low regarding
lineament density areas and consequently lineament density is located in the 6th order.

Rainfall performs an essential function for hydrologic cycle and controls groundwater
potential [40]. Rainfall performs an important function in the occurrence of groundwater.
It is clear that greater rainfall might also additionally reason greater recharge ability, even
though that ability is challenged through different constraining elements, including slope,
geology, land use/cover, drainage density, lineament density, and others. Therefore, exces-
sive recharge vicinity does now no longer always mean excessive groundwater potential
areas [41]. Knowing the nature and characteristics of rainfall might also additionally allow
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one to conceptualize and predict its outcomes on runoff, infiltration, and groundwater po-
tential and recharge [42]. The opportunity of groundwater recharge might be excessive on
the location in which the rainfall is excessive and is low in which rainfall is low [41,43–45].
Regions that obtain greater rainfall have greater possibility of infiltration than districts with
low precipitation [40]. From a rainfall factor view, only 13.85% of a place gets high and very
high rainfall; consequently, in terms of rainfall, only 13.85% of a place will have high and
very high groundwater potential. This displays that rainfall contribution for groundwater
potential formation and recharge sector could be very low and positioned in the 7th place,
as compared to slope, LULC, lithology, elevation, drainage density, and lineament density.

Soil kind and texture additionally determine the infiltration ability and permeability. In
phrases of the soil group, only 7.3% is anticipated to have high and very high groundwater
potential and recharge, and is thus positioned in the last place in this study. This displays
that about 92.7% of the soil group of a place is impermeable and will increase surface runoff
and reduce infiltration. Factor effects on every different one, based on Saaty’s one to nine
factor scale, were used, where 1 represents both parameters being similarly essential and
nine suggests one parameter is extraordinarily essential over the alternative in phrases
of goal influence [40]. The summary of this hierarchy and pairwise comparison and the
assigned scale using the AHP Excel sheet is given in Table 5, generated from the AHP Excel
sheet and pairwise comparison matrix.

Table 5. Analytic hierarchy process pairwise comparison matrix and the assigned scale.

Matrix SL LULC Lith El DD LD RF SG

SL 1 1 1 3 3 5 7 9

LULC 1 1 1 3 3 5 7 9

Lith 1 1 1 3 3 5 7 9

El 1/3 1/3 1/3 1 1 3 3 5

DD 1/3 1/3 1/3 1 1 1 3 5

LD 1/5 1/5 1/5 1/3 1 1 1 3

RF 1/7 1/7 1/7 1/3 1/3 1 1 1

SG 1/9 1/9 1/9 1/5 1/5 1/3 1 1

Column Total of PCM 4.120635 4.120635 4.120635 11.86667 12.53333 21.33333 30 42

Where RF represents rainfall, SG represents soil group, LD represents lineament
density, Lith represents lithology, LULC represents land use/land cover, Sl represents slope,
El represents elevation, and DD represents drainage density.

Normalized Relative Weight (Wn), Eigenvector, and Normalized Principal Eigenvector
(NPEV) are determined as step below.

AHP employs experts’ opinion; the role of Eigenvectors and Eigenvalues is to lessen
noise withinside the records and additionally assist in decreasing over-fitting [46]. The
Eigenvector is the ordering of parameter impact on groundwater potential and recharge
with the aid of using assigning the weights [47]. The Eigenvector was computed to display
the comparative weights of every parameter in the direction of groundwater potential and
recharge [48] (Table 6).
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Table 6. Normalized relative weight and Normalized Principal Eigen Vector (NPEV).

Matrix
Normalized Relative Weight Vector (Wn)

Eigenvector
NPEV

(%)SL LULC Lith El DD LD RF SG

SL 0.242681 0.242681 0.242681 0.252809 0.239362 0.214286 0.233333 0.214286 0.24 24

LULC 0.242681 0.242681 0.242681 0.252809 0.239362 0.214286 0.233333 0.214286 0.24 24

Lith 0.242681 0.242681 0.242681 0.252809 0.239362 0.214286 0.233333 0.214286 0.24 24

El 0.080894 0.080894 0.080894 0.08427 0.079787 0.128571 0.1 0.119048 0.09 9

DD 0.080894 0.080894 0.080894 0.08427 0.079787 0.128571 0.1 0.119048 0.09 9

LD 0.048536 0.048536 0.048536 0.02809 0.079787 0.042857 0.033333 0.071429 0.05 5

RF 0.034669 0.034669 0.034669 0.02809 0.026596 0.042857 0.033333 0.02381 0.03 3

SG 0.026965 0.026965 0.026965 0.016854 0.015957 0.014286 0.033333 0.02381 0.02 2

Total 1 1 1 1 1 1 1 1 1 100

Steps followed to calculate Wn, Eigenvector, and NPEV:

• Row 1–9 of Table 5 was generated from the AHP Excel sheet.
• Scale values (Column 2–9 of Table 5) of the pairwise comparison matrix was summa-

rized (Row 10 of Table 5).
• Normalized Relative Weight Vector (Wn) of Table 6 from Row 3–10 of Column 2–9

was computed from division of each column criterion value of Table 5 (Column 2–9 of
Row 2–9) by column total (Row 10) of Table 5.

• Each Eigenvector value (Column 10 of Row 2–9) of Table 6 is the average of each row.
• Normalized Principal Eigen Vector (NPEV) of Table 6 from Row 3–10 of Column 11 is

a multiply of the Eigenvector values by 100%.
• The column sum of the normalized relative weight vector (Wn) and Eigenvector is

equal to 1 and Normalized Principal Eigen Vector (NPEV) is equal to 100% (Row 11 of
Table 6).

The consistency ratio (CR) is used for assessment of matrix consistency. AHP includes
a powerful approach used for checkup the consistency of the evaluations made through
the decision maker whilst constructing every of the pairwise comparison matrix concerned
within the process. Inconsistencies in pairwise comparisons grow with the growing number
of comparisons [49]. For the estimation of the consistency ratio (CR), the following stages
is involved:

• Priority vector (column 4 of Table 7) for criterion is calculated by multiplying the
column total of pairwise comparison matrix by Eigenvector.

• Principal Eigenvalue (λmax) is summation of priority vector (Row 10 of Table 7).
• Consistency Index (CI) is the ratio of the distinction among the Principal Eigenvalue

(λmax) and the number of criteria (m) to number of criteria under investigation (m)
less one.

• Random index (RI) was determined from Table 8 of Satty (1990), which depends on
number of criteria (m) considered.

• Consistency ratio (CR) is the ratio of the consistency index (CI) to the random index (RI).
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Table 7. Principal Eigenvalue (λmax) and priority vector.

Thematic Criterion Column Total of PCM Eigenvector Priority Vector

SL 4.120635 0.24 0.969440451
LULC 4.120635 0.24 0.969440451
Lith 4.120635 0.24 0.969440451
El 11.86667 0.09 1.118962872

DD 12.53333 0.09 1.181825955
LD 23.33333 0.05 1.169888994
RF 30.00000 0.03 0.970094234
SG 42.00000 0.02 0.971951575

Principal Eigenvalue (λmax) 8.321044984

Table 8. Random Index (RI) belongs to the number of assessment criteria (m).

m 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49

The sum of the priority vector, known as the Principal Eigenvalue (λmax), is a degree
of matrix deviation from consistency [48].

According to [49], a pairwise contrast matrix exists only if the Principal Eigenvalue
(λmax) is extra than or equal to the number of the parameters investigated/criteria (m). In
any other case a brand-new matrix is required. If there may be any inconsistency within the
experts’ opinions, a difference among m and λmax is indicated. Therefore, λmax—n may be
classed as a measure of inconsistency. A perfectly regular decision maker has to continually
obtain CI = 0; however, small values of inconsistency can be tolerated if the consistency
ratio (CR) < 0.1 [37]. The consistency index (CI) for groundwater potential and recharge
zone parameters investigated in this study was calculated by the equation below.

CI =
λmax − m

m − 1
(7)

where m is the number of assessment criteria (thematic layers in the case of this study) and
λ is the Principal Eigenvalue of judgment matrix as set through Satty (1995). RI relies on
the range of the criteria being compared, as shown in Table 8 [49].

From this table for m = 8, RI = 1.41. Analytical Hierarchy Process takes the consis-
tency ratio (CR) figure among zero and 0.1 or 10%; a value greater than 10% invites for
modification of comparisons.

CR =
CI
RI

(8)

Consistency Ratio (CR) calculation is to confirm the consistency of the judgements.
Saaty (1995) advised a different consistency ratio value for different consistent pairwise
evaluation matrix sizes. The recommended consistency ratio value for a three × three
matrix is much less than 0.05, a four × four matrix is 0.09, and for large matrices it is
recommended 0.1 [38].

2.2.4. Weighted Overlay Analysis

During the weighted overlay analysis, the ranks were given for all parameters of all
thematic layers set for the study and the weight is assigned in line with their relative effect
of the different parameters on groundwater potential applying the Analytic Hierarchical
Process (AHP) technique [48]. After assigning weights to all thematic layers, ranks/scale
values from 1 to 5 were given for the sub-variable of every thematic layer, in line with their
significance for groundwater potential occurrence. According to this study, 1 represents
less vital and 5 represents more vital for groundwater potential and recharge. The most
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worth is given to the feature expected with maximum groundwater potentiality and the
minimal given to the lowest groundwater potentiality feature (Tables 9–16).

Table 9. Groundwater potential prospect rainfall map classes.

Rainfall Classes (mm) Value (Rank) GWP Prospect Rank Count Area (ha) Percent Area

700.5–940.7 1 Very low 4,092,491 368,324.2 29.54
940.7–1090.8 2 Low 4,551,345 409,621.1 32.85
1090.8–1281 3 Moderate 3,241,868 291,768.1 23.4
1281–1561.3 4 High 1,220,442 109,839.8 8.81

1561.3–1976.7 5 Very High 747,753 67,297.77 5.4

Table 10. Groundwater potential prospect reclassified slope map information.

Slope Classes (Degree) GWP Prospect Rank Value (Rank) Count Area (ha) Area (%)

27.7–75.9 Very Low 1 40,4616 36,415.44 2.93
17.9–27.7 Low 2 1,166,148 104,953.32 8.43
10.4–17.9 Moderate 3 2,243,511 201,915.99 16.23
4.5–10.4 High 4 4,274,118 384,670.62 30.91

0–4.5 Very High 5 5,737,163 516,344.67 41.50

Table 11. Groundwater potential prospect reclassified elevation map information.

Elevation Classes (m) GWP Prospect Rank Value (Rank) Count Area (ha) Area (%)

3295–4171 Very Low 1 928587 83,572.83 6.70
2810–3295 Low 2 1681472 151,332.48 12.14
2433–2810 Moderate 3 4452576 400,731.84 32.14
1995–2433 High 4 2589305 233,037.45 18.69
1464–1995 Very High 5 4202042 378,183.78 30.33

Table 12. Groundwater potential prospect reclassified drainage density map information.

DD Class (km/km2) GWP Prospect Rank Value (Rank) Count Area (ha) Area (%)

1.3–1.8 Very Low 1 1,286,764 115,808.76 9.29
1.0–1.3 Low 2 2,926,141 263,352.69 21.12
0.7–1 Moderate 3 3,223,861 290,147.49 23.27

0.4–0.7 High 4 3,645,417 328,087.53 26.31
0–0.4 Very High 5 2,771,782 249,460.38 20.01

Table 13. Groundwater potential prospect reclassified lineament density map information.

L.d Classes (km/km2) GWR Prospect Rank Value (Rank) Count Area (ha) Area (%)

0–0.4 Very Low 1 3663565 329,720.85 26.45
0.4–0.8 Low 2 3706704 333,603.36 26.76
0.8–1.2 Moderate 3 2611845 235,066.05 18.85
1.2–1.6 High 4 2617700 235,593 18.89
1.6–2.7 Very High 5 1254151 112,873.59 9.05

Table 14. Groundwater potential prospect reclassified LULC map information.

Class Name GWP Prospect Rank Value (Rank) Count Area (ha) Area (%)

Built Up Area Very Low 1 403,696 36,332.64 2.92
Barren Landscape Low 2 456,928 41,123.52 3.30

Forest Moderate 3 3,062,368 275,613.12 22.11
Agriculture & Vegetation High 4 9,206,823 828,614.07 66.48

Water Body Very High 5 718,378 64,654.02 5.19
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Table 15. Groundwater potential prospect reclassified soil group map information.

Soil Group GWR Prospect Rank Value Count Area (ha) Area (%)

Eutric Cambisols/Pellic
Vertisols/Orthic

Solonchaks/Chromic
Vertisols/Chromic
Cambisols/Mollic

Gleysols

Very Low 1 5,905,315 531,478.4 42.63

Dystric Histosols Low 2 16,214 1459.26 0.12

Vitric Andosols/Mollic
Andosols/Chromic

Luvisols/Eutric
Nitisols/Eutric

Regosols/Orthic Luvisols

Moderate 3 6,921,369 622,923.2 49.96

Leptosols/Calcic Xerosols High 4 197,857 17,807.13 1.43

Calcic Fluvisols/Calcaric
Fluvisols/Eutric Fluvisols Very High 5 813,210 73,188.9 5.87

Table 16. Groundwater potential prospect reclassified lithology map information.

Lithology Name GWR Rank Prospect Value Count Area (ha) Area (%)

Qwo Very Low 1 42,032 3782.88 0.30
gt/Pra/PRr/Qwpu Low 2 418,592 37,673.28 3.02

Pna/PRw/Qdi/Qdp/Qwa Moderate 3 4,221,989 379,979.01 30.48
Nc/Ncb/Nn/Qb/Qwbp High 4 7,358,588 662,272.92 53.12

QI Very High 5 1,811,535 163,038.15 13.08

2.2.5. Groundwater Potential Map Development

The groundwater potential layer was developed via way of means of overlapping the
determinant groundwater contributing thematic layers. A weighted overlay analysis device
was used to develop the groundwater potential map and to compute the groundwater po-
tential index values. The reclassified layers of rainfall, lithology, slope, elevation, lineament
density, drain density, soil group, land use/land cover, and their corresponding percentage,
have an impact on groundwater potential, and have been included to produce a map of
the spatial distribution of the groundwater potential districts inside the West Arsi space
with the help of the weighted overlay tool in ArcGIS software. Weighted Overlay analysis
device reclassifies values within the enter raster layers right into a common assessment
scale of 1, 2, 3, 4, and 5—very low, low, moderate, high, and very high, respectively—via
way of means of multiplying the cell values (rank) of every factor class via way of means
of the factor weight and sums the resulting cell values collectively to produce a map of
groundwater potential zones, as given by the following equation (Raviraj 2017; ESRI 2015).

GWPI = RFwRFr + LDwLDr + LULCwLULCr + SwSr + EwEr + SGwSGr + LiwLir + DDwDDr (9)

where GWPI represents groundwater potential, RF represents rainfall, LD represents
lineament density, LULC represents land use/land cover, S represents slope, E represents
elevation, SG represents soil group, Lith represents lithology, DD represents the drain
density index and the subscript w and r represent weight and rank, respectively [50]. The
GWPI values were used to categorize whether or not a place may be very high, high,
moderate, low, or very low with respect to groundwater potential [1,51].

2.2.6. Validation of Groundwater Potential Occurrence Zone Map

For validating the anticipated groundwater potential zone map, an attempt was made
to acquire current data from different sources for validation. Overall, 113 current ground-
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water inventory borehole data points were accrued from West Arsi water, mineral and
energy office. Additional sources from Dodola-Goba, Hosaina, Dila, and Asela hydrogeol-
ogy annexes and notes were also used. For the cause of evaluation or assessment of the
qualitative consequences of the groundwater potential zones, well yield was decided on
as a higher candidate than different current data. Although there is no standard category
scheme, well yields may be grouped into a few category schemes, considering the particular
site conditions.

According to the hydrogeology notes of the above cited maps and others, the aquifer
yields that exist on this hydrogeology are in a different way categorized. Some classify as
zero–three L/s: low, three—6 L/s: moderate, 6–20 L/s: high and greater than 20 L/s as very
high groundwater potential zones. Others classify as 0.5–1 L/s low, 1–five L/s moderate to
low and five—25 L/s high groundwater potential areas. For this study with a few changes
the water point inventory categorized as less than 2 L/s was classified as low (33 boreholes),
2 to 10 L/s moderate (69 boreholes), and more than 10 high yield (11 boreholes). Borehole
inventory facts were mapped on groundwater potential map; percentage of agreement was
calculated and validation of the groundwater thematic map with groundwater inventory
facts was done (Figure 14d). Groundwater potential prediction accuracy was summarized
as poor for 0.5 to 0.6; average for 0.6 to 0.7; good for 0.7 to 0.8; very good for 0.8 to 0.9; and
excellent for 0.9 to 1 [3,52].

Figure 14. Groundwater potential map and well yield plot over it for validation.

3. Result and Discussions

3.1. Rainfall and Reclassified Rainfall Layer

Groundwater potential phenomena are the end result of the long time-period effect.
The annual rainfall of the study area ranges from 700.5–1976.7 mm (Figure 6a).
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The opportunity of groundwater potential and recharge could be excessive in the
region where the rainfall is excessive and is low where rainfall is low [41,43–45]. The
rainfall distribution in the course of the vicinity varies and consequently groundwater
potential may also be varying. Only 14.21% of a place is anticipated to have excessive to
very excessive groundwater potential with respect to rainfall sample prospect (Table 9).

3.2. Slope and Reclassified Slope Layer

Slope is a crucial terrain parameter that has an effect on groundwater potential and
recharge. Slope governs the amount of infiltration and runoff [53]. About 72.41% of a place
is predicted to have excessive to very excessive groundwater ability with respect to slope.

In the nearly level slope (gentle slope) vicinity, the surface runoff is sluggish, which
trap precipitation and allow rainwater to percolate/infiltrate via the soil and is considered
a good groundwater potential zone, while a steep slope vicinity enables excessive runoff,
permitting much less lag time for rainfall and therefore relatively much less infiltration and
poor groundwater potential. However, slope classes have been identified based on their
degree of significance to groundwater potential and recharge in GIS [34,54] and reclassified
according to groundwater potential prospect (Table 10).

3.3. Elevation and Reclassified Elevation Layer

Elevation or altitude could have an indirect and inverse impact at the groundwater
potential of a given area. Therefore, excessive altitudes favor extra recharge and make
certain the provision of groundwater in lowland regions in a watershed. Mountainous
regions are regularly favorable for recharge in deep-seated confined aquifers located at
lowland regions [55,56]. Water has a tendency to store at lower topography than on the
higher topography [42]. Therefore, the higher the elevation, the smaller the groundwater
potential and vice versa.

The area covered by very low elevation (1464–1995 m) is expected to have a very
high groundwater potential and recharge zone and the one covered by very high elevation
(3295 m–4171 m) is expected to have a very low groundwater potential and recharge zone
with respect to elevation, as shown in Table 11. About 49.02% of an area is expected to have
high to very high ground water potential with respect to elevation.

3.4. Drainage and Reclassified Drainage Density Layer

A drainage network is to a degree a panorama dissection with the aid of using streams
and may be expressed as drainage density, indicating the entire length of streams associated
with an area (km/km2) [57]. Drainage density has an inverse relation with the permeability
of aquifers and performs an important position within the runoff distribution and degree of
infiltration. Drainage density is one of the parameters affecting the groundwater potential,
recharge, and play an essential position in groundwater potential zoning. Groundwater
potential is poor in regions with a very excessive drainage density because it misplaces the
majority in the form of runoff while regions with low drainage density permit extra infil-
tration to recharge the groundwater and, therefore, have extra for groundwater potential
occurrence. According to [58], additionally cited, the low drainage density area has better
infiltration and it yields higher groundwater potential zones, as compared to an excessive
drainage density area. A dense drain is the consequence of feeble or impervious subsurface
formations, light plant life, and mountainous relief. The drainage density of the looked at
region starts from 0 to 1.8 km/km2 (Figure 9a). About 46.32% of the place is predicted to
have excessive to very excessive groundwater potential with respect to drainage density as
shown in Table 12.

3.5. Lineament and Reclassified Lineament Density Layer

Geological formations that deliver rise to lineaments encompass faults, shear zones,
fractures, dykes, and veins—in addition to bedding planes and stratigraphic contacts. The
lineament density map shows the quantitative length of linear formations expressed in
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(km/km2). An excessive lineament length density suggests excessive secondary porosity,
therefore representing a sector with excessive groundwater potential [59]. Lineament
density is a crucial geological formation that have an effect on groundwater potential and
recharge. Areas having a better lineament density facilitate infiltration and recharge of
groundwater and, therefore, is proper for groundwater potential development. In turn, the
ones having a low lineament density have low groundwater potential. Accordingly, only
27.94% of the place is predicted to have excessive to very excessive groundwater potential
with respect to lineament density (Table 13).

3.6. LULC and Reclassified LULC Layer

The land-use and/or land-cover map is the principal issue for controlling the ground-
water potential and recharge method. Its situations have an effect on the hydrologic cycle
and hydrologic manner by changing the evapotranspiration, transpiration, infiltration,
interception, and surface runoff, and thereby the groundwater potential distribution con-
duct in lots of ways. Due to population increase and different anthropogenic impacts
in lots of watersheds, there is change in land use and/or land cover from one shape to
the other [60–63]. Some land uses service the groundwater potential while others bring
negative result to groundwater potential and recharge. Accuracy evaluation or validation
is an essential step within the processing of remote sensing data, which determines the
information value of the resulting data to a user [64]. The study had an average category
accuracy of 87% and kappa coefficient (K) of 0.84. The kappa coefficient is rated as al-
most perfect and subsequently the classified image discovered to be a match for further
research [27].

Built-up and rocky surfaces have much less opportunity of groundwater potential
prevalence through growing runoff during rainfall while the surfaces protected through
vegetation such as agricultural plants and forests have a better chance of groundwater
opportunity due to higher infiltration through trapping and protecting the rainwater in
roots of plants and cracks [65–68]. About 71.67% of a place is predicted to have excessive to
very excessive groundwater potential with respect to land use/land cover (Table 14).

3.7. Soil and Reclassified Soil Group Layer

The water-conserving capability of a place relies upon the soil sorts and their perme-
ability [69]. Soil mainly influences the rainfall infiltration and percolation strategies that, in
the long run, impact the groundwater recharge after which the groundwater potential of a
given area [70,71]. Soil properties influence the connection among runoff and infiltration
rates, which, in turn, controls the degree of permeability that determines the groundwater
potential [72]. The permeability of the soil sorts relies upon their texture.

Therefore, to identify the soil group permeability of the study area, a different soil
group was categorized into six soil texture families with its permeability rate and classes.
In the reclassification of the soil map, soil group according to its texture and permeability
classes was grouped in to five classes according to is contribution for groundwater potential
and recharge (Table 15). About 7.3% of the area is expected to have high to very high
groundwater potential with respect to soil group.

3.8. Lithology and Reclassified Lithology Layer

Geology or lithology is one of the groundwater potential and recharge controlling
parameters taken into consideration in groundwater research, which plays a vital role in
the distribution and prevalence of groundwater. Lithology is the bodily makeup of rocks
and sediments and consists of mineral configuration, grain quartz, and grain packing [39].
Geology affects both the porosity and permeability of the aquifer material [1,73]. The
Lithology of West Arsi area is grouped into distinctive kinds of formations/geological
units [33,74–79]. However, every one of these lithological units do not have the same sig-
nificance in determining and controlling groundwater potential and recharge. According
to [74,75], the West Arsi lithological unit is categorized into 5 classes, depending on ground-

194



Water 2022, 14, 1838

water potential and recharge ability (Table 16). About 66.2% of the area is predicted to have
excessive to very excessive groundwater potential with respect to the lithological units.

3.9. Weight Overlay Analysis

A main task within the proposed GIS-based multicriteria selection evaluation is the
choice of criteria for groundwater potential area mapping wherein the criteria choice calls
for suitable information of the site, the correct weighting of criteria through hydrogeologist
experts, and correct cooperation among the decided-on factors. Pairwise comparison and
Normalized Principal Eigen Vector (NPEV) found out that slope, LULC, and lithology
are the most influential parameters, accounting for 24%. The percent weight of elevation,
drainage density, lineament density, rainfall, and soil group is 9, 9, 5, 3, and 2, respectively
(Table 6).

In computing the consistency ratio, the Principal Eigenvalue of 8.321 became done for
an eight*eight matrix. Hence, the Principal Eigenvalue (λmax) needs to constantly be greater
than or identical to the number of the criteria (m) as in the above end result of λmax, paving
the way for the calculation of the consistency index (CI). Hence, pairwise comparison is
reliable due to the fact the Principal Eigen value (λmax), 8.321044984 calculated in Table 7,
is greater than the number of criteria investigated (m), which was 8. Consistency index (CI)
is 0.046.

The Random Index (RI) for the eight criteria is 1.41. The Consistency Ratio (CR)
computed is 0.033, which is much less than 0.1 for large matrices more than 4 × 4 [38] and,
therefore, the CR gained is suitable and the weight or percentage influence assigned for
every thematic layer is acceptable.

3.10. Groundwater Potential Occurrence District Map

The groundwater potential sector was delineated with the aid of preparing maps,
reclassifying, weighting, and ranking eight groundwater potential-influencing parame-
ters (rainfall, lithology, slope, elevation, lineament density, drainage density, soil group,
and LULC) in an ArcGIS environment applying weighted overlay analysis guided with
AHP MCDM pairwise comparison techniques. The groundwater potential district layer
was generated from superimposed thematic layers applying the weighted overlay ap-
proach with the help of spatial analysis tools in ArcGIS. In the weight overlay analysis
and groundwater potential layer development, as found in Table 17 soil is assigned the
lowest percentage of influence (weight), while slope, LULC, and lithology were assigned
the higher weight/percentage influence. The spatial dispersal of groundwater potential
and recharge throughout the study sector is the sum of the products of factors percentage
influence (weight) and the corresponding reclassified parameters rank.

Table 17. Thematic maps rank and weight in terms of groundwater potential prospect.

Thematic Maps Classes Gw Prospect Weight (%) Rank

Rainfall

700.5–955.4 Very Low

3

1

955.4–1210.8 Low 2

1210.8–1466.2 Moderate 3

1466.2–1721.6 High 4

1721.6–1976.7 Very High 5
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Table 17. Cont.

Thematic Maps Classes Gw Prospect Weight (%) Rank

Soil Group

Eutric Cambisols/Pellic Vertisols/Orthic
Solonchaks/Chromic Vertisols/Chromic

Cambisols/Mollic Gleysols
Very Low

2

1

Dystric Histosols Low 2

Vitric Andosols/Mollic Andosols/Chromic
Luvisols/Eutric Nitisols/Eutric Regosols/Orthic Luvisols Moderate 3

Leptosols/Calcic Xerosols High 4

Calcic Fluvisols/Calcaric Fluvisols/Eutric Fluvisols Very High 5

Lineament Density

0–0.4 Very Low

5

1

0.4–0.8 Low 2

0.8–1.2 Moderate 3

1.2–1.6 High 4

1.6–2.7 Very High 5

Lithology

Qwo Very Low

24

1

gt/PRa/PRr/Qwpu Low 2

PNa/PRw/Qdi/Qdp/Qwa Moderate 3

Nc/Ncb/Nn/Qb/Qwbp High 4

QI Very High 5

LULC

Built Up Area Very Low

24

1

Barren Landscape Low 2

Forest Moderate 3

Agriculture & Vegetation High 4

Water Body Very High 5

Slope

27.7–75.9 Very Low

24

1

17.9–27.7 Low 2

10.4–17.9 Moderate 3

4.5–10.4 High 4

0–4.5 Very High 5

Elevation/Altitude

3295–4171 Very Low

9

1

2810–3295 Low 2

2433–2810 Moderate 3

1995–2433 High 4

1464–1995 Very High 5

Drainage Density

1.3–1.8 Very Low

9

1

1.0–1.3 Low 2

0.7–1.0 Moderate 3

0.4–0.7 High 4

0–0.4 Very High 5

From Table 18 above, about 61.27% of the area is anticipated to have high groundwater
potential and 2.47% of the area is anticipated to have very high groundwater potential.
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Table 18. West Arsi Zone groundwater potential distribution and its area coverage.

Value GWP Prospect Rank Count Area (ha) Area (%)

2 Low 109,176 9825.84 0.79
3 Moderate 4,896,961 440,726.49 35.46
4 High 8,460,429 761,438.61 61.27
5 Very High 341,652 30,748.68 2.47

The reclassified thematic layers have a rank of 1 to 5, where 1 is very low, 2 low,
3 moderate, 4 high, and 5 very high groundwater prospects (Figures 5–12). However,
the weight overlay analysis produced ranks 2, 3, 4, and 5 only, which display the West
Arsi region groundwater potential distribution being categorized into four classes: very
high, high, moderate, and low (Figure 14a,b) groundwater potential and recharge zones.
Figure 14c indicates regions of high groundwater potential are concentrated in the central
and western a part of the study region, which covers an area of 61.27% (761,438.61 ha). Areas
having very high groundwater potential is located at Shala, Arsi Negele, and the boundary
of Shashemene and Siraro, which accounts about 2.47% (30,748.68 ha). The remaining part
of the study region, 35.46% (440,726.49 ha), is classified as moderate groundwater potential
in which the distribution is throughout the complete district; however, it is dominant on
the eastern a part of the study location, and 0.79% (9825.84 ha) of the land is classified as
low groundwater potential region, positioned in the Nensebo, Adeba, Shala, Siraro, Gedeb
Asasa, and Shashemene Western and Southern sector of the study area in small amounts
(Figure 14c).

In validating the groundwater potential distribution region layer, while the inventory
data were plotted over the groundwater potential map (Figure 14d), from the 33 total num-
ber of wells categorized to low yield, 23 (69.70%) wells failed under the low groundwater
potential region; from 69 total number of wells categorized to moderate yield, 67 (97.10%)
wells failed under moderate groundwater potential; and from 11 total number of wells
categorized to high yield, 9 (81.82%) wells failed under high groundwater potential region
(Table 19). In cross validation evaluation from 113 borehole yields, 99 (87.61%) conform
to the corresponding groundwater potential region classifications from the qualitative
evaluation.

Table 19. Agreement (%) between the groundwater recharge zone map and borehole yield.

Groundwater
Potential Zone Classes

Yield (L/s)
Total Number of Wells

in Groundwater
Potential Zone

Number of Wells Fall
in Groundwater
Potential Zone

Percent Agreement

Low <2 33 23 69.70
Moderate 2–10 69 67 97.10

High and Very high >10 11 9 81.82

Sum 113 99 87.61

The validation results, 87.61% or 0.876, confirm that there may be a very good agree-
ment among the groundwater inventory data and groundwater potential zones delineated
applying GIS and RS techniques. Therefore, the results of the groundwater potential maps
obtained with the support of the AHP technique and weight overlay analysis were taken
into consideration as a very good prediction. This indicates that the findings developed
from the study are proper compared with the well yield of the point inventory acquired
from the field.

4. Conclusions

Increased availability of remotely sensed information has helped in analyzing the
natural surroundings without direct measuring in field. Remote Sensing (RS) and Geo-
graphic Information System (GIS) are possible in terms of cost, time, and resources, which
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make it fast, correct, and economical strategies to be utilized in groundwater potential and
recharge sector evaluation than the traditional ground survey and resistivity methods. It
incorporates comparing groundwater potential zones of the study area by applying the
different groundwater spatial parameters.

The occurrence and distribution of groundwater potential specifically relies upon
on the groundwater potential-affecting parameters. The most vital parameters affect-
ing groundwater potential and the recharge sector decided on for this study were rain-
fall, lithology/geology, lineament density, LULC, soil group and texture, slope, eleva-
tion/altitude/geomorphology, and drainage density. Therefore, assessment of the ground-
water potential sector of a place was carried out via way of means of analysis of those
parameters. Those parameter factors were reclassified and ranked according to its signifi-
cance in influencing groundwater potential.

Weighted value or percent influence determination was done with the reclassified
thematic prepared and the organized maps. Weighted value or percentage influence dedi-
cation were completed with reclassified thematic organized and prepared maps. Weight
overlay analysis considers all parameters that have an impact on groundwater potential;
it offers the correct weight for parameters; it offers ranking of the characteristics of the
parameters and exercising through the cell. Therefore, it better estimated the groundwater
potential distribution throughout the region. Groundwater potential and recharge district
affecting parameters taken into consideration in this study do not have a similar influ-
ence on groundwater potential distribution and the recharge zone. The percent influence
(weight) of those parameters was decided applying Analytic Hierarchy Process (AHP)
Multi-Criteria Decision Making (MCDM) pairwise comparison matrix techniques.

Weight overlay analysis produced 24% for slope, lithology, and LULC; 9% for elevation;
9% for drainage density; 5% for lineament density; 3% for rainfall; and 2% for soil group.
Accordingly, slope, LULC, and lithology were found the most significant parameters.
Whereas, lineament density, rainfall, and soil group were the least groundwater potential-
influencing parameters.

Groundwater distribution throughout the West Arsi Zone is not uniform according
to this study and therefore classified into very high (2.47%, which is 30,748.68 ha), high
(61.27%, which is 761,438.61 ha), moderate (35.46%, which is 440,726.49 ha), and low (0.79%,
which is 9825.84 ha) groundwater potential distribution.

The suitable groundwater potential and recharge areas are found with lithological
formation of QI (lacustrine sediments deposits, silt clays, diatomite, and minor ignimbrites),
Qwbp (Pleistocene basalt), Qb (alkaline basalt and trachyte), Nn (ignimbrite, un-welded
tuffs, ash flows, rhyolites, domes, and trachyte), Ncb (alkaline basalts and trachyte), and
Nc (basalt and peralkaline rhyolite with minor alkaline basalt). LULC areas covered with
a water body, agricultural practices, and area covered with vegetation are suitable for
groundwater potential formation. Areas acquired excessive annual common rainfall were
given excessive groundwater potential. A location with a low slope, elevation, and drainage
density are good for groundwater potential and recharge. In turn, locations with excessive
lineament density were discovered to be the most essential regarding groundwater potential
and recharge. Soil groups of leptosols, calcic xerosols, calcic fluvisols, calcaric fluvisols, and
eutric fluvisols, and those with a sandy loam and loamy sand texture, permit infiltration
and percolation, which will increase groundwater potential and recharge.

The groundwater potential distribution assessed and the map generated were val-
idated using borehole inventory data. Accordingly, the percent agreement between the
groundwater potential recharge zone map generated and inventory borehole yield found
in the rank analysis was 87.61%, which is in very good agreement.
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Abstract: Groundwater monitoring and water level predictions have been a challenging issue due
to the complexity of groundwater movement. Simplified numerical simulation models have been
used to represent the groundwater system; these models however only provide the conservative
approximation of the system and may not always capture the local variations. Several other efforts
such as coupling groundwater models with hydrological models and using geostatistical methods
are being practiced to accurately predict the groundwater levels. In this study, we present a novel
application of a geostatistical tool on residuals of the groundwater model. The kriging method was
applied on the residuals of the numerical model (MODFLOW) generated by the TWDB (Texas Water
Development Board) for the Edwards–Trinity (Plateau) aquifer. The study was done for the years
1995 through 2000 where 90% of the observation data was used for model simulation followed by
cross-validation with the remaining 10% of the observations. The kriging method reduced the average
absolute error of approximately 31 m (for MODFLOW simulation) to less than 5 m. Furthermore,
the residuals’ average standard error was reduced from 9.7 to 4.7. This implies that the mean value
of residuals over the entire period can be a good estimation for each year separately. The use of the
kriging technique thus can provide improved monitoring of groundwater levels resulting in more
accurate potentiometric surface maps.

Keywords: groundwater monitoring; modeling; MODFLOW; kriging; residuals; water levels;
Edwards–Trinity aquifer

1. Introduction

The exponential growth of population, rapid socio-economic development, increasing
food demand, and changing climatic factors have led to a decline in both the quality and
quantity of freshwater resources. The decreasing available resources have posed serious
challenges in the agricultural sector with limited water available for irrigation. As an
alternative resource, the reuse of wastewater in irrigation has been increasingly recognized
as an essential, and economical strategy [1–3]. However, only a small fraction of wastewater
with less than 6% in the US [4] and less than 3% globally [5] is reclaimed; and the irrigation
largely relies on groundwater sources. Groundwater is one of the primary sustainable water
resources, especially during the high demand seasons, due to its lower susceptibility to
sudden changes. About 70% of groundwater withdrawal worldwide is used for agriculture
while irrigating nearly 38% of irrigated lands [6]. Likewise, nearly 50% of irrigated lands in
the United States are based on groundwater sources [6].

Over the past centuries, extreme drought events have significantly affected both
surface and groundwater resources [7,8]. While low surface water levels might be an
immediate indicator of drought, changes to groundwater levels indicate long-term water
scarcity. Further, it is straightforward to monitor and assess surface water changes while
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measuring variations in groundwater resources is very challenging and time-consuming.
Water movement in porous media is sufficiently complex to simulate and even the most
elaborate models cannot estimate all details of this complexity, even if attempted, it ends
with a parsimonious estimation of the reality.

The most common approach which has been used for decades is to estimate the
groundwater head variable, mostly by using numerical models [9–11]. The numerical
models use mathematical equations to describe the physics of the groundwater flow; the
model accuracy thus depends on how precisely the conceptual models describe the real-
world system. These models largely rely on the available water-level data [12,13]. However,
groundwater-level data are often irregularly sampled, leading to temporal gaps in the
record, and are not adequately distributed spatially across an aquifer [14–16]. The spatial
sparseness of data presents challenges when spatially interpolating potentiometric surfaces
and creating groundwater maps [14,17,18].

In addition to numerical models, statistical-based or regression-based approaches like
kriging, spline interpolation, and neural networks have also been used in predicting water
levels [19,20]. The most vivid method applied in the spatially auto-correlated variable
like groundwater level is the kriging method namely, the ordinary kriging technique.
Aboufirassi et al. [21] employed the universal kriging to estimate the water table for the
Souss aquifer in central Morocco. Pucci and Murashige [22] used kriging for optimizing
data collection and utility in a regional groundwater investigation in central New Jersey and
confirmed that kriging is a useful tool especially in areas lacking enough data for developing
a water table management network. Hoeksema et al. [23] applied the co-kriging method
to estimate the groundwater level at unknown points. A similar study was done by other
researchers where the kriging method was used to estimate the water levels at wells [24,25].
Theodossiou and Latinopoulos [13] used the kriging method on 31 wells in evaluating
and optimizing the groundwater level observation networks. Ahmadi and Sedghamiz [26]
evaluated the spatial and temporal variations of groundwater level of 39 observation wells
using kriging. In their later article [27], the kriging and co-kriging methods were applied for
groundwater depth mapping in southern Iran. Tapoglou et al. [12] used Artificial Neural
Networks (ANNs) to estimate the temporal prediction of the water level and applied
the kriging method to spatial parts. Ruybal et al. [17] used spatiotemporal kriging in
evaluating groundwater levels in the Arapahoe aquifer. These approaches come with a
major limitation in that they fail to explain the physics of the groundwater flow [28].

This study presents an integrated approach where the groundwater model is coupled
with a geo-spatial kriging tool. This way, we expect to integrate the strong aspects of both
approaches while reducing their demerits. The numerical model will explain the physics of
groundwater flow. The statistical interpolation method, kriging will then be used on the
numerical model’s errors with an expectation of improving our estimation by considering
the complexity not detected by a numerical model. In this study, the kriging method was
applied on the residuals of the numerical model (MODFLOW) generated by the TWDB
(Texas Water Development Board) for the Edwards–Trinity (Plateau) aquifer to improve
the estimation of the water table spatially. The study was done for the years 1995 through
2000 where 90% of the observation data was used for model simulation followed by cross-
validation with the remaining 10% of the observation data. To the authors’ knowledge, no
prior efforts have been done using the technique adopted in this paper. Most importantly,
the significant improvement in groundwater level predictions makes this study a promising
approach for the sustainable management of water resources.

2. Methodology

2.1. Study Area

The Edwards–Trinity (Plateau) Aquifer, as shown in Figure 1, expands over west-
central Texas between 97◦ and 105◦ west longitudes and between 29◦ and 33◦ north latitudes.
The topology of the aquifer is known as a plateau, lightly leveling from about 610 m (2000 ft)
above sea level in the southeast to about 915 m (3000 ft) in the northwest. The precipitation
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in the region ranges between 86 cm (34 in) in the east to 30 cm (12 in) in the west. The
maximum average annual temperature for the study area ranges between 23 ◦C (73◦ F) in
the Trans-Pecos uplands to 26 ◦C (79◦ F) in southern Val Verde County. The study area
had numerous drought events during the past hundred years [29]. Yet, the drought events
are expected to have minimal impacts for the study period (1995 through 2000) as the last
drought was during the 1950s.

Figure 1. Location of the study area—Edwards–Trinity (Plateau) Aquifer.

2.2. Data

Data on groundwater levels, climate data, boundaries shapefiles, data on hydraulic
properties of the aquifer, elevation data, and MODFLOW simulated heads were required.
All these data were obtained from the TWDB website [30]. The water levels were obtained
from the Groundwater Database (GWDB:1, accessed on 1 April 2020 ) consisting of shape-
files with geospatial information on water level and quality for management, monitoring,
and characterization of the water in the Edwards–Trinity aquifers. The precipitation data
was gathered using raster data for the years 1995 through 2001. The boundaries and hy-
draulic properties were gathered from separate shapefiles consisting of aquifer boundaries,
model boundaries, Texas county boundaries, hydraulic conductivity for each one sq. km.
The elevation data was obtained from the raster files consisting of DEM (Digital Elevation
Model), top and bottom elevation of the Edwards and Trinity aquifers. Lastly, MODFLOW
generated heads were obtained as publicly accessible binary files produced from the MOD-
FLOW model developed by TWDB. Figure 2 shows the location of observation wells for all
the years (1995–2000). Not all years have observation data available for the same locations,
thus the locations for each year were selected randomly as can be seen in Figure 2.

205



Water 2022, 14, 426

Figure 2. Location of observation wells in the Edwards–Trinity aquifer.

2.3. Modeling

Figure 3 represents a schematic diagram of the research methodology adopted. As
shown in the figure, the general scheme of this study consists of three major components—
(1) Data Preparation, (2) Calibration, and (3) Cross-Validation and includes a series of steps
used interactively as listed below:

• Mapping MODFLOW simulated groundwater heads (model imported from TWDB)
into their corresponding coordinates and overlap with observation data to find the
MODFLOW estimated values in the observation point.

• Subtracting the observed groundwater head with MODFLOW simulated head and
consider as the model residuals.

• Dividing the residuals into two separate datasets, 90 percent of data for fitting kriging
methods (calibrating residuals) and 10 percent for validating part (validating residuals),
in a random selection.

• Pre-evaluating the calibrating residuals and fit kriging method to generate the esti-
mated residual map for the study domain.

• Comparing the validating residuals with an estimated one to evaluate the accuracy of
the kriging method.
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Figure 3. Schematic diagram of the MODFLOW + kriging model.

2.3.1. Data Preparation

To minimize the distortion of the area and appropriate evaluation of the data, the NAD
1983 Texas Centric Mapping System Albers was used. First, the data were categorized into
two groups—observed data and MODFLOW generated output. The observed data consists
of the mean values for the water tables during the winter season (winter months were
selected as the water tables are expected to be more stable during winter and thus minimize
the anthropogenic effects due to uncertainties in demand seasons). The observed data were
then provided with coordinates and transformed into a shapefile. For the MODFLOW
generated data, the model grid shapefile produced by the MODFLOW program was
employed in the study area and saved based on the needed attributes for future analysis.
The binary files consisting of groundwater head data were converted to a text file using
python programming. The extracted head data were matched with the corresponding
observed data by locating the observation data in the grid shapefile. Finally, the shapefile
of observation data was overlaid on the MODFLOW grid shapefile to determine the value
of the MODFLOW generated head for each observation point. The MODFLOW generated
heads were compared with the observed data for the corresponding locations thus obtaining
the residuals.

2.3.2. Kriging Method

Kriging is one of the well known methods of predicting spatial characteristics and it
has been used in a variety of fields (e.g., soil science, ecology, mining, and water resources)
to provide a robust unbiased estimation of geo-distributed variables from small scales like X-
ray scattering experiments [31] to large ones like traffic behavior pattern [32], soil properties’
profile [33], and anticipating the metrological variables [34]. The main advantage of the
kriging method over the other spatial interpolation techniques is that the method is driven
based on the statistical theory, comparing others that are mostly deterministic and they
have the lack of ability to use for prediction. Furthermore, studies over geo-dependent
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variables showed that kriging has outstanding performance compared with its similar
existing interpolation methods [35].

Equation (1) shows the stochastic function that is considered in the simple kriging
method:

Z(s) = μ + ε(s) (1)

where Z(s) is the estimating function—which is simulated groundwater head elevation in
our study, μ is a constant value representing the mean value of the groundwater head and
ε(s) is a random error function regarding the model error from the observed records.

Estimating the value of Z(s) relies on two primary assumptions of considering that
variables are randomly distributed, and they preserve second-order stationary condition
respect to the location [36], which means:

E[Z(s + h)] = E[Z(s)] (2)

cov[Z(s + h), Z(s)] = C[h] (3)

where h is a vector that connects point s to point s + h. Equation (2) implies that the
expected value E[Z(s)] is constant in all domains as represented in Equation (1) by the
constant μ. However, in reality, this value fluctuates from place to place due to inherent
trends and variability in data. To deal with this problem, it is usually assumed that the
estimating variable (groundwater head) comprises two components

Z(s) = m(s) + e(s) (4)

where m(s) presents the deterministic part and e(s) is the statistical component of the
estimating variable which includes the spatially correlated random variable. Since m(s)
is treated as a deterministic part, it can be determined in a separate process and summed
up with residuals random function component e(s). In this study, the deterministic part of
the head variable is estimated by existing numerical models. We then applied the ordinary
kriging (OK) to the residuals of the numerical model for the statistical part assuming the
mean value of error is not known and needs to be obtained over optimization process by
minimizing the variance of errors.

3. Results and Discussion

3.1. Data Investigation

In standard statistical problems, the first step before starting to model the phenomena
is to examine the data. In this study, a commonly used statistical tool, histogram, was
used to see if the MODFLOW residuals are normally distributed. As shown in Figure 4,
the residuals in general, follow the normality pattern. However, some level of negative
skewness and distortion of normality was observed in the data which could be attributed
to the complexity of nature.

Next, the residuals were checked for spatial correlation as the data tends to share some
information with their neighbors. A variogram method was used to estimate how strongly
data are related to each other. The variogram in space is usually implemented to check two
major assumptions in the application of the kriging method—stationary in space (variance
is independent of location) and isotropy (variance is independent of direction). Thus, a
semi-variogram cloud or plot was used to provide a better visual understanding of the
data distribution and to detect any possible trends or geometric anisotropic behavior.
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Figure 4. Histogram presenting the water level residuals for Edwards–Trinity aquifer (years
1995–2000).

Figure 5 shows the semi-variogram clouds of water level residuals calculated from
subtraction between observation points and the MODFLOW outputs for the years 1995
to 2000. The difference squared (γ) in Figure 5 represents the MODFLOW residuals
dissimilarity which is defined as:

γ =
1
2
(
Z(si)− Z

(
sj
))2 (5)

where s is sample location and Z is the residual value.
The reddish circles in the figure indicate that there is a strong gradient observed at short

distances, as the value of the semi-variogram for each pair in these areas is significantly
high. This significant change can be an indication of non-stationarity in higher ranks caused
by neighboring drainage areas or rivers. However, to get a proper conclusion over the
sources that resulted in non-stationary, more investigation needs to be considered which is
beyond the scope of this study.
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Figure 5. Semi-variogram cloud for water level residuals during the years 1995 through 2000.

The semi-variogram was further used for interpolation where semi-variance was used
to represent the expected value of the residuals’ dissimilarity. A theoretical model was
fit into the sample data. In this study, a commonly used Spherical function was used.
The spherical function shows a progressive decrease of spatial autocorrelation until some
distance (radius of influence), beyond which autocorrelation is zero [37]. As observed
from the sample variogram in Figure 6, the Nugget variance of 50 and range of 50,000 was
defined for fitted theoretical semi-variogram.
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Figure 6. Sample variogram and fitted model applied on Edwards aquifer dataset for years 1995
through 2000.

3.2. Model Simulation

The ordinary Kriging method was applied to the MODFLOW residuals. In the process,
the existing trend arising from uncertainties of the simulated model was removed using
first-order trend and the exponential Kernel function was applied to weight the values of
the neighbors closed to sampled values [38].

The spherical model was chosen to fit on a semi-variogram, and the maximum number
of neighbors affecting the predicted data was limited to ten points. The kriging then applied
as a single model resulted in a higher mean root square error (not presented in this paper),
thus the area was divided into four quadrants with 45 offsets to minimize the distortion
due to anisotropy as observed in Figure 5.

Figure 7 shows the prediction for OK applied to Edwards–Trinity aquifer between the
years 1995 to 2000. High residuals (as shown by dark red and blue color) were observed
for the areas outside the boundary while the residual values are minimal inside the study
area. Furthermore, similar observations were observed in deviations as shown in Figure 8.
The high residuals or larger deviation (as shown by purple color) outside the boundary is
attributed to the missing observation data. Furthermore, some areas inside the study area
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showed relatively higher residuals with larger deviations which could also be due to the
missing observation data.

Figure 7. Predicted residuals (in meters) after application of kriging on MODFLOW residuals for
years 1995 through 2000.
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Figure 8. Standard Deviation (in meters) for ordinary kriging applied to Edwards–Trinity aquifer
for the years 1995 through 2000 (the black dots in the figure represent the observation points used
during cross-validation).

3.3. Model Validation

As mentioned before, the entire dataset was divided into two sets—a simulation
dataset (90% data) and a validation dataset (remaining 10% data). First, kriging was
applied on 90% of the data where the validation was performed automatically using the
ArcGIS Geostatistical Analyst toolbar [38]. The Geostatistical Analyst toolbar provides
the measured and predicted values and the standard error for each point. During the
process, the software keeps any individual points separate from other data (referred to as
dataset) for estimating the spherical model parameters. The parameters are then estimated
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using every such dataset and the process continues until optimal parameters that best fit
the entire datasets are obtained. Table 1 presents the average water head for observation
points along with predicted water heads using MODFLOW and kriging, while Table 2
provides a detailed summary of kriging application on the MODFLOW residuals. As
observed in Table 1, the residuals obtained from the MODFLOW simulation are much
higher as compared to the residuals obtained after the application of kriging. The residuals
significantly reduced from an average value of approximately 37 m to less than 1 m, with a
standard error of approximately 0.5 m.

Table 1. Average water heads using MODFLOW and kriging method (simulation dataset).

Year Observations 1

MODFLOW (m) MODFLOW + Kriging (m)

Mean a 2 Observed
Residuals 3

Standard
Error

Mean b 4 Predicted
Residuals 5 Error 6 Standard

Error

1995 727.5 764.7 −37.2 3.1 728.7 −36 1.2 0.7
1996 665.5 706 −40.5 3.3 667.1 −38.9 1.6 0.4
1997 692.4 725.5 −33.1 2.9 693.5 −32 1.1 0.4
1998 682.4 716.6 −34.2 2.9 682.8 −33.8 0.4 0.5
1999 708.3 747.1 −38.8 2.9 708.6 −38.5 0.3 0.3
2000 686 724.7 −38.7 3.2 685.3 −39.4 −0.7 1.1

1 Observed average value for water level for the given year (winter season). 2 MODFLOW simulated average
value for water level for the given year (winter season). 3 Difference between observed values and the MODFLOW
simulated values (Observations—Mean a). 4 Simulated average value for water level for the given year after
application of kriging (Mean a + Predicted Residuals). 5 Residuals obtained after application of kriging on the
observed residuals. 6 Difference between predicted and observed residuals for each point.

Table 2. Detailed summary of kriging application on MODFLOW residuals (simulation dataset).

Year Min. 1st Qu. Median Mean 3rd Qu. Max.

1995

Observed Residuals −141.6 −53.1 −32.2 −37.2 −20.8 55.2
Predicted Residuals −147.1 −52.1 −31.9 −36 −22.5 52.3

Error −97.3 −6.7 −0.1 1.2 5.2 84.5
Standard Error 0.4 0.7 0.8 0.7 0.8 0.8

1996

Observed Residuals −137.1 −60.8 −40.9 −40.5 −16.1 30.4
Predicted Residuals −132.7 −56.8 −43.3 −38.9 −14.3 33.6

Error −49.6 −6.4 0.8 1.6 11.6 72.8
Standard Error 0.4 0.4 0.4 0.4 0.4 0.4

1997

Observed Residuals −135.4 −51.7 −32.6 −33.1 −11.3 62.5
Predicted Residuals −148.1 −47 −31.7 −32 −9.1 45.7

Error −59 −6.4 0.5 1 7.7 78
Standard Error 0.2 0.4 0.4 0.4 0.4 0.5

1998

Observed Residuals −131 −54.3 −32.3 −34.2 −16.9 64
Predicted Residuals −145.8 −53.2 −33.4 −33.8 −19.3 43.8

Error −50 −8.7 0.4 0.4 7.1 61.3
Standard Error 0.4 0.5 0.5 0.5 0.5 0.5

1999

Observed Residuals −144.6 −54 −31.7 −38.8 −18.4 52.5
Predicted Residuals −150 −53.1 −31.1 −38.5 −20.9 52.2

Error −55.2 −8.2 0.4 0.3 7.7 75.9
Standard Error 0.3 0.3 0.3 0.3 0.3 0.3

2000

Observed Residuals −141.1 −59.3 −35.7 −38.7 −15.8 48
Predicted Residuals −139.3 −56.4 −39.5 −39.4 −19.1 36.1

Error −79.7 −8.7 0 −0.7 8.3 66.2
Standard Error 0.4 1.2 1.2 1.1 1.2 1.3

As a next step, a manual cross-validation was adopted where the calibrated model
was applied to the remaining 10% of the data. Table 3 presents the average water heads
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for observation points along with predicted water heads using MODFLOW and kriging.
Similar to observations in Table 1, higher residuals were obtained for the MODFLOW
simulation for all the years. However, after the application of kriging on MODFLOW
residuals, the average absolute error of approximately 31 m (from MODFLOW simulation)
was reduced to less than 5 m. A similar reduction was observed in the residuals’ average
standard error where the values reduced from 9.7 to 4.7. The observed reduction in standard
error thus indicates that the average value of residuals over the entire period can be a good
estimation for each year separately. Table 4 provides a detailed summary of the kriging
application on the residuals.

Table 3. Average water heads using MODFLOW and kriging method (validation dataset).

Year Observations

MODFLOW (m) MODFLOW + Kriging (m)

Mean
Observed
Residuals

Standard
Error

Mean
Predicted
Residuals

Error
Standard

Error

1995 758.7 802.1 −43.5 8.7 753.6 −48.5 −5.1 3
1996 697.6 729 −31.4 14.7 689.1 −39.9 −8.5 5.3
1997 683 707.6 −24.6 5.9 677.4 −30.1 −5.5 3.9
1998 694.8 733 −38.1 10.7 694.6 −38.3 −0.2 8.1
1999 716.5 744.8 −28.3 8.4 714 −30.8 −2.5 3.8
2000 644.7 665.5 −20.8 10 646.5 −19 1.8 4.6

Table 4. Detailed summary of kriging application on MODFLOW residuals (validation dataset).

Year Min. 1st Qu. Median Mean 3rd Qu. Max.

1995

Observed Residuals −131.8 −50 −33.9 −43.5 −24 −15
Predicted Residuals −132.5 −55 −31.8 −48.5 −24.8 −18.9

Error −7.1 −1.3 0.8 5.1 8.9 29.3
Standard Error - - - 3 - -

1996

Observed Residuals −138.1 −55.2 −30.1 −31.4 −1.8 61
Predicted Residuals −143.1 −46.5 −37.2 −40 −5.3 40.3

Error −20.5 −5.2 5 8.5 20.3 52.1
Standard Error - - - 5.3 - -

1997

Observed Residuals −82.3 −36.6 −28.1 −24.6 −6.9 16.2
Predicted Residuals −80.9 −44.9 −31.1 −30.2 −7.3 16.7

Error −18.5 −3.1 0 5.5 20.6 38.7
Standard Error - - - 3.9 - -

1998

Observed Residuals −134.5 −56.6 −33.7 −38.1 −25.2 62
Predicted Residuals −76.3 −51.7 −45 −38.3 −22.5 −10.1

Error −87.3 −6 0.8 0.2 10.4 72.9
Standard Error - - - 8.1 - -

1999

Observed Residuals −68.1 −54.8 −33.6 −28.3 −19.3 65.5
Predicted Residuals −71 −52.1 −39.1 −30.8 −22.8 32

Error −38.6 −2.7 0.3 2.5 9.7 35.8
Standard Error - - - 3.8 - -

2000

Observed Residuals −120.5 −46.4 −16.2 −20.8 −3.2 65.6
Predicted Residuals −71.7 −45.9 −20.4 −19.1 4.2 41

Error −48.9 −4 0.5 −1.7 10.2 24.7
Standard Error - - - 4.6 - -

For all the years, the water head for observation points obtained after kriging is much
closer to the observed values. However, for the year 2000, three observation points (11, 12,
and 15) showed higher residuals after the application of kriging as shown in Table 5. This
could possibly be due to the higher prediction accuracy of the MODFLOW simulation in
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those points. The table with water heads for all the years (1995 through 2000) has been
provided as a supplementary file in Table S1.

Table 5. Predicted water heads for observation points for the year 2000.

Observation
Well

Observed
Head (m)

MODFLOW (m) MODFLOW + Kriging (m)

Simulated
Head

Residuals
Predicted

Head
Residuals

1 769 786.9 −17.9 764.4 4.6
2 745.7 760.1 −14.4 741.8 3.8
3 748.3 868.8 −120.5 797.2 −48.9
4 1059.2 993.6 65.6 1034.6 24.7
5 662.2 713.2 −50.9 652.3 10
6 548.9 595.9 −47 552.5 −3.6
7 586.6 608.2 −21.6 574.7 12
8 648.8 695 −46.2 647.2 1.6
9 585 617.7 −32.6 570.1 14.9

10 616.1 663.8 −47.7 618.4 −2.3
11 613.4 619.5 −6.2 602.2 11.1
12 618.5 623.3 −4.8 629.4 −10.9
13 623.6 620.6 3 624.1 −0.5
14 588.9 568.3 20.5 594 −5.1
15 555.1 568.4 −13.3 593 −37.8
16 346.3 344.7 1.6 347.4 −1.2

3.4. Comparison to Other Studies

The integrated approach used in this study satisfactorily described the general pattern
of residuals generated by numerical model MODFLOW, thereby improving the prediction
of the groundwater level at ungauged areas. Results showed that the integrated kriging
and MODFLOW method can be used as an alternative approach in improving the existing
numerical models whilst reducing the underlying model uncertainties. Most of the previous
studies focused on decreasing the uncertainties by improving the resolution, or/and
including local hydraulic variables like pumping and recharge/discharge to the large-
scaled models [39].

However, the uncertainties in residuals can have sources of randomness that the
improvements in the modeling process may not address, and rather could be represented
by statistical methods such as kriging. The applied ordinary kriging in this study showed
that the MODFLOW model’s residuals are locally correlated noises and can be estimated
from their neighbors to some extent (with the range of 50 km) by using the spherical method
as a correlation function. The numerical model used in this study was developed and
improved by Anaya & Jones [29] and is the MODFLOW model approved by TWDB for the
Edwards–Trinity Aquifer. In this study, MODFLOW was used as a deterministic part and
the model uncertainties were presented as trends during the kriging model. The use of
kriging reduced the average absolute error from approximately 31 m (from MODFLOW
simulation) to less than 5 m after the application of kriging, which aligns with the findings
from a previous study by Liu et al., [40]. They calibrated the MODFLOW model and were
able to reduce the average absolute error from 7.7 m to 3.44 m through updates in the
numerical modeling process. During the calibration process, they revised the recharge and
used the actual value for pumping. However, the improvement was only performed for a
smaller region (only the San Antonio segment of the aquifer) in contrast to improvement
over the entire Edwards–Trinity as in the study presented by the authors.

4. Conclusions

The kriging method was applied to improve spatial confidence in groundwater-level
predictions at unsampled locations. Kriging was applied on the MODFLOW residuals
for the groundwater levels in the Edwards–Trinity aquifer in Texas. The study was done
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for the years 1995 through 2000 where 90% of the observation data was used for model
simulation followed by validation with the remaining 10% of the observations. The kriging
method significantly improved water level predictions. The average absolute error of
approximately 31 m (from MODFLOW simulation) was reduced to less than 5 m after
the application of kriging on MODFLOW residuals. Furthermore, the average residuals’
standard error decreased from 9.7 to 4.7, which indicates that the average value of residuals
over the entire period can be a good estimation for each year separately. With improved
water level predictions, geostatistical tools such as kriging can be used to produce more
accurate potentiometric surface maps. Such improved results and accurate monitoring of
groundwater resources will lead to the sustainable use of groundwater resources while
also aiding in efficient and effective conjunctive management of surface and groundwater
resources.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14030426/s1, Table S1: Predicted water head for observation points for the the years 1995
through 2000.
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Abstract: This paper presents a review of papers specifically focused on the use of both numerical
and machine learning methods for groundwater level modelling. In the reviewed papers, machine
learning models (also called data-driven models) are used to improve the prediction or speed process
of existing numerical modelling. When long runtimes inhibit the use of numerical models, machine
learning models can be a valid alternative, capable of reducing the time for model development
and calibration without sacrificing accuracy of detail in groundwater level forecasting. The results
of this review highlight that machine learning models do not offer a complete representation of
the physical system, such as flux estimates or total water balance and, thus, cannot be used to
substitute numerical models in large study areas; however, they are affordable tools to improve
predictions at specific observation wells. Numerical and machine learning models can be successfully
used as complementary to each other as a powerful groundwater management tool. The machine
learning techniques can be used to improve calibration of numerical models, whereas results of
numerical models allow us to understand the physical system and select proper input variables for
machine learning models. Machine learning models can be integrated in decision-making processes
when rapid and effective solutions for groundwater management need to be considered. Finally,
machine learning models are computationally efficient tools to correct head error prediction of
numerical models.

Keywords: groundwater; physically-based models; machine learning models; artificial neural
network; random forest; support vector machine

1. Introduction

1.1. Physically Based Models in Groundwater Management

Physically-based models are the most commonly used tools in quantitative groundwa-
ter flow and solute transport analysis and management. Traditionally, the conceptual or
numerical models are applied to hydrological modelling in order to understand the physi-
cal processes characterising a particular system, or to develop predictive tools for detecting
proper solutions to water distribution, landscape management, surface water–groundwater
interaction, or impact of new groundwater withdrawals. Along with the ever rising accessi-
bility of computational power, field measurements, and improved understanding of the
dynamics of hydrogeological systems, the accuracy required for these models is increasing.
This brings some practical limitations of physically-based based models, including the
need for large amount of data and input parameters [1,2]. In order to solve the equations
describing the dynamics of flow, the physical properties as well as the boundary conditions
of the system must be suitably defined within the time and space domains of the model in
order to achieve acceptable accuracy. Quantifying these properties and conditions can be
expensive and time-consuming; thus, very few field measurements are often available, and
the accurate estimate of model parameters across the study area can be challenging [3].
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1.2. Uncertainty and Error Types of Physically-Based Models

Many modellers recognised the inherent uncertainty of physically-based models
(e.g., refs. [4–6]. They are subject to three types of errors: (1) model structural error intro-
duced by misrepresentation of the real system, as well as from the numerical implemen-
tation, for example, spatial and temporal discretisation [4,7,8]; (2) parameter error due to
indirect estimation (e.g., prior knowledge or calibration) [9,10]; (3) errors in input data [11]
and measurements used to evaluate the model. Alternatively, when the target is to obtain
accurate predictions rather than understanding the underlying groundwater system, con-
ventional statistical techniques, such as autoregressive (AR), AR moving average (ARMA),
and AR integrated moving average (ARIMA) have been applied invariably to modelling
groundwater resources [12,13]. However, the abovementioned methods do not take into
account the nonstationary and non-linear characteristics of the data structure [14,15].

1.3. Machine Learning Models

The need to address groundwater problems through alternative, relatively simpler
modelling techniques pushed authors in different parts of the world to explore machine
learning models. Machine learning methods have been widely used in recent years in many
fields (i.e., bioinformatics, biomedicine [16,17], biochemical engineering [18], civil engineer-
ing problems, see refs. [19–21] and references therein), transportation networks [22–24], geo-
sciences and environmental applications [25–27], and environmental risk prediction [28,29].
Their largely diffused uses are due to the fact that they are simple and provide accept-
able results. Recently, the modelling of non-linear and non-stationary problems has been
provided with great ability by machine learning techniques compared with traditional
statistical approaches [30–34]. Dealing with machine learning techniques, modellers do not
need to introduce the mathematical relationships among variables because machine they
are capable of learning the relationships from the input data. Of course, these methods
have some limitations, such as overtraining leading to low generalisability [35], risk of
using unrelated data, incorrect modelling with inappropriate methods, their dependency
on data for training [36], and so on. However, their simplicity of use, high-speed run and
reasonable accuracy without the need to know the physics of the problem have led many
researchers to apply them.

1.4. Machine Learning for Groundwater Level Forecasting: Current State of the Research

Many recently published review papers have explored the use of machine learning
models in hydrology (e.g., refs. [37–41] and references therein, refs. [42,43], or in many
water resources fields (e.g., refs. [44–47] specifically for groundwater level (GWL) modelling
and forecasting, refs. [48,49] and references therein)). However, there is not yet a complete
review paper examining the application of machine learning methods in GWL modelling
in comparison to numerical models. The development of better approaches for GWL
modelling makes it necessary to look at what has been done in the field of the comparison
of numerical and machine learning models and current research.

1.5. Aim of This Work

This paper presents a review of those papers specifically focused on the use of both
numerical and machine learning methods for groundwater modelling to estimate the
groundwater levels. The aim of the paper was to furnish information to orient modellers
which want to explore machine learning approaches starting from an already developed
numerical model, highlighting the advantages and disadvantages of both modelling tech-
niques. Moreover, it attempts to clarify some common questions such as: which machine
learning techniques are appropriated to solve a specific problem; which is the optimal
input data range for machine learning modelling; and which software is suitable for a
specific machine learning model. In the following chapters, the types of physically based
models used in the reviewed papers are briefly described. Then, some commonly used
machine learning methods for modelling GWL are addressed. The methods include Arti-
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ficial Neural Networks, Radial Basis Function, Adaptive-Neuro Fuzzy Inference System,
Time Lagged Recurrent neural networks, Extreme Learning Machine, Bayesian Network,
Instance-Based Weighting, Inverse-Distance Weighting, Support Vector Machine, Decision
Tree, Random Forest, Gradient-Boosted Regression Tree, and some hybrid models such as
wavelet-machine learning models. Radial Basis Function, Adaptive-Neuro Fuzzy Inference
System, Time Lagged Recurrent neural networks and Extreme Learning Machine, Bayesian
Network, Instance-Based Weighting, Inverse-Distance Weighting, Support types of Artifi-
cial Neural Networks, Random Forest, and Gradient-Boosted Regression Tree are types
of Decision Trees; however, in this review, each technique was treated individually. The
most frequently used machine learning techniques used are Artificial Neural Networks,
Bayesian Network, Decision Tree, and Support Vector Machine. At first, each method
is briefly described and thereafter the related studies are reviewed. This is followed by
general and specific results, discussions, and conclusions, including recommendations for
future research.

2. Modelling Techniques Explored in This Review

2.1. Physically Based Numerical Groundwater Flow Models

Numerical groundwater flow models simulate the distribution of head by solving the
equations of conservation of mass and momentum. Because these equations represent the
physical flow system, in order to obtain accurate results accuracy, the physical properties of
the aquifer (e.g., hydraulic conductivity, specific storage) as well as the initial and boundary
conditions of the system must be properly assigned within the time and space domains
of the model [3]. The physically based models used in the reviewed papers are briefly
described as follows.

MODFLOW [50,51] is the modular finite difference flow model distributed by the
U.S. Geological Survey. It is one of the most popular groundwater modelling programs.
Thanks to its modular structure, MODFLOW integrates many modelling capabilities to
simulate most types of groundwater modelling problems. The corresponding packages
(e.g., solute transport, coupled groundwater/surface-water systems, variable-density
flow, aquifer-system compaction and land subsidence, parameter estimation) are well
structured and documented and can be activated and used to solve required modelling
problems. The source code is free and open source, and can be fixed and modified
by anyone with the necessary mathematical and programming skills to improve its
capabilities [52].

SUTRA (Saturated-Unsaturated Transport) [53] is a 3D groundwater model that sim-
ulates solute transport (i.e., salt water) or temperature. The model employs a grid that
is based on a finite element and integrated finite difference hybrid method framework.
The program then computes groundwater flow using Darcy’s law equation, and solute
or transport modelling use similar equations. It is very frequently used for calculation of
salinity of infinite homogeneous, isotropic unconfined aquifer.

The Princeton Transport Code (PTC, [54,55] is a 3D groundwater flow and contaminant
transport simulator. It uses a hybrid coupling of the finite-element and finite-difference
methods. The domain is discretised by the algorithm into parallel horizontal layers; the
elements within each layer are discretised by finite-element method. The vertical connection
between layers is allowed by a finite-difference discretisation. During any iteration, all
the horizontal finite-element discretisations are firstly solved independently of each other;
then, the algorithm solves the vertical equations connecting the layers using the solution of
the horizontal equation.

SHETRAN is a physically-based distributed modelling system for simulating water
flow, sediment, and contaminant transport in river basins [56]. It is often used to model
integrated groundwater–surface water systems. SHETRAN simulates surface flows
using a diffusive wave approximation to the Saint–Venant equations for 2D overland
flow and 1D flow through channel networks. Subsurface flows are modelled using
a 3D extended Richards equation formulation, where the saturated and unsaturated
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zones are represented as a continuum. Surface and subsurface flows exchange is
allowed in either direction. The partial differential equations for flow and transport
are solved on a rectangular grid by the finite difference methods; the soil zone and
aquifer are represented by cells which extend downwards from each of the surface grid
elements. Precise river–aquifer exchange flows can be represented by using the local
mesh refinement option near river channels.

2.2. Machine Learning Models
2.2.1. Artificial Neural Networks (ANNs)

An artificial neural network (ANN) model is a data-driven model that simulates the
actions of biological neural networks in the human brain. Typically, an ANN comprises a
variable number of elements, called neurons, which are linked by connections. Generally,
an ANN is composed of three separate layers: input, hidden, and output layers. Each
single layer contains neurons with similar properties. The input layer takes input variables
(e.g., past GWL, temperature, precipitation time series); a relative weight (i.e., an adaptive
coefficient) is given to each input, which modifies the impact of that input. In the hidden and
output layers, each neuron sums its input, and then applies a specific transfer (activation)
function to calculate its output. By processing historical time series, the ANN learns the
behaviour of the system. An ANN learns by relating a given number of input data with
a resulting set of outputs [57], which is the training process. Training means modifying
the network architecture to optimise the network performance, which involves tuning the
adjustable parameters: tuning the weights of the connections among nodes, pruning or
creating new connections, and/or modifying the firing rules of the single neurons [58].
The training process can be conducted with various training (learning) algorithms. ANN
learning is iterative, comparable to the human learning from experience [59]. ANNs are
very popular for hydrologic modelling and is used to solve many scientific and engineering
problems. These models may be ascribed to two categories: feed-forward, which is the
most common, and feed-back networks [60,61]. The most frequently used family of feed-
forward networks is the multilayer perceptron [62,63]; it contains a network of layers with
unidirectional connections between the layers.

2.2.2. Radial Basis Function Network (RBF)

RBF network is commonly a three-layer ANN which uses RBF as activation functions
in the hidden layer; the network architecture is the same as multilayer perceptron. The
number of neurons in the input layer is the same as the input vectors. The radial basis
functions in the hidden layer map the input vectors into a high-dimension space [64]. A
linear combination of the hidden layer outputs is used to calculate the neurons in the
output layer of the network. The distinctive characteristic of RBF is that the responses
increase (or decrease) monotonically with Euclidean distance between the centre and the
input vectors [65].

2.2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS, first described by Jang [36], combines the neural networks with the fuzzy
rule-based system. In the fuzzy systems, relationships are represented explicitly in the
form of if-then rules [66,67]. Different from a typical ANN, which uses sigmoid function to
convert the values of variables into normalises values, an ANFIS network converts numeric
values into fuzzy values. Firstly, a fuzzy model is developed, where input variables are
derived from the fuzzy rules. Then, the neural network tweaks these rules and generates
the final ANFIS model [68]. Usually, an ANFIS model is structured by five layers named
according to their operative function, such as ‘input nodes’, ‘rule nodes’, ‘average nodes’,
consequent nodes’, and ‘output nodes’, respectively [69].
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2.2.4. Time Lagged Recurrent Neural Networks (TLRNs)

TLRN are multilayer perceptrons extended with “short-term” memory structures
that have local recurrent connections. The approach in TLRNs differs from a regular
ANN approach in that the temporal nature of the data is taken into account [69], allowing
accurate processing of temporal (time-varying) information. The most common structure
of a TLRN comprises an added feedback loop which introduces the short-term memory
in the network [70] so that it can learn temporal variations from the dataset [71]. TLRN
uses a more advanced training algorithm (back propagation through time) than standard
multilayer perceptron [72]. The main advantage is that the network size of TLRNs is lower
than multilayer perceptrons that use extra inputs to represent the past state of the system.
Furthermore, TLRNs have a low sensitivity to noise.

2.2.5. Extreme Learning Machine (ELM)

ELM is a training algorithm for the single-layer feed-forward-neural network (SLFFNN).
Input weights and biases values of the nodes in the hidden layer are randomly determined
according to continuous probability distribution with probability of 1, so as to be able to
train N separate samples. Compared with conventional neural networks, in ELM, only
the number of hidden layer neurons needs to be tuned, and no adjustments are required
for parameters such as learning rate and learning epochs. Training of ELM is conducted
quickly and is considered a universal approximator [73–75].

2.2.6. Bayesian Network (BN)

The Bayesian networks (Figure 1) are statistical-based models which compute the
conditional probability associated with the occurrence of an event by using the Bayes’
rule. A typical Bayesian network is composed of a set of variables where their conditional
dependencies are represented by a directed acyclic graph.

Figure 1. Example of the structure of a Bayesian model applied to groundwater-level study.

Connections define the conditional dependencies among variables (i.e., nodes) [76].
The dependencies are quantified by conditional probabilities for each node through a
conditional table of probabilities. Usually, BNs are built by software that generates many
network structures with the input parameters.

2.2.7. Instance-Based Weighting (IBW)

Instance-based algorithms derive from the nearest-neighbour pattern classifier [77],
which is modified and extended by introducing a weighting function. IBW models are
also inspired by exemplar-based models of categorisation [78]. Different from other
machine learning algorithms, which return an explicit target function after learning
from the training dataset, instance-based algorithms simply save the training dataset
in memory [79]. For any new data, the algorithm first finds its n nearest neighbour
in the training set and delays the processing effort until a new instance needs to be
classified. IBW has many advantages such as the low training cost, the efficiency
gained through solution reuse [80], ability to model complex target functions, and the
capability to describe probabilistic concepts [81]. However, when irrelevant features
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are present, their performance decreases; an accurate distinction of relevant features
can be achieved through feature weighting to ensure acceptable performance. IBW
does not need to be trained and the results are less influenced by the training data
size. Inverse-distance weighting is a special case of instance-based weighting with the
weighting factor p = 2 [82].

2.2.8. Support Vector Machine (SVM)

SVM are kernel-based neural networks developed by Vapnik [83] to overcome the
several weaknesses which affect the ANNs’ overall generalisation capability [84], including
possibilities of getting trapped in local minima during training, overfitting the training data,
and subjectivity in the choice of model architecture [85]. The SVM is based on statistical
learning theory [86]; in particular, it is based on structural risk minimisation (SRM) instead
of empirical risk minimisation (ERM) of ANNs. The SVM minimises the empirical error
and model complexity simultaneously, which can improve the generalisation ability of
the SVM for classification or regression problems in many disciplines. This is achieved
by minimising an upper bound of the testing error rather than minimising the training
error [79]; the solution of SVM with a well-defined kernel is always globally optimal, while
many other machine learning tools (e.g., ANNs) are subjected to local optima; finally, the
solution is represented sparsely by Supporting Vectors, which are typically a small subset
of all training examples [87]. For further details, see refs. [63,86,88,89].

2.2.9. Decision Trees (DT)

Decision tree models [90] are based on the recursive division of the response data
into many parts along any of the predictor variables in order to minimise the residual
sum of squares (RSS) of the data within the resulting subgroups (i.e., “nodes” in the
terminology of tree models) [91]. The number of nodes increases during the process of
splitting along predictors. The tree-growing process stops when the within-node RSS
is below a specified threshold or when a minimum specified number of observations
within a node is reached [92]. However, the modeller places minimal limitations upon
tree-fitting process, and fitted trees may be more complex than is actually warranted by
the data available. The problem of overfitting results is then managed by the ‘pruning’
algorithms, which aid the modeller in the selection of a parsimonious description of
interactions between response and predictors, fitting trees for the optimum structure for
any level of complexity [91]. Because no prior assumptions are made about the nature of
the relationships among predictors, and between predictors and response, decision trees
are extremely flexible.

2.2.10. Random Forest (RF)

Random forests work by constructing groups of decision trees during the training
process, representing a distinct instance of the classification of data input. Each tree
is developed by independently sampling the values of a random vector with the same
distribution for all trees in the forest [93].

The random forest technique considers the instances individually so that the trees are
run in parallel; there is no interaction between these trees while building the trees. The
prediction with the majority of votes or an average of the prediction is taken as the selected
prediction (Figure 2). The RF algorithm was created to overcome the limitations of DT,
reducing the overfitting of datasets and increasing prediction accuracy. The decision tree
grows to the largest possible size without being pruned in accordance with the number of
trees and the number of predictor variables [94].
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Figure 2. Scheme of Random Forest.

2.2.11. Gradient-Boosted Regression Trees (GBRT)

Gradient-Boosted Regression trees are ensemble techniques in which weak predictors
are grouped together to enhance their performance [95]. Learning algorithms are combined
in series to achieve a strong learner (“boosting”) from different weak learners (i.e., the
decision trees) connected sequentially. Each tree attempts to minimise the errors of the
previous tree. After the initial tree is generated from the data, subsequent trees are gener-
ated using the residuals from the previous tree. At each step, trees are weighted, with the
lower-performing trees weighted the highest; this allows the improvement of performance
at each iteration. A variety of loss functions can be used to detect the residuals.

3. Bibliographic Review

The following section describes the reviewed papers. Throughout our research, few
papers were found in the literature that examine the use of both numerical models and
machine learning models in GWL forecasting. Here, 16 papers dealing with the use of
both models for the prediction of GW levels, which were published in 10 international
journals and 1 book from 2003 to 2020, were reviewed. Each paper was analysed in
detail; for each one, the author provided a description of the study area and the geological
context, the area of model use (e.g., groundwater planning and supply, management in
farming systems, coastal water management), the machine learning technique, and any
details of its application in the specific case study. Finally, the statistical indicators used
to compare the performance of numerical and machine learning models were reported.
In the reviewed papers, machine learning models are always used to improve the results
of physically-based models in GWL forecasting and to overcome the problem of long
computational time of regional models. This is accomplished by comparing results of a
physically-based model and a surrogate machine learning model (i), comparing results
of a physically-based model and different machine learning models (ii), testing hybrid
or ensemble models (iii), and reducing and correcting physically-based model errors by
means of machine learning approaches (iv). In the cases (i) and (ii), each model is run
independently. In the case (iii), machine learning techniques are applied at different stages
of the modelling procedure, such as data pre-processing; in some papers, numerical model
output is used to train machine learning models, obtaining statistical models capable of
speeding up the numerical model runs. In case (iv), numerical model errors are used as
training datasets for machine learning models. Details of the selected papers are given
in Table 1, which includes information such as the region of study, the key area of model
use, the used machine learning model, the hydrologic input variables of machine learning
models, the time step, the range of total data, the total simulation time, time step, and
the grid size of the physically-based model (Journal Citation Reports, Clarivate Analytics).
In some cases, lacking information was integrated with literature complementary to the
reviewed papers (i.e., same study areas).
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3.1. Comparing Results of a Physically-Based Model and a Surrogate Machine Learning Model

Many authors compared results of physically-based models and machine learning
models run independently. The two approaches are then compared in terms of GWL
prediction performance.

Mohammadi et al. [59] investigated the applicability of ANN models in simulating
GWL for aquifers with limited data. The study area was the Chamchamal plain (Iran),
an alluvial plain surrounded by a karstic formation. Groundwater flow was simulated
by MODFLOW and hundreds of data sets were generated from the calibrated model to
train the ANN model. Another purpose was to detect ANN models capable of simulating
the complex dynamics of GWL, even with relatively short lengths of training data of
the ANN model. To achieve this objective, different ANN models were implemented,
with different combinations of input data. Furthermore, different network architectures,
with different number of hidden layers and activation functions, were evaluated. The
models’ performances were evaluated by means of MODFLOW outputs and measured
groundwater levels through the coefficient of determination (R2), mean squared error
(MSE), and normalised mean squared error (NMSE). The water table was estimated with
reasonable accuracy by all the models, but the ANN required lesser input data and took less
time to run. However, the authors remarked two disadvantages of these networks: (i) the
water table cannot be predicted in all observation wells by a single model with similar
input parameters; and (ii) models are static and inputs and outputs from previous time
steps are not considered (unless these are introduced explicitly). This results in a high
difference between the observed and calculated GWL at some points. In order to overcome
these difficulties, the authors tested TLRN to simulate the entire groundwater system with
one model. The aim of TLRN is to predict a multivariate time series using past values
and available covariates. Instead of using static feed-forward ANNs to model nonlinear
relationships in water table level forecasting, the TLRNs approach takes into account the
temporal nature of the data (i.e., the lagged inputs, see Section 2.2.4), and in this respect
compares favourably with ANN multilayer perceptron networks. The model used in the
TLRNs is the gamma model [71], which is characterised by a memory structure that is a
cascade of leaky integrators. The neural network can control the depth of the memory by
changing the value of the feedback parameter, instead of changing the number of inputs.
Since the feedback parameter is recursive, a backpropagation through time algorithm was
used to apply a more powerful learning rule. Considering the reduced computational
costs and the lower data requirements, the authors concluded that a TRLN model can be
effectively used in the field of GWL simulation.

In the work of Coppola et al. [3] ANNs are used to accurately forecast transient water
levels in a complex groundwater system under variable aquifer stresses. The model was
tested in the Northwest Hillsborough Wellfield near Tampa Bay, Florida, USA, the model
area being represented by the Upper Floridian aquifer (consisting of high permeability
karst limestone overlain by a low permeability semiconfining unit, with a surficial sandy
unconfined aquifer above). Results of numerical and machine learning models were
compared for representative monitoring wells by using root mean square error and absolute
mean error. The oscillation of the water levels was modelled with much more accuracy
by ANN than the numerical flow model. The Absolute Mean Error of numerical model
exceeded the maximum ANN prediction error at any single observation during each stress
period. The authors concluded that for certain problems, ANN represents a better option
to numerical modelling approaches because it does not require difficult-to-quantify aquifer
parameters and time- and space-variable conditions. Then, three types of sensitivity of
ANN were evaluated: (1) the sensitivity of ANN prediction performance to training set
size; (2) sensitivity analysis of selected ANN inputs on water level responses; (3) sensitivity
of ANN performance to data noise and measurement error.

(1) The sensitivity of ANN performance to data availability was assessed by using dif-
ferent sizes of training sets. The results showed that, during validation, acceptable
prediction accuracy was achieved with a relatively small number of training sets.
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(2) Input parameters groundwater withdrawals and rainfall were included in the sensi-
tivity analysis. Results showed that, in the unconfined aquifer, short-term oscillations
were correlated most strongly to rainfall, while in the underlying semiconfined aquifer
the water level was mostly influenced by withdrawals. Since these results are in ac-
cordance with the hydrological conditions, the authors concluded that the physical
dynamics of the system must be sufficiently understood by the modeller in order to
identify the important predictor input variables.

(3) The effect of measurement error and data noise (inherently present in most hydrologic
data set) on ANN performance was assessed by introducing normally distributed
random noise into the input variables of the training set. The results demonstrated
that the ANN can filter out noise in the training data and effectively learn groundwater
system behaviour.

Banerjee et al. [96] evaluated the use of ANN simulation over mathematical modelling
as a management tool for coastal aquifers. The aim of the models was to forecast the
increase in the salinity of groundwater due to pumping at different rates in the island of
Kvaratti, Lakshadweep archipelago (India) and to detect management strategies to avoid
the increase of salinity of groundwater. A physically-based 2D finite element model was
developed with SUTRA [53]. The study demonstrated the superiority of ANN with respect
to the physically-based model, evaluated by mean of root mean squared error (RMSE) and
mean absolute error (MAE). Its non-linear nature makes it a formidable tool for analysing
real-world data, allowing modelling of complex dependencies. With respect to traditional
models such as SUTRA, ANN requires a lesser number of input parameters and avoids the
model building and parameter estimation phases. While only a few seconds are needed for
the training in the ANN models, modelling in SUTRA is very time-consuming.

Mohanty et al. [97] compared the results of the finite difference-based numerical
MODFLOW model and the ANN model in simulating GWL in an alluvial aquifer system
(Kathajodi-Surua Inter-basin of Odisha, India) for improving the efficiency of planning
and management of groundwater resource at the basin scale. To evaluate the results,
6 statistical criteria were used: bias, coefficient of determination (R2, MAE, RMSE), Nash–
Sutcliffe efficiency (NSE), and mean percent deviation (Dv). Results revealed that the
ANN model performed better for short-time predictions that require high accuracy, while
numerical models were more appropriate for long-term predictions. Furthermore, the
authors highlighted that physically based models provide the total water balance of the
system, whereas the ANN models do not involve a description of the entire physics of
the system. In the case of ANNs, a new model must be developed from the beginning to
include any changes in the input or output parameters, differently from numerical models.
Thus, the type of model should be selected in accordance with the type of problem.

Parkin et al. [104] developed and tested an approach in which numerical and ANN
models were used to evaluate the impacts of groundwater withdrawals on river flows in
areas representing the hydrogeologic settings of most of England and Wales. Several ANN
hidden node structures were tested. The ANN model was trained using the input and
output data from about 2000 simulations of the SHETRAN numerical modelling system.
The outputs of ANN model were compared against analytical models, and tested using
a field data from a case study site: the Winterbourne stream within the Thames Basin
near Reading, Berkshire, flowing across a chalk fractured aquifer. The parameters used
for the ANN model come from many sources and comprise the distance of borehole from
river, the aquifer transmissivity and storage coefficient, the valley-fill transmissivity and
specific yield, the river width, the hydraulic conductivity and thickness of riverbed, and
the mean annual recharge and the date of peak recharge. The performance was evaluated
by comparing root mean square errors of normalised outputs. The results showed the
successful application of the approach for modelling river–aquifer interactions and its
potential for modelling complex hydrological systems. The good correspondence between
the simulated and observed flow depletion using independently-derived parameter values
demonstrates that this approach can be applied for modelling realistic field conditions.
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3.2. Comparing Results of a Physically-Based Model and Different Machine Learning Models

Even if ANNs are widely used among machine learning technique by groundwater
modellers, their limitations encouraged authors to explore alternative models to achieve
better performance in GWL prediction.

Moghaddam et al. [76] compared a MODFLOW, an ANN, and a BN model to deter-
mine the most accurate method for simulating GWL in the alluvial Birjand aquifer, located
in an arid region of the eastern Iran, and solve the problem of GWL overestimation of
the MODFLOW model. Both BN and ANN models provided a reliable prediction for
GWL. The BN model showed the best match between the measured and the predicted
groundwater level values, evaluated by comparing R2, RMSE, and NASH, and the best
performance evaluated by a 2-year period groundwater hydrograph. BN models showed
many advantages, such as the easier implementation, the higher forecasting accuracy, and
the ability to deal with missing or incomplete data. Moreover, in the BN models, the
variables were modelled by means of probability distributions; this allowed the authors to
estimate uncertainty more accurately compared with other models other models [108–110].

Almuhaylan et al. [68] compared a MODFLOW model, three ANNs, and one
adaptive neuro-fuzzy inference system (ANFIS) model developed in the Saq-Aquifer,
Al-Qassim region (Saudi Arabia), an aquifer mainly characterised by medium-to-coarse
sandstone. The modelling framework was implemented for assessing the impact of
different groundwater pumping scenarios on aquifer depletion. The performance
of ANN/ANFIS models for long-term future predictions of GWL and for finding a
simple solution to the problem of undefined boundary conditions was examined. Deep
learning models, e.g., recurrent neural network or convolutional neural network, are
usually required for long-term predictions. The authors instead adopted a simple
approach by changing the targets and predictions into GWL changes instead of GWL to
develop a standard ANN/ANFIS simulation problem. Additionally, the training of the
ANN/ANFIS model was handled with the prediction of changes in GWL instead of the
direct simulation of GWL. The authors optimised the use of ANN model by choosing
different combinations of architecture (number of hidden neurons and number of layers).
The authors obtained a lower mean-square-error and a higher NSE in the training stage
of ANN and ANFIS models compared with the calibration of the MODFLOW. Despite
the hydraulic model being comparatively more reliable, ANN and ANFIS showed
excellent performance, better than the MODFLOW model in terms of NSE. The authors
did not simply remark any performance improvement of ANFIS with respect to ANN;
they showed better performance in both with respect to the numerical model.

Chen et al. [63] applied a physically based model developed with MODFLOW and
three ANN machine learning methods (ANN, RBF, SVM) to simulate the groundwater
dynamics of the middle reaches of Heihe River, northwest China. The objectives were to
assess the efficacy of machine learning models on reproducing groundwater dynamics in
arid basins and to compare results of machine learning and numerical models to verify
their applicability. The performance was evaluated by Root mean square Error (RMSE)
and Coefficient of determination (R2). As for the multilayer perceptron, the hyperbolic
tangent sigmoid transfer function was applied in the neurons of the hidden layer and the
linear transfer function was applied in the output layer; the number of hidden neurons
was identified by trial-and-error procedure. Trial-and-error was used also to identify the
number of hidden neurons for the RBF network. In RBF, the Gaussian radial basis function
was applied in the neurons of the hidden layer and linear transfer function was applied in
the output layer, respectively. As for the SVM, Gaussian function (i.e., radial basis function)
was used as a kernel function to compute the Gram matrix. Furthermore, for each of the
machine learning models, the ratio between RMSE in the prediction stage times RMSE
the in training stage was calculated as a measure of the models’ generalisation ability
(GA). Machine learning models simulated historical data with higher performance with
respect to numerical model, with the RBF model performing the best. In particular, SVM
performed the best in the training stage, while RBF in the verification stage. Machine
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learning models showed much less computation cost in training and prediction stages than
those of numerical model in calibration and verification stages. However, because of the
physical based mechanism, the numerical model showed a better generalisation ability.
Therefore, authors concluded that machine learning models are applicable to problems
that require a high number of model runs without considering the physical mechanisms
(e.g., optimisations, real-time models, sensitivity/uncertainty analysis).

3.3. Testing Hybrid or Ensemble Models

Hybrid modelling approaches including data-preprocessing and/or combination
of different machine learning techniques in different stages of the modelling have also
been developed in the recent years to improve the efficiency of the machine learning
methods [49].

Malekzadeh et al. [100] modelled the GWL in a well located in the arid agricultural
area of Kabodarahang Plain (Hamadan, Iran) using MODFLOW and a hybrid artificial
intelligence model. They compared an extreme learning machine model (ELM) and a com-
bination of ELM with the wavelet transform (WA-ELM), intending to improve MODFLOW
model calibration and optimise the prediction of GWL. Wavelet analysis is commonly
executed for de-noising, compressing, and decomposing input data time series in the stage
of data pre-processing. Similar to the Fourier transform, the Wavelet transform considers
time series as a linear combination of multiple base functions, and has the ability to obtain
time, frequency, and situation data simultaneously [111]. Malekzadeh et al. [100] divided
time series into several sub-series using the discrete wavelet transform (DWT), and then
used the decomposed components as input for the ELM model, instead of the main time
series. Different families of the wavelet model were evaluated by comparing the values
of R, RMSE, and BIAS, finding the mother wavelet used for the further steps. For each
of the ELM and WA-ELM models, 10 different models were defined; the best-performing
activation function and topology were chosen. As a result, the best models among the
ELM and the WT-ELM models were selected. Then, the results of the hybrid method
were compared to ELM and MODFLOW based on the MAE and RMSRE. They found that
the WA-ELM model simulates GWL with higher accuracy with respect to both ELM and
MODFLOW models.

Nikolos et al. [101] utilised ANNs to approximate a finite element model and combined
it with a Differential Evolution algorithm (DE) to determine the best operational strategy
for the productive pumping wells located in the northern part of Rhodes Island in Greece.
A 3D finite-element simulation model of the study area was initially implemented using the
Princeton transport code (PTC). The DE optimisation algorithm was successfully used for
solving the optimisation problem, since it provides a solution close to the global optimum
in a fully automated way. In the work of Nikolos et al. [101], the calls of the PTC model were
replaced with an ANN in order to overcome the time-consuming integration of the PTC
model within an evolution-based optimisation procedure. The training/evaluation data
for an ANN model were produced by the PTC model. Several numbers of hidden nodes
and training epochs were tested to adopt an optimum ANN topology. Then, the ANN was
combined with the DE algorithm to solve two different water table elevation scenarios at
the observation wells. The classic DE algorithm evolves a fixed size population npop that is
randomly initialised [112]. After initialising the population, an iterative process was started
which produces a new population until a given condition is satisfied. At each iterative step,
a newly generated element can replace each element of the population. At the end of each
run, the optimum solution was used as an input to both the PTC and the ANN models to
test the accuracy of the ANN predictions and the effectiveness of the constraints.

The results of this procedure demonstrated that the ANN can be used as a quick
surrogate model, providing very close to optimal solutions and allowing us to run an
optimisation procedure with the DE algorithm in less than a minute instead of the several
hours required to run the same process with the PTC model.
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Sahoo et al. [102] proposed an ensemble modelling framework (Automated hy-
brid artificial Neural network, HANN) comprising spectral analysis (SSA), machine
learning, and uncertainty analysis to facilitate improved GWL prediction with respect
to computationally expensive physically-based MODFLOW models. The method was
applied in two aquifer systems exploited for agricultural production (the Mississippi
River Valley alluvial aquifer and the High Plains aquifer, USA), with the aim to clarify
the influence of each climate variable on the irrigation demand and streamflow and
predict groundwater level change. The best input for the ANN was selected by a hybrid
data pre-processing method which includes: (i) decomposing the time series using
SSA to extract significant reconstructed components (RCs); (ii) selecting the best RC
of inputs by mutual information and genetic algorithm; (iii) and determining time lag
components using cross-correlation analysis. Then, the simulations from the HANN
model during the model testing period were summed to estimate the cumulative GWL
change. The HANN results were compared to regional GWL simulations coming from
MODFLOW models previously developed by many authors. HANN showed better
performance in terms of MSE. The authors highlighted that the HANN shows a high
model structure strength since it integrated a robust data pre-processing and input
variable selection technique within the ANN model for capturing the impacts of the
potential predictor variables on GWL change at observation wells.

Because the model is implemented and optimised for each well, they benefit from
training values at each well. On the other hand, while showing a lower prediction error than
the physical models, HANN cannot furnish the outputs typical of a physically-based model,
such as water balance, residence time calculations, and flux estimates. Moreover, while a
numerical model can be modified to include additional input or processes (e.g., supplied
water), introducing new parameters would require the building of a new ANN model.
Therefore, the authors concluded that each model type excels for certain applications.

Michael et al. [82] compared three machine learning techniques (DT, IDW, and ANN),
which were used in a hierarchical approach, to improve GWL forecasting by combining
data from different sources, including the results of a MODFLOW numerical model. They
used a collection of prewritten modules (set up for each machine learning model) composed
in a “data flow” program. The MODFLOW model is incorporated into the itinerary by
creating a module that returns the head prediction by MODFLOW. A hierarchy of models
was then arranged, with one model used to reduce the dimensionality of the largest
data set (called “specialty model”) and a second model (“expert model”) trained with a
combination of the remaining data and the specialty model results to obtain the optimum
predictions. After linking together the modules into a machine learning itinerary, a model
was automatically built by the itinerary from appropriate data sets to make predictions.
At first, the hierarchical approach used machine learning models as both specialty and
expert models; the results demonstrated that, based on mean predicted head errors, DT
provided the best prediction among the machine learning models, while neural networks
provided the least accurate prediction. The best machine learning model performed better
than the MODFLOW model in terms of hydraulic head predictions computed across all
observations used for calibrating the MODFLOW model. Furthermore, a very short time is
required to train DT, and their simplicity allows quick planning of on-site adaptive field
sampling. Interestingly, IDW showed a performance nearly as good as DT and IBW when
using all of the data across time. The authors concluded that the accuracy of physics-based
models can be improved by using a machine learning hierarchical approach in areas with
substantial data. Using this method allows identifying (i) advantages and disadvantages of
different machine learning approaches and (ii) which data are most significant for long-term
monitoring objectives. Secondarily, the MODFLOW model was used as a specialty model to
test the potential for machine learning methods to automatically update existing numerical
models. In many cases, such as groundwater remediation fields, it is not cost-effective to
recalibrate numerical models whenever new data become available. Instead of updating
existing models by tuning the parameters based on new data, physically based models
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are considered as one source of knowledge about the site and are integrated to historical
data using data-driven models. Results showed that, compared with the MODFLOW
model predicted errors, the mean predicted head error and the standard deviation of
predicted head error were consistently reduced with the best-combined model. This means
that the model learns a compromise between numerical and machine learning models.
Such combined hierarchies could allow an automated update of physically-based models,
expanding and adapting the prediction as new data (but also analysis and modelling
techniques) become available.

Fienen et al. [95] evaluated three machine learning techniques (BN, ANNs, and GBRT)
to train models simulating the source of groundwater to several wells. The aim of the
work was to predict local surface water impact due to new pumping wells. The regional
215,000 km2 groundwater model of Lake Michigan Basin [113] impedes the evaluation
of local-scale impacts due to the long runtime and the too-coarse grid. The solution was
to emulate the groundwater flow model using a dataset of collocated numerical model
input and output to build a statistical learning model (“metamodel”, [114]), providing
fast decision support to water managers which need to evaluate the permission to water
abstraction. In practice, the numerical model was used to generate outputs reproducing
several condition of the groundwater system; then, those outputs were used to train a
statistical model, which could be subsequently used to make predictions without the
need to run the regional model. The ability of the three techniques to extend MODFLOW
predictions to areas with few samples was evaluated. K-fold cross validation (CV) was used
to assess the models performance, as well as by hold-out data. The performance of the BN
model (evaluated by means of R2 and RMSE) was lower than the other two, and this could
be due to the fact that the continuous input and output variables were both discretised
into a small number of bins. All the three techniques can be implemented with commonly
used commercial (in the case of BN) or open source (in the case of ANN or GBRT) software.
The computational time is nearly instantaneous for all the three techniques while it takes
longer to perform cross-validation. ANN or GBRT may be the best options for managers
who need to achieve better predictive performance when a single response is considered.
BN includes estimate of the uncertainty of predictions because all variables are treated as
probability distributions. The authors concluded that the metamodelling approach is valid
over a wide range of conditions and, as a screening approach, is helpful. A limitation of
their approach is that it assumes that the response of the system to pumping rates is linear;
thus, this assumption is violated at high pumping rates.

Miro et al. [99] presented a hybrid empirical–dynamical approach application of
machine learning models to a Robust Decision Making study to evaluate the effect of
groundwater managed recharge. They developed an empirical model representing a
high-resolution MODFLOW model previously set-up in two basins located in a drought-
prone region of the American West: the San Bernardino and the Rialto-Colton basins,
San Bernardino Valley Municipal Water District (Valley District, U.S.). Inputs (recharge,
pumping) and outputs (resulting head) of the MODFLOW model were used to train three
machine learning methods (Random Forest, Support Vector Machine regression, and Artifi-
cial Neural Network) to predict the annual change in GWL. Then, the ability of machine
learning methods to simulate the output of the MODFLOW model was assessed to investi-
gate which model is capable of reproducing the best average basin conditions. Based on R2,
the most accurate results were obtained with RF. The authors concluded that RF is able to
reproduce time series trends in GWL as well as capture the variability in MODFLOW model
predictions. In that way, the authors obtained a significant reduction of computational time:
each MODFLOW run without the RF model would have taken approximately 36 years in
a standard computing environment, instead of 24 h while simulating MODFLOW with
a RF representation of the groundwater system. The procedure is integrated in a Robust
Decision Making (RDM) process: the novel application of machine learning represents an
improvement to the field of decision-making under deep uncertainty that allows reducing
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computational times and permits a greater exploration of the uncertainty space, such as
future climate changes and drought conditions.

3.4. Reducing and Correcting Model Errors by Means of Machine Learning Approaches

Despite a correctly constructed and calibrated groundwater model being able to
furnish valuable information about the system behaviour, the unaccounted uncertainty,
which is typically associated with the phases of model development and parametrisation,
can result in large localised simulation errors.

Xu et al. [79] tested two machine learning techniques (Instance-based weighting
and support vector machine regression) to correct the prediction of two physically-based
models, successfully improving the head prediction accuracy. The authors applied the
error-correcting data-driven models to temporal, spatial, and spatiotemporal prediction.
The core of the study relies on the selection of historical residuals of the physically-based
models, which were used to train the data-driven models. Then, the physically-based
model was used to make predictions, and the trained data-driven models were used to
predict the error of the predictions. Finally, the updated head was obtained by adding the
predicted error to the head simulated by the physically-based model. The procedure was
applied to two real-world groundwater flow models having different data densities and
extents of temporal and spatial structures in the error. The first is the regional Republic
River Basin (RRCA), covering portions of eastern Colorado (USA), a 79,396 km2 model [115]
developed to resolve water conflicts as growing water demand led to dramatically increased
groundwater pumping. The second is the Spokane Valley–Rathdrum Prairie aquifer (SVRP)
(USA), an 844 km2 aquifer subjected to groundwater pumping stresses. The two models
differ in various aspects, including parametrisation, calibration, grid resolution, data
density, and calibration strategy, leading to different spatial patterns in model residuals.

In the case of RRCA, data were pre-processed by cluster analysis: for temporal pre-
diction, observation wells were clustered using the agglomerative hierarchical clustering
algorithm according to their spatial location. In spatial and spatiotemporal prediction
scenarios, input data were clustered by the k-means algorithm. Each cluster was subdi-
vided into a training and a validation dataset, and data-driven models were applied to
each subset.

In the case of the SVRP model, cluster analysis was not implemented because residuals
did not show local patterns; thus, the data-driven models were applied only to the temporal
prediction scenario. In the same way, to the RRCA case study, IBW and SVR models were
built to forecast the error of the simulated head taking as input features the well location
and MODFLOW computed head; then, the updated head was computed. For both case
studies, five-fold CV was used to adjust the parameters of IBW and SVR.

The magnitude and biasedness of the prediction error (evaluated by means of ME and
RMSE) were sufficiently reduced. The authors found that this complementary modelling
framework was computationally efficient. New data can be easily incorporated into the
training dataset. Therefore, data-driven models can be used to improve the prediction of
the physically-based model for long-term prediction and under conditions different from
the one used during calibration. A limitation of this methodology is that it applies only
to physically based groundwater models with epistemic errors in the simulation results,
while it is not suitable for models with calibration error following Gaussian distribution
with zero mean and variance comparable with the observation error.

Demissie et al. [85] developed a complementary approach that integrates the calibrated
groundwater MODFLOW model with data-driven models to detect and predict systematic
errors in groundwater model simulation in a hypothetical test case based on the Argonne
National Laboratory, Illinois (USA), a site affected by groundwater contamination by
radioactive substances and volatile organic and with phytoremediation installed to clean up
the soil. Using the groundwater model residual analysis results, the authors implemented
four data-driven models (ANN, DT, SVM, and IBW) for simulating and correcting the
groundwater head predictions both in time and in space. The data-driven models were then
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used to update the head predictions. The updated models showed improved performance
compared to the MODFLOW head predictions at all observation wells in terms of RMSE
reduction. ANN performed better in updating the future predictions but required a longer
time to train the model and the definition of many parameters. IBW updates showed a
better performance in the case of spatial prediction, probably because the number of spatial
data was too small for the other three models to learn the spatial patterns of the residuals.

4. General Results

The general outcomes derived from the 16 reviewed studies are discussed, such as
the results related to the key area of model use, input variables, simulation period of
physically-based models, time step, dataset size and division, and software used.

4.1. Key Area of Groundwater Model Use

In general, machine learning models are developed to achieve a better performance in
GWL forecasting in areas where groundwater management strategies are strictly required
to ensure proper resource availability while protecting the environment and groundwater
related ecosystems. This is especially needed in areas where the aquifers have been
overexploited; where the groundwater recharge is scarce (drought-prone regions); and in
coastal areas, where groundwater is threatened by saltwater wedge intrusion. Most of
the reviewed papers (four, Figure 3) concern water planning and supply, usually at the
catchment scale. A minor number of papers (three) focus on the groundwater management
in farming systems; in coastal waters; in drought-prone regions. In two cases, machine
learning models are developed in areas with contaminant pollution and phytoremediation
plants. Finally, one paper attempted to use machine learning models to represent the
impact of groundwater abstractions on river discharge across a wide range of conditions.
From the reviewed papers, it is not possible to recommend a machine learning technique
for a specific key area of model use. ANN is the most-used technique in the case of water
planning and supply (also in drought-prone areas), followed by BN and SVM (Table 1).

Figure 3. Key areas of groundwater models use in the reviewed papers.

4.2. Input Variables Employed for Machine Learning Modelling

Figure 4 shows the input variables that have been utilised in machine learning mod-
elling. The past GWL time series are the most frequently used input variables to predict
GWL; among 16 papers, 13 employed the GWL as an input variable. The precipitation or
the net precipitation (i.e., the recharge) has been frequently used (four times the rainfall
and five times the recharge, for a total of nine times) as an input variable. Moreover, other
hydrological time series (e.g., pumping rates, temperature, evapotranspiration) have been
also employed as the input variables in the reviewed papers. Since machine learning
models can work with any data, there are many other input variables which have been
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used once in the reviewed papers, even if with less frequency (i.e., aquifer discharge, dew
point, river stage, river flow depletion, irrigation demand). It is worth noting that the input
data are commonly selected based on the availability of data rather than a physical analysis
of the system. In particular, the degree of accuracy of the prediction will depend upon
the spatial and temporal resolution of the monitoring network from which the model is
developed for making predictions. Thus, the choice of input variables is often driven by
the availability of proper time series.

Figure 4. Input variables employed for the machine learning models.

4.3. Simulation Period of Physically-Based Models

The simulation period of the physically-based models varies from 141 to 1 year; nine
physically-based models adopted a simulation period between 1 and 15 years; five physically-
based models used a run simulation period between 16 and 35 years; two physically-based
models adopted a run period higher than 35 years. In the reviewed papers, no mention was
paid to a direct relation between the simulation period length of physically-based models
and prediction accuracy of machine learning models. The size and layering of original
numerical models ranges from 204,764 km2 and 20 layers [95] to 0.75 km2 and 1 layer [55].
Results suggest that there are no machine learning techniques nor groundwater manage-
ment problems specifically suitable for a given range of physically-based size.

4.4. Time Step

The majority of the reviewed papers (8 among 16) used monthly time step for the
machine learning simulations, followed by daily and weekly (both used in two papers) and
quarterly (one paper). The time step selection was not declared in three of the reviewed
papers. The frequent choice of monthly time steps is probably justified by the large
availability of monthly recorded GWL data compared with other time steps. However,
daily time steps are needed when modelling local-scale problems, such as river–aquifer
interaction, or in some coastal water problems, where GWL are influenced by the tidal
effects which induce daily variation to GWL.

4.5. Data Set Size

The number of total data used for groundwater modelling is highly variable. In
three papers, only the number of wells was specified, without reporting the number of
measure for each well. Among the papers which declared the size of data, the data set
ranges from 300,000 sets [79] to 23 sets [96]. There is not a range of data set size which was
more commonly used: five models used a number of dataset from 23 to 301; five models
used from 1872 and 4911 datasets; four models used from 11,088 to 300,000 datasets. There
is not a direct proportion between area of the physically-based model and data sets. Usually,
smaller data sets are associated with a smaller size of the physically-based model. However,

237



Water 2022, 14, 2307

in some cases, large extent models (which is, larger than 10,000 km2) are covered by a
relatively small number of data (e.g., ref. [3]). There is not any recommendation in the
reviewed papers about the density of samples which optimises the model performance.
However, denser distributed training data allow achieving the best performance in tem-
poral prediction scenarios. For example, the ANNs’ ability to learn or generalise system
behaviour is limited by the data with which it is trained. Machine learning models can fail
to accurately predict GWL in areas where a scarce number of data for training is available,
and results can be worse than those of numerical models.

4.6. Subset for Machine Learning Model Training, Validation and Testing

As explained in Section 2.2.1, the data available for modelling are subdivided into a
training dataset (used during the learning phase of the machine learning model to produce a
function representing the system behaviour) and into a testing dataset (used to evaluate the
model’s performance). Some authors subdivide data in three groups: training, testing, and
validation; validation aims to check the model’s prediction ability with a new input dataset.

There is not a specific rule for determining the optimum percent of data division for
training, validation, and testing tasks. However, it can be noted that in all cases (except
Sahoo et al., 2013 [102]) the dataset for training in the reviewed papers was always at least
60% (Figure 5), reaching 95%. In the majority of the papers (9 among 16), the percent of
training dataset exceeded 80%. With regard to the testing dataset, authors use a percentage
highly variable, between 4.5% and 40%. Only three of the reviewed papers used three
subsets for training, for testing, and for validation, respectively. In these cases, the main
subset was used for training (60%, 69%, and 52%), and the remaining data were equally
distributed between testing and validation subsets or subdivided into 30% and 18% for
testing and validation, respectively. In Banerjee et al. [96], the division into validation or
testing sets was not mentioned, and the performance criteria were only mentioned for the
training data, as already reported in ref. [19]. It can be concluded that a robust machine
learning model should always be based on at least 60% of the training data, and 40% of the
testing data.

 

Figure 5. Percentage of the training and testing datasets used in machine learning modelling. Data
from: Mohammadi, 2009 [59], Coppola et al., [3], Banerjee et al., 2011 [96], Mohanty et al., 2013 [97],
Parkin et al., 2007 [98], Moghaddam et al., 2019 [76], Almuhaylan at al., 2020 [68], Chen et al., 2020 [63],
Fienen et al., 2016 [95], Miro et al., 2021 [99], Malekzadeh et al., 2019 [100], Nikolos et al., 2008 [101],
Sahoo et al., 2013 [102], Michael et al., 2005 [82], Xu et al., 2014 [79], Demissie et al., 2009 [85].
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4.7. Used Software

Table 2 shows the number of times that each software was used to develop the ML
models. It should be noted that in 11 cases, the software was not mentioned. Matlab is the
most used software (nine times): when mentioned, the specific toolbox which adapts to
the models’ purpose is reported. In the hybrid approach of Michael et al. [82], the data-to-
knowledge D2K software was used, a java-based data mining tool from the National Canter
of Supercomputing Applications which allows for graphic data flows [116]. The results of
this review indicated that Matlab can be easily used to implement the machine learning
models; the variability and flexibility of its toolboxes clearly represent an advantage.
However, the modellers can choose a range-free software with comparable skills.

Table 2. Software used for the machine learning models in the reviewed papers.

Machine Learning
Model

Software Commercial/Free n of Times

ANN

Matlab c 3
R-neuralnet package f 1

LINGO c 1
not specified 7

RBF Matlab c 1

ANFIS Matlab c 1

TLRN NeuroSolution c 1

ELM, WA-ELM Matlab, Matlab wavelet toolbox c 1

BN
Hugin Lite 8.3; c 1

netica Software, CVNetica (for cv) c 1

IBW
Matlab Statistic Toolbox TM c 1

not specified 1

SVM
Matlab Statistic Toolbox TM c 2

not specified 2

DT not specified 1

RF
R (randomForest package) f 1

not specified 1

GBRT Phyton (scikit-learn library) f 1

5. Specific Results

This section aims to furnish specific information to orient modellers choosing the
appropriate machine learning approach based either on the properties of each of the
examined model (e.g., the most used algorithms, model structure, tuning parameters:
Section 5.1) or on advantages and disadvantages arising from the comparison between
different machine learning techniques (Sections 5.2–5.4).

5.1. Properties of the Machine Learning Techniques Used in the Reviewed Papers

This section describes the results of the assessment of the machine learning techniques
mostly used in the reviewed papers: ANNs, RBF, ELM, BN, SVM, DT.

Artificial Neural Networks
An assessment of the reviewed studies on ANNs revealed the following issues:

- Feed-forward multilayer perceptron with a backpropagation learning algorithm was
the most used ANN technique in the reviewed papers.

- The training algorithms used in the reviewed papers were Levenberg Marquardt,
Bayesian regularisation, scaled conjugate gradient, quick propagation algorithm, back-
propagation algorithm, and resilient backpropagation. The most used were Levenberg
Marquardt [60,117], which integrates the advantages of two training algorithms,
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namely the steepest descent, and Gaussian–Newton methods, and searches for the
global minima function to optimise the solution [68]; some authors point out that this
is the less time-consuming algorithm.

- The transfer functions used for the hidden layer are: sigmoid, sine, hardlim, triangle
basis, radial basis, hyperbolic tangent, linear, and logistic.

- The most common structure of ANN in the reviewed papers is a feed-forward ANN
with a single hidden layer, with sigmoid transfer function in the hidden layer and
linear transfer function in output layer. The best structure and number of hidden
neurons are chosen by trial-and-error or cross-validation.

- The final structure of multilayer perceptron is usually chosen as the one resulting in
minimum error and maximum efficiency during training.

- ANNs are capable of achieving substantially higher predictive accuracy at observa-
tion wells than the physically-based numerical model, with fewer inputs and lower
developmental effort and cost. The choice of the appropriate training data size is
a key issue; it should be evaluated considering many aspects, such as the required
model accuracy, the number of connection weights, the complexity, and the level of
noise in the system [3]. Moreover, it is important to find the optimal ANN topology
ensuring satisfactory generalisation capability for any given problem. This is generally
achieved by testing different topologies and transfer functions.

Radial Basis Function
Chen et al. [63] applied the Gaussian radial basis function to the neurons of the hidden

layer and the linear transfer function in the output layer. RBF showed a better predictive
performance and its computation cost in training and prediction stages were much less
than those of numerical model in calibration and verification stages.

Extreme Learning Machine
In the work of Malekzadeh et al. [100], the number of hidden neurons for the ELM

model was optimised by trial-and-error; results showed that model prediction was not
significantly improved by increasing the number of hidden layer neurons. The sigmoid
activation function provided higher simulation accuracy. The advantages of ELM with
respect to other models are its modelling simplicity, easy coding, and quick computation
for simulations in complex systems.

Bayesian Network
In the work of Moghaddam et al. [76], a BN structure was built, generating

108 possible states. The input parameters included rainfall, GWL in the previous month,
average temperature, aquifer recharge, and discharge. The performance of BN models
was evaluated by means of the R2 and RMSE derived for all the observation points. In
Fienen et al. [95], the BN was implemented with variables that were supposed to have
the greatest influence on the source of water to wells: the distance to surface water, the
surface water percent, the distance of 1st-order stream, and the percent of 1st-order stream.
The continuous values of variables were discretised into bins; this permits performing
predictions as discrete conditional probabilities without requiring a priori assumptions
about distributions. Both the number of nodes and the number and ranges of bins were
adjusted by 10-fold cross validation, and the set of parameters resulting in highest R2 was
selected as the optimal model.

Support Vector Machine
The most used kernel function with Support Vector Machine technique was the Gaus-

sian Radial Basis Function, although several functions were tested (linear, radial bias,
sigmoid). Cross-validation was the most used method for the optimisation of parameters
(i.e., gamma value for the radial basis function and the regularisation coefficient), although
Chen et al., 2020 [63] used Sequential minimal optimisation.

Decision Tree
Three types of decision trees were used in the reviewed papers: decision trees, random

forest, and Gradient-Boosted Regression tree. In Demissie et al. [85], k-fold cross-validation
was used to optimise the DT’s pruning levels (used to reduce the complexity of the trees and
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reduce overfitting by removing redundant trees sections). Michael et al. [82] highlighted
that decision trees have the ability to incorporate different data sources; thus, existing
historical data can be combined with new surrogate or indicator data (such as rainfall) to
detect whether the new data indicate potential problems that would warrant the collection
of more traditional samples. To note, while DT provides the most accurate prediction
improvement with updated data, IDW represents a good compromise between prediction
accuracy and easy implementation. In the Random Forest model of Miro et al. [99], the
parameters to optimise were the pruning levels, the learning rate and maximum tree depth,
and the number of trees examined. Hyperparameters were adjusted generally by cross
validation. Furthermore, the RF with the number of trees providing sufficient performance
with a reasonable computational time was chosen as best model. The main advantage
of using RF model is the reduced computational time with respect to numerical models,
which allows incorporating it as a step of decision-making studies to speeds up the process.
In the Gradient-Boosted Regression Trees [95] the parameters defining the individual trees
included tree depth, shrinkage (a form of regularisation), learning rate, and maximum
number of leaves on a tree. One advantage of GBRT is the possibility to use a variety of loss
functions; Fienen et al. [95] used the HUBER loss function, an intermediate between squared
difference and absolute difference. Hyper parameters were adjusted by cross validation
with k = 10. The key tuning hyperparameters were the learning rate and maximum tree
depth. The tradeoff curves of the best set of tuning parameters were explored for each
technique; other metrics of skill/fit were calculated based on R2 score.

5.2. Comparison between Machine Learning Techniques

The comparison between different machine learning techniques in the reviewed stud-
ies showed that:

- The performance of ANN with RBF as the activation function performed the best in
simulating groundwater dynamics in arid basins, compared with ANN multilayer
perceptron and SVM [63]. In detail, SVM performed the best in the training stage,
while RBF in the verification stage; ANN’s performance was lower than these two.

- Regarding ANFIS, no improvements are remarked with respect to ANNs, although
greater performance with respect to the MODFLOW numerical model is documented [68].

- With respect to multilayer perceptron ANN, TLRNs can provide an appropriate tool
for processing time-varying information. The main advantage is that TLRNs require a
lower memory compared to multilayer perceptron, due to their lower network size.
Furthermore, TLRNs have a low sensitivity to noise.

- Compared to simple ANN, ELM showed better performance, much less modelling
time, less modelling error, and less weights norm [100].

- With respect to ANN, BN models provided easier implementation, higher prediction
accuracy, and a greater ability to deal with missing or incomplete data [46]. It allows
an uncertainty estimation more accurate than other machine learning models because
the variables are modelled by means of probability distributions. When used as a
metamodel, replacing a regional groundwater model to simulate the source of water-
to-well [95], BN showed lower cross validation predictive skill compared with ANN
and GBRT. However, the BN includes estimates of the uncertainty of predictions as
part of the technique. GBRT required the least time with respect to BN and ANN.
Thus, in this case, the choice between a statistical learning approach such as ANN
or GBRT and the BN approach depends upon the preference of the modeller and the
aims of the problem.

- When used to predict the annual change in GWL as effect of managed recharge, RF
produced the most accurate average basin GWL representation respect to observations,
compared with SVM and ANN [99].
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5.3. Results of Testing Hybrid or Ensemble Models

The use of hybrid models and a combination of techniques for data pre-processing
(described in Section 3.3) allowed a significant improvement in each modelling phase.

- ELM and WA-ELM were both used to simulate GWL in an arid basin [100]. However,
the ELM model with the db2 mother wavelet for data pre-processing showed a better
performance with a significant accuracy improvement compared with the physically-
based models.

- The hybrid approach of Nikolos et al. [101] provides a fast way to integrate the
physically-based models within an evolution-based optimisation procedure (DE al-
gorithm) by replacing the calls of the PTC model with an ANN. The ANN provides
a tool to perform an optimisation run with the DE algorithm with very short time,
serving as a fast and accurate surrogate model.

- The hybrid modelling approach HANN [102] showed a high model structure strength
since it integrated a robust data pre-processing and input variable selection techniques.

- Using machine learning models in hierarchical approach can significantly improve
the results of physics-based models [82]; moreover, by that way, advantages and
disadvantages of different machine learning models are identified and insights are
provided into which data are most valuable to long-term monitoring objectives and
which are not. In particular, Michael et al. [82] found that DT consistently provided the
most accurate predictions of hydraulic head compared with IDW and ANN. However,
when using all of the data across time, IDW showed substantial improvements. Given
that IDW is simple to use and is widely accepted among practitioners, it could be
considered as an optimum choice.

- The computational time of regional physically-based models can be substantially
reduced by introducing an empirical (or statistical) representation of numerical models;
this consists of machine learning models trained using numerical models inputs and
outputs, which can be used to make predictions of variable of interest [95,99].

5.4. Results of Machine Learning Models Used to Reduce or Correct Errors in Physically-Based Models

This section summarises the main features of the machine learning models used for
error correction and reduction (described in Section 3.4). IBW models were constructed to
correct MODFLOW models by using the position of observation wells, calculated heads,
evapotranspiration rates, and stress periods as inputs, and the residuals of MODFLOW
model as outputs [79,82]. The parameters to optimise were the values of weighting function
parameters and the number of neighbors n. Parameters of SVM models were already
described in Section 5.1. When used to correct the error of physically-based models, both
IBW and SVM have been shown to successfully reduce the magnitude and biasedness of
the prediction error. Xu et al. [79] remarked that the popularity of SVM can be attributed to:
(1) good generalisation performance; (2) always having a globally optimal solution (instead
of local optima); (3) representation of the solution sparsely by a small subset of all training
examples (Support Vectors) [87]. On the other hand, because IBW does not involve the
training process and is less affected by the size of the training dataset, it is particularly
recommended when the number of data is too small for other techniques to learn the spatial
pattern of residuals [85]. In the case of spatial prediction, the simple IBW updates the future
predictions better than DT and ANN and SVM; IBW models allow locally improving the
results, and its degree of localisation and complexity can be adjusted flexibly. Thus, when
groundwater model errors show local patterns, the application of IBW is advantageous.
When considering both spatial and temporal prediction, IBW performed roughly as well as
the more sophisticated SVM.

6. Discussion

Assessments of machine learning applications in GWL forecasting reveal that the per-
formance of such methods is comparable to, or even more accurate than, that of numerical
ones. Overall, the reviewed papers prove the capability of machine learning methods for
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capturing the nonlinear relation between groundwater and climate variables, especially
where physically-based models would be difficult to implement. Machine learning models
require a lesser number of input parameters and avoid the model building and parameter
estimation stages typical of numerical models. Machine learning models can be a valid
alternative for numerical models requiring long runtimes (i.e., complex regional models,
models simulating many different processes, uncertainty analysis, sensitivity analysis), be-
ing capable of reducing computational times without sacrificing accuracy of detail in GWL
forecasting. The very short time allows integrating machine learning models in decision-
making processes when rapid and effective solutions for groundwater management need
to be considered. Data-driven models are computationally efficient tools to correct head
error prediction of numerical models; they work for error from multiple sources, and do not
invoke assumptions on the error distribution [49]. Input data different from those used in
the training stage can be included (e.g., pumping rate, boundary conditions, etc.); therefore,
the data-driven models can be used to improve the prediction of physically-based models
under scenarios that differ from the conditions used for calibration. Moreover, machine
learning models can be applied successfully for modelling river–aquifer interactions.

Many studies exist concerning the use of machine learning models for groundwater
simulation, developed on the basis of a limited number of observation points, without
comparing results with numerical models. Conversely, the comparison of numerical and
machine learning models is still a scarcely diffused task. In these comparative studies,
each modeler uses the machine learning techniques for fixing a specific weakness of the
numerical model, or to ameliorate poor fitting between simulated and observed values; in
most cases, modellers explore different machine learning techniques to establish which one
adapts better to its scopes. However, there are currently no well-defined procedures for
the use of machine learning techniques to enhance results of numerical models, and this
can limit the diffusion of the method. Another reason can be that the modeler should be
familiar with both numerical and data driven models to correctly use both model types.
Indeed, even if machine learning modelling does not consider the behaviour of the natural
system, a certain degree of knowledge about the hydrological parameters and how they
affect the results is required in order to avoid, for example, model overfitting (which means
fitting the model to all the input parameters, preventing the generalisation ability of model,
which is, in turn, given from the parameters effectively influencing groundwater level).
In other words, the modeler should be able to manage both physically based data and
statistical distributions of data, coupling different skills: those typical of hydrogeologists
and those typical of statisticians/mathematicians. In many cases, a modeler (or a team of
modellers) can meet both these requirements, but it is not so common. In addition, machine
learning models are viewed with some skepticism by numerical modellers. Physically
based represent the technique most widely diffused and used by local administrators for
groundwater management. Usually, the results of a physically based model are improved
by the integrating new observations (when available) or by tuning model parameters in
order to modify the conceptual model. The machine learning approach, instead, aims at
detecting the inherent mechanism, increasing prediction skills without deriving this from
physical knowledge. This ‘black box’ nature, where no insight is gained into how the model
generated the solution, is not widely accepted among numerical modellers and can prevent
the use of machine learning models.

Regarding different machine learning methods to simulate the GWL when numerical
models already exist, it can be said that from this review it is not possible to make a rec-
ommendation about one particular type of machine learning model for a specific problem.
One advisable option could be testing different types of machine learning techniques in the
different phases of the GWL modelling to detect the proper machine learning method in
each stage and then couple them to achieve an optimum performance. However, hybrid
modelling such as the combination of different techniques (e.g., data pre-processing such
as time series decomposition or spatial clustering) and the hierarchical combination of
machine learning models help to improve the accuracy of prediction. Moreover, some

243



Water 2022, 14, 2307

of the machine learning models appear to be suitable for updating numerical models
previously calibrated, improving predictions as new data are collected (i.e., DT, [82]; IBW
and SVM, [79]). Furthermore, when using machine learning models to correct the error of
physically-based models, both IBW and SVM show better performance than DT and ANN.
However, the simple IBW allows locally improving the results, and this suggests that it is
suitable when errors show local patterns.

Some authors highlighted the main disadvantages of machine learning models with
respect to numerical models:

- The numerical models are comparatively more reliable. While showing a lower
prediction error than the physical models, machine learning models cannot return
many of the outputs of a physical model, such as flux estimates or total water balance.

- Xu et al. [79] found that data-driven models are difficult to interpret physically. The
updated head no longer conserved mass for the given model inputs, which can
confound the physical interpretation of the results and prevent understanding errors
in the conceptualisation of the groundwater system.

- Numerical models exhibit a higher generalisation ability than machine learning meth-
ods because they are based on the physics of the system [63]. Conversely, machine
learning models are applicable to problems that require a high number of model
runs without considering the physical system (e.g., optimisations, real-time models,
sensitivity/uncertainty analysis).

- Usually, while the machine learning models may be more efficacious for predicting
short-term GWL and reproducing highly localised flow impacts, numerical modelling
is more appropriate for long-term projections, or in areas where field data are insuffi-
cient for the given problem. However, it should be remarked that Almuhaylan et al. [68]
were able to use machine learning models to perform long-term prediction (up to
50 years), by training the ANN/ANFIS model for the prediction of changes in ground-
water levels instead of the direct simulation of water levels.

Thus, each type of model (numerical or machine learning) is suitable for a specific
type of problem. As suggested by many authors, numerical and machine learning models
can be successfully used as complementary to each other as a powerful groundwater
management tool:

- when few field data exist, the results of numerical models can be improved by train-
ing machine learning models, which allow to obtain accurate groundwater level
forecasting at specific observation wells;

- machine learning models cannot substitute a numerical model as one single model,
but can be used to simulate water table fluctuation at every individual observation
well with reduced computational time;

- accurate results of machine learning models in specific test sites can be used to obtain
the best GWL data required by the numerical model as input;

- the physical dynamics of the system must be sufficiently understood by the modeller
in order to identify the important predictor input variables of machine learning models.
Results of numerical models help to understand the physical system; this can help, in
turn, choosing the input parameters for machine learning models. Coppola et al. [3]
suggested using ANNs to perform a sensitivity analysis on the interrelationships
between input and output variables;

- Numerical models can simulate different scenarios, allowing for detection areas requir-
ing particular management strategies, thereby supporting the design of an effective
monitoring network, which, in turn, may improve both machine learning predictive
capability and performance.

Given the results of this review, one should evaluate the best machine learning tech-
nique based on:

- The aim of the work, for example: improvement of prediction at some well location,
numerical model error correction, numerical model updating;
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- the need to produce a probability distribution of the results and obtain uncertainty
estimation within the model, (i.e., in areas with few data);

- the availability of data for training and testing (number and spatial-temporal distribution);
- the need to speed up decision making processes and reduce the computational time;
- the degree of expertise of the modeller, which should drive the searching for a good

compromise between model complexity and prediction performance.

To note, this review only accounts for groundwater flow models; robust groundwater
flow models are the basis for setting up groundwater solute transport models. The com-
parison between physically based and machine learning models focused on groundwater
solute transport should be the subject of future research.

7. Conclusions

This study presents a review of 16 papers regarding the use of numerical models
and machine learning techniques for the prediction of groundwater level, which were
published in 10 international journals and 1 book from 2003 to 2020. Machine learning
techniques are used to improve or speed the prediction process of physically-based models,
which are developed with different codes and software, from regional to site scale, and
with data collected over time windows spanning from one to hundreds of years. Machine
learning methodologies, approximating the complex behavior and dynamics of physical
systems, allow for the optimisation of predictions of a large number of scenarios within
a short period of time, compared with the long computational time required for the cor-
responding simulation time using a numerical model. Machine learning models do not
return many of the outputs of a physical model, such as flux estimates and residence
time calculations, or total water balance. Thus, machine learning models cannot be used
to substitute numerical models in large study areas, but are affordable tools to improve
predictions at specific observation wells. Results of this review suggest that numerical and
machine learning models can be successfully used as complementary to each other as a
powerful groundwater management tool. The machine learning techniques can be used
to improve the calibration of numerical models, whereas the results of numerical models
allow understanding the physical system and selecting proper input variables for machine
learning models. Among the machine learning techniques, the hybrid machine learning
models show better results accuracy.

Funding: This research received no external funding.

Acknowledgments: Author is very grateful to the reviewers for their interesting comments, which
allowed to improve the quality of the manuscript. A special thank also goes to Daniel Feinstein, for
his precious suggestions and support.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Daliakopoulos, I.N.; Tsanis, I.K. Comparison of an artificial neural network and a conceptual rainfall–runoff model in the
simulation of ephemeral streamflow. Hydrol. Sci. J. 2016, 61, 2763–2774. [CrossRef]

2. Besaw, L.E.; Rizzo, D.M.; Bierman, P.R.; Hackett, W.R. Advances in ungauged streamflow prediction using artificial neural
networks. J. Hydrol. 2010, 386, 27–37. [CrossRef]

3. Coppola, E., Jr.; Szidarovszky, F.; Poulton, M.; Charles, E. Artificial neural network approach for predicting transient water levels
in a multilayered groundwater system under variable state, pumping, and climate conditions. J. Hydrol. Eng. 2003, 8, 348–360.
[CrossRef]

4. Neuman, S.P.; Wierenga, P.J. A Comprehensive Strategy of Hydrogeologic Modeling and Uncertainty Analysis for Nuclear Facilities and
Sites (NUREG/CR-6805); Report prepared for US Nuclear Regulatory Commission: Washington, DC, USA, 2003; p. 309.

5. Cooley, R.L. A theory for modeling ground-water flow in heterogeneous media. In US Geological Survey Professional Paper 1679;
U.S. Geological Survey: Reston, VA, USA, 2004; p. 220.

6. Doherty, J.; Christensen, S. Use of paired simple and complex models to reduce predictive bias and quantify uncertainty. Water
Resour. Res. 2011, 47, 1–21. [CrossRef]

7. Refsgaard, J.C.; van der Sluijs, J.P.; Brown, J.; van der Keur, P. A framework for dealing with uncertainty due to model structure
error. Adv. Water Resour. 2006, 29, 1586–1597. [CrossRef]

245



Water 2022, 14, 2307

8. Hunt, R.J.; Welter, D.E. Taking account of “unknown unknowns”. GroundWater 2010, 48, 477. [CrossRef]
9. Tiedeman, C.R.; Hill, M.C. Model calibration and issues related to validation, sensitivity analysis, post-audit, uncertainty

evaluation and assessment of prediction data needs. In Groundwater: Resource Evaluation, Augmentation, Contamination, Restoration,
Modeling and Management; Thangarajian, M., Ed.; Springer: New York, NY, USA, 2007; pp. 237–282.

10. Liu, Y.; Gupta, H.V. Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework. Water Resour. Res.
2007, 43, 1–18. [CrossRef]

11. Vrugt, J.A.; Stauffer, P.H.; Wohling, T.; Robinson, B.A.; Vesselinov, V.V. Inverse modeling of subsurface flow and transport
properties: A review with new developments. Vadose Zone J. 2008, 7, 843–864. [CrossRef]

12. Bierkens, M.F. Modeling water table fluctuations by means of a stochastic differential equation. Water Resour. Res. 1998, 34,
2485–2499. [CrossRef]

13. Bidwell, V.J. Realistic forecasting of groundwater level, based on the Eigenstructure of aquifer dynamics. Math. Comput. Simul.
2005, 69, 12–20. [CrossRef]

14. Maier, H.R.; Dandy, G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resour. Res.
1996, 32, 1013–1022. [CrossRef]

15. Maity, R.; Nagesh Kumar, D. Probabilistic prediction of hydroclimatic variables with nonparametric quantification of uncertainty.
J. Geophys. Res. Atmos. 2008, 113, 1–12. [CrossRef]

16. Vellido, A.; Martín-Guerrero, J.D.; Lisboa, P.J. Making machine learning models interpretable. In Proceedings of the European
Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges, Belgium, 25–27 April
2012; pp. 163–172.

17. Abraham, A.; Pedregosa, F.; Eickenberg, M.; Gervais, P.; Mueller, A.; Kossaifi, J.; Gramfort, A.; Thirion, B.; Varoquaux, G. Machine
learning for neuroimaging with scikit-learn. Front. Neuroinform. 2014, 14, 1–10.

18. Park, C.; Took, C.C.; Seong, J.K. Machine learning in biomedical engineering. Biomed. Eng. Lett. 2018, 8, 1–3. [CrossRef]
19. Reich, Y. Machine learning techniques for civil engineering problems. Comput.-Aided Civ. Infrastruct. Eng. 1997, 12, 295–310.

[CrossRef]
20. Reich, Y.; Barai, S.V. Evaluating machine learning models for engineering problems. Artif. Intell. Eng. 1999, 13, 257–272. [CrossRef]
21. Vadyala, S.R.; Betgeri, S.N.; Matthews, J.C.; Matthews, E. A review of physics-based machine learning in civil engineering. Results

Eng. 2021, 13, 100316. [CrossRef]
22. Zander, S.; Nguyen, T.; Armitage, G. Automated traffic classification and application identification using machine learning.

In Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary, Sydney, Australia, 15–17 November 2005;
(LCN’05) l. pp. 250–257.

23. Yu, H.; Wu, Z.; Wang, S.; Wang, Y.; Ma, X. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation
networks. Sensors 2017, 17, 1501. [CrossRef]

24. Nguyen, H.; Kieu, L.M.; Wen, T.; Cai, C. Deep learning methods in transportation domain: A review. IET Intell. Transp. Syst. 2018,
12, 998–1004. [CrossRef]

25. Tahmasebi, P.; Kamrava, S.; Bai, T.; Sahimi, M. Machine learning in geo-and environmental sciences: From small to large scale.
Adv. Water Resour. 2020, 142, 103619. [CrossRef]

26. Sun, A.Y.; Scanlon, B.R. How can Big Data and machine learning benefit environment and water management: A survey of
methods, applications, and future directions. Environ. Res. Lett. 2019, 14, 073001. [CrossRef]

27. Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine learning in geosciences and remote sensing. Geosci. Front. 2016,
7, 3–10. [CrossRef]

28. Mosavi, A.; Ozturk, P.; Chau, K.W. Flood prediction using machine learning models: Literature review. Water 2018, 10, 1536.
[CrossRef]

29. Choubin, B.; Mosavi, A.; Alamdarloo, E.H.; Hosseini, F.S.; Shamshirband, S.; Dashtekian, K.; Ghamisi, P. Earth fissure hazard
prediction using machine learning models. Environ. Res. 2019, 179, 108770. [CrossRef]

30. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [CrossRef]
31. Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al.

Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [CrossRef]
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