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Abstract: Spaceborne polarimetric synthetic aperture radar interferometry (PolInSAR) has the poten-
tial to deal with large-scale forest height inversion. However, the inversion is influenced by strong
temporal decorrelation interference resulting from a large temporal baseline. Additionally, the forest
canopy induces phase errors, while the smaller vertical wavenumber (kz) enhances the sensitivity of
the inversion to temporal decorrelation, which limits the efficiency in forest height inversion. This
research is based on the random volume over ground (RVoG) model and follows the assumptions
of the three-stage inversion method, to quantify the impact of repeat-pass spaceborne PolInSAR
temporal decorrelation on the relative error of retrieval height, and develop a semi-empirical im-
proved inversion model, using ground data to eliminate the interference of coherence and phase error
caused by temporal decorrelation. Forest height inversion for temperate forest in northern China
was conducted using repeat-pass spaceborne L-band ALOS2 PALSAR data, and was further verified
using ground measurement data. The correction of temporal decorrelation using the improved
model provided robust inversion for mixed conifer-broad forest height retrieval as it addressed the
over-sensitivity to temporal decorrelation resulting from the inappropriate kz value. The method
performed height inversion using interferometric data with temporal baselines ranging from 14 to
70 days and vertical wavenumbers ranging from 0.015 to 0.021 rad/m. The R2 and RMSE reached
0.8126 and 2.3125 m, respectively.

Keywords: forest height; synthetic aperture radar (SAR); interferometry; random volume over
ground (RVoG) model; three-stage inversion method

1. Introduction

Forest ecosystems are the main components of terrestrial ecosystems [1]. Estimat-
ing the distribution and change of biomass and carbon storage in forest ecosystems can
help to understand the relationship between carbon sources and carbon sinks, and the
changing trends in terrestrial ecosystems [2–4]. Forest height is an essential parameter for
representing the vertical structure of the forest. It provides a significant reference value
in estimating forest carbon storage and plays a key role in evaluating forest stand quality
and climate impact [5–7]. Remote sensing is an essential forest monitoring method that has
allowed the development of various forest height retrieval technologies. Microwave remote
sensing has attracted much attention due to its intense penetration into the atmosphere and
forest canopy, and independence from weather conditions [8–12]. Meanwhile, spaceborne
synthetic aperture radar (SAR) is widely used to observe forest heights of various forest

Remote Sens. 2021, 13, 4306. https://doi.org/10.3390/rs13214306 https://www.mdpi.com/journal/remotesensing1
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types due to its advantages of the all-weather and all-season observation [4]. The use of
spaceborne SAR data are of great significance in the study of forest parameters of northern
temperate forests, and could play a role in achieving the upcoming global forest biomass
and carbon cycle detection mission [13,14].

The SAR interferometry is used to calculate the vertical height of the ground using the
phase difference between two sensors. This method is particularly important in terrain sur-
vey and evaluating terrain deformation [15–17]. For a complex distributed scattering unit
such as a forest, it is often difficult to accurately separate the canopy phase and the ground
phase using interferometric information alone (even when a high-frequency imaging sys-
tem, such as C and X band, is used) [4,11]. PolInSAR has strong penetrability in the low
frequency band (such as L-band and P-band), and can effectively retrieve the distribution
of forest height through the canopy [18,19]. The difference in sensitivity of polarization
to different components of the forest combined with the interferometric technique [20]
allows inversion of forest height by distinguishing canopy scattering centers from ground
scattering centers through the difference in ground scattering contribution ratio.

However, the position of scattering center is not entirely located on top of the canopy
and the ground, making it difficult to extract forest height information [11]. A vari-
ety of interferometric coherence models such as the interferometric water cloud model
(IWCM) [21–23], third-order Fourier-Legendre (FL) polynomial inversion mode [24], ran-
dom volume over ground model (RVoG) [25–27], and the two-level method (TLM) [28]
have been used to extract forest parameters. At present, the RVoG is the widely accepted
model due to its simplicity and high accuracy [27]. Additionally, it is a relatively robust
inversion model [29,30] whose limitations and potential errors in terms of temporal decor-
relation and terrain interference can be addressed. As a result, several improved models
and methods have been developed [9,31–33] to improve its applicability [34]. Meanwhile,
the most commonly used method is the three-stage inversion method [35]. This method
significantly improves the efficiency of parameter inversion through geometric analysis
and strengthens the control of errors in the inversion process. The three-stage inversion
method has been successfully applied in parameter inversion of different wavebands and
different forest types [36]. Recent studies have shown that there are still more improved
models for the RVoG model, which are necessary to make it more adaptable to various
inversion conditions and increase the inversion accuracy. After comparing a variety of
forest height retrieval methods, Chen et al. found that there was a significant increase in
the retrieval accuracy when the S-RVoG model was used to retrieve forest heights by ALOS
PALSAR data after introducing the normalized vegetation index [37]. Shi et al. improved
the RVoG+VTD model using dual baselines by P-band E-SAR data, which consequently
improved forest height inversion accuracy [38]. Xing et al. added a temporal-decorrelated
adaptive estimation process based on the expectation maximum (EM) algorithm to the
RVoG+VTD model and converted the Euclidean distance to a generalized distance to
extract the magnitude features more efficiently. The accuracy of forest height estimated by
this method was significantly improved compared with the original model and was closer
to the Lidar data [39].

Nevertheless, the RVoG model considers the effect of forest height and volume decor-
relation, but other decorrelation caused by any other factors introduces errors in the
inversion process [9,40–42]. Therefore, it is still affected by several limiting factors, with the
temporal decorrelation being the most significant factor [43–46]. To correct for temporal
decorrelation, several improved models based on RVoG have been proposed. The most
widely used models include RVoG+VTD model [35] and RMoG model [32,43]. Although
these models have shown some effectiveness in the inversion process, they still have some
limitations. The RVoG+VTD model fixes the extinction coefficient parameter in the model
and introduces a parameter representing temporal decorrelation to correct for the effect of
temporal decorrelation during the inversion process. However, this means that the role of
the extinction coefficient in the inversion is neglected, and the choice of the initial value of
this parameter will have an impact on the model accuracy. The RMoG model considers
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the interaction between temporal decorrelation and volume decorrelation, and inverts
both simultaneously in the model. The model is more advanced and effective, but the
model introduces more positional parameters, which increases the difficulty of the model
and the requirement of observation quantity. In addition, these models were validated
only on airborne data, but did not take into account the case of repeat-pass spaceborne
data. The repeat-pass spaceborne SAR data has a larger temporal baseline than airborne
SAR, and the impact of decorrelation is more difficult to ignore [23,47]. When using these
models to invert forest heights on repeat-pass spaceborne PolInSAR, forest heights in
the study area are seriously overestimated. Based on the characteristics of repeat-pass
spaceborne InSAR, Lei et al. proposed a nonlinear iterative model based on the RMoG
model to invert the forest height [41,48]. Although the model yields high accuracy results
in repeat-pass spaceborne SAR, it uses coherence for inversion and neglects the effect of
temporal decorrelation on the interferometric phase. However, due to the range of effective
vertical wavenumbers, the interferometric phase of the repeat-pass spaceborne SAR is
more significantly affected by temporal decorrelation. The effective vertical wavenumber
(kz) plays an essential role in linking the forest height to interferometry [40]. However, the
range of vertical wavenumber is faced with limitations when inverting the forest height
through the RVoG model [49]. For instance, kz with an excessively large or excessively small
value will increase the interference of decorrelation and cause considerable deviations in
the inversion results [50]. The kz value of the repeat-pass spaceborne PolInSAR data are
often lower than the scope of inversion, making it difficult to invert the forest height using
the RVoG model.

The present research is based on the RVoG model and the three-stage inversion
method. It aimed at analyzing the effects of coherence and phase errors of temporal
decorrelation on repeat-pass spaceborne PolInSAR inversion performance using theoretical
and experimental approaches. This study further recommends a method improved by
the RVoG model and suitable for repeat-pass spaceborne PolInSAR data. The research
theoretically analyzed the inversion accuracy of the improved model, and used the world’s
only repeat-pass spaceborne L-band ALOS-2 PolInSAR data to test and verify the temperate
forests of Hebei Province, China. Finally, a semi-empirical improved model based on RVoG
model was established by using ground data as prior data to correct for the interference
caused by temporal decorrelation to the forest height inversion obtained from repeat-pass
spaceborne PolInSAR data.

The structure of this paper is as follows: Section 2 introduces the study area and the
acquisition process of ground measurement data. The basic conditions and preprocessing
of the ALOS2 PALSAR data set have been introduced as well. In Section 3, we present the
theoretical background of the RVoG model and the three-stage inversion method. The effect
of temporal decorrelation on forest height inversion and the corresponding theoretical
model have also been explained in this section. An improved model for temporal decoher-
ence is proposed in Section 4. The paper presents theoretical background and the inversion
process of the model, and performs a theoretical error analysis of the model. Section 5 uses
the Saihanba ground measurement data and ALOS2 PALSAR data to retrieve the forest
height and evaluate the results. Some shortcomings of the model and its robustness under
different temporal baselines are discussed in Section 6, and recommendations made for
the selection of future PolInSAR spatial baselines. Finally, the conclusion is presented in
Section 7.

2. Research Materials and Theoretical Models

2.1. Study Area and Sample Site Data Collection

The study was conducted in Saihanba Forest, a typical temperate forest in northern
China. The area is located in the transition zone from Yanshan Mountain to Inner Mongolia
in Hebei Province (117◦E, 42◦N), and is the largest plantation forest in the world. The
forest sites in the area are rugged and mountainous, with an average elevation of 1500
to 2067 m, making ground surveys difficult (Figure 1). The complex climatic conditions
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and the vulnerability of conventional imagery to weather conditions in the region make it
necessary to conduct microwave observation studies in the region [51].

Figure 1. Map of the study area. The area is located in the Saihanba Forest in Hebei Province, China. The red points
represent the distribution of the measured samples. The image in the study area is an interferometric image under HV
polarization of PolInSAR data.

The measured data from the plots was collected in the same study area as the PolInSAR
data and randomly sampled within the study area. There are various types of forests in
this area, and the main are temperate mixed conifer-broad forests. Larix principis-rupprechtii
Mayr. and Betula platyphylla Suk. are the dominant species in the area. In addition, they
include Picea asperata Mast., Pinus sylvestris var. mongolica Litv., and some broad-leaved
species (Figure 2). During the field measurements, we conducted a careful field inspection
before selecting the sample sites in order to make the samples better represent the overall
condition of the forest area. Among the final collected samples, 28 plots were measured
at fixed points on a kilometer grid, and the remaining 69 plots were randomly sampled,
hoping to represent the real situation of the forest as much as possible. The proportion of
stand types in the random sampling samples was ensured to be similar to the proportion
of overall stand types in the forest area as far as possible, and the forest types in the sample
sites are shown in Table 1. Furthermore, the forest management in Saihanba area is in good
condition, with obvious differences in stand age and density. Due to tending and thinning,
most of the forests gradually decrease in density as the forest age increases. In order to
restore the true forest condition, at least 30% of the samples were guaranteed to be young
(high-density stands) or old growth (low-density stands) during the sampling process.

4
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Figure 2. Forest conditions in the study area and the sample plot survey. (a) The diamond-shaped
sample with an area of 0.06 ha. Moreover, (b,c) show the determination of sample plots and measuring
heights of trees using ultrasonic height gauge. Furthermore, (d–h) show forest conditions in the
study area, where: (d) is the pure forest of Larix principis-rupprechtii Mayr.; (e) is the pure forest
of Pinus sylvestris var. mongolica Litv.; (f) is the mixed forest of Larix principis-rupprechtii Mayr.
and Betula platyphylla Suk.; (g) is the pure forest of Picea asperata Mast.; and (h) is the broadleaf
mixed forest.

Table 1. Forest types and the collected random sample sizes.

Forest Types Sample Size Forest Types Sample Size

Pure forest of Larix principis-rupprechtii Mayr. 36 Pure forest of Pinus tabuliformis var. mukdensis 2
Pure forest of Betula platyphylla Suk. 12 Mixed coniferous forest 4

Pure forest of Picea asperata Mast. 4 Mixed broad-leaved forest 4
Pure forest of Pinus sylvestris var. mongolica Litv. 2 Coniferous and broad-leaved mixed forest 5

When collecting samples, we avoided the forest edge and large empty windows,
and chose a relatively central position in the small forest class to ensure that the samples
represent the real situation of the surrounding small forests as much as possible. After
determining the center point, a distance of 17.32 m was measured along the four positive
directions to determine the location of the four corner points, enclosing a diamond-shaped
sample with an area of 0.06 ha (Figure 2a). The trees in the sample plot were inspected for
each log, and the height of each log was measured with a Vertex IV ultrasonic height gauge.
In this study, the forest height is defined as the average tree height of the sample plot.
This assumption takes into account the value of average tree height in forest surveys on the
one hand, and on the other hand provides support for the subsequent estimation of forest
biomass. According to the field measurement results, the forest height was between 0 and
30 m, and the average height was 17.98 m. The Kolmogorov–Smirnov test was performed
on the forest height sample data to test for normal distribution. The results proved that the
sample data obeyed the normal distribution and has good representativeness (Figure 3).

2.2. PolInSAR Data

The PolInSAR datasets from the study area were in five scenes of ALOS2 PALSAR
repeat-pass fully polarized synthetic aperture radar data (Figure 4). The 1.1-level L-band
SLC data were developed by Japan Aerospace Exploration Agency (JAXA). This data were
used in this study because it is among the few commercial L-band segment satellite-based
fully polarized SAR data that is publicly available worldwide. Additionally, the L-band is
less sensitive to forest vertical heterogeneity and allows accurate inversion of forest height
from empirical structure functions [52]. Therefore, it is important to study independent
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inversion of forest height from this data before the opening of the new low-band satellite-
based SAR system.

Figure 3. (a) Histogram of the distribution of the sample forest heights. The blue curve is the normal distribution curve.
(b) Scatterplot of samples, normal distribution. The red points are the true distribution of the samples, and the blue line
represents the standard normal distribution. The significance value Sig. was verified at the 0.05 level (*). And the samples
showed a significant normal distribution after they were tested for normal distribution using the k–s method.

The datasets were collected over the study area from July to September 2020, repre-
senting the growing season of the forests in northern China. This was done within the same
period the field observation data of the sample site was collected. The average zenith angle
was 27.8◦, the range pixel spacing was 5.66 m, the azimuthal pixel spacing was 2.86 m, the
general observational area was 4944.62 km2, and the average height of the sensor from the
Earth’s surface was 636.56 km. The spatial baseline length between different data ranged
from 80.2 to 170.4 m. kz ranged from 0.012 to 0.021 rad/m, and the temporal baseline
between two adjacent data were 14 days. The images acquired on different dates were
combined as the interferometry primary and secondary data. Four groups of PolInSAR
interferometric pairs with different temporal baselines and vertical wavenumbers were set
up (Table 2). The inversion of each pair of interferometric data were done independently
to compare and verify the results. The inversion process was repeated in each pair of
interferometric data.

Each set of interferometric pairs was pre-processed to remove decorrelation geomet-
rically using GAMMA software [53,54]. Meanwhile, ionosphere-induced phase drift and
path delays are the main sources of error in ALOS2 repeat-pass spaceborne PolInSAR
when performing interferometry [55,56]. In this study, the ionospheric effect was elimi-
nated using the distance splitting spectroscopy method (Figure 5). Terrain correction was
performed using 30 m resolution SRTM DEM data [57,58].

6



Remote Sens. 2021, 13, 4306

Figure 4. (a) Grayscale image of the original L-band image under HV polarization; (b) PolInSAR
image Pauli-based false color image; (c) interferometric DEM of the on-board data.

Table 2. PolInSAR interferometric datasets.

Data Sets Date of Image 1 Date of Image 2
Average Vertical

Wavenumber
Temporal

Baseline/Day

0711-0725 11 July 2020 25 July 2020 0.015 14
0905-0919 5 September 2020 19 September 2020 0.018 14
0808-0919 8 August 2020 19 September 2020 0.018 42
0711-0919 11 July 2020 19 September 2020 0.021 70

Figure 5. Interferograms before (a) and after (b) reducing the phase drift and path delay caused by
the ionosphere.

3. Theoretical Analysis of Forest Height Inversion

3.1. RVoG Model and Three-Stage Inversion Method

PolInSAR data combines both interferometry and polarization properties [59]. The
complex interferometric coherence γObs(

→
ω) is obtained by combining the matrices s1(

→
ω)
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and s2(
→
ω) of the primary and secondary images at a particular polarization

→
ω and can be

expressed as follows:

γObs(
→
ω) =

〈
s1(

→
ω)s∗2(

→
ω)
〉

√〈
s1(

→
ω)s∗1(

→
ω)
〉〈

s2(
→
ω)s∗2(

→
ω)
〉 (1)

where * represents the conjugate of the SAR image and 〈〉 represents the expected value [28,29].
The magnitude of the complex coherence γObs(

→
ω) (|γObs|) represents the coherence between

two images (i.e., degree of similarity between two images), and its value ranges from 0 to 1.
Previous studies have shown that the complex coherence obtained by Equation (1)

is still affected by several decorrelations even after eliminating system induced decorre-
lation [2,54]. The observed interferometric coherence can be modeled as a combination
various contribution [54,55] and illustrated as follows:

γObs = γSNRγTmpγvol (2)

Here, γSNR represents the decorrelation effect from thermal noise; γTmp is temporal
decorrelation; and γvol is volumetric decorrelation, which is widely used to forest height
inversion. γSNR can be eliminated during image preprocessing. However, due to the
constraints of a variety of factors, γTmp can introduce bias between γObs and γvol ; it
not only affects the phase of γObs, but also further reduces the overall coherence. For
northern forests with lower forest heights, γTmp may sometimes mask the influence of γObs,
especially for repeat-pass spaceborne PolInSAR data with a temporal baseline of several
days [28].

γvol is included into the model to allow calculation of the forest height. The RVoG
model combines the forest height with the scattering properties by treating the scattering
as a volume scattering and ground scattering contributions through the assumption of the
forest as a random homogeneous scatterer [28]. The model expresses the forest volume
scattering complex coherence as follows:

γvol = eiϕ0 γv+m(
→
ω)

1+m(
→
ω)

(3)

where eiϕ0 is the ground scattering contribution, m is the effective ground-to-volume
amplitude ratio, and γv is the volume scattering complex coherence without the ground
contribution. γv can be expressed by the mean extinction coefficient σ and the forest height
hv as follows:

γv = 2σ

cos θ

(
e

2σhv
cos θ −1

) ∫ hv
0 e−ikzze−

(2σz)
cos θ dz (4)

where kz is the vertical wavenumber.

kz = α 2πΔθ
λ sin θ0

≈ α 2πB⊥
λR sin θ0

(5)

θ0 is the radar incidence angle, Δθ is the incidence angle difference between the two images
induced by the spatial baseline, λ is the wavelength, B⊥ is perpendicular component of
the spatial baseline, R is the slant range, and α is an integer constant that is equal to 2 for
monostatic acquisition and 1 for bistatic acquisition.

Since the ground scattering ratio is a parameter affected by polarization, Equation (3)
can be observed as a straight line in the complex plane (Figure 6). The three-stage inversion
method is applicable to PolInSAR developed from this geometric property [38]. The first
stage of the inversion method uses different ground contributions contained in the different
PolInSAR data polarizations, which fall at different positions in the complex plane (blue
shade in Figure 6), and the coherence line of Equation (3) can be fitted. In the second
stage, the two intersection points of the coherence line and the unit circle of the complex
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plane are determined as candidate points for the ground coherence point. The actual
ground coherence point is determined through screening, and its influence is eliminated.
In the third stage, a 2D lookup table of extinction coefficient and forest height (red points
in Figure 6) can be established according to Equation (4). Generally, it is assumed that
the complex coherence point under HV polarization is mainly volume-only scattering in
InSAR, and the complex coherence in PolInSAR coherence optimization represents volume
scattering, which allows forest height inversion, and determination of extinction coefficient
value in the lookup table.

Figure 6. Schematic diagram of the three-stage inversion method. The black straight line is the
fitted coherence line, the blue shaded area is the coherence region composed of different polarized
coherence points, the green points indicate volume-only scattering and ground coherence points,
and the red points indicate the 2D lookup table calculated by the RVoG model, in which the average
extinction coefficient values of the points in each curve are the same, but gradually moves away
from the phase origin as the forest height increases. The different curves represent different average
extinction coefficients, and the closer they are to the circumference, the larger the value of extinction
coefficient. Moreover, θ0 in the figure is 45◦, hv ranges from 0 to 50 m, and the interval between two
adjacent points is 0.5 m.

3.2. Temporal Decorrelation

The temporal decorrelation of interferometric image often causes obvious errors to
the inversion results, regardless of whether RVoG model or other interferometric inversion
models are used. Temporal decorrelation reduces the coherence and causes a phase shift of
the interferometric data so that the forest height inversion model is greatly affected. The er-
ror sources of temporal decorrelation have a complex structure [42] and are influenced by
combination of factors that are difficult to quantify. As a result, temporal decorrelation is
difficult to remove when pre-processing image data.

In general, the degree of temporal decorrelation is described by the temporal baseline,
which is the time interval between primary and secondary image observations. Data with
larger temporal baselines undoubtedly face greater temporal decorrelation. The temporal
baseline of repeat-pass spaceborne SAR data for the same observation area tends to be
more significant compared to airborne PolInSAR data. This study’s temporal baseline of
ALOS2 repeat-pass spaceborne SAR varies from a few days to tens of days. Therefore,
there is a larger temporal decorrelation contribution in the repeat-pass spaceborne SAR
interferometric data. In addition, the sensitivity of different images to the same temporal
decorrelation of the interference varies and PolInSAR data with smaller kz has a more
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pronounced response to temporal decorrelation. For the InSAR, kz is defined by the angular
difference between the primary and secondary sensors (Equation (7)) and is a factor that
indicates the sensitivity of the interferometric phase to changes in terrain (height) [49].
For the PolInSAR inversion forest height model, the smaller kz makes the forest height
more sensitive to changes in the coherence and phase of the interferometric data during
inversion [49]. Therefore, when using interferometric images with small kz to retrieve
forest height, there may be huge errors in the inversion results even if there is a weak
temporal decorrelation factor [50]. The situation is reflected in the absence of intersection
between the observed complex coherence in the unit circle and the LUT when using the
three-stage inversion method for height inversion [60]. Meanwhile, the kz of repeat-pass
spaceborne PolInSAR data tend to be lower, making the inversion results (which already
contain a large temporal decorrelation factor) less accurate. Therefore, it is necessary to
adopt an effective correction for temporal decorrelation inversion model when retrieving
forest height from repeat-pass spaceborne PolInSAR data.

There are several improved models for temporal decorrelation including the RVoG+VTD
model [60], the RMoG model [35,43], and the semi-empirical iterative model for dielec-
tric constant and random motion modeling using Gauss-Newton iterative optimization
model [42,48].

The RVoG+VTD model demonstrates that, temporal decorrelation shifts the volume-
only coherence points in the complex plane unit circle during the inversion using the
three-stage method. As such, there is no intersection between the height-extinction LUT
and the volume-only coherence point. Therefore, correction terms for the shifted volume-
only coherence points are achieved by fixing the extinction coefficient and using the SINC
function. Meanwhile, RMoG model is different from the RVoG+VTD model since the
effect of temporal decorrelation on volumetric decorrelation is not considered to be a
multiplicative relationship. This model quantifies the cause of temporal decorrelation as a
stochastic motion parameter that varies with the forest canopy. This was the first method
to attempt to model the direct extraction of forest height from the mixed effect of temporal
decorrelation and volumetric decorrelation. Additionally, a ten-dimensional parametric
model was developed from the observations under different polarization channels. Another
study decomposed temporal decorrelation into the temporal effects of dielectric constant
variation and random motion, used coherence to build an empirical model, and extracted
the parameters using the Gauss-Newton iterative method [42,48]. The forest height model
can use the repeat-pass spaceborne InSAR data in L-band with large temporal baseline.

4. Improved Inversion Model

In this study, a new inversion method has been proposed to enable forest height
inversion by empirical iteration. Corrections were performed to degrade coherence and
phase shift caused by error sources such as temporal decorrelation. In addition, the
inversion accuracy of the improved model was simulated, and its geometric process was
analyzed theoretically.

4.1. Theoretical Background

The interferometric phase obtained from the interferometry can be used to calculate
the topographic height of the ground surface.

In repeat-pass interferometry, the same sensor makes two recordings of the same
ground target at a certain time interval to form an interferometric data pair (Figure 7).
The first recording is referred to as the primary image (marked as s1), and the second
recording is referred to as the secondary image (marked as s2).

s1 = a1eiϕ1

s2 = a2eiϕ2
(6)
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The primary and secondary images are conjugated and multiplied to obtain the
interferometric phase values.

φ = arctan(s1s2
∗) = ϕ1 − ϕ2 (7)

When phase ambiguity is not considered, the interferometric phase can be expressed
as follows:

φ = − 4π
λ ΔR (8)

where ΔR is the difference between s1 and s2 radar wave propagation distances.
The interfering phase φ consists of the following five main components:

• Flat Earth phase φ f lat due to reference ellipsoid.
• Topographic phase φtopo due to terrain undulation.
• The deformation phase caused by the deformation of the ground surface during the

two imaging sessions.
• The phase difference caused by atmospheric disturbances.
• The phase difference due to noise.

In this study, the ground surface was considered undeformed. The atmospheric and
noise disturbances were ignored.

Figure 7. Schematic illustration of Interferometric geometry.

After eliminating the above interference factors, only the flat earth phase and the
topographic phase remained in the interferometric phase. The geometric principle of
interferometry is explained using a previous example where the topographic height h
was measured at the surface target point P in Figure 7 [16]. Point P in the figure is the
target point of interferometry. P0 is the point on the reference ellipsoid, and it allows equal
distance from s1 to P and P0.

When the sensor is far enough from the ground target, the component B‖ of the
spatial baseline (between s1 and s2) that is parallel to the line R1 (between s1 and P) can
be approximately equal to ΔR ( B‖ ≈ ΔR). The topographic phase at point P is expressed
as follows:

φtopo = − 4π
λ B‖ = − 4π

λ B sin(θ − α) (9)
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B is the spatial baseline between s1 and s2, θ is the angle between the line connecting
s1 to the ground target point P and the vertical direction, and α is the angle between the
baseline B and the horizontal direction. The flat earth phase at point P0 is as follows:

φ f lat = − 4π
λ B0

‖ = − 4π
λ B sin(θ0 − α) (10)

B0
‖ is the component of the spatial baseline B that is parallel to the line R0 between s1

and P0, θ0 is the angle between lines s1 and P0 and the vertical direction, and φ f lat is the
flat earth phase corresponding to the point P. Meanwhile, the phase difference Δφ between
P and P0 can be expressed as follows:

Δφ = φtopo − φ f lat = − 4π
λ B(sin(θ − α)− sin(θ0 − α)) (11)

The angle Δθ between θ0 and θ is very small, due to the long distance between the
sensor and the ground target. Thus, Equation (11) can be simplified as follows:

Δφ = − 4π
λ B cos(θ0 − α)Δθ = − 4π

λ B0
⊥Δθ (12)

B0
⊥ is the component of the spatial baseline B, which is perpendicular to R0. In the

geometric relationship illustrated in Figure 7, the value of the height of point P is computed
as shown below:

h = H − R1 cos θ = R1Δθ sin θ − ΔR1 cos θ

Δθ = h+ΔR1 cos θ
R1 sin θ

(13)

h is the height of the ground target point P from the horizontal plane, H is the height
of s1 from the horizontal plane, R1 is denoted as the radar wave propagation distance of s1,
and ΔR1 is the difference between R1 and R0. Therefore, the topographic phase and height
can be expressed as shown in the equation below:

Δφ = − 4πB0
⊥

λR1 sin θ ·(h + ΔR1 cos θ) = −kz·h − 4πB0
⊥

λR1 tan θ ·ΔR1 (14)

The first term on the right side of the equation is the terrain phase given the terrain
height, while the second term is the flatland phase considering the zero change in elevation.
After removing the flat earth phase, we obtain a linear relationship between height and
terrain phase, and it is linked by kz.

The above equation showed terrain height measurement by interferometric phase.
However, there is a significant difference in measurements when using PolInSAR to mea-
sure forest height. Meanwhile, the interferometric phase between the top point of the
canopy and the underlying surface point should be included in the calculation of forest
height. However, the observed phase at the top of the canopy had two-phase contributions
in addition to the five components mentioned in Equation (8). The first contribution is the
shift of the phase center caused by the penetration of low-frequency SAR into the forest
canopy [53]. The second contribution is the phase shift caused by random movement
of the canopy during the imaging of the primary and secondary images [43]. Both of
these contributions interfere with the forest height measurement and should be eliminated
during the inversion process.

The geometry of the forest height measurement by interferometric phase is illustrated
in Figure 8. P1 is the phase center at the top of the canopy. However, the phase shift caused
by the random motion of the canopy causes the phase center of the canopy to shift to
P2 when being observed. The shift in phase center that is caused by low-frequency SAR
penetration makes it possible for the observed phase to lie anywhere between P2 and P′

2.
P0 is the corresponding point on the reference ellipsoid. The interferometric phase and the
height from the horizontal plane at P2 are then described as follows:

Δφ1 = − 4π
λ B0

⊥Δθ1 (15)
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h1 = H − R′
1 cos θ (16)

The relationship between interferometric phase and height at point P2 is as follows:

Δφ1 = − 4πB0
⊥

λR′
1 sin θ

·(h1 + ΔR′
1 cos θ

)
= −kz·(h + Δh)− 4πB0

⊥
λR′

1 tan θ
·ΔR′

1 (17)

where ΔR′
1 is the difference between R′

1 and R′
0. Δh is the height difference between P1

and P2, and the offset of the measured height of the canopy. The second term on the
right-hand side of the equation is the flat-earth phase of P2. The above two interference
factors influence the height deviation, so it is necessary to quantify the height error of
the two effects. Previous studies have described random motion as Gaussian function
that varies with height and uniformly when in the vertical direction [35,43]. There was
neither deformation on the surface nor phase difference caused by random motion on the
surface. When only the offsets produced by the random motion on the canopy are taken
into account, the height offset can be considered as a linear function of the canopy height
and can be expressed as follows:

Δh = δr(h) = δr
hr

h (18)

where δr denotes the standard deviation of the motion at a certain reference height hr, and
ε0 represents the variation of this offset from the height.

Δh = ε0·h (19)

Previous studies have focused on the modeling of random motion and understanding
the relationship between interferometric coherence and random motion. However, the
effect phase shift errors on the height inversion results may be more pronounced. Therefore,
this study attempts to correct this error and improve accuracy in the height inversion results.

Meanwhile, the phase bias caused by low-frequency SAR penetration makes the
observed phase lie between the top of the canopy and a half of the height [53]. Therefore,
the height deviation obtained by coupling the two factors can be simplified as a linear
function that changes with the vertical target height:

Δh = ε0·h − d (20)

where d is the distance between the scattering center and the underlying surface after the
canopy phase shift h/2 ≤ d ≤ h. The height error was brought into the canopy phase
without the flat-earth phase in order to obtain the relationship between the observed
canopy phase and the true canopy height. The equation is as follows:

φvol = kz·((1 + ε0)h − d) = εkzh − kzd = εkzh + ϕe (21)

where ε is the correction term for temporal decorrelation due to random motion, and ϕe is
the corrected phase for the phase center shift. Noteworthy, ε ≥ 1, −π ≤ ϕe ≤ π.

Temporal decorrelation not only causes phase shift but also leads to a reduction
of factors affecting interferometric coherence, such as dielectric constant with temporal
baseline. This also has a more pronounced effect on the PolInSAR inversion of forest
height and, therefore, measures are needed to reduce this interference. In order to address
the apparent temporal decorrelation of coherence amplitude, phase interference, and
canopy phase center shift suffered during the repeat-pass spaceborne PolInSAR inversion,
this study proposes a new inversion method to achieve the inversion of forest height
by empirical iteration. First, to address the interference of temporal decorrelation on
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the interferometric coherence and correct the overall coherence, this study introduces a
correction term |γe| based on the RVoG model (Equation (4)):

γ̂ = |γe|· 2σ

cos θ

(
e

2σhv
cos θ −1

) ∫ hv
0 e−ikzze−

(2σz)
cos θ dz (22)

With respect to the offset phase caused by the random motion and microwave pene-
tration factors in the temporal coherence, the offset phase value of the height modeling in
Equation (21) is introduced into Equation (22) as follows:

γ̂ = |γe|· 2σ

cos θ

(
e

2σhv
cos θ −1

) ∫ hv
0 e−i(εkzz+ϕe)e−

(2σz)
cos θ dz

= γe· 2σ

cos θ

(
e

2σhv
cos θ −1

) ∫ hv
0 e−i(ε·kz)ze−

(2σz)
cos θ dz

(23)

where γe = |γe|·eiϕe .
In previous studies, the physical model construction method [35,42] decomposed the

temporal decorrelation into factors such as dielectric constant and random motion, and
then modeled together with volume decorrelation to extract forest height. These models
are undoubtedly advanced and effective, but often require complex iterative processes and
have many model parameters, which increases the uncertainty of the inversion. This study
attempts to use an empirical model to achieve fast and efficient inversion, and achieve
results that are similar to previous temporal–decoherent models. Therefore, the model
is built based on the three-stage inversion method, and the geometric properties of the
model are used to improve efficiency of the inversion. The error factors encountered during
the inversion are integrated into Equation (23) as a correction term ε on the phase, and a
complex correction term γe. They are both brought into the iterative process to ensure that
complete error sources are considered in the model.

Figure 8. Schematic diagram showing the phase shift of the observed target. P2 is the component of
the observed phase on the line of sight affected by random motion, P′

2 is the height reduction at the
center of the P2 phase caused by microwave penetration, and P1 is the true phase point.

The model is performed under the assumption that P2 is in line with s1P1, but this
does not affect the validity of the model. This study focuses on the height difference in the
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vertical direction between P2 and P1, and does not require obtaining of the specific true
phase point. Therefore, even if the two are not on the same line, the inversion results in
another point with the same height on the line. Moreover, since this is an empirical model,
the real data are used as prior information. Therefore, forest height can be calculated based
on this assumption.

4.2. Iterative Process of the Improved Model

The iterative process of the improved model follows the flow of the three-stage
inversion method. First, the polarized interferometric information needs to be extracted
from the pre-processed PolInSAR data. Each set of polarized interferometric data pairs
contains the original complex data under full polarization, and the Pauli basis scattering
vector for each set of images is as follows:

k1 = 1√
2

(
sHH1 + sVV1 sHH1 − sVV1 2sHV1

)T
k2 = 1√

2

(
sHH2 + sVV2 sHH2 − sVV2 2sHV2

)T (24)

where s represents the scattering matrix elements collected twice at different polarizations,
H represents horizontal polarization, and V represents vertical polarization. (·)T represents
the transpose of the matrix. With the Pauli basis vector, we can obtain the T coherence
matrix and the Ω12 matrix as follows.

T coherence matrix:

T = 1
2 (T11 + T22) =

1
2
(〈

k1k1
H〉+ 〈k2k2

H〉) (25)

The Ω12 matrix:
Ω12 =

〈
k1k2

H〉 (26)

where 〈·〉 denotes the mathematical expectation, and (·)H is the conjugate transpose.
With the T matrix and Ω12 matrix, we can calculate the coherence and the phase of the

primary and secondary images with different polarization and coherence optimization. This
study employs the common and easily extracted complex coherence values, including three
basic polarization types HH, HV, VV, four linear combinations of different polarizations
(HH+VV, HH-VV, HHVV, HV+VH), three circular polarizations (LL, LR, RR), three Opt
coherence optimizations (Opt1, Opt2, Opt3), and two PD coherence optimizations (PD
High, PD Low). Due to the specific polarization correlation of the ground scattering
contribution, the 15 complex coherences have different ground scattering ratio coherence.

The improved model extracted the volume-only scattering complex coherence method
in general agreement with the three-stage inversion method. During the inversion, 15 types
of complex coherences were projected into the unit circle of the complex plane. The least-
squares method was used to fit the phase trunk using the different scattering ratios of the
earth’s surface under different polarizations. The two intersections of the fitted coherence
line and the unit circle of the complex plane allowed determination of the candidate
points for ground coherence. The external DEM phase in this image was compared with
the candidate points and filter to identify the true ground coherence points and remove
their influence. After the removal of terrain phase, the coherent region of each pixel was
obtained, and the volume-only complex coherent points in each pixel were screened by
comparing the distance between the optimized complex coherent points and the ground
coherent points.

Once the volume-only scattering complex coherence is scattered, a 2D look-up table of
forest height-extinction coefficients is a requirement in the flow of the three-stage inversion
method. The forest height and extinction coefficient values are obtained according to the
intersection of the LUT and the volume-only complex coherence.

In this study, the process of improving the model is illustrated in Figure 9. After
introducing ε and γe into the RVoG model (through Equation (23)) as unknown parameters,
a new set of LUTs was generated when the amplitude |γe| and the phase ϕe of ε and γe had
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different values. A triple iteration of the LUT was then performed after setting the range
for the parameters. The intersection of each set of LUT with the volume-only decorrelation
performed the forest height inversion under the set of parameters. Meanwhile, iteration
added unknown parameters to the model. Therefore, the improved model needs the
control condition of iteration, which is the true height measured on the ground. In this
study, 25% of the ground-measured forest heights was randomly selected as the priori data
for the iterations. The best parameter values in the iteration range and the corresponding
inversion results were obtained by calculating and comparing the RMSE of each set of
inversion heights with the ground data.

The improved model performs height inversion for all regions in the image, which
was consistent with the original inversion method. The iterative parameters ε and γe in the
model are calculated at the image level, and only one parameter result is iterated for the
same group of interferometric pairs. Therefore, the real ground measurement data used
in the inversion need at least one true value that is a true reflection of the forest height
in the image. This is particularly important in controlling the inversion error in order to
understand forest height inversion from the image and create a balance in the model.

Figure 9. The inversion flow chart.

4.3. Theoretical Analysis of the Improved Model

In this study, the improved model is an empirical model. Besides the control of ground
data, selecting the initial range of empirical parameters also has an important impact on the
results. To discuss the feasibility of the improved inversion model, and establish whether
the model satisfies the inversion conditions, this study theoretically tested the improved
model using simulated data.

Previous reports have shown that the magnitude of the vertical wavenumber kz deter-
mines the sensitivity of the inversion results to temporal decorrelation interference [49,50].
The simulated data in the present study was therefore created to invert the study areas
with different mean tree heights (hTrue) using PolInSAR with different kz. When a certain
degree of temporal decorrelation interference is present, the use of improved model to
compute the relative height error (|h − hTrue|/hTrue × 100%) can reduce the relative error to
less than 15%.

The distribution of error in the inversion results is shown in Figure 10. As the control
variable, the interference size of γTmp to the simulated data are fixed at 0.5 × e0.3i. The
average extinction coefficient σ and the observation Angle θ are also fixed. For each
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given hTrue, the corresponding volume-only complex coherence γv for different kz can
be calculated using Equation (4). When γv is multiplied with the set γTmp, the relative
errors of the improved model inversion results under different kz can be simulated in the
actual inversion process. Based on Figure 10, it can be noted that when no improvement is
made to the model (when ε is 1), the inversion error gradually increases with the decrease
of kz. When hTrue = 30 m, kz value larger than 0.05 is needed to determine forest height
within 15% of the inversion error. Moreover, when hTrue is smaller, the inversion can only
be accurate with larger kz. As ε increases, there exists one or more intervals of ε value
for the compensated three-stage improvement method to accurately invert forest height
within 15%, regardless of the size of kz taken from the interferometric data. Besides, when
ε increases and reaches the next interval suitable for inversion, the range of this interval
will be larger than that of the previous interval. This moderates the inversion error change,
and makes the model more adaptable to the forest height change in the observed area.
However, when the ε value selected for inversion is too large, the inversion error will be
very unstable. The error of the inversion result changes rapidly and loses regularity when
the change of kz and ε are not apparent. Inversion in this range will undoubtedly reduce
the accuracy of inversion. Therefore, it should also try to avoid selecting too large ε to
avoid fluctuations in the accuracy during the inversion.

Figure 10. Distribution of relative inversion error of forest height with variation of kz and ε under different hv. The relative
error is defined by |hv − hTrue|/hTrue × 100%, γTmp is set to 0.5 × e0.3i, σ is 0.2, kz ranges from 0 to 0.1, and ε ranges from 1
to 50.

Figure 11 shows the simulated errors of the inversion of the improved model for
different coherent amplitude and γTmp. Under the same hTrue conditions in the inversion
process, the variation of γTmp coherence amplitude

∣∣γTmp
∣∣ has little influence on the value

of ε in the same kz inversion (Figure 11a). In the ϕTmp phase, change of γTmp will affect
the value of ε. The larger the γTmp, the larger the value of ε when taken at the same kz
(Figure 11b). Therefore, it can be proved that the influence of decorrelation on the inversion
accuracy is mainly due to the phase change caused by γTmp. Based on our results, small kz
was found to be more sensitive to phase change and highly likely to cause significant errors,
which was consistent with previous research results [49,50]. In addition, the decrease
in coherence amplitude caused by temporal decorrelation had an effect on the inversion
results, and should not be ignored.
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Figure 11. Distribution of relative forest height inversion errors with kz and ε for different temporal
decorrelation effects. hTrue is set to 20 m, σ is 0.2, kz ranges from 0 to 0.1, and ε ranges from 1 to 50. (a)
Plots of forest height errors for different γTmp coherence amplitudes, with phase set to 0. (b) Plots of
forest height errors for different γTmp phases, with amplitude set to 0.5.

The most significant difference between the improved model in this study and pre-
vious models is that it is an improvement on the three-stage inversion method, which is
based on the geometric properties of the model. Therefore, there is need to analyze the
geometric significance of the parameters expressed in the inversion process in order to
understand each parameter’s intrinsic logic in improving the accuracy of the inversion.

The correction term ε on the phase was corrected for the phase shift with height, and
it ranged between 1 and 50 as shown in Figure 10. When the phase is corrected by using
ε, the sensitivity of hv to complex coherence changes in the complex plane unit circle is
reduced, the phase value at the maximum height is increased, and the coherence amplitude
is decreased (Figure 12). In this case, it confirmed that there is an intersection point between
the height-extinction coefficient curve and the volume-only coherence point. This method
achieved accurate inversion results. Meanwhile, the magnitude of the complex correction
term |γe| is the correction for the reduction of coherence due to decorrelation (|γe| < 1),
while the phase ϕe is the correction for the change of scattering center (−π < ϕe < π).
In the complex plane unit circle, |γe| moves the curve in the lookup table closer to the
center of the circle (Figure 13a), and ϕe causes changes in the starting phase of the lookup
table curve (Figure 13b). Therefore, the constant change of parameters during the iteration
process generates new inversion results.
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Figure 12. Schematic diagram of inversion with ε under the improved model. In this figure, σ is 0.2,
hv ranges from 0 to 30 m, the interval between two adjacent points of the same curve is 1 m, and kz is
set to 0.01. ε differs between different curves, and the interval between two adjacent points gradually
increases as ε increases. When hv reaches 30 m, the phase gradually moves away from the origin.
During the inversion process, an increase in ε will expand the phase when hv reaches the upper limit
of the phase of LUT. Besides, the sensitivity of hv gradually reduces changes in γv, making it more
suitable for forest height inversion.

Figure 13. The complex correction term γe changes the position of the LUT in the complex plane unit
circle. (a) In order for |γe| to reduce the coherence amplitude of the LUT points, the curve composed
of red points is the LUT calculated by the original RVoG model, and the curve composed of blue
points is the LUT after |γe| correction, and its more suitable for the inversion of low coherence cases.
(b) Shows the LUT after ϕe is introduced on the basis of (a), and the curve composed of green points
is the LUT after ϕe correction, which is more suitable for inversion of data with obvious phase center
shift. σ is 0.2, kz is 0.01, ε is 15, and the forest height range is 0–30 m with 1 m interval between
two points.

5. Results

A total of 25% of the ground measured height was randomly selected as the prior data
to control the iterative process. The inversion process follows the inversion procedure in
Section 4.2. After quantifying the inversion error (Figures 10 and 11), the initial range limit
of ε was set to 1–50, the initial range limit of |γe| was set to 0–1, and the phase ϕe was set to
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−π∼π. Figure 14 shows scatter plots of height results of the iterations using the improved
model, with prior true data. Table 3 shows the iterative results and the inversion accuracy.

It can be noted that the inversion results of the improved model were all within
15% RMSE compared with the true values, and there was a good fit. The iteration parameter
ε ranged from 20 to 40, indicating that the random motion of the canopy produces a more
significant interference with the phase error of the repeat-pass spaceborne PolInSAR data.
Moreover, the decorrelation correction term of the parameter γe became larger as the
temporal baseline increased. This indicates that the improved model has a better correction
for the interference of temporal decorrelation. However, the magnitude of ε does not
increase with the temporal baseline across the data but decreases with increasing kz. This
also shows that the smaller the kz, the greater the sensitivity of the data to temporal
decorrelation, leading to a decrease in inversion accuracy.

Figure 14. Scatter plots of the height inversions based on the improved model and prior true height.
RMSE and x are the root mean square error and the mean value of the inversion results, respectively.

Table 3. Iteration parameters and inversion accuracy.

Data Sets
Parameters Inversion Accuracy

ε γe RMSE R2 RSD

0711-0725 31.1 0.60 × ei·0.1π 2.1836 0.8355 32.66%
0905-0919 24.0 0.75 × ei·0.2π 2.4885 0.8154 30.98%
0808-0919 26.5 0.49 × e−i·0.3π 2.5199 0.7712 30.47%
0711-0919 19.9 0.48 × e−i·0.6π 3.3373 0.6941 30.99%

The inversion accuracy was found to be suitable for height inversion. However, all the
relative standard deviations (RSDs) of the models were around 30% (Table 3), indicating
that the inverse performance of the models still exhibits some volatility and randomness
on a few samples. This phenomenon may be because the effects arising from temporal
decorrelation were not completely eliminated by semi-empirical iterations. The calibration
of temporal coherence could improve the deviation of coherence, but cannot solve the
increase of phase line fitting variance caused by low γvol coherence [49]. In addition, since
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the conditions of forest height and coherence between different elements in the same image
are not the same, the size of the correction term is subject to various constraints. As such,
the use of the same correction term may inevitably lead to inconsistent parameter effects
of different pixel values. Nevertheless, the errors in the inversion results are still within
reasonable limits and do not affect the forest height distribution or hinder further studies.

To test the robustness of the improved model, the iterative model was validated
using an additional 75% of the ground truth data. Performance of the model was further
evaluated by introducing the nonlinear least squares inverse model based on repeat-pass
spaceborne InSAR [42] for comparison. In this model, the coupling coherence of volume
decorrelation and temporal decorrelation is taken as the image observation, and the random
motion of forest and the change of dielectric constant are taken into account under a certain
temporal baseline. The model can be expressed as follows:

|γv+t| = Sscene·exp
(
− 1

2

(
4πδrα

λhr

)2
hv

2
)

≈ Sscene·sinc
(

hv
Cscene

)
, hv < π·Cscene

(27)

where Sscene is a non-negative real value less than or equal to 1 and Cscene represents the
random motion level of the volume scatterers. Consistent with the original study, HV
polarization was used in this study as the polarization to represent the volume scatterer.
The same modeling data as the improved model in this study were used for training, and
the model parameters were obtained by nonlinear least squares iteration. The scatter plots
of the height inversions using models and the validation data are shown in Figure 15. The
validation accuracy of the four data sets is also shown in Table 4.

Table 4. The validation accuracy of the four data sets.

Data Sets
Validation Accuracy of the Improved Model

Validation Accuracy of the Nonlinear Least Squares
Model

RMSE R2 RSD RMSE R2 RSD

0711-0725 2.7305 0.7401 29.06% 3.2597 0.6342 29.94%
0905-0919 2.3125 0.8126 30.58% 3.3024 0.6782 32.51%
0808-0919 3.1490 0.6871 32.33% 3.8472 0.6007 33.32%
0711-0919 4.1016 0.5978 34.51% 4.1194 0.5522 34.69%

Based on Figure 15, it can be noted that the inversion accuracy of the improved
model is relatively close for different interferometric pairs. Therefore, the model can still
perform forest height inversion within 15% accuracy even when the temporal baseline
is different from kz. This indicates that the inversion of the improved model is more
robust and can be applied to repeat-pass spaceborne PolInSAR data with larger temporal
baselines and smaller kz. In contrast, the nonlinear least squares model had lower inversion
accuracy and a larger randomness due to the lack of correction phase. The accuracy of the
model decreased more obviously when the data with large temporal baseline was inversed.
Moreover, the lack of polarization information may be another reason for the decrease
in accuracy.
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Figure 15. Scatter plots of the height inversions based on the improved model and the validation
data. The red points are the inversion heights of the improved models proposed in this study. The
blue points are the nonlinear least squares model inversion heights. RMSE and x are the root mean
square error and the mean value of the inversion results, respectively.

6. Discussion

By improving the model inversion of forest height, the significant errors caused by
repeat-pass spaceborne PolInSAR temporal decorrelation are reduced, increasing the scope
of application of this data in forest height inversion. Based on the results of the improved
model in Section 4 under different interferometric data, the following conclusions can
be drawn:

1. The correction of temporal decorrelation can improve the robustness and accuracy of
the inversion and meet the needs of remote sensing for forest height inversion.

2. A more accurate forest height inversion of common SAR data can be performed
using the improved model, but there may still be a small degree of error in the
inversion results.

3. Data with large temporal baselines should be carefully selected when using models
for height inversion.

6.1. Inversion Performance of the Model

Temporal decorrelation causes abrupt changes in the interferometric phase on the one
hand and decreases in coherence on the other. In Figure 16, the coherence of the larger
temporal baseline is lower than that of the smaller temporal baseline, which also proves
that for repeat-pass spaceborne PolInSAR data, temporal decorrelation is the main source
of inversion errors [61]. Besides, the coherence of the 0711-0919 data are slightly lower
than that of the 0808-0919 dataset, so it can be shown that the increase of the temporal
baseline will not cause more loss of decorrelation when the loss of coherence reaches
a certain level. Combined with the empirical parameters obtained by inversion of the
improved model (Table 3), it can be seen that the continuous increase of the temporal
baseline causes more changes in the phase of the observed complex coherence, compared
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to decreases in the coherence. The changes in phase are also affected by the sensitivity
of kz to temporal decorrelation in the inversion process, and correction for this error can
be better achieved using an improved model. In addition, the magnitude of coherence
varies at the same temporal baseline, which can be caused by various factors, such as wind-
induced motion, weather-induced changes in dielectric constant, etc. [9,26,43,62]. The
coherence is not uniformly distributed in the same image, resulting from the joint action
of temporal decorrelation and volume decorrelation. The validated improved inversion
model summarizes the temporal decorrelation in the same data set as a complex parameter,
which can also control the error of inversion results within a relatively small range.

Figure 16. Coherence images for different interferometric data; 0711-0725 and 0905-0919 data sets
have higher coherence, 0808-0919 data set has lower coherence, and 0711-0919 data set has the
lowest coherence. The data with larger temporal baselines have lower coherence, and temporal
decorrelation decreases the coherence. The spatial distribution of coherence is not uniform and
receives a combination of volume decorrelation and temporal decorrelation.

Figure 17 shows the forest height inversion results of the improved model with differ-
ent interference datasets. The inversion results show that the improved inversion method is
robust for the forest height inversion under different kz and temporal baselines. Although
there was some biasness between the data sets, this error may have been influenced by
abrupt changes in the ground phase in addition to the reasons mentioned in Section 5.
Moreover, the inversion effect does not decrease significantly for the data sets 0808-0919
and 0711-0919 with larger temporal baselines. The temporal baseline of the 0711-0919 data
set was found to be larger, and it showed a better inversion effect than 0808-0919. This
could be because the difference in the coherence between the two sets of data were little.
Meanwhile, the data are less sensitive to temporal decorrelation interference due to the
large original kz of 0711-0919 data, resulting in the preference in the overall inversion result.
Therefore, for repeat-pass spaceborne PolInSAR, the improved model can be relatively
robust to forest height inversion.
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Figure 17. Inversion of forest height using different data.

6.2. Error Analysis of Inversion Results

Errors in the inversion results and the effect of residual temporal decorrelation on the
model are the common factors that affect the accuracy of the inversion results. However,
other factors outside the model may also cause the problem of accuracy degradation.
This study was based on the assumption of the traditional three-stage method [38]. Besides
the temporal decorrelation source, the inversion results are still faced with two aspects
of errors: residual ground contribution in the volume scattering complex coherence and
the estimated shift of the real ground phase [63]. The inversion process usually assumes
that the ground scattering contribution of volume-only scattering complex coherence
is 0. However, when there is a strong interaction at the dihedral angle of the earth, the
polarization channels with low ground contribution will still be affected by the ground
scattering center, increasing the variance of the inversion results. Thus, the accuracy of the
fitting is reduced [38].

Previous studies have attempted to optimize this phenomenon and can be categorized
into three groups based on their principles: separation of the contribution of volume scatter-
ing based on polarization decomposition [8,64], optimization by coherence to minimize the
effect of ground scattering contributions [39,45,65], and methods that introduce other data
sources, such as different baselines [66], and different frequency bands [67,68]. At present,
these methods can only reduce the error of ground contribution to a certain extent. Based
on the repeat-pass spaceborne PolInSAR data with low coherence, the improved model
introduces partial coherence optimization to help in the model calculation. This method is
very valuable in research. However, removal of ground contribution to the inversion effect
deserves further in-depth study.

Even after terrain correction, the influence of ground phase estimation is still in-
evitable [11]. The ground phase images were estimated from different interferometric data
during the three-stage inversion (Figure 18). The ground phase of all interferometric pairs,
as distinguished from the interferometric DEM (Figure 4c), was affected by abrupt changes
resulting to incorrect ground point selection during the inversion. The phase error was
particularly prominent in 0711-0725, where the kz of this data set was smaller than the
other groups. Thus, the spatial baseline of this data set was shorter than the other groups
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during interferometry. In addition, the abrupt changes of terrain phase were more obvious
in rugged terrain, which was consistent with previous findings [69]. In contrast, the abrupt
ground phase error for 0711-0919 was not significant, indicating that the estimation error of
the ground phase was not significantly affected by the temporal baseline when compared
to spatial baseline. This also supported previous conclusions about the same [32,61].

Figure 18. Phase estimation of three-stage inversion method for different interferometric pairs. There
are relatively obvious phase point anomalies in the estimates of 0711-0725, which are more evident in
the rugged terrain type (upper right corner). Thus, it can be demonstrated that the interferometric
data with shorter spatial baselines are more prone to errors in the ground phase estimates.

The forest average height serves as the standard forestry table measurement parameter
and plays an important role in forest inventory and subsequent biomass estimation [70].
However, it has also been suggested that forest dominance height is closer to the effective
height of the remote sensing signal [63], and the difference tends to be more pronounced for
forests with lower heights. In addition, differences in forest species and density may also
have an impact on the inversion results. The reasons are mainly the differences arising from
the canopy cover and the ratio of canopy to bare ground. In the general boreal temperate
forests of China, the distribution of forest species and density is complex. They were not
strictly classified and studied separately in this study. This will undoubtedly have some
influence on the inversion accuracy, which is worthy of our further study. It is worth noting
that although the sample size does not bias the fit results, it may still cause a reduction in
correlation [52].

The model proposed in this study is only for the fuzzy inversion of forest height
caused by temporal decorrelation. It does not focus on the inversion errors caused by
other factors that may exist. As such, the model is only suitable for data whose main error
source is temporal decorrelation. In addition, this study is a regional study, and the model
has only been verified in the height inversion of forests in northern China. Therefore, the
inversion of the model in other regional forests requires further studies.
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6.3. Suitable Range of Spatial Baseline for Forest Height Inversion

In this study, height inversion of repeat-pass spaceborne PolInSAR data revealed
that the degree of influence of temporal decorrelation on the inversion accuracy depends
not only on the length of the temporal baseline, but also on the sensitivity of the data to
temporal decorrelation, such as the magnitude of kz. Given the upcoming large-scale forest
biomass observation mission, the multifaceted parameters of PolInSAR data should be
carefully considered. The spaceborne SAR sensor has a relatively fixed flight trajectory
when compared to the airborne SAR, and it is relatively difficult to change its space param-
eters. Therefore, this study aims at providing more insights about the spatial parameter
suitable for the forest height of the spaceborne SAR inversion. This will help future studies
in establishing a suitable spaceborne inversion system.

Given the sensitivity of the ground target height to the interferometric phase, the
phase shift caused by temporal decorrelation causes the most interference to the forest
height calculation. Therefore, the correction term ε in the model (Equation (23)) has the
most significant impact on the inversion accuracy. In Equation (23), the function of the
ε parameter is to correct the phase deviation. However, from another perspective, the
inversion accuracy can be measured by converting ε to the size of kz. As such, the inversion
accuracy can be improved by using the data suitable for kz.

In this study, we used L-band ALOS2 repeat-pass spaceborne PolInSAR data to
retrieve the height of temperate forest in the Saihanba region of northern China, and
obtained the ε parameters under different kz and temporal baselines. When the kz value of
the spaceborne data reached ε·kz of the corresponding height, the data were considered
suitable for inversion of the forest height using the polarized interferometric model. The
suitable kz for different data pairs can be obtained from Tables 2 and 3, as shown in Table 5.

Table 5. Suitable kz for different data pairs.

Data Sets Temporal Baselines (Day) Original kz Suitable kz Suitable Vertical Baseline

0711-0725 14 0.015 0.465 2391.7 m
0905-0919 14 0.018 0.432 2723.7 m
0808-0919 42 0.018 0.477 3007.4 m
0711-0919 70 0.021 0.418 2635.4 m

The analysis of Table 5 shows that a larger vertical baseline is more suitable for repeat-
pass spaceborne PolInSAR inversion of forest height, and a similar conclusion was reached
in a previous study upon analysis of airborne data [11,50]. This is because when the
kz is larger, the baseline decorrelation caused by the spatial baseline between the primary
and secondary images is greater. The larger kz results obtained in the study indicate
that the disturbance caused by baseline decorrelation can be hardly considered when
compared to temporal decorrelation. Conversely, smaller kz may cause abrupt changes in
the phase estimation of the underlying surface, causing a decrease in the inversion accuracy.
In addition, the suitable kz of different temporal baselines slightly differed for the same area
data, indicating that the sensitivity of kz to temporal decorrelation is more important than
that of temporal baseline. Therefore, more attention should be paid to the use of suitable kz
when using repeat-pass spaceborne SAR data interferometry to measure forest height.

However, according to previous studies, the choice of kz was negatively correlated to
the forest height in the observation area [11]. The kz value could be appropriately lowered
when the forest height of the study area was higher. According to the average forest height
in this study, the suitable kz exceeded the fuzzy interval of 2π. Since the relationship
between kz of the data and the ground height has to be within the 2π fuzzy interval, there
may not be a suitable value of kz for inversion if the inversion model is not improved.
Therefore, the correction of the ε parameter for the phase is essential when the temporal
decorrelation of the data has a significant effect.

26



Remote Sens. 2021, 13, 4306

7. Conclusions

The performance study of forest height through repeat-pass spaceborne PolInSAR
inversion will effectively improve large-scale forest height estimation efficiency. To address
the limitations of the current inversion of forest height with repeat-pass L-band spaceborne
PolInSAR data, a theoretical analysis of the effects of phase deviation and temporal decor-
relation on the inversion performance and an improved inversion method are proposed
based on the RVoG model. In this respect, this study makes three main conclusions: (1) the
correction of temporal decorrelation can improve the robustness and accuracy of the forest
height inversion. (2) A more accurate forest height inversion of common SAR data can be
performed using the improved model, but there may still be a small degree of error in the
inversion results. (3) Data with large temporal baselines should be carefully selected when
using models for height inversion.

The repeat-pass spaceborne sensors have a more extended temporal baseline than the
airborne sensors, which exposes the repeat-pass spaceborne PolInSAR to more excellent
decorrelation effects when inverting forest heights in the study area. Besides, the vertical
wavenumber of the repeat-pass spaceborne sensor is lower than the interval suitable for
inversion, making the inversion height more sensitive to decorrelation. When affected by
these two factors, the spaceborne PolInSAR data often loses the ability to invert the forest
height using the traditional three-stage inversion method.

To avoid the interference of both factors as much as possible, we propose a semi-
empirical improvement model that controls the iterations by ground true data, based on
the three-stage inversion method. Through theoretical analysis, it was found that in general
cases, there is a correction term to make the error between the inversion results and the
true value to converge to less than 15%. Moreover, there is more than one correction term
for any reasonable range of specified forest height and kz can accurately invert the forest
height under the influence of temporal decorrelation.

This method uses ALOS2 repeat-pass spaceborne L-band PolInSAR data with large
temporal baseline to perform accurate forest height inversion in the mixed conifer-broad
forest of the Saihanba of northern China. For different interferometric pairs, the RMSEs of
inversion results were less than 15%. For the interferometric data of the larger temporal
baseline, the inversion results were slightly lower than other interferometric pairs because
of the low coherence caused by decorrelation. Nevertheless, this study is based on the
assumptions of the traditional three-stage inversion method. Therefore, there is need for
further research to improve the accuracy of this method using previous improved models,
such as ground contribution and terrain impact.

The present study achieves adequate accuracy in forest height inversion by repeat-pass
spaceborne PolInSAR data through the improved model. However, accuracy degradation
may occur during inversion of heterogeneous forests because the results are affected by
height variation. Further research is therefore needed to establish whether general patterns
can be summarized to avoid the above problems by examining data from different forest
height intervals.
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Abstract: Carbon flux is the main basis for judging the carbon source/sink of forest ecosystems.
Bamboo forests have gained much attention because of their high carbon sequestration capacity. In
this study, we used a boreal ecosystem productivity simulator (BEPS) model to simulate the gross
primary productivity (GPP) and net primary productivity (NPP) of bamboo forests in China during
2001–2018, and then explored the spatiotemporal evolution of the carbon fluxes and their response to
climatic factors. The results showed that: (1) The simulated and observed GPP values exhibited a
good correlation with the determination coefficient (R2), root mean square error (RMSE), and absolute
bias (aBIAS) of 0.58, 1.43 g C m−2 day−1, and 1.21 g C m−2 day−1, respectively. (2) During 2001–2018,
GPP and NPP showed fluctuating increasing trends with growth rates of 5.20 g C m−2 yr−1 and
3.88 g C m−2 yr−1, respectively. The spatial distribution characteristics of GPP and NPP were stronger
in the south and east than in the north and west. Additionally, the trend slope results showed that
GPP and NPP mainly increased, and approximately 30% of the area showed a significant increasing
trend. (3) Our study showed that more than half of the area exhibited the fact that the influence of
the average annual precipitation had positive effects on GPP and NPP, while the average annual
minimum and maximum temperatures had negative effects on GPP and NPP. On a monthly scale,
our study also demonstrated that the influence of precipitation on GPP and NPP was higher than
that of the influence of temperature on them.

Keywords: bamboo forest; BEPS model; gross primary productivity; net primary productivity;
spatiotemporal evolution; climate change

1. Introduction

Dynamic change in the carbon cycles of terrestrial ecosystems is a core component
of climate change and regional sustainable development [1]; it plays an important role
in the global carbon balance. Because of the impacts of various environmental and bio-
logical factors (such as climate change, vegetation distribution, and land-use change), the
carbon cycles of terrestrial ecosystems show significant spatial heterogeneity [2]. Forest
ecosystems are an important component of terrestrial ecosystems and play an important
role in improving and maintaining the ecological environment, in addition to regulating
the global carbon balance [3,4]. Therefore, it is essential to quantify carbon fluxes in forest
ecosystems and explore their response to environmental factors in the carbon cycles of
terrestrial ecosystems. Carbon flux [5] is the basis for determining the carbon source/sink
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of an ecosystem and plays an important role in the global carbon cycle and carbon balance.
Ecosystem productivity is an important indicator for quantitatively describing the carbon
sequestration capacity of an ecosystem, which mainly includes gross primary production
(GPP) and net primary production (NPP) [6]. GPP refers to the amount of organic car-
bon fixed by photosynthesis per unit time and unit area of green plants [7,8]. It reflects
the carbon sequestration ability of vegetation, and is the largest carbon flux in terrestrial
ecosystems [9]. NPP is the organic matter or energy remaining for vegetation growth
after deducting the organic matter consumed by vegetation autotrophic respiration (RA)
on the basis of GPP [10]. It can directly reflect the production capacity and ecological
environment quality of surface vegetation in the natural environment, and is an important
indicator for evaluating the carbon sink of ecosystems, in addition to regulating ecological
processes [11,12].

The methods to obtain carbon fluxes of forest ecosystems mainly include sample site
inventory, eddy covariance technology, and model simulation. Sample site inventory can
estimate carbon fluxes more accurately, but the estimation of the carbon fluxes of forest
ecosystems requires long-term field measurements, which consume substantial amounts of
time and labor [13]; therefore, it limits the estimation of carbon fluxes in forest ecosystems.
Eddy covariance technology has the advantages of being a long-term, continuous, and
non-destructive method [14], and has been widely used to estimate the carbon fluxes of
forest ecosystems [15]. However, the number of flux observation sites is limited and the
area of effective observation is very small. There are uncertainties in expanding it from the
site to the regional scale, and it is often hindered by topography and climate conditions;
therefore, eddy covariance technology has limitations in studying carbon fluxes in forest
ecosystems at the regional scale.

Model simulation is an important method of evaluating carbon fluxes in forest ecosys-
tems [16,17]. Remote sensing for earth observation technology has the characteristics of
real-time, dynamic, and large-area synchronous monitoring, in addition to rich informa-
tion [13]. It readily records the dynamic changes in environmental conditions, vegetation
distribution patterns and activities, and land use in the form of electromagnetic information.
This provides the necessary parameters of vegetation (such as NDVI and LAI) and envi-
ronmental variables for the carbon flux model, and becomes a powerful method to study
the distribution, seasonal change, and interannual change in carbon fluxes [18]. Therefore,
the application of remote sensing data in the model estimation helps achieve cross-scale
simulation of the carbon cycle process and reflect the spatial distribution and dynamic
changes in the carbon budget at the regional and global scales. It increases the reliability
and operability of vegetation carbon flux estimation and has become an important re-
search topic [18–22]. Ecological process models simulate the effects of biological vegetation
processes such as canopy photosynthesis, absorption, transpiration, and changes in soil
moisture content on carbon fluxes, and have become an important method for carbon flux
simulation. Common ecological process models include the Biome-BGC model [23], the
BEPS model [24], and the InTEC model [25]. In recent years, scholars have studied the
carbon fluxes of forest ecosystems in different regions using different ecological process
models combined with remote sensing data. For example, Du et al. [26] used an improved
Biome-BGC model with remote sensing data to simulate the above-ground carbon storage
of bamboo forests in Zhejiang Province from 2003 to 2014, and analyzed its spatiotemporal
patterns and influencing factors. Zhang et al. [27] used remote sensing data and the BEPS
model to study the spatiotemporal distribution characteristics of GPP and NPP in terrestrial
ecosystems in East Asia. Zheng et al. [28] used the InTEC model to simulate the NEP of
the forests in Zhejiang Province during 1985–2015, and analyzed the response of climatic
factors such as temperature, precipitation, relative humidity, and radiation.

The BEPS model is an ecological process model based on the FOREST-BGC model [29].
It integrates multi-source data as model inputs and is a good choice for simulating terrestrial
ecosystem productivity with higher accuracy on larger spatial scales. The BEPS model
successfully solved the problem of spatiotemporal scale conversion by using remote sensing
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data. Additionally, it solved the overestimation problem of the FOREST-BGC model by
introducing the clumping index and advanced canopy transmission model [30]. Compared
with other ecological process models, it may have the most potential to adequately address
the spatiotemporal dynamics of carbon fluxes because of its strong theoretical basis and
practical applicability [31]. Previously, it was used to simulate the productivity of the boreal
forest ecosystem in Canada [32]. Presently, the model has been frequently modified and
improved, and has been widely used to simulate the carbon fluxes of different regional
terrestrial ecosystems at various spatiotemporal scales [33–38].

Bamboo belongs to a family of perennial graminaceous plants. There are approxi-
mately 150 genera and 1225 species of bamboo forests in the world, and the total area of
bamboo forests worldwide accounts for more than 30 million ha [39], making it “the second
largest forest in the world”. China is located in the center of bamboo distribution in the
world. It has the richest bamboo resources in the world in terms of the number of species
(more than 500 varieties of 39 species) and area [40]. According to the ninth National
Forest Resources Inventory (2014–2018), China’s bamboo forest area is 6,411,600 ha [41],
accounting for approximately 20% of the world’s bamboo forest area. Compared with the
eighth National Forest Resources Inventory (2009–2013), their area of bamboo forest has
increased by more than 400,000 ha. It is known as the “Bamboo Kingdom” [40,42]. Bamboo
forests have a great carbon sequestration capacity and differ from other forests in mitigat-
ing climate change, and their impact on global climate change has become an important
concern [43,44]. Several scholars have explored carbon cycling in bamboo forests, and have
synthesized information concerning primary production [45,46], carbon stocks [47,48], and
biomass [49,50].

Although relevant studies on bamboo forests’ carbon cycles have been conducted,
the characteristics of bamboo forests’ carbon dynamics and their response to changing
environmental conditions are still poorly understood [47,51,52]. Previous studies mainly
focused on estimating carbon fluxes at the scale of sites, regions, and provinces, while
relatively few studies have done so at the national scale. In addition, some studies lack
simulations of physiological and ecological processes, leading to massive errors in the
estimated results [53]. Therefore, the study of carbon fluxes from bamboo forests in China
is essential for the study of the carbon cycles of forest ecosystems under the global climate
background. The objectives of this study include (1) driving the BEPS model to simulate the
carbon fluxes of bamboo forests in China from 2001 to 2018; (2) exploring the spatiotemporal
evolution of bamboo forests’ carbon fluxes in China and the driving influence of climate
change on carbon fluxes of bamboo forests in China.

2. Materials and Methods

2.1. Study Area

China has a vast territory and diverse climate types (Figure 1). The country has
a north–south temperature gradient and an east–west precipitation gradient driven by
the summer monsoon [54]. Bamboo forests are a unique and important forest type in
subtropical regions of China, and are widely distributed across Zhejiang, Fujian, Jiangxi,
Hunan, Sichuan, Anhui, Hubei, Guangdong, Guangxi, and other provinces.
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Figure 1. Study area and spatial distribution of data: (a) distribution of bamboo forests and me-
teorological stations, (b) leaf area index (LAI), (c) available soil water-holding capacity (AWC),
(d) precipitation (Pre), (e) minimum temperature (Tmin), and (f) maximum temperature (Tmax).

2.2. Flux Measurement Sites

The flux observation sites are located in Zhejiang Province, which are the Anji Moso
bamboo flux measurement site (30.46◦ N, 119.66◦ E) and the Lin’an Lei bamboo flux mea-
surement site (30.30◦ N, 119.58◦ E) (Figure 1a). The height of the observation tower at Anji
was 40 m, and the vegetation type around the flux tower for 1 km × 1 km was dominated
by 1–4-year-old Moso bamboo forests. The height of the observation tower at Lin’an was
20 m, and the vegetation types around the flux tower were mainly 2–3-year-old Lei bamboo
forests. The carbon flux data were continuously measured by an eddy covariance system
of flux measurement sites. The system consists of an open-path infrared CO2/H2O gas
analyzer (Li-7500, LiCor Biosciences Inc., Lincoln, NE, USA) and a three-dimensional sonic
anemometer (CAST3, Campbell Scientific Inc., Logan, UT, USA). According to the principle
of the eddy covariance system, 30-min carbon flux data were calculated online and stored.

2.3. Data Acquisition and Processing

The required BEPS model input data included bamboo forest information in China,
MODIS leaf area index (MODIS LAI) (Table 1), the available soil water-holding capacity

34



Remote Sens. 2022, 14, 366

(AWC), daily meteorological data, and the biological parameters of bamboo forests. All
data were reprojected to the WGS84 coordinate system with a spatial resolution of 1 km.

Table 1. MODIS data and descriptions.

MODIS Abbreviation Time Spatial Resolution Time Resolution To Use

MOD13A2 NDVI 2018 1000 m 16 days Extract the bamboo forest
MOD09A1 REF 2018 500 m 8 days Extract the bamboo forest
MOD15A2 LAI 2001–2018 1000 m 8 days Model input

2.3.1. MODIS Data and Preprocessing

MODIS is a new generation of optical and infrared remote sensing instruments that
“integrate image and spectrum” in the current world. It is widely used in the carbon cycles
of terrestrial ecosystems because of its high time and spectral resolutions. This study uses
MODIS normalized difference vegetation index (MODIS NDVI) (MOD13A2), MODIS land
surface reflectance (MODIS REF) (MOD09A1), and MODIS LAI (MOD15A2) from NASA
(https://ladsweb.modaps.eosdis.nasa.gov, accessed on 13 May 2020) to extract information
on bamboo forests in China and simulate the carbon fluxes of bamboo forests in China. The
MODIS data are shown in Table 1.

The MODIS Reprojection Tool (MRT) was used to preprocess MODIS data, such as
mosaicking, format conversion, reprojection, and resampling. MOD09A1 was reprojected to
the WGS84 coordinate system, and the spatial resolution was resampled to 1 km using the
nearest neighborhood method. After resampling, these data were clipped to the boundaries
of China.

2.3.2. Bamboo Forest Distribution Data of China

The distribution information of Chinese bamboo forests in 2003, 2008, 2014, and 2018
was extracted. The information on Chinese bamboo forests from 2003, 2008, and 2014
has been extracted in our previous study [42]. On this basis, we extracted information
on Chinese bamboo forests from 2018. The flow chart of bamboo extraction is shown in
Figure 2.

The main process is as follows: First, a total of 23 multi-temporal MODIS NDVI
images are available. In order to further improve the MODIS NDVI data quality, these
23 images were composited into 12 multi-temporal images by selecting a maximum of two
corresponding pixels of two neighboring MODIS NDVI images as the value of a new pixel
(NDVImax12) [55]. Then, a minimum noise fraction (MNF) transform [56] was employed to
convert the NDVImax12 data to obtain the principal component variables of NDVI max12 data
(NDVI max12 MNF), and the first six bands with a cumulative contribution rate greater than
90% (NDVImax12 MNF1-6) were retained for classification. Second, according to the image
texture and spectral information features, the five types of samples (forest, farmland, water,
bare land, and residential land) were selected by visual interpretation [57], and then the
study area was classified by the maximum likelihood classification (MLC). On this basis, the
forest information in China was extracted by masking. Third, using the forest information
in China to extract the normalized difference vegetation of forests (NDVIforest_12) and the
land surface reflectance of forests (REFforest_7), MNF was then performed on them to obtain
the principal component variables of NDVIforest_12 data (NDVIforest_12 MNF) and REFforest_7
data (REFforest_7 MNF). We retained the bands with a cumulative contribution rate greater
than 85%, that is, the first nine bands of NDVIforest_12 MNF data (NDVIforest_12 MNF1-9) and
the first five bands of REFforest_7 MNF data (REFforest_7 MNF1-5). On this basis, according
to the training samples of bamboo forests, broad-leaved forests, and coniferous forests, the
corresponding attribute values were extracted as the characteristic variables to construct
a decision tree model, and the information on Chinese bamboo forests was extracted by
using the constructed decision tree model (Figure 3). In this study, 85 bamboo forest survey
samples from Zhejiang Province in 2019 and 440 bamboo forest samples from China selected
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from Landsat 8 images in 2018 were used as bamboo forest verification samples for point-
by-point verification. Finally, the least-squares mixed-pixel decomposition method [58]
was used to obtain the abundance information of bamboo forests in China. The results
were presented in Figure 1a.

Figure 2. Flow chart of bamboo extraction.
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Figure 3. The optimal decision tree.

It was verified that the accuracy of bamboo forest extraction was 76.54–81.56%, and
that the extracted area was close to the inventory area of forest resources (Table 2), which
laid the foundation for the simulation of GPP and NPP for bamboo forests in China. Only
the information of bamboo forests in 2003, 2008, 2014, and 2018 was extracted; therefore,
the bamboo forest information of the unclassified year was replaced by a similar year from
which the bamboo forest information was extracted.

Table 2. Extraction accuracy evaluation and the comparison of estimated and inventory bamboo
forest area of China.

Year
Classification Accuracy Evaluation Bamboo Forest Area (104 ha)

Bamboo Forest Samples Correctly Incorrectly User’s Accuracy (%) Estimate Inventory

2003 387 [42] 309 78 79.84 486.56 495.32 [42]
2008 414 [42] 328 86 79.23 545.14 548.73 [42]
2014 536 [42] 435 101 81.16 639.22 610.65 [42]
2018 525 402 123 76.54 669.83 656.08 [41,42]

Note: the results of the ninth National Forest Resources Survey do not have data from Taiwan, so the bamboo
forest area of Taiwan is based on the results of the eighth National Forest Resources Survey.

2.3.3. MODIS LAI Data

Leaf area index (LAI) is an important input parameter for simulating the carbon
cycles of forest ecosystems, and is closely related to the photosynthesis, steaming, water
utilization, and productivity formation of vegetation [59]. Remote sensing technology
is an important method for obtaining a large-scale LAI. However, MODIS LAI data are
susceptible to the influences of factors such as the atmosphere, which leads to an irregular
reduction in data. To reduce data noise and improve data quality, the locally adjusted
cubic-spline capping (LACC) [60] algorithm was used to smooth the clipped MODIS LAI
data. Then, the smoothed MODIS LAI data were assimilated by the particle filter (PF)
algorithm [61]. The assimilated MODIS LAI data were shown in Figure 1b.

2.3.4. Soil Data

The soil texture data map was provided by the Chinese Academy of Sciences (http:
//www.soil.csdb.cn, accessed on 11 December 2020). AWC is an important factor in terms
of plant growth, affecting stomatal conductance and photosynthesis [62]. In this study,
based on the empirical relationship, an AWC map with a 1 km resolution was obtained
from a soil data thematic map. The spatial distribution of AWC was shown in Figure 1c.

2.3.5. Meteorological Data

Meteorological data from 2001 to 2018 were obtained from the National Meteorologi-
cal Information Center of the China Meteorological Administration (http://data.cma.cn,
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accessed on 7 August 2020), and mainly included minimum temperature (Tmin), maximum
temperature (Tmax), precipitation (Pre) solar radiation, and relative humidity. These meteo-
rological factors are the main environmental factors in the carbon–water cycles [63]. The
inverse distance weighting method was used to interpolate the data of 824 meteorological
sites observed in the study area (Figure 1a) into spatial data with a 1 km resolution to obtain
the grid cells of daily scale meteorological data of the study area. They are shown in Fig-
ure 1d–f. Among them, the temperature was corrected by the digital elevation method, and
it was assumed that the temperature decreased by 6.5 ◦C for each per-kilometer increase in
altitude. Solar radiation was simulated based on the measurements of sunshine duration at
each site, following the methods of Ju et al. [64]. Monthly and annual meteorological data
based on interpolated daily scale meteorological data were obtained.

2.3.6. Biological Parameters

The major biological parameters of bamboo forests used in the BEPS model are shown
in Table 3. The clumping index (Ω) and specific leaf area (Sarea) came from the measured
data of the flux observation station. The maximum carboxylation rate at 25 ◦C (Vm) and the
Q10 for leaves, stems, and roots were calculated based on an iteration method. The initial
value of the four parameters was established according to Chen et al. [65], and the iteration
range for each parameter was set as ± 100%. The iteration step was defined as 1 for Vm and
0.1 for the other three parameters. The average carbon storage of leaves, stems, and roots
was calculated using the methods of Zhou and Jiang [66]. Bamboo forests are a special
type of forest. The photosynthesis capacity of bamboo forests is similar to C3 trees [67].
Therefore, for constant parameter values, we referred to Feng et al. [62] to simulate the
carbon cycle of bamboo forests.

Table 3. Major biological parameters used as inputs into the BEPS model for simulating the CO2

fluxes of bamboo forests.

Symbol Unit Description Value Reference

Ω - Clumping index 0.5 Measurement
Sarea Specific leaf area 27 Measurement
Vm,25 umol m−2s−1 Maximum carboxylation rate at 25 ◦C 50 Iteration

Q10,leaf - Q10 for leaf 1.4 Iteration
Q10,stem - Q10 for stem 1.3 Iteration
Q10,root - Q10 for root 1.2 Iteration
Mleaf kg C m−2 Average carbon storage of leaf 0.15 [66]
Mstem kg C m−2 Average carbon storage of stem 1.76 [66]
Mroot kg C m−2 Average carbon storage of root 1.15 [66]

2.4. BEPS Model Simulation and Evaluation
2.4.1. BEPS Model Description

The BEPS model is mainly composed of four parts: energy transmission, carbon cycle,
water cycle, and physiological regulation sub-models [68]. It combines ecology, plant
physiology, meteorology, and other disciplines to simulate the relationship between the
photosynthesis, respiration, carbon distribution, water balance, and energy balance of
vegetation [63], which demonstrates the combination of remote sensing data and ecolog-
ical process models. The main feature of this model is that the instantaneous Farquhar
photosynthetic model at the leaf scale is converted into the daily total photosynthetic
model through the integration of stomatal conductance to realize the time scale expansion.
Then, according to the principle of light transmission in the canopy, the vegetation canopy
leaves were divided into shaded and sunlit leaves to simulate the radiation budget of the
corresponding leaves. This helps achieve the expansion from the leaf scale to the canopy
space scale. Detailed descriptions of the BEPS model can be found in Liu et al. [69] and
Chen et al. [65]. The main simulation process of the model is as follows:

(1) The LAIsunlit and LAIshade are calculated as follows:
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where LAIcanopy is the total LAI of the canopy; LAIsunlit and LAIshade are the canopy
LAIs of sunlit and shaded leaves, respectively; θ is the daily mean solar zenith angle; and
Ω is the clumping index:

LAIsunlit = 2 cos θ[1 − exp(−0.5ΩLAI/ cos θ)] (1)

LAIshade= LAIcanopy−LAIsunlit (2)

(2) The photosynthesis rate is calculated as follows:

A = min
(
Wc, Wj

)− Rd (3)

Wc = Vm
Ci − Γ

Ci + Kc(1 + O2/Ko)
(4)

Wj = J
Ci − Γ

4(Ci + 2Γ)
(5)

Rd = 0.015Vm (6)

where A is the net photosynthesis rate; Wc and Wj are the Rubisco-limited and RuBP-
limited gross photosynthesis rates, respectively; Rd is the daytime leaf dark respiration;
Vm is the maximum carboxylation rate at 25 ◦C; Ci and O2 are the intercellular CO2 and
oxygen concentrations in the atmosphere, respectively; Γ is the CO2 compensation point,
without dark respiration; Kc and Ko are the Michaelis–Menten constants for CO2 and O2,
respectively; and J is the electron transmission rate.

(3) The total canopy photosynthesis rate is evaluated as follows:

Acanopy = AsunlitLAIsunlit + AshadeLAIshade (7)

where Acanopy is the total photosynthesis rate of the canopy; Asunlit and Ashade are the
photosynthesis rates of sunlit and shaded leaves, respectively; and LAIsunlit and LAIshade
are the LAIs of sunlit and shaded leaves, respectively.

(4) The GPP and NPP values are determined as follows:

GPP = Acanopy × Lday × FGPP (8)

NPP = GPP − Ra (9)

Ra = Rm + Rg = Rm,i + Rg,i (10)

where GPP is gross primary productivity; NPP is net primary productivity; Ra is the
autotrophic respiration of the vegetation; Lday is the length of the day; FGPP is a scale factor
for converting photosynthesis into GPP; Rm and Rg are the maintenance breathing rate and
growth respiration rates, respectively; i is the different parts of vegetation (i = 1, 2, and 3 for
leaves, stems, and roots, respectively); and Rm,i and Rg,i are the maintenance and growth
respiration rates of different parts, respectively.

2.4.2. Evaluation of Simulation Results

In this study, the results of the BEPS model simulation were evaluated with precision
using the determination coefficient (R2), root mean square error (RMSE), and absolute bias
(aBIAS). The formulas for the calculation are as follows [13]:

R2 = 1 − ∑n
i=1(mi − oi)

2

∑n
i=1(oi − oi)

2 (11)

RMSE =

√
1
n

n

∑
i=1

(mi − oi)
2 (12)
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aBIAS =
1
n

n

∑
i=1

|mi − oi| (13)

where mi is the simulated value; oi is the observed value; and oi is the average value of the
observed value. Generally, the larger the R2 value, the smaller the RMSE and aBIAS values,
the higher the accuracy, and vice versa.

2.5. Spatiotemporal Evolution Analysis of Carbon Fluxes
2.5.1. Variation Coefficient of Carbon Fluxes

The variation coefficient (CV) is the ratio of the standard deviation to the average,
which reflects the stability of a set of data. The higher the value of the CV, the more
unstable the data, that is, the greater the fluctuation, and vice versa. To analyze the spatial
fluctuations in carbon fluxes of bamboo forests during 2001–2018, the CVs of the GPP and
NPP of each pixel were calculated as follows [70]:

CV =

√
1

n−1 ∑n
i=1
(
Pi − P

)2
P

(14)

In Equation (14), CV is the variation coefficient; n = 18, and is the number of monitoring
years; Pi is the value of each pixel of the GPP or NPP image in the i-th year (where i = 1, 2,
. . . , n); and P is the average value of each pixel of GPP or NPP. According to the calculation
results, by performing the Jenks natural breaks classifications in ArcGIS software [71] the
results of the CV were divided into five levels: low fluctuation (CV <= 0.1246), lower
fluctuation (0.1246 < CV ≤ 0.2342), medium fluctuation (0.2342 < CV ≤ 0.4132), higher
fluctuation (0.4132 < CV ≤ 0.7364), and high fluctuation (CV > 0.7364).

2.5.2. Trend Slope of Carbon Fluxes

To quantitatively study the trends of carbon fluxes of bamboo forests in China from
2001 to 2018 a linear regression analysis was used to calculate the trends of GPP and NPP
of each pixel, as follows [72,73]:

slope =
n × ∑n

i=1(i × Pi) − ∑n
i=1 i × ∑n

i=1 Pi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (15)

In Equation (15), slope is the trend slope; n = 18, and is the number of monitoring
years; and Pi is the GPP or NPP of bamboo forests in the i-th year, (i = 1, 2, . . . , n). The
value of the trend slope indicates the rate of increase or decrease. When slope > 0, the GPP
and NPP increase, and when slope < 0, the GPP and NPP decrease.

To analyze whether the variation trend of the GPP and NPP was significant, the F-test
was used to test the significance of the variation trend of GPP and NPP. The variation
trend was divided into five levels: significantly reduced (slope < 0, p < 0.01), reduced
(slope < 0, 0.01 < p < 0.05), basically stable (p > 0.05), increased (slope > 0, 0.01 < p < 0.05),
and significantly increased (slope > 0, p < 0.01).

2.6. Analysis of Spatiotemporal Responses of Carbon Fluxes to Climate Change
2.6.1. Partial Correlation Analysis of Carbon Fluxes to Climate Change

A correlation analysis reveals the closeness of the relationship between the study
variables. Partial correlation analysis refers to the calculation of the correlation between
two variables without considering the influence of other variables [74]. Partial correlation
analysis can better reflect the impact of a single climate factor on carbon fluxes. Therefore,
this study uses a pixel-based partial correlation analysis to calculate the partial correlation
coefficients (PPCs) of GPP and NPP with climatic factors, and analyze the response between
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carbon fluxes and climatic factors. To determine the PCCs, we first calculated the correlation
coefficient using the following formula [75]:

Rxy =
∑n

i=1[(xi − x)(yi − y)]√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(16)

In Equation (16), Rxy is the correlation coefficient between variables x and y; n is the
number of study years; xi and yi represent the values of variables x and y in the i-th year,
respectively, (i = 1, 2, . . . , n); and x and y represent the mean value of variables x and
y, respectively. The range of Rxy is [–1,1]; when Rxy > 0 the two variables are positively
correlated, and when Rxy < 0 the two variables are negatively correlated. The larger the
absolute value of Rxy the higher the correlation, and vice versa. Generally, 0.3 and 0.6
are the distinction points of the absolute value of the correlation coefficient, as the weak
correlation (0 < |Rxy| ≤ 0.3), low correlation (0.3 < |Rxy| ≤ 0.6), and significant correlation
(0.6 < |Rxy| ≤ 1).

Based on the evaluated correlation coefficient, the PPC was calculated as follows [72]:

Rab,cd =
Rab,d − Rac,d × Rbc,d√
(1 − R2

ac,d) × (1 − R2
bc,d)

(17)

In Equation (17), Rab,cd represents the PCC between variables a and b when variables
c and d are fixed; Rab,d, Rac,d, and Rbc,d represent the PCC between variables a and b,
variables a and c, and variables b and c, respectively, when the variable d is fixed. The
higher the PCC, the greater the influence of the variable on GPP and NPP. A t-test was used
to test the significance of the PPC.

2.6.2. Path Analysis of Climate Change to Carbon Fluxes

In order to analyze the direct and indirect effects of climate factors (temperature and
precipitation) on carbon fluxes of bamboo forests, path analysis [76] was used to calculate
the direct and indirect path coefficients of temperature and precipitation on the carbon
fluxes. The formulas for the calculation are as follows:

Pi→y =
biSi

Sy
(18)

Pj→i→y = rijPi→y (19)

where Pi→y is the direct path coefficient, bi is the regression coefficient, Si is the standard
deviation of variable i, Sy is the standard deviation of variable y, Pj→i→y is the indirect path
coefficient of variable j acting on variable y through variable i, and rij is the correlation
coefficient between variable i and variable j.

3. Results

3.1. BEPS Model Validation

In this study, the observed carbon flux data from the Anji site and the Lin’an site during
2011–2014 were used to validate the BEPS model. The daily scale carbon flux data were
obtained by accumulating the observed 30-min carbon flux data. The evaluation results
are shown in Figure 4, where the R2, RMSE, and aBIAS were 0.58, 1.43 g C m−2 day−1, and
1.21 g C m−2 day−1, respectively. There was a good correlation between the simulated and
observed values of GPP. Therefore, the BEPS model could be considered to be suitable to
simulate the productivity of bamboo forests in China.
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Figure 4. Comparison of the simulated and observed values of GPP.

3.2. Spatiotemporal Evolution of Carbon Fluxes from Bamboo Forests in China
3.2.1. Temporal Evolution Trend

The variation trends of the monthly and annual average GPP and NPP during
2001–2018 are shown in Figure 5. The GPP and NPP exhibited similar temporal varia-
tion characteristics. At the monthly scale, the average values of the GPP and NPP of
bamboo forests showed unimodal changes. At the annual scale, the average values of GPP
and NPP were 904.02 g C m−2 yr−1 and 716.88 g C m−2 yr−1, respectively, and the ranges
in variation were 764.42–994.61 g C m−2 yr−1 and 600.03–788.25 g C m−2 yr−1, respectively.
The annual average values of GPP and NPP were the lowest in 2003 and the highest in 2007.
During the statistical period, the overall variation trends of GPP and NPP were similar,
showing an increasing trend, and the increasing trend was not significant (p > 0.05); the
growth rates were 5.20 g C m−2 yr−1 and 3.88 g C m−2 yr−1, respectively.

Figure 5. Monthly and annual variation trends of bamboo forests’ (a) GPP and (b) NPP in China
from 2001 to 2018.

3.2.2. Spatial Distribution Characteristics

The spatial distribution of the mean GPP and NPP values of bamboo forests in China is
shown in Figure 6. From Figure 6 we can see that the mean GPP and NPP values had strong
spatial heterogeneity. On the whole, the GPP and NPP present a distribution characteristic
of being more in the south and east, and less in the north and west. In addition, the spatial
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distributions of GPP and NPP were compared and it was found that the high GPP and NPP
values of bamboo forests were mainly concentrated in northwestern Zhejiang, central Fujian,
western Jiangxi, and so on, and the proportion of high-value distribution was gradually
increasing. The low GPP and NPP values were mainly distributed in Guizhou, Shanxi,
Yunnan, and other regions where the distribution of bamboo forests is relatively scattered.

Figure 6. Spatial distribution of (a–d) GPP and (e–h) NPP of bamboo forests in China during
different periods.
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3.2.3. Analysis of the Fluctuation in Carbon Fluxes

To analyze the fluctuations in carbon fluxes from bamboo forests in China from 2001 to
2018, we calculated the CVs of GPP and NPP and prepared a spatial distribution diagram
of the fluctuations based on the CV classification results, as shown in Figure 7. The zones
with low fluctuations in GPP and NPP accounted for the largest proportion, at 43.71% and
42.37%, respectively. These were followed by zones with lower fluctuation, at 36.37% and
37.77%, respectively. The areas of higher fluctuation and high fluctuation were considerably
small and scattered, among which the areas of higher fluctuation accounted for 3.78% and
3.81%, respectively, and those of high fluctuation accounted for 1.36% for both. In addition, by
comparing Figure 7a,b, it was found that the spatial fluctuations in GPP and NPP exhibited
evident consistency, where GPP and NPP had low fluctuations, and vice versa.

Figure 7. Spatial distribution of the variation coefficients (CVs) of the (a) GPP and (b) NPP of bamboo
forests in China from 2001 to 2018.

3.2.4. Analysis of the Trend Slope of Carbon Fluxes

The spatial distribution of the trend slope and the significance of GPP and NPP from
2001 to 2018 are shown in Figure 8.

Figure 8a,c show the spatial distribution of the trend slope and the significance of
GPP, respectively. From Figure 8a,c, it can be seen that GPP exhibits an increasing trend
(slopegpp > 0) at 57.58% and a significant increasing trend (slopegpp > 0, p < 0.01) at 30.32%,
mainly distributed in northwestern Zhejiang, western Jiangxi, central Fujian, southwest
Anhui, and central Sichuan. GPP exhibits a decreasing trend (slopegpp < 0) at 42.42% and
a significant decreasing trend (slopegpp < 0, p < 0.01) at 20.53%, mainly distributed in
southwestern Zhejiang, eastern Jiangxi, eastern Anhui, and western Guangdong.

Figure 8b,d show the spatial distribution of the trend slope and the significance of
NPP, respectively. As shown in Figure 8b,d, NPP shows an increasing trend (slopenpp > 0)
at 57.56% and a significant increasing trend (slopenpp > 0, p < 0.01) at 30.32%. NPP
shows a decreasing trend (slopenpp < 0) at 42.44% and a significant decreasing trend
(slopenpp < 0, p < 0.01) at 20.54%. By comparing Figure 8c,d, it can be seen that the regions
with significantly increased and decreased NPP are consistent with the regions that had
significantly increased and decreased GPP.
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Figure 8. Spatial distribution of trend changes in (a) GPP and (b) NPP, significant changes in the
(c) GPP and (d) NPP of bamboo forests in China from 2001 to 2018.

In summary, the spatial distribution of the trend slope of GPP and NPP was similar,
the spatial distribution range of the increasing trend was larger than the spatial distribution
range of the decreasing trend, and the areas of approximately 30% showed a significant
increasing trend, indicating that the carbon fluxes of bamboo forests in China had been
gradually increasing over the past 20 years.

3.3. Analysis of Climate Drivers of Carbon Fluxes of Spatiotemporal Evolution
3.3.1. Partial Correlation between Carbon Fluxes and Climate Factors

Climatic factors are important environmental factors that affect the growth of bamboo
forests. To quantitatively analyze the influence of climatic factors on carbon fluxes of
bamboo forests, the PPC of GPP and NPP with the Pre, Tmin, and Tmax of bamboo forests
in China from 2001 to 2018 were calculated. The results are presented in Figure 9.
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Figure 9. Spatial distribution of partial correlation coefficient (PPC) values of GPP with (a) precip-
itation (Pre), (b) minimum temperature (Tmin), and (c) maximum temperature (Tmax); NPP with
(d) precipitation (Pre), (e) minimum temperature (Tmin), and (f) maximum temperature (Tmax) of
bamboo forests in China from 2001 to 2018.

Figure 9a,d show the spatial distribution of the PCC of GPP and NPP with Pre,
respectively. The proportions of the study area with positive correlations of GPP and NPP
with Pre were 52.32% and 54.76%, respectively, mainly distributed in central Zhejiang,
northwestern Jiangxi, Chongqing, and Sichuan. The proportions with negative correlations
were 47.68% and 45.24%, respectively, mainly distributed in southeast Anhui, northwestern
Zhejiang, and eastern Guangxi. Overall, Pre was mainly positively correlated with GPP
and NPP, that is, the amount of precipitation considerably promoted the growth of bamboo
forests. The proportions with significant (p < 0.05) correlations of the PCC of GPP and NPP
with Pre were only 5.74% and 5.67%, respectively.

Figure 9b,e show the spatial distribution of the PPC of GPP and NPP with Tmin, re-
spectively. The areas where the GPP and NPP were positively correlated with Tmin were
44.15% and 43.68%, respectively, and were mainly distributed in northwestern Zhejiang,
central Hunan, and Hubei. Meanwhile, in 55.85% and 56.32% of the areas the GPP and
NPP, respectively, showed a negative correlation with Tmin, and were mainly distributed
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in central Zhejiang, Guangdong, and Guangxi. By comparing Figure 9a,d, in addition to
Figure 9b,e, it was observed that the PPC of GPP and NPP with Pre and Tmin had opposite
spatial distribution patterns. Where GPP and NPP were positively correlated with Pre the
correlation was negative with Tmin, and vice versa. The proportions with significant (p < 0.05)
correlations of the PCC of GPP and NPP with Tmin were only 6.13% and 6.10%, respectively.

Figure 9c,f show the spatial distribution of the PCC of GPP and NPP, respectively,
with Tmax. GPP and NPP were positively correlated with Tmax, accounting for 49.18% and
48.72%, respectively, mainly distributed in Guangdong, Guizhou, and western Jiangxi,
and they negatively correlated with Tmax, accounting for 50.82% and 51.28%, respectively,
mainly distributed in Guangxi, Anhui, Yunnan, and western Hunan. Overall, there was
a nonsignificant negative correlation of GPP and NPP with Tmax, which indicated that
high temperature somewhat affected the growth of bamboo forests. The proportions with
significant (p < 0.05) correlations of the PCC of GPP and NPP with Tmax were only 5.13%
and 5.20%, respectively.

In summary, a certain correlation existed for the GPP and NPP of bamboo forests in
China with precipitation and temperature, and, overall, they were positively correlated with
Pre, negatively correlated with Tmin, and had an insignificant negative correlation with Tmax.
In addition, there were evident spatial differences in the correlation of GPP and NPP with
climatic factors, and the PPC with Pre and Tmin exhibited complementary characteristics.

3.3.2. The Impact of Climate Factors on Carbon Fluxes on a Monthly Scale

The variations in GPP and NPP with temperature and precipitation on a monthly scale
are shown in Figure 10. The values of GPP and NPP exhibited different characteristics
owing to the influence of hydrothermal conditions. From February to July, with the
temperature and precipitation gradually increasing, bamboo forests entered the growing
season; therefore, the values of GPP and NPP showed a rapid increase trend. After August,
the decrease in GPP and NPP was caused by the gradual decrease in temperature and
precipitation, in addition to the fall of bamboo leaves. In December, January, and February
the temperature and precipitation are lower, and the values of GPP and NPP were also
decreased to the smallest values of the year. In summary, the values of GPP and NPP are
closely related to temperature and precipitation, and good hydrothermal conditions are
conducive to the growth of bamboo forests.

Figure 10. Variation trends of bamboo forests’ (a) GPP and (b) NPP with temperature and precipita-
tion on a monthly scale.

To further analyze the impact of temperature and precipitation on carbon fluxes of
bamboo forests, we conducted a path analysis of the impact of temperature and precip-
itation on GPP and NPP on a monthly scale. The results are shown in Table 4. It can be
seen that temperature and precipitation have a significant correlation with GPP and NPP.
According to the correlation coefficient and partial correlation coefficient, the influence of
precipitation on GPP and NPP is higher than that of the influence of temperature on them.
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In addition, according to the direct path coefficient and indirect path coefficient, the direct
influence of precipitation on GPP and NPP is higher than that of the direct influence of
temperature on GPP and NPP.

Table 4. Path analysis of temperature and precipitation to GPP and NPP.

Climate
Factors

Correlation
Coefficient

Direct Path
Coefficient

Indirect Path Coefficient Partial Correlation
Coefficient→ Temperature → Precipitation

GPP
Temperature 0.649 ** 0.387 ** - 0.26 0.399

Precipitation 0.659 ** 0.415 ** 0.24 - 0.423

NPP
Temperature 0.562 ** 0.301 ** - 0.15 0.293

Precipitation 0.602 ** 0.412 ** 0.11 - 0.386

Note: **, p < 0.01.

4. Discussion

The simulated value of the carbon fluxes of bamboo forests had a good correlation
with the observed value of the flux observation station (Figure 4), and the R2 was 0.58.
Other than that, in order to further prove the reliability of this study we compared the
simulated NPP with a related study (see Table 5). It can be seen from Table 5 that our
simulated mean value of NPP was slightly lower than that of related studies. Due to the
fact that structures, mechanisms, and input parameters varied for different models, there
are variances in the simulation results of different models. Additionally, there may be
differences due to different study areas and periods. Of course, this study also has some
shortcomings, the following aspects of which can be analyzed. Firstly, the simulated results
of the BEPS model largely depend on the quality of the input data; deficiencies in the input
data will affect the accuracy of the simulation results. The resolution of the data in this
study is low, so there may be limitations in simulating the carbon flux of bamboo forests
in China. Secondly, in this study, the bamboo forest abundance data were used to drive
the BEPS model, which solved the influence of mixed pixels on the carbon flux simulation
to some extent. However, the phenomenon of “different objects with same spectrums” in
remote sensing images will affect the result of bamboo forest extraction. Thirdly, we only
used the observed data of two carbon flux observation stations to verify the simulated
results of bamboo forest carbon fluxes in China. Therefore, there are limitations on the
spatial scale. Finally, the carbon fluxes of bamboo forests were not only affected by climate
factors but also by human activities and geographic factors (such as slope, aspect, and
elevation). This study only considered the impact of climate factors, so there may still be a
certain gap between the simulated results and the real situation.

Table 5. Comparison of the simulated NPP results in this study with the simulated results of other studies.

Site Model Mean NPP (g C m−2 y−1) Reference

China BEPS 716.88 This study
Tianmu Mountain, Zhejiang CASA 740 [77]

Anji, Zhejiang Triplex-Flux 835.58 [45]
Fujian BEPS 788.6 [78]

Due to the rapid growth of bamboo forests and their high ecological, economic, and
social value, some areas promoted the reclamation of wasteland and the plantation of
bamboo forests [79], which increased the total area of bamboo forests in China. Therefore,
the GPP and NPP of bamboo forests also increased. As shown in Figure 5, certain fluc-
tuations occurred in the annual average GPP and NPP values of bamboo forests, which
might be related to climate change. For example, in 2003 there was less precipitation and
large-scale drought occurred in the summer (Figure 10), which was not conducive to the
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growth of bamboo forests, leading to low GPP and NPP values in that year. In 2009 and
2010 the values of GPP and NPP were low, which may be related to the natural large-scale
low-temperature, snow, and ice disaster in South China in 2008 [80].

This study found that the spatial distribution range of carbon fluxes of bamboo forests
was increasing larger than that which was decreasing. The areas with increases were mainly
distributed in northwestern Zhejiang, western Jiangxi, central Fujian, and other regions.
The reason for the increase in carbon fluxes may be that under the combined influence of
favorable factors (such as a warm climate, abundant precipitation, and sufficient radiation)
the growth ability of bamboo forests is relatively strong. In addition, these regions have
significantly developed bamboo industries and advanced bamboo forest management
techniques; therefore, bamboo forests in these regions have increased rapidly with higher
productivity. The areas with decreased GPP and NPP were mainly distributed in southwest
and central Zhejiang, eastern Jiangxi, northeastern Fujian, and eastern Guangdong. On
the one hand, bamboo forests might be reduced due to urban expansion in some areas.
On the other hand, because bamboo forests mostly have a scattered distribution, when
they are distributed across a small area the difficulty of bamboo forest extraction would be
increased, affecting the simulation results of carbon fluxes from bamboo forests.

Climate change has an important impact on vegetation growth. An evident coupling
relationship was observed between vegetation and climatic factors [81]. At present, many
scholars have analyzed the effects of climatic factors on the carbon fluxes of different
vegetation from different spatiotemporal scales, and have found that there is a correlation
between carbon fluxes and climatic factors [82,83]. Bamboo forests have a warm and
humid climate and are very sensitive to hydrothermal changes. Related scholars have
conducted studies on the impact of climatic factors on the carbon fluxes of bamboo forests.
For example, Li et al. [4] analyzed the relationship between the carbon fluxes and climatic
factors (temperature and precipitation) of bamboo forests in Zhejiang Province from 2011
to 2015, and found that lower precipitation and higher temperatures may have a negative
impact on the carbon fluxes from bamboo forests. Chen et al. [84] used eddy correlation
technology to continuously observe the carbon fluxes of bamboo forests in Anji, and found
that high temperature and drought caused a significant decrease in the carbon fluxes of
bamboo forests. These results are consistent with the results of this study on the driving
influence of climatic factors and the carbon fluxes of bamboo forests.

5. Conclusions

This study utilized remote sensing data to drive the BEPS model to simulate the carbon
fluxes from bamboo forests in China during 2001–2018, and analyzed the spatiotemporal
evolution pattern of carbon fluxes and the response of climatic factors to these changes. Our
study showed that the simulated values had a good correlation with the observed values,
and the R2, RMSE, and aBIAS were 0.58, 1.43 g C m−2 day−1, and 1.21 g C m−2 day−1,
respectively. It provided a feasible way for the study of bamboo forest carbon cycles on a
large spatial scale. In addition, our study also suggested that climate change was a driver
that affected the spatiotemporal dynamic evolution of carbon fluxes in bamboo forests, and
its driving effect exhibited evident spatial variations. This provided a theoretical basis of
bamboo forests to cope with climate change.

However, this study still has some limitations. For example, (1) the low resolution
of the data limited the simulation of bamboo forest carbon flux; (2) fewer flux observa-
tion sites may lead to certain deficiencies in verifying the model simulation results; and
(3) we only considered the impact of climatic factors (temperature and precipitation) on
the carbon fluxes of bamboo forests. In the future, these limits can be further improved to
better simulate the carbon fluxes of bamboo forests in China.
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Abstract: SAR data have a longer wavelength and stronger penetrating power compared with
traditional optical remote sensing. Therefore, SAR data are more suitable for the estimation of the
above-ground biomass (AGB) of forests. This study was aimed at evaluating the sensitivity of L-band
full polarization data to AGB. L-band data were improved to estimate the saturation point produced
by AGB, and were found to be suitable for estimating a wide range of AGB. This study extracted
backscattering coefficients, polarization decomposition variables, and terrain factors. New parameters
were constructed from these variables, and their performance in predicting AGB was evaluated.
Significant variables found with AGB were added to the multivariate linear model. A statistical
analysis showed the presence of multicollinearity between the variables. Therefore, ridge regression,
random forest method (RF), and principal component analysis (PCA) were introduced to solve the
problem of collinearity. In all the three methods, the saturation of the ridge regression model was
low, reaching it at 150 t/ha. Better accuracy was obtained with the RF model. No obvious saturation
incident was detected in the model established using the principal component analysis. This could be
attributed to the low biomass levels observed in our study area. This model provided accurate results
(adjusted r2 = 0.90 rmse = 14.24 t/ha), indicating that L-band data have the potential to estimate
AGB. Additionally, suitable variables and models were selected in this study, with the principal
component analysis being more helpful in combining various SAR parameters. The achievement of
these accurate results could be attributed to the synergy among variables.

Keywords: backscatter coefficients; polarization decomposition; collinearity; ridge regression; RF; PCA

1. Introduction

Carbon sequestration capacity is an important manifestation of forest functions. Forest
above-ground biomass (AGB) is a consequential evaluation index of carbon sequestration
capacity. Therefore, it is necessary to estimate AGB to understand the carbon sequestration
capacity in a particular area [1]. Previous studies have shown that the use of the backscatter
coefficient of airborne L-band SAR data could not significantly improve the ability to
estimate AGB [2]. In large survey areas, the AGB root mean square error (RMSE) estimated
from HH polarization has been found to be about 30% [3,4]. Similarly, the use of L-band
data to predict the Indian tropical forest had a higher accuracy with RMSE = 16.06 t/ha [5].
Previous studies have used the random forest (RF) method to estimate the AGB with
RMSE = 18.9 t/ha. Additionally, a regression model was built to estimate the boreal forest
AGB with RMSE = 37.3 t/ha [6,7]. These studies obtained tree height by laminar analysis
of SAR data and then calculated AGB with RMSE = 36.3 t/ha [8]. However, different AGB
estimation methods have been found to provide discordant results even when the same SAR
data are analyzed. Meanwhile, variability of forests has been found to be among the factors
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affecting the accuracy of AGB estimation. Several studies have estimated the forest biomass
of tree trunks using radar backscatter coefficients. The sensitivity of the radar backscatter
coefficients to AGB depends on the wavelength; the longer the wavelength, the higher
the sensitivity [9,10]. A National Aeronautics and Space Administration (NASA) study in
Landers Pine Forest showed that the dynamic range of the radar backscatter coefficient
was greater in the P-band, followed by the L-band, which had the highest HV polarization
and VH polarization sensitivity [11,12]. HH polarization has been found to be suitable for
sparse areas, while HV polarization is suitable for dense areas [13]. The use of radar data
to estimate the AGB of planted forests tends to have more accurate estimations than in
other forest types [14,15]. However, the applicability of this method in natural forests is
still uncertain. Previous studies have estimated a saturation point when using backscatter
coefficients to estimate forest biomass, and reasonable results have been achieved when the
biomass is less than 150 t/ha [16]. Lower saturation points have been recorded in AGB of
complex tropical forests and different forest types, while pure forests and swampy areas
have shown higher saturation points [17,18]. This suggests that the difference in estimated
AGB saturation point is affected by area, forest density, and tree species composition. The
ratio combination of different polarization channels increased the saturation point when
estimating AGB, leading to more accurate results [19,20]. Meanwhile, the ability to estimate
AGB using radar backscatter coefficients has been found to be limited [21]. In addition, this
method of estimating AGB has a lower saturation point, which limits its application.

Other reasons that affect the accuracy of AGB estimates include model variability
and different parameters. Some previous studies have not discussed the synergistic ef-
fects when estimating AGB using backscattering coefficients or decomposition parameters.
Improving the saturation point of the estimated AGB has also been difficult. However,
some polarization decomposition methods have proved suitable for estimating the AGB
of forests. Three simple scattering mechanisms have been used to describe SAR obser-
vation results. These mechanisms achieved acceptable accuracy, which proved that the
decomposition method is suitable for estimating vegetation biomass [22,23]. The azimuth
offset compensation of SAR data before polarization decomposition partially improves the
accuracy of AGB estimation [24]. In addition, the VanZyl three-component decomposition
and Yamaguchi three-component decomposition obtain more accurate results [25,26]. The
polarization decomposition method estimated a higher saturation point for AGB than
the backscatter coefficient. Most researchers have used linear and nonlinear regression
models to predict AGB [27–31]. Although these studies have optimized the model, there
has been limited focus on the parameters. Meanwhile, the accuracy obtained by using
different decomposition methods to estimate AGB varies greatly [32–34]. This shows that
different polarization decomposition methods are suitable for different types of ground
features. However, combining the polarization decomposition parameters and the water
cloud model to predict AGB achieves better results [35]. Additionally, the use of multiple
polarization decomposition parameters to establish a multivariate model could slightly im-
prove accuracy [36]. The RF method has been found to obtain accurate results in estimating
AGB [37–39]. However, its applicability to small sample sizes remains uncertain. Therefore,
the choice of the model is an important factor affecting accuracy.

Previous studies did not select the most suitable variables for forest AGB estimation.
In addition, there is still lack of in-depth studies on the relationships between variables,
making it difficult to reasonably utilize SAR data. As such, it is difficult to improve the
saturation point of the estimated AGB.

At present, AGB can be estimated using long-band SAR data, although the saturation
points and estimation accuracy can still be improved. The present study not only estimated
the AGB based on backscatter coefficient and polarization decomposition parameters, but
also combined the two to establish the potential of long-wavelength full-polarization data
to estimate forest biomass. Unlike previous studies, this study used variables from SAR
data to construct parameters that were more sensitive to AGB. All variables that were
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significantly related to AGB were combined. A model that was more suitable for the
estimation of AGB was also selected.

Specifically, this study was aimed at:

(1) Using the original channel backscatter coefficients to establish a univariate model to
estimate AGB. The ratio of backscatter coefficients was calculated and a univariate
model established. The impact of topographical factors on AGB was also analyzed.

(2) Selecting the most suitable polarization decomposition method and polarization
decomposition parameters. Polarization decomposition parameters were used to
construct a stronger estimation ability for the new parameters, and a model was
established with AGB.

(3) Comparing the ability of ridge regression, RF and the PCA method to resolve a high-
dimensional variable set. The focus was on establishing a model, and predicting the
AGB at the regional scale by using all the relevant parameters.

2. Study Area and Data

2.1. SAR Data

The SAR data used in this study were the ALOS-2 PALSAR full-polarization ob-
servation data obtained on 8 August 2020. The selected image covered northern China
(Figure 1). The image is from a 1.1-level L-band radar developed by the Japan Aerospace
Exploration Agency (JAXA). The average zenith angle was 27.8◦, the radar center frequency
was 1.27 × 103 MHz, the range resolution was 5.66 m, and the azimuth resolution was
2.86 m. The pixel size was16.19 m2. The overall observation area was 4494.62 km2, and the
average height of the sensor from the Earth’s surface was 634.24 km2.

 

Figure 1. SAR data illustration of sample sites.

2.2. Field Data

The study area was a typical temperate forest in northern China. The forest is located
in Hebei Province, North China (117E, 42N). This area is located in the transition zone from
Yanshan Mountain to Inner Mongolia. Except for the mountain, the rest of the area consists
of plains and cities. Altitude ranges from 1171 m to 1960 m asl. This area is characterized
by a mixed forest of coniferous and broad-leaved trees, with North China larch (Larix
principis-rupperchtii Mayr) and white birch (Betula platyphylla Suk) being the main species.
A total of 38 fixed plots were used in the image. The field data used in this study were
obtained through field surveys in 2020. In order to avoid interference, the measurements
were carried out at a distance of more than 30 m from non-forest areas. Field surveys
included measuring tree species composition, and measuring diameter at breast height
(DBH) at a distance of 1.3 m from the ground. All trees with a DBH of less than 2.5 cm
were eliminated. Tree height was measured using Vertex IV and Transponder T3. The
coordinates of the center point of the plot were determined using the Unistreng RTK-G10.
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We ensured that the center point coordinate error of the sample plot was within 10 cm. The
individual allometry equation of local tree species was used to calculate the AGB of the
forest for each sample [40,41]. Based on the measured results, the minimum biomass above
the forest was 4.24 t/ha and the maximum was 185.08 t/ha. The plots were separated at
equal intervals, and each plot had an area of 0.06 ha. The shape of each set of field data
was a rhombus, with a diagonal length of 17.3 m. The area of the plot was 149.645 m2. The
AGB level in this area was found to be more suitable for this study. Meanwhile, microwave
remote sensing observation methods were more suitable for forest biomass estimation,
considering the complex geological and climatic conditions in the area. The actual biomass
is shown in Table 1.

Table 1. Statistical data of the plots.

Number AGB (t/ha) Number AGB (t/ha) Number AGB (t/ha) Number AGB (t/ha)

01 129.252 11 80.171 21 172.128 31 54.836
02 142.776 12 174.936 22 166.592 32 167.011
03 139.653 13 147.477 23 98.417 33 165.710
04 58.508 14 153.008 24 104.223 34 144.930
05 166.223 15 185.083 25 151.198 35 109.724
06 4.248 16 177.771 26 164.641 36 95.931
07 113.727 17 163.469 27 180.735 37 24.281
08 79.486 18 157.807 28 102.843 38 33.292
09 29.471 19 65.888 29 150.238
10 132.427 20 90.952 30 114.632

3. Methods

The processing steps for field inventory and ALOS-2 PALSAR-2 data are shown in
Figure 2.

Figure 2. Flowchart.
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3.1. SAR Data Processing

Calibration: Conversion of the amplitude data record in the original image into a
backscatter coefficient was not affected by changes in surface parameters. In order to
expand the dynamic range of the scattering coefficient, the amplitude data record was
expressed in decibels, as follows:

σ0
i,j = 10·lg

(
DN2

i,j

)
+ CF1. (1)

where σ0
i,j is backscatter coefficients, DNi,j is the gray value of the pixel, and CF1 is the

calibration factor [42].
The four backscatter coefficients (σHH, σHV, σVH, and σVV) were obtained by radia-

tion calibration.
Filter denoising: Given that SAR is a coherent system, speckle noise becomes an

inherent feature that interferes with image readings. The present experiment used a refined
Lee filter [43]. At the same time, multi-look processing also had a noise suppressing effect.
Multi-look processing improved the effectiveness of feature information extraction by
averaging the pixels of the SAR image azimuth and distance. A 4 × 9 multi-look process
was performed on the original image to ensure that the pixels closed to the square and
matched the area in the plot. The above process was run in the Gamma software [44].

Decomposition parameter acquisition: Since the research object was a distributed
target, it was found suitable for incoherent decomposition. Three polarization decompo-
sition methods suitable for forests were selected [45,46]. These methods included Yam-
aguchi three-component decomposition, eigenvalue-based H/A/alpha decomposition, and
eigenvector-based H/A/alpha decomposition [47–53]. The Yamaguchi three-component
decomposition method decomposes the echo signal into three scattering mechanisms, and
volume scattering in the layered random medium provides good results [51]. H/A/alpha
decomposition contains information about the dominance relationship between scattering
mechanisms. Among them, the scattering entropy (H) not only represents the specific grav-
ity of different scattering mechanisms in the whole scattering process, but also describes the
randomness of the scattering process. The degree of heterogeneity in different directions
(A) characterizes the degree of influence of the other two scattering mechanisms, which
do not dominate the result when H increases. Scattering angle (α) describes the degree
of freedom inside the target [54–56]. The polarization decomposition parameters were
obtained using PolSARpro 6.0.2 [57].

Geocoding: Since SAR is a side-view system, it causes nonlinear distortion in areas
with large terrain undulations. Therefore, SAR images cannot transform into a reference
coordinate system by polynomial correction or affine transformation. The present study
combined the imaging characteristics of the sensor and the ground morphology. It exploited
external DEM data (SRTM V2 30 m resolution) and used a strict-range Doppler to geocode
SAR image data. This process was run using Gamma software.

Thirty-five original polarization decomposition parameters were obtained through
three polarization decompositions shown in Table 2 [49,50].

3.2. Backscatter Coefficient and Its Combination

The correlations between backscatter coefficients (σHH, σHV, σVH, σVV) and AGB
were analyzed. The radar satisfied the reciprocity of a single station, thus the cross-
polarization channels were averaged (σX replaces σ(HV+VH)/2). Each variable was used to
establish univariate linear models with AGB. The model was built using Matlab-2014b [58].
Meanwhile, different combinations of backscatter coefficients had different sensitivities
to AGB [19]. We combined the backscatter coefficients to find the parameters with more
significant correlations. A total of 26 different combinations were created using backscatter
coefficients, and correlation analysis was performed for the 26 combinations. Significant
variables were selected to establish univariate linear models with AGB.
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Table 2. Decomposition parameters.

Method Parameter

Yamaguchi three-component
decomposition

Odd scattering component of Yamaguchi 3 decomposition
(YamaguchiOdd)

Even scattering component of Yamaguchi 3 decomposition
(YamaguchiDbl)

Scattering component of Yamaguchi 3 decomposition volume
(YamaguchiVol)

H/A/alpha eigenvalue set
decomposition Eigenvalue

anisotropy,
ansiotropy_lueneburg,

anisotropy 12
asymetry, derd, derd_norm,

entropysh,
entropy 1

entropy 2, entropy 3, entropy
4, entropy 5, I1, I2, I3, p1, p2,

p3, prdestal,
polarisation_fraction
rvi, serd, serd_norm

H/A/alpha eigenvector set
decomposition Eigenvector

alpha, alpha1, alpha 2, alpha 3
beta, beta 1, beta 2, beta 3

delta, delta 1, delta 2, delta 3
gamma, gamma1, gamma 2,

gamma 3

3.3. Terrain Factors

Topography is an important factor that affects AGB [59–61]. This study obtained
slope, aspect, and elevation using DEM, which were combined in Arcmap 10.7 as shown
in Figure 3 [62]. The correlation between the extracted terrain factors and AGB was
also analyzed.

  
(a) (b) 

 
(c) 

Figure 3. (a) Elevation; (b) slope; (c) aspect.
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3.4. Constructing New Parameters

Previous studies have shown that the proportional combination of volume scatter-
ing, secondary scattering, and surface scattering has a certain sensitivity to forest canopy
structure [63]. They derived a relationship between the growing stock volume (GSV) and
polarimetric decomposition powers. In addition, these studies have found that the volu-
metric scattering power and GSV in different samples were all positively correlated, while
the surface scattering and GSV were all negatively correlated. Therefore, it was concluded
that the GSV and ratio of the three scattering powers have a certain sensitivity [64]. In
the present study, there was a close relationship between AGB and GSV. The products of
the different scattering mechanisms of the Yamaguchi three-component decomposition
and the other two scattering mechanisms were found to possess a ratio relationship. This
study established new parameters with reference to the above-mentioned study. Each
new parameter with AGB was used to build a linear model. The construction of the new
parameters was as follows:

• Ground scattering—scattering parameter ratio;

R1 =
YamaguchiOdd

YamaguchiDbl × YamaguchiVol

• Even-scattering molecular parameters;

R2 =
YamaguchiDbl

YamaguchiOdd × YamaguchiVol

• Volume-scattering molecular parameters.

R3 =
YamaguchiVol

YamaguchiDbl × YamaguchiOdd

3.5. Multivariate Linear Model

The parameters obtained through the three polarization decomposition methods
were not all applicable to the study of the forest. Therefore, we analyzed the correlation
between decomposition variables and AGB to obtain significant correlation variables. A
multivariate linear model with all the significant correlation variables was set up to predict
AGB. The model variance inflation factor (VIF) test showed that the variables had significant
multicollinearity.

3.6. Ridge Regression

Due to the complexity of the radar signal, there was a degree of information overlap
between the variables, resulting in collinearity. This study attempted to use the ridge
regression model to solve the collinearity problem. Ridge regression is a regularization
method for the regression analysis of ill-posed problems.

3.7. Random Forest

The RF method is a classifier that consists of multiple decision trees. It belongs to
the Bagging ensemble learning algorithm. This method was used to collect multiple sub-
datasets from the original dataset and train multiple different decision trees. The prediction
results of multiple decision trees were then averaged to obtain the final result. This method
was not affected by collinearity between variables.

3.8. Principal Component Analysis

Principal component analysis (PCA) is suitable for populations of high-dimensional
variables with a certain correlation between samples. There was collinearity in the above
parameter set. Nevertheless, PCA is more suitable for removing collinearity [65]. The
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principal components express the additive combination with the variance of each sample.
The linear combination is added when the current component is not enough to represent
the information of the original parameter set. The principal component was calculated
as follows:

FP = a1i × Zx1 + a2i × Zx2 + · · ·+ api × Zxp (2)

A =
(
aij
)
p × m = (a1, a2, · · · am), Rai = γiai. (3)

The eigenvector corresponding to the covariance matrix is a1i, a2i · · · api(i = 1, · · ·m).
Zx1, ZX2Zx2,· · · , Zxp are the standard variables, R is the correlation coefficient matrix, and
γi, ai are the corresponding eigenvalue and eigenvectors.

We used IBM-SPSS 23.0 to perform principal component analysis on the dataset [66].
The two principal components were used to build a multivariate model to estimate AGB.

3.9. Verification and Prediction

Due to the small number of samples in this study, the cross-leave-one-out method
was used for verification [67]. In total, 37 samples were used to model, and one sample
was used for verification, resulting in 38 models. Through this method, the predicted AGB
of SAR variables was obtained. Some of the evaluation indicators were used to describe
the difference between the true AGB and the predicted AGB. The indicators selected in
this study were goodness of fit (R2), root mean square error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MARE), mean error (ME), and mean relative error
(MRE) [68]. The best model was selected based on these indicators. The predicted biomass
map was then obtained. The accuracy of the final model was referred to as the accuracy of
the biomass map.

4. Results

4.1. Backscatter Coefficient and Its Combination

The correlation analysis between the backscatter coefficient and AGB (Table 3) showed
that the horizontal cross-polarization in this region was more sensitive to AGB [9,11].
A univariate linear model was established between the backscatter coefficient and AGB
(Figure 4). The accuracy of the model was low, and there were large deviations in es-
timating low-level AGB. The backscatter coefficient estimation of AGB was found to
produce a saturation point, which led to greater limitations in the estimation results.
The most accurate linear models were the σX and AGB. The formula of this model was
AGB = 280.394 + 12.591 × σX.

Table 3. AGB backscatter coefficients correlation analysis.

Correlation
Coefficient

Backscatter Coefficients

σHH σX σVV

Person coefficient 0.497 ** 0.680 ** 0.425 **
** Statistical significance: Statistical significance represents a significant correlation between the variables.

The backscatter coefficients were combined to determine whether they had the poten-
tial to improve AGB estimation (Table 4).

In this study, the combination of poorly correlated backscatter coefficients was not sig-
nificant. The correlation of the three significantly correlated and newly combined variables
(σHH×VV, σHH×X and σHH×X×VV) was better than the σHH and σVV polarization channels.
A univariate model with AGB was established for the three new variables (Figure 5). The
most accurate were the σHH×X×VV and AGB linear models. The formula of this model was
AGB = 152.822 + 0.039 × σHH×X×VV. However, it was found that the accuracy of these
models was the same as that of the backscatter coefficient model. The saturation point of
this model was about 125 t/ha.

62



Remote Sens. 2022, 14, 669

(a) (b) 

(c) 

Figure 4. (a) Models established by σHH and AGB; (b) models established by σX and AGB; (c) models
established by σVV and AGB.

Table 4. AGB backscatter coefficients correlation analysis.

Parameter
Pearson

Coefficient
Parameter

Pearson
Coefficient

Parameter
Pearson

Coefficient

σHH/VV −0.154 σ(VV+X)/HH −0.060 σVV+X 0.102
σHH/X −0.200 σ(VV+X)/X −0.093 σHH−VV −0.217
σVV/X −0.093 σ(VV+X)/VV 0.144 σHH−X 0.243

σ(HH+VV)/HH 0.043 σ(HH+VV+X)/HH −0.060 σX−VV −0.263
σ(HH+VV)/VV −0.154 σ(HH+VV+X)/X 0.143 σHH−VV−X −0.232
σ(HH+VV)/X −0.148 σ(HH+VV+X)/VV −0.148 σHH×VV −0.637 **
σ(HH+X)X −0.200 σHH+VV 0.285 σX×HH −0.631 **

σ(HH+X)/HH −0.066 σHH+X 0.117 σHH×X×VV 0.666 **
σ(HH+X)/VV 0.143 σHH+VV+X 0.244

** Statistical significance: Statistical significance represents a significant correlation between the variables.
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(a) (b) 

 
(c) 

Figure 5. (a) Models established by σHH×X×VV and AGB; (b) models established by σHH×VV and
AGB; (c) models established by σX×HH and AGB.

4.2. Influence of Topographical Factors

Correlation analysis revealed that slope was the most important factor affecting AGB
in this study (Table 5). During the field investigation, the slope of the study area was found
to change greatly. However, the effect of aspect on AGB was not obvious, possibly due to
the small number of samples.

Table 5. Topographical factors—AGB correlation analysis.

Parameters
Topographical Factors

Slope Elevation Aspect

Pearson coefficient 0.417 ** 0.162 0.223
** Statistical significance: Statistical significance represents a significant correlation between the variables.

4.3. New Parameters and AGB Estimation

The correlation between the three newly constructed parameters and AGB was de-
termined, and it is illustrated in Table 6. The univariate model with R1 as the indepen-
dent variable produced better AGB estimation results. The formula of this model was
AGB = 181.427 − 3.822 × R1. This model achieved the highest accuracy among all uni-
variate models. The new parameters R2 and R3 predicted that the AGB results were poor
(Figure 6). The saturation point of the model was relatively high (140 t/ha) when compared
to the backscattering coefficient model.
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Table 6. Parameter correlation analysis.

Correlation
Coefficient

New Parameter

R1 R2 R3

Pearson coefficient −0.756 ** −0.322 0.190
** Statistical significance: Statistical significance represents a significant correlation between the variables.

(a) (b) 

 
(c) 

Figure 6. (a) Models established by R1 and AGB; (b) models established by R2 and AGB; (c) models
established by R3 and AGB.

4.4. Multivariate Linear Model

A correlation analysis of the polarization decomposition variables and AGB was per-
formed, and it is summarized in Table 7 (only relevant significant variables are displayed).
The variable R1 had a stronger correlation with AGB compared to the Yamaguchi scattering
mechanism. This showed that there was still a relationship between the mechanisms of
polarization decomposition.

Table 7. AGB decomposition parameter correlation analysis.

Correlation
Coefficient

Decomposition Parameter

Entropysh Entropy 1 Entropy 2 Entropy 3 Gamma 3

Pearson
coefficient 0.672 ** 0.596 ** 0.617 ** 0.696 ** 0.439 **

I2 I3 YamaguchiVol YamaguchiDbl

Pearson
coefficient 0.667 ** 0.635 ** 0.623 ** 0.697 **

** Statistical significance: Statistical significance represents a significant correlation between the variables.
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All the variables that were significantly correlated with AGB were used to build a
multivariate linear model (Figure 7). These variables included three original backscatter
coefficients, three combined backscatter coefficients, slope, nine polarization decompo-
sition variables, and R1. However, the VIF test proved that there was multicollinear-
ity between them (Table 8). The joint hypothesis F value of the model was 17.536, and
there was no significant saturation point (sig) ≤ 0.001. This model provided poor resid-
ual test results (Figure 7). Meanwhile, existing studies have showed that AGB can-
not be estimated with a simple multivariate model [69,70]. Although this model pro-
vided reasonable results, it could not predict AGB in large areas. The formula of this
model was AGB = −412.481 − 1.992 × σHH×VV − 612.789 × Yamaguchivol + 279.684 ×
YamaguchiDbl − 819.198×Entropy 2+ 1359.506× I3+ 1693.609× I2+ 1051.944×Entropy 3
+ 123.159 × Entropy 1 − 196.097 × Entropysh − 1.167 × R1 + 0.062 × Gamma 3 − 3.714 ×
σHH×X − 49.921 × σHH − 5.658 × σX − 412.481 × σVV − 0.154 × σHH×X×VV.

  
(a) (b) 

Figure 7. (a) Models established by all the variables that were significantly correlated; (b) residual
analysis graph.

Table 8. Collinearity analysis.

Variable Dimension Sig Vif

σHH 1 0.607 84.422
σX 2 0.251 689.347
σVV 3 0.925 150.481

σHH×VV 4 0.150 346.537
σHH×X 5 0.448 2571.564

σHH×X×VV 6 0.126 444.793
entropysh 7 0.656 1798.225
entropy 1 8 0.648 218.010
entropy 22 9 0.070 335.184
entropy 33 10 0.015 153.786
gamma 3 11 0.648 1.585

I2 12 0.535 295.838
I3 13 0.935 792.565
R1 14 0.999 17.052

YamaguchiVol 15 0.898 1125.782
YamaguchiDbl 16 0.531 59.219

4.5. Ridge Regression Model

Ridge regression was used to estimate AGB and solve the collinearity problem.
Variables in the ridge regression model were consistent with the multivariate model.
The variables were standardized before ridge regression. However, the ridge regres-
sion model was found to have a poor fitting effect (Figure 8). This method solved the
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collinearity between the variables. However, the normality of the residuals of the model
was poor. Based on these results, the model estimated that the AGB saturation point
was low (~145 t/ha). We determined the ridge parameter (K) = 0.141 based on the
variance expansion factor method. The formula of this model was AGB = 83.396 −
0.161×σHH×VV − 12.726×Yamaguchivol + 405.828×YamaguchiDbl + 2.125×Entropy 2−
13.587 × I3 + 78.432 × I2 + 50.428 × Entropy 3 − 1.316 × Entropy 1 + 0.805 × Entropysh −
1.737×R1 + 0.077×Gamma 3− 0.065×σHH×X − 1.446×σHH + 1.366×σX − 2.56×σVV +
0.009 × σHH×X×VV.

  
(a) (b) 

Figure 8. (a) Ridge regression model; (b) residual analysis graph.

4.6. Random Forest

There were 200 decision trees in this dataset. In order to reduce the result volatility
caused by bootstrap sampling, all the models were trained 50 times and the average was
obtained. We obtained the predicted AGB and computed the residuals (Figure 9). The
saturation point of this model was about 155 t/ha.

  
(a) (b) 

Figure 9. (a) Random forest model; (b) residual analysis graph.

4.7. Principal Component Analysis

Although the above results showed that multiple variables had the ability to improve
AGB estimation, obtaining a stable model was still a challenge. However, the problem of
collinearity can be solved through PCA. This method uses the same variable set as ridge
regression. PCA processing was performed on the new parameter set. In addition, the
Kaiser–Meyer–Olkin and Bartlett’s tests were performed (Table 9), and the suitability of
Kaiser–Meyer–Olkin sampling was between 0 and 1. A larger value indicated that it was
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convenient for PCA. Bartlett’s spherical significance test showed that the selection of the
parameter population was suitable for PCA. We calculated the principal components by
the principal component coefficients (Table 10). Two principal component variables were
extracted by default. The cumulative variance described 80.606% of the original parameters
(Table 11). Additionally, the AGB was estimated using a multivariate model (Figure 10).
The formula of this model was AGB = 120.895 + 36.028 × Factor1 − 31.266 × Factor2. The
F value of the multiple regressions model was 164.421, sig ≤ 0.001 (Table 12), and it passed
the significance test, indicating a significant improvement in accuracy when compared
with other multivariate models. PCA solved the problem of collinearity and the residuals
of the model were normal. The residuals were evenly distributed, and thus the variance
was considered to be homogeneous (Figure 9). All the results obtained through this model
were acceptable.

Table 9. Kaiser–Meyer–Olkin and Bartlett’s test.

Kaiser–Meyer–Olkin Sampling Suitability 0.746

Bartlett’s Test

Approximated chi-square 1753.496
Degree of freedom 136

Significance 0.000

Table 10. Principal component coefficient.

Variable
Principal Component Coefficient

Factor 1 Factor 2

σHH 0.904 −0.310
σX 0.962 −0.305
σVV 0.900 −0.331

σHH×VV −0.915 0.237
σHH×X −0.933 0.209

σHH×X×VV 0.877 −0.185
entropysh 0.982 0.053
entropy 1 0.972 −0.056
entropy 22 0.966 0.082
entropy 33 0.953 −0.002
gamma 3 0.227 0.458

I2 0.924 0.240
I3 0.905 0.239
R1 −0.349 −0.795

YamaguchiVol 0.900 0.229
YamaguchiDbl 0.847 0.287

Table 11. Illustration of the total variance.

Component
Eigenvalue Cumulative

Aggregate Variance (%) Total (%) Aggregate Variance (%) Total (%)

Factor 1 12.161 71.538 71.538 12.161 71.538 71.538
Factor 2 1.541 9.068 80.606 1.541 9.068 80.606

Table 12. Regression coefficients of the model.

Parameter
Unstandardized

Coefficient
Student’s Test

Value
Sig Vif

Constant 112.635 39.083 0.000
Factor 1 34.427 10.982 0.000 1.000
Factor 2 −29.648 −9.458 0.000 1.000
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(a) (b) 

Figure 10. (a) Models established by principal component analysis; (b) residual analysis graph.

4.8. Model Selection and Prediction of the Study Area AGB

We evaluated the relationship between the predicted AGB of each model and the real
AGB (Table 13). This study concluded that the principal component model was the best
model when compared with the evaluation indexes of the models. As such, the principal
component model was used to predict the AGB in the study area (Figure 11). All the
variable matrices required by the principal components were entered in Matlab2014b. All
the matrices were additively combined according to the principal component coefficients
to obtain the principal components. Finally, large-area AGB prediction was based on the
multivariate model formula of the principal component. The accuracy of the biomass map
was 88%.

Table 13. Model evaluation index.

Type Model

Evaluation Index

Adjusted r2 RMSE (t/ha) ME (t/ha)
MAE
(t/ha)

MARE (%) MRE (%)

Unary model
σX and AGB model 0.45 38.45 1.17 37.22 45.51 17.71

σHH×X×VV and AGB model 0.42 39.04 3.15 32.94 44.30 21.25
R1 and AGB model 0.56 32.17 1.82 25.69 39.17 8.77

Multivariate model 0.87 17.42 −0.12 14.82 27.35 15.25
Ridge regression model 0.63 30.25 −0.04 23.18 36.22 17.32

Principal component model 0.90 14.24 −0.023 10.96 18.92 5.03
Random forest model 0.70 27.94 −1.99 23.04 23.21 17.44

Figure 11. AGB prediction results.

69



Remote Sens. 2022, 14, 669

5. Discussion

The use of large-scale remote sensing analyses to accurately estimate AGB is of great
significance to global carbon-neutrality research. This study used a combination of backscat-
ter coefficients, terrain parameters, and polarization decomposition parameters to estimate
AGB. The adjusted r2 increased from 0.45 to 0.90 through different processes. The accu-
racy of the processing results increased with the progress in various steps. The RMSE
was 14.24 t/ha, as shown in step 4.6. Meanwhile, the ground information carried by the
backscatter coefficient was limited. Therefore, AGB could not be accurately estimated. It
was found that the combination of backscatter coefficients was more effective than HH
and VV polarizations. Given that the topography of the study area was relatively complex,
the slope was considered as an important factor affecting AGB. This study selected the
polarization decomposition parameters that were suitable for forest AGB estimation. The
univariate and the multivariate models were then compared. The results showed that the
multivariate model estimates a high saturation point of the AGB. The saturation point of
the backscattering coefficient was about 120 t/ha, and no obvious saturation point was
estimated by the multivariate model. The saturation point of the variable R1 was about
160 t/ha, which was higher than the backscattering coefficient model. This showed that the
polarization decomposition parameters carried more ground information. The principal
component analysis was found to be more suitable for the collinearity variable sets. As
such, we used two principal components to build a multivariate model for estimating AGB
without collinearity. No saturation point was found in this model, suggesting that the satu-
ration point had been effectively improved. Finally, the principal component multivariate
model was used to predict the AGB in our study area.

Previous reports have shown that the accuracy of the non-parametric model and the
linear model is consistent in estimating AGB [71]. The accuracy of the multivariate model
was proved to be higher than that of the univariate model [2]. Our findings were consistent
with these previous findings. In the backscatter coefficient, cross-polarization had the
strongest correlation with AGB [9,11]. The backscatter coefficient previously estimated the
saturation point of AGB to be about 100 t/ha [17,18]. However, the saturation point of the
backscattering coefficients in this study was higher than that previously reported. Many
factors have been found to affect the saturation point of AGB [21]. For instance, variation
in environmental conditions in a given study area was found to play a key role in causing
variation in the saturation point [19]. Therefore, the different environments in our study
area could have affected the saturation point. Reports have shown that the ratio of polariza-
tion backscattering coefficients has a high correlation with AGB [11]. However, the present
study could not verify this finding. There is a possibility that no suitable combination of
backscattering coefficients was found. Among several polarization decomposition methods,
the most relevant parameter was YamaguchiDbl. YamaguchiDbl represented the secondary
scattering between forest trunks, and 90% of the forest AGB was tree trunks. These results
are consistent with previously reported L-band characteristics [72]. Meanwhile, the Ya-
maguchi three-component decomposition corresponded to the physical model. In some
aspects, the performance was better than the characteristic decomposition parameters. The
several scattering mechanisms of the Yamaguchi three-component decomposition make
it impossible to correctly distinguish land units. However, H/A/alpha decomposition
provides a different decomposition method. The H/A/alpha polarization decomposition
theorem is based on the coherence matrix analysis of eigenvalues and eigenvectors. The
decomposed parameters describe the main relationship between the scattering mecha-
nisms [45]. This suggests a lack of conflict between the two polarization decomposition
methods. Previous studies showed a certain connection between the scattering mecha-
nisms [64]. This finding is supported by the variable R1 reported in the present study. In
the present study, the RF method was found to be less effective and unsuitable for small
sample studies. This was consistent with previous reports [39]. The additive model was
found to be suitable for estimating AGB, as previously reported [27–29].
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The L-band was used to obtain higher accuracy. This study showed that SAR data
have the potential to estimate AGB, and are not limited by the saturation point of the
estimated AGB. The unary model proved to be unsuitable for accurately estimating AGB.
The multivariate model was proved to have a higher saturation point. However, the results
estimated by principal component analysis were the closest to the real AGB. This study
showed that AGB could be accurately estimated by one SAR image. However, the present
research did not achieve such results; the obtained results were more suitable for the
prediction of AGB in large areas.

Future studies could, however, use more penetrating P-band data, and select study
areas with high biomass levels, such as tropical rain forests. Such studies may therefore
enhance the ability to estimate AGB based on model selection. The present study employed
an estimation technique that obtains better accuracy at the biomass level. It proved that
estimating AGB using a combination of long-wave SAR data parameters and non-remote
sensing factors can address actual needs. Although previous studies investigated polariza-
tion decomposition methods, the present study obtained better results due to the choice of
images and reasonable processing methods used.

6. Conclusions

This study investigated the effectiveness of using an L-band image to estimate AGB.
The obtained results could be widely applied to estimate AGB. The problem of complex
radar signals that generate high-dimensional parameter sets was also addressed, further
emphasizing the wide applicability of the method. The key findings of this study were
as follows:

(1) The use of the backscatter coefficient to estimate AGB was more limited. The mul-
tivariate model provided better estimation capabilities than the univariate model.
However, there was collinearity among the variables.

(2) The backscatter coefficient estimated that the AGB saturation point was low. The
variable R1 improved the estimation of the saturation point.

(3) The Earth-scattering ratio was more suitable for estimating AGB. This indicated
that there was a degree of information complementarity between the variables. The
combined backscatter coefficient was weak at estimating AGB.

(4) The model established by combining the backscatter coefficients, terrain factors,
and polarization decomposition parameters achieved high accuracy. The principal
component analysis method was suitable for analyzing SAR data to estimate AGB.
The final model effectively improved the saturation point of AGB.

It is noteworthy that the study did not require a large amount of SAR data to accurately
estimate AGB. L-band PALSAR data can be used in most areas of the world, making this
research widely applicable to the estimation of AGB in forest-covered areas. However, the
level of AGB in this study was not among the highest recorded in the world. Therefore, the
applicability of this method in areas with high biomass levels is still uncertain.
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Abstract: Timely, accurate estimates of forest aboveground carbon density (AGC) are essential for
understanding the global carbon cycle and providing crucial reference information for climate-
change-related policies. To date, airborne LiDAR has been considered as the most precise remote-
sensing-based technology for forest AGC estimation, but it suffers great challenges from various
uncertainty sources. Stratified estimation has the potential to reduce the uncertainty and improve
the forest AGC estimation. However, the impact of stratification and how to effectively combine
stratification and modeling algorithms have not been fully investigated in forest AGC estimation.
In this study, we performed a comparative analysis of different stratification approaches (non-
stratification, forest type stratification (FTS) and dominant species stratification (DSS)) and different
modeling algorithms (stepwise regression, random forest (RF), Cubist, extreme gradient boosting
(XGBoost) and categorical boosting (CatBoost)) to identify the optimal stratification approach and
modeling algorithm for forest AGC estimation, using airborne LiDAR data. The analysis of variance
(ANOVA) was used to quantify and determine the factors that had a significant effect on the estimation
accuracy. The results revealed the superiority of stratified estimation models over the unstratified
ones, with higher estimation accuracy achieved by the DSS models. Moreover, this improvement
was more significant in coniferous species than broadleaf species. The ML algorithms outperformed
stepwise regression and the CatBoost models based on DSS provided the highest estimation accuracy
(R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169 and Bias = 0.4493). The ANOVA of
the prediction error indicated that the stratification method was a more important factor than the
regression algorithm in forest AGC estimation. This study demonstrated the positive effect of
stratification and how the combination of DSS and the CatBoost algorithm can effectively improve
the estimation accuracy of forest AGC. Integrating this strategy with national forest inventory could
help improve the monitoring of forest carbon stock over large areas.

Keywords: aboveground carbon density; LiDAR; stratified estimation; machine learning algorithm;
Northeast China

1. Introduction

Covering about 30% of the earth land area, forest ecosystems are a huge global carbon
reservoir with carbon stocks of about 861 ± 66 Pg C [1]. Over 80% of vegetation above-
ground carbon in terrestrial ecosystems and more than 70% of global soil organic carbon
are stored in forest ecosystems [2–4]. As carbon is naturally exchanged between forests
and the atmosphere through photosynthesis, respiration, decomposition and combustion,
forest ecosystems play a key role in the global carbon cycle [5–7]. To better understand and
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regulate the mechanisms of the global carbon cycle, we require accurate estimation and
monitoring of forest aboveground carbon density (AGC). Forest AGC is an important indi-
cator of the fundamental characteristics of forest ecosystems and the basis for evaluating
the structural function and carbon sink capacity of forests [8,9]. Moreover, the current need
to mitigate the impact of climate change on the global ecosystems raises the importance
of quantifying forest carbon exchange and carbon stock from local to global scales [10,11].
Quantitative and accurate estimation of forest AGC is also required by many international
climate change adaptation and mitigation policies (e.g., the United Nations Framework
Convention on Climate Change (UNFCCC), the Kyoto Protocol, the Reducing Emissions
from Deforestation and Forest Degradation (REDD+) program and the carbon neutrality
policy) [12–15].

Traditionally, forest AGC is obtained through ground surveys, which are generally
recognized to be the most accurate method [16,17]. However, the field-measured method
is usually labor-intensive and time-consuming, and it is difficult to carry out at large
scales or in remote areas [12]. The advent of remote-sensing technology, particularly light
detection and ranging (LiDAR), has overcome these limitations to some extent. LiDAR
technology is considered to be the most accurate remote-sensing-based estimation tool for
forest aboveground biomass (AGB) and carbon stock [18]. As an active remote-sensing
technology, LiDAR has the greatest advantage over other sensors in the ability to accurately
capture the vertical structure information of forest vegetation, which plays an important
role in forest AGC estimation. Due to its high spectral saturation point, LiDAR can also
overcome the data saturation problem in optical and radar data. Metrics from LiDAR data
(e.g., height and density) are highly correlated with forest AGB and AGC, and have been
reported to provide good estimation results in several studies across various geographical
areas [19–23]. To date, the most common approach to estimate forest AGC based on
LiDAR data is achieved by establishing statistical regression models between LiDAR
metrics and ground survey data. These regression models can be divided into two main
categories: parametric and non-parametric algorithms. The parametric algorithms that
have been widely used include multiple linear regression, stepwise regression, partial
least squares regression, etc. Parametric algorithms have a clear model structure and
strong interpretability of model parameters, but need to obey strict statistical assumptions
and are hardly generalized. The non-parametric machine-learning algorithms, such as
artificial neural networks (ANNs), support vector machines (SVMs), K-nearest neighbors
(K-NNs), random forest (RF) and Cubist have attracted great interests in recent years [24–26].
Compared with parametric algorithms, non-parametric algorithms determine the model
structure in a data-driven manner and are insensitive to noisy data. Due to the flexibility
of non-parametric algorithms, they may be more suitable for modeling complex non-
linear forest carbon-stock estimates [18]. Recently, two novel decision-tree-based ensemble
algorithms, extreme gradient boosting (XGBoost) and categorical boosting (Catboost), have
excelled in several machine-learning competitions and attracted much attention. Although
XGBoost and CatBoost have outperformed other machine-learning algorithms in various
fields [27–30], these two algorithms have rarely been used in forest AGC estimation, and
the performance remains to be examined.

Stratified estimation is suggested to be an effective approach to reduce variance and
improve the accuracy of estimates without increasing the sample size [31]. The main pur-
pose of stratification is to group heterogeneous components within populations into strata
so that the within-stratum variance will be significantly smaller than the overall variance,
resulting in a better estimate result. This method has been proven to be useful in forest
AGB estimation, and the stratification methods range from forest type and topography to
site quality [32–34]. Among these methods, stratification based on forest type has been
frequently used and has shown positive effects, as forest AGB and AGC vary with different
stand structures and species composition [35]. However, other studies have reported only
slight improvements when using forest-type stratification [36–38]. The mixed results raise
the need for further research on the effects of stratification in forest AGC estimates and
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provide guidance for appropriate stratification methods. Moreover, limited by the number
of sample plots, few studies have explored the effect of finer stratification (e.g., dominant
species stratification) on forest AGC estimates.

The northeast forest region, together with the southern forest region and the southwest
forest region, are known as the three major forest regions in China. As the largest natural
forest area in China, the northeast forest region is the largest carbon pool, with its forest
aboveground carbon stock reaching more than 1/4 of the country’s total [39,40]. Despite
that several studies have developed remote-sensing-based forest AGB estimation models
at the regional level, forest-type level or species level in the northeast forest region [41,42],
species-level carbon-stock estimation models based on LiDAR data in the northeast forest
region of China have not been reported. Finer descriptions of forest ecosystems and
structures, such as specific-species characteristics, are needed to meet the new challenges
posed by forest management and monitoring [43]. Species-level information is of great
value to support refined forest management and sustainable development. Moreover, the
species-level approach makes full use of existing forest inventory information and avoids
the additional costs of ground surveys.

Here, in order to fill the above gaps, we used airborne LiDAR data, stepwise regres-
sion and four machine learning algorithms (RF, Cubist, XGBoost and CatBoost) to develop
forest AGC estimation models based on forest type and dominant species stratification in
the northeastern forest regions of China. We hypothesized that the accuracy of forest AGC
estimation can be substantially increased by combining finer stratification (dominant species
stratification) and non-parametric machine learning algorithms. To examine this assumption,
the performance of estimation models was compared (a) between stratification and non-
stratification; (b) between forest type stratification (FTS) and dominant species stratification
(DSS); (c) within the strata; and (d) between multiple stepwise regression and four machine
learning algorithms, RF, Cubist, XGBoost and CatBoost. The objectives of this study were
threefold: (1) to examine the effect of stratification on forest AGC estimation and explore ap-
propriate stratification methods; (2) to evaluate the application of machine-learning algorithms
in forest AGC estimation, especially the performance of the two novel decision tree-based
ensemble algorithms, XGBoost and CatBoost; and (3) to establish species-level forest AGC
estimation models in the northeastern forest regions of China.

2. Materials and Methods

2.1. Study Area

We conducted this study in the forest regions of Northeast China, across three provinces,
Heilongjiang, Jilin and Inner Mongolia. The study area covered 12 areas in six forest regions
(Figure 1), including the Daxinganling in Inner Mongolia, the Daxinganling in Heilongjiang,
the Yichun, the Songhua River, the Mudanjiang and the Changbai Mountain (longitude
119◦36′—134◦05′E, latitude 41◦37′—53◦33′N). The climate in most of the region is temper-
ate monsoon, with a cold monsoon climate in the north. The average annual precipitation
ranges from 400 to 1000 mm, and the average annual temperature varies between −2 and
2.6 ◦C. The northeast forest region is surrounded by mountains to the east, north and
west, with an average altitude distribution of 500–2500 m. The northeast forest region is
one of the richest forest areas in China, with a total forest area of about 680,000 km2 and
a total forest volume stock of about 3.2 billion m3, accounting for 37% of the country’s
total forest area and 30% of the country’s total forest volume stock, respectively (Pan et al.,
2011). The Northeast Forest Region contains three zonal vegetation types: cold-temperate
coniferous forests, temperate mixed-coniferous forests and warm-temperate deciduous
broadleaf forests. The main coniferous species include Larch (Larix gmelinii), Camphor Pine
(Pinus sylvestris var. mongolica), Red Pine (Pinus koraiensis) and Spruce (Picea asperata); the
main broadleaf species are Poplar (Populus davidiana), White Birch (Betula platyphylla), Oak
(Quercus mongolica) and Elm (Ulmus pumila).
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Figure 1. (a) Location of the Heilongjiang, Jilin and Inner Mongolia three provinces in China.
(b) Location of the study area with 12 ALS data areas highlighted in black. (c,d) Field plots’ distribu-
tion in two ALS data areas.

2.2. Data Source and Preprocessing
2.2.1. Field Measurements Data and Forest AGC Calculation

The field survey was conducted from September 2019 to November 2019. The domi-
nant species, origin, age group and depression of each stand and the diameter at breast
height (DBH), tree height, age and canopy cover of the individual tree that DBH ≥ 6 cm
within each plot were measured and recorded by using traditional measuring instruments
in the forest inventory. Based on the latest national forest resources inventory results, the
distribution of dominant tree species, traffic conditions and other factors in the northeast
region, 12 areas covering the target species were typically selected as aerial flight areas for
obtaining LiDAR data. A total of 1600 sample plots were randomly collected in these areas,
covering five typical forest areas, namely Da Hinggan Ling, Xiao Hinggan Ling, Wanda
Mountain, Zhangguangcai Mountain and Changbai Mountain. The sample plots were
circular, with a radius of 13.82 m and an area of about 600 m2. The quality of the sample
plot survey was checked to ensure that the error in DBH measurement was less than 3%
and the error in tree height measurement was less than 5%. To ensure the geographic match
between the field data and the LiDAR data, clear markers were set up at the center of each
sample plot, and Real-Time Kinematic (RTK) technology was used to accurately locate
the center of the sample plot, ensuring that the horizontal and vertical coordinates of the
sample plot were positioned to within 1 m.

The individual tree data obtained from the field survey were statistically summarized,
and the outliers were removed according to the criterion of triple standard deviation;
and the data of dead trees were removed to calculate the mean area at breast height,
mean diameter at breast height, mean tree height and stand density of the sample plots.
After screening, a total of 1587 plots were selected. The AGB was calculated by applying
species-specific allometric equations, and then the aboveground carbon stock was received
by multiplying by the species-specific mean carbon conversion factor. The allometric
equations and carbon-conversion factors for each tree species are shown in Table 1, with
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reference to [44,45]. Finally, the individual tree aboveground carbon stock in each plot was
summed up and converted into hectares to obtain the forest AGC at plot level.

Table 1. Allometric equations and mean carbon conversion factors used in this study.

Tree Species Allometric Equation Mean Carbon Conversion Factors

Picea asperata AGB = 0.08070 × D2.25957 × H0.25663 0.4804

Abies fabri AGB = 0.06945 × D2.05753 × H0.50839 0.4805

Larix gmelinii AGB = 0.06848 × D2.01549 × H0.59146 0.4742 (Natural forest)
0.4674 (Plantation)

Pinus koraiensis AGB = 0.027847 × D1.810004 × H0.905002 0.4809

Populus davidiana AGB = 0.02884 × D2.8785 0.4956 (Natural forest)
0.4761 (Plantation)

Ulmus pumila AGB = 0.0607 × D2.4316 + 0.0678 × D1.9623 + 0.0148 × D1.9816 0.4648

Betula platyphylla AGB = 0.06807 × D2.10850 × H0.52019 0.4656

Quercus mongolica AGB = 0.06149 × D2.14380 × H0.58390 0.4802

Tilia tuan AGB = 0.01275 × D2.0188 × H1.0094 + 0.00182 × D1.9492 ×
H0.9746 + 0.00024 × D1.9814 × H0.9907 0.4677

2.2.2. Design of Sample Plot Stratification

The stratification of sample plots was based on the species information recorded in
the field data. In DSS, the criterion for stratification was that one or several tree species
account for more than 70% of the entire sample plot in volume stock. The sample plots
were therefore stratified (a) to coniferous forests and broadleaf forests (b) to three domi-
nant coniferous tree species, namely Spruce–Fir, Larch and Red Pine, and five dominant
broadleaf tree species, namely of Poplar, Elm, Linden, Oak and White Birch. According
to Reference [38], strata with smaller populations may return higher prediction errors,
which, in turn, can affect the total prediction error. Therefore, to minimize the impact of
strata size on the estimation results, we deliberately kept the sample sizes of the eight
dominant species strata on a comparable level (approximately 200 sample plots per strata).
The detailed information and summary statistics for the forest AGC of each stratification
are provided in Tables 2 and 3. The distribution of the dominant species in the study area is
shown in Figure 2. This map was generated from Sentinel-2A images and RF classifier.

Table 2. Overview and distribution of forest AGC of the forest-type-based stratification sample plots.

Forest Type
Number Of Plot Forest AGC (Mg/ha)

Total Training Plot Validation Plot Range Mean
Standard
Deviation

Coniferous forests 591 473 118 1.40–82.30 26.23 13.09
Broadleaf forests 996 795 201 0.52–79.83 26.19 11.98

All forests
(non-stratification) 1587 1267 320 0.52–82.30 26.20 12.35
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Table 3. Overview and distribution of forest AGC of the dominant-species-based stratification
sample plots.

Dominant Species
Tree Species Composition

Number of Plot Forest AGC (Mg/Ha)

Total
Training

Plot
Validation

Plot
Range Mean

Standard
Deviation

Picea asperata and
Abies fabri

Picea asperata dominant forests or
Abies fabri dominant forests with a

small mixture of Larix gmelinii
197 158 39 2.29–82.30 30.73 15.35

Larix gmelinii

Pure or Larix gmelinii dominant
forests with a small mixture of

Betula platyphylla and
Populus davidiana

197 158 39 1.40–56.13 25.33 12.11

Pinus koraiensis
Pure or Pinus koraiensis dominant

forests with a small mixture of
Larix gmelinii

197 158 39 1.44–49.13 22.64 9.96

Populus davidiana

Pure or Populus davidiana
dominant forests with a small

mixture of
Larix gmelinii

209 167 42 0.52–79.83 34.36 17.44

Ulmus pumila
Ulmus pumila dominant forests
with a small mixture of Populus

davidiana
199 159 40 5.81–48.09 23.12 7.62

Betula platyphylla

Pure or Betula platyphylla
dominant forests with a small

mixture of
Larix gmelinii

203 162 41 1.82–52.63 22.17 9.74

Quercus mongolica
Quercus mongolica dominant forests

with a small mixture of Pinus
tabuliformis

196 157 39 2.27–65.42 25.86 12.07

Tilia tuan Tilia tuan dominant forests with a
small mixture of Larix gmelinii 200 160 40 5.74–42.26 21.71 7.71

Figure 2. Dominant species map of the study area: (a,b) show the spatial distribution of dominant
species in two areas at a larger scale.
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2.2.3. Airborne Laser Scanning Data

In order to minimize the impact of forest condition change and errors caused by
the time mismatch between field measurements and LiDAR data, airborne LiDAR data
were acquired in twelve regions within the six forest regions in September and October
2019, with a total aerial area of 1043 km2. Using RIEGL VUX-1UAV airborne laser scanner
(RIEGL, Horn, Austria) mounted on a medium rotorcraft UAV platform (Siwei Spatial Data,
Beijing, China), with a maximum pulse emission frequency of 550 kHz, a beam divergence
angle of 0.5 mrad, a spot diameter of 50 mm, an average point density of about 4 points/m2,
an average ground point distance of about 1 m, a measurement accuracy of 10 mm, a flight
height of about 100 m and a flight speed of 70–110 km/h.

The raw ALS data were processed in the TerraScan modules running on the Microsta-
tion platform (TerraSolid, Ltd., Helsinki, Finland) and the LiDAR 360 software (GreenValley,
Beijing, China). The main preprocessing procedures include (a) route leveling; (b) point
cloud denoising; (c) point cloud filtering—an improved TIN (triangulated irregular net-
work) densification filtering algorithm [46] was used to classify the raw point clouds
into the ground or non-ground points; (d) DEM generation, interpolation of the classi-
fied ground points using the TIN algorithm [47] to generate DEM; (e) point cloud data
normalization—the absolute elevation of each point was subtracted from the DEM, and
the height of the point cloud was normalized to remove the elevation effects of the terrain;
(f) point cloud data clipping—the point cloud data corresponding to the sample plot was
clipped out according to the coordinates of the sample center and the radius information
to facilitate the extraction of LiDAR variables; and (g) LiDAR metrics extraction—the 32
LiDAR metrics were extracted from the normalized point clouds within each sample plot
with a threshold of 2 m to exclude shrubs and grasses.

2.3. Methods

In this study, we integrated sample plot stratification and ML algorithms to establish
forest AGC estimation models based on airborne LiDAR data in the forest regions of
Northeast China. Figure 3 showed the framework of the methods for this study. Field
measurement data and ALS data were first under preprocessing to obtain plot-level forest
AGC and normalized LiDAR data within plots. To explore the effect of stratification in forest
AGC estimation, the initial sample plots were stratified into three groups: non-stratification,
FTS and DSS (Section 2.2.2). Thirty height-related metrics and 2 canopy-related metrics
were extracted from normalized LiDAR data, and Pearson correlation analysis and Boruta
algorithms were used to perform variables selection (Section 2.3.1). Then forest AGC
estimation models were built based on Stepwise regression and four ML algorithms (RF,
Cubist, XGBoost and CatBoost), and independent validation sample plots were used to
evaluate the established models (Sections 2.3.2 and 2.3.5). The analysis of variance (ANOVA)
was applied to identify the important factors in forest AGC modeling (Section 2.3.4). Finally,
based on the model validation and ANOVA results, the optimal stratification approach and
algorithms, and the important factors in forest AGC estimation were derived.
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Figure 3. Flowchart of the methods for forest AGC estimation by combining sample plots stratification
and ML algorithms using ALS data.

2.3.1. Model Variables Extraction and Selection

Height-related variables and canopy-related variables derived from LiDAR data are
suggested to be useful at plot-level estimation and show a high correlation with forest AGB
and AGC [48,49]. The height metrics directly describe the vertical height and geometry
character of the trees, the density metrics reflect the return density of the trees, the canopy
metrics depict canopy structure and the intensity metrics refer to the energy backscattered
from the feature to the LiDAR sensor [50,51]. In this study, we extracted 30 height-related
and 2 canopy-related variables based on normalized point cloud data with a threshold of
2 m. The detailed information and description of LiDAR metrics are shown in Table 4.
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Table 4. Summary of the metrics extracted from ALS data used in this study.

LiDAR Metrics Description

CC Canopy cover

Canopy_relief_ratio Canopy relief ratio

H_1, H_5, H_10, H_20, H_30, . . . H_80,
H_90, H_95, H_99

Height percentiles. Vertical distribution of
point cloud height: 1%, 5%, 10%, 20%, 30%,
. . . , 80%, 90%, 95%, 99% quantile

H_max Maximum height

H_min Minimum height

H_mean Mean height

H_median Median of height

H_madmedian Median of median absolute deviation of height

H_sqrt_mean_sq Generalized means for the 2nd power of height

H_curt_mean_cube Generalized means for the 3rd power of height

H_AIH_IQ Interquartile distance of cumulative height

H_IQ Interquartile distance of height

H_skewness Skewness of height

H_kurtosis Kurtosis of height

H_aad Average absolute deviation of height

H_cv Coefficient of variation of height

H_stddev Standard deviation of height

H_variance Variance of height

Although forest AGC is influenced by various factors, not all variables are useful
in forest AGC modeling, due to the information redundancy issue. Identifying optimal
variables is challenging but the key to establishing a forest AGC estimation model. In this
study, Pearson correlation analysis and the Boruta algorithm were used to perform variable
selection. The Pearson correlation analysis was first used to select the LiDAR metrics that
most correlated with forest AGC. Then, the Boruta algorithm was used to further identify
the optimal variables. The core idea of the Boruta algorithm is to construct a shadow feature
by randomly mixing the original object feature values to determine whether the importance
result of any given feature is significant or not, and then to classify all feature objects in
a random forest classification using an extended aggregate with random samples. The
maximum Z score among shadow attributes (MZSA) was found and then a two-sided test
was performed for each feature object with unassigned importance. Features significantly
below the MZSA were considered “unimportant” and features significantly above the
MZSA were considered “important”. This process was repeated until all attributes were
assigned importance values, resulting in the optimal set of feature variables [52]. All of
these procedures were performed in R 4.1.0 using the Boruta packages [52].

2.3.2. Modeling Algorithms

Stepwise regression and four machine-learning algorithms, namely RF, Cubist, XG-
Boost and CatBoost, were used for forest AGC modeling in this study. Stepwise regression
is a parametric algorithm to screen variables and establish the optimal regression equation.
In the modeling process of stepwise regression, the predictive variables are input into the
regression equation one by one according to the given statistical standard. At each step
of the analysis, the predictive variables with the highest correlation with the dependent
variables first enter the regression equation, and then the variables are introduced into
the model one by one, and the F-test is carried out to judge whether the variable can be
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selected. Stepwise regression has been widely applied in forest AGB and AGC estimation,
as it can remove the variables causing multicollinearity [53–55].

RF is an improved machine learning integration algorithm based on decision trees; it
was first proposed by Breiman et al. in 2001. Its advantages over traditional decision tree
algorithms are that it is insensitive to noisy data, can deal with discrete or continuous data
sets and can handle huge datasets [21]. The basic principle of RF is that multiple decision
trees are integrated into a single but powerful model, using the “bagging” idea [56], and
the Bootstrap resampling technique is used to generate a new training sample set from
N original training samples by repeatedly selecting a random k (k < N) sample set. In
the whole sampling process, some samples may be taken more than once, while some of
the training data will not be sampled. This part of the training data is called “out-of-bag”
(OOB) data; the OOB data are not involved in the model-fitting process, but are used to
examine the generalization of the model. As randomness can effectively reduce model
variance, the RF algorithm can achieve good generalization and low variance resistance
without additional “pruning” of the decision trees [57].

Cubist is a rule-based decision-tree model extending from the earlier M5 model, based
on which a regression tree is constructed, and generating a linear regression model at
the end nodes of the tree, with predictions based on linear regression results at the end
nodes rather than on discrete values. The final model of Cubist is a set of multivariate
models associated with a set of rules associated with it, where each rule corresponds
to a multivariate linear expression. Cubist also uses a boosting-like scheme known as
committees, which uses the results of the training set to adjust and create subsequent trees,
and then averages the predictions of all committees to generate the final predictions [26].
In addition, the predictions generated by the model rules can be adjusted by using the
neighborhoods defined by the parameter neighbors in the training-set data, as this enables
Cubist to predict outside of the sample coverage [58].

XGBoost is an ensemble learning algorithm based on the Gradient Boosting Decision
Tree (GBDT) framework proposed by Chen and Guestrin in 2016 [59] that has won numerous
awards in Kaggle machine-learning competitions and has received widespread attention in
recent years. The algorithm is based on the idea of “Boosting” to generate a number of decision
trees in turn, combining all the predictions of a set of weak learners to develop a strong learner
through an additive training strategy. In contrast to the general GBDT algorithm, the XGBoost
algorithm performs a second-order Taylor expansion on the objective function, using the
second-order derivatives to accelerate the convergence of the model during training. At the
same time, a regularization term is added to the objective function to control the complexity
of the tree in order to obtain a simpler model and avoid overfitting [60]. Thus, XGBoost
is a flexible and highly scalable tree-structured boosting algorithm with the advantages of
being able to handle sparse data, greatly increase the speed of the algorithm, and reduce
computational memory in training on very large scale datasets.

CatBoost is a novel gradient boosting decision-tree algorithm developed by Dorogush
et al. [61] that belongs to the same boosting family as XGBoost, both being an improved
implementation in the framework of the GBDT algorithm. CatBoost uses oblivious trees as
base predictors, with fewer parameters and high accuracy, which can also handle categori-
cal features well. In addition, CatBoost has solved the statistical problems of Gradient Bias
and Prediction shift that all existing gradient boosting algorithms face by proposing a new
and improved gradient boosting algorithm, order boosting, to reduce the occurrence of
overfitting and thus improve the algorithm’s accuracy and generalization. The basic idea
is, firstly, the CatBoost model correlates the category features to account for the different
bases of category features, including calculating the frequency of category occurrences
and considering different combinations of category features to construct the regression
tree. Secondly, to solve the prediction drift problem caused by gradient bias, random
permutations are generated in the training dataset, and gradients are obtained based on
it. For training distinct models, different permutations are used; thus, overfitting will not
happen. Compared with existing GBDT algorithms, the advantages of CatBoost are the
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following: (a) using an innovative algorithm that automatically treats categorical features
as numerical features, (b) combining category features and making full use of the connec-
tions between features greatly enriches the feature dimension and (c) the use of a fully
symmetric tree model reduces overfitting and improves the accuracy and generalization of
the algorithm [57,62].

Forest AGC estimation is largely dependent on the relationship between tree height
and AGC due to the allometric relationships of the tree. Complex forest structure can
affect the relationship between forest AGC and tree height and thus interfere with the
estimation results. In theory, separate modeling of forest AGC for different dominant
species can mitigate this interference and improve the algorithm’s estimation performance.
Therefore, in this study, we assume that the finer the stratification and the simpler the
forest structure, the better the algorithm’s estimation performance will be. Moreover, the
estimation performance of different algorithms may be various due to the differences in
forest structure among species. To verify these hypothesizes, three different scenarios
were designed: (1) forest AGC models were established based on five algorithms without
stratification, resulting in a total of 5 models; (2) forest AGC models were established based
on FTS with five algorithms, resulting in a total of 10 models; and (3) forest AGC models
were established based on DSS with five algorithms, resulting in a total of 40 models.

2.3.3. Hyperparameter Optimization in Machine Learning Algorithm

Four machine learning algorithms, RF, Cubist, XGBoost and CatBoost, were used in
this study. In a machine-learning algorithm, the predicted results and model performance
are largely determined by the hyperparameters of the model. A set of hyperparameters
should be tuned for each algorithm to obtain the best model performance. The hyperparam-
eters of different machine learning vary greatly, and it is difficult to adjust the parameters
manually. Therefore, grid search technology was used to perform hyperparameter tuning
automatically. Hyperparameter tuning was performed on the RF, Cubist, XGBoost and
CatBoost algorithms based on the lowest RMSE of the model obtained by repeating the
10-fold cross-validation method five times on the training dataset, respectively, to ensure
the robustness in the modeling process. All of these procedures were performed in R 4.1.3,
using the Caret packages. Details about various hyperparameters and their corresponding
grid values are presented in Table 5.

Table 5. Hyperparameter tuning ranges for four machine learning algorithms.

Algorithm Hyperparameter Description Value Ranges

RF mtry the number of predictor variables
randomly sampled at each split

(1–n)
n refers to the number of
predictor variables

ntree the number of trees (100–1000)
at intervals of 50

Cubist committees the number of trees (1–100)
at intervals of 1

neighbors controls the rule-based model predictions (0–9)
at intervals of 1
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Table 5. Cont.

Algorithm Hyperparameter Description Value Ranges

XGBoost max_depth the depth of the tree (1–10)
at intervals of 1

eta the learning rate (0.01–0.5)
at intervals of 0.01

gamma minimum loss reduction of the tree (0–1)
at intervals of 0.1

colsample_bytree the number of predictor variables
supplied to a tree

(0–1)
at intervals of 0.1

min_child_weight minimum number of instances (1–10)
at intervals of 1

subsample the number of observations supplied
to a tree

(0–1)
at intervals of 0.1

CatBoost depth the depth of the tree (1–10)
at intervals of 1

learning_rate the learning rate (0.01–0.5)
at intervals of 0.01

l2_leaf_reg coefficient at the L2 regularization term of the
cost function

(0–5)
at intervals of 0.1

rsm the percentage of features to use at each split
selection

(0–1)
at intervals of 0.1

2.3.4. Statistical Analysis

The two-way analysis of variance (ANOVA) was used to quantify the effect of each
factor on the estimation error and to identify the key factors in forest AGC estimation. These
factors include the stratification method (non-stratification, FTS and DSS), the regression
algorithm (stepwise regression, RF, Cubist, XGBoost and CatBoost) and their interactions.
To better show how each factor explains the total variance, we calculated the eta-squared
(η2), the proportion of the sum of squares of each factor to the total sum of squares. The
ANOVA was performed in R 4.1.0.

2.3.5. Model Validation

To compare the estimation performance of stepwise regression and four machine-
learning algorithms in this study, coefficient of determination (R2, Equation (1)), root mean
square error (RMSE, Equation (2)), relative root mean square error (RRMSE, Equation (3)),
mean absolute error (MAE, Equation (4)) and Bias (Equation (5)) were employed. The
hold-out method was used for calculating the model performance metrics, and the field
measurement data of each stratification were randomly split into a training set (80% of
the total) and a validation set (the remaining 20%). The training set was used to train and
establish the model, while the validation set was not involved in the model establishing
process but acted as an independent sample to evaluate the model performance. After
hyperparameter optimization, the best models were built based on the training set, and
the model performance metrics were calculated based on the validation set. The higher R2,
lower RMSE, RRMSE, MAE and Bias values imply a higher prediction accuracy and better
estimation results:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)

RRMSE =
RMSE

y
× 100 (3)

MAE =
∑n

i=1|yi − ŷi|
n

(4)
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Bias =
∑n

i=1(ŷi − yi)

n
(5)

where n is the number of sample plots, ŷi is the predicted forest AGC, yi is the field
measurement forest AGC and y is the mean of field measurement forest AGC.

3. Results

3.1. Comparative Analysis of Forest AGC Estimation Results
3.1.1. Forest AGC Estimation Results Based on FTS

To evaluate the effect of FTS and non-parametric machine-learning algorithms in
establishing the forest AGC estimation models, 15 forest AGC estimation models were
developed by using stepwise regression and four machine-learning algorithms (RF, Cubist,
XGBoost and CatBoost) based on non-stratification and two stratified datasets (coniferous
forests and broadleaf forests), respectively. The model performance and evaluation results
for the stratified and the unstratified models are shown in Table 6.

Table 6. Performance of forest AGC estimation model based on non-stratification and FTS in the
validation datasets.

Forest Type Model R2 RMSE
(Mg/ha)

RRMSE
(%)

MAE
(Mg/ha)

Bias
(Mg/ha)

All forests
(non-stratification) Stepwise 0.3948 9.7867 39.0596 7.3902 0.8163

RF 0.4213 9.5699 38.1947 7.1368 0.8704
Cubist 0.4119 9.6471 38.5028 7.0665 −0.6283

XGBoost 0.4392 9.4209 37.5998 7.0208 0.0435
CatBoost 0.4411 9.4052 37.5374 7.0520 0.8851

Coniferous forests Stepwise 0.3911 9.4519 38.2231 7.0240 0.4808
RF 0.5853 7.8005 31.5447 5.9307 0.2851

Cubist 0.5304 8.3004 33.5663 6.5400 −0.0962
XGBoost 0.6017 7.6441 30.9124 5.7157 0.1689
CatBoost 0.6073 7.5907 30.6961 5.7559 −0.1662

Broadleaf forests Stepwise 0.3577 9.9602 41.2753 7.7378 2.0755
RF 0.4249 9.4252 39.0582 7.0348 1.5388

Cubist 0.3818 9.7718 40.4946 7.2849 0.6979
XGBoost 0.4585 9.1452 37.8982 6.8907 1.7294
CatBoost 0.4745 9.0093 37.3350 6.8652 1.6480

According to the results illustrated in Table 6, the FTS models improved the perfor-
mance and predicted accuracy when applying machine-learning algorithms, as evidenced
by an increase in R2 and a decrease in RMSE, RRMSE and MAE, while the reversed results
were achieved in stepwise regression models. Compared to the unstratified models, a
significant improvement was observed in the coniferous-forest-stratified models, while
only a slight improvement in the broadleaf-forest-stratified models, indicating that FTS
provided a more positive effect in coniferous forests than broadleaf forests. Overall, four
machine learning algorithms outperformed stepwise regression, regardless of the datasets
used. The CatBoost models achieved the best estimation performance in all the three
datasets, with the highest R2 (0.4411 in all forests, 0.6073 in coniferous forests and 0.4745 in
broadleaf forests), lowest RMSE (9.4052 in all forests, 7.5907 in coniferous forests and 9.0093
in broadleaf forests), RRMSE (37.5374 in all forests, 30.6961 in coniferous forests and 37.3350
in broadleaf forests) and MAE (6.8652 in broadleaf forests), followed by XGBoost, RF, Cubist
and stepwise regression. The Bias of the CatBoost models in the three datasets were 0.8851,
−0.1662 and 1.6480 Mg/ha, respectively, suggesting a general overestimation of forest AGC
in unstratified and broadleaf forest models, as well as a general underestimation of forest
AGC in coniferous forest models.

The improvement provided by the FTS models can be further evidenced in the scatter
plots between the field-measurement forest AGC and model estimated values (Figure 4).
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Figure 4 shows the correlation between the estimated forest AGC and the reference data based
on FTS is better compared to the non-stratification ones except the models using stepwise
regression. Moreover, a significant underestimation is observed when the forest AGC is larger
than 40 Mg/ha in all the 15 models, while a significant overestimation is observed when the
forest AGC is lower than 10 Mg/ha in unstratified and broadleaf forests models. However,
the extent of overestimation and underestimation is reduced when using FTS.

Figure 4. Scatter plots of the field-measured (x-axis) and predicted forest AGC (y-axis) using stepwise
regression and four different ML models based on FTS in the validation datasets.

3.1.2. Aboveground Carbon Density Estimation Results Based on DSS

To examine the influence of DSS and ML algorithms in the forest AGC estimation, we
compared and analyzed the model validation results of the forest AGC models established
by using stepwise regression and four machine-learning algorithms (RF, Cubist, XGBoost
and CatBoost) based on eight DSS datasets (Spruce-Fir, Larch, Red Pine, Poplar, White
Birch, Oak, Linden and Elm), respectively, resulting in a total of 40 models. The results of
model performances are summarized in Table 7 and Figure 5.
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Table 7. Performance of forest AGC estimation models based on DSS in the validation datasets.

Dominant
Species

Model R2 RMSE
(Mg/ha)

RRMSE
(%)

MAE
(Mg/ha)

Bias
(Mg/ha)

Spruce–Fir Stepwise 0.7371 6.8977 23.4290 5.3067 −0.1559
RF 0.7547 6.6623 22.6294 4.9116 0.1994

Cubist 0.7493 6.7361 22.8801 5.2763 0.4992
XGBoost 0.7936 6.1119 20.7600 4.5688 −0.3968
CatBoost 0.8175 5.7463 19.5181 4.2701 1.0252

Larch Stepwise 0.6931 6.5371 28.4119 4.9649 1.7802
RF 0.6273 7.2045 31.3124 5.8318 1.9752

Cubist 0.6854 6.6184 28.7652 5.2080 0.5859
XGBoost 0.7047 6.4125 27.8701 4.8272 1.1372
CatBoost 0.7304 6.1274 26.6309 4.7103 1.1988

Red Pine Stepwise 0.7864 4.8843 21.8278 3.6780 −1.0045
RF 0.8351 4.2915 19.1786 3.2918 −0.7201

Cubist 0.8014 4.7098 21.0482 3.8554 −1.0005
XGBoost 0.8509 4.0810 18.2380 3.3971 −0.1736
CatBoost 0.8699 3.8113 17.0328 3.2853 0.1476

Poplar Stepwise 0.6751 8.9241 23.6450 6.8659 −0.9275
RF 0.7607 7.6595 20.2943 6.0103 −0.0022

Cubist 0.7486 7.8506 20.8007 6.1131 0.5429
XGBoost 0.7778 7.3812 19.5569 5.8989 0.1414
CatBoost 0.8054 6.9076 18.3022 5.2377 −0.0178

White Birch Stepwise 0.7211 5.3155 24.7447 4.1372 0.2416
RF 0.7407 5.0642 23.5747 3.7654 0.2466

Cubist 0.7662 4.8671 22.6570 3.5408 −0.2407
XGBoost 0.7636 4.8943 22.7840 3.5005 0.0718
CatBoost 0.7852 4.6653 21.7180 3.6770 −0.1229

Oak Stepwise 0.6362 6.6328 27.7826 4.8668 0.9758
RF 0.7468 5.5342 23.1808 4.0921 0.1669

Cubist 0.7386 5.6229 23.5524 3.9071 0.1812
XGBoost 0.7652 5.3294 22.3229 4.0862 −0.5591
CatBoost 0.7903 5.0355 21.0920 3.8465 0.3638

Linden Stepwise 0.3224 6.5837 30.2533 5.0754 0.7719
RF 0.5294 5.4869 25.2136 4.1952 0.4577

Cubist 0.4821 5.7557 26.4485 4.2222 0.3208
XGBoost 0.5450 5.3949 24.7906 4.1490 0.2983
CatBoost 0.6327 4.8474 22.2750 3.8665 0.5140

Elm Stepwise 0.5362 4.8298 20.4512 3.9670 0.9204
RF 0.5959 4.5080 19.0887 3.7378 1.2237

Cubist 0.5448 4.7845 20.2596 3.9858 1.1691
XGBoost 0.6308 4.3089 18.2456 3.5939 0.9103
CatBoost 0.6906 3.9446 16.7032 3.1906 0.5471

Figure 5 illustrates the estimation accuracy of forest AGC varies with different domi-
nant species. In terms of algorithm performance, estimation models based on DSS show
similar trends to those based on FTS; that is, the four machine-learning algorithms outper-
form the stepwise regression, with the CatBoost models achieving the highest estimation
accuracy, followed by XGBoost, RF, Cubist and stepwise regression. The detailed infor-
mation of the model evaluation results can be found in Table 7. Table 7 shows the 40
models for eight different dominant species with R2 varying from 0.3224 to 0.8699, RMSE
varying from 3.8113 to 8.9241, RRMSE varying from 16.7032 to 31.3124, MAE varying
from 3.1906 to 6.8659 and Bias varying from −1.0045 to 1.9752. Relatively high estima-
tion accuracy was achieved in all eight dominant species, with the CatBoost model based
on DSS for Red Pine achieving the best estimation accuracy (R2 = 0.8699, RMSE = 3.8133,
RRMSE = 17.0328, MAE = 3.2853 and Bias = 0.1476). In terms of Bias, no single algorithm
is optimal in all dominant species, with the highest mean Bias (1.2755) being observed in
the Larch models, indicating a more significant overestimation of forest AGC in the Larch,
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regardless of the algorithm used. Overall, the models established based on DSS achieved
much higher estimation accuracy compared to the unstratified models (Table 6), and this
improvement is more significant in the Spruce–Fir, Larch, Red Pine, Poplar, White Birch
and Oak models. The estimated forest AGC of eight dominant species models based on
the CatBoost algorithm was shown in Figure 6. The mean estimated forest AGC ranged
from 21.36 to 37.72 Mg/ha in eight dominant species, with the estimated forest AGC of
Poplar and Spruce–Fir being significantly higher than the other dominant species, and the
estimated forest AGC of the remaining dominant species were at a comparable level.

Figure 5. Model estimation accuracy evaluation results based on the validation datasets using
stepwise regression and four ML algorithms in eight different dominant species.
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Figure 6. Cont.
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Figure 6. Model estimation accuracy evaluation results based on the validation datasets using
stepwise regression and four ML algorithms in eight different dominant species.

The scatter plots between the field-measurement forest AGC and estimated values
for the eight dominant species are provided in Figure 7. Figure 7 shows that the linear
relationships between the estimated and measured values of forest AGC are relatively
better in Spruce–Fir, Larch, Red Pine, Poplar, White Birch and Oak models, while relatively
poor linear relationships are observed in Linden and Elm. A significant underestimation is
observed when the forest AGC is larger than 40 Mg/ha in Larch, Poplar and Oak models,
while a significant overestimation is observed when the forest AGC is lower than 20 Mg/ha
in Larch, Poplar, Linden and Elm models. Compared to the unstratified models (Figure 4),
the linear relationships between the estimated and measured values of forest AGC and
the extent of overestimation and underestimation are greatly improved in all 40 models
established based on DSS. The forest AGC estimation models based on DSS have achieved
much better estimation performance than unstratified ones.

Figure 7. Estimated AGC of eight dominant species models using CatBoost algorithm.
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3.1.3. Comparative Analysis of Forest AGC Estimation Results Based on FTS and DSS

To further explore the optimal stratification method in forest AGC estimation, the
overall estimation accuracy of models based on non-stratification, FTS and DSS were
summarized in Table 8. Generally, the CatBoost models based on DSS have achieved the
best estimation accuracy (R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169
and Bias = 0.4493), while the stepwise regression models based on FTS provided the worst
estimation accuracy (R2 = 0.3700, RMSE = 9.7752, RRMSE = 40.1415, MAE = 7.4738 and
Bias = 1.4856). The comparative results illustrate that the estimation accuracy of models
based on DSS is significantly higher than that of models based on FTS, regardless of the
algorithm used, with R2 increased from 0.3700~0.5223 to 0.7309~0.8232, RMSE reduced from
8.5121~9.7752 to 5.2421~6.4663, RRMSE reduced from 34.9546~40.1415 to 20.5680~25.3713,
MAE reduced from 6.4549~7.4738 to 4.0169~4.8700 and Bias reduced from 0.4042~1.4856 to
0.1803~0.4493. As the CatBoost models based on DSS have provided the highest estimation
accuracy, they were chosen for mapping the spatial distribution of the estimated forest
AGC in the study area (Figure 8). Moreover, compared to the non-stratification models, a
significant improvement was observed in DSS models, while only a slight improvement
was observed in FTS models.

Table 8. Summary of the overall estimation accuracy of non-stratification, FTS and DSS models on
the validation datasets.

Stratification
Method

Model R2 RMSE
(Mg/ha)

RRMSE
(%)

MAE
(Mg/ha)

Bias
(Mg/ha)

Non-stratification Stepwise
regression 0.3948 9.7867 39.0596 7.3902 0.8163

RF 0.4213 9.5699 38.1947 7.1368 0.8704
Cubist 0.4119 9.6471 38.5028 7.0665 −0.6283

XGBoost 0.4392 9.4209 37.5998 7.0208 0.0435
CatBoost 0.4411 9.4052 37.5374 7.0520 0.8851

FTS Stepwise
regression 0.3700 9.7752 40.1415 7.4738 1.4856

RF 0.4826 8.8590 36.3788 6.6264 1.0751
Cubist 0.4353 9.2548 38.0042 7.0094 0.4042

XGBoost 0.5101 8.6205 35.3995 6.4561 1.1522
CatBoost 0.5223 8.5121 34.9546 6.4549 0.9769

DSS Stepwise
regression 0.7309 6.4663 25.3713 4.8700 0.3162

RF 0.7737 5.9307 23.2698 4.5070 0.4091
Cubist 0.7705 5.9719 23.4313 4.5200 0.2599

XGBoost 0.7984 5.5975 21.9624 4.2611 0.1803
CatBoost 0.8232 5.2421 20.5680 4.0169 0.4493
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Figure 8. Forest AGC estimation map in the study area retrieved by the CatBoost models based on
DSS. (a,b) Spatial distribution of estimated forest AGC in two areas at a larger scale.

Further comparison of scatter plots of field-measured forest AGC and estimated
values between FTS models (Figure 4) and DSS models (Figure 6) illustrates that the linear
relationships between the estimated and measured values of forest AGC and the extent
of overestimation and underestimation are greatly improved in all 40 models established
based on DSS. In summary, the forest AGC estimation model established by each dominant
species has a higher predictive ability and applied potential than the models constructed
by each forest type.

3.2. Variable Importance Analysis

The variable importance for forest AGC estimation models was evaluated by the
PredictionValuesChange method based on CatBoost in the DSS models. The relative impor-
tance of the 10 highest ranked variables was shown in Figure 9, revealing that the important
variables vary in different dominant species models. The height percentile metrics have
achieved the highest relative importance in most of the DSS models, accounting for more
than 80% in the Larch model, more than 70% in the Spruce–Fir model, more than 40% in
the Oak model, more than 30% in the Red Pine, Poplar, White Birch and Linden model and
more than 25% in the Elm model. Canopy-related metrics are also useful in the forest AGC
estimation, with the canopy relief ratio metric being the most important variable in the
White Birch models and the fifth and sixth important variable in Linden and Poplar model.
In general, the height-related metrics and canopy-related metrics play an important role in
forest AGC estimation, with height-related metrics being more important. The variables
importance analysis results demonstrate that the important variables for the models vary
with dominant species, illustrating the necessity to identify optimal model variables for
forest AGC estimation models in different dominant species.
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Figure 9. Relative importance of the 10 highest ranked variables of CatBoost models based on DSS.

4. Discussion

4.1. Variables Selection in Forest AGC Estimation

Identifying suitable variables is a prerequisite and key to building a high-precision
forest AGC estimation model. The commonly used variables derived from LiDAR data
in forest AGB and AGC estimation can be divided into four categories: height, density,
intensity and canopy metrics [63–65]. In this study, the initial LiDAR dataset contained 30
height-related and two canopy-related variables, without considering density and intensity
variables. It is based on the prior knowledge that density and intensity metrics are often
influenced by many other factors, including transmitted power, range, angle of incidence,
atmospheric transmittance, environmental parameters and the structural characteristics
of the target itself [66], resulting in the density and intensity values obtained for the same
feature on different flight routes varying significantly and making it difficult to reflect
the true character of the feature. Moreover, several studies have proposed that LiDAR
intensity values must be calibrated before they can be applied to forest AGB and AGC
estimation [67,68], but to date, no standard approach for LiDAR intensity correction has
been established. Then Pearson correction analysis and the Boruta algorithm were used
to further provide auxiliary information on variable selection for each dataset. Feature
selection based on expert knowledge allows for the selection of the most useful variables in
AGC estimation from an empirical perspective, while correlation analysis and automated
feature selection algorithms provide the best set of variables from a statistical perspective.
It was also suggested in Reference [11] that the inclusion of expert knowledge in variables
selection would make the model more ecologically meaningful and generalized than those
using only automatic feature-selection algorithms, such as stepwise regression, RFE and Boruta.
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The variable importance analysis results showed that the height percentile metrics are
the most important in most cases, which is consistent with several previous studies [20,58],
revealing the high corrective between height percentile metrics and forest AGC. In addition,
the variable importance results also demonstrated that the important variables are different
in different dominant species. Thus, there are possibly two ways to improve the large-scale
forest AGC estimation: One is to select optimal variables for a specific study area. In
this case, considering the experience and previous effort on AGC estimation in variables
selection of the specific study region may be more effective before modeling. The other
is to examine the potential generic indicators that are independent of geographical and
environmental conditions, e.g., the TCH metric derived from ALS data [69] and LiDAR
biomass index (LBI) obtained from TLS data [70]. However, the extent to which these
indicators are effective remains to be tested, and more studies should be carried out on the
model transferability to provide accurate forest AGC estimation on a large scale.

4.2. The Role of Stratification in Forest AGC Estimation

Our study indicated that both FTS and DSS could improve the estimation accuracy of
forest AGC compared to non-stratification estimation, which confirmed the effectiveness of
stratification in forest AGC estimation and was consistent with previous studies [71,72].
The essence of stratified estimation is to aggregate observations of target variables into
more homogeneous strata or levels than the whole. Forest AGC varies greatly across
different forest types and dominant species, as forest AGC is related to a variety of factors,
such as forest structure, species composition, stand characteristics and site factors. The
heterogeneity between different forests makes the relationship between forest AGC and
tree height becoming particularly complex and limit the estimation accuracy of LiDAR
data. Stratifying the sample plots into forest types or dominant species can reduce forest
heterogeneity arisen from the interference of other factors in AGC estimates, thus improving
the correlation between forest AGC and LiDAR metrics. Moreover, allometric models
and carbon conversion factors are developed at the tree species level, and thus the AGC
estimation models should be established on individual forest type or dominant species to
reduce the uncertainty [16].

A two-way ANOVA was used to explore the important factors in forest AGC estima-
tion. The ANOVA results (Table 9) showed that the stratification method had the most
significant effect on the estimation error, explaining 53% of the total variance in R2, 66%
of the RMSE, 77% of the RRMSE and 64% of the MAE. The regression algorithm and its
corresponding interactions had a marginal impact on estimation accuracy, explaining less
than 10% of the total variance in R2, RMSE, RRMSE and MAE, respectively. The ANOVA
results proved that a stratification of the sample plots is of greater importance than the
modeling algorithm, which was inconsistent with Reference [38]. The discrepancy may be
contributed to the differences in stratification method, sample size and the study area; thus,
more studies should be conducted to further examine the generalizability of our results.

Table 9. ANOVA of the R2, RMSE, RRMSE and MAE respective to the stratification method, regression
method and their interaction.

Factor Df
R2

SumSq
η2 RMSE

SumSq
η2 RRMSE

SumSq
η2 MAE

SumSq
η2

Stratification 2 0.65 0.53 123.45 0.66 2171.4 0.77 63.89 0.64
Regression method 4 0.10 0.08 8.39 0.05 131.1 0.05 4.51 0.05

Stratification: regression
method 8 0.01 0.01 0.68 0.00 11.5 0.00 0.50 0.01

Residuals 40 0.47 53.52 511.3 30.57

4.3. FTS versus DSS

The comparative results between FTS and unstratified estimates show that significant
improvement was obtained in AGC estimation models based on coniferous forest, while
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only marginal improvement was obtained in AGC estimation models based on broadleaf
forest. One possible explanation for this is to be found in the substantial differences in tree
crowns and distribution of branches and leaves across different broadleaf tree species in
this study, which heavily affects the penetration of the laser pulses and thus influences
the relationships between LiDAR metrics and forest AGC [73]. It is also mentioned by
Reference [21] that AGB modeling based on coniferous forest provided poorer estimation
performance due to the difference in crown size, shape and the relationship between the
AGB and canopy height of the Masson pine and Chinese fir. Therefore, stratifying the
sample plots into the coniferous forest and broadleaf forest may not be sufficient to reduce
the heterogeneity within strata and provide better estimation performance. In addition, a
higher estimation accuracy was obtained in the coniferous forest than in the broadleaf forest,
as is consistent with several previous studies [74,75]. The difference may be attributed to
the fact that broadleaf tree species tend to have more biomass in the branches and weaken
the relationships between height and forest AGC [76].

Further comparison of the estimation performance between the FTS and DSS models
illustrated that a substantially higher R2, RMSE, RRMSE, MAE and Bias were observed
in DSS models, and this is in line with previous studies [21,77]. The results demonstrate
that DSS is a more recommended approach for stratification estimation. The improvement
provided by DSS can be attributed to the fact that the relationships between tree height
and forest AGC are the same in individual tree species, as they share similar canopy
structures and AGB distribution. Stratifying sample plots into dominant species can
provide highly homogenous strata and minimize the within-strata variance, leading to a
better forest AGC estimation. However, there are also several studies reporting that only
minor improvements in estimation performance were obtained when the same data were
used to construct individual forest type or species strata for estimation [38,78,79]. The
difference in results may be attributed to inconsistent sample sizes across different studies
and small sample sizes within strata in most studies. Higher uncertainty and prediction
errors may be produced with fewer within-strata sample sizes, and these, in turn, affect
the total prediction error. For example, the Douglas fir and maple had the highest RMSD
value for 261% and 315%, which accounted for the smallest number of overall sample
plots (7.0% and 5.7%) [80]; the subtropical Picea abies forest (SPAF) had the highest RMSE
(82.7 ± 28.2 Mg/ha) and bias (−36.8 ± 19.5 Mg/ha) with the smallest number of reference
data (16) [81]. It is also mentioned by Reference [82] that estimates of standard errors can
be biased in the case of small sample sizes within strata. In this study, the within-strata
sample plot sizes of each dominant species were kept at around 200, which is a comparable
and relatively large level, making the estimation results more robust and representative.

4.4. Machine-Learning Algorithms for Forest AGC Estimation

Modeling algorithms have been suggested to be an important factor for the accurate
estimation of forest AGB and AGC [83]. However, to date, no single algorithm has been
optimal in all cases. Therefore, identifying a proper algorithm has been a critical step to
constructing AGC estimation models. In this study, the estimation performances of one
parametric approach (Stepwise regression) and four non-parametric machine learning algo-
rithms (RF, Cubist, XGBoost and CatBoost) were compared. The results showed that four
machine-learning algorithms outperform stepwise regression in most cases, thus confirming
previous findings that non-parametric machine-learning algorithms were suggested to be
more suitable for forest AGB and AGC estimation than the parametric algorithm [22,24,25].
We attribute the better performance of ML algorithms to the fact that the relationships
between forest AGC and the LiDAR metrics are likely nonlinear and complex, especially in
those forests with complex stand structures and tree species composition, and this makes it
difficult to model these relationships through parametric algorithms with a fixed model
structure. However, overestimation of forest AGC at low AGC values and underestimation
of forest AGC at high values are still common in ML algorithms. Moreover, the hyperpa-
rameter tuning methods and tuning ranges vary with study area and input data, which
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greatly limit the model transferability of ML algorithms. Moreover, we found that, when
forest AGC estimation models were established based on DSS, a significant improvement
was observed in stepwise regression models, implying that the relationships between forest
AGC and the LiDAR metrics are expected have a more linear association at the species
level.

Among the four ML algorithms, two novel boosting-based ensemble algorithms, XGBoost
and CatBoost, have provided better forest AGC estimation accuracy than others, and the
CatBoost algorithm outperformed other algorithms in all datasets. Before this study, XGBoost
and CatBoost algorithms have not been used for forest AGC estimation, but there have been
several studies on forest AGB estimation. Pham et al. [84] combined a genetic algorithm (GA)
and XGBoost to achieve the best estimation of mangrove AGB than other four ML algorithms
(RF, SVM, GBRT and CatBoost); Zhang et al. [85] compared and evaluated the performance of
eight ML algorithms (MARS, RF, SVM, GBRT, ANN, SGB, ERT and CatBoost) in forest AGB
estimation, and the results showed that CatBoost provided the best performance with an R2

of 0.72, an RMSE of 45.63 Mg/ha, a bias of 0.06 Mg/ha, and a relative RMSE of 25%. Luo
et al. [86] examined the different combinations of three feature selection methods and three ML
algorithms (RF, XGBoost and CatBoost) in forest AGB estimation and found that combining
RFE and CatBoost obtained the highest estimation accuracy. The compared results in this
study were consistent with these previous studies and further demonstrated the superiority
and application potential of XGBoost and CatBoost in forest AGC estimation. Compared with
XGBoost, CatBoost has achieved better estimation with fewer hyperparameters, higher model
efficiency and slighter overestimation and underestimation problems, making CatBoost a
more recommended algorithm in forest AGC estimation. However, more studies should be
carried out to further examine the application potential of CatBoost across various forest types
within different geographical environments.

4.5. Species-Level Forest AGC Estimation

In this study, we established eight species-level forest AGC estimation models by
using CatBoost algorithms and achieved satisfactory estimation accuracy. Our species-
level estimation accuracy (R2 = 0.63~0.87) was significantly higher than that of Fu et al.
(R2 = 0.14~0.56) [42] and Zhang et al. (R2 = 0.01~0.47) [87], which linked field measurement
plots and MODIS data to map species-level biomass in Northeast China. High estimation
accuracy has been achieved in Spruce–Fir, Larch, Red Pine, Poplar, White Birch and Oak,
while relatively low-estimation accuracies were achieved for Linden and Elm. The discrep-
ancy may be explained by allometric equations and mean carbon conversion factors used
for Linden and Elm. The sample plots of Linden and Elm spanned six flight regions and
Heilongjiang and Jilin two provinces, with a difference of more than 10 degrees in latitude
between north and south. However, the allometric equations and mean carbon conversion
factors used for Linden and Elm in this study were not established for a specific region but
for the whole Northeast China region. The differences in hydrothermal conditions caused
by the latitude could have a significant effect on the growth of Linden and Elm, and these
difference, in turn, increase the uncertainty and errors of allometric equations and mean
carbon-conversion factors. Moreover, the relatively low-point cloud density of the LiDAR
data used in this study (4 points/m2) may not be enough to fully capture the structure
information, leading to the poorly structured Linden and Elm models. To our knowledge,
species-level forest AGC estimation models in northeast forest regions of China based on
LiDAR data have not yet been reported in studies. Species-level AGC estimation models
can provide important basic information for large-scale forest resource monitoring, but
they pose new challenges in terms of sample size and accurate forest classification products.
The lack of spectral information from LiDAR sensors makes it difficult to achieve accurate
dominant species maps based on LiDAR data. Therefore, using LiDAR as a sampling tool
and fusing LiDAR with other sensors (e.g., hyperspectral and optical) to acquire dominant
species area and build forest AGC models could be a potential solution [88,89].
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4.6. Uncertainty Analysis and Limitations

Identifying and understanding the uncertainty of the remote sensing-based forest
AGC estimation models is necessary for improving forest AGC estimation accuracy and
establishing standard estimation designs and procedures [90]. In addition to the errors and
uncertainties introduced by the variable selection methods, model algorithms themselves,
there are a number of external factors that can contribute to uncertainty in this study.
(1) The first factor is the allometric equations and mean carbon conversion factors used
for estimating plot-level forest AGB and forest AGC. The errors in allometric equations
have been regarded as a common and primary source of uncertainty in forest AGB and
AGC estimations [91–93]. The sample plots in this study were located in three provinces,
Heilongjiang, Jilin and Inner Mongolia, while the species-specific allometric equations and
mean carbon conversion factors used were developed for the entire Northeast China region.
The allometric equations depend on the assumptions of the allometric relationships between
diameter at breast height (DBH) and tree height (H), and these allometric relationships may
vary with environment and stand structure, resulting in different forest AGB estimations
and great uncertainty. The uncertainty propagates and accumulates with the error in
the carbon conversion factors, influencing the final estimation accuracy of forest AGC.
(2) The second factor is the errors from small trees shrubs and herbs. In this study, the trees
smaller than 6 cm in DBH, as well as shrubs and herbs, were not recorded in the ground
survey, which could be captured by the LiDAR data. The cumulative AGC of these small
trees, shrubs and herbs may become a non-negligible part of the total and thus introduce
errors into the forest AGC estimates. (3) The third factor is the effect of point density. The
point density used in this study was 4 points/m2, which is low-density point cloud data.
Previous studies have demonstrated that the ability of LiDAR to estimate vegetation height
decreases with lower point density [94,95]. The relative low point density in this study
has limited the detection of the vegetation canopy and the number of points that penetrate
to the ground, which may affect the DEM generation and the canopy and height-based
forest AGC estimation. (4) The fourth factor is the edge effect and geolocation error. The
effect of edge effect may be attributed to the fact that the field measurement is based on the
position of the stem while the LiDAR data capture the tree crown and height information
within the whole specific region. Therefore, some trees detected by LiDAR data may not
be recorded by the ground survey, thus contributing to the uncertainty in the forest AGC
estimation. The field sample plots are usually located by consumer-grade GPS whose
positional accuracy largely depends on the open conditions of the environment, leading
to location error from 1 to 10 m in the complex environment of forest [96]. The mismatch
of geographic location between LiDAR data and sample plots data may provide great
uncertainty and error in forest AGC estimation. (5) The fifth factor is the error from field
measurement. In this study, tree metrics, such as DBH and tree height, were measured
manually, using traditional tools. It is usually difficult to locate the treetop in forests with
high canopy closure and complex structures. Therefore, the quality and accuracy of these
metrics are largely determined by the quality and skill level of the surveyors, which may
introduce errors and uncertainty into the results. The advent of advanced technologies,
such as ground-based LiDAR and backpack LiDAR, promises to act as a new alternative to
reduce uncertainty and improve the accuracy of ground survey.

Some sources of uncertainty, such as the edge effects and geographical location errors,
are difficult to quantify empirically and statistically, as it is impossible to find an ideal
sample free of the effects of edge effects and geographical location errors. The advent
of simulation studies promises to be a powerful tool to solve the present limitations and
better quantify and understand uncertainties in forest AGB and AGC estimations. For
example, Knapp et al. [97] quantified the effect of border effects by using the bottom-up
simulation method, and the simulation results showed that the edge effects decreased
with increasing plot sizes, with the edge effects being most significant at the 10 m scale
and having no influence at the 100 m scale. There are also several studies using similar
simulation methods to successfully qualify the uncertainty introduced by the geolocation
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error [98], allometric equations [92] and forest structure [99]. Future studies should consider
multiple uncertainties simultaneously and quantify the weight of each component to better
understand the uncertainty in the entire process of forest AGC estimation.

5. Conclusions

In this study, we retrieved the potential of integrating sample plots stratification and
non-parametric machine-learning algorithms for forest AGC modeling in the forest regions
of Northeast China. Four major conclusions can be drawn:

(1) The ANOVA result showed that the stratification method had a more important
effect on forest AGC estimation than the regression algorithm. Both FTS and DSS
were effective in improving the estimation accuracy of forest AGC compared to
non-stratified models, demonstrating the positive role of stratification in forest AGC
estimation. Compared to the non-stratified models, the estimation accuracy of forest
AGC was significantly improved in coniferous species, while marginal improvement
was observed in the broadleaf species.

(2) Compared with FTS, models based on DSS achieved greater improvements, indicating
that DSS is a better stratification estimation method for forest AGC.

(3) Regardless of the stratification method used, of the five algorithms, the four non-
parametric ML algorithms outperformed parametric stepwise regression, with the
CatBoost algorithm obtaining the best estimation performance, followed by XGBoost,
RF, Cubist and stepwise regression.

(4) The most important LiDAR metrics for forest AGC estimation were the height per-
centiles and the canopy relief ratio.

(5) The CatBoost models based on DSS achieved the highest estimation accuracy, with
R2 = 0.8232, RMSE = 5.2421, RRMSE = 20.5680, MAE = 4.0169 and Bias = 0.4493. The
estimation values of the best forest AGC estimation model for the eight dominant
species ranged from 21.36 to 37.72 Mg/ha, with the Poplar having the highest forest
AGC and the White Birch having the lowest.

The main contribution of this study is the successful combination of DSS and the
CatBoost algorithm to improve the estimation performance of forest AGC and to obtain
the first high-precision species-level forest AGC estimation models based on the CatBoost
algorithm in the forest regions of Northeast China. Integrating this strategy with the
national forest inventory or accurate remote-sensing-based wall-to-wall dominant species
classification products is expected to provide a new solution to reduce the uncertainty and
improve the estimation accuracy of large-scale forest carbon stock.
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Abstract: Canopy closure, which is the ratio of the vertical projection area of the crowns to the area of
forest land, can indicate the growth and tending situation of a forest and is of great significance for
forest management planning. In this study, a geometric-optical model (GOST model) was used to
simulate the canopy gap fraction of a forest. Then, a canopy closure estimation method using the
gap fraction was discussed. In this study, three typical planted forest farms (the Mengjiagang (MJG),
Gaofeng (GF), and Wangyedian (WYD) forest farms) containing the most commonly planted tree
species in the north and south regions of China were selected, and field measurements were executed.
The results show that the gap fraction (Pvg-c) had a higher correlation with the average projected area
of the tree crowns, and the relationship was an exponential function, with R2 and RMSE values of
0.5619 and 0.0723, respectively. Finally, the applicability and accuracy of this method were evaluated
using line transects, and a fisheye camera measured the canopy closure. The accuracy of the canopy
closure estimated by the Pvg-c was 86.69%. This research can provide a reference for canopy closure
estimation using a geometric-optical model.

Keywords: canopy closure; the GOST model; fisheye camera photos; transects; LAI

1. Introduction

Globally, planted forests are an important type of forest. According to a number of
studies, planted forest areas have continued to increase due to industrial demands for wood
shifting from natural forests to planted forests [1,2]. Planted forests reduce harvesting from
natural forests by 26%, and they have significant ecological benefits [3]. In order to improve
the management level of China’s planted forests, it is essential to plan the afforestation
process and to scientifically arrange the forest management strategy. At the same time, it
is also important to monitor and evaluate the resources in planted forests precisely and
meticulously [4].

Canopy closure, which is the ratio of the vertical projection area of tree crowns to the
ground area [5–8], plays a very important role in the state of the forest ecosystem as well
as in environmental evaluation, and it is widely used in forestry evaluations [9]. Canopy
closure is an important index that reflects the spatial structure of an ecosystem and the
tree stand density, and it is an important investigation indicator for planted forests [10,11].
Accurate canopy closure measurements and estimations provide an important reference
that can be used to evaluate the quality of a plantation.

Canopy closure can be measured using a wide variety of ground-based techniques.
These ground-based methods mainly include ocular estimates, hemispherical photography,
transects, sample points, the line intercept method, canopy projections, the visual observa-
tion method, and canopy instrument analysis, among others [12]. Among these methods,
transects and sample points have a higher measurement accuracy than other ground-based
methods [13,14]. Hemispherical photography is also a commonly used method that is
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used to estimate the canopy closure [13]. The development of digital cameras and their in-
creasing availability has made hemispherical photography more widely available for forest
inventory evaluations [15]. However, the cost and required resources for hemispherical
photography still preclude many forest managers from using it as a monitoring tool [11].
In addition, canopy closure is underestimated by using the instruments, such as fisheye
cameras, due to gaps in the canopy [13]. Macfarlane et al. concluded that future investiga-
tions of fisheye camera methods should concentrate on obtaining an accurate gap fraction
distribution method that can separate the effects of foliage angle distribution from those of
foliage clumping [16]. The transect method is considered to be the most reliable method
for investigating canopy closure, and it can directly verify the canopy closure estimated by
remote sensing images [17]. However, even though ground-based methods always have
better accuracy, human and material resource inputs need to be considered. Additionally, it
is difficult to obtain the canopy closure distribution at a regional or larger scale [18].

As an efficient and low-cost data resource, remote sensing is regarded as one of
the most effective ways to estimate canopy closure in regional or large areas [19–22].
Aerial platforms are used to obtain photos of the forest region during the early stages,
and originally, these aerial photos were obtained to estimate forest information such
as the canopy closure, LAI, and forest volume [23–25]. With the development of laser
ranging technology, light detection and ranging (LiDAR) data have been used to estimate
forest structural parameters, such as tree height as well as tree crown and single tree
properties [26,27]. Placing LiDAR sensors on the aerial platforms is a good option for tree
canopy closure estimation [28]. With the emergence of various types of LiDAR sensors
on the market, more and more research on canopy closure estimation using LIDAR data
has been published [29–31]. Additionally, the high-precision canopy height model (CHM)
is extracted using LIDAR data and image segmentation, and canopy width extraction
technology is used to estimate canopy closure [32,33]. Bode et al. proposed a canopy
closure estimation approach using a light penetration index (LPI) based on airborne LiDAR
data at watershed scales [34]. However, huge economic costs must be considered, especially
when aerial platforms are being used to estimate the canopy closure in large areas [35].
Additionally, the costs make it very difficult to determine the forest inventory at a high
frequency and in a large-scale region [36]. Compared to aerial platforms, satellite remote
sensing platforms have advantages, such as good real-time, large-scale, low-cost, accurate,
and multiple types of sensors. Satellite remote sensing images have been widely used to
determine the forest inventory at both local and large scales [37–39].

To estimate canopy closure in a large area, statistical or physical models are used to
estimate the forest canopy closure. Statistical models represent economical and efficient
canopy closure estimation methods that establish the relationship between remote sensing
variables and measured field data [40–42].

Among the various statistical models, multiple linear regression models are usually
used to establish the relationship between the canopy closure and the remote sensing
variables obtained from remote sensing images, such as spectral information, the vegetation
index, and texture information [43–45]. However, the method does not fully consider the
influence of the spatial resolution of remote sensing images on the accuracy of canopy
closure estimations [46,47]. Additionally, the effect of mixed pixels on the accuracy of
canopy closure estimations is ignored in this method. The pixel binary model considers
mixed pixels, it cannot separate arbors and shrubs, and it is also affected by the background
soil type, meaning that it is difficult for this method to provide accurate stand canopy
closure information [48–51].

Physical models are other types of canopy closure estimation models that are based
on the energy transmission procedures of remote sensing. Typical physical models in-
clude the geometric-optical model and the radiative transfer model [52]. The Li–Strahler
geometric-optical model is suitable for canopy closure estimations in flat study areas [53,54].
Additionally, the core of this method is its ability to accurately extract proportions of four
scene components—sunlit foliage, sunlit ground, shaded foliage, and shaded ground—in a
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pixel [52,55]. It is suitable for simulating canopy reflectance by considering forest distri-
bution and structure. The PROSAIL model is one of the most famous radiative transfer
models used for canopy reflection simulation and combines the PROSPECT leaf model
and SAIL canopy model (arbitrary oblique leaf-scattering) [56–58]. The PROSAIL model is
also a commonly used radiation transmission model for canopy closure estimation [59,60].
The geometric-optical model and the radiation transmission model are more complex and
require more parameters, but parameter sensitivity analysis can reduce the complexity of
these models. Additionally, canopy closure estimation models that are established with
fewer parameters are less affected by the region and measured dataset, resulting in them
having better robustness [61].

In summary, there is a lot of uncertainty and unknowns when estimating canopy
closure using remote sensing techniques. In this study, we considered the canopy from
two perspectives—an opaque canopy body or with gaps in the tree crown. Then, the
Geometric-Optical Model for Sloping Terrains (GOST) model, which is a geometric-optical
model that considers terrain effects on the input parameters, was used to simulate the
canopy gaps from these two perspectives. Finally, the stand-scale canopy closure was
estimated in planted forests. The estimated results were tested using the measured canopy
closure results obtained from transects and fisheye camera photos to answer the following
questions: (1) For remote sensing data with high spatial resolution, which parameter is
appropriate to estimate the stand-scale canopy closure with the highest accuracy? (2) For
remote sensing data with low or medium spatial resolution, how can a geometric-optical
model be used to establish a better robustness canopy closure model while considering the
mixed pixel problem? (3) How can we evaluate the feasibility and accuracy of the canopy
closure method presented in this study in a planted forest?

2. Materials and Methods

2.1. Study Area

In China, the main forest types include evergreen broadleaf planted forests, deciduous
broad-leaved planted forests, evergreen coniferous planted forests, and deciduous needle-
leaf planted forests. To enhance the accuracy of the proposed method and to achieve better
robustness, research regions that included most of the forest types were selected from
around China. The tree species that were planted in these forest farms were also the most
commonly planted species in China. The Wangyedian Forest Farm, Gaofeng Forest Farm,
and Mengjiagang Forest Farm were chosen for this study because they represent the typical
plantation types in the north and south regions of China (Figure 1).

The Mengjiagang Forest Farm (MJG) is located in Heilongjiang Province, which is
located in the northeast part of China. It is located at 130◦32′–130◦52′E, 46◦20′–46◦30′N.
The relative height of the mountain on which it is located is 168 to 575 m, and the slope is
10–20◦. The total area of the forest farm is 1.7 × 104 km2, and the plantation accounts for
76.7% of the total area and mainly includes larch (Larix gmelinii (Rupr.) Kuzen.), mongolica
(Pinus sylvestris var. mongolica Litv.), and Korean pine (Pinus koraiensis Sieb. et Zucc.), with
these tree species accounting for about 80% of the plantation population.

The Gaofeng Forest Farm (GF) is located in Guangxi Province, which is located in
the south of China. It is located at 108◦08′–108◦53′E, 22◦49′–23◦15′N. The forest area is
4.7 × 104 km2, and the forest coverage is 83.7%. The relative height of the mountain on
which the forest area is located is 150 to 400 m, and the slope is 20–30◦. The forest farm is
mainly composed of a secondary plantation. The main tree species are Masson pine (Pinus
massoniana Lamb), fir (Cunninghamia lanceolata (Lamb.) Hook.), and fast-growing eucalyptus
(Eucalyptusrobusta Smith).

The Wangyedian Forest Farm (WYD) is located in the Inner Mongolia Autonomous
Region in the north of China. It is located at 118◦09′–118◦30′E, 41◦35′–41◦50′N. The forest
area is about 2.5 × 104 km2, and the forest coverage rate is over 80%. The elevation is
between 800 m to 1890 m. The relative height of the mountain is around 200 to 400 m and
has a slope of 15–35◦. The area of the forest farm is composed of 47% planted forest and
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53% natural forest, and the main tree species include oil pine (Pinus tabuliformis Carrière)
and larch (Larix gmelinii (Rupr.) Kuzen.). Oil pine is present in a proportion of 51%, and the
proportion of larch is 47%. The natural forests in this area are mainly composed of white
birch (Betula platyphylla), black birch (Betula dahurica), mountain apricot (Armeniaca sibirica),
aspen (Populus davidiana), elm (Ulmus pumila), hazelnut (Corylus heterophylla), and other
tree species.

Figure 1. (a) The location of the study area and the field plots: (b) Mengjiagang Forest Farm (MJG);
(c) Gaofeng Forest Farm (GF); (d) Wangyedian Forest Farm (WYD).

2.2. Field Data

A total of 102 plots were set up in the WYD, GF, and MJG. When setting up the plots,
it was necessary to ensure that the plots were fully representative of the stand, that they
were not scattered across different forest types, and that they were evenly distributed at
different levels of the slope and aspect in each forest farm. A total of 30 plots were set up in
the WYD with plot areas of 25 × 25 m, of which 18 plots were oil pine forests and 12 were
larch forests. Additionally, there were 43 plots in the GF with plot areas of 20 × 20 m, with
eucalyptus forests comprising most of the plots. There were 29 plots in the MJG with plot
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areas of 30 × 20 m. All of the plots were larch forests. The data were normalized to a
minimum size of 20 × 20 m to ensure the consistency of the data.

The measured forest parameters included diameter at breast height, tree height, stem
height, crown width, and tree species. All of the trees with a diameter at breast height
above 5 cm in the plot were measured and recorded in one plot. Then, the GPS coordinates
of each plot were recorded. The statistical information of the three research areas can be
found in Table 1.

Table 1. Statistical information regarding the measurements in the three study areas.

Study Area Plot Type Number of Plots
Average Tree
Height (m)

Average Crown
Width (m)

Plant Number
Density

(Plants/hm2)

Average
Canopy
Closure

WYD
Oil Pine 18 11.5 3.34 1552 0.64

Larch 12 14.4 2.80 1568 0.6
MJG Larch 29 13.3 3.40 934 0.6
GF Eucalyptus 43 13.6 2.00 1825 0.57

The canopy closure, leaf area index (LAI), and clumping index of each plot were
measured at the same time. The canopy closure was measured using transects and fisheye
camera photos. Two transect lines were laid along the diagonals of the plot, and the vertical
projection lengths of the crowns along each transect were recorded. The average ratio of
the total projection lengths of the crowns along the two diagonals to the diagonal length
was the canopy closure.

The LAI was measured using fisheye camera photos. All of the photos were taken
with a Nikon Coolpix 4500. The photos were taken at the four corners and in the center
of each plot. The locations in which the images were collected can be found in Figure 2a.
The images were analyzed using digital hemispherical photography (DHP). The edges of
the photos with large amounts of distortion were removed and processed via binarization.
Then, the canopy pixel value was recorded as 1, the gap was recorded as 0, and the ratio of
the number of pixels with a value of 1 to the total number of pixels was the canopy closure.
Finally, the average canopy closure of the five images was the canopy closure of the plot
obtained using the fisheye camera method. At the same time, the effective LAI was also
able to be automatically calculated using DHP. Details of this method can be found in [62].

   
(a) (b) (c) 

Figure 2. (a) The location of the fisheye camera photographs in one plot; (b) a sample of a fisheye
camera photo; (c) a scene from the field measurements.

The clumping index of each plot was measured by using a TRAC instrument. Two line
transects that were 20 m in length were measured. Then, the TRAC-based PPFD gradient
values along the transects perpendicular to the incident directions of the solar beams were
collected. In the end, the clumping index of each plot was calculated using TRACWin
software. Details can be found in [63].
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2.3. Methods
2.3.1. The GOST Model and Canopy Gap Fraction Simulation

The GOST model is a geometric-optical model for sloping terrains developed based on
the four-scale model [64]. The four-scale model is one of the most popular geometric-optical
models and can be used to simulate the bidirectional reflectance distribution function of
forest canopies on flat surfaces [65]. By considering the structure of the canopy at four
scales, viz., tree groups, tree crowns, branches, and shoots, the bidirectional reflectance
characteristics of the forest canopies can be simulated. The four-scale model defines how the
canopy reflectance in one pixel is a linear combination of the signals from four components:
the sunlit and shaded foliage and the sunlit and shaded backgrounds. The total canopy
reflectance is as follows:

R = RT × PT + RG × PG + RZT × ZT + RZG × ZG (1)

where RT is the reflectivity of the sunlit foliage; RG is the reflectivity of the sunlit back-
ground; RZT is the reflectivity of the shaded foliage, RZG is the reflectivity of the shaded
background; PT , PG, ZT , and ZG are the sensor-viewing probabilities of the four scene
components, respectively (Figure 3).

Figure 3. Schematic illustration of sunlit foliage and background and shaded foliage and background.

In the four-scale model, the probability of seeing the ground represents the ground
that can be seen between tree crowns. It is a function of the projected tree crown area and
the spatial distribution characteristics of trees in a quadrat. It can be calculated as follows,
based on the method in [65]:

Pvg-c =
k

∑
i=0

PN(i)
[

1 − Vg

A

]i
(2)

where Pvg-c is the probability of seeing the ground, i is the number of trees in a region with
the area A, and Vg is the ground surface not seen by the viewer because of one tree. PN(i)
is the probability of having i trees in A, and it is determined by the Neyman distribution.
In this equation, the tree crowns are assumed to be opaque, and the gaps within the tree
crowns are not considered.
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If the gaps in the crowns and the overlaps in the crowns are considered, then Equation (2)
can be written as follows:

Pvg =
k

∑
i=1

Ptj
(
Vg
)

Pj
gap(θv) + Pt0 (3)

where
Pj

gap(θv) = ∏j
1 Pgap(θv) (4)

This is the gap probability inside the trees.

Pgap(θv) = e−G(θv)L0ΩE/γE . (5)

The gap probability Pgap(θv). is calculated based on the method developed by Li and
Strahler [53], but the foliage clumping effect is considered in the four-scale model. G(θv).
is the function of the foliage angle distribution G(θv) = 0.5 [65] in this research. L0 is the
LAI. ΩE . is the clumping index of the shoots within the tree crowns. γE is the ratio of the
needle to shoot area.

In Equation (2), Ptj
(
Vg
)

is the probability of having j trees intercepting the view line.
Additionally, it can be calculated using a negative binomial function.

Ptj
(
Vg
)
=

k

∑
i=j

PN(i)
[
(i + j − 1)!
(i − 1)!j!

][
1 − Vg

A

]i[Vg

A

]j
(6)

In the case of j = 0, Pt0 is equal to Equation (2).
The canopy gap fraction determines the contribution of the under surface to the

reflectance measured above the canopy. Additionally, the canopy gap fraction can be
calculated using the tree crown projection made on the ground surface. It is based on the
method described above for calculating the shadow area. After calculating the shadow area
projected by a single tree onto the ground, the sunlit crown proportion seen by the viewer
can be computed using the total surface area of the tree visible to the viewer projected to a
plane perpendicular to the view line. It is not difficult to determine that the canopy gap
fraction is highly related to canopy closure according to the method in the four-scale model.

In addition, topography is an important factor that has a serious effect on the bidi-
rectional reflectance distribution function of forest canopies. Therefore, in order to make
the four-scale model more suitable to simulate the bidirectional reflectance distribution
function of the forest canopies on slopes, the GOST model, which is a geometric-optical
model that considers the oblique topographical factors, was used in this study [64].

The GOST model was used to simulate the canopy reflectance for two different gap
fractions. In one case, the gap fraction (Pvg-c) was calculated by Formula (2) during the
assumption of the opaque canopy bodies. In the other case, the gap fraction (Pvg) was
calculated using Formula (3), and gaps and overlaps were observed in the crowns. The
output of the GOST model was the canopy reflectance and probability of seeing the four
scene components under different view angles (Equation (1)). The four components were
the sunlit foliage, the sunlit ground, the shaded foliage, and the shaded ground, and the
mixed pixel decomposition problem was able to be solved as well. A database of the
reflectance under various gap fractions was established, allowing the relationships between
the canopy gap fraction and the stand canopy closure to be discussed. When the canopy
was an opaque body, the estimated canopy closure was the true stand canopy closure, and
the canopy closure measured by the traditional transects was used to verify the estimated
results. When the gaps in the crowns were considered, the estimated canopy closure
was compared to those measured results obtained via fisheye camera photos. This study
discusses the feasibility of estimating the canopy closure using the GOST model and the
spatial resolution effects of the remote sensing images.
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2.3.2. Canopy Closure Estimation Based on the GOST Model

The GOST model was selected and used to simulate the canopy reflectance for a
complex canopy structure. When the canopy reflectance was able to be estimated accurately,
it was found to be closely related to the gap fraction function. This was because the canopy
gap fraction was used to describe the light passing through the canopy. As such, the canopy
gap fraction can describe canopy closure. A higher canopy gap fraction means less canopy
closure, and vice versa. Additionally, it is also the reason why the canopy gap fraction can
be used to estimate the canopy closure.

Two gap fractions were included in the GOST model. In one case, the canopy was
assumed to be an opaque canopy body. Additionally, the gaps within the tree crown were
not considered. Since canopy closure does not consider the gaps in the canopy, if the
viewing direction was vertical, then the gap fraction of the viewing canopy gap fraction is
the percentage of light passing through the canopy and projected to the ground surface.
Additionally, the stand canopy closure should be 1 − Pvg-c.

CC1 = 1 − Pvg-c (7)

where CC1 is the canopy closure of the opaque canopy bodies and Pvg-c is the gap fraction
of the opaque canopy bodies.

In the other case, the gap fraction was assumed to be a tree crown with gaps. Generally,
it was assumed that there were gaps in the canopy for the canopy closure values that were
obtained by the fisheye camera images or estimated from the remote sensing data; therefore,
the estimated canopy closure should be 1 − Pvg. As such, the canopy closure could be
calculated as follows:

CC2 = 1 − Pvg (8)

where CC2 and Pvg were the canopy closure and gap fraction when there were tree crown
gaps, respectively.

The input parameters of the GOST model were determined to be {x1, x2, · · · xn}, and
then the Pvg-c and Pvg could be simulated under various input parameters using the GOST
model, and the database for the Pvg-c and Pvg and the input parameters was established.
The relationships among the Pvg-c, Pvg, and the inputs were able to be established using a
statistical method.

Pvg-c = F(x1, x2, · · · xn) (9)

Pvg = G(x1, x2, · · · xn) (10)

where F(x1, x2, · · · xn) and G(x1, x2, · · · xn) were the functions of the Pvg-c and Pvg related
inputs, respectively. Once the relationship between the gap fraction and the inputs was
established, then the gap fraction could be estimated, and the canopy closure was able to
be inverted based on Equations (7) and (8).

2.3.3. Sensitivity Analysis of the GOST Model Parameters

Geometric-optical models have a large number of input variables, but we only need
to know the key input variables. It is crucial to carry out a sensitivity analysis on the
parameters for simulation in a complex model, especially for a model with multiple input
parameters. The inputs of the GOST model included plot parameters (size of plot, number
of trees in plot, LAI, slope, aspect, solar zenith angle, solar azimuth angle, view zenith
angle, view azimuth angle), tree structural parameters (radius of the crowns, stem height,
crown height, half apex angle, clumping index for shoots in the crown), and spectral
parameters (leaf reflectivity, leaf transmittance, and ground reflectance). Therefore, the
sensitivity analysis was an important process in this study. The function (Equation (11)) of
the sensitivity analysis was used to determine the sensitivity of the inputs affecting the gap
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fraction of the canopy. It was very helpful to improve the accuracy and robustness of the
model for the canopy closure estimation [66,67].

F′ =
∑n

j=1

(
Pj

0 − Pj
pert

)2

Pj
0

(11)

where Pj
0 is the Pvg-c, and Pvg is calculated based on the measured parameters (reference).

Pj
pert is the Pvg-c and Pvg when the parameter was disturbed, and F′ is the sensitivity of the

input parameters [68].
The sensitivity of the tree structure parameters, leaf reflectivity, leaf transmittance, and

ground reflectivity was analyzed in this study. Additionally, the topography effects were
corrected in the GOST model, so there was no need for a slope sensitivity analysis.

According to the results of the sensitivity analysis, the input parameter dataset, which
was sensitive to canopy closure, was determined as {x1, x2, · · · xn}. The insensitive inputs
were set as the average values of the measurements in the plot. Then, the Pvg-c and Pvg
were able to be simulated under various input parameters using the GOST model, and
the database between the Pvg-c and Pvg and the input parameters was established. The
relationship between the Pvg-c, Pvg, and the inputs was able to be established, and the
canopy closure could then be inverted based on Equations (7) and (8).

2.3.4. Validation

In this study, the R2 and RMSE were selected to evaluate the precision of the canopy
closure estimation model. These were calculated using Equations (12) and (13).

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (12)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(13)

where yi was the measured value of the sample i, ŷi was the predicted value of the sample
i, y was the average of all the samples, and n was the number of samples.

3. Results

3.1. Results of Sensitivity Analysis of the Parameters in the GOST Model

Since the canopy closure was the ratio of the vertical projection area of the crowns
to the area of forest land and was not affected by the slope, the incident angle of the
view direction was equal to 0 degrees. Without considering the influence of the slope, the
sensitivity of the slope was 0. The sensitivity of the radius of the crown, stem height, crown
height, half apex angle, clumping index for shoots in the crown, shape of crown, LAI, tree
number, leaf reflectivity, leaf transmittance, ground reflectivity, solar azimuth angle, and
view azimuth angle were calculated, and the results are shown in Table 2.

The radius of the crown and the number of plants had a greater influence on the Pvg-c
(the gap fraction between the crowns), and the other parameters had no influence. This
was because the canopy was considered to be an opaque canopy. Additionally, the canopy
closure was only affected by the radius of the crown and individual trees, and it was not
related to the leaf area index and clumping index. Therefore, when the radius of the crown
and the number of trees were determined, the vertical projection area of the canopy on the
forest could be estimated. However, when the gaps in the crown were considered, the LAI
had the greatest effect on the Pvg (total gap fraction of the canopy). The clumping index
had the next largest effect, followed by the radius of the crown and the number of trees.
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Table 2. Sensitivity analysis of the parameters in the GOST model.

Parameter F′
(Pvg) F′

(Pvg-c)

Radius of Crown (m) 0.118 0.684
Stem Height (m) 0 0

Crown Height (m) 0 0
Half Apex Angle (rad) 0 0

Clumping Index 0.283 0
Shape of Crown 0 0

LAI (m/m) 0.571 0
Number of Trees (num./ha) 0.022 0.501

Leaf Reflectivity 0 0
Leaf Transmittance 0 0
Ground Reflectivity 0 0

Solar Azimuth Angle (◦) 0 0
View Azimuth Angle (◦) 0 0

3.2. Estimation of the Canopy Gap Fraction Based on the GOST Model

The results of the parameter sensitivity analysis show that the number of trees (n),
radius of the crown (d), and LAI (l) had a greater impact on Pvg-c and Pvg simulation. While
n, d, and l were set as the measured values, other insensitive parameters were set as the
average value of all of the sample plots. Then, the Pvg-c and Pvg of all of the plots were
simulated by the GOST model. The max of the simulated Pvg-c was 0.6671, the min value of
the Pvg-c was 0.2051, and the mean value was 0.4589. Additionally, the max, min, and mean
values of the Pvg were 0.7439, 0.3011, and 0.5641, respectively. Additionally, the value of
Pvg-c was obviously smaller than the simulated Pvg value.

When the Pvg-c and Pvg of all of the plots were simulated, the relationship between
the Pvg-c and Pvg and the field-measured data was analyzed. In our statistical analysis,
we found that the linear relationships among the Pvg-c and Pvg and the single parameters
of the number of trees and the radius of the crown were quite insignificant, respectively.
In contrast, this combination of n × d2 variables had a better linear relationship with the
canopy gap fraction. Additionally, the n × d2 variable was a variable because it represented
the projected area of the forest canopy and was physically significant for Pvg-c and Pvg
estimation compared to the single variables d or n.

As such, the relationships among the Pvg-c, Pvg, and n × d2 were established (Table 3).
The established models passed the significance test.

Table 3. Statistical models of Pvg and Pvg-c estimation using n × d2.

Dependent
Variable

Independent
Variable

Model R2 RMSE

Pvg-c n × d2 y = 0.623e−0.002x 0.5619 0.0723

Pvg n × d2 y = 0.6732e−0.001x 0.3138 0.0813

The results show that the linear relationship between n × d2 and the Pvg-c was sig-
nificant, with the coefficient of determination being 0.5619 (Figure 4). Additionally, the
reason for this could be that the Pvg-c only considered the gaps between the canopies and
ignored the gaps in the crown. The variable n × d2 represented the projected area of all of
the canopies in the plot, taking the canopy as an opaque body without considering the gaps
in the crown. Therefore, n × d2, which represents the projected area of the forest canopy,
can describe the canopy closure well. Therefore, the linear relationship between n × d2 and
the Pvg-c was more significant, and the coefficient of determination was larger than the one
in Table 3.
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Figure 4. Scattering plot between Pvg-c and n × d2.

The relationship between n × d2 and the Pvg can be seen in Figure 5. The coefficient
of determination and the RMSE of the canopy closure estimation model were 0.3138 and
0.0813, respectively. Compared to the model established with the Pvg-c, these results do
not seem to be as good as the results above. This is because the gap between the canopy
was represented by the Pvg in the GOST model. Additionally, n × d2 represented the
projections of the canopy without considering the gaps in the canopy. Therefore, the linear
relationship between these two variables was weakened. At the same time, the results that
were estimated using this model underestimate the canopy due to the gaps in the canopy
represented by the Pvg.
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Figure 5. Scattering plot between Pvg and n × d2.
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3.3. Estimation of the Canopy Gap Fraction Based on the LAI

The canopy gap fraction can be estimated based on the number of trees and the radius
of the crown. However, it was difficult to estimate the number of trees and the radius of
the crown from most of the middle-resolution remote sensing data, and it turned out to
be impossible. To solve this shortage, the LAI was used to solve this problem. Based on
the equation to calculate the canopy gap fraction (Equation (5)), the LAI had a significant
relationship with the canopy gap fraction. Additionally, the LAI was a key parameter for
solving this problem. The LAI is a commonly used forest structural parameter, and there
are many LAI estimation methods that are highly accurate [69,70]. This means that the LAI
can be obtained from remote sensing images easily and that it can be used to estimate the
canopy closure for middle-resolution remote sensing images. The relationships among the
Pvg-c, Pvg, and LAI (l) were established and are shown in Table 4. These models passed the
significance test.

Table 4. Statistical models of Pvg and Pvg-c estimation using the LAI.

Dependent
Variable

Independent
Variable

Model R2 RMSE

Pvg-c l y = 0.5762e−0.071x 0.2597 0.0901

Pvg l y = 0.739e−0.08x 0.5467 0.0654

The results show that the linear relationships among the Pvg-c, Pvg, and LAI were signif-
icant, with the coefficients of determination being 0.2597 and 0.5467, respectively (Table 4).
An exponential function between the Pvg-c and LAI was observed, with the coefficient of
determination being 0.2597, shown in Figure 6. Although this model passed the significance
test, the accuracy of the simulation was not as good as expected. Additionally, these fitting
results are also not as good as the results that were obtained using the variable n × d2.

y = 0.5762e 0.071x

R² = 0.2597
RMSE = 0.0901

p < 0.05
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Figure 6. Scattering plot between Pvg-c and LAI.

The linear relationship between the Pvg and LAI was significant, with the coefficients
of determination being 0.5467 and RMSE of 0.0654, respectively (Table 4). An exponential
function between the Pvg and LAI is also visible in Figure 7. These results are consistent
with Equation (5), but the relationship between the gap fraction and the LAI was affected
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by other parameters of Equation (5). The reason for this is that the real exponential function
was not as significant as Equation (5). In addition, compared to the results of the Pvg-c, the
Pvg had a better linear relationship with the LAI. This could be related to the LAI, which
was defined as half of the total leaf area of all of the canopies in the plot per unit of ground
area [71]. As such, the gaps in and between the canopies were considered. Therefore, the
linear relationship between the Pvg and the LAI was better than that between the Pvg-c and
the LAI. At the same time, compared to the variable n × d2, the LAI was more suitable for
Pvg estimation, achieving R2 and RMSE values of 0.5467 and 0.0654, respectively.

y = 0.739e 0.08x

R² = 0.5467
RMSE = 0.0654

p < 0.05  
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Figure 7. Scattering plot between Pvg and LAI.

3.4. Verification of Estimation of Canopy Closure Based on Pvg-c

Based on the definition of canopy closure, only the gaps between the canopies were
considered, so the value of 1 − Pvg-c should be equal to the canopy closure. A linear
regression model was established between the canopy closure and 1 − Pvg-c. The R2 and
RMSE values were 0.5216 and 0.0832, respectively (Figure 8), and the precision of the
canopy closure estimation was 86.69%. At the same time, the established model passed
the significance test. It can be seen that the canopy closure measured by the line transects
had a significantly good relationship with 1 − Pvg-c. Among the traditional methods for
measuring canopy closure, the line transect method was more accurate. Therefore, it was
very effective and feasible to estimate canopy closure using the GOST model.

3.5. Verification of the Estimation of the Canopy Closure Based on Pvg

The canopy closure calculated based on the fisheye camera photos included the gaps in
the canopy. Therefore, calculating the canopy closure using the fisheye camera photos can
verify the canopy closure estimated based on the Pvg. The R2 and RMSE values of the linear
regression model were 0.1418 and 0.3295, respectively (Figure 9). The average accuracy
of the canopy closure estimation was 73.2%. The model also passed the significance test.
The results show that the relationship does not appear to be good. This could be because
the fisheye camera images were taken at a 180 degree angle, resulting in the deformation
increasing as the view angle became larger, while the GOST model calculated the Pvg
when the view angle was 90 degrees [72]. The reason for this was that the projected area
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of the crown between these two styles was different, so the linear relationship was not
as significant.
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Figure 8. Scattering plot between the measured canopy closure and 1 − Pvg-c (the black solid line
is y = x).
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Figure 9. Scatter plot between canopy closure measured by fisheye camera images and 1 − Pvg.
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4. Discussion

Canopy closure is a multipurpose ecological indicator that is used to assess the light
conditions and forest floor microclimate as well as to distinguish types of plant and an-
imal habitats [13]. Canopy closure also determines light interception and is crucial for
understanding forest carbon fixation and responses and feedback to climate change [73].
Unfortunately, the in situ measurement of canopy closure is a time-consuming and labori-
ous process, whilst advances in non-destructive, indirect techniques have been made [15].
Indirect optical methods derive canopy closure by measuring the canopy gap fraction or
via transmittance [74]. These in situ measurements are able to capture the canopy at the
plot (and site) scale, but these methods cannot adequately characterize spatiotemporal
dynamics [32].

More and more remote sensing applications involve the estimation of canopy closure.
The least squares method is one of the most commonly used methods for canopy closure
estimation. However, the linear relationship is data dependent. This means that accuracy
will be affected by the data quality and that applications will be limited by the area of the
research region [75]. Other studies have used the random forest and Cubist models to
estimate the canopy closure. However, the precision of these models is not accurate enough
because a single variable is used for regression analysis [10]. In contrast, non-parametric
models have always had better estimation results, and the accuracy of the modeling and
estimation would be limited by the number of the samples, as small samples weaken the
predictive ability of the model [76,77]. To make up for these shortages, we established a
canopy closure estimation method that uses the gap fraction based on the geometric-optical
GOST model, and the results were discussed.

A canopy closure estimation method that uses the gap fraction was represented in this
study. The canopy closure Pvg-c was highly correlated with the average projected area of the
canopy. The Pvg-c was estimated based on the number of plants in the plot and the average
radius of the crowns, and the accuracy of the estimated canopy closure was 86.69%, while
the accuracy of the canopy closure estimated by the Pvg was 7%. In the residual analysis
of the canopy closure model, the Pvg-c, Pvg, and n × d2 (Figures 10 and 11) show that the
residuals of the two models were distributed within a reasonable range and relatively
evenly. The results show that the accuracy of the Pvg-c estimation of the model was higher
than that of the residual plots for Pvg-c and n × d2. The residuals were distributed between
±0.2. However, the Pvg was not estimated as well as the Pvg-c was (Figure 11). The residuals
of the Pvg were distributed between −0.2 and 0.3. It can be seen that estimating the canopy
closure Pvg-c between the canopies using the number of plants and the average radius of
the crowns produced better results.

For most of the remote sensing images with a high spatial resolution, the number of
plants and the radius of the crown were able to be extracted easily by means of image
segmentation technology, and the parameters of these two variables can be considered an
approach to canopy closure estimation using remote sensing images with a high spatial
resolution. The relationship between the Pvg-c and n × d2 was the best optimal method,
obtaining high-precision canopy closure estimation results. The line transect method was
more accurate compared to other methods. As such, the scattering plot for the estimated
canopy closure determined and measured by the gap fraction can be found in Figure 12.
The canopy closure that was estimated by the Pvg-c was consistent with the measured
canopy closure. However, the canopy closure that was estimated by the Pvg deviated from
the line y = x. Additionally, the canopy closure was underestimated.
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Figure 10. The residual plot of the estimated Pvg-c and n × d2.
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Figure 11. The residual plot of the estimated Pvg and n × d2.

Compared to traditional statistical models, the model in the present study was not
affected by the study area or the dataset, and there was no need to establish models in
different study areas. The canopy closure estimation method simulated the probability
of being able to see the ground by considering the mechanism of the light transmission
process in the canopy and the gaps or opaque canopy in the viewing direction, which can
also be considered individually using the geometric-optical model (the GOST model), and
the estimated results also have high accuracy. In other words, this means that this estimated
method was more robust compared to statistical methods. If remote sensing data with
medium or low spatial resolution are used, then the parameters used for canopy estimation

120



Remote Sens. 2022, 14, 1983

cannot be inverted accurately because of the mixed pixel effect [44]. Additionally, most
of the parameters, such as the number of the trees and the radius of the crown could
be obtained, so this method was difficult to implement. Instead, some medium-level
variables, such as the LAI, should be used for canopy closure estimation even though the
accuracy varies from study to study [78–82]. In this study, we evaluated the canopy closure
estimation efficiency when using the LAI. The values of the residuals were more discrete
from the residual Pvg-c and LAI plots (Figure 13). Additionally, the figure shows that the
accuracy of the Pvg-c estimation was better when the canopy closure was greater than 0.4
and when the value of residuals was lower than 0.1. When the canopy closure was greater
than 0.4, the accuracy of the Pvg-c prediction was obviously lower.

Figure 12. (a) The scattering plot of the canopy closure measured and estimated by Pvg-c; (b) the
scattering plot of the canopy closure measured and estimated by Pvg.
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Figure 13. The residual plot of the estimated Pvg-c and LAI.
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The situation with the Pvg was similar to that of the Pvg-c. The residuals of the Pvg
became significantly discrete from the residual Pvg and LAI plots when the canopy closure
was larger than or less than 0.45 (Figure 14). The most possible reason for this is that more
gaps in the crown could be detected when using remote sensors with a low or medium
spatial resolution, and the efficiency of the mixed pixels enhanced the signals of the forest
floor or those of other features. Inversely, the larger amount of canopy closure meant
smaller gaps in the crown, and the detected probability of the signal outside of the canopy
was lower compared to larger gaps, weakening the mixed pixel effect. As such, it was
necessary to consider the efficiency of the mixed pixels in the images when the LAI was
used to estimate the canopy closure. In comparison, a geometric-optical model was used to
decompose the mixed pixels into four components, allowing the forest components in the
pixels to be more accurately distinguished. That was the advantage of the method using
a physical model. At the same time, the physical canopy closure estimation procedure
using a geometric-optical model was clearer than the traditional statistical model or the
pixel binary model, and the robustness and accuracy of the model were self-evident. In
addition, the results also indicate that the LAI can be used to estimate the Pvg with good
accuracy. Once high-quality LAI data were obtained, the canopy closure could also be
estimated, especially for remote sensing images with a medium or low spatial resolution.
This method provided a way to estimate the canopy closure using the LAI. Additionally,
this relationship was derived from geometric-optical models and was not data dependent,
which is the case using statistical theory. Additionally, this method can effectively avoid
the shortcomings of canopy estimation models that are based on statistical methods.
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Figure 14. The residual plot of the estimated Pvg and LAI.

5. Conclusions

Canopy closure is an important forest inventory parameter, and it plays an important
role in forestry production and management and forest health evaluation. In this study,
the GOST model was used to simulate the characteristics of forest canopy gap fractions
by considering an opaque canopy (Pvg-c) and gaps in the tree crown (Pvg). Additionally,
exponential models for estimating the canopy closure of a plantation based on the gap
fraction were established. The results show the following:
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(1) It was feasible to estimate canopy closure based on the GOST model, and the feasible
method was proved with sample data measured from three different regions in China.

(2) Compared to the LAI, n × d2 had a better relationship with the gap fractions simulated
using the GOST model. Therefore, when remote sensing images or LiDAR data of the
study area with high spatial resolution were available, the crown recognition method
could be used to obtain the number of plants and the average radius of the crowns in
the plot, so the gap fraction Pvg-c and the forest canopy closure could be accurately
estimated and predicted in the research area.

(3) When the number of plants and the average radii of the crowns in the plot could not be
extracted using remote sensing images, especially when only medium- or low-spatial
resolution remote sensing data were available, the LAI, a medium parameter, could
be used to estimate the canopy closure with an acceptable level of accuracy. This also
provided a new a canopy closure estimation approach using medium- or low-spatial
resolution remote sensing data. This study can provide a reference for canopy closure
estimation using geometric-optical models.

Author Contributions: Y.Y. conceptualized and designed the experiments; P.H. performed the
experiments and analyzed the data; X.Y. and P.H. wrote the paper; X.Y., Y.Y. and W.F. reviewed and
edited the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers: 31870621 and 31971580; the Fundamental Research Funds for the Central Universities of
China, grant numbers: 2572021BA08, 2572019BA10, and 2572019CP12; the China Postdoctoral Science
Foundation, grant number: 2019M661239; National Forestry and Grassland Data Center-Heilongjiang
platform, grant number: 2005DKA32200-OH.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Orazio, C.; Nabuurs, G.-J. Third International Congress on Planted Forests: Planted
Forests on the Globe-Renewable Resources for the Future. N. Z. J. For. Sci. 2014, 44, S1. [CrossRef]

2. Payn, T.; Carnus, J.-M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J.
Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [CrossRef]

3. Buongiorno, J.; Zhu, S. Assessing the impact of planted forests on the global forest economy. N. Z. J. For. Sci. 2014, 44, S2.
[CrossRef]

4. Brockerhoff, E.G.; Jactel, H.; Parrotta, J.A.; Ferraz, S.F.B. Role of eucalypt and other planted forests in biodiversity conservation
and the provision of biodiversity-related ecosystem services. For. Ecol. Manag. 2013, 301, 43–50. [CrossRef]

5. Gschwantner, T.; Schadauer, K.; Vidal, C.; Lanz, A.; Tomppo, E.; di Cosmo, L.; Robert, N.; Duursma, D.E.; Lawrence, M. Common
tree definitions for national forest inventories in Europe. Silva Fenn. 2009, 43, 303–321. [CrossRef]

6. Jennings, S.B.; Brown, N.D.; Sheil, D. Assessing forest canopies and understorey illumination: Canopy closure, canopy cover and
other measures. Forestry 1999, 72, 59–74. [CrossRef]

7. IPCC. Good Practice Guidance for Land Use, Land-Use Change and Forestry; Institute for Global Environmental Strategies (IGES):
Hayama, Japan, 2003.

8. Xu, B.; Gong, P.; Pu, R. Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: Comparison of
various indices through correlation analysis. Int. J. Remote Sens. 2003, 24, 1811–1822. [CrossRef]

9. Hua, Y.; Zhao, X. Multi-Model Estimation of Forest Canopy Closure by Using Red Edge Bands Based on Sentinel-2 Images. Forests
2021, 12, 1768. [CrossRef]

10. Chen, G.; Lou, T.; Jing, W.; Wang, Z. Sparkpr: An Efficient Parallel Inversion of Forest Canopy Closure. IEEE Access 2019,
7, 135949–135956. [CrossRef]

11. Smith, A.M.; Ramsay, P.M. A comparison of ground-based methods for estimating canopy closure for use in phenology research.
Agric. For. Meteorol. 2018, 252, 18–26. [CrossRef]

12. Fiala, A.C.S.; Garman, S.L.; Gray, A.N. Comparison of five canopy cover estimation techniques in the western Oregon Cascades.
For. Ecol. Manag. 2006, 232, 188–197. [CrossRef]

13. Korhonen, L.T.; Korhonen, K.; Rautiainen, M.; Stenberg, P. Estimation of forest canopy cover: A comparison of field measurement
techniques. Silva Fenn. 2006, 40, 577–588. [CrossRef]

14. Paletto, A.; Tosi, V. Forest canopy cover and canopy closure: Comparison of assessment techniques. Eur. J. For. Res. 2009,
128, 265–272. [CrossRef]

123



Remote Sens. 2022, 14, 1983

15. Brown, L.A.; Ogutu, B.O.; Dash, J. Tracking forest biophysical properties with automated digital repeat photography: A fisheye
perspective using digital hemispherical photography from below the canopy. Agric. For. Meteorol. 2020, 287, 107944. [CrossRef]

16. Macfarlane, C.; Hoffman, M.; Eamus, D.; Kerp, N.; Higginson, S.; McMurtrie, R.; Adams, M. Estimation of leaf area index in
eucalypt forest using digital photography. Agric. For. Meteorol. 2007, 143, 176–188. [CrossRef]

17. Vales, D.J.; Bunnell, F.L. Comparison of methods for estimating forest overstory cover. I. Observer effects. Can. J. For. Res. 1988,
18, 606–609. [CrossRef]

18. Li, J.; Mao, X. Comparison of Canopy Closure Estimation of Plantations Using Parametric, Semi-Parametric, and Non-Parametric
Models Based on GF-1 Remote Sensing Images. Forests 2020, 11, 597. [CrossRef]

19. Chopping, M.; Moisen, G.G.; Su, L.; Laliberte, A.; Rango, A.; Martonchik, J.V.; Peters, D.P.C. Large area mapping of southwestern
forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging Spectro-Radiometer. Remote Sens. Environ.
2008, 112, 2051–2063. [CrossRef]

20. Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Evans, J.S.; Robinson, A.P.; Steele, C.M. A cross-comparison of field, spectral, and
lidar estimates of forest canopy cover. Can. J. Remote Sens. 2009, 35, 447–459. [CrossRef]

21. Hill, M.J.; Román, M.O.; Schaaf, C.B.; Hutley, L.; Brannstrom, C.; Etter, A.; Hanan, N.P. Characterizing vegetation cover in
global savannas with an annual foliage clumping index derived from the MODIS BRDF product. Remote Sens. Environ. 2011,
115, 2008–2024. [CrossRef]

22. Chopping, M.; North, M.; Chen, J.; Schaaf, C.B.; Blair, J.B.; Martonchik, J.V.; Bull, M.A. Forest Canopy Cover and Height from
MISR in Topographically Complex Southwestern US Landscapes Assessed with High Quality Reference Data. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2012, 5, 44–58. [CrossRef]

23. Tuominen, S.; Pekkarinen, A. Local radiometric correction of digital aerial photographs for multi source forest inventory. Remote
Sens. Environ. 2004, 89, 72–82. [CrossRef]

24. Lisein, J.; Pierrot-Deseilligny, M.; Bonnet, S.; Lejeune, P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height
Model from Small Unmanned Aerial System Imagery. Forests 2013, 4, 922–944. [CrossRef]

25. Navarro, J.A.; Tomé, J.L.; Marino, E.; Guillén-Climent, M.L.; Fernández-Landa, A. Assessing the transferability of airborne
laser scanning and digital aerial photogrammetry derived growing stock volume models. Int. J. Appl. Earth Obs. Geoinf. 2020,
91, 102135. [CrossRef]

26. Edson, C.; Wing, M.G. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass
Measurements. Remote Sens. 2011, 3, 2494–2528. [CrossRef]

27. Kato, A.; Moskal, L.M.; Schiess, P.; Swanson, M.E.; Calhoun, D.; Stuetzle, W. Capturing tree crown formation through implicit
surface reconstruction using airborne lidar data. Remote Sens. Environ. 2016, 113, 1148–1162. [CrossRef]

28. Moeser, D.; Roubinek, J.; Schleppi, P.; Morsdorf, F.; Jonas, T. Canopy closure, LAI and radiation transfer from airborne LiDAR
synthetic images. Agric. For. Meteorol. 2014, 197, 158–168. [CrossRef]

29. Korhonen, L.; Korpela, I.; Heiskanen, J.; Maltamo, M. Airborne discrete-return LIDAR data in the estimation of vertical canopy
cover, angular canopy closure and leaf area index. Remote Sens. Environ. 2011, 115, 1065–1080. [CrossRef]

30. Parent, J.R.; Volin, J.C. Assessing the potential for leaf-off LiDAR data to model canopy closure in temperate deciduous forests.
ISPRS J. Photogramm. Remote Sens. 2014, 95, 134–145. [CrossRef]
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Abstract: Forest height inversion with Polarimetric SAR Interferometry (PolInSAR) has become
a research hotspot in the field of radar remote sensing. In this paper, we systematically studied
a modified two-step, three-stage inversion simulating the L-band (L = 23 cm) full-polarization
interferometric SAR data with an average forest height of 18 m using ESA PolSARpro-SIM software.
We applied this method to E-SAR L-band single-baseline full PolInSAR data in 2003. In the first step,
we modified the three-stage inversion algorithm based on phase diversity (PD)/maximum coherence
difference (MCD) coherence optimization methods, corresponding to PD, MCD, respectively. In the
second step, we introduced the coherence amplitude inversion term and modified the fixed weight
to the variable of ε times the ground scattering ratio, which improved the accuracy of forest height
inversion. The mean of forest height inversion by the HV method was the lowest (15.83 m) and
the RMSE was the largest (4.80 m). The PD method was superior to the HV method with RMSE
(4.60 m). The MCD method was slightly better than using the PD method with the smallest RMSE
(4.43 m). After adding the coherence amplitude term, the RMSE was improved by 0.15 m, 0.14 m, and
0.08 m, respectively. The smallest RMSE was obtained by MCD, followed by the PD and HV methods.
Although the robustness of the forest height inversion algorithm was reduced, the underestimation
was improved and the RMSE was reduced. Due to the complexity of the real SAR E-SAR L-band
single-baseline full PolInSAR data and the small sample sizes, the three-stage inversion methods
based on coherent optimization were lower than the three-stage in-version method. After introducing
the coherent magnitude term, the overestimation of the forest height was significantly weakened
in HVWeight, PDweight, and MCDWeight, and PDWeight was optimal. The modified two-step,
three-stage inversion algorithm had significant effects in alleviating forest height underestimation
and overestimation, improving the accuracy of forest height inversion, and laying a foundation for
the upcoming L-band SAR satellite generation, new SAR and LIDAR systems combined with RPAs
(remotely piloted aircrafts)/UAVs (unmanned aerial vehicles) for small areas mapping initiatives,
and promoting the depth and breadth of the SAR applications of the new SAR system.

Keywords: forest height inversion; three-stage algorithm; coherence optimization; complex coherence
amplitude inversion

1. Introduction

Forest height is an important biophysical parameter [1], and its spatial distribution
is of great significance for forest resource management, forest biomass estimation, and
regional and global carbon cycle research [2–4]. The measurement methods of forest height
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include ground survey, photogrammetry, Lidar, and so on. Since the measurement of large-
scale forest height is difficult, it has not been well quantified [5]. Although forest ground
survey data can also obtain forest heights, its application in large-scale research is limited
due to the large amount of human and material resources, and the lack of observations in
remote regions. Remote sensing is the most effective method for real-time forest inversion
on a regional and global scale. Although LIDAR can achieve high accuracy, it is limited by
the atmosphere, mist, and clouds, especially in areas with cloudy, rainy, foggy, and snowy
weather. Moreover, the acquisition cost of LIDAR is too high to obtain information on the
vertical structure of the forest, and there is no information on the horizontal structure of
the forest. Optical remote sensing is not only influenced by clouds, fog, and snow, but also
cannot penetrate the forest to the ground. Therefore, it is of great scientific significance
to estimate forest height based on synthetic aperture radar (SAR), which combines the
properties of both the real-time forest inversion at regional and global scales provided by
remote sensing and the forest penetration to the ground by microwaves [6].

Among many forest height inversion methods widely used, Polarimetric SAR In-
terferometry (PolInSAR) combines the comprehensive advantages of interferometry and
polarization information. PolInSAR is not only sensitive to the vegetation spatial distri-
bution with SAR Interferometry (InSAR), but also has the property of Polarimetric SAR
(PolSAR), which is sensitive to the shape and direction of the vegetation [7].

Cloude and Paphthanassious first proposed PolInSAR technology [8], and afterwards,
formally proposed the concept and extended the random volume over ground (RVoG) [9] to
the full PolInSAR, thus laying the foundation of forest height inversion with PolInSAR [10].
The applicability of the RVoG model for forest height inversion has been studied for
cases of different forest density [11]. Due to the high computational complexity of the
six-dimensional nonlinear parameter method [12], the PolInSAR forest height inversion
was simplified to a three-stage method based on the RVOG model [13]. By reason of its
simplicity and generality, the three-stage inversion algorithm has low calculation cost and
been widely used. The three-stage inversion algorithm was validated in various activities
at different frequencies and configurations [14–17]. Some literature has improved the three-
stage algorithm by considering the effect of terrain or extinction coefficient successively,
which ultimately improved the accuracy of forest height inversion [18,19].

However, the three-stage inversion algorithm accuracy is affected by the accuracy of
the estimated topographic phase [20] and pure volume scattering complex coherence [21].
One of the main reasons is the irrational selection of polarized channels, resulting in the
ineffective separation of ground and volume scattering phase centers. Therefore, several
coherence optimization methods based on optimization theory [10,22–26] have emerged to
solve this problem. Xie Q. et al. combine the three-stage inversion algorithm with the five
effective separation phase centers generated by singular value decomposition (SVD) [10]
and phase diversity (PD) [26] coherence optimization methods for forest height inversion,
which improves the forest height accuracy [27]. Lavalle compared the max of phase with
the max of magnitude over the coherence boundary and studied the dependence of L-band
PolInSAR complex coherence on forest height inversion [28]. Fu W.X. et al. extend the
three-stage algorithm and SVD [10] to the dual-polarized PolInSAR and, furthermore,
propose a search method based on the RVoG model for solving pure volume scattering
complex coherence on the fuzzy line segment, which has similar inverted forest height to
full polarization [6]. Based on the RVoG model, Lin D.F. et al. have proposed a new method
based on TSVD decomposition to directly estimate “pure” volume scattering complex
coherence. Compared with the three-stage method, the RMSE of the inverted forest height
is improved by 48.6% [29].

Aiming to reduce the underestimation of forest height, Cloude proposed a hybrid model
combining interference coherence amplitude with the phase difference method [30–32]. Ad-
ditionally, due to the underestimation of forest height by the estimating signal parameters
by the use of the rotation invariance techniques (ESPRIT) method, the total least square
ESPRIT (TLS-ESPRIT) method is combined with the coherence amplitude inversion method
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to improve the accuracy of forest height inversion [33,34]. Using a novel hybrid inversion
algorithm based on covariance matrix decomposition, a forest vegetation parameter inver-
sion experiment [35] was carried out on the L-band airborne data of the simulation and
SIR-C/X-SAR system. Chen E.X. et al. verify and compare several available forest height
inversion methods, such as the SINC, three stage SINC inversion (TSS), and phase and
coherence inversion (PCI) methods, using E-SAR repeated orbits data and corresponding
ground heights, besides analyzing the effect of SVD on the SINC method for forest height
inversion [36]. Some scholars have estimated the forest height by combing the three stage
inversion algorithm with coherence optimization [37,38]. Aghabalaei et al. demonstrated
the capability for forest height estimation with the single-baseline L-band compact PolIn-
SAR (C-PolInSAR) in the Remningstorp, southern Sweden [39]. They developed a novel
four-stage algorithm with volumetric temporal decorrelation to improve the forest height
estimation accuracy using the repeat-pass PolInSAR data of Gabon Lope Park acquired in
the AfriSAR campaign of the German Aerospace Center (DLR) [40]. In recent years, some
researchers have investigated the potential of forest height mapping with spotlight-mode
data with TanDEM-X (TDM) combined with in situ measurements [41,42]. They aim to
demonstrate the potential of space-borne PolInSAR datasets at the L-, C-, and X-band fre-
quencies (ALOS-2/PALSAR-2, TerraSAR-X, and RadarSAT-2) for forest height estimation,
with the RMSE of 5.4 m, 12.8 m, and 7.6 m, respectively [43]. Chen et al. have developed a
new extended Fourier–Legendre series approach for combing Global Ecosystem Dynamics
Investigation (GEDI) LiDAR waveforms with TanDEM-X data to improve forest height
estimation [44]. Some papers use Tomographic SAR (TomoSAR) technology for forest 3D
structure mapping [5,45,46].

In summary, although forest height inversion by single-baseline PolInSAR has been
widely used at home and abroad with good precision, it still presents the phenomenon of
underestimating and overestimating the forest height, to which there is no good solution
yet. In this paper, without considering the influence of residual motion, baseline and
coregistration error, topography, temporal, and signal-to-noise ratio (SNR) decorrelation
sources, we used ESA PolSARproSIM software to simulate single-baseline PolInSAR data.
Furthermore, we applied this method to E-SAR L-band single-baseline full PolInSAR data in
2003. The purpose of this paper was to alleviate alleviated the problem of the overestimation
or underestimation of the three-stage inversion algorithm with the introduction of an
automatic weight adjustment method, which was an improvement on the original three-
stage method. First, for the problem of incomplete coherence separation in the three-stage
inversion method, we introduced the PD/MCD method in coherence optimization. Then,
for forest height underestimation and overestimation problems, we introduced the complex
coherence amplitude inversion method and the ground scattering proportional variable to
automatically select weight. We compared the performance of these methods of the forest
height, laying the foundation for selecting the algorithm based on single-baseline PolInSAR
forest height inversion and providing exploration to develop a better inversion method.

2. Study Data

Due to the difficulty in getting airborne SAR images in forested areas and data sim-
ulated by ESA PolSARproSIM software based on Maxwell’s wave propagation equation
and scattering model without considering the influence of residual motion, baseline and
coregistration error, topography, and temporal and signal-to-noise ratio (SNR) decorrelation
sources [47], we thus used PolSARproSIM software to simulate the L-band (L = 23 cm)
for single-baseline full-polarized PolInSAR data. The parameters were set as follows: the
slopes of range and azimuth were both 0, regardless of topography; the radar platform
height was 3000 m; the horizontal baseline was 10 m; the vertical baseline was 1 m; and the
incidence angle was 45◦. The center frequency was 1.3 GHz; the azimuth resolution was
1.5 m; the slant resolution was 1.0607 m; the forest type was coniferous; and the average
forest height was 18 m. Since the product of the vertical wavenumber and the forest height
is less than 2π, there is no ambiguous problem of forest height inversion [48]. Figure 1
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presents the overall scenario of the study area, with the forest height of 18 m in height in
the middle area and non-forest in the remaining areas. The tree height standard deviation
would be under programmer control, and typically set to 5% of the mean value. The process
of tree location map generation began by determining the number of trees in the scene,
then initializing them in a regular pattern, and realizing their heights and global crown
radii. The trees were subsequently “shuffled” around in random, collision-avoiding walks
using Monte Carlo techniques, to reach a more realistic distribution of tree positions. The
tree height would be drawn from a normal distribution. There were 137 trees in a stand of
radius with 30 m, as shown in Figure 1. Although we could not get a clear value of RMSE
from this information, we knew it had a low RMSE.

   

(a) (b) (c) 

Figure 1. Image of the simulate forest scene image. (a) Forest scene; (b) Power image of HV;
(c) Pauli image.

3. Methods

3.1. RVoG Model

The RVoG model [9] considered vegetation as a common process of vegetation volume
scatter decay and surface scatter. The vegetation layer was assumed to be an isotropic
medium, so we used a single extinction coefficient to represent overall attenuation. The
vegetation’s structural function decayed exponentially in the vertical direction.

The RVoG model was established by Treuhaft [9], and it was the theoretical basis
of the forest height inversion algorithm. Regardless of other decoherence factors, only
considering volume scattering coherence, we obtained the following explicit equation for
the complex coherence [13]:

γ(ω) = exp(jϕ0)
γv+m(w)
1+m(w)

= exp(jϕ0)(γv +
m(w)

1+m(w)
(1 − γv))

= exp(jϕ0)(γv + Lws(1 − γv)) 0 ≤ Lws ≤ 1
(1)

where w is a three-component unitary complex vector defining the choice of polarization,
ϕ0 is the ground phase center, m(w) is the ground-to-volume scattering ratio, which was
only a function of polarization, and γv is pure volume complex coherence. Formula (2) is
thus as follows

γv =

∫ hv
0 e(2σz)/ cos θejkzzdz∫ hv

0 e(2σz)/ cos θdz
= p

p1
ep1hv−1
ephv−1

⎧⎪⎪⎨⎪⎪⎩
p = 2σ

cos θ

p1 = p + ikZ

kZ = 4πΔθ
λ sin θ ≈ 4πBn

λH tan θ

(2)

where σ is the mean wave extinction in the medium, z is the scatter position, hv is forest
height, θ was the mean angle of incidence, Δθ is the apparent angular separation of the
baseline from the scattering point, H is senor altitude, kz is vertical wavenumber, and Bn is
the vertical baseline.
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Lws is the ground ratio, which had a relation with m(w):

Lws =
m(w)

1 + m(w)
=

ground
volume

1 + ground
volume

=
ground

ground + volume

G/G + V (ground/(ground + volume)) was also used to indicate the ground scattering
ratio. Equation (1) represents a straight line in a complex plane passing through a point γv
with a slope of 1 − γv.

When taking different extreme values of m(w), γwv γws were reached as follows:{
γws = ejϕ0 γv+m(w)

1+m(w)

γwv = ejϕ0 γv
(3)

where γwv is the complex coherence corresponding to a pure volume scattering mechanism
for the top forest canopy, and γws is the complex coherence corresponding to the surface
scattering mechanisms near the ground surface under the forest canopy.

According to Formula (3), the formula for calculating the ground scattering ratio is as
shown in (4):

Lws =
−B −√

B2 − 4AC
2A

(4)

in which A = |γwv |2 − 1, B = 2Re((γws − γwv) · γ∗
wv), and C = |γws − γwv |2.

Figure 2 shows pure volume complex coherence changes with forest height and
extinction in a complex plane according to the RVoG model. Figure 2 was used as a look-up
table for the three-stage inversion algorithm described later, laying the basis for forest
height estimation. When knowing pure volume scattering complex coherence, we can
use this lookup table to inverse the forest height and extinction coefficient. Meanwhile,
the estimation of pure volume scattering complex coherence was very important, so we
introduced coherence optimization to make its estimation more accurate.

Figure 2. Volume complex coherence changes with forest height and extinction at kz = 0.1154.
Note: Calculate kz = 0.1154 and ha = 54.4470 m from the setting parameters. Different color curves
corresponded to different extinction coefficients. With larger extinction or strong ground scattering,
the pure volume complex coherence amplitude was prone to saturation (such as the blue curve), but
the phase was not saturated. When the extinction coefficient was in the range of 0~2 dB/m (such as
yellow curves), the pure volume complex coherence changed with forest height hv (0~ha m, step is
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0.5 m). When the forest height was the same (any yellow curve) and pure volume complex coher-
ence scattering amplitude was large, this was caused by surface scattering or the strong attenua-
tion of vegetation. Complex coherence fell with increasing vegetation height, as a consequence of
volume decorrelation.

3.2. Methods

In this paper, without considering baseline and coregistration error, topography, or
temporal and signal-to-noise ratio (SNR) decorrelation sources, we introduced PD/MCD
coherence optimization to solve for incomplete coherence separation in the three-stage
inversion [13]. Additionally, we introduced complex coherence amplitude inversion [36] to
solve the underestimation or overestimation problem and introduced the ground scatter
ratio to automatically select the weight to improve the three-stage method. We compared
and analyzed these methods combined with the topographic phase affecting forest height.
A technical roadmap is shown in Figure 3.

 

Figure 3. Forest Height Inversion Technology Roadmap.

The symbol meanings are shown in Table 1. In addition, SINC: introduced the corre-
sponding complex coherence amplitude inversion; G/(G + V): ground scatter ratio of the
corresponding parameter estimation, namely Lws . Weight: Based on three-stage inversion
algorithm, it was further improved by introducing the corresponding complex coherence
amplitude inversion and modified constant weight to the ε times of the ground scatter ratio.
To correct the pure volume complex coherence, we projected it onto a coherence line to
invert forest height.

Table 1. Parameters corresponding to various methods.

Method
Use Complex

Coherence
Pure Volume

Complex Coherence
Point Closest to the
Topographic Phase

HV/HVWeight A, B HV HH-VV
PD/PDWeight A, C PDHigh PDLow

MCD/MCDWeight A, D MCDHigh MCDLow
Note: A: HV + VH/HH + VV/VV/HH/LL/LR/RR/Opt1/Opt2/Opt3; B: HH − VV/HV; C: PDHigh/PDLow;
D: MCDHigh/MCDLow; Where HV/VV/HH: linear polarization; HH + VV/HH − VV/HV + VH:
Pauli base polarization; LL/LR/RR: circular polarization; Opt1/Opt2/Opt3: SVD; PDHigh/PDLow: PD;
MCDHigh/MCDLow: MCD.
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The process of three-stage inversion [13] was as follows:
Stage 1: Least squares line fit: Least squares were used to linearly fit the real and

imaginary components of the polarization interference complex coherence and found the
best fit straight line within the complex unit circle.

Stage 2: Vegetation bias removal: The true topographic phase was estimated with the
coherence ranking order algorithm and removed it.

Stage 3: Height and extinction estimation: According to Formula (2), a look-up table
(LUT) was established, where pure volume coherence changed with forest height and
extinction coefficient (Figure 2). According to the topographic phase estimated from
stage 2, it was easy to determine the coherence γ̂v farthest from it in observation data. By
comparing γ̂v with LUT, forest height and extinction can be obtained without additional
iterative optimization algorithms.

The three-stage inversion method was based on the assumption that the ground-to-
volume scatter ratio in one of the polarization channels is zero. To simplify the problem, it
was generally assumed that the ground-to-volume scatter ratio in the HV channel was zero,
i.e., the estimated pure volume coherence was obtained from the estimated HV channel
coherence. In addition, since the estimated HV and HH-VV channel coherence did not
reach the maximum separation, there were some errors in forest height inversion, so PD and
MCD coherence optimization was introduced to invert forest height. Several studies had
explained specific steps of PD and MCD coherence optimization [25,26]. However, even
with coherence optimization, the volume phase center may lie anywhere between half-way
and the top height layer. Hence, the true forest height will still be underestimated [31].
The retrieved forest height may be overestimated or underestimated depending on the
selected vertical baseline. Therefore, at least a coherence amplitude correction term can
be employed to partially compensate for this underestimate or overestimate problem [36].
Based on a hybrid method proposed by Cloude (such as Formula (5)) [31,32], this study
compensated for the “compression” phenomenon of forest top height not considered in the
three-stage method based on coherence optimization, and modified constant weight ε to a
variable weight ε · Lws , as shown in Formula (6)

hv =
arg(γwv)− ϕ0

kz
+ ε · 2 sin−1(|γwv |)

kz
(5)

hv = hThreeStage + ε · Lws ·
2 sin c−1(|γwv |)

kz
(6)

where ε · Lws is a weight.
The first term represents the forest height inversed by the three-stage method with

PolSARpro, which affects the accuracy of the method according to the linear equations of
different scattering fittings. The second term is the coherence amplitude correction term
with PolSARpro, which was solved for the first term underestimation or overestimated
problem, but only considering the pure volume scatter complex coherence. The second part
affects the accuracy of the method according to the ε times of the ground scattering ratio of
the SINC inversion method, where the ground scattering ratio Lws is the performance of
different scattering from the same vegetation/canopy or similar scattering from different
types of vegetation, and the accuracy of the method is affected by volume scattering in
the SINC inversion method. Therefore, we used the ground scatter ratio to modify it,
and because the highest value of Lws was approximately 0.8, we added an adjustment
factor ε to modify it again with MATLAB. The general rule is that the RMSE between the
retrieved forest heights of these two parts and the true stand average height is the smallest
to invert the forest heights. Therefore, ε · Lws made the full expression as robust as possible
to changes in the structure function. However, in practical applications, forest height
inversion by single PolInSAR data required ideal baselines. The vertical baseline depended
on the platform, target geometry, forest height, and forest vertical structure, and the length
of the vertical baseline determined the sensitivity of the interferometric phase difference to

133



Remote Sens. 2022, 14, 1986

different forest heights. The retrieved forest height may be overestimated or underestimated
depending on the selected vertical baseline. The value of ε (−α~α, α = 1/Lws ) was obtained
according to the minimum RMSE of forest height. Negative values of ε corresponded to
overestimation, and positive values corresponded to underestimation. The flow chart is
shown in Figure 4 with MATLAB software.

 
Figure 4. Flow chart for automatically selecting ε.

In this paper, we improved the three-stage inversion method based on the PD/MCD
coherence optimization method. The PD and MCD methods were compared with the
three-stage inversion algorithm (HV method) to invert forest height. We further inverted
the forest height according to Formula (6), and they were HVweight, PDweight, and
MCDweight. To modify the pure volume scattering complex coherence, we projected it to
the coherence line to invert the forest height. When using real data, we need to consider the
impact of these errors and we cannot systematically evaluate this algorithm. The simulation
data could be used to systematically evaluate the algorithm, laying the foundation for the
future application of the airborne L-band SAR data to invert the forest height. However,
if the decorrelation source was not considered, the result of the three-stage inversion
algorithm for forest height inversion may be high, and therefore the Weight method was
applicable with negative values of ε.

4. Experimental Results

4.1. Topographic Phase

Even if there was a slow terrain change, the coherence phase would change rapidly, so
forest height inversion must take the topographic phase into account [20]. Figure 5 shows
the ground scatter ratio. Figure 6 shows an image of the estimated topographic phase.
Figure 7 present a profile at azimuth = 47 (yellow line in the Figure 1b) and the statistical
histogram of the estimated topographic phase.
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Figure 5. Image of the estimated Lws according to Formula (4), namely, the ground scatter ratio.
(a) HV/HVWeight: Lws calculated from complex of HH-VV and HV channel; (b) PD/PDWeight: Lws

calculated from a complex of Phase Diversity; (c) MCD/MCDWeight: Lws calculated from complex
of Maximum Coherence Difference.

Figure 6. Image of estimated topographic phase. (a) HV/HVWeight method; (b) PD/PDWeight
method; (c) MCD/MCDWeight method.

 
(a) (b) 

Figure 7. Profile and statistical histogram of the estimated topographic phase. (a) Profile of the
estimated topographic phase; (b) Statistical histogram of the estimated topographic phase.
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It can be seen from Figure 5 that the overall ground scatter ratio trend was basically
the same: small in the near direction and large in the far direction. After coherence
optimization, the estimated ground scatter ratio improved. After PD and MCD coherence
optimization, the ground scatter ratio was much better than the HV/HVWeight method,
and the MCD/MCDWeight method was better than the PD/PDWeight method.

It can be seen from Figures 5 and 6 that in the region with a small ground scattering
ratio in Figure 5, the estimated topographic phase was obviously high, and the error
was large. In Figure 6, the estimated topographic phases all had negative values, the
HV/HVWeight method values were significantly higher, and the difference in topographic
phase estimated by the PD/PDWeight and MCD/MCDWeight methods was small. The
profile and the statistical histogram of the topographic phase in Figure 7 further illustrated
it. As seen from the profile of Figure 7a, the overall trend of the four methods was
basically the same, and the proximity to the topographic phase from small to large was
MCD/MCDWeight, PD/PDWeight, and HV/HVWeight methods. The statistical histogram
in Figure 7b shows that there was no significant difference between the three methods.

Since the true topographic phase was 0, it was easy to cause positive and negative
cancellation, so we used the arithmetic mean of absolute values for quantitative analysis.
Table 2 lists the mean of the absolute values and the RMSE of the estimated topographic
phase. It can be seen that the HV/HVWeight method had the worst estimation and
the largest error. The PD/PDWeight method was greatly improved compared with the
HV/HVWeight method but was inferior to the MCD/MCDWeight method. The estimation
of the MCD/MCDWeight method was optimal, and the error was minimal.

Table 2. Estimation results of the topographic phase.

Method
Topographic Phase (Rad)

ABSMEAN RMSE

HV/HVWeight 0.041 0.140
PD/PDWeight 0.032 0.095

MCD/MCDWeight 0.029 0.081

4.2. Forest Height

Figure 8 present an image of the inversed forest height, (A) the improved three-stage
inversion algorithm based on coherence optimization, and (B) the forest height inversion
after introducing the coherence amplitude. Figure 9 shows a profile at azimuth = 47 (yellow
line in the Figure 1b) and the statistical histogram of the inversed forest height. Table 3
shows the image of inversed forest height inversion.

Table 3. Results of forest height inversion.

Method
Forest Height (m)

MEAN RMSE

HV/HVWeight 15.83/16.29 4.80/4.65
PD/PDWeight 16.16/16.73 4.60/4.46

MCD/MCDWeight 16.19/16.71 4.43/4.35

In the area where the ground scatter ratio was small, the inversed forest height is
low, and even there, the forest height cannot be inversed from Figures 5 and 8. The HV
method had the worst forest height inversion. After PD and MCD coherence optimization,
the forest height inversion results were much better than the HV method, and the MCD
method was better than the PD method. The decreasing order of missing values in different
methods was as follows: HV, PD, MCD methods. The corresponding method in Figure 8B
had the same trend as in Figure 8A.
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(A) (B) 

Figure 8. Improved three-stage method for forest height inversion. (A) Three-stage method for forest
height inversion based on coherence optimization (a) HV (b) PD (c) MCD (B) After introduction
coherence amplitude for Forest height inversion (a) HVWeight (b) PDWeight (c) MCDWeight.

 
(a) (b) 

 
(c) 

Figure 9. Profile and statistical histogram of the inversed forest height. (a) Profile of the inversed
forest height; (b) Enlargement image of Figure (a) in the range at 45~90; (c) Statistical histogram of
the inversed forest height.

The mean of forest height inversion by the HV method was the lowest (15.83 m)
and the RMSE was the largest (4.80 m). The PD method maximized the separation of
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complex coherence phases representing canopy scattering and ground scattering, which
making its mean (16.19 m) and its RMSE (4.60 m) superior to the HV method. The MCD
method maximized the distance between canopy scattering and ground scattering complex
coherence in the complex plane, its mean (16.19 m) was slightly better than using the PD
method, and the RMSE was the smallest (4.43 m).

Figure 9b shows a profile of the inversed forest height enlargement image from
Figure 9a in the range near 45~90. After adding ε times the ground scatter ratio as the
weight, the forest height was equivalent to a proportionality increase. After adding the
coherence amplitude term from Table 3, the mean of forest heights inversed by the HV, PD,
and MCD methods were increased by 0.46 m, 0.57 m, and 0.52 m, respectively. The RMSE
was improved by 0.15 m, 0.14 m, and 0.08 m, respectively, and the improvement of the
HV method was obviously best, followed by the PD method. After adding the coherence
amplitude inversion method from Figure 9c and Table 3, although the robustness of the
forest height inversion algorithm was reduced, the underestimation was improved and
the RMSE was reduced. Among these methods, the mean forest height inversion by the
MCD method was the closest to the true value, followed by the PD and HV methods. The
smallest RMSE was obtained by MCD, followed by the PD and HV methods. The MCD
method made the coherence distance between the complex coherence maximum in the
complex plane and obtained the accurate pure volume scatter coherence, such that the
mean forest height inversion was the highest and its RMSE was the lowest. The PD method
maximized the phase of complex coherence and obtained the accurate pure volume scatter
coherence so that the mean and the RMSE of forest height inversion were lower than the
MCD method. The mean of forest height inversion by the HV method was the largest
difference from the true value, and its RMSE was the largest.

5. Discussion

The estimated topographic phase may be caused by the following aspects: (1) The
ground scatter ratio: topographic phase was good and the error was large in the area
where the ground scattering ratio was small. Combining Figures 5 and 6, the estimated
topographic phase error in Figure 6 was relatively large where the ground scattering ratio
of Figure 5 was small. The estimated topographic phase error was significantly reduced
where the ground scattering ratio of Figure 5 was large. (2) The difference of the complex
coherence combination and sample number used to fit the coherence line: Among these
methods, the coherence line was fitted according to the least squares method, in addition
to jointly using a group of complex coherences, and the HV/HVWeight method also used
B group complex coherences, the PD method with C group complex coherences. The
MCD/MCDWeight method in addition used D group complex coherences. The sample
number of HV/HVWeight/PD/PDWeight/MCD/MCDWeight methods was the same,
and only the B/C/D group complex coherence was different. C/D was the complex
coherence obtained after PD and MCD coherence optimization, respectively. PD coherence
optimization maximized the phase center of complex coherence in the complex plane.
MCD coherence optimization made the distance of complex coherence maximum in the
complex plane. Figure 10 shows the complex coherence and the fitted coherence line used
by these methods in a complex plane. The estimated topographic phase in Figure 10a from
small to large was: MCD/MCDWeight, PD/PDWeight, and HV/HVWeight. Squares of
different colors represented different complex coherences in Figure 10. Straight lines of
different colors were coherence lines fitted by different methods according to corresponding
complex coherences. (a) When the azimuth was 70 and the range was 40 in the image,
various coherence lines were fit by different methods. The intersection of the coherence line
fit by the MCD/MCDWeight method and the complex unit circle (the point close to the x
real axis), i.e., the topographic phase, was closest to the real topographic phase, followed by
PD/PDWeight and HV/HVWeight. (b) When the azimuth was 51 and the range was 44 in
the image, because the distance between the complex coherence representing ground and
volume scattering was enough large, and the distance in the normal coherence line direction
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was small, coherence lines fitted by these methods were the same, and the intersections
with the unit circle were also the same, i.e., the topographic phases were the same. It could
be seen that when the sample number of complex coherence was the same, the coherence
line fit by the PD/PDWeight method was more accurate than the HV/HVWeight method.
The PD/PDWeight method was lower than the MCD/MCDWeight method because it
was considered complex coherence amplitude information. In Figure 10b, the estimated
topographic phase is the same, and it can be seen that the greater the distance between
volume and ground complex coherence in the complex plane, and the smaller the distance
in the coherence line normal direction, the higher the accuracy of the topographic phase.
The topographic phase was not affected by complex coherence when the direction of the
complex coherence line and its normal reached a certain value, even without coherence
optimization, the same topographic phase could be obtained. (3) The different selection of
points closest to the ground phase: the HV/HVWeight/PD/PDWeight/MCD/MCDWeight
methods select complex coherence closest to the ground phase, respectively. MCDLow was
optimal, followed by PDLow and HH-VV.

 
(a) 

 
(b) 

Figure 10. Comparison of complex coherence and fitted coherence straight lines in a complex plane.
(a) azimuth = 70 range = 40; (b) azimuth = 51 range = 44.

Without using coherence optimization, the topographic phase estimated by HV/HVWeight
method was the worst. PD coherence optimization maximized the difference between
coherence phase centers in the complex plane. Compared with the HV/HVWeight method,
the topographic phase estimation accuracy was greatly improved. The MCD coherence
optimization maximized the complex coherence distance in the complex plane, compre-
hensively considering phase and amplitude information. The obtained complex coherence
MCDLow representing ground scattering was better than PD coherence optimization, and
closer to the real ground phase. The topographic phase estimated by the MCD/MCDWeight
method was optimal and closest to the true topographic phase. When applied to real SAR
data with lots of field data, we can acquire the same conclusion as the simulation data.
However, when the sample sizes were small, there may be some differences from this
simulation conclusion. Therefore, in order to obtain higher accuracy, it was necessary to
carry out a variety of optimization methods in single-baseline L-band PolInSAR technology
with real SAR data.

With analyzing the effect of the estimated topographic phase on the forest height, we
compared three-stage inversion methods based on coherence optimization. The HV method
selected HV channel complex coherence as the canopy scattering complex coherence, and
its phase center may be located at any position between half-way and the top forest
height [31,32]. The estimated topographic phase was the highest, and the forest height
inversion had the largest error. Due to the observed propagation error of the topographic
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phase, and the selection of channel as forest canopy scattering complex coherence, with the
lowest forest height mean and largest error, the HV method estimated topographic phase
accuracy performed worse. The PD method maximized the complex coherence phase center
of canopy and ground scattering, which made it more accurate than the coherence line fitted
using the HV and HH-VV channel complex coherence used by the HV method. Therefore,
the mean of topographic phase absolute value was better than the HV method, and pure
volume scatter complex coherence (PDHigh) was more accurate than the HV complex
coherence. The mean forest height was increased by 0.33 m compared with the HV method,
whereas the RMSE increased by 0.2 m. The MCD method made the distance between
complex coherence of canopy and ground scattering maximum in the complex plane. The
topographic phase and forest height were very similar to the PD method. However, overall,
the MCD method, while comprehensively considering the coherence amplitude and phase,
had a better forest height inversion than the PD method, as well as the smallest RMSE. The
result estimated by the MCD method obtained the optimal topographic phase and more
accurate pure volume coherence. Therefore, forest inversion based on the lookup table was
also more accurate, and the mean of the inversed forest height was closest to the true value.
Compared with the HV method, the forest height inversion underestimation was improved
after coherence optimization, and the RMSE was reduced [27,36]. The PD method was
based on phase information, which improved forest height inversion to some extent. The
MCD method was based on coherence amplitude and phase, which was better than the
PD method.

Figure 11 shows the relationship between the weighted forest height statistical indica-
tor (MEAN/RMSE/SD) and ε. Compared with the three-stage inversion algorithm based
on coherence optimization, after introducing the coherence amplitude term and modifying
fixed weights to weight variables, the mean of forest height increased while the RMSE
decreased [36]. As the ε increases, the average bias of the forest height increased first and
then decreased, but the final reduced value was greater than the original, and the minimum
value was near 0.1~0.2. The RMSE of forest height decreased first and then increased and fi-
nally decreased with the ε increased, with a minimum value near 0.1. After introducing the
coherence amplitude inversion term, the standard deviation of forest height increased, i.e.,
the algorithm robustness was no better than the three-stage inversion method. We selected
the ε corresponding to the RMSE minimum value with comprehensive consideration.

(a) 

Figure 11. Cont.
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(b) 

(c) 

Figure 11. Forest height statistical indicator changes with the ε. (a) Average bias; (b) RMSE;
(c) Standard deviation.

Compared with the HV method, the underestimation of forest height inversion was
improved after coherence optimization, and the RMSE was reduced [27,36]. The PD method
was based on phase information, which improved forest height inversion to some extent.
The MCD method was based on coherence amplitude and phase, which was better than the
PD method. After introducing the coherence amplitude term and modifying fixed weights
to weight variables, the corresponding method (weight) was the same as the overall trend
of the three-stage inversion algorithm based on coherence optimization.

Considering time and signal-to-noise ratio decorrelation, this study could invest forest
height from the airborne L-band single-baseline full polarization SAR data in the flat terrain.
When applied to real data, the inverted forest height was combined with the average height
of the forest stand to minimize its RMSE to automatically select an appropriate ε. The
smaller the RMSE, the higher the accuracy of the corresponding method. At the same time,
a y = x straight line equation could be fitted between the inverted forest height and the
measured forest stand height. The closer the fitted straight line equation was to y = x, the
more accurate the corresponding inversion method was.

The accuracy of the algorithm was related to the system parameters of the aircraft
and the structural parameters of the forest (forest density, height), etc. Since only some
parameters could be fixed to analyze the relative error of the RVoG model inversion of
forest height, an uncertainty could not be given for quantifying all involved parameters.
Due to the most influential factor being the vertical wave number kz of the forest, the forest
height relative error changed with the forest height and vertical wavenumber kz when the
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time decorrelation was 0.8, and extinction coefficient was fixed at 0, 0.1, and 0.5 dB/m,
respectively. Given the values of hv, σ and kz, the vegetation pure volume coherence γv
(hv, σ, kz) was calculated according to Formula (2) for L-band data. Given a fixed time
decorrelation intensity γt, γo = γv (hv, σ, kz) γt was then calculated. For each generated
γo sample, the forest height hvi was inverted by the three-stage method within the 2π
ambiguity elevation, and the relative error of forest height was analyzed. The relative
error of forest height was |hvi − hv|/hv × 100%. Figure 12 shows the forest height relative
error changes with the forest height and vertical wavenumber kz under three extinction
coefficient levels (0.0, 0.1, and 0.5 dB/m) at γt = 0.8, respectively.

 
(a) 

 
(b) 

(c) 

Figure 12. When the time decorrelation was 0.8, and extinction coefficient was fixed at 0, 0.1,
0.5 dB/m, respectively, the forest height relative error changed with the forest height and vertical
wavenumber kz. (a) σ = 0 dB/m; (b) σ = 0.1 dB/m left: ε · Lws = 0 middle: ε · Lws = 0.04 right:
ε · Lws = 0.5; (c) σ = 0.5 dB/m left: ε · Lws = 0 middle: ε · Lws = 0.04 right: ε · Lws = 0.5.

142



Remote Sens. 2022, 14, 1986

It was shown that for a given vertical wavenumber kz, the inversion performance of
forest height was the best only in a certain height range. The forest height relative error
was larger in places with low forest height, and it decreased with increasing forest height
(Figure 12).

The simulation results showed that in order to achieve 10% accuracy in the forest
height range from 8 m to 60 m, various baselines (vertical wavenumber kz) had to be
required, and the number of baselines required depended on the extinction coefficient.
Among all extinction coefficient levels, the forest height ranged from 8 m to 60 m, and
the three baselines were sufficient to make the forest height relative error better than 10%
(on the left of Figure 12). For example, if the forest height ranged from 8 m to 40 m, the
three baselines were sufficient to make the forest height relative error better than 10%
at σ = 0.1 dB/m (on the left of Figure 12b), and only the two baselines were sufficient
at σ = 0.5 dB/m (on the left of Figure 12c). After introducing the overestimation and
underestimation terms (on the middle and right of Figure 12b,c), the accuracy of forest
height inversion could be improved by selecting the appropriate weight coefficient ε · Lws ,
and even higher forest height inversion accuracy could be obtained by using one baseline
(on the middle and right of Figure 12b,c). An uncertainty model that quantifies all involved
parameters will be the subject of future work.

ALOS-2 with an enhanced PALSAR instrument launched in 2014, where ALOS left in
2011, and will build L-band SAR data for monitoring the global environment. However,
ALOS-2 has a strong temporal decoherence effect, leading the coherence in the forest to be
too low to make the forest height estimation with POLInSAR impossible. The upcoming
TanDEM-L with spaceborne monostatic and bistatic SAR imagery solved the problem of
time decoherence very well. We therefore expected that our results would be valuable for a
wide range of future research topics, including all future airborne and spaceborne SAR with
the upcoming low frequencies forest missions, ALOS-4, NISAR (NASA-ISRO Synthetic
Aperture Radar), and Tandem-L (all L-band), as well as BIOMASS. An unprecedented
combination of sensors will be seen in the next few years, e.g., BIOMASS links to the
Global Ecosystem Dynamics Investigation (GEDI) and NISAR missions will be particularly
important for measuring forest structure parameter, such as forest height and biomass.
The in-situ data for GEDI, BIOMASS, and NISAR collaborated by the ESA-NASA, will
further help to achieve more forest height inversion performance. Meanwhile, LIDAR data
with a relatively fine scale and accurate map of forest height and biomass represents an
important complement to in situ, airborne data. In situ data, when combined with LIDAR
and GEDI data, will allow forest height inversion on canopy structure and even biomass
with POLInSAR to be estimated. This study is expected to mitigate the overestimation
and underestimation problem of forest height inversion for the upcoming L-band SAR
satellite generation, new SAR and LIDAR systems combined with RPAs (Remotely Piloted
Aircrafts)/UAVs (Unmanned Aerial Vehicles) for small areas mapping initiatives, and to
promote the depth and breadth of SAR applications of the new SAR system.

6. Real SAR Data

The SAR data in the Traunstein were the E-SAR L-band single-baseline full PolInSAR
data obtained by the German Aerospace Center (DLR) in 2003. The study area was a
plantation forest, and the terrain was relatively flat with only some small slopes. The
altitude of the aircraft was about 3000 m, the space baseline was about 5 m, the time
baseline was 20 min, and the central incidence angle was 45◦. The range resolution was
1.5 m, and the azimuth resolution was 3 m with four looks. The data were precisely
registered, and flat phase and effective wavenumbers were provided.

The computational effort was 2~3 times that required of the original three-stage
inversion method. The time of the SINC function inversion method was similar to that of
the three-stage method, in which the time for the automatic weight selection method with
one forest stand was about 45.70 s. Finally, the three weight methods with one forest stand
with Matlab software for calculation took about 3.04 s.
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The measured data and ground-truth data concerning the stand height of the sample
plot are shown in Figure 13. The forest height images obtained by the three-stage inversion
methods are shown in Figure 13A, and the three-stage methods introducing the coherent
magnitude term are shown in Figure 13B. The ground-truth data used in the study mainly
included the boundaries of eight stands and the average height of dominant trees, which
were obtained by the Munich Forest Harvest Scientific Committee through field surveys,
as shown in Figure 13(Ad,Bd). Table 4 shows the RMSE of various methods for the corre-
sponding eight forest stands with real data. The result showed that coherent optimization
methods may also not achieve the best accuracy. After the modified two-step, three-stage
inversion algorithm is carried out, the RMSE can always be minimized, and the number of
the minimum RMSE obtained by the PD coherent optimization method is greater. In order
to obtain a better RMSE, it was necessary to use coherent optimization methods. Lws was
the response to forest stand structure, because the scattering mechanisms were different
for different forest stands and different forest heights. The approach performed well in
the case of different plant densities and different plant height variability with simulation
forest relative error and real forest stands. The fitting equations between the forest height
estimated by six methods and the stand height of the plot are shown in Table 5. Unlike the
simulated data, the three-stage inversion method overestimated the forest height, which
may be caused by the vertical baseline of the data. Simulation data showed that the three-
stage method would underestimate forest height, but in practical applications, forest height
could produce overestimation and underestimation owing to the length of the vertical
baseline determined by the sensitivity of the interferometric phase difference to different
forest heights. Forest height inversion by PolInSAR data requires ideal baselines. Due to
the complexity of the real SAR data and the small sample sizes, the three-stage inversion
method based on coherent optimization was lower than the three-stage inversion method.
After introducing the coherent magnitude term, the overestimation of the forest height
was significantly weakened in HVWeight, PDweight, and MCDWeight, and PDWeight
was optimal. Compared with the original three-stage method, the inversion accuracy of
simulated data increased by up to 9.38%, and 59.85% with real data at most.

(A) (B) 

Figure 13. Improved three-stage method for forest height inversion of ESA PolInSAR data. (A) Three-
stage method for forest height inversion based on coherence optimization (a) HV (b) PD (c) MCD
(d) The average stand forest height of field measurement (B) Introduction of coherence amplitude
for Forest height inversion (a) HVWeight (b) PDWeight (c) MCDWeight (d) The average stand forest
height of field measurement.
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Table 4. The RMSE of various methods for the corresponding 8 forest stands with real data.

Forest
Stand

RMSE (m)

HV HVWeight PD PDWeight MCD MCDWeight

1 7.04 6.37 7.17 6.47 7.51 6.76
2 11.67 5.12 11.73 5.07 11.73 4.71
3 7.75 4.08 7.72 3.10 7.70 3.57
4 11.12 5.58 11.12 4.26 11.19 4.43
5 8.19 5.99 8.03 4.94 8.03 5.55
6 8.75 5.72 8.94 5.02 9.10 4.90
7 5.73 5.19 6.05 5.34 6.29 5.38
8 7.41 4.50 8.44 4.12 8.48 4.67

Table 5. The fitting equation between the retrieved forest height and the field measurement stand
forest height.

Method
Retrieved Forest Height and Field Measurement Stand Forest Height

Equation RMSE (m)

HV 0.76292x + 12.54232, R2 = 0.9557 1.69865
PD 0.78461x + 12.17832, R2 = 0.9523 1.81638

MCD 0.7950x + 12.03076, R2 = 0.9549 1.78694
HVWeight 0.99053x + 1.15906, R2 = 0.9892 1.07157
PDWeight 1.00693x − 0.05627, R2 = 0.9990 0.33435

MCDWeight 1.09135x − 2.54197, R2 = 0.9792 1.64526

7. Conclusions

Compared with the forest height inversion accuracy with the simulation and real SAR
data, it was necessary to use coherent optimization methods to obtain a better RMSE for
the forest height inversion using single-baseline L-band PolInSAR data. Using ε times the
ground scattering ratio as the weight alleviates the underestimation and overestimation
phenomena of the forest height estimation and reduces the RMSE to some extent, but the
robustness of the forest height inversion is reduced due to the introduction of the coherence
amplitude term.

This study can invest forest height from the airborne L-band single-baseline full
polarization SAR data in the flat terrain. Since this study only simulates coniferous forests
with a forest height of 18 m and a forest density of 500, and applies and validates these
methods with small real data, other scholars can apply these methods with more airborne
L-band SAR data to better explain the applicability and limitations of these methods.

Due to the inherent characteristics of SAR images, shadows, overlays, and top-to-
bottom overlaps may occur with large terrain fluctuations. Single-baseline PolInSAR
cannot solve these problems temporarily. Therefore, this study mainly considers areas
with flat terrain, not taking the terrain into account. This study does not consider the
effect of slope on forest height inversion, and mainly focuses on solving the problem of the
overestimation and underestimation of forest height inversion by the three-stage method
through a modified two-step, three-stage inversion algorithm. When the slope of the terrain
is not very high, the R-RVoG model can be used to invert the forest height. In the case of a
higher slope, the multi-baselines TomoSAR method can be used to invert the forest height
more accurately, which is what we want to do in the near future.
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Abstract: The accurate estimation of spatially explicit forest aboveground biomass (AGB) provides
an essential basis for sustainable forest management and carbon sequestration accounting, especially
in Myanmar, where there is a lack of data for forest conservation due to operational limitations.
This study mapped the forest AGB using Sentinel-2 (S-2) images and Shuttle Radar Topographic
Mission (SRTM) based on random forest (RF), stochastic gradient boosting (SGB) and Kriging algo-
rithms in two forest reserves (Namhton and Yinmar) in Myanmar, and compared their performance
against AGB measured by the traditional methods. Specifically, a suite of forest sample plots were
deployed in the two forest reserves, and forest attributes were measured to calculate the plot-level
AGB based on allometric equations. The spectral bands, vegetation indices (VIs) and textures de-
rived from processed S-2 data and topographic parameters from SRTM were utilized to statistically
link with field-based AGB by implementing random forest (RF) and stochastic gradient boosting
(SGB) algorithms. Followed by an evaluation of the algorithmic performances, RF-based Kriging
(RFK) models were employed to determine the spatial distribution of AGB as an improvement of
accuracy against RF models. The study’s results showed that textural measures produced from
wavelet analysis (WA) and vegetation indices (VIs) from Sentinel-2 were the strongest predictors
for evergreen forest reserve (Namhton) AGB prediction and spectral bands and vegetation indices
(VIs) showed the highest sensitivity to the deciduous forest reserve (Yinmar) AGB prediction. The
fitted models were RF-based ordinary Kriging (RFOK) for Namhton forest reserve and RF-based
co-Kriging (RFCK) for Yinmar forest reserve because their respective R2, whilst the RMSE values
were validated as 0.47 and 24.91 AGB t/ha and 0.52 and 34.72 AGB t/ha, respectively. The proposed
random forest Kriging framework provides robust AGB maps, which are essential to estimate the
carbon sequestration potential in the context of REDD+. From this particular study, we suggest
that the protection/disturbance status of forests affects AGB values directly in the study area; thus,
community-participated or engaged forest utilization and conservation initiatives are recommended
to promote sustainable forest management.
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1. Introduction

Global climate change, which has become a major environmental problem for all
nations, mainly results from anthropogenic fossil fuel combustion and land-use changes [1].
As the biggest carbon pool of terrestrial ecosystems, forests play a major role in the global
carbon sequestration process, which contributes to climate change mitigation [2]. Overall,
forests store approximately 45% of terrestrial carbon globally [1], most of which is stored in
trees in the major form of aboveground biomass (AGB) that accounts for 44% of the total
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biomass through the process of photosynthesis [3]. Understanding the spatial and temporal
dynamics of AGB is the most critical step in quantifying carbon stocks and fluxes from
forests [4]. Hence, it is necessary to develop robust methods to estimate AGB for calculating
carbon stocks, which is an essential indicator of the ‘reducing emission from deforestation
and forest degradation’ (REDD)+ initiative as well as sustainable forest management [5,6].

AGB estimation with direct field surveys or that uses of species-specific allometric
equations based on destructive sampling is accurate and widely used. However, these
methods are difficult, expensive, time-consuming and not viable for wide regions due to
limited samples and incomplete spatial coverage [7]. Remote sensing images have become
efficient data sources for AGB predictions in diverse-scale landscapes by providing different
spatial, spectral and temporal resolutions of images. Recent studies have used various
remote sensing data types to map the biomasses of different forests [8–16]. Currently, the
prevailing high-resolution light detection and ranging (LiDAR) systems can capture the
three-dimensional information of vertical forest structures and are well suited for forest
biomass estimation since they reduce the spectral saturation problem [17,18] against those
optical remote sensing images. However, LiDAR data have an operational limitation
for large area estimation due to their increased imaging cost, data processing cost and
spatial limitation [19]. Additionally, LiDAR systems do not provide infrared signals which
undermine their capability to analyze the vegetation status. On the other hand, low-
resolution satellite images (e.g., AVHRR, MODIS and SPOT Vegetation) have an advantage
for AGB prediction in large areas since only one scene covers a wide area of interest.
However, their accuracy is the lowest compared to moderate or high spatial data due to
their plot-pixel matching differences [20,21]. Therefore, the medium resolution satellite
images (e.g., Sentinel and Landsat) were increasingly applied for forest AGB estimation
at different spatial scales for their free accessibility and high suitability to landscape scale
analysis [22,23].

The European Space Agency (ESA) launched the Sentinel-2A (S-2) multispectral satel-
lite in 2015 following the SPOT and Landsat missions to monitor terrestrial surface [24].
The S-2 has a wide swath at 290 km with 13 multispectral bands including four bands at
10 m, six bands at 20 m, and three bands at 60 m, respectively. Therefore, it provides data on
land surface reflectance for many different wavelengths, such as Landsat 8. Some bands of
S-2 have better resolution over Landsat 8 (10 m overrides 30 m of Landsat 8). Additionally,
the level-1 TOA radiance or reflectance product from the S-2 satellite (S-2 L1C) can be
improved to a level-2 product as the BOA reflectance (S-2 L2A) using free atmospheric
correction tools in the Sentinel Application Platform (SNAP) software [25]. Particularly,
for the presence of longer wavelength red-edge bands in S-2 data, it is extremely useful
in vegetation monitoring [26]. Although many studies have explored the application of
S-2 optical satellite imagery in biomass mapping, there is still a present saturation problem
since it lacks the capability to vertically penetrate dense forests [27]. For example, an
optimal combination of reflectance, VIs and textural variables of S-2 has been employed in
existing AGB mapping in an attempt to reduce this saturation effect [28].

S-2 derived VIs can minimize atmospheric saturation to some extent and better distin-
guish vegetation characteristics (e.g., moisture content) and forest AGB, especially in the rel-
atively simply structured forests. Two studies by Adamu et al. [29] and Nuthammachot et al. [30]
proved that VIs from S-2 were best correlated with forest AGB. However, the sensitivity
of VIs to AGB varies among forest types and structures [31]. In a canopy complex forest
where spectral features cannot identify the vegetation structure (e.g., canopy depth), texture
features may improve the prediction accuracy of AGB thanks to their sensitivity to the hori-
zontal arrangement patterns of canopies and their shadows. For example, Li et al. explored
the performances of S-2 textures in AGB estimation for the mature broadleaved forest with
complex canopy layers [32]. Pandit et al. found that if proper processing techniques were
used, texture features could mitigate the saturation problem of S-2 spectral data to some
extent in the mature forest AGB prediction [33]. Different texture processing techniques
including the principal component analysis (PCA), gray level co-occurrence matrix (GLCM)
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and wavelet analysis (WA) were applied in existing scientific works. PCA has been proven
to be a method of reducing the dimensionality and increasing the interpretability of satellite
datasets [34] and can hold over 80% of all representative original information [22]; thus,
these generated principal components may have a stronger relationship with biomass
than individual original spectral bands, which are somehow independent of different
biophysical conditions. Recent studies have claimed that textural measures derived from
the GLCM and WA of satellite images could improve forest cover differentiation and forest
AGB estimation [35,36]. Additionally, topographic features such as elevation, slope, and
aspect are significantly related with the growth and distribution pattern of forests, and
thus are of great significance in AGB estimations. Recent research findings have proven
that variables derived from SRTM data at 30 m resolution are helpful for estimating forest
biomass and have great influence over the spatial distribution of AGB [37]. Elevation is
especially well correlated with forest AGB since it provides information about the forest
distribution and site attributes [38]. As proven by numerous studies for different forest
types with varying terrains, the topography may depend on the reflectivity of the specific
forest site and affect the AGB estimation [39].

Empirical regression techniques were widely used in the early studies of remote
sensing-based AGB estimation, considering the normality of the modeling datasets [40,41].
Therefore, simple linear or multiple linear regression models for practical AGB estimation
are limited because of the complex non-linear relationships between forest AGB and remote
sensing variables. Non-parametric models, also called machine-learning algorithms, do
not require a strictly linear assumption between the response and covariates due to the
independence of their data distribution. Machine learning models such as artificial neural
network (ANN), support vector machine (SVM), random forest (RF), and stochastic gradient
boosting (SGB) are popular non-parametric methods for identifying complex relationships
between the predictors and forest AGB [42,43]. Among these, RF and SGB are efficient
machine learning methods proposed by Breiman [44] and Friedman [45] and have been
successfully used in forest AGB estimations. Although these models estimating AGB well,
the major drawback of these models lies in their ignorance of the spatial autocorrelation of
sample plots [35]. Kriging interpolation provides the linear unbiased prediction of variables
based on the variogram model and is best applied to minimize the spatial variation error
between samples in AGB estimation [46].

Although these existing studies have had varying degrees of success in estimating
forest AGB in different forest ecosystems with varying structural complexities, they regard
AGB as an independent spatial biophysical variable when creating AGB prediction models,
whereas as one of the more important variables in biogeochemical cycles, forest AGB not
only has its own randomness in distribution, but also has structurized characteristics in
space. Thus, the modeling techniques of the classic statistics applied in the vast majority
of existing works that do not consider the auto-correlation information of forest AGB
cannot adequately capture spatial variations in AGB, which necessitates an improvement
upon existing modeling means by introducing geostatistical analytical methods, such as
Kriging interpolation.

In recent decades, radical demographic, economic and social changes in Myanmar
have placed considerable pressure on its forest resources [47]. According to the Food and
Agricultural Organization (FAO), in 2015, the forest area in Myanmar was 42.92% of the total
country, which had decreased from 45.04% in 2010 [48,49]. To cover this loss, the forestry
sector in Myanmar has been implementing the Myanmar reforestation and rehabilitation
plan (MRRP) under the REDD+ scheme starting from 2017 to 2026 in the areas of forest
degradation. As a REDD+ scheme, Myanmar predicts its forest reference emission level
(FREL) based on preliminary information from the reference year 2005 to 2017, which needs
to be periodically updated by integrating carbon improvement from reforestation programs
based on new knowledge, methods and trends in the future [50]. Hence, the reliable method
and data sources for mapping AGB by forest types are essential for Myanmar’s future FREL
calculation of REDD+ since local AGB maps are also the basis for the extension of estimates
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to larger areas using remote sensing approaches. To date, however, no systematic research
has been conducted to predict the spatial distribution of AGB by forest types, especially in
inaccessible areas of northern and eastern Myanmar because of operational limitations and
the consequent lack of data, technology and appropriately qualified individuals [47]. In
this context, the optimal integration of remote sensing data and modeling algorithms may
fill this gap.

The overall goal of this study was to evaluate the performance improvement of over-
laying geostatistical interpolation onto machine learning modeling based on S-2 and SRTM
in mapping the AGB of two forest reserves in Myanmar. Additionally, the robust AGB
maps generated from this work were also expected to support the strategic development of
carbon sequestration-aimed forestry management efforts in Myanmar.

2. Materials and Methods

2.1. Study Area

Two forest reserves in Myanmar, namely Namhton (NH) and Yinmar (YM), were
selected as case studies (Figure 1). They are located in the northern and central-eastern
parts of the country and have been formally protected by the Forest Department and by the
1992 Forest Law since 1995 and 2003, respectively.

Figure 1. Location of the study area: (a) country boundary; (b) location of the two forest reserves;
(c) the Sentinel-2 true color image (collected in 26 January 2017) attached with field sample plots in
NH; (d) the Sentinel-2 true color image (collected in 5 February 2017) attached with field sample plots
in YM; (e) the DEM of NH; and (f) the DEM of YM.

The NH forest reserve area is approximately 19,418 hectares and the dense evergreen
forest type dominates this region, geographically spanning from 97◦13′00′′E, 27◦23′30′′N
to 97◦24′30′′E, 27◦13′00′′N. It is situated in the Putao Township, Myitkyina District, of
northern Kachin State. The terrain in the region is mountainous, with an altitude ranging
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from 416 m to 1951 m. The annual average temperature of the area is 22.13 ◦C, with its
average annual precipitation ranging from 1218 mm to 2800 mm; snowfall used to be heavy
in the northern part, at higher altitudes of the mountainous regions. Evergreen tree species
such as Quercus glauca, Macaranga denticulata, Michelia champaca, Shorea assamica, and Ficus
cuspidata, are typical tree species of NH. A village called “Namhton Ku” is located in the
center of this reserved forest as an encroachment, where forest-related field data collection
was not performed.

The YM is a deciduous forest reserve-dominated region with an area of 20,163 hectares
which is located between latitude 23◦7′30′′N–23◦17′00′′N and longitude 96◦18′30′′E–96◦33′30′′E,
in Moemaik Township, Kyaukme District of Shan State. The mean annual temperature of
this region is approximately 27 ◦C with an average annual rainfall ranging from 1000 mm to
1500 mm. The terrain is relatively flat, ranging from 128 m to 261 m according to the analysis
of the SRTM DEM data. The vegetation in the YM region is predominantly Dipterocapaceae
species such as Dipterocarpus alatus, Hopea odorata, Dipterocarpus tuberculatus, and Shorea
obtuse. The vegetation in this area is mainly deciduous, losing its leaves during the dry
season. Additionally, bush fires, which frequently occur during the dry season, further
reduce the available foliage. Biomass or carbon stocks during the dry season months can
therefore dramatically differ from those during the rainy season for the same area.

2.2. Data Collection and Processing Methods
2.2.1. Sentinel-2 Images Pre-Processing and Indices Extraction

The study site is located in two eco-regions (northern and central eastern) of Myanmar.
Frequent rains and cloud contamination exist in the study sites, which highly restrict
the availability of images collected in the peak season of vegetation growth (i.e., June–
September). Therefore, two S-2 L1C MSI satellite images, with tile numbers of T47RLL and
T46QHL acquired on 26 January 2017 and 5 February 2017, respectively, were downloaded
from the European Space Agency. Available online: https://www.scihub.copernicus.eu
(accessed 21 March 2022). These images are composed of 100 km2 tiles with UTM/WGS84
projection. The descriptive information of the images is summarized in Table 1. The
atmospheric correction of the two S-2 L1C scenes was performed with the Sen2Cor plugin
in SNAP software to reduce the atmospheric, adjacency, and slope effects [51]. In the
process, TOA reflectance images were converted into surface reflectance images with
aerosol-free and noise reduction. Then, all 20 m spectral bands were resampled to 10 m
using the nearest neighbor strategy. Bands 1, 9, and 10 were not suitable for AGB estimation
and excluded from the analysis [52]. The images and spectral response curves for a test
vegetation pixel before and after atmospheric correction are shown in Figure 2.

Table 1. Descriptive information of the images used in the analysis.

Image/Product Tile Number and Acquisition Date
Cloud

%
Bands Used for

Modeling
Spatial Resolution (m) Central Wavelength (nm)

S-2 L1C
Product

T47RLL on
26 January 2017 3.63

B2 (blue) 10 490
B3 (green) 10 560

B4 (red) 10 665

T46QHL on
5 February 2017 0.18

B5 (red edge) 20 705
B6 (red edge) 20 740
B7 (red edge) 20 783

B8 (NIR) 10 842
B8A (red edge) 20 865

B11 (SWIR1) 20 1610
B12 (SWIR2) 20 2190

The individual application of spectral values in a predictive model could not give a re-
liable estimation compared to when using combined VIs. In addition to the spectral bands,
VIs were calculated based on the original reflectance bands in the raster calculator tool. The
plot-level vegetation index mean values were extracted using the zonal statistics tool of
ArcGIS, and using the plot size (0.08 ha) to match the AGB calculations. In this study, the
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normalized difference vegetation index (NDVI) [53], red-edge normalized difference vege-
tation index (RENDVI) [54], weighted difference vegetation index (WDVI) [55], enhanced
vegetation index (EVI) [56], red-edge enhanced vegetation index (REEVI) [57], soil-adjusted
vegetation index (SAVI) [58], green-normalized vegetation index (GNDVI) [59], normalized
difference water index (NDWI) [60], simple ratio (SR) [61], normalized difference vegetation
index with bands 4 and 5 (NDI45) [62] and meris terrestrial chlorophyll index (MTCI) [63]
were calculated. The detailed formulas for VIs calculation are described in Table 2.

Figure 2. The original Sentinel-2 L1C image (a) and atmospherically corrected image L2A (b), and
the original (c) and corrected (d) spectral curves for a test vegetation pixel.
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Table 2. List of Sentinel-2-derived variables and topographic factors used in AGB modeling.

Satellite Data Bands and Indices Formula

Sentinel-2
Level-2A

10 m-resolution

Multispectral bands

Band 2 BLUE
Band 3 GREEN
Band 4 RED
Band 5 RE1
Band 6 RE2
Band 7 RE3
Band 8 NIR

Band 8A RE4
Band 11 SWIR1
Band 12 SWIR2

Vegetation indices
(Broad bands)

NDVI NIR − RED/NIR + RED
SAVI 1.5 × (NIR − RED)/(NIR + RED + L)
EVI 2.5 × (NIR − RED/NIR + 2.4RED + 1)

GNDVI (NIR − GREEN)/(NIR + GREEN)
WDVI (NIR − 0.5 × RED)

SR (NIR/RED)
NDWI NIR − SWIR2/NIR + SWIR2
NDI45 (RE1 − RED)/(RE1 + RED)
MTCI (RE2 − RE1)/(RE1 − RED)

Vegetation indices
(Narrow red-edge bands)

RENDVI NIR − RE1/NIR + RE1
REEVI 2.5 × (NIR − RE1/NIR + 2.4RE1 + 1)

Resampled SRTM DEM (10 m)
Elevation Ele -

Slope Slope -
Aspect Asp -

2.2.2. SRTM Data Pre-Processing and Variables Extraction

SRTM topographic data were downloaded from the USGS EROS Data Center. Avail-
able online: https://www.earthexplorer.usgs.gov/ (accessed 23 March 2022). These eleva-
tion data offer worldwide coverage of void-filled data at a resolution of one arc-second (ap-
proximately 30 m) and a high-resolution global dataset. These topographic data were first
reprojected into UTM/WGS84 since the projection system of these data are GCS/WGS84.
To match with S-2 spectral bands, they were also resampled to 10 m spatial resolution
using the nearest neighbor method in the ArcGIS package. Then, from this resampled
dataset, two forest reserves boundaries were clipped and the elevation, slope and aspect
were similarly extracted using the zonal statistics tool in ArcGIS (Table 2).

2.2.3. Texture Features Extraction

Principal component analysis (PCA) can be used to remove correlated or redundant
information in the satellite images and simultaneously reduce their dimensionality [34].
The first three principal components were produced as the potential image variable for
modeling AGB. The first principal component (PC1) was used for texture extraction as it
contained over 80% of the original spectral information. When extracting textural features,
the gray level co-occurrence matrix (GLCM) method and wavelet decomposition method
were applied. Among these, the GLCM textures including the mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation were extracted with differ-
ent window sizes (3 × 3, 5 × 5, 7 × 7) from the PC1 image in the ENVI5.3 package (Table 3).
In this study, the GLCM-based textures derived from a 7 × 7 window size were selected as
predictive variables for AGB estimation after the correlations of different window sizes’
textures with the measured AGB were tested.
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Table 3. Gray level co-occurrence matrix-based textural measures extracted in the current work.

Data GLCM Texture Formula Reference

PC1 image from 10 m
resolution bands of
S-2 L2A

mean ∑N−1
i,j=0 iPi,j

Robert [64]

variance ∑N−1
i,j=0 iPi,j(1 − μi)

homogeneity ∑N−1
i,j=0 iPi,j/(1 + (i − j)2)

contract ∑N−1
i,j=0 iPi,j(i − j)

dissimilarity ∑N−1
i,j=0 iPi,j|i − j|

entropy ∑N−1
i,j=0 iPi,jInPi,j

second moment ∑N−1
i,j=0 iPi,j2

correlation ∑N−1
i,j=0(i(

N−1
∑

i,j=0
ijPi,j2 − μiμi)/σi2σi2)

Additionally, the wavelet analysis was also considered to be an effective means of
extracting textures. Wavelet transformation is a multi-resolution analysis tool for image
signal processing, which has two distinct abilities: subtle variation in spectral features
in the original data can be detected at different scales and the useful information can be
represented by fewer wavelet features by compressing data [51]. The wavelet analysis
produces four basic components including the approximation image, horizontal detail,
vertical detail and diagonal detail images of which the latter three are usually regarded as
helpful textural measures. In this study, the Coiflect discrete wavelet function was chosen
after repeated tests with different mother wavelets (the Haar wavelet, Daubechies (dbN)
and Symlets (symN)) in the Matlab package because it had the highest correlation with
AGB. Thus, based on the first principal component (PC1), a three-level decomposition
strategy was implemented through programming in the Matlab environment to generate
9 detailed images as independent textural variables for AGB modeling. Finally, two types
of textures derived from GLCM-based and wavelet analysis were included in the AGB
modeling in this study. The Coiflet wavelet-based decomposition procedure is summarized
in Figure 3.

 

Figure 3. Process of the Coiflect discrete wavelet decomposition for the PC1 of the original Sentinel-2
satellite images. L1–L3 is the decomposition level, and the first column shows the approximation
images; the second column shows the images of horizontal details; the third column shows the
images of diagonal details and the fourth column shows the images of vertical details.
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2.2.4. Field Forest Inventory Data

Myanmar’s Forest Department conducted the national forest inventory (NFI) data
collection in February and March of 2017 with the financial support of the Finnish govern-
ment and according to the guidelines of the FAO technical team. These secondary forest
inventoried data were used to estimate and infer the plot-level AGB of the study area.
The sampling design of Myanmar’s NFI is shown in Figure 4. The systematic sampling
method was constructed according to the eco-regions of Myanmar in order to cover all
forest types. However, due to inaccessibility, no sample plots were collected for some areas
in the NM (Figure 1c). Each sampling cluster comprises four 0.08-hectare circular subplots
(Elbow, East, North and Northeast) in which the distance between adjacent subplots is
50 m. Within these circular subplots, all trees above 10 cm diameter at breast height (DBH)
were measured to record data, including the DBH, tree height (H), and crown width. The
diameter tape and Leica laser finder were used to measure the DBH and H of trees. Other
forest parameters such as shrub cover, sapling cover, bamboo coverage, humus depth, litter
coverage, and tree bark thickness were also collected in all sample plots. Ultimately, data
collection was performed in 88 subplots in NH (evergreen forest) and 170 subplots in YM
(deciduous forest).

 

Figure 4. Field forest inventory sampling design in Myanmar. Source: Planning and Statistics
Division, Forest Department of Myanmar.

2.2.5. Allometric Equation and Calculated AGB

Since the species-specific allometric equations are not available for the study region,
we had to use the unpublished national-level coarse allometric equations for evergreen
forest and broad-leaved forest to calculate the plot-level AGB. The AGB formulas were
as follows:

For NH Evergreen, AGB = ρ1 × exp
(
−1.499 + 2.148 ln(DBH) + 0.207(ln(DBH))2 − 0.0281(ln(DBH))3

)
(1)
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For YM Deciduous, AGB = ρ2 × exp
(
−0.667 + 1.78 ln(DBH) + 0.207(ln(DBH))2 − 0.0281(ln(DBH))3

)
(2)

where, AGB is in kg per tree, DBH is in cm, ρ1 and ρ2 are the basic wood density parameters
for evergreen forest and deciduous broad-leaved forest, respectively.

Using the national level biomass expansion factors Equations (1) and (2), AGB was
computed for each tree and summed up by each plot to obtain plot-level AGB. Finally,
the plot-level field AGB values were converted from kg/plot into ton/ha. Therefore, the
AGB unit in this study was t/ha. Table 4 shows the descriptive statistics of the field-
observed AGB.

Table 4. Descriptive statistics of the field-measured AGB (t/ha) for the two forest reserves.

Forest Type
Number of

Sample Plots
AGB (t/ha) Value

Range Median Mean
Std.

Deviation

Number of Sample Plot Used in Modeling

Training Validation

Evergreen 88 0.57–151.64 38.40 49.00 39.206 71 17
Deciduous 170 2.74–215.24 100.02 98.00 51.73 140 30

2.3. Aboveground Biomass Detection Methods
2.3.1. Prediction Model Establishment

In this study, Random Forest (RF) and stochastic gradient boosting (SGB) models
were first performed for AGB prediction. Then, based on the better one (RF or SGB), the
predicted residuals (the difference between the observed AGB and the model-predicted
AGB) were further analyzed and compared using ordinary Kriging (OK) and the co-Kriging
(CK) to separate the structured components hidden in the residuals, followed by adding
the better structured components onto the better model predictions to obtain the final AGB
predictions. The detailed modeling approaches are summarized as follows:

Random Forest and Stochastic Gradient Boosting Models

Parametric and non-parametric models have been utilized either alone or combined
with environmental variables for remote sensing-based AGB mapping. Nevertheless,
choosing the suitable variables set and modeling algorithm is critical for the improving the
accuracy of prediction model.

The RF model is a bagging algorithm which enhances accuracy and reduces overfitting
and bias [65]. SGB is a boosting ensemble method with low sensitivity to outliers, with
the ability to deal with unbalanced training datasets [44]. Both models are non-parametric
modeling approaches which have a performance superior to those of other machine learning
techniques such as the K-nearest neighbor (KNN), support vector machine (SVM), and
the multivariate adaptive regression splines (MARS) [66,67], which is increasingly being
applied to satellite-based biomass mapping [9].

In view of these advantages, in the current study, the RF and SGB models were per-
formed as the first attempt to predict the AGB of the two forest reserves (NH and YM). The
RF model was implemented in the “randomForest” package [68] within R Studio. This
package supports the chart that illustrates the GI-index and OOB error rate to determine the
most important modeling variables. From this comprehensive chart, preference variables
can be selected for a prediction model to reduce the complexity and load of computa-
tion. In the RF regression analysis, the variables’ importance ranking was determined
by out-of-bag (OOB) error and node-purity percent (IncNodePurity). The first variable
importance analysis was calculated by randomly permuting each predictor variable and
computing the associated reduction in predictive performance using the out-of-bag (OOB)
error. The second most important variable was estimated by determining the decrease in
node impurities attributable to each predictor variable. Larger InNodePurity and %InMSE
indicate higher model accuracy in terms of ranking variable importance. Parameters such
as the number of trees (ntree), the number of variables used to split the tree at each node
(mtry), and node size are adjustable for the RF model. For RF-prediction models in this
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study, after multiple tests, the ntree, mtry and nodesize were specified to be 600, 4, and 5
for the evergreen forest (NH) and 1400, 2, and 5 for the deciduous forest (YM), respectively.

The SGB algorithm is based on the combination of the regression tree and boosted
algorithms to predict the response variable. This algorithm also reduces the chance of
overfitting by introducing an element of stochasticity due to its flexibility and high predic-
tive performance. Unlike RF, a tree is constructed from a different random sub-sample of
the dataset in the SGB model, producing an incremental improvement in the model. In
this study, all steps of the SGB analysis were implemented in the “gbm” package in the
R-studio [69]. The “vip” function in the “gbm” package was also used for the selection
of important variables for the SGB model. The SGB model adjustment includes the dis-
tribution, interaction depth, bagging fraction, shrinkage rate, and training fraction. The
out-of-bag method was used for determining the optimal number of boosting iterations.
The maximum iteration tree was stopped at 420 in the evergreen forest AGB (NH) SGB-
prediction model and 600 at the deciduous forest AGB (YM) SGB-prediction model, as more
iteration tree numbers could no longer improve models’ accuracy. The interaction depth,
also known as the maximum number of possible interactions, was set to 3 and 4 nodes for
the NH and YM SGB-models, respectively. The bagging fraction controlling the fraction of
the training data, the shrinkage rate controlling the learning speed of the algorithm, and
the training fraction randomly selected for calculating each tree were set to 10, 0.03, and 10
for both SGB models (NH and YM).

Once the RF and SGB models were created for the two forest reserves, their predictive
performances in AGB estimation were compared to determine the better model; then,
based on this model, all the residuals resulting from the model were further analyzed
by implementing OK and CK autocorrelation algorithms to separate the structurized
component or trend item hidden in the residuals.

Random Forest-Based Kriging Model

In this study, RF performed better than SGB in both the NH and YM AGB prediction
models in terms of accuracy evaluations; thus, to improve the accuracy of RF models or
finding the spatial correlation of AGB samples, RF-based OK and CK analyses (RFOK and
RFCK) were also performed as subsequent steps. Since the RF model does not consider
spatial autocorrelation among the AGB sample plots, AGB is actually a typical item with
relatively high spatial autocorrelation; thus, a combination of RF and Kriging (RFK) was
potentially an effective and more reliable means of determining the spatial distribution
of AGB in this study. Specifically, a regression-Kriging technique was used to extract
the structured components of the residuals obtained from the RF regression [70]. As the
procedure of Kriging interpolation, the modeling semivariogram is important to determine
the accuracy and reliability of the estimates. Kriging includes ordinary Kriging (OK) and
co-Kriging (CK) in which OK is a suitable interpolation method for the uneven distribution
of terrain and climatic variation events, while CK is the best method for improving the
accuracy of target prediction [22]. OK is a linear estimation method suitable for inherently
stationary random fields which satisfies the isotropic hypothesis [71] and fully considers
spatial parametric non-stationarity as well as the effects of environmental variables derived
from the benefits of RF. It is a widely used geostatistical technique that generates an optimal
unbiased estimated surface employing a semivariogram based on regionalized variables.
The interpolation formula of OK is as follows:

ZOK
∗(x0) = ∑n

i=1 λiZ(xi) (3)

where ZOK * (x0) is the residual value of the AGB to be estimated at location x0, n is the
number of sample points used for interpolation, Z(xi) is the AGB residual of site i, and λi is
the weighting coefficient at point i.

CK is an improvement over the OK method and deals with multivariate problems [22].
Since the study areas include two reserved forests with different terrains, AGB is definitely
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affected by elevation. Thus, the elevation factor was used as a co-variable for interpolation.
This was expressed as follows:

Z2,CK
∗(x0) =

N1

∑
i=1

λ1iZ1(x1i) +
N2

∑
j=1

λ2jZ2
(
x2j
)

(4)

where Z2,CK
∗(x0) is the residual values of AGB to be estimated, Z1(x1i) is the AGB residual

of the site i, λ1i is the weighting coefficient of site i, Z2
(
x2j
)

is the elevation of site j, and λ2j
is the weighting coefficient of site j.

Variograms are an effective tool for analyzing the spatial variation and structure of
target predictors for the reliable estimation of AGB. The performance of the semivariogram
was assessed by the coefficient of determination (R2) and the root mean square error
(RMSE). The larger the R2, the smaller the RMSE and nugget effect, and the better the fitting
performance was.

In RF-Kriging modeling, the estimated residual value of each sample point was
calculated by subtracting the RF-derived predicted AGB value from the field-observed
AGB value. It can be calculated as follows:

Z(xi) = C(xi)− C R̂F(xi) (5)

Final AGB prediction by RFOK or RFCK method was acquired by the following equation:

C R̂FOK/RFCK(xi) = C R̂F(xi) + Z K̂(xi) (6)

where C R̂FOK/RFCK(xi) is the predicted AGB at site i using RFOK or RFCK, where Z K̂(xi) is
the AGB residual value of site i, C(xi) is the observed AGB of site i, C R̂F(xi) is the RF-based
predicted AGB at site i.

Finally, the maximum livelihood classifier in ENVI Classic 5.3 was applied to classify
the forest and non-forest areas of the study area. The resulting classified forest area was
used as a mask to obtain the forest AGB maps of the study area.

2.4. Accuracy Assessment

The training and validation sets were determined as 80 and 20% of the sampled data
using stratified sampling for all statistical analyses. Model performances were assessed
based on the coefficient of determination-R2, the mean absolute error (MAE), the root mean
square error (RMSE), the RMSE%, bias, and bias%, based on the validation set (20% of
samples). In addition, the relative improvement (RI) index for assessing RFOK and RFCK
over RF models was also performed (7):

RI =
RMSERF − RMSERFOK/RFCK

RMSERF
(7)

where, RMSERF is the root mean square error from RF predicted model, ̂RMSERFOK/RFCK
is the root mean square error from RFOK and RFCK models, respectively.

3. Results

3.1. Variable Importance and Selections

In the RF variable importance analysis, the %IncMSE by OOB error and %InNodePu-
rity by Gini index are indicators of the importance ranking. The topmost important
variables picked up by the evergreen NH and deciduous YM RF models are shown in
Figure 5a,b. For the generalizing the model and reducing the computation load, only the
top 10 variables were selected as the final RF model inputs. S-2 derived the reflectance,
Vis and textures from the wavelet decomposition, and the topographic variables were
included in the list. In the RF model, topographic variables and textures from WA were
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major contributors to the evergreen NH forest AGB estimation, while VIs showed better
sensitivity to deciduous AGB.

 

Figure 5. The importance ranking of the top 10 variables identified by (a) evergreen RF model;
(b) deciduous RF model; (c) evergreen SGB model; and (d) deciduous SGB model.

In the variables analysis for the SGB model, the lowest RMSE could be found for an
interaction depth of 3, a shrinkage ratio of 0.03, and 420 iterations in the evergreen forest
reserve. For the deciduous forest reserve, an interaction depth of 4, shrinkage ratio of
0.03, and 600 trees were the best parameters for model fitting. Figure 5c,d show the most
important variables of SGB models for evergreen NH and deciduous YM AGB estimation.
In SGB models, topographic variables and textures from WA were identified as major
contributors to the NH evergreen AGB estimation, while VIs had better sensitivity for the
deciduous AGB prediction. According to the variable importance analyses in the RF and
SGB models, the variables did not differ a great deal in terms of their sensitivity to AGB in
same forest types.

3.2. Validation Metrics for RF and SGB Models

Among the sample plots, 80% were used for training the models (RF and SGB). For
the RF evergreen model training, the optimum model accuracy was obtained from the
following parameters, ntree = 600, mtry = 4 with nodesize = 5, considering the important
predictors. The adjusted parameters values of ntree = 1400, mtry = 2 and nodesize = 5
were selected for the RF deciduous model. The RMSEs values of 11.17, 17.36 t/ha and
corresponding RMSE%s 23.06 and 17.45 were obtained while the R2 values were 0.95 and
0.97 for evergreen and deciduous training models. It was also observed that the bias and
bias% of the evergreen training models were −0.59 and −1.20%, while the deciduous
model obtained −0.011 and −0.11%, respectively. The smallest RMSE value was observed
in the evergreen forest since the AGB values of the training plots in this type were smaller
than those of the deciduous forest (Table 4).

Depending on the shrinkage ratio, the interaction depth, and the number of regression
trees, the two SGB model performances were evaluated. The SGB evergreen model resulted
in an R2 value of 0.98 and an RMSE of 4.62 t/ha with the corresponding RMSE%, bias and
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bias% of 9.45, −1.24 and −2.54, respectively. In the trained model of SGB for the deciduous
forest, the R2, RMSE, RMSE%, bias and bias% were 0.97, 8.83, 8.88, −3.02 and −3.04.

In addition to model training, 20% of the sample plots were used for model validation.
Figure 6 and Table 5 show the validation metrics for RF and SGB models. The R2 values of
the NH evergreen RF model and NH SGB model were 0.47 and 0.35, respectively, while
RMSEs values of those models were 25.45 and 32.02 t/ha, respectively. Meanwhile, the
R2 and RMSE values of the YM deciduous RF model and YM SGB model were estimated
to be 0.38, 0.35 and 40.23, 41.85 t/ha. In the scatter plots of Figure 6, the points along the
fitted lines showing the correlation of predicted and observed AGB are scattered in both
NH and YM, which showed large AGB values which were underestimated and small AGB
values which were overestimated. Nevertheless, by considering the validation models’
metrics, the RF models had higher R2, lower RMSE, and bias values than SGB models in
the biomass estimation at each growth stage, indicating that the RF models can provide
more accurate biomass estimations than SGB; thus, the residuals from the RF model were
further analyzed to attempt to extract the structured components from the residuals to
possibly improve the ultimate prediction accuracy of AGB.

 

Figure 6. The scatter plots for validation metrics of RF, SGB, RFOK, and RFCK models.
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Table 5. Validation metrics of RF, SGB, RFOK, and RFCK models based on 20% of the sampled data.

Forest Type Model R2 RMSE
(t/ha)

RMSE% MAE (t/ha) Bias Bias% RI

NH Evergreen RF 0.47 25.45 51.44 22.45 0.15 0.29 -
NH Evergreen SGB 0.35 32.02 64.72 27.03 2.48 5.03 -
NH Evergreen RFOK 0.47 24.91 50.34 22.19 3.35 6.76 0.021
NH Evergreen RFCK 0.46 25.75 52.04 57.67 −49.27 −99.57 −0.011
YM Deciduous RF 0.38 40.23 44.09 33.07 6.18 6.77 -
YM Deciduous SGB 0.35 41.85 45.88 33.00 6.91 7.58 -
YM Deciduous RFOK 0.52 34.84 38.19 27.51 0.30 0.33 0.134
YM Deciduous RFCK 0.52 34.72 38.06 27.47 0.06 0.06 0.137

3.3. Semivariogram Analysis Results of RF-Derived Residuals

Residuals of the RF-predicted AGB were derived by subtracting the RF-predicted
AGB from the field-measured AGB. Table 6 shows the statistics of the residuals. The
mean residual values for the evergreen and deciduous AGB were −0.91 and −1.60 t/ha,
respectively. In addition, the residual value range of the deciduous forest (82.43 t/ha) was
much higher than that of the evergreen forest (34.52 t/ha). The standard deviation of the
evergreen residuals (15.38 t/ha) was smaller than that of the deciduous (23.12 t/ha). The
residual values were shown in different colors and sizes based on their distribution in
Figure 7. As shown in the histogram distribution in Figure 7, the residual values of the
evergreen forest were not close to normal distribution while deciduous residuals were
approximately normally distributed. Nevertheless, the procedure of the semivariogram
analyses for both forest reserves was performed for testing the accuracy of the models.

Table 6. Residual’s statistics derived from the RF model prediction.

Forest Type
Residual

Mean
(t/ha)

Std. Deviation (t/ha)
Value Range

(t/ha)
Skewness Kurtosis

NH
Evergreen −0.91 15.38 −45.90–34.52 −0.31 3.57

YM
Deciduous −1.60 23.12 −75.97–82.43 −0.03 4.50

After the normality of the residuals was verified in SPSS, these residual values could
be used for semivariogram analysis based on the ordinary Kriging (OK) and the co-Kriging
(CK) in the semivariance analysis. The model with the largest R2 and smallest RMSE was
determined as the optimal analytical function of the semivariogram. As a result, Gaussian
function was picked up (Table 7). Furthermore, elevation was used as a co-variable in
the CK model for the better estimation of AGB. Table 7 and Figure 8 show the modeled
semivariogram and semivariance models using OK and CK analyses. Evergreen forest
models were poorly fitted; the R2 values were much lower than those of deciduous models
(0.19-OK and 0.15-CK versus 0.58-OK and 0.62-CK). The nugget value in the OK model
of the evergreen AGB residuals was slightly smaller than that of the corresponding CK
model, indicating stronger spatial homogeneity. In the CK model of deciduous residuals,
the nugget value was also smaller than that of the OK model. Moreover, the ratio of nugget
and sill (nugget/sill) determined the variation of spatial autocorrelation between the AGB
sample plots. From the OK models, the smaller nugget/sill ratio (0.95) exhibited stronger
spatial homogeneity than the CK model with nugget/sill (0.99) for evergreen residuals.
In the deciduous residuals, CK gave a smaller nugget/sill (0.74), indicating a stronger
spatial correlation by considering elevation as a co-variable. This meant that deciduous
forest AGB varied closely in space with the terrain variations. The improvement was not
obvious in the evergreen OK and CK models compared to the evergreen RF model since the
residuals were not normally distributed because of the existence of a spatial gap between
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the evergreen sample plots that restrict the principle of spatial correlation (Figure 7a). Thus,
the OK model could not serve to fit the spatial patterns of the residuals in the evergreen
forest AGB, while the CK model performed better in terms of fitting the spatial patterns
of the residuals in the deciduous forest AGB in the study area when considering their R2

and RMSE values. Nevertheless, these residuals were used to interpolate their structured
components in the evergreen and deciduous forests, respectively.

Figure 7. Spatial distributions of the residuals and corresponding frequency histograms; (a,c) are
RF-based AGB-residuals for NH evergreen and YM deciduous, respectively; (b,d) are frequency
histograms of AGB-residuals for NH evergreen and YM deciduous, respectively.

Table 7. Parameter estimations for the semivariogram analysis based on Gaussian function.

Model Parameter Theoretical Model Nugget Sill Nugget/Sill
Range

(m)
R2 RMSE

(t/ha)

NH Evergreen OK Gaussian 138.53 145.09 0.95 99.57 0.19 12.42
NH Evergreen CK Gaussian 249.63 249.75 0.99 9611 0.15 18.69
YM Deciduous OK Gaussian 245.93 324.58 0.76 10123 0.58 24.38
YM Deciduous CK Gaussian 239.97 326.26 0.74 9890 0.62 22.65
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Figure 8. Empirical semivariograms and covariance models for the two forest reserves’ RF-derived
residuals; (a,c) are the semivariogram models for NH evergreen and YM deciduous using OK analysis;
(b,d) are the semivariogram models for NH evergreen and YM deciduous using CK analysis with a
covariable of elevation. The vertical axis is the 1

2 variance (γ) and covariance (C) of the two positions
as the distance increases.

3.4. Forest AGB Mapping Results Based on RFOK and RFCK Models

The predicted AGB of the two forest reserves were obtained from the RFOK for the
evergreen and RFCK for the deciduous forests, and the validation performances with
20% sample data based on Equation (6) were correspondingly derived. Table 5 shows the
validation accuracy improvements of RFOK and RFCK in relation to the initial RF model.

Although the R2 value (0.47) of the RFOK model for evergreen did not increase
compared to the original RF model, its RMSE, RMSE% and MAE all decreased with
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different magnitudes, and its RI value was 0.02, indicating a slight improvement in AGB
prediction. However, the RFOK had the worst predictive performance in the evergreen
forest. For the deciduous forest, the RFCK model outperformed other two RFOK and RF
models, particularly in relation to the RF, as the RFCK’s R square value increased from
0.38 to 0.52 and its RMSE decreased from 40.23 t/ha to 34.72 t/ha, with an RI value of
13.7%. However, compared to RFOK, RFCK only took on a very tiny improvement in the
prediction accuracy.

In addition to the model evaluation, the generalization ability of the model was also
considered. The AGB value range of the predicted map could reflect the model’s robustness
to some extent. The range of AGB values predicted for the evergreen using the RF model
was 88.75–129 t/ha. The AGB prediction value range from RFOK was 94.3–139.83 t/ha
and the RFCK had a value range of 94.06–139.62 t/ha, respectively. The AGB prediction
value range in the deciduous was 40–176 t/ha, 30.41–187.84 t/ha, and 32.88–185.65 t/ha for
RF, RFOK, and RFCK. These variations in the value range clearly indicated an improved
generalization ability of RFOK and RFCK, with higher robustness. The largest evergreen
AGB values were found in the northern and western boundaries of NH while the AGB in
the central and eastern parts were sparsely distributed. In this area, the low AGB values
were found close to a village and flat area. Deciduous AGB was covered with large values
in some parts of northern YM, and they were evenly distributed in the reserved area, except
in the southeastern boundary which is close to a village. The AGB maps derived from all
performed models are shown in Figures 9 and 10.

Figure 9. The estimated AGB of evergreen forests in the NM from (a) RF, (b) RFOK, and (c) RFCK
models, and the calculated residuals for (d) RFOK and (e) RFCK models.
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Figure 10. The estimated AGB of deciduous forests in the YM from (a) RF, (b) RFOK, and (c) RFCK
models, and the calculated residuals for (d) RFOK and (e) RFCK models.

4. Discussions

To the best of our knowledge, this is the first study evaluating the capability of S-2
satellite data for AGB mapping in evergreen and deciduous forest reserves in Myanmar.
AGB mapping in these forest reserves is very fundamental for carbon strategies, especially
for Myanmar REDD+ mechanisms which need to report the carbon improvement of forests
from reforestation programs for future FREL submission. Moreover, the prediction methods
proposed in this study are noticeably relevant for future forest management practices
in Myanmar, which previously exhibited a lack of robust AGB estimation methods for
forest types. We proved that THE combined use of S-2, its derivatives, and topographic
parameters, in tandem with proper modeling techniques, could improve AGB estimation.

4.1. Sensitivity of Sentinel-2 Derivatives to AGB

The correct selection of variables contributing to a model is critical for AGB esti-
mation. In most AGB mapping studies with S-2 derivatives, four novel wavebands in
the red-edge region and near-infrared region (NIR) (B5, B6, B7 and B8A) showed good
performance [16,72]. These reflectance regions offer unprecedented spectral signatures
which are highly sensitive to the biophysical and biochemical responses of vegetation that
are critical for measuring vegetation characteristics such as biomass [72]. However, in this
study, the classical and short-wave infrared bands (B2, B3, B4, B11, and B12) outperformed
these aforementioned spectral bands. The excellent performance of these bands is that
carbon and nitrogen-containing metabolites reach their reflectance peak in wavebands be-
tween 440 nm and 570 nm due to the nature of the forests in the study area (B2 and B3) and
concurred with the previous study [73]. Forest canopy in the evergreen forest can uptake
maximum chlorophyll absorption due to non-deciduous phenomena. B3 and B4 in the
S-2 have strong sensitivity to chlorophyll in evergreen vegetation, while B2 can effectively
distinguish vegetation and soil background in the deciduous forest where the reflectivity of
soil is apparent because of the simple canopy structure. Even though vegetation can reflect
the maximum energy at NIR despite the fact that it is unable to provide any information on
the soil under the vegetation, SWIR bands in S-2 can distinguish the vegetation and soil to
some extent. A recent finding by Chen et al. verified that SWIR spectral bands (B11) could
efficiently detect the moisture content of vegetation [37]. Moreover, Dang et al. proved
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that the broad bands (B11, B12) of S-2 were the best response variables of AGB prediction
with an R2 of 0.81 and an RMSE of 36.67 Mg t/ha [6]. Hence, the high sensitivity of SWIR
bands to biomass observed in this study seems plausible, which is in agreement with the
existing studies.

The VIs used in this study (NDVI, GNDVI, SAVI, SR, RENDVI, NDI45, and NDWI)
were primary contributors to the AGB estimation of forests since they have the ability
to maximize the sensitivity of vegetation characteristics and minimize soil background
reflectance and atmospheric effects. Balidoy et al. proved that the SR and NDVI of S-2
data were the most effective biomass predictors, providing the highest accuracy (R2 = 0.89;
RMSE = 5.69 Mg/ha) [74]. Ghosh et al. found that the effectiveness of NDVI, GNDVI, SAVI
indices of S-2 for dense tropical AGB mapping had an R2 value of 0.6 and an RMSE value
of 79.45 t/ha for the teak forest [35]. The findings of Pandit et al. were entirely consistent
with those of this study. The set of 24 variables including NDVI, GNDVI, RENDVI, SAVI,
and SR produced overall plausible and strongly explained variable values, with R2 = 0.81
and RMSE = 1.07 kg/m [72]. Although VIs produced from traditional broad bands can
reduce the saturation problem in simple canopy forest, they are less sensitive to complex
forest stands with high biomass values [75]. In this regard, the red-edge bands derived
indices are highly sensitive to such kind of dense vegetation structures and relatively less
prone to spectral saturation. For example, the standard NDVI from B4 and B8 is less
effective than RENDVI from red-edge bands (B5, B8) in AGB estimation [76] and hence
red-edge-derived indices can be effectively applied in dense vegetation cover (e.g., RENDVI
is sensitive to the NH evergreen forest AGB in the current work). SWIR bands are related
with nitrogen, lignin, and cellulose, capable of retrieving canopy structural attributes and
biomass. Canopy water content index from SWIR bands (e.g., NDWI in this work) is highly
sensitive to deciduous forest AGB but not to evergreen AGB because canopy structure in
deciduous forest is relatively simple, which is in agreement with the previous findings of
Ewald [77]. They pointed out that in the very dense canopy plantation, SWIR indices could
not effectively improve AGB estimation compared to other indices. This study claims that
red-edge indices are suitable for complex canopy AGB retrievals while SWIR indices are
useful for simple canopy forest AGB estimation.

The textural variables are strongest candidates of evergreen forest AGB, especially the
textures (coif1-d, coif1-dd, and coif1-hh) extracted from Coiflect wavelet analysis of the
PC1 image. They could obviously improve the AGB estimation as the horizontal structures
of the evergreen forest can be effectively characterized by them. Previous research had
shown that texture measures have the potential to improve AGB estimation, especially for
complex vegetation structures where canopies’ reflectance values tend to be saturated but
the horizontal structures represented by textural indices still have differences. If proper
processing techniques are used, textural measures could improve the prediction accuracy
of AGB models. According to Eckert et al., textures were much better to capture the various
forest canopy structures of the forest strata than the spectral reflectance or band ratios, due
to their sensitivity to the spatial aspects of the canopy shadow [78]. Su et al. proved the
excellent performance of textures from the PC1 image for AGB prediction of sub-tropical
forest where saturation problem occurred [22]. Moreover, Cutler et al. argued that the
textures extracted from GLCM method and the WA of satellite images yielded better
results in the AGB estimation and forest type classification [79]. Our results concur with
aforementioned studies. However, in this study, GLCM-based textures were not highly
correlated with AGB. The reason might be that the window size (7 × 7) could not reduce
the border effects of pixels to attain original spectral values and thus, texture window size
determination should be considered in accordance with the types of satellite data in future
studies. We conclude that the wavelet decomposition analysis of satellite images might
improve evergreen forest AGB estimation because it produces more suitable textures to
effectively depict evergreen forest horizontal structures to reduce the saturation problem of
spectral signals.
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4.2. Sensitivity of Topographic Variables to AGB

Topographic features (elevation and slope) were also strong predictors of AGB in this
study. The vital role of topography is also an important factor influencing AGB because
water and sunlight storage change in function of topography [80]. Chen et al. proved
that elevation was the strongest factor for complex AGB estimation in China [37]. Slope
inclination was also a strong factor affecting AGB in the evergreen forest, since the terrain
in this area is mountainous with different sunlight and water detention levels by its varying
geomorphological characteristics while deciduous forest is not affected by slope by growing
its trees over sandy soil flat surface. This finding is consistent with the proof of Hamere et al.,
which claimed that AGB carbon, BGB carbon, and the total carbon density trend showed
a decrease as the slope increased due to the little vegetation cover in very steep slope
areas [81]. In addition, in the accessible flat area of nearby settlements and stream banks,
the anthropogenic effects might decrease AGB values. Therefore, topographic factors
ultimately affect the AGB observed in this study.

4.3. Comparison between Models

This study evaluated the two modeling techniques (RF and SGB) for AGB mapping in
two forest reserves and indicated a saturation problem of S-2 d satellite data, thus causing
the presence of bias in the AGB prediction models. The NH evergreen RF model estimated
the smaller AGB value of 129 t/ha than the observed AGB value of 151.64 t/ha. Similarly,
the estimation of the YM deciduous forest AGB value (176 t/ha) was smaller than the
field-observed AGB value (215.24 t/ha). The scatterplots in the validation metrics of this
study indicated the limitation of the classical wavelength bands in the S-2 MSI sensor when
dealing with saturation in high biomass stands. From the important variables ranking, the
candidates of the classical wavelength region and topography such as B3, B4, Ele, Slope,
and one vegetation index SAVI in the evergreen forest, and B11, B12, NDWI, and GNDVI
in the deciduous forest were high ranked while no red-edge reflectance was correlated
with AGB. This ranking affects the performance of models since the improvement in red-
edge bands features was relatively larger than that in classical bands and topographic
variables. This assumption was proven by previous studies of Forkuor et al. [76] and
Nuthammachot et al. [30]. Additionally, Chen et al. suggested that the broadleaved
forests with AGB values above 160 t/ha could be underestimated because of the saturation
problem in S-2 satellite data [82]. The observed AGB value in the YM deciduous forest was
215.24 t/ha and thus should agree with the finding of Chen. An almost similar ranking in
variables was observed in the two SGB models but the two models could not improve the
estimation when considering their performances in prediction. Thus, these SGB models
occurred and similar saturation problem was found in the RF models.

In order to optimize the estimation, the Kriging interpolation analysis of the residuals
from RF models (RFK) was further employed since the RF showed better performance than
SGB in this study. Our study claimed that the ordinary Kriging of RF’s residuals (RFOK)
performed better than other tested models in NH evergreen, while co-Kriging of RF’s
residuals (RFCK) with covariance elevation (Ele) provides a better result than other models
in YM deciduous AGB prediction. The limited contribution of the accuracy of the RFOK
model for the NH evergreen forest reserve was due to the poor spatial autocorrelation
between AGB samples which occurred due to the spatial gaps between the sample plots.
In the YM deciduous forest, RFCK achieved good prediction results, however, the spatial
correlations of the current AGB were also weaker than previous studies of Su et al. and
Chen et al. on forest AGB mapping based on the integration of multi-sensor and Advanced
Land Observing Satellite (ALOS) data [22,37]. It was denoted that AGB residuals from
the integration of the MSI and SRTM data model in this study obtained a lower spatial
correlation than that built by the integration of MSI and ALOS indices. This also proves
that AGB estimation from the combined MSI and SRTM data was only suitable for the
simple structure forest stand (e.g., deciduous forest in this study).
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Overall, we conclude that the accuracies of AGB prediction could be improved to a
certain extent by Kriging methods by reducing the spatial heterogeneity between AGB
samples. In the future, the accuracy of evergreen forest AGB estimation in this study
might be improved with LiDAR data since it can penetrate the forest canopy to a certain
depth, so that its variables are suitable for extracting vertical vegetation structures with
their sensitivity to the biomass of vegetation and the roughness of land cover surfaces.
The determinant of the spatial setting and a sufficient number of sample plots should be
considered in future AGB studies to maintain the Kriging accuracy. Additionally, the study
area is located in the regions where frequent rains and clouds exists, highly restricting the
availability of images collected in the vegetation growth peak season (e.g., June–September).
Therefore, we had to use cloud-free images acquired in January or February, which falls
outside the ideal time window for characterizing vegetation attributes. This limitation may
affect the accuracy of forest AGB prediction model.

In addition, an allometric equation for in situ AGB calculation may be another factor
undermining accuracy. This study used a national-level coarse allometric equation which
was based on an existing inventory dataset and pantropical equation (Chave et al., 2005,
Chen et al., 2013, and IPCC, 2003) for AGB calculation since there have been no species-
specific equations developed for this study area. In the near future, developing species-
specific allometric equations through limited destructive sampling should prioritize the
carbon accounting and climate change response studies in Myanmar because these create
more accurate in situ plot-level AGB measurements, laying a solid foundation for the
remote sensing-based regional estimation of AGB. In general, AGB estimated from the
RF model could yield acceptable results of validated R2 = 0.47, RMSE = 25.45 t/ha for
evergreen and R2 = 0.38, RMSE= 40.23 t/ha for deciduous from S-2 derivatives, topographic
variables and ancillary information.

4.4. Effects of Forest Management on AGB in the Study Sites

Population growth has led to a high demand for forest products, unsustainable forest
management practices, and high deforestation rates, thus causing forest cover loss. The
extent of the forest cover loss depends on the forest protection status with different rules
applying to public and reserved areas [83]. Forest protection typically reduces the conver-
sion of natural land cover types to alternative uses and often results in positive outcomes
(including reduced deforestation rates and the maintenance of forest cover) compared to
unprotected sites. In Myanmar, intact forests are gradually decreasing to only 38% of the
country’s forests due to the rapid political and economic changes. The study site comprises
two protected forests under Myanmar forest law. However, the expansion of the human
population and the need for more agricultural lands tend to encroach into these areas,
especially in the evergreen forest presently under study. Encroachment in protected forests
for agricultural lands, food, and fuels is directly correlated with loss in AGB values. On
the other hand, deciduous forests’ AGB values might be following a decreasing trend
because the demands for commercial timber species are increasing and AGB sources are
gradually decreasing. In this context, the spatial agreement of AGB was observed in the
estimated AGB maps derived from the RFOK evergreen and RFCK deciduous models. For
example, the small AGB values were estimated in the forest area closest to the villages and
cultivated lands while large AGB values were distributed in the high-elevation forest of
the NH evergreen forest reserve. A similar finding was observed in the YM deciduous
forest. To sustain the forest AGB in these areas, community-based forest management is
suggested to reduce these pressures as this would meet the needs of forestry products for
forest dwellers.

4.5. Attainment for SDG and REDD+

The UN SDGs set out the commitment of the international community to rid the world
of poverty and hunger and achieve sustainable development in its three dimensions—the
economic, social and environmental facets. In addition to using standardized national
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official data sources as the basis for monitoring and reporting on these goals and targets,
geospatial information and global/regional datasets have been identified as viable replace-
ment and complementary data sources for achieving these SDGs [84]. As the indicator
of SDG 15, the accurate estimation and monitoring of aboveground biomass stocks need
to be achieved. In this regard, the results of this study are applicable and useful for the
attainment of SDG 15, especially for Myanmar where freely available optical data are
preferred to map biomass stocks, and will greatly assist in the deriving, monitoring, and
reporting of carbon stock changes in a timely and accurate manner.

Myanmar has been implementing the REDD+ project to achieve SDG goals and targets
through sustainable forest management practices since 2013. The REDD+ objective is to find
an accurate method of biomass estimation that is also cost-effective. Based on the results
obtained in this study, S-2-derived derivatives (spectra, VIs, textures) and the topographic
features of SRTM (elevation, slope) have potential in the forest biomass estimation of
two forest reserves. In addition, the methods used in this study are viable and compatible
software has been developed (e.g., SNAP), in such a way that REDD+ can apply it at a
larger scale, including the national and regional levels. The outcomes of this study can
surely assist the evaluation of carbon stock changes via reforestation programs that will be
included in the upcoming FREL calculation under the REDD+ agenda of Myanmar.

5. Conclusions

This study investigates the performance of S-2 MSI derivatives and SRTM DEM
topographic data with field ancillary information based on two machine learning models
(RF and SGB) in mapping the forest AGB of two forest reserves (namely the NH evergreen
and YM deciduous forests) in Myanmar. In addition, the RF-based Kriging (RFK) was
employed for improving the prediction accuracy to find a spatial correction between the
AGB samples. Based on these findings, it is concluded that:

(1) S-2-derived reflectance, VIs, and textures are effective in predicting the AGB of the
two forests if the proper processing techniques are applied;

(2) The RFOK model in the evergreen forest and RFCK model in the deciduous forest
provided a more realistic spatial distribution of AGB by considering the spatial corre-
lation than the RF and SGB models with R2 = 0.47, RMSE = 24.91 t/ha and R2 = 0.52,
RMSE = 34.72 t/ha due to their spatial correlation between AGB sample plots;

(3) The extraction of textures from wavelet analysis (WA) is suggested to improve estima-
tion for the forests with a complex structure and saturation problems;

(4) In future studies, the accuracy may be improved by combining both the active and pas-
sive remotely sensed data to characterize complex forest structures to better estimate
the forest AGB and understand their spatial distributions.
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Abstract: Exploring the spatial distribution of land use/cover change (LUCC) and ecosystem carbon
storage under future climate change scenarios can provide the scientific basis for optimizing land
resource redistribution and formulating policies for sustainable socioeconomic development. We
proposed a framework that integrates the patch-generating land use simulation (PLUS) model and
integrated valuation of ecosystem services and tradeoffs (InVEST) model to assess the spatiotemporal
dynamic changes in LUCC and ecosystem carbon storage in Guangdong based on shared socioeco-
nomic pathways and representative concentration pathways (SSP-RCP) scenarios provided by the
Coupled Model Intercomparison Project 6 (CMIP6). The future simulation results showed that the
distribution patterns of LUCC were similar under SSP126 and SSP245 scenarios, but the artificial
surface expanded more rapidly, and the increase in forest land slowed down under the SPP245
scenario. Conversely, under the SSP585 scenario, the sharply expanded artificial surface resulted in a
continuous decrease in forest land. Under the three scenarios, population, elevation, temperature,
and distance to water were the highest contributing driving factors for the growth of cultivated land,
forest land, grassland, and artificial surface, respectively. By 2060, the carbon storage in terrestrial
ecosystems increased from 240.89 Tg in 2020 to 247.16 Tg and 243.54 Tg under SSP126 and SSP245
scenarios, respectively, of which forest ecosystem carbon storage increased by 17.65 Tg and 15.34 Tg,
respectively; while it decreased to 226.54 Tg under the SSP585 scenario, and the decreased carbon
storage due to forest destruction accounted for 81.05% of the total decreased carbon storage. Overall,
an important recommendation from this study is that ecosystem carbon storage can be increased
by controlling population and economic growth, and balancing urban expansion and ecological
conservation, as well as increasing forest land area.

Keywords: carbon storage; climate change; land use/cover change; scenario simulation; PLUS model;
InVEST model

1. Introduction

Global climate change, caused by emissions of greenhouse gases (GHG) such as car-
bon dioxide (CO2) [1,2], has greatly affected ecosystems processes and patterns [3,4], with
unpredictable implications on global ecology, human survival, and economic development,
and has become one of the major challenges facing all of humanity [5–7]. With the ac-
celerated pace of industrialization, the economic development driving force is gradually
shifting from agriculture to industry and services, and urbanization levels are increasing,
resulting in dramatic changes in land use/cover change (LUCC), which not only has a
significant impact on terrestrial ecosystems functions, but also directly affects the carbon
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storage of terrestrial ecosystems [8–10]. Changes in carbon storage in terrestrial ecosys-
tems have far-reaching implications for the global ecosystem’s carbon cycle, concentration
of CO2 in the atmosphere, and global climate change [11]. At present, one of the most
eco-friendly and efficient energy conservation ways to mitigate climate change and the
greenhouse effect is to increase carbon storage in terrestrial ecosystems, as it would reduce
the amount of CO2 in the atmosphere and contribute a significant role in mitigating global
warming [12,13]. Forests, as the main body of terrestrial ecosystems, contain the highest
carbon storage of terrestrial ecosystems, which not only regulate the global carbon balance,
improve and maintain the regional ecological environment [14,15], but also the change
of forest ecosystem carbon storage largely affects the change of carbon storage in terres-
trial ecosystems [16]. However, forest degradation and deforestation caused by human
activities and climate change pose a significant challenge to sustainable development. In
2015, “Transforming Our World: The 2030 Agenda for Sustainable Development” proposed
17 sustainable development goals (SDGs) that aim to address the three dimensions of
development—social, economic, and environmental—in an integrated manner. Among
them, SDG 15: life on land, aims to protect and restore terrestrial ecosystems such as forest,
wetland, dryland and mountain ecosystems, and to promote sustainable management of
forests and halt deforestation, which contributes to increasing carbon storage in forest
ecosystems and mitigating climate change [17].

As the world’s largest developing country, China has experienced unprecedented
urbanization and significant landscape change over the past several decades [18], with
the urbanization rate increasing dramatically from 17.92% to 59.58% [19]. Rapid economic
development and intensive land exploitation have resulted in a steady decrease in carbon
storage of terrestrial ecosystems, which also further exacerbates climate warming [20,21],
especially in reform and opening-up frontier provinces like Guangdong. According to
the China forest resources report, the per capita forest coverage in Guangdong province
is only 0.15 ha per person. Moreover, the area of arboreal forest in Guangdong province
in 2018 was 7,809,800 ha, with a large proportion of young forests, which reached 51.29%.
With the proposed goal of carbon neutrality in China, improving the carbon storage and
carbon sequestration capacity of terrestrial ecosystems has become a topical issue for
research from various disciplines. Indeed, as early in 1999, China has launched the Grain
for Green Program (GCP) and aims to increase the forest cover and mitigate soil erosion
by converting cultivated land to forest land [22,23]. Over the past two decades, China’s
GCP has contributed more than 4% of the global net increase in green area, with forests
contributing 42% of the green area [24]. Therefore, accurate assessment of future changes in
LUCC and terrestrial ecosystem carbon storage, especially forest ecosystems, is essential for
optimizing regional ecosystems’ service functions and formulating policies for sustainable
socioeconomic development [25,26].

Previous studies have shown that LUCC, which affects the carbon storage of ecosys-
tems, is influenced by a combination of climate change and socioeconomic develop-
ment [27,28]. The latest Coupled Model Intercomparison Project 6 (CMIP6) has shown
that by coupling shared socioeconomic pathways (SSP) and representative concentration
pathways (RCP), it can provide multiple future global climate change scenarios for re-
searchers [29,30], which could be used to predict future LUCC, changes in carbon storage,
and dynamic distribution of ecosystems services, etc. For example, one study used a
scenario-based land use change assessment framework to simulate the land use demand
and spatial distribution of land use in China [31]. Wang et al. [28] have integrated the
system dynamics (SD) model, patch-generating land use simulation (PLUS) model, and in-
tegrated valuation of ecosystem service and tradeoffs (InVEST) model into a framework to
simulate the dynamic distribution of LUCC and carbon storage at the urban level. Another
study predicted global soil erosion rates and assessed future global soil regulating services
for the period of 2015–2070 under three SSP-RCP scenarios [32]. Furthermore, Li et al. [33]
have simulated the spatial and temporal distribution of land use in Central Asia under the
SSP-RCP scenarios based on future land use demand, and comprehensively evaluated the
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level of ecosystems services in the region. However, most of these studies have focused on
the dynamics of LUCC at the global, national, or city scale, and these methods may not be
effective for the effects of environmental variables on LUCC at regional scales, including
population, economic, and climate variables. Thus, there is still a significant uncertainty in
the assessment of future LUCC and ecosystem carbon storage changes at the regional scale.

Current land use simulation models—such as the CA (cellular automata)–Markov
model [34], ANN-CA model [35], CLUS-S model [36,37], and FLUS model [33,38,39]—were
widely applied to simulate the spatial distribution of LUCC. However, these models have
certain limitations, i.e., not permitting the simulation of multiple land use types, particularly
natural land use types, in a dynamic spatiotemporal manner, neither can effectively identify
the factors affecting LUCC, which limits the application of LUCC simulations under future
climate change scenarios. The recently developed PLUS model retains the advantages of
adaptive inertial competition and roulette wheel competition mechanisms of the CA model,
and can combine future predicted variables to calculate the development potential of each
land use type by random forest (RF) algorithms, so that it can more accurately simulate
changes of land use distribution [40]. Furthermore, the InVEST model was widely used to
investigate the impact of dynamic distribution of LUCC on carbon storage in terrestrial
ecosystems (including forest ecosystems) due to its simple input parameters, high generality
and stability, and high confidence [28,34,39]. However, previous studies assumed that
the forest carbon density does not change with time and is a constant [33,34,41], which
is obviously not consistent with objective facts [42], and affects the accuracy of model
predictions of forest ecosystem carbon storage. Therefore, it is essential to obtain accurate
estimations of the values of future forest carbon density and use them as input parameters
of the InVEST mode, as this could improve the accuracy of forest ecosystem carbon storage
estimation. Indeed, the combination of the PLUS model and the InVEST model could more
accurately estimate the changes of terrestrial ecosystem carbon storage caused by LUCC.

In this study, we used an integrated simulation framework of the PLUS model and
InVEST model to simulate the spatiotemporal distribution patterns of LUCC in the study
area based on future population, economy, climate variables, and land use demand under
three SSP-RCP (SSP126, SSP245, and SSP585) scenarios, and quantitatively assessed the
distribution changes of carbon storage. In particular, we aimed to: (1) simulate the spatial
distribution of LUCC in Guangdong province during the period of 2020–2060 based on
the PLUS model; (2) analyze the impact of each driving factor on LUCC distribution;
and (3) assess the spatiotemporal distribution patterns of ecosystem carbon storage in
the study area under different climate change scenarios. Overall, the results of this work
provide a new insight that could provide policy makers with recommendations for future
land resource reallocation and socioeconomic development policies in the study area, and
to provide data to support increasing forest carbon sequestration and meeting carbon
neutrality goals.

2. Materials and Methods

2.1. Study Area

The study area was Guangdong province, which is located in the southeast coastal
areas in China, ranging from 20◦13′N–25◦31′N and 109◦39′E–117◦19′E, with a total area
of 179,725 km2 (Figure 1). The elevation of Guangdong province is high in the north and
low in the south, and the elevation decreases gradually from the mountains in northern
Guangdong to the coastal areas in the south, showing a geomorphic feature with mountains
in the north [43], hills in the middle, and mainly plains in the south. Over the past four
decades, the forest area of Guangdong province has increased from 59,840 km2 in 1980 to
105,241 km2 in 2020, with an annual growth rate of 1.90%, and the forest coverage rate was
58.66% [44,45]. In addition, according to the China forest resources report (2014–2018), the
national forest coverage rate is 22.96% and the forest area is 2.2 million km2. Guangdong
province ranks eighth in terms of forest coverage, with Fujian province and Jiangxi province
ranking the top two [46]. In 2018, the area that can be afforested in Guangdong province
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was 12,042 km2. If all the afforestable areas in Guangdong province are afforested artificially,
the maximum forest coverage in Guangdong province could reach 65.26%, which could
increase nearly 6% from 2020. In contrast, by 2020, the cultivated land area of Guangdong
province was 25,941 km2, which decreased by 15,320 km2 compared with 1980 [44]. The
soil types in Guangdong province include limestone soils, purplish soils, fluvo-aquic soils,
humid-thermo ferrditic, lateritic red earths, red earths, and yellow earths, etc. [47]. As
China’s largest economic province, Guangdong province has a resident population of 126
million in 2020 and regional gross domestic product (GDP) reached 11.07 trillion RMB, up
2.3% from the same period last year [44]. In general, carbon emissions strengthen as GDP
rises, the huge population and GDP may represent huge per capita carbon emissions [48].

 
Figure 1. Location of Guangdong province together with the DEM.

Influenced by the southeast and southwest monsoon, the climate of Guangdong
province from north to south is central subtropical, southern subtropical, and tropical
climates, respectively [42]. The annual average temperature of Guangdong province is
22.3 ◦C. The average temperature is approximately 16 ◦C to 19 ◦C in January and 28 ◦C to
29 ◦C in July. The average annual precipitation in Guangdong ranges from 1300–2500 mm,
with a provincial average of 1777 mm. The spatial distribution of rainfall basically also
shows a tendency toward low precipitation in the north and high precipitation in the south.
Adequate water and heat conditions have contributed to a wide variety of vegetation and
vegetation communities in Guangdong province, including northern tropical seasonal
rainforest, subtropical monsoon evergreen broadleaf forest, typical evergreen broadleaf
forest in middle subtropics, coastal tropical mangroves, shrublands and grasslands, etc. [42].

To meet the goal of peaking carbon emissions and carbon neutrality, Guangdong
province has designated the development goals and targets of the 14th Five-Year Plan: to
build a model area for the convergence of rules, a concentration area for upscale elements,
a source of scientific and technological industrial innovation, a linkage area for internal
and external circulation, and a support area for security development, and to take the lead
in exploring the effective paths conducive to the formation of a new development pattern.
In indeed, steady increase in carbon storage in terrestrial ecosystems is one of the effective
ways to reach the goal of carbon neutrality [28].
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2.2. Data Acquisition and Preprocessing

The data for this work include LUCC data, socioeconomic data, and meteorologi-
cal data. The data sources for the spatial data used in this study are shown in Table 1.
Specifically, the 2000, 2010, and 2020 LUCC data were obtained from the GLOBELAND30
dataset (30 m spatial resolution) produced by the National Geomatics Center of China
(http://www.globallandcover.com, accessed on 27 December 2021). We obtained GDP,
population density, and soil types data (all with 1-km spatial resolution) from the Data
Center for Resources and Environmental Sciences of the Chinese Academy of Sciences
(https://www.resdc.cn, accessed on 28 December 2021). A digital elevation model (DEM)
data (at 30 m spatial resolution) was obtained from the ASTER GDEM 30 M dataset of
the Geospatial Data Cloud (http://www.gscloud.cn, accessed on 27 December 2021). The
slope data was obtained by processing the DEM data using ArcGIS 10.7 software.

Table 1. Spatial driving factors of the land use change in this study.

Category Data Year 1 Original
Resolution

Data Resource

Land use/cover data Land use/cover data 2000, 2010, 2020 30 m GLOBELAND30 dataset

Socioeconomic driver

Population 2015 1000 m https://www.resdc.cn, accessed
on 28 December 2021GDP 2015 1000 m

Distance to governments
2020 30 m https://lbs.amap.com, accessed

on 27 December 2021Distance to train stations
Distance to highways

2020 30 m
OpenStreetMap

(https://www.openstreetmap.org,
accessed on 27 December 2021)

Distance to primary roads
Distance to secondary roads

Distance to tertiary roads
Distance to trunk roads

Distance to settlements 2018 30 m https://www.webmap.cn,
accessed on 1 March 2022

Climatic and
environmental driver

Distance to water 2020 30 m Land use/cover in 2020
DEM

2009 30 m ASTER GDEM 30 M datasetSlope

Soil types 1995 30 m https://www.resdc.cn, accessed
on 28 December 2021

Average annual temperature
2000–2020 1000 m http://www.geodata.cn, accessed

on 27 December 2021Average annual precipitation
1 The driving factors collected were allowed to be inconsistent with the time period of the land use data [49],
but the time period was as close as possible to the time period of the LUCC data.

In addition, current roads vector data were obtained from the OpenStreetMap
(https://www.openstreetmap.org, accessed on 27 December 2021). The location data of all
levels of governments and train stations were obtained from the lbs.amp.com (https://lbs.
amap.com, accessed on 27 December 2021). The settlement data were obtained from the Na-
tional Catalogue Service for Geographic Information (https://www.webmap.cn, accessed
on 1 March 2022). Temperature and precipitation data (both 1 km spatial resolution) were
obtained from the National Earth System Science Data Center (http://www.geodata.cn, ac-
cessed on 27 December 2021). After a series of data preprocessing in ArcGIS 10.7 software—
including projection transformation, Euclidean distance, resampling, and clipping—all of
the above data were converted to raster data with the same projected coordinate system
and a spatial resolution of 30 m.

2.3. Methods

The research framework of this paper consists of two parts: the PLUS model for
simulating LUCC data and the InVEST model for estimating ecosystem carbon storage
(Figure 2). Specifically, we used the PLUS model to simulate the distribution of LUCC
in Guangdong province from 2020 to 2060 based on population, GDP, temperature, and
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precipitation data under different SSP-RCP scenarios, as well as the InVEST model to assess
the spatiotemporal variation of ecosystem carbon storage caused by LUCC.

 

Figure 2. Research framework.

2.3.1. Future Climate Scenarios Based on the CMIP6

The Coupled Model Intercomparison Project (CMIP) has evolved over five phases
into a major international multi-model climate research activity [50–52], which has not only
introduced a new era in climate science research, but also facilitated national and interna-
tional climate change assessments [29]. Compared to CMIP5, CMIP6 combines different
SSP-RPC scenarios [53,54], which emphasizes the driving effect of different socioeconomic
development patterns on climate change [30,33].

To consider a range of possible futures, we use simulations from three SSP-RCPs:
SSP126 (integrated scenario of SSP1 and RCP2.6): sustainability—taking the green road,
which presents sustainable socio-economic development with a low level of GHG emissions
and emphasizes more inclusive development. Land use is strongly regulated, e.g., forest
land is well preserved. SSP245 (integrated scenario of SSP2 and RCP4.5): middle of the
road pathway, which represents the world follows a middle road of the socioeconomic and
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technological development, and with a medium level of GHG emissions. Land use change
is incompletely regulated, i.e., forest land would still be potentially destroyed, although
the probability is slowly decreasing over time. SSP585 (integrates scenario of SSP5 and
RCP8.5): high-end forcing pathway, which is characterized by rapid resource-intensive
development and material-intensive consumption patterns, as well as very high level of
fossil fuel use and high GHG emissions [55,56].

In this work, we consider four driving factors that affect LUCC in future climate
change scenarios, including population, GDP, temperature, and precipitation. The popula-
tion [57] and GDP [58] data were obtained from the kilometer-scale grids data of the SSPs
future climate change scenarios, respectively. Previous studies [59] have provided future
temperature and precipitation data for SSP126, SSP245, and SSP585 scenarios based on the
MRI-ESM2-0 model [60].

2.3.2. Simulation of LUCC under Different Scenarios Provided by CMIP6

The PLUS model is a simulation model of future land use/cover change integrated
with a rule-mining framework based on a land expansion analysis strategy (LEAS) model
and a CA based on multi-type random patch seeds (CARS) model [40]. At first, the LEAS
model overlays the land use data from two periods, extracts the image elements with
changed status from the later land use data, represents the change area of each land use
type, and then uses the RF algorithm to explore the relationship between each land use
type and multiple drivers to obtain the transition rules for each land use type, i.e., the
development potential of each land use type. In the LEAS model, the number of regression
trees refers to the number of trees generated by RF, sampling rate defaults to 0.01, indicating
that 1% of the pixels will be used for model training, and mTry is the number of driving
factors [40]. In this work, the number of regression trees, sampling rate, and mTry were
determined to be 50, 0.01, and 16, respectively, after conducting several experiments.

Subsequently, for simulating the evolution of multiple land use types, the CARS model
combines the traditional CA model with a patch generation and a descending threshold
mechanism to perform future land use simulation based on the available LUCC data and
the development potential of each land type. When the neighborhood effect of a single land
use type is equal to zero, the mechanism generates ‘seeds’ to the development probability
of each land use type. With the development potential restraints, PLUS will automatically
generate simulated patches [40]. Previous studies have shown that the PLUS model can
integrate the effects of various spatial factors with the dynamics of geographic units to
simulate land use change in order to obtain higher accuracy and more realistic landscape
patterns [28,61].

The demand for LUCC under different climate change scenarios (Figure 3) was esti-
mated based on historical land use data (i.e., LUCC data for Guangdong province in 2000,
2010, and 2020) [33] and the Markov chains method [62,63], and used it as the future land
use demand input parameter for the PLUS model. Historical data for 2020 were used to
evaluate the accuracy of the land use demand. In addition, 16 types of factors affecting
LUCC (Figure 4) as the predictor variables (including population density, GDP, distance to
government, distance to settlements, distance to water, distance to train station, distance to
highways, distance to other roads, DEM, slope, soil type, temperature, and precipitation)
input into the RF model to determine the development potential of each land use type. We
then obtained the simulation results of LUCC in 2020 by running the PLUS model based on
2000 and 2010 LUCC data and the above 16 driving factors, and compared it with the actual
2020 LUCC data (Figure 5) for assessing the accuracy of the model. The overall accuracy
and Kappa coefficient were used to assess the simulation accuracy of the PLUS model. If
the accuracy of the simulation results is sufficient, the driving factors and the land use
demand of Guangdong province from 2020 to 2060 (at 10-year intervals) under different
scenarios are input into the PLUS model to predict the spatiotemporal changes of future
land use distribution based on the LUCC data in 2020.
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Figure 3. Demand prediction of each land use type under different scenarios.
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Figure 4. Sixteen types of driving factors affecting LUCC.

Figure 5. Historic LUCC data for 2000, 2010, and 2020.

2.3.3. Estimation of Carbon Storage Based on the InVEST Model

The Carbon Storage and Sequestration module of the InVEST model can spatially
integrate land use change and terrestrial ecosystem carbon storage dynamics directly,
making it possible to assess the impact of past to present land use change on terrestrial
ecosystem carbon storage in the study area as well, as to simulate changes in terrestrial
ecosystem carbon storage under future land use change scenarios [37,64]. Specifically, the
InVEST model based on the average carbon density of four carbon pools (aboveground,
belowground, soil, and dead organic matter) for each land use/cover type, and multiplied
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by their corresponding area to calculate ecosystem carbon storage [34]. The calculation
formulas for carbon storage are

Ci = Cabove + Cbelow + Csoil + Cdead (1)

Ctotal =
n

∑
i=1

Ci × Ai, (i = 1, 2, · · · , n) (2)

where i represents the land use type, Ci represent the total carbon storage per unit area
of each land cover type (kg/m2), Cabove is the aboveground carbon density, Cbelow is the
belowground carbon density, Csoil is the soil organic carbon density, and Cdead is the dead
organic carbon density. Ctotal is the total carbon storage of the ecosystems and Ai is the
area of each land cover type. We obtained carbon density data for the four carbon pools of
different land use types were obtained from previous studies (Table 2) [42,45,65], where
Csoil refers to the soil organic carbon density at 1 m depth. Notably, the forest carbon
density data are not constant, and we obtained a growth rate of 1.96% per decade for forest
carbon density (including aboveground and belowground carbon density) in Guangdong
province based on previous studies [42,45]. In addition, we assessed the economic value of
sequestering a ton of carbon (1284.63 RMB, derive from social cost of CO2 = 349.88 RMB),
assuming the annual rate of change in the price of carbon to be zero and the market discount
rate of 3% [41].

Table 2. Carbon densities of each land ues type (2020) used in InVEST model (kg/m2).

Land Use Types Cabove Cbelow Csoil Cdead Sources

Cultivated land 1.45 0.10 7.95 0.10 [45,65]
Forest land 2.28 0.83 15.84 0.65 [42,45,65]
Grassland 0.11 0.52 6.28 0.19 [45,65]
Shrubland 0.31 0.20 8.14 0.70 [65]
Wetland 0 0 8.19 0 [65]

Water 0 0 0 0 /
Artificial surface 1 0 0 0 0 /

Other 0.02 0 5.80 0 [65]
1 Notably, the artificial surface mainly includes artificial infrastructure such as buildings, impervious surfaces and
infrastructure, and cultivated land is not part of the artificial surface.

3. Results

3.1. Simulation of LUCC under Different Scenarios and Accuracy Assessment

The land use status in 2020 was simulated based on the LUCC data in 2000 and 2010
using the PLUS model, and the simulation results were compared with the actual LUCC
data in 2020. The assessment results show that the overall accuracy of the PLUS model was
93.34%, and the Kappa coefficient was 0.89, which indicates that the PLUS model has a
high simulation accuracy and could be reliably applied to predict future LUCC [33].

Subsequently, the spatial and temporal distribution of LUCC in 2030, 2040, 2050, and
2060 (Figure 6) under different climate change scenarios was simulated using the PLUS
model based on the land use demand and LUCC data in 2010 and 2020, and the statistics
for each type of land use are shown in Table 3. The results indicated that the distribution
of LUCC data showed a significant difference under different climate change scenarios.
Specifically, under the SSP126 scenario, cultivated land, grassland, and shrubland showed
different degrees of decrease. In contrast, the artificial surface area was rapidly increasing,
encroaching on the previous cultivated and grassland areas. The forest land was effectively
preserved, the area increasing from 95,939.51 km2 in 2020 to 103,583.88 km2 in 2060, with a
growth rate of 1.84% per decade. In addition, wetland areas have slowly decreased, while
water and other land types remained essentially unchanged.
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Figure 6. Simulation results of LUCC under different scenarios.

Table 3. Statistics of each land use type under different scenarios (km2).

Land Use Types
SSP126 SSP245 SSP585

2030 2040 2050 2060 2030 2040 2050 2060 2030 2040 2050 2060

Cultivated land 41,209.63 39,389.27 36,854.29 32,964.14 41,478.84 39,679.46 37,193.65 33,125.88 41,907.50 41,609.79 42,518.38 43,550.52
Forest land 97,211.42 98,536.66 100,459.61 103,583.88 96,815.41 97,979.54 99,601.01 102,423.78 95,670.26 94,364.20 91,876.67 88,866.33
Grassland 12,796.31 12,515.64 12,174.49 11,480.47 12,867.80 12,692.54 12,404.31 11,835.97 12,792.12 12,155.74 11,004.67 9717.45
Shrubland 2272.03 2162.64 2054.88 1949.88 2294.53 2215.77 2126.88 2021.88 2254.03 2090.64 1829.88 1588.16
Wetland 83.14 82.76 81.56 79.75 83.21 82.87 82.09 81.28 82.56 82.07 80.66 79.36

Water 8336.35 8334.64 8334.64 8334.64 8336.56 8334.64 8334.64 8334.64 8334.63 8334.63 8334.63 8334.64
Artificial surface 15,851.87 16,739.16 17,801.37 19,368.14 15,884.30 16,775.99 18,018.44 19,937.72 16,719.66 19,123.86 22,116.58 25,625.74

Other 18.28 18.26 18.19 18.15 18.38 18.24 18.01 17.90 18.28 18.10 17.56 16.85
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Under the SSP245 scenario, the expansion patterns of cultivated land, grassland, and
shrubland were similar to the SSP126 scenario, but with a slower decreasing tendency than
the SSP126 scenario. Forest land was also well preserved; however, its growth rate has also
slowed to only 1.58% per decade. The slightly accelerated artificial surface expansion, and
water bodies and other land types generally similar to the SSP126 scenario.

In contrast to the other scenarios, the area of cultivated land changes from a decreasing
tendency in the period of 2020–2040 to an increasing tendency in the period of 2040–2060
under the SSP585 scenario. The area of grassland and shrubland showed a sharper de-
creasing tendency. As a result of the rapid expansion of the artificial surface, forest land
was ineffectively preserved and its area shows a decreasing tendency with decrease of
8898.22 km2 by 2060. Under the SSP585 scenario, the rapidest expansion of the artificial
surface is observed in Guangdong province, where the artificial surface area expands nearly
1.7 times in 2060 compared to 2020.

3.2. Spatiotemporal Patterns of Carbon Storage
3.2.1. Spatiotemporal Variation of Carbon Storage in Terrestrial Ecosystems

Changes in terrestrial ecosystem carbon storage caused by LUCC under different
scenarios from 2020 to 2060 in Guangdong province were assessed using the InVEST model
(Figure 7). Significant differences in carbon storage under different scenarios (Table 4).
Under SSP126 and SSP245 scenarios, carbon storage continuously increases positively and
maintains a continuous tendency to increase. The carbon storage increases from 240.89 Tg
in 2020 to 247.16 Tg (SSP126) and 245.33 Tg (SSP245) in 2060, with an increase of 6.27 Tg
and 4.44 Tg, respectively. Compared to the SSP126 scenario, the increase in carbon storage
is slightly lower under the SSP245 scenario. While the carbon storage shows a negative
increase and continuously decreases under the SSP585 scenario, which decreases from
240.89 Tg in 2020 to 226.54 Tg in 2060, with a total decrease of 14.35 Tg.

As illustrated in Figure 7, under the SSP126 scenario, the area of carbon storage
increase is mainly located in northern and western Guangdong, where the forest land
area maintains growth. The area of carbon storage decrease is mainly the artificial surface
expansion area, where cultivated land and grassland are destroyed. The carbon storage
changes under the SSP245 scenario are similar to the SSP126 scenario, with a slightly smaller
increase in carbon storage under the SSP245 scenario, which is caused by the smaller area of
forest land growth that mainly influences carbon storage changes in terrestrial ecosystems
under the SSP245 scenario. In contrast, the decreased area of carbon storage obviously
increases and was significantly larger than the increased area of carbon storage under the
SSP585 scenario, and the decreased area was mainly distributed in the area of artificial
surface expansion and forest land reduction.

Moreover, the economic value of carbon sequestration in terrestrial ecosystems for
the different scenarios is shown in Figure 8, with units of monetary value per grid cell
(RMB). The positive values indicate that carbon is being sequestered, and negative values
indicate that carbon is lost to the atmosphere. According to the economic view of the Kyoto
Protocol, forest owners should realize revenue while reducing carbon emissions [41]. In this
study, future and current carbon sequestration are treated equally, and the discount rate
and the social value of sequestered carbon are assumed to be constant, which contributes
to obtain the net present value (NPV) of sequestered carbon in any particular year. Under
the SSP126 and SSP245 scenarios, the total economic value of carbon sequestration is
8.05 billion and 5.70 billion RMB in Guangdong province during the period of 2020–2060,
respectively. Under the SSP585 scenario, the economic value loss due to carbon loss would
be approximately 18.43 billion RMB in Guangdong province during the period of 2020–2060.
This ecosystems service function expressed as a monetary value can be effective in raising
awareness of the significance of ecosystems and biodiversity, and conveying it to policy
makers [41].

188



Remote Sens. 2022, 14, 2330

Figure 7. Distribution changes of carbon storage under each scenario compared to 2020.

Table 4. Carbon storage dynamic changes in terrestrial ecosystems under different scenarios during
the period of 2020–2060.

Climate
Scenarios

Total Carbon Storage (Tg) Carbon Storage Change (Tg)

2020 2030 2040 2050 2060 2020–2030 2030–2040 2040–2050 2050–2060 2020–2060

SSP126 240.89 241.82 242.97 244.68 247.16 0.93 1.15 1.71 2.48 6.27
SSP245 240.89 241.37 242.32 243.54 245.33 0.48 0.95 1.22 1.79 4.44
SSP585 240.89 239.44 236.55 232.11 226.54 −1.45 −2.89 −4.44 −5.57 −14.35
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Figure 8. Net present value (unit: RMB) of Guangdong province in the period of 2020–2060 under
different scenarios.

3.2.2. Spatiotemporal Variation of Carbon Storage in Forest Ecosystems

In this paper, forest ecosystem carbon storage accounts for approximately 78% of
terrestrial ecosystem carbon storage. Thus, we individually assessed the changes in forest
ecosystem carbon storage caused by LUCC (Table 5). The results showed that carbon
storage in forest ecosystems had a similar change pattern to terrestrial ecosystems under
the three scenarios, but it was more drastic than terrestrial ecosystems. By 2060, forest
ecosystem carbon storage increases by 17.64 Tg and 15.34 Tg under SSP126 and SSP245
scenarios, respectively, with an annual increase of 0.44 Tg year−1 and 0.38 Tg year−1,
respectively. Under the SSP585 scenario, forest ecosystem carbon storage slightly increased
and then rapidly decreased, with the total decrease of 11.64 Tg. In addition, forest ecosystem
carbon storage accounts for up to 83.38% of carbon storage in terrestrial ecosystems by
2060 (SSP126 scenario). In the SSP585 scenario, the rapid expansion of the artificial surface
encroached on previously forested land, grassland, wetlands, etc., which resulted in a total
decrease in terrestrial ecosystem carbon storage of 14.35 Tg (Table 4), and the decreased
carbon storage due to forest land destruction accounted for 81.05% of the total decreased
carbon storage. Obviously, the changes in carbon storage in forest ecosystems largely
determine changes in carbon storage in terrestrial ecosystems.

Table 5. Carbon storage dynamic changes in forest ecosystems under different scenarios during the
period of 2020–2060.

Climate
Scenarios

Total Carbon Storage (Tg) Carbon Storage Change (Tg)

2020 2030 2040 2050 2060 2020–2030 2030–2040 2040–2050 2050–2060 2020–2060

SSP126 188.43 191.52 194.75 199.20 206.07 3.09 3.23 4.45 6.87 17.64
SSP245 188.43 190.74 193.65 197.50 203.77 2.31 2.91 3.84 6.27 15.34
SSP585 188.43 188.49 186.51 182.18 176.79 0.06 −1.98 −4.32 −5.39 −11.64

4. Discussion

4.1. Impact of Various Driving Factors on LUCC

In this study, we evaluated the dynamic distribution of LUCC in Guangdong province
from 2020 to 2060 under three scenarios of SSP126, SSP245, and SSP585. The expansion of
cultivated land, forest land, grassland, and artificial surface showed significant differences
among the three scenarios. The importance ranking of the driving factors for growth of
the four land use types in 2060 [40] is shown in Figure 9. The driving factors that ranked
first in importance for cultivated land, forest land, grassland, and artificial surface were
consistent under the three scenarios.
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Figure 9. The importance of the contribution of each factor to the growth of four land use types.

For the cultivated land, we found that population density had the most influence on
the growth of cultivated land. Population growth requires more food supply, and with a
certain amount of food production, it requires additional land to supply food. Additionally,
population dynamics and economic growth largely determine the future development of
agricultural systems [66], including other basic socioeconomic conditions, such as techno-
logical changes in crops and livestock [67], investments in agricultural technology [68], and
trade of agricultural goods [69]. Therefore, it is not difficult to understand that changes
in cultivated land area are strongly influenced by population growth [70,71]. The main
driving factors of forest land change are elevation, population, and distance to water. On
the one hand, forest land in Guangdong province is mainly distributed in the higher al-
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titude mountainous areas in northern and western Guangdong [42]; on the other hand,
the impact of population density on forests is not negligible, the expansion of population
not only needs forest land to provide more forestry products, but people need to enjoy
the ecological service value attached to forest land [72]. In addition, water area is rarely
converted to natural vegetation under natural factor conditions and forest land tends to
expand to more ecologically healthy areas, which may explain the reason why distance to
water bodies is one of the main driving factors of forest land growth [73].

The average annual temperature, population, and distance to water are the main fac-
tors influencing the growth of grassland. This indicates that grassland are more sensitive to
temperature response [39], and areas strongly influenced by human activities also affect the
growth of grassland [40]. The driving factors for artificial surface growth include distance
to water, population density, and elevation. The water area hinders the urban expansion,
which generally avoids or surrounds the water area by encroaching on cultivated land,
grassland, or other land use types [28,61]. Increasing population density means that urban
areas need to expand further to accommodate a greater number of people to survive. In-
deed, urban expansion is generally influenced by elevation factors, as the difficulty and
cost of urban construction was determined by topographical factors. In general, urban
expansion avoids the large topographic undulations of mountainous areas [61]. As can
be observed in Figure 6, the expanded artificial surface is mainly distributed in the areas
with relatively low topographic fluctuations, which is consistent with the general pattern
of urban development.

4.2. Impact of LUCC on Carbon Storage

This paper reveals the spatial distribution of carbon storage under different climate
change scenarios during the period of 2020–2060 in Guangdong province, and the results
showed that an obviously spatial heterogeneity in carbon storage changes (Figure 7). The
changes in carbon storage are the result of a combination of climate change, population
growth, economic development, and ecological interests. This comprehensive assessment
helps us to improve our understanding of future changes in carbon storage, especially
resulting from changes in LUCC.

4.2.1. Impact on Carbon Storage in Terrestrial Ecosystems

As expected, forest land, cultivated land, and shrubland accumulate more carbon
storage than other land use types [39]. In our study, the highest carbon density was
found in forest land, followed by cultivated land, shrubland, and grassland (Table 2).
There are significant differences in the distribution of LUCC under different scenarios,
which also result in the spatial heterogeneity of changes in carbon storage in terrestrial
ecosystems. In general, the expansion of artificial surface and the decrease in forest area
are the most significant reasons for the decrease in carbon storage in terrestrial ecosystems.
The decrease in terrestrial ecosystem carbon storage due to the expansion of the artificial
surface could be up to 186.45 Mg under the three scenarios. It seems profitable for urban
expansion by providing more jobs and rapidly increasing GDP, but it will reduce regional
ecosystem carbon storage in the long-term [74,75]. Therefore, balancing urban expansion
and ecological conservation is an important measure to maintain sustainable development.

Rapid economic development and urbanization have seriously affected the quality of
the regional ecosystems, resulting in the continuous degradation of forest land, grassland,
and shrubland, further leading to a decline in terrestrial ecosystem carbon storage in the
study area. This is consistent with previous findings that the accelerated economic devel-
opment will lead to gradual ecological degradation, and further resulting in a continuous
decline of carbon storage in terrestrial ecosystems [39]. Therefore, enhancing the quality of
socio-economic development and promoting economic development from “high speed” to
“high quality” could not only improve the value of regional ecosystems services, but also
increase the carbon storage in the ecosystems [28]. In addition, rapid climate change and
future socioeconomic and land use driving factor uncertainties may lead to very different
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LUCC dynamic changes and consequences for changes in terrestrial ecosystem carbon
storage based on LUCC [66]. Reducing the use of fossil fuels and increasing the use of clean
energy for energy conversion, such as solar and wind energy resources, would mitigate
the global warming effect, and prevent further degradation of forest land, grassland, and
shrubland, hence maintaining the balance of carbon storage in terrestrial ecosystems.

4.2.2. Impact on Carbon Storage in Forest Ecosystems

Figure 10 shows the changes in forest ecosystem carbon storage under different future
scenarios compared to 2020, with a gradual increase in forest ecosystem carbon storage
under the SSP126 and SSP245 scenarios, while the forest ecosystem carbon storage increases
by a minor amount in 2030 and then decreasing continuously under the SSP585 scenario.
Specifically, under the SSP126 scenario, it is projected that 5897.75 km2 of cultivated land
will be converted to forest land by 2060, contributing 60.42 Mg of increased carbon storage,
which is consistent with previous findings that the ecological engineering of Grain to Green
could significantly increase the carbon sequestration in Chinese soil ecosystems through
the conversion of cultivated land to forest land [76]. Additionally, 1522.73 km2 of grassland
and 426.26 km2 of shrubland will be converted to forest land. Overall, the increase in
carbon storage from conversion to forest land is expected to reach 84.36 Mg. Stable climatic
conditions and lower socioeconomic development would encourage the expansion of forest
land [77,78], and its propensity to expand towards more ecologically healthy areas [73].
Therefore, moderate urban expansion and lower GHG emissions are effective paths for
increasing carbon storage in regional forest ecosystems [28].

Figure 10. Changes in forest ecosystem carbon storage under different scenarios compared to 2020.

Furthermore, the pattern of forest ecosystem carbon storage change under the SSP245
scenario was roughly same with the SSP126 scenario, but its total carbon storage increase
was lower than that of the SSP126 scenario. Under the SSP245 scenario, the increase in
carbon storage was attributed to the conversion of cultivated land and grassland to forest
land. Notably, under the SSP585 scenario, the rapidly expanding artificial surface and the
continuously decreasing forest land resulted in 116.32 Mg of forest ecosystem carbon storage
decrease by 2060, which is also one of the reasons for the decrease in forest ecosystem
carbon storage in Central Asia [33]. Interestingly, the forest ecosystem carbon storage in
2030 has a minor increase under the scenario of decreasing forest land area, which is likely
caused by the increase in carbon storage due to the increase in forest carbon intensity in
2030 offsetting the decrease in forest ecosystem carbon storage caused by the decreased
area of forest land. Moderate GDP and lower population growth have maintained slight
changes in LUCC and contributed to the growth of forest ecosystem carbon storage [79],
and increasing the area of forest land and grassland and slowing urban expansion are
effective measures to counteract decreasing carbon storage [34]. In addition, it can be
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seen that forest ecosystems have the greatest influence on carbon storage in terrestrial
ecosystems, and increasing the area of forest land by artificial afforestation and maintaining
the health and vitality of forest ecosystems can increase the carbon sequestration capacity
of forest ecosystems.

4.3. Suggestions for Future Development

In the context of increased future climate and socioeconomic uncertainties, ecological
environments are becoming increasingly fragile and natural vegetation land use types
such as forest land are continuously degraded [28], which has resulted in a decrease in
carbon storage in the study area. Therefore, it is particularly important for policy makers to
formulate and implement policies related to socio-economic development and land use
planning in order to optimize the land use structure and increase carbon storage.

The results of this study indicate that rapid economic growth will lead to a continuous
decrease in ecosystem carbon storage and degradation of the ecological environment.
Therefore, slowing down the rate of economic growth and reasonably planning urban
development could improve the value of ecosystem services in the study area. Reducing
the use of fossil fuels and increasing the proportion of clean energy use will not only
mitigate the effects of climate change, but also prevent further degradation of forest land
and grassland. In addition, various stakeholders should pursue the acceleration of the
construction of provincial key public welfare forests, ecological demonstration villages,
and demonstration rural road forestry networks, and programs to nurture unestablished
forest land, replanting and replenishing them to encourage them to become forest land
as soon as possible. Furthermore, insisting on the implementation of GCP, and artificial
afforestation of unused land and forestable land, and maintaining the health and vitality of
forest ecosystems, could improve the carbon sequestration capacity of forest ecosystems.

4.4. Strengths and Uncertainties

This paper provides a new approach for the future LUCC spatial simulation and
carbon storage assessment based on population, GDP, and climate variables (temperature
and precipitation), and land use demand under the SSP-RCP scenarios, combined with
PLUS and InVEST models (Figure 2). We used the GDP, population, temperature, and
precipitation change data generated by the SSP-RCP scenarios and future land use demand
as simulation parameters for PLUS model, which produced a reasonable spatial distribution
of LUCC (Figure 6). Unfortunately, the PLUS model assumes fixed transition rules during
the LUCC simulations for each land use type, and these rules may change in the coming
decades [40]. Moreover, only three climate change scenarios (SSP126, SSP245, and SSP585)
generated by the MRI-ESM2-0 model were used in this work, and the differences in climate
projections generated by different general circulation models (GCMs), which is one of the
challenges for our future work [80,81].

Moreover, although the InVEST model has been widely used for multi-scale carbon
storage assessment; however, this pattern also has limitations. For example, the InVEST
model has a limitation that it cannot effectively estimate water and unused land carbon
storage [39]. Indeed, the carbon loss due to the interconversion of each land use type and
the seasonal variation of LUCC was not taken into account in the calculation of regional
carbon storage in the InVEST model, which is also one of the sources of uncertainty in
this work [82]. Furthermore, we collected carbon density data for all the land use types in
the study area as much as possible, and assumed decadal trends in forest carbon density
based on previous studies [42,45] to minimize uncertainty in carbon storage assessment.
However, the carbon density values and their corresponding land use type areas can only
approximately estimate the carbon storage of a regional ecosystems [83,84], and we will
devote more efforts to address this challenge in future work.

In this study, we revealed a range of possible future spatiotemporal distribution pat-
terns of LUCC and dynamic changes of carbon storage in Guangdong province, although
with certain limitations. The results of this work can provide supporting data for re-
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sponding to future climate change and formulating policies for sustainable socioeconomic
development, and meeting the goals of carbon peaking and carbon neutrality.

5. Conclusions

By integrating the PLUS and InVEST models, we simulated the spatiotemporal dy-
namic distribution of LUCC and ecosystem carbon storage in Guangdong in the future
(2020–2060) under the SSP126, SSP245, and SSP585 scenarios. The results of the future land
use simulation indicated that land use changes varied under different scenarios. Under the
SSP126 scenario, cultivated land, grassland, and shrubland were decreasing in varied de-
grees, the artificial surface was slightly expanded, and forest land was effectively protected;
The overall change patterns of LUCC under the SSP245 scenario were similar to the SSP126
scenario, but the artificial surface expanded more rapidly and the increase in forest land
slowed down under the SPP245 scenario; and under the SSP585 scenario, forest land is not
effectively preserved and the artificial surface area sharply expanding, which encroaches
on the previous grassland and forest land areas.

Under the three scenarios, population, elevation, temperature, and distance to water
were the highest contributing driving factors for the growth of cultivated land, forest land,
grassland, and artificial surface, respectively. During the period of 2020–2060, terrestrial
ecosystem carbon storage in Guangdong province was increased from 240.89 Tg in 2020
to 247.16 Tg and 243.54 Tg in 2060 under SSP126 and SSP245 scenarios, respectively; and
decreased under the SSP585 scenario, with a total decrease of 14.35 Tg. Forest ecosystem
carbon storage is the main source of carbon storage increase, which can effectively offset
the decrease in ecosystem carbon storage due to artificial surface expansion and other
vegetation land type area reduction. Overall, forest land is the most influential land use
type for carbon storage in terrestrial ecosystems, and the carbon sequestration capacity of
forest ecosystems can be increased by increasing the area of forest land through artificial
afforestation. Moreover, the results not only can provide a new insight into the redistribu-
tion of land resources and economic development strategies at the regional scale, but also
support data to meet China’s carbon neutrality goals.
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Abstract: Exploring the spatial and temporal dynamic characteristics of regional forest net primary
productivity (NPP) in the context of global climate change can not only provide a theoretical basis for
terrestrial carbon cycle studies, but also provide data support for medium- and long-term sustainable
management planning of regional forests. In this study, we took Shaoguan City, Guangdong Province,
China as the study area, and used Landsat images and National Forest Continuous Inventory (NFCI)
data in the corresponding years as the main data sources. Random forest (RF), multiple linear
regression (MLR), and BP neural network were the three models applied to estimate forest NPP in the
study area. Theil–Sen estimation, Mann–Kendall trend analysis and the standard deviation ellipse
(SDE) were chosen to analyze the spatial and temporal dynamic characteristics of NPP, whereas
structural equation modeling (SEM) was used to analyze the driving factors of NPP changes. The
results show that the performance of the RF model is better than the MLR and BP neural network
models. The NPP in the study area showed an increasing trend, as the NPP was 5.66 t·hm−2·a−1,
7.68 t·hm−2·a−1, 8.17 t·hm−2·a−1, 8.25 t·hm−2·a−1, and 10.52 t·hm−2·a−1 in 1997, 2002, 2007, 2012,
and 2017, respectively. Spatial aggregation of NPP was increased in the period of 1997–2017, and
the center shifted from the mid-west to the southwest. In addition, the forest stand factors had the
greatest effect on NPP in the study area. The forest stand factors and environmental factors had a
positive effect on NPP, and understory factors had a negative effect. Overall, although forest NPP has
fluctuated due to the changes of forestry policies and human activities, forest NPP in Shaoguan has
been increasing. In the future, the growth potential of NPP in Shaoguan City can be further increased
by continuously expanding the area proportion of mixed forests and rationalizing the forest age
group structure.

Keywords: net primary productivity; remote sensing inversion; dynamic change; driving factors;
Shaoguan City

1. Introduction

With the intensification of global climate change, the global carbon cycle has become
one of the core issues in global climate change research [1–3]. As the main body of the
terrestrial ecosystem and the largest carbon reservoir in the terrestrial ecosystem, the for-
est ecosystem fixes about two-thirds of the carbon in the whole terrestrial system every
year, and its role in regulating global carbon balance, mitigating the rising concentration
of greenhouse gases such as CO2 in the atmosphere, and maintaining global climate is
irreplaceable [4–6]. The net primary productivity (NPP) of forests is the amount of organic
matter accumulated per unit area and per unit time, which is expressed as the portion of
organic carbon fixed by photosynthesis minus the portion consumed by plants themselves
through respiration [7]. Estimation of NPP is the basis for the study of the functioning of
matter and energy in ecosystems, reflects the production capacity of vegetation commu-
nities under natural environmental conditions, and also directly affects the carbon stocks
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of above-ground plant parts, below-ground root parts, soil carbon pools, and the carbon
interception of the whole forest ecology. As a component of the surface cycle, NPP can
directly reflect the production capacity of forests under natural environmental conditions,
as it is one of the important indicators for evaluating the sustainable development of the
forest ecosystem and is the main indicator for judging the carbon sink of ecosystems and
regulating ecological processes [8]. In the context of intensifying global climate change
and human activities, considering the important role played by NPP in the global carbon
cycle, carbon sequestration, carbon storage, and global change, the research on the NPP
estimation of forest vegetation is carried out to provide a scientific basis for the making of a
long-term sustainable forest management plan at the regional scale.

At the spatial scale, the estimation of forest NPP is divided into sample plot observa-
tions, regional simulation, and global simulation. The localization observation uses the
extrapolation method, which is the extrapolation of sample survey points to the whole
region. Although the rationality is insufficient, the estimation uses spatially measured data;
thus, it can still be used as a reference for NPP estimation [9]. At the regional or global scale,
because forest ecosystems are the most complex types of structural levels and functional
behaviors on Earth, the impacts of environmental changes and human activities on forests
and the feedback effects of forests are long-term. However, the availability of productivity
observation data points on forest areas worldwide is extremely limited; therefore, the
model estimation of productivity becomes an important research method [10,11]. Models
for estimating NPP can be classified into four categories: the statistical model, parametric
model, process model, and ecology and remote sensing coupling model. Statistical models
include the Miami model, the Thornthwaite memorial model, etc. A large number of
empirical studies have shown that the Thornthwaite memorial model is sensitive only to
changes in precipitation. The Miami model, though sensitive to both precipitation and
temperature, is more sensitive to temperature [12]; in addition, this model does not take
into account the influence of structural changes of vegetation itself, nor the influence of
atmospheric conditions and site conditions, and only uses mathematical methods to derive
the relationship between NPP and major climatic factors. Therefore, the estimation results
obtained from the model are approximate. Parametric models mainly include the CASA
model, GLO-PEM model, VPM model, etc., among which the CASA model has become
a mature model for estimating NPP. Potter et al. [13] used the CASA model to estimate
global biomass and productivity in 1980. Wen [14] used the CASA model to estimate NPP
as a vegetation growth indicator and combined it with other climate factors to study the
global vegetation’s response to climate warming from 1982 to 2013, but there are uncertain-
ties in the simulation results for vegetation NPP because the parametric models cannot
explain the mechanisms of productivity changes in terms of physiological ecology. The
process model takes into account the physiological characteristics of the vegetation and
environmental factors to simulate the vegetation growth and development process, but the
model is complex and requires more parameters, which are the two main defects of the
process model. The ecology and remote sensing coupling model combines the advantages
of the plant ecophysiological process model and remote sensing parameter model, which
can make a global-scale NPP estimation, and the model parameters can be obtained using
remote sensing technology. However, this kind of model is more complex and requires
more parameters, and subjective factors have a greater influence on the investigator and
parameter determination.

From remote sensing data, information on forest cover status and forest spectral
characteristics can be obtained at a large regional scale, although this information is closely
related to forest productivity. Therefore, optical sensors and active sensors have been
widely used in forest net primary productivity estimation [15]. Since the spatial resolution
of Landsat time series stacks (LTSS) image elements is 30 m × 30 m and the image element
size is close to the area of the forest management unit, it makes up for the shortage of
single-period images in monitoring long-term forest dynamics, and is therefore often
used for regional forest productivity estimation. Remote sensing estimation combined
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with ground survey data has become one of the important tools in regional scale forest
productivity estimation.

Forest productivity is related to age and vegetation growth status, whereas the remote
sensing characteristic variables extracted by traditional methods do not contain such
information. Forest canopy density is the ratio of the forest vegetation to projected area
observed from the air, and is numerically the same value as crown density as an indicator
of stand density. It is one of the important components of stand structure, and it can be
used to reflect the distribution of light, water, and other environmental factors entering the
stand through the forest canopy. The magnitude of forest NPP is closely related to canopy
density, and the accuracy of the model may be improved by introducing the canopy density
variable into the forest NPP inversion model [16].

NPP varies spatially and temporally, and there are also many driving factors that
cause spatial and temporal changes in NPP. Therefore, it is important to study the spatial
and temporal dynamics of NPP and the driving factors for long-term sustainable forest
management. The Theil–Sen median slope estimation and Mann–Kendall trend analysis are
more robust to errors and can determine the significance of trends. Nyikadzino [17] used
these methods to observe seasonal changes in precipitation in the Limpopo River Basin and
found that rainfall in this area showed a non-significant decrease trend. Alhaji [18] used this
method to study the temperature in Gombe State, Federal Republic of Nigeria and found
that due to the effects of climate change, extreme weather caused a significant increase in
the maximum and average temperature in the area. The SDE method takes into account
three levels of center offset, directional offset, and angular offset, and can visually reflect the
spatial variation results. Peng [19] studied the spatial and temporal distribution of PM2.5
concentrations in China from 1999 to 2011 using the SDE. In previous studies, the Theil–Sen
median slope estimation, Mann–Kendall trend analysis, and SDE are mainly applied to
the study of climate spatial and temporal variability over long time periods. At present,
there are no relevant reports on the analysis of spatio-temporal dynamics and long-term
change of forest NPP based on the Theil–Sen median slope estimation, Mann–Kendall
trend analysis, and SEM analysis of driving factors. There are many drivers of spatial and
temporal changes in forest NPP, which can be divided into two main categories: biotic
natural factors and socio-economic factors. Wang [20] studied the changes in forest NPP
and multi-level driving mechanisms in the Changbai Mountains, Northeast China, and the
results showed that precipitation and vegetation cover were the key drivers.

Subtropical forests hold a special position in the global ecosystem and play an im-
portant role in the global terrestrial ecosystem material cycle and terrestrial carbon pool.
China’s subtropical forest is a unique forest ecosystem, characterized by rich forest types,
a wide range of tree species, and high forest productivity [21]. Guangdong Province is
located in the southeastern part of the Asian continent, south of the tropical sea, and is
strongly influenced by the monsoon climate, with many typhoons and heavy rains in
summer. Under this climate condition, the forest service functions of water conservation
and soil conservation are particularly important. Since the influence of the Quaternary Ice
Age is small, the flora in the province has had a long history of development, producing
a rich variety of forest plant species and forming a flora with many ancient plants and
relict plants [22,23]. Shaoguan City is located in the northern part of Guangdong Province
and is an important part of the southern collective forest area. Due to the differences in
topographic conditions, forest resource status, and economic development level, there is
spatial and temporal heterogeneity of forest NPP and its drivers. Since the reform and
opening up in 1978, the urbanization and industrialization process in Shaoguan City has
been accelerated. The forests have been disturbed and damaged by human activities for a
long time, the remnant native forest in the city has been decreasing, and the habitats for
many wildlife have been deteriorating.

Until now, there are no relevant reports on the analysis of spatio-temporal dynamics
and driving factors of forest NPP over a long time based on the Theil–Sen median slope
estimation, Mann–Kendall trend analysis, SDE, and SEM. The main objectives of this study

201



Remote Sens. 2022, 14, 2541

are as follows: (1) using Landsat images and NFCI data as the main information sources
to introduce the stand structure factor of forest canopy density, which is closely related
to productivity, to estimate the NPP in Shaoguan City in 1997, 2002, 2007, 2012, and 2017,
and to explore more accurate NPP estimation methods from the three RF, MLR, and BP
neural network models; (2) to reveal the spatio-temporal change trend of forest NPP in
a typical forest prefecture in a Chinese subtropical region; and (3) to identify driving
factors of forest NPP dynamics to provide a scientific basis for making sustainable forest
management plans.

2. Materials and Methods

2.1. Study Area

Shaoguan City (Figure 1) is located in the northern part of Guangdong Province
(23◦53′~25◦31′N, 112◦53′~114◦45′E). The whole territory spans 186.30 km from east to west
and 173.40 km from north to south. Shaoguan’s topography is high in the north and low in
the south, with the highest peak of Shikenggang (1902 m asl) in the north of Guangdong
and the lowest point (35 m asl) in the south. Shaoguan belongs to the central subtropical
humid monsoon climate zone and has a pleasant climate. The average annual temperature
is 21 ◦C, with the temperature increasing from north to south in winter, and the temperature
is almost the same in summer. Rainfall is abundant, with an average annual rainfall of
1700 mm. March–August is the rainy season, September–February is the dry season, and
there is snow in the north in winter.

Figure 1. Location of Shaoguan City, Guangdong Province, together with the DEM.

Shaoguan is a national key forest area, being the important base of the timber forest,
water source forest, and key moso bamboo in Guangdong Province, and is known as the
biological gene pool of South China and the ecological shield of the Pearl River Delta. In
2021, the city had a forested area of 1,277,300 hm2, with a forest coverage rate of 74.43%,
forest greening rate of 74.90%, and stock volume of 96.52 million m3, ranking first in
Guangdong Province, which is known as “The World’s Most Complete Oasis Preserved
on the Same Latitude as the Tropic of Cancer”. The forest in Shaoguan is dominated
by broadleaf mixed forests and broadleaf pure forests. The broad-leaved pure forests
mainly include oak (Quercus), eucalyptus (Eucalyptus robusta), camphor tree (Cinnamomum

202



Remote Sens. 2022, 14, 2541

camphora), etc. These forests are followed by coniferous pure forests represented by horsetail
pine (Pinus massoniana) and Chinese fir (Cunninghamia lanceolata), mixed coniferous forests,
and bamboo forests represented by moso bamboo (Phyllostachys heterocycle) [24]. The
specific information is shown in Table 1.

Table 1. Forest types in Shaoguan City.

Main Forest Types Standard of Division Typical Tree Species Characteristic

pure coniferous forest
stand volume of single

coniferous species ≥65%
Cunninghamia lanceolata fast growth, high volume

per unit area

Pinus massoniana wide distribution, main tree species
for timber forest

pure broadleaf forest

stand volume of single
broadleaf species ≥65%

Eucalyptus robusta high proportion of young forests

Acacia confusa higher volume per unit area, mainly
planted forests

Cinnamomum camphora grow faster, native hardwood species

broadleaf mixed forest total stand volume of
broadleaf species ≥65%

few natural broad-leaved mixed
forests, the dominant tree species is

not obvious

broadleaf-coniferous
mixed forest

total stand volume of
coniferous or broadleaf

species accounting
for 35–65%

Pinus massoniana-Schima superba tree growth is higher than their
respective pure forests

coniferous mixed forest total stand volume of
coniferous species ≥65%

Cunninghamia lanceolata-Pinus
massoniana less pests and diseases

Shaoguan City is rich in forest resources, and forest cover and forest stock volume are
higher than the national average. Although Shaoguan City forest resources have had steady
growth, due to frequent human activities, accelerating urbanization and industrialization,
and irrational forestry policies, Shaoguan City forest resources still have certain problems,
such as low forest quality and uneven forest age groups. Therefore, in this study, based on
the Landsat series remote sensing images, we compare the estimation methods of forest
NPP in the study area, explore the dynamic changes of forest NPP in long time series, and
explore the driving factors affecting NPP.

2.2. Data Acquisition and Preprocessing
2.2.1. The Fixed Sample Data of National Forest Resources Continuous Inventory

The NFCI [25] takes provinces as the sampling population and adopts systematic
sampling. According to the actual situation of each province, the sampling interval of
each province is determined by the kilometer grid. Permanent sample plots are set up
to conduct forest resource surveys. In Shaoguan City, there are 388 fixed sampling plots
(25.82 × 25.82 m each) based on 6 km × 8 km spacing. The attributes of these plots include
slope, slope direction, slope position, altitude, soil name, soil layer thickness, soil texture,
humus thickness, average age, average diameter at breast height (DBH), average tree height,
canopy density, tree species structure, live tree stock volume, and other investigation factors.
The National Forestry and Grassland Administration is responsible for establishing the
inventory plots and gathering data.

Before the estimation of NPP, the non-forestland sample plots with a stock volume of 0,
such as water bodies and buildings, were removed from the NFCI. The NPP of forest
consists of community growth (the sum of annual net growth of stems, branches, and
roots of the tree layer and annual net growth of shrubs and the herbaceous layer) and
annual withered volume. Based on the relationship between biomass and stock volume,
and the function relationship between biomass, community growth, and annual withering,
the biomass of different forest types was calculated based on the volume, the community
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growth and annual withering were calculated based on the biomass, and the NPP of the
forest was finally obtained for each sample plot. The specific calculation formula is shown
in Table 2.

Table 2. Relationship between forest volume, biomass, and NPP of typical tree species (excerpt) [26].

Forest Types
Relationship between
Biomass and Volume

Relationship between
Biomass and

Community Growth

Relationship between
Biomass and

Annual Withering

coniferous and broadleaf
mixed forest B = V/(1.1731 + 0.0018 × V) Y = B/(0.1038 × A + 0.0761 × B) L = 3.46

deciduous broadleaf forest B = V/(0.6539 + 0.0038 × V) Y = B/(0.2393 × A + 0.0495 × B) L = B/(18.2460 + 0.0366 × B)
broadleaf mixed forest B = V/(0.5788 + 0.0020 × V) Y = B/(0.3018 × A + 0.0331 × B) L = B/(9.1028 + 0.0575 × B)

cypress forest B = V/(1.0202 + 0.0022 × V) Y = B/(0.1132 × A + 0.0745 × B) L = B/(9.8381 + 0.1337 × B)
fir forest B = V/(1.2917 + 0.0022 × V) Y = B/(0.4598 × A + 0.0069 × B) L = B/(10.1320 + 0.0874 × B)

Pinus massoniana forest B = V/(1.4254 + 0.0004 × V) Y = B/(0.4046 × A + 0.0098 × B) L = B/(15.4510 + 0.0225 × B)
other warm pine forest B = V/(1.3624 − 0.0003 × V) Y = B/(0.2423 × A + 0.0581 × B) L = B/(18.9050 + 0.0422 × B)

evergreen broadleaf forest B = V/(0.7883 + 0.0026 × V) Y = B/(0.2503 × A + 0.0226 × B) L = B/(20.5070 + 0.0383 × B)
deciduous broadleaf forest B = V/(0.6539 + 0.0038 × V) Y = B/(0.2393 × A + 0.0495 × B) L = B/(18.2460 + 0.0366 × B)

Note: B is biomass (t·hm−2), V is volume (t·hm−2), Y is the community growth(t·hm−2), L is annual
withering(t·hm−2), A is average age (a).

2.2.2. Landsat Time Series Data

(1) Image pre-processing

Landsat images were pre-processed using ENVI 5.3 software. To eliminate the errors
of the sensor, the images were first radiometrically calibrated [27], and then atmospheric
correction [28] was performed using the FLAASH module of the ENVI software. The
terrain in the study area is mainly mountainous and hilly, with large differences in elevation
between the north and the south. The remote sensing images are influenced by the sensor
orientation and the sun height and orientation, resulting in differences in brightness values
due to the different illumination received by the shaded and sunny slopes [29]. The C-
correction algorithm is used to correct the topography of the remote sensing images to
eliminate the variation of radiance values caused by the topographic relief, so that the
images can better reflect the spectral characteristics of the features [30]. Due to the failure
of the Landsat-7 ETM+ on-board scan line corrector (SLC) after June 2003, data strips were
lost in the images acquired after that date; thus, the 2007 and 2012 image data needed to be
strip-repaired first and then pre-processed.

(2) Extraction of Feature Variables

According to previous studies [31], it is known that the productivity of forests is closely
related to the conditions of forest stand, soil, topography, and climate. This study uses ENVI
software to extract seven vegetation indices, including the normalized difference vegetation
index (NDVI), ratio vegetation index (RVI), difference vegetation index (DVI), enhanced
vegetation index (EVI), green vegetation index (GVI), perpendicular vegetation index
(PVI) [32] and leaf area index (LAI) [33]. Tasseled cap transformation [34] was performed
on the pre-processed Landsat remote sensing images, and the first three components of
brightness, greenness, and wetness were chosen. Three window sizes of 3 × 3, 5 × 5, and
7 × 7 were selected when extracting texture features, and contrast, dissimilarity, mean,
homogeneity, angular second moment, entropy, skewness, and correlation were calculated.
Alternative independent variables of the NPP remote sensing estimation model are shown
in Table 3.
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Table 3. Alternative independent variables of NPP remote sensing estimation model.

Variable
Type

Variable Name Code Variable Type Variable Name Code

single
band

blue band B2 stand structure canopy density FCD

green band B3
tasseled cap

brightness index Bri
red band B4 greenness index Gre

near-infrared band B5 wetness index Wet

shortwave infrared band 1 B6 topographic
factor

slope Slope
shortwave infrared band 2 B7 elevation DEM

texture
feature

contrast Bij_con

vegetation
index

normalized difference
vegetation index NDVI

dissimilarity Bij_dis ratio vegetation index RVI
mean Bij_mea difference vegetation index DVI

homogeneity Bij_hom enhanced vegetation index EVI
angular second moment Bij_asm green vegetation index GVI

entropy Bij_ent perpendicular vegetation index PVI
skewness Bij_ske leaf area index LAI

correlation Bij_cor

Note: texture feature code of Bij_xxx: i is the band of 2–7, j is 3 × 3, 5 × 5, or 7 × 7 texture window size.

2.3. Research Method
2.3.1. Calculation of Forest Canopy Density

According to JOSHI’s [35] study, it is known that there are four methods for forest
canopy density extraction: the artificial neural network (ANN), multiple linear regression
technique (MLR), forest canopy density mapper (FCD), and maximum likelihood classi-
fication (MLC). Among the four methods, the average accuracy of forest canopy density
obtained by the FCD model in three Southeast Asian countries was 92% [36]; thus, the FCD
was chosen for this study. The FCD model is calculated using forest growth condition and
is able to monitor temporal changes in forest canopy density. The FCD model is based on
the Landsat remote sensing image extracted index and includes the advanced vegetation
index (AVI), bare soil index (BI), and shadow index (SI). Compared with the NDVI, the AVI
is more sensitive to the amount of vegetation, the BI increases with the increase of surface
bareness, and the SI increases with the increase of forest density. Taking Landsat 8 OLI
images as an example, the three indices and FCD were calculated as follows.

AVI = [(B5 + 1)(65, 536 − B4)(B5 − B4)]
1
3 (1)

BI =
(B6 + B4)− (B5 + B2)

(B6 + B4) + (B5 + B2)
× 100 + 100 (2)

SI = [(65, 536 − B2)(65, 536 − B3)(65, 536 − B4)]
1
3 (3)

FCD = (VD × SSI + 1)
1
2 − 1 (4)

where B2–B6 indicate the brightness values of blue, green, red, near-infrared, and shortwave
infrared bands; AVI indicates the advanced vegetation index and AVI = 0 when (B5 − B4)
is less than 0; VD indicates the vegetation density value, which is synthesized from the
vegetation index and shading index using a principal component analysis; and SSI indicates
the scale shading index, which is calculated using the linear transformation function of the
normalized shading index.

2.3.2. Remote Sensing Estimation Model

A random forest (RF) is a compositional supervised learning algorithm that uses a
bootstrap method to extract multiple samples from the original samples, establishes a
decision tree for each resampled sample, and then combines the decision trees to obtain the
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final prediction by voting [37]. A large number of theoretical and practical studies have
proved that RF has a high prediction accuracy, good tolerance for outliers and noise, and
can reduce the overfitting phenomenon because the samples of random forest-generated
decision trees are randomly selected [38]. In this study, the RF model is executed by the
randomForest function in the R language randomForest package. The number of decision
trees (ntree) and the number of variables (mtry) to be extracted when splitting the decision
trees need to be adjusted when using the model. The value of mtry is 1/3 of the number of
independent variables when building the RF regression model, and the default value of
mtry is 1 when the number of independent variables is less than 3 [39].

A multiple linear regression (MLR) has two or more independent variables. The
multiple linear regression model uses the vegetation index, texture characteristics, original
band, forest canopy density, and other factors as independent variables and the NPP of
Shaoguan’s fixed sample plots as dependent variables. The screening of independent
variables is conducted using stepwise regression, of which the basic idea can be seen in
Section 2.3.3 [40]. Stepwise regressions were performed using SPSS software, with stepwise
criteria of F probabilities, and entry and deletion were set to be 0.05 and 0.1, respectively.

An artificial neural network (ANN) simulates neuronal activity with a mathematical
model, and is an information processing system based on imitating the structure and
function of neural networks in the brain. The basic idea of the back propagation (BP)
neural network is that a learning process consists of forward propagation of the signal and
backward propagation of the error. Forward propagation means that the input samples are
processed in the input layer and then passed to the output layer after the hidden layer. If the
actual output of the output layer does not match the expected output, it will be transferred
to the back propagation of error, and the back propagation of error will back propagate the
error of the output into the input layer in a certain form through the hidden layer, spread
the error to all units in each layer, and then obtain the error signal of each unit in each
layer, where the error will be used as the basis for correcting the cell weight. The process
of adjusting the weights is the process of network learning and training until the network
output error can be accepted and proceed to the preset learning times. This study used
a three-layer structure of a BP neural network model, including the input layer, hidden
layer, and output layer [41]. The BP neural network model in this study was constructed
with the R language neuralnet function package, where the model is first built with the
default number of nodes and hidden layers of the system, and the number of hidden layers
is further increased according to the resultant error to improve the model accuracy.

2.3.3. Screening of Model Feature Variables

The RF defines two metrics to measure the importance of variables and that can
be used to rank the variables: the first is %IncMSE, which is the percentage increase in
prediction error per decision tree computed with out-of-bundle (OOB) data replacement;
the second is IncNodePurity, which is the total reduction in node impurity when the
decision tree nodes split, measured as the sum of squared residuals. Higher values of
%IncMSE and IncNodePurity of the predictor variables indicate greater importance for
model prediction [42]; thus, these two metrics were used to screen the variables added to
the RF and BP neural network models, and this step was performed in the R software.

Stepwise regression is an important method for selecting the optimal explanatory
variables for linear regression models and which mainly addresses the problem of how
to select the explanatory variables when there are too many variables. Therefore, the
explanatory variables selected for the regression model have a significant effect on the
response variables [43]. The basic idea of stepwise regression is to introduce variables into
the model one by one, perform an F-test after introducing each explanatory variable, and
perform a t-test on the explanatory variables that have been selected one by one. When
the explanatory variables initially introduced become no longer significant due to the
introduction of later explanatory variables, they are removed to ensure that only significant
variables are included in the regression equation before each new variable is introduced.
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This is an iterative process that lasts until neither significant explanatory variables are
selected into the regression equation nor insignificant explanatory variables are removed
from the regression equation, to ensure that the final set of explanatory variables obtained
is optimal [44]. However, in the process of stepwise regression, because there may be
significant correlation between independent variables, it is easy to cause the problem of
collinearity between model variables. In order to eliminate the influence of collinearity
between variables on the model, the variance inflation factor (VIF) between variables is
calculated to test whether there is collinearity between variables. According to the study, the
VIF is usually larger than 7.5, which indicates that serious collinearity between the variables
exists and it needs to be eliminated [45,46]. The final variable screening of the multiple
linear regression model in this study was performed using stepwise regression, which was
executed in SPSS software with the confidence level set at 95%, and the F-test probabilities
of entry and deletion of predictor variables were set at 0.05 and 0.10, respectively.

The specific screening results are shown in Table 4.

Table 4. The selected predictor variables for LF, BP neural network, and MLR models.

Year Predictor Variable of LF and BP Predictor Variable of MLR

1997 DEM, B37_con, B27_con, B23_ske, B23_ent, B23_asm, B23_mea, B35_cor, Slope,
B73_ent, B73_mea, B45_cor, B33_ent, B43_mea, B73_asm, B73_ske, B33_mea DEM, B73_ske, B27_con

2002
B67_mea, FCD, B33_con, B47_con, B35_con, B25_hom, B63_dis, Slope, B55_mea,
NDVI, B25_ske, B43_dis, B35_dis, B45_con, B27_ske, B77_con, DEM, B37_hom,
B37_con, B23_hom, B57_mea, B27_con, B65_asm, B65_hom, B63_hom, B67_con

B37_con, B33_hom

2007 B63_dis, Wet, B25_con, B27_con, B45_con, B65_dis, B23_con, DEM, B2, B33_con,
RVI, Bri, B4, B75_dis, FCD RVI, B35_cor, B77_ent

2012 Wet, B2, DEM, B65_con, B47_ent, B73_ent, Slope, RVI, B73_mea, FCD, B27_con,
B73_con, B4, B23_con, LAI, B45_mea, B3, B47_mea, B25_con, B53_hom

B25_con, B47_ske, B7,
B55_dis, B45_ske

2017 B73_cor, B45_asm, B75_cor, B33_ske, B23_con, DEM, B53_hom, FCD, B2, B63_cor,
B53_asm, RVI, B75_ent, B55_asm, NDVI, B45_con

B35_con, B75_cor, DEM, B27_con,
B55_hom, B53_asm, Slope

Note: DEM is elevation, Slope is slope, FCD is canopy density, NDVI is difference normalized vegetation index,
RVI is ratio vegetation index, LAI is leaf area index, Wet is wetness index, Bri is brightness index, B2 is blue light
band, B3 is green light band, B4 is red light band. In Bij_xxx, i is band, where 2–7 are blue light band, green
light band, infrared band, shortwave infrared band 1, and shortwave infrared band 2, respectively; j is texture
window size, where 3, 5, and 7 denote 3 × 3, 5 × 5, and 7 × 7 windows, respectively; con is contrast, dis is
dissimilarity, mea is mean, hom is homogeneity, asm is angular second moment, ent is entropy, ske is skewness,
and cor is correlation.

2.3.4. Model Accuracy Evaluation

After the model is established, it is necessary to check the goodness of fit and applica-
bility of the model, to analyze the advantages and disadvantages of the model, and finally,
to choose the optimal model.

In this study, we used 10-fold cross-validation to verify the accuracy of the model [47].
The method divided the data into 10 parts, where 9 of them are used as training data and 1
as test data in turn, and the mean value of 10 times was used as an estimate of the accuracy
of the model.

There are many indicators for evaluating estimation models, such as coefficient of
determination (R2), root mean square error (RMSE), mean absolute error (MAE), etc. [48].
These metrics are usually used to determine the strength of the model by performing a
comparative analysis between predicted and measured values. In this study, R2, RMSE,
and MAE are used to evaluate the accuracy of the model. R2 reflects the proportion of
the total variation of the dependent variable that can be explained by the independent
variable through the regression relationship, and its value interval is usually between (0, 1).
MAE is the mean value of the absolute error, which can better reflect the actual situation of
the prediction error, and is equal to 0 when the predicted value and the true value match
exactly; the larger the error, the larger the numerical value.
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In this study, the model prediction performance is mainly evaluated by calculating the
R2, RMSE, and MAE of the model for accuracy evaluation.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (5)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n − 1
(6)

MAE =
1
n

n

∑
i=1

|ŷi − yi| (7)

In the formula, yi is the actual observed value, ŷi is the model prediction, y is the
average of the actual values, and n is the sample size.

2.3.5. Theil–Sen Median Slope Estimation and Mann–Kendall Trend Analysis

The Theil–Sen median slope estimation (also known as Sen slope estimation) is a
robust, nonparametric statistical trend calculation method which can reduce data outliers,
and combined with the Mann–Kendall trend analysis (MK test) method is suitable for trend
analysis of long time series data [49]. This method does not require the data to obey normal
distribution, has a strong resistance to data errors with a more solid statistical theoretical
basis for the test of significance level, and the results are more scientific and reliable.

The Sen slope estimate is calculated as

β = Median
(NPPj − NPPi

j − i

)
, 1997 ≤ i ≤ j ≤ 2017 (8)

In the formula: Median () represents the median value; when β > 0, it indicates that
the forest NPP shows an upward trend; when β = 0, it indicates that the forest NPP has no
change; when β < 0, it indicates that the forest NPP shows a downward trend. The specific
grading is shown in Table 5.

Table 5. Trend grading of MK test [50].

β Z Trend Grading

β > 0

2.58 < Z extremely significant increase
1.96 < Z ≤ 2.58 significant increase
1.65 < Z ≤ 1.96 least-significant increase

Z ≤ 1.65 non-significant increase

β = 0 Z no change

β < 0

Z ≤ 1.65 non-significant decrease
1.65 < Z ≤ 1.96 least-significant decrease
1.96 < Z ≤ 2.58 significant decrease

2.58 > Z extremely significant decrease

The MK test is a non-parametric statistical test for trend of time series, used to judge
the significance of the trend. The data of time series do not need to obey the normal
distribution, independent of a few outliers and missing values. The MK test is more
applicable to non-normally distributed data, and is usually used to explain the change
in the trend of the time series of forest NPP. In the trend test, the original hypothesis H0
indicates that no trend exists in data set x; the opposing hypothesis H1 indicates that there
is a monotonic trend in data set x.

Suppose x1, x2, . . . , xn are time series variables and the constructed statistic is

S =
n−1

∑
j=1

n

∑
i=j+1

sgn
(
xi − xj

)
(9)
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sgn
(
xi − xj

)
=

⎧⎨⎩
1,
0,
−1,

xi − xj > 0
xi − xj = 0
xi − xj < 0

(10)

In the formula: xi and xj are the corresponding data (NPP) values of the i-th and j-th
years, respectively, and i > j; n is the length of the data set. Then, there is

Z =

⎧⎪⎪⎨⎪⎪⎩
S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0
(11)

In the formula: Z is a normally distributed statistic; Var(S) is the variance. The original
hypothesis is rejected if |Z| ≥ Z(α/2) at a given α significant level, i.e., there is a significant
upward or downward trend in the time series data at the α significant level.

2.3.6. Standard Deviational Ellipse

The standard deviational ellipse [51–53] is an analysis method to characterize the
spatial distribution characteristics, including the center coordinate, the rotation angle, and
the standard deviation along the long axis (i.e., y-axis) and the short axis (i.e., x-axis). These
elements, respectively, represent the relative position of the spatial distribution pattern of
elements, the main trend direction of development, and the degree of dispersion in the
main and secondary directions. In this study, ArcGIS was used to generate the standard
deviation ellipse of NPP in the study area to identify the position of the center and the
spatial movement trend of NPP from 1997 to 2017.

2.3.7. Structural Equation Model

The structural equation model (SEM) [9,54–58] is an advanced and robust multivariate
statistical method that combines factor analysis and regression analysis, allowing hypothe-
sis testing on a complex network of path relationships to analyze the relationship between
measured variables and latent variables, as well as the relationship between each latent
variable. The SEM is composed of a measurement model and structural model. The former
is used to analyze the relationship between measurement variables and latent variables,
and the latter is used to analyze the relationship between latent variables.

The SEM can study not only observable variables, but also the relationship of variables
that cannot be observed directly [59–61]. The SEM can be evaluated from many aspects,
such as model regression coefficient, load coefficient, and model fitting index. In this
study, a chi-square degrees of freedom ratio (χ2/df ), comparative fit index (CFI), and
root-mean-square error of approximation (RMSEA) were used to evaluate the model [62].

3. Results

3.1. NPP Estimation

The selected variables were brought into three models, including the RF, MLR, and
BP neural network, to establish forest NPP remote sensing estimation models, which were
validated using 10-fold cross-validation. The specific prediction accuracy evaluation is
shown in Figure 2.

Comparing the prediction accuracy of the three estimation models, the R2 of the RF
(0.492–0.660) was higher than the MLR (0.307–0.532) and BP neural network (0.422–0.471)
models in every year. RF sampling was performed twice. Firstly, the algorithm obtained
a sampling set of training samples by random sampling with put-back. Then, a variable
was randomly selected from all variables. Meanwhile, the best segmentation feature was
selected as a node to build a classification and regression tree. The above reasons made the
final model of RF have strong generalization and the highest prediction accuracy of NPP.
Compared with traditional machine learning, the BP neural network requires more data
to support. In this study, there were only 388 fixed sample plots in the study area, thus
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the prediction accuracy of NPP was low. The study area has large elevation differences
and complex terrain; therefore, the linear correlation between the dependent variable and
most of the characteristic variables was poor, resulting in the MLR having the lowest
prediction accuracy of NPP. The optimal RF model was selected for spatial mapping of
forest NPP in the study area. The mean NPP values in 1997, 2002, 2007, 2012, and 2017 were
5.66 t·hm−2·a−1, 7.68 t·hm−2·a−1, 8.17 t·hm−2·a−1, 8.25 t·hm−2·a−1, and 10.52 t·hm−2·a−1,
respectively. The mean and standard deviation of the forest NPP was calculated for the five
periods and the NPP was classified into five classes, including low, medium-low, medium,
medium-high, and high, by using the mean value of NPP minus 1-fold standard deviation,
plus 1-fold standard deviation, and plus 2-fold standard deviation. The NPP mapping of
each year is shown in Figure 3.

Figure 2. The performance of different inversion models in different years.

From the NPP grade classification mapping in 1997, 2002, 2007, 2012, and 2017, it can
be seen that the distribution of high and low values of forest NPP was relatively consistent:
the NPP of forests in the north, southwest, and west of the study area was higher, and
the NPP of forests in the middle, northwest, and northeast was lower, which is relatively
consistent with the altitude distribution of the study area. The northern, southwestern,
and western parts of the study area have higher elevation, which are mostly mountainous,
less densely populated, and less disturbed by human activities, and the forest vegetation
can grow naturally, whereas the central, northwestern, and northeastern parts are mostly
hilly areas and valley basins with lower elevation, which are densely populated and more
urbanized, with low forest cover and more disturbance from human activities. It can be
seen that the spatial distribution of forest NPP is highly consistent with the geomorphic
characteristics and socio-economic conditions of the study area.

The forest NPP over 20 years, from 1997 to 2017, shows that the percent of low-grade
NPP is gradually increasing, which is mainly due to the economic development and the
expansion of the area of towns and cities. The area percentage of medium-low-grade NPP
gradually decreased, as the forest with medium-low-grade NPP was farther away from
the town compared to the low-grade NPP and was less affected by economic development
and human activities. Meanwhile, with the implementation of forest land protection
and management regulations, the forest of this grade was intensively managed and the
forest NPP had been increasing, making the medium-low-grade NPP gradually develop to
medium and medium-high grade. The area proportion of forest with medium-grade and
high grade of NPP basically remained stable. The area proportion of medium-high-grade
NPP is gradually increasing, as the forest of this grade is mainly located in the hills and
river valley basin far away from the town. At the same time, with the enforcement of laws
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for forest resources and forest land protection, the phenomenon of indiscriminate logging
was obviously reduced, making the forest NPP gradually increase. It should be noticed
that the area proportion of low-grade NPP in the study area has increased significantly due
to urbanization development.

 
(a) (b) 

 
(c) (d) 

 
(e) 

Figure 3. (a–e) are the spatial distribution maps of NPP classification in Shaoguan in 1997, 2002, 2007,
2012, and 2017, respectively.
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3.2. NPP Spatial and Temporal Dynamics
3.2.1. Temporal Dynamics of NPP

Figure 4 shows the trend of the temporal dynamics of NPP in the study area from
1997 to 2017. Generally, the forest NPP in the study showed an upward trend from 1997
to 2017, with the increasing part being 69.86%, the non-significantly increasing part being
47.80%, the least-significant increase part being 7.37%, the significantly increasing part
being 9.68%, and the extremely significantly increasing part being 5.02%. The areas of
negative increase accounted for 30.12%, the areas of non-significant decrease accounted for
25.10%, the areas of least-significant decrease accounted for 1.59%, the areas of significant
decrease accounted for 1.78%, and the areas of extremely significant decrease accounted
for 1.67%. The areas with increasing NPP in the study area were mainly located in the
mountainous and hilly areas in the west, southwest, and east-central parts of the study
area; the areas with decreasing NPP were mainly located in the urban areas in the central,
south-central, and northwest parts of the study area.

Figure 4. Temporal changes of NPP in Shaoguan from 1997 to 2017.

The NPP in the study area showed an upward trend during the 20 years from 1979 to
2017. In the areas close to the towns, there was a slight downward trend in NPP due to
economic development and disturbance from human activities. In the areas far away from
the towns, the active adjustment of stand species composition and stand structure made
the overall NPP in the study area show an increasing trend.

3.2.2. Spatial Dynamics of NPP

Figure 5 shows the schematic diagram of the NPP standard deviation ellipse and the
center point in the study area from 1997 to 2017. The short axis (i.e., x-axis) of the standard
deviation ellipse of forest NPP from 1997 to 2002 became longer, the long axis (i.e., y-axis)
became shorter, the flatness decreased, and the spatial aggregation increased, indicating
that the forest NPP was gradually aggregated from the original uniform distribution and
the distribution center shifted to the southeast. This is mainly due to the fact that around
1997, China entered a period of rapid economic development and economic overheating
occurred, which led to an increase in forest logging in the low elevation areas of the study
area. During the period of 1997–2002, economic rectification measures were gradually
implemented, and the destruction of forest resources was slowly reduced. However, during
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this period, the forest vegetation in the low elevation areas was not immediately restored,
and the forest vegetation productivity remained high in the high elevation areas, causing an
enlargement in the productivity gap between forest with low elevation and forest with high
elevation and an increase in aggregation. From 2002 to 2012, the short axis of the standard
deviation ellipse of forest NPP in the study area gradually became shorter, the long axis
also gradually became shorter, the flatness decreased, and the spatial aggregation became
shorter, indicating that the distribution of forest NPP in the study area was gradually
uniform and the distribution center of forest NPP still shifted to the southwest. This
is due to the vigorous development of regional ecological construction that focused on
forestry development. More afforestation and greening efforts were made in economically
developed, low-altitude areas, resulting in a gradual reduction of the gap with high-altitude,
economically backward areas. From 2012 to 2017, the short axis of the standard deviation
ellipse of forest NPP in the study area became longer, the long axis became shorter, and
the flatness decreased, indicating that the spatial aggregation of forest NPP in the study
area increased and the center shifted to the southeast. During this period, several forest-
related policies were made and forest protection measures were strengthened in areas
with a higher altitude and more backward economy; thus, forests were less subjected to
human interference and trees grew vigorously, whereas low altitude areas were susceptible
to the conversion from high NPP forest land to built-up economic areas. Therefore, the
phenomenon of increased spatial aggregation of forest NPP occurred. Generally, from 1997
to 2012, the spatial aggregation of forest NPP in the study area increased and the NPP
distribution center shifted from the central-western region to the southwestern direction.
From the above analysis, it can be seen that the spatial variation of forest NPP in the
study area was more influenced by forestry policies and socio-economic development, such
as logging, and the conversion of forest land to built-up economic areas also had some
negative effects on it.

Figure 5. Spatial dynamic changes of NPP in Shaoguan from 1997 to 2017.

3.3. Driving Factors for NPP

Forest growth is influenced by environmental factors, such as topographic factors
that can affect the distribution and allocation of light, precipitation, and forest soil, which
affects forest productivity. Forest growth is also influenced by its own characteristics,
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such as understory vegetation, forest stand structure, etc. There is a certain relationship
between these factors which affect forest stand growth and forest NPP through interaction.
In this study, three types of drivers including environmental factors, understory factors,
and forest stand factors in 2017 were chosen to analyze their interactions and effects on
forest NPP. Five factors, including slope direction, slope position, slope gradient, elevation,
and landform, reflected topographic factors; whereas ten factors, including soil type, soil
texture, soil thickness, humus thickness, litter thickness, shrub height, shrub cover, herb
height, herb cover, and vegetation cover, reflected understory factors; and nine factors,
including dominant species, species structure, age group, average age, average diameter at
breast height (DBH), average tree height, canopy density, naturalness, and stand volume,
reflected stand factors.

The driving factors were inputted into the SED model, and only 21 driving factors were
retained after repeated tests; finally, the optimal SED model was obtained (Figure 6). χ2/d f
was 1.99, GFI was 0.954, and RMSEA was 0.064, indicating that the fit of the constructed
SED model was basically ideal.

 
Figure 6. Schematic diagram of NPP structural equation model in Shaoguan in 2017.

As shown in Figure 6, the forest stand factor had the greatest influence on the forest
NPP (the path coefficient of 0.90), followed by the understory factor which was negatively
correlated with the forest NPP (the path coefficient of −0.23), whereas the environmental
factor had the least influence (the path coefficient of 0.16), the environmental factor had a
significant positive influence on both the forest stand factor and the understory factor with
path coefficients of 0.18 and 0.83, respectively, and the understory factor had a significant
positive influence on the forest stand factor with a path coefficient of 0.55. All the driving
factors shown in Figure 6 reached significant levels. The standardized factor loading
coefficients of environmental factors were slope (0.82), slope position (−0.78), landform
(−0.72), elevation (0.68), and slope direction (−0.58), ranking in descending order. Among
the forest stand factors, the highest standardized factor loading coefficients of 0.95 were for
average DBH and average tree height, followed in descending order by canopy density
(0.93), age group (0.86), species structure (0.81), naturalness (0.79), stand volume (0.78), and
dominant species (0.70). The loading coefficients of standardized factors in the understory
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were, from largest to smallest, soil texture (0.82), soil thickness (0.81), soil type (0.80),
average shrub height (0.78), vegetation cover (0.74), shrub cover (0.66), humus thickness
(0.62), and litter thickness (0.62).

The average DBH and the average tree height in a forest stand directly determine the
forest biomass and, thus, the forest NPP; therefore, there is a strong positive correlation
between forest stand factor and NPP. The environmental factors including the slope, slope
direction, slope position, and elevation directly affected the absorption of light, heat, and
nutrients by the forest; thus, the environmental factors have a positive influence on the
forest NPP. The understory factors showed a negative relationship with the forest NPP,
because the understory plants competed with arbor trees for nutrients and living space, and
the more vigorous the understory plants, the slower the arbor trees grew, which eventually
reduced the growth rate of NPP.

4. Discussion

In this study, three models, including the RF, MLR, and BP neural network, were
applied to estimate forest NPP in the study area. After the selection of feature variables
and valuation of the performance of the three models, the optimal model with the highest
prediction accuracy was used to predict forest NPP. Based on the NPP prediction results
of the optimal model, a spatial and temporal dynamic analysis and driver analysis were
conducted to evaluate the long-term effects of forestry policies, human economic activities,
and urbanization processes on forest NPP, thus providing some scientific basis for long-term
sustainable forest management planning at the regional scale.

Among the three estimation models, the performance of the RF model was better than
the MLR and BP neural network models. Using the optimal model of RF, the NPP estimation
results were obtained in the study area. The average NPP in Shaoguan increased from
5.66 t·hm−2·a−1 in 1997 to 10.52 t·hm−2·a−1 in 2017. The average increase of NPP in the
study area was 0.24 t·hm−2·a−1. An increasing trend was seen in the tropical zone, where
an average increase of about 0.15 (±0.71) t·hm−2·a−1 occurred. A change of more than
1.00 t·hm−2·a−1 was noted in the subtropical zone [63]. NPP by forest types were figured
out using the sample plots data from 1997 to 2017 in the study area. The order of NPP from
largest to smallest by forest types is: bamboo forest (21.90–28.77 t·hm−2·a−1), broad-leaved
mixed forest (15.76–17.99 t·hm−2·a−1), broad-leaved forest (7.85–15.33 t·hm−2·a−1), mixed
coniferous forest (11.82–15.07 t·hm−2·a−1), mixed coniferous forest (9.46-12.65 t·hm−2·a−1),
coniferous forests (3.91–10.09 t·hm−2·a−1) and shrub forests (2.40–3.32 t·hm−2·a−1). Based
on the NPP grading results, it can be seen that although the NPP of the study area increased
during the 20 years from 1997 to 2017, the proportion of medium- and low-grade parts in
the study area were higher. The Theil–Sen estimation and Mann–Kendall trend analysis
showed that the area with increasing forest NPP in the Shaoguan area accounted for
69.86% and was mainly located in mountainous and hilly areas. The area with decreasing
forest NPP accounted for 30.12% and was mainly in the built-up area of the town. The
SDE showed that the spatial aggregation of NPP in the study area increased from 1997
to 2017, with the distribution center shifting to the southwest. The SEM showed that
NPP was significantly positively correlated with forest stand factors and environmental
factors, and negatively correlated with understory factors. The method summarized in
this study, including the selection of feature variables, introduction of FCD, and spatio-
temporal change analysis using Theil–Sen, Mann–Kendall, and SDE, can be applied to NPP
estimation in other subtropical regions.

The average NPP in the same period was about 7.00 t·hm−2·a−1 [64] in southern
China, 6.50 ± 3.00 t·hm−2·a−1 in Asia, and 5.89 ± 2.60 t·hm−2·a−1 in North America [65],
which shows that the average NPP of the study area is higher than the above areas. The
reason lies in the fact that the forests in the study area are dominated by young and middle-
aged forests with faster growth rates. Besides, Shaoguan is a key forest area in China,
with better forest land quality, higher forest management intensity, and more attention to
forest protection. The mean value of NPP in South America was 9.21 ± 3.79 t·hm−2·a−1,
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the mean value of NPP in the tropics was 10.78 ± 3.40 t·hm−2·a−1 [65], and the mean
value of NPP in the subtropics was about 12.76 t·hm−2·a−1 [66], which shows that the
mean NPP in the study area is lower than in these regions and even lower than in the
subtropics, mainly due to the high number of young and middle-aged forests and small
storage volume per unit area; thus, the age group structure should be actively adjusted to
increase the proportion of mature and over-mature forests, whereas the rotation period
of trees should be extended. We should also choose long-lived native broadleaf species
and high carbon-fixing efficient species for planting. At the same time, more mixed forests
of conifers and broadleaf trees should be established, and stand thinning measures be
taken in young and middle-aged forests, so that the trees get enough light and nutrients
to improve photosynthetic efficiency. The growth of understory vegetation should be
reasonably controlled, and a certain thickness of litter on forest soil should remain to
maintain soil productivity. The spatial and temporal dynamics of NPP in the study area
are greatly influenced by forestry policies and socio-economic conditions. For example,
China implemented the return of some forest land to local ownership in 1981, cessation of
cutting in 1985, and removal of agricultural pursuits on forest land in 2003 [67]. Therefore,
we should continue to strengthen the implementation of forestry policies, such as returning
farmland to forests, constructing beautiful countryside, and compensating for ecological
benefits of public welfare forests, in order to continuously reduce the adverse effects of
socio-economic development and urbanization on forest productivity.

The extraction and screening of model feature variables, the modeling method, and
the introduction of FCD variables can be applied to the study of forest NPP in subtropical
regions. In this study, we used a linear model and machine learning methods to estimate
NPP. In the future, deep learning models such as convolutional neural networks (CNN)
should be introduced to compare their performance with linear models and machine
learning methods. In addition to forest canopy density, the forest stand structure factors,
including tree height, forest age, and other stand structure factors, can be added to the
feature variables of estimation models to research whether they can improve the prediction
accuracy of NPP.

5. Conclusions

In this study, the prediction accuracy of forest NPP using the RF model was bet-
ter than other machine learning models and linear models. The introduction of forest
canopy density (FCD) improved the NPP modeling accuracy. The NPP in the study area
has gradually increased, but the tree species composition and age group structure still
remain unreasonable. The spatial variation of forest NPP in the study area is more influ-
enced by forestry policies, social development, and human disturbance. The NPP in the
study area is significantly influenced by stand factors, followed by understory factors and
environmental factors.
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Abstract: Forest above-ground biomass (AGB) is an important index to evaluate forest carbon
sequestration capacity, which is very important to maintain the stability of forest ecosystems. At
present, the wide use of remote sensing technology makes it possible to estimate the large-scale
forest AGB accurately and efficiently. Airborne hyperspectral remote sensing data can obtain rich
spectral information and spatial structure information on the forest canopy with the characteristics of
high spatial and hyperspectral resolution. Airborne LiDAR data can describe the three-dimensional
structure characteristics of a forest and provide vertical structure information related to biomass.
Based on the characteristics of the two data sources, this study takes Gaofeng forest farm in Nanning,
Guangxi, as the study area, Chinese fir, pine tree, eucalyptus and other broadleaved trees as the
research object, and constructs the AGB estimation models of different tree species by fusing airborne
LiDAR and hyperspectral features. Firstly, spectral features, texture features, vegetation index,
wavelet transform features and edge features are extracted from hyperspectral data. Canopy structure
features, point cloud structure features, point cloud density features and terrain features are extracted
from airborne LiDAR data. Secondly, the random forest (RF) method is used to screen the features
of the two sets of data, and the features with the highest importance are selected. Finally, based on
the optimal features of the two data sources, the forest AGB model is constructed using the multiple
stepwise regression method. The results show that the texture features extracted by wavelet transform
can be used for AGB modeling. The AGB of eucalyptus has high correlation with height features
derived from airborne LiDAR, the AGB of other broadleaved trees mostly depends on the wavelet
transform texture features from airborne hyperspectral data, while the AGB of Chinese fir and pine
tree has high correlation with both height features and spectral features. Feature-fusion-based LiDAR
and hyperspectral data can greatly improve the accuracy of the AGB models. The accuracy of the
optimal AGB models of Chinese fir, pine tree, eucalyptus and other broadleaved trees is 0.78, 0.95, 0.72
and 0.89, respectively. In conclusion, more accurate estimation results can be obtained by combining
active and passive remote sensing data for forest AGB estimation, which provides a solution for
carbon storage assessment and forest ecosystem assessment.

Keywords: above-ground biomass (AGB); airborne LiDAR; airborne hyperspectral; wavelet transform;
feature fusion

1. Introduction

Forests are important natural resources for maintaining ecological balance and sta-
bility. The changes in forest resources and reserves will directly affect the decisions of
major national forestry planning [1]. At the same time, as a natural and renewable resource,
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the quantity and quality of forests will directly affect national economic construction and
people’s quality of life [2]. In 2007, a report from the IPCC (United Nations Intergovern-
mental Panel on Climate Change) pointed out that forestry has multiple benefits and has
the dual functions of mitigating and adapting to climate change. This report is an economic
and effective measure to increase carbon sequestration and reduce emissions in the next
30–50 years. The Paris Agreement also lists the forestry provisions separately, encourages
countries to take actions to protect and enhance forest carbon pools and sinks after 2020,
and continues to encourage developing countries to implement and support REDD+ (reduc-
ing deforestation, mitigating forest degradation and reducing greenhouse gas emissions).
China also put forward the vision of “carbon peaking and carbon neutralization” in 2020,
which shows that forest resources play an important role in global climate change and
ecological balance. Therefore, it is necessary to monitor and assess the dynamic information
of forest resources in time.

China is rich in forest resources and various forest types, which occupy an important
position in the terrestrial ecosystem. At the same time, the forest community structure is
complex and the biomass is high. More than 80% of the forest vegetation biomass is stored
in the ecosystem. Therefore, the study of forest biomass estimation can better evaluate
the problems of forest productivity and forest carbon cycle, and provide key data support
for the study of global climate change and development trend. At this stage, plantation
resources account for a large proportion of China’s forest land resources, accounting for
about 40% of the national forest land area, which is of great significance to the development
of forest resources and the construction of the ecological environment in China. The
plantation is mainly distributed in Southern China, and Eucalyptus, pine tree and Chinese
fir are the main tree species. Their wide distribution range and high forest canopy density
pose a great challenge to China’s scientific forest management.

At present, remote sensing technology is developing rapidly and is widely used in
forest inventory and large-scale real-time monitoring of forest resources [3–6]. It effectively
solves the limitations of being time consuming and labor intensive of traditional manual
inventory, can quickly and conveniently obtain a large number of forestry remote sensing
basic data, and can realize large-scale and long-time monitoring of forest AGB [7–10].
Optical remote sensing is the most widely used and popular remote sensing data resource,
which can provide spectral and texture features for forest AGB estimation [11,12], but
optical remote sensing data also have many limitations. Multispectral optical images have
the disadvantages of few spectral bands and narrow wavelength range, which has limita-
tions in describing the physiological and ecological characteristics of forest vegetation [13].
A hyperspectral image adopts imaging spectral technology, which contains hundreds of
bands in the imaging spectral domain, with a wide spectral range and a large number
of bands, forming continuous spectral curve data, which can meet the needs of spectral
information for forest AGB estimation [14–16]. However, hyperspectral images also have
some problems, such as foreign objects with the same spectrum, different spectra of the
same object and weak penetration to ground objects. Different tree species, shrubs and trees
with different heights may have similar spectral information, which will affect the inversion
accuracy of forest AGB [17,18]. As an active remote sensing technology, light detection
and ranging (LiDAR) has incomparable advantages over traditional remote sensing and
measurement methods in data acquisition [19]. The laser pulse can obtain the terrain
information under the forest canopy through the forest cover, obtain the forest height
information or stand density and other information closely related to biomass with high
precision, and can be used for high-resolution three-dimensional reconstruction [20,21].
However, although LiDAR data have unique advantages that optical remote sensing data
do not have, it is less precise than optical remote sensing data in canopy detection and spa-
tial resolution. Therefore, the combination of these two data has the potential to accurately
estimate forest parameters [22–25].

Baccini A et al. [26] took Africa as the study area, combined spaceborne laser GLAS
data with MODIS data to retrieve the forest AGB in tropical Africa and generated the
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biomass distribution map. The results showed that there was a strong correlation between
the height feature of GLAS data and AGB, with R2 of 0.9. Boudreau J et al. [27] combined
SRTM, ETM + and airborne LiDAR point cloud data to carry out forest AGB inversion
in Quebec, Canada, and constructed an AGB model using the method of feature fusion,
with R2 of 0.65. Chen G et al. [28] used LiDAR data, QuickBird data ground survey data
to retrieve the tree height, AGB and volume of some forest areas in Vancouver, Canada,
using the support vector machine method. The research showed that the performance
of SVR is better than that of the multiple regression method. Laurin et al. [29] combined
hyperspectral data with LiDAR point cloud data, and estimated the forest AGB in tropical
forest areas of Africa. The results showed that the R2 of the model was 0.7, which improved
the accuracy by 6% compared with using LiDAR data alone. Li et al. [30] studied the basic
distribution of forest AGB in California, USA, by using LiDAR and multi-temporal MODIS
data. The results showed that the accuracy was high and R2 was 0.74. Luo et al. [22] took
the forest area of Heihe River Basin in Heilongjiang Province as the study area, analyzed
the forest AGB in this area, in combination with hyperspectral data and airborne LiDAR
data, and concluded that the estimation accuracy using the two set of data was 0.893, and
the accuracy using LiDAR data only was 0.872. In comparison, the combination of the
two sets of data increases the estimation accuracy. Catherine T de A et al. [31] took the
Amazon region of Brazil as the study area, combined hyperspectral data with LiDAR data
to establish an AGB estimation model by screening indicative features from 333 features (45
from LiDAR and 288 from hyperspectral). The results showed that the model combining
the two data sources can obtain more accurate forest biomass estimation value, and the
R2 of best model was 0.70. Wang et al. [32] used Sentinel-2 and airborne LiDAR data
to inverse the AGB of mangrove forests in the northeast of Hainan Island. The results
showed that the method based on a point line polygon framework proposed in the study
can effectively estimate the AGB of this area, and verify the feasibility of this method in
different mangrove types.

To sum up, estimating forest AGB based on active and passive remote sensing data can
overcome the limitations of a single data source, give full play to the respective advantages
of data and realize high-precision estimation of forest parameters. However, most forest
AGB estimation research does not consider tree species or only a specific tree species, which
makes the research for large-area forest AGB estimation with multiple tree species limited.
At the same time, the extraction of feature parameters of optical remote sensing data is
mostly the use of spectral reflectance features and gray-level co-occurrence matrix (GLCM)
texture features, and there is no in-depth research on the spatial features of optical images.
In view of the above problems, taking Guangxi Gaofeng forest farm as the research area,
this study discusses the accuracy difference in estimating forest AGB using only single
remote sensing data and combining active and passive remote sensing data. At the same
time, the spatial and spectral features related to forest AGB are extracted from airborne
hyperspectral imagery, and the different AGB modeling of four main dominant tree species
in this area are discussed, in order to improve the estimation accuracy of forest AGB and
provide a reference for forest carbon storage estimation and ecological assessment in China.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area

The study area is located in Gaofeng forest farm in Nanning, Guangxi province. The
geographical location is 108◦19′30′′~108◦23′30′′E and 22◦56′~23◦1′N. The forest farm is
dominated by low hills, with an altitude of 70~875 m and a slope of 25~35◦. The terrain
has little fluctuation, low in the southeast and high in the northwest (Figure 1). The forest
farm has a tropical monsoon climate with an annual average temperature of 12.5~28.2 ◦C,
an average rainfall of 1304 mm, sufficient sunshine and an annual average sunshine time
of 1550 h. The proportion of non-forest land and forest land is about 1:99, and the forest
coverage rate of the whole forest farm is close to 90%. In addition to forest land, the forest
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farm also includes shrub, nursery, non-standing forest land after cutting, other sparse forest
land and non-forested areas, with an area ratio of 1:1:56:29:13. The forest type has typical
characteristics of forests in South China, with rich tree species, mainly planted forests.
The tree species include Eucalyptus Urophylla, Eucalyptus Grandis X Urophylla, Castanopsis
Hystrix, Cunninghamia Lanceolata (Chinese fir) and Pinus Massoniana. The proportion of
Chinese fir, pine tree, eucalyptus and other broadleaved trees in the study area is 1:1:5:3;
eucalyptus accounts for nearly half.

Figure 1. Location of the study area and the field survey plots ((a) is the location of Guangxi Province.
(b) is the location of Nanning City. (c) is the distribution of each species sample plot, the base map is
hyperspectral image of the study area).

2.1.2. Field Data

In January 2018, a field survey was conducted in Gaofeng forest farm, Nanning,
Guangxi province, and the measured sample plot data were collected. According to the
terrain and stand characteristics of the study area, sample plots of different sizes were set
up. A total of 98 plots are arranged in the study area, including 27 Chinese fir plots, 15 pine
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tree plots, 35 eucalyptus plots and 21 other broadleaved tree plots. Other broadleaved trees
mainly include Dygoxyllum, Lllicium Linn, Magnolia Denudata, Magnoliaceae Glanca Blume
and Erythrophleum Fordii Oliv. The diameter at breast height (DBH) of each tree with DBH
greater than 5 cm was measured using DBH ruler, the height of each tree was measured
with laser altimeter, the coordinates of each tree were measured with total station, and the
coordinates of the center and four corners of the sample plots were measured with RTK.
The basic information of the sample plots is shown in Table 1.

Table 1. Sample plots information.

Tree Species Forest Age (Year) DBH (cm) Tree Height (m) Stem Density (n·ha−1)

Chinese fir 26 ± 5 26.9 ± 22.1 18.8 ± 13.4 2098 ± 1634
Pine Tree 14 ± 7 12.7 ± 6.6 6.2 ± 6.0 1211 ± 667

Eucalyptus 15 ± 13 17.8 ± 14.8 19.2 ± 17.9 1610 ± 1034
Other broadleaved tree 24 ± 16 27.2 ± 22.9 14.9 ± 10.7 1373 ± 806

Note: m ± n, m is the median of the tree parameters for each tree species, n is the maximum value that this
parameter fluctuates up or down.

The AGB of each tree species is calculated using the allometric growth equation of
AGB by the measured DBH and tree height. For tree species with more than 20 samples,
the number of verification samples is set to a number greater than 10, and the rest are
training samples. The tree species with less than 20 samples are modeled and verified by
the leave-one method.

2.1.3. Remote Sensing Data

The remote sensing data were obtained by the institute of resource information, Chi-
nese Academy of Forestry Sciences in February 2018 using the Yun-12 fixed wing UAV
equipped with RIEGLLMS-Q680i laser scanning system (Horn, Austria) and AISA Eagle
II sensor (Oulu, Finland) in sunny weather. The point density of airborne LiDAR point
cloud data is 3.35 points/m2, and the data format is .las. The hyperspectral data contains
125 bands, and the data format is .dat. The parameters of laser scanning system are shown
in Gao Linghan et al. [33], and the detailed parameters of hyperspectral sensor are shown
in Table 2.

Table 2. The main spatial parameters of hyperspectral system.

Parameters Value

Spectral range (nm) 400~1000
Spectral resolution (nm) 3.3

Field angle (◦) 37.7
Instantaneous field angle (mrad) 0.646

Focal length (mm) 18.1
Number of spatial pixels 1024

Spectral sampling interval (nm) 4.6
Quantized value (bits) 12

Number of bands 125

2.1.4. Data Preprocessing

The main preprocessing includes radiation calibration, atmosphere correction and
terrain radiation correction [34]. Conversion formula was used to complete the radiometric
calibration, so as to convert the DN value of the initial image into the radiance value. The
fast atmospheric correction method was used to correct the hyperspectral image data,
so as to eliminate the influence of atmosphere on the reflection of ground objects [35].
SCS + C correction model is used for terrain correction to eliminate the influence of surface
roughness on ground reflectance or brightness [36].
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The preprocessing of LiDAR point cloud data is mainly to realize elevation normal-
ization [37]. Firstly, the threshold method is used to remove the noise points generated in
the scanning process and retain the important point cloud data in the study area [38,39].
According to the measured forest height, crown width and terrain elevation, the forest
threshold range is 0.3~50 m and the search radius is 3 m [40,41]. Secondly, the irregular tri-
angulation filtering TIN algorithm was used to classify the point cloud data and distinguish
the ground points and non-ground points [42]. Finally, the ground points were interpolated
using TIN interpolation algorithm to generate digital elevation model (DEM) [43], and
the non-ground points are interpolated using Kriging interpolation algorithm to generate
digital surface model (DSM). The difference operation was performed between DSM and
DEM to obtain the canopy height model (CHM). The point cloud data after elevation
normalization are shown in Figure 2.

Figure 2. Elevation normalized point cloud of the study area.

2.2. Methods
2.2.1. Feature Variables Extraction from Hyperspectral Imagery

Hyperspectral imagery has higher spatial resolution and spectral resolution contains
richer spectral information and spatial structure information and can obtain more fea-
tures related to forest AGB. Firstly, the spectral reflectance features, first derivative and
second derivative features of 125 bands of hyperspectral data were extracted, respectively
(Table 3). Secondly, based on the previous literature [44–46], several typical vegetation
indices characterizing vegetation coverage and biomass were extracted (Table 4), which
included the indices related to atmospheric impedance and topographic characteristics
and chlorophyll content and indices representing the characteristics of vegetation leaves.
As such, 8 s-order texture features from band 19 (482 nm), band 34 (550 nm) and band 55
(645 nm) were extracted separately based on the GLCM method (Table 5) [47]. These three
bands correspond to blue, green and red bands, respectively, with high definition, less
interference and obvious ground feature information. In this way, a total of 24 object-based
texture features was obtained. Finally, in order to extract more spatial information related
to forest structure, wavelet transform [48] and mathematical morphology [49] were used to
extract spatial texture features, transformed spectral features and edge features (Table 6).

Table 3. List of the spectral features for hyperspectral data.

Type Name

Spectral reflectance Band1, Band2. . .Band125
First derivative X1st1, X1st2. . .X1st125

Second derivative X2nd1, X2nd2. . .X2nd125
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Table 4. List of the vegetation indices for hyperspectral data.

Type Name Formula

Broad-band greenness index
Normalized differential vegetation

index (NDVI) NDVI = ρ800−ρ680
ρ800−ρ680

Enhanced vegetation index (EVI) EVI = 2.5
(

ρ800−ρ680
ρ800+6ρ680−7.5ρ450+1

)

Narrow-band greenness index

Red edge normalized difference
vegetation index (NDVI705) NDVI705 = ρ750−ρ705

ρ750+ρ705

NDVI1 NDVI1 = ρ750−ρ740
ρ750+ρ740+0.0001

NDVI2 NDVI2 = ρ756−ρ735
ρ756+ρ735

Soil adjust vegetation index (SAVI) SAVI = 1.5×(ρ800−ρ680)
ρ800+ρ680+0.5

SAVI2 SAVI2 = 1.5×(ρ800−ρ680)
ρ800+ρ680+0.5

Light utilization index Photochemical reflectance index (PRI) PRI = ρ531−ρ570
ρ531+ρ570

Other indexes

Transformed chlorophyll absorption
in reflectance index (TCARI670.700) TCARI670.700 = 3[(ρ700 − ρ670)− 0.2(ρ700 − ρ550)× (ρ700/ρ670)]

Optimized soil-Adjusted vegetation
index (OSAVI670.800) OSAVI670.800 = (1 + 0.16)× (ρ800 − ρ670)/(ρ800 + ρ670 + 0.16)

Modified chlorophyll absorption in
reflectance index (MCARI) MCARI = [(ρ700 − ρ670)− 0.2(ρ700 − ρ550)](ρ700/ρ670)

OSAVI OSAVI = (1 + 0.16)× (ρ800 − ρ700)/(ρ800 + ρ700 + 0.16)
SARVI SARVI = 1.5 × (ρ800 − 2 × ρ670 + ρ445)/(ρ800 + 2 × ρ670 − ρ445 + 0.5)

Table 5. List of the second-order texture indices calculated by GLCM for hyperspectral data.

Type Name Formula

Entropy entropy1, entropy2. . .entropy125 ∑N−1
ij=0 Pij × (−lnPij)

Second moment second.moment1, second.moment2. . .second.moment125 ∑N−1
ij=0 Piĵ2

Variance variance1, variance2. . .variance125 ∑N−1
ij=0 Pij × (1 − mean)̂2

Mean mean1, mean2. . .mean125 ∑N−1
ij=0 iPij

Correlation correlation1, correlation2. . .correlation125 ∑N−1
ij=0 Pij × [ (

i−mean)−(j−mean)√
variancei×variancej

]

Homogeneity homogeneity1, homogeneity2. . .homogeneity125 ∑N−1
ij=0 i Pij

1+(i−j)̂2
Contrast contrast1, contrast2. . .contrast125 ∑N−1

ij=0 iPij × (i − j)̂2
Dissimilarity dissimilarity1, dissimilarity2. . .dissimilarity125 ∑N−1

ij=0 iPij × |i − j|

Table 6. List of the spatial texture and transform features for hyperspectral data.

Types Name Describing

Spectral feature (BT1, BT2. . .BT125) Spectral features of two-dimensional wavelet transform
Texture feature Horizontal texture (Hor1, Hor2. . .Hor125) Horizontal texture of two-dimensional wavelet transform

Vertical texture (Ver1, Ver2. . .Ver125) Vertical texture of two-dimensional wavelet transform
Approximate texture (App1, App2. . .App125) Approximate texture of two-dimensional wavelet transform

Diagonal texture (Dia1, Dia2. . .Dia125) Diagonal texture of two-dimensional wavelet transform
Edge feature (Edg1, Edg2. . .Edg125) Edge texture of mathematical morphology analysis

2.2.2. Feature Variables Extraction from LiDAR

According to the data structure features of point cloud data and comprehensively
considering the ecological and spatial structure indicators, the feature parameters of point
cloud data were extracted from forest canopy information (including canopy density and
leaf area index), point cloud structure information (including height percentile, height
maximum and minimum), point cloud density information (including point cloud density
parameters at different height levels of point cloud) and terrain information (including
slope and aspect). For meaning and abbreviation of each feature variable of point cloud
data see Gao Linghan et al. [33]. The important features of point cloud data include height
percentile and cumulative height percentile. The height percentile refers to the height of
X% points in a unit grid. The cumulative height percentile is the height sum of X% points
in a unit grid.
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2.2.3. Feature Variables of Three-Level Screening and Modeling

In this study, there are many hyperspectral feature parameters and few sample plots.
Putting all features into the model will lead to data redundancy, supersaturation of mod-
eling variables and low model accuracy. The following two-level screening scheme was
designed for hyperspectral features: First, the extracted feature sets of 11 categories, such as
spectral reflectance features, first derivative features, second derivative features, vegetation
indices, GLCM texture features, spectral feature of wavelet transform, horizontal texture
of wavelet transform, vertical texture of wavelet transform, diagonal texture of wavelet
transform, approximate texture of wavelet transform and edge texture, are successively
screened for each tree species according to RF method, and modeled separately by multiple
stepwise regression method (MSR) [50]. Compare the model accuracy, eliminate the feature
sets with model accuracy less than 0.5, and use the remaining feature sets for subsequent
screening and modeling. Then, according to the first screening results, RF screening [51]
is carried out again to select the corresponding top ranking features of each tree species.
Finally, the optimal model of each tree species based on hyperspectral data is obtained
by using the MSR method again. According to the number of training samples and the
principle of moderate proportion, the proportion of training samples and independent
variables is set as 4:1.

RF method was used to screen the best feature variables derived from airborne Li-
DAR point cloud data for each tree species. The screening results are shown in Gao
Linghan et al. [33]. Then the optimal variables of each tree species screened by airborne
hyperspectral and LiDAR data were fused, and the optimal variables of each tree species
were screened again by RF method to realize the optimal feature fusion of the two data
sources and obtain the final feature variable set. The AGB model of each tree species was
established by MSR method to realize the AGB modeling of each tree species based on
the feature fusion of multi-source data. The three-level screening and modeling process is
shown in Figure 3.

The RF method is a popular feature-selection method, which can realize data reduction
and optimization. The decline in target prediction accuracy after removing variables is
indicated by %IncMSE, which is the growth of root mean square error rate. When the value
is larger, the contribution of the variable is greater. Further, %IncMSE formula is shown
in Gao Linghan et al. [33]. MSR method considers the variance contribution value of all
variables when introducing variables and sorts them into a regression equation according
to their importance. The final equation does not contain unnecessary independent variables.
The coefficient of determination R2, the root mean square error (RMSE) and mean absolute
error (MAE) were used to compare the accuracy. The formula is as follows:

R2 = 1 − mean(Xmodel, i − Xobs, i)2

mean(mean(Xobs, i)− Xobs, i)2 (1)

where: R2 is the coefficient of determination, Xobs, i is the measured value, Xmodel, i is the
estimated value, and mean is the average value.

RMSE = (mean(Xmodel, i − Xobs, i)2)
0.5

(2)

MAE =
1
N

N

∑
i=1

|Xmodel, i − Xobs, i| (3)

where: RMSE is the root mean square error, MAE is the mean absolute error, N is the
number of samples.
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Figure 3. Three-level screening and modeling process.

3. Results

3.1. Hyperspectral Features Selection

The feature-screening results based on airborne LiDAR data are shown in Gao Ling-
han et al. [33]. The screening of hyperspectral features eliminates redundant feature
parameters and obtains several feature parameters, with the highest correlation between
11 feature sets and AGB of each tree species using the RF method. Four, four, six and
three feature parameters were selected for Chinese fir, pine tree, eucalyptus and other
broadleaved trees, respectively. The screening results are shown in Figure 4.
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Figure 4. The feature importance ranking map after two-level screening of hyperspectral features.

It can be seen from Figure 4 that the AGB of Chinese fir has a strong correlation with
the derivative features. The AGB of pine trees has a good correlation with the second
derivative and the diagonal texture features of wavelet transform, and the texture features
of GLCM are removed. The AGB of eucalyptus has a strong correlation with the spectral
reflectance features and the vertical texture features of wavelet transform. The AGB of
other broadleaved trees has a good correlation with the three texture features of wavelet
transform. From the above results, it can be concluded that there is a good correlation
between the texture features extracted by wavelet transform and forest AGB, which can be
used as an important modeling variable for forest AGB estimation.

3.2. AGB Modeling Using Screened Hyperspectral Features

Based on the features of hyperspectral data screening, the AGB model was constructed
by using the multiple stepwise regression method, and its accuracy is shown in Table 7.

Table 7. Accuracy of AGB model based on hyperspectral data.

Tree
Species

Modeling after
Two-Levels Screening

Training
Accuracy R2

Verification
Accuracy R2

RMSE
(t/hm2)

MAE
(t/hm2)

Chinese fir Y = 94.98 + 46900.41 × 2nd-14 − 71056.38 × 1st-49 − 3306.91 × 1st-93 0.89 0.38 9.67 7.43
Pine tree Y = 90.93 − 111797.85 × 2nd-51 − 19166.65 × 2nd-95 + 203276.65 × Dia117 0.84 0.79 20.02 14.37

Eucalyptus Y = −54.84 + 25089.15 × Band46 − 14272.49 × Band65 + 508.42 × Band104
+ 350052.48 × Ver6 + 1791491.57 × Ver22 − 378751.92 × Ver38 0.78 0.03 350.14 194.55

Other broadleaved tree Y = 139.3 −3498000 × Ver19 0.89 0.13 128.47 94.53
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It can be seen from Table 7 that the training accuracy of the four tree species is more
than 0.75, but the verification accuracy is very different. The training accuracy of pine
trees is the best, with accuracy of 0.84, and the verification accuracy is also about 0.8.
The training accuracy of Chinese fir is the second. Although the training accuracy of
eucalyptus and other broadleaved trees is high, the verification accuracy is very low,
indicating that the effect of the model for these two tree species is not ideal, especially
the training accuracy and verification accuracy of eucalyptus, as these are all very low.
The reason for the deviation between training accuracy and verification accuracy may be
that the selected modeling and verification sample plots are uneven, and many attempts
can be made in subsequent research. The estimation accuracy of coniferous tree AGB
based on hyperspectral data is good, while that of broadleaved tree AGB is low. From the
selection of independent variables, it can be seen that coniferous tree AGB is mostly highly
correlated with spectral features, broadleaved tree AGB is mostly highly correlated with
texture features. Texture features are features after image transformation, and there will be
some deviation in calculation, which also makes the estimation results of coniferous tree
and broadleaved tree AGB different.

3.3. Feature Screening of LiDAR and Hyperspectral

Firstly, the optimal variables extracted from airborne LiDAR data are shown in Gao
Linghan et al. [33]. These are basically the point cloud structure features. These features are
fused with the optimal features extracted from hyperspectral data for subsequent feature
screening. Then, the RF method was used for the three-level screening of features. The
ranking results of the importance features of each tree species are shown in Figure 5.

 

Figure 5. The feature importance ranking map after three-level screening of fused features.
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As can be seen from Figure 5, the feature variables with high importance of Chinese fir
and pine trees include features from two data sources, mainly height, spectral and texture
features of wavelet transform. The important features of eucalyptus are only correlated with
height metrics derived from LiDAR data, and the importance features of other broadleaved
trees are texture features of wavelet transform based on hyperspectral data. In terms of tree
species structure, eucalyptus belongs to tall trees, with straight and complete trunks and
fewer branches. Branches are mostly concentrated in the tree canopy, and the biomass is
concentrated in the trunk. Therefore, the biomass is mostly related to the height features.
Other broadleaved trees mainly include Castanopsis hystrix Miq., Magnolia denudata Desr.,
Illicium verum Hook.f., Erythrophleum fordii Oliv. and Magnoliaceae glanca Blume. There is little
difference in the height of these tree species, but different tree species have different canopy
structure, branch size and leaf shape. Therefore, the forest biomass is mostly related to
some shape and texture features. Through the above screening, it can be seen that the AGB
of different tree species has the strongest correlation with different features and different
data sources.

3.4. AGB Modeling Using Features Fusion

According to the optimal features selected by the three-level screening strategy for each
tree species, the AGB models of the four dominant tree species (group) were constructed.
The AGB model of other broadleaved trees was constructed based on the features of
hyperspectral data (Table 7). The model of eucalyptus was constructed based on the
features from airborne LiDAR point cloud data, and the models of Chinese fir and pine
tree were constructed based on the fused features of two data sources. The models and
accuracy are shown in Table 8.

Table 8. Modeling accuracy of feature fusion.

Tree
Species

Modeling after Three-Levels Screening
Training

Accuracy R2
Verification
Accuracy R2

RMSE
(t/hm2)

MAE
(t/hm2)

Chinese fir Y = 96.25 − 5680.31 × 2nd-71 − 6762.93 × 1st-93 − 0.34 × H-variance 0.78 0.44 11.02 9.15
Pine tree Y = 92.72 − 92027.59 × 2nd-51 − 9579.86 × 2nd-95 + 166851.96 × Dia117 − 5.62 × H-K 0.95 0.91 12.94 8.95

Eucalyptus Y = −28.6 + 3.6 × H50 + 5.0 × Hc40 0.72 0.71 50.75 25.48
Other broadleaved tree Y = 139.3 − 3498000 × Ver19 0.89 0.13 128.47 94.53

It can be seen from Table 8 that the training accuracy of Chinese fir and pine trees is
0.78 and 0.95, respectively, the verification accuracy is 0.44 and 0.91, respectively, and the
RMSE is 11.02 and 12.94 t/hm2, respectively. For the pine tree, compared with the modeling
results from hyperspectral data, the training accuracy (0.84 based on hyperspectral data)
and verification accuracy (0.79 based on hyperspectral data) of the fusion-based model
has been greatly improved to 0.95 and 0.91, respectively. For Chinese fir, the training
accuracy is slightly lower than that of hyperspectral feature-based modeling (R2 is 0.89),
but the verification accuracy (0.38 based on hyperspectral data) is improved to 0.44. The
training accuracy of eucalyptus AGB model is 0.72 and the verification accuracy is 0.71.
Compared with the modeling results based on hyperspectral data, the verification accuracy
of eucalyptus is greatly improved and the training accuracy is reduced by 0.06. After
three-level feature screening of other broadleaved trees, the optimal features obtained are
the same as those extracted from hyperspectral data. Therefore, the final AGB model results
are the same. In summary, AGB models of different tree species based on active and passive
data greatly improved the accuracy of Chinese fir, pine tree and eucalyptus, and the AGB
of other broadleaved trees has the highest correlation with hyperspectral features.

3.5. Forest Above-Ground Biomass Mapping of the Forest Farm

According to the class II survey data of forest resources in Guangxi Province, the
distribution area of each tree species within the forest farm is extracted and the correspond-
ing feature variables in each stand area are extracted. The AGB value of each tree species
within the forest farm is estimated by using the optimal model of each tree species based on
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LiDAR data, based on hyperspectral data and based on fused features. The AGB thematic
maps of different tree species in the study area based on the optimal AGB model of different
data sources are shown in Figure 6.

(a) (b) (c) 

Figure 6. Distribution of forest AGB in the study area based on different data sources ((a) is the AGB
map of each tree species based on airborne LiDAR data. (b) is the AGB map of each tree species based
on airborne hyperspectral data. (c) is the AGB map of each tree species based on feature fusion.).

It can be seen from Figure 6 that the spatial distribution law of biomass of each tree
species obtained by the three methods is the same. Chinese fir is mainly distributed in the
south and central parts of the study area. Pine trees are distributed in a small range, mainly
in the northwest and southeast of the study area. Eucalyptuses are mainly distributed in
the east and west of the study area; there is a small distribution in the central and north
region. Other broadleaved trees are evenly distributed in the central part and around the
study area.

Comparing Figure 6b,c, the AGB of Chinese fir in b is mainly concentrated between
approximately 70 and 100 t/hm2, and the AGB of Chinese fir in c is mainly concentrated
between approximately 75 and 120 t/hm2. The AGB value of Chinese fir estimated based
on airborne hyperspectral data is low, and the minimum AGB value of Chinese fir in b is
11.5 t/hm2 and that in c is 77.5 t/hm2. Compared with the measured AGB of Chinese fir,
the smallest measured AGB of Chinese fir is 59.2 t/hm2, and most of the Chinese firs in the
forest farm are middle aged and mature forests. Therefore, the minimum value of Chinese
fir AGB estimation after feature fusion is more accurate.

The AGB of pine trees in b is mainly concentrated between approximately 120 and
130 t/hm2, and in c is mainly concentrated between approximately 120 and 140 t/hm2. The
maximum and minimum values in b are 160 t/hm2 and 95 t/hm2, respectively, and the
maximum and minimum values in c are 170 t/hm2 and 91 t/hm2, respectively. It can be
seen that the biomass estimation value of the area with high AGB is too small based on
hyperspectral data.

The maximum AGB of eucalyptus in b is more than 300 t/hm2, and that in c is more
than 120 t/hm2. By analyzing the AGB of eucalyptus in small class areas of b and c,
respectively, it is found that the maximum AGB of eucalyptus in c is 150 t/hm2, that in b
is 700 t/hm2. Compared with the measured AGB of eucalyptus, the measured maximum
AGB of eucalyptus is 338.8 t/hm2. It can be concluded that the AGB of eucalyptus in b has
a serious oversaturation problem. It shows that the AGB of eucalyptus has little correlation
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with the features extracted based on hyperspectral data, such as spectral feature and texture
feature. The height feature is the key feature to determine the AGB of eucalyptus.

The AGB models of other broadleaved trees in b and c are constructed based on
airborne hyperspectral data, and the results are consistent. The AGB of other broadleaved
trees in a is calculated based on the optimal model of LiDAR data. The AGB values of
other broadleaved trees are mostly between approximately 130 and 190 t/hm2, and the
AGB values of other broadleaved trees in c are mostly between approximately 120 and
160 t/hm2, indicating that the AGB values of other broadleaved trees calculated based on
LiDAR data are generally greater than those calculated based on feature fusion.

In summary, feature fusion based on different data sources can avoid the problem of
data value oversaturation. The estimation results of Chinese firs and pine trees based on
feature fusion are better, the results of eucalyptuses based on LiDAR data are the best, and
the estimation results of other broadleaved trees based on hyperspectral data are the best.

4. Discussion

4.1. Significance of Multi-Level Feature Screening

In this study, airborne LiDAR point cloud data and hyperspectral data were used to
analyze the optimal feature variables of AGB modeling and the AGB estimation models of
different tree species were established in a complex plantation in China. The three-level
feature screening strategy was adopted in the feature screening of multi-source data. The
airborne LiDAR features and hyperspectral features were screened, respectively, and then
the fused features of the two data sources were screened. Finally, the selection of the optimal
features was completed. At the same time, in the feature screening of hyperspectral data,
two-level screening are also carried out. First, the feature screening was carried out based
on different feature sets, and then, the final optimal hyperspectral features were screened
based on the optimal feature sets. This hierarchical screening strategy can effectively avoid
the problem of feature redundancy and effectively reduce irrelevant features in the case of
few measured samples.

4.2. Selection of Optimal Feature Variables of Different Tree Species

The optimal feature variables of different tree species are related to the tree structures.
Compared with most previous studies, the estimation accuracy of AGB is mostly related
to vegetation index and point cloud height features [20,25]. In this study, the best features
of Chinese firs and pine trees include spectral derivative features, point cloud height
features and wavelet transform texture features. The best feature of eucalyptus is the height
feature of point cloud, and the best feature of other broadleaved trees is the texture feature
of wavelet transform. This shows that the optimal features of different tree species are
different due to the specific vertical and canopy structure, and the texture features extracted
by wavelet transform can be used for forest AGB modeling. In the subsequent forest AGB
research, the corresponding remote sensing data can be selected according to different tree
species to extract relevant feature variables.

4.3. Importance of Tree Species AGB Modeling

It is necessary to distinguish tree species to estimate the AGB models. Based on the
optimal features of different data sources, using the MSR method to construct the AGB
model by tree species can effectively avoid the problem that the previous AGB model is
not targeted. More accurate mapping results can be obtained for forest AGB estimation
and large-scale regional mapping with complex tree species composition and structural
heterogeneity. At the same time, the canopy structure and tree shape of different tree species
are different, and the carbon sequestration capacity is also different [21]. Distinguishing
tree species to construct AGB models can improve the estimation accuracy of each tree
species and also provide a more accurate reference basis for carbon reserve estimation.
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4.4. Existing Problems and Future Research Directions

This study only studies the forest AGB model of Gaofeng forest farm in Nanning,
Guangxi. There is no comparative analysis on whether the same tree species in other areas
can use the model of this study. It can be extended in the follow-up study. At the same
time, this study uses the method of feature fusion to combine the two data sources. Later,
we can carry out further research on different data-source fusion methods.

5. Conclusions

This study explored the impact of a single remote sensing data source and active and
passive remote sensing data fusion on the estimation accuracy of AGB of different tree
species. In data feature extraction, according to the characteristics of different data sources,
the feature set was constructed from tree canopy features, point cloud structure features,
point cloud density features, terrain features, spectral reflectance, spectral derivative,
GLCM texture, wavelet transform features and edge detection features. After three-level
feature screening and modeling, the optimal models of AGB of different tree species were
obtained. The results are as follows:

(a) Based on airborne hyperspectral data, the feature set was constructed by using mul-
tiple band combinations, wavelet transform and edge detection methods. Through
two-level screening and modeling, it can be concluded that vegetation index and
texture features based on GLCM have no obvious effect on improving the accuracy of
the AGB model. Spectral features and texture features of wavelet transform play a
decisive role in the construction of the AGB model. The AGB accuracy of the optimal
models of the four tree species based on the optimal features of hyperspectral data
was higher than 0.78, but the verification accuracy was very different. The verification
accuracy of eucalyptus was only 0.03, which has the problem of over fitting. In conclu-
sion, modeling using only hyperspectral data will have an impact on the estimation
results of eucalyptus AGB. This is because for tall tree species, height features are also
an important factor affecting the estimation accuracy of AGB.

(b) AGB models of different tree species were constructed based on multi-source feature
fusion. From the results of feature screening, it can be concluded that the optimal
features of Chinese firs and pine trees included the features of two data sources.
Eucalyptus AGB had the best correlation with LiDAR point cloud data. The top
features of other broadleaved trees were the features extracted from hyperspectral
data. The training accuracy of the AGB model for each tree species was more than 0.72,
and the verification accuracy was quite different. However, after feature fusion, the
verification accuracy of Chinese firs and pine trees was improved. The results showed
that AGB estimation and mapping in areas with complex tree species composition
and high structural heterogeneity must be modeled by tree species. For coniferous
trees, the AGB model constructed by combining airborne LiDAR height features
and hyperspectral texture features had higher accuracy. The optimal features of the
broadleaved tree AGB model will have different choices according to different tree
species. For tall broadleaved trees, the AGB model based on airborne LiDAR height
features had higher accuracy. Meanwhile, the AGB model for pure forests, such as
Chinese firs, pine trees and eucalyptuses, can also be based on the above conclusions.
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9. Güneralp, İ.; Filippi, A.M.; Randall, J. Estimation of floodplain aboveground biomass using multispectral remote sensing and
nonparametric modeling. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 119–126. [CrossRef]

10. Wallis, C.I.; Homeier, J.; Peña, J.; Brandl, R.; Farwig, N.; Bendix, J. Modeling tropical montane forest biomass, productivity and
canopy traits with multispectral remote sensing data. Remote Sens. Environ. 2019, 225, 77–92. [CrossRef]

11. Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the forest stand mean height and aboveground biomass in Northeast
China using SAR Sentinel-1B, multispectral Sentinel-2A, and DEM imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289.
[CrossRef]

12. Wittke, S.; Yu, X.; Karjalainen, M.; Hyyppä, J.; Puttonen, E. Comparison of two-dimensional multitemporal Sentinel-2 data with
three-dimensional remote sensing data sources for forest inventory parameter estimation over a boreal forest. Int. J. Appl. Earth
Obs. Geoinf. 2019, 76, 167–178. [CrossRef]

13. Zhong, Y.; Zhang, L. An adaptive artificial immune network for supervised classification of multi-/hyperspectral remote sensing
imagery. IEEE Trans. Geosci. Remote Sens. 2011, 50, 894–909. [CrossRef]

14. Brantley, S.T.; Zinnert, J.C.; Young, D.R. Application of hyperspectral vegetation indices to detect variations in high leaf area
index temperate shrub thicket canopies. Remote Sens. Environ. 2011, 115, 514–523. [CrossRef]

15. Van der Meer, F.D.; Van der Werff, H.M.; Van Ruitenbeek, F.J.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; Van Der Meijde, M.;
Carranza, E.J.M.; De Smeth, J.B.; Woldai, T. Multi-and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs.
Geoinf. 2012, 14, 112–128. [CrossRef]

16. Halme, E.; Pellikka, P.; Mõttus, M. Utility of hyperspectral compared to multispectral remote sensing data in estimating forest
biomass and structure variables in Finnish boreal forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101942. [CrossRef]

17. Cooper, S.; Okujeni, A.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Combining simulated hyperspectral EnMAP and Landsat
time series for forest aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102307. [CrossRef]

18. Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass
assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [CrossRef]

19. Silva, C.A.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Liesenberg, V.; Carvalho, S.P.E.; Rodriguez, L.C. A principal component
approach for predicting the stem volume in Eucalyptus plantations in Brazil using airborne LiDAR data. For. Int. J. For. Res. 2016,
89, 422–433. [CrossRef]

20. Fassnacht, F.E.; Latifi, H.; Hartig, F. Using synthetic data to evaluate the benefits of large field plots for forest biomass estimation
with LiDAR. Remote Sens. Environ. 2018, 213, 115–128. [CrossRef]

21. Cao, L.; Coops, N.C.; Sun, Y.; Ruan, H.; Wang, G.; Dai, J.; She, G. Estimating canopy structure and biomass in bamboo forests
using airborne LiDAR data. ISPRS J. Photogramm. Remote Sens. 2019, 148, 114–129. [CrossRef]

22. Luo, S.; Wang, C.; Xi, X.; Pan, F.; Peng, D.; Zou, J.; Nie, S.; Qin, H. Fusion of airborne LiDAR data and hyperspectral imagery for
aboveground and belowground forest biomass estimation. Ecol. Indic. 2017, 73, 378–387. [CrossRef]

236



Remote Sens. 2022, 14, 2568

23. Wu, Z.; Dye, D.; Vogel, J.; Middleton, B. Estimating forest and woodland aboveground biomass using active and passive remote
sensing. Photogramm. Eng. Remote Sens. 2016, 82, 271–281. [CrossRef]

24. García, M.; Saatchi, S.; Ustin, S.; Balzter, H. Modelling forest canopy height by integrating airborne LiDAR samples with satellite
Radar and multispectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 66, 159–173. [CrossRef]

25. Abutaleb, K.; Newete, S.W.; Mangwanya, S.; Adam, E.; Byrne, M.J. Mapping eucalypts trees using high resolution multispectral
images: A study comparing WorldView 2 vs. SPOT 7. Egypt. J. Remote Sens. Space Sci. 2021, 24, 333–342. [CrossRef]

26. Baccini, A.; Laporte, N.; Goetz, S.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass derived from satellite
imagery. Environ. Res. Lett. 2008, 3, 045011. [CrossRef]

27. Boudreau, J.; Nelson, R.F.; Margolis, H.A.; Beaudoin, A.; Guindon, L.; Kimes, D.S. Regional aboveground forest biomass using
airborne and spaceborne LiDAR in Québec. Remote Sens. Environ. 2008, 112, 3876–3890. [CrossRef]

28. Chen, G.; Hay, G.J. A support vector regression approach to estimate forest biophysical parameters at the object level using
airborne LiDAR transects and quickbird data. Photogramm. Eng. Remote Sens. 2011, 77, 733–741. [CrossRef]

29. Laurin, G.V.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Del Frate, F.; Guerriero, L.; Pirotti, F.; Valentini, R. Aboveground biomass
estimation in an African tropical forest with LiDAR and hyperspectral data. ISPRS J. Photogramm. Remote Sens. 2014, 89, 49–58.
[CrossRef]

30. Li, L.; Guo, Q.; Tao, S.; Kelly, M.; Xu, G. LiDAR with multi-temporal MODIS provide a means to upscale predictions of forest
biomass. ISPRS J. Photogramm. Remote Sens. 2015, 102, 198–208. [CrossRef]

31. De Almeida, C.T.; Galvao, L.S.; Ometto, J.P.H.B.; Jacon, A.D.; de Souza Pereira, F.R.; Sato, L.Y.; Lopes, A.P.; de Alencastro Graça,
P.M.L.; de Jesus Silva, C.V.; Ferreira-Ferreira, J. Combining LiDAR and hyperspectral data for aboveground biomass modeling in
the Brazilian Amazon using different regression algorithms. Remote Sens. Environ. 2019, 232, 111323. [CrossRef]

32. Wang, D.; Wan, B.; Liu, J.; Su, Y.; Guo, Q.; Qiu, P.; Wu, X. Estimating aboveground biomass of the mangrove forests on northeast
Hainan Island in China using an upscaling method from field plots, UAV-LiDAR data and Sentinel-2 imagery. Int. J. Appl. Earth
Obs. Geoinf. 2020, 85, 101986. [CrossRef]

33. Gao, L.; Zhang, X. Aboveground biomass estimation of plantation with complex forest stand structure using multiple features
from airborne laser scanning point cloud data. Forests 2021, 12, 1713. [CrossRef]

34. Guo, B.; Gunn, S.R.; Damper, R.I.; Nelson, J.D. Customizing kernel functions for SVM-based hyperspectral image classification.
IEEE Trans. Image Process. 2008, 17, 622–629. [CrossRef]

35. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral
images. Proc. IEEE 2012, 101, 652–675. [CrossRef]

36. Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+ C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE
Trans. Geosci. Remote Sens. 2005, 43, 2148–2159. [CrossRef]

37. Yang, X. Cover: Use of LIDAR elevation data to construct a high-resolution digital terrain model for an estuarine marsh area. Int.
J. Remote Sens. 2005, 26, 5163–5166. [CrossRef]

38. Zhou, S.; Liu, X.; Wang, C.; Yang, B. Non-iterative denoising algorithm based on a dual threshold for a 3D point cloud. Opt. Lasers
Eng. 2020, 126, 105921. [CrossRef]

39. Gorgens, E.B.; Valbuena, R.; Rodriguez, L.C.E. A method for optimizing height threshold when computing airborne laser scanning
metrics. Photogramm. Eng. Remote Sens. 2017, 83, 343–350. [CrossRef]

40. Zhang, Y.; Lyu, X. A three-dimensional diffusion filtering model establishment and analysis for point cloud intensity noise. J.
Comput. Inf. Sci. Eng. 2017, 17, 011010. [CrossRef]

41. Bayram, E.; Frossard, P.; Vural, E.; Alatan, A. Analysis of airborne LiDAR point clouds with spectral graph filtering. IEEE Geosci.
Remote Sens. Lett. 2018, 15, 1284–1288. [CrossRef]

42. Liu, H.; Wu, C. Developing a scene-based triangulated irregular network (TIN) technique for individual tree crown reconstruction
with LiDAR data. Forests 2019, 11, 28. [CrossRef]

43. Polat, N.; Uysal, M.; Toprak, A.S. An investigation of DEM generation process based on LiDAR data filtering, decimation, and
interpolation methods for an urban area. Measurement 2015, 75, 50–56. [CrossRef]

44. Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J.
Remote Sens. 2004, 25, 3999–4014. [CrossRef]

45. Behmann, J.; Steinrücken, J.; Plümer, L. Detection of early plant stress responses in hyperspectral images. ISPRS J. Photogramm.
Remote Sens. 2014, 93, 98–111. [CrossRef]

46. Tong, X.; Duan, L.; Liu, T.; Singh, V.P. Combined use of in situ hyperspectral vegetation indices for estimating pasture biomass at
peak productive period for harvest decision. Precis. Agric. 2019, 20, 477–495. [CrossRef]

47. Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras
for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259.
[CrossRef]

48. Rai, H.M.; Chatterjee, K. Hybrid adaptive algorithm based on wavelet transform and independent component analysis for
denoising of MRI images. Measurement 2019, 144, 72–82. [CrossRef]

49. Bi, B.; Zeng, L.; Shen, K.; Jiang, H. An effective edge extraction method using improved local binary pattern for blurry digital
radiography images. NDT E Int. 2013, 53, 26–30. [CrossRef]

237



Remote Sens. 2022, 14, 2568

50. Chen, W.; Zhao, J.; Cao, C.; Tian, H. Shrub biomass estimation in semi-arid sandland ecosystem based on remote sensing
technology. Glob. Ecol. Conserv. 2018, 16, e00479. [CrossRef]

51. Sun, Q. Research on the driving factors of energy carbon footprint in Liaoning province using random forest algorithm. Appl.
Ecol. Environ. Res. 2019, 17, 8381–8394. [CrossRef]

238



Citation: Yang, B.; Zhang, Y.; Mao, X.;

Lv, Y.; Shi, F.; Li, M. Mapping

Spatiotemporal Changes in Forest

Type and Aboveground Biomass

from Landsat Long-Term Time-Series

Analysis—A Case Study from

Yaoluoping National Nature Reserve,

Anhui Province of Eastern China.

Remote Sens. 2022, 14, 2786. https://

doi.org/10.3390/rs14122786

Academic Editors: Klaus Scipal and

Henning Buddenbaum

Received: 3 May 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Mapping Spatiotemporal Changes in Forest Type and
Aboveground Biomass from Landsat Long-Term Time-Series
Analysis—A Case Study from Yaoluoping National Nature
Reserve, Anhui Province of Eastern China

Boxiang Yang 1,2, Yali Zhang 3, Xupeng Mao 2, Yingying Lv 4, Fang Shi 2 and Mingshi Li 1,2,*

1 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University,
Nanjing 210037, China; ybx0329@njfu.edu.cn

2 College of Forestry, Nanjing Forestry University, Nanjing 210037, China; mxp@njfu.edu.cn (X.M.);
shifang@njfu.edu.cn (F.S.)

3 School of Geographic Information and Tourism, Chuzhou University, Chuzhou 239000, China;
zyl930624@163.com

4 Nanjing Institute of Environmental Sciences (NIES), Ministry of Environmental Protection (MEP),
Nanjing 210042, China; lvyingying@nies.org

* Correspondence: nfulms@njfu.edu.cn

Abstract: A natural reserve’s forest is an important base for promoting natural education, scien-
tific research, biodiversity conservation and carbon accounting. Dynamic monitoring of the forest
type and forest aboveground biomass (AGB) in a nature reserve is an important foundation for
assessing the forest succession stage and trend. Based on the Landsat images covering the National
Nature Reserve of Yaoluoping in Anhui province spanning from 1987 to 2020, a total of 42 Landsat
scenes, the forest cover product set was first developed by using the well-established vegetation
change tracker (VCT) model. On this basis, a new vegetation index, NDVI_DR, which considers
the phenological characteristics of different forest types, was proposed to distinguish coniferous
forest from broad-leaved forest. Next, multiple modeling factors, including remote sensing spectral
signatures, vegetation indices, textural measures derived from gray level co-occurrence matrix and
wavelet analysis and topographic attributes, were compiled to model the AGB in 2011 by forest
type separately by using the stochastic gradient boosting (SGB) algorithm. Then, using the 2011
Landsat image as the base, all the Landsat images in the other years involved in the modelling
were relatively normalized by using the weighted invariant pixels (WIP) method, followed by an
extrapolation of the 2011 AGB model to other years to create a time-series of AGB. The results showed
that the overall accuracy of the VCT-based forest classification products was over 90%. The annual
forest type classifications derived from NDVI_DR thresholding gained an overall accuracy above
92%, with a kappa coefficient above 0.8. The 2011 forest-type-dependent SGB-based AGB estimation
model achieved an independent validation R2 at 0.63 and an RMSE at 11.18 t/ha for broad-leaved
forest, and 0.61 and 14.26 t/ha for coniferous forest. The mapped time-series of AGB showed a
gradual increasing trend over the past three decades. The driving factors responsible for the observed
forest cover and AGB changes were analyzed to provide references for reasonable protection and
development. The proposed methodology is a reliable tool for evaluating the management status,
which can be extended to other similar regions.

Keywords: Landsat time-series; VCT model; classifying forest types; stochastic gradient boosting;
forest aboveground biomass

1. Introduction

Forest provides 80% of the global aboveground vegetation biomass [1]. Obtaining
reliable long-term forest change information over wide regions in an efficient, low-cost and
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timely manner becomes one of the major missions of the modern remote sensing framework
to satisfy the technical demands of sustainable forest management. Particularly, persistent
and accurate estimation of forest AGB or carbon storage in Chinese ecosystems has been a
technical and data basis for achieving the “carbon peak before 2030 and carbon neutrality
before 2060” aim [2–4].

Due to poor timeliness and limited accessibility, traditional forest field inventory has
difficulty meeting the requirements of temporal and spatial dynamic monitoring of forest
resources in a wide region and a long time span [5]. With the rapid development of modern
remote sensing technology and computerized image analysis algorithms, multi-temporal
and multi-resolution remote sensing images provide an important data source for land
cover change studies at the landscape, regional and global scales, of which forest change
information extraction based on long-term time-series remote sensing observations has
attracted more and more attention of scholars [6–10]. The early study of forest change
by remote sensing is generally based on the pairwise comparison of images between two
periods [11–13]. However, this method may miss those fast-change events, for example,
forest loss caused by fire or harvesting and forest gain due to immediate regeneration
following harvesting in southern China, due to the relatively long time interval of the two
periods (e.g., 10 years). Therefore, to adequately characterize forest changes, we need to
use dense time-series images, for example, yearly observations. The Landsat imagery has a
medium spatial resolution (30 m) and long-term archive of data (around 50 years), which
is suitable for creating a long-term dense time-series stack to sufficiently monitor forest
change at the landscape scale. Thanks to its free availability and long historical archive,
Landsat-based long-term forest change analysis has been widely implemented by using
several reputational automated analytical algorithms, including Landtrendr [8], VCT [9]
and Breaks For Additive Season and Trend Monitor (BFAST) [10]. Among them, VCT has
attracted much attention in the long-term forest change analysis because of its advantages
of automation, high efficiency, high accuracy, easy implementation and full utilization of
time information.

Mapping the forest type from remote sensing is one of the important contents of forest
resources investigation and monitoring, which can help assess the successional stages and
trends of a particular ecosystem. Additionally, the existing studies have shown that the
accuracy of separately modeling the AGB by different forest types is generally higher than
that of modeling the AGB without differentiating forest types or combining all the forest
types together [14–16]. However, in practice, spatially explicit data of forest type are not
always available or not suited to support the AGB modeling. For example, although the
existing land cover products, e.g., the American NLCD and China’s land use datasets,
generally contain forest types data (coniferous forest, broad-leaved forest and mixed forest
classes), these products generally have a relatively long time cycle, every five years, to
update; thus, they cannot adequately record forest type changes induced by frequent forest
harvesting and regeneration events occurring within the time interval, let alone accurately
capture the phenological differences of forest types [17,18]. Furthermore, these products
generally have limitations on local-scale uses due to their inaccuracy at this scale [19]. At
present, methods such as decision tree, support vector machine, random forest and neural
network have been widely used in the field of forest type classification research to satisfy
specific or personalized needs at the local or regional scale [20–23]. However, these methods
generally require a large number of training samples to train the classification models, and
the model’s parameters must be elaborately tuned to gain a high accuracy of classifications,
which result in these methods being less efficient and not easily implemented. Thus,
developing accurate and efficient methods to map forest types to facilitate the accurate
modelling of dense time-series AGB, e.g., annual AGB, is of high priority.

Forest AGB is an underlying indicator for evaluating forest carbon sequestration ca-
pacity and biodiversity carrying capacity. The traditional field method for AGB estimation
is subject to temporal and spatial limitations [24]. Currently, remote sensing combined
with statistical modeling technology acts as a promising alternative to provide macro, near-
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real-time and multi-scale forest AGB estimation products. The earlier empirical modeling
methods include simple linear regression or multiple linear regression models. These
methods require a strict normal distribution assumption regarding the used dataset, but
remote-sensing-derived variables and other GIS layers often do not conform to this dis-
tribution, so their use is greatly limited [25,26]. With the rapid development of computer
technology, artificial intelligence has attracted more and more attention of scholars [27].
Machine learning, as one of the important components of artificial intelligence, with the
advantages of not requiring data distribution assumptions, nonlinear complex mapping
and being insensitive to sample outliers [28], with high model estimation accuracy through
self-learning [29,30], has been predominantly used in classification and modelling appli-
cations. For example, Lawrence et al. [31] compared the classification results of the SGB
algorithm and decision classification trees based on three kinds of datasets, indicating
that the SGB algorithm can improve the classification accuracy. Guneralp et al. [32] used
Landsat 7 ETM+ and SPOT 5 data to compare the accuracy of SGB-modeled forest AGB,
multivariate adaptive regression spline algorithm and Cubist algorithm and indicated that
the SGB algorithm was more accurate after adding terrain data, such as elevation, slope
and aspect. Dube et al. [33] constructed texture and spectral features based on Landsat
images and found that the SGB algorithm had higher accuracy in AGB estimation than
random forest. Therefore, coupling the SGB algorithm and Landsat data can generate
more accurate AGB inversion results than other machine learning algorithms and classic
statistical methods. However, it is noted that these modelling methods are just used in very
limited time points because adequate field forest measurement sample plots collected in
multiple years, such as the model training set, are not available; thus, dynamically mapping
AGB in a dense-time-series manner remains extremely difficult or even impossible. There-
fore, this challenge necessitates the development of an effective and reliable framework
that integrates long-term Landsat observations, the SGB algorithm and in situ biomass
measurements in one year to dynamically model AGB.

Yaoluoping National Nature Reserve is a typical representative base for biodiversity
conservation in the Dabie Mountains, Anhui province of eastern China. It is known as
the “gene bank of natural species”. Understanding its changes in forest resources can help
formulate more scientific and reasonable development and protection policies or actions.
Therefore, the main objectives of this paper were to develop an efficient and reliable frame-
work to generate multi-temporal AGB, and to investigate the driving factors responsible for
forest temporal and spatial changes to recommend targeted policy suggestions for better
management of the reserve. Specifically, the major contributions of the current work lie
in: (1) developing an efficient and accurate image index, NDVI-DR, to map forest types
in multiple years, and (2) devising a new framework that considers forest types, the SGB
algorithm, Landsat time-series observations and one-year field biomass measurements to
extrapolate the established 2011 biomass estimation model to other years in order to realize
the dynamic generation of forest biomass products.

2. Materials and Methods

2.1. Study Area

The Yaoluoping National Nature Reserve, covering a total area of 123 km2, is located
in the northwest of Yuexi County, Anqing City, Anhui Province, with latitudes of 30◦57′20′′
to 31◦06′10′′N and longitudes of 116◦02′20′′ to 116◦11′53′′E (Figure 1). It has an average
elevation of 800 m and belongs to the North subtropical monsoon zone. Because its
location is between the Yangtze River and the Huaihe River, the reserve is affected by
cyclones, with an abundant precipitation. According to the records of China Meteorological
Administration, the annual mean temperature of the reserve is about 12.7°C and the annual
rainfall is 1700 mm. Yaoluoping was approved by the State Council to establish a national
nature reserve on 5 April 1994. In 1999, Yaoluoping National Nature Reserve was included
into the “Chinese people and Biosphere” list, with a dominant orientation of “Forest
ecology”. More than 40 national key rare and endangered animal and plant species in the
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reserve had become important protection objects due to the inclusion of membership. The
vegetation in the reserve is mainly deciduous broad-leaved forest and evergreen coniferous
forest, and the dominant species are Cunninghamia lanceolata (lamb.) Hook., Pinus massoniana
Lamb., Pinus dabeshanensis Cheng et Law, Pinus taiwanensis Hayata, Quercus stewardii Rehd.
Quercus variabilis Bl., Alnus trabeculosa Hand.-Mazz. [34].

 

Figure 1. Geographical location map of the study area. The image on the right is the false color
composite of the Landsat 8 OLI image acquired on 12 August 2020 covering the Yaoluoping National
Nature Reserve.

2.2. Data and Preprocessing

The remote sensing data used in this study included 42 scenes of Landsat TM/OLI
imagery from 1987 to 2020, with a WRS-2 path/row number 122/038. The detailed de-
scription of the images was summarized in Table 1. All images were downloaded from the
USGS official portal (https://glovis.usgs.gov/, accessed on 20 January 2022). In order to
explore the feasibility of using seasonal differences to distinguish coniferous forest from
broad-leaved forest, images acquired in winter season were also downloaded for partial
years of 1987, 1992, 1997, 2002, 2007, 2011, 2013, 2017 and 2020. Before placing the data
order to USGS EROS, we directly requested the Landsat Level-2 products to lower the
preprocessing complexity or workload. The Level-2 products are time-series observational
data of sufficient length, consistency and continuity to record effects of climate change, and
they are research-quality, applications-ready and generated for viable surface reflectance
science data by USGS EROS data center. Specifically, Landsat 8 Operational Land Imager
(OLI) surface reflectance products are generated using the Land Surface Reflectance Code
(LaSRC) algorithm [35]. Landsat 5 TM surface reflectance products are generated using the
Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) algorithm [36].
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Table 1. Description of the Landsat TM/OLI images used in the current work.

Acquisition Date Satellite/Sensor Cloud % Acquisition Date Satellite/Sensor Cloud %

7 February 1987 Landsat 5 TM 0% 17 September 2004 Landsat 5 TM 0%
19 September 1987 Landsat 5 TM 0% 18 July 2005 Landsat 5 TM 35%
21 September 1988 Landsat 5 TM 9% 19 June 2006 Landsat 5 TM 1%

23 August 1989 Landsat 5 TM 33% 29 January 2007 Landsat 5 TM 0%
23 June 1990 Landsat 5 TM 40% 25 August 2007 Landsat 5 TM 23%

29 August 1991 Landsat 5 TM 1% 12 September 2008 Landsat 5 TM 49%
5 February 1992 Landsat 5 TM 9% 17 October 2009 Landsat 5 TM 0%

30 July 1992 Landsat 5 TM 1% 4 October 2010 Landsat 5 TM 5%
3 September 1993 Landsat 5 TM 8% 24 January 2011 Landsat 5 TM 2%
24 October 1994 Landsat 5 TM 0% 5 September 2011 Landsat 5 TM 69%

5 June 1995 Landsat 5 TM 1% 12 October 2013 Landsat 8 OLI 0.04%
25 July 1996 Landsat 5 TM 1% 25 January 2013 Landsat 8 OLI 2.1%

18 February 1997 Landsat 5 TM 0% 15 October 2014 Landsat 8 OLI 1.91%
29 August 1997 Landsat 5 TM 2% 2 October 2015 Landsat 8 OLI 0.01%

28 May 1998 Landsat 5 TM 23% 4 October 2016 Landsat 8 OLI 20.39%
2 July 1999 Landsat 5 TM 2% 25 February 2017 Landsat 8 OLI 11.84%

18 June 2000 Landsat 5 TM 0% 7 October 2017 Landsat 8 OLI 17.18%
23 July 2001 Landsat 5 TM 19% 8 September 2018 Landsat 8 OLI 0.77%

30 December 2001 Landsat 5 TM 2% 27 September 2019 Landsat 8 OLI 15.83%
28 September 2002 Landsat 5 TM 5% 18 February 2020 Landsat 8 OLI 2.12%

29 July 2003 Landsat 5 TM 16% 28 August 2020 Landsat 8 OLI 1.14%

Other auxiliary data used in this study included the 2012 vegetation distribution map of
Yaoluoping National Nature Reserve, the 2011 forest resource inventory and planning data, the
administrative boundary and functional zoning vector files, DEM data with a spatial resolution
of 12.5 m and the Statistical Yearbooks of Anqing City in 2011 through 2019. Additionally,
Google Earth maps were also collected to support the validation of classifications.

2.3. VCT-Based Forest Distribution Extraction in Yaoluoping Nature Reserve

VCT algorithm was developed by Huang et al. at the University of Maryland in
2010 [9], and it has been widely used and tested around the world in recent decades to
characterize forest change patterns, with an average overall accuracy at about 85% [37–39].
Here, we directly applied this algorithm to create a time-series of forest cover maps for the
reserve. Because the output of VCT disturbance year map contains 7 classes, to produce
forest cover product, we needed to aggregate the 7 classes into forest and non-forest, two
classes. Table 2 shows the detailed criteria for the aggregation.

Table 2. Definition and aggregation of the forest disturbance map.

Code Class Description in VCT Model Aggregated Class

0 Background Abandoned
1 Persisting non-forest Non-forest
2 Persisting forest Forest
3 Persisting water Non-forest

4 Probable forest with recent
disturbance Forest

5 Disturbed in this year Non-forest
6 Post-disturbance non-forest Non-forest

2.4. Development and Validation of NDVI_DR Model

To support subsequent AGB modelling by forest type, we must create a time-series
of forest type distribution data for the reserve. The growth of vegetation is affected by
various factors, such as temperature and precipitation, and presents different growth
characteristics in different periods. Through analyzing the difference in vegetation spectral
characteristics in different growth periods, different vegetation types can be effectively

243



Remote Sens. 2022, 14, 2786

distinguished [40,41]. This work used the remote sensing images collected both in growing
season (summer) and winter season of the same year to construct a new NDVI-based
index to distinguish coniferous forest from broad-leaved forest. Equation (1) illustrates
the specifics of the new index, NDVI-DR. Specifically, based on the 2011 forest resource
inventory and planning data, we first randomly selected 200 coniferous forest stands and
200 broad-leaved forest stands, respectively, and, based on the gravity center of each stand,
its 8 adjacent pixels (8 neighborhoods) in 8 directions of the central pixel were jointly
considered. Thus, the average NDVI value of the 9 pixels (central pixel plus 8 adjacent
pixels) was extracted as the modified NDVI value of the central pixel to minimize the
potential locational errors between summer image and corresponding winter image. By
using the NDVI_S (NDVI value in summer) and NDVI_W (NDVI value in winter) of the
same location, a new image index, NDVI_DR, was calculated by following Equation (1).
The change patterns of NDVI_S, NDVI_W and NDVI_DR for different central pixels were
plotted in Figure 2. Figure 2 shows that the NDVI values of coniferous forest pixels and
broad-leaved forest pixels in summer (NDVI_S) are higher than those in winter (NDVI_W).
The mean NDVI of coniferous forest is 0.742 in summer and 0.617 in winter. The mean
NDVI of broad-leaved forest is 0.571 in summer and 0.209 in winter. The NDVI values of
coniferous forest in summer have little differences compared with those in winter, while
the NDVI values of broad-leaved forest in summer have greater differences compared with
those in winter. According to the above observations, a new NDVI_DR vegetation index
was constructed following Equation (1). In this equation, the denominator is the difference
between NDVI in summer and NDVI in winter, and the numerator is the NDVI value
in winter.

NDVI_DR = (NDVI_S − NDVI_W)/(NDVI_W) (1)

(a) (b) 

Figure 2. Conceptual framework of NDVI_DR derived from Landsat TM imagery to distinguish
coniferous forest from broad-leaved forest. (a): Coniferous forest. (b): Broad-leaved forest.

NDVI_DR can reflect the variation intensity of NDVI value in summer and winter.
Figure 2 shows that, in coniferous forest, the value of NDVI_DR is generally less than
or equal to 0.4, while, in broad-leaved forest, the value of NDVI_DR is greater than or
equal to 0.5. Thus, the thresholds of 0.4 and 0.5 for NDVI_DR were determined as the final
classification criteria for forest type identification.

To validate the effectiveness of NDVI_DR thresholding model, we used the 2013 Landsat
8 OLI images coupled with the 2012 vegetation distribution map and adopted fully the same
process to extract the values of NDVI_DR for those 400 locations or pixels. After visually
interpreting the 2012 vegetation distribution map, the forest types of those 400 pixels remaining
unchanged were doubly confirmed. The extracted change patterns of those 400 locations
based on the 2013 Landsat OLI image were summarized in Figure 3. Obviously, the proposed
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NDVI_DR thresholding model remains stable; the thresholds of 0.4 and 0.5 are still effective in
separating coniferous forest from broad-leaved forest. Thus, the following rules in Equation
(2) were used to distinguish coniferous forest from broad-leaved forest by using Landsat
observations in the current work. Equation (2) was written as :{

NDVI_DR ≤ 0.4 → Coniferous forest
NDVI_DR ≥ 0.5 → broad − leaved forest

(2)

(a) (b) 

Figure 3. Validation framework of NDVI_DR derived from Landsat OLI imagery to distinguish
coniferous forest from broad-leaved forest. (a): Coniferous forest. (b): Broad-leaved forest.

2.5. Forest AGB Modeling
2.5.1. Independent Variable

Based on the 2011 forest resources inventory and planning data, the per area AGB was
derived as the independent variable for modelling. Specifically, according to the recorded
attributes in the inventory data, including the dominant tree species, average diameter at
breast height (DBH), average height, area and number of stems of each stand, the single
tree-level AGB was calculated by using the allometric growth equations by tree species
(Table 3), and then the total stand-level AGB was derived by summing up the AGB of each
tree in the stand, followed by the calculation of per unit area AGB (t/ha) via dividing the
total stand-level AGB by the stand area. To match the pixel size of Landsat image in the
AGB modelling, it was necessary to convert the per unit area AGB into the pixel-level AGB,
with the unit of t/900 m2. After this conversion, all the field AGB measurements were used
as the independent variable for model training (80%) and validation (20%) purposes to
facilitate the modelling.

Table 3. Biomass allometric growth equations for the major tree species in Anhui Province.

Tree Species Aboveground Biomass Formula

Cedarwood WT= WS+WB+WL= 0.00849(D 2 H)1.107230+0.00175(D 2 H)1.091916+0.00071D3.88664

Oak WT= WS+WB+WL= 0.00888(D 2 H)1.08+0.01(D 2 H)0.90+0.00378(D 2 H)0.94

Larch WT= WS+WB+WL= 0.099496(D 2 H)0.786530+0.098620(D 2 H)0.598367+0.294136(D 2 H)0.357506

Masson pine WT= 0.01672(D 2 H)0.8559

Sclerophyllous broad-leaved forest WT = 0.07112(D 2 H)0.910359078

Soft-leaved broad-leaved forest WT= WS+WB+WL= 0.012541(D 2 H)1.144+0.004786(D 2 H)1.006+0.047180(D 2 H)0.769

Note: WT is the total AGB; WS is the trunk biomass; WB is the branch biomass; WL is the leaf biomass; D is the
DBH of trees; H is the height of trees. The AGB formula is derived from the main technical provisions of China’s
National Forest Inventory.
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2.5.2. Development of Dependent Variables

In this work, four types of modelling features, including the original band transfor-
mations, vegetation indices, textural measures and terrain variables, were extracted as the
potential dependent variables to support the establishment of AGB inversion model.

The Landsat multi-spectral imagery has abundant spectral information and different
bands have different levels of correlation to AGB. In order to remove the redundant
information among bands and to screen out those comprehensive features highly relating
to AGB, this analysis adopted the KT transform to generate three new orthogonal features
with explicit physical implications, named TCB (Brightness), TCG (Greenness), TCW
(Wetness) [42]. Meanwhile, the TCD (Distance) [43] and TCA (Angle) [44] indices that
reflect vegetation coverage and tree growth status [45] were also developed based on the
three features (Table 4).

Vegetation index can enhance vegetation signature and accurately reflect vegetation
growth and distribution [46]. The ratio vegetation index (RVI) [47] can eliminate the
influence of terrain and shadow on vegetation analysis, and the normalized difference vege-
tation index (NDVI) can minimize the effects of atmosphere on vegetation and characterize
vegetation density and vigor, and both indices show a good correlation with AGB [48,49].
Additionally, the NDVIC index, making use of its better resistance of short-wave infrared
band to atmospheric condition changes, can unify different coverage types and reduce the
influence of forest background signals [50,51]. These indices were derived by following the
formula in Table 4.

Table 4. Vegetation indices used in the analysis and their calculation formulas.

Index Formula

NDVI [48] NDVI = ρnir−ρred
ρnir+ρred

NDVIC [50] NDVIC = ρnir−ρred
ρnir+ρred

×
(

1 − ρswir−ρswirmin
ρswirmax−ρswirmin

)
RVI43 [47] RVI43 = ρnir

ρred

RVI54 [47] RVI54 = ρswir
ρnir

NDMI [52] NDMI = ρnir−ρswir
ρnir+ρswir

mNDWI [52] mNDWI =
ρgreen−ρswir
ρgreen+ρswir

TCD [43] TCD =
√

TCB2 + TCG2

TCA [44] TCA = arctan
(

TCG
TCB

)
Note: ρnir is the spectral reflectance of near infrared band. ρred is the spectral reflectance of red band. ρswir is the
spectral reflectance of short-wave infrared band. ρgreen is the spectral reflectance of green band.

The texture of remote sensing image refers to the recurring primitives or elements and
their arrangement rules in the image, which is a unity of local variability and spatial correla-
tion [53–55]. In this paper, 6 multispectral bands, NDVIC and RVI54 were used as the inputs
for texture calculation by using the gray level co-occurrence matrix (GLCM) method [56].
Specifically, a 3 × 3 window size was selected, and the moving directions at 0◦, 45◦, 90◦
and 180◦ were considered, respectively, and the average of the four directions was taken
as the final texture analysis result. To compensate for the potential limitations of GLCM
method, the wavelet multi-scale decomposition was also implemented by programming
in MATLAB environment to extract the high-frequency vertical, horizontal and diagonal
details images as new textural features [57]. Firstly, the first principal component of the
2011 Landsat multi-spectral images was decomposed by using a biorthogonal wavelet base
function in a three-layer recursive manner. Thus, another 9 images of details were obtained
as new textural features to support the modeling. The GLCM-based textures and their
calculation formula were summarized in Table 5 [58].
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Table 5. Formulas for calculating texture index based on GLCM.

Texture Index Formula

Mean, (ME) ME =∑N−1
i,j=0 i × Pi,j

Variance, (VA) VA =∑N−1
i,j=0 i × Pi,j(i − ME)2

Homogeneity, (HO) HO =∑N−1
i,j=0 i × Pi,j

1+(i−j)2

Contrast, (CO) CO =∑N−1
i,j=0 i × Pi,j(i − j)2

Dissimilarity, (DI) DI =∑N−1
i,j=0 i × Pi,j|i − j|

Entropy, (EN) EN =∑N−1
i,j=0 i × Pi,j

(−lnPi,j
)

Second Moment, (SM) SM =∑N−1
i,j=0 i × Pi,j

2

Correlation (CR) CR =∑N−1
i,j=0 i × Pi,j

[
(i − ME)(j − ME)√

VAi•VAj

]
Note: Pi,j =

Vi,j

∑N−1
i,j=0 Vi,j

; Vi,j represents the pixel brightness value at the position of row i and column j; N is the size

or dimension of the moving window when the texture index is calculated.

Terrain features influence the distribution patterns of AGB to some extent [59]. There-
fore, elevation, slope and aspect extracted from the 12.5 m resolution DEM were also
considered as the modeling factors. These terrain factors were resampled to 30 m resolution
by implementing the bi-linear interpolation resampling technique to match the Landsat
pixel size.

2.5.3. Correlation Analysis

In this paper, 6 multispectral bands, 3 topographic factors, 6 vegetation indices, 5 KT
transform and 73 texture features were selected as potential variables for biomass prediction.
In order to ensure the accuracy of the model and reduce the workload, correlation analysis
was needed to select the best combination of variables [60]. Assuming that there is no
correlation or weak correlation between the selected variables and a linear relationship with
the dependent variable, AGB, we could automatically select the variables by regression
analysis, and this method was usually used in previous studies [61,62]. This analysis
first used random forest importance ranking to select those important variables and then
eliminated variables with high correlation between variables through Pearson correlation
analysis [63]. The random forest package was run in R environment, and the characteristic
factors with high correlation to biomass of broad-leaved forest and coniferous forest were,
respectively, screened out as modeling variables.

2.5.4. SGB-Based AGB Modelling and Its Time Extrapolation

Stochastic gradient boosting (SGB) algorithm proposed by Friedman was adopted to
estimate AGB in this work [64]. SGB takes into account the advantages of both boosting
algorithm and bagging algorithm and has been widely used in regression and classification
tasks [65]. It can avoid the problem of long calculation time due to large amount of data
and can also improve the prediction accuracy, with better robustness to overfitting [33]. The
“learning rate” parameter in the SGB algorithm determines the growth rate of modeling
complexity. Generally, a smaller learning rate means that more regression trees will be
generated and the contribution of each tree to the whole forest will be weaker and the
modeling performance will be better [66]. The “depth of interaction” parameter determines
the splitting number of each tree. This parameter value represents the number of nodes in
each decision tree, and the maximum value is usually set to 10. Other important parameters
include: tree complexity, shrinkage, distribution function, training ratio, etc. The modeling
process was implemented by using the “caret” package in R environment. Through multiple
comparisons, it was found that the optimal combination of parameters in SGB modeling
was set as: interaction depth at 3, shrinkage at 0.01, ntrees at 500 and n.minobsinnode at
9. Thus, the 2011 AGB map of the reserve was produced from implementing the above-
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identified SGB parameters by forest types, followed by a spatial overlay analysis of both
the estimated coniferous forest AGB and the predicted broad-leaved forest AGB.

At present, there are two main methods to observe long-term forest AGB changes using
remote sensing images. The first is to build separate varying relationships between remote
sensing images and corresponding forest AGB field sample measurements in different years.
This method is relatively accurate, but it is subject to the constraints of realistic conditions,
such as lack of historical field AGB measurement data. The second method assumes that
there is a relatively stable relationship between forest AGB and remote sensing images over
time. Through the relative radiometric normalization operations between the base image
(e.g., the 2011 Landsat TM image of the current work) and the target images in different
years, followed by the development of a fully same set of features as the base image based
on the normalized target images, the relationship constructed for the base year is extended
to other target years to retrieve varying AGB patterns in the same study area. The second
method has been more widely used in estimating forest AGB thanks to its lower cost and
stronger operability in a long-term monitoring period [67,68]. Here, the 2011 Landsat
TM image was set as the base image, and Landsat TM/ETM+/OLI images acquired in
1987, 1992, 1997, 2002, 2007, 2017 and 2020, as the target images, were radiometrically
normalized, respectively, band by band using the automated weighted invariant points
(WIP) method [69]. Based on these normalized target images, a fully same set of features as
the base year was developed. Then, the relationship created for the base year was extended
to other target years to create a time-series of AGB maps for the reserve.

2.6. Validation Method
2.6.1. Forest Distribution Verification

According to the historical documentations of the reserve, forest was the largest land
cover type in the reserve, occupying an area proportion of about 90%. Thus, to validate the
accuracy of forest distribution products mapped from VCT, the stratified random sampling
method was implemented. First, based on the 2011 forest resources inventory and planning
data and the 2012 vegetation distribution map, 900 points were randomly generated in
the forest area and 100 points were randomly generated in the non-forest area for the
classifications in other years. Then, visually interpreting the corresponding year’s Google
Earth images was conducted to gain the ground truths to validate the classifications. For
the year of 1997 or earlier, no Google Earth high resolution images were available, so
the original Landsat images were directly visually interpreted. Finally, by comparing the
classifications and the interpreted results, the overall accuracy and kappa coefficient were
derived to evaluate the classification accuracy. The kappa coefficient calculation formula
was as follows:

kappa =
PA − Pe

1 − Pe
(3)

where PA refers to the relative observed agreement among raters, and Pe is the hypothetical
probability of chance agreement.

2.6.2. Forest Type Distribution Verification

The broad-leaved forest dominated the reserve historically. Similarly, the stratified ran-
dom sampling method was used to verify the forest type classification accuracy. Based on
the 2011 forest resources inventory and planning data and the 2012 vegetation distribution
map, 700 points were randomly generated in the broad-leaved forest area and 300 points
were randomly generated in the coniferous forest area. Then, visually interpreting the
corresponding year’s Google Earth images was conducted to gain the ground truths to
validate the classifications.

2.6.3. Forest AGB Modeling Verification

Twenty percent of the pixel-level AGB field measurements, as an independent dataset,
were used to evaluate the SGB-based modelling of AGB by calculating the validation
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determination coefficient R2 and root mean square error (RMSE). R2 indicates the variance
explanation degree of dependent variables to independent variable in the model. Generally
speaking, larger R2 and smaller RMSE mean higher prediction accuracy that the model has.
The calculation formulas of R2 and RMSE were shown in Equations (4) and (5):

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1

(
yi −

−
y
)2 (4)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(5)

where ŷi indicates the model-predicted AGB, yi represents the measured AGB,
−
y indicates

the average value of the measured AGB and n means the sample size.
Based on the 2011 forest resources inventory data in 2011, 200 broad-leaved forest

stands and 200 coniferous forest stands were randomly selected, of which 120 stands
were used for modeling and 80 for independent validation. Additionally, to highlight the
potential superior performance of separate modelling by forest types, these 400 stands
were combined to construct a mixed AGB model without differentiating forest types, of
which 240 stands were used for modeling and 160 for validation. Because the historical
field records of AGB in the reserve were unavailable, we were unable to validate the AGB
predictions produced from extrapolating the 2011 AGB models to other years.

3. Results

3.1. Forest Distribution Mapping and Validation

Table 6 shows the confusion matrix of the 2020 forest classifications. The results
showed that an overall accuracy of 94.7%, accompanied by a kappa coefficient of 0.73, were
observed in the 2020 forest classifications. Table 7 exhibits the verification results in other
years. As a whole, the overall accuracy of the VCT-based forest classification products was
over 90% and the kappa coefficient above 0.6, which meant that VCT produced reliable
time-series forest distribution maps.

Table 6. Confusion matrix of forest extraction accuracy verification.

Predicter Results

Actual Results
Forest Non-Forest Total

Forest 863 16 879
Non-Forest 37 84 121

Total 900 100 1000

OA = 0.947 Kappa = 0.731

Table 7. Verification results of forest extraction accuracy.

Year Overall Accuracy (%) Kappa Coefficient

1987 93.2% 0.66
1992 93.1% 0.66
1997 92.8% 0.64
2002 90.5% 0.56
2007 93.9% 0.70
2011 93.1% 0.67
2017 90.2% 0.55
2020 94.7% 0.73

Figure 4 shows the spatio-temporal distribution patterns of the forest in the Yaoluoping
National Nature Reserve during the period of 1987 to 2020. Obviously, the forest absolutely
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dominated the reserve in all the years and its areal proportion dropped from 92.92% in
1987 to 87.15% in 1997, then gradually fluctuated to 90.94% in 2020 (Figure 5). The lowest
forest area was observed in 1997, and then forest area showed an upward fluctuating trend.
The non-forest type only occupied a small area, principally distributed in the northern and
central portions of the reserve (Figure 4), along with the valleys and the gentle-slope lands
at relatively low altitudes in the study area.

Figure 4. Forest distribution maps mapped from VCT model during the period 1987 to 2020.

3.2. Forest Type Distribution Mapping

Table 8 displays the validation accuracy statistics of the forest type classifications
derived from the NDVI_DR thresholding. The overall accuracies at 94.5%, 94.0%, 94.2%,
92.5%, 93.5%, 94.0%, 92.0% and 94.8%, with corresponding kappa coefficient values at 0.87,
0.85, 0.86, 0.82, 0.84, 0.85, 0.81 and 0.87, were observed during the period of 1987 to 2020,
respectively. Among them, the imaging times of the 2002 and 2017 summer images were on
September 28 and October 7, respectively, which fell into late fall season and were not in the
peak season of plant growth. This would lead to actual changes in the vegetation spectral
reflectance, accordingly resulting in a relatively low accuracy of forest type classifications in
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these two years. However, overall, the DNVI_DR thresholding model provided a relatively
high accuracy of forest type classifications in the reserve (Table 8).

Figure 5. Changes in forest area proportion in Yaoluoping during the period 1987 to 2020.

Table 8. Verification results of forest type classifications derived from NDVI_DR thresholding.

Year Overall Accuracy (%) Kappa Coefficient

1987 94.5% 0.87
1992 94.0% 0.85
1997 94.2% 0.86
2002 92.5% 0.82
2007 93.5% 0.84
2011 94.0% 0.85
2017 92.0% 0.81
2020 94.8% 0.87

Figure 6 shows the spatio-temporal variations in the forest type distribution. Generally,
broad-leaved forest dominated the reserve in space, with an apparent large-scale continuous
distribution in all the years (Figure 6). Its areal share remained relatively stable (above
80% in all the years), with a small variation (Figure 7). Coniferous forest had a dispersing
distribution over the reserve, mainly distributed in the northern and south-eastern portions
of the reserve (Figure 6), and its areal share gradually decreased from 8.5% in 1987 to the
lowest value at about 4.7% in 2011 (Figure 7), and then the proportion of coniferous forest
area increased steadily. By 2020, the proportion slightly exceeded that in 1987.

3.3. Biomass Estimation Results
3.3.1. Variable Selection Results

Tables 9–11 show the combinations of variables determined by using random forest
importance ranking coupled with Pearson correlation analysis, most suitable for broad-leaved
forest, coniferous forest and the combination of both in AGB modeling. As shown in Table 9,
the average texture information of SWIR and NDVIC had a high correlation with the broad-
leaved forest AGB, while the absolute value of the correlation coefficient of other texture
information was less than 0.3. As can be seen from Table 10, short-wave infrared, RVI54, NDVI
and NDVIC were highly correlated with coniferous forest AGB, and the correlation between
texture features and coniferous forest AGB was very low; thus, they were unable to be selected.
As can be seen from Table 11, when considering the combined AGB of the coniferous forest and
broad-leaved forest together, the number of selected modeling variables was substantially less
than that when distinguishing between the forest types, and the correlation coefficients were
also apparently lower. Finally, according to the ranking of the correlation coefficient values, 10
modeling factors were selected for broad-leaved forest, coniferous forest and combined forest
types together, respectively, to consider the operational practicability. The factors selected for
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broad-leaved forest were B7, B5, TCW, TCB, TCD and B5_mean, B7_mean, NDVIC _mean
and NDVIC; RVI54, NDVIC, B2, B5, B4, B7, TCD, NDVI, mNDWI and NDMI for coniferous
forest; B2, B4, B5, B7, TCD, RVI54, NDMI, mNDWI, NDVI and NDVIC for combined AGB
modelling of both forest types.

Figure 6. Changes in forest type distributions derived from NDVI_DR thresholding during the period
1987 to 2020.

Figure 7. Changes in area proportion of forest types in the study area during the period 1987 to 2020.
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Table 9. Characteristic variables with significant correlation to broad-leaved forest AGB.

Characteristic Correlation Index Characteristic Correlation Index

B1 −0.152 * RVI54 0.294 **
B2 −0.314 ** NDMI 0.287 *
B3 −0.221 * mNDWI 0.267 *
B4 −0.265 * B5_mean −0.473 **
B5 −0.469 ** B7_mean −0.473 **
B7 −0.486 ** RVI54_mean 0.211 *

TCW −0.478 ** NDVIC _mean 0.452 **
TCB −0.406 ** B2_ Correlation 0.166 *
TCG −0.263 ** RVI54_ Correlation 0.154 *
TCD −0.341 ** DBH 0.326 **

NDVI 0.305 ** bio2.8 0.196 *
NDVIC 0.466 **

Note: B1, B2, B3, B4, B5, B7 mean the blue, green, red, NIR, SWIR 1, SWIR 2 band of Landsat 5 and Landsat 8
separately. * means significant at the level of 0.05 (the confidence level is 95%); ** means significant at the level of
0.01 (the confidence level is 99%).

Table 10. Characteristic variables with significant correlation to coniferous forest AGB.

Characteristic Correlation Index Characteristic Correlation Index

B1 −0.138 * RVI54 0.324 **
B2 −0.301 ** NDMI 0.246 *
B3 −0.191 * mNDWI 0.207 **
B4 −0.224 * NDVI 0.312 **
B5 −0.435 ** NDVIC 0.459 **
B7 −0.477 ** bio2.8 0.186 *

TCD −0.264 **
Note: * means significant at the level of 0.05; ** means significant at the level of 0.01.

3.3.2. Modeling Accuracy Evaluation

Figures 8–10 show the modeling and validation accuracy of broad-leaved forest,
coniferous forest and combined forest types using SGB, respectively. The modeling and
validation R2 of broad-leaved forest AGB were at 0.68 and 0.63, and the corresponding
RMSEs were at 7.53 and 11.19 t/hm2, respectively. The modeling and validation R2 of
coniferous forest biomass were at 0.71 and 0.61, and the corresponding RMSEs were 4.46
and 14.27 t/hm2, respectively. The modeling and validation R2 of combined biomass were
at 0.54 and 0.51, with the corresponding RMSEs at 18.91 and 20.47 t/hm2, respectively.
Obviously, modelling AGB by forest type was more accurate than modelling AGB without
differentiating forest types.

Table 11. Characteristic variables with significant correlation to combined AGB of both forest types.

Characteristic Correlation Index Characteristic Correlation Index

B2 −0.173 * RVI54 0.163 *
B4 −0.107 * NDMI 0.142 *
B5 −0.227 * mNDWI 0.101 *
B7 −0.248 ** NDVI 0.152 *

TCD −0.134 * NDVIC 0.279 **
Note: * means significant at the level of 0.05; ** means significant at the level of 0.01.
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(a) (b) 

Figure 8. Assessment of SGB-based broad-leaved forest biomass modelling and validation.
(a): Modeling; (b): Validation.

(a) (b) 

Figure 9. Assessment of SGB-based coniferous forest biomass modelling and validation. (a): Model-
ing; (b): Validation.

(a) (b) 

Figure 10. Assessment of SGB-based combined biomass modelling and validation. (a): Modeling;
(b): Validation.

3.3.3. AGB Extrapolation of SGB Model

In this work, the 2011 well-established and tested SGB-based AGB models for broad-
leaved forest and coniferous forest were extrapolated to create a time-series of AGB based
on the forest type maps created in Section 3.2 during the period of 1987 to 2020 (Figure 11).
The total biomass and mean values of different forest types in each year were calculated, as
shown in Table 12. In terms of temporal distribution, the forest AGB in the reserve showed
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a gradual increasing trend in the past 30 years. The average AGB values in the eight years
were at 57.37, 61.56, 64.38, 70.14, 73.21, 75.52, 76.23 and 78.85 t/hm2, respectively, which
showed that the AGB of Yaoluoping National Nature Reserve was increasing continuously,
and the growth rate was the fastest during the period of 1992 to 2002. As for different forest
types, although the total AGB of coniferous forest was much lower than that of broad-
leaved forest, the average biomass of coniferous forest was higher than that of broad-leaved
forest (Table 12).

Table 12. Statistics of the mapped AGB in each year.

Year

Forest Coniferous Forest Broad-Leaved Forest

Mean
(t/hm2)

Summation
(10,000 Tons)

Mean
(t/hm2)

Summation
(10,000 Tons)

Mean
(t/hm2)

Summation
(10,000 Tons)

1987 57.37 70.57 62.27 6.77 56.68 60.20
1992 61.56 75.72 64.84 5.41 60.12 65.20
1997 64.38 79.19 67.53 5.59 63.74 64.72
2002 70.14 86.27 72.03 7.37 69.45 69.76
2007 73.21 90.05 74.71 5.45 72.37 76.23
2011 75.52 92.89 76.43 4.08 74.72 80.84
2017 76.23 93.76 78.98 6.97 75.46 77.59
2020 78.85 96.99 80.45 8.88 78.85 81.64

The spatial distribution of the AGB in Figure 11 shows that the areas with low AGB
values were mainly located near agricultural lands, buildings and water bodies in river
valleys, and took on apparent linear features in the northern and central portions of the
reserve, whereas high AGB values mainly occurred in the western and north-eastern areas
of the reserve (Figure 11).

Figure 11. The time-series AGB distributions in Yaoluoping Nature Reserve from 1987 to 2020
mapped from extrapolating the 2011 SGB-based models.
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4. Discussion

4.1. NDVI_DR Thresholding Model

Accurate identification of forest types is of great significance to forestry development
planning and forestry policy formulation, helps to reliably evaluate the successive stage and
trend of a specific forest ecosystem [3,4] and potentially improves the modelling accuracy
of remote-sensing-based AGB estimation due to being able to separately model coniferous
forest and broad-leaved forest [14–16]. In this paper, the NDVI_DR vegetation index that
makes use of phenological or seasonal differences in the spectral signature of evergreen
forest and deciduous forest was developed to classify forest types in the study area based on
long-term time-series Landsat images, with an overall accuracy of above 92% and a kappa
coefficient of about 0.85. The classification accuracy of the current NDVI_DR thresholding
model is higher than other similar studies using Landsat for forest type classification. For
example, Li et al. [70] used three machine learning approaches, including decision trees,
random forest and support vector machines and Landsat images, to classify local forest
communities at the Huntington Wildlife Forest (HWF). Among them, the SVM had the
highest accuracy, with an overall accuracy of 88.2% and kappa coefficient of 0.793. Hill
et al. [71] used two methods of low-pass spatial filtering to reduce the local spectral variation
and image segmentation to implement supervised classifications of forest types in Peruvian
Amazonia from Landsat TM data and gained an overall accuracy of about 90%. In their
studies, they constructed various vegetation indices to express the spectral characteristics
differences in different forest types, and they found that the spectral differences in different
forest types characterized by diverse vegetation indices were not adequately separable.
In contrast to these existing investigations, our NDVI_DR thresholding model does not
require the development of diverse image features, e.g., spectral indices, image textures or
contextual information; more importantly, there is no need to accurately tune the parameters
of the classification models or algorithms. Conversely, our NDVI_DR model just calculates a
derivative of a forest pixel’s NDVI in the summer and corresponding NDVI in the winter to
reflect the seasonal differences in the spectral signature of forest types, and it specifies stable
thresholds to the derivative (less than 0.4 for coniferous forest and greater than or equal to
0.5 for broad-leaved forest, Figures 2 and 3) to classify forest types. Obviously, our model is
efficient and easily implemented compared to the existing methods, and it substantially
improves the identification accuracy of forest types by considering the seasonal differences
of different forest types, which is in agreement with Zhu’s [72] research results. Dong
et al. [73] found that using seasonal time-series data has the potential to improve the
accuracy for monitoring forest attributes, whereas the separability and stability of the
NDVI_DR thresholding model have just been tested in the subtropical forest ecosystem
by Landsat TM and OLI sensors, so its robustness in other ecoregions and other similar
sensors, such as Sentinel-2 MSI, should be continuously verified in the near future to doubly
confirm its generalization or popularization.

4.2. Forest AGB Modeling

At present, the main methods used in forest biomass prediction include random forest,
support vector machine and a multiple linear regression model [20,21]. Nguyen et al. [74]
developed a random-forest (RF)-based kNN model to produce annual maps of AGB
from 1988 to 2017 for over 7.2 million ha of forests in Victoria, Australia. The mod-
eling R2 is between 0.37 and 0.59, and the RMSE is between 104.7 and 168.5 t/hm2.
Main-Knorn et al. [75] obtained the AGB from 1985 to 2010 through RF models based
on Landsat time-series images and field data, showing an RMSE of 41.3 t/hm2. Compared
with the previous methods, the SGB model adopted in this paper has better robustness for
outliers, inaccurate data, missing values and unbalanced datasets, and has relatively stable
estimation results [64]. Dube [33] found that, when Landsat series images were selected as
research data, the SGB algorithm had higher accuracy in forest biomass estimation than
the random forest algorithm regardless of texture features, spectral features or if both of
them were used. In addition, most existing forest AGB modelling and mapping studies
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did not distinguish between forest types but considered forests as a whole to retrieve the
forest aboveground biomass in the entire region [76,77]. However, Fassnacht [78] actually
found that there were fundamental differences in the NIR reflectance between coniferous
forests and broad-leaved forests, and hardwood canopies could reflect 50% more in NIR
than pine canopies due to different cellulose compactness or structures in their leaves.
Thus, separate AGB modeling of different forest types may more adequately capture the
respective variances in canopies’ signatures of coniferous forest and broad-leaved forest.
Actually, Figures 8–10 show the modeling R2 of broad-leaved forest, coniferous forest and
combined forest types at 0.68, 7.53 and 0.54, respectively, with the corresponding RMSEs at
7.53, 4.46 and 14.27 t/hm2. This shows that AGB modeling by different forest types can
achieve higher accuracy of AGB estimation than modelling without differentiating between
forest types [14–16], which is consistent with Zheng’s study [79].

However, due to the unavailability of historical records of field sample plots, we were
unable to reliably validate the long-term time-series AGB maps generated by extrapolat-
ing the 2011 AGB prediction models into other years in the current analysis (Figure 11),
although these AGB maps can provide basic data support for evaluating the ecosystem
dynamic trends of the reserve and the effectiveness of management practices. Although we
have assumed that there is a relatively stable relationship between forest AGB and remote
sensing images in a specific area over time, in reality, natural disasters or anthropogenic
disturbances may alter the forest spatial structure, species compositional structure and age
structure over time and space, which may affect this stable relationship, thus affecting the
accuracy of those extrapolated AGB estimations [80,81]. In the future, more efforts should
be invested to ensure a sufficient validation of the historical AGB patterns generated from
satellite image archives.

4.3. Driving Factors for Forest Area and AGB Changes

Our results showed that the forest areal proportion dropped from 92.92% in 1987 to
87.15% in 1997, and from 90.11% in 2011 to 88.6% in 2017 (Figure 5). It can be seen that
coniferous forest is mainly distributed in the northern and south-eastern portions of the
reserve, and the increased area of the coniferous forest in the reserve is significantly more
than the reduced area in the past 30 years (Figure 6). This result is in agreement with the
vegetation distribution of the Yaoluoping Nature Reserve studied by Xie et al. [82].

The coniferous forest decreased mainly in the southwest, northwest and southeast
of the reserve between 1987 and 2002 (Figure 6). Major forest harvesting species, such
as Chinese fir and Pinus taiwanensis Hayata, grew in the southwest and southeast of the
reserve. The economic sources of the local residents in Yaoluoping Reserve mainly depend
on timber and agricultural production. Thus, unrestricted timber harvesting of these
coniferous species led to a significant reduction in area. Bahurudeen et al. [83] found that
the coniferous forest had excellent materials and high economic value and was widely used
in a variety of industries, which effectively explains the rapid decline in the coniferous
forest in the reserve. In addition, in 2011, a large area of coniferous forest decreased due to
natural disasters, such as landslides, in the southeastern part of the reserve. The increased
area of coniferous forest was mainly distributed in the valley of the Baojia River basin,
and the years were mainly from 1992 to 2007. In 2001, a zero-felling quota of commercial
timber was implemented, and the felling of commercial timber was basically eradicated
and the overall forest felling decreased dramatically. At the same time, a large number of
tree species, such as Chinese fir, have been planted and renewed in the reserve. According to
the records, the natural forest of Huangliyuan forest farm has been completely updated to
the existing Chinese fir forest since 1993. All the events can reasonably explain the dynamic
patterns of coniferous forest in the reserve during the period of 1987 to 2020.

The biomass inversion results showed that the forest AGB in Yaoluoping National
Nature Reserve increased continuously from 1987 to 2020, but the coniferous forest biomass
decreased correspondingly in those disturbed years (Table 12). This indicates that human
factors are the main factors affecting the forest AGB. During the periods of rapid popula-
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tion density and GDP growth, forests, as the main source of income and livelihood, are
greatly affected, and the forest AGB decreases accordingly. Rozendaal et al. [84] showed
that human activities, especially logging disturbances, had a significant impact on forest
biomass. In the future development process, the local government should properly con-
sider the carrying capacity of the forest ecosystem to population density and establish an
ecological compensation mechanism combined with its own characteristic forest industries
so as to realize the goal of protecting natural resources and protecting the interests of
the community. Liu et al. [85] took Yaoluoping National Nature Reserve as the research
object and discussed how to effectively promote the development of the national nature
reserve by using ecological compensation mechanisms based on the observed problems
in the development process. For the scientific protection of the reserve, we can cultivate
biological resources with economic benefits and carry out activities, such as ecotourism
and popularization of science, to mitigate the impacts of human demands on forest re-
sources. Xu et al. [86] quantified the biodiversity value of Yaoluoping Nature Reserve and
confirmed the ecological and economic value of the reserve, which poses a high priority
of sustainable natural resources management in the reserve. In addition, some deforested
areas should be classified according to the degree of deforestation and site conditions, and
the vegetation restoration should be organically combined with natural regeneration and
artificial intervention to shorten the time of vegetation restoration to the forest community
scientifically and effectively.

4.4. Limitations and Future Improvements

Although important results were obtained from this study, the following aspects still
need to be further studied: (1) Although the constructed vegetation index NDVI_DR can
better distinguish between coniferous forest and broad-leaved forest, its extraction effects
for mixed forest and shrubs need further verification [72]. (2) More efforts should be made
to ensure a reliable validation of historical AGB maps, such as collecting measurements
from those permanent sample plots possibly deployed in the reserve. (3) Although the
SGB algorithm can reduce the variance and bias and has high estimation accuracy, it is
very sensitive to the change in the outliers in the training samples [64]. Thus, its tuned
parameters need to be optimized in later research.

5. Conclusions

In this study, a VCT model was used to generate forest cover datasets in the study
area, and NDVI-DR was developed to classify the forest types. On this basis, the SGB
algorithm and extrapolation were applied to retrieve the AGB in the study area from 1987
to 2020. The findings from our study can provide potential insights for long-term forest
remote sensing observations, forest type classification, and accurate AGB mapping. These
findings also can inform similar management agencies of a carbon accounting data basis
and provide informed actions on sustainable development with high ecological interests.
Based on the findings, it is concluded that:

(1) The NDVI_DR thresholding provides an efficient and accurate classification method
for distinguishing between coniferous forest and broad-leaved forest. The overall
accuracy is above 92%, with a kappa coefficient above 0.8.

(2) The 2011 forest-type-dependent stochastic-gradient-boosting-based (SGB-based) AGB
estimation model achieved an independent validation R square at 0.63 and an RMSE
at 11.18 t/ha for broad-leaved forest, and 0.61 and 14.26 t/ha for coniferous forest. A
time-series of AGB was generated by extrapolating the 2011 AGB models to other years,
and the mapped AGB showed a gradual increasing trend over the past three decades.

(3) There is a significant correlation between human disturbance and AGB, especially
irregular deforestation. Thus, we suggest that the local government should properly
consider the carrying capacity of the forest ecosystem to population density and
establish an ecological compensation mechanism combined with its own characteristic
forest industries.
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Abstract: Forest biomass is critically important for forest dynamics in the carbon cycle. However,
large-scale AGB mapping applications from remote sensing data still carry large uncertainty. In this
study, an AGB estimation model was first established with three different remote sensing datasets of
GF-2, Sentinel-2 and Landsat-8. Next, the optimal scale estimation result was considered as a reference
AGB to obtain the relative true AGB distribution at different scales based on the law of conservation
of mass, and the error of the scale effect of AGB estimation at various spatial resolutions was analyzed.
Then, the information entropy of land use type was calculated to identify the heterogeneity of pixels.
Finally, a scale conversion method for the entropy-weighted index was developed to correct the scale
error of the estimated AGB results from coarse-resolution remote sensing images. The results showed
that the random forest model had better prediction accuracy for GF-2 (4 m), Sentinel-2 (10 m) and
Landsat-8 (30 m) AGB mapping. The determination coefficient between predicted and measured
AGB was 0.5711, 0.4819 and 0.4321, respectively. Compared to uncorrected AGB, R2 between scale-
corrected results and relative true AGB increased from 0.6226 to 0.6725 for Sentinel-2, and increased
from 0.5910 to 0.6704 for Landsat-8. The scale error was effectively corrected. This study can provide
a reference for forest AGB estimation and scale error reduction for AGB production upscaling with
consideration of the spatial heterogeneity of the forest surface.

Keywords: forest aboveground biomass (AGB); scale effect; random forest (RF); scale correction

1. Introduction

Terrestrial ecosystems, covering approximately 30% of the Earth’s land surface, play
an important role in the global carbon cycle and climate changes [1]. Forests are a major con-
tributor to the terrestrial carbon pool. Forests store approximately 45% of the carbon found
in terrestrial ecosystems as living biomass and dead wood and litter [2,3]. At the same time,
forests can sequester large amounts of carbon dioxide from the atmosphere and contribute
approximately 50% of the global net primary production (NPP) and approximately 80% of
terrestrial NPP [4–6]. Forests absorb atmospheric CO2 through photosynthesis and remove
nearly 3 billion tons of anthropogenic carbon every year [7]. As forests grow, around 30% of
CO2 emissions from fuel burning and net deforestation are absorbed [8]. Therefore, forest
ecosystems can increase or decrease carbon sequestration by restoring or degrading vegeta-
tion [9]. If a forest is disturbed by fire, deforestation or other human factors, the carbon
stored in the forest would be released back into the atmosphere; therefore, the accurate
estimation of forest carbon stocks is essential for the study of the carbon exchange between
terrestrial ecosystems and the atmosphere and its effects on ecosystem-level carbon cycling,
feeding back to climate change [10,11].

Forest aboveground biomass, or aboveground biomass of trees (AGB), is defined as the
mass of the living organic material, which includes the living stems, branches and leaves
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of vegetation, with units of mass per unit area [12]. The aboveground biomass constitutes
the main portion of the carbon stock, and it is the most important and visible terrestrial
ecosystem carbon pool. The AGB is intimately related to the emission of CO2 caused by
land use change and fire and the stored CO2 in the atmosphere by vegetation growth.
AGB is a key quantity estimating terrestrial carbon pools and is recognized as an Essential
Climate Variable (ECV) by the Global Climate Observing System (GCOS) [13]. It is also
used to monitor climate change by the United Nations Framework Convention on Climate
Change (UNFCCC) and the Intergovernmental Panel on Climate Change (IPCC) [14]. In
addition, vegetation biomass has also wider significance to human society in the form
of food, materials, energy and other ecosystem services that can be found in forests and
other ecosystems [15]. AGB is also important for monitoring the forest planting dynamics,
evaluating forest management practices and assessing wood resources [15,16]. Accurately
monitoring and reporting the forest aboveground biomass is essential to correctly budget
carbon emissions and is beneficial for mitigating climate change through the reduction of
greenhouse gas emissions [17].

Conventionally, the AGB estimation methods can be categorized into field measure-
ment, ecological model simulation and approaches involving remote sensing [1]. Field
measurement requires an intensive field inventory; the most important field forest-related
parameters include the number of trees, tree density, the taxonomical information, tree
height and the diameter at breast height (DBH) [18]. Field measurement is considered to
provide the most accurate AGB estimation, combined with allometric equations [19]. The
traditional approach of manual data collection is called field inventory in forestry [20]. It is
an important method that is used in the monitoring and management of the forest. How-
ever, the conventional method of AGB inventory is destructive, labor-intensive, expensive,
time-consuming and sometimes limited by poor accessibility [21]. It cannot provide the
spatial and temporal distribution and explicit forest biomass information [1]. Hence, the
field inventory method is practical only in relatively smaller areas [22].

Limited by the traditional methods of AGB estimation on a regional scale, remote
sensing has been widely used to estimate AGB during the past few decades. On the one
hand, remote sensing technology has the advantage of facilitating the collection of forest
type characteristics and coverage information, which is greatly useful in field inventory [23].
On the other hand, remote sensing can provide the spectral characteristics of vegetation
and offer the repeated historical observation required for change detection, and digital
data can be easily stored and integrated with geographic information [22]. Remote sensing
technology has been extensively used as an efficient and economical method for the large-
scale estimation of forest biomass [24,25]. Various remote sensing data, such as optical,
thermal, microwave, radar and LiDAR remote sensing data, have been used for AGB
estimation [26,27]. The intermediate- and high-resolution remote sensing are usually
used for biomass estimation at local or sub-regional scales, such as Landsat series, SPOT,
WorldView-2 and GF series [28–30]. Moreover, MODIS and NOAA-AVHRR remote sensing
data have been used to estimate AGB at a regional, national or global scale [31,32]. Optical
remote sensing data are a common data source for biomass estimation, but data saturation
in the optical regime is an important factor influencing the accuracy of biomass estimation
in forests [33,34]. With the rapid development of light detection and ranging (LiDAR)
technology, LiDAR has become a vital method for AGB estimation [35]. Compared to
optical remote sensing, LiDAR can derive the canopy height information, which is strongly
related to AGB at high levels, and it is considered the most promising technique for
biomass estimation. However, LiDAR data are usually limited to use in small areas due to
high costs [26].

In the last few decades, multiple-resource remote sensing data have been used to
estimate AGB and are recognized as dominant data sources for AGB mapping [1]. However,
current AGB estimations were retrieved by using different methods and remote sensing
data with various spatial resolutions [36]. This would lead to significant disagreement
when estimating AGB and reduce its value in global and national applications. There are
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many random and/or systematic errors that arise during AGB estimation, such as in field-
based AGB estimation, matching field and remote sensing measurement, satellite-based
measurement and global wall-to-wall extrapolation [37]. First, the uncertainty of the field-
based AGB estimation is a matter of concern for remote sensing scholars. Chen et al. tracked
the errors from the field-based uncertainty of AGB estimation based on airborne LiDAR
remote sensing [38]. Longo et al. concluded that the field-based uncertainty contributed
around 10% of the total pixel-level uncertainty of AGB prediction at a 0.16 ha resolution [39].
Second, the mismatch between field measurements and remote sensing images may lead to
errors in AGB estimation. Moreover, it would reduce the AGB model error from 51% to 4%
at 20 to 100 m resolution when using LiDAR remote sensing [40]. The spatial difference
between field measurements and remote sensing data is a common problem that can
increase the AGB estimation error in remote sensing studies [41]. Næsset et al. found that
the field plot size would have an effect on the estimation of AGB and pointed out that the
plot size should be considered when using remotely sensed data for AGB estimation [42].
Persson et al. analyzed the uncertainties of AGB estimation at the plot and stand level
and concluded that the error of field-based AGB estimation cannot be ignored, such as
measured errors, missed or double-counted trees, measurement errors, sample plot location
positioning errors or erroneous registration of tree species [43]. Moreover, this uncertainty
is difficult to predict in natural forests, but the error can be reduced with an increase in the
plot size [44]. In addition, Shen pointed out that the distribution of survey sites may bring
some uncertainty in AGB estimation [45]. Lastly, the issue of the scale mismatch between
the calibration of the field measurement and remote sensing pixels is a significant challenge.
When coarse-resolution remote sensing is used to map the local- or national-scale AGB, the
numerous data of small field plots, such as national forest inventory datasets, will be used
to establish the AGB estimation model. However, the area of the most of the field plots is
less than 0.1 ha in size. Réjou-Méchain et al. analyzed the local spatial variability of AGB
in plots with the size of 0.1 ha and 100 ha. Results show that the local spatial variability
is large for standard plots, and the value of the local spatial variability is 46.3% for 0.1 ha
subplots and 16.6% for 1 ha subplots, respectively [46]. Compared with large plots, small
plots carry large errors due to AGB variability for a consistent pixel-to-plot size. Moreover,
this will generate large sampling errors and produce significant bias when estimating an
AGB map. Thus, field measurements that better match the remote sensing pixel resolution
are a challenge, and a more reliable approach to minimizing this sampling error needs to
be developed.

It is complex to assess and quantify of the AGB estimation errors by using remote
sensing data. However, it is also important to identify the errors and assess the effect of the
different spatial resolutions of remote sensing data on AGB estimation, as it contributes to
the uncertainty of the RS-based estimation; it is also necessary to consider how to correct
this error. In this study, the issue of the scale mismatch of AGB estimation for remote
sensing of different spatial resolutions was discussed. Moreover, a novel method, which
is based on the law of conservation of mass, was developed, and the errors of the scale
effect of AGB estimation at various spatial resolutions were analyzed. To achieve this
goal, an AGB estimation model was first established that referred to three different spatial
resolutions of remote sensing data, and the accuracy of AGB estimation at three different
scales was analyzed. Second, the optimal scale estimation result was considered as a
reference AGB spatial distribution true value, and the mismatch error due to the spatial
variability and non-linearity of the AGB estimation model was discussed at three different
spatial resolutions of remote sensing. Third, the scale conversion method of the entropy-
weighted index with the assumption of the average AGB constant in this region, which
was used to correct the scale error of AGB estimation by using coarse-resolution remote
sensing, was established and the weight coefficient was determined by analyzing the biases
between estimated and true AGB values. Finally, the AGB map with coarse-resolution
remote sensing was corrected. This research represents an approach to the scale error
correction of AGB estimation by using coarse-resolution remote sensing, and it provides
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a reference for high-precision AGB mapping using coarse-resolution remote sensing at a
regional, national or global scale.

2. Study Area and Data

2.1. Study Area

The study area is located at the Maoer Mountain Experimental Forest Farm (127◦29′–
127◦44′E, 45◦14′–45◦29′N), Shangzhi City, Heilongjiang Province, Northeast China (Figure 1).
The area of the Maoer Mountain Forest Farm is approximately 26.496 km2. Maoer Moun-
tain belongs to the offset of the Changbai Mountains and extends to the northwest offset
of the Zhangguangcai Range. The study area is a low mountainous and hilly area. The
terrain of the forest area gradually rises from south to north, with an average altitude of
300 m. The research region belongs to the mid-temperate continental monsoon climate zone.
The annual average temperature is around 2.7 ◦C, and the annual precipitation is around
649 mm. The average temperature of the hottest month of July is 21.8 ◦C, and January
is the coldest month, with average temperatures of −19.9 ◦C [47]. The average annual
thermal amplitude is 41.7 ◦C. The average forest coverage rate is 95%, and the total forest
volume is 3.5 million m3. The main tree species are Korean pine (Pinus koraiensis) mixed
with deciduous species including birch (Betula spp.), larch (Larix spp.), poplar (Populus spp.),
sylvestris pine (Pinus sylvestris) and Mongolian oak (Quercus spp.) [47,48].

Figure 1. Study area and sample site location. (A) the distribution of single trees in the plot of the
broadleaf forest; (B) the distribution of single trees in the plot of coniferous forest; (C) the distribution
of single trees in the plot of the coniferous and broadleaf mixed forest.

2.2. Data
2.2.1. Remote Sensing Data and Pre-Processing

Three different spatial resolutions of remote sensing data, including GF-2, Sentinel-2
and Landsat-8 OLI, were used in this study.

Gaofen-2 (GF-2) is a civilian optical remote sensing satellite. The GF-2 satellite was
launched by the China National Space Administration (CNSA) on 19 August 2014. GF-2
is the first satellite in China with a resolution below 1 m and captures high-resolution
remote sensing images. It has been widely used in land use investigation, monitoring
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of the environmental atmosphere and water environment, urban planning, monitoring
of disasters and resource surveys [49]. The GF-2 satellite platform is equipped with a
panchromatic band with a 1 m spatial resolution and four multispectral band scanners with
4 m resolution, spatial including red (R), green (G), blue (B) and near-infrared (NIR). GF-2
can achieve a swath width of 45 km ground observation at one time and the revisiting time
of GF-2 is 69 days. The remote sensing data were collected in August 2019.

The pre-processing of the GF-2 remote sensing images included the following:
(1) radiation calibration for spectral channels was multiplied by gain and bias coefficients;
(2) atmospheric correction was carried out by using the fast line-of-sight atmospheric
analysis of the spectral hypercubes (FLAASH) model to obtain the surface reflectance;
(3) geometric correction was performed. The GF-2 images were corrected based on a
1:10,000 topographic map with the method of polynomial and bilinear interpolation resam-
pling. Then, the vegetation indices used in this study were calculated.

Sentinel-2A and 2B were designed by the European Space Agency (EAS) to meet the
needs of the Copernicus program. The Sentinel-2A satellite was launched on 23 June 2015,
followed by Sentinel-2B on 7 March 2017. The Sentinel-2A satellite has 13 bands covering
the visible to shortwave infrared (SWIR) wavelength regions and it collects multispectral
remote sensing data. The swath width of Sentinel-2A is 290 km and the revisiting time is
10 days. The spatial resolutions of Sentinel-2A data included four bands from visible and
near-infrared (NIR) with a spatial resolution of 10 m, six bands from red-edge to shortwave
infrared (SWIR) with a spatial resolution of 20 m and three atmospheric correction bands
with a spatial resolution of 60 m, respectively [50]. Sentinel-2A Level-1C production with
10 m resolution was used in this study. The Sentinel-2A Level-1C data were obtained at the
end of July 2019.

The pre-processing of the Sentinel-2A remote sensing images included the following:
(1) resampling, in which all the bands were resampled to 10 m resolution; (2) atmospheric
correction and terrain correction, which was carried out using the ESA SEN2COR pro-
cessor to obtain the surface reflectance. Then, the vegetation indices used in this study
were calculated.

The Landsat-8 Operational Land Imager (OLI) is an instrument in the Landsat series
of satellite imagers. It was launched in February 2013. The Landsat-8 OLI continues the
legacy of the Landsat series and adds two bands of the cirrus clouds and a coastal/aerosol
(CA) band to detect water and aerosols in the blue region with a better resolution [51].
Landsat-8 OLI images consist of 11 spectra with a spatial resolution of 30 m. The images of
Landsat-8 OLI data were acquired in July 2019.

The pre-processing of the Landsat-8 OLI remote sensing images included radiometric
calibration, atmospheric correction, terrain correction and geometric correction. All the
pre-processing of satellite data was conducted using ENVI 5.3 software (developed by
Exelis Visual Information Solutions, Inc., Boulder, CO, USA).

2.2.2. Field Measurement

The ground data survey began in August 2019, and a total of 3 rectangular plots
with a size of 100 m × 100 m were laid out (see Figure 1). The forest type of the sample
plots included coniferous forests, broad-leaved forests and mixed forest types. The plot
of the coniferous forest was mainly composed of Korean pine and larch, and the plot of
the broad-leaved forest was mainly made up of birch and linden. Before the sample plot
investigation, the GPS coordinates of the four corners and the central position of each
sample plot were recorded by using a high-precision Differential Global Positioning System
(DGPS; produced by Trimble Navigation Limited, Sunnyvale, CA, USA). Then, all trees
were numbered and geolocated within each plot. The following forest parameters were
then measured: diameter at breast height (DBH), tree height, under branch height, crown
width, tree species. All of the trees with diameters at breast height greater than 5 cm in the
sample plot were measured.
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Stand aboveground biomass was calculated on the basis of established individual tree
biomass models. A single-tree univariate additive biomass model established by Dong was
used to estimate the single-tree aboveground biomass [52]. First, the biomass of the tree
components of the tree stem, branch and leaf was calculated, and the total aboveground
biomass of the single tree was the sum of the biomass of the tree components. It is important
to note that the root biomass was not included in this study. Then, plot biomass could be
derived from the sum of the all living trees’ biomass in each sample plot. Finally, the stand
aboveground biomass per ground area could be calculated.

For the comparison of the biomass remote sensing estimate at different scales, the
large rectangular plot was divided into differently sized subplots. According to the spatial
resolution of GF-2, Sentinel-2 and Landsat-8, we divided the 100 m × 100 m plot into several
subplots with the size of 4 m ×4 m (GF-2), 10 m × 10 m (Sentinel-2) and 30 m × 30 m
(Landsat-8), respectively. Some of the data were selected randomly to establish the AGB
prediction model. The AGB statistical information of the selected subset with different
sizes is shown in Table 1.

Table 1. The AGB statistical information of the field measurements at pixel scale (Unit: t/ha).

Index GF-2 (n = 70) Sentinel-2 (n = 70) Landsat-8 (n = 55)

Mean 112.7623 98.4261 105.2296
Standard deviation 23.1844 31.0125 31.8978

Range 47.2768–181.5890 47.1336–174.2340 47.9736–193.5593

3. Methodology

3.1. Method of Aboveground Forest Biomass Estimation at Different Spatial Scales
3.1.1. Remote Sensing Variable Selection

The purpose of the AGB modeling was to construct the relationships between the
variables extracted from remote sensing data and AGB. The first important step was
selecting the variables for AGB estimation. To increase the number of candidates in the
independent variable dataset, the spectral indices, vegetation indices, texture features,
terrain factors and other parameters of the images of three different spatial resolutions from
GF-2, Sentinel-2 and Landsat-8 were extracted as candidate characteristic variables [50,53].
There were a total 62 candidate remote sensing variables extracted from GF-2 satellite
data, 57 candidate remote sensing variables extracted from Sentinel-2 satellite data and
63 candidate remote sensing variables extracted from Landsat-8 satellite data.

The significant relationships between the variables of the remote sensing data and
AGB demonstrated the candidates for optical remote sensing data for AGB estimation and
determined the accuracy of AGB estimation. Therefore, it was very important to screen
variables from the remote sensing data carefully for AGB modeling [54]. For the first step,
the Pearson correlation coefficient between candidate remote sensing variables and AGB
field measurement was calculated, and those variables with a lower correlation coefficient
(R < 0.05) were removed to improve the quality of the candidate remote sensing variables.

The variable importance in projection (VIP) score is often used to assess the importance
of variables. In general, those variables with a greater VIP score are considered to be more
important than those with smaller ones [55]. Therefore, we used the VIP score to evaluate
the importance of the candidate remote sensing variables in the AGB modeling in the
next step. The remaining variables screened in the first step were ranked according to the
VIP, calculated with random forest, to screen the independent variables for a second time.
Finally, three groups of remote sensing variables were successfully selected to prepare for
AGB modeling at three different spatial resolutions of remote sensing. There were 8 remote
sensing variables in each group, and the details can be found in Table 2.
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3.1.2. Method of AGB Modeling

In this study, a random forest (RF) algorithm was conducted to estimate the AGB of
the research area. Then, multiple linear regression (MLR) was used to compare the accuracy
of AGB estimation.

Random forest (RF) is a machine learning algorithm proposed by Leo Breiman
(2001) [61]. Random forest was developed based on multiple regression trees; it shows
that the relationship between an input relates to its dependent variable by using multiple
regression trees [62]. The main advantage of RF is the ability to describe complex nonlinear
relationships, such as in a complex ecological system. It is more effective than a linear
regression model for multi-variable models. Thus, a random forest algorithm was selected
to effectively predict forest AGB by using remote sensing data. Moreover, the number of
regression trees was set to 1000 and the random state of the random forest algorithm was
set to 10 in this study.

A traditional multiple linear regression (MLR) was applied as a baseline for AGB
model accuracy comparison. A backward stepwise multiple linear regression was per-
formed to establish the forest AGB retrieval model. The formula of the MLR is as follows:

y = β0 + β1 × 1 + β2 × 2 + . . . + βn × n + ε (1)

where y is the variable of the forest AGB; xi is a dataset of remote sensing variables; βi is a
fitting parameter; ε is an error term.

Using random sampling, a total of 75% of the sample data were selected for the
model establishment, while the remaining 25% of the sample data were employed for the
accuracy evaluation.

3.2. Scale Error Calculation

Resampling of the field-measured data or remote sensing AGB production to a con-
sistent spatial resolution with remote sensing data is a commonly used method of error
evaluation. Thus, we used two upscaling paths to calculate the AGB from the coarse-
resolution remote sensing data and compared the results of these two methods, after which
the scale error could be determined (Figure 2).

Figure 2 is a schematic flowchart of the two upscaling methods of AGB estimation.
The first method aimed to estimate AGB by using high-resolution remote sensing data
and then aggregate the estimated AGB to coarse-resolution remote sensing (Path 1). We
named this path “first inversion and then aggregation”. The other method was to aggregate
the characteristic variables of high-resolution remote sensing images, such as various
vegetation indices, to coarse-resolution remote sensing and then estimate the AGB using
the remote sensing inversion model of AGB. We named this path “first aggregation and
then inversion”.

The first path (Path 1) retrieved the AGB through high-resolution remote sensing and
resampled the AGB results to coarse-resolution remote sensing by summation. First, we
obtained the characteristic variable (Vi) from the high-resolution remote sensing image and
established the AGB estimation model (AGBi = f1(Vi)); then, we inverted the AGB (AGBi)
from the high-resolution remote sensing image (Path 1 step one) and resampled the inverted
AGB to coarse-resolution remote sensing by summation (Path 1, Step 2). The calculated
AGB with the coarse resolution is the sum of the AGB estimated from high-resolution data.
This is often referred to as a distributed algorithm. As a linear transformation, the statistical
information of AGB at coarse resolution obtained by this upscaling method was consistent
with AGB at the high resolution [63]. Thus, this AGB estimation can be considered as the
relative true value of the biomass at the coarse-resolution pixel, defined as AGBexa.

The second path (Path 2) aggregated the characteristic variable of the high-resolution
remote sensing to coarse-resolution remote sensing (Vm) first (Path 2, Step 1). This meant
that the high-resolution remote sensing should resample to the same spatial resolution with
the coarse-resolution remote sensing. Then, an AGB estimation method (AGBapp = f2(Vm))
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was established based on the resampled characteristic variable (Vm), and the AGBapp
could be retrieved from the coarse-resolution remote sensing data (Path 2, Step 2). This
is commonly referred to as the lumped algorithm. This process (Path 2, Step 1) can be
understood as the imaging process of the coarse-spatial-resolution satellite sensor. The
estimated AGB results contained the scale error due to the heterogeneity of the surface
feature [64,65]. This can be considered as an estimation of the coarse-resolution pixel
biomass, defined as AGBapp.

Figure 2. Schematic flowchart of the two upscaling methods of the AGB estimation. (fi is the remote
sensing inversion model of forest aboveground biomass; V(i=1,2,3,4) is the characteristic variable of
the high-resolution remote sensing image; Vm is the average value of Vi, namely the pixel V value
of the coarse-resolution image; AGBexa is the biological value of the high-resolution image, namely
the relative truth value; AGBapp is the biological value of the coarse-resolution image, namely the
biological values with scale errors).

At present, it is recognized by the academic community that the spatial heterogeneity
of surface features is the major reason for the scale effect [66,67]. In other words, it is
assumed that multiple spatially heterogeneous, high-resolution pixels are contained in a
single coarse-resolution pixel. Due to the heterogeneity of the surface feature, the estimated
AGB will contain the error of the scale effect. Therefore, spatial heterogeneity serves as the
main contributing factor to the scale error e. It can be calculated as follows:

e = AGBexa − AGBapp (2)

The authenticity test of the remote sensing products involved evaluating the accu-
racy of the AGB product. The field measurement or AGB estimation result obtained
by using high-resolution remote sensing was usually used to verify the precision. Cur-
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rently, the verification of the AGB remote sensing product at coarse resolution is usually
performed according to the relationship between field measurements or generated high-
spatial-resolution distribution map of AGB and coarse remote sensing estimated AGB
result. To analyze the differences in AGB for various spatial resolutions of remote sensing,
the forest biomass map using GF-2 was resampled to 10 m and 30 m resolutions using the
distributed algorithm (Path 1). The biomass estimation error of the coarse resolution was
calculated, and the scale effect from GF-2 to Sentinel-2 and Landsat-8 was analyzed.

3.3. Scale Error Measurement of Mixed Pixels
3.3.1. Determination of the True Mean Value

According to the law of conservation of mass, we assume that the total quality remains
uniform and unchanged in any substance system (isolated system) isolated from the
surroundings. A fixed study area or a remote sensing image of the research area also can
be considered as an isolated material system. Any changes in the resolution within the
region would not alter the total surface area of the research area or the mass of the total
forest aboveground biomass. Thus, a hypothesis is proposed that the average of the AGB
true value at any scale will remain constant. This true value of the AGB was defined as the
mass of the forest aboveground biomass per unit surface area at a certain time and under
specific spatial conditions.

To understand this, it can be assumed that the total amount of dry matter in a large
region was 8 units of mass, and this value contained no measured or system error. We
assumed that the surface area was also 8 units of area. The aboveground biomass (AGB)
equated to 1 mass per area; the diagram is shown in Figure 3A.

Figure 3. Schematic diagram of true mean AGB scale invariance. (A) the mass of the AGB per unit
surface area of coarse resolution remote sensing data; (B) the mass of the AGB per unit surface area
of high resolution remote sensing data.

Then, this large region was divided into 4 equal parts of 2 units of area in each part.
The dry matter in each part was assumed as 1, 1, 1 and 5 units of mass due to the spatial het-
erogeneity. The AGB of each part was 1/2, 1/2, 1/2 and 5/2 mass per area (Figure 3B). How-
ever, the average AGB in this region was calculated as [(1/2) + (1/2) +(1/2) + (5/2)]/4 = 1
mass per area. Similarly, if the region was divided into more small units, the average AGB
in this region was constant at 1 mass per area under the same condition.

According to the demonstration above, we assumed that the size of the total area was
N × N, the size of the remote sensing pixel was nj × nj at j-scale, and the AGB of the ith
pixel could be expressed as follows:

AGBni =
1
n2

j

n2
j

∑
j=1

f
(
Vj,i
)

(3)

where f (Vj,i) represented the biomass inversion model of the forest, and Vj,i represented
the modeled remote sensing variable of the ith pixel at j scale.
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Average AGB in this region at the n-scale AGBn could be expressed as

AGBn = 1(
N
nj

)2

( N
nj
)

2

∑
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AGBni

= 1(
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n2

j
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1
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[
n2

∑
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= AGBm = 1(
N
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)2

( N
mj

)
2

∑
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[
1

n2
m

n2
m

∑
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fm(Vm,im)

]

(4)

where AGBm was the average AGB in this region at the m-scale. fm(Vm,im) represented the
biomass inversion model of the forest at m scale and Vm,im represented the modeled remote
sensing variable of the imth pixel at m scale.

The various spatial resolutions between remote sensors composed the primary scale
effect of the remote sensing image, but the relative true value of AGB at different spatial
resolutions was constant, with the average AGB based on measured or other scales in
this region. This has been demonstrated previously [68,69]. With the assumption of the
average AGB being constant in this region, the high-resolution remote sensing data can be
considered as a bridge to connect the field-measured data to the coarse-resolution remote
sensing image. Then, the AGBexa retrieved from the high-resolution image was aggregated
to a coarse-resolution image pixel AGBnexa (n represented pixel scale). The AGBnexa can
be considered as a relative true value of the AGB at the coarse spatial resolution scale.
Moreover, compared with the AGB estimation for coarse remote sensing data, the error
caused by the scale effect could be evaluated.

3.3.2. Method of Scale Error Correction

According to the scale error formula, the AGB corrected value (AGBni
cor) of each pixel

at n-scale can be expressed as an estimated AGB (AGBni
app) of each pixel plus a scale error

en
i at n-scale, which can be written as:

AGBni
cor = AGBni

app + en
i (5)

en
i was the scale error of the ith pixel at n-scale, AGBni

cor was the AGB corrected value
of the ith pixel when the pixel scale was n, AGBni

app was the estimated AGB of the ith pixel
when the pixel scale was n.

If the estimated AGB (AGBn
app) did not contain a scale error, it should be equal to the

relative true AGB at n-scale (AGBn
exa). When the scale error was included in each estimated

AGB, the total average error could be considered as the scale effect on AGB estimation. The
mean scale error can be calculated as follows:

en = AGBn
exa − AGBn

app (6)

en referred to the mean scale error of total pixels at n-scale in the research area. AGBn
exa

was the relative true mean value of the research area AGB, and AGBn
app was the mean

estimated AGB of the whole research area.
Deduced from the law of large numbers and the central limit theorem, the scale

error arithmetic mean en
i of samples and its population arithmetic mean en had the same

mathematical expectation and the scale error showed a normal distribution [47]. Then, en
i
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could be seen as a fluctuation result of the scale error value en at the point of the pixel i. The
range of the fluctuation vn

i was determined by the difference in the population and sample
mean and could be measured by the Pi weight. The fluctuations can be expressed as

vn
i = Pi × en (7)

Therefore, en
i was regarded as the result, which was impacted by the weight Pi of pixel

i on the basis of the population value of scale error en. Moreover, en
i can be rewritten as:

en
i = en + Pi × en

= en × (1 + Pi)
(8)

The coefficient of variation (CV), which was used to measure the relative variation of a
random variable to its mean, has been widely used in remote sensing [70]. The coefficient of
variation method can be used to evaluate the difference between objects by using the feature
of remote sensing. Based on the heterogeneity of the land surface space, the information
entropy index was selected to determine the index weight in this study [70]. The formula is
as follows [71]:

Pi =
L

∑
i=0

−WilnWi (9)

where Pi represented the weight of surface heterogeneity calculated by the information
entropy from the high-resolution remote sensing data, and Wi was the probability of the
occurrence of the i-th land use type. L was the number of land use types included in the
high-resolution remote sensing data. According to the information entropy, the weighting
index of coarse-resolution pixel-scale space variation was acquired and the scale error could
be corrected.

3.3.3. Accuracy Evaluation

After completing the model establishment, four indices were applied for AGB model
evaluation, including the determination coefficient (R2), the root mean squared error
(RMSE), the relative root mean squared error (rRMSE) and the mean absolute error (MAE).
The equations were as follows [72]:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (10)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(11)

rRMSE =

√
1
n ∑n

i=1(yi − ŷ)2

y
(12)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (13)

where yi represented the AGB measured value, ŷ was the estimated AGB value, y referred
to the mean value of AGB measured, and n was the number of the samples.

Moreover, another four indices were selected to evaluate the accuracy and efficiency of
the upscaling-based method described in this study. These were the mean deviation error
(MBE), the root mean squared error (RMSE), average absolute percentage error (MAPE)
and determination coefficient (R2) [73].

MBE =
∑n

i=1(pi − oi)

n
(14)
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RMSE =

√
∑n

i=1(pi − oi)
2

n
(15)

MAPE =
100
n

×
n

∑
i=1

|pi − oi|
p

(16)

R2 = 1 − ∑n
i=1(pi − oi)

2

∑n
i=1(pi − o)2 (17)

In the above formula, pi was the relative true value of AGB at a coarse resolution,
p was the mean of the pi, oi was the estimated AGB after the scale effect correction for a
coarse-resolution image, o was the mean of the oi, i was the i-th pixel for a coarse-resolution
image, n was the pixel number of a coarse-resolution image.

4. Results

4.1. Results of the AGB Modeling at Various Spatial Resolutions of Remote Sensing

AGB estimation modeling using remote sensing is an important method for large-scale
biomass estimation and is a relevant field in remote sensing research [74,75]. Therefore, a
large number of extracted vegetation indices, spectral indices and texture variables have
been developed for AGB prediction [76–78]. To select the optimal variables, Pearson’s
correlation coefficient and the VIP score were calculated and eight remote sensing variables
were selected; see Table 2. Then, the AGB estimation model was established by using the
random forest algorithm and multiple linear regression (MLR) method, and Table 3 shows
the performance of the six models using the two modeling methods (Table 3).

Table 3. The comparation of the AGB modeling accuracy with various remote sensing data.

Image Resolution Model R2 RMSE MAE rRMSE

GF-2 4 m
Multiple Linear 0.5110 19.4328 15.7262 0.1737
Random Forest 0.5943 17.5056 14.2677 0.1282

Sentinel-2 10 m
Multiple Linear 0.5409 21.4195 17.7690 0.2442
Random Forest 0.4971 20.2485 14.9274 0.2308

Landsat-8 30 m
Multiple Linear 0.3034 28.8477 23.7357 0.2778
Random Forest 0.4235 28.6546 25.2203 0.2759

The modeling accuracy of the random forest model using GF-2 was calculated. The
R2, RMSE, MAE and rRMSE were 0.5943, 17.5056, 14.2677 and 0.1282, respectively. By
contrast, the multiple linear regression model established between AGB and the GF-2
feature had lower accuracy (R2 = 0.5110, RMSE = 19.4328, MAE = 15.7262, rRMSE = 0.1737).
For Sentinel-2 images, the determinant coefficient of the random forest model was 0.4971,
and it was smaller than that of the multiple linear regression model of 0.5409. However,
the RMSE, MAE and rRMSE were larger than those of the multiple linear regression. For
Landsat-8 images, the modeling accuracy was the worst compared with the other two
satellite data AGB models, and the R2, RMSE, MAE and rRMSE of the random forest
model were 0.4235, 28.6546, 25.2203 and 0.2759, respectively. The multiple linear regression
model showed worse accuracy, with R2, RMSE, MAE and rRMSE of 0.3034, 28.8477, 23.7357
and 0.2778, respectively. Comparing the AGB modeling accuracy obtained with different
modeling methods, it can be seen that the random forest model had better accuracy than
the multiple linear regression model. Comparing the AGB modeling accuracy obtained
with different remote sensing data, the performance of the random forest AGB model using
GF-2 was the best, and it displayed a better estimation effect for the aboveground forest
biomass in the research area.

To test the prediction efficiency of the model for independent samples, 25% of the
sample data were used to preformed the AGB estimation. Then, the estimation accuracy
was calculated, and the results can be found in Table 4.
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Table 4. The comparison of the AGB prediction accuracy with various remote sensing data.

Image Resolution Model R2 RMSE MAE rRMSE

GF-2 4 m
Multiple Linear 0.4072 20.2781 16.9451 0.1759
Random Forest 0.5711 16.9586 12.7153 0.1471

Sentinel-2 10 m
Multiple Linear 0.3344 23.6606 19.7257 0.2353
Random Forest 0.4819 19.4657 14.3562 0.1936

Landsat-8 30 m
Multiple Linear 0.2892 32.8565 25.6158 0.3034
Random Forest 0.4321 29.7677 28.0137 0.2749

The determinant coefficient between measured and estimated AGB using the random
forest model with GF-2 was 0.5711, RMSE was 16.9586, MAE was 12.7153, and rRMSE
was 0.1471. The R2 when using the multi-linear regression model was 0.4072, the RMSE
was 20.2781, MAE was 16.9451, and rRMSE was 0.1759. These values for Sentinel-2 using
the random forest modeling method were 0.4819, 19.4657, 14.3562 and 0.1936, respectively.
The multi-linear regression model results for Sentinel-2 were 0.3344, 23.6606, 19.7257 and
0.2353, respectively. The results of the random forest model for Landsat-8 were 0.4321,
29.7677, 28.0137 and 0.2749, respectively. The results of the multi-linear regression model
for Landsat-8 were 0.2892, 32.8565, 25.6158 and 0.3034, respectively. It can be seen that
the prediction accuracy of the random forest regression model was better than that of the
multi-linear regression model.

A scatter plot of the measured and estimated AGB is shown in Figure 4. Compared
with the AGB estimated by using the multi-linear regression model, AGB estimation by
using the random forest model was distributed at nearly y = x, which indicates that the
estimated AGB deviated less from the measured value, and it could perform with higher
accuracy. The estimated AGB obtained using the multi-linear regression model showed
a larger bias from the line of y = x. This meant that the model would produce a larger
estimation error.

Figure 4. Scatter plot between measured and estimated AGB (black dotted line indicates y = x).
(a) the scattering plot of measured and estimated AGB of GF-2 by using random forest model;
(b) the scattering plot of measured and estimated AGB of Sentinel-2 by using random forest model;
(c) the scattering plot of measured and estimated AGB of Landsat-8 by using random forest model;
(d) the scattering plot of measured and estimated AGB of GF-2 by using multiple linear model;
(e) the scattering plot of measured and estimated AGB of Sentinel-2 by using multiple linear model;
(f) the scattering plot of measured and estimated AGB of Landsat-8 by using multiple linear model.
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4.2. Retriveved AGB at Various Spatial Resolutions

First, the AGB prediction using the random forest model was performed for GF-2,
Sentinel-2 and Landsat-8 images, and the AGB inversion results of GF-2 with 4 m spatial
resolution (AGBGF-2), Sentinel-2 with 10 m spatial resolution (AGBSentinel-2) and Landsat-8
with 30 m spatial resolution (AGBLandsat-8) were obtained (Figure 5).

Figure 5. AGB estimation using the random forest model for various remote sensing data: (a) AGB
estimation result using GF-2; (b) AGB estimation result using Sentinel-2; (c) AGB estimation result
using Landsat-8. (Unit was t/ha).

The statistical information is summarized in Table 5. The mean of the AGB estimation
of GF-2 (AGBGF-2) was 101.30 t/ha. The standard deviation was 40.25 t/ha. The mean of the
AGB estimation of Sentinel-2 (AGBSentinel-2) was 102.52 t/ha, with the standard deviation
of 43.95 t/ha. The mean of the AGB estimation of Landsat-8 (AGBLandsat-8) was 94.70 t/ha,
with the standard deviation of 40.02 t/ha. The mean AGB estimation among GF-2 and
Sentinel-2 had a similar value, but the standard deviation showed a significant difference.
This meant that the AGB estimated with Sentinel-2 had a large deviation. Moreover, the
mean of the AGB estimated by Landsat-8 had a significant difference compared with other
two results. The differences among AGB estimation were mainly caused by the estimation
error and scale effect.

Table 5. The statistical information of AGB estimation results using various remote sensing data.

Index AGBGF-2 AGBSentinel-2 AGBLandsat-8

Mean 101.30 102.52 94.70
Standard deviation 40.25 43.95 40.02

Then, the relative true values of AGB at 10 m (AGBexa-10) and 30 m (AGBexa-30)
spatial resolution were calculated based on the AGB estimation using GF-2, and the AGB
distribution can be found in Figure 6. The statistical information is shown in Table 6. The
results show that the relative true values of AGB among the various spatial resolutions were
similar, without a significant difference, and this result was consistent with our assumption.
However, the relative true value of the AGB estimation had a significant bias compared
with the AGB estimated using remote sensing data. The mean of the AGB estimation of
Landsat-8 (AGBLandsat-8) was 94.70 t/ha, with the standard deviation of 40.02 t/ha. The
mean of the relative true value of AGB (AGBexa-30) at the same spatial resolution was
101.24 t/ha, with the standard deviation of 37.98 t/ha. This bias of the mean value of AGB
estimation was obvious. This difference can be considered as the effect of the scale error on
the AGB estimation. Compared with high-spatial-resolution GF-2 data, the surface spatial

278



Remote Sens. 2022, 14, 2828

heterogeneity and mixed pixels would have a greater effect on one pixel of Landsat-8.
Moreover, there may be more pixels with a single property in one pixel of GF-2. This scale
effect led to errors in the estimation results for different spatial resolutions.

Figure 6. Relative values of the AGB extracted by using estimated AGB of GF-2 at 10 m and 30 m
spatial resolution. (a) Relative value of the AGB of 10 m; (b) Relative value of the AGB of 30 m. (Unit
was t/ha).

Table 6. The statistical information of relative true value of the AGB using various remote sens-
ing data.

Index AGBGF-2 AGBexa-10 AGBexa-30

Mean 101.30 101.29 101.24
Standard deviation 40.25 39.31 37.98

4.3. Verification of the Scale Error Correction

To correct the scale error of the upscaling-based AGB estimation, a scale conversion
method using the entropy-weighted index was developed based on the different land use
types in one pixel of the 10 m and 30 m spatial resolution remote sensing. The AGBcor-10
and AGBcor-30 after scale effect correction were calculated. Comparing the relative true
values of AGB at 10 m (AGBexa-10) and 30 m (AGBexa-30) calculated by GF-2 with the pre-
and post-scale effect correction results of AGB estimation by the random forest model of
Sentinel-2 and Landsat-8, the accuracy was calculated (Table 7).

Table 7. Accuracy of the scale error corrected AGB at various spatial resolutions.

Index AGBSentinel-2 AGBexa-10 AGBLandsat-8 AGBexa-30

MBE 11.4635 1.2378 6.0725 −6.0069
RMSE 16.3102 10.7745 9.0367 8.2139
MAPE 12.0822 7.4743 7.0241 6.3071

R2 0.6226 0.6725 0.5910 0.6704

Comparing the relative true values of AGB with the pre- and post-correction results of
AGB estimation, the MBE of the 10 m resolution corrected AGB decreased from 11.4635 to
1.2348 t/ha. The root mean squared error index of the corrected AGB of 10 m resolution
had a significant improvement; the RMSE of the 10 m resolution corrected AGB decreased
from 16.3102 to 10.7745 t/ha. MAPE decreased from 12.0822 to 7.4743 t/ha, and the R2 was
increased from 0.6226 to 0.6725. The scatter plots of the pre- and post-correction results
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are shown in Figure 7. After the scale error correction, the AGB showed a better linear
relationship with the relative true value. This indicated that the scale conversion method
using the entropy-weighted index had a good effect on scale error correction.

Figure 7. Scatter plot of the pre- and post-correction results and true AGB and the accuracy compari-
son of 10 m. (a) Scatter plot of the pre-correction results and true AGB at 10 m; (b) scatter plot of the
post-correction results and true AGB at 10 m; (c) accuracy comparison.

Similar results were obtained for Landsat-8 AGB estimation. Comparing the relative
true values of AGB with the pre- and post-correction results of Landsat-8 AGB estimation,
the MBE of the 30 m resolution corrected AGB decreased from 6.0725 to −6.0069 t/ha. The
RMSE decreased from 9.0367 to 8.2139 t/ha. MAPE decreased from 7.0241 to 6.3071 t/ha,
and the R2 was increased from 0.5910 to 0.6704. The scatter plots of the pre- and post-
correction results of Landsat-8 AGB estimation are shown in Figure 8. There was a sig-
nificant underestimation of the AGB from Landsat-8 data using the random forest model
(Figure 8a). However, the scale error-corrected results were evenly distributed along the
line of y = x, as seen in Figure 8b. This indicated that the underestimation was improved
well by using the scale error correction method. The results also showed that this method
can be used to correct the scale effect resulting from the heterogeneity of land use types
caused by the various spatial resolutions.

Figure 8. Scatter plot of the pre- and post-correction results and true AGB and the accuracy compari-
son of 30 m. (a) Scatter plot of the pre-correction results and true AGB at 30 m; (b) scatter plot of the
post-correction results and true AGB at 30 m; (c) accuracy comparison.

Then, this scale error correction method was applied to the overall range of the study
area, and the distribution of the AGB estimation based on remote sensing at the various
coarse resolutions was obtained (Figure 9).
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Figure 9. The scale error-corrected AGB distribution at 10 m and 30 m spatial resolution. (a) Corrected
AGB at 10 m; (b) corrected AGB at 30 m. (Unit was t/ha).

5. Discussion

Forest biomass is critically important for forest dynamics in the carbon cycle [79].
However, it remains uncertain because large-scale AGB mapping applications from remote
sensing data still carry large uncertainty [37,80]. In this study, a random forest model
was devised to estimate the AGB at three different spatial scales (4 m, 10 m, 30 m). The
determination coefficient between estimated and measured AGB for various remote sensing
data using an independent dataset was 0.5711, 0.4819 and 0.4321, respectively. The same
model and dataset were used, but the prediction accuracy of the AGB varied among
different remote sensing data. The results generally demonstrated a tendency in which
the accuracy of AGB estimation was decreased with the increase in the pixel size of the
remote sensing data. In other words, there was a significant scale effect, which is the main
problem associated with parameter estimation when using remote sensing. According to
the results, this scale effect resulted in significant uncertainty in forest AGB estimation in
this study [81].

Some scholars have focused on scale effect research and attempted to identify the
reasons for the scale error. Chen found that this scale effect was caused by the surface
heterogeneity. He noted that the nonlinearity of the retrieval algorithm and mixed pixels led
to the scale effect of the inversion of land surface parameters [82]. Leeuwen et al. pointed
out that spectral mixing would increase the error of the classification [83]. Therefore, we
developed a scale error correction method using information entropy of the land use type
and compared the corrected AGB results. The fitting R2 of the AGB estimation after scale
correction at a resolution of 10 m increased from 0.6226 to 0.6725, and the MBE, RMSE and
MAPE were significantly decreased compared with the AGB results without correction.
Compared with other similar research, the accuracy was increased [84,85]. The fitting R2 of
the AGB estimation at a resolution of 30 m before correction was 0.5910, and it increased
to 0.6704 after correction. In contrast, Zhou concluded that the R2 of AGB estimation only
using Landsat-8 was 0.61 [86]. It was easily found that the correction of the scale effect
can effectively improve the accuracy of AGB estimation, and our method presented good
performance for scale error correction. Thus, it can be considered as an approach to correct
the scale effect and improve the AGB estimation accuracy of coarse-resolution images.

To correct the scaling bias, scholars have developed many methods, such as statistical
regression, the Taylor series expansion method, the wavelet fractal method, the fractal
method and geostatistical theory [87]. The geostatistical method is commonly used for
the upscaling of AGB over the feature space [88]. In this study, four geostatistical scale
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conversion methods, namely bilinear interpolation, the nearest neighbor method, cubic
convolution and the Kriging interpolation method, were selected to upscale the AGB
estimation from 4 m to 10 m and 30 m spatial resolution. Figure 10 shows the scatter plot of
the relative true value and scale corrected using the geostatistical method for Sentinel-2
(Figure 10). The R2 was 0.5981, 0.4354, 0.4445 and 0.6024. In contrast, the AGB results
corrected by the Kriging interpolation method showed the best accuracy among these four
methods. However, it was still inferior to our method, with R2 of 0.6797. At the same time,
the AGB estimation using the geostatistical scale was biased from the relative true value.
The AGB value was overestimated when the AGB true value was small and vice versa.
Moreover, the AGB bias was reduced using the method of this study.

Figure 10. Scatter plot between measured and geostatistical scale-corrected AGB at 10 m resolution.

In the same way, the corrected AGB values using bilinear interpolation, the nearest
neighbor method, cubic convolution and the Kriging interpolation method were also
calculated and the accuracy was compared with Landsat-8 AGB estimation. The R2 values
of the four method were 0.5369, 0.4916, 0.5476 and 0.5747, respectively. Among these
results, the Kriging interpolation method showed a good capacity for upscaling, with
higher accuracy (Figure 11). However, the results corrected by the Kriging interpolation
method still showed lower accuracy compared with the method of this study, with R2 of
0.6704. The main reason was that a constant AGB value at different scales was selected,
and it could be considered as a ruler, which was used to measure the scale error. After
this, the scale conversion method with the entropy-weighted index was used to correct
the scale error of the coarse-resolution image. Since the information entropy weight index
considered the information entropy of the land use type, the heterogeneity of the surface
feature could be fully considered. At the same time, this entropy weight index varied pixel
by pixel and thus the correction index of the scale error for each pixel could be calculated,
realizing the AGB scale error correction with various spatial resolutions.
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Figure 11. Accuracy evaluation among geostatistical scale-corrected AGB results at 30 m resolution.

It should be noted that some uncertainty may have existed in the current research.
First, in the sample survey, there were many typical forest type survey sites selected, but the
samples were still unable to cover the total research regions, so the number of the samples
and the distribution of the survey sites many bring some uncertainty to the AGB estimation
described in this paper. Moreover, the measurement error in the field investigation was not
evaluated, and this will lead to the uncertainty of the stand aboveground biomass value
calculated based on investigated data. Vegetation growth stages and seasonal differences
should be considered for optical remote sensing data applications [89]. Shen et al. found
that the vegetation index (VI) introduced large uncertainty in each season, and this affected
the AGB estimation results [90,91]. In addition, the algorithm itself will have error trans-
mission and introduce the uncertainty of the estimated AGB. All these issues need to be
studied in further work.

6. Conclusions

In this study, a method of forest AGB modeling for three different types of remote
sensing data was performed and the accuracy of AGB estimation was compared. Then, the
error caused by the scale effect was analyzed and a method to correct this scale error was
developed. Some valuable conclusions were as follows:

(1) The random forest model had better AGB estimation accuracy for three different
spatial resolutions of remote sensing. This indicates that the nonlinear machine
learning method would be promising candidate for AGB estimation.

(2) With the assumption of the law of conservation of mass, a scale error correction
method using the information entropy of land use type was developed and success-
fully applied to the upscaling of AGB estimation for data of different resolution.
Compared with other geostatistical interpolation methods, this method can obtain
a high-accuracy AGB estimation and reduce the effect of the scale error on AGB
estimation. The results indicated that this method can reduce the scale effect caused
by the heterogeneity of the surface feature.
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This research can provide a reference for AGB estimation and AGB upscaling methods
at different spatial resolutions of remote sensing.
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Abstract: Vegetation phenology is an important indicator of vegetation dynamics. The boreal
forest ecosystem is the main part of terrestrial ecosystem in the Northern Hemisphere and plays
an important role in global carbon balance. In this study, the dynamic threshold method combined
with the ground-based phenology observation data was applied to extract the forest phenological
parameters from MODIS NDVI time-series. Then, the spatiotemporal variation of forest phenology
is discussed and the relationship between phenological change and climatic factors was concluded
in the northeast China from 2011 to 2020. The results indicated that the distribution of the optimal
extraction threshold has spatial heterogeneity, and the changing rate was 3% and 2% with 1◦ increase
in latitude for SOS (the start of the growing season) and EOS (the end of the growing season). This
research also notes that the SOS had an advanced trend at a rate of 0.29 d/a while the EOS was
delayed by 0.47 d/a. This variation of phenology varied from different forest types. We also found
that the preseason temperature played a major role in effecting the forest phenology. The temperature
in winter of the previous year had a significant effect on SOS in current year. Temperature in autumn
of the current year had a significant effect on EOS.

Keywords: phenology; climate change; dynamic threshold method; northeast China; TIMESAT

1. Introduction

Vegetation phenology is the subject which studies the cyclical events throughout the
whole life of plants and how these events respond to environmental changes [1]. Lots
of studies have clarified that global warming, with the consequence of greenhouse gases
increasing, has significantly shifted the vegetation phenology in terrestrial ecosystems
of the Northern Hemisphere [2,3], and the variation of vegetation phenology has greatly
impacted the terrestrial ecosystem functions and structures [4,5]. Previous researches have
concluded that the forest ecosystem is the main part of terrestrial ecosystem in the Northern
Hemisphere, such as in China [6], America [7], Canada [8], and Europe [9], and plays an
important role in the global carbon balance. Vegetation phenology may also feed back to
climate changes, for example, the prolonged length of growing season (LOS) could affect
the ability of forest carbon sequestration and mitigate the global temperature increase [10].
Therefore, studying the relationship of vegetation to climate is essential for enhancing the
vegetation productivity, carbon storage and carbon cycle of the terrestrial ecosystem.

Phenology research dates back to ancient agricultural times. People originally obtained
the timing of phenological events by observing and establishing phenology observation
networks, which has been occurring since the 18th century [11]. Previous studies indicate
that the spring phenological variation of most vegetation had an advanced trend proven by
ground-based observations during the past decades in Northern Hemisphere. Menzel et al.
concluded that the average advance of spring was 2.5 days per decade in 21 European
countries between 1921 and 2000 [12]. Keenan et al. found that the temperate forest over
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the eastern US had a strong trend of earlier springs over combined long-term ground
observations of phenology [13]. Rosbakh et al. analyzed the 67 common plant species
in Siberia and found that boreal forest springs advanced 2.2 days per decade, while leaf
senescence was delayed at a rate of 1.6 days per decade during 1976–2018 [14]. However,
ground-based observation only recorded the timing of phenological events for species,
so that it is difficult to clearly understand the seasonal changes of vegetation phenology
on a regional or global scale [1]. During the past few years, remote sensing technology
developed rapidly, which, as a new tool, overcomes the above limitations of ground-
based observation. Data obtained from satellite remote sensing could obtain the spatially
continuous information of surface, which had increasingly been used in the studying and
monitoring of vegetation phenology, such as vegetation index (VI), which is a combination
of two or more wavelength ranges of surface reflectance to enhance characters or details
of vegetation [15]. The more commonly used remote-sensing vegetation indices include
the normalized differential vegetation index (NDVI) [16], the enhanced vegetation index
(EVI) [17], and the leaf area index (LAI), which is a forest structure parameter and can also
be used to extract forest vegetation phenology [18].

Based on satellite data, the changes of vegetation dynamics can be studied using the
vegetation indices or biophysical variables time series [19]. The quality of long-term series
remote sensing data would make a big difference for the calculation of the surface vegeta-
tion phenology. Due to cloud contamination, atmospheric variability, and bi-directional
effects, the long-term series remote sensing data still have a lot of noise [20]. To extract
the spectral–temporal signatures accurately, many methods have been developed for re-
ducing noise to construct high-quality VI time-series, and these can be classified into three
categories: empirical methods, data transformations, and curve fitting methods [15]. The
empirical methods are easy to apply, but they are determined by empirical parameters,
such as the length of the sliding window. Data transformation methods use the mathe-
matical manipulation to decompose time-series curves into seasonal, cyclical, trend, and
irregular components [21], while the performance is poor in smoothing the irregular or
asymmetric data [15]. Curve fitting methods fit the VI time-series to a particular func-
tion by utilizing least squares, with the advantage of effectively reducing the noise and
no empirical constraints [15]. Logistic function, asymmetric Gaussian functions, and the
Savitzky–Golay (S-G) filter are commonly used methods. Lara et al. compared the three
smoothing methods included in TIMESAT software and concluded that the S-G filter had
better performances [22]. Once the time-series curves based on remote sensing data were
reconstructed, phenological parameters could be extracted.

The identify the method of the vegetation phenology from remote sensing time-series
included inflection points and relative thresholds [23,24]. The inflection point method uses
the inflection point of the VI time-series curve to identify the SOS (The start of the growing
season) or EOS (The end of the growing season). The inflection point phenology detection
algorithm usually uses a logistic function to fit the VI time-series and the results of the
inflection point method relied more on the shape of the VIs time-series and the accuracy of
the extracted phenology, which varied through the with and without filtering steps [25].
For the relative threshold method, the SOS or EOS was determined with a predefined
percentage of VI amplitude, such as 20%, 30%, or other values [26]. Therefore, determining
the relative thresholds was quite important to estimate vegetation phenological events.
Wang et al. took 50% of maximum NDVI value as the threshold to extract the SOS and EOS
and accessed the spatio-temporal trends of vegetation phenology, which showed dramatic
spatial heterogeneity with different rates during the 1982–2012 [27]. Ding et al. found that
the extraction of phenological events by using 20% of the annual NDVI amplitude was
highly consistent with ground-based observation data on the Tibetan Plateau from 1982
to 2012 [28]. Xu et al. first used the fixed threshold method to extract the phenology in
Tibet Plateau based on the remote sensing. The results showed that the SOS has an obvious
overestimation, with about 50% error of estimation (RMSE > 50). Combined with the EC
flux measurements, the SOS and EOS value of the threshold method were determined
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with the value of 0.17 and 0.2 in the grasslands of Inner Mongolia, while these were 0.14
and 0.29 in Tibet Plateau of China [29]. Yu studied the vegetation phenology changes of
northeast of China with a threshold method and threshold of 0.2 was used in this study [30].
However, a study of phenology in the same area with a threshold of 0.3 was used in Zhao’s
research [31]. Fu et al. studied the effect of autumn phenology in the Greater Khingan
Mountains of northeastern China, and a threshold of 0.3 was used [32]. This research area
was obviously smaller, but the same value was used to extract the SOS, EOS, and LOS
from the remote sensing data. Considering the spatial heterogeneity of the vegetation, the
extracted phenology of the vegetation across diverse ecosystems and at different scales
from satellite data might have significant differences using the fixed-threshold method. In
addition, the fixed-threshold method was sensitive to non-vegetation-related variations
in the VI time series, and it led to a considerable error in the phenology metrics by using
remote sensing data [15]. Furthermore, it might increase the uncertain error in phenology
research. Therefore, it is essential to develop a new method of threshold determination to
increase the accuracy of the extracted phenological parameters.

Plant growth has been associated with temperature and precipitation to implicate
climate trends in phenology shifts [33]. In turn, climate change has significantly affected
vegetation phenology, which further changes the carbon, water, and energy exchange be-
tween the terrestrial ecosystem and atmosphere. Wolf et al. found that a warmer spring and
earlier vegetation activity has a positive effect on the carbon cycle [34]. Xu et al. concluded
that warming induced earlier greening in the Northern Hemisphere during 1982–2011 [35].
The temperature changes the activity of enzymes, and the increase in temperature can
promote the activity of enzymes to accelerate vegetation phenology. Jeong et al. concluded
that the warming temperature enhances vegetation photosynthesis and prolongs the LOS
by advancing the SOS and delaying the EOS [36]. Liu et al. found that the warming climate
prolonged the LOS of plants in the Northern Hemisphere by using the GIMMS NDVI3g [37].
Zhao et al. pointed out that over the past decades, the EOS has been delayed by 0.13 days
each year in northeastern China [31]. Wang et al. discovered an advanced SOS and a
delayed EOS by utilizing remote-sensing data and climate data in the northeastern China
from 2011 to 2019 [38]. In addition, precipitation is also a factor which effects the phenology.
Piao et al. found that precipitation played a significant role in effecting the summer NDVI
in Eurasia [39]. Cong et al. found that increasing precipitation could result in the advanced
SOS of broad-leaf forests in northern China by using the GIMMS NDVI3g [40]. It is not dif-
ficult to conclude from the existing research that the vegetation growth environment varies
across the regions, and the response of phenology to meteorological factors is different [41].
Although the relationship between temperature and precipitation and vegetation phenol-
ogy has been discussed, these are complex responses that vary according to the spatial
heterogeneity of the vegetation. Therefore, it is necessary to demonstrate the relationship
between the phenology and the factors of preseason, interannual, and multi-climatic factors
and to conduct a comprehensive study on interactions that exist between the SOS and EOS.

In this study, we developed a dynamic thresholds method combining MODIS NDVI
time-series and ground-based observation data to extract the vegetation phenological
parameters in Northeast China from 2011–2020. We analyzed the changing characteristics
of phenology of different forest types in northeast China during the last decade. We aimed
to (1) develop a suitable dynamic threshold method to extract the SOS and EOS, combining
MODIS NDVI time-series and ground-based phenology observation data; (2) summarize
the spatial and temporal changing characteristics of the phenology of different forest types
in northeast China; (3) study the relationship and interaction between the phenology of
different forest types and climate factors on a regional scale.

We hope that this study can provide a reference to further clarify the relationship
between the phenology of the different forest vegetation types and climate factors and the
interaction against the backdrop of global warming.
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2. Materials and Methods

2.1. Study Area

The research area of this study is the Northeast China (NEC), which includes the
Heilongjiang, Jilin, and Liaoning provinces, is located from 118◦50′ E to 135◦09′ E and
38◦42′ N to 53◦35′ N (Figure 1) [42]. NEC has the considerable climatic and topographical
gradients, and the main topography of NEC is mountains and plains, with mountains in
the east, west and north, and plains in the middle and south [43]. Due to geographical
location NEC belongs to a temperate continental monsoon climate [44], which is divided
into a warm temperate zone, temperate zone, and cold temperate zone from south to north
and has obvious differences in humidity from east to west [45]. As a result, NEC has a
unique vegetation distribution and is one of the regions most sensitive to global change [46].
NEC has one of the largest natural forests in China, which are mainly scattered throughout
the Changbai Mountains, Lesser Khingan Mountains, and Greater Khingan Mountains.
The main vegetation types of NEC forests are cold-temperate deciduous coniferous forests,
deciduous broad-leaved forests, and mixed coniferous broad-leaved forests. Therefore,
as a main part of the boreal forest ecosystem, NEC is an ideal region for researching the
forest–climate relationships of northeastern Asia.

Figure 1. Forest types in northeast China and the locations of the eight phenological observation stations.

2.2. Materials
2.2.1. MODIS NDVI Dataset

The NDVI was obtained from a moderate-resolution imaging spectroradiometer
(MODIS) provided by the National Aeronautics and Space Administration (NASA). Avail-
able online: https://search.earthdata.nasa.gov (accessed on 23 April 2022). MOD13Q1
(MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid) was used in this
study. The time span of the data is from 1 January 2011 to 31 December 2020. A total of
1150 images were downloaded. The spatial resolution of the NDVI data products is 250 m,
and the temporal resolution is 16 days [20]. The NDVI calculation is a combined operation
between the red spectral band (Red) and near-infrared spectral band (NIR) as follows [47]:

NDVI =
NIR − Red
NIR + Red

(1)
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where NIR is the reflectivity values in the near infrared band and Red is the reflectivity of
the red band. The value range of NDVI is from −1 to 1.

ArcGIS software and MRT (Modis Reprojection Tool) were used to process the down-
loaded images. Image preprocessing included reprojection, cutting, splicing, and so on.

The software TIMESAT, which contains a S-G filter, asymmetrical Gaussian (AG)
function fitting, and double logistic function fitting, was employed to reduce the noise and
smooth the NDVI time-series [48]. In this study, the S-G filter, which is a weighted moving
average filter proposed by Savitzky and Golay [49], was chosen for smoothing the NDVI
time-series because of its better performance.

The weight of the S-G filter depends on the polynomial least squares fit in the filter
window [50]. The general equation of the S-G filter for NDVI time-series smoothing can be
given as follows [51]:

Y∗
j =

∑i=m
i=−m CiYj+i

2m + 1
(2)

where Yj+i represents the original value of the i-th NDVI at time j, Y∗
j represents the

resultant NDVI value, Ci represents the coefficient for the i-th NDVI value of the filter, and
m represents the half-width of the smoothing window.

2.2.2. Meteorological Data

The meteorological data used in this study are the Global Summary of the Day data
provided by the National Oceanic and Atmospheric Administration (NOAA). Available
online: https://www.ncei.noaa.gov/data/global-summary-of-the-day (accessed on 23
April 2022). First, we downloaded the daily average temperature and daily cumulative
precipitation data from stations throughout the NEC and surrounding areas from 2011 to
2020. In order to maintain the continuity and effectiveness of the data, we downloaded the
data from the stations of research area and around research area and deleted the stations
with more than 5% of missing data and obtained 116 stations through quality control; the
statistical information can be found in Table 1. Subsequently, we converted the daily data
to annual data and seasonal data, that is, spring (March–May), summer (June–August),
autumn (September–November), and winter (December–February (of the next year)).
Finally, we obtained the interpolation grid, which had a consistent spatial resolution
with the spatial resolution of NDVI, by applying the simple kriging interpolation method.

Table 1. The statistical information of meteorological stations in the research area from 2011 to 2020.

Max Min Mean

annual average temperature (◦C) 12.9 −4.11 5.19

annual cumulative precipitation (mm) 1499.4 192.5 586.8

2.2.3. Land Cover Dataset

It is very crucial to distinguish between vegetation and non-vegetation by using land
cover data, specifically in the extraction of vegetation phenology. In this study, the land
cover data FROM-GLC (Finer Resolution Observation and Monitoring of Global Land
Cover, FROM-GLC), developed by group Pro. Peng Gong at Tsinghua University, was used.
FROM-GLC data is a global land cover map at 30 m resolution obtained by using Landsat
TM and ETM+ data with high accuracy. Available online: http://data.ess.tsinghua.edu.cn
(accessed on 23 April 2022). In this study, all forest types were reclassified into coniferous
forest (CF), broadleaf forest (BF), and mixed forest (MF).

2.2.4. Phenology Observation Data

In this study, we downloaded the phenology observation data from the Chinese
Phenological Observation Network (CPON). Available online: http://www.geodata.cn
(accessed on 23 April 2022). The phenology observation data were used to determine the
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threshold of the NDVI time-series and evaluate the accuracy of phenological parameters
extracted by using the NDVI time-series. Eight stations in NEC were selected; these
were Nenjiang, Dedu, Jiamusi, Harbin, Mudanjiang, Changchun, Shenyang, and Gaizhou
stations. Combined with the geographical location of the phenological observation sites,
the statistical information of the measured data after sorting can be found in Table 2.

Table 2. The mean forest phenological parameters of each station over the years.

Station Name Latitude Longitude Mean SOS/DOY Mean EOS/DOY

Gaizhou 40.4 122.5 105.5 308.9

Shenyang 41.8 123.6 115.8 305

Changchun 43.8 125.4 120.7 301.6

Mudanjiang 44.4 129.5 123.2 297

Harbin 45.7 126.7 127.3 291.3

Jiamusi 46.8 130.4 125.8 292.3

Dedu 48.5 126.8 138 282.3

Nengjiang 49.3 125.8 130.3 282.1

Descriptions of the datasets applied in our study are shown in Table 3.

Table 3. Detailed descriptions of research data.

Type Variables Dataset Resolution Source

Vegetation Index NDVI MODIS NDVI 250 m NASA

Meteorological Data Temperature,
Precipitation - - NOAA

Land Cover Type
Coniferous forest (CF),

Broadleaf forest (BF), Mixed
forest (MF).

FROM-GLC 30 m Pro. Peng Gong at
Tsinghua University

Phenology Observation Data

Nenjiang, Dedu,
Jiamusi, Harbin,

Mudanjiang, Changchun,
Shenyang, Gaizhou

- - Chinese Phenological
Observation Network

2.3. Method
2.3.1. Method of the Vegetation Phenology Extraction

In this study, the dynamic threshold method, also called the proportional threshold
method, was used to extract SOS and EOS from NDVI time-series processed by a S-G filter.
The point in time when NDVI increases to a certain percentage of the NDVI amplitude of
the year is defined as the SOS, and the time when NDVI decreases to a certain percentage
of the NDVI amplitude of the year is defined as the EOS (Figure 2). The threshold used in
this method is not a specific vegetation index value but a dynamic ratio form, compared
with the absolute threshold and difference threshold; the dynamic threshold method has
better applicability in both the time and space domain [48]. The principle of this method is
as follows:
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Figure 2. The principle of dynamic threshold method for extracting phenology based on vegetation
index time-series curve.

The calculation formula of vegetation phenology extracted by the dynamic threshold
method as follows [52]:

PS =
NDVISOS

NDVImax − NDVImin(le f t)
(3)

PE =
NDVIEOS

NDVImax − NDVImin(right)
(4)

where PS and PE represent the extraction threshold corresponding to the SOS and EOS,
respectively. NDVISOS and NDVIEOS are the corresponding NDVI values when SOS and
EOS occurred. NDVImax represents the maximum NDVI during the whole time-series,
NDVImin(left) is the minimum NDVI of the first half of the time-series, and NDVImin(right) is
the minimum NDVI of the second half of the time-series.

Firstly, we selected representative tree species in each phenological observation site
and calculated the mean DOY of leaf onset and leaf senescence as SOS and EOS, respectively.

Secondly, we extracted the corresponding remote-sensing pixels of the eight phe-
nology observation stations selected and calculated the mean NDVI of each pixel as the
phenological parameters to extract the original data. Then, we brought the NDVI corre-
sponding to the occurrence day of the observation-based phenological parameters into
Formulas (3) and (4), and thus the optimal extraction threshold of each station was able to
be calculated.

Thirdly, we assumed that the functional relationship between the optimal extraction
threshold P of the vegetation phenology at different latitudes and latitude L as follows:

P = AL + B (5)

where P = {P1, P2, · · · , Pn}, which represents the optimal extraction threshold set cor-
responding to the eight phenology observation stations; L = {L1, L2, · · · , Ln}, which
represents the latitude set of the eight phenology observation stations. The values of
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coefficients A and B were obtained by fitting with the least square method, and the func-
tional relationship between the optimum extraction threshold and latitude of vegetation
phenology was established.

Finally, the optimal extraction threshold for each pixel can be calculated based on the
central latitude value of each pixel by using the relationship established in Formula (5),
and the phenological parameter can be extracted using this threshold.

2.3.2. Analysis Method

Statistical analysis is one of the most commonly used data analysis methods and is
widely used in empirical modeling and the accuracy assessment of remote sensing re-
search [53]. This parametric statistical technique requires that the data follows a continuous
and normal distribution [54]. Therefore, the normal distribution test should be performed
first. The data used in the study all followed the normal distribution. After that, a linear
relationship between the forest phenology of different forest types and the latitude, year,
and climatic factors were fitted by using the least squares method, and the changing rate of
forest phenology affected by latitude, year, and climatic factors was analyzed by comparing
the slope of the fitted linear function (Figure 3).

Figure 3. Schematic diagram of this method.

When x increases Δx, y increases with the increase in x, but the changes in the Δy are
varied, according to the fitting function. This difference was determined by the slope of the
linear function. So, when x increases Δx, the Δy2 is larger than Δy1 in Figure 3. Therefore,
the slope of the linear function can satisfy the necessity of comparing the changing rate of
forest phenology affected by latitude, year, and climatic factors.

Then, the correlation coefficient was selected to explore the relationship between forest
phenology and climatic factors. The correlation coefficient was calculated as follows [55]:

R =
∑n

i=1(Xi − X)(Yi − Y)√
∑n

i=1 (Xi − X)
2
√

∑n
i=1 (Yi − Y)2

(6)

where R represents correlation coefficient between X and Y, n represents the number of
samples, X and Y represent the values in the i-th year, and X and Y represent the average
of values of all years, respectively. The values of |R| range from 0 to 1, which is larger,
meaning that the correlation relationship is stronger between two variables. In addition,
we used the p-value to test the significance of the correlation coefficient.

To analyze the association between the forest phenology and climatic factors and the
partial correlations of the forest phenology and monthly temperature, precipitation was
calculated as follows [56]:

rab[c] =
rab − rac × rbc√

(1 + r2ac)
√
(1 + r2

bc)
(7)

where rab[c] represents the partial correlation coefficient between phenological parameter a
and climatic variable b when climatic variable c was controlled; and rab, rac, and rbc represent
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the liner correlation coefficient between each other, respectively. n represents the number
of samples and m represents the number of independent variables.

2.3.3. Validation

In this study, the determination coefficient (R2), root mean squared error (RMSE), and
mean absolute percentage error (MAPE) were selected to evaluate model accuracy. The
equations are shown as follows [55]:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(9)

MAPE =
1
n ∑n

i=1
|yi − ŷi|

yi
× 100% (10)

where yi is the measured values and ŷi is the predicted values for the sample i, y is the
average of all the samples, and n is the number of samples.

3. Results

3.1. Determination of the Dynamic Threshold for Vegetation Phenology

In this study, the relationship between the optimal extracted threshold and the latitude
of forest phenology remote-sensing based in northeast China was determined by using
the S-G filter and dynamic threshold method, which was combined with NDVI time-series
data and ground phenology observation data. Due to the lack of phenological observation
data from stations, only eight points in 2014 was simultaneous and available during the
research period. The scattering plot between the extracted threshold and latitude can be
found in Figure 4. This figure showed that there was a significant relationship between the
extracted threshold and latitude. Figure 4a showed the relationship between the optimal
extracted threshold of SOS (PS) and latitude. A least square method was used to fit the
function. The fitted function was defined as followed.

PS = 0.0286L − 0.963 (11)

where PS is the threshold to determine the SOS from NDVI time-series data. L is the latitude.
The R2, RMSE, and MAPE of the fitted model are 0.9589, 0.0245, and 6.617%, respectively.
The models and the coefficients all passed the significance test at a 95% level of significance.

Figure 4. The variation of the extraction threshold corresponding to the observed phenology at each
station with latitude (a) is the SOS and (b) is the EOS.

The linear relationship between the optimal extracted threshold of EOS (PE) and
latitude was also significant, and the fitting function is showed in Equation (12).

PE = 0.0212L − 0.6302 (12)
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where PE is the threshold to determinate the EOS from NDVI time-series data. L is the
latitude. The R2, RMSE, and MAPE of the fitted model are 0.9421, 0.0185, and 4.511%,
respectively. The model and the coefficient passed the significance test at a 95% level
of significance.

Then we evaluated the accuracy of the phenology extracted by using the fixed thresh-
olds of 20% [28], 30% [31], and 50% [27] used by other scholars and dynamic threshold
method developed in this study. The RMSE and MAPE between the estimated and mea-
sured SOS were calculated, and the results are shown in Table 4. The phenology extracted
by using the dynamic threshold method has a better accuracy than the fixed threshold
method with a RMSE and MAPE of 11.875 d and 7.623% for SOS and 9.012 d and 2.44% for
EOS, respectively. However, the fixed threshold method, with the values of 20%, 30%, and
50%, had lower accuracy. The fixed threshold with the value of 20% has the larger error
than other methods. The RMSE is 30.182 d for SOS and 34.846 d for EOS, and this brings
the estimated error to about one month. Followed by the fixed threshold with the value of
30% with the RMSE and MAPE of 26.716 d and 16.118% for SOS and 26.528 d and 8.373%
for EOS, respectively. Compared with other three methods, the fixed threshold with the
value of 50% has a middling level of error, but the error is about 19 d for SOS, and for EOS
and MAPE it is 14.723% and 6.118%, respectively.

Table 4. The accuracy comparation of the extracted phenology.

SOS EOS

RMSE (d) MAPE (%) RMSE (d) MAPE (%)

Dynamic threshold 11.875 7.623 9.012 2.440
Fixed threshold = 20% 30.182 22.269 34.846 11.577
Fixed threshold = 50% 19.607 14.723 19.015 6.118

The scattering plots between measured and extracted phenology using fixed and
dynamic threshold methods are shown in Figure 5. For SOS, the extracted SOS using
fixed threshold has an obvious bias from the measured SOS. SOS was underestimated for
the fixed threshold of 20%. By contrast, SOS was overestimated for the fixed threshold
of 30% and 50%. Extracted EOS using a fixed threshold had an obvious overestimating
phenomenon. It indicates that the fixed threshold method increases the estimating error
and increases the uncertain error in extracted phenology analysis.

Figure 5. The scattering plot between estimated and measured value. (a) is the SOS and (b) is the
EOS (black line is y = x).

3.2. Characteristics of Forest Phenology in the Northeast China
3.2.1. Spatial Distribution of the Forest Phenology

The characteristics of forest phenological variation in the northeast China from 2011 to
2020 were analyzed. The spatial pattern of the mean forest SOS in NEC from 2011 to 2020 is
shown in Figure 6. The variation of the forest SOS showed significant spatial heterogeneity
in the study area. The spatial distribution of the mean SOS exhibited a correlation with
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the latitude as the southern part was earlier than the northern part. The mean SOS in the
NEC primarily occurred between 95th and 135th day, which accounted for 83.46% of the
study area, and the average of the SOS in the whole research area was 116 days. The forest
located 45 degrees south of the northern latitude had an earlier SOS, between the 95th and
105th day, whereas the area with an average SOS later than 135 days was mostly located
in the northernmost Greater Khingan Mountains, which principally distributed in the CF
and had a lower temperature. Factors leading to this spatial distribution of SOS were not
only related to temperature but also to the type of tree species, because the south of NEC
was dominated by broadleaf and mixed forest, while the north of NEC was dominated by
coniferous and mixed forests (see Figure 1).

Figure 6. The spatial distribution of the average SOS (start of the growing season) from 2011 to 2020
in the northeastern China.

The mean EOS were mainly in ranges of 300 days to 330 days, which is late October and
late November, and the average EOS was 315th days in the northeastern China (Figure 7).
The characteristics of the forest EOS in the northeastern China from 2011 to 2020 also had
obvious heterogeneity. From the northwest to the southeast of the study area, the average
of the EOS was gradually delayed, which showed significantly variation according to the
latitude. The forest in the southeastern Changbai Mountains, near the coast, had relatively
late EOS dates, while the EOS in the northernmost Greater Khingan Mountains were earlier.

The average LOS gradually lengthened from north to south (Figure 8). The average
of the LOS was mainly in ranges of 150 days to 230 days with the counting of pixels for
85.28%. The average LOS in the study area was 199 days. The LOS was longer in coastal
areas at low latitudes in the east of Liaoning Province. The regions with the LOS greater
than 230 days were mainly distributed in the south of 43◦ N and east of 122◦ E, accounting
for 9.84% of the research area. The shortest LOS was less than 150 days in the middle of the
Greater Khingan Mountains in the Heilongjiang Province.

Long-term variations of phenology could reflect the state of vegetation grown. In
order to explore the relationship between forest phenological changes and latitudes in
NEC from 2011 to 2020, we divided the study area into 15 parts by 1 degree latitude and
calculated the average forest phenological parameters for each part. The results can be
found in Figure 9. The results indicated that the SOS of the forest was sightly delayed with
the increase of latitude, and the SOS was delayed by 2.33 days per latitude with the increase
in latitude. The event of forest EOS would shift to an earlier time with the increase of
latitude, and EOS increased by 2.22 days per latitude with the increase of latitude. The LOS
of forest decreased with increasing latitude, and LOS decreased by 4.55 days per latitude
with increase in latitude.
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Figure 7. The spatial distribution of the average EOS (end of the growing season) from 2011 to 2020
in the northeast China.

Figure 8. The spatial distribution of the average LOS (length of growing season) from 2011 to 2020 in
the northeast China.
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Figure 9. The trends of phenological parameters in northeast China from 2011 to 2020.

3.2.2. The Interannual Variability and Trends of Forest Phenology

Forest phenology fluctuated significantly in NEC from 2011 to 2020 and the interannual
variation trend was obvious (Figure 10). The SOS of forest phenology showed a weak
advancing trend of approximately 0.29 d/a. The EOS showed a weak delayed trend with a
rate of 0.47 d/a. Figure 10 also showed that the variation range of LOS was larger, followed
by the EOS and SOS. Overall, the LOS displayed sizeable increases of approximately
0.76 d/a. These trends may be related to global warming because the rising temperature
advanced the spring and the cooling temperature trend delayed in the autumn.

Figure 10. Interannual changes of forest phenology in northeast China from 2011 to 2020.

3.3. The Variation and Trends of Phenology in Different Forest Types
3.3.1. The Spatial Distribution of Phenology in Different Forest Types

In order to investigate whether the phenological characteristics of the different for-
est types changed with latitudes, we calculated the average phenological parameters of
three forest types at different latitudes and analyzed and compared the results. The results
showed that all three parameters of different forest types showed fluctuations with different
ranges. As per the findings, the following can be discerned (Figure 11): as the latitude
increased, the SOS tended to delay. It can clearly be seen that the sensitivity of BF and MF
to latitude changes were significantly higher than CF. The SOS of the MF was delayed by
approximately 2.51 days per latitude, while the SOS of CF delayed 1.70 days per latitude.
The SOS of BF was showed a largest delaying trend with a rate of 2.68 days per latitude.
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Figure 11. The variation trend of SOS in different forest types in northeast China.

The EOS of different forest types showed a significant delayed trend with the increase
in the latitude (Figure 12). The EOS of BF was the greatest significant with a rate of 2.65 days
per latitude. Followed by MF, the changing rate of the EOS of MF was 2.47 days per latitude.
The CF had the smallest changing rate of 2.0 days per latitude, compared with other two
forest types.

Figure 12. The variation trend of EOS in different forest types in northeast China.

The variation range of LOS was affected by the EOS and SOS. The LOS of different
forest types showed a significant decreasing trend with the increase of latitude (Figure 13).
The LOS of BF had the greatest changing rate of 5.33 days per latitude. The LOS of MF was
4.98 days per latitude, and the CF had the smallest changing rate of 3.69 days per latitude,
compared with other two forest types.
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Figure 13. The variation trend of LOS in different forest types in Northeast China.

3.3.2. The Interannual Variation and Trends of Forest Phenology in Different Forest Type

The annual variation of phenology in different types of forest from 2011 to 2020 can be
found in Figure 14. The SOS of all three forest types demonstrated an advancing trend year
by year in the study area. The MF had the most obvious trend of advance with the rate
0.45 days per year and changing rate of BF was 0.28 days per year. While the CF changed
weakly with 0.20 days per year.

Figure 14. The interannual changes of SOS in different forest types from 2011 to 2020.

All forest types had delayed EOS, whereas MF exhibited the most considerable EOS
of all with the rate of 0.58 days per year (Figure 15). The interannual changing rate of EOS
of the CF was 0.46 days per year. The EOS changing rate of MS was weaker than other
two forest types with a rate of 0.32 days per year.

The variation of LOS displayed an extended trend due to the combined effect of SOS
and EOS, and the annual change rate of all was greater than 0.6 days per year, with the
most specific change range was BF, followed by MF and CF (Figure 16). The interannual
changing rate was 0.86, 0.77 and 0.66 days per year.
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Figure 15. The annual changes of EOS in different forest types from 2011 to 2020.

Figure 16. Interannual changes of LOS in different forest types from 2011 to 2020.

3.4. Effects of Climate Factors on Forest Phenology in the Northeast China
3.4.1. Effects of Precipitation on the Forest Phenology

Affected by geographical and climatic factors, there are significant differences in the
precipitation and temperature in different regions of the NEC from 2011 to 2020. The maxi-
mum difference in the annual cumulative precipitation is 500 mm. As shown in Figure 17,
the SOS had a significant correlation with the annual cumulative precipitation (P < 0.01).
With the increase of precipitation, the phenology of forests showed a trend of advanced
SOS and delayed EOS, which extended the LOS. The response of the three phenological
parameters to the annual cumulative precipitation from large to small was LOS, EOS, and
SOS. The SOS advanced 2.9 days per 100 mm, while the EOS and LOS delayed 4.3 days per
100 mm and 7.1 days per 100 mm, respectively.
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Figure 17. Response of Forest Phenology to Annual Cumulative Precipitation in northeast China
from 2011 to 2020.

In this study, we analyzed the response of different forest phenological parameters to
annual cumulative precipitation (Figure 18). The SOS in the BF area was obviously corre-
lated with annual cumulative precipitation at a rate of advanced 3.7 d/100 mm (P < 0.05).
With the increase in annual cumulative precipitation, the EOS of all forest types tended
to delay, and the greatest change in MF area was approximately 4.6 d/100 mm, while the
CF delayed at a rate of 3.4 d/100 mm (P < 0.01). The annual cumulative precipitation had
significant effects on LOS of all forest types (P < 0.01). With the increase in precipitation, the
LOS of each forest type was extended. The sensitivity of the LOS of different forest types to
annual cumulative precipitation is, from high to low, BF, MF, and CF. Specifically, the LOS
of BF, MF, and CF at rates of 8.5 d/100 mm, 7.5 d/100 mm, and 4.8 d/100 mm, respectively.

Figure 18. Cont.
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Figure 18. Responses of phenology to precipitation of different forest types in northeast China from
2011 to 2020. (A) SOS of different forest types; (B) EOS of different forest types; (C) LOS of different
forest types.

3.4.2. Effects of Temperature on Forest Phenology

Climate change has been more evident in NEC over the past few decades [57].
Figure 19 shows the response of forest phenology to temperature in northeast China from
2011 to 2020. Compared with the annual accumulated precipitation, the impact of annual
average temperature on forest phenology was more significant (P < 0.01). With the increase
in temperature, the northeast forest showed a trend of early advanced SOS, delayed EOS,
and prolonged LOS. The responses of the three phenological parameters to the annual
average temperature from large to small were LOS, SOS, and EOS. With the average annual
temperature increasing by 1 ◦C, the SOS was 2.76 days early, the EOS was delayed by
2.6 days, and the LOS was extended by 5.36 days.

Figure 19. Responses of forest phenology to the annual mean temperature in different forest types in
northeast China from 2011 to 2020.

The response of the phenological parameters to the annual average temperature
changes in different forest areas are shown in Figure 20. Overall, the annual average
temperature had significant effects on the three phenological parameters in all forest types
(P < 0.01). The models and the coefficients shown in the figure passed the significance test
at the 95% level of significance by using SPSS. The response of BF to the annual average
temperature was the most evident, followed by MF, both of which were significantly
higher than those of CF. With the increase in annual average temperature, the phenology of
different forest types was characterized by early SOS, delayed EOS, and prolonged LOS.
In terms of the SOS, when the temperature increases by 1 ◦C, BF advanced 4.03 days, MF

306



Remote Sens. 2022, 14, 2909

advanced 3.59 days, CF advanced 1.69 days. The LOS, affected by the variation of SOS and
EOS, had the most obvious response to the annual average temperature. When the average
annual temperature increased by 1 ◦C, the EOS of BF was delayed by 3.51 days, the EOS of
MF was delayed by 3.50 days, and the EOS of CF was delayed by 1.76 days. The lengthening
of the growing season of BF is most obvious with a rate of 7.53 days when the temperature
increased 1 ◦C. The LOS of MF extended 7.09 days with the temperature increasing by 1 ◦C,
while the LOS of CF area was prolonged at a rate of 3.45 d per 1 ◦C increase.

Figure 20. Responses of phenology to temperature in different forest types in northeast China from
2011 to 2020. (A) SOS of different forest types; (B) EOS of different forest types; (C) LOS of different
forest types.

The response of the SOS and EOS to the pre-season temperature changes are shown in
Figure 21. An average temperature of the past December to the current May was linearly
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related to the current SOS with a rate of −2.23 d/1 ◦C (P < 0.01). This means that when the
pre-season temperature increases by 1 ◦C, the SOS was 2.23 days earlier. Similar results can
be found for EOS. The EOS was obviously correlated with the average temperature of the
current June to November at a rate of advance of 3.083 d/1 ◦C (P < 0.01). With the increase
in the average temperature of the current June to November, the EOS of the forest tended to
delay, and the EOS was delayed by 3.083 days. This result was similar to the results of the
annual temperature with the SOS beginning 2.76 days earlier and EOS delayed by 2.6 days
when the average annual temperature increased by 1 ◦C.

Figure 21. Responses of phenology to pre-season temperature in northeast China from 2011 to 2020.
(A) is SOS; (B) is EOS.

3.5. Time-Lag Effect of Climatic Change on the Forest Phenology

Over the past decades, far more studies have found that the response of vegetation
phenology to climatic factors have time-lag effects [58], that the phenology of vegetation
could occur and change only after a period of cumulative transformation under specific
climatic conditions. In addition, many scholars have demonstrated that the variation of
vegetation was correlative with the preseason climatic changes. In order to study the
response mechanism of forest vegetation phenology to climate change, we analyzed the
correlation between the forest phenological parameters, monthly mean temperature, and
the monthly accumulative precipitation of preseason. Compared with the simple linear
correlation coefficient, the partial correlation coefficient can better reflect the relationship
between the two variables. In this study, we investigated the correlations between the
SOS and temperature and the precipitation from November of the previous year to May
of the current year. The correlations between the EOS and temperature and precipitation
from May to November of the current year. In order to avoid the impact of climate change
in non-forest areas, monthly temperature and precipitation were extracted from areas
consistent with forest distribution.

3.5.1. Time-Lag Effect of Climatic Change on Forest Phenology

The partial correlation coefficients between the SOS of forest and temperature were
calculated and the results are shown in Figure 22A. The SOS of the forest had a significant
negative correlation with pre-season temperature measured from the December of the
previous year (P < 0.01); the temperature in December of the previous year and January
of the current year had the greatest correlation with SOS. It could be concluded that the
temperature in the winter of the previous year largely affected the SOS, which was more
significant than the spring temperature. In addition, the SOS had a significantly negative
correlation with precipitation in the November of the previous year and April and May
of the current year. The SOS had a strongly negative correlation with precipitation in the
November of the previous year (r = −0.36, P < 0.01) and April of the same year (r = −0.29,
P < 0.01). However, this relationship was not significant for other months. It was notable
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that the SOS had a weakly positive correlation with precipitation in January of the current
year, indicating that increased precipitation at the beginning of year may delay the SOS.

Figure 22. Partial correlation coefficient between forest phenological parameters and temperature
and precipitation. (A) is SOS; (B) is EOS. Note: * p < 0.05, ** p < 0.01.

The calculated results of the partial correlation between the EOS and temperature and
precipitation can be found in Figure 22B. The EOS had a significant positive correlation with
temperature in seven months of the current year, which meant that the higher temperature
would delay the EOS. The temperature from August to October of the current year had
stronger correlation with EOS than the summer. Aside from September of the current year,
other monthly precipitation had positive correlation with EOS, but only the relationship
between EOS and precipitation in May, June, and August passed significance test, which
indicated that more precipitation in summer would lengthen the time of the growing season
of forest and lead to the delay of the event of EOS.

3.5.2. Time-Lag Effect of Climatic Change on the Phenology of Different Forest Types

We further discussed the relationship between the phenology of different forest types
and climatic factors. Figure 23 demonstrated the relationship between the SOS of different
forest types and temperature and precipitation. For the three forest types, there was a
significant negative correlation with the pre-seasonal temperature, while the correlation
coefficients between the SOS of all forest types and monthly precipitation did not pass the
significance test. These results imply that the temperature increase in winter and spring,
could contribute to the advanced SOS of all three forest types. BF is more sensitive to
the variation of temperature than others. Compared with the temperature, precipitation
also had a negative relationship with the SOS of three tree types, but this trend was not
significant and did not pass the significance test. However, a very interesting fact is that
the precipitation of January and March of the current year had a passive effect on the SOS.
It meant that more rain in these two months would delay the beginning of the growing
season of forest. A possible reason for this is that such early precipitation can slow down
warm weather and thus lead to a delay in plant growth.

Figure 23. Partial correlation coefficient between the SOS of different forest types and temperature and
precipitation. (A) Broadleaf Forest, (B) Coniferous Forest, (C) Mixed Forest. Note: * p < 0.05, ** p < 0.01.
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Figure 24 shows the response of the EOS in different forest types to the monthly
temperature and precipitation. We found that the EOS of all three types had a significant
positive correlation with temperature from May to November of the current year. In
particular, the higher temperature in autumn could result in the prolonged EOS of all. In
terms of precipitation, the EOS of BF had a positive correlation with precipitation in May,
June, and August (P < 0.01), while the EOS of CF had positive correlation with precipitation
only in May. The results may indicate that increased precipitation in spring and summer
could delay the EOS of BF. Similarly, it can also be found that the precipitation in September
of current year had a negative effect on the EOS. This meant that more rain in this month
would speed up the end of the growing season of the forest. This may be related to the
impact of precipitation on temperature.

Figure 24. Partial correlation coefficient between EOS of different forest types and temperature and
precipitation. (A) Broadleaf Forest, (B) Coniferous Forest, (C) Mixed Forest. Note: * p < 0.05, ** p < 0.01.

4. Discussion

4.1. Variation of Forest Phenology in the NEC

Vegetation phenology is an important indicator of monitoring the vegetation dynamics
and changes in the climate and natural environment. More and more research on phenology
by using remote sensing are emerging. The normalized difference vegetation index (NDVI)
derived from remote-sensing has been widely used to detect the SOS and EOS by using
NDVI time-series data. In this study, we used the MODIS NDVI products to extract the
SOS and EOS of northeast China. Compared with other results, the SOS and EOS extracted
results are consistent with other research. Zhao et al. extracted the SOS and EOS by using
GIMMS NDVI3g dataset and concluded that the SOS ranged from 110 days to 150 days
and EOS ranged from 270 days to 320 days [31]. Yu et al. concluded that the SOS in
northeast China from 1982 to 2015 ranged from the 100th DOY to the 140th DOY of the
year, the EOS in northeast China from 1982 to 2015 ranged from the 280th DOY to the
320th DOY [30]. These results coincide with the results of this study, which shows that the
extracted phenology has a certain reference value and reliability.

Most previous studies chose fixed thresholds to extract vegetation phenology, which
might result in some deviations. Li et al. defined SOS and EOS as 20% of annual LAI
amplitude by using the dynamic method and found that the selection of the threshold
itself has certain experience, which would affect the accuracy of phenology extraction to
a certain extent in the northeast China [59]. You et al. selected the 50% as the threshold
to determine the SOS and EOS of vegetation and concluded that the average of LOS
was 135.2 days and significantly increased with a slope of 2.94 days per decade in the
Upper Amur (Heilongjiang) River Basin in northeast Asia [60]. In this research, we mainly
discussed the spatiotemporal variation of forest phenology in northeastern China from
2011 to 2020. The results of the variation of forest phenology were described in this study,
which showed the varying degrees of fluctuation in the NEC from 2011 to 2020. Generally,
our results demonstrated that the average SOS of the forest was primarily distributed from
90th to 135th DOY with an early trend, which is consistent with numerous former studies.
Zhao et al. discovered that the mean SOS dates ranged from 115th to 140th DOY in the
Changbai Mountains, Lesser Khingan Mountains, and Greater Khingan Mountains [31].
Guo et al. concluded that early SOS was distributed between 100th and 130th DOY in forest
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areas in the NEC from 1982 to 2014 [61]. Tang et al. found that the SOS of forests ranged
between 105th to 130th DOY in Greater Khingan Mountains [62]. The EOS of forest largely
displayed from 300th to 330th DOY. Qiu et al. found that EOS occurred between DOY 260
and 270 in the Greater Khingan Mountains, while the EOS of BF in southern Lesser Khingan
Mountains and Changbai Mountains occurred between 280th and 300th DOY [63]. Liu
et al. found that the EOS of deciduous needle-leaf forest was earlier than other vegetations
in temperate China [64]. However, different studies used different datasets and methods,
which resulted in differences from each other. In spite of this, all studies concluded that
the EOS was advancing earlier in the Greater Khingan Mountains, while the forest in
the southwestern Changbai Mountains near the coast had relatively late EOS dates. The
possible reason could be that there are relatively high temperatures at lower latitude, which
is beneficial for delaying leaf senescence.

From a spatial point of view, the phenology of all three forest types displayed sig-
nificant spatial heterogeneity as well as differences between each other with increasing
latitude in the NEC. From southeast to northwest in the study area, the multiyear average
SOS advanced at a rate of 2.33 days per latitude and the multiyear mean EOS was delayed
at a rate of 2.22 days per latitude, respectively, which mainly resulted in the difference of
LOS. As a whole, the LOS of forests was illustrated to be longer along coastal areas at low
latitude and shorter in inland areas at high latitude.

Many previous studies concentrated on the variation of mean phenology at a regional
scale, while ignoring the spatial heterogeneity among different forest types. In this study,
we also analyzed the changes of phenological parameters in three forest types in NEC and
demonstrated that the variations of forest phenology were varied across different forest
types. We fitted the relationship between phenology parameters and climate factors by
using the least squares method and the slope of the linear function can be used to indicate
the changing rate. Then, we compared the slope between the latitude, annual average
temperature, and annual cumulative precipitation and phenology parameters of different
forest types. Overall, it was pointed out that all three types of forest displayed the sightly
advanced SOS and delayed EOS. Yu et al. found that the SOS of deciduous needle-leaf
forests was advanced by 0.24 d/a, while the EOS was delayed at a rate of 0.36 d/a from
1982 to 2015 [30]. Zhao et al. concluded that the EOS of BF in eastern Liaoning was delayed
0.23 d/a from 1982 to 2012 [31]. Our findings were in line with previous studies. With
the influence of SOS and EOS, the LOS of all forests showed a prolonged trend, with the
changing rates of 0.76 d/a. To be more specific, the changing range of BF was the largest,
followed by MF and CF.

4.2. The Relationship between Forest Phenology and Climatic Factors

With the increasing concern of global climate change, many studies have proposed
that climate change has a substantial impact on vegetation phenology, and the variation
of vegetation phenology may also feed back to climatic factors, such as temperature and
precipitation. Previous research has proven that the temperature is the most important
factor for the growth of vegetation. It is noteworthy that warming temperatures in spring
may have an impact on the advance of SOS, especially in the Northern Hemisphere [12].
In this study, we analyzed the three phenological parameters of forest responses to the
temperature and found that the SOS of forests had negative correlations with temperature,
as the SOS was advanced by 2.76 days with an increase of 1 ◦C. It can be concluded that the
warmer temperatures in spring would stimulate an early emergence from winter dormancy,
resulting in an advanced phenology in the forest [13]. In addition, the average EOS of
forests in NEC were delayed at a rate of 2.60 d/1 ◦C, which is consistent with other research.
Allison et al. demonstrated that air temperature could reasonably predict the timing of leaf
senescence for deciduous forests throughout the Northern Hemisphere [65]. In addition to
air temperature, precipitation also contributes to the timing of forest phenological events.
The SOS was advanced 2.90 d if the annual cultivate precipitation increased by 100 mm,
while the EOS showed a significant positive correlation with precipitation and the LOS of
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forests was prolonged by 7.10 d. Tang et al. studied the relationship between the phenology
and climatic factors, and concluded that the changes of both temperature and precipitation
resulted in extended LOS in forest region in the Greater Khingan Mountain Area [62].

We further explored the responses of the phenology in different forest types to varia-
tions on precipitation and temperature. As a whole, BF were largely sensitive to precipita-
tion and temperature changes, followed by MF and CF. The reason for this phenomenon
may be that BF are widely distributed in the southwestern Changbai Mountains near the
coast, where the temperature is warmer and humidity is higher, contributing to a higher
demand for photosynthesis and water transpiration [58]. Generally, the ecosystems at high
latitudes display significant correlation with temperature, while temperate areas are more
correlated with precipitation [33]. Liu et al. concluded that evergreen needle-leaf forests
had a later EOS due to increased temperature and precipitation based on the time-series
GIMMS NDVI records from 1982 to 2011 [64].

4.3. Partial Correlation Analysis between Forest Phenology and Climatic Factors

Over the past decades, many researchers have revealed the time-lag effect while
studying the responses of vegetation phenology to climatic factors [33,66]. Wu et al.
proposed that the time-lag effects of different vegetation types significantly varied from the
same climatic factor and that the same vegetation type also had different responses to the
different climatic factors [58]. The results in this study show that the increased temperature
was the main factor in delaying the SOS and EOS, and the warmer temperature in winter
had a greater impact on SOS than in the spring. Fu et al. discussed the spatial correlation
between the growing degree days (GDD) requirement of different vegetation types and
temperature and precipitation in the winter of previous year and concluded that cold winter
temperatures mainly effected the GDD, which was largely determined by the SOS [67]. Hou
et al. analyzed the partial correlation between the temperature and vegetation phenology
adding precipitation as a control variable and concluded that the SOS had a negative
relationship with the spring temperature, and an increasing daytime temperature ensured
the heat required for vegetation growth advanced the SOS [68]. In addition, compared with
the summer, the warmer autumn seems to have a greater impact on the EOS. It could be
concluded that the warmer temperature would result in the later autumn, which would
prolong the time of both respiration and photosynthesis and delay leaf senescence [13].
Tang et al. discussed the time-lag effect of climatic factors on the forest phenology in the
Greater Khingan Mountain Area and confirmed that less precipitation and warmer springs
result in advanced SOS, while cumulative summer temperatures played a major role in
prolonged EOS [62]. The reason that this phenomenon occurred was that the CF, largely
distributed in the middle and high latitudes in the Northern Hemisphere, has a strong
demand for water, while temperature and solar radiation largely affected their growth [58].

The variation of monthly precipitation weakly affected forest phenology, and while
the impact of precipitation on phenology varied from month to month, the increased precip-
itation in summer led to delayed EOS. Huang et al. studied the effects of rain-use efficiency
on vegetation phenology of the Songnen Plain and concluded that increasing precipitation
would delay the EOS, particularly in the forest areas in the north, where the vegetation
in arid and semiarid areas would be more sensitive to precipitation [69]. Yun et al. con-
cluded that the increase in precipitation in winter affects the trends of vegetation growth
in the spring, even in temperature-limited ecosystems [70]. The phenological variation of
different forest types has a similar response to climatic factors, but BF was more sensitive
to climate change. Clinton et al. studied the association of vegetation phenology with
precipitation and temperature on a global scale and proposed that the boreal forest had
the lowest correlations with precipitation, indicating that pre-season humidity may have
stronger correlations with boreal forest than the precipitation of the same season [33].
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5. Conclusions

In this study, we used the dynamic threshold method combined with ground-based
data to extract the phenology of forests, using MODIS NDVI time-series data, reconstructed
with the S-G filter, in the northeast China from 2011 to 2020. The results concluded that
there was a relationship between threshold and latitudes, and the suitable threshold of SOS
increased at a rate of 3%/1 ◦C, while the suitable threshold of EOS increased 2%/1 ◦C. The
suitable threshold for detecting phenology occurred in spatial heterogeneity and varied
between latitudes. Then, the spatio-temporal variations of forest phenology were discussed.
The SOS of forest in northeast China was mainly concentrated between early April to
mid-May and showed the spatial characteristics of occurring earlier in the south and later
in the north. The EOS of forests was generally later than the end of October and showed
the spatial characteristics of occurring earlier in the north and later in the south. The LOS
of forests mainly ranged between 170th to 210th DOY, whereas the a longer LOS was seen
in the coastal areas at low latitudes and a shorter LOS was seen in inland areas at high
latitudes. In addition, the SOS of forests were advanced at a rate of 0.29 d/a, while the EOS
were delayed at a rate of 0.47 d/a, so the LOS of forests had a significant extension during
the past decade. Finally, the responding mechanism between the phenological change and
climatic factors was considered. It was found that all forest types were significantly sensitive
to the variation of temperature. Pre-seasonal temperature, especially during the previous
winter had a significant effect on the SOS of the current year. The autumn temperatures of
the current year were the main climatic factors affecting EOS. As a whole, the broadleaf
forests and mixed forests were the most sensitive to climatic factors, followed by the
conifer forest. This research can provide a reference for understanding the phenological
change characteristics of the boreal forest ecosystem and reveal the phenological response
mechanism of the boreal forest ecosystem against the backdrop of global warming.
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Abstract: Forest carbon sinks (FCS) play an important role in mitigating global climate change, but
there is a lack of more accurate, comprehensive, and efficient forest carbon stock estimates and
projections for larger regions. By combining 1980–2020 land use data from the Northeast China
Forestry (NCF) and climate change data under the Shared Socioeconomic Pathway (SSP), the land use
and cover change (LUCC) of NCF in 2030 and 2050 and the FCS of NCF were estimated based on the
measured data of forest carbon density. In general, the forest area of NCF has not yet recovered to the
level of 1980. The temporal change in the FCS experienced a U-shaped trend of sharp decline to slow
increase, with the inflection point occurring in 2010. If strict ecological conservation measures are
implemented, the FCS of the NCF is expected to recover to the 1980 levels by 2050. We believe that
the ecological priority (EP) scenario is the most likely and suitable direction for future development
of the NCF. We also advocate for more scientific and stringent management measures for NCF natural
forests to unlock the huge potential for forest carbon sequestration, which is important for China to
meet its carbon neutrality commitments.

Keywords: forest carbon stocks; simulation; LUCC; climate change; spatiotemporal evolution

1. Introduction

Terrestrial ecosystems, especially forests, play an important role in the global carbon
cycle and in climate change mitigation [1]. Both the IPCC and Paris Agreement concur
that the substantial contribution of forests is key to achieving the Nationally Determined
Contribution (NDC) goals [2]. Previous studies have shown that the increase in the forest
carbon stock (FCS) in China mainly results from forest restoration and afforestation [3,4].
Carbon sinks caused by ecological projects, such as afforestation, decline as forest vegetation
matures and reaches the late successional stage [5]. However, within the period of China’s
carbon neutrality target, forest ecosystems, especially natural forests, can still maximize
their carbon sequestration effects through forest management and restoration. Therefore, it
is necessary to further clarify the carbon sink capacity of forest ecosystems and accurately
account for the FCS.

China has conducted extensive research in the field of FCS assessments and fore-
casting of future trends [1,6–10]. Current measurement methods for FCS mainly include
(1) inventory-based estimation, (2) satellite-based estimation, and (3) process-based es-
timation. The carbon stock results calculated using different forest types, data sources,
and estimation methods are significantly different [11]. The Chinese land spans a wide
range of latitudes (from 18◦N to 53◦N). Based on natural and environmental characteristics,
China’s forest ecosystems can be divided into seven types [12]. The variability in the
carbon sequestration capacity and carbon cycles of different types of forests makes it more
difficult to accurately estimate the overall carbon stock. Large-scale FCS measurements are
necessary; however, they weaken due to the spatial heterogeneity of natural environmental
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elements. The uncertainty in the estimation results of the FCS can be further reduced if the
large-scale area is subdivided into intermediate areas with the same climatic, hydrological,
and soil backgrounds for the study. Forest inventory data are considered the most reliable
data source for forest carbon flux studies. Owing to its authority and comprehensiveness,
most current carbon stock accounting studies, including in China, are based on national
inventory data [13]. However, the national forest resources verification cycle is long, the
published data have a lag, and the classification of forest types is vague, which cannot
meet the requirements of real-time monitoring and rapid assessment of regional FCS [14].
In addition to natural factors, the estimation method is a key factor contributing to the
uncertainty of FCS estimation [15]. Current estimation methods lack adequate response
to the evolution of forest ecosystems caused by climate change. In particular, the inter-
conversion processes between different forest stands under the stress of changing natural
environmental factors need to be further clarified, which is crucial for accurate estimation of
FCS. Simultaneously, the successful implementation of any CO2 removal method requires
careful consideration of other land use requirements [16]. Land use and cover change
(LUCC) is a major driver of a range of ecological problems that cause carbon cycling by
altering the ecosystem structure [17,18]. Therefore, it is necessary to clarify the trends of
future climate change and LUCC-induced changes in forest ecosystem structure and to
perform simulations and predictions of FCS to reveal its dynamic evolution pattern.

The Northeast China Forestry (NCF) is the largest natural forest area in China and is
the key implementation area of China’s Natural Forest Protection Project (NFPP). Com-
pared to planted forests, natural forests can better support biodiversity conservation and
achieve ecosystem services, such as surface carbon storage, soil conservation, and water
conservation [19]. Over the past few decades, NCF has been an important producer of
timber and forestry by-products [20]. However, if forest conservation involves timber pro-
duction, policymakers must weigh environmental and production outcomes [21]. Owing
to the specificity of the administrative system, the vast majority of NCF’s forest resources
are state-owned under the jurisdiction and development of different forestry bureaus and
forest industry groups, which facilitates more efficient forest management. The main status
of food production cannot be changed, and the implementation of long-term afforestation
projects has resulted in very limited forest suitable land in NCF. Forest ecosystem restora-
tion is mainly based on forest nurturing and degraded forest restoration. This indicates that
the evolution of forest ecosystems in the NCF is more focused on the mutual transformation
between different forest stands. Although the forest area will not expand on a large scale,
the FCS may undergo significant changes.

Forest ecosystems contain four carbon pools: above ground biomass, belowground,
soil, and deadfall carbon pools. Among them, the aboveground biogenic carbon pool and
soil carbon pool account for the largest proportion of the total carbon stock and are the
focus of research. Although deadfall only accounts for approximately 5% of the total carbon
stock, it is the link between the aboveground vegetation carbon pool and the soil carbon
pool [22], and is especially important for NCF, which is dominated by natural forests. Over
the past few decades, researchers have made many effective attempts to estimate the FCS of
the NCF [10,23–27]. However, from the results of the study, the lack of overall calculation
of the four carbon pools of the forest and simulation of the process of spatial and temporal
evolution of the carbon stock hinders further assessment of the ecological and economic
values generated by the FCS of the NCF.

In this study, we quantified the temporal variability and spatial heterogeneity of the
FCS in the NCF by specifying the interactive processes between the interior and exterior of
the forest caused by LUCC in the context of future climate change. The main objectives
of this study were to clarify (1) the evolutionary trends of land use in the NCF from
2030 to 2050, (2) the evolution between different forest stands within the forest, and (3) the
evolutionary trends and spatial heterogeneity of the FCS.
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2. Materials and Methods

2.1. Study Area and Data
2.1.1. Study Area

The National Forest Management Plan (2016–2050) prepared by China’s National
Forestry and Grassland Bureau divides the country into eight management zones, tak-
ing into account the status of forest resources, geographical location, forest vegetation,
management status, and development direction of each region. The NCF (38◦43′–53◦23′N
and 118◦50′–135◦05′E) includes the Greater-Khingan-Mountains cold temperate coniferous
forest management area and the northeast middle temperate coniferous and broad-leaved
mixed forest management area, involving Heilongjiang, Jilin, Liaoning, and four provinces
and autonomous regions of Inner Mongolia, 244 counties (districts) (Figure 1). The NCF
straddles the mid-temperate and cold temperate zones from south to north and has a
temperate monsoon climate with an average annual temperature of 4.8 ◦C to 11.5 ◦C,
annual precipitation of 300–1000 mm, and a large area of black soil. The total area of
the existing forest land is 53.22 million hectares, the forest accumulation is 1.087 billion
cubic meters, and the forest area accounts for approximately 37% of the country’s total
area [28]. The forests are mainly concentrated in the three major topographical areas of
Greater-Khingan-Mountains, Lesser Khingan Mountains, and Changbai Mountains, and
the vegetation types are mainly deciduous broad-leaved forest and coniferous forest.

Figure 1. Main overview of the NCF (a–d) represents district, DEM, forest distribution, and climate
zone, respectively.

2.1.2. Data Acquisition and Preprocessing

To explore the impact of LUCC on FCS in the context of future climate change, it
is crucial to clarify its impact mechanism and screen the driving factors affecting LUCC
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(Figure 2). The research support data mainly include land use, economic, social, climate, and
soil data (Table 1). The land use data is a multi-period set from 1980 to 2020, constructed by
manual visual interpretation using Landsat remote sensing images as the main information
source. The dataset covers 6 major categories and 25 subcategories, and the data resolution
is 30 m. Because the focus is on the interconversion between different forest stands, the land
use data classifies forested land into four types according to the degree of density and tree
height: closed forest land (Cl, natural and planted forests with density > 30%), shrubland
(Shr, short stands and scrubland with density > 40% and height below 2 m), sparse forested
land (Sp), forested land with density 10–30% and other forested land (Oth, non-forested
plantations, trails, nurseries, and various types of gardens). Other land use types were
reclassified as Cropland (Cult), Grassland (Gr), Water (Wat), Construction Land (Constr),
and Unused Land (Un), data from the Data Center for Resources and Environmental
Sciences, Chinese Academy of Sciences (DOI: 10.12078/2018070201).

 

Figure 2. LUCC influence process.

Economic and social data are the main factors influencing land use change based on pre-
vious research results of 10 datasets including transportation, GDP, and population [29–31].
To eliminate the randomness of single-year climate data, we used the average values of
temperature and precipitation from 1970 to 2000. Future climate change data were used
under three Shared Socioeconomic Pathways (SSPs) (SSP126, SSP245, and SSP585), with
19 bioclimatic variables based on the BCC-CSM2-MR model. The DEM is derived from
SRTM data measured jointly by NASA and the National Mapping Agency (NIMA) of
the Department of Defense with a data resolution of 3 arc-second (~90 m). Slope and
aspect data were obtained by processing DEM data using ArcGIS Pro 2.8 software. Soil
is an important factor influencing changes in forest ecosystems [32], and we wanted to
show the characteristics of water content, water retention, permeability, nutrients, and
physicochemical properties of soil using nine indicators. A series of data preprocessing
was performed in ArcGIS Pro2.8 software, including projection transformation, Euclidean
distance, resampling, and clipping, and all of the above data were converted to raster data
with the same projection coordinate system and 30 m spatial resolution.
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Table 1. The spatial driving factors of the land use change in this study.

Category Data Year Original Resolution Data Resource

Land Land cover 1980–2020 30 m https://www.resdc.cn/,
accessed on 28 December 2021

Soil factors

Soil water capacity 2017 250 m https://data.isric.org/,
accessed on 21 October 2021

Soil pH
Depth to bedrock

Cumulative probability of
organic soil

Soil organic carbon stock
Sand content
Clay content
Texture class

Soil type 1995 1000 m http://www.resdc.cn/,
accessed on 25 December 2021

Population 1990–2020 1000 m www.worldpop.org, accessed
on 28 December 2021

Socioeconomic
factors

GDP 1990–2020 1000 m http://www.geodoi.ac.cn/,
accessed on 28 December 2021

Proximity to city 2015 30 m
Proximity to rural settlement

Proximity to railway
https:

//www.openstreetmap.org/,
accessed on 15 October 2021

Proximity to highway
Proximity to primary road

Proximity to secondary road
Proximity to tertiary road

Proximity to quaternary road

Climatic and
environmental

factors

DEM 2016 90 m NASA SRTM1 v3.0, accessed
on 25 December 2021

Slope
Aspect

Temperature 1970–2000 30 arc-sec http://www.worldclim.org/,
accessed on 26 October 2021

Precipitation
Bioclimatic variables 2040–2060

2.2. Methods
2.2.1. Patch-Generation Land Use Change Simulation (PLUS) Model

Cellular automata (CA) are widely used to simulate the dynamics of complex LULC
systems [33]. However, most CA models focus on the optimization of simulation techniques
and the correction of transformation rules, and relatively little research has been conducted
on how to deepen the analysis of potential drivers of land use, especially on the strategies
of transformation rule mining and simulation of landscape dynamics, which require further
clarification. The PLUS model is based on raster image data and uses a new land expansion
analysis strategy (LEAS) combined with a CA model based on multiclass random patch
seeding (CARS) to better simulate multiclass land use patch-level changes [34,35].

LEAS incorporates a transformation analysis strategy (TAS) and pattern analysis
strategy (PAS). By extracting the parts of each type of land use expansion between the
two periods of land use change and sampling, the random forest algorithm was used to
mine the factors of each type of land use expansion and the corresponding driving force.
Thus, the conversion probability of each type of site and the contribution of drivers to the
expansion of each type of site in that period can be obtained with a better interpretation.
CARS combines random seed generation and a threshold decreasing mechanism, and the
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PLUS model can simulate the automatic generation of patches in a spatiotemporal dynamic
manner under the constraints of transformation probability and conversion constraint
(Figure 3). For the 2030 land use simulation, we used 1970–2000 data for climate factors,
and for the 2050 simulation, we used SSP future climate projection data and SSP126, SSP245,
and SSP585 pathways corresponding to the EP, NG, and RD scenarios, respectively.

 

Figure 3. Calculation process of carbon storage in Northeast Forestry of China.

2.2.2. InVEST Model and Forest Carbon Density Settings

Accuracy verification is key to the land use simulation process, and we used the Kappa
coefficient and Figure of merit (FoM) to estimate the accuracy of the simulation results.
Usually, a Kappa coefficient greater than 0.6 indicates that the results are usable, and greater
than 0.8 indicates that the simulation results are relatively accurate.

Although most of the previous studies on the PLUS model have used the Kappa
coefficient to verify the accuracy of the model, the reliability of the Kappa coefficient is
currently subject to many controversies [36,37]. Therefore, we introduce the FoM coefficient
to further verify the accuracy of PLUS.

FoM coefficients only focus on where it has changed. FoM coefficients are superior for
measuring goodness of fit in simulations of changes in landscape composition. Theoretically,
FoM values range from 1% to 100%, with larger FoM values corresponding to higher
simulation accuracy, but values less than 30% have been shown to be common [38]. The
formula for calculating the FoM coefficient is:

FoM = B/(A + B + C + D)

where B represents the actual area that has changed and the simulation results have also
changed. A indicates that the actual area has changed, but the simulation results have not
changed. C indicates that both the actual area and the simulation results have changed, but
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the direction of change is not consistent. D represents the actual area that has not changed,
but the simulation results have changed [39].

2.2.3. InVEST Carbon Storage and Sequestration Model

The InVEST carbon storage and sequestration model uses land use raster data and
stocks in four carbon pools (aboveground biomass, belowground biomass, soil, and dead
organic matter) to estimate the amount of carbon currently stored in the landscape or
sequestered over time. The model operates by mapping the carbon density of the carbon
pools to the LUCC raster to calculate the carbon stock of each land type. Therefore, the
accuracy of the InVEST model depends on the land use data and forest carbon pool data.
In order to improve the accuracy of land use simulation, we refined the soil data that
affect the forest evolution, involving factors such as soil physical and chemical properties,
water retention, air permeability, nutrition, and root growth space, so that the simulation
accuracy of closed forest land can reach more than 95%. The closed forest accounts for
about 90% of the forest area in NCF, which will optimize the accuracy of the InVEST model
calculation. Meanwhile, many previous studies involving the calculation of forest carbon
stocks by InVEST model have classified forests as one type or included only part of the
carbon pool. Obviously, the carbon density of forests with different degree of density is
different. Therefore, to further improve the accuracy of the InVEST model for estimating
forest carbon stocks, we divided the forest into four types of stands and included carbon
density data of all carbon pools of the forest.

The InVEST model used carbon density data from four carbon pools, all of which were
derived from actual measurements conducted by researchers at the NCF. Aboveground
biomass carbon density measurements include the carbon density of the tree layer and
carbon density of understory vegetation. Belowground biomass carbon density refers to
root carbon density. Soil carbon density was replaced by a mean value of 0–100 cm in the
uniform adoption.

The forested sites mainly included Larix gmelinii, Pinus koraiensis, Pinus camphorata,
Pinus tabulaeformis, Picea abies, Quercus mongolica, Betula platyphylla, Betula davurica, and
other dominant vegetation-building species in the northeast. The shrublands included
vegetation of Caragana korshinskii, Prunus sibirica, Ostryopsis decne, and Spiraea salicifolia. The
open woodlands contained Ulmus pumila, Populus simonii, and P. davidiana. In this study, we
defined other forested lands as trails and unstocked lands to determine carbon density. All
four forest stands involved the carbon density of four carbon pools, which were weighted
and summed based on the area of tree species mentioned in the literature (Table 2)

Table 2. The carbon density of each stand used in the InVEST model (Mg/hm2).

C_above C_below C_soil C_dead

Cl 68.049 1.104 129.395 5.652
Shr 6.3325 0.733 115.73 1.23
Sp 17.57 0.765 58.67 0.62

Oth 1.288 0.688 6.15 0.643

3. Results

3.1. Model Validation

To verify the reliability of the model, we combined the Markov chain (M-C) and
simulated land use data for 2010 and 2020, respectively (Figure 4). The results of our
random sampling (sampling rate of 0.1 and number of samples of 9,199,472), compared
with the real data, show that the kappa coefficients of the simulated data in 2010 and 2020
are greater than 0.8 (Table 3). The 1990 and 2000 land use maps were selected as the initial
states of the landscape pattern in 2010 and 2020, respectively. The results show that the
FoM coefficients of the two simulated data are both 0.174. This study focuses on simulating
the evolution of forest land in the northeastern forest region. Therefore, we reclassified the
data and set other land types other than forest land to the same class. The 2010 data was

323



Remote Sens. 2022, 14, 3653

selected as the initial state of the 2020 landscape pattern to validate the FoM coefficient of
the 2020 simulated data. The results show that A = 0.1247442, B = 0.10471363, C = 0.469294,
D = 0.4283501, FoM = 0.635722. It shows that the PLUS model has a relatively reliable
accuracy for the forest land simulation in the northeast forest area.

 

Figure 4. Land use simulation in the NCF for 2010 and 2020.

Table 3. PLUS model validation results for the NCF.

Land Use Type User’s Accuracy Overall Accuracy Kappa Coefficient

2010 2020 2010 2020 2010 2020

Closed forest land 0.976457 0.956521 0.971922 0.896424 0.960604 0.853745
Shrub forest land 0.912785 0.729021
Sparse forest land 0.818204 0.615643
Other forest land 0.523307 0.664626
Cultivated land 0.990825 0.918858

Grass land 0.989463 0.850062
Water area 0.990503 0.452974

Construction land 0.966698 0.787961
Unused land 0.98088 0.884863

3.2. Multiple Scenario Settings Based on the Amount of Land Demand

The PLUS model requires setting target values for future land use patches and as-
signing the changing patches to appropriate spaces according to the future land area by
combining LEAS and CARS. The PLUS model provides both linear regression and Markov
chain (M-C) for forecasting future land use demand. The M-C can complete the forecast
using two periods of data but is more suitable for short-term forecasting. The M-C predic-
tion results vary widely when using data from different time periods (Table 4). Our linear
regression projections using NCF land used data for 10 periods from 1980 to 2020 yielded
results that appear to be more in line with the NCF development expectations.

To improve the reliability of the simulation results, we set up three future development
models: the ecological priority scenario (EP), natural growth scenario (NG, baseline sce-
nario), and regional development scenario (RD). The 2030 and 2050 land use areas obtained
from the linear regression projections were used as the baseline scenarios. Regarding the
setting of land use areas for the two scenarios of EP and RD, two key factors need to be
considered: the continuation of current RD trends and future development plans. NCF
has the important task of supplying forest products and food; therefore, the area of forest
and arable land should be protected first in a future development process. Construction
land is the most active land type in the process of land use change and is the most direct
factor affecting LUCC. It is worth noting that the northeast region has encountered a de-
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velopment bottleneck in the past 10 years (Figure 5). Although the Chinese government
has been promoting a northeast revitalization plan, the northeast region has not met the
development expectations of the central government owing to cold climate and deformed
industrial structure. Owing to the early start of development and large rural population
loss, the urbanization rate in the northeast is higher than the national average. It should
be clear that the population loss and the decline in birth rate, as well as the late stage of
urbanization development, do not imply a reduction in total urban construction land area
in the future, but rather a reduction in demand [40]. Although current development trends
suggest that the probability of the RD scenario is likely to be low, we set up this scenario to
address possible future scenarios (Table 5).

 

Figure 5. Changes in total population, natural population growth rate, GDP growth rate, and
urbanization rate in the NCF.
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Table 4. Predicted area of land calculated by Markov chain and linear regression (km2).

Year Cl Shr Sp Oth Cult Gr Wat Constr Un

Current 2020 391,734 30,785 23,168 4455 298,416 99,040 16,810 24,832 50,248

M-C (2010–2020)
2030 399,589 27,308 18,205 4422 298,167 94,962 13,757 27,733 55,347
2050 409,589 22,601 13,059 4356 297,974 88,148 10,889 31,782 61,091

M-C (2015–2020)
2030 374,833 37,365 29,642 5583 303,196 109,299 12,431 26,080 40,666
2050 362,820 38,135 31,030 6016 312,674 111,450 10,378 27,684 38,907

Linear regression 2030 393,992 28,049 20,529 4670 304,200 95,762 17,793 25,797 48,698
2050 402,772 22,099 12,649 4851 311,245 89,759 15,128 29,003 51,984

Table 5. Area setting of future scenarios and their changes in 2020 (km2, %).

Scenario Time Cl Shr Sp Oth Cult Gr Wat Constr Un

2020 391,734 30,785 23,168 4455 298,416 99,040 16,810 24,832 50,248

NG
2030 393,992

(0.58%)
28,049

(−8.89%)
20,529

(−11.39%)
4670

(4.83%)
304,200
(1.94%)

95762
(−3.31%)

17,793
(5.85%)

25,797
(3.89%)

48,698
(−3.08%)

2050 402,772
(2.82%)

23,066
(−25.07%)

17,731
(−23.47%)

3826
(−14.1%)

303,334
(1.65%)

93,759
(−5.33%)

15,128
(−10.0%)

29,003
(16.80%)

50,869
(1.24%)

EP
2030 395,363

(0.93%)
27,738

(−9.90%)
20,614

(−11.02%)
4505

(1.12%)
303,010
(1.54%)

98,694
(−0.35%)

19,294
(14.78%)

25,682
(3.42%)

44,590
(−11.2%)

2050 410,689
(4.84%)

30,329
(−1.48%)

20,343
(−12.19%)

4296
(−3.57%)

301,181
(0.93%)

89,829
(−9.30%)

19,261
(14.58%)

26,220
(5.59%)

41,342
(−17.7%)

RD
2030 392,892

(0.30%)
27,485

(−10.72%)
20,428

(−11.83%)
4345

(−2.47%)
302,019
(1.21%)

95,404
(−3.67%)

16,481
(−1.96%)

27,605
(11.17%)

51,519
(2.53%)

2050 403,027
(2.88%)

22,601
(−26.58%)

15,922
(−31.28%)

4314
(−3.16%)

305,692
(2.44%)

88,150
(−11.0%)

15,087
(−10.3%)

31,782
(27.99%)

52,913
(5.30%)

The National Forest Management Plan has specific development requirements for NCF
forest development in 2020–2050, which we followed in the setting of forest land area in
the EP scenario. The RD scenario reflected more productive attributes. Rural depopulation
may accelerate large-scale land-intensive production so that there are priority growth
opportunities for building land and cultivated land. The grassland area would decrease to
different degrees under all three scenarios. After the Third National Land Survey (2021),
the central and local governments became stricter in their attitudes toward arable land
protection. As a result, forestland expansion is mainly achieved through grassland and
unused land conversion.

3.3. NCF Land Use Evolution Analysis
3.3.1. Historical Land Use Evolution Analysis

We used the computational change raster tool of ArcGIS Pro2.8 to comparatively
analyze the quantitative relationships between land use conversions at different time
periods. From 1980 to 2000 (Tables 6 and 7), there was a significant decline in closed
forest land and grassland from 21.36% and 6.52% of the total area to 20.38% and 5.48%,
respectively (Figure 6a). The decrease in forested land was mainly concentrated in the
south-central part of Lesser Khingan Mountains and the southern part of the Sanjiang Plain,
and the degradation of shrub forests in the Changbai Mountains was more obvious. The
northern part of the NCF has experienced a certain expansion of forested land, which was
more scattered (Figure 7a). Most of the lost forest and grassland were transformed into
arable land and construction land, and the area of arable land expanded by 17.46%.
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Table 6. Conversion of Land Types from 1980 to 2000 (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 376,673.1 4660.43 1846.63 1422.39 13,858.13 2048.26 70.12 210.76 610.24
Shr 910.2 27,379.15 231.95 8.53 4618.52 390.24 94.45 72.51 270.6
Sp 139.94 30.82 26,721.09 15.22 1126.78 336.68 2.9 11.14 20.19

Oth 841.39 1418.53 374.15 2585.75 100.32 2157.42 0.11 1.46 2.86
Cult 1301.78 296.4 405.13 118.66 246,914.2 854.56 397.26 1913 744.18
Gr 2850.89 561.54 720.34 44.32 19,375.76 95,403.31 620.97 323.07 2639.85

Wat 11.42 42.86 12.96 0.01 608.65 228.91 20,076.5 6.93 203.48
Constr 4.03 0.89 0.73 0.06 82.26 35.81 4.25 18207.91 1.31

Un 185.1 643.1 191.78 1.1 10,392.48 1564.01 855.15 78.62 39,302.12

Table 7. Conversion of Land Types from 2000 to 2020 (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 363,634.6 1956.55 2000.83 1156.92 7929.7 4131.44 889.67 412.75 805.53
Shr 3920.37 24,872.14 189.6 92.14 2209.96 2162.83 315.38 95.89 1175.43
Sp 7932.75 552.03 18,575.2 184.86 2081.31 774.25 68.56 175.24 160.57

Oth 1061.34 64.68 59.98 2745.78 154.4 68.52 7.25 19.38 14.71
Cult 8301.44 1573.53 912.24 107.58 27,2192.7 3315.28 1703.5 6855.78 2115.61
Gr 5600.76 1191.31 1310.58 126.6 4682.17 86,612.52 375.62 454.01 2665.66

Wat 356.83 356.31 21.81 2.29 1663.76 362.93 12,908.92 131.72 6315.43
Constr 232.88 68.58 36.79 7.41 3615.5 174.24 98.03 16,509.32 82.67

Un 693.08 149.48 60.64 31.26 3887.31 1438.61 443.68 178.01 36,912.84

Figure 6. The relationship between land use conversion in different time periods ((a) represents
1980–2000, (b) represents 2000–2020. The beginning of the arrow indicates the land proportion in the
base year, and the arrow points to the land proportion in the target year).
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Figure 7. Expansion and decline of forest land area (a) represents 1980–2000, (b) represents 2000–2020.

The LUCC of NCF was relatively stable from 2000 to 2020. The area of closed forest
land started to increase steadily, the growth rate of cropland and the decay rate of grass-
land both started to slow down, and the area of construction land grew at a faster rate
(Figure 6b). Spatially, the Changbai Mountain region was accompanied by a relatively
dramatic closed forest land evolution, but it was generally increasing. In the northern part
of the Greater-Khingan-Mountains and the eastern part of the Sanjiang Plain, there was a
more pronounced decrease in the area of closed forest land and shrubland (Figure 7b).

3.3.2. Simulation of Future Land Use Evolution

We simulated NCF land use under three scenarios in 2030 and 2050, calculated the
expansion of each category based on 2020 (Figure 8), and selected three regions with more
significant LUCC in A, B, and C for comparison (Figure 9). The relevant parameters of the
PLUS model were set as follows. In the LEAS module, the number of regression trees was
50, and the sample rate was 0.01. In the CARS module, the patch-generation threshold
was 0.7, the expansion coefficient was 0.3, the percentage of seeds was 0.001, and the
neighborhood weights were 3.

1. Changes in the areas of the main land types

Forest conservation, food security, and urbanization are the three main developments
in the NCF. Therefore, we mainly explored the changes in forest land, cultivated land, and
construction land in future scenarios. All three major land types maintained growth, with
closed forest land growing faster in the EP model, but cultivated land grew slightly less
than in the other scenarios. Under the RD model, built-up land grew faster than in the
other scenarios. Cropland and closed forest land did not grow significantly in the area in
2030 but exceeded that of the NG model by 2050 (Table 8).

Table 8. Change in area increase of major land types compared to 2020.

Time Scenarios Cl Cult Constr

2030
NG 0.58% 1.94% 3.88%
EP 0.93% 1.54% 3.42%
RD 0.30% 1.21% 11.17%

2050
NG 2.82% 1.65% 16.80%
EP 4.84% 0.93% 5.59%
RD 2.88% 2.44% 27.99%
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2. Intensity of conversion between land classes.

We believe that the EP scenario was the most suitable and probable development
scenario for the NCF; here, we compared the conversion relationships between the two
time periods, 2020–2030EP and 2020–2050EP. Tables 9 and 10 show the converted area
between land use categories at different stages, with 2020 as the base year.

Table 9. Conversion of Land Types from 2020 to 2030EP (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 383,252.2 45.37 141.3 353.05 1482.82 1308.46 13.52 53.53 190.5
Shr 916.5 27,396.88 35.14 5.19 1214.73 225.88 22.36 22.47 381.8
Sp 1988.78 19.68 20,111.64 45.25 644.18 152.24 8.7 9.9 85.97

Oth 521.78 3.31 11.07 3649.02 208.11 30.76 0.5 3.21 10.66
Cult 5549.88 146.03 66.06 354.81 285,028 173.65 19.97 2090.29 1968.61
Gr 2362.87 108.99 242.17 90.86 1339.2 92,655.55 54.09 88.11 1319.92

Wat 186.3 97.98 8.3 1.21 496.13 141.46 19,879.74 55.34 236.3
Constr 168.53 11.24 3.93 1.4 864.54 30.11 4.76 23366.41 97.31

Un 602.09 6.28 3 5.24 6670.99 116.95 81.8 48.55 40,535.08

Table 10. Conversion of Land Types from 2020 to 2050EP (km2).

Cl Shr Sp Oth Cult Gr Wat Constr Un

Cl 376,941.9 515.61 74.16 284.3 4127.84 4854.85 50.62 27.19 248.59
Shr 321.41 28,882.61 11.11 14.78 682.76 184.08 13 8.15 117.83
Sp 1934.06 60.85 20,055.05 135.48 590.46 368.51 10.3 12.18 34.93

Oth 138.67 14.82 38.18 4295.95 3.34 70 0.21 7.26 8.06
Cult 6425.12 487.42 60.68 56.43 284,934.9 1237.56 111.78 1000.01 1139.77
Gr 22,647.28 304.62 130.7 129.49 3577.53 70,436.31 232.07 37.34 895.91

Wat 166.21 110.79 6.69 1.18 2913.05 128.31 15,474.72 112.33 2180.17
Constr 321.3 32.81 6.24 0.65 2846.75 115.81 17.39 21,095.38 112.55

Un 1950.38 44.5 4.04 0.45 4415.82 2630.77 192.48 40.11 38,791.88

NCF land use conversion will be relatively stable, with closed forest land and culti-
vated land being the most actively evolving land types. Grassland and construction land
were the main sources of arable land expansion (Figure 10). The change in construction
land in northeast China was unique. The analysis of remote sensing images and population
movement data reveals that the NCF had a large rural to urban population movement,
and many rural construction lands have disappeared and transformed into grassland and
cropland in the past 10 years. This situation is likely to persist. Cultivated land was the
main source of land for urban expansion. Although this is strictly restricted in China,
the mechanism of linking land increases and decreases solves the problem. The capacity
of rural construction land to be converted into cultivated land is transferred to the pro-
cess of urban expansion. Although grassland has important ecological and production
value, its conservation priority may be lower than that of forests and cultivated land.
Therefore, in the process of future land use change, we set the grassland area to a state of
continuous reduction.
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Figure 8. Future land expansion under different scenarios.
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Figure 9. Future land simulations under different scenarios ((A–C) are three selected areas).

331



Remote Sens. 2022, 14, 3653

 

Figure 10. Future land use conversion relationship ((a,b) represents 2030, 2050, respectively. The
beginning of the arrow indicates the land proportion in the base year, and the arrow points to the
land proportion in the target year).

3.4. Spatial and Temporal Changes in Forest Carbon Stocks
3.4.1. FCS Evolution in a Historical Period

Based on future land use raster data simulated by the PLUS model and historical
raster data, we estimated the overall carbon stock of NCF forests from 1980 to 2050 using
the InVEST model (Figure 11). In 2020, the FCS of NCF was 8564.76 Mt, and the carbon
stocks of the four forest stands accounted for 93.40%, 4.46%, 2.10%, and 0.05% of the total,
respectively. The proportions of the four carbon pools were 31.83%, 0.56%, 64.96%, and
2.65%, respectively, and soil carbon pools were the most important components of the
NCF forest ecosystem carbon stocks. In terms of spatial distribution, the FCS shows the
following characteristics: Changbai Mountains > Greater Khingan Mountains > Lesser
Khingan Mountains. Owing to the production attributes, the evolution of woodlands in
the Lesser Khingan Mountains was more frequent, which led to the instability of FCS.

In terms of temporal trends, the change in FCS from 1980 to 2020 was roughly divided
into three phases. The first phase was the rapid decline phase from to 1980–1995. During
this period, the high-intensity forestry exploitation in the NCF led to a rapid decline in
FCS. The second phase was the gradual slowdown phase from 1995 to 2010, when the
rate of forest area decay began to slow down owing to the implementation of a series of
ecological protection projects. The third stage was the rapid recovery period from 2010 to
2020. Through these efforts, the stability of the NCF ecosystem was further strengthened
and the forested land area gradually recovered to the level of the 1990s.

The spatial evolution of the FCS in the NCF showed a trend from dispersion to
concentration and an overall improvement. The FCS reduction had a tendency to transition
from Changbai Mountains to Greater-Khingan-Mountains. From 1980 to 2000, the FCS
of the three major regions decreased to varying degrees and was mainly concentrated in
the Lesser Khingan Mountain area. From 2000 to 2010, it was generally stable; however,
from 2010, the FCS in the Changbai Mountain area began to increase steadily, and the
Lesser Khingan Mountain area became stable. The FCS in the northern part of the Greater
Khingan Mountains began to decline because a large area of forest land in Mohe City was
degraded to grassland (Figure 12).
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Figure 11. Change trend of forest carbon storage and spatial distribution of carbon storage in
2020 (Mg/hm2).

 
Figure 12. Stages of FCS in NCF (Mg/hm2).

3.4.2. Characteristics of Future Changes in FCS

Compared to 2020 and 2030, the FCS evolution trend of the NCF will be basically the
same. The northern part of the Greater Khingan Mountains and the eastern part of the
Sanjiang Plain were the main areas where the FCS decreased. The vast area south of the line
from Changchun City to Yanbian Prefecture showed a relatively clear trend of increasing
carbon storage. By 2050, this trend will intensify further. Areas with relatively concentrated
cities, such as the western Songnen Plain and the northern Changbai Mountains, also
began to experience a decrease in FCS to varying degrees, whereas the Greater Khingan
Mountains will replace Changbai Mountains as the area with the most significant increase in
FCS (Figure 13). If strict natural forest protection measures are implemented, it is expected
that by 2050, the FCS of the NCF will return to 1980 levels.
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Figure 13. Spatial distribution of FCS in NCF (Mg/hm2).

4. Discussion

4.1. Limitations, Uncertainties, and Prospects

The main limitations of this study are related to the accuracy of the data and the
model. Although we divided the forest into more detailed types according to the degree
of density to reflect the carbon density changes caused by different tree ages, the data
accuracy directly affects the accuracy of the final carbon stock estimation, which is an
unavoidable drawback of using remote sensing images for ecosystem service valuation.
Another critical point is the selection of land use impact factors, which is worth discussing.
The LUCC is a combination of multiple influences and complex evolutionary processes.
This study focuses on the spatial evolution process of forests, but there are many factors
that affect changes in forest ecosystems, such as nitrogen deposition, climate change, and
CO2 fertilization [41,42]. Although some factors are widely debated [43], for larger scale
regions, scientifically available and accessible data sources remain an important support for
assessing ecosystem sustainability. The PLUS model, although capable of obtaining more
reliable simulation results in different future scenarios, presupposes the setting of land use
target values, which gives rise to many uncertainties. Many studies have been conducted
on the simulation of land use under multiple pathways of SSP, and, in general, ecological
land, especially forest land, is basically reduced under the fossil-fueled development (ssp5)
pathway [44–46]. Various organizations and institutions, such as the IPCC, World Bank,
and IIASA, have set different development factors for different paths. However, these
assessment results are for regional analyses at the national or even continental level, and
the accuracy of the study results is questionable if such parameters are set at the local level
without considering regional specificity. Although the InVEST model can estimate carbon
stocks with less information, it assumes that none of the LULC types in the landscape are
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gaining or losing carbon over time. Therefore, in this study, forests with different canopy
cover levels were set up instead of forests with different age classes to minimize the error,
but this may be imperfect.

Simultaneously, the InVEST model is overly reliant on the carbon density values of
individual land types. In this study, as much as possible, we refer to the measured values of
forest ecosystem carbon stocks by many scholars, but limited to a large study area, which
cannot fully take into account the variability of vegetation carbon density owing to different
tree species, latitudes, and climates. For forest biomass carbon estimates, forest type and
tree species have a strong influence on carbon stock estimates. Forest LULC types can be
stratified by elevation, climate zone, or time interval since major disturbance. Of course,
this more detailed approach requires data describing the carbon stocks in each carbon
pool for each of the finer LULC categories. For soil organic carbon (SOC) and apoplastic
carbon estimates, total soil C increased significantly with altitude [47]. This is because
the key processes of SOC are temperature dependent. To improve SOC and apoplastic
carbon estimation, surveys by biomes, climatic zones, vegetation groups, and soil groups
are needed and are regularly measured with inventories such as stem volume. Thus, forest
carbon stocks are closely linked to environmental conditions and the effects of seasonal
and climatic variables need to be considered.

The coupled PLUS and InVEST models are process-based ecosystem models, and the
approach describes the effects of forest management and human activities on the forest
carbon cycle in a single way, except for the uncertainties in the model structure, parameters,
and drivers. For example, we can only generalize the effects of afforestation and forest
restoration on forest carbon stocks by setting different forest area. Related studies have
shown that the effect of forest restoration on soil carbon varies significantly by tree species
and soil properties [48], and management activities that may reduce SOC content, such
as thinning or harvesting, should also be considered [49]. Considering that the recovery
of forest carbon stocks in northeastern forest areas in the past decades was mainly due
to ecological projects such as afforestation and forest conservation, the development of
human-natural coupled ecosystem carbon cycle models is crucial to accurately assess the
carbon sequestration potential of forests.

Forest carbon stock estimation methods need to be more comprehensive and accurate.
With the development of technology, the integration of LiDAR and VHR satellite imaging is
a good combination for better biomass mapping and spatial accuracy. With the availability
of higher resolution remote sensing imagery at various scales, this integration of multisen-
sory techniques can improve the accuracy of regional forest carbon sink estimation [50].
In particular, with further developments in the field of deep learning, some convolutional
neural network algorithms (CNN) may have the ability to estimate forest carbon stocks
in combination with remotely sensed images. However, optimizing and validating the
accuracy of long-duration forest carbon cycle simulation models remains a great challenge
and biogeochemical processes, including photosynthesis, carbon uptake, allocation and
release, should be incorporated into the models.

The atmospheric inversion method has the advantage of near real-time assessment of
the extreme response of large-scale terrestrial carbon sinks to climate change. However,
the current limitation of atmospheric inversion of terrestrial carbon sinks in China is the
lack of long-term atmospheric CO2 concentration observation data, let alone regional-
scale carbon flux estimation with high spatial resolution [51]. The main reason is the
current lack of domestic scientific observation satellites to provide advanced remote sensing
CO2 column concentration data, and only TANSat satellites are currently used for this
purpose. Therefore, the development of a new generation of domestic high spatial and
temporal resolution greenhouse gas concentration satellites, the establishment of high-
resolution radiative transfer models and molecular spectral databases, the improvement of
CO2 column concentration observation accuracy, and the enhancement of our inversion
capability effectively on the calculation of our forest carbon sink.
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4.2. Carbon Effects from Natural Forests

Afforestation and adaptive forest management to increase forest biomass are con-
sidered to be the most direct and effective ways to reduce atmospheric CO2. However,
with the implementation of forest ecological conservation projects in the past 30 years,
the space for suitable afforestation in the NCF is extremely limited. Related studies have
shown that restored primary forests can maximize biomass and capture more carbon in the
long term while conserving biodiversity [52,53]. Therefore, strengthening forest tending
and restoring degraded forests is an inevitable choice to significantly improve the carbon
effect of NCF. Intact old-growth forests are a major long-term carbon sink because of their
complex structure, over-mature forests, stable soils, and resilience to fire, drought, pests,
and diseases [54]. Although governments at all levels have been strengthening NCF natural
forest conservation efforts, the loss of natural forests cannot be easily compensated for by
human intervention [55,56]. Most forest ecosystems require up to 100 years to recover to
their original levels of ecological services after destruction [57]. Therefore, it is crucial to
protect the remaining natural forests. However, NCF needs to achieve trade-offs between
timber production goals and forest conservation, justifying trade-offs based on sound
science and best practices to achieve the highest and best outcomes [58]. The basic principle
of not harming local communities, native ecosystems, and vulnerable species should be
followed to achieve synergistic production and ecological goals [59]. Natural forest conser-
vation requires the selection of appropriate natural restoration methods for different areas,
which can be broadly classified as no intervention or passive restoration, low intervention
(including prevention of further damage), intermediate intervention (selective planting of
missing species and auxiliary natural regeneration), and high intervention (including the
framework species method and application of the nucleation method) depending on the
degree of human intervention. In the northeast region, the protection and management
of the original natural forests must be strictly enforced. In the key development areas of
the state-owned forest area, natural over-cutting forests are protected by enclosures, and
for different vegetation levels, operation methods such as strip-shaped gradual cutting,
group-shaped selective felling, and single-tree selective felling are adopted to maintain
continuous forest coverage and a continuous supply of wood.

4.3. Value Transformation of Forest Carbon Sequestration

Reducing emissions from deforestation and forest degradation in developing countries,
coupled with sustainable forest management and the protection and enhancement of FCS
(REDD+), is an important part of global efforts to mitigate climate change. The sustainability
of forest restoration lies in the fact that the value of ecological services generated by forest
restoration is greater than the economic and social value generated by changing forest
cover. However, there are still many problems with the process of realizing ecosystem value
services, but this does not change their role in achieving the UN Sustainable Development
Goals (SDGs) and their bright future prospects [60]. REDD+ has made some attempts to
monetize forest carbon sinks, but there have been barriers to applying REDD+ to incentivize
forest restoration because of regional differences in development levels, especially the
instability of carbon trading prices [61]. China has already established a national carbon
emissions trading market [62], but it is still in its infancy and many trading mechanisms
are still imperfect; trading is mainly focused on the energy sector and does not involve
forestry. Nevertheless, it provides an opportunity to realize the economic value of forest
carbon sequestration in the future. In this study, we do not hide our concern about the
future economic and social development situation of NCF, and this deteriorating trend
seems to show no signs of improvement. However, the practice of carbon forestry seems
to offer new options for the future development of NCF [63]. At present, for NCF and
even China, the main obstacle to realizing the value of forest carbon sink is the lack of
a unified and perfect forest carbon trading market and a relatively controllable trading
price. Many scholars have explored the relationship between forest carbon sequestration
and carbon prices by drawing on international experience and related practices [64,65],
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but there are still some challenges that may hinder the successful implementation of these
techniques. This study attempts to comprehensively estimate the FCS of the NCF, but the
results obtained cannot be used as the final carbon stock of the NCF. We ignored the carbon
release from wood products, harvest residues, litter, and other components, and carbon
fluxes from soils are often difficult to specify. These factors contribute to the instability in
forest carbon sequestration. At the same time, the FCS may have been overestimated in this
study because of the uncertain effects of drought-induced tree mortality, natural disasters,
insect infestation, fire, or changes in existing forest areas.

5. Conclusions

From 1980 to 2000, there was a significant decline in forested land and grasslands in
the NCF. The decrease in forested land is mainly concentrated in the south-central Lesser
Khingan Mountains and Changbai Mountain areas. The arable land area grew more rapidly.
From 2000 to 2020, the decreasing trend in forested land was alleviated and began to show
slow growth, mainly concentrated in the Changbai Mountain area. The transformation
between the various land types was relatively stable. Through the simulation of future
land use, it was found that the expansion preference areas of various land types in the NCF
were relatively concentrated. Forest expansion was mainly concentrated in the Greater
Khingan Mountains, and the probability of partial forest land conversion to cultivated land
in the Lesser Khingan Mountains is relatively high. The growth of cultivated land was
mainly concentrated in the Sanjiang and Songnen plains. The expansion of construction
land is mainly concentrated around the three provincial capital cities, accompanied by the
transformation of a large amount of rural construction land into urban construction land.
Forest land and cropland in the NCF were the most active land types, and the two land
types were most closely interconverted. Owing to the mandatory food production and
forest conservation attributes of NCF, the grassland area was in a state of reduction in all
three models. Combining the current and future development trends of NCF, we believe
that the EP scenario is the most suitable and likely development model.

The FCS of NCF was mainly contributed by closed forest land, and the aboveground
and soil carbon pools accounted for 96.79% of the forest carbon pool. The time change
showed a U-shaped trend of decline to growth, with an inflection point occurring in 2010.
The loss of FCS was mainly concentrated in the south-central Lesser Khingan Mountains
and northern Greater Khingan Mountains regions, mainly resulting from forestry exploita-
tion and forest degradation, respectively. The FCS in the Changbai Mountain region
remained relatively stable and grew faster after 2010. Under the EP scenario, the FCS is
expected to recover to 1980 levels in NCF by 2050. By implementing a series of natural
forest conservation measures, the NCF’s forest carbon sequestration capacity will be greatly
enhanced, which can help the Chinese government meet its carbon neutrality commitments.
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Abstract: Accurate estimation of forest height is crucial for the estimation of forest aboveground biomass
and monitoring of forest resources. Remote sensing technology makes it achievable to produce high-
resolution forest height maps in large geographical areas. In this study, we produced a 25 m spatial
resolution wall-to-wall forest height map in Baoding city, north China. We evaluated the effects of three
factors on forest height estimation utilizing four types of remote sensing data (Sentinel-1, Sentinel-2,
ALOS PALSAR-2, and SRTM DEM) with the National Forest Resources Continuous Inventory (NFCI)
data, three feature selection methods (stepwise regression analysis (SR), recursive feature elimination
(RFE), and Boruta), and six machine learning algorithms (k-nearest neighbor (k-NN), support vector
machine regression (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost), and categorical boosting (CatBoost)). ANOVA was adopted to quantify the effects of
three factors, including data source, feature selection method, and modeling algorithm, on forest height
estimation. The results showed that all three factors had a significant influence. The combination of
multiple sensor data improved the estimation accuracy. Boruta’s overall performance was better than SR
and RFE, and XGBoost outperformed the other five machine learning algorithms. The variables selected
based on Boruta, including Sentinel-1, Sentinel-2, and topography metrics, combined with the XGBoost
algorithm, provided the optimal model (R2 = 0.67, RMSE = 2.2 m). Then, we applied the best model to
create the forest height map. There were several discrepancies between the generated forest height map
and the existing map product, and the values with large differences between the two maps were mostly
distributed in the steep areas with high slope values. Overall, we proposed a methodological framework
for quantifying the importance of data source, feature selection method, and machine learning algorithm
in forest height estimation, and it was proved to be effective in estimating forest height by using freely
accessible multi-source data, advanced feature selection method, and machine learning algorithm.

Keywords: forest height; multi-source data; feature selection; machine learning algorithm

1. Introduction

Forest is an important part of terrestrial ecosystems and plays a vital role in maintain-
ing the global ecological balance, promoting global biological evolution and community
succession [1–3]. As an important part of the structure parameters of the forest, forest
height is not only an essential indicator for the quantitative estimation of forest biomass
and terrestrial carbon circulation but also important auxiliary information for evaluating
forest resources and establishing earth system models [4,5]. Traditional forest height estima-
tion mainly depends on the means of manual field surveys. Although the ground survey
method has high accuracy, it is timing and force-consuming, and it is difficult to achieve
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large-range and long-span forest height estimation and dynamic change monitoring [6].
The increasingly developed remote sensing technology has the advantages of multi-time
phase, multi-scale, multi-sensor, and rapid macro monitoring. It has become an important
way to estimate forest height by constructing empirical models combining remote sensing
data and ground-measured data [7].

At present, the most recent advancement in remote sensing technology advocates
producing forest height maps of large geographical areas with high resolution. Multispec-
tral data [8–10], Light Detection and Ranging (LiDAR) [11–14], Synthetic Aperture Radar
(SAR) [15,16], and other remote sensing data [17] were widely applied. LiDAR data are
often regarded as the best remote sensing data source for forest structure parameters due
to its direct ability to detect forest vertical structures; however, terrestrial laser scanning
(TLS) and airborne laser scanning (ALS) are typically limited by high application costs [18],
and it is difficult to generate wall-to-wall forest height maps in large areas due to the
sparse measurements in the space of satellite LiDAR [19] Compared to lidar data, optical
data are more susceptible to the influence of weather conditions and has issues such as
limited sensitivity and low saturation in dense vegetation areas, SAR data are susceptible
to terrain and speckle noise, and there is a problem of backscatter signal saturation in
high vegetation coverage areas as well as optical data. Nevertheless, the backscattering
coefficient of SAR and the rich spectral information of the optical data can also reflect the
information about the structure and function of the forest [20,21]. Most importantly, optical
data and SAR data can be obtained frequently, continuously, and at a low cost from various
spaceborne platforms. In the past few years, numerous studies have shown that spectral
reflectance, vegetation index, and spatial texture information extracted from Sentinel-2
images, backscattering coefficients, indices, and texture features calculated from Sentinel-1
C-band, ALOS-2 PALSAR-2 L-band images, and topographic metrics were effective in
estimating forest canopy height and other forest parameters [22–26].

As mentioned above, there are many potential feature variables when estimating forest
height using multi-source remote sensing data. High-dimensional feature variables will
increase the computational load, data noise, and interference, and the problem of complex
collinearity between variables will cause the redundancy of variables, which will affect
the efficiency and accuracy of modeling [27,28]; therefore, the correct and efficient feature
selection phase is an essential step for forest height estimation. However, because of the
diverse characteristics of the sensor data and the complex biophysical environment in the
forestry areas, the different feature selection methods correspond to different data structures
and features, what effect of feature selection method on forest height estimation, and how
to determine the best feature selection method is still poorly understood [27]. Stepwise
regression analysis is the most commonly used variable selection approach in forest parameter
investigations and related studies have reported positive outcomes [29–31]. In addition, the
Boruta and recursive feature elimination are both well-established wrapper methods, which
have been widely applied in the study of forestry research in recent years [32–35]. Several
studies have been conducted to examine the impact of different feature selection strategies
in predicting forest characteristics [36,37]. Nevertheless, to our knowledge, there is rarely
research conducted to examine the impact of feature selection methods for different remote
sensing data sources when estimating forest height.

Another key factor of forest height estimation is the regression algorithm. Currently,
regression models used to estimate forest height can be divided into two categories: para-
metric and non-parametric algorithms. In the parametric model, there are quantitative
mathematical expressions between the independent and dependent variables, which are
intuitive and simple to understand. Multiple linear regression, stepwise regression, and
partial least squares regression are common parametric models; however, the parameter
model needs to meet the premise that the relationships between dependent and indepen-
dent variables have clear model structures, while the relationship between forest height
and remote sensing factors is typically quite complex, which limits the application of
parametric models [27]. Compared with parametric algorithms, non-parametric algorithms
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based on data mining, machine learning, and other mathematical theory and methods,
through the way of data-driven achieving complex nonlinear relationship prediction, are
widely used in forest height estimation, including k-nearest neighbor (k-NN), support
vector machine regression (SVR) and random forest (RF) [38–42]. Moreover, some decision-
tree-based ensemble algorithms, such as gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost), and categorical boosting (CatBoost), have performed well in
the estimation of forest aboveground biomass [43,44]; however, these algorithms are rarely
employed to estimate forest height, and their efficacy has yet to be evaluated.

In summary, to address the gaps mentioned above, we proposed a methodological
framework for forest height estimation and mapping using multi-source remote sensing
data (Sentinel-2, Sentinel-1, ALOS PALSAR-2, SRTM DEM), three feature selection methods
(SR, RFE, Boruta) and six machine learning algorithms (k-NN, SVR, RF, GBDT, XGBoost,
and CatBoost) in Baoding city, north China. The purposes of this study are as follows:

(1) To examine the influence of feature selection methods of different remote sensing
data sources on forest height estimation, and to explore the optimal feature selection
method;

(2) To evaluate the performance of machine learning algorithms based on different
feature selection methods in forest tree height estimation;

(3) To generate a forest height distribution map of 25 m spatial resolution in Baoding
city, and to analyze the important factors in forest height estimation.

2. Materials and Methods

2.1. Study Area

The study area is located in Baoding city in the Midwest of Hebei province, China
(38◦14–39◦57′N, 113◦45–116◦19′E), covering an area of about 2,211,200 hectares (Figure 1). It
is situated near the eastern foot of the northern Taihang Mountains and on the western part
of the Jizhong plain. The terrain is inclined from northwest to Southeast. The landforms in
the west are mountainous, which are composed of mountains and hills; the landforms in the
east region belonging to the North China Plain are flat. Baoding is in the warm temperate
continental monsoon climate zone, with an annual average temperature of 12.7 ◦C and
2511 h of sunshine per year, accounting for 56% of total sunshine hours. The annual frost-
free period is about 165–210 days. The period from June to August each year is a period of
intensive precipitation, and the average annual precipitation duration is 68 days with an
average precipitation of 489.9 mm. The forestry area of Baoding is nearly 590,000 hectares,
accounting for approximately 28% of the administrative area of the city, and the forest stock
of the whole city reaches 13.7 million cubic meters. Forest types mainly include coniferous
forest, broadleaf forest, and mixed conifer-broad-leaf forest. Among them, coniferous trees
are mainly Chinese pine (Pinus tabulaeformis) and oriental arborvitae (Platycladus orientalis);
Broadleaf trees mainly include populus tremula (Populus davidana), Mongolian oak (Quercus
mongolica), white birch (Betula platydiana), and acacia (Robinia pseudoacacia).

2.2. Methodological Framework of This Study

In this study, we proposed a methodological framework utilizing different feature
selection methods and machine learning algorithms to establish forest height estimation
models based on multi-source satellite data in the forest regions of Baoding city, north
China. Our methodological framework consists of four primary components (Figure 2):
(1) data preparation and preprocessing, (2) feature variables selection, (3) model building
and assessment, and (4) forest height mapping and important factors analysis.

2.3. Data Source and Preprocessing
2.3.1. Field Data Collection

The field data utilized in this study is the ninth National Forest Resources Continuous
Inventory (NFCI) data of Hebei Province. The field survey was conducted in November
2016. The sample plots were systematically arranged at an interval of 4 km × 4 km along a
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vertical and horizontal coordinate system. The sample plot was a square plot with a side
length of 25.82 m, and each sample plot area was about 0.067 ha.

 

Figure 1. Overview of the study site. (a) Location of the Hebei province in China; (b) location of
the Baoding city in Hebei province; (c) general land cover classes (forest, non-forest, and water) and
distribution of field plots in Baoding city.

Figure 2. Flowchart of the proposed methodology for estimating forest height in Baoding city using
three feature selection methods and six machine learning algorithms based on multi-source remote
sensing data.
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Each tree with a diameter at breast height (DBH) higher than 5 cm had its DBH,
tree height, and crown height measured, as well as the land use, dominant tree species,
tree species composition, average DBH, and average tree height were recorded. There
were 1210 sample plots in Baoding city, and 128 sample plots were finally collected after
removing the sample plots of non-forest land and inadequate information. The average tree
height of the forest sample plot ranged from 3.00 m to 24.50 m, and the average, median,
and standard deviation (std) were 8.57 m, 7.30 m, and 3.89 m, respectively. Among the
128 sample plots, 91 sample plots (70%) were randomly selected for training, and the
remaining 37 sample plots (30%) were used as the validation data set for the machine
learning model (Table 1).

Table 1. The statistics of forest height in training, testing, and total sample datasets.

Dataset
Sample

Size
Min (m) Max (m) Mean (m)

Median
(m)

Std (m)

Training 91 3.00 24.50 8.57 7.50 3.92
Validation 37 3.20 18.40 8.58 7.20 3.87

Total 128 3.00 24.50 8.57 7.30 3.89

2.3.2. Sentinel-2 Multispectral Imagery and Preprocessing

The multispectral images used in this study were Sentinel-2 satellite images from
the European Space Agency (ESA). The multispectral imager instrument carried by the
Sentinel-2 satellite has the advantages of high spatial resolution, excellent multispectral
imaging capacity, wide wing, and short revisit cycle, which can be used to monitor the
distribution and health of forests. The Sentinel-2 satellite image incorporates 13 bands,
with spatial resolutions of 10 m for bands 2–4 and 8 (blue: 490 nm, green: 560 nm, red:
665 nm, and NIR: 842 nm), 20 m for bands 5–7, 8A, 11, and 12 ((red edge 1: 705 nm, red
edge 2: 740 nm, red edge 3: 783 nm, narrow NIR: 865 nm, SWIR1: 1610 nm, and SWIR2:
2190 nm), and 60 m for the other three bands (coastal aerosol: 443 nm, water vapor: 940
nm, and SWIR cirrus: 1375 nm). The bands with spatial resolutions of 10 m and 20 m were
employed in this study.

In order to match the time of sample plot data collection, we downloaded seven
Sentinel-2 Level-1C images covering the study area with less than 10% cloud from the
United States Geological Service’s Earth Explorer (USGS) (https://earthexplorer.usgs.gov/
(accessed on 24 March 2022)) which were obtained in the growing season in August 2016.
Since the Sentinel-2 Level-1C image is the top atmospheric reflectance image, we used the
atmospheric correction processor (version 2.5.5, European Space Agency, Paris, France) of
Sentinel Application Platform (SNAP) software (version 8.0, ESA, Paris, France) to acquire
the Level-2A products, the bottom-of-atmosphere-corrected reflectance images. To match
the field plot sizes, we resampled the preprocessed Sentinel-2 images to 25 m pixel sizes.
Then, mosaicking and clipping were completed to cover the study area.

2.3.3. Synthetic Aperture Radar (SAR) Data and Preprocessing

We used synthetic aperture radar data from two different data sources, including the
Sentinel-1 C-band imagery and ALOS-2 PALSAR-2 yearly mosaic imagery.

Sentinel-1 is composed of two polar-orbiting satellites, and the revisit period of a
single satellite is 12 days. A total of 10 sentinel-1 ground range detected (GRD) images
with good quality from October 2016 were obtained from the Google earth engine (GEE)
cloud computing platform. We acquired the dual-polarization (VV and VH) images in
Interferometric Wide swath (IW) mode with an ascending orbital pass. These images
in GEE were already processed by the ESA Sentinel-1 toolbox, including thermal noise
removal, radiometric correction, terrain correction, and conversion of the backscattering
coefficient to decibels [45]. Here, we further processed them according to the framework
proposed by Mullissa et al. in 2021 [46], including border noise correction, refined Lee filter
for speckle filtering, and radiometric terrain normalization.
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Due to the fact that PALSAR- 2 images in Baoding city were not free, the L-band SAR
imagery had not been applied for this study; however, the Japan Aerospace Exploration
Agency (JAXA) provides the 25 m spatial resolution ALOS/PALSAR yearly mosaic, which
is produced by mosaicking SAR images measured by PALSAR-2 available each year [47].
We obtained the mosaic data in the year 2016 from GEE in this study. This SAR imagery was
already ortho-rectificatied by using the 90 m SRTM Digital Elevation Model. The data were
stored as 16-bit digital numbers (DN), which were converted to gamma naught values (γ0)
in decibel unit (dB) using the following equation: γ0 = 10log10(DN2) − 83.0 dB. All of the
SAR images were resampled to the same pixel sizes to ensure consistency with other data.

2.3.4. Topographic and Ancillary Data

The digital elevation model (DEM) reflects the abundant terrain information of the
mountain region and provides great assistance to forest height estimation [23]. In this
study, we used the Shuttle Radar Topography Mission (SRTM) V3 product, which was
provided by NASA JPL at a resolution of approximately 30 m. Furthermore, we applied
the FROM-GLC 2017 (Finer Resolution Observation and Monitoring of Global Land Cover
at30-m resolution, 2017v1) product to define the forest regions of the study area [48].

2.4. Feature Variable Extraction

Based on the remote sensing data sources mentioned above, a total of 153 feature
variables were extracted in this study (Table 2). For Sentinel-2 data, we extracted 10
multispectral variables from the average surface reflectance of 10 multispectral bands with
spatial resolutions of 10 m and 20 m. Then, 20 vegetation indices derived from Sentinel-2
data, which were widely used in previous forest studies, were calculated [49–51]. Moreover,
the texture features of 10 multispectral bands, including mean, variance, homogeneity,
contrast, dissimilarity, entropy, second moment, and correlation, were calculated by using
the gray level co-occurrence matrix (GLCM) with a 3 × 3 window. Finally, a total of
110 feature variables derived from Sentinel-2 data were obtained. As to SAR data, we
extracted VH and VV backscattering coefficients from Sentinel-1 imagery and HH and HV
backscattering coefficients from ALOS PALSAR-2 yearly mosaic, respectively. After that,
the ratio and normalized polarized difference of VH, VV, and HV, HH were calculated as
candidate variables, respectively. GLCM was also used to compute the texture features of
VH, VV, HH, and HV backscattering coefficients by using a 3 × 3 window. Finally, 40 SAR
feature variables were obtained. In addition, we extracted elevation, slope, and aspect from
the DEM image as terrain factors. To analyze the impact of different data sources on forest
height estimation, five combination scenarios were designed in this study (Table 3).

2.5. Feature Variable Selection

In this study, we employed stepwise regression analysis, recursive feature elimination,
and Boruta methods to select and analyze feature variables from five combination scenarios,
with all field measurements serving as a reference.

2.5.1. Stepwise Regression Analysis

In the past few decades, stepwise regression analysis (SR) has been widely used for
feature selection for forest parameters estimation studies [22,52–54]. The basic principle of
stepwise regression is to successively add the most contributing predictor variables in order.
After adding each new variable, all variables that no longer improve the model fit were
removed. The program will stop running until no variables are selected or dropped [31]. In
our research, we screened the best subset of variables by iterative both-direction stepwise
regression based on the Akaike information criterion (AIC) and ensured the p-values of all
the selected variables were significant (p < 0.05) [55]. This procedure was performed in R
4.2.0 using the “MASS” package [56].
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Table 3. Different scenarios of feature variable combinations for forest height modeling.

Scenario ID Variable Combination Short Name

1 Sentinel-2 s2

2 Sentinel-2, SRTM DEM s2to

3 Senitnel-1, Sentinel-2,
PALSAR-2 mosaic s1s2p2

4 Sentinel-1, PALSAR-2 mosaic,
SRTM DEM s1p2to

5
Sentinel-1, Sentinel-2,

PALSAR-2 mosaic, SRTM
DEM

s1s2p2to

2.5.2. Recursive Feature Elimination

Recursive feature elimination (RFE) is a wrapper-based feature-ranking algorithm
for determining the best feature subset [57]. It is essentially a process that repeatedly
builds a model until an optimal subset of features is selected. Based on the screening
results, the features with the smallest coefficients are deleted first, and the procedure is
repeated in the remaining set of features until all features are traversed by the algorithm [58].
During the process of selection, the root mean square error and standard deviation error
of 10-fold cross-validation were used to determine the feature variable subset. Although
many feature selection methods fusing RFE and other algorithms were proposed, previous
research emphasized that RFE combined with random forest could provide unbiased and
stable results and improve accuracy [59]; therefore, we used the “rfe()” function of the
“caret” package in R 4.2.0 to realize the procedure with the method “Repeatedcv”, repeat
“10”, and the function “random forests (rfFuncs)”.

2.5.3. Boruta

The Boruta algorithm is a wrapper built around the random forest classification algo-
rithm implemented in the R package “randomForest”. Its core idea is to construct shadow
features by shuffling the original real features and aggregate the original features and
shadow features as the feature matrix for training, and then, with the feature importance
score of shadow features as a reference, the feature set related to the dependent variable is
selected from the original real features. The Boruta algorithm consists of the following steps:
First, to create the shadow attributes by shuffling the values of the original object feature
and splice the shuffled features with the original real features to form a new feature matrix.
Next, use the new feature matrix as input and run the random forest classifier and compute
the Z scores of the real feature and shadow feature. Thirdly, to find the maximum Z score
among shadow attributes (MZSA), features that were significantly greater than MZSA
were labeled as “important”, significantly smaller than MSZA as “unimportant”, and were
permanently removed from the feature set. Lastly, to repeat the process until all the features
were classified as “important" or "unimportant”. This procedure was performed in R 4.2.0
using the Boruta packages [60].

2.6. Machine Learning Algorithms

In this study, we employed k-nearest neighbor (k-NN), support vector machine regres-
sion (SVR), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient
boosting (XGBoost), and categorical boosting (CatBoost) machine learning algorithms to
model with the training data serving as the input.

2.6.1. K-Nearest Neighbor

The k-nearest neighbor (k-NN) algorithm is a simple and efficient non-parametric
method, which can effectively avoid the collinearity problem of the independent variables.
It applies to remote sensing data parameter estimation with non-normal distribution
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and unknown density function and is widely used in forestry investigations around the
world [61,62]. The core idea of this algorithm is to take a point in the feature space as the
reference object, record the attribute values of the k nearest sample points from the point,
and calculate the average value of its inverse distance weight to get the predicted value of
this object.

2.6.2. Support Vector Machine Regression

The support vector machine algorithm was proposed based on the VC dimension
theory and the structural risk minimization principle [63]. It was initially applied for
classification in forest applications, and recently also showed reliable advantages in forest
parameter retrieving [64,65]. The basic idea of SVR is to map the features of training data
to a high-dimensional feature space by defining a kernel function and finding an optimal
hyperplane of linear regression in this feature space to fit the eigenvalues. In the case of
limited sample information and high dimensions of feature variables, it can minimize the
sampling error and has good generalization ability.

2.6.3. Random Forest

Random forest (RF) is a modified ensemble machine learning algorithm based on
decision trees proposed in 2001 [66]. Numerous studies have demonstrated that RF can
accurately estimate forest metrics [22,67–69]. RF constructs a series of regression trees, each
of which is generated by randomly repeated sampling bootstrap training samples that can
be put back, which makes some data may be used many times, while other data may not be
used. Usually, 70% of the training samples are selected as the modeling samples, and the
remaining 30% samples are used to evaluate the sample prediction error, which is called
out-of-bag error (OOB error). At the same time, it randomly selects variables at the nodes
of each tree. The procedure stops running when the trees without pruning grow to the
maximum scale, and the final prediction accuracy takes the average weight of all prediction
regression trees. Because of its random characteristic, this method can enhance the stability
of the model, improve the prediction accuracy, and increase the robustness of the model
itself to noise or overfitting phenomena to a certain extent.

2.6.4. Gradient Boosting Decision Tree

Gradient boosting decision tree (GBDT) is an integrated decision tree algorithm based
on the iterative ideas of gradient boosting first proposed by Friedman [70]. It first generates
a weak learner (usually a CART regression tree model), obtaining the residual of the input
after training, and then trains the next learner based on the residual generated by the
previous round of learners, iteratively. In the process of each iteration, each learner aims to
minimize the loss function, that is, to make the loss function always reduce the residual
along the descending direction of the gradient. Finally, the final prediction result is obtained
by accumulating the results of all weak learners. GBDT is very robust to outliers due to
the use of some robust loss functions, and in the case of relatively little tuning time, the
prediction accuracy can also be relatively high. Although GBDT is very popular in the field
of machine learning, it is rarely applied in the study of forest parameter estimation [43,71].

2.6.5. Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is an improved GBDT algorithm proposed
by Chen et al. in the Kaggle machine learning competition [72]. Compared with GBDT,
XGBoost has the following advantages: (1) Regular terms are added to the objective function
to control the complexity of the model and prevent the learned model from overfitting.
(2) The second-order Taylor expansion is used for the objective function, which makes the
definition of the objective function more accurate and easier to find the optimal solution;
(3) XGBoost builds all possible subtrees from top to bottom first and then prunes from
bottom to top in reverse. In this way, it is not easy to fall into the local optimal solution.
(4) XGBoost supports parallel processing. It sorts the data in advance before training
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and then saves it as a block structure. This structure is used repeatedly in subsequent
iterations, which greatly reduces the amount of calculation. Due to the advantages of
XGBoost, such as sparse data processing ability, greatly increasing algorithm speed, and
reducing computational memory in large-scale data training, it has recently attracted a lot
of attention. There were also some studies using XGBoost to estimate forest parameters
and achieved good results [43,73–75].

2.6.6. Categorical Boosting

Categorical boosting (CatBoost), as the name suggests, consists of categorical and
boosting, which is a novel gradient boosting algorithm implemented with oblivious trees
as the base learner proposed by Dorogush et al. [76]. On the one hand, CatBoost builds
fully symmetric trees. In each step, the leaves of the previous tree are split using the same
conditions. The feature segmentation pair with the lowest loss was selected and used for
nodes at all levels. This balanced tree structure facilitates an efficient CPU implementation
and reduces the prediction time. On the other hand, CatBoost uses the concept of rank-
lifting to train models on a subset of the data while computing the residuals on another
subset, thus preventing target leakage and overfitting. Compared with other algorithms
in the boosting family, CatBoost can automatically process discrete feature data, which is
suitable for regression problems with multiple input features and regression data containing
noisy samples. The model has stronger robustness and generalization performance and
performs better in algorithm accuracy. Although CatBoost outperformed other machine
learning algorithms in other fields [77,78], the effectiveness of this algorithm for forest
height estimation remains to be confirmed.

2.6.7. Tuning the Hyperparameters for the Machine Learning Algorithms

When estimating the forest height, the hyperparameters of the machine learning algo-
rithms can greatly affect the results of the model predictions; therefore, the hyperparameters
must be optimized for each algorithm before doing any further examination or comparison
using these algorithms. In this study, we utilized grid search technology to automatically
perform hyperparameter tuning. Six machine algorithms were hyperparameter tuned
based on the lowest model RMSE achieved by the 10-fold cross-validation techniques
repeated 5 times on the training dataset. This procedure was performed in R 4.2.0 using
the “caret” packages. Detailed information about the key tuning hyperparameters and
corresponding tuning parameters configurations for each algorithm were presented in
Table 4.

2.7. Model Evaluation

In our research, we randomly divided the plot data into two sets: training dataset
(70%) and validation dataset (30%). The training set was used to train and develop the
models, while the validation set did not participate in the model-building process and
was instead used to evaluate model performance. The best model was developed based
on the training set after hyperparameter tuning, and model performance metrics were
produced based on the validation set. The determination coefficient (R2, Equation (1)),
root mean square error (RMSE, Equation (2)), and relative root mean square error (rRMSE,
Equation (3)) were employed to evaluate the performance of different models. The higher
the R2 is, the lower the RMSE and rRMSE are, which means that the higher the prediction
accuracy is, the better the estimation result is.

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (1)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(2)
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rRMSE =
RMSE

y
× 100% (3)

where n is the total number of sample plots, ŷi is the predicted value, yi is the field
measurement value and y is the mean of the field measurement value.

Table 4. Tuning hyperparameters and corresponding configurations for each algorithm.

Algorithm Hyperparameter Description
Hyperparameter
Configurations

k-NN k the number of neighbors
considered.

(1–10)
at intervals of 1

SVR
C the cost of constraints violation (1–10)

at intervals of 1

gamma the parameter needed for all
kernels except linear

(0–0.2)
at intervals of 0.01

RF
mtry the number of predictor variables

randomly sampled at each split
(1–10)

at intervals of 1

ntree the number of trees (100–1000)
at intervals of 100

GBDT

ntree the number of trees (100–1000)
at intervals of 100

maxdepth the depth of the tree (1–10)
at intervals of 1

shrinkage the learning rate (0.01–0.1)
at intervals of 0.01

min terminal node the minimum samples required in a terminal node. (1–10)
at intervals of 1

XGBoost

max_depth the depth of the tree (1–10)
at intervals of 1

eta the learning rate (0.01–0.1)
at intervals of 0.01

gamma minimum loss reduction of the tree (0–1)
at intervals of 0.1

colsample_bytree the number of predictor variables
supplied to a tree

(0–1)
at intervals of 0.1

min_child_weight minimum number of instances (1–10)
at intervals of 1

subsample the number of observations
supplied to a tree

(0–1)
at intervals of 0.1

CatBoost

depth the depth of the tree

learning_rate the learning rate (0.01–0.1)
at intervals of 0.01

l2_leaf_reg the coefficient at the L2 regularization term of the cost
function

(1–10)
at intervals of 1

rsm the percentage of features to use at each split selection (0–1)
at intervals of 0.1

2.8. ANOVA Analysis

To assess the impact of different impact factors, including data sources, feature se-
lection methods, and modeling algorithms on forest height estimation, we applied the
analysis of variance (ANOVA) to quantify the impact of each factor and to identify critical
factors in forest height estimation. This procedure was performed in R 4.2.0.

2.9. Forest Height Mapping and Product Evaluation

First, the forest/non-forest mask generated from the FROM-GLC 2017 product was
used to obtain the forest distribution map of the study area. Then, the optimal model was
used for the wall-to-wall mapping of the forest height in Baoding city in 2016. After that,
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the forest height map derived from this study was compared with the existing global forest
canopy height map product (RMSE = 6.6 m, R2 = 0.62), which was generated by integrating
GEDI and Landsat data by Potapov et al. [40].

3. Results

3.1. Feature Variable Selected for Forest Height Modeling

In five different scenarios, three feature variable selection methods, stepwise regres-
sion analysis, recursive feature elimination, and Boruta were compared for forest height
modeling. The results of feature variable selection for different scenarios and different
methods are shown in Table 5. We could see that in each different scenario, the selected
feature variables based on different methods were unique. For example, in the “s1s2p2”
scenario, the feature variables of stepwise regression selected were mainly the texture
features of Sentinel-2 and PALSAR-2, whereas the main features chosen by RFE and Boruta
included spectral band reflectance, vegetation index, and texture features of Sentinel-2
and Sentinel-1. In the “s1p2to” scenario, the SAR feature variable screened by Boruta was
derived from Sentinel-1. However, this situation was just the opposite when screening
variables based on SR and RFE, the selected SAR variables were from PALSAR-2, and the
number of selected variables from PALSAR-2 acquired by SR and RFE was quite different.

Table 5. Five scenarios of feature variable selection result for forest height modeling.

Scenario
Name

Feature Selection
Method

Number of Selected
Variables

Name of Selected Variables

s2

Stepwise regression
analysis 9 b11, NDVIre2, b2_hom, b3_ent, b3_var, b4_ent, b4_var,

b5_hom, b11_mean;
Recursive feature

elimination 10 b2, b4, b5, CI, b2_con, b2_corr, b2_hom, b2_dis, b4_ent,
b4_sm;

Boruta 16 b2, b3, b4, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b3_mean,
b4_dis, b4_ent, b4_hom, b4_mean, b4_sm, b12_mean;

s2to

Stepwise regression
analysis 14

b3, NDVIre2, b2_corr, b2_sm, b3_mean, b4_ent, b4_sm,
b5_mean, b8_dis, b8_var, b11_var, b12_corr, b12_var,

elevation;
Recursive feature

elimination 10 b2, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b4_ent,
elevation, slope;

Boruta 18
b2, b4, b5, CI, NDVI, b2_con, b2_corr, b2_dis, b2_hom,

b3_mean, b4_ent, b4_hom, b4_mean, b4_sm, b4_var, b5_ent,
elevation, slope;

s1s2p2

Stepwise regression
analysis 8 NDVIre2, b2_hom, b4_ent, b5_sm, VV_dis, HH_con,

HH_mean, HV_var;
Recursive feature

elimination 12 b2, b4, b5, b2_corr, CI, b2_con, b2_dis, b2_hom, b4_ent,
VH_con, VH_dis, VH_hom;

Boruta 21
b2, b4, b5, ARVI, CI, NDVI, b2_con, b2_corr, b2_dis,

b2_hom, b2_mean, b2_sm, b3_mean, b4_ent, b4_hom,
b4_sm, b4_var, b5_mean, VH_con, VH_dis, VH_hom;

s1p2to

Stepwise regression
analysis 6 HH_mean, HV_con, HV_ent, HV_sm, HV_var, elevation;

Recursive feature
elimination 3 HH_con, elevation, slope;

Boruta 3 VV_var, elevation, slope;

s1s2p2to

Stepwise regression
analysis 15

NDVIre2, b2_corr, b3_ent, b3_var, b4_ent, b8_var, b11_var,
b12_corr, b12_sm, VH_sm, HH_mean, HH_sm, HV_con,

HV_var, slope;
Recursive feature

elimination 14 b2, b4, b5, CI, b2_con, b2_corr, b2_dis, b2_hom, b4_ent,
VH_con, VH_dis, VH_hom, elevation, slope;

Boruta 23
b2, b3, b4, b5, ARVI, CI, NDVI, NDVIre1, RVI, TNDVI,

b2_con, b2_corr, b2_dis, b2_hom, b4_ent, b4_hom, b4_sm,
b4_var, b5_mean, b12_mean, VH_con, elevation, slope.
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Furthermore, it should be noted that in the scenarios containing terrain factors, almost
the feature selection methods chose elevation and slope. In the scenarios which contained
variables derived from Sentinel-2, these variables, including b2_ hom, b4_ ent, and CI were
selected frequently. In the scenarios with radar-derived variables, the selected variables
were different based on different methods. SR was more inclined to choose the feature
variables derived from PALSAR-2, Boruta was more inclined to choose Sentinel-1, while
RFE depended on specific data scenarios, and in most cases, it is preferred to choose
Sentinel-1.

3.2. Forest Height Modeling Results

We applied three statistical metrics (R2, RMSE, rRMSE) to evaluate the height models
built from different variable scenarios by using the reserved 30% field plot data (Table 6).

Table 6. Performance of forest height estimation models in the validation datasets.

Data
Scenario

Regression
Method

Feature Selection Method

SR RFE Boruta

R2 RMSE
(m)

rRMSE
(%)

R2 RMSE
(m)

rRMSE
(%)

R2 RMSE
(m)

rRMSE
(%)

s2 k-NN 0.43 2.9 33.53 0.40 3.0 34.56 0.48 2.8 32.11
s2 SVR 0.33 3.1 36.27 0.31 3.2 37.10 0.28 3.2 37.71
s2 RF 0.49 2.7 31.75 0.55 2.6 29.80 0.52 2.7 30.95
s2 GBDT 0.49 2.7 31.66 0.53 2.6 30.49 0.52 2.6 30.73
s2 XgBoost 0.55 2.6 29.91 0.56 2.5 29.66 0.57 2.5 29.10
s2 CatBoost 0.45 2.8 32.98 0.50 2.7 31.41 0.49 2.7 31.66

s1s2p2 k-NN 0.08 3.7 42.58 0.35 3.1 35.96 0.38 3.0 35.02
s1s2p2 SVR 0.33 3.2 37.72 0.27 3.3 37.94 0.39 3.0 34.82
s1s2p2 RF 0.48 2.8 32.17 0.46 2.8 32.83 0.47 2.8 32.36
s1s2p2 GBDT 0.52 2.7 30.90 0.44 2.9 33.34 0.42 2.9 33.80
s1s2p2 XgBoost 0.46 2.8 32.75 0.46 2.8 32.80 0.47 2.8 32.52
s1s2p2 CatBoost 0.48 2.8 32.14 0.44 2.9 33.42 0.46 2.8 32.65

s2to k-NN 0.34 3.1 36.24 0.34 3.1 36.18 0.35 3.1 35.75
s2to SVR 0.33 3.1 36.51 0.50 2.7 31.51 0.32 3.2 36.77
s2to RF 0.51 2.7 31.02 0.57 2.5 29.18 0.56 2.5 29.44
s2to GBDT 0.53 2.6 30.54 0.60 2.4 27.98 0.58 2.5 28.73
s2to XgBoost 0.53 2.6 30.47 0.63 2.3 27.25 0.59 2.4 28.45
s2to CatBoost 0.53 2.6 30.45 0.59 2.5 28.58 0.56 2.5 29.55

s1p2to k-NN 0.31 3.2 36.98 0.21 3.4 39.61 0.27 3.3 38.10
s1p2to SVR 0.09 3.6 42.35 0.13 3.6 41.47 0.13 3.6 41.63
s1p2to RF 0.10 3.6 42.34 0.28 3.2 37.89 0.15 3.5 41.08
s1p2to GBDT 0.18 3.5 40.22 0.33 3.1 36.35 0.19 3.4 40.03
s1p2to XgBoost 0.23 3.3 39.05 0.37 3.0 35.38 0.24 3.3 38.92
s1p2to CatBoost 0.24 3.3 38.88 0.31 3.2 36.91 0.19 3.4 40.00

s1s2p2to k-NN 0.17 3.5 40.59 0.37 3.0 35.32 0.44 2.9 33.31
s1s2p2to SVR 0.12 3.6 41.80 0.43 2.9 33.51 0.53 2.6 30.44
s1s2p2to RF 0.36 3.1 35.62 0.50 2.7 31.49 0.55 2.6 29.75
s1s2p2to GBDT 0.42 2.9 33.77 0.59 2.4 28.44 0.62 2.4 27.56
s1s2p2to XgBoost 0.40 3.0 34.49 0.60 2.4 28.18 0.67 2.2 25.57
s1s2p2to CatBoost 0.35 3.1 35.87 0.56 2.5 29.66 0.55 2.6 29.98

For five different data scenarios, the optimal models of five data scenarios were from
different feature selection methods. In the scenario “s2” and “s1s2p2to”, the models based
on Boruta and XGBoost provided the best performance. In the scenario “s2to” and “s1p2to”,
the models based RFE and XGBoost outperformed others. In the scenario “s1s2p2”, the
model based on SR and GBDT was the best. Furthermore, we found that the difference
in the performance between the scenario “s2”, “s1s2p2”, “s2to”, “s1s2p2to” was not very
obvious, while the scenarios combining optical and topography variables such as the “s2to”
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and “s1s2p2to” scenario further improved modeling accuracy overall. Compared with the
other four scenarios, the scenario “s1s2p2”, which contained radar and topography feature
variables, provided much poorer modeling results.

Interestingly, on the basis of optical variables modeling alone, adding radar-derived
variables marginally lowered the modeling accuracy of forest height, while adding topog-
raphy variables improved the modeling accuracy in most situations. For instance, when
combining Boruta and RF for modeling, R2 increased by 8.95% and RMSE decreased by
4.89% after adding topography variables, while R2 decreased by 8.69% and RMSE increased
by 4.55% after adding radar variables. When topography variables and radar variables
were both added to the optical variables dataset, the modeling results were connected
to the technique of feature selection. While selecting feature variables based on SR, the
modeling accuracy exhibited an apparent downward trend, regardless of the algorithm
utilized; however, the modeling effect was improved when RFE and Boruta were used to
screen feature variables, with R2 increased from 0.31–0.56 to 0.37–0.60 based on RFE, R2

increased from 0.28–0.57 to 0.44–0.67 based on Boruta.
Figure 3 shows the broken-line graph based on three different feature selection meth-

ods, five different data combinations, and six modeling methods (R2 on the left and RMSE
on the right). For the three different feature selection methods, the modeling performance
of Boruta-based and RFE-based approaches was superior to SR. The R2 and RMSE of
SR-based ranged from 0.08 to 0.55, 2.6 to 3.7, respectively, while RFE-based R2 varied from
0.13 to 0.63, RMSE from 2.3 to 3.6, with Boruta-based R2 varying from 0.13 to 0.67, RMSE
from 2.2 to 3.6.

For six different modeling methods, it could be seen that when the data source and the
method of feature variables selection were consistent, the tree-based ensemble algorithms
were always superior to k-NN (with R2 varying from 0.08 to 0.48, RMSE varying from 2.8
to 3.7) and SVR (with R2 varying from 0.09 to 0.53, RMSE varying from 2.6 to 3.6). Among
the four ensemble machine learning algorithms, RF (with R2 varying from 0.10 to 0.57,
RMSE varying from 2.5 to 3.6), GBDT (with R2 varying from 0.18 to 0.62, RMSE varying
from 2.4 to 3.4), XGBoost (with R2 varying from 0.23 to 0.67, RMSE varying from 2.2 to 3.3)
and CatBoost (with R2 varying from 0.19 to 0.59, RMSE varying from 2.5 to 3.4), XGBoost’s
overall performance was slightly better than the other three. Moreover, in all of the 90
established models, the XGBoost algorithm based on the Boruta feature selection technique
in the “s1s2p2to” scenario achieved the best modeling effect (R2 = 0.67, RMSE = 2.2 m).

3.3. Variable Importance Analysis

In order to further understand the importance of feature variables in the modeling
process, we ranked the importance of “s1s2p2to” scenarios containing all types of feature
variables based on the importance ranking method of XGBoost. Figure 4 displays the
importance ranking of feature variables based on three distinct feature selection methods.

According to the feature selection method of Boruta and RFE, the terrain-related fac-
tors slope and elevation, vegetation index “CI” and band reflectance “b2” and “b4” had
relatively high importance, accounting for approximately 40% and 60% of all the selected
variables, respectively. Although there were many optical texture feature variables selected,
the importance of a single feature was inferior to other features. In addition, although the
radar variables selected by these two methods were very few, their significance cannot be
completely ignored. Compared with Boruta and RFE, the variables selected by SR were
quite different, band reflectance was not chosen, but the optical texture features and the
variables derived from PALSAR-2 not considered by Boruta and RFE were taken into ac-
count. Thus, it could be seen that different feature selection methods chose different feature
variables, and the importance of variables also varies according to different techniques.
When using Boruta and RFE, optical variables and terrain variables were more crucial,
while the importance of radar variables increased based on SR compared with Boruta
and RFE.
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Figure 3. The broken-line graph of R2 and RMSE based on three different feature selection methods
and five different data combinations based on six modeling methods (R2 on the left and RMSE on
the right).

3.4. Forest Height Mapping and Comparison to Existing Product

Based on the modeling results, we combined the feature variables of the scenario
“s1s2p2to” selected by Boruta and XGBoost algorithm to produce the forest height wall-
to-wall map over Baoding city. According to our forest height map, the value of the
forest height in Baoding city was 7.64 ± 1.70 m and ranged from 2.97 m to 17.91 m. We
compared our results with the previously released product published by Potapov et al. [40],
hereinafter called the “Pota”. According to “Pota”, the forest height in Baoding city was
9.15 ± 3.62 m and ranged from 3.00 m to 29.00 m (Table 7). Despite the minimum value of
the two forest height products being almost identical, the average and maximum values of
the “Pota” were much higher than in this study. Moreover, there were notable discrepancies
in the distribution of forest height from the two maps of forest height in Baoding city
(Figure 5). First, the tree height values of this study were primarily concentrated in the
range of 6–8 m, with a normal distribution trend on both sides, whereas the tree height
values of “Pota” were mainly distributed in the range of 7–10 m. Second, the higher values
of forest height in this study were mainly distributed in the mountainous areas in the north
of Baoding city, while according to “Pota”, tall trees were dispersed in both north and west
of Baoding. In order to explore the factors that caused the difference between the two maps,
we generated a map of forest height differences between these two maps in Baoding city
(Figure 6); the average value of the forest height difference was 3.25 m and ranged from 0 to
23.00 m. We found that large differences existed in the mountainous areas in the northern
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and midwest areas of Baoding city. From the slope distribution map (Figure 6), it could
be seen that the areas with big differences were mountainous areas with large slopes and
steep terrain. Further counting the difference values above the average difference value
in the distribution of different slope levels, we found that the high difference values were
primarily distributed in the areas with a slope above 15◦, accounting for more than 80% of
the total number of high difference values (Figure 7).

 
Figure 4. Variable importance ranking of XGBoost models for three feature selection methods (Boruta,
RFE, and SR).

Table 7. Comparison of estimated forest heights over Baoding city.

Product
Nominal

Year

Data
Source

Nominal
Resolution

Algorithm
Forest Height (m)

Min. Max. Mean. Std.

Map of Potapov 2019
Landsat,

GEDI,
SRTM

30 m Regression
tree 3.00 29.00 9.15 3.62

Map of this study 2016
Sentinel-1,
Sentinel-2,

SRTM
25 m XGBoost 2.97 17.91 7.64 1.70
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Figure 5. Map of forest height in Baoding city. Map of this study on the left; Potapov’s map on the
right. The inserted panels show the histogram of forest height value.

 

Figure 6. Map of difference between Potapov’s map and map of this study in Baoding city, on the
left. Map of slope in Baoding city, on the right.

Figure 7. The percentage of the number of difference values higher than the average difference value at
five slope levels (level 1: 0◦ < slope ≤ 5◦, level 2: 5◦ < slope ≤ 15◦, level 3: 15◦ < slope ≤ 25◦, level 4: 0◦

< slope ≤ 35◦, level 5: slope > 35◦).
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4. Discussion

4.1. Performance of Multi-Source Satellite Metrics for Forest Height Estimation

Our study used multi-source satellite data to estimate the forest height of Baoding
City. First of all, from the different scenarios of various variable combinations, the variable
combination of optical sensor and radar sensor was not always superior to a single optical
sensor, which was consistent with the previous research findings when Li et al. applied
Landsat 8 and Sentinel-1A data to estimate forest aboveground biomass [75]; however, at the
same time, our study results also demonstrated that the performance of the combination of
optical, radar, and terrain variables was slightly better than that of a single sensor. Secondly,
according to the variables selected by three different feature selection methods and the
importance ranking results, optical variables had higher potential than radar variables
in estimating forest height, which was supported by Huang et al. [22]. Previous studies
have shown that the variables derived from Sentinel-1 and PALSAR-2 were valuable and
common predictors for forest height estimation [79,80]; however, in this study, their role
was auxiliary, and the accuracy improvement of forest height estimation was not obvious.
There were two potential causes to explain this phenomenon. The first was because
the C-band SAR has limited penetration of the forest, and is vulnerable to topographic
factors in mountainous areas. The second was that the used PALSAR-2 data did not
contain the real image at the time of field data collection, but the mosaic image in 2016.
The inconsistency between the ground data and the image may result in being not very
inaccurate. Furthermore, terrain factors such as elevation were discovered to present good
performance in estimating forest height, which was compatible with the earlier research
conducted by Xi et al. [81]. Because SRTM employed an InSAR instrument, the vegetation
contribution is not totally separated from the ground elevation, so the elevation may include
part of the vegetation height information.

4.2. Performance of Different Feature Variable Selection Methods

We explored three different techniques to select feature variables. Table 5 showed that
there were certain disparities in quantity and selected variables for different methods. In
particular, the variables screened by SR were quite different from those selected by the
other two methods. This might be related to the fundamentals of the three approaches. SR
is based on AIC information statistics to delete or add variables accomplished by selecting
the smallest AIC information statistics. It is worth noting that since the AIC tended to
select more parameters than required when using small or medium samples, we mitigated
the limitations of the method by removing certain non-essential variables by making the
p-value of all selected variables significant (p < 0.05) [55]. RFE and Boruta are methods
around the core idea of random forest, so the selected variables had a certain degree of
similarity. Table 8 summarizes statistical data for different variable selection methods.
From the mean values shown in the table, the effect of RFE and Boruta was significantly
better than SR and the average value of RFE was slightly better than Boruta; however, the
calculation time of executing RFE algorithm in “caret” package was much longer than
that of Boruta, while its average accuracy improvement was very limited, and the optimal
modeling result was also based on Boruta; therefore, from the perspective of modeling
accuracy and time efficiency, we considered that Boruta was the best feature selection
method in this study. Agjee et al. [82] came to the same conclusion when they compared
RFE and Boruta to identify multitemporal hyperspectral data to detect the efficacy of the
biocontrol agent.

4.3. Performance of Different Machine Learning Algorithms

Among six machine learning algorithms, four tree-based ensemble algorithms pro-
vided better forest height estimation accuracy than the other algorithms, and XGBoost was
superior to the other three ensemble algorithms. This result was similar to the research
conducted by Arjasakusuma et al. [83] when comparing MARS, SVR extra trees (ET), and
extreme gradient boosting (XGB) with trees (XGbtree and XGBdart) and linear (XGBlin)
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classifiers for modeling forest height from the combination of LiDAR and hyperspectral
data. Comparable conclusions were drawn in the studies of forest aboveground biomass
estimation. Pham et al. [43] combined genetic algorithm (GA) and XGBoost to achieve
optimal mangrove AGB estimation than the other four ML algorithms (RF, SRM, GBRT, and
CatBoost); Li et al. [74] combined China’s national forest inventory, Landsat-8 data, and LR,
RF, and XGBoost algorithms to establish AGB models and found that the XGBoost model
significantly improved the estimation accuracy and reduced the problem of overestimation
and underestimation to a certain extent.

Table 8. Average running time and statistical of R2, RMSE, and rRMSE for different variable selection
methods.

Method
R2 RMSE rRMSE Average

Running
Time (s)Min. Max. Mean. Std. Min. Max. Mean. Std. Min. Max. Mean. Std.

SR 0.08 0.55 0.36 0.15 2.6 3.7 3.0 0.4 29.91 42.58 35.38 4.09 3.68
RFE 0.13 0.63 0.44 0.13 2.2 3.6 2.8 0.3 25.57 41.46 33.13 3.81 3343.77

Boruta 0.13 0.67 0.43 0.15 2.3 3.6 2.9 0.4 27.25 41.63 33.28 4.36 17.75

The reasons why the XGBoost model performed well included two aspects. First,
XGBoost is a flexible algorithm that can correct residual errors to generate a new tree based
on the previous trees. Second, the XGBoost model is an advanced gradient boosting system,
which improves the processing of regularization learning objectives and avoids overfitting;
however, it is worth noting that all the machine learning algorithms cannot entirely address
the problem of overestimation and underestimation of forest height. In the present study,
XGBoost achieved the optimal solution, but its potential in the face of various geographical
situations requires further investigation.

4.4. Important Factors Analyze in Forest Height Estimation

Numerous factors can influence the accuracy of forest height estimation. In the
present study, we employed ANOVA analysis to evaluate the impact of data source, feature
selection method, regression algorithm, and their interaction on forest height estimation.
To better illustrate how each factor explained the total variance, we calculated the ratio of
the sum of squares of each factor to the total sum of squares (η2). According to the ANOVA
results (Table 9), the data source was the most influential factor, accounting for 47% of the
total variance of R2, 46% of RMSE and 46% of rRMSE. Then regression algorithm explained
24% of the total variance of R2, 25% of RMSE and 25% of rRMSE. The influence of the
feature selection method and the interaction between the three factors was relatively low,
altogether accounting for approximate 20% of the total variance in R2, RMSE, and rRMSE.
However, it is worth mentioning that the feature selection method, the interaction between
data source and feature selection method, and the interaction between data source and
regression algorithm also had a significant effect on the results of R2, RMSE, and rRMSE,
so these three factors, including data source, feature selection, and regression algorithm
could not be disregarded. In a word, it is necessary to take these three factors into account
in the estimation of forest height.

4.5. Map Product Comparison

Previous studies had shown that complex terrain increased uncertainty in forest height
estimation and the accuracy of forest height estimates decreased with increasing slope
values [84,85]. In rugged mountainous areas, the radar’s backscatter coefficients and optical
spectral reflectance information were susceptible to terrain, and the GEDI used in Potapov’s
study, whose signals were also skewed by the intricate topographical conditions within its
footprint. The combination of these effects led to the large difference in values between
Potapov’s map and our map, mainly in the areas with high slope values. Furthermore, the
result of our research showed an obvious underestimation of the high forest height value.
We explained this phenomenon by concentrating on two reasons. The first reason was
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that optical data mainly captured forest spectral information, with the SAR data of C/L-
Band limited ability to penetrate forest canopy, causing their signals to appear saturated.
Secondly, due to the small quantity values at the high altitude of our field plots, the high
values will be underestimated in the process of machine learning modeling. Potapov
reported oversampling of tall trees in their overall reference data set resulted in high values
that could be overestimated to some extent. This conclusion was also verified in our study
that the average and maximum tree height values in “Pota” were greater than field data.

Table 9. ANOVA results of the R2, RMSE, and rRMSE for three different factors.

Factor Df
R2 RMSE rRMSE

SumSq η2 Pr (>F) SumSq η2 Pr (>F) SumSq η2 Pr (>F)

Data source 4 0.90 0.47 <2.2 × 10−16 *** 5.30 0.46 2.571 × 10−07 *** 720.87 0.46 2.571 × 10−07 ***
Feature

selection
method

2 0.11 0.06 2.147 × 10−06 *** 0.70 0.06 <2.2 × 10−16 *** 95.02 0.06 <2.2 × 10−16 ***

Regression
algorithm 5 0.45 0.24 1.345 × 10−12 *** 2.86 0.25 4.992 × 10−14 *** 389.54 0.25 4.992 × 10−14 ***

Data source
Feature

selection
method

8 0.16 0.08 1.412 × 10−05 *** 1.00 0.09 1.860 × 10−06 *** 136.25 0.09 1.860 × 10−06 ***

Data source
Regression
algorithm

20 0.14 0.07 0.01107 * 0.85 0.07 0.003017 ** 115.79 0.07 0.003017 **

Feature
selection
method

Regression
algorithm

10 0.02 0.01 0.84356 0.09 0.01 0.826854 11.96 0.01 0.826854

Residuals 40 0.12 0.62 83.68

Signif. Codes: ‘***’: 0; ‘**’: 0.001; ‘*’: 0.01.

4.6. Recent Related Works Comparison

Compared with two recent studies which used both optical and radar variables for
forest tree height estimation, the similarity was that all three studies estimated forest height
by constructing an empirical model between forest height and multi-source remote sensing
information [22,23]. The difference was that Liu et al. [23] constructed a simple logarithmic
regression to estimate forest height based on the relationship between forest height and
the backscattering coefficients derived from Sentinel-1 data and the fraction of vegetation
cover derived from Sentinel-2 data with the results R2 = 0.53414 and RMSE = 2.9156 m,
while Huang et al. [22] and our study both extracted considerable feature variables and
employed different feature selection methods and regression algorithms to estimate forest
height. Huang et al. systematically evaluated the performance of different remote sensing
metrics, feature selection methods, and regression algorithms by dividing the extracted
feature variables into ten scenarios and using two types of variable selection methods and
three types of regression models; the best estimation was achieved by RF models with
R2 ranged from 0.47 to 0.52, RMSE ranged from 3.8 to 5.3 m, whereas in our study, we
utilized four types of remote sensing data, three feature selection methods, and six machine
learning algorithms and applied the ANOVA to quantify the importance of these factors
on forest height estimation; the variables selected based on Boruta including Sentinel-1,
Sentinel-2, and topography metrics, combined with the XGBoost algorithm provided the
optimal model (R2 = 0.67, RMSE = 2.2 m).

4.7. Limitations and Prospects

In this study, we found that all the models had the problem of high-value underesti-
mation. From the scatter plot (Figures A1–A3), we could see intuitively the predicted value
was below the center line when the tree height exceeded 15 m which meant that despite
using multi-sensor datasets to decrease estimation error, the model still underestimated at
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higher tree heights. In light of this issue, we proposed the following potential improvement
directions. (1) Optical sensor such as Sentinel-2 used in this study has some issues, such
as poor sensitivity and easy saturation to dense vegetation information, and SAR data,
such as Sentinel-1 and PALSAR-2, are susceptible to topography and other factors, and
the backscattering information has the problem of signal saturation. As a result, lidar
data with direct detection capabilities of forest vertical structures can be combined with
optical and SAR data in future studies to increase the accuracy of regional forest height
estimation. (2) Previous studies showed modeling based on different forest types and
tree height levels can lessen the model’s dependence on training samples and improve
the modeling effect [81,86]. Due to a lack of sample plot data, we were unable to address
forest types or tree height levels to undertake to model respectively. In the future, with
sufficient plot data gathered, these strategies can be applied to minimize the uncertainty in
the modeling process. (3) Since most machine learning models are black-box models, they
are difficult to reflect the mechanism and process between forest parameters and remote
sensing information, and the interpretability for reality is weak. The improvement of the
generalizability and accuracy of forest parameter estimation by simply constructing empiri-
cal models is limited. Physical geography, bioclimatic and cultural conditions are proved to
be crucial for the estimation of forest parameters [67,84]; therefore, in subsequent studies,
zoning and stratification strategies or coupling remote sensing data and forest physiological
process models should be emphasized to estimate forest height and other parameters.

5. Conclusions

In this study, we produced a 25 m spatial resolution wall-to-wall map of the forest
height in Baoding, north China and assessed the impacts of three aspects on forest height
estimation utilizing Sentinel-1, Sentinel-2, PALSAR 2 mosaic, SRTM DEM, and the NFCI
data, three feature selection methods (SR, RFE, and Boruta), and six machine learning
algorithms (k-NN, SVM, RF, GBDT, XGBoost, and CatBoost). The results of ANOVA
analysis demonstrated that data source, feature selection method, and machine learning
algorithm significantly influenced the results of forest height estimation. The accuracy
with optical data alone was slightly lower than the combined data of multiple sensors, and
multi-source data could improve the estimation accuracy to a certain extent. Optical and
topographic indicators were proved to be more effective than that radar indicators. The
subset of features screened by RFE and Boruta varied greatly from SR, and the models
exhibited from the variables screened based on RFE and Boruta had better performance
compared with SR. Moreover, XGBoost outperformed the other five machine learning
algorithms. Ultimately, we obtained the optimal model (R2 = 0.67, RMSE = 2.2 m) based on
the combination of Sentinel-1, Sentinel-2, and topography data using Boruta and XGBoost
algorithms. The generated forest height map differed from the existing map product,
and the regions with large differences between the two maps were mostly distributed in
the steep areas with high slope values. Overall, our findings provided a solution for the
subsequent forest height mapping at larger scales (national or global) with high precision.
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Appendix A

 

Figure A1. Scatter plot of the predicted and observed forest height for five different scenarios of
the k-NN, SVR, RF, GBDT, XGBoost, and CatBoost algorithms based on the SR feature variable
selection method.

 

Figure A2. Scatter plot of the predicted and observed forest height for five different scenarios of
the k-NN, SVR, RF, GBDT, XGBoost, and CatBoost algorithms based on the RFE feature variable
selection method.
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Figure A3. Scatter plot of the predicted and observed forest height for five different scenarios of
the k-NN, SVR, RF, GBDT, XGBoost, and CatBoost algorithms based on the Boruta feature variable
selection method.
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Abstract: The estimation of forest aboveground biomass (AGB) using Landsat 8 operational land
imagery (OLI) images has been extensively studied, but forest aboveground biomass (AGB) is often
difficult to estimate accurately, in part due to the multi-level structure of forests, the heterogeneity of
stands, and the diversity of tree species. In this study, a habitat dataset describing the distribution
environment of forests, Landsat 8 OLI image data of spectral reflectance information, as well as
a combination of the two datasets were employed to estimate the AGB of the three common pine
forests (Pinus yunnanensis forests, Pinus densata forests, and Pinus kesiya forests) in Yunnan Province
using a parametric model, stepwise linear regression model (SLR), and a non-parametric model,
such as random forest (RF) and support vector machine (SVM). Based on the results, the following
conclusions can be drawn. (1) As compared with the parametric model (SLR), the non-parametric
models (RF and SVM) have a better fitting performance for estimating the AGB of the three pine
forests, especially in the AGB segment of 40 to 200 Mg/ha. The non-parametric model is more
sensitive to the number of data samples. In the case of the Pinus densata forest with a sample size
greater than 100, RF fitting provides better fitting performance than SVM fitting, and the SVM fitting
model is better suited to the AGB estimation of the Pinus yunnanensis forest with a sample size of
less than 100. (2) Landsat 8 OLI images exhibit superior accuracy in estimating the AGB of the three
pine forests using a single dataset. Variables, such as texture and vegetation index variables, which
can reflect the comprehensive reflection information of ground objects, play a significant role in
estimating AGBs, especially the texture variables. (3) By incorporating the combined dataset with
characteristics of tree species distribution and ground object reflectance spectrum, the accuracy and
stability of AGB estimation of the three pine forests can be improved. Moreover, the employment of a
combined dataset is also effective in reducing the number of estimation errors in cases with AGB less
than 100 Mg/ha or exceeding 150 Mg/ha.

Keywords: aboveground biomass; habitat dataset; Landsat 8-OLI images; pine forest; model comparison

1. Introduction

In addition to regulating the water supplies and climate, forests accumulate biomass
by absorbing light, water, carbon dioxide, and other compounds [1]. Forests are the largest
carbon source in terrestrial ecosystems [2], accounting for more than two-thirds of the
total carbon sequestration annually [3,4]. Therefore, it is crucial to accurately estimate
forest biomass to thoroughly understand the carbon cycle and carbon balance in terrestrial
ecosystems [5].

There are two types of forest biomass: aboveground biomass (AGB) and underground
biomass (UB) [6]. Because AGB accounts for 70% to 90% of the total forest biomass [7],
most previous studies have focused on AGB. The estimation methods of AGB include
destructive and non-destructive methods. The destructive harvest method is considered to
be the most accurate AGB estimation method. However, as this method poses a threat to
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the flora and fauna, it is inappropriate for large-scale AGB estimation [8]. Due to the multi-
scale and multi-band characteristics of remote-sensing (RS) technology, it can effectively
ensure the spatial integrity and temporal continuity of data. RS has become a common
method for large-scale non-destructive AGB estimation in recent decades [9]. Optical
remote sensing was developed first, and a large number of data sources have been used
to estimate thousands of forest AGBs [6,10–13]. The natural forest consisting of mature
stands, however, is characterized by a multi-layer canopy and high density, resulting in
the saturation of spectral reflectance in optical remote sensing and, in turn, leading to an
underestimation of large AGB values [1]. The AGB of young forests, on the other hand, will
be overestimated due to sparse canopy radiation combined with understory vegetation,
soil, and other radiation information. These are the main difficulties that have arisen in
estimating forest AGB using an optical RS dataset. As a result of their capability of obtaining
detailed information on forest structure, radar and LiDAR have become two of the main
techniques for forest AGB estimation in recent decades [13–21]. However, the number of
data sources of radar and LiDAR is relatively smaller than the number of optical RS datasets;
the working mechanism of these data sources also limits their application [6]. Thus, optical
RS still remains an effective data source for AGB estimation in a wide area. As a result,
Landsat images have been widely used in AGB estimation, in part due to their accessibility,
time continuity, and moderate spatial resolution [22–25]. It should be noted that in forest
AGB estimation using Landsat 8 OLI images, the problem of underestimating high values
and overestimating low values when using this data source is still challenging [26].

In order to overcome the uncertainty that can be caused by using only one remote-
sensing source in the estimation of forest AGBs, researchers have become increasingly
aware of the necessity of multi-source data to improve the accuracy of biomass estimation
in forests [6]. For example, by combining radar or UAV data with optical remote-sensing
data, it is possible to overcome the challenge of AGB estimation caused by changes in
the forest structure and the high heterogeneity of the forest landscapes [22,23,26–28]. The
complementarity between remote-sensing data can improve the estimation accuracy of
AGB to a certain extent. However, since radar and UAV data sources are limited, the
combination of non-remote-sensing datasets, such as field measurement and forest surveys,
with optical remote sensing can also contribute to the improvement of AGB estimation
accuracy [29–33]. In recent years, some scholars have emphasized the fact that trees have a
long growing season. Forest AGB estimations can be enhanced by incorporating long-term
data, such as climate [34,35] and phenology [36–38], into an optical remote-sensing dataset
to compensate for the lack of timeliness in remote-sensing data for forest AGB estimations.

Habitat [39] is a concept that was first proposed by Grinnel in 1917. In general, it refers
to the space in which an individual, a population, or a community can complete their life
processes [40]. In many studies, habitat has been shown to affect biomass accumulation
and plant allocation, as well as changes in vegetation genotypes [41–44]. While adapting
to the environment, vegetation also has varying carbon sequestration abilities due to the
accumulation and differentiation of biomass in different parts of the foliage, resulting in
the change of habitat [45]. There is a close relationship between species and habitat [46].
This relationship exists due to the statistical association of habitat information with species
abundance or the probability of occurrence [47]. The abundance of species in a region is
influenced by the community structure at different scales [48], and forests are no exception.
Studies have confirmed that the complexity of the vertical structure of forests is related to
forest biodiversity [49,50]. Thus, the habitat information that can indirectly measure the
biodiversity information in the region [51] can represent the vertical structure information
of the forest to a certain extent, especially on a large spatial scale [52].

Typical habitat data characteristics include climate, slope, aspect, elevation, soil type,
etc. The habitat suitability value (HSV) is determined by the comprehensive effects of
different habitat factors on species in a region. In ecology and conservation biology, species
distribution maps are often used to indicate the HSV of species in specific areas [53,54].
However, it is difficult to produce a map of the species distribution for all species. It is
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especially difficult to obtain the HSV of most species in areas where there are abundant
species [55]. Therefore, it is an effective method to import habitat data into species distri-
bution models (SDMs) to obtain the HSV of species. A number of common SDMs include
BIOCLIM, ENFA, HABITAT, Maxent, etc. Maxent is one of the most widely used and highly
accurate SDMs [56] and has been extensively used in species conservation and manage-
ment [57–59]. This model calculates the binding force of species distribution according to
the environmental factors of known distribution points; then, it estimates the probability of
species distribution in unknown distribution points [60] and ultimately obtains the HSV of
the species. However, the number of studies that use a habitat dataset as an independent
variable to estimate forest AGB is still too small [38], especially for pine forest AGBs.

Furthermore, in addition to the data used for estimation, AGB estimation is also
strongly influenced by the choice of modeling algorithms [61]. There are two types of
AGB modeling algorithms: parametric and non-parametric. The parametric model deter-
mines the relationship between AGB and independent variables through linear functions,
power functions, exponential functions, etc. Since this model requires fewer sample data
and can quantify the relationship between AGB and the variables [1], it has become the
most commonly utilized biomass modeling algorithm [6]. Due to the complex correla-
tion between the variables and AGB, the parametric model cannot provide an adequate
estimation [61,62]. However, the stepwise linear regression algorithm can differentiate
between the important variables in the modeling through the significance test, which, in
turn, improves the estimation performance of the parametric model to a certain extent [63].
In addition, non-parametric models are also capable of handling nonlinear relationships
and can be used to determine the most suitable model structure for the dependent variable
from the estimated data, which has been widely used in forest AGB estimation in the past
ten years [8,25,33,64]. Random forest and support vector machines are two of the most
commonly used non-parametric models. However, the non-parametric model has two
main shortcomings; the first is that it is sensitive to data [1,65], and the second is that its
interpretation for the estimation process is less clear than that of the parametric model [6].

In this study, the AGB of the three common pine forests (Pinus yunnanensis forests,
Pinus densata forests, and Pinus kesiya forests) was estimated in Yunnan Province, southwest
China, by employing varying datasets (e.g., a Landsat 8 OLI dataset, a habitat dataset, and
a combined dataset composed of them both) and modeling algorithms (e.g., stepwise linear
regression (SLR), random forest (RF), and support vector machine (SVM)). Further, the
performance of AGB estimations of different forests under different models was compared.

The purpose of this study was to answer the following questions:

(1) Do estimation models have an impact on the AGB estimation for pine forests?
(2) Is it possible to estimate the AGB for the three pine forests using the habitat dataset?
(3) Does the employment of a habitat dataset reduce the probability of overestimation

and underestimation of the AGB estimation?

2. Materials and Methods

The AGB estimations of pine forests included in this study were carried out using
different datasets from the following steps: (1) the selection of sample plots and calcu-
lation of AGBs; (2) habitat simulation of pine forests in order to obtain habitat datasets;
(3) preprocessing of Landsat 8 OLI images in order to obtain RS datasets; (4) analysis of
the correlation between habitat datasets and RS datasets and plot AGBs in order to select
independent variables; (5) combining data from selected habitat data and RS data; (6) the
development of AGB estimation models (e.g., SLR, RF, and SVM) using different datasets;
(7) comparing the modeling results of AGB estimations. The specific process is shown in
Figure 1.
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Figure 1. Flow chart of estimating aboveground biomass (AGB) of pine forest using different datasets
through parametric model and non-parametric model (Note: HSV, habitat suitability value; SLR,
stepwise linear regression; RF, random forest; SVM, support vector machine).

2.1. Study Area

Yunnan is located in southwest China. It is one of the three forest regions in China.
The pine forests in the province mainly comprise Pinus yunnanensis, Pinus densata, and
Pinus kesiya trees [30,65,66]. The forests play an important role in ecological services and
forest carbon sinks in the region [33,67], and forest biomass is the basis for forest carbon sink
estimation [68]. The study areas of this study were selected in Yongren County, Shangri-La
City, and Pu’er City, where the main distribution areas of the three pine forests are located
(Figure 2).

Yongren County is located in the central and northern parts of Yunnan Province. The
altitude of this area ranges from 1530 to 1700 m above sea level, and the terrain is relatively
flat. The climate of this region is classified as a north subtropical southwest monsoon,
and the precipitation season lasts from June to October, when the dry and wet seasons
are clearly distinguishable [69]. There are mainly two types of vegetation in this region:
sub-humid subtropical evergreen broad-leaved forests and Pinus yunnanensis secondary
forests. Pinus yunnanensis grows at an altitude of 1000–3200 m and can withstand drought
as well as barren soil. This tree species is native to this area, and it is one of the pioneer tree
species in southwest China. The Baima River Forest Farm in Yongren County is the largest
mother forest base for Pinus yunnanensis in China.
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Figure 2. (a) Location of the study area; (b) RGB true color composite image of Shangri-la City and
field plots of Pinus densata forest; (c) RGB true color composite image of Pu’er City and field plots
of Pinus kesiya forest; (d) RGB true color composite image of Yongren County and field plots of
Pinus yunnanensis forest.

Shangri-la, with an altitude of between 1503 and 5545 m above sea level, is located in
the northwest of Yunnan Province. The annual average temperature in this area is 5.5 °C,
and summer and autumn are the seasons with the most precipitation. This area is part
of the World Natural Heritage site, “Parallel Flow of the Three Rivers”, with rich forest
resources. Pinus yunnanensis, Pinus densata, Picea spp, Abies spp, and Quercus spp are the
dominant tree species in the Shangri-la region [70]. Among the tree species, Pinus densata is
considered to be a unique tree species in the alpine region of western China, and its vertical
distribution is slightly higher than that of Pinus yunnanensis.

Pu’er is located in the southwest of Yunnan Province, where the altitude ranges from
376 to 3306 m above sea level. In addition, more than 90% of the area is mountainous. In
most parts of this area, there is no frost all throughout the year, and the annual precipitation
is between 1100 and 2780 mm. In addition, its climate is classified as the plateau monsoon
climate of the south Asian tropics. The abundant precipitation keeps the relative humidity
in the region at 82% all throughout the year, resulting in favorable conditions for vegetation
growth [71]. Pu’er is the second largest forest region in the Yunnan Province. Over half of
the area is covered by Pinus kesiya, the dominant tree species. Pinus kesiya is also a main
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afforestation tree species that can be found at altitudes below 1800 m in southern, central,
and western Yunnan province.

2.2. Sample Plot Data and Forest AGB

In order to obtain the AGB of the pine, destructive samples were taken from
87 P. yunnanensis plots, 147 P. densata plots, and 45 P. kesiya plots in the study area from
2011 to 2017. The sample plots of 30 m × 30 m were selected and established according
to the stock state map based on tree age, altitude, slope, aspect, and sampling distance of
1 km. The coordinates, altitude, slope, aspect, DBH, and tree height of the sample plots
were recorded in the process of sampling.

Since there is no calculation model for these three AGB of pine trees in the existing
biomass model, in this study, 3 to 5 stands with the average level of stands in the sample
plot were selected for cutting, and subsequently, the biomass of their trunks, bark, branches,
and leaves in the aboveground part was measured. The biomass of the wood and the bark
of the trees was measured by taking a 3 cm disk along the trunk of each tree at 2 m intervals,
and then, the density of the samples was measured using the drainage method. The disk
was dried in an oven at a constant temperature of 105 ◦C, and then, the biomass of the
disk was determined by comparing the weight before and after drying. In addition, the
volume of wood and bark from each sample tree was converted into biomass in 2 m units
according to the density of the samples. By using similar methods, the branches and leaves
were collected and weighed by grade, and the resulting biomass was measured accordingly.
The total AGB of each sample was obtained by adding the AGB from different parts of the
sampled trees. Finally, the power function was used to fit individual tree AGB data. The
AGB fitting formulae of Pinus yunnanensis [65], Pinus densata [1], and Pinus kesiya [66] were
obtained, as shown in Formula (1)–(3).

AGBi = 0.048 ∗ DBH1.9276 ∗ H0.9638 (1)

AGBi = 0.073 ∗ DBH1.739 ∗ H0.880 (2)

AGBi = 0.058 ∗ DBH2.12 ∗ H0.4668 (3)

In these formulae, DBH (cm) is the average diameter at breast height (1.3 m), H (m) is
the average tree height, and AGBi is the aboveground biomass of a single standing tree (kg).

In order to obtain the AGB of the sample plot, the unit was converted into the value
per hectare using equation (4). The final AGB statistical data of the three pine forests are
shown in Table 1.

AGBp =
AGBi × n

30 × 30
× 10, 000

1000
(4)

Table 1. The statistical parameters of AGB in the sample plot.

Species Number of Plots Statistical Indicators AGB (Mg/ha)

Pinus yunnanensis 87
Min. 17.901
Max. 287.679
Mean 114.868

Pinus densata 147
Min. 2.114
Max. 344.382
Mean 121.474

Pinus kesiya 45
Min. 49.063
Max. 204.448
Mean 116.432

In this formula, AGBi is the biomass of individual trees, n is the number of trees in the
sample plot, and AGBp is the AGB of the sample plot (Mg/ha).
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2.3. Acquisition of Remote-Sensing Datasets

The Landsat 8 OLI images and DEMs employed in this study were downloaded from
http://www.gscloud.cn/ (accessed on 6 August 2022). The spatial resolution of these
data was 30 m, and the coordinate system was a Universal Transverse Mercator with zone
47 north as the spatial reference frame. The specific parameters of the Landsat 8 OLI
images are shown in Table 2. Radiometric calibration, FLASSH atmospheric correction,
and C-correction topographic correction were performed in ENVI in order to correct the
radiometric errors in the images. Subsequently, the corrected images were mosaicked and
clipped to obtain the Landsat 8 OLI image of the study area.

Table 2. The specific parameters of Landsat 8 OLI images.

Study Area Image ID
Average Cloud

Cover (%)
Start Time

Yongren LC81300422016030LGN00 0.00 30 January 2016

Shangri-la
LC81310412016325LGN00 0.40 20 November 2016
LC81320402016348LGN00 0.73 13 December 2016
LC81320412016348LGN00 0.76 13 December 2016

Pu’er

LC81290442015052LGN00 0.08 21 February 2015
LC81290452015052LGN00 1.87 21 February 2015
LC81310432015066LGN00 0.00 7 March 2015
LC81310442015066LGN00 0.00 7 March 2015
LC81300432015075LGN00 0.18 16 March 2015
LC81300442016046LGN00 0.00 15 February 2016
LC81300452016046LGN00 0.01 15 February 2016
LC81310452016069LGN00 0.41 9 March 2016

The corrected Landsat 8 OLI image includes seven multi-spectral bands, namely Band1-
Coastal, Band2-Blue, Band3-Green, Band4-Red, Band5-NIR, Band6-SWIR1, and Band7-
SWIR2. In this study, for the purpose of obtaining more data for the forest AGB estimations,
sixty-four conversion variables from remote-sensing images were also employed. A total of
five commonly used vegetation indices were calculated, namely the normalized difference
vegetation index (NDVI), simple vegetation index (SVI), enhanced vegetation index (EVI),
atmospherically resistant vegetation index (ARVI), and structurally insensitive pigment
index (SIPI), as well as three tasseled cap images, namely brightness, greenness, and
humidity. In addition, the first, second, and third principal component data, which can
reflect more than 75% of the image information, were also calculated by ENVI 5.3 software.
Additionally, a total of 56 Landsat 8 OLI texture variables were also calculated under 3 ∗ 3
Windows based on the gray co-occurrence matrix, including homogeneity, anisotropy,
mean, angle second moment, entropy, correlation, variance, and contrast. Subsequently,
a Pearson correlation analysis was conducted to screen the AGB-related candidates that
passed the significance test (p ≤ 0.01) as the remote-sensing data. Finally, the RS dataset was
derived from the resulting remote-sensing data. The selected remote-sensing variables and
their correlation with AGB are shown in Figure 3. In the figure, the variables superscripted
with “-” are factors that show a negative correlation with AGB.

2.4. Acquisition of Habitat Datasets

When the species adapt to light and precipitation after a prolonged period of time,
they will form development rules that will increase their survival advantages in the habitat
conditions. The 19 bioclimatic variables downloaded from WorldClim (https://www.
worldclim.org/, accessed on 6 August 2022) are considered to be the most significant
habitat factors because they can reflect temperature, precipitation, and some other aspects.
Over 85% of habitat studies use these 19 bioclimatic factors [72], which are included in
Table 3. In this study, the HSV of pine forests and 19 bioclimatic environmental variables
were employed as habitat candidates to estimate the AGB.
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Figure 3. Radar plot of RS data associated with forest AGB (a) Pinus yunnanensis forests;
(b) Pinus densata forests; (c) Pinus kesiya forests.

Table 3. The 19 bioclimatic environmental variables from WorldClim.

Variable Code Variable Description Variable Code Variable Description

Bio1 Annual mean temperature Bio2 Mean diurnal range
Bio3 Isothermality Bio4 Temperature seasonality
Bio5 Max temperature of the warmest month Bio6 Min temperature of the coldest month
Bio7 Range of annual temperature Bio8 Mean temperature of the wettest quarter
Bio9 Mean temperature of the driest quarter Bio10 Mean temperature of the warmest quarter

Bio11 Mean temperature of the coldest quarter Bio12 Annual average precipitation
Bio13 Precipitation of the wettest month Bio14 Precipitation of the driest month
Bio15 Precipitation seasonality Bio16 Precipitation of the wettest quarter
Bio17 Precipitation of the driest quarter Bio18 Precipitation of the warmest quarter
Bio19 Precipitation of the coldest quarter

In order to avoid data disaster in subsequent analyses, a Pearson correlation analysis
was conducted among the 19 bioclimatic environmental variables in SPSS 22.0 for Windows
to select variables with a correlation coefficient absolute value lower than 0.9 and variables
with significance to the pine habitat. The habitat constraint factors of Pinus yunnanensis
forests included 10 variables, namely Bio1, Bio3, Bio4, Bio5, Bio6, Bio8, Bio10, Bio13, Bio14,
Bio15, and Bio16, while the variables of Pinus densata forests were Bio2, Bio3, Bio4, Bio5,
Bio6, Bio7, Bio14, Bio15, and Bio16. Furthermore, the significant variables for the growth of
Pinus kesiya forests included Bio1, Bio2, Bio4, Bio6, Bio7, Bio10, Bio13, Bio17, and Bio18.

Species distribution point data were obtained from the Chinese Virtual Herbarium
(https://www.cvh.ac.cn/, accessed on 6 August 2022) and the Global Biodiversity In-
formation Facility (https://www.gbif.org, accessed on 6 August 2022). However, these
downloaded points were difficult for unifying the collection time and the collector, and the
data description was not standard. Therefore, it was necessary to screen these points and
delete duplicate points and questionable points to ensure the accuracy of the data. Finally,
803 sample points were obtained, including 460 Pinus yunnanensis, 319 Pinus densata, and
24 Pinus kesiya.

The selected bioclimatic variables and species distribution points were imported into
Maxent, while 25% of them were set as random test points, and the model was repeatedly
applied ten times in order to obtain the HSV of the three pine forests located in southwest
China. The anticipated results were evaluated using the methods of the receiver operating
characteristic curve (ROC) and Jackknife. The results showed that the habitat fitting AUC
values of the Pinus yunnanensis forest, Pinus densata forest, and Pinus kesiya forest were
0.9889, 0.9906, and 0.9983, respectively. It is generally accepted that the predicted result
is accurate when the AUC value is greater than 0.9 [73,74]. The habitat simulation AUC
values for all three pine forests were higher than 0.98. Additionally, the fitted AUC standard
deviation of the Yunnan pine forest and Pinus densata forest was 0.0018, and Pinus kesiya
forest was 0.0004, all of which were less than 0.002. The accuracy was guaranteed. By
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consulting with experts, the HSV variable values that were closest to the actual species
distribution were selected, as expert knowledge helped improve Maxent’s prediction
accuracy [55].

The candidate of habitat data was derived from the HSV of the pine forests and the
19 bioclimatic variables. Subsequently, a Pearson correlation analysis was conducted to
determine the AGB-related candidates that passed the significance test (p ≤ 0.01) as the
habitat data. Finally, the habitat dataset was derived from the resulting habitat data. The
selected habitat variables and their correlation with AGB are shown in Figure 4. In the
figure, the variables superscripted with “-” are factors that show a negative correlation
with AGB.

Figure 4. Radar plot of habitat data associated with forest AGB (a) Pinus yunnanensis forests;
(b) Pinus densata forests; (c) Pinus kesiya forests.

2.5. Acquisition of Combined Datasets

The combined dataset employed for the AGB estimation consisted of a habitat dataset
and an RS dataset, which correlated with the AGB (correlation coefficient > 0.1) and passed
the significance test (p ≤ 0.01).

The combined dataset of Pinus yunnanensis forests consisted of 13 habitat data and
11 remote-sensing data; the combined dataset of Pinus densata forests consisted of 10 habitat
data and 3 remote-sensing data; and finally, the combined dataset of Pinus kesiya forests
consisted of 15 habitat data and 4 remote-sensing data.

2.6. AGB Modeling Algorithms

In this study, a parametric model, SLR, and two additional non-parametric models,
namely RF and SVM, were used for AGB modeling based on a different dataset.

2.6.1. Stepwise Linear Regression (SLR)

The stepwise linear regression model builds a prediction model by first calculating the
significance of variables and then deleting the variables with low significance backward
or adding the variables with significance forward to the prediction model. Thereby, it
can effectively solve the collinearity problem between explanatory variables [75]. The
constructed model can be expressed using Formula (5).

Y = b0 + b1X1 + b2X2 + · · ·+ bnXn (5)

In this formula, b1, b2, . . . , bn are the regression coefficients of the prediction variables,
and b0 is the constant of the prediction model. The stepwise backward linear regression
model was utilized in this study.

2.6.2. Random Forest (RF)

A random forest is a machine-learning algorithm used for classification and regression.
Its basic idea is to generate a new training sample set by repeatedly performing random
extractions on two-thirds of the data from the original training set, and the remaining data
that are not extracted become the out-of-bag detection data. N regression decision trees
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were constructed for the newly generated sample set to fully grow into a random forest.
Finally, the best regression result was selected by voting on the prediction results of the
decision tree.

By employing the multi-branch combinative learning method of random forests, it is
possible to avoid the shortcomings of using only one classification [76], and the method
has a good tolerance for outliers and noise in large-scale datasets [53]. Random forest
has also been widely used in many other fields, such as agriculture and forestry, in recent
years [77–79].

2.6.3. Support Vector Machine (SVM)

The SVM is a machine-learning method based on the theory of small sample statis-
tics [64]. Its two main functions are, first, to find a hyperplane that fits the test data to the
best degree, and second, to perform a two-dimensional segmentation to maximize the iso-
lation edge of the data on both sides of the hyperplane in order to ensure the classification
accuracy of the data [80]. This method can be utilized to effectively solve the problems of
nonlinear data and high-dimensional pattern recognition [81]. The SVM model has a wide
range of applications in image recognition [82], time series prediction [83], and so on.

In order to simulate the relationship between AGB and the estimation variables of pine
forests, the “MASS”, “randomForest”, and “e1071” packages in R software were employed
to construct the models of SLR, RF, and SVM.

2.7. Model Evaluation

An RS dataset, a habitat dataset, and a combined dataset were applied to all models
of AGB estimation. In this study, the coefficient of determination (R2), the root mean
square error (RMSE), and the normalized root mean square error (NRMSE) were utilized to
evaluate the accuracy of model fitting. Furthermore, the mean error (ME), mean relative
error (MRE), and mean absolute relative error (MARE) were utilized to measure the overall
prediction accuracy and the segment prediction accuracy with a 50 Mg/ha interval (<50,
50–100, 100–150, 150–200, >200 Mg/ha).

R2 = 1 −

n
∑

i=1

(∧
yi − yi

)2

n
∑

i=1
(yi − y)2

(6)

RMSE =

√√√√√ n
∑

i=1

(
yi − ∧

yi

)2

n
(7)

NRMSE =
RMSE

y
(8)

ME =
∑n

i=1 (yi − ŷi)

n
(9)

NRMSE =
RMSE

y
(10)

MARE =

n
∑

i=1

∣∣∣∣ yi−∧
yi

∧
yi

∣∣∣∣
n

× 100% (11)

In this table,
∧
yi and yi are the predicted AGB and the corresponding AGB in the sample

plot; y is the mean AGB of the sample plots; and n is the number of samples.
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3. Results

To compare the role of the model and the dataset in AGB estimation, the sample data
were randomly divided into two groups: 70% of the sample data were fitting data for
model construction, and the remaining 30% were testing data for model validation. Due to
the differences in the number of sample plots in pine forests, some appropriate adjustments
were made to the datasets of different pine forests. The aforementioned processing was
performed in order to ensure the validity of model fitting and validation. The final statistical
values of the modeling and testing samples are shown in Table 4.

Table 4. Statistics of sample plot data used in this research.

Fitting Testing

Species Number
AGB

Range
(Mg/ha)

AGB Mean
(Mg/ha)

AGB Std.
Dev.

(Mg/ha)
Number

AGB
Range

(Mg/ha)

AGB Mean
(Mg/ha)

AGB Std.
Dev.

(Mg/ha)

Pinus yun-
nanensis 57 17.9–287.7 115.1 56.9 30 40.6–270.2 114.4 53.1

Pinus
densata 117 2.1–344.4 119.3 70.6 30 11.1–344.4 107.6 76.3

Pinus kesiya 30 49.1–204.4 116.2 40 15 70.1–192.2 116.8 33.6

3.1. Model Performance

AGB fitting was performed on the SLR, RF, and SVM of the three pine forests using
the habitat dataset, RS dataset, and combined dataset, respectively. The R2 by the SLR
model for the AGB estimation of Pinus yunnanensis forests ranged from 0.1039 to 0.2514;
the R2 value of Pinus densata forests ranged from 0.0742 to 0.1650, and that of Pinus kesiya
forests ranged from 0.0872 to 0.5331. The R2 of the SLR was primarily below 0.6. When an
RF model was implemented, the resulting R2 of AGB fitting of Pinus yunnanensis forests
ranged from 0.2028 to 0.7268, while Pinus densata forests ranged from 0.1903 to 0.7511, and
Pinus kesiya forests ranged from 0.4617 to 0.8316. The R2 distribution was mostly higher
than 0.7. The R2 of the SVM for the AGB fitting of the pine forest was mostly higher than
0.5. The R2 of the Pinus yunnanensis forests ranged from 0.1791 to 0.8100; the Pinus densata
forests ranged from 0.1559 to 0.7285; and the Pinus kesiya forest was concentrated between
0.5034 and 0.7956.

To further analyze the impact of different algorithms on AGB estimation, a boxplot
of the three algorithms (SLR, RF, SVM) for AGB estimation was constructed, as shown in
Figure 5. It can be seen that the median fitting coefficients of SLR, RF, and SVM were 0.1650,
0.7286, and 0.5361, respectively. The RF was significantly higher than the other two models,
and the interquartile range (IQR) of RF was smaller than that of SVM. The median NRMSE
of the three algorithms was 0.4350, 0.2634, and 0.2409, respectively. SLR had the largest
error value, and RF was slightly higher than SVM. The IQR of RF was the smallest among
the three models, and the RF model had the smallest estimation error dispersion. RF had
the best performance of AGB estimation in the fitting data, followed by SVM and SLR,
indicating that the non-parametric model had better AGB estimation characteristics for
pine forests.
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Figure 5. Boxplot of three algorithms for AGB estimation of the Pinus forest.

According to the results of a certain model, the dataset that provided the highest R2 in
the fitting data was applied to the AGB estimation of the test data; that is, the combined
dataset was used for all, except for the RF, estimations of the Pinus densata forests and the
SVM estimation of the Pinus yunnanensis, for which the RS dataset was used. Thereby, the
errors of the varying forests were determined. Additionally, the independence test index
of the model (Table 5) was represented by the mean value of each individual model error
measurement index. It is evident that the fitting performance of AGB estimation in the test
data was similar to that of the fitting data. Among the three models in question, RF had
the lowest score of ME, MRE, and MARE. It was also found that the ME and MRE of the
SLR were smaller than the predicted values of the SVM. However, the MARE, which is
measured by the absolute value of the error, was higher than that of the SVM.

Table 5. Fitting and testing statistics of the three models.

Model
Fitting Testing

R2 RMSE (Mg/ha) NRMSE ME (Mg/ha) MRE (%) MARE (%)

SLR 0.3165 47.1631 0.4035 −3.0224 3.2818 39.8129
RF 0.7698 27.1188 0.2320 −1.8477 −1.8103 30.5218

SVM 0.7840 26.1543 0.2238 −4.5969 −3.9566 35.5108

Furthermore, the prediction performance of the models was explained by the scatter
diagram (Figure 6), which was formed by utilizing the estimated value of the model and
reference data. It can be seen that the fitting performance of the non-parametric models (RF
and SVM) was higher than that of the parametric models (SLR). SLR had estimation errors
in all AGB segments, while RF and SVM had a higher estimation accuracy in cases with
40~200 Mg/ha, but in cases with AGB < 40 Mg/ha, the estimated value was significantly
higher than the actual value; and in cases with AGB > 200 Mg/ha, the estimated value was
significantly lower than the actual value. Although the SVM had a good fitting performance
on some data, the estimation error in other cases was considerable. Compared with the
SVM, the scatter points of the RF of Pinus yunnanensis forests and Pinus densata forests
were distributed within a certain range around the complete fitting line. The distribution
range of the SVM was larger than that of the RF, as was expressed in Figure 6. This shows
that the overall estimation performance of the RF model was better than that of the SVM.
However, in the case of Pinus kesiya forests, the scatter distribution of the RF and SVM
models was similar.

380



Remote Sens. 2022, 14, 4589

Figure 6. The predicted results of the SLR, RF, and SVM models of the different forests.
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3.2. AGB Estimation Based on Different Datasets

In order to explain how the AGB estimation of pine forests is affected by a dataset, an
RF with a higher accuracy performance for an AGB estimation was selected to perform
AGB estimation of a habitat dataset, an RS dataset, and a combined dataset of them both.

It is evident from Table 6 that the AGB estimation performance of Pinus yunnanensis
forests that utilized a different dataset under an RF, which was organized from high to
low, was the combined dataset, the RS dataset, and the habitat dataset, respectively. In
the case of Pinus densata forests, the habitat dataset had the lowest fitting performance.
Although the fitting performance of the RS dataset was higher than the combined dataset,
the error rate of the test data was also higher than the combined dataset. In the case of Pinus
kesiya forests, the AGB estimation performance using the combined dataset was the highest,
followed by the habitat dataset. However, the test error of the habitat dataset was higher
than the RS dataset. On the whole, the combined dataset consisting of a habitat dataset
and an RS dataset under RF significantly improved the accuracy of the AGB estimation
performance.

Table 6. Fitting and testing statistics of the three datasets using RF model. Habitat: habitat dataset;
RS: remote-sensing dataset; Combined: combined dataset; R2: coefficient of determination; RMSE:
root mean square error; ME: mean error; MRE: mean relative error; and MARE: mean absolute
relative error.

Species Dataset
Fitting Testing

R2 RMSE NRMSE ME (Mg/ha) MRE (%) MARE (%)

Pinus
yunnanensis

Habitat 0.2028 50.8261 0.4416 4.65 4.0639 38.2588
RS 0.7074 30.7922 0.2675 −0.3226 −0.2819 34.8031

Combined 0.7268 29.7535 0.2585 0.0963 0.0842 35.682

Pinus densata
Habitat 0.1903 63.5056 0.5322 −13.776 −12.797 45.9524

RS 0.7511 35.2124 0.2951 −9.4358 −8.7654 30.5785
Combined 0.7343 36.3738 0.3048 −5.7433 −5.3352 28.1384

Pinus kesiya
Habitat 0.7553 19.7669 0.1701 4.6127 3.9489 25.6779

RS 0.4617 29.3169 0.2522 3.9373 3.3708 23.7645
Combined 0.8316 16.3906 0.1410 3.7964 3.2502 25.3048

The maps of the predicted AGB for the three forests were generated using three
datasets (habitat dataset, RS dataset, and combined dataset) under RF, as shown in Figure 7.
For the Pinus yunnanensis forests and Pinus densata forests, the estimated AGB maps using
the RS and the combined dataset were more heterogeneous than the estimated AGB
maps using habitat datasets. However, for the Pinus kesiya forests, the heterogeneity of the
estimated AGB map using the habitat dataset was higher than that of the other two datasets.

In order to further analyze the impact of a dataset on AGB estimation, the means
and standard deviations of the residuals of test data under RF were calculated for the
overall and different AGB segments, and the results are presented in Table 7. The AGB
residuals of all predicted values showed similar trends. For instance, the means of the
model residuals were highest in a case where only a habitat dataset was involved, followed
by an RS dataset. Additionally, the means of the model residuals were lowest in a case
where a combined dataset was involved, which was also closest to the measured value of
the AGB. Furthermore, in cases where a combined dataset was used for AGB estimation
of pine forests, the AGB standard deviation of the Pinus densata forests and Pinus kesiya
forests was in the lowest grade, while that of the Pinus yunnanensis forests was in the
middle grade. This result concludes that the prediction results of the model involving the
combined dataset were more stable.
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Figure 7. The spatial distributions of the predicted forest AGB values using the three datasets.

Table 7. Summary of the mean (μ) and standard deviation (σ) values of the residuals at different
AGB classes for the three datasets based on the test dataset.

Species Dataset

<50
(Mg/ha)

50–100
(Mg/ha)

100–150 (Mg/ha) 150–200 (Mg/ha) >200 (Mg/ha) Overall

μ σ μ σ μ σ μ σ μ σ μ σ

Pinus yun-
nanensis

habitat 51.08 - - - 34.29 19.46 −13.41 31.10 −49.54 12.97 −128.17 0.67 −4.65 50.52
RS 43.89 - - - 41.74 30.38 −10.79 25.18 −39.83 29.24 −128.59 27.03 0.32 53.68

combined 40.67 - - - 40.00 28.85 −10.07 30.36 −41.96 19.46 −122.51 2.59 −0.11 51.86

Pinus
densata

habitat 70.84 38.02 46.59 33.09 −33.36 15.85 1.08 27.10 −158.37 36.04 13.78 73.88
RS 50.37 32.01 26.42 28.24 −13.86 19.58 −17.81 36.80 −86.73 37.73 9.44 48.52

combined 34.57 13.82 26.42 34.54 −21.11 13.18 −7.61 31.36 −92.04 25.92 5.74 47.23

Pinus kesiya
habitat - - - - - - 11.71 11.99 −2.33 32.63 −61.54 6.84 - - - - - - −4.61 33.19

RS - - - - - - 26.34 15.86 −14.74 16.23 −56.95 20.45 - - - - - - −3.94 32.79
combined - - - - - - 12.65 12.25 −3.68 34.32 −53.54 9.46 - - - - - - −3.80 32.56

On the basis of the statistical value of the predicted residuals for different AGB
segments, in cases where the AGB was less than 100 Mg/ha, the predicted AGB values
were all higher than the actual values. With the reduction in AGB values, the overestimation
errors of the model tended to increase. However, when the AGB of pine forests exceeded
100 Mg/ha, the underestimation of the AGB prediction became increasingly clear. The
estimated value of the AGB was more accurate in the range of 100 to 150 Mg/ha for the
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Pinus yunnanensis forests and Pinus kesiya forests, while that of the Pinus densata forests was
most accurate in the range of 150 to 200 Mg/ha.

In order to further analyze the impact of a dataset on AGB estimation for different
AGB segments, the segmentation of P. kesiya forests with the smallest AGB span among the
three forests was used as the standard to redefine the AGB segment, which was divided
into < 100 Mg/ha, 100—150 Mg/ha, and > 150 Mg/ha. The means of residuals under
RF at different AGB segments were calculated, and the result is shown in Figure 8. It is
evident that the means of residuals using a combined dataset were lower than those using
an optical remote-sensing dataset only in the two segments with larger AGB estimation
errors (AGB < 100 Mg/ha or AGB > 150 Mg/ha). In the range of 150 to 200 Mg/ha, the
same trend was revealed for the Pinus yunnanensis forests and Pinus kesiya forests, except for
the Pinus densata forests. Based on this result, it is concluded that incorporating the habitat
dataset into the optical RS dataset will reduce the number of estimation errors in cases with
AGB < 100 Mg/ha or AGB > 150 Mg/ha compared to relying only on the Landsat 8 optical
remote-sensing dataset.

Figure 8. The means of residuals under RF at different AGB segments.

Table 8 indicates the top six most significant variables for AGB estimation by RF
using a combined dataset. Thus, it also indicates the differences in significant variables
for AGB estimation among tree species. The significant variables of AGB estimation of
Pinus yunnanensis forests only came from the RS dataset; it mostly consisted of texture
variables, and only one vegetation index was selected. For the Pinus densata forests, three
important variables were obtained from the RS dataset, and the other three were obtained
from the habitat dataset, which consisted of two temperature variables and one annual
precipitation index. The habitat dataset was more important in the case of AGB estimation
of the Pinus kesiya forests, since it required three precipitation indices, two seasonal variation
coefficients of temperature, and one texture variable. Texture variables appeared in AGB
estimation of both the Pinus yunnanensis forests and Pinus kesiya forests.

Table 8. Important variables for AGB estimation from different datasets.

Species Variables R2

Pinus yunnanensis B6_homo, B4_entro, B7_homo, SIPI, B4_semo, B7_diss 0.7268
Pinus densata ARVI, SRI, EVI, bio4, bio7, bio12 0.7343
Pinus kesiya B4_mean, bio4, bio14, bio17, bio19, HSV 0.8316

4. Discussion

4.1. The Selection of Modeling Algorithms

In this study, SLR was used to estimate the AGB of three pine forests with varying
fitting datasets. The result showed that the estimation performance of AGB by SLR was not
high, and the R2 of more than 75% of them was below 0.3, and the highest R2 was only 0.53.
The mean NRMSE, ME, MRE, and MARE of the SLR model were larger than those of the
other two non-parametric models, except for the MRE of SVM. Since a linear regression
model can only analyze the relationship between a variable and independent variables from
the linear point of view, it is difficult to obtain a favorable fitting performance by using a
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linear model [76]. Although SLR can determine the important factors for regression through
a significance test, it reduces the number of modeling variables and improves the estimation
accuracy of the model only to a certain extent. However, due to the complex relationship
between the variables and the AGB, it is difficult to use a linear regression model to explain
such a complex nonlinear relationship, and for that purpose, non-parametric machine-
learning algorithms, such as RF and SVM, are necessary [84]. In this study, the mean of
R2 using the non-parametric model for AGB estimation was all above 0.5, indicating a
better fitting performance than the SLR. The fitting results for the two non-parametric
models (RF and SVM), including the mean, maximum, and the standard deviation of R2

and NRMSE, showed the estimation performance using RF was slightly better than that of
SVM. Additionally, this trend was also reflected in MAE and MARE, which used absolute
values as the measurement standard of test data errors.

The overall estimation performance of the AGB differed by about 5% between the
two non-parametric models, although there was a certain gap in the estimation of AGB for
different forests. In this study, the fitting performance of AGB estimation was measured
by the mean value of R2 of different fitting datasets of a certain forest under a specific
estimation model. Under SLR, the result indicates that the cases with the highest R2 of
the AGB fitting estimation were the Pinus kesiya forests, Pinus yunnanensis forests, and
Pinus densata forests, in descending order, which was inversely proportional to the sample
sizes of AGB fitting. Additionally, the R2 difference of this model among different forests
was the highest among the three models. The R2 of AGB estimation using RF were the
Pinus kesiya forests, Pinus densata forests, and Pinus yunnanensis forests, in descending order.
The AGB estimation of the Pinus densata forests with a larger data volume was significantly
better, and the difference of R2 among the varying forests was the lowest among the three
models. This indicates that RF has a good interpretation and a strong degree of robustness
for AGB estimations. This is consistent with the study of Zhang [85]. The descending
order of R2 using SVM was Pinus kesiya forests, Pinus yunnanensis forests, and Pinus densata
forests, respectively, which was consistent with the SLR model. However, the variation
coefficient of AGB estimation using SVM was significantly smaller than that of SLR. In
other words, AGB estimation using SVM was less affected by the forest type than that of
SLR. This indicates that SVM is better suited for small sample data as compared to SLR
and RF, which is consistent with previous research conclusions [86,87].

4.2. Selection of Suitable Variables for AGB Modeling

In cases where a single dataset was used to estimate the AGB, estimation using an RS
dataset performed better, except for the case of Pinus yunnanensis forests using a habitat
dataset under SLR and Pinus kesiya forests using a habitat dataset under RF. This result
indicates that in comparison with a habitat dataset, an RS dataset had excellent AGB
estimation ability for a large area, which is consistent with previous studies [75,87,88].

In cases where an RS dataset was used for AGB estimation, texture variables were most
frequently used in model construction, followed by the vegetation indices, which were
obtained through ground object reflection data, as presented in Table 9. Therefore, texture
information was of great significance for AGB estimations because texture information has
the ability to describe the complex canopy structure of subtropical forest [61].

Table 9. Important variables in AGB estimation using remote-sensing dataset.

Species Model Important Variables

P. yunnanensis SLR B7_homo
RF B6_homo, B4_entro, B7_homo

P. densata
SLR SRI
RF ARVI, SRI, EVI

P. kesiya SLR B4_mean
RF B4_mean, B2_corr, B2_con
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4.3. AGB Estimation by Incorporating the Habitat Dataset into the Models

The AGB fitting performance conducted through combining a habitat dataset with a
remote-sensing dataset was, to a certain extent, higher than that of the cases using a single
dataset. Particularly in the SLR, the R2 of AGB estimation using a combined dataset was
more than twice as high as that of an RS dataset. In the non-parametric AGB estimation
using a combined dataset, only the Pinus densata forests based on RF and Pinus yunnanensis
forests based on SVM were slightly lower than the R2 of an RS dataset, and the difference in
R2 was within 0.02. Recent studies have shown that the spatial pattern of AGB distribution
of vegetation is consistent with the response of its habitat [89]. Integrating a habitat
dataset representing environmental characteristics into an AGB estimation can compensate
for an RS dataset’s problem of low time span and improve the performance of AGB
estimation. As early as 1996, Phinn et al. emphasized the importance of habitat to the
ecosystems [90]. Habitat is the result of long-term development of vegetation, and accurate
estimation of forest biomass requires knowledge of the characteristics of long-term forest
development [91].

The employment of a habitat dataset not only improved the performance of AGB
estimation on the whole but also reduced the number of overestimation errors in AGB
estimation. The decreasing degree of overestimation errors was greatest in the case of
Pinus densata forests, followed by Pinus kesiya forests, and finally, Pinus yunnanensis forests,
respectively. As for the underestimation errors in AGB estimations, in comparison to the
RF model using only the Landsat 8 OLI optical RS dataset, the combined dataset could
reduce the underestimation errors across all segments of Pinus yunnanensis forests and
Pinus kesiya forests with AGB greater than 100 Mg/ha, in addition to Pinus densata forests
with AGB higher than 150 Mg/ha. A combined dataset can significantly improve the AGB
estimations of pine forests [23], and a combined dataset is not necessarily the result of
combining different remote-sensing datasets but also of combining a habitat dataset and
an optical remote-sensing dataset. The combination of a habitat dataset and an optical
remote-sensing dataset is more suitable for low AGB estimation (AGB < 100 Mg/ha) in
cases where non-parametric modeling methods are used. Based on the fact that habitat has
a profound impact on the richness and spatial distribution of species in a region [92], at least
to a certain extent, the habitat dataset can represent the structural information of a forest
in a region. Therefore, combining a habitat dataset with an RS dataset can compensate
for the unreliability of an optical remote-sensing dataset for AGB estimation. In the case
of AGB estimations of pine forests using a combined dataset, the habitat variables of
Pinus yunnanensis forests did not rank among the top six most significant variables in the
RF model, and the habitat variables of Pinus densata forests accounted for 50%, while those
of Pinus kesiya forests accounted for 83%. Therefore, whether the estimated differences
among the forests were related to the number of habitat variables that were included still
needs further discussion.

4.4. Comparison and Implication of Similar Studies

In order to further analyze the research conclusions of this paper, we compared two
papers that also applied Landsat images to estimate the AGB of Pinus densata forests in
Shangri-la. Zhang et al. [33] used Landsat time series images and national forest survey
data from 1987 to 2007 to produce parametric and non-parametric AGB estimations. In
Zhang’s study, i.e., AGB estimation without continuous image participation, the R2 of SLR
and RF were 0.46 and 0.87, respectively, and the MAE of the validation data were 20.48 and
22.47. The R2 of the AGB estimation with the participation of 5-year sequence images were
all increased to above 0.9, and the MAEs were reduced to below 10. In this study, the R2s of
AGB estimations that utilized a combined dataset were 0.17 and 0.73, and the MAEs were
58.82 and 34.68 under SLR and RF, respectively. The R2 was lower than that in Zhang’s
study, but the result of the model fitting comparison was consistent. In other words, in the
case of the Pinus densata forests, the AGB estimation of an RF model was more accurate
than that of an SLR model. The estimation performance of this study was lower than that
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of Zhang for the following reasons. First of all, Zhang not only used spectral variables and
spectral conversion variables of RS data but also used terrain variables to reduce the impact
of the slope on AGB estimation. The type of the forest ecosystem and the change in terrain
both affect the estimation performance of AGB estimations [23]. However, this study only
integrated the habitat dataset derived from bioclimatic data into the remote-sensing dataset
for AGB estimation while ignoring the fact that the lack of topographic variables may
reduce the estimation performance, especially in the case of the Shangri-La region with
large terrain fluctuations. Secondly, the climate data from WorldClim used in this study
were the mean values of various bioclimatic indicators obtained from 1970 to 2000. This
time interval was significantly larger than the 5-year time interval estimated by the optimal
AGB in Zhang’s study. In addition to temporal resolution, the spatial resolution (1 km2) of
climate data was also significantly lower than that of the image data. Finally, the sample
size of the Pinus densata forests used in this study (147 samples) was significantly larger
than the 53 samples used by Zhang, which may have led to a lower estimation accuracy.

Ou et al. [30] incorporated age data as a dummy variable into a Landsat 8 optical
image to estimate the AGB of Pinus densata forests. As a result, the RMSE of the linear
regression dropped from 50.163 to 33.020, and the RMSE of RF dropped from 40.108 to
23.311. This proves that the age-fused optical RS combined dataset significantly improved
the AGB estimation performance. It also indicates that the combined dataset that could
improve the fitting performance of AGB estimations included the combination of different
remote-sensing data sources [23,93], as well as the combination of remote-sensing data and
non-remote-sensing data. For example, the combination of a habitat dataset and Landsat
optical images in this study also significantly improved the overall estimation performance
of the AGB and was able to reduce the number of overestimation and underestimation
errors in cases where only an optical remote-sensing dataset was used for AGB estimation.
Ou’s study concluded that the estimation models that use age as a dummy variable perform
best when AGB < 70 Mg/ha and AGB > 180 Mg/ha, while this study was the most accurate
when the AGB was 150–200 Mg/ha, and the prediction accuracy was also slightly lower
than Ou’s study. However, in forests where the age of stands is difficult to obtain, such
as pure forests with uneven ages and mixed forests with multiple dominant tree species,
the habitat dataset used in this study can be regarded as an effective way to improve the
performance of AGB estimation.

4.5. Limitation and Future Research

This study confirms that a nonlinear algorithm (RF and SVM) is more suitable for
AGB estimation of the pine forests than SLR, and the integration of habitat information can
improve the estimation accuracy of AGB estimation using Landsat optical images. However,
to some extent, the following limitations still exist. Firstly, the three pine forests, which
were selected for AGB estimation in this study, are located in different regions of the study
area, and the environmental information, such as topography, climate, and physicochemical
properties of the soil, varies. This difference will inevitably affect the habitat suitability
for tree growth in the forest. Although none of the other factors play a significant role
compared to the effects of climate [94], the inclusion of information on the elevation, land
cover, and landscape spatial alignment, which have an impact on biodiversity [48,52,95],
can reduce the uncertainty in habitat suitability calculations. Therefore, in later studies, we
will try to combine more variables to improve the expressiveness of the habitat information.

Secondly, the data size of the estimated sample is not only related to the selection of
the estimation model but also affects the estimation performance of the model. Due to the
different distribution ranges of the three pine forests, there are differences in the number of
trees obtained by the same sampling method. However, a sample size of 30 can meet the
requirements for AGB estimation. Bao et al. emphasized that a minimum of 30 samples
should be ensured in AGB estimation [96]. Rafaela et al. estimated the AGB of mangroves
with a sample size of 30 and obtained a good estimation [97]. Moreover, in order to clarify
the effect of sample size on AGB estimation using the combined dataset, we will select
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different sample size data to study the AGB estimation of a specific pine forest in a certain
area in the next step. Technology and means such as growth cones and LiDAR can also be
used to obtain more samples to facilitate the smooth progress of research.

5. Conclusions

In this study, three common pine forests (Pinus yunnanensis forests, Pinus densata
forests, and Pinus kesiya forests) in Yunnan Province, southwest China, were taken as
examples for AGB estimation. The estimation was performed under a parametric model
(SLR) and a non-parametric model (RF and SVM) based on a habitat dataset, Landsat8
OLI optical remote-sensing dataset, and a combined dataset produced by combining the
two. The results indicate that (1) the non-parametric models of RF and SVM are capable of
predicting the AGB of the three pine forests more accurately than the parametric model of
SLR. RF is suitable for AGB estimation with a large sample size, while SVM is better suited
for AGB estimation with a small sample size. (2) When a single dataset is employed for
AGB estimation of the three pine forests, the resulting estimation performance of the habitat
dataset is lower than that of the RS dataset, and the texture variables in the RS dataset are
more significant in AGB estimation. (3) As compared to the overall fitting performance
of the AGB estimations, which only use a single dataset, the combined dataset resulting
from the combination of the habitat dataset and the RS dataset can improve the estimation
performance to a certain extent. In particular, combining datasets can reduce the number
of estimation errors in cases with AGB lower than 100 Mg/ha or exceeding 150 Mg/ha
using RF.
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Abstract: Three dimensional (3D) green volume is an important tree factor used in forest surveys as a
prerequisite for estimating aboveground biomass (AGB). In this study, we developed a method for
accurately calculating the 3D green volume of single trees from unmanned aerial vehicle laser scanner
(ULS) data, using a voxel coupling convex hull by slices algorithm, and compared the results using
voxel coupling convex hull by slices algorithm with traditional 3D green volume algorithms (3D
convex hull, 3D concave hull (alpha shape), convex hull by slices, voxel and voxel coupling convex
hull by slices algorithms) to estimate AGB. Our results showed the following: (1) The voxel coupling
convex hull by slices algorithm can accurately estimate the 3D green volume of a single ginkgo tree
(RMSE = 11.17 m3); (2) Point cloud density can significantly affect the extraction of 3D green volume;
(3) The addition of the 3D green volume parameter can significantly improve the accuracy of the
model to estimate AGB, where the highest accuracy was obtained by the voxel coupling convex hull
by slices algorithm (CV-R2 = 0.85, RMSE = 11.29 kg, and nRMSE = 15.12%). These results indicate
that the voxel coupling convex hull by slices algorithms can more effectively calculate the 3D green
volume of a single tree from ULS data. Moreover, our study provides a comprehensive evaluation of
the use of ULS 3D green volume for AGB estimation and could significantly improve the estimation
accuracy of AGB.

Keywords: 3D green volume; aboveground biomass; UAV-Lidar; urban forest; random forest model

1. Introduction

The three-dimensional (3D) green volume of an urban forest could be defined as
the volume of space occupied by all green stems and leaves of plants in the city [1–5],
which reflects the ecological functions and environmental benefits of urban forests in
terms of spatial patterns. Thus, it has been well established that 3D green volume plays
important roles in the estimation of aboveground biomass (AGB), the estimation of the
environmental benefits of greening, and the construction of forest fire risk models, thus,
effectively improving the efficiency of urban green space evaluation and green space
planning [6–9]. However, urban forests are composed of scattered trees, tree belts, forests
with structural diversity, and forests with broken distribution [10]. They are very different
from the large, continuously distributed forests in the general sense, thus, making the
monitoring and evaluation of urban forest resources complicated. How to accurately
estimate the 3D green volume and AGB of urban forests has become an urgent problem to
be solved.

Methods for measuring 3D green volume currently include field measurements, optical
remote sensing estimation, and LiDAR estimation. The most widely used manual method
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for estimating canopy volume is the ellipsoidal method, in which crown diameters and
canopy heights are measured, assuming an ellipsoidal shape for the canopy [9]. The
disadvantage of this method is the large workload, and low efficiency, and it is difficult to
carry out a wide range of extensions. Optical remote sensing estimation is mainly based on
single-tree crown diameter extraction from high-resolution images combined with ground
measured data and on building crown diameter–crown height models to perform 3D green
volume estimation. This method has achieved good results in related research in China [11],
but it is difficult to comprehensively obtain the vertical distribution of forest structure. The
accuracy of the model needs to be further improved [12]. Light detection and ranging
(LiDAR) are an active remote sensing technique using pulsed or continuous-wave lasers to
measure the range of an object that can rapidly obtain dense 3D point clouds with high
precision. Moreover, LiDAR has become a trending topic of domestic and international
research because it can describe the forest canopy structure in more detail and provide
advanced technical means for accurate estimation of 3D green volume by enabling the leap
from two-dimensional (2D) to 3D forest ecosystem research [13–17].

A review of domestic and foreign literature found that the main algorithms for 3D
green volume estimation, based on LiDAR point clouds, include 3D convex hulls, 3D con-
cave hulls (alpha shape), convex hulls by slices, and voxels. For example, Ebadat et al. [18]
used unmanned aerial vehicle laser scanner (ULS) and photogrammetric point cloud
to extract 3D green volume based on a 3D convex hull algorithm. The results showed
that UAV photogrammetry and LiDAR point clouds were highly correlated (R2 = 0.99).
Vauhkonen et al. [19] extracted canopy volume based on ALS data. using the alpha shape
algorithm, and used it to estimate wood volume. He et al. [2] calculated the 3D green
volume based on terrestrial laser scanner (TLS) data. using the convex hull by slices al-
gorithm. and better obtained the 3D green volume of the Beijing urban forest (R2 > 0.85).
Fernández-Sarría et al. [20] extracted the 3D green volume of overhanging trees, using
a voxel algorithm, based on TLS data (R2 = 0.78), and the results showed that TLS has
some potential in predicting the 3D green volume of urban forests. How to choose the
appropriate algorithm and input parameters is the current problem faced by researchers.

LiDAR can accurately extract structural parameters, such as crown projection area,
crown diameter, and crown height, which makes it advantageous for single-tree AGB
estimation [21–23]. Three dimensional green volume characterizes the volume of space
occupied by plants. Therefore, the participation of 3D green volume in the estimation of
AGB has attracted extensive attention from scholars. For example, Tao et al. [24] showed
that a 3D green biomass incorporation model could more accurately estimate the AGB
(R2 = 0.77, RMSE = 179.0 Mg/ha). Hauglin et al. [6] estimated the AGB of a single tree plant
based on TLS extraction of voxelization parameters with higher accuracy than conventional
anisotropic growth models (R2 = 0.88, RMSE% = 32%).

LiDAR data acquisition includes TLS, airborne laser scanner (ALS), and ULS. The laser
radar scanner installed on the TLS ground support obtains a high-density point cloud, but it
takes a great deal of time to collect TLS data. due to its static properties, so its use cannot be
widely promoted [25]. ALS can obtain a wide range of 3D point cloud data, but low point
cloud density makes it impossible to accurately express stand structure [9]. Conversely,
ULS can efficiently acquire large-area point cloud data, and compared with ALS, ULS flies
at lower altitudes and can acquire a higher point cloud density [26]. However, there are
few studies on the extraction of single tree 3D green volume based on ULS [18].

Ginkgo (Ginkgo biloba L.) is widely distributed in China and East Asia, with the
advantages of an upright trunk, beautiful tree shape and strong resistance to diseases, etc. It
is an important tree species for urban greening and has high economic and ecological value.
It is of great significance to obtain accurate structural parameters of single Ginkgo trees.
This study developed a new algorithm to calculate tree 3D green volume from ULS data.
Coupled voxel and convex hull by slices algorithms provide a more accurate calculation
of 3D green volume, compared with those achieved using conventional algorithms. The
objectives of this study were the following: (1) to select the optimal algorithm for single
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tree 3D green volume extraction based on ULS data, (2) to evaluate the effect of point
cloud density variation on 3D green volume, and (3) to compare different 3D green volume
algorithms for AGB estimation.

2. Materials and Methods

2.1. Study Area and Data Acquisition

The study area, Zhejiang A&F University (Figure 1), is situated in Lin’an, Hangzhou,
Zhejiang Province. The geographical coordinates of Lin’an city are 30◦15′10′′~30◦15′30′′N,
119◦43′10′′~119◦43′40′′E. The area is dominated by hilly and mountainous terrain, and the
terrain slopes from west to southeast. The area has a subtropical monsoon climate, with
abundant light and abundant rainfall. The average annual precipitation is 1613.9 mm, with
158 days of precipitation, and the average annual frost-free period is 237 days. The average
elevation of the study area is approximately 50 m, and the area is covered with ginkgo trees
on both sides of Ginkgo avenue.

Figure 1. Overview of the study area. (a) location of Hangzhou, (b) location of the study area,
(c) aerial photograph of the study area, (d) ULS point cloud of the study area, (e) ground image of
ginkgo, (f) ULS point cloud of ginkgo, (g) point cloud of a single tree of ginkgo.

Field work was conducted in July 2021. Data from 64 single ginkgo trees were mea-
sured. The coordinates of each single tree were located using a real-time kinematic (RTK)
device. The diameter at breast height (DBH) was measured using a diameter tape. The
single-tree height and branch height were measured using a hypsometer, and the north–
south and east–west crown diameters were measured using a tape rule [27]. Crown height
is tree height minus branch height [28]. The crown diameter is the average of the east–west
and north–south crown diameters. The single-tree 3D green volume values were calculated
according to the crown diameter and crown height based on the volume of the geometry [9].
The single-tree AGB values were calculated according to the tree height and DBH, based on

395



Remote Sens. 2022, 14, 5211

the biomass allometric model developed by [29]. The measured forest structural attributes
for the single trees are summarized in Table 1.

Table 1. Descriptive statistics of field inventory data for 64 trees.

Statistics DBH (cm) Tree Height (m) Crown Diameter (m) Branch Height (m)

Minimum 14.80 8.00 6.00 1.40
Maximum 23.90 14.30 2.85 4.20

Range 9.10 6.30 3.15 2.80
SD 2.29 1.78 0.65 0.51

Average 18.76 11.01 4.45 2.37

2.2. ULS Data

The ULS data for this study were acquired in May 2021. The DJI Matrice 600 Pro six-
rotor unmanned aerial vehicle (UAV) was used in clear-weather and low-wind conditions.
Using the Velodyne Puck LITETM sensor to obtain the original ULS point cloud, the sensor
records the first echo of the pulse, with a flight altitude of 60 m, flight speed of 5 m/s,
swath width of 25 m, and route overlap rate of 50%, with an average point cloud density of
approximately 230 pts.

2.3. ULS Metrics

The ULS point cloud was preprocessed using LiDAR360 software. First, the single-tree
point cloud was denoised and filtered. Then, classification of ground points was carried
out using the improved progressive TIN densification (IPTD) algorithm [30] and a digital
elevation model (DEM), with a resolution of 0.5 m generated by irregular triangulation
interpolation [31]. Finally, the point cloud data were normalized to remove topographic
fluctuations from the data. Point clouds above 2 m were extracted as canopy point clouds,
and three sets of metrics were computed (Table 2) [32,33].

Table 2. Description of metrics derived from ULS data.

Metrics Description

Height-related metrics

Percentile height (H_5, H_10, H_20,
H_25, H_30, H_40, H_50, H_60, H_70,

H_75, H_80, H_90, H_95, H_99)

The percentiles of the canopy height distribution
(5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th,

75th, 80th, 90th, 95th, 99th) of first returns
Mean height (H_mean) Mean height above ground of all first returns

Maximum height (H_max) Maximum height above ground of all first returns
Median height (H_median) Median height above ground of all first returns
Interquartile spacing (H_iq) The interquartile spacing of heights of all first returns

Root mean square (H_sq) The root mean square of heights of all first returns
Kurtosis of height (H_kurtosis) The kurtosis of heights of all first returns

The coefficient of variation of height (H_cv) The coefficient of variation of heights of all first returns
Variance of height (H_variance) The variation of heights of all first returns

Density-related metrics Canopy return density (D1,D3,D5,D7,D9) The proportion of points above the quantiles
(10th, 30th, 50th, 70th and 90th) to total number of points

Canopy-related metrics
Canopy projection area (CS) The canopy projection area of all first returns

Crown diameter (CD) (Xmax−Xmin)+(Ymax−Ymin)
2

Crown height (CH) Zmax − Zmin

2.4. Green Volume Calculation Algorithm
2.4.1. Convex Hull Algorithm

A convex hull is a concept in computational geometry defined as finding a minimal
set of points such that the shape formed by the set of points can contain all points in the
2D plane or 3D space [34]. Figure 2a shows a schematic diagram of the 2D convex hull.
In this study, the point cloud of a single tree canopy is projected to the 2D plane, the 2D
convex hull is calculated, and the projected area of the canopy is extracted based on the
convhull function in MATLAB. Figure 2b shows the results of the convex hull algorithm in

396



Remote Sens. 2022, 14, 5211

3D space, based on the quickhull algorithm to reconstruct the canopy surface and calculate
the volume under the convex hull, i.e., the 3D green volume [20].

Figure 2. (a) A schematic diagram of a 2D convex hull algorithm, and (b) An example of a 3D convex
hull algorithm.

2.4.2. Concave Hull Algorithm

The concave hull algorithm is another common geometric calculation method, which
can be understood as an additional parameter alpha that can be set on top of the convex hull,
with alpha as the diameter of the circle rolling along the boundary of the convex polyhedron.
The trajectory of the rolling circle is the boundary of the concave polyhedron [19], so the
method is also called alpha shape. The algorithm is shown in Figure 3a. The process of
reconstructing the shape of the tree crown in the 3D concave hull does not connect vertices
that are too far apart, as in the 3D convex hull. If alpha tends to infinity, the concave hull
result is infinitely close to the convex hull, while a smaller alpha tends to be concave at
a certain position to fit the shape of the point set more closely [35,36]. The results of the
concave packet algorithm with different parameters on a tree are shown in Figure 3b. In
this study, we set the alpha range as 0.1–5 m, took 0.1 m as a step and calculated the RMSE
with measured 3D green volume to select the optimal scale.

2.4.3. Convex Hull by Slices Algorithm

The convex hull by slices algorithm is based on the idea of integration. First, the
canopy is sliced according to the uniform thickness, and each layer is considered a table
body. For each layer, the point clouds within 0.2 m of each plane are counted, these point
clouds are projected to the same plane, and the projected area of the plane is calculated
using the 2D convex hull algorithm. Then, the table product formula is used to calculate
the volume of each layer. Finally, all the slice volumes are summed to obtain the 3D green
volume (Figure 4) [27,37]. The convex hull by slices algorithm sets the height difference in
the range of 0.1–5 m with a step of 0.1 m, and calculates the RMSE with measured 3D green
volume to select the optimal scale. The volume of each layer of the table is calculated as
follows:

V = ∑
(
Sn + Sn+1 +

√
Sn + Sn+1

)
3

∗ Δh (1)

397



Remote Sens. 2022, 14, 5211

where Sn is the projected area of the nth layer of the point cloud calculated based on the
2D convex packet algorithm and Δh is the height of the table.

Figure 3. (a) The schematic diagram of the concave hull algorithm (b) The single tree contour
constructed by the concave hull with different parameters.

 

Figure 4. The schematic diagram of the convex hull by slices algorithm.
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2.4.4. Voxel Algorithm

The voxel algorithm uses a regular 3D grid to partition the discrete canopy point cloud.
The initialized grid is divided into N smaller voxels according to the input parameters, and
the number of voxels in which at least one point exists in the statistical space is determined,
based on the range of the canopy point cloud to determine the polar values of the starting
grid in the XYZ coordinate directions. The sum of the space volumes occupied by the
voxels is the 3D green volume (Figure 5) [28,38]. In this study, the voxel edge length was
set in the range of 0.1–1 m, the step length was 0.1 m, and the RMSE was calculated with
measured 3D green volume to select the optimal scale.

Figure 5. (a) The single tree point clouds (b) The schematic diagram of the voxel algorithm.

2.4.5. Voxel Coupling Convex Hull by Slices Algorithm

The 3D convex hull algorithm treats the canopy as a whole and cannot calculate the
gaps within the canopy, and its boundary does not represent the real canopy outline, and,
thus, it overestimates the measured 3D green volume [1,8]. The concave hull algorithm
excessively removes voids and gaps when calculating the volume, leading to low 3D green
volume estimation results [39]. Since the crown shape and size of different single trees of the
same species vary greatly, uniform thickness slices in the vertical direction bring some errors
to the calculation of 3D green volume based on the convex hull by slices algorithm [40].
The voxel algorithm can generate realistic canopy shapes to obtain high-accuracy 3D green
volume [28,41], but the missing ULS point cloud leads to underestimation of 3D green
volume [9]. Figure 6 shows a single tree ginkgo canopy for the voxel algorithm, and it can
be seen that the point cloud absence increases with decreasing height.

Figure 6. Single tree voxel profile analysis (Layer 7, Layer 8, Layer 9 shows the horizontal section of
the tree at a crown height of 2.8 m, 3.2 m, and 3.6 m).
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Based on the above analysis, a new algorithm for 3D green volume estimation, named
voxel coupling convex hull by slices, is proposed in this study. The method calculates the
3D green volume by dividing the single tree canopy point cloud into two parts according
to height, and the volume of the upper canopy point cloud is calculated using the voxel
algorithm, to prevent the calculation error of the upper layer caused by uniform thickness
slicing, while the volume of the lower canopy point cloud is calculated using the convex
hull by slices algorithm, to prevent the calculation error of the green volume caused by the
missing point cloud of the lower layer (Figure 7). To explore the optimal stratification ratio,
this study set the stratification range, from 10% to 90%, with a step size of 10%, extracted
the 3D green volume of each stratification, and calculated the RMSE with measured 3D
green volume to select the optimal scale. The computational equations of this new method
are shown below:

V = n ∗ Vn + ∑
(
Sn + Sn+1 +

√
Sn + Sn+1

)
3

∗ Δh (2)

where n is the number of voxels, Vn is the volume of a single voxel, Sn is the projected area
of the nth layer of the point cloud, and Δh is the height of the table.

Figure 7. Schematic diagram of the voxel coupling convex hull by slices algorithm.
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2.5. Sensitivity Analysis of ULS Data Density

To explore the effect of different LiDAR point cloud densities on extracting 3D
green volume, the original point density (230 pts/m2) was used to lower densities to
75% (172.5 pts/m2), 50% (115 pts/m2), 25% (57.5 pts/m2), 10% (23 pts/m2) and 5%
(11.5 pts/m2). We used a point cloud height-based algorithm that groups all point clouds
by elevation and extracts reduced point clouds by percentage in each layer [15,42]. This
algorithm ensured the consistency of sampling, and the extracted point cloud data could
maintain a similar spatial distribution as the original point cloud data.

2.6. Random Forest Model

The RF algorithm, created by Breiman and Cutler, was developed as an integrated
learning model and a basic decision tree classifier. The decision tree algorithm is an
extension of the conventional framework. It improves prediction accuracy by combining
multiple decision trees [43,44]. The basic idea is that by using bootstrapping with repeated
sampling replacement from several random samples, and establishing a corresponding
decision tree for each sample, a RF could be constituted by combining the forecasting of
multiple decision trees [45].

The randomForest function under the randomForest data package in R software was
used to construct the RF model. First, in the method using the random forest R language, the
program determines the influence of each independent variable on the regression process
and then evaluates the influence using two indexes. One is the model mean square error
(%InMSE) increment when out-of-bag arguments appear, and the second is the impact of
purity on the tree node model when out-of-bag arguments arise. Second, the RF algorithm
has three important parameters: ntree is the number of random regression trees; nodesize
is the minimum size of the terminal node, whose default value is 5; and mtry is a variable
division number (the default value is one-third of the number of arguments). In this
study, ntree was set to 2000, and the rest of the parameters were set as default parameters.
The effect of each independent variable was determined based on the out-of-bag error
(%InMSE) [43] (Figure 8).

Figure 8. The flow chart of this study.
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2.7. Model Verification

In this study, the R2, RMSE, and nRMSE of 10-fold cross-validation were used to
evaluate the model fit. Generally, a higher accuracy is indicated by higher values of R2 and
lower values of RMSE and nRMSE. R2, RMSE and nRMSE were calculated as follows:

R2 = 1 − ∑n
i=1 (pi − oi)

2

∑n
i=1 (oi − oi)

2 (3)

RMSE =

√
1
n

∑n
i=1(pi − oi)

2 (4)

nRMSE =

√
1
n ∑n

i=1 (pi − oi)
2

oi
(5)

where oi represents the observed AGB for the ith tree, oi is the observed mean value, pi is
the estimated AGB for the ith tree, and n is the number of trees.

3. Results

3.1. Determination of Different 3D Green Volume Algorithm Parameters

Figure 9 shows that in the alpha shape algorithm, as the alpha parameter increased,
the 3D green volume also became larger, and the alpha value tended to stabilize after 2 m.
The RMSE showed first a decreasing and then an increasing trend, with a peak at the 0.6 m
scale, and tended to stabilize after the alpha value was greater than 1.3 m. The RMSE
under this scale was 12.20 m3. The overall trend of the 3D green volume obtained by the
convex hull by slices algorithm decreased with increasing height interval, and the RMSE
did not change regularly, but, overall, the RMSE was higher when the height interval was
higher, with a peak at the 0.9 m scale. The RMSE under this scale was 13.01 m3. The 3D
green volume obtained by the voxel algorithm increased linearly with increasing voxel size,
and the RMSE showed a trend of first decreasing and then increasing, peaking at a scale
of 0.4 m. The optimal voxel size was selected as 0.4 × 0.4 × 0.4 m, and the RMSE at this
scale was 12.03 m3. Figure 10 shows the results of the voxel coupling convex hull by slices
algorithm. As the segmentation scale increased, the RMSE decreased and then increased.
The optimal canopy segmentation scale was selected to be 20%, and the RMSE at this scale
was 11.17 m3, which was lower than those of the other algorithms.

 

Figure 9. Optimization of different algorithm parameters.
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Figure 10. Stratified scale screening.

3.2. Calculation Results of 3D Green Volume

The 3D green volume of single ginkgo trees differed significantly, due to differences
in growth. The results of the 3D green volume calculated using the five algorithms, 3D
convex hull, 3D concave hull, convex hull by slices, voxel and voxel coupling convex hull
by slices, are shown in Table 3. The average 3D green volume and RMSE calculated by
the 3D convex hull algorithm was much higher than those calculated by the other models,
ranging from 21.22–196.10 m3 (mean = 84.86 m3, RMSE = 45.31 m3). The average 3D green
volume calculated by the 3D concave hull was the lowest, ranging from 12.12–74.84 m3

(mean = 37.72 m3, RMSE = 12.20 m3). The convex hull by slices algorithm overestimated
3D green volume, and ranged from 15.16–133.53 m3 (mean = 53.85 m3, RMSE = 13.01 m3),
and the 3D green volume calculated by the voxel algorithm ranged from 16.00–81.79 m3

(mean = 43.13 m3, RMSE = 12.03 m3). The average 3D green volume calculated by the voxel
coupling convex hull by slices algorithm ranged from 15.58–97.20 m3 (mean = 46.61 m3),
and the 3D green volume calculated by this method was the minimum RMSE (11.17 m3).

Table 3. Three dimensional green volume of single trees of ginkgo by different algorithms.

Algorithms Min (m3) Max (m3) Mean (m3) RMSE (m3)

Observed data 12.55 96.39 46.85 -
3D convex hull 21.22 196.10 84.86 45.31
3D concave hull 12.12 74.84 37.72 12.20

convex hull by slices 15.16 133.53 53.85 13.01
voxel 16.00 81.79 43.13 12.03

voxel coupling convex hull by slices 15.58 97.20 46.61 11.17

3.3. ULS Point Density Effects on the Performance of the 3D Green Volume

To investigate the effects of ULS point density on 3D green volume, we calculated using
5 algorithms with different sampling densities of 75% (172.5 pts/m2), 50% (115 pts/m2),
25% (57.5 pts/m2), 10% (23 pts/m2) and 5% (11.5 pts/m2) and the Pearson’s correlation
between AGB and 3D green volume (Figure 11). The box plot in Figure 11 shows the
changes in the 3D green volume values due to the decrease in point cloud density. The
3D green volume values and r values of all five algorithms decreased as the point cloud
density decreased; among them, the values of the 3D convex hull and convex hull by slices
algorithm decreased slowly with the point cloud density from 100% (230 pts/m2) to 10%
(23 pts/m2), and the correlation with the AGB was stable. However, when the point density
decreased to 5% (11.5 pts/m2), there was a marked decrease in the r values and 3D green
volume values (3D convex hull, r = 0.88–0.86; convex hull by slices, r = 0.84–0.80). For the
alpha shape and voxel algorithms, there was a slight downward trend in the 3D green
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volume value and r values as the point cloud density decreased from 100% (230 pts/m2) to
50% (115 pts/m2), and as the point cloud density decreased from 50% (115 pts/m2) to 5%
(11.5 pts/m2), the metric and r values decreased significantly (alpha shape, r = 0.84–0.70;
voxel r = 0.87–0.80). The 3D green volume values of voxel coupling convex hull by slices
algorithm decreased with point cloud density in the same way as the voxel algorithm,
but the decrease in r values was lower (0.87–0.84). Therefore, this study chose to extract
single-tree 3D green volume at 100% (230 pts/m2) of point cloud density as a metric to
estimate AGB.

Figure 11. Distribution and correlation with AGB of 3D convex hull (a), 3D concave hull (b), convex
hull by slices (c), voxel (d) and voxel coupling convex hull by slices (e) algorithms at different point
densities (100%, 75%, 50%, 25%, 10%, 5%).

3.4. RF Variable Importance Analysis

In this study, the 3D green volume extracted by each of the five algorithms was
combined with the ULS base parameters to obtain the importance scores of the input
variables by adding the RF model for 100 runs. Figure 12 shows a statistical plot of the
importance scores of the top 20 variables with the greatest impact on the estimated AGB. In
all models, 3D green volume, H_99, and H_max were the three parameters with the highest
importance; the 3D green volume in model 2 had the second highest importance after H_99;
the 3D green volume in model 3 had lower importance than H_99 and H_max; and the
3D green volume in models 4, 5 and 6 were the parameters with the highest importance.
The mean importance of 3D green volume in model 6 was 35.92, which was significantly
higher than that of the other parameters. It indicated that 3D green volume is an important
parameter for estimating single tree AGB.
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Figure 12. RF model AGB parameter importance analysis of 3D convex hull (a) 3D concave hull (b)
Convex hull by slices (c) Voxel (d) Voxel coupling convex hull by slices (e) % in MSE for the first
20 variables running the RF model 100 times.

3.5. Single-Tree AGB Estimation

The results of different models predicting single tree AGB are shown in Figure 13 and
Table 4. The accuracy of model 1, based on ULS base parameters, was CV-R2 = 0.81, RMSE =
12.66 kg, nRMSE = 16.94%, and the AGBs estimated by models 2–5, with the addition of
3D green volume parameters, were better than that of model 1 (CV-R2 = 0.82–0.85, RMSE =
11.29–12.54 kg, nRMSE = 15.12–16.79%). This indicated that the addition of 3D green volume
could significantly improve the estimation accuracy of AGB. Model 6 had the highest accuracy
(CV-R2 = 0.85, RMSE = 11.29 kg, nRMSE = 15.12%), with an improvement in CV-R2 of 0.04, a
decrease in RMSE of 1.37 kg, and a decrease in nRMSE of 1.82%.

Figure 13. Different algorithms for estimating AGB (a) ULS basis parameters, (b) 3D convex hull,
(c) 3D concave hull, (d) Convex hull by slices, (e) Voxel, (f) Voxel coupling convex hull by slices.
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Table 4. Different algorithms for estimating AGB accuracy.

Algorithms R2 RMSE (kg) nRMSE (%)

base parameters 0.81 12.66 16.94
3D convex hull 0.82 12.54 16.79
3D concave hull 0.83 12.15 16.26

convex hull by slices 0.83 12.01 16.08
voxel 0.84 11.66 15.61

voxel coupling convex hull by slices 0.85 11.29 15.12

4. Discussion

Previous studies have shown that lidar pulses are nearly vertical, resulting in the num-
ber of point clouds from the lower parts of the crown being lower than those nearer the top,
and, thus, ALS tends to underestimate the 3D green volume at the bottom of the canopy [9].
Although the point cloud density obtained by ULS is higher than that of ALS, there is still a
problem of missing point clouds inside the bottom layer of the canopy (Figure 6). Alpha
shape and voxel algorithms are strongly affected by the point cloud integrity, resulting
in an underestimation of 3D green volume [19,46]. Fernández-Sarría et al. [20] found that
the 3D convex hull algorithm overestimated the canopy gap, leading to an overestimation
of the 3D green volume. Yan et al. [1] argued that the 2D convex hull algorithm would
overestimate the projected area of the canopy slices, leading to an overestimation of the
3D green volume by the convex hull by slices algorithm. Our results showed that the 3D
concave hull and voxel algorithms underestimated the 3D green volume, and the 3D convex
hull and convex hull by slices overestimated the 3D green volume, which was consistent
with previous studies. In this study, we described and evaluated a method to estimate the
3D green volume of a single tree and obtained the optimal 3D green volume extraction
result (RMSE = 11.17 m3). The voxel coupling convex hull by slices algorithm calculates
the 3D green volume at the bottom of the canopy using the convex hull by slices algorithm,
which is more stable than the voxel algorithm [1,46] and can solve the underestimation of
3D green volume caused by the missing point cloud at the bottom of the canopy to obtain a
more accurate 3D green volume.

Foreign and domestic studies have shown that changes in point cloud density have
no significant effect on most ULS metrics [15,39,47]. This study also analyzed the effect
of the change in point cloud density on the 3D green volume and found that as the point
cloud density decreased from 100% (230 pts/m2) to 75% (172.5 pts/m2), 50% (115 pts/m2),
25% (57.5 pts/m2), 10% (23 pts/m2) and 5% (11.5 pts/m2), the 3D green volume values
extracted by all five algorithms and the correlation with AGB decreased as the point cloud
density decreased (Figure 11). Our results illustrated that the 3D concave hull algorithm
and voxel algorithm were sensitive to the point cloud density; when the point cloud density
decreased, the extracted 3D green volume value and correlation decreased considerably.
Vauhkonen et al. [44] found that the lower the point cloud density, the lower the accuracy
of the concave hull algorithm in predicting single tree features. Liu et al. [29] pointed out
that the reduction in point cloud density had a significant effect on the canopy volume
metrics extracted based on voxels. The 3D convex hull and convex hull by slices algorithms
are more stable because these two algorithms are built based on the convex hull algorithm,
which calculates the area (volume) of the entire point set based on the outermost points
(planes) and is less affected by changes in point cloud density [1]. The voxel coupling
convex hull by slices algorithm is more stable than the voxel algorithm in terms of r value
variation, which further indicates that the algorithm solves the effect of missing point
clouds in the results of the voxel algorithm.

In this study, 3D green volume was involved in AGB estimation as a parameter, and
the analysis of the importance of RF variables showed that 3D green volume was one
of the most important parameters for AGB estimation (Figure 11). The accuracy of AGB
estimation was significantly improved with the inclusion of the 3D green volume parameter
(Figure 12), indicating that 3D green volume had an important influence on AGB estimation,
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which was consistent with the results of previous studies [24]. The model accuracy showed
a significant improvement compared to the AGB accuracy (R2 = 0.77) estimated by [18]
based on ALS. This was due to the lower flight altitude of the ULS (60 m) compared with
that of the ALS, which enabled a higher density of point cloud data to be acquired, and
higher density point cloud data helped to reconstruct the forest 3D structure at a more
refined scale [33,48]. Through a comparative analysis, it was found that model 6 predicted
AGB with the highest accuracy, because the voxel coupling convex hull by slices algorithm
obtained a more accurate 3D green volume, compared to the other algorithms, which made
the model fitting ability more accurate.

5. Conclusions

To better extract the 3D green volume of a single tree based on the ULS point cloud,
this study proposes the voxel coupling convex hull by slices algorithm, which improves
the existing algorithms. To validate the algorithm, the 3D green volume of 64 single ginkgo
trees was calculated using this method, and the AGB of single trees was estimated based
on the 3D green volume and compared with existing methods. The results showed that the
voxel coupling convex hull by slices algorithm was most suitable for calculating the 3D
green volume and estimating the AGB using ULS data. The results were as follows: (1) The
choice of input parameters of different algorithms significantly affects the results for 3D
green volume. Under the premise of using optimal parameters, the voxel coupling convex
hull by slices algorithm provided the most accurate estimate of the 3D green volume of
single ginkgo trees with RMSE = 11.17 m3; (2). The error in calculating 3D green measures
increased for all algorithms as the point cloud density decreased. The concave hull and
voxel algorithms had a higher dependence on point cloud density than the other algorithms,
and the correlation between AGB and the 3D convex hull, convex hull by slices and voxel
coupling convex hull by slices algorithms was more stable when the point cloud density
was higher than 10%; (3) The 3D green volume was the most important parameter for
estimating the AGB of a single tree. The addition of the 3D green volume parameter
could significantly improve the accuracy of the model to estimate AGB, where the highest
accuracy was obtained with the voxel coupling convex hull by slices algorithm, which
estimated AGB with CV-R2 = 0.85, RMSE = 11.29 kg, and nRMSE = 15.12%. Our study
demonstrates that ULS point cloud data can be used to accurately extract the 3D green
volume of single trees in urban forests and that the 3D green volume is promising for
estimating the AGB of a single tree.
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Abstract: The aboveground biomass (AGB) of a forest is an important indicator of the forest’s
terrestrial carbon storage and its relation to climate change. Due to the advantage of extensive
spatial coverage and low cost, coarse-resolution remote sensing data is the main data source for
wall-to-wall mapping of forest AGB at the regional scale. Despite this, improving the accuracy and
efficiency of forest AGB estimation is a major challenge. In this study, two optical imageries, Moderate
Resolution Imaging Spectroradiometer (MODIS) 500 m imagery and Fengyun-3C Visible and Infrared
Radiometer (FY-3C VIRR) 1000 m imagery, were used and compared for forest AGB estimation in
Yunnan Province, southwest China. One parametric approach, multiple linear regression (MLR), and
two nonparametric approaches, k-nearest neighbor (KNN) and random forest (RF), were applied
for the two imagery datasets, respectively. We evaluated the performance of the combination of
remote sensing data and modeling approaches by comparing the accuracies and also explored the
potential of FY-3C imagery data in forest AGB estimation at the regional scale as it was used for this
purpose for the first time. We found that the machine learning models KNN and RF provided better
results than MLR. From the three approaches for both MODIS and FY-3C imagery, RF performed best
with R2 values of 0.84 and 0.81 and RMSE of 23.18 and 23.43, respectively. Estimation of forest AGB
based on MODIS was marginally better than the estimation based on FY-3C. FY-3C imagery could
therefore be an additional optical remote sensing data source of coarse spatial resolution, comparable
to MODIS data which has been widely used for regional forest AGB estimation. Indices related
to forest canopy moisture levels from both types of imagery were sensitive to forest AGB. The RF
model and MODIS imagery were then applied to map the spatial variation of forest AGB of Yunnan
Province. As a result of our study, we determined that Yunnan Province has a total forest AGB of
2123.22 Mt, with a mean value of 58.05 t/ha for forestland in 2016.

Keywords: forest aboveground biomass (AGB); remote sensing; MODIS; FY-3C VIRR; Yunnan Province
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1. Introduction

As one of the five most important ecosystems, forests contribute approximately 80%
of the global terrestrial aboveground biomass (AGB) and play a key role in global carbon
cycling and mitigation of climate change [1–3]. Accurate estimation of regional forest
AGB and knowing the spatial distribution are essential for understanding forest carbon
dynamics and carbon cycling [3,4]; thus, extensive efforts have been devoted to estimating
forest AGB with greater accuracy at different scales [5,6].

With the development of space technology, remote sensing provides a more efficient
way to estimate AGB at larger scales because of the repeatability of data acquisition and
extensive geographical coverage compared to field surveys conducted at the plot level.
The theoretical basis for remote sensing of forest AGB is that the optical reflectance of
the forest canopy is highly correlated with the density of biomass within the canopy.
Hence, vegetation indices (such as the normalized difference of vegetation index, NDVI)
derived from spectral bands of remote sensing observations can be used as parameters for
forest AGB estimation [7–9]. In recent decades, remote sensing has become the prevalent
tool for forest AGB estimation [10], and various data sources have been employed for
establishing the relationship between field-surveyed AGB data and spectral responses.
Passive optical sensor data are widely used for monitoring forest AGB [11–18] because of
low cost, easy accessibility and ease of data processing. Optical data of different spatial
resolution have been extensively applied in forest AGB modeling [7], such as coarse-spatial-
resolution data (>100 m), e.g., Moderate Resolution Imaging Spectroradiometer (MODIS),
Advanced Very High Resolution Radiometer (AVHRR) from NOAA satellite and SPOT
VEGETATION; medium-spatial-resolution data (10–100 m), e.g., Landsat Thematic Mapper
(TM) and Enhanced Thematic Mapper Plus (ETM+); fine-spatial-resolution data (<5 m),
e.g., IKONOS, QuickBird, WorldView, Gaofen(GF) series and ALOS/PRISM. Fine-spatial-
resolution data is frequently used for modeling tree parameters, texture, or forest canopy
structures [7,19–23]. Considering its high cost and limited scene coverage, it is only suitable
for small areas. Medium-spatial-resolution images such as Landsat are widely used as a
data source for biomass estimation at a regional scale [24], whereas coarse-spatial-resolution
data are widely used in estimating forest AGB at national, continental and global scales
because they have a better trade-off in the combination of image coverage, temporal and
spatial resolution.

MODIS data onboard Terra and Aqua have been extensively used in environmental
and ecological applications at the regional scale. The Visible and Infrared Radiometer
(VIRR) onboard the Chinese second-generation earth observation satellite Fengyun 3C
(FY-3C VIRR) also has the capability of global observation for many applications. FY-3C
VIRR has a spectral architecture similar to that of MODIS. It can thus be rationally expected
that the FY-3C VIRR may provide an alternative source of earth observation data, especially
when considering that the two satellites with MODIS onboard have been in service for
more than 20 years, which is far beyond their designed lifespan. The continuous mission of
Fengyun 3 series satellites has provided stable earth observation data at regional and global
scales for several years. In contrast to the extensive applications of MODIS data, FY-3C
VIRR data still needs further exploration for multiple potential applications. Therefore, in
this study, we aim to investigate the application of FY-3C VIRR and MODIS in estimating
forest AGB. Our findings will enhance further understanding of the potential of FY-3C
imagery in forest monitoring at regional scales.

In addition to selecting appropriate data sources, various algorithms have been de-
veloped for remote sensing-based forest AGB modeling. Parametric and nonparametric
approaches have been serving as important tools for forest AGB modeling based on remote
sensing data. Parametric modeling directly correlates the available known forest AGB
samples with variables derived from remote sensing data to develop regression equation
models for forest AGB estimation over the entire images. Linear regression with one or
more remote sensing variables is one of the most frequently used parametric modeling
methods [25]. However, the relationships between biomass and remote sensing variables
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in many cases cannot be captured directly by the parametric algorithm, especially in forest
regions with eco-climatic diversity. With the development of machine learning algorithms,
artificial intelligence (AI) based nonparametric approaches have been used in land sur-
face modeling and also forest AGB mapping using remote sensing imageries at regional
scales. Several machine learning algorithms have been developed to capture complicated
nonlinear relationships between the input and the output variables. Commonly used non-
parametric algorithms include k-nearest neighbor (KNN), artificial neural network (ANN),
random forest (RF), support vector machine (SVM) and maximum entropy (MaxEnt). Due
to the flexibility and data-driven manner, nonparametric algorithms have shown better
performances in AGB estimation [24–26]. Moreover, the availability of forest AGB samples
from the field is a prerequisite for nonparametric modeling. Forest AGB data sampled
from plots or calculated from forest inventory data needs to be combined in AGB modeling
as reference data. Accurate referenced AGB data has also brought challenges for AGB
estimation at large scales.

A number of studies have been conducted for forest AGB mapping at a national scale
in China. Yin et al. (2015) used seven single bands of MODIS and two vegetation indices
NDVI and enhanced vegetation index (EVI) to map forest AGB in China for the period
from 2001 to 2013 with a machine learning algorithm [1]. Chi et al. (2015) integrated ICE-
Sat/GLAS data and MODIS imagery with the national forest inventory dataset and with
field measurements for mapping forest AGB for the whole of China [6]. Zhang et al. (2018)
employed KNN models to estimate the species-level biomass of Chinese boreal forests
through the integration of forest inventory data with MODIS spectral variables and envi-
ronmental variables [27]. Lu et al. (2019) estimated the forest AGB and aboveground carbon
storage (AGC) of China by volume modeling based on stand density and forest basal area
of major forest types [28]. Since China has a vast territory and great eco-climatic diversity,
mapping forest AGB in a specific region with unique features was highly necessary for a
better understanding of the spatial variation of the forest AGB at the regional scale. Yunnan
is an important forested area with high forest biomass and carbon storage. Although forest
AGB has been mapped for a few specific tree species at the county level based on Landsat
TM/ETM+ imagery in Yunnan Province [5,25], it has not yet been mapped at the provincial
level, probably due to difficulties in processing remote sensing data caused by rugged
terrains, complex forest composition and inadequate field measurements for certain tree
species. It is therefore important to analyze spatially explicit forest ABG in this area to
help understand the spatial distribution of forest biomass and to provide baseline data for
improving forest management.

The objective of this study was to compare the quality of forest AGB prediction in
Yunnan Province using MODIS and FY images and to explore the possibility of FY imagery
as a substitute data source for forest AGB mapping in regional forest biomass monitoring.
We also used the best combination of imagery and algorithm to map forest AGB and
conducted further analysis to help understand the distribution pattern of forest AGB. One
parametric approach, multiple linear regression (MLR), and two nonparametric methods,
KNN and RF, were selected for forest AGB mapping with the aid of two remote sensing
imageries: MODIS and FY-3C VIRR. Our study compared forest AGB mapping with each
one of these three algorithms. It intends to answer the following questions: (1) What
are the differences in key variables in forest AGB modeling between the two imageries?
(2) Can FY-3C imagery be comparable to MODIS imagery in forest AGB estimation in a
region with complex terrains, many tree species and complex forest stand composition?
(3) Which modeling approach combining the required remote sensing data type achieves
better accuracy in AGB mapping?

2. Materials and Methods

2.1. Study Area

Located in the southwest of China, Yunnan Province contains one of the three major
forest areas in China. Situated at the juncture of the Asian Plate and Indian Plate and
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also at the southeast margin of the Qinghai–Tibet Plateau, the topography of Yunnan
Province is characterized by mountains and plateaus. The province covers a total area
of approximately 394,000 km2 and is divided into 16 prefectures. Elevation descends
from north to south and ranges from 6596 meters to 83 meters above sea level (Figure 1).
Yunnan Province borders Myanmar in the west and southwest and Laos and Vietnam in
the south, respectively. Mountains and plateaus account for 94% of the total land area of the
province. The forest area accounts for 59.3% of the provincial total land area [29]. Yunnan
Province ranks second in terms of forest area and forest stock volume, respectively, among
all the provinces in China [30] and contributes a huge carbon sink. Most of the province is
influenced by the tropical monsoon climate. Due to its enormous north–south span and the
high elevational gradient, vegetation distribution patterns in the province are determined
by both latitudinal zonation and vertical zonation, resulting in a scattered distribution of
forest mosaics in the province. The range of vegetation types from the north to the south
includes alpine meadows, montane and subalpine temperate forests, subtropical forests,
and tropical rainforests [31]. The forests in Yunnan are categorized into five types and
zones (Figure 1): 1© cold-temperate coniferous forest in the northwest, 2© warm evergreen
broadleaved forest in the northeast, 3© warm evergreen broadleaved and coniferous forest
in the central part, 4© warm–hot broadleaved and coniferous forest in the southern and
central part and 5© tropical broadleaved forest in the south [30,32]. Broadleaved dominated
forests are mainly located in the south and southwest of Yunnan Province, while most
other areas of the province are dominated by coniferous forests, which cover an area of
4.53 million hectares and account for 48.6% of the total forest area in Yunnan Province [31].
The dominant coniferous tree species include Pinus yunnanensis (accounting for 24.1% of
the total forest area), Pinus kesiya var. langbianensis (6.5%), Pinus armandii (3.3%), Abies fabri
(3.16%), Cunninghamia lanceolata (2.2%) and Pinus densata (1.76%). Pinus yunnanensis is
distributed most widely in Yunnan Province within an elevation range of 700 m to 3300 m
and is dominant in the largest proportion of the forest area among the tree species. The
dominant broadleaved tree species are Quercus (19.7%), Alnus cremastogyne (3.04%) and
Betula spp. (1.0%).

 

Figure 1. The location of Yunnan Province in China, topography and forest type zones: 1© cold-
temperate coniferous forest, 2© warm evergreen broadleaved forest, 3© warm evergreen broadleaved
and coniferous forest, 4© warm–hot broadleaved and coniferous forest and 5© tropical broadleaved
forest.
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Because the diverse climates and habitats harbor abundant flora and fauna, Yunnan is
well known for its high biodiversity. The south, west and northwest of the province are
actually located in a global biodiversity hotspot region. Yunnan Province, and in particular,
the Hengduan Mountains region in the west and northwest, is one of the three zones which
are most vulnerable to climate change in China [33].

2.2. Data
2.2.1. MODIS Data and Spectral Variables

The first MODIS instrument, the TERRA satellite, was launched in December 1999,
and the second instrument, the AQUA satellite, was launched in May 2002. MODIS has
provided multi-purpose images for monitoring large-scale changes in the biosphere in past
decades. While the designed lifespan of the two satellites is six years, the MODIS sensors
have been operated for over 10 years.

MODIS has a viewing swath width of 2330 km and measures 36 spectral bands between
0.405 and 14.385 μm. It acquires data at three spatial resolutions—250 m, 500 m and 1000 m
with a temporal resolution of 1–2 days. Until now, MODIS and FY-3 series data are the
most widely used satellite data sources for meteorological, agricultural and environmental
monitoring at regional, national or continental scales [34]. Previous studies have shown
that variables from MODIS land products have the spectral sensitivity to provide consistent
spatial and temporal comparisons of global vegetation conditions [35]. The eight-day
MOD09A1 image composite at 500 m resolution from MODIS land product for 2016 was
used in this study. MOD09A1 images of tile h27v06 and h26v06 were downloaded from the
EARTHDATA platform (https://search.earthdata.nasa.gov/search accessed on 2 October
2022) of the National Aeronautics and Space Administration (NASA) of the U.S. The MODIS
Reprojection Tool (MRT) was used to mosaic and reproject the images.

MOD09A1 contains seven spectral bands (b1–b7, Table 1) recording surface spectral
reflectance at ground level. Vegetation indices proven to correlate with vegetation charac-
teristics and other variables were calculated using these single spectral bands (Table 2) and
were then used to develop models for forest AGB mapping. Seven vegetation greenness
indices and three vegetation water indices were selected and used in this study. Principal
component analysis (PCA) was also performed using all the single bands to transform
the multi-spectral correlated bands into a smaller set of uncorrelated image bands. While
retaining as much original spectral information as possible, the first three transformed
images (PC1, PC2 and PC3) were selected for the screening of predictor variables and
further forest AGB modeling as they contained more than 95% of the information from
the original bands. These spectral bands, vegetation indices and transformed images were
used as explanatory variables for forest AGB estimation.

Table 1. The spectral characteristics of MOD09A1 bands.

Band# Name Spectral Range (nm) Center Wavelength (nm) Bandwidth (nm)

1 Red 620–670 645 50
2 Near Infrared (NIR) 841–876 859 35
3 Blue 459–479 469 20
4 Green 545–565 555 20
5 Shortwave infrared (SWIR1240) 1230–1250 1240 20
6 Shortwave infrared (SWIR1640) 1628–1652 1640 24
7 Shortwave infrared (SWIR2130) 2105–2155 2130 50
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Table 2. The vegetation indices derived from MOD09A1 and FY-3C VIRR imagery.

Index Formula MOD09A1 FY-3C VIRR Reference

Vegetation
greenness

indices

NDVI (NIR − RED)/(NIR + RED)
√ √

Rouse et al. [36]
EVI 2.5(NIR − RED)/[(NIR + 6RED − 7.5BLUE) + 1]

√ √
Huete et al. [37]

RVI NIR/RED
√ √

Jordan [38]

ARVI [NIR − (2 RED − BLUE)]/[NIR) + (2RED − BLUE)]
√ √ Kaufman and

Tanre [39]
SAVI (1 + 0.5)(NIR − RED)/(NIR + RED + 0.5)

√ √
Huete [40]

MSAVI [2NIR + 1 −
√
(2NIR + 1)2 − 8(NIR − RED)]/2

√ √
Qi et al. [41]

VARI (GREEN − RED)/(GREEN + RED − BLUE)
√ √

Gitelson et al. [42]

Vegetation
water indices

NDIIb6 (NIR − SWIR1640)/(NIR + SWIR1640)
√ √

* Hunt and Rock [43]
NDIIb7 (NIR − SWIR2130)/(NIR + SWIR2130)

√
NA Hunt and Rock [43]

NDMI (NIR − SWIR1240)/(NIR + SWIR1240)
√

NA Gao [44],
Wilson [45]

NDWI (GREEN − NIR)/(GREEN + NIR)
√ √

Mcfeeters [46]

NDVI = normalized difference of vegetation index; EVI = enhanced vegetation index; RVI = ratio vegetation index;
ARVI = atmospherically resistant vegetation index; SAVI = soil adjusted vegetation index; MSAVI = modified soil
adjusted vegetation index; VARI = visible atmospherically resistant index; NDIIb6 = normalized difference of
infrared index—band6; NDIIb7 = normalized difference of infrared index—band7; NDMI = normalized difference
moisture index; NDWI = normalized difference of water index.

√
represents available, and NA represents

unavailable. * SWIR1640 was adapted to SWIR1595.

2.2.2. FY-3C VIRR Data and Spectral Variables

The Fengyun-3 (FY-3) series of satellites is the second generation of polar-orbit, sun-
synchronous meteorological satellites of China, which have been designed for all weather,
multi-spectral and three-dimensional observation of global atmospheric and geophysical
elements [47]. FY-3 satellite data has been used in numerical weather prediction [48,49],
climate monitoring [50] and monitoring of natural disasters. The Fengyun-3C (FY-3C) satel-
lite was launched in September 2013. FY-3C VIRR data has 10 channels with a wavelength
range of 0.43–12.50 μm, providing visible and infrared spectra. The swath width is 2,800 km,
and the temporal resolution is 1 day. The 10-day FY-3C VIRR image composite with 1 km
spatial resolution from 2016 was provided by the National Satellite Meteorological Center
(NSMC) of the China Meteorological Administration (CMA) after radiometric calibration,
atmospheric correction and geometric correction.

Similar to the development of predictor variables derived from MOD09A1 imagery,
the calculation of vegetation indices and PCA were conducted using FY-3C VIRR images.
The first three transformed images (PC1, PC2 and PC3) from PCA, single spectral bands
and vegetation indices from FY-3C VIRR images were used to screen predictor variables.
The set of spectral variables of the FY-3C VIRR imagery was slightly different from that
of the MOD09A1 imagery due to a different wavelength range and available individual
bands (Tables 1–3).

Table 3. The spectral characteristics of FY-3C VIRR bands used in this study.

Band# Name Spectral Range (nm) Center Wavelength (nm) Bandwidth (nm)

1 Red 580–680 630 100
2 Near Infrared (NIR) 840–890 865 50

3 Shortwave infrared
(SWIR1595) 1550–1640 1595 90

4 Blue 430–480 455 50
5 Cyan 480–530 505 50
6 Green 530–580 555 50

7 Shortwave infrared
(SWIR1360) 1325–1395 1360 70

2.2.3. Forest Inventory Data and Forest AGB Data

The forest inventory data used in this study are from the fourth Chinese National For-
est Resource Inventory (NFRI) for forest management and planning, which was completed
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in Yunnan in 2016. This spatially explicit dataset is composed of forest stand polygons
delineated on the basis of aerial images or satellite images. A forest stand is a contigu-
ous area that contains a community of trees that are relatively homogeneous or have a
common set of characteristics [6]. The spatial dataset of NFRI contains forest stand in-
formation on dominant tree species, age classes, average height, average breast–height
diameters, site condition and stand volume, which was collected through field sampling
following the technical protocols of NFRI. The AGB of forest stands was calculated using
the biomass–volume conversion relationship [51] and used as observation values for re-
mote sensing-based modeling for forest AGB. Forest AGB values from this dataset range
from 1.09 ton/hectares (t/ha) to 631.96 t/ha with 80% falling between 12.51 t/ha and
123.30 t/ha; the mean forest AGB is 58.91 t/ha.

2.3. Sampling for Reference Data of Forest AGB

Forest stand polygons of the NFRI dataset were stratified into five classes based on
AGB value using the natural breaks system. This minimizes the variation within each class
and optimizes the arrangement of the sets of AGB values. AGB samples for the reference
dataset were selected in proportion to the area of each class so that all the AGB value ranges
were covered. In each class, sample point locations were generated randomly with an
assigned minimum distance of 5 km to reduce spatial autocorrelation between samples
and to make sure that these samples cover a variety of forest types in each forest zone
(Figure A1).

After the sample points were generated, grids spatially aligning with pixels of the
MOD09A1 or FY-3C VIRR imagery with the corresponding sample points were used for
further screening of appropriate samples. The grids with more than 50% of the pixel area
covered by forest stands were selected for AGB reference data to create the AGB reference
dataset. Selecting AGB samples was performed with ArcGIS 10.3. The same AGB reference
dataset was used for forest AGB modeling with the MOD09A1 and FY-3C VIRR imagery,
respectively, so as to compare the performances of combinations of different imagery and
methods. A total of 475 grids were selected as AGB references for remote sensing-based
modeling, 75% of which was used for training and the remaining 25% for validation.

2.4. AGB Approaches for Estimating Forest AGB Using MODIS and FY-3C VIRR Data

One parametric approach, MLR, and two nonparametric (i.e., machine learning)
methods, KNN and RF, were selected and employed to predict AGB density in this study.
Parametric methods include linear regression models which have been frequently used
in remote sensing-based forest AGB estimation [26,52–55]. The regression models were
constructed based on the assumption that the biomass variable is linearly correlated with
spectral responses and that limited correlations exist between independent variables [54].
As it is well known that variables of remote sensing are highly correlated with each other, the
variance inflation factor (VIF) was used to test the multicollinearity of predictor variables
of the linear regression model. Using all the predictor variables could lead to a decrease in
the accuracy of the linear model coefficients; therefore, we selected the top 10 influential
variables determined by the variable importance plot of RF to establish the MLR model.
The KNN approach estimates dependent variables as a weighted mean of K spectrally
nearest (most similar) neighbors by inverse distance weighting. No functional relationships
between variables need to be formulated for this approach. One advantage of the KNN
approach is that it avoids the problem of unbalanced samples [24]. RF is a tree-based
assembling learning algorithm. It selects a random number of samples from the training
dataset chosen by the analyst and develops decision trees based on the most important
variables [56,57]. The RF algorithm has been widely used in forest AGB estimation with
remote sensing data and proved to have good performance [58–60]. The parameters ntree
and mtry are the two key factors affecting accuracies in RF models. They define the number
of decision trees and the number of variables tried at each split of decision trees in RF
models. Errors decrease and become stable with the increasing number of regression trees.
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Both KNN and RF algorithms can handle nonlinear relationships between independent
and dependent variables and have become increasingly popular in forest biomass studies
because of the accuracy of their biomass prediction [56,61–64]. In this study, the ntree
was set to 300 trees after testing for the RF models from both MOD09A1 and FY-3C VIRR
imageries, and 5 and 6 were selected for the mtry numbers for the optimized models
based on the variables from the two imageries, respectively. These predictive models were
constructed from a training dataset (n = 351) consisting of grid-based AGB density from the
NFRI dataset paired with explanatory spectral variables derived from the MOD09A1 and
FY-3C VIRR imagery, respectively. We extracted raster pixel values of spectral variables
from MOD09A1 and FY-3C VIRR imagery, respectively, corresponding to the selected grids
for forest AGB reference.

The three models were performed using R Studio (R Version 4.2.0). The MLR model
was established using the lm() and step() functions. The “Caret” package and “random-
Forest” package were used to generate KNN and RF models, respectively. We used the
same set of spectral variables from the same remote sensing data source for MLR, KNN and
RF modeling, respectively. With the varImpPlot() function of RF, the importance of each
candidate variable (single spectral bands, vegetation indices and transformed images PC1,
PC2 and PC3) in predicting forest AGB was assessed by computing the increase in node
purity (IncNodePurity), where higher values of IncNodePurity indicate greater importance.
The 10 most important predictor variables were selected and then applied to the models.
The flowchart of the methodology is shown in Figure 2.

Figure 2. The flowchart of methodology.

2.5. Accuracy Assessment

The accuracies of forest AGB values predicted from the models combined with the two
remote sensing data sources were evaluated, respectively, by the coefficient of determination
(R2), root mean square error (RMSE) and mean absolute error (MAE) using the validation
dataset (n = 124). R2 is a statistical calculation that indicates the degree of interrelation and
dependence between two variables. RMSE measures the average distance between the
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predicted values from the model and the actual values. The lower the RMSE, the better a
given model fits a dataset. These metrics were calculated using the following equations:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 , (1)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (2)

MAE =
1
n

n

∑
i=1

|yi − ŷi|. (3)

In these formulae, ŷi (i ∈ [1,n]) is the predicted biomass on the ith grid, yi is the
observed biomass and y is the mean value of the observed biomass.

The model providing the best accuracy was applied to the whole study area to map
the spatial distribution of forest AGB.

3. Results

3.1. Selection of Spectral Variables

The importance of spectral variables derived from MOD09A1 and FY-3C VIRR im-
ages was evaluated by the decision tree modeling of RF (Figure 3). The top 10 important
variables for MOD09A1 include four indices related to the water content of vegetation
canopy (NDIIb6, NDIIb7, NDWI and NDMI), three vegetation greenness indices (VARI,
RVI and ARVI) and three transformed imageries (PC1, PC2 and PC3). The top 10 impor-
tant variables for FY-3C VIRR include one vegetation water index (NDIIb6), two trans-
formed imageries (PC1 and PC2), five individual spectral bands (blue, shortwave infrared
(SWIR) − SWIR1595, SWIR1360, cyan, green) and two vegetation greenness indices (ARVI
and VARI). Interestingly, NDIIb6 reflecting the moisture level of the forest canopy based
on two kinds of imagery is most sensitive to forest AGB values from the NFRI dataset.
Some vegetation greenness indices have a greater contribution in AGB estimation based
on MOD09A1 than on FY-3C VIRR. In contrast, individual spectral bands of FY-3C VIRR
play a more important role than vegetation greenness indices. Only the top 10 important
variables from MOD09A1 and FY-3C VIRR were used for further AGB estimation based on
the three approaches.

 (a)  (b) 

Figure 3. The variable importance plots for MOD09A1 images (a) and FY-3C VIRR Images (b).
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3.2. RF Approach Outperforms KNN and MLR Approach

RF performed better than KNN and MLR in estimating forest AGB using both
MOD09A1 and FY-3C VIRR imagery (Table 4). All the models were significant at a
p-value < 0.001. The same set of referenced data of forest AGB from the NFRI dataset
was input into the models, making it possible to compare the performances of the two satel-
lite image products in estimating forest AGB and to help understand factors that influence
accuracies. The performance ranking of the three models was the same for MOD09A1 and
FY-3C VIRR imagery.

Table 4. Statistics for estimation of forest AGB using three approaches with the validation dataset
(n = 124).

Model
R2 RMSE (t/ha) MAE (t/ha)

MODIS FY MODIS FY MODIS FY

MLR 0.32 0.29 49.76 51.32 43.28 46.87
KNN 0.65 0.58 36.82 40.52 33.61 37.13

RF 0.84 0.81 23.18 23.43 21.94 17.69

As a result, five variables from MOD09A1 were selected to create an MLR model after
a stepwise regression, with R2 of 0.32:

AGBMOD09A1 = 52.394 + 97.979 ∗ NDIIb6 − 242.903 ∗ VARI + 8.613 ∗ RVI +
191.119 ∗ ARVI + 230.540 ∗ NDWI.

(4)

In contrast, the MLR model based on variables from FY-3C VIRR has a slightly lower
R2 of 0.29. Three variables were involved after a stepwise regression:

AGBFY-3C = −28.01 + 80.95 ∗ NDIIb6 + 312.29 ∗ Green + 58.81 ∗ ARVI. (5)

After testing, the optimal KNN model based on MOD09A1 variables was established
with the parameter K = 9 and an R2 value of 0.65, and the best K value of the KNN model
for FY-3C variables was 7, with an R2 value of 0.58. The RF models for MOD09A1 and
FY-3C VIRR imageries achieved R2 values of 0.84 and 0.81, respectively, and RMSE of 23.18
and 23.43, respectively (Table 4).

The MLR models performed worst on both satellite imageries when compared to the
KNN and RF models, as indicated by the comparatively lower R2 values. This suggests
that the models have low degrees of fitting to the observed values, probably due to a weak
linear or nonlinear relationship between forest AGB and the remote sensing variables. All
of the predictor variables from MOD09A1 and FY-3C VIRR have VIF values larger than 10.
This indicates that the variables used for MLR models have serious multicollinearity, which
also leads to poor performance of MLR modeling. RF modeling performed better for both
imageries than the other two approaches. It showed a strong ability to avoid overfitting.

It is noticeable that variables from MOD09A1 performed marginally better than using
those from FY-3C VIRR in RF models on both the training dataset and validation dataset
(Figures 4 and 5). This indicates that forest AGB could achieve comparable accuracy using
either MOD09A1 or FY-3C VIRR images. For both kinds of imagery, RF models predicted
lower forest AGB with higher accuracy compared to predicting higher forest AGB with
lower accuracy (Figures 4 and 5), which may be due to the saturation of spectral signals at
higher biomass values. Further comparison was conducted to reveal the difference between
the two estimations of forest AGB from MOD09A1 and FY-3C VIRR imageries, respectively,
by RF models. Moreover, in this study, the RF model with the input of MOD09A1 imagery
was selected for forest AGB mapping and to help understand the spatial distribution
pattern of forest AGB in Yunnan Province.
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( ) Training                                   ( ) Validation

Figure 4. Observed versus predicted forest AGB applying random forest (RF) model and MOD09A1
imagery for (a) the training dataset and (b) the validation dataset.

( ) Training                                 ( ) Validation

Figure 5. Observed versus predicted forest AGB applying random forest (RF) model and FY-3C VIRR
imagery for (a) the training dataset and (b) the validation dataset.

3.3. Comparison of Forest AGB Estimation by RF Models Based on the Two Imageries

The total amounts of forest AGB estimated using MOD09A1 and FY-3C VIRR imageries
by RF methods were greater than that of the NFRI dataset (Figure 6), by 4.13% and 6.25%,
respectively. The total mean of forest AGB from FY-3C imagery (62.10 t/ha) was higher
than the means from the NFRI dataset and MOD09A1 imagery (58.91 t/ha and 58.05 t/ha,
respectively). This is probably attributable to the larger estimation in both the mean value
of forest AGB (47.77 t/ha) and the proportion of the largest share of forest AGB range
(30–60 t/ha) by FY-3C VIRR imagery. The mean AGB, at the 0–30 t/ha range, obtained
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from MOD09A1 and FY-3C VIRR was similar (24.52 t/ha and 23.77 t/ha, respectively)
and was the same for the ranges of 30–60 t/ha and 60–90 t/ha (47.80 t/ha and 47.77 t/ha,
84.25 t/ha and 84.58 t/ha, respectively). The total amounts of forest AGB at the two ranges
below 60 t/ha from the two imageries were almost identical. The mean values of forest
AGB estimated using the two imageries were higher than that of the NRFI dataset at the
three ranges lower than 90 t/ha. The underestimation in forest AGB modeled by remote
sensing data at the AGB ranges higher than 90 t/ha was due to signal saturation in optical
remote sensing data at high forest AGB. Higher forest AGB was associated with a greater
discrepancy between estimations derived from remote sensing data and observation values.

Figure 6. Distribution of forest AGB in the Chinese National Forest Resource Inventory (NFRI)
dataset and estimated forest AGB based on MOD09A1 and FY-3C VIRR imageries by RF models.

3.4. Mapping of Forest AGB Distribution by Forest Zones and Dominant Tree Species

Figure 7 shows that the forest AGB distribution in Yunnan mapped by MOD09A1 and
FY-3C VIRR imageries is similar. AGB was found to be high mainly at the northwestern,
western, southwestern and southern periphery of the province, in contrast to low AGB,
which was mainly located in the central and eastern parts of the province. The color scheme
of Figure 7 shows that the prediction of forest AGB by FY-3C VIRR imagery had larger
variation. Because the RF algorithm based on MOD09A1 images has achieved the highest
accuracy in forest AGB mapping, we employed this combination to estimate forest AGB.
Then, we produced a map of its spatial distribution in Yunnan Province and used it for
further statistical analysis to show the spatial distribution pattern of forest AGB.

The total forest AGB in Yunnan Province is 2123.22 Mt, with a mean value of 58.05 t/ha.
The cold-temperate coniferous forest zone in the northwest has the highest mean forest
AGB density, 76.08 t/ha, followed by the tropical broadleaved forest zone at 75.40 t/ha.
These two forest zones contribute 8.39% and 18.08% of the total forest AGB of Yunnan
Province, respectively. The lowest mean forest AGB density (43.52 t/ha) occurs in the
warm evergreen broadleaved forest zone. The warm evergreen broadleaved and coniferous
forest zone has a relatively low AGB density (49.45 t/ha), which accounts for the largest
proportion (39.93%) of the total forest AGB in the study area due to the large area that it
covers. The distribution pattern of high forest AGB is consistent with the spatial distribution
of the key areas of forest conservation and biodiversity conservation in recent decades, e.g.,
national and provincial protected areas and ecological forest protection.
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Figure 7. Forest AGB maps derived from (a) MOD09A1 and (b) FY-3C imageries based on RF models.
Forest type zones: 1© cold-temperate coniferous forest, 2© warm evergreen broadleaved forest,
3© warm evergreen broadleaved and coniferous forest, 4© warm–hot broadleaved and coniferous

forest and 5© tropical broadleaved forest.

Abies fabri, mainly located in northwest Yunnan, had the highest AGB density among
all the dominant tree species at 115.93 t/ha, followed by Quercus spp. at 88.52 t/ha, other
broadleaved species (a group of broadleaved tree species except for Quercus spp., Alnus
cremastogyne and Betula spp.) forest at 85.61 t/ha and Pinus kesiya var. langbianensis at
81.23 t/ha. Pinus densata, Pinus yunnanensis and Pinus armandii had relatively low AGB
density, with values of 61.35 t/ha, 55.42 t/ha and 51.63 t/ha, respectively. Quercus spp.,
Pinus yunnanensis, other broadleaved forests and Pinus kesiya var. langbianensis were the top
four important forests, accounting for 14.50%, 13.20%, 12.35% and 5.83% of the total forest
AGB in Yunnan Province.

4. Discussion

In this study, we mapped the forest AGB in Yunnan Province, an important region
for carbon storage, using three approaches with MODIS and FY-3C imageries. The results
indicate that RF performed best out of all the approaches for forest AGB modeling. The
thematic map by MOD09A1 images achieved marginally better accuracy than the map by
FY-3C VIRR images. Although MODIS imagery has been used for national forest AGB
mapping in China and other regions, this study was the first to adopt FY series imagery
for this purpose and to conduct a comparison of these two imageries. Our results indicate
that FY-3C VIRR imagery achieved acceptable accuracy, relative to MOD09A1 imagery, in
mapping forest AGB at the regional scale.

4.1. Contribution of Spectral Index Variables

We found that although MOD09A1 and FY-3C VIRR imageries have different spatial
resolutions, some common features can be detected in the predictor variables. Among the
predictor variables derived, NDIIb6 outperformed all the other variables for both imageries,
respectively, and both ARVI and VARI also ranked in the top 10 of important variables.
This could be one of the reasons for the consistency of predictions of forest AGB between
MOD09A1 and FY-3C VIRR imageries (R2 > 0.80).

Indices of vegetation water content often correlate with vegetation health and vigor
and indicate vegetation biomass [65]. Our study demonstrated a close relationship between
these indices and forest AGB. NDIIb6 and NDIIb7 derived from near-infrared (NIR) and
SWIR centering at 1640 nm and 2130 nm bands, respectively, showed great potential for
vegetation water content estimation in previous studies [65,66], as the water content in
vegetation was very important for photosynthesis leading to biomass formation. These
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NDII indices were named the normalized difference water index (NDWI), NDIIb6 as
NDWI1640 and NDIIb7 as NDWI2130. The fact that NDII was less sensitive to the bandwidth
of different sensors, as proven by Chen et al. [67], was also confirmed by this study.
The vegetation–water content-related index NDMI based on NIR (860 nm) and SWIR
(1240 nm) is also one of the top 10 important predictor variables from MOD09A1 imagery.
Gao (1996) demonstrated the sensitivity of this index to changes in the water content
of vegetation canopies and showed that it is less sensitive to atmospheric effects than
NDVI [44]. A positive correlation between vegetation water content and vegetation biomass
was also revealed by Xing et al. [68] and Momen et al. [69]. ARVI and VARI are the two
common and important indices related to vegetation greenness from MOD09A1 and FY-
3C VIRR imageries, both enhanced by the presence of the blue channel to minimize the
atmospheric effects.

4.2. The Ability of MOD09A1 and FY-3C VIRR to Map Forest AGB

The ability of remote sensing data to map forest AGB depends on the sensitivity of
the predictor variables selected for mapping forest AGB and on the complexity of the
vegetation structure. Our results showed acceptable accuracies of forest AGB estimation by
both imageries, although the performance of MOD09A1 was marginally better than that of
FY-3C VIRR by RF modeling. This indicates that the suitability of the two imageries for
forest AGB prediction is comparable. The comparable applicability of MOD09A1 and FY-3C
VIRR imageries for forest AGB at the regional scale can be attributable to their similarity
in spectral architectures, temporal resolution and geographical coverage. MOD09A1 and
FY-3C VIRR have spectral compositions for visible light and near-infrared, as well as for
the overlapped range of infrared, which makes it possible to calculate vegetation indices
for modeling. Both imageries have short revisit cycles of 1–2 days and large geographical
coverage extents of over 2000 km2. These features enable efficient image processing for
monitoring the dynamics of forest AGB at regional and global scales.

The difference in the performance of AGB estimation can be attributed to the difference
in the spectrum ranges and spatial resolution of the two imageries. The spectrum range
of MOD09A1 used for calculating variables to model forest AGB is slightly wider than
that of FY-3C VIRR, particularly in SWIR. MOD09A1 has two indices related to vegetation
water content (NDIIb7 and NDMI), more than FY-3C VIRR. These two indices are absent
for FY-3C due to the lack of two specific SWIR bands for index calculation. Thus, to some
extent, MOD09A1 provides more spectral information in forest AGB estimation.

The higher spatial resolution of MOD09A1 (500 m) could account for the higher
accuracy of forest AGB mapping compared to FY-3C VIRR (1000 m). This finding is
consistent with previous findings of forest AGB mapping by finer resolution satellite
imagery with higher accuracy [70,71]. Because the average area of forest stand polygons
in the NFRI dataset of Yunnan Province is approximately 9 hectares, which is smaller
than single pixels of MOD09A1 and FY-3C VIRR imageries, the spectral information
from individual bands and vegetation indices used for modeling was “aggregated” and
“averaged”. Higher spatial resolutions are expected to achieve higher accuracies [71].

4.3. Performance of Parametric and Nonparametric Approaches

In our study, the adopted parametric approach, the MLR model, was found to have
performed poorly in forest AGB prediction, which was also confirmed by other studies [5].
Linear regression is used for modeling when remote sensing variables have a strong
linear relationship with biomass and a weak relationship with selected remote sensing
variables themselves. However, biomass is often nonlinearly related to remote sensing
variables [24,54]; thus, MLR models may lead to low accuracy in predictions.

Our results found that nonparametric approaches achieved higher accuracy compared
to the parametric approach in mapping forest AGB, which is consistent with previous
studies [7,24,56,72]. Lu et al. (2016) suggested that nonparametric approaches should be
explored if large representative field datasets exist for calibration [24]. In our study, we
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selected forest AGB reference data by stratified forest-type zones as an effective way to
ensure the representativeness of reference datasets.

5. Conclusions

In this study, we compared forest AGB estimation for Yunnan Province, southwest of
China, with MOD09A1 and FY-3C VIRR imagery by applying one parametric approach,
MLR, and two nonparametric approaches, KNN and RF. Reference data of forest AGB from
the NFRI dataset, individual spectral bands and the derived vegetation indices were used
to establish the models. The results indicated that (1) RF models outperformed the MLR
and KNN models for both imageries using the same sampled forest AGB reference dataset
from NFRI data. (2) Among all the remote sensing variables, NDIIb6 related to the moisture
of vegetation canopy was the most sensitive to forest AGB for both imageries. Vegetation
greenness indices contributed more to AGB prediction based on MOD09A1 than those
based on FY-3C VIRR, while individual spectral bands of FY-3C played a more important
role than vegetation greenness indices. (3) FY-3C VIRR imagery had high potential to
be an alternative data source substituting the MODIS data for forest AGB mapping at
regional scales.

This study examined overall forest AGB estimation using MODIS and FY imageries.
However, spectral saturation at high forest AGB is a challenge for AGB mapping with
optical satellite imagery; further studies involving the sensitivity of spectral variables of
these imageries to forest AGB need to be conducted, and as FY imagery is a new option
as a data source for AGB mapping, solutions need to be explored for improving mapping
accuracy. Moreover, the real-time forest AGB monitoring or quantifying AGB change at
regional scales could be an applicative aspect for FY series satellite imagery.
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Appendix A

Figure A1. The true-color MOD09A1 (a) and FY-3C VIRR (b) imageries of Yunnan Province, with the
dots showing the sampling points to estimate forest AGB.

425



Remote Sens. 2022, 14, 5456

References

1. Yin, G.; Zhang, Y.; Sun, Y.; Wang, T.; Zeng, Z.; Piao, S. MODIS Based Estimation of Forest Aboveground Biomass in China. PLoS
ONE 2015, 10, e0130143. [CrossRef] [PubMed]

2. Goodale, C.L.; Apps, M.J.; Birdsey, R.A.; Field, C.B.; Heath, L.S.; Houghton, R.A.; Jenkins, J.C.; Kohlmaier, G.H.; Kurz, W.;
Liu, S.R.; et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2002, 12, 891–899. [CrossRef]

3. Houghton, R.A. Aboveground forest biomass and the global carbon balance. Glob. Chang. Biol. 2005, 11, 945–958. [CrossRef]
4. Pan, Y.D.; Birdsey, R.A.; Fang, J.Y.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell,

J.G.; et al. A Large and Persistent Carbon Sink in the World′s Forests. Science 2011, 333, 988–993. [CrossRef] [PubMed]
5. Ou, G.L.; Lv, Y.Y.; Xu, H.; Wang, G.X. Improving Forest Aboveground Biomass Estimation of Pinus densata Forest in Yunnan of

Southwest China by Spatial Regression using Landsat 8 Images. Remote Sens. 2019, 11, 2750. [CrossRef]
6. Chi, H.; Sun, G.Q.; Huang, J.L.; Guo, Z.F.; Ni, W.J.; Fu, A.M. National Forest Aboveground Biomass Mapping from ICESat/GLAS

Data and MODIS Imagery in China. Remote Sens. 2015, 7, 5534–5564. [CrossRef]
7. Lu, D.S. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27, 1297–1328.

[CrossRef]
8. Dong, J.R.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote

sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sens. Environ. 2003,
84, 393–410. [CrossRef]

9. Calvao, T.; Palmeirim, J.M. Mapping Mediterranean scrub with satellite imagery: Biomass estimation and spectral behaviour. Int.
J. Remote Sens. 2004, 25, 3113–3126. [CrossRef]

10. Zhang, Y.; Liang, S.; Yang, L. A Review of Regional and Global Gridded Forest Biomass Datasets. Remote Sens. 2019, 11, 2744.
[CrossRef]

11. Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based
on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote Sens. 2021, 13, 3910. [CrossRef]

12. Cooper, S.; Okujeni, A.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Combining simulated hyperspectral EnMAP and Landsat
time series for forest aboveground biomass mapping. Int. J. Appl. Earth Obs. Geoinf. 2021, 98, 102307. [CrossRef]

13. Kumar, L.; Mutanga, O. Remote Sensing of Above-Ground Biomass. Remote Sens. 2017, 9, 935. [CrossRef]
14. Foody, G.M.; Boyd, D.S.; Cutler, M.E.J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability

between regions. Remote Sens. Environ. 2003, 85, 463–474. [CrossRef]
15. Steininger, M.K. Satellite estimation of tropical secondary forest above-ground biomass: Data from Brazil and Bolivia. Int. J.

Remote Sens. 2000, 21, 1139–1157. [CrossRef]
16. Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data.

Geophys. Res. Lett. 2004, 31, L10501. [CrossRef]
17. Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. J. Remote Sens. 2005, 26, 2509–2525.

[CrossRef]
18. Rahman, M.M.; Csaplovics, E.; Koch, B. An efficient regression strategy for extracting forest biomass information from satellite

sensor data. Int. J. Remote Sens. 2005, 26, 1511–1519. [CrossRef]
19. Zhou, J.J.; Zhao, Z.; Zhao, Q.X.; Zhao, J.; Wang, H.Z. Quantification of aboveground forest biomass using Quickbird imagery,

topographic variables, and field data. J. Appl. Remote Sens. 2013, 7, 073484. [CrossRef]
20. Gomez, J.A.; Zarco-Tejada, P.J.; Garcia-Morillo, J.; Gama, J.; Soriano, M.A. Determining Biophysical Parameters for Olive Trees

Using CASI-Airborne and Quickbird-Satellite Imagery. Agron. J. 2011, 103, 644–654. [CrossRef]
21. Gomez, C.; Wulder, M.A.; Montes, F.; Delgado, J.A. Modeling Forest Structural Parameters in the Mediterranean Pines of

Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART). Remote Sens. 2012, 4, 135–159.
[CrossRef]

22. Zhu, Y.H.; Liu, K.; Liu, L.; Wang, S.G.; Liu, H.X. Retrieval of Mangrove Aboveground Biomass at the Individual Species Level
with WorldView-2 Images. Remote Sens. 2015, 7, 12192–12214. [CrossRef]

23. Qiu, P.H.; Wang, D.Z.; Zou, X.Q.; Yang, X.; Xie, G.Z.; Xu, S.J.; Zhong, Z.Q. Finer Resolution Estimation and Mapping of Mangrove
Biomass Using UAV LiDAR and WorldView-2 Data. Forests 2019, 10, 871. [CrossRef]

24. Lu, D.S.; Chen, Q.; Wang, G.X.; Liu, L.J.; Li, G.Y.; Moran, E. A survey of remote sensing-based aboveground biomass estimation
methods in forest ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [CrossRef]

25. Zhang, J.L.; Lu, C.; Xu, H.; Wang, G.X. Estimating aboveground biomass of Pinus densata-dominated forests using Landsat time
series and permanent sample plot data. J. For. Res. 2019, 30, 1689–1706. [CrossRef]

26. Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and
prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114.
[CrossRef]

27. Zhang, Q.L.; He, H.S.; Liang, Y.; Hawbaker, T.J.; Henne, P.D.; Liu, J.X.; Huang, S.L.; Wu, Z.W.; Huang, C. Integrating forest
inventory data and MODIS data to map species-level biomass in Chinese boreal forests. Can. J. For. Res. 2018, 48, 461–479.
[CrossRef]

28. Lu, J.; Feng, Z.; Zhu, Y. Estimation of Forest Biomass and Carbon Storage in China Based on Forest Resources Inventory Data.
Forests 2019, 10, 650. [CrossRef]

426



Remote Sens. 2022, 14, 5456

29. Forestry Department of Yunnan Province. Report of Forest Resource Survey in Yunnan Province; Yunnan Science and Technology
Press: Kunming, China, 2017.

30. Forestry Department of Yunnan Province. Forest Resources in Yunnan; Yunnan Science and Technology Press: Kunming, China, 2018.
31. Chen, F.; Niu, S.; Tong, X.; Zhao, J.; Sun, Y.; He, T. The Impact of Precipitation Regimes on Forest Fires in Yunnan Province,

Southwest China. Sci. World J. 2014, 326782. [CrossRef]
32. Editting Committee of Yunnan Forest. Yunnan Forest; China Forestry Press: Beijing, China; Yunnan Science and Technology Press:

Kunming, China, 1986.
33. Weng, E.S.; Zhou, G.S. Modeling distribution changes of vegetation in China under future climate change. Env. Model Assess 2006,

11, 45–58. [CrossRef]
34. Yongqian, W.; Dejun, Z.; Liang, S.; Shiqi, Y.; Tang, S.; Yanghua, G.; Qinyu, Y.; Hao, Z. Evaluating FY3C-VIRR reconstructed land

surface temperature in cloudy regions. Eur. J. Remote Sens. 2021, 54, 266–280. [CrossRef]
35. Guo, N.; Wang, X.; Cai, D.; Yang, J. Comparison and evaluation between MODIS vegetation indices in Northwest China. In

Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, Spain, 23–27 July 2007;
p. 3366.

36. Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spe. 1974,
351, 309–317.

37. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

38. Jordan, C.F. Derivation of leaf-area index from quality of light on forest floor. Ecology 1969, 50, 663. [CrossRef]
39. Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens.

1992, 30, 261–270. [CrossRef]
40. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
41. Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetatiob index. Remote Sens. Environ.

1994, 48, 119–126. [CrossRef]
42. Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens.

Environ. 2002, 80, 76–87. [CrossRef]
43. Hunt, E.R.; Rock, B.N. Detection of Changes in Leaf Water-Content Using near-Infrared and Middle-Infrared Reflectances. Remote

Sens. Environ. 1989, 30, 43–54.
44. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens.

Environ. 1996, 58, 257–266. [CrossRef]
45. Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002,

80, 385–396. [CrossRef]
46. McFeeters, S.K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote

Sens. 1996, 17, 1425–1432. [CrossRef]
47. Bi, Y.; Yang, Z.; Zhang, P.; Sun, Y.; Bai, W.; Du, Q.; Yang, G.; Chen, J.; Liao, M. An introduction to China FY3 radio occultation

mission and its measurement simulation. Adv. Sp. Res. 2012, 49, 1191–1197. [CrossRef]
48. Dong, P.M.; Huang, J.P.; Liu, G.Q.; Zhang, T. Assimilation of FY-3A microwave observations and simulation of brightness

temperature under cloudy and rainy condition. J. Trop. Meteorol. 2014, 30, 302–310.
49. Yang, Y.M.; Du, M.B.; Zhang, J. Experiments of assimilating FY-3A microwave data in forecast of typhoon Morakot. J. Trop.

Meteorol. 2012, 28, 23–30.
50. Wang, W.; Zhang, X.; An, X.; Zhang, Y.; Huang, F.; Wang, Y.; Wang, Y.; Zhang, Z.; Lue, J.; Fu, L.; et al. Analysis for retrieval and

validation results of FY-3 Total Ozone Unit (TOU). China Sci. Bull. 2010, 55, 3037–3043. [CrossRef]
51. Fang, J.Y.; Wang, G.G.; Liu, G.H.; Xu, S.L. Forest biomass of China: An estimate based on the biomass-volume relationship. Ecol.

Appl. 1998, 8, 1084–1091.
52. Mitchard, E.T.A.; Saatchi, S.S.; Lewis, S.L.; Feldpausch, T.R.; Woodhouse, I.H.; Sonke, B.; Rowland, C.; Meir, P. Measuring biomass

changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using
multi-temporal L-band radar backscatter. Remote Sens. Environ. 2011, 115, 2861–2873. [CrossRef]

53. Sun, G.; Ranson, K.J.; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D. Forest biomass mapping from lidar and radar synergies.
Remote Sens. Environ. 2011, 115, 2906–2916. [CrossRef]

54. Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground Forest Biomass Estimation
with Landsat and LiDAR Data and Uncertainty Analysis of the Estimates. Int. J. For. Res. 2012, 2012, 436537. [CrossRef]

55. Zhao, P.; Lu, D.; Wang, G.; Liu, L.; Li, D.; Zhu, J.; Yu, S. Forest aboveground biomass estimation in Zhejiang Province using the
integration of Landsat TM and ALOS PALSAR data. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 1–15. [CrossRef]

56. Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial
Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [CrossRef]

57. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
58. Ahmad, A.; Gilani, H.; Ahmad, S.R. Forest Aboveground Biomass Estimation and Mapping through High-Resolution Optical

Satellite Imagery-A Literature Review. Forests 2021, 12, 914. [CrossRef]

427



Remote Sens. 2022, 14, 5456

59. Li, Z.; Bi, S.; Hao, S.; Cui, Y. Aboveground biomass estimation in forests with random forest and Monte Carlo-based uncertainty
analysis. Ecol. Indic. 2022, 142, 109246. [CrossRef]

60. Li, Y.; Li, M.; Li, C.; Liu, Z. Forest aboveground biomass estimation using Landsat 8 and Sentinel-1A data with machine learning
algorithms. Sci. Rep. 2020, 10, 9952. [CrossRef]

61. Esteban, J.; McRoberts, R.E.; Fernandez-Landa, A.; Luis Tome, J.; Naesset, E. Estimating Forest Volume and Biomass and Their
Changes Using Random Forests and Remotely Sensed Data. Remote Sens. 2019, 11, 1944. [CrossRef]

62. Zeng, N.; Ren, X.; He, H.; Zhang, L.; Zhao, D.; Ge, R.; Li, P.; Niu, Z. Estimating grassland aboveground biomass on the Tibetan
Plateau using a random forest algorithm. Ecol. Indic. 2019, 102, 479–487. [CrossRef]

63. Yang, H.; Li, F.; Wang, W.; Yu, K. Estimating Above-Ground Biomass of Potato Using Random Forest and Optimized Hyperspectral
Indices. Remote Sens. 2021, 13, 2339. [CrossRef]

64. McRoberts, R.E.; Naesset, E.; Gobakken, T. Optimizing the k-Nearest Neighbors technique for estimating forest aboveground
biomass using airborne laser scanning data. Remote Sens. Environ. 2015, 163, 13–22. [CrossRef]

65. Zhang, F.; Zhou, G. Estimation of vegetation water content using hyperspectral vegetation indices: A comparison of crop water
indicators in response to water stress treatments for summer maize. BMC Ecol. 2019, 19, 18. [CrossRef] [PubMed]

66. Yi, Y.; Yang, D.; Chen, D.; Huang, J. Retrieving crop physiological parameters and assessing water deficiency using MODIS data
during the winter wheat growing period. Can. J. Remote Sens. 2007, 33, 189–202. [CrossRef]

67. Chen, X.; Wang, S.; Zhang, L.; Jiang, H. Accuracy and Sensitivity of Retrieving Vegetation Leaf Water Content. Remote Sens. Inf.
2016, 31, 48–57.

68. Xing, M.; He, B.; Li, X. Integration method to estimate above-ground biomass in arid prairie regions using active and passive
remote sensing data. J. Appl. Remote Sens. 2014, 8, 083677. [CrossRef]

69. Momen, M.; Wood, J.D.; Novick, K.A.; Pangle, R.; Pockman, W.T.; McDowell, N.G.; Konings, A.G. Interacting Effects of Leaf
Water Potential and Biomass on Vegetation Optical Depth. J. Geophys. Res. Biogeo. 2017, 122, 3031–3046. [CrossRef]

70. Salajanu, D.; Jacobs, D.M. Accuracy assessment of biomass and forested area classification from modis, landstat-tm satellite
imagery and forest inventory plot data. In Proceedings of the ASPRS 2007 Annual Conference, Tampa, FL, USA, 7–11 May 2007.

71. Jha, N.; Tripathi, N.K.; Barbier, N.; Virdis, S.G.P.; Chanthorn, W.; Viennois, G.; Brockelman, W.Y.; Nathalang, A.; Tongsima, S.;
Sasaki, N.; et al. The real potential of current passive satellite data to map aboveground biomass in tropical forests. Remote Sens.
Ecol. Conserv. 2021, 7, 504–520. [CrossRef]

72. Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest above-ground biomass using multi-parameter
remote sensing data over a cold and arid area. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 160–168.

428



Citation: Fu, C.; Song, X.; Xie, Y.;

Wang, C.; Luo, J.; Fang, Y.; Cao, B.;

Qiu, Z. Research on the

Spatiotemporal Evolution of

Mangrove Forests in the Hainan

Island from 1991 to 2021 Based on

SVM and Res-UNet Algorithms.

Remote Sens. 2022, 14, 5554. https://

doi.org/10.3390/rs14215554

Academic Editors: Mingming Jia,

Huaqiang Du, Wenyi Fan,

Weiliang Fan, Fangjie Mao and

Mingshi Li

Received: 9 September 2022

Accepted: 1 November 2022

Published: 3 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Research on the Spatiotemporal Evolution of Mangrove Forests
in the Hainan Island from 1991 to 2021 Based on SVM and
Res-UNet Algorithms

Chang Fu 1,2,3,†, Xiqiang Song 2,3,†, Yu Xie 3, Cai Wang 3, Jianbiao Luo 3, Ying Fang 3, Bing Cao 1

and Zixuan Qiu 1,2,3,*

1 Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute, Hainan University,
Sanya 572025, China

2 Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants,
Ministry of Education, College of Forestry, Hainan University, Haikou 570228, China

3 Intelligent Forestry Key Laboratory of Haikou City, College of Forestry, Hainan University,
Haikou 570228, China

* Correspondence: zixuanqiu@hainanu.edu.cn; Tel.: +86-156-0080-4604
† These authors contributed equally to this work.

Abstract: Mangrove ecosystems play a dominant role in global, tropical, and subtropical coastal
wetlands. Remote sensing plays a central role in mangrove conservation, as it is the preferred tool for
monitoring changes in spatiotemporal distribution. To improve correlated estimation accuracies and
explore the influencing mechanisms based on the mangrove ground survey, this study used a support
vector machine (SVM) machine learning and Res-UNet deep learning algorithms to identify the land
area of mangrove forests and the crown surface cover area of mangrove forests in the Hainan Island
from 1991 to 2021. Both classification techniques were verified by a confusion matrix, which from
1991 to 2021, revealed overall accuracies of 93.11 ± 1.54% and 96.43 ± 1.15% for SVM and Res-UNet,
respectively. Res-UNet was more accurate in identifying the crown surface cover area, whereas SVM
was more suitable for obtaining the land area. Furthermore, based on the crown surface cover area of
the mangrove forests on the Hainan Island, influencing mechanisms were analyzed through dynamic
changes and landscape patterns. Since 1991, the Hainan Island mangrove forest area has increased,
with the center of mass moving from coastal areas to the ocean and increasing the overall landscape
fragmentation. Moreover, the change in the mangrove forests area was correlated with economic
development and the increasingly urban population of the entire island. Altogether, the reliable
assessment of the tropical mangrove forest land area and crown surface cover provides an important
research foundation for the protection and restoration plans of tropical mangrove forests.

Keywords: mangrove forests; Hainan Island; deep learning; spatiotemporal evolution;
influential mechanism

1. Introduction

Mangrove forests are an important type of coastal wetland that contain woody plant
communities mainly distributed in the intertidal zones of tropical and subtropical re-
gions [1]. These biomes constitute one of the most productive ecosystem types worldwide
and maintain substantial social, ecological, and economic values for the natural envi-
ronment and human society [2]. Specifically, mangrove forests play an important role in
maintaining the ecological balance of coastlines and protecting the land from erosion [3]. Re-
cently, these forests have also been recognized as the main contributor to “blue carbon sinks”
in the global coastal zone, playing an important role in the suppression of ever-increasing
atmospheric carbon dioxide concentrations [4]. Before the 21st century, mangrove forest
areas were continuously reduced and degraded due to increasing socioeconomic threats,
making them one of the most threatened ecosystems on the planet [5]. From 2000 to 2016, as
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government departments turned their attention to greater protection, the damaging human
activities against global mangrove forests gradually decreased; however, the number of
mangrove forests lost because of natural factors increased during the same period [6]. To
further protect and manage mangrove forests, it remains necessary to understand their spa-
tiotemporal evolution, as well as their response and adaptation mechanisms to population
growth, economic development, climate, and other factors [7]. Mangrove forests are usually
located within a large area of inaccessible mudflats, which complicates any corresponding
groundwork efforts [8]. Alternatively, the history of mapping the range of mangrove forests
with remote sensing data dates to the 1970s [9]; advances in sensor technology have offered
increasingly improved effective mapping and monitoring techniques.

Remote sensing has been widely used for the multi-scale and long-term monitoring
of environments and natural resources [10]. Over the past three decades, optical and
radar satellites commonly used in mangrove research have included Landsat, SPOT, IRS
1C, IRS 1D, ASTER, IKONOS, QuickBird, RADARSAT-1 SAR, ENVISAT ASAR, ERS-1
SAR, JERS-1, AIRSAR, and ALOS PALSAR. The first civilian Earth satellite, Landsat, was
launched in 1972, and the first commercial satellite, SPOT, was launched in 1986 [11].
Optical satellites are used more frequently than radar satellites in mangrove studies. For
example, Hauser et al. [12] studied the spatiotemporal dynamics of mangrove forests on
the Ga Mau Peninsula, Vietnam, from 2004 to 2013 using SPOT satellite imagery; moreover,
Proisy et al. [13] used IKONOS, QuickBird, and WorldView satellite images to map the
evolution of mangrove forests within an abandoned aquaculture estuary area in India from
2001 to 2015. Landsat time series are often the most common satellite data used to monitor
ecosystem change at larger scales [14]. For example, Gaw et al. [15] used Landsat remote
sensing imagery to study the dynamics of mangrove forests in Tanintharyi, Myanmar,
from 1989 to 2014. Hu et al. [16] showed that Landsat remote sensing image data are the
most commonly used data for mangrove forest feature classification because: (1) Landsat
imagery data of a 30 m medium resolution can effectively extract spatial information from
mangrove forests; (2) it contains rich waveform information; (3) it requires relatively short
time intervals for image acquisition; (4) it maintains a long history (>30 years); and (5) it
is characterized by relatively low imaging costs. Therefore, Landsat imagery data were
used in this study to ensure the spatiotemporal integrity of the mangrove forest data to the
maximum extent possible.

Although remote sensing technology can provide continuous spatiotemporal data
for monitoring ecosystem changes, the accuracy of information extraction is influenced
by image classification techniques and sensor resolution [17]. In land cover classification
studies, nascent shrubs and herbs remain difficult to classify due to their similar spec-
tral properties [18]. Similarly, a separate study in China showed that agricultural lands,
inland dwarf tree forests, shrub forests, and aquatic plants with highly similar spectral
characteristics to mangrove forests were easily misclassified [19]. Abdi [20] found that the
support vector machine (SVM) machine-learning algorithm produced the highest accuracy
for distinguishing regenerating shrubs and herbaceous plants (overall accuracy, OA = 76%).
Guo et al. [21] found that the U-Net deep learning algorithm obtained good classification re-
sults for mangrove forest identification by multilayer convolutional operations (OA = 81%);
however, the image elements in a small area near the mangrove forests’ boundary were also
misclassified. In response to the degradation problem exposed by deep learning algorithms
during network training, Li et al. [22] proposed a residual learning framework ResNet,
which, in a classification study of tree species, achieved a classification accuracy of 90.9%
for ResNet-18. Moreover, deep residual U-Net is also widely used in remote sensing image
classification [23]. Cao and Zhang [24] proposed the Res-UNet network, which combines
U-Net and Resnet, to extract multi-scale spatial features that can effectively improve the
accuracy of tree species classification. Therefore, in this study, to address issues with
mangrove forest misclassification in large-scale feature analyses, the SVM and Res-UNet
algorithms were chosen to remotely monitor the mangrove forest distribution on Hainan
Island and conduct a comparative analysis.
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Remote sensing technology can also accurately explore the dynamic changes in small-
scale mangrove reserves. For example, Ibharim et al. [25] used remote sensing techniques
to monitor changes in the Matang Mangrove Reserve, Malaysia, between 1993 and 2011,
proposing conservation recommendations in terms of species distributions and patch types.
Similarly, Son et al. [26] studied changes in the Can Gio Biosphere mangrove reserve in
Vietnam from 1989 to 2014 using Landsat imagery data, finding that ~24% of the mangrove
forests in the reserve were converted to aquaculture farms during this period and providing
suggestions to assist local managers with reserve development. Zhen et al. [27] used radar
and optical satellites combined with an improved mangrove classification method to
assess the spatial distribution and dynamics of mangrove forests in the Dongzhai Port
Mangrove Reserve, China, to improve the development of conservation and management
policies. Such small-scale mangrove reserve studies can provide more accurate data on
species distribution and land type but are limited in their ability to capture the effects
of climate, social benefits, and economic benefit changes. Therefore, exploring the large-
scale spatiotemporal evolution of mangroves can provide ideas for upstream planning,
an important component of their sustainable development. For example, Gilani et al. [28]
used Landsat imagery to monitor changes in the mangrove cover and fragmentation in
Pakistan to assess the conservation and sustainability of mangrove forests. Giri et al. [29]
used similar techniques at two spatial resolutions to study the proportion, patterns, causes,
and consequences of changes in mangrove cover in South Asia, which can regularly
monitor and manage mangroves in this region. Considering the advantages and limitations
of different research scopes, this study systematically explored the response and adaptation
mechanisms between the spatiotemporal evolution of tropical mangrove forests, climate,
and socioeconomic changes at the provincial/city/county levels hierarchically.

This study aimed to improve the accuracy of remote sensing estimates of tropical
mangrove forest spatial distributions and to explore the influential mechanisms of the
spatiotemporal evolution of tropical mangrove forests. Furthermore, this study aimed to
achieve the following three research objectives: (1) compare the advantages and limitations
of SVM machine-learning and Res-UNet deep learning algorithms for extracting spatial
information from the mangrove forest; (2) explore the spatiotemporal evolution of tropical
mangrove forests on the Hainan Island from 1991 to 2021; and (3) analyze the response and
adaptation mechanisms between the spatiotemporal evolution of tropical mangrove forests
and changes in climate, environment, and socioeconomic benefits.

2. Materials and Methods

2.1. Materials
2.1.1. Study Area

The Hainan Island is located at the southernmost tip of China, on the northern edge of
the tropics, between 108◦37′ to 111◦03′ E and 18◦10′ to 20◦10′ N. The island covers an area of
~3.54 × 104 km2, with a coastline of 1944.4 km, and maintains a tropical maritime monsoon
climate. It has the richest mangrove species and the most extensive mangrove forest area
in China, including 26 species of true mangrove plants and 12 species of semi-mangrove
plants [29]. The mangrove forests of the Hainan Island are mainly distributed along the
coastal areas of 12 cities and counties in the northeast, south, east, and west, including the
cities of Haikou, Wenchang, Danzhou, and Sanya.

2.1.2. Ground Survey Data Sources

From January 2020 to September 2020, we organized over 200 people to identify the
range of the mangrove forests and record the distribution of dominant tree species on the
Hainan Island during the ground survey (Figure 1 and Table A1). In addition, during past
ground surveys, other members of our team recorded site data for mangrove forests on
the Hainan Island as follows: in 1991 (429 sites), in 1996 (423 sites), in 2000 (441 sites),
in 2007 (510 sites), in 2010 (485 sites), in 2015 (508 sites); site data for other land types
were: in 1991 (1747 sites), in 1996 (1777 sites), in 2000 (1814 sites), in 2007 (1816 sites),
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in 2010 (1809 sites), in 2015 (1744 sites). Based on the range of the mangrove forests in
the Hainan Island in 2020 and the site data previously surveyed by other members of
the team, in October 2021, we conducted another ground survey and recorded data from
504 mangrove sites and 1805 other land-type sites. In addition, in each ground survey, all
members of our team used a handheld GPS and Google Earth (Google Inc., Santa Clara
County, CA, USA) to collect site data. The size of each site was 30 m × 30 m.

Figure 1. Ground survey data in 2020. (a) Distribution of dominant mangrove forest tree species in
the Hainan Island. (b) Distribution range of mangrove forests in the Hainan Island.

2.1.3. Landsat Data Sources and Preprocessing

Landsat satellite image data were downloaded from the United States Geological
Survey (USGS) for Earth Resources Observation and Science (https://www.usgs.gov/,
accessed on 9 September 2022), from which the spatial resolution was 30 m. This study
required images with a cloud coverage of less than 20%, and thus, compared and se-
lected the Landsat satellite data obtained in 1991 (Landsat-5 TM), 1996 (Landsat-5 TM),
2000 (Landsat-5 TM), 2007 (Landsat-5 TM), 2010 (Landsat-5 TM), 2015 (Landsat-8 OLI),
and 2021 (Landsat-8 OLI) (Table 1). Considering the large study area and complexity
of the landscape, images of the same area were collected from adjacent years to reduce
data loss related to cloudiness. The selected Landsat remote sensing image data were
pre-processed with atmospheric correction, band combination, and image cropping. Be-
cause mangrove forests have more distinct spectral features in remote sensing image data,
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especially a strong reflectance in the near-infrared (NIR) band, they are more easily classi-
fied than other land cover types [30]. To distinguish the mangrove forests, Landsat-5 TM
usually uses B4 (NIR, 0.76–0.90 μm), B3 (Red, 0.63–0.69 μm), and B2 (Green, 0.52–0.60 μm)
bands to synthesize standard false color feature images. In such standard false color feature
images, mangrove forests typically appear as deep red. However, B5 (NIR, 0.85–0.89 μm),
B4 (Red, 0.63–0.68 μm), and B3 (Green, 0.53–0.60 μm) bands were used from Landsat 8 OLI.

Table 1. Information about the Landsat data images used in the study.

Year Landsat Data Acquisition Times Satellite Sensor Standard False Color

1991 15 June 20 August 30 October 30 October 16 April 1992

Landsat-5 TM

B4 (NIR, 0.76–0.90 μm),
1996 14 July 14 December 23 December 23 December 23 September 1995 B3 (Red, 0.63–0.69 μm),
2000 28 March 20 April 20 April 7 November 24 March 2001 B2 (Green, 0.52–0.60 μm)
2007 6 July 13 July 15 July 15 July 22 July
2010 7 February 24 March 7 July 16 September 21 August 2009

2015 16 April 16 April 5 September 17 November 8 March 2016
Landsat-8 OLI

B5 (NIR, 0.85–0.89 μm),
2021 1 January 1 January 11 March 13 June 19 June B4 (Red, 0.63–0.68 μm),

B3 (Green, 0.53–0.60 μm)

2.1.4. Population, Economy, and Climate Data Sources

This study was taken from the WorldClim data website (https://www.worldclim.org/
data/index.html, accessed on 9 September 2022) where a spatial resolution of 2.5 m of
monthly weather data over 1990–2018 years of history was downloaded. Then, the CNRM-
CM6-1 model and the sustainable development scenario (SSP226) were selected in CMIP6
to download the monthly climate data with a spatial resolution of 2.5 m. The average mini-
mum temperature (◦C), average maximum temperature (◦C), and total precipitation (mm)
in 1991, 1996, 2000, 2007, 2010, 2015, and 2021 were sorted out in the TIFF format climate
data set. Furthermore, the total population, urban population, rural population, GDP, and
gross output fishery value were obtained from the Annual Statistical Report of Hainan
Province in 1991, 1996, 2000, 2007, 2010, 2015, and 2021, respectively.

2.2. Methods
2.2.1. Support Vector Machine

The SVM machine-learning algorithm used here for supervised classification is based
on the statistical learning theory and was originally developed to solve dichotomous
classification problems [21]. SVM tries to identify the optimal thresholds that maximize
the separation or bounds between the support vectors [31]. In another way, this requires
finding the best hyperplane in a multidimensional space that splits two sets of vectors
so that the vectors closest to the hyperplane (i.e., the support vectors) are as far away as
possible from the hyperplane (Figure 2). Assuming that the Euclidean distance of the
vector to the hyperplane is di, the minimum value of di is required to represent the shortest
distance of this vector to the hyperplane. Accordingly, the mathematical expressions for
the hyperplane g(x) and di are defined by Equations (1) and (2):

g(x) = wT ·x + b; w, x ∈ Rn (1)

di =
|g(x)|
‖w‖ (2)

where w and x are vectors in the n-dimensional space. x is a function variable and w is a
normal vector. ‖w‖ is the parametrization of the hyperplane.
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Figure 2. Visualization of the hyperplane separating the two types of vectors (assuming g(x) = 0).

In this study, the radial basis function (RBF) was selected as the kernel function,
Gamma = 1, and the system default values were used for other parameters when SVM
was used to establish the mangrove forests distribution model in the Hainan Island.
The input band parameters were as follows: Landsat-5 TM: B4-Near IR (0.76–0.90 μm),
B3-Red (0.63–0.69 μm), B2-Green (0.52–0.60 μm); Landsat-8 OLI: B5-Near IR (0.85–0.89 μm),
B4-Red (0.63–0.68 μm), B3-Green (0.53–0.60 μm). The number of training samples selected
for SVM machine-learning each year is as follows: in 1991 (312 mangrove sites and
1245 non-mangrove sites), in 1996 (304 mangrove sites and 1260 non-mangrove sites),
in 2000 (318 mangrove sites and 1280 non-mangrove sites), in 2007 (380 mangrove sites and
1299 non-mangrove sites), in 2010 (351 mangrove sites and 1303 non-mangrove sites), in
2015 (374 mangrove sites and 1244 non-mangrove sites), and in 2021 (353 mangrove sites
and 1296 non-mangrove sites). The size of a single sample is 30 × 30 m.

2.2.2. Res-UNet

U-Net was first applied to medical image segmentation [32]. Later, it was also widely
used in remote sensing image classification [33]. The deep residual network ResNet can
avoid the problem of gradient degradation in the process of network deepening [34]. This
study used U-Net to equip the ResNet-18 backbone to train deep learning models (Figure 3)
in order to increase the feature expression ability of the model [35]. Among them, ResNet-18
is a two-level ResNet residual unit, and the network structure of residual learning can be
seen in Figure 4.

During model training, the average cross-entropy loss was used to calculate the model
loss via the function presented in Equation (3):

loss = − 1
n

n

∑
i=1

yilogai + (1 − yi)log(1 − ai) (3)

where n represents the batch size; yi and ai are the predicted and true values of the ith
sample in each batch, respectively. For the loss of the model, the network parameters
were optimized using the Adam optimizer proposed by Kingma and Ba [36], according to
Equation (4):

θt = θt−1 − α ∗ m̂t/
(√

v̂t + ε
)

(4)

where t is the number of training iterations, α is the learning rate, m is the exponential
moving average of the gradient, and v is the exponential moving average of the gradient
squared. The “ε” is usually a constant with a value of 1 × 10−8.
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Figure 3. Network structure of Res-UNet. “conv” referring to the feature map. “CAT” is a method of
concatenating feature maps with different numbers of channels.

Figure 4. Network structure of residual learning. “F(x)” refers to the residual and “x” is the feature
mapping of the output of the previous layer ResNet.

This study used Python based on the TensorFlow deep learning framework. The
hardware configuration of this operating platform included a Lenovo ThinkStation P620
AMD3955WX 64G and an NVIDIA Quadro RTX4000 8G GPU. Based on the site data
from the ground survey and the distribution range of mangrove forests from the ground
survey in 2020, the distribution range of mangrove forests in the Haikou, Wenchang, and
Danzhou cities were mapped by visual interpretation in Landsat remote sensing images.
When Res-UNet trained the model of mangrove forest distribution on the Hainan Island,
the Landsat remote sensing images were cut, referring to the visually interpreted man-
grove distribution range. The slice size was set to 32 × 32 pixels, the batch size = 8,
the backbone model was set to ResNet–18, and the default values for other parame-
ters were used. The input band parameters were as follows: Landsat-5 TM: B4-Near
IR (0.76–0.90 μm), B3-Red (0.63–0.69 μm), and B2-Green (0.52–0.60 μm); Landsat-8 OLI: B5-
Near IR (0.85–0.89 μm), B4-Red (0.63–0.68 μm), and B3-Green (0.53–0.60 μm). Finally, the
training samples for Res-UNet deep learning were obtained as follows: in 1991 (780 sites), in
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1996 (873 sites), in 2000 (767 sites), in 2007 (875 sites), in 2010 (928 sites), in 2015 (1050 sites),
and in 2021 (1201 sites). The size of a single sample is 32 × 32 pixels.

2.2.3. Accuracy Assessment

Here, two metrics, the Kappa coefficient, and the OA were used to evaluate the
classification accuracy of SVM and Res-UNet, respectively. Both metrics were calculated
based on a confusion matrix, which provided a clear picture of the number of features
correctly and incorrectly classified [37]. Specifically, the Kappa coefficient is typically used
to test the consistency of results and measure the effectiveness of classifications, whereas
OA is the ratio of correctly classified categories to the total category number [21]. Of the
sites obtained each year, approximately 30% were selected as a validation sample. The
sample types were divided into mangrove and non-mangrove (other land types). The
number of validation samples selected each year is as follows: in 1991 (117 mangrove sites
and 502 non-mangrove sites), in 1996 (119 mangrove sites and 517 non-mangrove sites), in
2000 (123 mangrove sites and 534 non-mangrove sites), in 2007 (130 mangrove sites and
517 non-mangrove sites), in 2010 (134 mangrove sites and 506 non-mangrove sites), in 2015
(134 mangrove sites and 500 non-mangrove sites), and in 2021 (151 mangrove sites and
509 non-mangrove sites). the size of a single sample is 30 × 30 m. The confusion matrix
was used to evaluate the classification results of the model, and the precise equations for
OA and Kappa, are presented in Equations (5) and (6):

OA =
∑2

i=1 aii

N
(5)

Kappa =
OA − ∑2

i=1 ai+∗a+i
N2

1 − OA
, ai+ = ∑i aij, a+i = ∑j aij (6)

where aii denotes the accurate values of i predicted to be i, aij denotes the values of i
predicted to be j, and N is the total number of samples.

2.2.4. Dynamic Change and Landscape Pattern Analysis

Here, the area of mangrove forest cover change was evaluated and compared based on
the mangrove distribution of 1991, 1996, 2000, 2007, 2010, 2015, and 2021. The annual rate
of change in the crown surface area was used to analyze the mangrove forest changes over
the last 30 years for six stages: 1991–1996, 1996–2000, 2000–2007, 2007–2010, 2010–2015, and
2015–2021. Specifically, the annual rate of change in the crown surface area was calculated
using the formula proposed by Puyravaud [38]:

r =
1

t2 − t1
ln

A2

A1
(7)

where r is the annual percentage change rate; t1 and t2 are the starting and ending years
at the time of calculation, respectively; and A1 and A2 are the corresponding areas in
t1 and t2, respectively.

In evaluating the spatiotemporal changes in the landscape patterns of mangrove
forests, landscape indices, such as shape complexity and patch fragmentation, can further
reveal the impacts of human activities [39]. Five landscape indices were selected based
on the actual situation of the study area: the number of patches (NP), patch density (PD),
maximum patch index (LPI), landscape shape index (LSI) and aggregation index (AI),
where NP reflects the spatial pattern of the landscape; PD describes the degree of landscape
fragmentation; LPI indicates the expansion or fragmentation of the largest mangrove forest
patches, reflecting the health of the mangrove forests in the core area; LSI determines the
shape changes of the patch, corresponding to the resistance abilities of the mangrove forests
to external disturbances; and AI reflects the connectivity and degree of aggregation and
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dispersion within mangrove forest patches [40]. PD, LSI, and AI were calculated according
to Equations (8)–(10) [39]:

PD =
NP
A

, PD > 0 (8)

LSI =
0.25E√

A
, LSI ≥ 1 (9)

AI =
pij

max pij
× 100 (10)

where A is the total landscape area (ha), E is the total length of the edge in the landscape,
and pij represents the number of adjacent patches in patches of the same type as the
landscape, i represents a landscape type, and j represents patches of the same type as i.

The mangrove mass center offset trajectory can reflect the spatial distribution of
mangrove forests over different years, an important factor when studying the dynamic
changes over certain periods of time. Here, the principle was to adopt the change in the
mass center coordinates of the landscape patches to reflect the change laws of the mangrove
area mass center distributions. The center of mass formula was derived from Li et al. [41]
(Equation (11)):

Xt =
∑N

i=1(CtiXi)

∑N
i=1 Cti

, Yt =
∑N

i=1(CtiYi)

∑N
i=1 Cti

(11)

where Xt and Yt denote the latitude and longitude coordinates of the landscape mass center
in year t, respectively; Xi and Yi are the latitude and longitude coordinates of the mass
center of the ith patch of a landscape, respectively; Cti is the area of the ith patch, and N is
the total number of landscape patches.

2.2.5. Statistical Analysis of Driving Forces

Zheng and Takeuchi [42] showed that mangroves vary over space and time, with
changes related to the climate, environment, and socioeconomic benefits. To quantify
the main drivers affecting the evolution of mangrove landscapes, this study conducted
a Pearson bivariate correlation analysis of the mangrove area with socioeconomic and
natural environmental indicators. Eight indicators were selected for the study area: total
population, urban population, rural population, GDP, gross production fishery value,
average annual rainfall, minimum temperature, and maximum temperature.

3. Results

3.1. Analysis of the Classification Results
3.1.1. Classification Results of SVM Machine Learning

The SVM classification results are shown in Figure A1 in Appendix A. Confusion ma-
trix calculations were used to summarize the producer accuracy (PA), user accuracy (UA),
OA metrics, and Kappa coefficients. The SVM classification accuracy was the highest in
1996 and 2021 (Table 2), with the OA and Kappa coefficients at >94% and >0.80, respectively.
The lowest classification accuracy was recorded in 2010 (OA and Kappa coefficients of
91.6% and 0.71, respectively). The primary classification task was to identify the mangrove
forest presence; however, the spectral information of other land types can influence the
classification results. The highest PA of the mangrove forests was recorded in 1996 (77.3%),
and although the overall classification results of SVM were high, the identification results
of the mangrove forests remained relatively inaccurate as the probability of the mangrove
forests being misclassified persisted.
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Table 2. Accuracy assessment of SVM classification results from mangrove forests in the Hainan
Island during 1991–2021, where μ depicts the average values.

Period Classified
Ground-Truth Summary

Mangrove Non-Mangrove Total PA UA

1991

Mangrove 79 7 86 67.5% 91.9%
Non-Mangrove 38 495 533 98.6% 92.9%

Total 117 502 619 83.1μ 92.4μ
OA = 92.7% Kappa = 0.74

1996

Mangrove 92 7 99 77.3% 92.9%
Non-Mangrove 27 510 537 98.7% 95.0%

Total 119 517 636 88.0μ 94.0μ
OA = 94.65% Kappa = 0.81

2000

Mangrove 79 2 81 64.2% 97.5%
Non-Mangrove 44 532 576 99.6% 92.4%

Total 123 534 657 81.9μ 95.0μ
OA = 93.00% Kappa = 0.74

2007

Mangrove 80 2 82 61.5% 97.6%
Non-Mangrove 50 515 565 99.6% 91.2%

Total 130 517 647 80.6μ 94.4μ
OA = 92.0% Kappa = 0.71

2010

Mangrove 83 3 86 61.9% 96.5%
Non-Mangrove 51 503 554 99.4% 90.8%

Total 134 506 640 80.7μ 93.7μ
OA = 91.6% Kappa = 0.71

2015

Mangrove 96 2 98 71.6% 98.0%
Non-Mangrove 38 498 536 99.6% 92.9%

Total 134 500 634 85.6μ 95.4μ
OA = 93.7% Kappa = 0.79

2021

Mangrove 114 1 115 75.5% 99.1%
Non-Mangrove 37 508 545 99.8% 93.2%

Total 151 509 660 87.7μ 96.2μ
OA = 94.2% Kappa = 0.82

3.1.2. Classification Results of Res-UNet Deep Learning

The classification results of the Res-UNet deep learning algorithm are shown in
Figure A2 in Appendix A. The extracted sample labels were divided into two categories:
mangrove and non-mangrove forests. The confusion matrix was selected for accuracy
verification, besides the PA, UA, OA, and Kappa coefficient calculations, for the classi-
fication results of the mangrove forests. When comparing the validation results across
different years (Table 3), it was found that Res-UNet produced superior classification results
(OA, 95%; Kappa coefficients, >0.80). Among them, the best classification accuracy was
achieved in 2021 (OA and Kappa coefficient of 97.6% and 0.93, respectively), and the worst
classification accuracy appeared in 1996 (OA and Kappa coefficient values of 95.3% and
0.83, respectively). Few mangrove forests were misclassified (low errors) using this deep
learning algorithm (Table 3), resulting in high PA values in all the mangrove forest classes
(reaching a maximum of 93.4% in 2021).
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Table 3. Accuracy assessment of Res-UNet classification results of mangrove forests in the Hainan
Island during 1991–2021, where μ depicts the averaged values.

Period Classified
Ground-Truth Summary

Mangrove Non-Mangrove Total PA UA

1991

Mangrove 92 3 95 78.6% 96.8%
Non-Mangrove 25 499 524 99.4% 95.2%

Total 117 502 619 89.0μ 96.0μ
OA = 95.5% Kappa = 0.84

1996

Mangrove 93 4 97 78.2% 95.9%
Non-Mangrove 26 513 539 99.2% 95.2%

Total 119 517 636 88.7μ 95.5μ
OA = 95.3% Kappa = 0.83

2000

Mangrove 106 4 110 86.2% 96.4%
Non-Mangrove 17 530 547 99.3% 96.9%

Total 123 534 657 92.7μ 96.6μ
OA = 96.8% Kappa = 0.89

2007

Mangrove 108 1 109 83.1% 99.1%
Non-Mangrove 22 516 538 99.8% 95.9%

Total 130 517 647 91.4μ 97.5μ
OA = 96.5% Kappa = 0.88

2010

Mangrove 115 3 118 85.8% 97.5%
Non-Mangrove 19 503 522 99.4% 96.4%

Total 134 506 640 92.6μ 96.9μ
OA = 96.6% Kappa = 0.89

2015

Mangrove 112 1 113 83.6% 99.1%
Non-Mangrove 22 499 521 99.8% 95.8%

Total 134 500 634 91.7μ 97.5μ
OA = 96.4% Kappa = 0.88

2021

Mangrove 141 6 147 93.4% 95.9%
Non-Mangrove 10 503 513 98.8% 98.1%

Total 151 509 660 96.1μ 97.0μ
OA = 97.6% Kappa = 0.93

The cross-entropy loss curve of the Res-UNet model is shown in Figure 5. Under
the optimal model, the batch size was eight. After ~5000 training iterations, the loss of
Res-UNet stabilized at 0.1, where the model weights gained certainty.

Figure 5. Res-UNet loss curve, where the x-axis indicates the number of training iterations.
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3.1.3. Comparison of Mapping Results between SVM Machine Learning and Res-UNet
Deep Learning

The SVM and Res-UNet classification results were compared with ground truth remote
sensing imagery data to analyze the ability of the two algorithms to identify the distribution
range of mangrove forests on the Hainan Island (Figure 6). Here, it was found that Res-
UNet was more accurate in identifying the crown surface cover area, whereas SVM better
reproduced the land area covered by entire wetlands or protected areas, including man-
grove forests. The inability of SVM to distinguish mangrove forests from water and aquatic
plants was evident (Figure 6a,b); therefore, the extracted mangrove distributions were
more contiguous. Furthermore, numerous pixels with mixed low trees and shrubs were
misclassified as “mangrove forests” (Figure 6e,f). In Figure 6c,d, an under-classification
is observed due to the non-recognition of mangrove forests. In contrast, Res-UNet more
accurately distinguished mangrove forests from other feature types with similar spectral
information within mixed vegetation areas, greatly reducing the probability of mangrove
forest misclassification on a large scale.

Figure 6. Illustrative examples of the classification method limitations for SVM and Res-UNet:
(a,b) Haikou City, (c,d) Wenchang City, (e,f) Danzhou City; red represents mangrove forests, and
white represents all other land types, each square is captured from a 30 m Landsat remote sensing
image, and the side length is about 975 × 975 m.

3.2. Analysis of Spatiotemporal Changes of Mangrove Forests in the Hainan Island
3.2.1. Change in Mangrove Forest Crown Surface Cover Area during 1991–2021

Based on the validation of the Res-UNet algorithm, this trained model was applied
to a large-scale mangrove forest crown surface mapping to compare the extent of the
mangrove forest crown coverage changes in 1991, 1996, 2000, 2007, 2010, 2015, and 2021
on the Hainan Island. The crown surface cover area of the total mangrove forests on
the Hainan Island in each of these seven periods was 1740.15, 2076.66, 1984.68, 2371.59,
2694.78, 2233.80, and 3438.63 ha, respectively (Figure 7 and Table 4). The mangrove forests
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were mainly distributed over 12 cities and counties around the coast of the Hainan Island.
By 2021, the forest crown surface cover areas in the cities of Haikou, Wenchang, and
Danzhou increased, whereas those of the Wanning City, Ledong Li Autonomous County,
and Changjiang Li Autonomous County receded during the analysis period. In addition,
Wanning City, Ledong Li Autonomous County, Lingshui Li Autonomous County, and
Changjiang Li Autonomous County were characterized by the disappearance of mangrove
forests in individual years, with mangrove forests in Changjiang Li Autonomous County
only present in 2000 and 2010. Overall, the mangrove forest crown surface cover area in the
Hainan Island showed an increasing trend over the last three decades, with a net increase
of 1698.48 ha from 1991 to 2021, representing an annual change rate of 2.27% (Table 4). The
highest growth rate of the surface cover area of the mangrove forest crown was recorded
throughout the analysis period in Dongfang City (16.24%), whereas the annual change rate
peaked in the autonomous Ledong Li County from 2007 to 2021 (≤35.50%).

Figure 7. Trends of mangrove forest crown cover area in the Hainan Island during 1991–2021.

Table 4. Mangrove forest crown surface cover area (ha) and annual rate of area change (%) in the
Hainan Island and in each city/county for every year of analysis.

City/County
Mangrove Forests Crown Cover (ha) Annual Rate of

Change (%)1991 1996 2000 2007 2010 2015 2021

Haikou 898.20 1259.73 1221.12 1343.07 1294.74 1233.09 1183.59 0.92
Sanya 49.50 14.76 3.06 4.95 35.91 13.14 57.96 0.53

Wenchang 286.83 552.24 356.94 598.95 755.19 449.82 1083.42 4.43
Qionghai 25.02 1.26 11.61 6.12 41.31 1.80 32.13 0.83
Wanning 4.95 0.00 2.43 0.90 0.00 0.00 6.3 0.80

Chengmai 48.06 63.45 53.01 36.54 66.78 98.82 191.97 4.62
Lingao 46.71 9.9 24.39 42.3 80.01 40.23 129.96 3.41

Danzhou 377.73 155.07 277.29 319.86 369.18 364.86 610.56 1.60
Dongfang 0.63 18.54 33.84 16.29 9.36 30.51 82.17 16.24

Ledong 0.00 0.00 0.00 0.09 3.51 0.36 12.96 35.50 *
Lingshui 2.61 0.00 0.27 2.52 38.07 1.17 47.61 9.68

Changjiang 0.00 0.00 0.72 0.00 0.72 0.00 0.00 0.00 *

Total Area 1740.15 2076.66 1984.68 2371.59 2694.78 2233.80 3438.63 2.27

* Monitoring time starts from the year that mangrove forests appeared.

The changes in the surface cover area of the mangrove forest crown were compared
and analyzed for each city and county in the Hainan Island across six periods: 1991–1996,
1996–2000, 2000–2007, 2007–2010, 2010–2015, and 2015–2021. Although the surface cover
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area increased for all cities and counties in the Hainan Island over the analysis period
(Table 4), the observed growth was unstable in terms of phase changes. The surface cover
area decreased in the Hainan Island from 1996 to 2000 and 2010 to 2015 (annual rates of
change: −1.13% and −3.75%, respectively; Table 5), while the highest growth rate in the
island was observed from 2015 to 2021 (7.19%·yr−1). However, the area of surface coverage
of the mangrove forest crown in Haikou City decreased in the three phases from 2007
to 2021. Conversely, the crown surface cover area increased in Chengmai County from
2007 to 2021. In addition, the mangrove forest crown surface cover area in Lingao County
and Danzhou City increased between 1996 and 2010, and the crown surface coverage of
Lingshui Li Autonomous County also showed an increasing trend from 2000 to 2010.

Table 5. Annual rate of change (%) in the crown surface cover area of mangrove forests in the Hainan
Island during 1991–1996, 1996–2000, 2000–2007, 2007–2010, 2010–2015, and 2015–2021.

City/County
Annual Rate of Change

1991–1996 1996–2000 2000–2007 2007–2010 2010–2015 2015–2021

Haikou 6.77 −0.78 1.36 −1.22 −0.98 −0.68
Sanya −24.20 −39.34 6.87 66.05 −20.11 24.73

Wenchang 13.10 −10.91 7.39 7.73 −10.36 14.65
Qionghai −59.77 55.52 −9.15 63.65 −62.67 48.03
Wanning 0.00 0.00 −14.19 0.00 0.00 0.00

Chengmai 5.56 −4.49 −5.32 20.10 7.84 11.07
Lingao −31.03 22.54 7.87 21.25 −13.75 19.54

Danzhou −17.81 14.53 2.04 4.78 −0.24 8.58
Dongfang 67.64 15.04 −10.44 −18.47 23.63 16.51

Ledong 0.00 0.00 0.00 122.12 −45.55 59.73
Lingshui 0.00 0.00 31.91 90.51 −69.65 61.77

Changjiang 0.00 0.00 0.00 0.00 0.00 0.00

Hainan
Island 3.54 −1.13 2.54 4.26 −3.75 7.19

3.2.2. Spatial Distribution and Changes in Mangrove Forests during 1991–2021

The landscape-level pattern index can reflect the corresponding change characteristics
of the entire study area (Figure 8). From 1991 to 2021, the NP, PD, and LSI of mangrove
forests in the Hainan Island showed repeated trends of decreasing, followed by an increase.
NP and LSI both reached a maximum in 2021, with 732 and 30.03%, respectively. This
indicates that the patch shape of mangrove forests was complex as the NP increased. LPI
and AI also fluctuated from an increase to a decrease several times, with LPI reaching at
least 6.42 in 2021. In conclusion, the edge shape of the mangrove patch in the Hainan Island
in 2021 is complex, with low connectivity and substantial fragmentation. At the city and
county levels, only Haikou City and Dongfang City displayed relatively reduced landscape
fragmentation and strong landscape connectivity by 2021.

The spatial distribution of the surface cover area of the mangrove forest crown in
the 12 cities and counties along the coast of the Hainan Island was used to investigate
the path of mass center offsets across the six periods. From 1991 to 2021, most centers
of the mangrove forest mass in the Hainan Island showed a trend of coastal movement
toward the ocean or inlets, the distance of movement in the first stage being the largest
(Figure 9). Specifically, the mass center of Changjiang Li Autonomous County moved in
a unidirectional line, as mangrove forests were only positively identified in two of the
analysis years; moreover, the mass centers of the mangrove forests in Sanya, Danzhou, and
Wanning cities also moved unidirectionally until 2021, when they showed a folded-back
trend. The movement trajectories in all the remaining locations appeared circular or crossed
and overlapped, indicating the factors influencing mangrove forest survival.
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Figure 8. Landscape pattern index of mangrove forests in the Hainan Island during 1991–2021.
(a) NP (m) index; (b) PD (m/ha) index; (c) LPI (%) index; (d) LSI (%) index; (e) AI (%) index.
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Figure 9. Mass center offset maps of mangrove forests across the Hainan Island for (a) Haikou,
(b) Sanya, (c) Lingao, (d) Chengmai, (e) Wenchang, (f) Danzhou, (g) Dongfang, (h) Qionghai, (i)
Lingshui, (j) Wanning, (k) Ledong, and (l) Changjiang.

3.2.3. Influential Mechanisms of Mangrove Forest Landscape Evolution

From 1991 to 2021, the total and urban populations of the Hainan Island grew continu-
ously, whereas the rural population slowly decreased. Furthermore, the GDP of the island
increased from 10.793 billion yuan in 1991 to 553.229 billion yuan in 2021, from which the
value of fishery rose from 836 million yuan to 39.080 billion yuan (Figure 10). However,
the overall patterns of average annual rainfall and minimum and maximum temperatures
throughout the study period were complex, although all increased (Table 6).

Figure 10. Population and socioeconomic development dynamics of the Hainan Island during 1991–2021.
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Table 6. Climate and environmental indicator dynamics in the Hainan Island during 1991–2021.

Period Average Annual Rainfall (mm)
Average Annual Minimum

Temperature (◦C)
Average Annual Maximum

Temperature (◦C)

1991 1289.12 21.65 28.5
1996 1531.08 21.12 27.68
2000 1804.22 21.6 27.76
2007 1334.88 21.72 28.01
2010 1507.96 21.45 27.88
2015 1554.69 22.27 28.66
2021 1548.06 22.44 29.11

Linear Fit y = 18.849x + 1434.6 y = 0.1614x + 21.104 y = 0.1396x + 27.67
R2 R2 = 0.0585 R2 = 0.5760 R2 = 0.3163

According to the correlation analyses with mangrove forest crown surface cover areas
in the Hainan Island (Table 7), positive correlations were observed with the socioeconomic
factors of the total population, GDP, and the gross output value of fisheries (p < 0.05). More-
over, the change in the surface cover of the mangrove forest crown showed a significant
positive correlation with the urban population (p < 0.01). Specifically, in the correlation
analysis of the mangrove forest crown surface cover area change in each city and county,
Wenchang City and Lingshui Li Autonomous County showed a significant positive correla-
tion between mangrove forest crown surface cover area and urban population; the growth
of the mangrove forest crown surface cover area in Wenchang City, Chengmai County, Lin-
gao County, Danzhou City, Dongfang City, and Ledong Li Autonomous County displayed
significant positive correlations with the local GDP; whereas that of Chengmai County
showed a highly significant positive correlation with both GDP and the gross output value
of fisheries. Regarding climatic factors, all correlations with the mangrove forest crown
surface cover area across the Hainan Island were positive but weak; however, analyses
at city and county levels found that the crown surface cover area changes in Chengmai
County and Danzhou City were significantly positively correlated with both the average
annual minimum and maximum temperatures.

Table 7. Pearson correlation analysis results of mangrove forest crown surface cover area with
socioeconomic and climatic factors over the Hainan Island during 1991–2021.

City/County
Total
Pop 1

Rural
Pop.

Urban
Pop.

GDP
Gross Output
Fishery Value

Average Annual
Rainfall

Average Annual Minimum
Temperature

Average Annual Maximum
Temperature

Hainan
Island 0.836 * −0.42 0.875 ** 0.853 * 0.801 * 0.09 0.56 0.52

Haikou 0.51 0.37 0.49 0.19 0.29 0.28 −0.16 −0.37
Sanya 0.21 −0.70 0.39 0.47 0.30 −0.48 0.33 0.63

Wenchang 0.72 −0.764 * 0.901 ** 0.797 * 0.788 * 0.11 0.35 0.41
Qionghai 0.29 0.14 0.18 0.28 0.21 −0.04 0.07 0.24
Wanning −0.15 −0.52 0.15 0.27 0.23 −0.20 0.44 0.63

Chengmai 0.61 −0.775 * 0.73 0.922 ** 0.885 ** 0.21 0.767 * 0.797 *
Lingao 0.59 0.57 0.58 0.772 * 0.71 −0.14 0.66 0.73

Danzhou 0.53 0.51 0.47 0.800 * 0.75 −0.15 0.842 * 0.867 *
Dongfang 0.57 −0.30 0.73 0.770 * 0.64 0.49 0.71 0.62

Ledong 0.62 0.58 0.40 0.810 * 0.67 0.00 0.63 0.64
Lingshui 0.60 −0.40 0.825 * 0.69 0.62 −0.03 0.39 0.38

Changjiang 0.19 0.49 −0.01 −0.17 −0.21 0.62 −0.16 −0.47

1 Pop. refers to the population; * p < 0.05; ** p < 0.01.

4. Discussion

4.1. Comparative Analysis of Mangrove Classification Methods

In this study, the accuracy of the SVM and Res-UNet algorithms used to identify the
distribution range of mangrove forests in the Hainan Island from 1991 to 2021 produced
OA values of 93.11 ± 1.54% and 96.43 ± 1.15%, respectively; the PA of Res-UNet was
resultantly much greater than SVM. It was observed that the Res-UNet algorithm based on
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a convolutional neural network produced a higher correct classification rate for the crown
surface cover area of the mangrove forest.

In their examination of the Pichavaram mangrove wetland that spans 2335.5 ha,
Singh et al. [43] achieved the highest overall classification accuracy by using an SVM to
identify mangrove images (94.53%). Zhen et al. [27] used an SVM to classify the land use of
the Dongzhai Port National Nature Reserve in Hainan, finding that OA could reach 83.5%;
thus, it has been shown that SVMs can delineate the distributions of mangrove forests in
small-scale wetland parks or natural reserves. Similarly, this study found that SVM can
effectively extract the land area of mangrove forests in the Hainan Island, which has the
advantage of identifying mangrove forest land areas at a large scale.

However, the SVM algorithm often failed to accurately distinguish spectrally similar
mangrove forests from aquatic herbs and water surfaces. Hu et al. [19] found that spectral-
temporal variability metrics could distinguish mangrove forests from agricultural fields or
other natural terrestrial vegetation with high spectral similarity, but some aquatic plants
were still misclassified. Alternatively, Jia et al. [44] used K-nearest neighbor (KNN) for
object-based classification; however, mangrove forests were still incorrectly distinguished
from water surfaces. Thus, the results show that machine-learning algorithms have yet to
clearly resolve the misclassification problem of mangrove forest land cover classifications.

In the ground survey of mangrove forests on the Hainan Island, in areas with high man-
grove mortality, the local government would usually plant mangrove seedlings frequently,
which caused the mangrove forests in most areas to be at the seedling stage. However,
Landsat satellite data with a 30 m spatial resolution were not effective in identifying man-
grove forests at the seedling stage, which caused the mangrove forest land area identified by
SVM and the mangrove crown surface cover identified by Res-UNet to be smaller than the
studies of Hu et al. [19] and Jia et al. [44] (Table 8). Furthermore, the area of the mangrove
crown surface cover identified by Res-UNet was more detailed and could better reflect
the characteristics of the distribution of the patches of mangrove forests while offering
more advantages for analyzing the fragmentation of mangrove forests. The Res-UNet deep
learning not only produced a high OA but also significantly reduced misclassifications.
Specifically, most of the mixed pixels containing spectrally similar aquatic plants and water
surfaces to the mangrove forests were correctly separated by this algorithm. Therefore, in
mangrove areas difficult to access in the surface cover of the ground survey, the mangrove
forest crown could be obtained with the help of Res-UNet deep learning. The Res-UNet is
more effective in identifying a large-scale area of mangrove crown surface cover area. In
addition, the mangrove forest crown surface cover area is helpful for us to explore changes
in mangrove biomass and carbon storage.

Table 8. Comparison of mangrove forest areas in the Hainan Island among different studies.

Name Classification Algorithm
Mangrove Forests Area (ha)

1991 1996 2000 2007 2010 2015 2021

Mangrove forest land area in this study SVM 3081 2917 2851 3030 3072 3493 3827
Mangrove forests crown surface cover

area in this study Res-UNet 1740 2077 1985 2372 2695 2234 3439

Mangrove forest land area
Hu et al. [19] RF

1990 1995 2000 2005 2010 2015

3701 3141 3235 3305 3623 3702

Mangrove forest land area
Jia et al. [44] KNN

1990 2000 2010 2015

4809 3978 3576 4017

4.2. Spatiotemporal Evolution of Mangrove Forests in the Hainan Island

During 1991–2021, the total area of the mangrove forest crown surface coverage on
the Hainan Island showed a net increase of 1698.48 ha, corresponding to an annual change
rate of 2.27%·yr−1. Related studies have shown that since the early 1990s, China has paid
increasing attention to wetland conservation, with the government enacting a series of
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corresponding protective laws and regulations, including the China Biodiversity Con-
servation Action Plan (State Environmental Protection Administration, 1994), Agenda 21
Forestry Action Plan (State Forestry Administration, 1995; 1996), Ecological Environmental
Protection Plan (State Council, 1998), and the Wetland Conservation Action Plan (State
Forestry Administration, 2000) [42]. Combining the change in center mass, population
trends, and socioeconomic developments in the Hainan Island, it was further revealed that
mangrove forests near landed areas were rapidly decreasing and expanding to the mudflats
by the sea due to population growth and urbanization.

This study revealed that in both 2000 and 2015, the area of the mangrove forest crown
surface cover on the Hainan Island decreased, NP increased, and both LPI and AI decreased,
indicative of the continued deterioration and fragmentation of the mangrove forest connec-
tivity during these two phases. Changes in LSI indicated that landscape shape complexity
was also increasing. With the gradual progress of urbanization, the interference of human
activities on the landscape pattern also proved to be increasing; therefore, in landscape
pattern evolution, fragmentation levels are growing, leading to the increased complexity of
landscape patches. Although the area of the mangrove forest crown surface cover in the
Hainan Island has increased over the past three decades largely due to the intensification
of mangrove forest restoration efforts, negative growth occurred approximately every
10 to 15 years throughout the study period. Especially in 2015, the crown surface cover
area of the mangrove forest on the Hainan Island decreased significantly. However, in
six years, it added more than a thousand hectares. The reason for this can be found in
the Annual Statistical Report of the Hainan Province. From 2015 to 2021, the total area of
shelter forests planted on the Hainan Island reached 14,661 hectares. This shows that the
increase in planted mangrove forests based on conservation strategies and the decrease
in naturally occurring mangrove forests may cause increased landscape fragmentation,
and the landscape shape is single. Furthermore, the survival rate of artificially planted
mangrove forests is low [44], indicating a relatively low overall conservation efficiency.
Therefore, future mangrove protection and management should be based on protection
and supplemented by restoration, as maintaining the current health of existing mangrove
ecosystems to improve their resilience is usually more time efficient and economical than
planting large amounts of new mangrove forests [45].

Spatially, the arial changes in the mangrove forest crown surface cover observed in
each city or county over the 30-year analysis period followed the overall growth trends. In
addition, the landscape patterns in Haikou and Danzhou cities showed a significant im-
provement. According to the preliminary analysis, this results from the excellent landscape
patterns in these cities due to the presence of mangrove nature reserves [46]. The expan-
sion of the mangrove forest crown surface coverage in the Hainan Island was positively
correlated with the development of the whole island economy, fishery production, and
expanding urban population. This suggests that the mangrove forest crown surface cover
area in the Hainan Island will increase as the rural population shifts toward urban areas
with greater socioeconomic development. The rapid development of this tertiary industry
and the shift of the rural population to cities have reduced the damage to mangrove forests
caused by agricultural practices, such as constructing coastal lands. Furthermore, because
mangrove forests maintain their natural purification ability and can provide a constant
source of organic debris and other food sources for benthic organisms, organized fish
farming activities may play a certain role in promoting the growth of mangrove forest areas.
Therefore, the local government and residents’ awareness of mangrove forest protection
should be increased while focusing on maintaining the ecological environment of mangrove
forests; furthermore, the benefits of resources should be optimized for sustainable fish
farming, so a synergistic effect between ecological protection and economic development
can be achieved.
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5. Conclusions

Using Landsat imagery data in this study alongside employed machine-learning
(SVM) and deep learning algorithms (Res-UNet) to extract information from tropical
mangrove forests meant that the accuracy of these two methods could be analyzed and
compared. The OA for the extraction of the mangrove forest spatial distribution extraction
produced values of 93.11 ± 1.54 and 96.43 ± 15% for SVM and Res-UNet, respectively. The
superior classification results were produced by the deep learning algorithm compared to
machine learning, as the proposed model of Res-UNet combined a semantic segmentation
network (U-Net) and the feature extraction network ResNet-18. This method effectively
resolved previous issues regarding the misclassification of spectrally similar pixels in large-
scale study areas. Moreover, the Res-UNet algorithm was more efficient and accurate
at extracting the crown surface cover area of mangrove forests, providing an important
foundation for the refined calculation of the carbon sequestration potential for these forests.

The present study analyzed the spatiotemporal changes in the tropical mangrove
landscape patterns on the Hainan Island over the past 30 years from multiple perspectives,
including the corresponding changes in crown surface cover, landscape fragmentation,
mass centering offsets, as well as anthropogenic and climatic factors. The results revealed
that mangrove forests in most areas underwent an overall trend of growth. Although there
were various spatial differences among cities and counties, the recorded changes to the
mangrove forests were mainly influenced by an increase in landscape fragmentation due to
human disturbance. Additionally, this study assessed the relationships between changes to
the tropical mangrove forested land area or crown surface coverage as responses to mecha-
nisms of shifting climate and socioeconomic factors across the Hainan Island. Although
this study focused on the socioeconomic factors affecting mangrove forest dynamics, and
climatic and environmental factors, it also investigated how these factors contributed to
these corresponding changes. For example, it was found that the average annual rainfall, as
well as average annual minimum and maximum temperatures, were positively correlated
with mangrove forest crown surface cover area changes in the Hainan Island; however,
these correlations were not significant. Only the growth of mangrove forests in Chengmai
County and Danzhou City was significantly correlated with climatic factors. Because,
compared with human activity disturbances, the process of climate factors affecting man-
grove wetlands has an inherent lag component, the impacts of more gradual environmental
changes on mangrove ecosystems appear relatively insignificant [47]. Furthermore, the
strong interference of human activities makes the evolutionary mechanisms that affect
mangrove landscapes highly complex; therefore, it is necessary to obtain additional data
related to the influencing factors for in-depth analyses. Therefore, more field surveys and
remote sensing monitoring data are required to further study the integrated driving forces
of mangrove forest dynamics. More detailed and perfect suggestions must be presented for
mangrove forest nature reserve-related landscape planning to provide more appropriate
ideas for tropical mangrove forest protection.
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Appendix A

Appendix A.1

In this study, a handheld GPS and Google Earth were used to survey the main distri-
bution areas of the mangrove forests in 12 cities and counties along the coast of the Hainan
Island in October 2021. The dominant tree species in each city are shown in Table A1.

Table A1. Information on dominant tree species of mangrove forests in the Hainan Island obtained
from a ground survey.

Distribution of Dominant Mangrove Forests Tree Species in Hainan Island, 2021

City/County Tree Species

Haikou

Acanthus ilicifolius L. Excoecaria agallocha Linn.
Acrostichum speciosum Will. Hibiscus tiliaceus Linn.

Aegiceras corniculatum (Linn.) Blanco Kandelia obovata Sheue, Liu et Yong
Avicennia marina (Forsk) Vierh. Laguncularia racemosa Gaertn. f.

Bruguiera gymnorrhiza (Linn.) Sav. Pongamia pinnata (Linn.) Pierre
Bruguiera sexangula (Lour.) Poir. Rhizophora apiculata Blume

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Rhizophora stylosa Griff
Ceriops tagal (Perr.) C. B. Rob. Sonneratia apetala Buch. -Ham.

Sanya

Aegiceras corniculatum (Linn.) Blanco Rhizophora stylosa Griff.
Avicennia marina (Forsk) Vierh. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen
Ceriops tagal (Perr.) C. B. Rob. Sonneratia alba J. Smith

Lumnitzera racemosa Willd Sonneratia ovata Backer
Rhizophora apiculata Blume Xylocarpus granatum J. Koenig

Wenchang

Avicennia marina (Forsk) Vierh. Lumnitzera littorea (Jack) Voigt
Bruguiera gymnorrhiza (Linn.) Sav. Rhizophora apiculata Blume

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Rhizophora stylosa Griff.
Ceriops tagal (Perr.) C. B. Rob. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Excoecaria agallocha Linn. Sonneratia alba J. Smith
Hibiscus tiliaceus Linn. Sonneratia caseolaris (Linn.) Engl.

Kandelia obovata Sheue, Liu et Yong Sonneratia ovata Backer
Laguncularia racemosa Gaertn. f.

Qionghai
Bruguiera gymnorrhiza (Linn.) Sav. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Cerbera manghas L. Sonneratia alba J. Smith
Hibiscus tiliaceus Linn. Sonneratia ovata Backer

Wanning
Bruguiera gymnorrhiza (Linn.) Sav. Hibiscus tiliaceus Linn.

Cerbera manghas L. Nypa fruticans Wurmb.
Excoecaria agallocha Linn. Sonneratia caseolaris (Linn.) Engl.

Chengmai

Aegiceras corniculatum (Linn.) Blanco Lumnitzera littorea (Jack) Voigt
Avicennia marina (Forsk) Vierh. Rhizophora apiculata Blume

Hibiscus tiliaceus Linn. Rhizophora stylosa Griff.
Kandelia obovata Sheue, Liu et Yong Sonneratia caseolaris (Linn.) Engl.

Lingao
Aegiceras corniculatum (Linn.) Blanco Hibiscus tiliaceus Linn.

Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff.
Excoecaria agallocha Linn.

Danzhou
Aegiceras corniculatum (Linn.) Blanco Kandelia obovata Sheue, Liu et Yong

Avicennia marina (Forsk) Vierh. Lumnitzera littorea (Jack) Voigt
Hibiscus tiliaceus Linn. Rhizophora stylosa Griff.

Dongfang Avicennia marina (Forsk) Vierh. Laguncularia racemosa Gaertn. f.

Ledong Rhizophora stylosa Griff. Avicennia marina (Forsk) Vierh.
Lumnitzera littorea (Jack) Voigt Laguncularia racemosa Gaertn. f.
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Table A1. Cont.

Distribution of Dominant Mangrove Forests Tree Species in Hainan Island, 2021

City/County Tree Species

Lingshui

Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff.
Bruguiera gymnorrhiza (Linn.) Sav. Sonneratia × hainanensis Ko, E. Y. Chen et W. Y. Chen

Bruguiera sexangula (Lour.) Poir. var. rhynchopetala Ko Sonneratia alba J. Smith
Kandelia obovata Sheue, Liu et Yong Sonneratia apetala Buch. -Ham.

Laguncularia racemosa Gaertn. f. Sonneratia ovata Backer

Changjiang Avicennia marina (Forsk) Vierh. Rhizophora stylosa Griff

Appendix A.2

Figure A1 indicates the classification results of the SVM machine-learning algorithm,
and Figure A2 indicates the classification results of the Res-UNet deep learning algorithm.

Figure A1. Cont.
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Figure A1. SVM machine-learning classification results. (a) 1991; (b) 1996; (c) 2000; (d) 2007; (e) 2010;
(f) 2015; (g) 2021.
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Figure A2. Cont.
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Figure A2. Classification results of Res-UNet machine-learning. (a) 1991; (b) 1996; (c) 2000; (d) 2007;
(e) 2010; (f) 2015; (g) 2021.
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Abstract: This study sought to establish the performance of Spatially Varying Coefficient (SVC)
Bayesian Hierarchical models using Landsat-8, and Sentinel-2 derived auxiliary information in
predicting plantation forest carbon (C) stock in the eastern highlands of Zimbabwe. The development
and implementation of Zimbabwe’s land reform program undertaken in the year 2000 and the
subsequent redistribution and resizing of large-scale land holdings are hypothesized to have created
heterogeneity in aboveground forest biomass in plantation ecosystems. The Bayesian hierarchical
framework, accommodating residual spatial dependence and non-stationarity of model predictors,
was evaluated. Firstly, SVC models utilizing Normalized Difference Vegetation Index (NDVI), Soil
Adjusted Vegetation Index (SAVI), and Enhanced Vegetation Index (EVI), derived from Landsat-8
and Sentinel-2 data and 191 sampled C stock observations were constructed. The SVC models built
for each of the two multispectral remote sensing data sets were assessed based on the goodness of
fit criterion as well as the predictive performance using a 10-fold cross-validation technique. The
introduction of spatial random effects in the form of Landsat-8 and Sentinel-2 derived covariates
to the model intercept improved the model fit and predictive performance where residual spatial
dependence was dominant. For the Landsat-8 C stock predictive model, the RMSPE for the non-
spatial, Spatially Varying Intercept (SVI) and SVC models were 8 MgCha−1, 7.77 MgCha−1, and
6.42 MgCha−1 whilst it was 7.85 MgCha−1, 7.69 MgCha−1 and 6.23 MgCha−1 for the Sentinel-2
C stock predictive models, respectively. Overall, the Sentinel-2-based SVC model was preferred
for predicting C stock in plantation forest ecosystems as its model provided marginally tighter
credible intervals, [1.17–1.60] MgCha−1 when compared to the Landsat-8 based SVC model with 95%
credible intervals of [1.13–1.62] Mg Cha−1. The built SVC models provided an understanding of the
performance of the multispectral remote sensing derived predictors for modeling C stock and thus
provided an essential foundation required for updating the current carbon forest plantation databases.

Keywords: Bayesian hierarchical modelling; geostatistics; Eucalyptus grandis; Eucalyptus camaldulensis;
Pinus patula; spatial random effects; spatially varying coefficient

1. Introduction

Since the onset of the Fast Track Land Reform (FTLRP) program in Zimbabwe and
the subsequent redistribution and resizing of large-scale land holdings in the year 2000,
plantation forests within and around the neighborhood of resettlement areas continu-
ously faced physical distress [1]. Zimbabwe lost close to 224,000 ha of tree cover, which
is equivalent to a forest degradation of 17% and 88 Mt of CO2 emissions from 2000 to
2021 [2]. The steady decline of land under forest over the years has therefore been mainly
driven by the activities of the year 2000 taking place on resettled land, which included
wildfires, illegal logging, mining, and agriculture expansion. Yet the amount of additional
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biomass that can be accumulated in these areas depends much on the forest condition and
land management practices.

A number of studies modeling the relationship between C stock and remote sensing-
derived information adopt a standard approach where the effects of independent variables,
including vegetation indices on C stock, remain constant over space in the model [3,4].
Given the history of Zimbabwe’s land reform program, it is well known that manage-
ment and conservation practices of plantation forests have been changing over the years,
particularly since the adoption of the program in the year 2000. Greater portions of for-
mally designated commercial plantation forests were occupied and replaced by subsistence
farmers across the country. It is upon this premise that it cannot be assumed that the
impact of covariates on C stock is constant in these ecosystems. The carbon sequestration
potential in various regions of the occupied forest plantations, therefore, remains unknown
as the management and conservation practices of the managed ecosystems have been
largely modified and altered [5]. Yet government and other stakeholders in the timber
industry are obliged under the 2015 Paris climate agreement to provide accurate accounts
of the country’s carbon sequestration potential for managed and natural forest ecosystems.

The literature proffers methods used in the estimation of AGB, either as direct or indi-
rect approaches from forest inventory data. These methods either use allometric equations,
conversion factors such as wood density, or biomass expansion factors (BEF) [1]. In spite of
the advantages of using conventional methods given in [6,7] as generally providing accurate
AGB estimates, these techniques are also regarded as time-consuming and environmentally
unfriendly. The inaccessibility of some areas due to complicated topography and forest
conditions also makes conventional methods less attractive to AGB estimation, especially
in extensive areas [8]. However, remote sensing is emerging as a promising technique free
of the aforementioned limitations as it offers cost-effective methods of AGB monitoring
through stratification of canopy density and forest types. Repeated application of remote
sensing leads to the generation of historical data critical for change detection analysis
and incorporation into a Geographic Information System (GIS) for integration with other
datasets [9]. However, remote sensing methods are also not immune from limitations as
they usually face limitations in areas of bad weather conditions, especially in areas with
cloud cover, and require a certain level of training for effective use and application [7].

Remote sensing C stock data derived from satellite imagery has significantly grown
over the years. This data has been the basis for informing international policy agreements
associated with CO2 emissions into the atmosphere, mainly from deforestation and other
land use land cover changes (LULCC) [10]. Remote sensing is regarded as a powerful tool
for deriving AGB and forest structure as it offers practical means of acquiring spatially-
distributed forest carbon from local, continental, and global scales [5,11]. Forest biomass
can generally be measured from three broad categories of remote sensing (RS) data, namely,
passive optical remote sensing, radio detection and ranging, microwave (radar), and light
detection and ranging (LiDAR) [8,10]. Passive optical spectral reflectance is responsive to
vegetation structural attributes (tree density, leaf area index, and crown size), shadow, and
texture [8,12]. Crown size, tree density, and leaf area index (LAI) are strongly correlated
with AGB. Radar remote sensing measure geometrical and dielectric attributes of forests.
LiDAR RS methods of biomass measurement characterise forest vertical structure and
height. Remote sensing (RS) and ancillary technologies such as Geographical Information
System (GIS) are practical and cost-time effective, allowing for imaging and research on
extensive and inaccessible areas.

The estimation of plantation forest C stock, together with other structural parameters
using new regeneration multispectral remote sensing data, is a relatively new ground in
the climate change and carbon monitoring arena. Research in this field has demonstrated
the potential for remote sensing data as tools for developing estimates of forest attributes,
amongst them, being Above Ground Biomass (AGB), either as a standalone or coupled with
other earth observation techniques [11,13]. Spatial regression models applied in mapping C
or biomass using new-generation multispectral remote sensing data may fail to clearly make
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room for residual spatial dependence [14,15]. Modeling of natural resource variables
without explicitly accommodating spatial variation can be justified if covariates can account
for all the spatially structured dependence. Such assumptions do not hold in many practical
applications involving georeferenced data.

Failure to account for spatial dependence in the modeling of regionalized variables
can lead to inaccurate model parameters and incorrect predictions [9]. Subsequently,
disregarding spatial correlation in electing model choices can result in higher prediction
uncertainty for inference of the outcome variable. In addition to the drawbacks highlighted
in the foregoing, non-Bayesian spatial modeling can further lead to underestimation of
uncertainty [9,16] as traditional spatial regression estimation methods assume stationarity
of the covariance matrix, Σ. The ultimate effect is the derivation of standard error estimates
that are unable to take all the uncertainties in the parameters into account. Checking for
spatially correlated residuals when spatial data are employed in the modeling of above-
ground biomass is therefore critical.

Some attention has been given to spatially varying coefficient (SVC) models in the liter-
ature [17–19]. The Bayesian framework of statistical inference is the bedrock of SVC models
in which analyses make use of samples derived from Markov Chain Monte Carlo (MCMC)
techniques from the posterior distribution of model parameters [20]. What makes Spa-
tially Varying Intercept (SVI) and SVC models unique in applied geostatistical and the
remote sensing literature is their ability to consider the residual spatial dependence and the
non-homogeneity in model parameters differently than ordinary geostatistical approaches.
SVI models assume the model intercept is spatially varying, whilst the SVC models assume
all the model regression coefficients to be spatially varying [21]. A number of applications
and methodologies utilizing spatially varying coefficient models are documented in the
literature. Amongst them are the geographically-weighted regression (GWR) by [21], who
employed the technique of canopy height prediction using remote sensing data. Appli-
cation of these models resulted in significant improvement in model fit. On the other
hand, [22] made provisions for spatial dependence and parameter non-homogeneity by
exploring geostatistical kriging variants for forest canopy height prediction. Co-kriging
and regression kriging models resulted in significant improvements in model fit.

However, it has been shown in recent times that GWR might not be robust to cor-
relation among predictors and can potentially lead to inaccurate results when complex
correlation structures are involved [18,23]. Again, from an inferential viewpoint, GWR can
present problems when drawing inferences regarding prediction uncertainty and model
parameters. The lack of valid underlying probability models in GWR makes prediction
uncertainty, and standard parameter error estimates difficult to justify. For instance, uncer-
tainty maps produced from kriging and co-kriging techniques make no consideration of the
uncertainty in the variogram-based spatial covariance parameters. This is an established
and common weakness encountered when using these geostatistical approaches [24]. It is
possible to estimate spatial covariance parameters within the SVC and SVI models using a
Bayesian hierarchical construction. Such an approach allows the propagation of uncertainty
to the prediction of the response variable [25]. In such scenarios, a better and statistically
defendable map of uncertainty can be produced than would else be produced when GWR
or traditional kriging methods are utilized.

Landsat-8 and Sentinel-2 are multispectral platforms categorized as new generation
remote sensing sensors with enhanced spectral and spatial properties than previous mis-
sions of the Landsat series. It is this perceived improvement in earth observation properties
that we expect to give a dividend to C stock predictive models for applications in carbon
accounting and inventorying under the United Nations Framework Convention on Climate
Change (UNFCC) [8]. We employed a Bayesian hierarchical framework with spatially
varying coefficients (SVC) using predictor information derived from the aforementioned
sensors for predicting C stock. The modeling framework considered the non-stationarity
and residual spatial dependence of model covariates through the inclusion of spatial ran-
dom effects into the SVC models. We, therefore, developed and compared the performance
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of C stock predictive models under spatially varying regression coefficients derived from
Landsat-8 and Sentinel-2 predictors. Prediction accuracy and uncertainty quantification
for the REDD collaborative program in the developing world is a critical aspect of the
Carbon Measurement, Reporting, and Verification Systems (MRVs) of the United Nations
(UN-REDD, 2009; CMS, 2014). Thus, in this paper, we explored how spatially varying
coefficient models constructed using a Bayesian hierarchical set-up with aiding information
from Landsat-8 and Sentinel-2 multispectral sensors and implemented through Markov
Chain Monte Carlo (MCMC), perform in C stock prediction in plantation forest ecosystems.

2. Materials and Methods

2.1. Study Area

The study was carried out at lot 75 A of Nyanga Downs in Nyanga district in the East-
ern Highlands of Zimbabwe (Figure 1). The study area is dominated by Eucalyptus grandis,
Eucalyptus camaldulensis, and Pinus patula plantation forest species which have some
of its patches being used for agriculture, grazing, and gold panning and is located be-
tween latitude 32◦40′E and 32◦54′E and 18◦10′12”S and 18◦25′4”S longitude as illustrated
in Figure 1 [5,26]. Grazing, agriculture, and gold panning activities came after part of the
commercially owned plantation forests were redistributed to small and medium-sized
indigenous farmers in 2000. This development has increased the interface between settle-
ments and timber plantations in all forests originally designated under forest plantations
in Zimbabwe. The study area covers an area of approximately 2766 ha. Rainfall amounts
are varied, with a mean annual precipitation range of 741 mm to 2997 mm. Annual mean
temperatures range from a minimum of 9 ◦C to 12 ◦C to a maximum of 25 ◦C to 28 ◦C. The
weather is very hot, and extensive wildfires occur in the high-elevation grasslands from
August to November when the grasses are dry [26].

As illustrated in Figure 1c, Eucalyptus camaldulensis and Pinus patula are the most
dominant species in the study area. Pockets of cultivated land within the plantations are
evident and are partly responsible for the present biomass density in the sampled region.
Greater portions of former plantation vegetation have been cleared by pockets of resettled
small-scale and medium-scale farmers venturing into coffee and tea plantations and, in
some cases, for dairy farming. Patches of unprotected forest plantations are still present
but remain vulnerable to attack for agriculture by settled farmers in the area.

2.2. Sampling Design

We employed the spatial coverage sampling scheme that exploits the Mean Squared
Shortest Distance (MSSD) for the optimization of data locations in the study domain. The
k-means clustering scheme for equal area coverage was therefore used [27] for obtaining
a representative sample from the studied region. The work of [28] demonstrated how
the mapping and estimation of mean spatial problems could be resolved through the
employment of a uniform coverage sampling scheme. MSSD is particularly suited for areas
where sampling campaigns cannot be extended beyond a single phase. As illustrated in
Figure 2, the smallest separation distance between samples was approximately 8 m whilst
the largest separation distance between samples was 2500 m.

2.3. Above-Ground Biomass Measurements and C Stock Derivation

We sampled and collected measurements of Diameter at Breast Height (DBH) for
Above Ground Biomass (AGB) estimation for all trees with a DBH of more than 10 cm
(1.3 m) using 500 m2 circular plots from the 19 September 2021 to 24 October 2021 in
Manicaland Province of Zimbabwe as illustrated in Figure 1. The sampling program meant
to measure DBH for subsequent AGB and C stock estimation utilized the MSSD optimiza-
tion function, resulting in 191 sampling plots being measured from the study area. The
191 sample plot measurements of DBH were then transformed into per plot C stock data
using allometric equations of [4] for the Pinus species, whilst the allometric equations
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of [10] were used for deriving C stock for the Eucalyptus species. The aforementioned
allometric equations were also applied by [26].

Figure 1. Map of the study area indicating (a) the province where samples were derived, (b) the
study area location within the particular province, and (c) the spatial distribution of major plantation
tree species in the studied region. * refers to Provinces in Zimbabwe whilst the box encompasses the
studied area in this research.

Allometric equations shown in Equations (1) and (2) were used for the calculation
of Above Ground Biomass (AGB) for the Pinus patula and the Eucalyptus grandis and
Eucalyptus camaldulensis species, respectively [1]. A default conversion factor of 0.47 used
by the IPCC was applied to derive AGB to C stock.

tDw = e(−1.170+2.119×ln(dbh)) (1)

tDw = 0.39 × (dbh)2.142 (2)
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Figure 2. Study area sampling design.

2.4. Modelling Framework

It is a common geostatistical practice to assume at location S ∈ D ⊆ R2 where s is a
vector of observed x, y coordinates within the domain D. A Gaussian response variable
y(s) is therefore modeled through the regression model as in Equation (3):

y(s) = x(s)′β + x̃(s)′w(s) + ε(s) (3)

x(s)′ denotes a set of p covariates in the model. In this case, the linear mean structure
accounting for wide-scale variation in the response is comprised of px1 vectors of x(s)
which include an intercept and spatially varying georeferenced predictors together with
an associated column vector of model coefficients β = (β0, β1, . . . , βp−1)

′. The x̃(s) in
the model represents a q x 1 vector accommodating the intercept and those predictors from
x(s) whose impact on the response is assumed to vary spatially. The space-varying impact
is obtained from the vector of spatial random effects w(s) =

(
w1(s), w2(s), . . . , wq(s)

)′. The
specification of different combinations of x̃(s) and the associated w(s) leads to the formation
of different sub-models. We model ε(s) as an independent white noise process that takes
care of the micro-scale (measurement error) variation. As such, with the collection of n C
stock locations, S = s1, s2, . . . , sn, we assume the ε(si)’s are independent and identically
distributed (iid) as provided by N

(
0, τ2) where τ2 is the nugget.

The spatial structure of this model is generally introduced by way of a multivariate
Gaussian process (GP) [24,25,29] in which a cross-covariance function clearly models the
covariance of w(s) within and among data points. The added flexibility in this model is
documented in the literature [17,30]. We assume in this study that elements of w(s) emanate
from q independent univariate GPs. Precisely, the process associated with the k − th
prediction is wk(s) ∼ GP(0, (., .; θk)) where C(s, s∗; θk) = Cov(wk(s), wk(s∗)) is a valid
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spatial covariance function modelling the covariance related to a pair of observations s and
s∗. The process outcomes are gathered into an n x 1 vector, say wk = (wk(s1), . . . , wk(sn))

′

which permits a multivariate normal distribution MVN(0, Σk), in which Σk is an n x n
covariance matrix of wk with the (i, j)− th element provided by C

(
si, sj; θk

)
. Evidently,

C(s, s∗; θk) cannot just be a function, but guarantees that the resulting Σk matrix is positive
definite and symmetric. Functions of this type are regarded as positive definite and are
referred to as the characteristic function of a symmetric stochastic variable [24,25,31].

We denote C(s, s∗; θk) = σ2
k ρ(s, s∗; θk) with θk =

{
σ2

k , φk
}

, ρ(.; φk) to be a valid spatial
correlation function in which φk computes the correlation decay rate and var(wk) = σ2

k . We
assumed for all the accompanying analyses an exponential correlation function
ρ(||s − s∗||; φk) = exp(−φk||s − s∗||), where ||s − s∗|| represents the Euclidean distance
between location s and location s∗. Completion of the Bayesian modeling framework
requires specification and assignment of prior distributions to the parameters of the model,
where inference proceeds by sampling from the posterior distribution of the modeled
parameters. As standard practice, we assume β ∼ MVN

(
μβ, Σβ

)
prior where μβ = 0 and

Σβ = 10, 000Ip, whilst the spatial variance components σ2
k ’s and the measurement error

variance τ2 are designated inverse-Gamma, IG(a, b) priors. The spatial decay parame-
ters φk ∼ Uni f (a, b) with the lower and upper bounds of the distribution covering the
geographic domain of the sampled study region.

Applying notation similar to the ones used by [32], we can specify the model parameter
posterior distribution as p(Ω|y) where:

Ω =
{

β, w1, w2, . . . , wq, σ2
1 , σ2

2 , . . . , σ2
q , φ1, φ2, . . . , φq, τ2

}
y = (y(s1), . . . y(sn))

′ and is proportional to:

∏q
k=1 Uni f

(
φk

∣∣∣aφk, bφk

)
x ∏q

k=1 IG
(

σ2
k

∣∣∣aσk, bσk

)
x N
(

β
∣∣μβ

)
xIG
(

τ2
∣∣∣aτ , bτ

)
x

∏q
k=1 N(wk|0, Σk)x ∏n

i=1 N(y(si)|x(si)
′β + x̃

(
s)′w(s), τ2

)
(4)

An effective Markov Chain Monte Carlo (MCMC) function for the estimation of
Equation (4) is derived through updating of β from its full conditional and utilizing Metropo-
lis procedures for the remainder of the parameters. Reparameterization of the model is an
alternative way of ensuring the spatial random effects w do not require direct sampling [33].
The spatial random effects could represent other independent variables that are spatially
structured and not taken into consideration in the current modeling approach. Nonetheless,
the MCMC process produces posterior samples of the parameter space, Ω.

From a prediction point of view, if S0 = {s0,1, s0,2, . . . , s0,m} is a set of m new sites,
the spatial random effects posterior predictive distribution corresponding to the k − th
regression coefficient is provided by:

p(wk,0|y) ∝
∫

p(wk,0|wk, Ω, y)p(wk|Ω, y)p(Ω|y)dΩwk (5)

where wk,0 = (wk(s0,1), wk(s0,2), . . . , wk(s0,m))
′.

Since we are making use of MCMC sample-based inference, the integral in Equation (5)
does not need to be evaluated precisely. Instead, given L posterior samples for the pa-

rameter space (Ω), that is,
{

Ω(l)
}L

l=1
, composition sampling can be used to derive this

distribution [33] by first drawing wl
k followed by w(l)

k,0 for each l from p(wk,0|w(l)
k , Ω(l), y).

The last distribution is multivariate normal as it is a derivative of a conditional distribu-
tion from a multivariate normal distribution. More specifically, the process realizations
over the new sites are conditionally independent of the measured outcomes given the
values over the sampled locations and the process parameters. Expressed differently,
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p(wk,0
∣∣wk, Ω, y) = p(wk,0

∣∣wk, Ω) is a multivariate distribution with mean and variance
given by

E[wk,0|wk, Ω] = Cov(wk,0, wk)var−1(wk)wk = R0(φk)
′R(φk)

−1wk (6)

and
var[wk,0|wk, Ω] = σ2

k

{
R(φk)− R0(φk)

′R(φk)
−1R0(φk)

}
(7)

where R0(φk is an n x n matrix with (i, j)− th element specified as ρ
(
s0,i, sj; θk

)
and R(φk

is an n x n matrix with (i, j)− th element provided by ρ
(
si, sj; φk

)
. Repetition of the same

procedure results in the generation of samples for all the wk,0’s. Lastly, for a set of predictors
at unsampled locations s0, posterior predictive distribution samples regarding the outcome
variable y(s0)

l , are derived from N(x(s)′0β
(l) + x̃(s0)′w(l)

0 , τ2(l)) for l = 1, 2, . . . , L.
We evaluated 95% credible interval widths (CIWs) using the posterior predictive

distribution of Landsat-8 and Sentinel-2 C stock models by calculating the difference
between the 2.5% and the 97.5% quantile bounds. The 95% CIWs were therefore used
as summaries of the C stock prediction uncertainty for the Landsat-8 and Sentinel-2 C
stock-based spatially varying coefficient models.

2.5. Competing Models

We derived five candidate models for each of the two multispectral remote sensing-
based C stock models using Equation (1) using NDVI and SAVI as predictors of C
stock [34]. The models included the non-spatial where wk’s is fixed to zero; the spa-
tially varying intercept (SVI) in which we only included the spatial random effects related
to the model intercept; the complete SVC model in which all predictors have associated
spatial random effects; the SVC − β1 which included the spatial random effects for the
intercept and NDVI predictor variables and the SVC − β2 which included the spatial
random effects for the intercept.

We utilized empirical semivariograms modeled for the residuals of the independent
error model as guidelines for candidate model IG and Uni f hyperprior specifications.
Precisely, for the variance parameters, the Inverse Gamma hyperprior a was set equal to
1.76, which would result in a mean prior distribution equal to b and infinite variance [35].
To add on, the models’ b hyperpriors for the τ2 and σ2’s were calibrated in accordance
with the sample variograms of the simple linear regression model residuals derived from
Landsat-8 and Sentinel-2 sensor’s nugget and partial sill. We programmed the prior for
the spatial decay parameter φ’s to Uni f (0.38, 0.0012) which, adopting the exponential
covariance function, equates to support an effective range spanning between ∼ 8 and
2500 m. We define the effective spatial range as the distance where the correlation equals
0.05 [18].

Three Markov Chain Monte Carlo (MCMC) chains were run for 20,000 iterations,
each with the computationally demanding model requiring approximately 30 min to
complete a single MCMC chain. We diagnosed convergence using the CODA library
in the R Statistical and Computing environment by monitoring the mixing of chains
and the Gelman–Rubin statistic [36]. Acceptable convergence was established within
10,000 iterations for all the models. The posterior inference was premised on a post-burn-in
subsample of 15,000 iterations, that is, every third sample from the last 15,000 iterations of
each chain. SVC and SVI models were fit using the spBayes R Statistical and Computing
Library version 0.4.3. We, therefore, utilized the spBayes R statistical package for fitting all
the predictive models for both Landsat-8 and Sentinel-2 SVC models.

2.6. Landsat OLI and Sentinel-2 MSI Imagery Derived Covariates

Landsat-8 has a revisit period of 16 days and offers nine spectral bands with a spatial
resolution of 30 m for Bands 1 to 7 and 9 [6,37]. The panchromatic band, Band 8, has a spatial
resolution of 15 m. On the other hand, Sentinel-2 has thirteen spectral bands where four
bands are configured at 10 m spatial resolution, six bands at 20 m, and three bands at 60 m
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spatial resolution [37]. Common vegetation indices utilized in the estimation of biophysical
variables of Absorbed photosynthetically active radiation (APAR), Leaf Area Index (LAI),
and biomass are Normalised Difference Vegetation Index (NDVI), Enhanced Vegetation
Index (EVI) and Soil Adjusted Vegetation Index (SAVI) [5]. We utilized the same Vegetation
Indices (VIs) in this study. Readily available and cost-effective new-generation sensors
(Landsat-8 and Sentinel-2) with improved spectral and spatial resolution were therefore
utilized in the modeling of C stock under the spatially varying coefficients assumption.

We obtained Landsat 8 imagery from the United States Geological Survey Earth Ex-
plorer (http://earthexplorer.usgs.gov) as data ready for analysis (ARDs) on the 20 of
September 2020. All the datasets were riddled with cloud cover and shadow cloud cover
limits set to smaller than 10%. We acquired Sentinel-2 cloud-free images on 20 Septem-
ber 2020 at the same time as the Landsat 8 OLI data collection covering the entire area
coinciding with the dates Landsat-8 OLI was collected covering the domain of interest.
The multispectral instrument is the main imaging instrument used for Sentinel-2, a push
broom scanner that measures the terrestrial Top of the Atmosphere (TOA) reflectance in
thirteen spectral bands, that is, 443 nm to 2190 nm. We derived Sentinel-2 spectral data as
level-1C 12-bit automated TOA reflectance values. Orthorectification and pre-processing of
the TOA-derived products were performed using the sen2r package of the R Statistical and
Computing environment [38].

Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), and Nor-
malized Difference Vegetation Index (NDVI were used as Landsat-8 and Sentinel-2 de-
rived covariates for C stock prediction in the plantation forest of the eastern highlands of
Zimbabwe. The literature is replete with studies that have utilized the aforementioned
vegetation indices [3,39] as ABG predictors in biomass estimation. In this study, predictor
variables supplied by both Landsat-8 and Sentinel-2 are used specifically for comparing
SVC Bayesian hierarchical geostatistical models predicting C stock in a disturbed environ-
ment in Zimbabwe. Given information regarding C stock distribution at each location, we
fit the model in Equation (1) SVC with p = 2. Hence, we have two processes, an intercept
and one slope process relating to NDVI.

2.7. Model Fit and Prediction Accuracy Evaluation

We assessed the performance of the models using the commonly used Deviance
Information Criterion (DIC) to categorize models in terms of how well they fit the data [40].
The sum of the Bayesian Deviance and the effective number of model parameters make up
the DIC criterion. The Bayesian deviance measurement, which assesses model goodness
of fit, and the effective number of model parameters which penalizes model complexity,
are measured by D and pD, respectively. Attractive models have lower DIC values.

Predictive performance was evaluated through a k − f old cross-validation technique.
C stock was predicted from observations within each subset, given the estimated parameters
from the remaining subsets. We employed the Root Mean Squared Prediction Error (RMSPE)
as a metric from the R Statistical and Computing environment to calculate the sampled C
stock data values and the accompanying median of the posterior predictive distribution
(PPD). Models with lower RMSPE signify more accurate C stock predictions.

3. Results

3.1. Multispectral Remote Sensing C Stock Derived Predictors

Employed predictors in C stock prediction using a Bayesian hierarchical framework
with spatially varying coefficients showed NDVI as a significant predictor of C stock as
illustrated in Table 1. 95% credible intervals of SAVI and EVI contained zero and hence,
rendering them as insignificant predictors of C stock. These predictors were therefore
excluded in the final prediction and mapping of C stock distribution.

465



Remote Sens. 2022, 14, 5676

Table 1. Landsat-8 and Sentinel-2 derived predictors of C stock.

Lansat-8 OLI C Stock Model Sentinel-2 MSI C Stock Model
Parameter

Mean s.d 2.5% 97.5% Mean s.d 2.5% 97.5%

Intercept −2.65 1.02 −4.76 −0.83 −2.40 0.31 −3.01 −1.80
NDVI 2.47 0.98 0.78 4.62 4.90 0.23 4.52 5.38
SAVI −0.57 0.67 −2.04 0.63 −0.55 0.34 −1.25 0.17
EVI −0.62 0.55 −1.57 0.50 −0.002 0.096 −0.17 0.24
σ2

w 1.25 0.26 0.72 1.72 0.075 0.016 0.046 0.092
σ2

ε 0.35 0.17 0.074 0.54 0.0043 0.0030 0.0005 0.011
φ 0.0016 0.0003 0.0012 0.0018 0.0015 0.0002 0.0014 0.0014

3.2. Candidate Models and Parameter Estimates

Model posterior estimates of the regression coefficients for the Landasat-8 and Sentinel-
2-based C stock models are illustrated in Tables 2 and 3, respectively, for the non-spatial,
SVI, and SVC models. Spatial autocorrelation is modeled in the residuals in the SVI,
SVC, and all the SVC − βk variant models. This may entail differences in the posterior
regression coefficient parameter estimates, depending on the C stock model parameter
structure. Credible intervals (95% CI) for β0 and βNDVI including zero for both non-
spatial and SVI models would hint at a non-significant relationship between the C stock
observations and predictor variables. However, we cannot apply the same reasoning and
interpretation for the SVC models as the predictor-specific spatially varying coefficient maps
of βNDVI + wNDVI(s) should be considered and ascertain whether location-specific CIs
include zero.

Table 2. Landsat-8-based SVC model median parameter estimates alongside their 95% credible intervals.

Non-Spatial SVI SVC−NDVI SVC

Parameter C.I
50% (2.5%, 97.5%) β0 −2.5 (−4.1, −0.8) −2.7 (−4.6, −0.8) −2.9 (−5.0, −0.9) −3.5 (−5.3, −1.7)

β̃NDVI(s) 5.4 (3.3, 7.5) 2.8 (0.8, 4.7) 3.3 (1.2, 5.1) 3.6 (1.4, 5.8)
τ2 1.5 (1.2, 2.0) 0.5 (0.3, 0.8) 0.12 (0.03, 0.40) 0.1 (0.02, 0.2)
3

φ0
- 0.0014 (0.0012, 0.0021) 0.003 (0.002, 0.003) 0.1 (0.07, 0.16)

3
φNDVI

- - 0.13 (0.06, 0.22) 0.03 (0.02, 0.05)
σ2

0 - 1.0 (0.5, 1.5) 1.1 (0.8, 1.6) 0.24 (0.12, 0.48)
σ2

NDVI - - 1.0 (0.2, 3.0) 0.45 (0.14, 1.43)

Fit Statistics D 436 140 41.8 65.9

pD 4.1 68.9 87.0 108.9
DIC 207 105.6 −77.9 29.0

RMSPE (MgCha−1) 8 7.77 7.54 6.42

C.I means 95% Credible Interval.

Table 3. Sentinel-2-based SVC model median parameter estimates alongside 95% credible intervals.

Non-Spatial SVI SVC−NDVI SVC

Parameter C.I
50% (2.5%, 97.5%) β0 −2.5 (−4.1, −0.8) −2.8 (−4.6, −0.9) −2.9 (−4.9, −0.7) −3.5 (−5.4, −1.6)

β̃NDVI(s) 5.4 (3.3, 7.5) 3.0 (1.2, 4.9) 2.9 (0.7, 4.9) 3.7 (1.5, 5.7)
τ2 1.5 (1.2, 2.0) 0.5 (0.3, 0.9) 0.32 (0.15, 0.55) 0.2 (0.11, 0.42)
3

φ0
- 0.0015 (0.0014, 0.0016) 0.0016 (0.0015, 0.0018) 0.06 (0.018, 0.076)

3
φNDVI

- - 0.09 (0.036, 0.13) 0.0015 (0.0014, 0.0017)
σ2

0 - 0.7 (0.4, 1.1) 1.1 (0.8, 1.9) 0.23 (0.16, 0.47)
σ2

NDVI - - 0.7 (0.43, 1.1) 0.65 (0.41, 1.05)

Fit Statistics D 436.6 159 93.3 17.9

pD 4.1 58.0 89.8 106.1
DIC 207.6 112.5 65.6 −177.3

RMSPE (MgCha−1) 7.85 7.69 7.46 6.23

C.I means 95% Credible Interval.
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Posterior estimates for the Landsat-8 and Sentinel-2 based βNDVI + wNDVI(s) coeffi-
cients are shown in Figures 3 and 4, with a significant relationship between the outcome
variable and NDVI being evident over the entire study domain. In both cases, there
is significant variability in the values of βNDVI + wNDVI(s) in the studied region. This
could imply more accessibility to plantation resources by communities settling in the
plantation areas. The same trend is noticeable for the Sentinel-2-based C stock-based
SVC model (Figures 5 and 6) for both predictor coefficient values of βNDVI + wNDVI(s)
and for the same region as observed in the Landsat-8 based SVC model in Figure 3. Com-
munities settled within certain areas of the plantation forest have more access to forest
resources than in other areas, rendering low C stock density in these areas as demon-
strated by the corresponding low NDVI values in the same region for the Sentinel-2-based
SVC model. Enhanced detail in the spatial resolution of Sentinel-2 based βNDVI +wNDVI(s)
vindicates variability in βNDVI + wNDVI(s) coefficient values in the same region over those
derived from generalized Landsat-8 multispectral data [41].

Figure 3. Landsat-8-based C stock spatially varying coefficient maps alongside their 95% credible
intervals for the SVC model.

Estimates of β0 + w0(s) for the Landsat-8 and Sentinel-2-based SVI and SVC models
are shown in Figures 3 and 4, respectively. The β0 + w0(s) pattern for the SVI is the same
for both Landsat-8 and Sentinel-2 spatially varying coefficient models whilst the β0 + w0(s)
SVC pattern in Landsat-8 is the same for Landsat-8-based SVC (βNDVI +wNDVI(s)) process.
On the other hand, the β0 + w0(s) SVI pattern for Sentinel-2 based model is different for
Sentinel-2 βNDVI + wNDVI(s) SVC model. However, the same is not true for Sentinel-2-
based SVI as the partitioning of w0 into w0 and wNDVI in Sentinel-2 SVC is detailed with
enhanced spatial resolution compared to Landsat-8 based wNDVI SVC model.
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Figure 4. Sentinel-2-based C stock spatially varying coefficient maps alongside their 95% credible
intervals for the SVC model.

Tables 2 and 3 illustrate the posterior estimates of the uncorrelated residual variance, τ2.
The uncorrelated residual variance is largest in the non-spatial model, whilst it is small for
the SVC-variant models for both Landsat-8 and Sentinel-2-based SVC. The SVI and the SVC
variant models incorporate a spatially varying correlated random effect, w0 with variance
σ2

0 . The SVC model variants further incorporate more spatially varying correlated random
effects wNDVI and variance σ2

NDVI . For both Landsat-8 and Sentinel-2 based models, the w0
and wk explained much of the residual variability and hence, a reduced τ2. The implication
is higher predictive accuracy for the SVC-variant models in both sensors, making the SVI
and SVC more attractive over the error-independent models. This is supported by the
goodness of fit diagnostics for the SVI and the SVC-variant models illustrated in Tables 2
and 3 for the Landsat-8 and Sentinel-2 derived regression coefficients, respectively.

In comparison to the SVI model, the SVC model based on both remote sensing-derived
covariates reduced the non-spatial residual spatial dependence by incorporating the space-
varying impact of βNDVI . Estimates of the spatial process parameters have a big difference.
In particular, the spatial process parameters for the Landsat-8-based (Figure 3) SVC point es-
timates of σ2

0 = 0.24 and the effective range of 30 m (i.e., ≈ −log(0.05/φ) = −log(0.05/0.1)
denote a less variable and significantly shorter effective spatial range than the spatial pro-
cess of the SVI model. The same pattern recurs in the Senitnel-2-based SVI and SVC models,
where the effective spatial range reduces from ≈ 1800 m in the SVI to ≈ 100 m in the
SVC model (Table 3). The non-negligible spatial process parameter estimates of σ2

NDVI and
φNDVI in the SVC model denote a potentially space-varying relationship between C stock
and multispectral remote sensing derived covariates.
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Figure 5. Landsat-8-based C stock posterior predictions.

3.3. Landsat-8 and Sentinel-2 C Stock-Based Predictions

The entire SVC model based on Landsat-8 and Sentinel-2-based C stock models gener-
ated the lowest DIC, D, and RMSPE, as illustrated in Tables 2 and 3, respectively. Landsat-8-
based SVC 95% CIW is much shorter when compared to the non-spatial fitted model values.
A 10% improvement in the RMSPE is seen in the Landsat-8-based model when moving
from the error-independent to the SVC model. In the same vein, the Sentinel-2-based model
had a 12% improvement from the SVI to the SVC model (Table 3). Predictions produced
for both Landsat-8 and Sentinel-2-based C stock models mirrored the observed C stock
data in the studied region. Observed C stock data values ranged from log (0.2–6) MgCha−1

(Figure 1). Variability in C stock uncertainty is fairly constant across the studied domain
for both Landsat-8 and Sentinel-2 SVC-based models.

The almost similar variability in the density of C stock predicted by both sensors could
be attributed to the inadequacy of covariates in the modeling framework, which when the
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range of modeled covariates is broadened, could accurately depict the variability of C stock
in these disturbed plantation forest ecosystems [5].

Figure 6. Sentinel-2-based C stock posterior predictions.

3.4. C Stock Model Prediction Assessment

Scatterplots observed against predicted C stock alongside the 95% intervals are illus-
trated in Figure 7. Slight improvement in the performance of Landsat-8 and Sentinel-2 C
stock-based predictions can be validated through a visual inspection of the results. Esti-
mated Root Mean Square Prediction Error (RMSPE) for Landsat-8 (6.42 Mg C ha−1) and
Sentinel-2 (6.23 Mg C ha−1) based C stock prediction further reinforces the model prediction
performance for the two sensors illustrated in Figure 7.
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Figure 7. Landsat-8 and Sentinel-2 C stock-based predictions vs. C stock observations alongside
95% intervals.

4. Discussion

Space varying coefficient models constructed from different but related new-generation
multispectral remote sensing platforms were used to predict C stock in a managed planta-
tion forest ecosystem in Zimbabwe. The RMSPE is marginally higher in Sentinel-2-based
C stock SVC model than in the Landsat-8-based SVC counterpart. Our findings with
regard to the performance of Landsat-8 and Sentinel-2 sensors are also congruent with
the work of [12,37]. SVC models for both new-generation remote sensing-derived pre-
dictors showed preference over the error-independent models. However, estimates from
the two data sources were marginally different from each other on the prediction of C
stock, as illustrated in validation diagnostics [42]. The adaptable structure of the SVC
permitted the residuals spatial variability to be apportioned between the random slope and
the random intercept. This provided additional benefits not available in the SVI models
from the two predictor sources. The SVC permitted reconnaissance of the C stock observa-
tions and the NDVI predictor. Furthermore, the SVC models in both multispectral data
sources had better representation of the processes thereby yielding C stock predictions with
reduced variance.

Evaluation of the models utilizing predictors from both remote sensing data sources
showed SVC to fit the data better than the SVI models. Kriged maps for C stock us-
ing Landsat-8 and Sentinel-2 data were not significantly different from each other, with
the Landsat-8 SVC displaying a slightly wider 95% CI compared to the Sentinel-2-based
SVC model. Again, this is partly because the study employed conventional bands (indices)
that are calculated in a similar fashion in both Landsat-8 and Sentinel-2, and hence, the
differences in prediction only emanated from the spatial resolutions. Explicit accommoda-
tion of residual spatial dependence through spatially correlated random effects gathered
better predictions as the SVC models using the two data sources as regression coefficients
borrowed additional information from neighboring C stock observations [43,44]. Precise
estimates of covariance parameters are not easy to derive with small inventory sample
sizes [45]. Consequently, we might anticipate some impact on the accuracy of the predic-
tions when uncertainty in the covariance ensues to the posterior predictive distributions.
Predictions had limited information to borrow from because of the sparsity of C stock
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inventory observations. This was further worsened by the reduction in the overall sample
size through cross-validation.

Similar to previous studies predicting ABG and C stock, our findings establish
Sentinel-2 as a better source of RS data for predicting C stock in disturbed environments [37]
compared Sentinel-2 and Landsat-8 imagery for forest biomass prediction and showed
Sentinel-2 outperforms Landsat-8 because of the enhanced spatial resolution in the former
in comparison to Landsat-8. Most studies comparing Sentinel-2 and Landsat-8 for predict-
ing AGB prefer Sentinel-2 over Landsat-8. This is further justified by the work of [13], who
compared Worldview-3, Sentinel-2, and Landsat-8 for representing AGB in a forest envi-
ronment in Thailand and demonstrated Worldview-3 and Sentinel-2 as better data sources
and, therefore, predictors than Landsat-8 due to the red-edge and the improved spatial
and spectral properties of Worldview-3 and Sentinel-2. Furthermore, [16] utilized LiDAR
derived covariates from establishing the prediction performance of SVC models using forest
inventory data in North America. The researchers established significant improvement in
biomass prediction accuracy in the presence of residual spatial dependence deriving from
the finer resolution LiDAR covariates. In most cases, the effectiveness of SVC models in
these studies is usually strengthened by the solid non-stationary relationships between the
response variable and the predictor variables influenced by unobserved ecological factors
operating at broad geographical scales. Such ecological factors were also seen in the present
study as NDVI was established to be a statistically significant predictors of C stock in the
studied region. The biggest drivers to these factors are the presumed activities of forest
disturbance due to human encroachment into plantation forests that subsequently impact
the density and distribution of ABG biomass.

4.1. Limitations of the Study

Apart from the vegetation indices influencing the spatial distribution and density
of AGB employed in this study, it is also known and acknowledged in the literature
that climate and topographic variables play a part in the distribution of C stock. For
example, [37,38] have shown elevation and aspect accounting for the bigger portion of the
spatial variability of C stock in a mountainous region of Nepal. As such, the limitation of
our study is the application of vegetation indices as predictors of C stock, and this may,
therefore, not be representative of the general C stock dynamics in the studied region. We,
therefore, recommend the integration of topo-climatic factors with new generation remote
sensing-derived vegetation indices for future research in order to obtain a more accurate
global overview of the C stock density and distribution in the studied region.

4.2. Conclusions

The study presented a hierarchical Bayesian geostatistical spatially varying coeffi-
cient model for determining the relationship between sampled C stock data and multispec-
tral remote sensing derived predictors. There was a marginal improvement in model fit,
and prediction accuracy in both Landsat-8 and Sentinel-2-based SVC models in comparison
to the error-independent models. The SVC model permitted exploration of the observed
C stock locations where the models performed well or poorly, which was missing in the
SVI models. This provided an understanding of the performance of the multispectral
remote sensing derived predictors for modeling C stock and hence, sets the foundation for
the updating of the carbon forest plantation database for forest practitioners in the country
and utilized as a monitoring tool in the long term. The Sentinel-2-based SVC model was
preferred for prediction in the plantation forest ecosystems as its model provided tighter
credible intervals compared to the Landsat-8-based C stock SVC model.

The small sample size of the data utilized in the present research enabled the mod-
eling approach to be computationally feasible. When inventory plots are comprised of
bigger sample sizes, the matrix operations of immense dimensions are needed for comput-
ing model parameter estimates of higher magnitude and may not be achievable through
ordinary PCs. Our future work is therefore aimed at exploring algorithms for resolving
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the dimensionality curse when fitting spatially varying coefficient models. The prob-
lem of dimensionality can also get complicated if many predictors are involved in the
SVC modeling framework. Resolving dimensionality issues is needed as forest C stock
is typically modeled with predictors from many data sources, chief amongst them being
topographic, bioclimatic, and anthropogenic variables.
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Abstract: Rubber plantations in southeast Asia have grown at an unprecedented rate in recent
decades, leading to drastic changes in regional carbon storage. To this end, this study proposes a
systematic approach for quantitatively estimating and assessing the impact of rubber expansions
on regional carbon storage. First, using Sentinel-1 and Sentinel-2 satellite data, the distributions of
forest and rubber, respectively, were extracted. Then, based on the Landsat time series (1999–2019)
remote sensing data, the stand age estimation of rubber plantations was studied with the improved
shapelet algorithm. On this basis, the Ecosystem Services and Tradeoffs model (InVEST) was applied
to assess the regional carbon density and storage. Finally, by setting up two scenarios of actual
planting and hypothetical non-planting of rubber forests, the impact of the carbon storage under
these two scenarios was explored. The results of the study showed the following: (1) The area of
rubber was 1.28 × 105 ha in 2019, mainly distributed at an elevation of 200–400 m (accounting for
78.47% of the total of rubber). (2) The average age of rubber stands was 13.85 years, and the total
newly established rubber plantations were converted from cropland and natural forests, accounting
for 54.81% and 45.19%, respectively. (3) With the expansion of rubber plantations, the carbon density
increased from only 2.25 Mg·C/ha in 1999 to more than 15 Mg·C/ha in 2018. Among them, the carbon
sequestration increased dramatically when the cropland was replaced by rubber, while deforestation
and replacement of natural forests will cause a significant decrease. (4) The difference between the
actual and the hypothetical carbon storage reached −0.15 million tons in 2018, which means that the
expansion of rubber led to a decline in carbon storage in our study area. These research findings can
provide a theoretical basis and practical application for sustainable regional rubber forest plantation
and management, carbon balance maintenance, and climate change stabilization.

Keywords: rubber plantation; time series; shapelet; carbon storage; InVEST model

1. Introduction

Carbon sequestration in terrestrial ecosystems is critical to the effects of carbon dioxide
(CO2)-driven global climate change [1–3]. As an important part of the terrestrial ecosystem
and the largest carbon pool, the annual carbon sequestration of forests accounts for about
two-thirds of the entire terrestrial ecosystem, playing an important role in reducing the rise
in atmospheric CO2 concentration and stabilizing global climate change [4,5]. Therefore,
the study of carbon storage in the forest ecosystem is a hotspot of carbon neutralization
research and focus of current global climate change research [6]. However, today’s research
is mainly focused on the carbon stock of primary natural forests, and relatively less research
has been conducted on the carbon sink balance of the artificial forests, which accounts for

Remote Sens. 2022, 14, 6234. https://doi.org/10.3390/rs14246234 https://www.mdpi.com/journal/remotesensing475



Remote Sens. 2022, 14, 6234

seven percent of the world’s overall forest area [5,7]. Therefore, it is necessary to study the
change in carbon storage in key plantation forest types.

Rubber forests, as the second largest tropical plantation ecosystem after oil palm [8],
are planted for their large economic value, and they have a strong carbon sequestration
capacity that plays an important role in the economic development and ecosystem ser-
vice value [9,10]. Southeast Asia is the world’s major natural rubber growing region
because of its suitable climate and growing conditions, accounting for more than 80%
of the global natural rubber forest plantation area [11,12]. With the rapid development
of economic globalization, the importance of rubber products in the national economy
is increasing, the rigid demand for natural rubber is growing, and the planting area of
rubber is expanding [13,14]. According to the statistics, the area planted with rubber
forests in Thailand increased by nearly 800% from about 400,000 ha in 1961 to more than
3 million ha in 2017 [15]. However, most rubber forests are planted at the expense of the
primary tropical rainforests or secondary forests, which inevitably leads to a certain loss of
carbon sinks [7,16,17]. In addition, the deforestation of the tropical rainforest caused by
rubber forest plantations will inevitably lead to the continuous reduction in the tropical
rainforest-based biological habitat, the gradual reduction of soil and water conservation
capacity, regional environmental degradation, and serious damage to biodiversity and
the ecological environment [18–21]. Therefore, it is of great significance to understand the
quantitative impact of rubber forests on carbon storage for the rational development of
rubber plantations, the protection of forest ecosystems, the maintenance of the carbon sink
balance, and the stability of climate change.

The age information of rubber is the key parameter of carbon storage assessment
and can improve the accuracy of rubber carbon storage estimation [7]. Traditional rubber
forest age monitoring is mainly based on the ground survey of sampling theory, which
is time-consuming, labor-intensive, not comprehensive, and may be less accurate for
regional estimations [10,22–25]. Access to information about the age of rubber on each
plantation is even more difficult in areas where rubber plantations are small, fragmented,
flexible cropping systems, with high variability in planting status, and which are mainly
established and managed by smallholders, e.g., in Thailand, where an estimated 90%
of rubber is produced by smallholders [16]. With the development of earth observation
technology, remote sensing, which is macro, rapid, dynamic, and rich in information
acquisition capacity, has been used to map rubber plantations and become an effective
means of extracting age information from rubber in recent years [10,22,26,27].

The methods for age identification of rubber forests using remote sensing can commonly
be divided into four main categories: post-classification comparison (PCC) [28], threshold
method [29,30], regression method [10,23,25], and trajectory analysis method [14,31]. The
PCC method first extracts rubber results at different times and then analyzes the classifi-
cations by superposition and statistics to obtain the age of rubber forests [32]. However,
images of key phenological periods are often not available owing to the frequent cloud
cover in tropical regions. In most cases, because of the extreme spectral similarity between
rubber and natural forests, classification errors may result in high uncertainty of the rubber
forest change detection and age extraction [15,33,34]. The threshold method sets certain
thresholds to extract change information according to the pattern of vegetation indices
(VIs) over time [29,30]. However, the threshold value of the VIs may fluctuate owing to the
different rubber species, phenological period, or geographical environment, and setting a
specific threshold value may cause some uncertainty in the extraction of the age informa-
tion [18]. The regression method estimates stand age by establishing a regression model
between spectral bands, vegetation indices or backscatter coefficients of synthetic aperture
radar (SAR) images, and stand age of rubber [23,25]. However, because the coefficients
saturate after a certain stand age, the reflectance values of young and open canopy stands
are likely to be influenced by ground cover crops, and the regression method may seriously
overestimate young stands and underestimate old stands. Compared with the previous
three methods, the trajectory analysis method is considered more robust to inherent noise in
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the data (e.g., interannual variation) and has become an important research hotspot for the
extraction of land-related type change information [14,22]. The trajectory analysis method
also contains many algorithms, such as Landtrendr [35] and shapelet [14] to extract the age
of rubber forests. However, these algorithms require a large amount of storage and incur
high computational costs. Fortunately, with the free sharing of the Google Earth Engine
(GEE) remote sensing cloud computing platform [36,37], which provides fast processing
and analysis of massive remote sensing data, there is strong technical support for the
real-time processing of large-scale and long-term remote sensing data. Therefore, combined
with long time series satellite remote sensing data and GEE cloud platform, the relevant
algorithms of the trajectory analysis method can be developed to achieve the identification
of rubber tree age and pre-conversion land cover in large areas.

For the carbon storage of rubber forests, traditional estimation methods, such as the
stockpile method, biomass method, and box method for the field monitoring of carbon
storage, are clear and explicit, easy to apply, and more widely used [38,39]. However,
because of the inconsistency of measurement methods, sampling locations, and study
scales, the results vary and cannot accurately reflect the changes in carbon storage over
long periods of time and large scales. With the development of information technology,
remote sensing biomass estimation transformation methods and remote sensing-driven
model simulation methods have emerged [40–43]. However, these methods either need
extensive ground survey data to support them or have problems with complicated model-
driven data [40,44]. With the carbon storage model of the Integrated Valuation of Ecosystem
Services and Tradeoffs model (InVEST) proposal [45,46], more and more scholars at home
and abroad have started to use the carbon storage module [47] of the InVEST model to
estimate regional carbon storage in terrestrial ecosystems [48–50]. Compared with the
traditional carbon storage estimation methods, the carbon module of InVEST has the
advantages of simple and easy access to driving data (e.g., types and carbon densities
of the land use/land cover (LULC)), simple operation, fast running speed, and strong
visibility of output results. It can realize mapping of spatial distribution and dynamic
changes of carbon storage [41] and reflect the relationship between land-use change and
carbon storage under different scenarios [9]. However, existing studies [50–52] generally
focus on the effects of all types of LULC on total carbon stock, and relatively little research
has been conducted on the effects of single land-use types (e.g., rubber forests) on total
carbon storage, which may be important for forest carbon neutralization [19]. In addition,
the existing studies [50–52] on carbon storage estimation in rubber forests are basically
converted from biomass by assuming a constant value or approximating the multi-year
average rate, which will inevitably lead to large uncertainties in the actual carbon storage
simulations. Therefore, using the age data of rubber, the InVEST model can improve the
temporal dynamic evolution of carbon storage in the rubber forest, improving the accuracy
of carbon storage simulation to a certain extent.

Thus, this study takes northeast Thailand, where rubber plantations are expanding
rapidly, as an example to assess the impact of spatial and temporal changes in rubber
planting on carbon storage over the past two decades. The objectives of this study are
(1) to develop an algorithm for mapping the stand ages of rubber plantations and identify
the land-cover types prior to rubber plantation conversion; (2) to analyze the spatial and
temporal patterns of carbon sequestration under the expansion of rubber plantations using
the InVEST model; and (3) to explore the differences in carbon sequestration processes
between planted and non-rubber-planted conditions.

2. Materials and Methods

2.1. Study Area

The province of Loei is located in northeast Thailand with elevation ranging from 100
to 1798 m (Figure 1). This area features a humid subtropical monsoon climate with two
main seasons: a rainy season from May to October and a dry season from November to
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April. The southwest monsoon brings abundant precipitation to the study area, and the
heavy rainfall is concentrated in August or September [36].

Figure 1. The location and spatial distribution of digital elevation model (DEM) of Loei Province, Thailand.

Traditionally, northeastern Thailand has been an important cultivation area with fewer
rubber plantations. Encouraged by an active government policy for rubber plantations since
2003, the rubber plantation area has expanded rapidly in northeastern Thailand [33]. As a
result, rapid land use and land cover change has taken place in most of its territory. Many
patches of natural forest and cropland have been encroached on by rubber plantations,
which can nowadays be found all over Loei from the highland areas down to the low-lying
plains [16]. Therefore, it is of great practical value to assess the rubber plantations impact
on carbon storage in the study area for the development of sustainable rubber plantations
and forest conservation.

2.2. Data
2.2.1. Remote Sensing Data and Preprocessing

• Sentinel-1 data and preprocessing

A total of 170 scenes of Sentinel-1A and Sentinel-1B interferometric wide swath ground
range detected (GRD) images of 2019 from the GEE platform [53] were used to generate a
forest map (including rubber plantations). The Sentinel-1 data in GEE were pre-processed
with the Sentinel-1 Toolbox using orbit metadata update, GRD border noise removal,
thermal noise removal, radiometric calibration, and terrain correction [36]. The final terrain-
corrected digital number (DN) values were converted to decibels (dB) in each pixel via log
scaling 10log10(DN). A Refined Lee filter was applied to de-speckle the images. Two addi-
tional indices, including (1) the ratio of the dual polarization of vertical transmit and vertical
receive (VV) to vertical transmit and horizontal receive (VH) dB data (Ratio = dBVV/dBVH),
and (2) the difference between VV and VH dB data (Difference = dBVV − dBVH), were also
calculated for each image. The annual mean value indicators (i.e., VV_mean, VH_mean,
Ratio_mean, and Difference_mean) were generated for forest mapping, since the mean
images can reduce the geometric and radiometric distortion of Sentinel-1 SAR images [54].

• Sentinel-2 data and preprocessing

Four Sentinel-2 Level 1C data (tile: 47QQU, 47QQV, 47QRU, 47QRV) were downloaded
from the European Space Agency’s (ESA) Copernicus Scihub [55]. The acquired Sentinel-
2 data were obtained on 23 March 2019. Radiometric and geometric corrections were
conducted to acquire top-of-atmosphere (TOA) reflectance. We conducted atmospheric
correction and obtained surface reflectance using ESA’s Sen2Cor in Sentinel Application
Platform (SNAP) 7.0 software [56]. The spatial resolution of Sentinel-2 data varies from 10
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to 60 m. Bands of 1, 9, and 10 were excluded from the dataset owing to their sensitivity to
aerosol and clouds and their spatial resolution (60 m). Then, the images were resampled
at 10 m using a bilinear method [56]. In all, 33 spectral indices were calculated based
on the surface reflectance [57], including the Normalized Difference Vegetation Index
(NDVI) [58], the Enhanced Vegetation Index (EVI) [59], and the Red-edge Normalized
Difference Vegetation Index 1 (NDVIre1) [60]. A full list detailing all spectral indices can be
found in the Supplementary Material (Table S1). Eight textural features were derived using
a gray-level co-occurrence matrix (GLCM) [61], including mean (MEAN), variance (VAR),
homogeneity (HOM), contrast (CON), dissimilarity (DIS), entropy (ENT), angular second
moment (ASM), and correlation (COR).

• Landsat data and preprocessing

We obtained cloud-free Landsat thematic mapper (TM), enhanced thematic mapper
plus (ETM+), operational land imager (OLI) images spanning 1999–2019 with one image
per year for the study region (worldwide reference system 2 (WRS-2) path/row = 129/48)
(Table 1). To reduce the errors and uncertainties caused by different months and clouds/rain,
cloud-free satellite images were only collected for the dry season (mid-October to mid-May
of the following year). The Landsat data were downloaded from the USGS [62]. Radio-
metric calibration, atmospheric correction, and geometric correction were conducted for
each image. All acquired data were georeferenced in the WGS_84_UTM_ZONE_47N, and
additional relative geometric corrections were also conducted to improve the geometric
consistency of image time series. For the year 2012, we gap-filled the Landsat 7 scan lines
corrector off (SLC-off) data using the neighborhood similar pixel interpolator method [63].
The NDVI was calculated for each image to build the interannual time-series image stack.
Several studies [11,32,64,65] have utilized the NDVI as a monitoring indicator of tropical
forest disturbance.

Table 1. List of Landsat images used to build the time-series stack.

Year Date Sensor Year Date Sensor

1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009

1999/11/16
2000/11/10
2001/1/05
2002/11/08
2003/3/16
2004/11/5
2005/11/24
2006/11/27
2007/1/14
2008/3/5
2009/3/8

ETM+
TM
ETM+
ETM+
ETM+
TM
TM
TM
TM
TM
TM

2010
2011
2012
2013
2014
2015
2016
2017
2018
2019

2010/2/23
2011/1/25
2012/4/25
2013/11/30
2014/1/17
2015/1/4
2016/4/12
2017/2/10
2018/2/13
2019/4/21

TM
TM
ETM+
OLI
OLI
OLI
OLI
OLI
OLI
OLI

2.2.2. Ground Reference Data

Ground reference data were acquired from random sample points generated in ArcGIS
10.5 [9] and were checked by visual interpretation based on Google Earth high resolution
images. A total of 1700 sample points were generated, and those at the boundary between
the two categories were eliminated. Finally, a total of 1628 sample points were selected for
training and validation, including 352 natural forest points, 504 rubber plantation points,
458 cropland points, 74 water body points, and 240 built-up points.

In the mapping of the forest, the sample points of the rubber forest and natural forest
were merged into “forest” sample points. Of the sample points, 70% were used to train the
forest extraction algorithm for mapping the forest/non-forest base map, and the remaining
30% were used for accuracy verification [34,36]. After generating the forest base map,
70% of the rubber forest and natural forest samples were used to train the rubber forest
extraction algorithm, and the remaining 30% were used for accuracy verification of the
rubber forest extraction results.
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The validation of the rubber forest age was difficult because of the few year-by-year
Google Earth high-resolution images from 2000 to 2019. Therefore, the age of rubber was
divided into five groups for accuracy verification, with the age composition of 1–5 years
(2014–2018), 6–10 years (2009–2013), 10–15 years (2004–2008), 16–19 years (2000–2003),
and ≥20 years (before 2000). In combination with Google Earth historical high-resolution
images, 3678 validation points were randomly selected for the accuracy validation of rubber
forest age results.

2.2.3. Carbon Density Data of Different Land Cover Types in Different Years

Because it is difficult to measure carbon storage in rubber forests and primary tropical
rainforests, this study referred to the Intergovernmental Panel on Climate Change’s (IPCC)
2006 methodology [66] for determining greenhouse gas inventories in the agriculture,
forestry, and other land use (AFOLU) sector, the calculation methods and result criteria for
carbon storage of agricultural and forestry land (updated and refined in 2019) [67], and the
data from related studies on rubber forest carbon storage [7,68].

Since this study focused on the annual change in carbon storage in the process of
rubber planting, the aboveground biomass and belowground biomass ratios of rubber
forests were variable dynamic values with reference to the relevant calculation methods
and result criteria in the IPCC report in the forest sector [67]. The annual increases in the
aboveground and belowground biomass of natural forests were set as 3 Mg·C/ha and
1 Mg·C/ha, respectively, and the type of cropland was set as a fixed value after referring
to the relevant literature [69]. Finally, the reference carbon density values for different
planting years of rubber forests, the natural forest, and cropland in this study were formed
and are displayed in Table S2.

2.2.4. Auxiliary Data

The digital elevation model (DEM) data were available from the NASA SRTM V3
digital elevation products [30]. The spatial resolution of these data was 30 m. These DEM
products were directly used to analyze the distribution characteristics of rubber forests in
terms of altitude.

2.3. Methods

A systematic approach for quantitatively assessing the impact of rubber expansions
on regional carbon storage was proposed in this study. Our method consisted of five main
stages (Figure 2): (1) mapping the forest distribution of 2019 using Sentinel-1 time-series
satellite data; (2) extracting the rubber forest by integrating Sentinel-1 and Sentinel-2 data;
(3) identifying the rubber planting year and pre-conversion land cover; (4) estimating the
carbon storage using the InVEST model; and (5) assessing the impact of rubber expansions on
regional carbon storage under actual planted and hypothetical non-rubber-planted scenarios.

2.3.1. Rubber Plantation Delineation by Integrating Sentinel-1 and Sentinel-2 Data

The random forest (RF) algorithm [70] and Sentinel-1 10 m data (VV_mean, VH_mean,
Ratio_mean, and Difference_mean images) were used to classify forest from other land-
cover types (cropland, water, and built-up). The number of decision trees was set at 100,
and the number of variables per split was set at the square root of the number of variables.
Finally, the forest map with 10 m resolution was obtained by merging non-forest categories
and then used to derive rubber plantations from natural forests in 2019.

The annual mean value indicators of Sentinel-1 data, spectral indices, and the textural
features of Sentinel-2 data were combined to derive rubber plantations. The mean decrease
in Gini (MDG) was used to measure a feature importance, and the out-of-bag (OOB)
score determined which Sentinel-2 features were involved in the classification process.
Finally, 13 spectral indices (NDWI2, BAI, B3, NDVIre1, B8A, GI, NDVIre2, LAnthoC, B4, B5,
Chlorgreen, DVI, and SR-BlueRededge1—the full list detailing the feature importance of
spectral indices can be found in Figure S1), and 4 textural features (HOM, ENT, ASM and
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COR) were selected to identify rubber plantations combined with Sentinel-1 mean features
in 2019.
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Figure 2. Workflow of the method adopted for this study to assess the impact of rubber expansions
on regional carbon storage.

Ground reference data described in Section 2.2.2 were used in confusion matrices [71]
to assess the accuracy of forest/non-forest and rubber plantation maps, including overall
accuracy, kappa coefficient, producer accuracy, and user accuracy.

2.3.2. Shapelet-Based Planting Monitoring of Rubber Plantations

Once the rubber plantation mask was conducted, each rubber plantation pixel pos-
sessed an NDVI interannual time series with 21 time points T = {T1, T2, . . . , T20} from
1999 to 2019. T1, T2, . . . , T21 were arranged in chronological order. Figure 3 shows the
temporal changes in the annual NDVI for three scenes. A rubber pixel NDVI series may be
characterized as stable high (i.e., rubber planted before 2000) (Figure 3a) or could suddenly
decline and then increase owing to the land clearing and planting preparation and the
typical open canopy period of the juvenile rubber tree cover (Figure 3b,c). Therefore, the
unique subset of the NDVI time series representing the time period of planting event
characterization was used to distinguish the rubber plantations that lasted for 20 years
from the rubber plantations converted from other land-cover types.
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Figure 3. Inter-annual NDVI time series with related Landsat imagery (RGB = 3-2-1 for Landsat
TM/ETM+, RGB = 4-3-2 for Landsat OLI) for (a) rubber plantations that last for 20 years, (b) rubber
plantations converted from cropland, and (c) rubber plantations planted after natural forests are
cut down.

A shapelet algorithm was applied to detect the unique characteristics of clear-cut
fields and newly cultivated rubber plantations in the rubber NDVI time series [11]. The
shapelet consisted of two main steps: (1) shapelet detection and (2) time-series classification.
The detection step found the most representative “shapelet” of a time-series category
by searching all possible shapelet locations in one image time series, whereas the time-
series classification distinguished between rubber plantations that have remained intact
for 20 years and those where planting activities have occurred. A candidate shapelet is
characterized by two time-position parameters: s is the starting point of the shapelet, and
w is the width of the shapelet. A shapelet is a continuous subsequence of a time series, and
the remaining time points belong to a non-shapelet. Both the minimum shapelet width
and the minimum non-shapelet width were set to 3 time points (3 years). A separation
metric called GAP [72] (i.e., the difference between the mean and standard deviation of the
non-shapelet group and the candidate shapelet group) was used to find the final “shapelet”
among the shapelet candidates. A paired-sample t test was used to detect the discrepancy
between the shapelet and non-shapelet and to construct a decision tree (for details, see [11]).
For this study area, we used α = 0.01, and the threshold was t(18,0.99) = 2.552. The parameter
α is the significant level for the t-test. A lower α value means that the time series for a
rubber pixel has a higher discrepancy between its shapelet and non-shapelet segments,
i.e., rubber plantation activity has occurred.

As shown in Figure 3, the dashed rectangles represent the detected shapelet of the
rubber time series. Because of the absence of disturbance in the intact rubber plantation
example, the NDVI value of the shapelet was very similar to that of the non-shapelet
(Figure 3a). Accordingly, the discrepancy between its shapelet and non-shapelet segments
was low with t * = 1.521, which was lower than the threshold (t = 2.552). Figure 3b shows
an example of rubber plantations converted from cropland and Figure 3c shows rubber
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plantations planted after natural forests were cut down. These two rubber plantation con-
version scenarios had a relatively longer period of consistently and significantly low NDVI
values of non-vegetated timespan, which is related to the land clearing, land preparation,
and open canopy period typical of juvenile rubber tree cover. As a result, the t test showed
that the rubber plantation pixels with planting events had a t statistic (t * = 16.423 and
t * = 5.428) higher than the threshold.

Using the shapelet as the smallest unit of analysis captures the continuous process of
true change or the constant state and reduces the effects of noise owing to seasonal and
radiometric changes. For further details and applications of shapelets, see [11].

In the same way as the verification of the forest mapping, the accuracy of rubber age
was validated based on the confusion matrix [71] and reference data.

2.3.3. Rubber Planting Year and Pre-Conversion Land Cover Identification

After the shapelet detection and time-series classification algorithms were performed,
each time-series rubber plantation pixel was assigned a shapelet. Year of deforestation (YD)
was defined as the starting time point of a shapelet. The last vertex in the shapelet was
recorded as the year of rubber planting (YRP) because only the latest vertex was associated
with a rubber planting event, where “vertex” was defined as a point that met the condition
of that the value of the point is smaller than that of both the previous and the next time
points ({Tx|Tx < Tx−1 and Tx < Tx+1}).

In order to identify the pre-conversion land cover (PCLC), the interval between YD
and YRP was calculated and called the planting temporal interval (PTI). The PTI varied
owing to the different land-cover status (i.e., natural forest or cropland) prior to planting
rubber [11]. If the PTI was short enough (Figure 3c showed only 5.2 years), it implied
that the rubber plantation was established shortly after the deforestation events, and
therefore, the PCLC was “natural forest”. Otherwise, the non-forest status existed before
the rubber was planted, so the PCLC was “non-forest”, i.e., cropland. The threshold
for PTI (3 years) was determined based on the manual statistical analysis of extensive
NDVI time-series (1387 samples). However, PTI alone cannot fully describe the complex
rubber planting process (flexible cropping system, high variability in planting status, and
fragmentation) [13]. Therefore, we introduced NDVIinitial, the NDVI value of the first time
point before the shapelet, to the PCLC identification process. The PCLC was identified
with the decision rule that if PTI is less than or equal to 3 years and NDVIinitial is greater
than or equal to 0.5869 then the PCLC is natural forest, otherwise PCLC is cropland.

The threshold for NDVIinitial (0.5869) was selected based on the statistical analysis of
50 regions of interest (ROIs) for rubber plantations (25 ROIs converted from natural forest
and the remaining 25 from cropland). The NDVIinitial range of cropland fluctuates widely
in southeast Asia because of the flexible cropping system, while the NDVIinitial value of the
natural forest is more stable owing to consistently high cover, so we set the lowest value of
NDVIinitial of the natural forest (0.5869) as the NDVIinitial threshold.

2.3.4. Carbon Storage Estimation Based on InVEST Model

The simulation and assessment of carbon storage in rubber forest in this study were
implemented using the InVEST model [9,45,73], which has been widely used to estimate
various ecosystem services [45,47]. The carbon storage calculation in the model took
the land-use/cover type as the assessment unit and calculated the carbon storage of the
ecosystem according to different land-use/cover types in the study area. It divided the
carbon storage of each land use/land cover (LULC) type into four basic carbon pools:
aboveground carbon pool, belowground carbon pool, soil carbon pool, and apoplastic
carbon pool (i.e., dead organic carbon pool). The outputs of the model were carbon density
and carbon storage, which were calculated by the formula [11,47]:

Ci = Ci_above + Ci_below + Ci_soil + Ci_dead (1)
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Ctotal =
n

∑
i=1

(Ci × Si) (2)

where i represents a certain land-use/cover type; Ci is the carbon density of the i-th type;
Ci_above, Ci_below, Ci_soil and Ci_dead are the aboveground, belowground, soil, and apoplastic
carbon densities of the i-th LULC type, respectively. The unit is megagrams·carbon/hectare
(Mg·C/ha). Ctotal represents the total carbon storage in the study area (tons/year, t/a), n
represents the number of land-use/cover types in the study area, Si is the area of the ith
type of area (hectare, ha).

For the acquisition and definition of carbon density data for rubber forests, primary
forests and croplands in different years were detailed in Section 2.2.3 and Table S2.

2.3.5. Defining Different Scenarios

In order to further analyze the differences in the influences of the regional carbon
storage under planted and non-planted rubber forest conditions, two different scenarios
were set: (1) the actual planted scenario of rubber forest, i.e., the rubber forest expansion
occupied cropland and deforestation and land reclamation. The carbon density and carbon
storge evolution characteristics under actual planted rubber forest conditions over 20 years
were simulated using the age data of the rubber forest from remote sensing time-series
data and carbon density obtained in different years; (2) the hypothetical non-rubber-
planted scenario, i.e., the rubber forest, was unexpanded over 20 years. That is, there is
no occupation of cropland or deforestation and land reclamation. Under such conditions,
the regional carbon density and carbon storge were directly simulated using the maps of
rubber and related land types in 1999 and the carbon density of different land-cover/use
types in different years (Table S2).

3. Results

3.1. Forest and Rubber Plantation Mapping for 2019

The forest map produced with Sentinel-1 data is shown in Figure 4a. Forests were
mainly concentrated in higher elevations of the hilly area. The overall accuracy of the forest
map was 0.92 with a kappa coefficient of 0.84 (Table S3). The forest had reasonably good
accuracy, with both high user accuracy (92.58%) and producer accuracy (92.22%), implying
that the resultant Sentinel-1 forest map could be used as a reliable base map for rubber
plantation identification.

 
Figure 4. Distribution of the forest (a) and rubber plantations (b) of Loei Province in 2019.
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The spatial distribution of rubber plantations is shown in Figure 4b. Most rubber
plantations were distributed in the central and northeastern parts in the study area. The
overall accuracy was 0.91 and the kappa coefficient was 0.82. The interpretation accuracy
for the rubber plantations was high with both user and producer accuracies greater than
90%. The forest area was estimated at 6.67 × 105 ha in 2019, while the rubber plantation
area was 1.28 × 105 ha in Loei Province.

According to the results of rubber plantation areas at different elevations in 2019
(Figure 5), most rubber forests were distributed in hilly areas at 200–400 m, accounting for
78.47% of the total area of rubber forests, while there were few rubber plantations at the
other altitudes.
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Figure 5. Statistics of rubber plantation areas at different elevations in 2019.

3.2. Age Estimation and Pre-Conversion Land-Cover Identification of Rubber Plantations

Based on the 2019 rubber plantation mask (Figure 4b), the rubber plantations where
planting activities occurred were identified from the inter-annual NDVI time series using
the shapelet approach. The results (Table S4) showed that the overall accuracy was 0.83 and
the kappa coefficient was 0.78. This indicated that the automatic identification of rubber
planting years had good estimation accuracy.

Then, YRP and PCLC maps (Figure 6) were produced from the shapelet segment.
Figure 7 shows the statistics for annual planting area and pre-conversion land-cover types
for each year. The area of rubber plantations increased nearly 8-fold from 0.14 × 105 ha or
1.3% of Loei Province before 2000 to 1.28 × 105 ha or 12.2% in 2019, showing clear expansion
trends from centralization to scattering. The average plantation age in Loei Province was
13.85 years (assuming an age of 20 years for all plantations older than 19 years). Rubber
plantations in Loei Province were mainly planted before 2008, where the areas planted
between 2004 and 2006 accounted for 61.8% of all new planted areas, reflecting a close
relationship with the increase in rubber price before 2009 and the vigorous support of the
first phase (2004–2006) of the Thai government’s promotion of rubber forest plantations in
the northeast. Plantations began to increase slightly again after 2012, at an average rate of
about 2767 ha/year. Spatially, the newly established rubber plantations were distributed
on the periphery of the existing rubber plantations.

Most of the total newly established rubber plantations in Loei Province were converted
from cropland, accounting for 54.81% (61,708.75 ha), while 45.19% were converted from
natural forests (50,871.24 ha). Before 2004, rubber was planted mainly by encroaching
on cropland. The conversion from natural forests began to increase after 2004, and the
conversion area of natural forests was larger than that of cropland in 2005–2007 and
2013–2017.
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Figure 6. (a) Planting year estimation, and (b) pre-conversion land-cover types of cropland and
natural forest in Loei Province.
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Figure 7. The statistics for annual planting area and pre-conversion land-cover types of cropland and
natural forest in Loei Province for each year. Year < “2000” indicates rubber planted before 2000.

We assumed natural forests in 2019 to be stable natural forests that had not been
disturbed in the last 20 years. The natural forests in 2000 were obtained by combining
the 2019 natural forests with the natural forests encroached upon by rubber plantations in
2000–2018 (rubber plantations established in 2019 were ignored). The proportion of natural
forest disturbance in Loei Province related to rubber plantations was 6.01% in 2000–2012,
and 7.21% in 2000–2018.

3.3. Spatial and Temporal Distribution of Carbon Density and Cumulative Carbon Sequestration

With the continuous expansion of rubber plantations over the past 20 years, the carbon
storage capacity has varied significantly among these years (Figure 8a–e shows only the
spatial distribution of carbon density for five years (1999, 2004, 2009, 2014, and 2018)).
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Figure 8. Spatial and temporal pattern distribution of carbon density in Loei Province (where
(a–e)/(f–j) correspond to 1999, 2004, 2009, 2014, and 2018, respectively; (a–e) and (f–j) represent the
scenarios under actual rubber plantations and hypothetical non-rubber plantations, respectively).

The results indicated that the central and northeastern parts of Loei Province were
mainly cultivated before 2000, with a low carbon storage capacity and a carbon density
value of only 2.25 Mg·C/ha, while the western, southern, and eastern areas were mainly
natural forests with a high carbon storage capacity and a carbon density value of ap-
proximately 20.00 Mg·C/ha. The carbon sequestration capacity of some cropland in the
northeast area was greatly increased after it was converted to rubber forest in 2004. On the
contrary, the carbon sequestration capacity of natural forests in central and eastern areas
was decreased after they were converted to rubber plantations, resulting in carbon density
within the threshold range of 10–15 Mg·C/ha for rubber plantations. By 2009, most of the
cropland in the central part of the area had been converted to rubber forests, which further
increased the carbon sequestration capacity, but the overall carbon density was still mostly
distributed in the 10–15 Mg·C/ha range. Up to 2014, the expansion of rubber gradually
slowed down, mainly by encroachment on natural forests, and the carbon density values of
scattered distributed rubber forests increased to 15–20 Mg·C/ha; subsequently, up to 2018,
the carbon density of rubber forests exceeded 15 Mg·C/ha, except for some newly planted
rubber plantations.

Comparing the changes in the carbon density of rubber forests in the study area over
20 years from 1999–2018 (Figure 8a–e), we found that the carbon storage capacity of each
type was significantly different. The carbon storage capacity of cropland was the smallest
at only 2.25 Mg·C/ha and did not change over time. By 2009, most of the cropland was
replaced by rubber forests, and the carbon sequestration increased dramatically. On the
contrary, the deforestation and replacement of natural forests—which have high carbon
storage—with rubber reduced the carbon sequestration, causing the carbon density to drop
from about 20.00 Mg·C/ha to 10–15 Mg·C/ha. However, with the growth of rubber forests,
their carbon sequestration capacity gradually increased again and basically returned to the
carbon sequestration level before deforestation in 2018.

For the scenario assuming no rubber planting over 20 years, we recalculated the results
of carbon density from 1999–2018 (Figure 8f–j) and found that under this scenario, the
study area was mainly dominated by cropland and natural forest types, and the carbon
sequestration of cropland remained unchanged over time, while that of the natural forest
increased from 15–20 Mg·C/ha to 25–31 Mg·C/ha over the past 20 years.
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Comparing the changes in carbon storage under the actual rubber plantation scenario
(Figure 8a–e), we found that the carbon storage gradually increased over time in the area
where the cropland was replaced by rubber forest. The carbon storage in the area where
the natural forest land was replaced by rubber showed a process of first decreasing and
then gradually increasing and returning to the carbon sequestration level before the forests
were cut down. However, it was still much smaller than that under the no-rubber-planting
scenario (Figure 8f–j), and because of that the carbon sequestration of the original forest is
also gradually increasing.

Based on the results of carbon density, the spatiotemporal evolution pattern of cu-
mulative carbon sequestration was further obtained over a 20-year period by using the
difference calculations (Figure 9a–d). Before 2004, the cumulative carbon sequestration was
mainly distributed between −10 and 15 Mg·C/ha. In the eastern and south-central regions,
the forest was replaced by rubber forests resulting in carbon emissions, and carbon seques-
tration ranged from −10 to −5 Mg·C/ha. The carbon sink in the cultivated area replaced
by rubber increased, and the distribution ranged from 10 to 15 Mg·C/ha. By 2009, the
carbon sequestration of rubber plantations was distributed in the range of 10–15 Mg·C/ha
in most of the occupied croplands, and the carbon sequestration in deforested rubber
plantations was the same as in the previous five years. By 2014, with the expansion of
rubber forests and increasing carbon sequestration, the distribution of carbon sequestration
was more complex, with that in the central region distributed at 10–15 Mg·C/ha, in the
southern region at −10 to −5 Mg·C/ha, and in the eastern region at −5 to 0 Mg·C/ha.
By 2018, carbon sequestration was mainly distributed at 10–15 Mg·C/ha in the central
area and −5 to 0 Mg·C/ha in the southern and eastern areas. There were some areas
of −15 to −10 Mg·C/ha where short-term deforestation and land reclamation occurred
and 15–20 Mg·C/ha obtained from sporadic early planted rubber forests accumulated
over time.

Figure 9. Spatial and temporal patterns of cumulative carbon sequestration in different periods
(corresponding to 1999–2004, 2005–2009, 2010–2014, and 2015–2018; (a–d) and (e–h) represent the
cumulative carbon sequestration under actual rubber planting and hypothetical no-rubber-planting
scenarios, respectively).
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For the hypothetical no-rubber-planting scenario, the evolution pattern of carbon
sequestration in the past 20 years is shown in Figure 9e–h. For cropland, because the
default carbon sequestration capacity remained unchanged and at zero over 20 years, we
focused here on the natural forest. From 1999 to 2004, the cumulative carbon sequestration
was mainly distributed in the range of 0 to 5 Mg·C/ha. In 2009, the cumulative carbon
sequestration increased to 5–10 Mg·C/ha. From then to 2014, although the carbon seques-
tration gradually increased, it did not exceed the 5–10 Mg·C/ha range. Until 2018, the
cumulative carbon sequestration increased to 10–15 Mg·C/ha.

Compared with the actual rubber forest plantation scenario, we found that rubber
forest expansion occupied cropland, which can improve the level of carbon sequestration
to a certain extent, but deforestation and land reclamation remained the main reasons for
the decrease in overall cumulative carbon sequestration in our study.

3.4. Temporal Characteristics of Carbon Storage

In the past 20 years, the actual storage decreased only slightly in 2001 and 2004
and showed a fluctuating growth in the other years (Figure 10). The overall carbon
storage gradually increased from 1.58 million tons to 2.12 million tons. The carbon storage
increased by 0.54 million tons in the past 20 years, with an average annual growth rate
of 2.69 × 104 t/a, while under the hypothetical no-rubber-planting scenario, the overall
carbon storage increased from 1.57 million tons to 2.27 million tons, and the carbon storage
increased by 0.69 million tons over the past 20 years, with an annual average growth rate
of 3.46 × 104 t/a. Comparison between the actual planting and the hypothetical no-rubber-
planting scenarios indicated that rubber plantations caused a decrease in carbon storage in
all years except 1999 and 2000, and the difference between the actual and the hypothetical
carbon storage reached −0.15 million tons in 2018.

Figure 10. Annual changes in carbon storage for Loei Province from 1999 to 2018 under actual planted
and hypothetical non-rubber-planted scenarios.

In order to further analyze the inter-annual variation pattern of carbon storage caused
by rubber plantations, we considered the difference in the inter-annual cumulative value
of carbon storage under the actual and hypothetical scenarios (Figure 11). The results
showed that before 2000, the planting of rubber did not cause a reduction in carbon storage.
However, since 2001, the annual cumulative difference in carbon storage was less than 0 t,
and the overall trend was decreasing. The annual cumulative difference in carbon storage
from 2004 to 2006 increased significantly from −0.24 million tons to −0.12 million tons,
mainly because of the large occupation of cropland, which increased the level of carbon
sequestration. Subsequently, the annual cumulative difference of carbon storage after 2006
gradually decreased to −0.29 million tons in 2018.
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Figure 11. The cumulative differences in carbon storage between the actual and hypothetical scenarios.

4. Discussion

4.1. Potential of the Optical and SAR Imagery-Based Approach for Identifying and Mapping
Rubber Plantations

An accurate rubber forest base map is a prerequisite for accurate age estimation and
pre-conversion land-cover identification of rubber plantations. Previous studies combining
optical (e.g., MODIS and Landsat) and SAR data (e.g., PALSAR) for rubber mapping mostly
classified forested versus non-forested land types based on differences in the backscatter
coefficients of SAR data, while the distinction between rubber and natural forest relied
more on spectral features [22,74]. However, because rubber plantations at their peak of
growth or after the stand reaches a certain age have similar spectral characteristics to
natural forests [10,18], greater uncertainty exists in the extraction of rubber. In addition,
these two different types of satellite sensors differ greatly in terms of spatial resolution and
image acquisition time, which limits the synergistic application effect to a certain extent.

In order to reduce the spectral confusion between rubber and natural forests, this
study extended the identification features of rubber forests from the spectral dimension to
the spectral, spatial (texture), and structural (backscattering structural features) dimensions.
The spatial information can effectively reduce the spectral confusion between rubber and
natural forests, effectively reduce the “pretzel phenomenon”, and improve the integrity
and classification accuracy of patches [34,75]. In addition, SAR data can provide additional
information including vegetation surface information and surface roughness, which are
highly sensitive to differences in forest structure, such as biomass, density, and vertical
stratification in different stands [76], and can improve the discrimination between rubber
forest and natural forest. By adding distinguishing features from spatial and structural
dimensions and integrating the advantages of different sensors, the limitations of any
sensor can be overcome or supplemented to obtain a more accurate and spatially finer
forest and rubber forest base map in our study, which provides the basis for accurate
identification of rubber age and pre-conversion land-cover types.

4.2. Advantages of Time-Series Remote Sensing Methods for Age Estimation and Pre-Conversion
Land-Cover Identification of Rubber Plantations

The identification of forest age and initial land state is the basis for the fine estimation
of carbon storage in rubber plantation areas. Our results indicated some advantages to
utilizing the time-series Landsat-based method using shapelets to identify the establish-
ment year of rubber plantations and pre-conversion land-cover types. First, the shapelet
makes full use of temporal information and eliminates the cumulative error caused by the
underestimation of young rubber forests by single-period classification [22]. Second, the
consistency requirement of the shapelet algorithm is not very strict for the time-series data,
and it ignores the influence of cloud noise and other factors over a short period of time [14].
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Finally, the shapelet algorithm does not consider the saturation of spectral coefficients and
SAR backscattering coefficients in the regression methods [10], which improves the stand
age differentiation of mature rubber forests. In addition, the shapelet algorithm focuses
on detecting the changes in only one specific type, i.e., the conversion of natural forest
(or cropland) to rubber forest. With fewer parameters, it can determine when the change
occurred and the specific type of change. Compared with the Landtrendr algorithm [31,35],
the Breaks for Additive Season and Trend Monitor (BFAST) algorithm [77], the Vegetation
Change Tracker (VCT) [65], and other timing change detection algorithms, the identification
process is simpler and more efficient.

Here, we refined the shapelet algorithm in two ways: (a) by using a rubber plantation
mask instead of a forest mask in 2019; and (b) by adding statistical boundary constraints for
the NDVI (i.e., NDVIinitial) when identifying the pre-conversion land-cover (PCLC) types.
By selecting the rubber plantations in 2019 as the mask, we avoided the possibility that the
intact rubber plantation pixels were mistakenly detected as natural forests. In addition,
the introduction of NDVIinitial can provide the greenness difference information between
different PCLC types (i.e., natural forest and cropland), and it has been widely used in the
forest and cropland classification process [75,78]. The combination of planting event and
greenness features provides an acceptable method for a flexible cropping system and high
variability in planting status and fragmentation areas, and is expected to be effective for
identifying the PCLC in other similar rubber-planting regions [25].

4.3. Changes in Carbon Storage Because of Rubber Forest Expansion

Over the past two decades, rubber forests in northeast Thailand have expanded
rapidly, gradually making it one of the largest natural rubber production bases in Thailand.
However, smallholders dominate rubber production in this region, producing 90% of the
rubber [16]. Attractive economic returns and agricultural extension interventions are the
most important drivers of land-use conversion to rubber plantations [79]. Therefore, the
expansion of rubber plantations was more complex and fragmented in the study area,
owing to the combined influences of natural rubber market price fluctuations, government
interventions, and the flexible cropping system and high variability in planting status [80],
which posed a greater challenge to the calculation of regional rubber carbon storage.

The InVEST carbon storage model was applied to calculate the carbon stocks of rubber
plantations under actual planted and hypothetical non-rubber-planted conditions in this
study. However, this model is based on a simplified carbon cycle, where the carbon storage
is a static inventory, assuming that each hectare of land is identical and constant [52]. This
may bias the carbon storage estimates for rubber and natural forests, whose carbon storage
gradually accumulates and increases with time [80]. To this end, based on obtaining the
rubber forest stand age and initial land-cover types before rubber planting and referring
to the IPCC calculation methods and result criteria for carbon storage of agricultural and
forestry land [67], each carbon storage component of rubber and natural forests in different
years over time was given a new definition and assignment, and then was added to the
InVEST carbon storage model to improve the accuracy of carbon storage simulation to
some extent. This theoretical approach has not been reported in previous related InVEST
carbon storage simulation studies [9,11,51].

According to the carbon storage results under the actual rubber forest plantation
scenario, we found that rubber forest plantation can increase regional carbon density
when occupying cropland, but through deforestation and clearing it would cause a rapid
decrease in carbon density, and then gradually increase and recover to the storage stock
level before deforestation. This result was consistent with the findings of some existing
studies [9,69,81]. By comparing the hypothetical scenario of no rubber planting, we found
that rubber planting reduced the regional carbon storage and caused regional carbon
emissions. Moreover, with the expansion of rubber forests, the difference between the
actual carbon storage and the hypothetical scenario became larger and larger, causing a
large carbon storage gap of −0.15 million tons in 2018. This result was also consistent
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with the findings of some studies on carbon emissions caused by rubber plantations in
tropical regions [7,80,82,83]. In order to achieve sustainable rubber forest plantation and
management, the carbon storage gap caused by deforestation and clearing must be bridged
by partial replacement of cropland with rubber in the future to achieve the carbon balance
of rubber forest plantation and environmental sustainability.

4.4. Limitations

In this study, the impact of rubber forest expansion on regional carbon storage was
investigated through rubber forest extraction, forest age estimation, pre-planting land cover
type identification, carbon storage estimation, and different scenario simulations. However,
it should be noted that eight spatial texture features and four structural features of the
optical and SAR images were combined in the rubber forest mapping. How to further
combine the diverse textural and structural features of both to improve the accuracy of fine
rubber forest mapping will be the focus of later research.

Second, the tree age estimation of a rubber forest relies only on the remote sensing
NDVI to construct time-series curves. During the planting and growing process of rubber
forests, the land-cover state undergoes a transformation from natural forest/cropland
to bare land, rubber with a low canopy cover, and rubber with a high canopy cover.
Different land-cover states also have obvious differences in texture characteristics, and the
application of texture characteristic time series to the tree age estimation of rubber forests
will be explored in the future.

Finally, the application of the InVEST model for carbon storage estimation is more
sensitive to the input data. Researchers generally collect carbon density data from the
literature or field experimental observations in their study area [9,11,52]; because of the lack
of observation data, only the relevant research algorithms and results of the IPCC [66,67]
were used as input for carbon storage simulation in this study. This may cause uncertainty
in the simulation results, and it poses difficulties in the validation of the model results
owing to the lack of measured data [11,19,50]. Although the results simulated by the carbon
storage module of the InVEST model have been shown to be reasonably accurate [51]
and representative [9,11], validation of the measured data can increase the effect of the
carbon density simulation to some extent [52]. In the future, when conditions permit,
partial field observations will be carried out to compare the field data with IPCC data for
testing whether the data consistent, to then further correct the results of the carbon density-
related components and improve the simulation accuracy. On the other hand, the carbon
accumulation process of cropland was not considered in the carbon storage simulation.
Later, the law and process of cropland soil carbon sequestration in tropical regions will be
further explored to improve the simulation accuracy and eventually improve the simulation
accuracy of regional carbon storage caused by rubber expansion.

5. Conclusions

Based on the multi-source satellite time series data of Sentinel-1, Sentinel-2, and
Landsat, coupled with random forest, shapelet, and InVEST carbon storage model, a
systematic approach was proposed for estimating the carbon storage of regional rubber
forests, and then explored the impact of rubber forest expansion on regional carbon storage.
The conclusions of the study are as follows.

1. High accuracy extractions of forest and rubber forest were achieved, by using the
Sentinel-1/2 time-series satellite images, extended spectral, spatial, and structural
features, and random forest algorithm. The overall accuracies are 0.92 and 0.91,
respectively, which provide accurate background data for tree age and carbon
storage estimation.

2. Using Landsat time-series satellite imagery, combined with the improved shapelet
algorithm, the high accuracy extraction of rubber tree age can be achieved. The overall
accuracy was 0.83 and the kappa coefficient was 0.78. The average age of rubber
stands was 13.85 years (assuming that all plantations older than 19 years are 20 years
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old). Before 2004, rubber was mainly grown through encroachment on cropland. After
that, rubber conversion from natural forests started to increase.

3. Regional carbon storage estimation of rubber forest was achieved using the InVEST
model. The carbon density increased from only 2.25 Mg·C/ha in 1999 to more than
15 Mg·C/ha in 2018, except for some newly planted rubber plantations. The use of
cropland for rubber plantations will increase carbon storage, while for deforestation
the carbon storage will decrease, then gradually increase, and recover to the storage
stock level before deforestation.

4. The expansion of rubber caused a decline in regional carbon storage. The difference
and annual cumulative difference between the actual and the hypothetical carbon
storage reached −0.15 million tons and −0.29 million tons in 2018, respectively.
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Abstract: Accurate estimation of forest carbon storage is essential for understanding the dynamics
of forest resources and optimizing decisions for forest resource management. In order to explore
the changes in the carbon storage of Pinus densata in Shangri-La and the influence of topography on
carbon storage, two dynamic models were developed based on the National Forest Inventory (NFI)
and Landsat TM/OLI images with a 5-year interval change and annual average change. The three
modelling methods used were partial least squares (PLSR), random forest (RF) and gradient boosting
regression tree (GBRT). Various spectral and texture features of the images were calculated and
filtered before modelling. The terrain niche index (TNI), which is able to reflect the combined effect of
elevation and slope, was added to the dynamic model, the optimal model was selected to estimate the
carbon storage, and the topographic conditions in areas of change in carbon storage were analyzed.
The results showed that: (1) The dynamic model based on 5-year interval change data performs better
than the dynamic model with annual average change data, and the RF model has a higher accuracy
compared to the PLSR and GBRT models. (2) The addition of TNI improved the accuracy, in which R2

is improved by up to 10.48% at most, RMSE is reduced by up to 7.32% at most, and MAE is reduced
by up to 8.89% at most, and the RF model based on the 5-year interval change data has the highest
accuracy after adding TNI, with an R2 of 0.87, an RMSE of 3.82 t-C·ha−1, and a MAE of 1.78 t-C·ha−1.
(3) The direct estimation results of the dynamic model showed that the carbon storage of Pinus
densata in Shangri-La decreased in 1987–1992 and 1997–2002, and increased in 1992–1997, 2002–2007,
2007–2012, and 2012–2017. (4) The trend of increasing or decreasing carbon storage in each period is
not exactly the same on the TNI gradient, according to the dominant distribution, as topographic
conditions with lower elevations or gentler slopes are favorable for the accumulation of carbon
storage, while the decreasing area of carbon storage is more randomly distributed topographically.
This study develops a dynamic estimation model of carbon storage considering topographic factors,
which provides a solution for the accurate estimation of forest carbon storage in regions with a
complex topography.

Keywords: Landsat; Pinus densata; terrain niche index; dynamic model; carbon storage

1. Introduction

Forests are the mainstay of terrestrial ecosystems, which store 60% of the carbon in the
terrestrial ecosystem [1]. Forests play an indispensable role in balancing and regulating
CO2 in the atmosphere with their powerful carbon sink function. Global warming is a great
threat to humanity today, and the excessive emissions of greenhouse gases, of which CO2
is an important member, is one of the main reasons for global warming. Atmospheric CO2
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concentrations have risen dramatically over the past 100 years (they have risen by approxi-
mately 110 ppm) [2], a phenomenon that has accelerated the rate of global warming. The
accurate estimation of forest carbon storage is related to the ability to reduce atmospheric
CO2 concentration. Against this background, the necessity of the study of forest carbon
storage is revealed and its accurate estimation is an important basis for regional and even
global carbon change studies.

The methods for estimating forest carbon storage includes both traditional direct
measurement methods and indirect estimation methods based on remote sensing [3,4]. The
traditional method is based on sample site survey and data statistics, which require a large
investment of human and financial resources [5], and due to cost and time constraints,
there are significant limitations regarding the large range of study objectives and long
study periods. In contrast, remote sensing-based methods have the characteristics of
being fast, low-cost, large-scale, and less destructive [1,6]. With the rapid development
of quantitative remote sensing technology, the results of carbon storage estimation based
on remote sensing have become more and more stable and reliable. Therefore, the use of
remote sensing methods for the quantitative estimation of forest carbon storage on a larger
scale has become a major current trend [7,8].

At present, there is a significant amount of research in remote sensing estimation, and
while scholars in various fields have constructed different remote sensing models [9], most
of these are static models. The static model is a model developed directly from the attribute
values of the sample sites and the remotely sensed feature values of the corresponding
points, which are uncalculated state data. If these values are further processed and calcu-
lated to produce different types of change values (periodic change, annual average change,
rate of change, etc.), then the model developed using these change data is the dynamic
model. Change data can describe the different processes of change in forest ecosystems at
a given time and have the ability to monitor forest dynamics [10]. Gómez et al. [11] and
Zhang et al. [12] compared static models with dynamic models and showed that dynamic
models have higher accuracy and better predictive power than static models, with the
highest R2 for dynamic models in their study being 0.90 and 0.94, respectively. In the study
of forest dynamics, the dynamic model is able to directly estimate the corresponding level of
forest change and directly respond to forest dynamics, which improves the efficiency of the
long-term forest dynamics study. The calculation of change data needs to be supported by
multi-period data. The current National Forest Inventory (NFI) projects in many countries
provide the possibility for long-term forest dynamics modelling studies. The ongoing NFI
projects in many countries and open-access Landsat time series data offer the potential for
long-term forest dynamics modelling studies.

Trees accumulate carbon mainly through photosynthesis during growth, and topo-
graphical factors influence the photosynthetic effect by affecting light and water conditions
in the environment, which eventually affects the carbon storage of trees [13]. Therefore,
topographic factors are an important concern in forest carbon storage studies. The digital
elevation model (DEM) provides valuable topographic information including elevation,
slope, and aspect [14]. These topographic factors are often used as independent factors
in various studies because they do not require complex calculations and processing, are
relatively easy to obtain, and reflect the effects of topography on different aspects of vegeta-
tion to some extent [15]. However, the influence of topography on forest carbon storage is
the result of the combined effect of various topographic factors, and it is difficult to reflect
this combined effect by a single elevation or slope. The terrain niche index (TNI) combines
elevation and slope information, which is able to reflect the spatial variability of regional
elevation and slope [16,17]. Therefore, in past studies, it has been frequently applied to
land use change, landscape patterns and ecological effects [18,19]. The topography of
forest ecosystems is complex and diverse, so the comprehensive influence of topographic
factors should also be considered when modelling carbon storage. The change data can
reflect the degree of change in forest carbon storage, and TNI can reflect the comprehensive
influence of topographic factors on forest carbon storage, so the combination of the two
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is important for the accurate estimation of change in forest carbon storage in areas with
complex topography.

Shangri-La, Yunnan Province, is rich in forest resources, and Pinus densata is one of the
major tree species, which is widely distributed and has an essential impact on the carbon
balance of the region. This region is located at the edge of the Tibetan Plateau, with an
overall high altitude, and the terrain comprises high mountains and deep valleys with large
topographic undulations, making it more difficult to estimate the forest carbon storage
in this region accurately. Therefore, in this study, we used the remote sensing dynamic
model combined with TNI to estimate the carbon storage of Pinus densata in Shangri-La.
The main objectives are the following: (1) developing the carbon storage dynamics model
based on two different kinds of change data; (2) exploring the impact of TNI on carbon
storage models; and (3) estimating the historical carbon storage changes of Pinus densata in
Shangri-La and analyzing the topographic effects of carbon storage changes.

2. Materials and Methods

2.1. Study Area and Study Process

The study area, Shangri-La, is located in Yunnan Province in southwestern China
(Figure 1), at the border of the Yunnan Province and the Sichuan Province, and the geo-
graphical coordinates range from 99◦20′ to 100◦19′ eastern longitude and 26◦52′ to 28◦52′
northern latitude, the total area is 1.16 × 106 ha. The area is located in the southeastern
part of the Tibetan Plateau (the average elevation is 3459 m), with the Hengduan Moun-
tains running north and south through the whole territory, the regional topography is
undulating [20], and the whole terrain is high in the northwest and low in the southeast.
Shangri-La has a remarkable monsoon climate, with rainfall concentrated in the months
of June to October each year [21], the average annual precipitation is 268~945 mm, and
the annual sunshine is 1742.9~2186.6 h. This region is very rich in forest resources, with
76% of forest cover [22]. Pinus densata, Pinus yunnanensis, and Picea asperata are the main
tree species in the region [23]. The target species for this study is the Pinus densata, which
includes both artificial and natural forests distributed within the study area.

Figure 1. Study area and sample plots.
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The main content of the study is shown in Figure 2. The research process began with
the pre-processing of all the data; then, two types of change data (annual average change
and 5-year interval change) were calculated, three methods were used to construct the
model, and TNI was added to the model. Finally, in order to compare the effect of the
dynamic model with different change data and to compare the effect of the model before
and after the addition of TNI, different indicators were used to evaluate the accuracy.
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Figure 2. Flow chart of the main content in this study.

2.2. Ground Survey Data and Carbon Storage Calculation

This study focused on Pinus densata, and the ground survey data were obtained from
the National Forestry Inventory, which contains a total of 136 Pinus densata sample plots
(comprising pure forests of Pinus densata or forests with Pinus densata as the main species).
The years of the collection were 1987, 1992, 1997, 2002, 2007, 2012 and 2017, where the
number of sample plots was 19, 22, 23, 16, 16, 17 and 23 for each year, respectively (Figure 3).
The dataset records information on tree height, diameter at breast height (DBH), number of
trees, coordinate location, and major tree species. The distance between the sample plots
consisted of regular distributions of 6 km × 8 km, and each sample plot was a rectangle of
28.28 m × 28.28 m (0.08 ha).
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Figure 3. Sample plot data records by year: different colors represent sample plots with different
locations (different numbered sample plots).

The aboveground biomass (AGB) of the sample plots was calculated based on the
allometric growth equation of Pinus densata [24]. The average AGB was first calculated
using the average tree height and average DBH of the sample plots. Then, the total AGB of
the sample plots was calculated based on the average AGB and the number of Pinus densata.
The allometric growth equation is as follows:

AGB1 = 0.073 × DBH1.739 × H0.880 (1)

where AGB1 is single wood aboveground biomass (t), DBH is the diameter at breast height
(cm), and H is tree height (m). We filtered the sample plot data. In this process, five sample
plots with an AGB (AGB < 1 t·ha−1) that was too small were removed, followed by six
outliers that were screened out and removed using the Pauta criterion [25]. According to
the Pauta criterion, if a value is outside the range of three times the standard deviation of
the mean (outside the range of x ± 3σ, where x is the mean and σ is the standard deviation),
it is considered an outlier. This is a common method for outlier screening [26]. In the end,
125 sample plots of Pinus densata remained.

The carbon storage of the sample sites was calculated using the AGB multiplied by
the carbon content coefficient. According to the guidelines for measuring carbon storage in
forest ecosystems issued by the State Forestry and Grassland Administration of China [27],
the average carbon content in the dry matter of Pinus densata is 0.501. The equation is
as follows:

CS = 0.501 × AGB2 (2)

where CS is the carbon storage (t-C·ha−1), and AGB2 is the aboveground biomass of the
sample plots (t·ha−1). The basic sample data is shown in Figure 4. The box plots (Figure 4)
depict information on the diameter at breast height, tree height, and carbon storage for each
year of the sample plots. The overall range of DBH is 6.0–91.7 cm, with a maximum annual
mean of 32.0 cm and a maximum annual standard deviation of 27.8 cm; the overall range of
tree height is 1.5–24.8 m, with a maximum annual mean of 11.4 m and a maximum annual
standard deviation of 5.5 m; and the overall range of carbon storage is 0.7–84.2 t-C·ha−1,
with a maximum annual mean of 38.6 t-C·ha−1 and a maximum annual standard deviation
of 41.9 t-C·ha−1.
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Figure 4. Boxplots of basic information on sample plots by year.

2.3. Remote Sensing Images and Obtained Features
2.3.1. Remote Sensing Data

The remote sensing images used in this study were obtained from the USGS website
(http://glovis.usgs.gov/ (accessed on 28 October 2021)). Landsat 5 TM images from 1987,
1992, 1997, 2002, 2007, and 2012 and Landsat 8 OLI images from 2017 of the Shangri-La
region were downloaded from the website (Table 1), comprising 21 views in total and a
spatial resolution of 30 m. When an image contains too much cloud or is of poor quality,
we chose an image from a neighboring timepoint to replace it. Most of the selected images
contained less than 5% cloud, and the cloud did not cover the study area when the cloud
content was greater than 5%.

Table 1. Landsat time-series of imagery used in the study.

Year Landsat/Sensor Path/Row Image Acquisition Date

1987
5/TM 132/040 30 December 1987
5/TM 132/041 30 December 1987
5/TM 131/041 23 December 1987

1992
5/TM 132/041 7 November 1991
5/TM 132/040 7 November 1991
5/TM 131/041 16 November 1991

1997
5/TM 132/041 7 November 1997
5/TM 132/040 6 October 1997
5/TM 131/041 16 November 1997

2002
5/TM 132/041 5 January 2002
5/TM 132/040 5 January 2002
5/TM 131/041 29 October 2002

2007
5/TM 132/041 15 October 2006
5/TM 132/040 3 January 2007
5/TM 131/041 1 March 2007

2012
5/TM 132/041 13 October 2011
5/TM 132/040 14 January 2011
5/TM 131/041 7 January 2011

2017
8/OLI 132/041 16 December 2017
8/OLI 132/040 16 December 2017
8/OLI 131/041 25 December 2017

In order to improve the image quality, all the images were preprocessed: firstly, radio-
metric calibration was performed, which converts the original DN (digital number) value
of the image to a consistent radiometric brightness in order to eliminate the influence of the
sensor [28]; secondly, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) method was used to eliminate the influence of the atmosphere [29]; thirdly,
geometric correction was performed on each image with reference to the existing standard
SPOT-5 images to eliminate geometric errors, where the error in geometric correction was
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less than one pixel; and finally, in order to eliminate the change of image grey value caused
by the topographic undulation, topographic correction was performed using the slope
matching model [30]. After topographic correction, the brightness of the illuminated side
was suppressed and the brightness of the shadow side was enhanced, which better restored
the reflectance of the hidden features in the shadow of the original image [31].

2.3.2. Remote Sensing Features

The remote sensing pixel values were evaluated by considering bands with the same
name and close wavelengths in Landsat 8 and Landsat 5. In this study, two types of remote
sensing features, spectral features and texture features, are calculated. Spectral features
are the most basic and direct features of remote sensing images, but the phenomena of
“the same objects with different spectra” and “different objects with the same spectra”
commonly exist in remote sensing images, so it may be difficult to obtain good research
results when only relying on spectral features [32,33]. The texture features can describe
the grey scale information of an image, express the spatial distribution of the grey scale of
pixels in the image, and reflect the structural information of the image. Compared with
spectral features, texture features are less affected by the environment and more stable in
information representation [34]. Therefore, the combination of spectral and textural features
can effectively reflect the characteristics of the ground objects and their changes [35,36].
A total of 35 spectral features and 540 texture features were obtained in this study (the
calculations of various types of textures from all single bands of each image in odd windows
from 1 to 19) (Table 2).

Table 2. Extracted remote sensing feature information.

Categories Information on Remote Sensing Characteristics

Spectral features

Original bands B1; B2; B3; B4; B5; B7

Vegetation indices [37]

NDVI = (B4 − B3)/(B4 + B3);
ND32 = (B3 − B2)/(B3 + B2);
ND54 = (B5 − B4)/(B5 + B4);
ND53 = (B5 − B3)/(B5 + B3);
ND57 = (B5 − B7)/(B5 + B7);

ND452 = (B4 + B5 − B2)/(B4 + B5 + B2);
DVI = B4 − B3; RVI = B4/B3;

ARVI = (B4 − (2B3 − B1))/(B4 + (2B3 − B1))
EVI = 2.5 × B4−B3

B4+6B3−7.5B1+1 ;

Band combination [12] B4/B2; B5/B3; B5/B4;
B5/B7; B7/B3; B4 × (B3/B7)

Image enhancement [38,39]

Albedo = B1 + B2 + B3 + B4 + B5 + B7;
VIS123 = B1 + B2 + B3; MID = B5 + B7;

FVC = EVI−EVImin
EVImax−EVImin

;
Principal component analysis (PCA1, PCA2, PCA3,

PCA4, PCA5, PCA7);
Tasseled cap transform (TCT1, TCT2, TCT3)

Texture features

Grey level
co-occurrence matrix [34]

Homogeneity (HO); Dissimilarity (DI);
Mean (ME); Angular second moment (SM);

Entropy (EN); Correlation (CC);
Variance (VA); Contrast (CO)

Filtering of probabilistic
statistics [40] Skewness (SK)

Where B1 is the blue band, B2 is the green band, B3 is the red band, B4 is the near-infrared band, B5 is the
shortwave infrared-1 band, and B7 is the shortwave infrared-2 band.

2.4. Terrain Niche Index

To explore the influence of elevation and slope on the carbon storage dynamics model,
the terrain niche index (TNI), a composite factor combining elevation and slope, was
established in this study [41]. Elevation and slope were extracted from the digital elevation
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model (DEM). The DEM used in this study was an ASTER GDEM data product with a
spatial resolution of 30 m. The DEM was downloaded from the Geospatial Data Cloud
website (http://www.gscloud.cn/ (accessed on 18 August 2022)). The equation for TNI is
as follows:

TNI = log
[(

E
E
+ 1
)
×
(

S
S
+ 1
)]

(3)

where E and S are the elevation and slope of any point, respectively, and E and S are the
average elevation and average slope of the study area, respectively. A larger TNI value
indicates a higher elevation and slope; a smaller TNI value indicates a lower elevation and
gentler slope; and a medium TNI value indicates a high elevation gentle slope, or a low
elevation steep slope, or a medium elevation and slope [42].

2.5. Distribution Index

The distribution index (DI) is often used to show the distribution of various land
use types. In this study, the areas of the increasing and decreasing carbon storage of
Pinus densata were considered as two different land classes. Then, the DI was used to
explore the distribution of carbon storage changes in different TNI gradients. The DI is
a standardized, dimensionless metric that eliminates the effects of area differences and
allows the comparison of distribution characteristics between carbon storage changes of
different area proportions [18,43]. The equation is as follows:

P = (Sie/Si)/(Se/S) (4)

where P is the DI, e is the gradient of TNI, Sie is the area of i changes on the e TNI gradient,
Si is the area of the i change, Se is the area of the TNI for gradient e, and S is the total
area of the study area. A larger P indicates a higher frequency of this type of change, and
P > 1 indicates that the type of change under this TNI gradient belongs to the dominant
distribution. Therefore, the analysis of the distribution of each carbon storage change type
on different TNI levels is able to reveal the influence of different topographic conditions on
carbon storage change.

2.6. Modelling Process
2.6.1. Calculation of Change Data

In this study, two kinds of change data were used to develop the forest carbon storage
model, one is the 5-year interval change, and the other is the annual average change.
The change data were calculated based on a common sample plot for both years: we
calculate the change value of a sample plot when data were recorded in both adjacent
years, otherwise the change value for the sample plot during that specific time period is
not calculated. The equations are as follows:

ΔI = In − Im (5)

ΔR =
ΔI

n − m
(6)

where ΔI is the interval change value, n and m are two different years in which the change
is calculated (n > m), In and Im are the data values for years n and m, respectively, and
ΔR is the average annual change value. The above two equations were used to calculate
the change data of carbon storage and the corresponding remote sensing features in the
sample sites. The calculation of change values is supported by the NFI data records every
5 years from 1987–2017. The shortest time interval for which change data can be calculated
is 5 years and the longest time interval is 30 years. In generally, the shorter the time interval,
the stronger the continuity of the data and the more accurately the dynamic process of
forest change can be expressed [10,44]. Zhang et al. [12] tested the change data for 5,
10, and 15 year intervals and found that the 5 year interval resulted in the smallest error.
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Lunetta et al. [45] compared the effect of 3, 5, and 7 year intervals on monitoring change
and showed that the 3 year interval had the highest accuracy. Therefore, only the change
data for the shortest interval (5 years) were calculated in this study: the 5-year interval
change and the annual average change during the 5-year period.

2.6.2. Remote Sensing Features Selection

The efficiency of the model can be affected by the number of features, because too many
features reduce the speed of model fitting [46]. In addition, the original features contain
some redundant information, which has a negative impact on the model accuracy [47].
Therefore, the feature screening was performed. In this study, 575 extracted remote sensing
features were screened using the feature importance assessment method of the random
forest [48]. In order to show the combined effect of spectral features and texture features
in modelling, the spectral feature and texture feature were screened independently in this
study. These two features were then combined and used for modelling.

Since most of the texture values of the extracted 1 × 1 windows were 0 or 1, they were
not usable and thus removed, and the remaining 486 texture features were used for the
subsequent screening. The 5-year interval change data and the annual average change data
were calculated using Equations (5) and (6), respectively. Then, the feature importance
assessment method of the random forest was used to filter the feature variables in the two
different change types, and the top five features with contributions greater than 5% were
selected from the spectral features and the texture features, respectively. Considering the
problem of collinearity between features, the variance inflation factor (VIF) was used to
check all the features selected in this study. When the VIF value is less than 3, it means that
the collinearity between features is weak [49]. According to this principle, two features
with VIF values greater than 3 in the 5-year interval change were removed, and the 5-year
interval change and annual average change resulted in 8 and 10 features for the modelling
study, respectively (Table 3).

Table 3. Results of remote sensing feature screening.

Change Type Remote Sensing Features

5-year interval change B4 × (B3/B7), B5/B4, PCA2, FVC, PCA4, R9B1EN,
R17B7CO, R5B4SM

Annual average change R3B3VA, R15B5VA, R17B1VA, R9B4HO, R15B5ME,
DVI, PCA2, EVI, B4 × (B3/B7), B7/B3

The expression of the texture features is “RXBYTT”, RX is the size of the texture window, BY is a certain single
band of the image, and TT is the abbreviation of a certain texture feature.

2.6.3. Modelling Methods

In this study, carbon storage dynamics models were developed using change data, and
the modelling methods included partial least squares regression (PLSR), gradient boosting
regression tree (GBRT), and random forest (RF).

PLSR is a method used to study the correlation and quantitative relationship between
the response variable Y and a set of explanatory variables, X = x1, x2, · · · , xn, and the set of
independent variables X can also be used to predict Y [50]. The modelling principle of PLSR
is the development of multivariate linear regression and principal component analysis.
Compared with these two methods, PLSR has better stability and can solve the problem of
collinearity between multiple explanatory variables X [51–53]. The implementation of the
PLSR model in this study was based on the Minitab 20 software [54].

GBRT is an algorithm for iterative regression trees proposed by Friedman [55,56]. All
the regression trees in this model are interconnected, and at its core, each tree is fitted based
on the residuals and conclusions of the previous tree [57]. GBRT uses a forward-distributed
algorithm to minimize the loss function by selecting the appropriate decision tree function
from the current model and the fitted function. Based on the characteristics described
above, the GBRT model has low computational complexity, is able to reduce errors, and
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has the ability to handle unevenly distributed data [58]. The implementation of the GBRT
model in this study is based on the “Gradient Boosting Regressor” algorithm provided in
the “Scikit-learn” package for the Python language.

RF is an integrated learning model, first proposed by Breiman, which consists of many
aggregated randomly generated trees [59,60]. In the classification problem, RF outputs the
type with the most votes, and in the regression problem, RF outputs the mean of all decision
trees [61]. RF can reduce variance and effectively reduce overfitting by assembling different
trees, and it has excellent classification and regression performance; thus, it is currently
used in many fields of research [58,61,62]. The implementation of the RF model in this
study is based on the “Random Forest Regressor” algorithm provided in the “Scikit-learn”
package for the Python language.

In this study, the above three methods were used to develop 5-year interval change
and annual average change models, respectively. In order to explore the influence of TNI
on the dynamic model of forest carbon storage, the TNI was added to each model in this
study, then the accuracy of different dynamic models before and after adding the TNI was
compared, and the optimal model was selected to estimate the carbon storage of Pinus
densata in Shangri-La.

2.7. Accuracy Evaluation

Ultimately, this study obtained 92 groups of change values of each type of change; 70%
(64 groups) of the data were randomly selected for model fitting, and the remaining 30%
(28 groups) were used for validation, and cross-validation was performed during model
fitting. The indicators used to evaluate the accuracy of the model were the coefficient of
determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE).
In order to ensure that the model results were as objective as possible, each model was
fitted 20 times in this study to allow take the mean values of evaluation indicators to be
used for comparison. The equations are as follows:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (7)

RMSE =

√
∑n

i=1(yi − ŷi)
2

n
(8)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (9)

where yi is the observed value of the sample site, ŷi is the predicted value of the model, y is
the observed mean value of the sample site, and n is the number of samples.

3. Results

3.1. Analysis of Modelling Results

The PLSR, GBRT, and RF methods were used to develop the 5-year interval change
and annual average change models of carbon storage, respectively, TNI was added to each
model subsequently, and the results of accuracy evaluation indexes (20 times fitted mean
values) of each type of model are shown in Table 4. As can be seen from Table 4, among the
models developed with the same type of change data, the PLSR model performed the worst
and the RF model performed the best. The change of model indicators (percentage) after
adding TNI is shown in Figure 5, from which it can be seen that R2 increases and RMSE
decreases for all models, and the MAE values decreased for all models except for the PLSR
model with annual average change. The maximum increase in R2 is 10.48%, the maximum
decrease in RMSE is 7.32%, and the maximum decrease in MAE is 8.89%. Considering
the changes of all accuracy indicators together, the addition of TNI improves the model
accuracy. The mean values of carbon storage calculated for the 5-year interval change
and the mean annual change of the sample plot data were 5.14 t-C·ha−1 and 1.03 t-C·ha−1,
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respectively. After comparison, it can be seen that the RMSE and MAE values of both
the RF and GBRT models are smaller than the mean values, except for the PLSR model,
indicating that the errors of the RF and GBRT models are smaller and the model results are
more reasonable.

Table 4. Comparison of modelling results.

Change Type Model
Fitting Validation

R2 RMSE/t-C·ha−1 MAE/t-C·ha−1

5-year interval change

PLSR 0.18 9.61 9.09
GBRT 0.81 4.58 2.51

RF 0.85 4.09 1.83
PLSRTNI 0.18 9.50 8.36
GBRTTNI 0.83 4.24 2.43

RFTNI 0.87 3.82 1.78

Annual average change

PLSR 0.23 1.83 1.64
GBRT 0.80 0.94 0.45

RF 0.83 0.87 0.36
PLSRTNI 0.25 1.82 1.67
GBRTTNI 0.82 0.89 0.41

RFTNI 0.84 0.86 0.35
PLSR TNI, GBRTTNI, and RFTNI in the table indicate the PLSR model, GBRT model, and RF model after adding
TNI, respectively.

Figure 5. Changes in model indicators after adding TNI: positive values on the right side of the y-axis
represent an increase, and negative values on the left side of the y-axis represent a decrease.

The 5-year interval change represents the change in carbon storage over five years,
and the annual average change represents the change in carbon storage in one year. In
order to compare the effects of dynamic models with 5-year interval changes and annual
average changes, the RMSE and MAE values of the annual average change model were
adjusted to five times their original values in this study, so that the error indicators of both
models are on the same time scale. The adjusted results are shown in Table 5. Comparing
the accuracy indicators of the two models in Tables 4 and 5, it can be seen that the R2 of all
5-year interval change models is higher than that of the annual average change model, the
RMSE values are lower than those of the 5-year interval change model except for the PLSR
model, and the difference in MAE values is not significant. Therefore, the 5-year interval
change model works better overall.

According to the confidence interval plot (Figure 6) of the 20 fittings for each model,
the confidence range of the RF model among the types is smaller than that of the GBRT and
PLSR models, indicating that the RF model in this study has the least uncertainty and the
results obtained are more stable and reliable. In summary, the accuracy of 5-year interval
change RF model with the addition of TNI is the highest.
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Table 5. Error indicator for the adjusted annual average change.

Change Type Model
Fitting Validation

RMSE/t-C·ha−1 MAE /t-C·ha−1

Annual average change

PLSR 9.16 8.2
GBRT 4.69 2.25

RF 4.37 1.8
PLSRTNI 9.075 8.35
GBRTTNI 4.465 2.05

RFTNI 4.295 1.75

Figure 6. Confidence intervals (95%) of the accuracy evaluation indicators for different models:
(a) the model of 5-year interval change before adding TNI; (b) the model of 5-year interval change
after adding TNI; (c) the model of annual average change model before adding TNI; and (d) the
model of annual average change after adding TNI.

3.2. Mapping Carbon Storage

According to the model evaluation results, the 5-year interval change RF model
with the highest accuracy was used to estimate the carbon storage change. The scatter
plot of this estimation model is shown in Figure 7. The direct estimation result of the
model is the 5-year interval change of carbon storage of Pinus densata in Shangri-La. The
values of the carbon storage change for the six change periods are ΔCS1 = CS1992 − CS1987,
ΔCS2 = CS1997 −CS1992, ΔCS3 = CS2002 −CS1997, ΔCS4 = CS2007 −CS2002, ΔCS5 = CS2012 −CS2007
and ΔCS6 = CS2017 − CS2012.
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Figure 7. Scatter plot of the estimation model.

The estimated carbon storage changes in the six periods are as follows: ΔCS1 = −53.327 × 104 t,
ΔCS2 = 13.887 × 104 t, ΔCS3 = −94.041 × 104 t, ΔCS4 = 14.602 × 104 t, ΔCS5 = 20.869 × 104 t,
and ΔCS6 = 5.602 × 104 t. A positive value indicates an increase in total carbon storage,
and a negative value indicates a decrease in total carbon storage. The estimation results
indicate that the carbon storage of Pinus densata in Shangri-La decreased in the periods
1987–1992 and 1997–2002 and increased in the remaining four periods.

In order to obtain carbon storage maps for each year, the published AGB estimates
for each year from our group were used [63], which contain the aboveground biomass
estimates of Pinus densata in Shangri-La for 1987, 1992, 1997, 2002, 2007, 2012, and 2017.
These data were combined with the results of carbon storage change values estimated in
this paper to calculate the total carbon storage values for each year. Firstly, the AGB of each
year in the published study was converted to carbon storage by multiplying the carbon
content coefficient (0.501) and the converted values were expressed as T1987, T1992, T1997,
T2002, T2007, T2012, and T2017; then the carbon storage change values ΔCS1, ΔCS2, ΔCS3,
ΔCS4, ΔCS5 and ΔCS6 were added to the conversion values of the smaller years in each
change period in order to obtain the carbon storage values for the six years 1992, 1997, 2002,
2007, 2012 and 2017, respectively (e.g., CS1992 = ΔCS1 + T1987), and the carbon storage
value for 1987 was obtained by subtracting ΔCS1 from T1992 (CS1992 = T1987 − ΔCS1).
The statistical results for carbon storage are shown in Table 6, and Figures 8 and 9 (the
spatial resolution is 30 m) were obtained by mapping the values of the carbon storage
change for each period and each year according to the Pinus densata distribution range. The
distribution range and area of Pinus densata are derived from Forest Manager Inventory
(FMI) data.

Table 6. Statistics of Pinus densata carbon storage.

Year Area of Pinus densata (ha)
Total CS

(Million Tons)
Average CS
(t-C·ha−1)

1987 171560.28 5.30 30.91
1992 171560.28 4.24 24.69
1997 170589.86 4.77 27.97
2002 170589.86 3.12 18.30
2007 174179.37 3.99 22.93
2012 174213.12 4.03 23.12
2017 184815.84 3.80 20.53
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Figure 8. Change values for carbon storage for six time periods.

 
Figure 9. Carbon storage values for seven years.

3.3. Spatial Distribution Characteristics for the Changes in Carbon Storage on Different
TNI Gradients

In this study, the estimated changes in carbon storage were classified as increases
(positive change values) and decreases (negative change values), and the TNI (0.30 to 0.93)
was classified into ten levels from low to high using the natural breaks (Jenks) method: low
(1–3), medium–low (4–5), medium–high (6–7), high (8–10). The DI was then calculated
according to Equation (4) and used to explore the distribution of carbon storage changes
along different TNI gradients. The distribution results are shown in Figure 10.
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Figure 10. Distribution of increased carbon storage (a) and decreased carbon storage (b) on the
TNI gradient.

As can be seen from Figure 10, the increase and decrease in the carbon storage of
Pinus densata in Shangri-La at each period have a certain regularity on the TNI gradient.
The DI curve for ΔCS1(1987–1992) decreases and then rises when carbon storage increases
(Figure 10a) with a dominant distribution in the low and high TNI gradients; the DI curve
for ΔCS2 (1992–1997), ΔCS4 (2002–2007), ΔCS5 (2007–2012), and ΔCS6 (2012–2017) rises
and then reduces with the dominant distribution areas of ΔCS2 being in the low and
medium TNI gradients, and the dominant distribution areas of ΔCS4, ΔCS5, and ΔCS6
being concentrated in the medium–high TNI gradients; and ΔCS3 (1997–2002) reduces
with the TNI gradient, and its dominant distribution area is in the low and medium–low
gradients. The corresponding curve change period displays a decreasing trend when
the carbon storage decreases (Figure 10b). Overall, the dominant distribution areas for
each period when carbon storage increases are mainly found in the lower or middle TNI
gradients, while the dominant distribution areas for each period when carbon storage
decreases are found in all TNI gradients.

4. Discussion

In long time series data, the uncertainty of the historical data, due to the events that
took place at the time being taken into account, cause some of the data to display large
deviations in values, which are known as anomalies or outliers [64]. The stability of the
model can be affected by outliers, and at the same time, the prediction accuracy of the
model may be reduced, so the detection and handling of outliers is very important in the
modelling process [65]. The sample plot data were screened twice in this study, the first time
removing plots with an AGB of less than 1 t·ha−1 because they had an average diameter
at breast height of less than 5 cm and an average tree height of less than 1.5 m. They are
young forests, too low in canopy density, and poorly characterized by the appearance of
the forest floor (similar to bare ground) on 30 m resolution imagery. Values exceeding the
range of x ± 3σ were selected for the second time using the Pauta criterion. By removing
values that are too small and too large from the data in these two steps, respectively, the
overall uncertainty of the data is reduced and the reliability of the data is improved.

The remote sensing-based estimation model is one of the main methods used in
current carbon storage studies [7]. Based on the accumulation of ground survey data, the
results of remote sensing estimation models are considered to have certain advantages and
reliability in forest carbon storage studies. Time series images also provide an important
basis for describing change [66]. The NFI and Landsat time series data over a 30-year
period were combined to develop a dynamic model to study forest carbon storage in this
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paper. Although dynamic models based on change data are currently less commonly used
in forestry, their advantages in terms of accuracy have been demonstrated [11,12]. In this
study, although the effects of dynamic models and static models are not directly compared
through experiments, we can refer to some of the existing studies related to forest carbon
storage modelling in recent years [8,67,68]. The R2 of the remote sensing static models
developed in these studies ranges from 0.64 to 0.73 as the highest value, while the R2 of the
optimal model in this study is 0.87. Thus, the advantages of the dynamic model in terms of
accuracy can be seen.

The DI is an area evaluation indicator. When the distribution curve is flatter, it indicates
that the distribution of such changes deviates less from the standard distribution, and its
adaptability to the terrain is wider [16]. In this study, the areas of increasing or decreasing
Pinus densata carbon storages were calculated separately, and the main topography of these
two areas was evaluated according to the DI. The results of this study demonstrate that the
increase in carbon storage in the periods ΔCS4, ΔCS5, and ΔCS6 is much greater than the
decrease, leading to an increase in total carbon storage from 2002 to 2017, which is related
to the policy of “returning farmland to the forest” that has been implemented in Shangri-La
since 2000. In the area of increasing carbon storage, the distribution curves of these three
periods are relatively flat, showing a general adaptation to different levels of TNI and
suggesting that the implementation of this government policy has led to the widespread
planting of Pinus densata in Shangri-La, thus resulting in a more balanced topographic
distribution of increasing carbon storage across the region.

Different TNI levels reflect different elevation and slope conditions, and the dominant
distribution reflects the main topographic range of carbon storage changes. Although the
dominant distribution of carbon storage changes over the TNI gradient can be clearly seen
throughout a particular period of change, the six periods of change in carbon storage are
more complex, and the distribution trends across the periods of change are not entirely
consistent along the TNI gradient. What can be seen from the dominant distribution is
that the regions where carbon storage increased are mainly located at low altitudes or on
gently sloping terrain or both, as such terrain is conducive to artificial tending. In contrast,
in regions with decreased carbon storage, the dominant distribution occurs across the TNI
gradient, and the overall dominance of the terrain is not obvious, which is due to the
randomicity of deforestation or forest destruction. In the past, TNI has not been applied to
separate forest land class studies, but this study shows that its combination with the DI can
be used to evaluate the increase and decrease effects of a single land type.

Some studies have suggested that human activities are the main driver of forest
carbon [69], but as Shangri-La is a highland region with a low population density, the impact
of human life on the surrounding forests is also relatively low, and it is environmental
factors, including topography, that mainly impact forest carbon storage. Therefore, it
is essential to consider topographic factors when studying forest carbon storage in this
region. The results of this paper show that adding TNI to the dynamic model can reflect
the topographic effect of the model and enable the improvement of the dynamic model
accuracy, and by analyzing the distribution of forest carbon storage changes along the
TNI gradient, it is possible to reveal the changes in forest carbon storage under different
topographic conditions.

At present, the main approach to the study of historical forest dynamics is still based
on the estimation of forest biomass or carbon storage over several single years, and the
values of changes in different periods are calculated in order to derive forest dynamics
results [70]. The level of periodic change in the forest can be estimated directly from models
developed from interval change data, and due to the advantages of dynamic models in
terms of accuracy, the resulting change values are estimated more precisely. Different
dynamic models can be obtained for different types of change data. In this paper, we only
compared two dynamic models for the 5-year interval change data and annual average
change data, and more types of dynamic models are yet to be explored.
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Although it was difficult to derive carbon storage results for a single year in this study
without the support of carbon storage inventory data or graphs related to the study years,
the results of this study demonstrate that the dynamic model is able to estimate the change
in forest carbon storage and is well suited for the study of forest carbon storage change.
Dynamic models are capable of quantitatively describing changes in specific properties,
so they need not be limited to the field of forestry research but have the potential for
application in other areas of natural or manufactured landscapes where regular variation
exists. This study has so far only considered the influence of topographic factors, and
there remains the possibility of other environmental factors, such as climate and soil, also
influencing the model, which could be the next direction for future research.

5. Conclusions

In this study, the carbon storage dynamic model was developed based on NFI data
and Landsat time series images over a 30-year period. PLSR, RF, and GBRT were used for
modelling, and the accuracy of the two dynamic models was compared; then TNI, which
represents topographic factors, was introduced into the model, and the distribution of
carbon storage changes in Shangri-La on different TNI gradients was analyzed. The main
conclusions are as follows: (1) the model effects of the non-parametric methods, RF and
GBRT, are much better than those of the parametric method, PLSR, and the accuracy of
the 5-year interval change model is better than that of the annual average change model;
(2) TNI can improve the accuracy of the dynamic carbon storage estimation model, and the
accuracy of the dynamic model with RF is the highest after adding TNI; (3) the dynamic
model displays good performance regarding the estimation of carbon storage changes, and
the results of the interval change model show that the total carbon storage of Pinus densata in
Shangri-La decreased in 1987–1992 and 1997–2002, and increased in 1992–1997, 2002–2007,
2007–2012, and 2012–2017; and (4) the DI can be used to evaluate the main topography
for the regions that display a change in Pinus densata carbon storage, the predominant
topography in the regions of increasing carbon storage is that of low elevations or low
slopes, or a combination of both conditions, while the topography in regions of decreasing
carbon storage is more random. The results of this study can be used as a reference for
forest carbon storage estimation using Landsat images in areas with complex topography.
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Abstract: The estimation of characteristic parameters such as diameter at breast height (DBH),
aboveground biomass (AGB) and stem volume (V) is an important part of urban forest resource
monitoring and the most direct manifestation of the ecosystem functions of forests; therefore, the
accurate estimation of urban forest characteristic parameters is valuable for evaluating urban ecological
functions. In this study, the height and density characteristic variables of canopy point clouds were
extracted as Scheme 1 and combined with the canopy structure variables as Scheme 2 based on
unmanned aerial vehicle lidar (UAV-Lidar). We analyzed the spatial distribution characteristics of
the canopies of different tree species, and multiple linear regression (MLR), support vector regression
(SVR), and random forest (RF) models were used to estimate the DBH, AGB, and V of urban single
trees. The estimation accuracy of different models was evaluated based on the field-measured data.
The results indicated that the model accuracy of coupling canopy structure variables (R2 = 0.69–0.85,
rRMSE = 9.87–24.67%) was higher than that of using only point-cloud-based height and density
characteristic variables. The comparison of the results of different models shows that the RF model
had the highest estimation accuracy (R2 = 0.76–0.85, rRMSE = 9.87–22.51%), which was better than
that of the SVR and MLR models. In the RF model, the estimation accuracy of AGB was the highest
(R2 = 0.85, rRMSE = 22.51%), followed by V, with an accuracy of R2 = 0.83, rRMSE = 18.51%, and the
accuracy of DBH was the lowest (R2 = 0.76, rRMSE = 9.87%). The results of the study provide an
important reference for the estimation of single-tree characteristic parameters in urban forests based
on UAV-Lidar.

Keywords: urban forest; UAV-Lidar; canopy volume; diameter at breast height (DBH); aboveground
biomass (AGB); stem volume (V)

1. Introduction

Urban forests are an important part of urban ecosystems, and they are the foundation
and guarantee of urban sustainable development [1,2]. They can effectively reduce the
urban heat island effect and improve air quality and other environmental conditions as
well as ecosystem services [3,4]. The single tree is the basic unit of the forests [5]; their
characteristic parameters such as tree height (H), diameter at breast height (DBH), crown
width, aboveground biomass (AGB), and tree volume (V) can effectively reflect the growth
status, spatial distribution, and structural characteristics of forest resources, which are
important elements of forest resource investigation and reliable diversity indicators of
forest succession stages [6], as well as being the focus of research on urban ecosystems and
their functions [7].
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Single trees in cities are highly fragmented and unevenly distributed in urbanized areas
with high population densities and high concentrations of artificial landscapes [8], so it is
time-consuming and labor-intensive to obtain information on the characteristic parameters
of urban single trees through traditional forest resource investigation methods [9]. Remote
sensing technology has rapidly developed and can be used to quickly and accurately obtain
multiscale and multitemporal information on forest structure characteristics, effectively
making up for the shortcomings of traditional forest resource monitoring methods and
greatly improving the work efficiency [10]. However, passive remote sensing technology
only provides spectral and textural information of the forest canopy surface, which is
susceptible to atmospheric conditions and other factors, and it is difficult to obtain the
three-dimensional structure of the vegetation canopy [11,12].

Light detection and ranging (LiDAR) is an active remote sensing technology that
obtains the distance between a sensor and a target by calculating the time difference
between the laser pulse emitted by the sensor and the received echo pulse. Because
LiDAR has strong penetration into the forest, it can accurately obtain the three-dimensional
structure information of forest tree height and canopy [13–15], thus realizing the leap from
two-dimensional to three-dimensional forest canopy structure information, resulting in
the emergence of canopy parameters extracted from lidar data as a hot research topic
globally. Previous studies have shown that LiDAR-based estimation of diameter at breast
height, biomass, stock volume, and forest distribution mapping can be effective [16–19]. For
example, Cao et al. [20] used full-waveform unmanned aerial vehicle (UAV) lidar data to
extract point cloud metrics and waveform metrics calculated based on voxel-based methods
to estimate the single tree AGB of plantation forests in the coastal region of east China. The
results indicated that full-waveform lidar data can effectively estimate the AGB of single
trees. Liu et al. [21] used the constant allometric ratio model to estimate the forest single
tree biomass based on UAV lidar data to obtain single tree canopy characteristic parameters
(tree height, crown width, canopy projection area, and canopy volume) and achieved a good
fit and high prediction accuracy. Qin et al. [22] used UAV lidar to estimate the subtropical
single tree carbon stock in Shenzhen, southern China, and the results indicated that the
height variable can explain the variation of tree carbon stock and estimate the single tree
carbon stock well. Therefore, it is important to examine the application of UAV lidar for
estimating single tree characteristic parameters in urban areas.

Forest canopy structure includes the horizontal and vertical directions of branches
and leaves, canopy width and height, and canopy light transmission [23,24]. The canopy
width and cross-sectional area can be used to measure the horizontal extension size of
the canopy. The vertical structure of the canopy is mainly the spatial distribution and
hierarchical characteristics of the forest vegetation, and the performance is comparatively
complex [25–27]. To quantify the three-dimensional structure of the forest canopy, Lefsky
et al. proposed a voxel-based canopy volume model (CVM) to characterize the differences
in the volume and vertical spatial distribution of the canopy [28]. The basic principle of the
CVM model is reflecting the spatial heterogeneity of the forest structure arising from the
difference in the light environment within the canopy by dividing the canopy into two parts,
the photosynthetically active zone and the inactive zone, to realize the spatial arrangement
of elements within the canopy structure and the distinction of volume structure [29–32].
Therefore, the CVM model is an important method for obtaining the parameters of tree
canopy structure.

In summary, the estimation of DBH, AGB, and stem volume of trees is an important
element of urban forest resource monitoring and the most direct manifestation of the
ecosystem functions of forests, and lidar is an advanced technical tool for detecting the
three-dimensional structure of forests. Therefore, in this study, three urban tree species,
Ginkgo (Ginkgo biloba L.), Cinnamomum camphora (Cinnamomum camphora (Linn.) Presl),
and Metasequoia glyptostroboides (Metasequoia glyptostroboides Hu et Cheng) were used
as examples. UAV-Lidar data were used to obtain the canopy point clouds of the three
kinds of single trees, coupled with point clouds and canopy structure variables, and three

518



Remote Sens. 2022, 14, 6375

methods, multiple linear regression (MLR), support vector regression (SVR) and random
forest (RF), were used to establish models for estimating the DBH, AGB, and V of single
trees in urban forests based on UAV-Lidar data. The model and estimation results were
validated using ground-measured data. This provides an important technical tool for rapid
and accurate monitoring of single tree parameters in urban forests.

2. Materials and Methods

2.1. Study Area

The study area is in Lin’an (29◦56′ to 30◦23′N latitude and 118◦51′ to 119◦52′E longitude)
(Figure 1), Hangzhou City, Zhejiang Province. Lin’an belongs to the subtropical monsoon
climate with warm and humid conditions, abundant light and rainfall, and four distinct
seasons. The average annual temperature is 16.4 ◦C, the frost-free period is 237 days,
the sunshine time is 1847.3 h, and the annual precipitation is 1613.9 mm. The area is
dominated by hills and mountains, the terrain inclines from northwest to southeast, and
the three-dimensional climate is obvious. The climax vegetation is subtropical evergreen
broad-leaved forest, and the main tree species planted in the urban area of Lin’an City include
Metasequoia glyptostroboides (M. glyptostroboides), Ginkgo biloba (G. biloba), Cinnamomum camphora
(C. camphora), etc.

 

Figure 1. Overview of the study area: (a) location of Lin’an, (b) location of the study area, (c) UAV-
Lidar point clouds of the study area, (d) Metasequoia glyptostroboides point cloud profile, (e) Ginkgo
biloba point cloud profile, (f) Cinnamomum camphora point cloud profile.

2.2. Field Measurements

In July 2021, the DBH, tree height, crown height, and crown width of 64 stems of
G. biloba, 74 stems of C. camphora, and 55 stems of M. glyptostroboides in the study area
were measured in detail, as shown in Figure 1. The single trees were positioned with
Huace Smart Real Time Kinematic. The AGB consisted of stem biomass (WS), branch
biomass (WB), and foliage biomass (WF). In this study, the biomass of each component
was calculated according to the biomass allometric equations of different tree species and
summed to obtain the AGB of a single tree [33–35], as shown in Table 1. The stem volume
was calculated according to the single-entry stem volume table of Zhejiang Province and
the measured single tree DBH data [36]. Table 2 shows the statistical characteristics of the
parameters of the three tree species.
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Table 1. Biomass allometric equations for each biomass component of the three tree species.

Tree Species Biomass Components Biomass Allometric Equations Reference

G. biloba
Stem biomass (WS) ln(WS) = −3.84 + 0.95 × ln(DBH2H)

[34]Branch biomass (WB) ln(WB) = −9.38 + 1.46 × ln(DBH2H)
Foliage biomass (WF) ln(WF) = −6.95 + 1.03 × ln(DBH2H)

C. camphora
Stem biomass (WS) ln(WS) = −3.175 + 0.948 × ln(DBH2H)

[33]Branch biomass (WB) ln(WB) = −6.690 + 1.195 × ln(DBH2H)
Foliage biomass (WF) ln(WF) = −7.601 + 1.287 × ln(DBH2H)

M. glyptostroboides
Stem biomass (WS) WS = 0.01749 × (DBH2H)0.9608

[35]Branch biomass (WB) WB = 0.03037 × (DBH2H)0.7082

Foliage biomass (WF) WF = 0.11079 × (DBH2H)0.4607

Note: H is tree height (m), DBH is diameter at breast height (cm).

Table 2. Summary of information on measured characteristics parameters of the three tree species.

Parameters
G. biloba (n = 64) C. camphora (n = 74) M. glyptostroboides (n = 55)

Range Mean SD Range Mean SD Range Mean SD

H/m 8–14.3 11.01 1.78 6.9–11 8.58 0.84 7.8–18.8 11.63 2.70
DBH/cm 14.8–23.9 18.76 2.29 16.3–29.3 22.88 2.65 11.8–33.9 19.94 5.60
AGB/kg 31.4–154.6 75.26 29.31 73.72–345.43 186.84 59.54 21.87–231.29 77.51 50.77

V/m3 0.074–0.25 0.138 0.041 0.077–0.355 0.183 0.054 0.047–0.688 0.206 0.154

2.3. Lidar Data

The DJI Matrice 600 Pro six-rotor UAV with a lightweight Velodyne Puck LITE™ laser
scanner was used to acquire the original lidar point clouds in the study area (Figure 2). The
flight height of the UAV is 60 m above ground level, with a flight speed of 8 m/s, a route
spacing of 25 m, and a lateral overlap rate of data sampling of 50%. The sensor records the
first echo information of the laser pulse with a wavelength of 903 nm, a maximum scanning
angle of ±15◦, a scanning frequency of 20 Hz, and a scanning speed of 300,000 points/s.
The final average point cloud density obtained is approximately 230 points/m2.

Figure 2. UAV and LiDAR system.
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2.3.1. Lidar Data Preprocessing

The original lidar point cloud data were denoised using the height thresholding
method, and the point cloud data after noise removal were filtered and separated into
ground points and nonground points. First, the ground points were extracted by filtering
with the improved progressive TIN densification algorithm [37]. Then, the height average
of the laser points within a cell was calculated via the inverse distance weighting method
to obtain a digital elevation model (DEM) with a spatial resolution of 0.5 m. Finally, the
DEM was used to normalize the point cloud data to obtain the normalized point cloud
data. In this study, the point cloud segmentation algorithm was used to segment individual
trees based on normalized point cloud data [38,39]. This algorithm identified single trees
via region growing combined with thresholding, and then identified the top of the tree to
determine the distance between the surrounding points and the vertex, and expanded the
region to segment the first tree. Successive iterations were made on this basis until all trees
were segmented. The characteristic variables of a single tree were extracted based on the
segmented single tree point cloud.

2.3.2. Lidar Metrics

The characteristic variables based on the lidar data can be used to estimate the forest
characteristic parameters, and the point cloud characteristics extracted from the first returns
have a remarkable correlation with the height, which is more suitable for estimating the
forest characteristic parameters [13,40]. Of course, to reduce the influence of low ground
vegetation on the data, the data after filtering the point clouds below 2 m were used as the
crown point clouds, and characteristic variables were extracted from the first returns of
the lidar point cloud [41,42]. In this study, the lidar data characteristic variables included:
height-based metrics (HB) describing the parameters related to the lidar point cloud height;
density-based metrics (DB) describing the canopy return density variable, which is the
ratio of the number of height percentile point clouds to the total number of point clouds;
the canopy area (S), which is the projected area of the canopy point cloud calculated based
on the two-dimensional convex packet algorithm; the crown diameter (CD), which is the
average of the east–west and north–south crown diameters of the point clouds. The canopy
volume variables include OG, CG, EV, and OV. The metrics and descriptions are shown in
Table 3.

2.3.3. Calculation of the Volume of Single Tree Canopy

Urban trees are frequently pruned and truncated, [43], making the crown of the
pruned single tree change, often with a special crown shape. Therefore, canopy volume
was extracted as a metric for single tree characteristic parameter estimation, as shown in
Table 3. As shown in Figure 3, in this study, the voxel-based canopy volume method was
used to calculate the canopy volume metrics for lidar point clouds of tree crowns:

Figure 3. Illustration of the voxel-based canopy volume model.
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The space where the canopy point clouds was located was divided into 0.5 × 0.5 × 0.5 m
voxels [44], which were divided into vertical columns, and each column was further layered
into four canopy structures. First, each voxel was classified as “filled” or “empty” according
to whether there was a point cloud in the voxel, that is, the volume in unit area (m3/m2).

Table 3. Description of metrics derived from lidar data.

Metrics Description Reference

Height-based metrics(HB)

Height percentiles (H5, H25, H50,
H75, H95, and H99)

The percentiles of the canopy height
distribution (5th, 25th, 50th, 75th,
95th, and 99th) of first returns

[25,45,46]

The coefficient of variation of
height (Hcv)

The coefficient of variation of
heights of all first returns

Maximum height (Hmax) Maximum height above ground of
all first returns

Variance of height (Hva) The variation in heights of all
first returns

Standard deviation of height (Hstd) The standard deviation of heights
of all first returns

Median height (Hmed) Median height above ground of all
first returns

Mean height (Hmean) Mean height above ground of all
first returns

Interquartile distance of
height (HIQ)

The interquartile distance of height
of all first returns

Root mean square of height (Hsq) The root mean square of height of
all first returns

Cube mean of height (Hcm) The cube mean of height of all
first returns

Density-based metrics(DB) Canopy return density
(D3, D5, D7, D9)

The proportion of points above the
quantiles (30th, 50th, 70th and 90th)
to total number of points

[47]

Canopy structure metrics(CS)

Canopy projection area (S)
Canopy projection area calculated
using two-dimensional convex
hull algorithm [21]

Crown diameter (CD)
Average diameter of crown point
cloud (Xmax−Xmin)+(Ymax−Ymin)

2

Open gap volume (OG) and closed
gap volume (CG) of CVM

The volume of empty voxels
located above and below the filled
canopy, respectively [32]

Euphotic volume (EV) and
oligophotic volume (OV) of CVM

The volume of filled voxels located
65% above and 35% below of all
filled grid cells of that column

Then, according to the distribution of the filled position, the upper 65% of the filled
zone was defined as “euphotic”, in every column of voxels, and the remaining 35% was
defined as “oligophotic”. According to the spatial distribution and location of the empty
voxel, in each voxel column, the empty voxels between the top of the canopy and the first
filled voxels were defined as the “open gap”, and the empty voxels between the filled
voxels and the ground were called the “closed gap”. The three-dimensional canopy volume
distribution was converted into a two-dimensional canopy volume profile (CVP) according
to the percentage of the volume of the four classified canopy volume characteristics in each
height interval. The canopy volume distribution indicated the distribution of elements
arranged in the vertical spatial extent of the canopy [30].
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2.4. Model Construction Methods and Scheme

In this study, three modeling methods, MLR, SVR and RF, were used to construct the
estimation models of urban single tree characteristic parameters based on the obtained lidar
data characteristic variables. To study the influence of canopy structure on the accuracy
of single tree characteristic parameters, the models were constructed in two schemes. The
model excluding canopy structure variables is referred to as “Scheme 1”, and the model
including canopy structure variables is referred to “Scheme 2”.

2.4.1. MLR Model

MLR is the most commonly used parameterization method for estimating forest
characteristic parameters from remote sensing information, and can quickly establish a
linear relationship between two or more independent variables and dependent variables to
achieve parameter estimation. The MLR is generally expressed as follows:

Y = a0 + a1x1 + a2x2 + . . . + anxn (1)

where a0 is the constant term; a1, a2, . . . , an are regression coefficients representing the degree
of contribution of the respective variables to the dependent variable; and x1, x2, . . . , xn are
the independent variables, which are the characteristic variables shown in Table 3. Y is the
dependent variable, which is the estimated characteristic parameter of this study. In this
study, all possible combinations of variables were evaluated using “all subsets” regression,
and the best combination of variables was selected to build the MLR model to estimate the
three characteristic parameters [48].

2.4.2. SVR Model

SVR is a machine learning model that uses support vector machines to perform regression
analysis [49,50]. It applies classification methods to solve regression problems with finite
samples, mainly based on a given sample data set, by seeking a function to fit all sample
points so that the total variance of sample points from the hyperplane is minimized [51].
SVR transforms the nonlinear problem into a linear problem in high-dimensional space
via kernel functions for nonlinear separable samples in low-dimensional input space,
replacing the inner product operation in high-dimensional space, and ensuring good
generalization ability [52]. Therefore, the SVR model has high accuracy, good ability to handle
high-dimensional and small sample data, good generalization ability, and robustness. In this
study, four kernel function models, including linear, polynomial, radial basis function
(RBF), and multilayer perceptron (Sigmoid), were used, and the best penalty coefficient (C)
with gamma value (g) was selected via grid search cross-validation to construct the SVR
model to estimate the three characteristic parameters.

2.4.3. RF Model

The random forest algorithm is another commonly used machine learning method.
The algorithm is based on modified nonparametric modeling of decision trees [53], and
constructs a decision tree by bootstrapping from the original sample set with put-back
randomly selected N samples to predict the results. The RF algorithm has good noise
resistance and can handle high-dimensional data with relatively high prediction accuracy.
An unbiased estimate of the error can be generated during the RF calculation, and the
importance of each variable involved in the model can be evaluated. There are three
important parameters in the estimation of single tree characteristic parameters using the
RF algorithm: Mtry is the number of variables used randomly at the nodes of each tree,
and Ntree is the number of regression trees in the RF. Nodesize is the minimum number of
terminal nodes in the regression analysis, and the default value is 5 [54,55]. In this study,
three characteristic parameters estimation models are developed based on the optimization
of RF parameters.
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2.5. The Flow Chart and Accuracy Validation

The flow chart of this study is shown in Figure 4. First, field measurements, lidar data
processing, and characteristic variable extraction were conducted. Second, two-thirds of all
measured samples were selected into training samples, and one-third were divided into
test samples. Finally, three modeling methods, MLR, SVR and RF, were used to construct
single tree characteristic estimation models according to Scheme 1 and Scheme 2, and the
accuracy of the models was evaluated.

 

Figure 4. The flow chart of this study.

The model accuracy evaluation metrics include the determination coefficient (R2), root
mean square error (RMSE), and relative root mean square error (rRMSE). Generally, higher
values of R2 and lower values of RMSE and rRMSE indicate better performance of the
model. R2, RMSE, and rRMSE are calculated as follows:

R2 = 1 − ∑n
i=1(x̂i − xi)

2

∑n
i=1(xi − x)2 (2)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (3)

rRMSE =
RMSE

x
× 100% (4)

where n is the number of samples, x is the measured value of the sample canopy characteristic
parameters, x is the mean value of the sample canopy characteristic parameters, and x̂i is
the predicted value of the sample canopy characteristic parameters.
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3. Results

3.1. Canopy Volume and Profile Analysis

The canopy volume profile can directly show the spatial heterogeneity of the forest
canopy structure and the distribution and change in elements in the vertical direction.
Comparing the canopy volumes and profiles of the three species, the euphotic volume
was significantly larger than the oligophotic volume in the filled volume of the G. biloba
canopy (Figure 5); the closed gap volume was larger than the open gap volume in the empty
volume, and the closed gap volume occupied the largest volume. The canopy distribution
of C. camphora was consistent with that of G. biloba (Figure 6), and the euphotic volume was
greater than the oligophotic volume; the closed gap volume was larger than the open gap
volume in the empty volume, and the closed gap volume occupied the largest volume. In
the canopy distribution of M. glyptostroboides (Figure 7), the euphotic volume was close
to the oligophotic volume; the closed gap volume was slightly larger than the open gap
volume in the empty volume.

Figure 5. (a) G. biloba point cloud, (b) canopy volume distribution, which shows the distribution
of canopy structure classes after the expansion of all columns in the panel; and (c) canopy volume
profile, which shows the volume percentage of each class of total volume in each height interval.

Figure 6. (a) C. camphora point cloud, (b) canopy volume distribution, which shows the distribution
of canopy structure classes after the expansion of all columns in the panel, and (c) canopy volume
profile, which shows the volume percentage of each class of total volume in each height interval.
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Figure 7. (a) M. glyptostroboides point cloud, (b) canopy volume distribution, which shows the
distribution of canopy structure classes after the expansion of all columns in the panel; and (c) canopy
volume profile, which shows the volume percentage of each class of total volume in each height
interval.

3.2. Variable Importance Analysis

In this study, the point cloud characteristic variables extracted from lidar data were
run 100 times using the RF model according to two modeling schemes. Figures 8 and 9
show the importance scores of Scheme 1 and Scheme 2 input variables, respectively. As
shown in Figure 8, the importance score of the height characteristic variable in Scheme 1 is
significantly higher than that of the density characteristic variable. Among the three single
tree characteristic parameter models, Hcv was the largest in DBH and AGB, with values of
27.89 and 44.05, respectively; Hsq was the largest in V, with a value of 21.12. As shown in
Figure 9, the three parameters with the highest importance in Scheme 2 were all canopy
structure variables. In the DBH and V models, CG had the highest influence, with 31.96 and
28.97, respectively, and in the AGB model, CD had the highest influence, with 40.57. The
results show that the canopy structure variable was significantly more important than other
variables and was the key variable in the estimation of single tree structure parameters.

Figure 8. Importance of input variables based on Scheme 1 (%InMSE: the percentage increase in the
mean square error, ((a): DBH, (b): AGB, (c): V)).
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Figure 9. Importance of input variables based on Scheme 2 (%InMSE: the percentage increase in the
mean square error, ((a): DBH, (b): AGB, (c): V)).

Figure 10 shows the path coefficients (absolute values) calculated using the structural
equations for the direct effect of the three characteristic variables of height characteristics,
density characteristics, and canopy structure on the characteristic parameters. As shown
in Figure 10, CS had the largest direct effect on DBH and AGB, while HD had the largest
direct effect on V, and DB had the smallest effect on characteristic parameters. For DBH,
the path coefficient values, in order, were as follows: CS (0.647) > HD (0.318) > DB (−0.095).
For AGB, the path coefficient values were as follows: CS (0.871) > HD (0.116) > DB (−0.101).
For V, the path coefficient values were as follows: HD (0.593) > CS (0.389) > DB (0.038). The
canopy structure variables had important influence on the estimation of the three single
tree characteristics parameters.

 

Figure 10. Relative importance of input variables to characteristic parameters based on Scheme 2
((a): DBH, (b): AGB, (c): V).

3.3. Model Construction and Evaluation
3.3.1. MLR Estimation Results

To evaluate the accuracy of the established prediction models of single tree characteristic
parameters, three independent variables were selected to construct the MLR models in this
study (Table 4). Among all the metrics selected in the MLR model of Scheme 1, the height
percentiles (Hcv, Hmean, Hsq, Hstd, H99, and Hvar) were frequently selected by the models.
Among all the metrics selected by the MLR model in Scheme 2, height percentile (Hcm, H95,
Hcv and Hvar), canopy structure variables (CD, CG, EV) were frequently selected by the
models. The accuracy value R2 of the models was improved after coupling the canopy
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structure variables. The canopy structure variables played an important role in the construction
of the model, indicating that these variables are sensitive in estimating forest structure.

Table 4. The MLR prediction models and their accuracy assessment under different schemes.

Scheme Parameters Equations R2

Scheme 1
DBH 36.2 − 108.85 × Hcv − 56.78 × Hmean − 56.65 × Hsq 0.76
AGB −63.11 − 183.5 × Hmean + 193 × Hsq − 56.92 × Hstd 0.78

V 0.11 + 0.04 × H99 − 0.36 × Hstd + 0.08 × Hvar 0.83

Scheme 2
DBH 5.18 + 1.32 × Hcm + 0.09 × EV + 0.61 × CD 0.78
AGB −101.75 + 10.44 × H95 + 0.201 × CG + 22.71 × CD 0.85

V 0.11 − 0.51 × Hcv + 0.04 × Hvar + 5.7 × 10 − 5 × CG 0.84

Figures 11 and 12 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the MLR models of Scheme 1 and
Scheme 2, respectively. As shown in Figure 11, the R2 values of the model training accuracy
for single tree DBH, AGB, and V in Scheme 1 were 0.76, 0.78, and 0.83, respectively, with
rRMSE = 9.67 to 27.23%; the R2 values of the model testing accuracy were 0.64, 0.69, and
0.62, respectively, with rRMSE = 11.02 to 39.01%. As shown in Figure 12, the training and
testing accuracy of Scheme 2 single tree characteristic parameters were improved. The
R2 values of the model training accuracy of DBH, AGB, and V were 0.78, 0.85, and 0.84,
respectively, with rRMSE = 9.33 to 30.82%. The R2 values of the model testing accuracy
were 0.69, 0.82, and 0.80, respectively, with rRMSE = 10.41–24.67%. The comparison of the
results shows that the R2 values of the estimation accuracy of the characteristic parameters
of Scheme 2 were all improved after adding the canopy structure variable. Among them,
the estimation accuracy of V improved by 29.0%, which was the greatest improvement,
followed by AGB with an accuracy improvement of 18.8% and DBH with an accuracy
improvement of 7.8%. In addition, the rRMSE values of the AGB and V estimation results
also decreased by 36.8% and 27.7%, respectively, which were large decreases.

Figure 11. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the MLR model based on Scheme 1.
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Figure 12. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the MLR model based on Scheme 2.

3.3.2. SVR Estimation Results

Figure 13 shows the comparison of the R2 values of the estimated characteristic
parameters for the four kernel function SVR models under the two modeling schemes.
As shown in Figure 13, the R2 values of the single tree characteristic parameters in both
Scheme 1 and Scheme 2 were the highest for the SVR model with RBF as the kernel function.
Therefore, the RBF kernel function was chosen to construct the SVR model in this study.

Figure 13. Results of single tree characteristic parameters using different kernel functions ((a): Scheme 1,
(b): Scheme 2).

Figures 14 and 15 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the SVR models of two modeling
schemes, respectively. As shown in Figure 14, the R2 values of the model training accuracy
for single tree DBH, AGB, and V in Scheme 1 were 0.83, 0.84, and 0.85, respectively, with
rRMSE = 8.14 to 24.10%; the R2 values of the model testing accuracy were 0.67, 0.77, and
0.75, respectively, with rRMSE = 10.76 to 26.78%. As shown in Figure 15, the R2 values
of the model testing accuracy of DBH, AGB, and V were 0.72, 0.82, and 0.81, respectively,
with rRMSE = 10.24 to 23.37%. The comparison of the results shows that the R2 values of
the training and testing accuracy of single tree characteristic parameters of the SVR model
were all improved by adding canopy structure variables in Scheme 2. Among them, the
estimation accuracy of V improved by 8%, which was the greatest improvement, followed
by DBH with an accuracy improvement of 7.4% and AGB with an accuracy improvement
of 6.5%. In addition, the rRMSE values of the AGB and V estimation results also decreased
by 12.7% and 11.6%, respectively, which were large decreases, indicating that coupling
canopy parameters can improve the estimation accuracy of urban single tree parameters.
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Figure 14. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the SVR model based on Scheme 1.

Figure 15. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the SVR model based on Scheme 2.

3.3.3. RF Estimation Results

The training data were input into the random forest model to traverse all variable
values and eventually obtain the optimal parameters. Figure 16 shows Mtry, which was
used to determine the minimum variable for each tree in the RF model, and the minimum
Mtry value was required when the model error was minimal. As shown in Figure 17, the
RMSE of the model error tended to be stable after Ntree reached 1500. Therefore, the values
of Ntree in the optimized random forest model were set to 1500 in this study. Table 5 lists
the specific settings for different parameter values for the two schemes.

Figure 16. Influence of Mtry on model error ((a): DBH, (b): AGB, (c): V).
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Figure 17. Influence of Ntree on model error ((a): DBH, (b): AGB, (c): V).

Table 5. Results of the optimization of model parameters for different schemes.

Scheme Parameters Nodesize Mtry Ntree Number of Variables

Scheme 1
DBH 5 15 1500 19
AGB 5 12 1500 19

V 5 18 1500 19

Scheme 2
DBH 5 4 1500 25
AGB 5 21 1500 25

V 5 3 1500 25

Figures 18 and 19 show the correlations between the predicted and field-measured
values of characteristic parameters estimated using the RF models of Scheme 1 and Scheme 2,
respectively. As shown in Figure 18, the R2 values of the model training accuracy for single tree
DBH, AGB, and V in Scheme 1 were 0.74, 0.80, and 0.81, respectively, with rRMSE = 10.46 to
26.36%; the R2 values of the model testing accuracy were 0.67, 0.74, and 0.76, respectively,
with rRMSE = 10.95 to 29.69%. As shown in Figure 19, the training and testing accuracy
of Scheme 2 single tree characteristic parameters were improved. The R2 values of the
model training accuracy of DBH, AGB, and V were 0.80, 0.89, and 0.86, respectively, with
rRMSE = 8.9 to 20.77%. The R2 values of the model testing accuracy were 0.76, 0.85, and
0.83, respectively, with rRMSE = 9.87–22.51%. Comparing the RF model results, the R2

values of the estimation accuracy of the characteristic parameters of Scheme 2 were all
improved after adding the canopy structure variable. Among them, the estimation accuracy
of AGB improved by 14.9%, which was the greatest improvement, followed by DBH with
an accuracy improvement of 13.4% and V with an accuracy improvement of 9.2%. In
addition, the rRMSE values of the AGB and V estimation results also decreased by 24.2%
and 15.2%, respectively, which were large decreases.

Figure 18. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the RF model based on Scheme 1.
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Figure 19. Correlation between measured and estimated values of single tree DBH (a), AGB (b), and
V (c) of the RF model based on Scheme 2.

3.4. Comparison of Model Results

Table 6 shows the summary of the field measured data and the estimation results
of different model characteristic parameters. Compared with the field-measured data,
the estimated CV values of MLR, SVR, and RF models range from 16.6 to 18.11%, the
estimated CVs of AGB range from 49.15 to 54.22%, and the estimated CVs of V range from
44.67 to 46.55%, with smaller variations and mean values closer to the measured values.
Appendix A (Table A1) shows the comparison of the model training accuracy and testing
accuracy of three models for estimating three single tree parameters in two schemes. An
analysis of the results in Appendix A (Table A1) shows that all models of the two schemes
achieved higher accuracy estimation of single tree parameters in urban forests. Figure 20
shows the distribution of the normalized residuals for the testing phase of the characteristic
parameters for different models. The normalized residuals of the characteristic parameters
of the testing samples of the three models were in the range of −2 to 2, indicating that all
models had good stability and reliability in predicting the characteristic parameters of a
single tree.

Table 6. Summary of information on measured and predicted characteristic parameters of the
samples.

Method
DBH AGB V

Min Max Mean CV(%) Min Max Mean CV(%) Min Max Mean CV(%)

Measured 11.80 33.90 20.97 19.00 21.87 345.43 120.46 57.49 0.047 0.688 0.189 50.79
MLR 14.46 32.79 21.31 16.86 10.08 283.90 123.09 51.85 0.067 0.590 0.190 46.22
SVR 13.82 33.54 21.13 18.11 16.20 297.22 121.77 54.22 0.078 0.613 0.188 46.55
RF 14.73 30.39 21.28 16.60 36.99 286.66 121.73 49.15 0.08 0.536 0.190 44.67

However, for the two schemes, the model accuracy and testing accuracy of the single
tree parameters for all models of Scheme 2 were improved, and the error was decreased
compared with Scheme 1, indicating that the coupled canopy parameters could improve
the estimation accuracy of the urban single tree parameter. In addition, from the three
models, the performance of the two machine learning models was better than that of the
MLR model, where the training accuracy of single tree characteristic parameters of the SVR
model was slightly higher than that of the RF model, but the testing accuracy of single tree
characteristic parameters of the RF model was better than that of the SVR model.
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Figure 20. Distribution of normalized residuals for the testing phase of characteristic parameters for
different models.

4. Discussion

The forest canopy is a key component of forests that affects ecosystem processes and
functions [56], and the quantification and analysis of canopy distribution is one of the
methods used to characterize the spatial structure of forests. In this study, voxel-based
canopy volume was used to characterize the canopy spatial structure of different urban
trees, and the canopy volume profile was derived to more intuitively reflect the spatial
heterogeneity of the canopy structure and the variation in the arrangement of elements
within the canopy. As shown in Figures 5–7, the open gap volume of G. biloba was the
largest, while the closed gap volume of C. camphora was larger than that of both G. biloba and
M. glyptostroboides. First, this had a direct influence on the structure and shape of the canopy,
which was relatively regular for C. camphora and M. glyptostroboides, while the canopy shape
of G. biloba was more complex and the distribution of branches and leaves was more
dispersed, resulting in a larger volume share in the open gap of G. biloba. In addition, closed
gap volume was also strongly related to proper pruning in cities, which causes higher
crown base height [43], thus leading to a larger percentage of closed gap volume. On the
other hand, coniferous trees allow more light penetration into the lower canopy compared
to broadleaved trees [57], and M. glyptostroboides belongs to the coniferous species, thus
allowing M. glyptostroboides to form more areas of oligophotic zone.

Lidar data can provide parameter information directly connected to forest canopy
structure, and the estimation of forest characteristic parameters using different regression
methods can produce satisfactory prediction results [58]. The results of this study show
that the estimation accuracy of single tree characteristic parameters with coupled canopy
structural variables was improved compared to using only height and density characteristic
variables. The model accuracy was higher than the prediction accuracy of stand stock
and aboveground biomass in urban broadleaf forest areas estimated using ALS data [59].
This is due to the fact that high-density ULS data had richer canopy structure information.
Therefore, high-density lidar data were more advantageous in estimating stand volume
and aboveground biomass.

This research shows that the performance of the SVR and RF machine learning models
was better than that of the MLR model. As a statistical regression model, MLR is not
suitable for representing the complexity of high data and is sensitive to noise, and the
MLR model is often prone to underfitting, making the model performance poor. SVR seeks
linear regression hyperplanes and solves nonlinear problems in low-dimensional spaces
by mapping kernel functions from low to high dimensions. Although the SVR model fits
the training data well, there may be overfitting of the model. In addition, the SVR model
also needs to find the optimal penalty coefficient and gamma value to obtain the optimal
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model [60,61]. The RF was able to handle high-dimensional data and had good noise
resistance. During the model operations, unbiased estimates of errors can be obtained,
and the importance of each variable can be evaluated in the RF model [62]. The accuracy
of training the single tree characteristic parameters of the SVR model in this study was
slightly higher than that of the RF model, but the validation accuracy was not as good as
that of the RF model in the study, which may be caused by this reason.

Related studies around the world also indicate that RF has good predictive ability
in forest parameter estimation [58,60,63]. For example, Zhou et al. [64] used a RF model
to estimate the AGB of urban single trees based on UAV lidar data and achieved high
estimation accuracy. Zhang et al. [65] combined lidar and high-resolution remote sensing
images by comparing different models (SLR, LNN, BPNN, SVR, RF) for the quantitative
estimation and inversion of biomass, and the results indicated that the RF model had the
highest fitting accuracy. Cao et al. [63] indicated that the accuracy of the RF model was
higher than that with SVR, backpropagation neural networks, k-nearest neighbor, and the
generalized linear mixed model in the remote sensing estimation of forest biomass based
on satellite remote sensing. Peng Xi et al. [66] established different models for estimating
the s characteristic parameters of tropical forests in China based on UAV lidar data, and the
study indicated that the RF model had good accuracy in estimating forest characteristic
parameters. Although this study provides a reference for the application of UAV lidar in
urban forest characteristic parameter estimation, there are still some limitations. The urban
forest is unevenly distributed, and the estimation of large-scale urban forest characteristic
parameters using UAV lidar is still a challenge.

5. Conclusions

In this study, we used UAV lidar to obtain three kinds of single tree canopy point
clouds coupled with point cloud and canopy structure variables. MLR, SVR, and RF models
were used to estimate the characteristic parameters of DBH, AGB, and V of single trees in
urban forests based on UAV-Lidar data. The results indicate that canopy volume profiles
can visualize the spatial heterogeneity of forest canopy structure and the distribution and
variation of elements in the vertical direction, and canopy structure variables such as CG,
OV, EV, S, and CD had important effects on single tree characteristic parameters. The model
training accuracy and testing accuracy of the single tree parameters of the MLR, SVR, and
RF models were improved by incorporating canopy structure variables. In comparison, the
two machine learning models, SVR and RF, outperformed MLR, but the testing accuracy of
single tree characteristic parameters of the RF model was better than that of the SVR model.
The results of the study provide an important reference for the estimation of single tree
characteristic parameters in urban forests based on UAV-Lidar data, which is necessary
and useful for urban managers to understand the functions and values of urban forests and
to maximize the environmental benefits of urban forests.
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Appendix A

Table A1. Accuracy evaluation of the parametric model of a single tree characteristic for different
schemes.

Model Scheme
DBH AGB V

R2 RMSE rRMSE (%) R2 RMSE rRMSE (%) R2 RMSE rRMSE (%)

Train

MLR
Scheme 1 0.76 2.06 9.67 0.78 33.05 27.23 0.83 0.04 21.52
Scheme 2 0.78 1.98 9.33 0.85 37.41 30.82 0.84 0.04 21.27

SVR
Scheme 1 0.83 1.73 8.14 0.84 29.25 24.10 0.85 0.04 20.22
Scheme 2 0.88 1.46 6.85 0.94 17.68 14.56 0.86 0.04 20.24

RF
Scheme 1 0.74 2.22 10.46 0.80 31.99 26.36 0.81 0.04 23.68
Scheme 2 0.80 1.89 8.90 0.89 24.01 19.70 0.86 0.04 20.77

Test

MLR
Scheme 1 0.64 2.21 10.91 0.69 46.26 39.01 0.62 0.05 27.51
Scheme 2 0.69 2.11 10.41 0.82 29.20 24.67 0.80 0.04 19.90

SVR
Scheme 1 0.67 2.18 10.76 0.77 31.70 26.78 0.75 0.04 22.27
Scheme 2 0.72 2.08 10.24 0.82 27.67 23.37 0.81 0.04 19.68

RF
Scheme 1 0.67 2.22 10.95 0.74 35.15 29.69 0.76 0.04 21.82
Scheme 2 0.76 2.00 9.87 0.85 26.65 22.51 0.83 0.04 18.51
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Abstract: Urban forests have the potential to sink atmospheric CO2. With the improvement of cover-
age of vegetation in urban environments, more attention has been paid to the carbon sequestration
potential of the urban forest. However, the high fragmentation of urban forests makes it difficult to
evaluate their carbon budget on a regional scale. In this study, the GPP-NIRv relationship model was
employed to estimate GPP in Suzhou by MODIS, Landsat-8 and Sentinel-2 remote sensing data, and
to further explore what kind of remote images can figure out the spatial-temporal pattern of GPP
in urban forests. We found that the total GPP of the terrestrial ecosystem in Suzhou reached 8.43,
8.48, and 9.30 Tg C yr-1 for MODIS, Landsat-8, and Sentinel-2, respectively. Monthly changes of GPP
were able to be derived by MODIS and Sentinel-2, with two peaks in April and July. According to
Sentinel-2, urban forests accounted for the majority of total GPP, with an average of about 44.63%,
which was larger than the results from GPP products with coarser resolutions. Additionally, it is
clear from the high-resolution images that the decline of GPP in May was due to human activities
such as the rotation of wheat and rice crops and the pruning of urban forests. Our results improve
the understanding of the contribution of the urban forest to the carbon budget and highlight the
importance of high-resolution remote sensing images for estimating urban carbon assimilation.

Keywords: gross primary productivity; near-infrared reflectance of vegetation; urban forest;
carbon budget

1. Introduction

Gross Primary Productivity (GPP) quantifies the total amount of carbon assimilated
by plants through photosynthesis per unit time. As the critical variable of carbon cycling
of terrestrial ecosystems, GPP is the initial amount of energy and material entering the
terrestrial ecosystem and plays an essential role in regulating the global carbon cycle [1–3].
GPP can be observed at the leaf level or ecosystem level [4–6], and also can be simulated
by process-based terrestrial ecosystem models [7–9] or estimated through remote sens-
ing [10–13]. Benefiting from the eddy-covariance techniques and the multisource data of
remote sensing, satellite-based GPP models were developed to estimate regional and global
GPP by establishing the empirical relationship between the vegetation index (VI) and sur-
face observation data [14–18]. Previous studies have shown that the correlation coefficient
between Enhanced Vegetation Index (EVI) and surface observation data in global GPP
estimation can reach 0.52–0.92 [19], and the correlation coefficient between Solar-induced
Chlorophyll Fluorescence (SIF) and GPP for crops and grass can achieve 0.87 [20]. How-
ever, there are several limitations in these methods; for example the adaptability of the
empirical method is affected by different ecosystem structures and climate conditions [21].
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Additionally, the coarse spatiotemporal resolution of satellite SIF is generally a limiting
factor in the regional estimation of GPP [22,23].

In recent years, Near-infrared Reflectance of Vegetation (NIRv), which integrates
the advantages of NDVI and near-infrared reflectance, has provided a new avenue for
GPP estimation [24–27]. NDVI can intuitively reflect vegetation coverage, which is tightly
correlated to vegetation productivity, while near-infrared reflectance can embody the
information on vegetative canopy structure and leaf area [24,28]. Therefore, NIRv takes
into consideration both the pigment and structure of vegetation in remote sensing images
to avoid the saturation effects of NDVI [29–31]. Meanwhile, a strong and stable correlation
was found between NIRv and GPP in the same ecosystem [21,23,32]. In the study of
regional and global carbon budgets of terrestrial ecosystems, NIRv has been suggested as
the effective substitution for satellite SIF, based on theoretical derivations and radiative
transfer simulations, and has gained a great deal of attention in recent years [24,33].

Urban forest is considered as a large green infrastructure in the urban area, which
consists of trees, shrubs and grasses in streets, parks, gardens, alongside rivers and so
on [34–36]. Additionally, urban forest in this study is also defined as the above description.
Urban forest usually plays an indispensable role for people living in urban environments,
such as reducing air pollution and heat islands effect [37], and increasing biodiversity [38].
As global CO2 concentrations continue to increase, there is also increasing interest in the
carbon storage and sequestration of the urban forest [39–41]. Vegetation in urban areas
is offered for environments with higher temperatures and CO2 concentrations, highly
intensive use of water and pesticides [42,43], and its photosynthetic activity would play an
important role in the carbon cycle of terrestrial ecosystems.

However, in some studies, the vegetation productivity in urban areas was set as
zero [44]; the role of urban vegetation might be underestimated in the global carbon
budget. With the improvement of urban green coverage (e.g., the green coverage in the
urban built areas in Jiangsu province increased from 19.5% in 1990 to 42.1% in 2020), more
attention should be paid to the effect of the urban forest in the global and regional carbon
assimilation [45–47]. Although the ability of carbon assimilation can be estimated through
GPP, the contribution of the urban forest to regional carbon assimilation is still unclear. A
number of difficulties in the current estimations of urban GPP need to be overcome; for
example the lack of surface observation data in urban areas makes it difficult to conduct
empirical estimation on the urban scale by using traditional VI. At the same time, the
lack of driving and parameterized data with high spatiotemporal resolution significantly
reduced the performance of process-based ecological models in the simulation of GPP in
urban areas.

As NIRv has successfully estimated GPP in other ecosystems, it may be able to provide
a new approach to estimating carbon assimilation in urban forests. To the best of our
knowledge, the contribution of urban forests to regional carbon assimilation has not yet
been studied according to this method. Meanwhile, it is not yet clear which resolution
of satellite data is appropriate for determining urban forest carbon assimilation capacity.
Therefore, in this study, the GPP-NIRv relationship model is employed to estimate the GPP
of terrestrial ecosystems in Suzhou by MODIS, Landsat-8, and Sentinel-2 remote sensing
data, and to further explore what kind of remote images can figure out the spatiotemporal
pattern of GPP of urban forests. Then, we evaluate the contribution of urban forest to the
regional carbon budgets and the impact of human activities on regional GPP. The expected
results will improve our understanding of the ability of urban forests to affect carbon
assimilation and will provide an appropriate reference for selecting the right resolution of
remote sensing images for carbon budget research in urban areas.

2. Materials and Methods

2.1. Study Area

Suzhou is one of the most economically developed cities in eastern China, and is
located in the southeast of Jiangsu and the middle of the Yangtze River Delta, with the
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region ranging from eastern longitude 119◦55′ to 121◦20′ and northern latitude from 30◦47′
to 32◦02′. Suzhou connects to Shanghai to the east, Jiaxing and Huzhou of Zhejiang
province to the north, Wuxi to the west, and the Yangtze River to the north, with a total
area of 8657.32 km2. As one of the largest industrial cities in China, Suzhou has an urban
population of 12.84 million, and the gross output value of all the above designated-size
industrial enterprises in Suzhou exceeded CNY 4 trillion in 2021 (http://tjj.suzhou.gov.cn/
sztjj/tjnj/2021/zk/indexce.htm (accessed on 1 May 2022)).

Suzhou lies in the subtropical monsoon climate zone, where abundant precipitation
and warm temperatures are suitable for vegetation growth. The annual precipitation and
mean temperature in the year 2021 were 1318.6 mm and 18.3 ◦C, respectively. Suzhou is
low and even, with a general elevation range from 3.5 to 5 m above sea level. The southeast
of Suzhou is lower, with the lowest elevation below 2 m, and the southwest is a hilly area
where vegetation grows well. The terrain of this area is shown in Figure 1. Suzhou is a
famous water country region with a dense river network and numerous lakes, and rivers,
lakes, tidal flats and wetlands account for 34.6% of the total area. Cropland is the dominant
land use type in Suzhou, with an area of about 2871.6 km2, accounting for 33.17% of the
total area.

 

Figure 1. The geographic location (a) and land cover (b) derived from Sentinel-2 by ESRI of Suzhou
in Jiangsu province in China.

2.2. Data Sources and Processing

Remote sensing data, climate data and land cover data were used in this research to
estimate GPP in Suzhou and analyze the importance of urban forests for the regional carbon
budget. Three kinds of resolution remote sensing images are used to estimate GPP. Of these,
30 m-Landsat 8 and 10 m-Sentinel 2 surface reflectance datasets were downloaded from the
United States Geological Survey (https://earthexplorer.usgs.gov/ (accessed on 10 April
2022)) and the Copernicus Open Access Hub (https://scihub.copernicus.eu/dhus/#/home
(accessed on 15 April 2022)) in 2021 to calculate NIRv. In order to avoid the impact of cloud
on data quality, the maximum value composite (MVC) method was set to generate the
monthly NIRv.

MODIS 500 m surface reflectance data (MOD09A1) and NDVI data (MOD13A1)
downloaded from NASA’s Distributed Active Archive Center (DAAC) have eliminated the
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impact of cloud. In order to maintain the consistency of the production of NIRv, the MVC
method was also used to generate the MODIS monthly NIRv.

Climate data, including monthly temperature and precipitation, were used to in-
vestigate GPP changes in response to the local climate; climate data were obtained from
the National Meteorological Science Data Center (https://data.cma.cn/ (accessed on 2
May 2022)).

MODIS, Landsat and Sentinel-2 land cover datasets were downloaded to summarize
the GPP of different land cover types according to the corresponding estimation of GPP
with the same spatial resolution. A MODIS land cover data (MCD12Q1) product was
downloaded from NASA DAAC. The MCD12Q1 product supplies maps of land cover at
annual steps, and the land cover in Suzhou was classified according to the International
Geosphere Biosphere Programme (IGBP) land cover classification scheme as urban and
built-up lands, croplands, grasslands, water bodies, evergreen broadleaf forests (EBF),
deciduous broadleaf forest (DBF), mixed forest (MF) and so on.

Global land cover data producing 30 m resolution were downloaded from http://data.
ess.tsinghua.edu.cn/ (accessed on 17 April 2022). This product used the amount of training
samples across the world to optimize many kinds of classifiers, eg. maximum likelihood,
decision tree, random forest, etc. A unique land-cover classification system was used in this
product. In Suzhou, the typical land cover types were crop, forest, grass, shrub, water, and
impervious. Additionally, impervious was considered as urban built-up areas in this study.

ESRI generated a global map of land use and land cover (https://livingatlas.arcgis.
com/landcover/ (accessed on 17 April 2022)) derived from Sentinel-2 imagery at 10 m
resolution by using a deep learning AI land classification model trained by billions of
human-labeled image pixels [48]. This product has 9 classes, of which water, tree, crop,
shrub land, built area and grass are the dominant ones in Suzhou.

In order to better calculate the changes in carbon assimilation of urban forest, the
urban area of Suzhou was divided into built area (black areas in Figure 1b) and non-built
area (remaining areas besides built area).

2.3. Estimation of GPP

NIRv has been found to accurately capture both the seasonal and annual variation in
GPP at flux sites [25,26]. GPP correlates linearly with NIRv among different vegetation
types (Table S1), and global GPP was estimated with high accuracy on a monthly basis by
upscaling the relationships between NIRv and GPP [23]. In this study, we also use these
correlations to determine the Suzhou monthly GPP based on NIRv, and the calculation of
NIRv and GPP are shown in Equations (1) and (2):

NIRv =
NIR − R
NIR + R

× NIR (1)

GPP = a × NIRv + b (2)

R and NIR are the red and the near-infrared bands, a and b are derived from linear
regression, and the values can be found in Table S1. We used the MVC method to generate
the monthly NIRv. Landsat-8 has a limited frequency of revisits, so some images were lost
during the rainy season, i.e., in July and August. MODIS and Sentinel-2 had sufficient data
to produce a full image each month.

For different kinds of forests, such as deciduous broadleaf forests (DBF), ever-
green broadleaf forests (EBF), evergreen needle forests (ENF), and mixed forests (MF),
Wang et al. [23] used different coefficients for calculating GPP. However, the land cover
data of Sentinel-2 used in this study do not distinguish forest type. As a result, based on the
studies of [49], changes in tree NDVI between summer and winter were examined to deter-
mine the forest types, including deciduous broadleaf forest, mixed forest and evergreen
broadleaf forest, according to the criteria listed in Criteria 2 of Table 1. Additionally, we did
not include evergreen needle forest in calculating GPP, for the reason that its distribution in
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Suzhou is limited and hard to separate from evergreen broadleaf forests by only the change
in NDVI. Considering that the grassland and different kinds of forests in urban area are
always integrated but still able to be identified according to dominated coverage of plants,
vegetation types of urban forest in built area were also identified as grass (GRA), DBF, MF
and EBF.

Table 1. NDVI for identifying vegetation type in land cover of tree and built area.

NO. Criteria 1 Criteria 2 TR BA Veg

1 NDVI8 < 0.2 C1 and 2 BRE
2 0.2 ≤ NDVI8 < 0.5 C1 and 2 GRA
3 0.5 ≤ NDVI8 ≤ 1 (NDVI8-NDVI12)/NDVI8 > 0.35 C2 C1 and 2 DBF
4 0.5 ≤ NDVI8 ≤ 1 0.2 < (NDVI8-DVI12)/NDVI8 < 0.35 C2 C1 and 2 MF
5 0.5 ≤ NDVI8 ≤ 1 (NDVI8-NDVI12)/NDVI8 < 0.2 C2 C1 and 2 EBF

Note: The subscript is month, NDVI8 and NDVI12 are monthly NDVI in August and December. C1 and C2 are
criteria 1 and criteria 2, respectively. Veg is the vegetation type. TR and BA are the land cover of tree and built
area. BRE and GRA are bare land and grass land, respectively.

In the built area, the contribution of urban forests to total regional carbon assimilation
cannot be ignored as they are widely distributed in Suzhou. However, they are usually
buried in lower-resolution imagery. Considering the fragmentation of urban forests, three
different resolutions of remote images, i.e., MODIS, Landsat and Sentinel-2, were used
to evaluate the ability to detect urban forests. For calculating GPP in urban forest, NDVI
changes in the built area were used to determine vegetation types as shown in Criterions 1
and 2 of Table 1.

2.4. Data Analysis

Based on our estimation, the GPPs of different land cover types were summarized
according to land cover data. Then, we identified the contribution of urban forests to the
regional total GPP. Vegetation in urban areas is inevitably affected by human activities.
Therefore, the monthly changes of GPP were examined to find out the abnormal fluctuation
of monthly GPP and identify what kind of human activities disturbed the change in GPP.

3. Results

3.1. Variance of NIRv in Different Remote Sensing Data with Distinct Spatial Resolutions

The NIRv can be calculated based on MODIS, Landsat-8 and Sentinel-2 by using
Equation (1). Figure 2 shows the spatial distribution of Sentinel-2 NIRv monthly.

The area along the Yangtze River in the northern part of Suzhou was a high-value
area of NIRV. Additionally, the changes in NIRv in this area were significantly greater
than in other parts of the city. During the growing season, in April and from July to
September, NIRv reached more than 0.45. The high NIRv value in this area was a result
of the high photosynthetic ability of crops planted in this region, for example, wheat and
rice. Furthermore, around Tai Lake, the large water body in the southwest of the city, there
was another area with a high NIRv. Forests and crops were spread throughout this area
(Figure 1b), and the peak NIRv was around 0.4 from June to August.

The NIRv in Suzhou’s built area ranged from 0 to 0.1, generally, without an evidently
monthly dynamic. Nevertheless, there were many points scattered in the built area with
high NIRvs (ranging from 0.2 to 0.35) and also seasonal changes. The urban forest in built
areas contributed to the scattered high-value points. This kind of vegetation is usually
found in small urban green spaces, and was represented as discrete points by remote
sensing data with high resolution.
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Figure 2. Spatial distribution of monthly Sentinel-2 NIRv in 2021, Suzhou.

For comparing the differences of NIRv derived from MODIS, Landsat-8 and Sentinel-2,
the monthly averages and standard deviations of NIRv were listed in Figure 3. Sentinel-2
NIRv showed two peaks in April and July, with values of 0.13 and 0.18, respectively. The
values of MODIS NIRv were generally lower than Sentinel-2 and had similar trends to
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Sentinel-2. Due to the impact of the cloud, the continuous change of Landsat-8 NIRv was
hard to obtain. Additionally, current valid data of Landsat-8 were similar to MODIS NRIv
and also showed a peak in September.

Figure 3. Monthly averages (red, blue and green cycle) and standard deviations (red, blue and green
bar) of NIRv in Suzhou derived from MODIS, Landsat-8 and Sentinel-2.

3.2. Comparing the GPPs Estimated by Different Resolutions of Remote Sensing Data

The GPPs estimated by NIRv derived from MODIS, Landsat-8 and Sentinel-2 were
shown in Table 2. The total GPP in Suzhou in 2021 estimated by MODIS, Landsat-8 and
Sentinel-2 was 8.43, 8.48, and 9.30 Tg C yr−1 (Tg = 1012 g), respectively. Our estimations
of GPP were higher than the results of MOD17A2 (4.37 Tg C yr−1), which ignores the
contribution of the urban forest in built areas (black areas in Figure 4a). In contrast, our
results included this ignoring component and fell within the range of previous studies
which considered the contribution of urban forest (Table 2).

Table 2. Comparison of urban contribution to GPP in different GPP products.

Product Resolution Time Model
Total GPP

(Tg C)
Remark

This Study
10 m 2021

NIRv-GPP
9.30 Sentinel-2

30 m 2021 8.48 Landsat8
500 m 2021 8.43 MODIS

MOD17A2 500 m 2021 LUE 4.37
Zhang [50] 0.050◦ 2016 VPM 9.37

Ju [51] 0.073◦ 2019 BEPS 6.72
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Figure 4. The spatial distribution of GPP from MOD17A2 product (a) and estimated by MODIS
(b), Landsat-8 (c), Sentinel-2 (d). Areas in panel (a) with no data are due to the MODIS product not
calculating GPP if the land cover type is built area. Additionally, the no vegetation (veg.) areas in
panels (b–d) are the regions where the NDVI is less than 0.2 and, as a result, is recognized as bare
land with no GPP.

The spatial patterns of GPP in Suzhou estimated by MODIS, Landsat-8 and Sentinel-2
in 2021 were shown in Figure 4b–d. All three kinds of GPP showed the same high GPP
region located around Tai Lake (grey area in the southwest of Figure 4). In many areas of
this region, the GPP ranged from 2500 to 3000 g C m−2 yr−1. The estimated GPPs had some
differences in the northeast, along the Yangtze River (grey area in the northeast of Figure 4).
In this region, the GPP of MODIS was lower than the GPP of Landsat-8 and Sentinel-2.
According to our MODIS GPP results, most built areas were capable of photosynthesis
from the vegetation within them. Additionally, GPP in built area of Suzhou ranged from
250 to 500 g C m−2 yr−1. Ignoring the contribution of GPP from the built area (black area
in Figure 4a) induced the lower GPP in MOD17A2. Furthermore, high-resolution results
from Landsat-8 and Sentinel-2 also indicated the contribution of urban forests, which were
scattered over the built area due to their spatial distribution being highly discrete in Suzhou
(Figure 4c,d).
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3.3. Monthly Change of GPP in the Year 2021

The Landsat-8 GPP failed to overcome the effects of clouds every month since its long
revisit. Additionally, with the help of the MVC method, monthly NIRvs derived by MODIS
and Sentinel-2 were generated. As a result, Figure 5 shows only the MODIS and Sentinel-2
GPPs, as well as the changes in monthly temperature and precipitation for the year 2021.

 

Figure 5. The monthly change of Suzhou’s GPP in the year 2021.

The monthly GPP of MODIS and Sentinel-2 showed two peaks in 2021. One peak was
in April, with GPPs 0.85 and 0.95 Tg C m−1 for MODIS and Sentinel-2, respectively. The
other peak was in July, when the GPPs of MODIS and Sentinel-2 reached their summit
for the whole year: 1.43 and 1.12 Tg C m−1, respectively. Between the two peaks was an
evident decrement in GPP in May. GPP decreased by 16.4% and 25.9% according to the
estimations of MODIS and Sentinel-2, respectively.

In the growing season, the MODIS GPP was generally lower than Sentinel-2 GPP. For
example, from July to September, the average of Sentinel-2 GPP was 1.31 Tg C m−1, which
was 21.3% higher than MODIS GPP in the same period. Additionally, a similar difference
was also found in the growing peak in April. Moreover, in winter and early spring MODIS
GPP and Sentinel-2 GPP were similar.

As Figure 6 showed, a significant (p < 0.001) linear relationship was found between
the air temperature and GPP. R2 for the temperature–GPP relationships were 0.81 and
0.89 for Sentinel-2 and MODIS GPP, respectively (Figure 6a,b), which was higher than the
precipitation–GPP relationship (Figure 6c,d). Therefore, the change in GPP was mainly
determined by the air temperature in the year 2021. Additionally, the positive coefficient
of slopes for the linear relationships indicated that temperature and precipitation had
positive effects on GPP. However, the GPP declined when temperature and precipitation
increased in May. This decrement in GPP implies that, besides climatic factors, some other
factors determined the change in GPP in May. In urban areas, the impact of anthropogenic
activities on vegetation cannot be ignored.
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Figure 6. The relationship between the estimated GPP and climate factors. (a) and (b) are the
correlations between temperature and monthly GPP for Sentinel2 and MODIS, respectively. (c) and
(d) are the correlations between precipitation and monthly GPP for Sentinel2 and MODIS, respectively.

3.4. Changes in GPP of Different Land Cover Types

To better understand the importance of urban forests to the regional GPP, the Sentinel-2
and MODIS GPP changes in different land cover types were shown in Figure 7. According
to the result of Sentinel-2, the average monthly GPP of vegetation in the built area (e.g.,
urban forest) and non-built area (e.g., crop, tree, grassland) was 0.35 Tg C and 0.43 Tg C
(0.32 for crops, 0.08 for trees, and 0.03 Tg C for grassland), respectively. Additionally, for
MODIS, GPP of the built area and non-built area was 0.28 Tg C and 0.42 Tg C (0.18, 0.01,
and 0.23 Tg C for crop, tree, and grassland, respectively). The MODIS GPP of grassland
was 0.20 Tg C higher than Sentinel-2 GPP, and the MODIS GPP of cropland was 0.14 Tg C
lower than Sentinel-2 GPP. This may be caused by the use of different land cover datasets in
statistics. MODIS land cover products might be misplaced between farmland and grassland
due to the lower spatial resolution. In fact, as an industrialized city, Suzhou does not have
a lot of grasslands.

The GPP of each land cover type varied throughout the year (Figure 7a,c). Similar
to the change in total GPP, each land cover type had two peaks in spring and summer.
Additionally, they also showed decrements in GPP in May. These decrements in GPP for
crops and urban forests were obviously about 32.33% and 23.57%, respectively, according
to Sentinel-2 GPP.

Sentinel-2 results indicated that crops and urban forests accounted for a majority of the
total GPP in Suzhou in 2021, with an average of about 38.15% and 44.43%, respectively. Trees
and grasses in non-built area made relatively small contributions to total GPP, accounting
for approximately 11.87% and 4.17%, respectively. According to MODIS GPP, urban forests
still accounted for the majority (39.66%) of total GPP, followed by grassland and crops at
33.66% and 25.60%, respectively.
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Figure 7. The Sentinel-2 and MODIS GPP changes in different land cover types in 2021 (a,c) and their
contribution to total GPP (b,d).

The contribution of different land cover types also varied throughout the year
(Figure 7b,d). Taking the most contributed urban forests as an example, their Sentinel-2
GPP exceeded 50% of the total GPP for five months of the year, with the highest percentage
at 55.39% in June. Additionally, the contribution made by crops was also large, even more
than the contribution of urban forests in growing peak seasons, such as April and August.

3.5. Changes in GPP by Anthropogenic Factors

The spatial distribution of this decrement in GPP in May is shown in Figure 8. The
evident decrement of GPP for the crop was mainly in the rice and wheat rotation area along
the Yangtze River. In May, as wheat matures, its photosynthetic capacity also decreases
significantly. Additionally, in June, after the wheat harvest, rice has just been planted. In
consequence, the photosynthetic capacity had not yet recovered.
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Figure 8. The difference in GPP between April and May in Suzhou.

Furthermore, urban forests’ GPP also decreased significantly in May, but recovered
quickly in June (Figure 7a,c). For making urban vegetation more attractive, urban forests in
Suzhou undergo a pruning process in May. This process removes a considerable amount
of leaves from the canopy. Usually, these leaves are current-year leaves and are located at
the top of the canopy. Additionally, the photosynthetic capacity of these kinds of leaves
is greater than that of old leaves and lower canopy leaves [52,53]. The pruning process
is usually conducted on the grassland and shrub land, which were the main parts of
urban green spaces in Suzhou, approximately 55.67% (Figure 9) according to our criteria in
Table 1. Haberl [54] proposed that the averaged biomass loss during gardening (such as
pruning) or park and infrastructure maintenance amounted to 50% of the aboveground Net
Primary Productivity (the remainder of GPP deducts autotrophic respiration). Therefore,
the pruning process removes the most photosynthetic part of the canopy, which results in
the decline of GPP of urban forests.
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Figure 9. The distribution of urban forests in Suzhou (a) and its detailed views (b,c). Veg. is vegetation.
DBF, MF, and EBF are deciduous broadleaf forests, mixed forests, and evergreen broadleaf forests.

4. Discussion

4.1. Uncertainty of Estimating GPP by NIRv

Although, as we know, few studies have examined vegetation productivity in
Suzhou, studies in similar cities may provide useful information. From 2000 to 2014,
the average rate of GPP in Shanghai, the city next to Suzhou, was between 800 and
1050 g C m−2 yr−1 based on the simulations by Vegetation Photosynthesis Model (VPM) [55].
This result is close to our 973.74, 979.51, and 1074.21 g C m−2 yr−1 for MODIS, Landsat-8,
and Sentinel-2, respectively.

According to the MOD17A2 product, the previous study also indicated the GPP of crops
along the Yangtze River in the northeast of Suzhou as around 1200–1400 g C m−2 yr−1 [56],
which is lower than our Sentinel-2 GPP, 1250–2000 g C m−2 yr−1, in the same region
(Figure 4d). Limited by mixed pixel effects, the MOD17A2 product usually overestimates in
lower value and underestimates in higher value [57,58]. The high resolution of Sentinel-2
eliminated the many effects of the mixed pixel. Therefore, the Sentinel-2 GPP was obviously
higher than the GPP calculated by MODIS reflectance. Furthermore, Landsat-8 GPP would
have to be greater than MODIS GPP if it did not miss images during July and August,
when carbon assimilation rates are at their peak.

Compared to deciduous forests, evergreen forests are inflexible to short-term changes
in environmental conditions. As a result, their NIRv is suitable for predicting GPP over a
longer period, such as 90 days [25]. Consequently, the NIRv–GPP relationship is a challenge
in estimating monthly GPP for evergreen forests. Additionally, for this reason, our GPP
of evergreen forests in the southwest of Suzhou was more than 2500 g C m−2 yr−1, which
is higher than the previously observed and simulated results [59,60]. Additionally, the
original NIRv-GPP relationships across the different land cover types are generated by
0.05 degree AVHRR reflectance [23]. The uncertainty induced by the different remote
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sensing data in terms of field of view angle, signal-to-noise ratio, and spectral width needs
to be further evaluated.

4.2. Evaluation of High-Resolution Remote Sensing Images in Urban Carbon Research

Compared to Landsat-8 and Sentinel-2, the lower resolution of MODIS lost many
details inside the city (Figure 4b–d). In the built areas, vegetation usually accounts for a
small proportion at 500 m resolution. As a result, the reflection characteristics of vegetation
will be affected by the background. Meanwhile, due to the variety of land cover types
within a built area, low-resolution remote sensing images fail to accurately depict the
spatial variability of urban surfaces (Figure 10), thereby excluding changes in vegetation
characteristics within the city. As a result, the uncertainty in estimating GPP from low
remote sensing images increases. As Figure 11 shows, with the increment of spatial
resolution, the contribution of the urban forest to total GPP was increased. Therefore,
the photosynthetic ability of urban forests can be better figured out by fine-resolution
remote sensing images. Landsat having similar performance as MODIS is partially due to
its coarser resolution and lower NDVI relative to Sentinel-2, and also partially owing to
missing data of high values in summer with large fractions of cloudy days.

 

Figure 10. Cont.
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Figure 10. The GPP variation coefficient (CV) of Sentinel-2 (a) and MODIS (b).

Figure 11. The contribution of urban forests to total GPP. The percentages of 0.073◦ and 0.05◦ are
from Ju [51] and Zhang [50], respectively. Additionally, results of 500, 30, and 10 m resolutions were
calculated by MODIS, Landsat-8 and Sentinel-2 in this study.
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With its 10 m resolution, the Sentinel-2 GPP can provide more information about
vegetation dynamics in built areas. Despite the fact that Landsat-8 GPP has a relatively high
resolution to explore the dynamic of urban forests, the 16-day revisiting period made the
images of Landsat-8 subject to cloud cover. For example, for July and August of 2021, the
whole regional average NIRv of Landsat 8 cannot be generated. Vegetation is at a growing
peak during these two months, which is vital for the yearly total GPP. Therefore, the 5-day
revisiting period and higher spatial resolution of Sentinel-2 images make them ideal for
studying GPP on an urban scale.

4.3. Importance of Urban Forests for Regional Carbon Budget

In the land process-based model, as well as the remote sensing model, urban built
areas are usually masked according to land cover data based on the hypothesis that the
photosynthesis of urban forest is weak [45,47]. However, our study illustrated that the
photosynthetic capacity of urban forest was also considerable (Table 3). Meanwhile, in
Suzhou, the coverage of urban forest was 2253.1 km2, which was significantly higher than
the 371.9 km2 of vegetation in non-built area. As a result, about 44.43% of the total GPP in
Suzhou was contributed by urban forests (Figure 3). Therefore, the GPP of urban forest is
an important part of the regional carbon budget and should not be ignored.

Table 3. Differences in yearly GPP between vegetation in non-built areas and built area.

Veg. Type Non-Built Area (g C m−2 yr−1) Urban Forest (g C m−2 yr−1)

GRA 2275.9 ± 949.8 841.5 ± 599.2
DBF 2500.9 ± 749.0 1589.7 ± 722.0
MF 2306.1 ± 605.6 1478.4 ± 624.4
EBF 3206.6 ± 507.4 2640.6 ± 478.8

Note: GRA, DBF, MF, and EBF are grassland, deciduous broadleaf forest, mixed forest, and evergreen broadleaf
forest, respectively. Urban forest is the GRA, DBF, MF, and EBF in the built area.

The average GPP of urban forests was significantly lower (about 36.3%) than the
average GPP of vegetation in the non-built area (Table 3). This reduction of GPP can
primarily be attributed to many factors related to human activities in built areas [61,62].
From an ecological perspective, urban forests are highly fragmented and, as a result,
they are vulnerable to human activities [63]. Additionally, in view of the atmosphere
environment, urban forests are usually exposed to a high concentration of PM2.5 and O3,
which damages leaf tissue and affects photosynthesis [64]. However, the urban environment
also includes some positive factors for carbon assimilation, for example, the increment in
temperature due to the heat island effect [61,65], high CO2 concentration from greenhouse
gas emission [45,66], and enhanced nitrogen deposition from fossil fuel [67]. If we can
improve the management of urban forests to maximize positive factors that promote carbon
assimilation, urban forests will be able to play a more significant role in regional carbon
budgets, which will help China achieve the target of carbon neutrality.

5. Conclusions

In this study, MODIS, Landsat-8 and Sentinel-2 images were used to generate re-
gional GPP in one of China’s most economically developed cities, Suzhou, to identify the
applicability of different kinds of remote sensing data on urban scale studies and the charac-
teristics of urban carbon budgets. The results of GPP estimated by MODIS, Landsat-8, and
Sentinel-2 images were 8.43, 8.48, and 9.30 Tg C yr−1, respectively. The monthly dynamic
of GPP exhibited two peaks in April and September. In May, the harvest of wheat and the
pruning process conducted on urban forests made a pronounced decline in total GPP by
about 25.93% according to Sentinel-2. Accordingly, climate factors as well as anthropogenic
factors contribute to the change of urban GPP. As the spatial resolution rose, the contribu-
tion of the urban forest to regional total GPP increased, reaching about 44.63% according
to the 10 m sentinel-2 images. Since the distribution of urban forests is highly fragmental,

554



Remote Sens. 2023, 15, 71

high-resolution remote sensing images can better figure out the dynamic changes in the
GPP of the urban forest. The results of our study demonstrate the importance of using
high-resolution remote sensing images for estimating the GPP of the urban forest and for
improving our understanding of the urban carbon budget.
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Abstract: Forest density affects the inversion of forest height by influencing the penetration and
attenuation of synthetic aperture radar (SAR) signals. Traditional forest height inversion methods
often fail in low-density forest areas. Based on L-band single-baseline polarimetric SAR interferometry
(PolInSAR) simulation data and the BioSAR 2008 data, we proposed a forest height optimization
model at the stand scale suitable for various forest densities. This optimization model took into
account shortcomings of the three-stage inversion method by employing height errors to represent
the mean penetration depth and SINC inversion method. The relationships between forest density
and extinction coefficient, penetration depth, phase, and magnitude were also discussed. In the
simulated data, the inversion height established by the optimization method was 17.35 m, while the
RMSE value was 3.01 m when the forest density was 100 stems/ha. This addressed the drawbacks of
the conventional techniques including failing at low forest density. In the real data, the maximum
RMSE of the optimization method was 2.17 m as the stand density increased from 628.66 stems/ha to
1330.54 stems/ha, showing the effectiveness and robustness of the optimization model in overcoming
the influence of stand density on the inversion process in realistic scenarios. This study overcame
the stand density restriction on L-band single baseline PolInSAR data for forest height estimation
and offered a reference for algorithm selection and optimization. The technique is expected to be
extended from the stand scale to a larger area for forest ecosystem monitoring and management.

Keywords: L-band PolInSAR; RVoG model; forest height; three-stage inversion method; forest
density; terrain slope; coherence; extinction coefficient; signal penetration

1. Introduction

Forests are significant contributors to the global carbon cycle. Forest height is a
crucial input variable for building biomass models and assessing the condition of forest
resources. Traditional forest surveys obtain forest height through field measurements. This
approach can only obtain small-scale data on a point-by-point basis, while at the same time
consuming both human and material resources. It is challenging to obtain forest data on
a large scale, but remote sensing is best suited to address this challenge. The commonly
used remote sensing techniques include optical remote sensing, Lidar, synthetic aperture
radar (SAR) methods, and so on. Optical remote sensing can obtain information on forest
biomass, species, and biochemical properties. However, optical remote sensing is not
penetrating and is susceptible to cloud cover and weather, thus limiting its use [1]. LiDAR
can provide high-precision information about the vertical structure of the forest, but it is
also affected by weather, such as clouds, fog, and rain [2]. Additionally, the observation
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area is small, and the acquisition cost is high [3]. SAR signals have strong penetration
and are not affected by the weather. In recent years, SAR has developed the capability to
monitor the vertical and horizontal structure of features continuously and has excellent
potential to estimate forest height and above-ground biomass (AGB) on a global scale [4,5].

Polarimetric SAR interferometry (PolInSAR) is one of the SAR techniques that has
received much attention in recent years. PolInSAR uses the interferometric phase to observe
the vertical structure of the forests. The technique uses the sensitivity of polarization to the
shape, dielectric properties, texture, and orientation of the scatterers to identify different
scattering mechanisms of the target [6]. Based on PolInSAR inversion models, several
researchers have effectively achieved the inversion of forest height and AGB [7,8]. The
DEM difference method [9], RVoG ground phase method [10], SINC inversion method [11],
phase and coherence inversion method [12], and three-stage inversion method [13] are
the popular PolInSAR inversion models. Among these, the three-stage inversion method
based on the random volume over ground (RVoG) model minimizes the complexity of the
inversion model, expanding the application of the RVoG method.

The RVoG model uses a mathematical model to connect the forest parameters to the
SAR system parameters. Most current RVoG models and their improvement methods are
mainly concerned with the optimization of model parameters. The key points and difficul-
ties of the vegetation scattering model are how to estimate the ground phase accurately
and effectively separate the ground scattering contribution from the canopy scattering
contribution. Many researchers enhance the separation of two-phase centers using the
singular value decomposition (SVD) [14] and phase diversity (PD) coherence optimization
method [15] to precisely determine the ground phase.

On the other hand, some studies have focused on the effect of scenes on the vegeta-
tion scattering model. Since the RVoG model initially focused on airborne data, it did
not consider the impact of terrain and temporal decorrelation [10,16]. Temporal decorre-
lation and terrain distortion in real scenarios lead to the limitations of traditional models
in practical applications [17–19]. Lu et al. suggested the sloped random volume over
ground (S-RVoG) model, which accounts for the influence of terrain slope on PolInSAR
data inversion. S-RVoG rectifies the forest parameters by including the range slope in the
RVoG model and demonstrating the validity using L-band simulation data [20]. XIE et al.
showed that the S-RVoG model corrected terrain slope and improved forest height inver-
sion accuracy using P-band dual-baseline PolInSAR data [21]. Cloude et al. proposed the
random volume over ground with volume temporal decorrelation (RVoG+VTD) model.
The RVoG+VTD model only considers the effect of temporal decorrelation on the coher-
ence amplitude [22]. Later, various researchers presented the temporal decorrelation
random volume over ground with volume (TD-RVoG) model, the random motion over
ground (RMOG) model, and the semi-empirical forest height inversion approach to
transform temporal decorrelation into a complex form [23–26].

However, the forest density also degrades the inversion results, making the ability of
the vegetation scattering model less effective. Forest density affects forest characteristics
(extinction coefficient, ground phase, forest height) and SAR system parameters (amplitude,
phase) by influencing the penetration and attenuation of the SAR signal. Thick forests
diminish the degree of complex coherence separation, resulting in erroneous estimation
of the ground phase [13]. Xie et al. discovered that high forest density had a substantial
canopy scattering contribution, resulting in an underestimating of the inversion findings
after adjusting terrain slope [27]. Meanwhile, Garestier et al. employed X-band data
to invert sparse coniferous forests. Low forest density causes extensive canopy gaps,
allowing short wavelength PolInSAR data to penetrate the canopy and result in forest
height inversion [28]. Wang et al. used simulated and P-band BioSAR 2008 data to show
that the traditional three-stage inversion method failed to invert in sparsely vegetated
areas. Noteworthy, forest density is positively correlated with ground phase estimation
accuracy and negatively correlated with ground-to-volume scattering ratio [29]. Most
current vegetation scattering model studies focuses on the qualitative relationship between
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forest density and model parameters. In this paper, we present an improved method
applicable to various forest densities based on a study of the influence of forest density on
SAR system parameters and forest characteristics.

In this study, we first analyze the forest height inversion results of five commonly
utilized PolInSAR inversion models using simulated data of different forest densities.
By comprehensively analyzing the relationships and regulations of forest density and
forest parameters, we propose the coherence magnitude and three-stage hybrid theoretical
method applicable to various forest densities. The model uses the forest height error
to represent the average penetration depth of various forest densities. The adjustment
coefficients are selected iteratively according to different forest stands’ characteristics and
penetration depth. Finally, the SINC inversion method, three-stage inversion method,
and adjustment coefficients constitute the model. Comparing the inversion results of
the improved model with those of the traditional model shows that the hybrid iterative
theoretical process achieves single-baseline PolInSAR forest height inversion for different
forest densities. In particular, it overcomes the shortcomings of conventional approaches to
inversion failure at low forest density. The improved model was validated using actual SAR
data. Furthermore, a slope correction algorithm and PD coherence optimization algorithm
were introduced to the hybrid iterative theoretical method to form the coherence magnitude
and three-stage hybrid iterative application model (hybrid iterative application model).
The optimization model achieves high accuracy inversion in real scenarios with different
forest densities and enables a reference for future research.

2. Datasets and Pre-Processing

2.1. PolSARproSim Simulated Datasets

This study aims to investigate the effects of different forest densities on the widely
employed PolInSAR inversion methods and the effectiveness of the improved model
under various forest densities, which requires controlling the same forest height and re-
ducing the impact of temporal decoherence. The experimental conditions are more
stringent, and obtaining ideal airborne SAR data is more complicated. The ESA’s
PolSARpro software allows the user to flexibly set the platform configuration, for-
est/ground surface configuration, and other parameters for data simulation to build the
ideal experimental conditions [30,31].

To study the effect of forest density on the tree height inversion technique,
PolSARproSim built a simulated airborne L-band (central frequency 1.3 GHz) PolInSAR
dataset, which contains nine groups of forest densities ranging from 100 stems/ha to
900 stems/ha. The other parameters in the simulated dataset are similar and kept fixed,
as shown in Table 1. The forest density indicator in the data set is the tree number per
hectare (stems/ha), and the forest density of 100 stems/ha, 200 stems/ha, 300 stems/ha,
400 stems/ha, 500 stems/ha, 600 stems/ha, 700 stems/ha, 800 stems/ha, and 900 stems/ha
coniferous forest, the slope in both azimuth and range directions is 0. The ground rough-
ness and soil moisture are also 0. Terrain, shrub layer, and temporal decoherence do not
influence the echo signal or inversion technique. Figure 1 illustrates scenario images for
nine groups of simulated datasets, and Figure 2 displays Pauli-basis images for nine groups
of simulated datasets.

Table 1. ESA’s PolSARproSim module simulated nine groups of stand-specific parameters. Conif-
erous forest densities ranged from 100 stems/ha to 900 stems/ha. The reference heights are all
18 m, the azimuth and range slope are all 0, and the ground roughness and soil wetness are 0. Terrain,
shrub layer, and temporal decoherence do not influence the echo signal or inversion technique.

Platform Configuration Parameter Forest/Ground Surface Configuration Parameter

Platform Altitude 3000 m Tree Species Pine
Horizontal/Vertical Baseline 10 m,1 m Surface Properties/Ground Moisture Content 0,0

Incidence Angle 45◦ Azimuth/Range Ground Slope 0
Centre Frequency 1.3 GHZ Tree Height 18 m
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Figure 1. Scenarios of simulation for nine groups of simulated data. The reference height for all nine
datasets is 18 m. Forest density ranges from 100 to 900 stems/ha.

Figure 2. Pauli-basis (HV, HH + VV, and HH − VV) composite images of nine simulated data sets.
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2.2. The BioSAR 2008 Datasets

Airborne L-band PolInSAR data from the Krycklan catchment in northern Sweden,
taken during ESA’s BioSAR 2008 experiment, were used for model validation in this study.
The BioSAR 2008 campaign acquired high-latitude boreal forest data with terrain impacts
to investigate the BIOMASS mission’s potential for estimating biomass in boreal forests.
The test site (64◦14′N, 19◦46′E) is in Vindeln municipality, situated in Sweden (Figure 3a),
with elevation changes from 100 m to 300 m and mixed coniferous forest as the dominating
forest type. The dataset is available on the ESA by application and includes airborne SAR
data, field inventory data such as Lidar data, DEM data, and 31 forest stands.

(a) (b)

Figure 3. The extent of the study area and the several products included in the BioSAR 2008 dataset.
(a) The red pentagram in the upper right corner of the thumbnail depicts the location of the study area
in Sweden. The red rectangle region shows the SAR image. The green and yellow polygons represent
the 31 forest stands in the red rectangle region; the four yellow polygons represent the forest stands
employed in this study. (b) The green background image is a Lidar image with a grid size resampling of
1 m × 1 m. Pauli-basis image is the extent of SAR images. The Pauli-basis image (on the left) shows the
locations of the four forest stands. The shape of four forest stands on the Pauli-basis image is shown on
the right. All products on the map are geocoded to WGS84 UTM Zone 34N.

In 2008, 31 forest stands were field-surveyed, and ArcGIS software was used to generate
vector contour polygons (yellow polygons in Figure 3a). The stand-level tree height, volume,
and biomass were estimated and corrected using measured data and static functions. The
guidebook explains the specific prediction technique and field survey process [32]. Because
this research investigates the influence of forest density on the inversion of PolInSAR data,
we consider tree species composition, stand mean height, and forest density as indicators to
select among 31 forest stands. This was also to ensure that the experimental conditions of
the realistic and simulated datasets were comparable. In this study, the four pure coniferous
stands (stand numbers 4451, 2625, 3611, and 2228) with forest density of 628.660 stems/ha,
840.340 stems/ha, 1149.100 stems/ha, and 1330.540 stems/ha, respectively, and the average
tree height measured in the field (nearly 18 m) were nearly similar to a real-world scenario
for algorithm validation. The gap in forest density between neighboring forest stands is
200 stems/ha. The range of forest density was vast, with a difference of 700 stems/ha
between the lowest and the highest forest density, which was consistent with the experi-
mental goal of this work.
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The two images of L-band PolInSAR data collected on 15 October 2008, were taken
as real-world data for testing the inversion model in this work. The SceneIDs were
08BioSAR0201 × 1 and 08BioSAR0205 × 1, respectively, as shown in Table 2. The pre-
processing of the master and slave images mainly includes coregistration, removing
the flat-earth phase, multilooking, 7’7 LEE refined speckle filtering [33], and using
50 m × 50 m DEM for geocoding [34]. Figure 3b shows the SAR image and LiDAR
image of WGS84 UTM Zone 34N on the left side and the shapes of the four forest stands
on the right side.

Table 2. BioSAR 2008 L-band PolInSAR data specific parameter information. The sceneIDs of master
and slave images are 08BioSAR0201 × 1 and 08BioSAR0205 × 1, respectively.

Scene ID Baseline (m) Kz Band Polarization

08BioSAR0201 Master 0 m Master L Quad
08BioSAR0205 Slave 12 m 0.046–0.370 L Quad

3. Methodology

This study uses five common inversion methods in the simulated dataset to investigate
the effect of forest density on the PolInSAR inversion process. According to the features of
the three-phase inversion technique and SINC inversion method, a coherence magnitude
and three-stage hybrid iterative inversion method are suited for various forest densities.
The terrain-corrected incidence angle and vertical wavenumber were introduced into the
coherence amplitude and three-phase hybrid iterative inversion model to reduce terrain’s
impact on the inversion model. The model without terrain correction is called the coherence
magnitude and three-stage hybrid iterative inversion theory method. The coherence
magnitude and three-stage hybrid iterative inversion application model is the model with
terrain correction. Figure 4 depicts the flowchart of the study.

Figure 4. Flow chart. DEM_diff is the DEM difference method, SINC inversion is the SINC inversion
method, RVoG_Phase represents the RVoG ground phase method, ThreeStage represents the tradi-
tional three-stage inversion method, Phase_Coherence is the phase and coherence inversion method,
Hybrid Iterative Method (theoretical model) represents coherence amplitude and three-stage hybrid
iterative theoretical model. The hybrid Iterative Method (application model) describes the coherence
amplitude and three-stage hybrid iterative application model.

3.1. Typical Models for the PolInSAR Technique of Forest Height Inversion

The DEM Difference Model determines the forest height hv by comparing the phase
differences and vertical wavenumbers kz of the two polarization modes representing the
canopy and ground scattering centers. The key to this technique is determining the two
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polarization states representing forest canopy scattering and ground scattering, as shown
in Equation (1) [6].

hv =
arg(γwv)− arg(γwg)

kz
(1)

kz =
4πΔθ

λsinθ
≈ 4πB⊥

λRsinθ
(2)

where wg and γwg mean the ground scattering mechanism and the ground scattering
complex coherence, respectively. γwv is the volume scattering complex coherence and
wv is the forest canopy scattering mechanism, respectively. θ is the radar angle of incidence;
λ represents the radar wavelength; R represents the radar slant range, and B⊥ represents
the perpendicular baseline. Although this approach is theoretically simple, the results often
underestimate 1/3 of the actual tree height [35].

The Three-Stage Inversion Method represents complex coherence coefficients of dif-
ferent polarizations that are linearly distributed in the complex unit circle. The RVoG model
is decomposed into a linear structure. The quantitative inversion process of vegetation
parameters is divided into three stages (Equation (3)) [10,28].

Using the least squares algorithm to fit a straight line in the complex plane;
Estimating the actual ground phase point based on the intersection of the fitted line

with the complex unit circle;
Inverting the tree height and extinction coefficient using a height-extinction coefficient

two-dimensional look-up table (LUT).

γ(w) = ejφ0 γv+m(w)
1+m(w)

= ejφ0
[
γv +

m(w)
1+m(w) (1 − γv)

]
, Lw = m(w)

1+m(w)

= ejφ0 [γv + Lw(1 − γv)]

(3)

γv =
∫ hv

0 f (z)ejkzzdz∫ hv
0 f (z)dz

= 2σ
cos(e2σhv/cosθ−1)

∫ hv
0 ejkzze

2σz
cosθ dz

= 2σ
2σ+jkzcosθ · exp(2σhv/cosθ+jkzhv)−1

exp(2σhv/cosθ)−1

(4)

where γv is the pure complex coherence of the forest canopy, and Lw is the ground scattering
ratio for a given polarization state w. m(w) is the ground-to-volume scattering ratio. σ is
the extinction coefficient, representing the energy loss of electromagnetic waves through
the medium. f (z) is the vegetation vertical structure function, which is usually simplified
to an exponential function in the RVoG model.

The RVoG Ground Phase Method (Equation (5)) is an improved model of the DEM
difference method. The RVoG model is used to compute Lwg , which is then introduced
in the DEM difference method to estimate forest height (Equations (6) and (7)). The
approach inverses forest height is better than the DEM difference method, but it still
underestimates forest height [7].

hv =
arg(γwv)− φ0

kz
(5)

φ0 = arg
[
γwg − γwv

(
1 − Lwg

)]
⇒
⎧⎨⎩ γwv = ejφ0 γv

γwg = ejφ0

[
γv +

m(wg)
1+m(wg)

(1 − γv)

]
, Lwg =

m(wg)
1+m(wg)

, 0 ≤ Lwg ≤ 1

⇒ γwg = γwv + Lwg · ejφ0 − Lwg · γwv

⇒ ejφ0 =
γwg−γwv(1−Lwg)

Lwg

(6)
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AL2
wg + BLwg + C = 0 ⇒ Lwg = −B−√

B2−4AC
2A

A = |γwv |2 − 1, B = 2Re
((

γwg − γwv

)
γ∗

wv

)
, C =

∣∣∣γwg − γwv

∣∣∣2 (7)

The SINC Inversion Method assumes a zero extinction coefficient, ignores ground
scattering, and inverts forest height directly using coherence magnitude representing
canopy scattering coherence. So, the SINC inversion method is also known as the coher-
ence magnitude inversion method [7,8]. The RVoG model (3) is simplified to a random
volume (RV) scattering model (Equation (4)). The forest height hv and volume scattering
complex coherence γwv show a SINC function connection under this assumption, as seen
in Equation (8). This approach generally overestimates tree height.

γwv = lim
σ→0

[ ∫ hv
0 f (z)ejkzzdz∫ hv

0 f (z)dz

]
= e

1
2 jkzhv sin( 1

2 kzhv)
1
2 kzhv

⇒ hv = 2·sinc−1(|γwv |)
kz

(8)

The Phase and Coherence Inversion Method combines the RVoG ground phase
method (first term of Equation (5)), which underestimates tree height, and the SINC
inversion method (second term of Equation (8)), which overestimates tree height. The
model has a more robust structure and low computational complexity. Some researchers
compared the phase and coherence inversion method to other methods and discovered
that the phase and coherence inversion method has the best inversion property and is
easier to use. Additionally, it is vulnerable to the accuracy of the RVoG ground phase
method [9]. The correction factor ε in this investigation sets to 0.4 due to the absence of a
priori knowledge.

hv =
arg(γwv)− φ0

kz
+ ε · 2sinc−1(|γwv |)

kz
(9)

3.2. Coherence Amplitude and Three-Stage Hybrid Iterative Model
3.2.1. Coherence Amplitude and Three-Stage Hybrid Iterative Theoretical Model

The classic SINC Inversion Method often overestimates the height of the forest because
it assumes that the ground scattering contribution is zero and that the volume scattering
contribution dominates the interferometric coherence. The three-stage inversion method
has greater accuracy than the SINC inversion method, DEM difference method, and RVoG
ground phase method. It simplifies the complexity of the height inversion model. However,
several studies have shown that the results of the three-stage inversion method remain to
underestimate the height of the forest. The three-stage inversion method’s results typically
underestimate [36,37] because the algorithm assumes that the ground-to-volume scattering
ratio of HV polarization is zero. Additionally, all polarizations in real scenarios contain
some ground scattering contribution.

Additionally, this inversion approach takes more time. The LUT steps can be used
to produce more precise results for forest height and extinction coefficients, but this will
result in a massive rise in the model’s inversion time because the LUT must invert each
pixel. Another disadvantage is that the images’ uniformity impacts the traditional three-
stage inversion method. Forest density influences the attenuation of SAR signals in the
canopy layer, which causes errors in the inversion. The RVoG two-layer scattering model
assumes that the volume layer is a random medium with uniform density (see, for example,
Figure 5). Still, low forest density is no longer considered a homogeneous medium, and
applying the RVoG model under such inhomogeneous vegetation conditions affects the
accuracy of the inversion results [26].
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Figure 5. Schematic representation of the RVoG two-layer scattering model. The two-layer model
consists of a volume layer and a ground layer, where the volume layer is supposed to be a medium
with uniform random density.

This study improves the forest height inversion model by combining the three-stage
inversion method and the SINC inversion method based on the model structure of the
phase and coherence inversion approach. The traditional three-stage inversion method is
not suitable for the inversion of sparse vegetation conditions and underestimates forest
height. According to previous research, both the RVoG ground phase method and the three-
stage inversion method underestimate forest height. The three-stage inversion method is
used in place of the RVoG ground phase method in the traditional phase and coherence
inversion method, where ThreeStage represents the three-stage inversion method. The

three-stage inversion method’s relative error AE and the magnitude term ( 2sinc−1(|γwv |)
kz

)
compensate for ThreeStage to solve the problem of forest height underestimation under
sparse vegetation conditions, which is associated with the three-stage inversion method
(Equation (10)). When the pixel’s result is overestimated, AE < 0; and when the pixel’s
effect is underestimated, AE > 0. The average tree height (realvalue) represents the average
level in a forest stand and it is used in inversion to decrease the complexity of collecting
real-world data. In this paper, we used average tree height to obtain penetration depth.
Section 5.3 discusses the relationship between penetration depth and forest density.

AE < 0

hv = ThreeStage + AE · εi · 2sinc−1(|γwv |)
kz

(10)

AE = (realvalue − ThreeStage)/realvalue (11)

The traditional phase and coherence inversion approach needs the model adjustment
coefficients to be generated based on a priori information. The same weighting factor
ε is employed for each pixel in the inversion process to correct the magnitude term for the
phase term. Although using a single ε for the entire image simplifies the inversion process,
it has obvious disadvantages when the SAR image contains forest conditions with varying
forest density or forest types. This study uses the adjustment coefficients εi to control the
minimization of inversion error RMSE by instructing each pixel to select the adjustment
coefficient with the minimum forest height error ε = arg(RMSEmin) in i iterations. The
new weighting term AE · εi strengthens the entire model’s structure. It overcomes the
drawbacks of the three-stage inversion method, which is better suited for inversion under
whole-forest density situations, but fails under sparse forest conditions. The following
summarizes the inversion procedure of the coherence amplitude and three-stage hybrid
iterative approaches.
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Linear least-squares fitting of all complex coherence coefficients in the complex unit
circle. This stage follows the traditional three-stage inversion method.

Obtaining of the actual ground phase. The fitted line and the complex unit circle
intersect at (φ1, φ2). The HV channel usually represents the volume scattering complex
coherence and HH-VV channel represents the ground scattering complex. The intersection
farthest from HV represents the actual ground phase φground;

φground =

{
φ1 ⇐ ∣∣eiφ1 − γHV

∣∣ > ∣∣eiφ1 − γHH−VV
∣∣

φ2 ⇐ else
(12)

Calculation of forest height. The iteration range of forest height and extinction coefficient
are first set, then the pure volume scattering complex coherence LUT(hv, σ) is constructed
using Equation (13). The distance between the volume scattering complex coherence and the
LUT whose ground phase has been removed is calculated. The smallest distance calculated
on the LUT is the most appropriate forest height and extinction coefficient;

hThreeStage = argmin
(height,σ)

{∣∣∣γHVe−iφground − LUT(hv, σ)
∣∣∣} (13)

Equation (8) generates the SINC inversion method’s findings with an extinction
coefficient of 0;

Determining the relative error of the height AE of each image pixel from the tree
height and the three-stage Inversion method’s forest height, and applying a weighting
coefficient εi(0 ≤ εi ≤ 1) to each image pixel. Equation (10) includes the weighting factor
AE · εi. The image pixel is iterated by image element based on the minimized RMSE, and
the appropriate ε = arg(RMSEmin) is determined.

3.2.2. Coherence Magnitude and Three-Stage Hybrid Iterative Application Model

The coherence magnitude and three-stage hybrid iterative theoretical model (Equation (10))
apply to ideal conditions, i.e., flat areas with no terrain effects or temporal decoherence,
which is compatible with the traditional RVoG model. A large number of studies,
however, have demonstrated that the conventional RVoG model is sensitive to terrain
effects: the higher the slope of the terrain, the higher the inversion error; the higher the
forest height, the higher the inversion error [17,18,24]. As a result, this work employs a
widely used slope correction approach to improve the theoretical model [15]. In non-flat
locations, vegetation is distributed along the surface’s slope, and the traditional RVoG
model assumes that the vegetation is in a flat area. Because of the presence of the terrain
slope α, the local coordinate system of the ground surface patch (P) is corrected from
yoz to y′o′z′, as illustrated in Figure 6. When the terrain slope facing the radar sensor is
positive (Figure 6a), the corrected local incidence angle θ0 is smaller than the original
radar incidence angle θ, and the vertical wavenumber increases. When the terrain slope
facing the radar sensor is negative (Figure 6b), the local incidence angle θ0 is larger
than the original radar incidence angle θ, and the vertical wavenumber decreases. The
terrain slope affects the volume complex coherence by influencing the pixel’s radiometric
brightness and vertical wavenumber [15]. The radar incidence angle may be corrected
using the terrain slope to produce the local incidence angle θ0, while the original kz uses
the local incidence angle θ0 to correct it.

θ0 = θ − α (14)

kz0 =
4πB⊥

λRsinθ0
(15)
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(a) (b)

Figure 6. The geometric model of forest scattering is affected by terrain slope. (a) The landscape
distribution faces the radar sensor when the terrain slope is positive. (b) When the terrain slope is
negative, the landscape distribution is at the back of the radar sensor. yoz and y′o′z′ are the coordinate
system under flat terrain and the slope-corrected coordinate system, respectively. B⊥ means the
vertical baseline. Smaster and Sslave are the master image and the slave image, respectively. P is the
ground object (e.g., forest), θ is the radar incidence angle, θ0 is the local incidence angle, α is the range
slope, hv0 is the slope-corrected forest height under the y′o′z′ coordinate system, and hv is the forest
height under the yoz coordinate system.

The RVoG model’s volume coherence is then corrected using kz0:

γv =
2σ

2σ + jkz0cosθ0
· exp((2σhv/cosθ0 + jkz0hv) · cosα)− 1

exp(2σhv/cosθ0 · cosα)− 1
(16)

The forest heights acquired by inversion were all along the y′o′z′ coordinate system,
and the terrain-corrected forest heights were hv0 as illustrated in in Figure 6. Thus, it is
essential to project hv0 to the yoz coordinate system to obtain the forest heights hThreeStage
according to Equation (17) [17,38]. Meanwhile, some studies have shown that the range
component of terrain slope is the dominant effect, and the azimuth slope is a minor one.
Therefore, this study only considers the range slope correction. Figure 7 shows the slope
and DEM of the four forest stands.

hThreeStage0 =
hv0

cos|α| (17)

The hybrid iterative algorithm is modified at this point to use the terrain-corrected
three-stage inversion method ThreeStage0 to replace the first term of the theoretical model.
The vertical wavenumber kz0 was corrected to reduce the impact of terrain on the SINC
inversion method (Equation (18)).

hv = ThreeStage0 + AE · εi · 2 · sinc−1(|γwv |)
kz0

(18)

The traditional SINC inversion method uses the coherence amplitude of a particu-
lar polarization channel, such as HV or PDHIGH . It assumes that its ground scattering
contribution is zero to invert the forest height. In reality, all polarization channels have
ground-scattering components. The extra ground scattering coherence amplitude causes
overestimation of the SINC Inversion Method. The second stage of the three-stage inver-
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sion method obtained the actual ground phase, which was removed from the assumed
pure volume complex coherence. At this stage, the pure-volume complex coherence is the
most suitable input variable for the SINC inversion method. As a result, we employ the
pure volume complex coherence to replace the second term of Equation (18), obtaining
the application model of the coherence magnitude and the three-phase hybrid iterative
approach (Equation (19)).

hv = ThreeStage0 + AE · εi ·
2 · sinc−1

(∣∣∣γw−assu · e−jφground
∣∣∣)

kz0
(19)

Figure 7. Images of the four forest stands’ terrain slope and DEM. (a–d) Pauli-basis of four stands in
the SAR coordinate system. (e–h) Terrain slope (i–l) DEM.

4. Results

4.1. Results of the Forest Height Inversion for the Simulated Dataset

Simulation of the forest height inversion was performed under ideal conditions
where nine groups of stands with various forest densities and a mean tree height of 18 m
were utilized. HV polarization represents the volume scattering complex coherence wv,
and HH-VV polarization represents the ground scattering complex wg. Comparison ex-
periments used six forest inversion methods. Table 3 and Figure 8 show each algorithm’s
performance and the specific statistical results.

Out of the six inversion algorithms used in the inversion of forest height, the DEM
difference method (red line) and RVoG ground phase method (yellow line) performed
the worst. Both phase difference algorithms significantly underestimated forest height
in sparsely vegetated areas with forest density below 400 stems/ha. The inversion error
decreased once the forest density exceeded 400 stems/ha, but the RMSE was consistently
greater than 1/3 of the actual tree height. Figure 9 displayed the relative height of the DEM
difference method and RVoG ground phase method, respectively. The canopy phase center
gradually moved toward the top of the canopy, and the ground phase center also slowly
increased. The HV phase center improvement rate was higher than HH-VV polarization in
100–300 stems/ha, and the inversion accuracy was gradually improved. However, when
the stand density exceeds 600 stems/ha, the forest gap area decreases, and the canopy
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phase center no longer increases at this point. The HV and HH-VV polarization phase
center heights are also slowly saturated at this point. As a result, the DEM differential
method and RVoG ground phase method are subsequently saturated. It also suggested that
in sparsely vegetated regions, the canopy phase and ground phase separations represented
by HV polarization and HH-VV polarization practically fail, significantly impacting the
algorithm’s performance.

Table 3. Using simulated datasets of 100–900 stems/ha, six forest height inversion techniques
produced forest height and error results.

Forest
Density

(stems/ha)
100 200 300 400 500 600 700 800 900

DEM Difference Method
MEAN 6.82 8.18 8.10 8.36 9.38 9.64 9.10 9.167 8.84
RMSE 11.41 10.15 10.19 9.93 8.99 8.78 9.27 9.19 9.56

SINC Inversion Method
MEAN 20.04 18.94 18.09 17.16 16.56 16.72 17.25 17.31 16.52
RMSE 5.19 4.94 4.20 4.40 4.43 4.59 4.63 4.46 4.72

RVoG Ground Phase Method
MEAN 8.46 9.70 9.97 9.73 10.66 11.01 10.37 10.32 10.47
RMSE 9.87 8.59 8.28 8.48 7.67 7.31 7.92 7.94 7.84

Three-Stage Inversion Method
MEAN 13.73 15.65 15.66 15.69 15.93 16.16 15.63 16.15 15.92
RMSE 6.30 4.90 4.19 4.28 4.17 3.900 4.30 4.07 4.21

Phase and Coherence Inversion Method
MEAN 15.66 16.86 16.87 16.24 16.87 17.22 16.79 16.80 15.66
RMSE 4.85 4.13 3.32 3.76 3.57 3.51 3.53 3.71 4.85

Coherence amplitude and three-stage hybrid iteration method
MEAN 17.35 16.79 17.23 16.92 16.85 17.36 16.99 16.96 16.88
RMSE 3.01 3.52 2.81 3.50 3.27 3.01 3.19 3.34 3.27

(a) (b)

Figure 8. Results graphs for the six forest height inversion techniques for simulated data sets with
100–900 stems/ha. (a) Line graph of forest height (b) Line graph of forest height error. The red line
means the DEM difference method (DEM_diff), and the orange line represents the SINC inversion
method (SINC inversion). The yellow line describes the RVoG ground phase method (RVoG_Phase),
and the green line represents the traditional three-stage inversion method (ThreeStage). The blue line
is the phase and coherence inversion method (Phase_Coherence), and the purple line represents the
coherence magnitude and three-stage hybrid iterative method (Hybrid Iterative).
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(a) (b)

Figure 9. Relative heights of canopy phase center and ground phase center. (a) DEM difference
method (b) RVoG ground phase method.

The orange line represented the SINC inversion method. The overestimation of this
algorithm was apparent when the forest density was below 400 stems/ha. However, the
RMSE gradually decreased as the forest density increased and always maintained the RMSE
at less than 30% of the actual height. The SINC inversion method ignored the effect of
ground phase information on the tree height inversion. As a result, the magnitude impacted
the effectiveness of the SINC inversion method. One of the significant characteristics of the
SINC inversion method is that the average magnitude is inversely related to the tree height.
Figure 10 displayed two-dimensional images of tree height and amplitude representing
the canopy polarization channel. When the stand density is low, the amplitude of the
HV polarization is small, and the forest height inversion is high. The amplitude of HV
polarization increases as the forest density approaches 400 stems/ha, and the forest height
inversion error gradually decreases. However, as the forest density increases further, the
amplitude of HV polarization reaches the saturation state, which limits the SINC inversion
method’s ability to invert and causes the forest height inversion error to fluctuate steadily.

At stand densities lower than 400 stems/ha, the traditional three-stage inversion
method (green line) demonstrated a significantly high forest height RMSE. In particular,
the forest height was greatly overestimated in the sparse forest stand scenarios below
200 stems/ha, and the error was greater than 30% of the actual forest height. With an
increase in forest density, the three-stage inversion method’s advantage was gradually
more apparent, and the RMSE was below 25% of the actual measurement. The sparse
vegetation broke the assumption of a random homogeneous medium, preventing the
RVoG model from exploiting it. On the other hand, the pure canopy phase incorporates
a portion of the ground component, causing mistakes in the calculated ground phase.

The inversion error of the phase and coherence inversion method (blue line) was
smaller than in the four approaches for low stand density situations. However, the RMSE
of this approach was much greater than that of the other four methods at sufficiently high
stand density. The main reason was that the results of the SINC inversion method and the
RVoG ground phase method were stable enough but increased data redundancy.

The coherence magnitude and three-stage hybrid iterative method (purple line)
had significantly better inversion effects under various forest densities when compared
to the other five commonly used algorithms. The model’s inversion effect was stable
without apparent overestimation or underestimation. The inversion error was about
15% of the actual forest height under both sparse and dense vegetation. In a forest stand
with 100 stems/ha, the inversion height was 17.3507 m, and the RMSE was 3.014 m,
overcoming the drawbacks of the SINC inversion method and the three-stage inversion
method, which fail at low stand densities. The forest height RMSE was 0.5–1 m lower
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than the phase and coherence inversion method and 1–3 m lower than the three-stage
inversion method.

(a) (b)

Figure 10. In the SINC inversion method, two-dimensional images of tree height and HV polarization
intensity are generated for nine groups of forest stands. (a) A two-dimensional map of forest height
for nine groups of forest stands. (b) A two-dimensional map of the HV magnitude for nine groups of
forest stands. For each of the nine groups of forest stands, the black circles indicate the regions with
low amplitude values. The red and black circles are positioned in the same location in both images.

4.2. Results of Forest Height Inversion for a Real Dataset

Considering that the forest conditions in the simulated dataset were ideal, the algo-
rithm was applied to four forest stands in the BioSAR 2008 L-band dataset in this study to
test the applicability of the improved method in actual data. The real dataset had four forest
stands with a forest density of 628.66 stems/ha, 840.34 stems/ha, 1149.10 stems/ha, and
1330.54 stems/ha. Since the actual forest height was often lower than the field measurement
of stand tree height, the Laser-100th was used as the actual forest height for model inversion
in this work. Table 4 displays the forest density, average stand height measured in the field,
and average laser radar stand height for the four stands.

Table 4. The forest density and height of four realistic scenario forest stands. The mean height was
measured manually in the field, and the mean height from Lidar is Laser-100th.

Forest Stand Number Forest Density (stems/ha) Mean Height (m) Mean Height from Lidar (m)

4451 628.66 18.72 20.99
2625 840.34 18.06 22.45
3611 1149.10 17.36 21.44
2228 1330.54 17.69 20.50

The algorithm’s performance was affected by the terrain fluctuations in the area
covered by the airborne data. So, the hybrid iterative theoretical model used the terrain cor-
rection to determine the coherence magnitude and three-stage hybrid iterative application
model (Equation (22)), which was then applied to the BioSAR 2008 L-band data. This study
introduced the PD coherence optimization approach to enhance the conventional fitting
method. γPDHIGH and γPDLOW represented the two ends of the long axis of the coherence
region, which were used in linear fitting to improve ground phase inversion accuracy. For
the inversion of forest height, the pure volume complex coherence after elimination of the
ground phase, the terrain-corrected vertical wavenumber, and the local incidence angle
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were concurrently input into the SINC Inversion Method and the terrain-corrected LUT.
Table 5 displays the results of their forest inversion.

Table 5. Coherence magnitudes and three-stage hybrid iterative application model inversion out-
comes for four realistic forest stands. The hybrid iterative algorithm height results from the coherence
magnitude and three-stage hybrid iterative application model.

Forest Stand
Number

Forest Density
(stems/ha)

Hybrid Iterative
Algorithm Height (m)

RMSE (m) MAPE (%) STD (m) VAR

4451 628.66 21.21 1.14 3.99 1.11 1.22
2625 840.34 22.19 1.60 6.20 1.05 1.11
3611 1149.10 21.54 1.83 5.86 1.83 3.34
2228 1330.54 20.89 2.17 7.70 1.51 2.27

The method partially addressed the effects of terrain slope and forest density on the
single-baseline PolInSAR inversion and produced good inversion results for all four stands.
The standard deviations were all controlled at about 1.5 m, ensuring slight fluctuation
when the method was applied to stands with different forest densities. Figure 11 displays
the inversion results for the four forest stands. As the forest density increased, the present
method was found to progressively raise the RMSE. However, the RMSE < 3 m was not
noticeably overestimated or underestimated. In particular, the RMSE was 1.14 m, and the
error was lower when the stand density was 628.66 stems/ha. The present technique will
be extended from the stand scale to a broader region to estimate forest height inversion,
biomass, and carbon stock information across a greater area.

(a) (b)

(c) (d)

Figure 11. Forest height mapping in four forest stands was accomplished using coherence magnitude
and three-stage hybrid iterative application algorithms. (a) Stand 2625, (b) stand 2228, (c) stand 3611,
and (d) stand 4451.
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5. Discussion

5.1. Effect of Forest Density on Phase

The relative height of the ground phase centers for the RVoG ground phase method
was significantly lower than the DEM difference method as illustrated in Figure 9a,b. The
phase separation was more significant in the RVoG ground phase method than in the DEM
difference method. Figure 12 shows the ground phase error bar of the DEM difference
method and RVoG ground phase method, respectively. However, when the stand density
exceeds 600 stems/ha, the standard deviation of the ground phase center gradually rises.
The HV and HH-VV polarization phase center heights also slowly saturated (Figure 9). As
a result, the ground phase is no longer accurately represented by HH-VV.

(a) (b)

Figure 12. Error bar plot of ground phase center relative heights. (a) DEM difference method
(b) RVoG ground phase method.

In general, the height of the volume scattering phase center steadily rises with in-
creasing forest density at the top of the canopy until the saturation of the polarization
channel that represents volume scattering. The center height of the ground phase of the
DEM difference method or the RVoG ground phase method gradually rises to saturation as
the density of the forest stand increases. Improving the precision of forest height inversion
is however difficult to achieve since accurate estimation of ground phase in high-density
stands is often a challenge. This is because the increase in stand density causes an increase
in ground phase inaccuracy. Although the ground phase error in low-density stands is
low, the distance between the canopy phase center and the ground phase center is too
close, making it impossible to efficiently discern between the two. As such, increasing the
accuracy of forest height inversion is quite a challenge.

5.2. Effect of Forest Density on the Magnitude

The SINC inversion method is typically a case where the extinction coefficient
is 0, as shown by the black line in Figure 13a. The average extinction coefficient depends
on the wavelength and the characteristics of the medium (such as height and density).
When the signal frequency is fixed, the average extinction coefficient rises, indicating the
existence of an effective scattering layer at the top of the bulk layer that attenuates the
signal and causes a decrease in penetration depth. As a result, the average extinction co-
efficient and penetration depth are inversely proportional [39]. The relationship between
the volume coherence and the average extinction coefficient is shown in Figure 13b. The
volume coherence increases gradually for a fixed tree height as the average extinction
coefficient increases. The volume layer is confined into a small space at the top of the
volume, indicating a relationship between the volume coherence and the penetration
depth. Volume coherence increases with increasing extinction coefficient, while pen-
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etration depth in the volume layer decreases. Figure 13c illustrates the relationship
between phase, tree height, and extinction coefficient. As the extinction coefficient
increases, the relative height of the phase center gradually rises, and the center of the
volume scattering phase slowly moves toward the top of the canopy [8]. Extinction
coefficient, volume coherence, and volume scattering phase are therefore related. As the
extinction coefficient increases, the volume coherence increases, the volume scattering
phase increases, while the penetration depth decreases.

(a) (b)

(c)

Figure 13. A presentation of the relationship between extinction coefficient, coherence amplitude,
and phase. (a) The relationship between complex coherence and extinction coefficient in the complex
unit circle. (b) The relationship between tree height, amplitude, and extinction coefficient. (c) The
relationship between extinction coefficient and phase center height, tree height (σ = 0 dB/m is the black
line, σ = 0.1 dB/m is the blue line, σ = 0.125 dB/m is the yellow line, and σ = 0.5 dB/m is the red line).

Forest density is one of the forest features. The penetration and attenuation of the
signal impacted by the forest density can change the forest stand’s average extinction
coefficient. Low forest density causes a wide gap in forest vegetation [40], which allows
many electromagnetic wave signals to pass through and reach the ground. It reduces signal
attenuation in the volume layer, increases penetration depth, and reduces the extinction
coefficient. Figure 14 shows two-dimensional images of nine sets of forest stands’ extinction
coefficients, with the red circles at the same location on each set of images. For forest stands
with densities of 100 stems/ha and 200 stems/ha, the extinction coefficient of the volume
layer is lower as shown in Figure 14. The attenuation of the signal into the stand rises as
the stand density grows, the extinction coefficient increases, and the effective volume layer
develops at the top of the canopy, impacting the computation of complex coherence. When
the density grows from 100 stems/ha to 600 stems/ha, the average extinction coefficient in
the red circle increases progressively (Figure 14). However, when the stand density reaches
700–900 stems/ha, the extinction coefficient begins to fluctuate, causing fluctuations in the
mean phase and amplitude at higher stand densities.
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Figure 14. The two-dimensional maps depict the extinction coefficients of nine groups of stands
inverted using the traditional three-stage inversion method, with red circles representing the same
locations of the nine groups of forest stands.

In summary, for L-band, the forest density impacts the inversion of forest height
by influencing the extinction coefficient. The effect of the extinction coefficient on the
inversion process is reflected in both amplitude and phase. When the stand density is low,
the extinction coefficient within the stand is also low. The volume scattering contains a
significant ground scattering contribution, and the incomplete separation of the volume
phase and ground phase invalidates the forest height method. The extinction coefficient
inside the stand increases as stand density rises, the amplitude and phase saturation
threshold increases, the distance between ground and canopy phases gradually widens,
and the forest height inversion error gradually reduces. When the stand density is high
enough, the amplitude and phase tend to saturate. The accuracy of the ground phase
estimation influences the accuracy of forest height inversion, and the extinction coefficient
stops increasing continuously. Single-baseline PolInSAR inversion approaches can employ
coherence optimization algorithms (e.g., SVD, PD, MCD) to increase the distance between
ground and canopy phases, or they can use an external DTM to choose the correct ground
phase [34,41]. These techniques still result in inversion errors for some ground phases,
which raise the inversion errors for forest height. The accuracy of the three-stage inversion
method has been increased by restricting the extinction coefficient following the signal
penetration depth [42]. Additionally, the multi-baseline PolInSAR approach has been
used to overcome the RVoG model’s shortcomings by reducing the extinction coefficient’s
impact [42] or applying a tomographic technique to reconstruct the forest height model [43].
These are strategies to overcome the constraints of single-baseline PolInSAR forest height
inversion due to factors such as forest density.

5.3. Discussion of Coherence Magnitude and Three-Stage Hybrid Iterative Model

(1) The physical significance of the improved model.
The coherence amplitude and three-stage hybrid iterative model also accounts for the

variations in forest density and changes in the extinction coefficient and forest structure.
The model is based on the stand density variation, which accounts for the variation in
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forest structure in relation to stand density. This variation is represented mathematically as
the relative error of forest height and physically as the relative height of signal penetration
depth. The inversion results are overestimation if AE is negative and underestimated if AE
is positive. Higher |AE| indicates deeper penetration, a lower canopy phase position, and
less forest density. The smaller the |AE|, the lower the penetration depth, the higher the
canopy phase position, and the denser the forest stand.

AE = (realvalue − ThreeStage)/realvalue
= 1 − ThreeStage

realvalue
= penetration depth

realvalue

(20)

When the canopy phase position Y is lower at lower stand densities, the extinction
coefficient is lower, and the penetration canopy depth d is larger (Figure 15a). The canopy
phase position Y is close to the top of the canopy when the forest density increases. The
extinction coefficient is higher, and the penetration canopy depth d is smaller (Figure 15b).
Figure 15c depicts the relative errors (penetration depths) for the nine groups of forest
stands. At lower forest density, substantial forest gaps emerge, and signal penetration
depth under the canopy is high, with relative errors ranging from 0.4 to 0.8. As forest
density increases, the forest gap reduces, forest structure becomes homogeneous, canopy
phase reaches the top of the canopy, and the signal penetration depth within the forest
gradually declines to a value falling between −0.2 and 0.2.

(a)

(b) (c)

Figure 15. Diagram showing the relative tree height error, penetration depth, and forest density.
(a) Schematic representation of signal penetration at low forest density, where penetration depth d is
higher, and canopy phase center Y is lower. (b) Schematic illustration of signal penetration at high
forest density showing that the penetration depth d is less and the canopy phase center Y is more
elevated and closer to the canopy’s top. (c) The relative error (penetration depth) of the nine groups
of forest stand inversions using the traditional three-stage inversion method.

The coherence magnitude and three-stage hybrid iterative model provides the top of
vegetation with the traditional three-stage algorithm replacing the phase term, and compen-
sate for the top height of the canopy compressed by the phase information with the SINC
inversion method and canopy penetration depth. Because penetration depth is involved,
the coherence magnitude and three-stage hybrid iterative algorithm no longer selects the
adjustment factor using fixed empirical parameters. Iterative correction coefficients εi are
selected pixel-by-pixel based on the stand’s features to reduce the tree height inversion
error. As a result, the coherence magnitude and three-stage hybrid iterative method is more
reliable and compatible with the structural traits of the target forest stands, increasing the
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accuracy of forest height inversion. The two critical assumptions that the volume coherence
is independent of polarization and that the ground-to-volume scattering ratio is zero for
the volume scattering complex coherence still place restrictions on the model because it
is based on the conventional three-stage inversion method. The model’s applicability to
X-band and P-band data still requires particular studies because the signal frequency is
also a crucial factor impacting the extinction coefficient.

(2) The structure of the improved model
According to the traditional three-stage inversion method, the ideal coherence region

comprises all the complex coherence points (the gray elliptical area in Figure 16). The
extinction coefficient is often empirically adjusted as a constant to increase the effectiveness
of the whole image inversion, which reduces the number of spirals in the LUT to one (the
red circle spiral in Figure 16). The hypothetical pure-volume scattering complex coherence
point γV−pure, indicated by the red dot in Figure 16a, is located on the ellipse’s long axis
furthest from the ground phase φground. In an ideal situation, finding the closest point (green
dot in Figure 16) to γV−pure in the LUT should yield suitable tree height and extinction
coefficient values. The distance between γV−pure and γV−ideal becomes too large when
the coherence region is too distant from the LUT or if the coherence region’s long axis is
not long enough. It means γV−wrong (the blue dots in Figure 16b) is closer to γV−pure than
γV−ideal , which causes a significant under- or overestimation of forest height.

(a) (b)

Figure 16. An illustration of ideal geometric structure of the conventional three-stage inversion
method and the situation of a failed geometric structure. (a) The ideal geometry of the traditional
three-stage inversion method. (b) Either the coherence region’s long axis is too short or too far away
from the LUT for the geometric structure to fail.

The above ambiguous solutions happen when the ground phase has made an incorrect
selection, or the separation between the ground phase and canopy phase is insufficient. For
example, in realistic situations with sparse vegetation, overly low extinction coefficients
lead to poor coherence and affect the inversion of the LUT. The single-baseline PolInSAR
technique, with its simple algorithm, is ineffective, but the multi-baseline PolInSAR ap-
proach is complex and requires numerous sets of data input. And the coherent magnitude
and three-stage hybrid iterative model uses the penetration depth to alter the weighting
factors of pixels to make the overall model more robust. A balance is struck between the
simplicity and the validity of the model.

Although the coherence magnitude and three-stage hybrid iterative application model
is adjusted for terrain effects, there is still a need to evaluate whether temporal decoherence
can be used in the present study’s technique. Temporal decoherence affects forest stands in
various ways. The level of landform disturbance varies in PolInSAR data with different
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temporal baselines [9,20,44]. For various frequencies or various temporal baselines, many
temporal decoherence techniques have been developed [19,21–23]. The impact of temporal
decoherence on various forest densities or stand structures varies [45]. There is currently
no standardized algorithm to achieve tree height inversion for all forest densities and
all temporal baselines. As a result, data characteristics and forest features need to be
considered to execute temporal decoherence correction for the coherence magnitude and
three-stage hybrid iterative model.

6. Conclusions

Forest density affects signal penetration and attenuation, leading to the change of
extinction coefficient and penetration depth, which affects the inversion performance of the
traditional forest height models. When the forest density is sparse, the forest is no longer a
uniform medium, and the inversion error is more significant. With the increase in forest
density, the inversion error decreases. When the forest density is enormous, the extinction
coefficient no longer increases continuously. At this time, the amplitude and phase of the
electromagnetic wave are saturated, and the inversion error will increase. Meanwhile,
many forest gaps within the forest affect signal penetration, extinction coefficient, and
penetration depth.

The coherence magnitude and three-stage hybrid iterative model solves the problem
of forest height inversion failure in low forest density regions. It quantifies the penetration
depth of different forest stands and compensates for the compression at the top of the
canopy. The inversion results do not have significant overestimation or underestimation.
The coherence magnitude and three-stage hybrid iterative model can achieve high precision
inversion of various forest densities at the stand scale and overcome the underestimation
effect of low forest density on the traditional model.

In future work, we intend to will extend the model from the stand scale to a larger
scale and realize the high-precision inversion of various forest densities at large scales.
The coherence magnitude and three-stage hybrid iterative model introduce the terrain
correction algorithm. However, the correction of temporal decoherence must consider the
radar frequency, temporal resolution, and other system parameters and stand characteristics.
The fusion of the temporal decoherence correction algorithm and the improved algorithm
in this paper will also be considered in future work. Nevertheless, the proposed method is
simple, robust, and easy to extend, which addresses the failure problems associated with
traditional inversion methods in sparse forest areas.
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Abstract: Eucalyptus plantations play an important role in the timber supply and global warming
mitigation around the world. Forest age is a critical factor for evaluating and modeling forest
structure (e.g., diameter at breast height (DBH), height (H), aboveground carbon stocks (ACS)) and
their dynamics. Recently, the spatial distribution of forest age at different scales based on time series
remote sensing data has been widely investigated. However, it is unclear whether such data can
effectively support the simulation and assessment of forest structure, especially in fast-growing
plantation forests. In this study, the physiological principles in predicting growth (3-PG) model
was firstly optimized and calibrated using survey and UAV lidar data at the sample plot (SP) scale,
and was then applied at the forest sub-compartment (FSC) scale by designing different simulation
scenarios driven by different forest age data sources and adjustments. The sensitivity of the simulated
forest structure parameters to forest age was assessed at the SP and FSC levels. The results show
that both the survey forest age data and the remote-sensing-derived forest age data could accurately
estimate the DBH, H, and ACS of eucalyptus plantations with the coefficients of determination (R2)
ranging from 0.87 to 0.94, and the relative root mean square error (RRMSE) below 20% at SP level. At
the FSC level, the simulation results based on remotely sensed forest age data are significantly better
than FSC forest age data from surveys by forestry bureaus, with R2 of ACS 0.7, RMSE 9.12 Mg/ha,
and RRMSE 28.24%. The results of the sensitivity analysis show that the DBH, H, and ACS show
different degrees of variation under different adjusted forest ages at SP and FSC level. The maximum
difference in ACS is 82.91% at the SP scale if the forest age decreases 12 months and 41.23% at the
FSC scale if the forest age increases 12 months. This study provides an important reference for future
studies using forest age data obtained by remote sensing to drive the forest carbon model in a large
spatial scale.

Keywords: 3-PG model; eucalyptus; forest age; forest structure; remote sensing; sensitivity

1. Introduction

Forests as an important component of the terrestrial carbon pool play a vital role in reg-
ulating regional and global carbon balances and slowing down the increase in atmospheric
CO2 concentration [1]. A lot of research work was performed to quantify the carbon stocks,
carbon density, and potential carbon sink of forest ecosystems [2]. Accurate estimation of
these carbon variables of forest ecosystems is an important goal pursued by ecologists and
geographers, and also an important basis for achieving carbon neutralization.

Forest age is an important stand parameter of the forest ecosystem, which not only
represents the planting time and succession stage of trees or stands, but also has important
impacts on the physiological and ecological parameters in the carbon and water cycle
models [3]. It is a critical factor that determines the temporal and spatial distribution of
carbon pool and flux of the forest ecosystem, and corresponding management measures in
forest plantations [4]. Previous studies show that net primary productivity (NPP) increases
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with the increase in stand age in the early stage of the forest ecosystems, reaches the
maximum in the middle stage after canopy closure, and gradually declines in the later
stage [5]. This relationship makes most carbon cycle variables, such as biomass, carbon
stocks, gross primary productivity (GPP), and net ecosystem productivity (NEP), closely
related to forest age [6,7]. Therefore, forest age is the key data to accurately estimate and
simulate the carbon uptake dynamics of the forest ecosystem [8], and many carbon cycle
models take forest age as known information [9,10]. However, there is often a lack of
accurate, timely, and high-spatial-resolution information on the spatial distribution of
forest age in regional forest carbon cycle research, which makes it difficult for the models
to conduct forest carbon stock simulation and estimation [11].

Traditionally, the way to obtain forest age was mainly through forest inventory at
sample plot (SP) by inquiring, professional experience, or tree cones [12], which were very
costly, long cycle, and easily subject to geographical restrictions. It is difficult to obtain
large-scale and long-term spatial forest age data. Taking China as an example, a three-
level forest resources inventory system has been established: national forest continuous
inventory (NFCI), forest management planning inventory (FMPI), and forest operation
design inventory (FODI) [13]. FODI is a very detailed survey conducted at the smallest
forest management compartment (FSC), and is the only spatial data of forest age from a
manual survey. However, the survey is conducted every five years, meaning the forest
age information is relatively lagged and full of uncertainties. Satellite remote sensing has
the advantage of continuous monitoring of land surface change information over long
distances and large areas. It has become an important and effective means to obtain the
spatial distribution of forest age [14]. There are two main strategies to retrieve forest age
from remote sensing data. One is to establish a forest age estimation model based on single
or multi-period remote sensing data (e.g., spectral, vegetation index, tree height product),
combining with ground survey, and meteorological and other data. This method has
been used to extract the spatial distribution of forest age at global, national, and regional
scales [8,11,14–16]. The second is to extract forest disturbance year based on time-series
remote sensing data change detection [17,18]. Recently, Li et al. [19] proposed a random
localization segmentation-based method to map the spatial distribution of successive
plantation generation and forest age for these short-rotation eucalyptus plantations based
on time series Landsat data. These remote-sensing-based forest age products provided the
valuable input data for forest ecosystem carbon models. However, due to the limitations
of remote sensing data and algorithms, such as cloud snow, noise, spatial and temporal
resolution, and saturation of remote sensing signals [20], there are often some errors and
uncertainties in the obtained forest age data, with R2 ranging from 0.7 to 0.92 and RMSE
ranging from 1.2 to 2.91 years, especially in tropical and subtropical regions [3,19,21].

The carbon cycle model based on tree growth and ecological process is an effective
method to simulate forest growth, biomass, and carbon stocks [22,23]. It can be grouped
into two categories: patch-scale carbon cycle model and regional-scale carbon cycle model,
according to the simulation spatial scale [24]. The patch-scale carbon cycle model can be
further divided into individual tree-based and stand-based carbon cycle models. The prior
can simulate the growth and mortality of each tree, and predict the diameter distribution
of the stand. These models usually require lots of input data, computationally intensive,
and most are conducted locally [23]. The stand-based patch carbon model can simulate
the forest carbon cycle at different time scales (day, month, or year) by assuming that the
trees are spatially uniformly distributed in a stand [23]. The stand-based carbon models,
such as spatial production allocation model (SPAM), the individual-based forest landscape
and disturbance (iLand) model, and 3-PG model [25–27] are widely used to simulate forest
growth and carbon cycle, and make management measures plans [28–30]. These models
can be easily extended to the regional scale [24].

The roles of forest age in the forest carbon cycle research mainly focus on the use of
forest age to analyze the impact of forest management on carbon sinks and to improve
carbon estimates in the terrestrial carbon models [1]. The utilization of forest age data
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can effectively improve the accuracy of the simulations, but the uncertainty in the forest
age might also bring much ambiguity to the carbon cycle model, and few studies have
assessed the impact of such uncertainties on the carbon simulation results, especially for the
remote-sensing-based forest age data. For example, many researchers conducted sensitivity
analyses on different parameters in 3-PG models for variety research purposes, including
soil fertility (FR), age at canopy closure (fullCanAge), maximum canopy quantum efficiency,
maximum canopy conductance, aWS (constant in stem mass v diam. relationship), and
nWS (power in stem mass v diam. relationship) [22,31]. Few studies selected stand age
parameters for sensitivity analysis, because most of the studies performed their research at
plot level with accurate and known forest age.

Eucalyptus is a globally important plantation tree species with fast growth rate, short
harvest rotation, and strong carbon sequestration capacity [32]. Eucalyptus was introduced
into China in 1890 and has been planted for more than 130 years, making China the second
largest plantation country in the world [33]. Eucalyptus plantations have greatly alleviated
the shortage of timber supply from plantation forests in China, but the very short rotation
cycle (about 6 years) and intensive management have led to many ecological problems [34].
Some studies show that the large-scale plantation of eucalyptus plantations has resulted
in soil fertility degradation and soil erosion, limited growth of understory vegetation,
and decline in biodiversity, while some studies show that eucalyptus plantations have
an important role in promoting the ecological environment [33,35,36]. In the context of
achieving the goal of carbon neutrality, people pay more attention to the carbon stock
and carbon sequestration potential of eucalyptus, and accurate estimation of the carbon
dynamics of eucalyptus has become an important issue.

This study selected the eucalyptus plantations in Yuanling Forestry Farm, Zhangzhou
City, Fujian Province, China as the research object. We comprehensively used SP survey
data, forest inventory data, meteorological data, UAV lidar data, forest age obtained based
on time-series remote sensing data, and a 3-PG model to simulate the forest structure of the
study area, and assess the simulation accuracy. Specifically, the following two questions
remain to be answered: (1) Can the forest age data obtained from remote sensing data
support the 3-PG model to accurately simulate forest structural parameters at the SP scale
and FSC scale? (2) How sensitive are the simulation results of the 3-PG model to the forest
age data at the two scales?

2. Materials and Methods

2.1. Study Area

The study area is located in Yuanling State Forestry Farm in Yunxiao County, Zhangzhou
City, Fujian Province, China (Figure 1). It has a typical southern subtropical maritime mon-
soon climate with an average annual temperature of 21.2 ◦C and annual precipitation of
1730.6 mm. The planting history of the study area in recent decades can be summarized as:
rubber trees was planted in the beginning of the 1980s, and were gradually replaced by
fruit trees (such as longan) from 1993 due to the declined economic value of rubber trees,
and eucalyptus was introduced around 2005, and then widely planted in the study area.
Some Chinese fir and Pinus elliottii forests were also gradually replaced by eucalyptus
during the period 2007–2010. The main species of eucalyptus were eucalyptus grandis x
urophylla and eucalyptus urophylla S.T. Blake.
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Figure 1. Location of the study area, spatial distribution of sample plots, and forest sub-compartment
of eucalyptus. The base map is a true color composite of Sentinel-2 image.

2.2. Data collection and Processing
2.2.1. Field Survey Data

The survey data include the FSC data carried out by government departments in 2017,
and SP data surveyed in 2021. The main information of the FSC data includes average
diameter at breast height (DBH), average tree height (H), stand age, survey date, stand
volume per hectare, number of trees per hectare, elevation, depth of soil, etc. The FSC
data were surveyed in 2017 and are the latest available forestry survey data. We chose
140 eucalyptus FSC, a total area of 379.2 ha, to carry out our simulation with the 3-PG
model (Figure 1). The forest age of these FSC in 2017 was mostly concentrated in 0–4 and
9–12 years (Table 1).

We investigated 17 eucalyptus plots with an area of 20 m × 20 m in the study area. The
forest age of the survey plots ranges from 1 to 13 years, the average DBH is 3.62–16.26 cm,
and the average H is 4.02–19.69 m. We measured and recorded DBH and H for each
tree with DBH greater than 5 cm in the plots. The planting time, management history,
and environment information were also recorded through asking the owner. The model
developed by [37] was used to calculate the biomass of each organ of each tree (Table 2).
The biomass of each tree was summed to obtain the aboveground biomass of SP, and then
converted to ACS by multiply carbon coefficient (0.4764) [37]. Considering eucalyptus
has a very rapid growth rate and 3-PG model can simulate the forest structure monthly,
the SP were surveyed about every six months (January 2021, July 2021, and December
2021). The data from the three surveys were used to verify the simulation accuracy of
the model at the SP level. Some plots were harvested when conducting the second and
third survey, and some plots were only measured for DBH. Finally, we collected a total of
44 DBH observations and 41 H observations for these plots after the three surveys.
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Table 1. Basic information of the 140 eucalyptus FSC.

Age (Year) Number (n) Mean DBH (cm) Mean H (m) Total Area (ha)

≤4 55 <9.5 2.5–10.8 105.38
5–8 26 10.9–17.6 12.3–22 115.75

9–12 53 11.5–24.4 14.3–29.2 143.25
13–17 6 20.8–24.6 21.7–28.3 14.82
Total 140 0–27.6 2.5–29.2 379.2

Table 2. Model for estimating aboveground biomass (stem, branch, bark, and foliage) of eucalyptus.

Organ Fitting Equation R2

Stem W = 0.0259 × DBH2.8762 0.978
Branch W = 0.0263 × DBH2.2471 0.887

Bark W = 0.0539 × DBH1.7802 0.949
Foliage W = 0.1785 × DBH1.1753 0.871

2.2.2. Meteorology Data

We calculated monthly minimum temperature (◦C), maximum temperature (◦C),
average temperatures (◦C), and precipitation (mm) based on the hourly recorded data
from 2008–2021 that were acquired from the meteorological station nearby the study area.
Considering some FSC have an older forest age, the temperature and precipitation data
were extended to 1997–2007 using the data provided by National Aeronautics and Space
Administration (NASA). Solar radiation data from 1997 to 2021 were also acquired from the
website (https://power.larc.nasa.gov/data-access-viewer/, accessed on 10 January 2022)
due to a lack of local observations. These data have been proven to be accurate enough to
provide reliable meteorological and solar radiation data in areas where site observations are
sparse [38,39]. Compared with the data of the same year from the meteorological station,
the two source data products have high consistency and can be used together for the model
simulation.

2.2.3. UAV Lidar Data

The UAV lidar data were acquired in July 2021 with an average point cloud density of
60 points/m2. The process of lidar data mainly includes filtering, denoising, normalization,
and generating CHM data [40]. The Lidar360 software was used to remove noise in the
point cloud data, such as bird points, low points, and utility poles. The discrete point
cloud echo points were divided into ground and non-ground points. The ground points
were used to generate a digital elevation model (DEM) by inverse distance weighted
interpolation method. All non-ground points were interpolated to a digital surface model
(DSM) with a spatial resolution of 1 m. Then, the canopy height model (CHM) was
obtained by subtracting DEM from DSM. The lidar data obtained in July 2021 and sample
plot data surveyed at the same time were used to establish ACS prediction model, that is,
17 observations were used in the model. Stepwise regression method was used to establish
a carbon stock estimation model with the variables from the CHM acquired from lidar with
a resolution of 20m × 20m (the same as plot size) [41]. Two variables (mean CHM and
skewness) for ACS prediction were identified using stepwise regression method. Then,
leave-one-out cross-validation was used in the evaluation processes, with 16 samples used
to train the model, and the established model was used to predict the ACS value of the
one observation left out of the model. The validation shows that the model works quite
well, with R2 (coefficient of determination), RMSE (root mean square error), and RRMSE
(relative root mean square error) values of 0.87, 8.73 Mg/ha, and 18.72%, respectively. The
average H and average ACS of each FSC were calculated based on the modelled data, and
used to assess the 3-PG model simulation results (Figure 2a,b).
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2.2.4. Forest Age Data from Landsat Time Series Data

The forest age data of each FSC based on Landsat-based forest age data were provided
by [19] (Figure 2c). The forest age of short rotation eucalyptus plantations was developed
using a random localization segmentation algorithm and all available Landsat time series
data. The Chow test and random forest continuous classification were used to obtain the
spatial distribution of eucalyptus forest age at 30 m × 30 m spatial resolution with RMSE of
13 months in 2021. In our study area, the forest age error was about 12 months compared
with the survey data. The simulation unit of this study was at FSC scale, and the average
age of each FSC was obtained through zonal statistics.

Figure 2. CHM (a), aboveground carbon stocks (b) based on UAV lidar, and forest age data (c) from
Landsat time-series data.

2.3. 3-PG Model and Parameter Setting

The 3-PG model is a physiological–ecological process model based on allometric
equations and a monthly time scale [27]. The model has a relatively simple structure and
few input parameters [42]. It can simulate many tree species including eucalyptus, and is
widely used in Australia, Brazil, Canada, and China [30,43–45]. The model was initially
developed to simulate even-aged evergreen forest species, and now is able to simulate
deciduous, uneven-aged, and mixed forest, and assess the forest growth under different
management measures [46]. Many studies utilized the model to simulate forest growth
of eucalyptus, Masson pine, and larch at the plot level [31,47,48]. The model has four
submodules: the light sub-model, the biomass production and allocation sub-model, the
water balance sub-model, and the mortality sub-model. More details about 3-PG model
are provided in [27,45]. The tree growth was simulated at monthly intervals by inputting
monthly meteorological data (maximum and minimum temperatures, average temperature,
precipitation, and solar radiation), site conditions (latitude, soil class, and soil fertility),
planting time, and initial organ biomass, management measures, and parameters for the
tree species. The model can output many variables such as GPP, NPP, DBH, H, organ
biomass (monthly), etc. The DBH, H, and ACS (calculated from biomass) were selected
for output and evaluation in this study. All the simulations were performed with the r3PG
package in the R platform [49].

2.3.1. Model Parameters

The 3-PG model provided a complete set of parameter values for eucalyptus, which
was a very useful reference for the parameter setting of this study. For the stem biomass
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parameters, the key parameters aWS (0.0259) and nWS (2.8762) for eucalyptus in our
study area were obtained by fitting the allometric equation WS = aWS × DBHnWS (WS
is the stem biomass) (R2 = 0.9998) based on the DBH and stem biomass obtained from
the survey data. The model simulation for each FSC started from its planting time, and
the initialized biomass values of stem, root, and leaf were set to 1 Mg/ha, 2 Mg/ha, and
0.5 Mg/ha, respectively [50]. Soil class and soil moisture data were acquired by the Second
National Soil Survey data, and other parameters were set following the reference [51]. See
Appendix A Table A1 for details.

2.3.2. Simulation Scheme Design

Figure 3 shows the overall flowchart of the study. We used SP data, FSC data, Landsat
age data, meteorological data, and site conditions to calibrate and drive the 3-PG model.
Then, the surveyed forest age and forest age from Landsat were used to drive the 3-PG
model and simulate the DBH, H, and ACS of eucalyptus plantations at the plot scale, and
17 sample plots with three sets of investigation data were used for validation. The impacts
of historical management information on the accuracy of simulation results were also
evaluated. Similarly, the FSC age and forest age from Landsat were used to simulate the
DBH, tree height, and carbon storage of the eucalyptus plantations at the FSC scale, and
validated by UAV lidar data. Finally, we explored the sensitivity of the simulated forest
structure to the forest age on two scales.

Figure 3. The overall work flow chart of the article.

Simulation Scheme Based on the SP Level

The carbon stocks for the 17 sample plots were simulated using the parameterized
3-PG model based on the surveyed forest data and forest age data from Landsat (Figure 4).
The sample plot was chosen to represent a certain area that had similar planation history
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and management. The forest age information of the plot was obtained by extracting the
age of the pixel where the plot was located in the Landsat pixels. The impacts of historical
management information on the simulation results were also evaluated by considering the
selective cutting or not (acquired during the survey). It was difficult for Landsat time-series
data to accurately detect the thinning activities, so the management was not considered in
the forest age from Landsat-based simulation. All the biomass variables from the model
were conversed to carbon stock by multiplying the carbon coefficient and obtaining the
ACS. The simulation accuracy of three forest structure variables (DBH, H, ACS) were
assessed by the survey data.

Figure 4. Simulation scheme design at the sample plot level.

Simulation Scheme Based on the FSC Level

The simulations were then carried out for the 140 FSC of eucalyptus plantation. The
following three scenarios were designed to evaluate the impact of forest age data on the
carbon stocks simulation.

(a) Simulation based on FSC age information. The forest age from 2017 FSC survey
data was used as the input data to drive the 3-PG model. Considering that FSC age was
obtained from 2017, and the validation data from lidar were obtained in July 2021, some
FSC may have been harvested during the period, but the FSC data may have lagged.
Therefore, the FSC were divided into two groups for evaluation: FSC planted before 2015
and FSC planted after 2015 (eucalyptus plantation harvested age mainly ≥ 6 years in the
study area);

(b) Simulation based on forest age data from Landsat. The forest age data (introduced
in Section 2.2.3) extracted from Landsat time-series data in January 2021 were used as
the input to drive the 3-PG model. It should be noted that the simulation was performed
for the 140 FSC, but not for each pixel due to lack of high spatial resolution data of soil,
meteorological, tree density, etc.;

(c) Simulation based on the adjusted forest age data. As the forest age based on remote
sensing data has many uncertainties, we adjusted the forest age by ±3 months, ±6 months,
and ±12 months to test the sensitivity of the model simulation results for both the SP and
FSC.2.3.3. accuracy evaluation.

The simulated ACS, DBH, and H of SP were evaluated by the surveyed data. The
simulated ACS and H of FSC were evaluated by the data calculated from UAV lidar
(introduced in Section 2.2.4). The coefficient of determination (R2), root mean square error
(RMSE), and relative root mean square error (RRMSE) were used to evaluate the simulation
accuracy of the model. They were calculated as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (1)

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(2)
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RRMSE =

√
∑n

i=1
(yi−ŷi)

2

n

∑n
n=1

yi
n

(3)

where n is the number of observations, yi is the observed value of plot i, ŷi is the simulated
value of plot i, and yi is the mean value of all sample plots.

3. Results

3.1. Simulation Results at SP

The results based on the surveyed forest age show that the 3-PG model can accurately
simulate DBH, H, and ACS of eucalyptus plantations (Figure 5), with R2 values ranging
from 0.80 to 0.93. Taking thinning information into account can further improve the simula-
tion accuracy. The R2 of ACS, DBH, and H increase by 0.09, 0.06, and 0.07, respectively, and
the RRMSE decreases by 8.54%, 6.75%, and 4.2%, respectively. The simulation results based
on forest age data from Landsat also achieve high accuracy, with R2 of DBH, H, and carbon
stock all higher than 0.85, and RRMSE less than 20% (Figure 6). They are generally better
than the simulated results not considering thinning, and are closer to the simulated results
with thinning information considered.

Figure 5. Validation of simulated forest structure at the SP. Plots (a1–c1) are simulated diameter at
breast height, height, aboveground carbon stock of not considering thinning in the model; (a2–c2) are
simulated diameter at breast height, height, aboveground carbon stock of considering thinning. No
thinning and thinning denote whether the SP thinned or not during the growth.
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Figure 6. Validation of simulated diameter at breast height (a), height (b), and aboveground carbon
stock (c) based on remote sensing stand age data at SP scale.

3.2. Simulation Results at FSC

The simulation results based on FSC age data for the 140 FSC show very low R2 and
high RMSE compared with the ACS and H data estimated from UAV lidar. However, for
the FSC planted after 2015, the simulation results are quite well-matched (Figure 7), with
RMSE of H and ACS of 2.91 m and 14.22 Mg/ha, respectively. Obviously, for the FSC
planted before 2015, there is no significant relationship between the simulated results and
validation data, due to the unknown harvest information and inaccurate forest age data,
and the RMSE of H and ACS are 14.06 m and 80.78 Mg/ha, respectively. This suggests
that accurate and timely updating of forest age is critical for the model simulation of
eucalyptus plantations. The accuracies of simulated H and ACS using forest age data from
Landsat significantly increase for the 140 FSC compared to the results based on FSC age
data (Figure 8). The forest age data from Landsat are very effective for driving the 3-PG
model. Both the simulated H and ACS show high R2 and low RRMSE, but the accuracy is
not so good as the SP level.

Figure 7. Validation of simulated height (a) and aboveground carbon stocks (b) based on FSC forest
age data.
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Figure 8. Validation of simulated height (a) and aboveground carbon stocks (b) based on forest age
data from Landsat.

3.3. Sensitivity of the Simulation Results to Forest Age
3.3.1. Sensitivity Analysis of the 3-PG Model at the SP Level

The simulation results from different adjusted forest ages at sample plot level show
that DBH, H, and ACS exhibit different degrees of variation (Table 3). The largest variation
occurs in DBH with the RMSE increasing by 33.45% when the forest age increases by
12 months. The H and ACS have consistent change trends. The changes in RMSE are
small when the forest age increases, but become larger when the forest age decreases from
3 months to 12 months. The RMSE of H and ACS increase by 42.92% and 82.91% as the
forest age decreases 12 months. It should be noted that the sensitivity analysis shows the
highest R2 and the lowest RMSE are not consistent for DBH, H, and ACS in these adjusted
forest age designs. For example, the lowest RMSE of simulated DBH occurs when the forest
age decreases 6 months, while for H and ACS this occurs in increased by 6 months design.
In addition, the highest R2 and lowest RMSE occur in forest age adjusted designs that are
inconsistent.

Table 3. Comparison of model predictions of the diameter at breast height (DBH), height (H), and
aboveground carbon stocks (ACS) with observations of DBH, H, and ACS under different adjusted
forest ages based at SP level.

Variables DBH H ACS

R2 RMSE
(cm)

Change
Degree of

RMSE
R2 RMSE

(m)

Change
Degree of

RMSE
R2 RMSE

(Mg/ha)

Change
Degree of

RMSE

−3 months 0.94 1.74 5.95% 0.86 2.50 7.30% 0.94 8.07 13.03%
−6 months 0.93 1.68 9.19% 0.85 2.77 18.88% 0.93 9.56 33.89%
−12 months 0.90 1.72 7.03% 0.79 3.33 42.92% 0.90 13.06 82.91%
No change 0.93 1.85 0 0.87 2.33 0 0.93 7.14 0
+3 months 0.94 2.09 12.97% 0.87 2.26 3% 0.94 6.15 13.86%
+6 months 0.94 2.29 23.78% 0.87 2.25 3.43% 0.95 5.92 17.09%

+12 months 0.94 2.78 33.45% 0.88 2.42 3.86% 0.95 7.41 3.78%
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3.3.2. Sensitivity Analysis of the 3-PG Model at the FSC Level

The impacts of adjusted forest age on the simulated H and ACS for the 140 FSC show
that the largest deviation for both occurs in the scenario of increased age of 12 months
(Table 4), with RMSE increasing by 12.2% and 41.23%, respectively. The lowest RMSE of
H and ACS are observed in the scenario of decreased age of 3 months and no adjustment
scenario, respectively. The decreased forest age does not lead to much variation in ACS
simulation at the SP level.

Table 4. Comparison of model predicted height (H) and aboveground carbon stocks (ACS) with lidar
inverse H and ACS under different stand age conditions based on FSC scale.

Variables H ACS

R2 RMSE (m)
Change

Degree of
RMSE

R2 RMSE
(Mg/ha)

Change
Degree of

RMSE

−3 months 0.74 3.04 −10.53% 0.75 9.22 1.1%
−6 months 0.73 3.04 −10.53% 0.74 9.27 1.64%
−12 months 0.72 3.19 5.06% 0.71 10.33 13.27%
No change 0.68 3.36 0 0.70 9.12 0
+3 months 0.74 3.25 −3.27% 0.77 10.25 12.39%
+6 months 0.74 3.4 1.19% 0.77 11 20.61%

+12 months 0.74 3.77 12.2% 0.77 12.88 41.23%

4. Discussion

4.1. High Accuracy Can Be Realized Based on the Forest Age Data from Landsat

The 3-PG model has been widely used to estimate forest growth parameters such
as DBH, H, biomass, and NPP. In addition, the model can also output other parameters,
such as forest volume, stand basal area, and stand density, which are required by forest
managers. In this study, we estimated and evaluated the simulated DBH, H, and ACS of
eucalyptus at the SP level and FSC level, and analyzed their sensitivity to the forest age
data. During the simulation, we adopted most of the default parameters that have been
established for eucalyptus (except the allometric growth equations) [51]. Both the measured
data and estimated data from UAV lidar show that the 3-PG model has high simulation
accuracy as long as high-quality forest age is provided. The management information can
further improve the simulation accuracy. Our study shows that the forest age data from
Landsat data have similar simulation accuracy with the scenario of using surveyed forest
age and thinning data together. The reasons might be the uncertainties of surveyed forest
age data and the minor impact of thinning measures on final ACS. In fact, it is difficult to
acquire the exact planting time of eucalyptus (e.g., month), especially under the condition
of the coexistence of coppice and planting. Eucalyptus has a very rapid growth in the early
stage and reaches canopy closure within 2–3 years [19]. It is very difficult to obtain such
high precision planting time. The forest planting time in the model was needed to be set at
month, which might be difficult to simulate the early growth process of eucalyptus. The
assimilation of more dense time series remote sensing data or products (e.g., LAI from
Landsat or Sentinel) might improve these processes.

As an important parameter of forest carbon cycle model, forest age represents the
planting time of trees/stands and reflects the current growth stage. For physiological–
ecological process models, changes in stand age inevitably affect factors such as stomatal
conductivity and hydraulic conductivity, which, in turn, affect physiological processes in
trees, such as photosynthesis and root turnover rates [27,52]. In addition, trees at different
ages have different sensitivities to parameters [53], e.g., trees have a high sensitivity to
parameters such as soil fertility in the young stage and a low sensitivity to stand density in
the mature stage. Therefore, it is necessary to obtain accurate and reliable information on
the age of the forest during the carbon cycle, and will be the fundamental to optimize and
parameterize the regional carbon models.
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The constant (aWS) and power (nWS) in the allometric equation of stem biomass
play an important role in the biomass allocation sub-model. Previous studies show that
the main reason for the poor simulation of the 3-PG model is not using the local biomass
allocation and allometric growth parameters [54]. This parameter was also observed to
have the greatest influence on the simulated volume and DBH of Chinese fir in Nanping,
Fujian [55]. The remaining parameters of the model can also affect the simulation accuracy
of the model. For example, Hua et al. [56] found that the simulation accuracy can be further
improved by fitting the maximum canopy conductance and canopy quantum efficiency
based on the corrected aWS and nWS. Deciduous species have distinct growing seasons and
non-growing seasons, which can be set through several parameters such as temperature,
gammaF1 (maximum litterfall rate), gammaF0 (litterfall rate at t = 0), leafgrow, and leaffall.
For example, for deciduous species, gammaF0 and gammaF1 can be set to 0, because all of
the foliage will disappear at the end of the growing season. Eucalyptus is an evergreen tree
species and previous research with 3-PG models seldom considered the difference between
growing season and non-growing season [48,51,57,58]. However, further studies should
pay more attention to the growth characteristics and responses to extreme climate events in
different seasons.

4.2. Impact of Spatial Heterogeneity on Modelling Results

The simulated carbon stock for FSC using remote-sensing-based forest age data is
significantly improved compared to the results based on FSC forest age data. However,
some FSC still deviate greatly from the observed data, which is probably caused by the
spatial heterogeneity of the FSC. At the beginning, the boundary of FSC was determined
by the homogeneity within the forest stand, and similar management was performed. As
time goes on, the same FSC might experience different management measures (thinning,
fertilization, tree species, etc.) and disturbances (fires, diseases, typhoons), which causes
the FSC to be more heterogeneous (for example in Figure 9). Both the CHM and aerial
maps (Figure 9a1,a2) show that H in the northeast of the FSC is high, up to 30 m, but is low
in the northwest of the FSC, and the maximum difference reaches 20 m. Obviously, the
ACS also shows high spatial heterogeneity in this FSC. In Figure 9b, the H of the FSC is
generally high, but the heterogeneity within the FSC is more obvious, and the difference
between high and low trees is close to 25 m. This spatial heterogeneity could easily lead
to overestimation or underestimation of the simulation results in the simulation process.
Therefore, it is necessary to redraw the FSC and determine new boundaries to reduce the
heterogeneity in future study, which will, potentially, significantly improve the accuracy of
simulation results.
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Figure 9. Spatial heterogeneity in FSC. Plots (a1,b1) are CHM; (a2,b2) are aerial photo; (a3,b3) are
aboveground carbon stocks (ACS) estimated by UAV lidar data with the spatial resolution of 20 m.

4.3. Limitations and Potential Improvement

The 3-PG model was used to estimate DBH, H, and ACS of eucalyptus based on forest
age data, meteorological data, and site conditions in the study area, and obtained a high
simulation accuracy. The model can not only simulate the normal growing forest, but
also estimate the growth state of the forest under different management measures such
as thinning. Through thinning management, forests can achieve the goal of adjusting
stand density, changing stand structure, and reducing competition among individual tree
species, thus, changing the normal growth of trees. The simulation results at the SP scale
show that the model captured well the thinning effects on forest growth. Considering
thinning information can improve the simulation accuracy, which is consistent with the
research results of Xie et al. [10]. However, the response of NPP to thinning measures has
not been well-explored, and positive, negative, and neutral impacts coexist in different
studies [59–61]. This should be better considered in future simulations. Landsat time-series
data-based forest age data fails to monitor management such as thinning in eucalyptus
plantations due to its coarse resolution in spatial and temporal data. This may reduce the
accuracy of model simulation. Therefore, these subtle changes in forest dynamics should be
better characterized through spectral mixture analysis or the use of higher spatial–temporal
resolution data (such as Sentinel, Gaofen).

5. Conclusions

In this study, a process-based physiological–ecological 3-PG model was used to predict
the forest structure of eucalyptus plantations at the local scale by combining remotely
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sensed stand age data. The results show that the 3-PG model can achieve satisfactory
simulation results at the SP and FSC scales. The results of sensitivity analysis show that
forest age has a significant effect on forest carbon stocks, with a maximum difference of
82.91% and 41.23% in ACS between different stand age conditions at the SP scale and FSC
scale, respectively. The fact that thinning information can improve the simulation accuracy,
but that the information is difficult to obtain, especially for the remote sensing data, must
be considered. More subtle changes can be further acquired by integrating more efficient
change detection algorithms and high spatial–temporal resolution data. This study was
carried out in a local forestry farm, but our method can be easily extended to large regions
with the time-series remote-sensing-acquired forest age data. The impact of uncertainty in
the remotely sensed forest age data provides a useful reference for regional forest carbon
cycle simulations based on forest age products.

Author Contributions: Conceptualization, D.L. (Dengqiu Li) and D.L. (Dengsheng Lu); methodology,
Y.Z., D.L. (Dengqiu Li) and D.L. (Dengsheng Lu); software, Y.Z.; validation, Y.Z., D.L. (Dengqiu Li),
X.J. and Y.L.; formal analysis, Y.Z. and D.L. (Dengqiu Li); investigation, Y.Z., X.J., and Y.L.; resources,
D.L. (Dengqiu Li) and D.L. (Dengsheng Lu); data curation, Y.Z. and D.L. (Dengqiu Li); writing—
original draft preparation, Y.Z. and D.L. (Dengqiu Li); writing—review and editing, D.L. (Dengqiu
Li) and D.L. (Dengsheng Lu); visualization, Y.Z. and D.L. (Dengqiu Li); supervision, D.L. (Dengqiu
Li) and D.L. (Dengsheng Lu); project administration, D.L. (Dengqiu Li) and D.L. (Dengsheng Lu);
funding acquisition, D.L. (Dengqiu Li) and D.L. (Dengsheng Lu). All authors have read and agreed
to the published version of the manuscript.

Funding: This research was financially supported by the Natural Science Foundation of Fujian
Province, grant number 2022J01640, Public welfare projects of Fujian Provincial Science and Tech-
nology Department, grant number 2021R1002008, and the National Natural Science Foundation of
China, grant number 41701490.

Data Availability Statement: Due to confidentiality agreements, supporting data can only be made
available to bona fide researchers subject to a non-disclosure agreement. Details of the data and how
to request access are available from Professor Dengqiu Li at Fujian Normal University.

Acknowledgments: The authors thank reviewers for their help in improving our manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Description of parameters, unit, source, and their values.

Parameter Name Description Unit Source Value

pFS2 Foliage:stem partitioning
ratio at DBH = 2 cm - D 1

pFS20 Foliage:stem partitioning
ratio at DBH = 20 cm - D 0.15

aWS Constant in stem mass vs.
DBH relationship - F 0.0259

nWS Power in stem mass vs.
DBH relationship - F 2.8762

pRx Maximum fraction of NPP
to roots - D 0.8

pRn Minimum fraction of NPP
to roots - D 0.25

gammaF0 Litterfall rate at t = 0 month month−1 D 0.001
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Table A1. Cont.

Parameter Name Description Unit Source Value

gammaF1 Litterfall rate for mature
stands month−1 D 0.027

tgammaF Age at which litterfall rate
has median value month−1 D 12

Rttover Average monthly root
turnover rate month−1 D 0.015

Tmin Minimum temperature for
growth °C F 10

Topt Optimum temperature for
growth °C F 20

Tmax Maximum temperature for
growth °C F 36

MaxAge Maximum stand age used
in age modifier yr D 50

nAge Power of relative age in fage - D 4

rAge Relative age to give
fage = 0.5 - D 0.95

MinCond Minimum canopy
conductance m s−1 D 0

MaxCond Maximum canopy
conductance m s−1 D 0.02

LAIgcx LAI for maximum canopy
conductance m2 m−2 D 3.33

thinPower Power in self-thinning rule - D 1.5
SLA0 Specific leaf area at age 0 m2 kg−1 D 11

SLA1 Specific leaf area for mature
stands m2 kg−1 D 4

tSLA Age at which specific leaf
area = (SLA0+SLA1)/2 yr D 2.5

K
Extinction coefficient for

absorption of PAR by
canopy

- D 0.5

fullCanAge Age at full canopy cover yr D 3

alphaCx Maximum canopy quantum
efficiency - D 0.06

Y Ratio NPP/GPP - D 0.47

fracBB0 Branch and bark fraction at
age 0 - D 0.75

fracBB1 Branch and bark fraction for
mature stands - D 0.15

tBB Age at which pBB =
1/2(PBB0 + PBB1) yr D 2

aH Constant in the stem H
relationship - F 1.4022

nHB Power of DBH in stem H
relationship - F 0.7079

nHN Power of competition in
stem H relationship - F 0.2492
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Abstract: The clumping index (CI) is a commonly used vegetation dispersion parameter used to
characterize the spatial distribution of the clumping or random distribution of leaves in canopy
environments, as well as to determine the radiation transfer of the canopy, the photosynthesis of the
foliage, and hydrological processes. However, the method of CI estimation using the measurement
instrument produces uncertain values in various forest types. Therefore, it is necessary to clarify
the differences in CI estimation methods using field measurements with various segment lengths in
different forest types. In this study, three 100 m × 100 m plots were set, and the CI and leaf area index
(LAI) values were measured. The CI estimation results were compared. The results show that the
accuracy of CI estimation was affected by different forest types, different stand densities, and various
segment lengths. The segment length had a significant effect on CI estimation with various methods.
The CI estimation accuracy of the LX and CLX methods increased alongside a decrease in the segment
length. The CI evidently offered spatial heterogeneity among the different plots. Compared with the
true CI, there were significant differences in the CI estimation values with the use of various methods.
Moreover, the spatial distribution of the CI estimation values using the ΩCMN method could more
effectively describe the spatial heterogeneity of the CI. These results can provide a reference for CI
estimation in field measurements with various segment lengths in different forest types.

Keywords: clumping index; estimation; impact analysis; field measurement

1. Introduction

As a common phenomenon in natural forests, canopy clumping can affect both gap
fraction and canopy radiation transfer [1–3]. Meanwhile, it can cause the leaf area index
(LAI) to be underestimated without considering canopy clumping [4–6]. Therefore, it is
essential to quantify the non-random distribution characteristics of the forest canopy [7].

The canopy clumping index (CI) is a commonly used vegetation dispersion parameter
used to characterize the spatial distribution of leaves or needles within the forest canopy [8].
The CI is often defined as the ratio of the effective leaf area index (LAIe) to the real leaf
area index (LAIr) [9]. The LAIr is defined as the total area of plant leaves per unit land
area, accounting for half of the land area [10,11]. The non-randomness level of foliage
distribution in the forest canopy can be quantified by the CI in real scenarios. The CI
is equal to 1.0; there is a random distribution of foliage in canopy environments, i.e.,
larger than 1.0 when the canopy offers a regular distribution and less than 1.0 when the
canopy offers an aggregated distribution [12]. An exploration into the canopy clumping
effect can not only help improve understanding around canopy efficiency in order to
intercept light, but can also quantitatively calculate the carbon capture of vegetation in
the ecosystem and the proportion of chlorophyll fluorescence photons escaping from the
canopy [13]. Therefore, accurately acquisitioning the CI is of great importance in order to
understand the distribution characteristics of leaves in the canopy and gas exchange in the
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ecosystem [14]. Meanwhile, a lack of consideration of the CI can lead to an LAI error of up
to 70% [15]. Therefore, it is essential to correctly estimate the LAI when using an indirect
optical approach that accounts for the clumping effect [16].

The current CI is a ratio of the canopy gap fraction under real and random conditions,
and it is a quantified ratio of the effective leaf area index (LAIe) to the real leaf area
index (LAIr). In many studies, the CI is used to efficiently quantify the transmittance
and interception of light and precipitation in canopy environments. Furthermore, the
primary ways of obtaining the CI include field and remote sensing methods. In field
measurements, the CI can be estimated both directly or indirectly using commercial optical
instruments [16,17]. There are usually two steps available to retrieve the forest canopy
clumping index, including the gap size estimation phase and the CI estimation phase [7].
The gap size distributions can be obtained using commercial optical instruments, such as
tracing radiation and architecture of canopy (TRAC) and digital hemispherical photography
(DHP) in-field measurements. For the CI estimation phase, there are several well-developed
and accepted methods used to quantitatively calculate the clumping degree. The finite-
length averaging method (LX) proposed by Lang and Xiang was the earliest method used
for CI estimation [18]. In this method, the whole scene was divided into different segments
according to the clustering effect of the whole scene, and the canopy was assumed as
random distributions in each segment. The LAIr in each segment was calculated by the gap
rate model and the LAIe of the whole scene was calculated by the gap rate model. Then, the
CI was calculated by the ratio of the LAIe to the LAIr. Evidently, the size of the segments
using this method will significantly affect the accuracy of CI estimation [19,20]. Chen et al.
proposed a gap size distribution model that can be used to calculate the CI. In this method,
large gaps from the measured gap size accumulation curve were sequentially removed until
the pattern of gap size accumulation resembled a random spatial distribution, and the CI
was calculated using the logarithmic gap size averaging method (the CC method) [21–23].
Unlike the LX method, this method is not limited by light conditions and has strong
applicability [17]. Additionally, this method is more commonly used for CI estimation [24].
Pisek et al. improved the CC method for CI estimation based on the original Miller’s law,
known as the CMN method. The difference between the CMN and CC methods is that the
CMN method does not consider the normalization after removing large gaps [19]. Leblanc
combined the LX and CC methods to calculate the CI from hemispheric photography (HP)
images, in what is called the CLX method [25]. As a combination of the two methods, the
CLX method was disadvantageous. It was sensitive to the segment length (similar to the
LX method) and failed to identify and eliminate small gaps, which caused increases in
the CI estimation error (similar to the CC method) [26]. To conclude, the advantages and
disadvantages of various methods in different scenes are still important to consider when
taking actual measurements.

In field measurements, the CI can also be estimated by obtaining the LAIe and LAIr and
then calculating the ratio, which can retrieve the CI. The LAIr generally adopts destructive
sampling [27], allometric growth [28], and litter collection [29]. The destructive sampling
method is used to pick leaves of all vegetation in the study area and individually measure
the leaf areas, before then calculating the LAIr. This method has certain impacts on the
ecological environment, making it unsuitable for forests with complex structures [30]. The
allometric technique depends on the relationship between the leaf area and any dimension
of the element of the woody plant, such as the green leaf biomass, the stem diameter, the
diameter at breast height, the tree height, or the volume [8]. Moreover, this relationship
is determined via destructive sampling. The allometric equation can be used to estimate
the LAIr within the study area. However, this method is disadvantageous given that
it can destroy the samples. The allometric equation is also restricted because of its site
specificity, and the relationship is stand-specific and dependent on the season, site fertility,
local climate, and canopy structure [31,32]. The measured result may be less than the
LAI, as measured by the optical instrument method [33]. The litter collection method
retrieves fallen leaves during the leaf-falling period using litter traps in the study area
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and the LAIr can be determined from the litter using the weight method. This method is
very useful for LAIr measurements, especially in deciduous forests. The accuracy of LAIr
measurements was 95% within a bias of 10% with respect to the mean with an appropriate
spatial and temporal sampling scheme [34,35]. The LAIe is generally measured with an
optical instrument, such as Demon, LAI-2200, TRAC, SunScan, and AccuPAR, or with
digital hemispheric photography (DHP). These optical instruments have usually been used
to monitor the LAI status and any small-scale dynamic changes in forest ecosystems [36–38].
Denmon is an instrument used for log-averaging the transmittance of solar beams, and its
sensor has a filter that can have a filtering effect on other scattered light measurements and
can allow the light to be measured at a wavelength of only 430 nm. However, it required
several repeated time observations and there were more complex operating procedures
compared with LAI-2200 [8]. The LAI-2200 instrument, equipped with a fisheye lens
and five concentric conical rings (7◦, 23◦, 38◦, 53◦, and 68◦), was used to record incident
light intensities. Similar to Denmon, the LAI-2200 calculated the LAIe by comparing the
different measurements among the above and below canopies. The result measured with
the LAI-2200 was usually sensitive to different light conditions, so it was used often to take
measurements before dawn or after dusk [39]. The LAI-2200 has been successfully used
to estimate LAIe in continuous and homogeneous canopies; however, the potential of the
LAI-2200 instrument is restricted by a general tendency of LAIe underestimation [6,16].
The TRAC technique can also be used to calculate the LAI by combining the average leaf
width, the needle cluster ratio, and the woody leaf area ratio of the study area [21,23].
SunScan and AccuPAR were used to calculate the LAI by measuring the solar transmittance
of the upper and lower parts of the canopy, but these two methods were not suitable for
measurements within coniferous forests [8]. The DHP method generally uses a fisheye lens
and a digital camera to measure the canopy gap ratio and the LAI. However, the accuracy
of this method depended on recognizing the algorithm of the gap ratio and woody parts,
meaning that the accuracy could be further improved by the optimization algorithm [17].
To summarize, the accuracy of LAI measurements varied among different instruments, as
did CI estimation when using the ratio of the LAIe and the LAIr.

Global- and regional-scale CI estimation methods have been generated by remote
sensing technology. Optical remote sensing, such as with POLDER, MODIS, and MISR
satellite data, has been successfully used for CI estimation purposes [40–42]. An empirical
relationship between the CI and vegetation index, such as the normalized difference
between the hotspot and dark-spot (NDHD) models, was established to obtain a clumping
index [43]. Chen et al. (2005) generated a monthly CI global mapping model from POLDER
with a 6 km resolution [44]. He et al. proposed a global CI mapping model based on the
NDHD model at a 500 m resolution by utilizing the MODIS BRDF product [40]. Fang et al.
obtained the global CI distribution data from 2000 to 2020 by calculating the NDHD based
on MODIS data and implemented the retrieval service in Google Earth Engine. The results
indicate that the global clumping index range is about 0.3–1.0 [45]. With the development
of laser ranging technology, light detection and ranging (LiDAR) data have been used
to estimate the CI through calculating the gap rate or gap fraction by CC, CLX, or other
methods [7,46,47]. Unfortunately, there is no effective and robustness algorithm used to
retrieve the clumping index in a wide range with spaceborne lidar. Therefore, optical
remote sensing is still the primary data source for CI estimation on the large spatial and
multi-temporal scale [16].

Regardless of field measurements or remote sensing estimations, accurately measuring
the CI is essential. Some studies have focused on researching the availability and accuracy
of CI calculation methods in field measurements [17,19,48]. The first factor that will have
a potential impact on the measurement results is the segment length. Segment length is
an artificially assumed variable used to estimate the CI. Before CI estimation, a cell that is
small enough for the assumption of leaf distribution randomness within a cell should be
assumed. Meanwhile, the size of this cell should be large enough so that the statistics of
the gap fraction are meaningful. Moreover, this segment size is usually called the segment
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length. A theoretical analysis of this problem suggests that the segment length should be at
least 10 times the width of a leaf [16]. However, varied segment lengths can lead to different
and random canopy situations within each segment. In the case of relatively long segments,
the canopy may have a clustered distribution. This results in a large error caused by the
calculation method [17]. Leblanc et al. compared the differences in CI estimation methods
and showed that the CLX method was less sensitive to the segment length compared to
other methods, and the LX method was more sensitive compared with other methods [26].
Pisek et al. compared the CI estimation results using the LX method and the CLX method
under various segment lengths, and showed that the segment length can have an uncertain
impact on CI estimation, though the optimal segment length for CI estimation was not
determined [19]. Woodgate found that the CLX method was better than the CC and LX
methods for CI estimation in eucalyptus forests [49]. However, Pisek et al. found that the
CLX method was more suitable for CI estimation than the CC, LX, and CMN methods
in Scots pine forests [19]. This indicates that the various types of forest will increase the
uncertainty of CI measurements [50]. Therefore, it is necessary to evaluate the differences
in CI estimation methods when taking in-field measurements with various segment lengths
in different forest types.

To sum up, the studies on the differences among CI field measuring methods were
insufficient and the influence of the segment lengths, different forest types, and tree density
in the plot on CI field measurement was also not clear. To this aim, three 100 × 100 m plots
of different forest types were set in the research region, and the CI was estimated using
the measurements from TRAC, LAI-2200, DHP, and litter collection methods. Then, the CI
estimation results were compared and the uncertainty of CI estimation was analyzed at
various segment lengths with the LX, CC, CLX, P, and CMN methods. These results could
provide a reference for CI estimation in field measurements with various segment lengths
in different forest types.

2. Materials and Methods

2.1. Study Area

The research area is located in Maoer Mountain Experimental Forest Farm of Northeast
Forestry University in Shangzhi City, Heilongjiang Province, northeast of China, with
longitude of 127◦29′–127◦44′E and a latitude of 45◦14′–45◦29′N (Figure 1). The area of the
Maoer Mountain forest farm is about 26.496 km2. The study area is a low-mountain and
hilly area with an average altitude of 300 m. The research region has a mid-temperate
continental monsoon climate with an average annual temperature of 2.7 ◦C [51]. The
hottest month is in July with an average temperature of 21.8 ◦C. The coldest month is in
January with an average temperature of −19.9 ◦C [52]. The average annual precipitation is
700–800 mm.

The vegetation type of the Maoer Mountain Experimental Forest Farm is mainly
natural secondary forest and artificial forest. The average forest coverage rate is 95%, and
the total forest volume is 3.5 million m3. The main tree species are Quercus mongolica Fisch.,
Betula platyphylla Suk., Pinus koraiensis Sieb., Fraxinus mandschurica Rupr., Phellodendron
amurense Rupr., Populus davidiana Dode, Tilia amurensis Rupr., Larix gmelini Rupr., and Betula
costata Trautv. [52,53].

2.2. Field Data
2.2.1. Field Measurement

In this study, three 100 m × 100 m plots with different forest types were set. In order
to minimize the uncertain error caused by terrain, the three selected plots were set at the
region with a flat slope. These were broad-leaved forest, coniferous forest, and mixed forest
plots. The measured forest parameters included the diameter at breast height (DBH), the
tree height, the tree density, the tree species, the relative dominance, and the specific leaf
area (SLA). The DBH above 5 cm was measured and recorded. Then, the geographical
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coordinate of each tree in one plot was recorded using the SOUTH RTK (SOUTH Inc.,
Guangzhou, China) instrument.

Figure 1. Study area map and LAI-2200 measurement points, TRAC transects, and leaf litter collection
measurement points. ((A) was the overview of the research regeion; (B) was the overview of the plots;
(C) was the positions of the measurements. Note: in (B), the yellow rectangle is the broadleaf forest,
the red rectangle is the coniferous forest, and the green rectangle is the mixed forest).

The plot was divided into 100 squares with an area of 10 m × 10 m. Moreover, a
1 m × 1 m litter trap was set at the center of each square (Figure 2). The leaves were then
collected twice in each month from the beginning of the season to the end of the season.
Afterwards, the area and the weight of the fresh leaves were measured. The Li-3000 was
used to measure the leaf area of the deciduous tree species. Then, the needle surface area of
the coniferous trees was measured using the volume displacement method, as reported in
Chen’s publication in 1996 [54]. All fresh leaf samples were separated by species type and
were subsequently oven-dried at 70 ◦C for 24 h. The mass of the dried leaf samples was
recorded. The specific leaf area (SLA) was then calculated as follows [55]:

SLA =
Sa

W
(1)

where Sa is the average fresh leaf area (cm2) and W is the dried weight of leaves (g). The
statistical information of the measurements can be found in Table 1.
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Figure 2. Photos of the field measurement process.

Table 1. Basic tree information table of the three plots.

Sample Type Major Species
Number of

Trees (Number)
Mean

DBH (cm)
Relative

Dominance (%)
SLA (cm2 × g−1)

Broad-leaved forest Juglans mandshurica Maxim. 1508 11.87 100 213.62

Coniferous forest

Pinus sylvestris Linn. 496 26.84 68.19 67
Pinus koraiensis Sieb. 192 15.91 14.37 78.91

Fraxinus mandschurica Rupr. 38 21.26 5.08 305.96
Ulmus pumila L. 200 41.99 8.94 245.48

Others 213 11.85 3.41 ——
Total 1139 26.6 100 ——

Mixed forest

Betula platyphylla Suk. 357 27.84 39.85 195.46
Fraxinus mandschurica Rupr. 244 33.41 16.61 305.96

Pinus koraiensis Sieb. 256 31.75 5.74 78.91
Quercus mongolica Fisch. 98 51.2 10.84 253.94

Larix gmelini Rupr. 112 44.07 11.66 159.22
Ulmus pumila L. 233 34.55 8.19 245.48

Others 87 14.5 7.11 ——
Total 1387 237.31 100 ——

Leaves collected from the litter trap were separated by species type and the wet weight
was measured and recorded. Then, the samples were oven-dried at 70 ◦C for 24 h and
the weights of the samples were measured. This drying process was repeated until the
measured weight of the samples was less than 0.01 g. Subsequently, the ratio of leaf dry
mass to fresh mass was calculated based on the measured dry and wet weight of samples,
following Equation (2):

a =
M0

M1
(2)

where M0 is the dried weight of leaf samples with a unit of g, M1 is the wet weight of leaves
with a unit of g, and a is the ratio of leaf dry mass to fresh mass. This calculation was made
based on the types of tree species and varied with different types of tree species.

After that, the real leaf area index of each type of tree species in the plot could be
calculated based on the specific leaf area and the ratio of dry weight to fresh weight using
litter collection method. The equation used to calculate the LAI was as follows:

LAIlitter = a ∗ M ∗ SLA (3)
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where LAIlitter is the real leaf area index (cm2/cm2), a is the ratio of dry to fresh mass (g), M
is the wet weight of the samples (g), and SLA is the specific leaf area (cm2/g). With this
method, we could obtain the LAIr of each litter trap, each tree species in one plot, and the
total LAIr in the plot for further analysis.

2.2.2. Measurements of the LAIe and the CI

The LAIe and the CI were measured using the LAI-2200, TRAC, and DHP methods.
Two pieces of LAI-2200 (LI-COR Inc., Lincoln, Nebraska, USA) equipment were used to
record the light penetration into the canopy and the above canopy; as a result, the LAIe
could be calculated. Each measurement was repeated twice and a 90◦ view cap was used
to shield the sensor from the operator during the measurement stage. The measurements
were conducted near sunset or under overcast conditions. It was used to minimize the
measuring error under direct illumination [56]. The position of the measured LAI can be
found in Figure 3.

Figure 3. Spatial distribution of measuring points of LAI-2200 and DHP and the TRAC transect line.

The DHP images were taken with a fixed azimuth angle using Nikon D800 (Nikon,
Tokyo, Japan) with a 4.5 mm F2.8 EX DC circular fisheye converter. The position of the DHP
measurement can be found in Figure 3. The equipment was mounted and levelled using a
bubble level before the measurements were taken. Then, the hemispherical photographs
were taken. The effective LAI could be derived using digital hemispherical photography
(DHP) software (Natural Resources Canada, Ottawa, Canada). The measurements were
conducted under overcast conditions or the conditions of diffuse skylight were used to
minimize the error of the direct illumination. More details can be found in the Digital
Hemispherical Photography Manual [57].

The TRAC equipment was used to record the photosynthetic photon flux density
(PPFD) and to retrieve the CI of the forest canopy. In this study, five transect lines of
100 m, with an interval distance of 20 m, were set. Then, we collected the TRAC-based
PPFD gradient values along the line transects, which are perpendicular to the incident
directions of the solar beams in the plot. To compare the differences in the results with
various segment lengths, the segment lengths for TRAC measurements were set to 1 m, 2 m,
4 m, 5 m, 10 m, 20 m, 50 m, and 100 m, respectively. It helped us to create different datasets
based on the original TRAC data when transects were segmented by 1 m, 2 m, 4 m, 5 m,
10 m, 20 m, 50 m, 100 m, respectively. At last, the forest canopy CI was computed using the
TRACWin software (Natural Resources Canada, Ottawa, ON, Canada). To minimize the
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influence of the different zenith angles on the CI measurements, a zenith angle of 57.5◦ was
used during the measurement stage [56–58].

2.3. Methodology of CI Estimation

In this study, we compared the CI estimation performances using the LX, P, CC, CMN,
and CLX methods. Moreover, the theory of these methods is described as follows.

2.3.1. Theory of the LX Method

The LX method was the first method used for LAI estimation, which took the logarith-
mic averages with a solid statistical background [25]. Thus, LAI estimation can have greater
accuracy when the canopy transmittance is logarithmically averaged in a discontinuous
or clumped canopy, referred to as method of LX. The LX method assumed that the foliage
within the finite length was random and that the segment contained gaps.

ΩLX(θ) =
ln
[

P(θ)
]

ln[P(θ)]
(4)

where P(θ) is the average of the canopy gap fraction and ln[P(θ)] is the logarithmic mean
gap fractions for all segments. This method may give erroneous results due to the short
length of the segments in a clumped canopy [59,60]. The short length of the segments is
also called segment length, and is defined as the various lengths of all the sunlit segments
occurring along this line that can be expressed as a statistical distribution function under
given canopy [61]. In addition, the segment length is considered an essential factor for CI
estimation [62].

2.3.2. Theory of the P method

The p method is based on the gap size distribution [63]. The gap size distribution of
the canopy with a random canopy spatial distribution can be described as follows:

P(ι) = e−LP(1+ι/wep) (5)

where P(ι) is the probability that a probe with length ι will completely fall into a light spot.
wep is the mean width of the element shadows cast on the transect. LP is the projected
foliage element area.

The P(l) for the clumped canopy can be determined with the following formula:

P(l) = Pc(l) + PE1(l)Pc1 + PE2(l)Pc2 + . . . + PEn(l)Pcn = Pc(l) + ∑n
i=1 PEi(l)Pci (6)

The term Pc(l) refers to the sunfleck size distribution beneath a canopy with opaque
clumps. Pci is the probability of i number of clumps overlapping in the sun’s direction, and
the PEi is a sunfleck size distribution within the intersection of i clumps. These terms are
defined as follows:

Pc(l) = exp
[−Lcθ

(
1 + l/wep

)]
(7)

PEi(l) = exp
[−iLEP

(
1 + l/wep

)]
(8)

Pci =
exp(−Lcθ)× Ln

cθ

i!
(9)

where Leθ is the intercept of the plot of gap size distribution for a clumped canopy and Lcθ

is the intercept found from extrapolating the straight portion of the curve at large l value.
In addition, LEP was calculated using Leθ and Lcθ from Equation (10).

LEP = ln (
(1 + α)Lcθ exp(−LCθ)√

2(1 + α) exp[−(Leθ + Lcθ)]− (1 + 2α) exp(−2Lcθ)− exp(−Lcθ)
) (10)
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In this equation, α = Lcθ PE1(0)/3 can be derived from Equation (6) after being trun-
cated at i = 2.

The gaps can be measured along the transects and P(l) can be calculated following
methods proposed by Chen and Cihlar (1995) [22,23]. Meanwhile, the clumping index of
the leaves can be determined from:

ΩP =
Leθ

LEPLcθ
(11)

2.3.3. Theory of the CC Method and CMN Method

The ΩCC method is improved on the basis of the F-Approach proposed by Chen
et al. [22,23]. It measures the width of the sunlit patches on the transect when the light
enters the canopy. The width of the canopy gaps on the transect can be calculated with
consideration of the penumbra effect. Then, the accumulated gap size distribution F(λ)
can be formed using the calculated gaps and by sorting them in ascending order based on
their size. The random distribution of canopy gaps can be described as follows:

F(λ) =
(

1 + Lp · λ

wep

)
exp
[
−Lp

(
1 +

λ

wep

)]
(12)

where F(λ) is the faction of the transect occupied by the gap larger than or equal to λ. λ is
the size of the gaps. wep is the mean width of the element shadows cast on the transect. LP
is the projected foliage element area.

In a clumped canopy, a measured gap size distribution Fm(λ) will deviate from F(λ).
The non-randomness of the gaps can also be removed by comparing the difference between
Fm(λ) and F(λ). A new distribution of gaps denoted by Fmr(λ) can be formed after the
gap removal, i.e., Fm(λ) closest to F(λ). In this case, Fmr(0) is the total gap fraction in the
canopy as if the canopy is random, and the clumping index for the clumped canopy can be
calculated as:

ΩCC =
ln[Fm(0, θ)]

ln[Fmr(0, θ)]
· 1 − Fmr(0, θ)

1 − Fm(0, θ)
(13)

If the normalization factor after the removal of large gaps in Equation (14) is neglected,
the element clumping might be calculated simply as [19]:

ΩCMN =
ln[Fm(0, θ)]

ln[Fmr(0, θ)]
(14)

This simplified equation of CI estimation was named the CMN method.

2.3.4. Theory of the CLX Method

Leblanc et al. developed a CI estimation method that combined the gap size distribu-
tion and the finite-length methods to address the problems of segment length associated
with the finite-length method. In this method, the gap size distribution method is used
to assess the foliage heterogeneity within a larger segment due to the non-homogeneous
canopy in a larger segment. This method is called the CLX method. The clumping index
can then be calculated as follows:

ΩCLX =
n ln
[

P(θ)
]

∑n
k=1 ln[Pk(θ)]/ΩCCk(θ)

(15)

where n is the number of segments, Pk(θ) is the gap fraction of the k-th segment, and
ΩCCk(θ) is the elements’ clumping index of the segment k using the CC method.
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2.3.5. Comparation of Different CI Estimating Methods

When comparing various methods for CI estimation, it is found that using different
methods leads to them making an error in CI estimation. To clarify this error and increase
the accuracy of CI measurement, we performed CI measurement experiments at three plots
with different forest types. We measured CI at various segment lengths by using TRAC.
Then CI value was extracted using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods. Then the
results were compared with litter collection method and DHP. The error was calculated
and the effect of the different CI estimating methods, measuring strategy, and forest type
on CI measurement was analyzed.

2.4. Verification and Analysis

The real leaf area index was measured by the litter collection method, and the LAIe
was obtained by the LAI-2200. The real CI within the canopy was estimated by the ratio
between the LAIe and the LAIr. Then, the estimated CI value was extracted using the
ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods with the help of the TRAC, DHP, and LAI-2200,
respectively. Then, the CI estimating results from different forest types, different section
lengths, and different tree densities were evaluated using a normal distribution hypothesis
test. After that, the difference and accuracy of CI estimation values using various methods
with different segment lengths and tree densities in various forest types were compared
using the one-way analysis of variance assay (ANOVA). In addition, the relative error was
used to compare the results using various methods. The relative error is calculated using
the following equation:

erelative error =
(Ωmethod − Ωr)

Ωr
× 100% (16)

where Ωmethod is the estimated CI using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods, and
Ωr is the real CI.

Boxplots were used to compare the differences in the results using the LX, CC, CLX,
P, and CMN methods; kernel density analysis was used to represent the plant number
densities of broad-leaved, coniferous, and mixed forests; and contour plots were used to
represent the relationship between the stand density and the CI.

3. Results

3.1. Comparison of CI Estimation Results Using Various Methods

We set five transects, 100 m in length, to obtain the gap size distributions of foliage
elements using the TRAC and DHP methods (Figure 3). The segment length was set to
a width of 20 m with the suggestion of TRAC manuals and publications [64]. Then, the
clumping index of the plot was estimated using the methods mentioned above. Moreover,
the estimated CI was compared with the real clumping index (Ωr) using various methods in
different forest types. These results show that the CI estimation results varied depending on
the method selected (Figure 4). For DHP measurements, the relative errors of CI estimation
using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN, and Ωr methods were 53.6%, 44%, 28.1%, 45.3%,
and 36.4%, respectively. For TRAC measurements, the relative errors of CI estimation using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN, and Ωr methods were 50.2%, 36.2%, 29.8%, 40.4%,
and 31.2%, respectively. CI estimation using the ΩCLX method exhibited the best accuracy
among the five methods. The relative errors of CI estimation using the ΩCLX method
were 28.1% and 29.8% for the DHP and TRAC measurements, respectively. Moreover, the
accuracy values of CI estimation using the TRAC measurements were better than those of
the DHP measurements, indicating that the TRAC measurements have better robustness
for CI estimation.
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Figure 4. Comparison of CI estimation values using different methods. (Note: the black curve on the
right indicates that the data are normally distributed.)

3.2. Comparison of CI Estimation Results Using Various Methods

We compared the CI estimation results using various methods in different forest types.
These results can be found in Figure 5. For broadleaf forests, CI estimation values using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from TRAC measurements were 0.97 ± 0.04,
0.88 ± 0.05, 0.83 ± 0.06, 0.91 ± 0.05, and 0.82 ± 0.08, respectively. The CI estimation of the
ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods exhibited an overestimating trend with relative
errors of 59.6%, 45.7%, 37%, 51.1%, and 36.4%, respectively. CI estimation values using
the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were 0.98 ± 0.03,
0.93 ± 0.04, 0.89 ± 0.05, 0.94 ± 0.04, and 0.87 ± 0.06, respectively. The relative errors of CI
estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements
were 62.1%, 53.9%, 47.5%, 55.1%, and 44%, respectively.

 

Figure 5. A comparison of CI estimation values using various methods in different forest types.
(Note: the black curve on the right indicates that the data are normally distributed.).

For coniferous forests, CI estimation values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN
methods from TRAC measurements were 0.92 ± 0.09, 0.83 ± 0.19, 0.8 ± 0.1, 0.84 ± 0.19, and
0.83 ± 0.1, respectively. The relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP,
and ΩCMN methods were 74.6%, 56.2%, 51.1%, 57.9%, and 56.8%, respectively. CI estimation
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values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were
0.95 ± 0.06, 0.88 ± 0.12, 0.75 ± 0.08, 0.89 ± 0.12, and 0.85 ± 0.14, respectively. The relative
errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP
measurements were 80%, 66.9%, 41%, 67.3%, and 60.1%. At the same time, CI measurement
values from TRAC and DHP were overestimated compared with the true values.

For mixed forests, CI estimation values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN
methods from TRAC measurements were 0.96 ± 0.06, 0.87 ± 0.06, 0.83 ± 0.06, 0.91 ± 0.05,
and 0.83 ± 0.08, respectively. The relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX,
ΩP, and ΩCMN methods were 25.9%, 14.8%, 9.3%, 19.7%, and 9%, respectively. CI estimation
values using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP measurements were
0.98 ± 0.04, 0.91 ± 0.07, 0.79 ± 0.05, 0.93 ± 0.05, and 0.86 ± 0.09, respectively. The relative
errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP, and ΩCMN methods from DHP
measurements were 28.4%, 20%, 3.6%, 22.1%, and 13.4%, respectively.

A comparison between the CI estimation results using both TRAC and DHP methods
shows that there were no significant differences, even for the same CI estimation methods.
For broadleaf forests, the relative errors of CI estimation using the ΩLX, ΩCC, ΩCLX, ΩP,
and ΩCMN methods between different pieces of equipment were 1.5%, 5.4%, 7.2%, 2.6%,
and 5.6%, respectively. Moreover, the differences in CI estimation for coniferous forests
were 6.9%, 3%, 6.7%, 5.9%, and 5.5%, respectively. For mixed forests, these values changed
to 4.5%, 2%, 5.2%, 2%, and 3.9%, respectively.

3.3. The Effect of the Segment Length on CI Estimation Using Different Methods

Optical methods were non-destructive and cheaper, but the CI estimation results were
affected by the segment length on the transect [21]. Meanwhile, the segment size in the field
measurements was usually arbitrarily decided, whereas the difference in the choices were
derived from the difference in the CI estimation values [16]. Thus, we compared the CI
estimation result with various segment lengths and discussed the influence of the segment
length on CI estimation.

We estimated CI values with segment lengths of 1 m, 2 m, 4 m, 5 m, 10 m, 20 m, 50 m,
and 100 m. CI estimation values using the ΩP method at various segment lengths were
0.97 ± 0.03, 0.97 ± 0.03, 0.96 ± 0.04, 0.93 ± 0.04, 0.99 ± 0.04, 0.92 ± 0.03, 0.93 ± 0.03, and
0.85 ± 0.03, respectively. CI estimation values using the ΩCC method at various segment
lengths were 0.98 ± 0.04, 0.98 ± 0.04, 0.98 ± 0.03, 0.95 ± 0.04, 0.99 ± 0.02, 0.92 ± 0.06,
0.91 ± 0.03, and 0.84 ± 0.02, respectively. CI estimation values using the ΩLX method at
various segment lengths were 0.73 ± 0.1, 0.69 ± 0.06, 0.73 ± 0.09, 0.79 ± 0.09, 0.90 ± 0.01,
0.88 ± 0.03, 0.93 ± 0.04, and 1.0 ± 0.01 respectively. CI estimation values using the ΩCLX
method at various segment lengths were 0.72 ± 0.01, 0.62 ± 0.03, 0.79 ± 0.02, 0.72 ± 0.05,
0.92 ± 0.04, 0.81 ± 0.04, 0.85 ± 0.03, and 0.84 ± 0.03, respectively. CI estimation values using
the ΩCMN method at various segment lengths were 0.97 ± 0.04, 0.98 ± 0.04, 0.97 ± 0.05,
0.84 ± 0.04, 1.0 ± 0.03, 0.91 ± 0.05, 0.89 ± 0.02, and 0.8 ± 0.04, respectively. The figure
shows the estimated CI values with segment lengths of 1 m, 2 m, 4 m, 5 m, 10 m, 20 m,
50 m, and 100 m (Figure 6).

The results show that the CI estimations using the ΩLX and ΩCLX methods were more
sensitive to the changes in the segment length compared with other methods. Furthermore,
the ability to estimate the average CI was most stable when the segment length was between
10 and 50 m (the real CI Ωr = 0.532). CI estimation using the other three methods was less
affected by the segment length compared to the results derived from the ΩLX and ΩCLX
methods. This is because other methods do not rely on the random situation of the canopy
within each segment. However, the CLX method can achieve the assumption of a random
canopy in the segment by eliminating large light spots in the segment, indicating that the
CLX method is less sensitive to the segment length compared to the LX method [17,19].
Compared with DHP measurements, there were similar results taken from the TRAC
method. However, compared with DHP measurements, CI estimation values using the
ΩCC, ΩP, and ΩCMN methods from the TRAC method were more stable. This was because
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the three methods had similar principles for CI estimation. Moreover, these methods were
less affected by the segment length. Meanwhile, the estimated CI values using the ΩLX
and ΩCLX methods were close to the real clumping index when the segment length was
2 m. However, the CI estimation values became closer and closer to the true value with an
increase in the segment length. This is because the smaller the segment length, the more
random the canopy distribution within the segment. However, if the segment length is
too small, the possibility of a zero gap or a full gap in the segment increases, resulting in
errors in the algorithm processing [48]. In addition, we found the smallest deviation with a
segment length in the range of 10 m–50 m among different methods. The CI estimation
values deviated the most when the segment length was 2 m. Furthermore, similar results
can be found in different forest-type plots. Therefore, the segment length can affect CI
estimation and the segment length should be determined by CI estimation methods.

Figure 6. A comparison of CI estimation values with various segment lengths using the ΩLX, ΩCC,
ΩCLX, ΩP, and ΩCMN methods.

3.4. The Effect of the Tree Density on CI Estimation

Various tree density values affect the transmission of direct sunlight in canopy environ-
ments and canopy gap distributions [19]. This may also have an impact on CI estimation
using different methods. We calculated the tree density of plots in the broadleaf forest, the
coniferous forest, and the mixed forest. Additionally, the tree density ranged from 0 to
0.08 (tree/m2), 0.08 to 0.16 (tree/m2), 0.16 to 0.24 (tree/m2), and 0.24 to 0.32 (tree/m2).
The figure shows that the distribution of the trees had an obviously spatial heterogeneity
effect in the different plots (Figure 7). This affects the sunlight transmitted to the canopy
and leads to uncertainties in CI estimation when using optical equipment. Therefore, we
compared the results of CI estimation among the scale plots in the different forest types.

We calculated the true clumping index using the litter trap, and then CI estimation
was performed using the five methods mentioned above with TRAC measurements. Next,
the contour lines of CI estimation using various methods were extracted with ARCGIS
software. Finally, the results were overlapped in different tree density mapping studies, as
shown in Figure 7. The results show that the real CI had an obviously spatial heterogeneity
effect among the different plots too, and this feature was related to the spatial distribution
of trees in the plot. The real CI increased when the tree density increased in the plots.
This was because the distribution of the trees becomes random with an increase in the
number of trees in one plot. In contrast, when the number of trees is smaller, the aggregated
distribution becomes more obvious. According to the results shown in Figure 8, the CI
estimation values varied with different methods. The relative error of CI estimation using
the ΩLX method ranged from 41% to 67%. The relative error of CI estimation using the
ΩCC method ranged from 31% to 62%. This value changed from 18% to 56% when the
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ΩCLX method was used. The relative error of CI estimation using the ΩP method ranged
from 41% to 56%. This value changed from 18% to 60% when the ΩCMN method was used.
In contrast, the accuracy of CI estimation using the ΩCLX method was better than that
of other methods. The CI value estimated by the ΩCLX method was more similar to the
real CI, followed by that of the ΩLX, ΩCC, ΩP, and ΩCMN methods. At the same time, the
difference in the spatial distribution of the CI in plot scale was also obvious. Compared
with the results used by other methods, the spatial distribution of CI estimation using the
ΩCMN method was richer for describing the spatial heterogeneity of the CI. However, the
accuracy of this method was not as good as the ΩCLX method.

 

Figure 7. Distribution of the trees and their density in the plots.

Figure 8. Cont.
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Figure 8. The spatial distribution of CI estimation using different methods in the plot (note: the
contour lines show the CI estimation using various methods).

4. Discussion

As a parameter used to describe the distribution of canopy foliage elements, the
clumping index (CI) is a measurement of the clumping or random distribution of canopy
environments in space, and it is very important to determine the radiation transfer of the
canopy, the photosynthesis of the foliage, and the hydrological processes. At the moment,
there are many methods used to obtain the CI, such as commercial optical instruments
or satellite data [18]. The DHP, LAI-2200, and TRAC methods have frequently been used
to estimate the CI during field measurements [16,17,21]. However, CI estimation varies
depending on the estimation method and the accuracy of the different methods is still
unverified. Meanwhile, the choice of a specific method varies depending on the vegetation
type and field conditions [12]. Therefore, we compared the CI estimation values with the
CI value (calculated by the litter collection method) using the LX, CC, CLX, P, and CMN
methods. The advantages and disadvantages of different methods were compared and the
influence factors were analyzed.

4.1. Differences in CI Estimation Methods

In this study, the accuracy values of CI estimation using the LX, CC, CLX, P, and
CMN methods were compared. The results show different CI estimation methods lead to
huge differences in the estimation results. Zou et al. conducted a comparative study of CI
estimation on three algorithms, namely, the gap size distribution method, the finite-length
average method, and the segregation coefficient method [17]. The results showed that
there were great differences among the three algorithms, and that the gap size distribution
method and the segregation coefficient method were the most stable. However, the results
of the segregation coefficient method were seriously low compared with the other two
methods. Similar results can also be found in this study. We compared the accuracy of
CI estimation using the LX, CC, CLX, P, and CMN methods. The results indicate that CI
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estimation using the ΩCLX method exhibited better results compared to the other methods.
Similar results can also be found in previous research [21–23]. Chen mentioned that the
CI calculated by the CC method was different from that of the P method [22,23]. Chu
et al. compared the CI estimation values using the finite-length average method, the gap
size distribution method, and the path length distribution method. The results indicate
an overestimating trend for the LX method in the low clumping area or during the low
clumping growth period. This was because this method can fail when there is no gap in
the finite length. Instead, in the high clumping area or during the high clumping growth
period, the gap size distribution method will underestimate the clumping effect [58].

In addition, we found that the accuracy values of CI estimation using TRAC mea-
surements were different from those for DHP measurements. This was because the DHP
method offered a directional sampling of canopy gaps and because the accuracy of CI
estimation from the DHP method was dependent on the subjective classification procedure
of plant pixels and gaps [8]. However, the TRAC method calculated the canopy gap size
distribution using transmitted sunlight recordings along a transect. These results are influ-
enced by a solar zenith angle, a limited field-of-view light beam, a gap threshold, and a gap
removal procedure [16,22,23].

4.2. Effecting Factors of the CI Estimation Method

Indirect optical methods for CI estimation were non-destructive and cost-effective, but
these common instruments such as DHP, LAI-2200, and TRAC were subject to the influence
of segment selection. In this study, we estimated the CI with segment lengths of 1 m, 2 m,
4 m, 5 m, 10 m, 20 m, 50 m, and 100 m, and compared the CI estimation results with various
segment lengths. The results indicate that the ΩLX and ΩCLX methods were more sensitive
to the changes in the segment length compared with other methods. This result was similar
to previous research findings. Pisek et al. concluded that both the LX and CLX methods
were highly sensitive to segment length compared to the actual measurements of DHP and
TRAC, and the CI estimation error when using the DHP and TRAC methods decreased
with a decrease in the segment length [19]. Woodgate found that the LX method was more
sensitive to segment length than the CC or CLX methods, among others [49]. In addition,
we found that the accuracy of CI estimation decreased with a decrease in the segment
length. Gonsamo et al. measured the canopy gap with DHP and CI estimation using the LX
method. The results indicate that the CI estimation values decreased with a decrease in the
segment size from 15◦ to 2.5◦ [65]. This was because the random assumption for low plants
was not true and because it was not feasible to measure the small segment size with the high
probability of obtaining a zero-gap fraction. To solve the problem, some scholars proposed
to add sky pixels into the fragment [25,66]. Gonsamo et al. improved the LX method by
merging the gap-free part with the adjacent gap-filled part, but this improvement affected
the choice of optimal segment length and thus impacted CI estimation [65].

The various tree densities affect the transmission of direct sunlight and gap distribu-
tions in canopy environments [19]. Therefore, this may have an impact on CI estimation
when different methods are used. In this study, we calculated CI estimation values using
different methods and compared the results among various tree densities in the broadleaf
forest, the coniferous forest, and the mixed forest. The results indicate that the clumping
index had significant spatial heterogeneity. The estimation results in different forest types
also varied. Some research results have indicated that different stand types have different
CI estimation values when different methods are used [17,19,67]. Craig Macfarlane et al.
found that the CLX method had significant advantages over the CC method in a jarrah
forest in Australia [68]. Woodgate found that the CLX method provided better CI estimation
values than the CC and LX methods in eucalyptus forests [49]. Pisek et al. found that the
CLX method performed better compared to the CC, LX, and CMN methods in Scots pine
forests [19]. Similar results can also be found in this study. In general, the CLX method is
better than the other methods used in this study. This is because the CLX method can not
only eliminate the problem of the non-randomness in the canopy inside the segment, but
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can also normalize the whole line, resulting in more obvious random effects at the transect
level [19]. In addition, the ΩCMN method can effectively describe the spatial distribution
of the CI. Moreover, it can reflect the change characteristics of the clumping index with
various tree densities. Therefore, in field measurements, the CI estimation method should
be decided after considering the light conditions, the solar zenith, the segment length or
size, and the stand types [69,70].

5. Conclusions

In this study, we set three 100 × 100 m plots of different forest types and estimated the
clumping index using the measurements from TRAC, LAI-2200, DHP, and litter collection
methods. Then, the results of CI estimation at various segment lengths using the LX, CC,
CLX, P, and CMN methods were compared. The results indicate the following:

(1) The segment length has a significant effect on CI estimation with various methods. The
CI estimation accuracy values of the LX and CLX methods increase with a decrease in
segment lengths. The CI estimation results using the CC, P, LX, and CLX methods are
the most similar under the segment lengths in the range of 10 m to 50 m. Moreover,
CI estimation using the CLX method is most effective at a segment length of 2 m.

(2) The CI has an obviously spatial heterogeneity effect in the different plots. Compared
with the true CI, there is significant difference in CI estimation when using various
methods. Moreover, the spatial distribution of the CI, estimated using the ΩCMN
method, is more useful when describing the spatial heterogeneity patterns of the CI.
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Abstract: The uncertainty from the under-estimation and over-estimation of forest aboveground
biomass (AGB) is an urgent problem in optical remote sensing estimation. In order to more accurately
estimate the AGB of Pinus densata forests in Shangri-La City, we mainly discuss three non-parametric
models—the artificial neural network (ANN), random forests (RFs), and the quantile regression
neural network (QRNN) based on 146 sample plots and Sentinel-2 images in Shangri-La City, China.
Moreover, we selected the corresponding optical quartile models with the lowest mean error at each
AGB segment to combine as the best QRNN (QRNNb). The results showed that: (1) for the whole
biomass segment, the QRNNb has the best fitting performance compared with the ANN and RFs, the
ANN has the lowest R2 (0.602) and the highest RMSE (48.180 Mg/ha), and the difference between the
QRNNb and RFs is not apparent. (2) For the different biomass segments, the QRNNb has a better
performance. Especially when AGB is lower than 40 Mg/ha, the QRNNb has the highest R2 of 0.961
and the lowest RMSE of 1.733 (Mg/ha). Meanwhile, when AGB is larger than 160 Mg/ha, the QRNNb
has the highest R2 of 0.867 and the lowest RMSE of 18.203 Mg/ha. This indicates that the QRNNb
is more robust and can improve the over-estimation and under-estimation in AGB estimation. This
means that the QRNNb combined with the optimal quantile model of each biomass segment provides
a method with more potential for reducing the uncertainties in AGB estimation using optical remote
sensing images.

Keywords: Sentinel-2 images; artificial neural network; random forests; quantile regression neural
network; Pinus densata forests

1. Introduction

Forest biomass is a crucial factor in carbon storage in terrestrial ecosystems and plays
an essential role in protecting the ecological environment and biodiversity [1]. The biomass
harvesting method is time-consuming and labor-intensive; thus, it is not available for
large-scale data acquisition [2]. Along with the development of remote sensing technology,
more and more researchers are using remote sensing data combined with ground survey
data to estimate large-scale forest biomass [3,4].

Three types of remote sensing data are available for biomass estimation: optical images,
active sensor radar data, and light detection and ranging (LiDAR) data [5,6]. The main
LiDAR technology used in forest biomass estimation is backpack LiDAR and airborne
LiDAR. Backpack LiDAR is hard to use for large-area assessment because the terrain and
forestland accessibility easily influence it. Although airborne LiDAR is not limited by
the terrain and can capture three-dimensional structure information; thus, it has a better
performance for forest biomass estimation by improving the saturation problem in biomass
estimation using optical remote sensing data [7,8]. However, it still needs to be more
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suitable for large-area forest biomass estimation due to the limitation of the battery capacity
and the increased imaging cost, etc. Moreover, LiDAR has no infrared signals, a limiting
factor for vegetation analysis [9]. Radar has an intense penetration in vegetation, but the
data processing is quite complicated, and the forest AGB has a different sensitivity to its
wavelength [10,11]. The most accurate radar systems operate with short wavelengths (i.e.,
X- and C-bands). However, the radar signal does not reach the ground because it is mainly
backscattered by the canopy of the upper layer [12–14]. Using long radar wavelengths
(mainly L- and P-bands), the radar signal can penetrate the different layers from the top of
the canopy to the ground. However, P-band radar imagery is expected to be available with
the ESA BIOMASS mission to be launched in 2024 [15,16]. High- and medium-resolution
optical remote sensing are used for AGB estimation commonly. Generally, high-resolution
optical images are too expensive, and the images are quite hard to obtain even though they
have more accurate results of AGB estimation than medium-resolution optical images [17].
Therefore, the medium-resolution satellite images (e.g., Landsat and Sentinel-2) are a better
choice for forest biomass evaluation by different spatial scales due to their free accessibility
and high suitability to landscape scale analysis [18]. However, reducing the uncertainties is
still a significant difficulty for AGB estimation using optical remote sensing data, especially
when the study area has a high canopy [19,20]. The European Space Agency launched a
high-resolution and multi-spectral imaging satellite, Sentinel-2A, in 2015 and Sentinel-2B in
2017. In addition, the spatial resolutions are 10 m, 20 m, and 60 m, respectively. Sentinel-2
can revisit an area in 5 days by two satellites and it has a wide swath at 290 km with
13 multi-spectral bands, including four additional spectral bands strategically positioned
in the red-edge region, which is a more sensitive band to vegetation [21,22]. It is expected
to improve the uncertainties of AGB estimation [22–24].

To reduce the saturation impact on forest biomass estimation, vegetation indices (VI)
have been employed in lots of research [25–27]. The VI has been shown to be related to
photosynthesis to some extent and directly proportional to biomass or yield [28]. The
normalized difference vegetation index (NDVI), atmospherically resistant vegetation index
(ARVI), difference vegetation index (DVI), simple ratio index (RVI), etc., were extracted
from images, which were used in AGB assessment [1,28,29]. With the development of the
research, the researchers found that the vegetation index changed little after the biomass
reached a specific value [17,18]; in particular, tropical and subtropical woodlands with high
coverage and structural complexity are more likely to lead to insensitivity [30]. Moreover,
the researchers found that the texture features are more sensitive to the horizontal structure
of the canopy and the shadow, which may be suitable for improving the prediction precision
of forest AGB biomass estimation. Some studies have been found to apply textures in forest
biomass assessment [31,32], and the image texture has excellent potential to enhance the
accuracy of AGB estimation [33–35]. Therefore, variables screening is vital for reducing the
impact on the multi-collinearity and increasing the accuracy in the AGB remote sensing
estimation [36–38].

The accuracy of forest AGB estimation is not only affected by the survey data but
also impacts the methodology of the assessment model [39,40]. Two kinds of algorithms
were applied for forest AGB estimation, including parametric and non-parametric algo-
rithms [41]. The parametric method can quantitatively describe the relationship between
AGB and the variables, in which h contains linear, logarithm, exponential, and other
functions [42]. In contrast, the artificial neural network (ANN), K-nearest neighbor (KNN),
support vector machine (SVM), random forests (RF), etc., were counted into a not-parametric
model [43–46]. The relationship between AGB and variables cannot easily be analyzed by
fixed quantity due to the complex relationship between AGB and forest construction. A lot
of research has been conducted to compare the accuracy of parametric and non-parametric
algorithms, and the result have shown that non-parametric algorithms exhibited excellent
performance [46]. The artificial neural network (ANN) is a supervised learning algorithm
in machine learning which has adaptability and improves the precision of updated data. It
has been used widely to demonstrate the complex relationships between independent and
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dependent variables [47]. The ANN frequently uses AGB estimation due to the parallelism,
fault tolerance, generalization capability, and multiple input multiple output architecture.
Then, it can reveal a solid ability to fit data [44]. Moreover, ANN was applied to predict the
AGB in natural forest ecosystems, with it showing that it offered a higher accuracy result
than traditional protocols [48–50].

The quantile regression neural network (QRNN) is a non-parametric, nonlinear model
that is combined with a neural network (NN) and quantile regression (QR) approach, which
was introduced by Taylor [51]. It centralizes the advantages of both the ANN and the QR.
The QR was created by Koenker [52], and it can more accurately describe the influence of
independent variables on the range of dependent variables and the shape of the conditional
distribution. It is not impacted by abnormal data such as sharp peaks, discrete values, and
heavy-tailed allocations [53,54]. When independent variables have different effects on the
distribution of dependent variables in different parts, such as skewness on the left or right,
it can describe the characteristics of the distribution more comprehensively [53,54]. The
QRNN is a suitable methodology for predicting mixed discrete–continuous variables. It
has already been applied in ecological environments [55–57]. Rarely have studies been
found using the QRNN in forest AGB estimation.

In general, the forest resources of Shangri-La City are characterized by extensive
forestry land and are identified as one of the species genetic pools [58,59]. Meanwhile,
Yunnan is known as the kingdom of plants and animals; thus, the forest resources status of
Yunnan in China or around the world is self-evident [60,61]. Given this, it is significant to
emphasize the precision of forest AGB assessment in Shangri-La City to protect forest re-
sources and improve the ecological environment. In this study, we will estimate forest AGB
by combining the measured sample data, Sentinel-2 images, vegetation index, and texture
value extracted from the images. We screened the correlation variables with AGB using RF,
then RF, the ANN, and the QRNN were selected to compare the fitting performance. The
significant contributions of this work are:

(1) To compare different biomass estimation models—the ANN, RF, and the QRNN for
estimating the biomass of Pinus densata forests using Sentinel-2 images in Shangri-
La City.

(2) To explore the optimal quantile model on each biomass segment to improve the AGB
estimation accuracy, and then provide a method to reduce the uncertainties from
over-estimation and under-estimation of forest AGB estimation.

2. Materials and Methods

2.1. Study Site

The study area is located in Shangri-La City, northwestern Yunnan, China. The co-
ordinates of Shangri-La City are: latitude 26◦52′~28◦52′N and longitude 99◦20′~100◦29′E
(Figure 1). The elevation range is from 3350 to 3696 m above sea level, the annual mean tem-
perature is 4.7–16.5 ◦C, and the extreme maximum and minimum temperature are 25.1 and
−20.1 ◦C, respectively. The dry and wet seasons are distinct, and the four seasons are not
apparent in Shangri-La City. For the rainfall time concentrates from June to September, the
mean annual precipitation is 607 mm and the average annual evaporation is 1643.6 mm [62].
The particular geographical environment and complex ecological conditions have created
a unique natural landscape and rich natural resources. The original forest area with the
sub-alpine coniferous forest is the main forest area that is well preserved in China.
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Figure 1. (a) Location of Shangri-La City in China; (b) The Sentinel-2 images of the study area; (c) the
spatial distribution of Pinus densata forests according to the forest management inventory (FMI) data
in 2016 and the sample plots investigated in 2016; (d) the typical stand structure of Pinus densata
forests in the study area; and (e) the field investigation of AGB.

Pinus densata, one of the barren tolerance pioneer tree species of sub-alpine coniferous,
is light-loving and cold-resistant in Shangri-La City. Pinus densata forests are single-storied
stands with even age in common, and most of the study areas were conducted in pure
Pinus densata forests [60,61,63] (Figure 1).

2.2. Flow Chart

In Figure 2, the methodological framework of this study was described in the following
steps: (1) collecting the sample plots and tree biomass data and the Sentinel images data;
(2) calculating the plot AGB; (3) pre-processing of the Sentinel images; (4) correlation
between spectral variables and AGB; (5) developing the model: the artificial neural network
(ANN), random forests (RF), and the quantile regression neural network(QRNN); and
(6) assessing the models.
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Figure 2. The methodological framework of estimating the forest above-ground biomass (AGB). RF
is the random forests, ANN is the artificial neural network, QRNN is the quantiles regression neural
network, and QRNNb is the quantile regression neural network with the best fitting performance in
each biomass segment.

2.3. Field Data Collection and Aboveground Biomass Calculation

Field data collection work was conducted in August 2016, and in situ data from over
146 sample plots were collected. The plot size was 30 m × 30 m. A GPS was used to
measure and record the coordinates and elevation. All of the trees of each plot with a
diameter at breast height 1.3 m above ground (DBH) >5 cm were measured. The trees on
the south and west boundary of the sample plot were recorded. Three to five trees with a
similar average stand DBH were chosen, and the height of the selected trees was measured
to calculate the average height of the stand in each plot. The other information in the plot
needed to be recorded, such as forest site conditions, origin, age, soil, and the trees’ health
situation, etc.
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The process of investigation, sampling, determination, and individual tree biomass
construction has been detailed in the literature [63]. The equation for the tree AGB was
as below:

AGBi = 0.073·DBH1.739·H0.880 (1)

where DBH is the tree diameter at the breast height >5 cm, H is the tree height, and AGBi is
the AGB of the individual tree in the plot (kg).

Equation (2), as below, was the sample plot AGB (Mg/ha). To ensure enough compara-
ble sample plot datasets at each biomass segment for the fitting test and validation test, the
sample numbers of the two datasets were the same; then, 146 sample plots were randomly
divided into a fitting dataset of 73 plots and a test dataset of 73 plots, and the statistical
information is listed in Table 1. In addition, there were no significant statistical differences
in the mean and standard deviation values between the fitted and the test datasets.

AGBs =
∑n

i=1 AGBi

900
·10, 000/1000 (2)

where AGBs is the AGB of a plot, AGBi is the AGB of individual trees, and n is the number
of trees within each plot.

Table 1. The statistical parameters of sample plot datasets. H is the average tree height, Dg is the
average diameter at breast height (1.3 m), and AGB the is above-ground biomass.

Variables
Fitting Data

(n = 73)
Test Data
(n = 73)

All Data
(n = 146)

Minimum
H (m) 2.2 2.9 2.2

Dg (cm) 2.9 4.9 2.9
AGB (Mg/ha) 2.1 11.1 2.1

Maximum
H (m) 24.3 19.5 24.3

Dg (cm) 41.3 24.7 41.3
AGB (Mg/ha) 335.9 344.4 344.4

Mean
H (m) 10.0 10.3 10.1

Dg (cm) 14.6 15.0 14.8
AGB (Mg/ha) 120.7 122.2 121.5

Standard
deviation

H (m) 3.8 3.7 3.7
Dg (cm) 6.3 4.5 5.5

AGB (Mg/ha) 67.5 79.9 73.7

2.4. Remote Sensing Data and Variables
2.4.1. Pre-Processing of Sentinel-2 Images

Five Sentinel-2 images obtained from the European Space Agency (ESA) were used
in this study (Table 2). Since there were no level-2A products before May 2017, level-1C
products with UTM/WGS 84 ortho-images were downloaded, and they were orthorectified
top-of-atmosphere reflectance products. Bottom-of-atmosphere reflectance product L2A
needed to be obtained by atmospheric correction. Thereby, the Sen2Cor (version 02.05)
plugin under the toolbox in SNAP was installed to create L2A products, and the open-
access software of SNAP was downloaded from http://step.esa.int/main/download/
snap-download/ and accessed on 10 October 2022. Then, we resampled all of the bands
with a 10 m resolution under cubic convolution interpolation by using the resample tool in
SNAP. Finally, we resampled all of the bands with a 30 m resolution to meet the plot size of
the field AGB survey, and the images were cropped and spliced in ENVI.
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Table 2. The parameters of five Sentinel-2 images.

Image ID Acquisition Date
Central

Longitude
(Degree)

Central Latitude
(Degree)

Solar Elevation Solar Azimuth
Mean Cloud
Amount (%)

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNK_

20161124T040118

24 November
2016 99.5513 26.6257 1.0249 162.1176 12.6

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNL_

20161124T040118

24 November
2016 99.5557 27.5287 1.0249 162.2853 25.6

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RNM_

20161124T040118

24 November
2016 99.5604 28.4315 1.0249 162.4446 41.7

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RPL_

20161124T040118

24 November
2016 100.5684 27.5209 1.0249 163.4582 15.1

S2A_MSIL1C_
20161124T040102_

N0204_R004_
T47RPL_

20161124T040118

24 November
2016 100.5815 28.4235 1.0249 163.6144 38.5

2.4.2. Extraction Feature Variables from Remote Sensing

The vegetation index and conversion factor have been widely used to estimate forest
AGB [27,28]. The texture feature is an essential feature of remote sensing images, and it
reflects the properties of the object itself and helps to distinguish two different objects [28].
First and foremost, texture features have been proven to have essential contributions
to increasing the accuracy of AGB estimation because they can describe complex forest
structures with high accuracy [17,28,31]. Therefore, this study extracted 134 remote sensing
variables, including 11 spectral bands, 21 vegetation indices, 6 image conversion algorithms,
and 96 texture measurements (Table 3).

Table 3. Spectral variables derived from Sentinel-2 images.

Data Sources SV Definitions of SV Number of SV

Sentinel-2

Original band
b2—blue, b3—green, b4—red, b5—vegetation red edge, b6—vegetation

red edge, b7—vegetation red edge, b8—NIR, b9—water vapor,
b10—SWIR-cirrus, b11—SWIR, b12—SWIR

11

Vegetation indices

Normalized difference vegetation index (NDVI), atmospherically
resistant vegetation index (ARVI), difference vegetation index (DVI), ratio
vegetation index (RVI), vegetation index of soil adjustment ratio (SARV),

oil adjusted vegetation index (SAVI), modified soil vegetation index
(MSAVI), short infrared temperature vegetation index (MVI5),

mid-infrared temperature vegetation index (MVI7), transformation
vegetation index (TVI), nonlinear vegetation index (NLI), perpendicular

vegetation Index (PVI), infrared vegetation index (II), optimization
simple ratio index (MSR), simple vegetation index (SR), brightness
vegetation index (B), temperature vegetation index (W), greenness

vegetation index (G), normalized difference vegetation index using R and
G bands (ND43), normalized difference vegetation index using band 6

and band 7 (ND67), normalized difference vegetation index using band 5,
band 6, and band 3 (ND563)

21

Image transformations
The first three components from the tasseled cap transform (K T
transform) and the first three principal components of principal

component analysis (PCA)
6

Texture measures

Grey-level co-occurrence matrix-based texture measures including the
mean, angular second moment, contrast, correlation, dissimilarity,

entropy, homogeneity, and variance using moving window sizes of 3 × 3,
5 × 5, and 7 × 7 pixels

96
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2.4.3. Variables Screening

A total of 134 variables were extracted, but not all of them were sensitive to AGB.
Random forests (RF) technology was chosen to analyze the correlation between derived
variables and the field-based AGB data to gain a set of parsimonious and valid variables
for the AGB model. Then, the final vital performed variables were selected for building the
regression model. RFs is an ensemble machine-learning algorithm that was first proposed
by Breiman [36]. The keys to an RF construction include the random selection of the
decision tree and features (subset). Two thirds of variables are randomly selected from
the original dataset by the bootstrap sampling method to avoid over-fitting so that the
training dataset of the decision tree and the data amount of all training datasets is consistent
with the amount of original data [64]. The features (the other 1/3 of the original data)
are selected as the nodes of each decision tree and they were also chosen randomly. The
features are split based on the Gini criterion. The remaining features are the out-of-bag
(OOB) data used as validation samples. OOB data can be used to calculate the unbiased
estimate of prediction error by comparing the dataset with the out-of-bag data. Meanwhile,
they can also be applied to determine the importance of the variables. The optimal solution
is obtained by voting according to the principle that the minority is subordinate to the
majority. Moreover, the quality of the RFs model is related to the mean square errors (MSE)
between the decision tree and the features, and the smaller the MSE is, the better [36]. In
this study, 80% of the original data was used as the training dataset, and the left data were
the test dataset. Random forest recursive feature elimination (RF-RFE) was used to remove
variables that did not contribute significantly to model accuracy. This experiment was
conducted in the sklearn.assembly module of Python 3.7, used the RandomizedSearchCV
and GridSearchCV functions to optimize the model parameters and variables screening.

2.5. Modeling Methods
2.5.1. Random Forests Modeling (RF)

Random forests (RF) are an accurate methodology for classification and a validation
way to predict the AGB [65]. The two parameters that must be set are the number of
trees for growing (ntree) and the split variables for selecting randomly. Balancing the
two parameters is the most critical work for avoiding the lowest generalization error [36].
Different numbers for the ntree and minimum sample split (mtry) and the other factors,
such as the max-depth (the sample depth that contains the minimum sample) and min-
sample-leaf (the minimum number of samples at the leaf node), were chosen to compare
the R2 in Python. The highest R2 was finally obtained. The parameters were set as follows:
the maximum number of iterations was 200, the max-depth was 10, the min-samples-leaf
was 1, and the min-samples-split was 2. In this study, 80% of the original data was used
as the training dataset, and the other 20% was the test dataset. Ten-fold cross-validation
was applied to prevent over-fitting and to prevent it affecting the accuracy and stability of
the model.

2.5.2. Artificial Neural Networks Model (ANN)

The artificial neural network (ANN) is a mathematical model for information process-
ing using similar structures to the synaptic connections in the brain [66]. It consists of a
large number of nodes (or neurons) that are connected. Each node represents a specific
output function called the activation function. Each connection between two nodes repre-
sents the weighted value of the signal passing through the link. The training of the neural
network model is the process of modifying the connection weight between the neuron
and the neuron deviation according to the training data. ANN comprises three essential
elements: the processing unit, network topology, and training rules. The processing unit is
the basic unit of artificial neural network operation. A processing unit has multiple input
and output paths. The network topology determines the information transmission between
each processing unit and each layer, generally composed of an input layer, a hidden layer,
and an output layer [44]. The number of hidden layer nodes has been paid a lot attention to

630



Remote Sens. 2023, 15, 559

because the network cannot have the necessary learning ability and information prediction
ability if the number of hidden layer nodes is too small. On the contrary, it will increase
the complexity of the network structure and make the network fall into a partial minimum
or lead to overfitting [67]. Training rules are trained and adjusted repeatedly to achieve
the required accuracy. It mainly uses the transformation function to weigh and sum the
processed data and trains the network system to carry on the pattern recognition.

The back propagation neural network (BPNN), one of the most widely used neural
network algorithms, was applied in this study. The BP neural network model was con-
structed by using the R language package. Firstly, the initially hidden node was set to 4. It
was found that the average error decreased at the beginning and then increased with the
number of hidden nodes increasing. When the number of hidden nodes was 7, the average
error was minimum. Ten-fold cross-validation was used to test the accuracy; 80% of the
modeling samples was used as a training set, and 20% was used as a test set. Each test data
will yield a corresponding rate of accuracy (or error rate). The average of the accuracy (or
the error rate) of the ten modeling results was used as an estimate of the accuracy of the
algorithm [68,69].

2.5.3. Quantile Regression Neural Network (QRNN)

The nonlinear relationship between a dependent and independent variable is very
complex and challenging to describe. Taylor used neural network structure to establish
neural network quantile regression (QRNN) [51]. The model combines the nonparametric,
nonlinear quantile regression method and achieves a nonlinear mapping of conditional
quantiles from dependent variables to independent variables. As the artificial neural
networks, the number of hidden layer nodes has an essential effect on the complexity of
the model. The number of hidden layer nodes should be manageable because it would
cause the fitting time to be too long, which may add non-regular content and this leads to
over-fitting [55].

QRNN was constructed with the QRNN function package in R software. Three hidden
layers and seven hidden nodes were used that were the same as the ANN. At the same
time, 10-fold cross-validation was also carried out to prevent over-fitting or reduce errors
from affecting the accuracy and stability of the model. The scale of the training and test
dataset was the same as in the ANN.

Moreover, the corresponding optical quartile models with the lowest mean error at
each AGB segment were combined as the best QRNN (QRNNb). In addition, the AGB
segments were 0–40 Mg/ha, 40–80 Mg/ha, 80–120 Mg/ha, 120–160 Mg/ha, and greater
than 160 Mg/ha. Therefore, the QRNNb represents a complete biomass estimation model
formed by selecting the highest precision of the five quantitative models corresponding to
the QRNN on each of the five biomass segments.

2.6. Assessment and Validation of the Models

It is critical to obtain the AGB model and the assessment values during the process of
AGB model building. Coefficient determination (R2) and mean square root error (RMSE)
were used to estimate the AGB prediction model and assessment value. R2 and RMSE were
applied to compare the accuracy of prediction values from different estimate models based
on fitting plots data in Table 1.

Linear regression between AGB predicted values of different biomass segments and
the observed data was used to assess models’ performance using 73 test plots. In ad-
dition, except for R2 and RMSE, the mean absolute error (MAE) and mean error (ME)
were added to test the validation of each model by using the test dataset. The AGB seg-
ments were 0–40 Mg/ha, 40–80 Mg/ha, 80–120 Mg/ha, 120–160 Mg/ha, and greater than
160 Mg/ha [41].

R2 = 1 −
∑n

i=1

(∧
yi − yi

)2

∑n
i=1(yi − y)2 (3)
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RMSE =

√√√√∑n
i=1

(
yi − ∧

yi

)2

n
(4)

MAE =
∑n

i=1|yi − ŷi|
n

(5)

ME =
∑n

i=1(yi − ŷi)

n
(6)

where ŷi and yi are the predicted AGB and the corresponding AGB in the sample plot, y is
the mean AGB of the sample plots, and n is the number of sample plots.

3. Results

3.1. Results of Spectral Variables Screening

The prediction accuracy would decrease if all of the biomass prediction variables
extracted from the images were applied to build the AGB estimation model, and informa-
tion redundancy would also occur. The function of AGB assessment would be reduced as
some variables may have a weak association with biomass. Thus, screening suitable and
strong correlation variables was the critical step. In this study, RFs was used to screen the
characteristic variables according to the sort of variable importance. In addition, the first ten
important variables were VA3_2, VA5_12, CO7_8, DI5_8, VA5_2, HO5_3, VA3_12, VA7_12,
ME5_12, and SE5_3. To prevent the selected variables from displaying multi-collinearity
and thus reducing the accuracy of biomass estimation, we performed collinearity tests
on selected variables using the Kappa functions in R software. The results indicated less
collinearity between the variables as the Kappa coefficient value was 11.72709, which
was less than 100. The correlation between forest AGB and the characteristic variables of
Pinus densata forests is shown in Figure 3.

Figure 3. The correlation between AGB and the characteristic variables of Pinus densata forests. Corr
is the correlation coefficient between the characteristic variables and AGB. VA3_2 is the variance on
band 2 with the window size 3 × 3, VA5_12 is the variance on band 12 with the window size 5 × 5,
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CO7_8 is the correlation on band 8 with the window size 7 × 7, DI5_8 is the dissimilarity on band 8
with the window size 5 × 5, VA5_2 is the variance on band 2 with the window size 5 × 5, HO5_3
is the third homogeneity on band 3 with the window size 5 × 5, VA3_12 is the variance on band 12
with the window size 3 × 3, VA7_12 is the variance on band 12 with the window size 7 × 7, ME5_12
is the mean on band 12 with the window size 5 × 5, and SE5_3 is the second moment on band 5 with
the window size 3 × 3.

3.2. Model Comparison of the Model
3.2.1. Model Fitting

Scatter plots of AGB and predicted biomass based on the ANN and QRNN models
based on ten variables are shown in Figure 4. It was shown that the ANN’s fitting perfor-
mance was not significantly different from that of QRNN at 0.1, 0.25, and 0.5 percentiles.
However, when the optimal quantile model for each biomass segment was integrated
into a complete QRNNb (Figure 4c), the fitting accuracy of the QRNNb was significantly
improved. The R2 and RMSE of the ANN were 0.722 and 31.0689, respectively. In addition,
the R2 and RMSE of the QRNNb were 0.962 and 13.9326, respectively. The results also
demonstrated that the fitting performance of RFs (R2 = 0.934, RMSE = 11.3305) was quite
similar to that of the QRNNb. RFs and the QRNNb had a better fitting performance than
the ANN and the QRNN, which means both RFs and the QRNNb had a higher accuracy
than the ANN and the QRNN.

Figure 4. Scatter plots of the ground-observed and estimated biomass values for the (a) artificial
neural network model (ANN); (b) the random forests model (RF); (c) the quantile regression neural
network model (QRNN), and the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9; and (d) the quantile
regression neural network with the best fitting performance in each biomass segment (QRNNb).

Compared to the scatter plots of the ANN, RFs, and the QRNN at each quantile, the
scatter plot of the QRNNb was narrower and looked more similar to the line of y = x. The
ranked absolute intercept value of each model was: RFs (41.7317) > QRNN0.9 (36.2482)
> ANN (29.4950) > QRNN0.75 (27.5457) > QRNN0.5 (10.5952) > QRNN0.1 (8.6326) >
QRNN0.25 (4.2639) > QRNNb (1.0624). The larger the intercept, the greater the angle with
y = x, indicating the greater the degree of deviation. Figure 4a shows that the ANN had an
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excellent fitting performance at the middle biomass level. Still, it would overestimate the
lower biomass value and underestimate the higher one as it had a greater intercept value.
Similarly, RFs (Figure 4b) and the QRNN (Figure 4d) at each quantile showed the same
phenomenon. Figure 4c indicates that the QRNNb had an excellent accuracy because it had
a smaller intercept.

3.2.2. Method Validation

The biomass prediction accuracy of each model for each biomass segment was further
validated by comparing the R2 and RMSE (Table 4). These results indicated that QRNNb
has a higher R2 (0.943) and a higher RMSE (18.203) in the three models, especially as the
AGB segment was 0–40 Mg/ha and >160 Mg/ha.

Table 4. Summary of R2, RMSE, ME, and MAE at the different AGB segments based on the test
dataset. ANN is the artificial neural network, RFs is the random forests, and QRNNb is the best
quantile regression neural network in each biomass segment.

Indices
Models

ANN RFs QRNNb

R2

0–40 0.105 0.402 0.961
40–80 0.043 0.094 0.757
80–120 0.167 0.598 0.430

120–160 0.277 0.385 0.671
>160 0.480 0.857 0.867
Total 0.602 0.936 0.943

RMSE (Mg/ha)

0–40 8.341 6.818 1.733
40–80 11.948 11.624 6.019
80–120 10.421 7.242 9.851

120–160 11.915 10.987 8.034
>160 43.555 23.215 22.052
Total 48.180 19.396 18.203

ME (Mg/ha)

0–40 −44.364 −30.845 1.035
40–80 −33.623 −19.38 7.029
80–120 −0.338 2.093 2.683

120–160 13.741 8.230 −6.861
>160 44.386 34.321 −11.617
Total −1.507 1.927 −1.419

MAE (Mg/ha)

0–40 48.400 30.846 1.035
40–80 36.041 19.438 7.090
80–120 11.213 5.720 5.926

120–160 18.874 18.482 9.202
>160 47.465 34.321 11.618
Total 32.066 21.271 8.357

For the ME values, there were significant differences among the three models in
different biomass segments, and QRNNb had no significant difference from zero at each
biomass segment. The ANN and RFs showed negative mean errors in the 0–40 Mg/ha
biomass segment. They were significantly different from zero at the significance level of
0.01, which means significant overestimation in the AGB segment. The ANN and RFs had a
positive mean error as the segment was at 80–120 Mg/ha and >160 Mg/ha, demonstrating
a significantly different value from zero, which would give a lower estimate at a higher
biomass value, especially as the AGB was greater than 160 Mg/ha.

The MAE values showed that QRNNb was not significantly different from zero, and
the MAE value was 8.359. QRNNb had a small MAE at the lower and higher biomass
segments, which means the prediction values at these two segments were close to the
observed value. The MAE showed that the prediction value from RFs and the ANN models
at 80–120 Mg/ha had a minor error compared with the other biomass segments, while
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the MAE for the RFs and ANN models at 0–40 Mg/ha and >160 Mg/ha showed that the
prediction value had a substantial deviation from zero. The bias of the ANN and RFs models
for all of the biomass segments except for the 80–120 Mg/ha segment was relatively high.
The highest MAE of ANN and RFs was 48.400 Mg/ha and 30.846 Mg/ha at the biomass
segment of 0–40 Mg/ha, and 47.465 Mg/ha and 34.321 Mg/ha at the AGB >160 Mg/ha,
respectively. In addition, RFs and the ANN showed significant deviations from zero.

In sum, QRNNb was more accurate than the ANN and RFs in biomass estimation,
especially in the low-biomass segment and the high-biomass segments. QRNNb can
improve the problem of low-value overestimation and high-value underestimation and it
has a very stable prediction effect.

The AGB maps of the Pinus densata forests are shown in Figure 5, which was inverted
by using three models. The high heterogeneity of the AGB distribution can be seen using
the model of QRNNb, which means the model of QRNNb has an excellent prediction
of AGB biomass value at each of the AGB segments. On the contrary, the ANN had a
higher count at the segment with 120–160 Mg/ha and 40–80 Mg/ha, which means that the
ANN cannot capture the AGB at the lower biomass segment, which would lead to an over-
estimation of the low AGB biomass. Meanwhile, some of the higher AGB biomass values
(>160 Mg/ha) may be counted into 120–160 Mg/ha, leading to an under-estimation of the
high AGB biomass. The prediction AGB biomass values of RFs were more concentrated at
40–80 Mg/ha and 80–120 Mg/ha than the ANN. This proved that the high precision of RFs
was at the cost of discarding high accuracy.

Figure 5. The spatial distributions of the predicted aboveground biomass (AGB) values of the
Pinus densata forests using four models. ANN is the artificial neural network, RF is the random forests,
and QRNNb is the best quantile regression neural network in each biomass segment.
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4. Discussion

4.1. Accuracy Comparison

Shettles et al. [69] found that model uncertainty is the main element affecting the
accuracy of AGB estimation, and model uncertainty accounts for 55% of total uncertainty.
Thus, improving model accuracy is still the main challenge for AGB estimation using
optical remote sensing data. This research attempted to promote the accuracy of biomass
assessment by comparing three non-parametric model regression models. The results have
shown that the ranked fitting performance for the three models was the QRNNb > RFs >
the ANN. From the values of R2 and RMSE in the fitting model using the observed and
predicted values, the accuracy for the RFs was slightly better than the QRNNb. Still, the
intercept for the QRNNb was 1.0624 Mg/ha, which means the prediction value was much
closer to the observed value. In contrast, RFs had apparent phenomena of under-estimation
at higher biomass segments and over-estimation at lower biomass segments with a high
intercept. The value reached 41.7317 Mg/ha, affecting the entire forest AGB assessment
value. Thus, the QRNNb has the best performance among the three models. Moreover, RFs
has a higher R2 value and a lower RMSE in this study. Many studies have shown that RFs
exhibited excellent performance [70,71]. Then, RFs was the most optimal model with the
highest accuracy under the premise of considering only the overall situation.

Furthermore, for the different biomass segments, the results showed RFs at the lower
and higher biomass segment was significantly worse than the QRNNb, the R2 values for
RFs at AGB < 40 Mg/ha and >160 Mg/ha were lower than for the QRNNb, and the RMSE
values at both biomass segments for RFs were extremely larger than the QRNNb. This
reveals that the QRNNb could promote biomass estimation accuracy, especially at the
lower and higher biomass segments. The QRNNb could describe the complete conditional
distribution of biomass with more stability and it is not easily affected by the extreme value.
Then, the QRNNb would be an excellent method to reduce the uncertainties from over-
estimation and under-estimation in the AGB estimation using optical remote sensing data.

In addition, the Sentinel-2 images were resampled with 30 m × 30 m corresponding
with the plot size of the field survey in this study. The mismatch between the former image
spatial resolution and field size would affect the AGB estimation accuracy. We performed
AGB estimation using the resampled Sentinel-2 image product with a spatial resolution
of 10 m. Similar fitting and validation results for the three models were obtained, and the
QRNNb was more accurate than the ANN and RFs in biomass estimation, especially in
the low-biomass segments and the high-biomass segments (see Appendices A and B). This
further illustrates the availability of the proposed method for reducing the uncertainties of
AGB estimation using optical remote sensing.

4.2. Data Resource and Variables

The information extracted from optical remote sensing is the radiation information
of the canopy surface, which is easily affected by the complexity of forest crown layers.
Therefore, the precision problem is the biggest challenge of optical remote sensing in current
remote sensing biomass estimation [19,20]. Using high-resolution and hyperspectral remote
sensing images will enhance biomass estimation accuracy, but the high price limits such
data being widely utilized [17,72]. Researchers prefer to choose free, open-source data, such
as Landsat or Sentinel-2. Even though those two are both optical remote sensing, Sentinel-2
has a double-satellite orbit and has four more bands than Landsat. It is the unique one
with three bands of data in the red edge range, which can efficiently obtain more rich
geographical information [21]. Studies have shown that Sentinel-2 is more suitable than
Landsat for improving estimation accuracy [73]. Although the vegetation index will bring
a saturation problem, the vegetation index extracted from near-infrared and red edge can
strengthen the estimation accuracy [74]. This study found that band 2 (blue), band 3 (green),
band 5 (vegetation red edge), band 8 (NIR), and band 12 (SWIR) of Sentinel-2 had a strong
correlation with biomass. Because the vegetation index is affected by the saturation value in
biomass estimation, the texture feature has been introduced as a variable. Then, the biomass
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value is more sensitive to the texture feature [75,76]. This study also extracted the textural
features of different window sizes (3 × 3, 5 × 5, and 7 × 7) to model. After screening and
analysis, it was found that the texture information of entropy and the correlation with
various window sizes and bands (VA5_2 and VA7_12) strongly correlated with biomass.

Moreover, Shangri-La City has a cold-temperate monsoon climate with altitudes
ranging from 3350 to 3696 m above sea level. The cloud and snow significantly affect the
spectral bands of optical remote sensing [77]. Lacking high-quality images with a lower
cover of cloud and snow corresponding to the field investigation date, we only obtained
five Sentinel-2 images from the ESA. The image acquisition date is 24 November 2016. The
time difference between the survey data (August) and the remote sensing data (November)
is about three months. To avoid or reduce the impact of the time mismatch between image
acquisition and the field survey, we obtained the bottom-of-atmosphere reflectance product
by atmospheric correction to normalize as a common reference [78]. Furthermore, Pinus
densata is an evergreen coniferous tree distributed in the alpine and sub-alpine areas in
China, and it grows slowly within one to two years [79]. Therefore, the tree growth and
forest structure are almost unchanged; then, the change of image reflectance caused by
forest growth in the three months will have a negligible impact on the AGB estimation in
this study.

4.3. Limitation and Future Research

Although QRNNb obtained a high-accuracy estimation in the different biomass seg-
ments, this study still has some limitations. Firstly, Sentinel-2 can yield an accurate biomass
estimation [23]. Still, some studies have shown that mixed remote sensing data are more
precise than single-source data, especially in tropical and subtropical regions where the
stand structures and tree species are complex [80–82]. Secondly, the accuracy of AGB
estimation is highly dependent on prediction methods [83]. Therefore, other models for
biomass estimation in subsequent studies should be considered to improve the precision
of biomass estimation, for instance, combining quantile regression and random forests
to form quantile random forests (QRF), the convolutional neural networks (CNN), the
gradient boost regression tree (GBRT) [84–86], etc. Thirdly, the best combination of different
vegetation indices is expected to predict the AGB of vegetation at different stages [87].

Moreover, we only selected Pinus densata forests as the research area. They are mainly
distributed over the subalpine and alpine areas in southern Qinghai, western Sichuan,
northwestern Yunnan, and southeastern Tibet in China. In addition, Pinus densata forests
are single-storied stands with even age in common [60,61]. Therefore, the proposed method
can be applied to improve the forest AGB estimation for even-aged or single-storied forests.
The applicability in the multi-storied stands or the uneven-aged forests with complex stand
structures would be further explored.

5. Conclusions

To reduce uncertainties from under-estimation and over-estimation, optical remote
sensing was applied to assess forest AGB. In this study, Sentinel-2 was used to explore the
potential and capability of three non-parametric models of the ANN, RF, and the QRNN for
Pinus densata in Shangri-La City. In addition, the biomass was segmented, and the quantile
regression neural network with the best fitting performance in each biomass segment was
selected to combine an integrity model named QRNNb. The results showed: (1) from
the whole biomass data, the performance of QRNNb and RFs was a priority over the
ANN. The corresponding R2 and RMSE were QRNNb: 0.943, 18.203 Mg/ha; RF: 0.936,
19.396 Mg/ha; ANN: 0.602, 48.180 Mg/ha. (2) The prediction accuracy of QRNNb at
different biomass segments was higher than the ANN and RF. It had the highest R2 and
the smallest RMSE when AGB < 40 Mg/ha and AGB > 160 Mg/ha. The R2 at values those
two biomass segments were 0.961 and 0.867, and the RMSE values for those two were
1.733 Mg/ha and 22.052 Mg/ha. This demonstrated that QRNNb could efficiently improve
the under-estimation at higher biomass values and the over-estimation at lower biomass
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values compared with the ANN and RF. QRNNb was sensitive to extreme values and could
express low biomass values and high biomass values wholly and effectively. This means
that QRNNb combined with the optimal quantile model of each biomass segment provides
a more suitable method for estimating AGB for even-aged or single-storied forests.
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Appendix A

Figure A1. Scatter plots of the ground-observed and estimated biomass values using the resampled
Sentinel-2 image product with a spatial resolution of 10 m. (a) The artificial neural network model
(ANN); (b) the random forests model (RF); (c) the quantile regression neural network model (QRNN),
and the quartiles groups are 0.1, 0.25, 0.5, 0.75, and 0.9, respectively; (d) and the quantile regression
neural network with the best fitting performance in each biomass segment (QRNNb).
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Appendix B

Table A1. Summary of R2, RMSE, ME, and MAE at the different AGB segments based on the test
dataset using the resampled Sentinel-2 image product with a spatial resolution of 10 m. ANN is the
artificial neural network, RFs is the random forests, and QRNNb is the best quantile regression neural
network in each biomass segment.

Indices
Models

ANN RFs QRNNb

R2

0–40 0.384 0.076 0.958
40–80 0.022 0.200 0.889
80–120 0.050 0.241 0.430

120–160 0.031 0.302 0.234
>160 0.257 0.861 0.968
Total 0.549 0.932 0.956

RMSE (Mg/ha)

0–40 6.919 8.474 1.799
40–80 12.075 10.926 4.068
80–120 11.050 9.952 8.621

120–160 13.586 11,708 12.258
>160 52.062 22.510 2.774
Total 51.310 19.960 16.063

ME (Mg/ha)

0–40 −58.615 −31.676 −0.597
40–80 −37.525 −18.002 1.489
80–120 −7.131 −1.365 −7.131

120–160 10.183 7.239 −4.231
>160 60.937 42.327 0.200
Total −0.454 2.275 −1.211

MAE (Mg/ha)

0–40 61.077 31.676 0.601
40–80 39.856 18.243 0.941
80–120 20.327 6.905 1.455

120–160 25.946 10.825 5.084
>160 65.955 42.327 0.308
Total 42.060 22.555 2.396
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