
Edited by

Advances in Angle-
Only Filtering and 
Tracking in Two and 
Three Dimensions 

Mahendra Mallick and Ratnasingham Tharmarasa
Printed Edition of the Special Issue Published in Sensors

www.mdpi.com/journal/sensors



Advances in Angle-Only Filtering and
Tracking in Two and Three
Dimensions





Advances in Angle-Only Filtering and
Tracking in Two and Three
Dimensions

Editors

Mahendra Mallick

Ratnasingham Tharmarasa

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Mahendra Mallick

Independent Consultant

USA

Ratnasingham Tharmarasa

McMaster University

Canada

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Sensors (ISSN 1424-8220) (available at: https://www.mdpi.com/journal/sensors/special issues/

Angle-Only Filtering Tracking).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-6854-6 (Hbk)

ISBN 978-3-0365-6855-3 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Advances in Angle-Only Filtering and Tracking in Two and Three Dimensions” . ix

Antoine Lebon, Annie-Claude Perez, Claude Jauffret and Dann Laneuville

TMA from Cosines of Conical Angles Acquired by a Towed Array
Reprinted from: Sensors 2021, 21, 4797, doi:10.3390/s21144797 . . . . . . . . . . . . . . . . . . . . 1

Shizhe Bu, Aiqiang Meng and Gongjian Zhou

A New Pseudolinear Filter for Bearings-Only Tracking without Requirement of Bias
Compensation
Reprinted from: Sensors 2021, 21, 5444, doi:10.3390/s21165444 . . . . . . . . . . . . . . . . . . . . 21

Jun Li, Kutluyil Dogancay and Hatem Hmam

Closed-Form Pseudolinear Estimators for DRSS-AOA Localization
Reprinted from: Sensors 2021, 21, 7159, doi:10.3390/s21217159 . . . . . . . . . . . . . . . . . . . . 41

Zheng Wei, Zhansheng Duan, Yina Han and Mahendra Mallick

A New Coarse Gating Strategy Driven Multidimensional Assignment for Two-Stage MHT of
Bearings-Only Multisensor-Multitarget Tracking
Reprinted from: Sensors 2022, 22, 1802, doi:10.3390/s22051802 . . . . . . . . . . . . . . . . . . . . 61

Ji-An Luo, Chang-Cheng Xue, Ying-Jiao Rong and Shen-Tu Han

A Total Lp-Norm Optimization for Bearing-Only Source Localization in Impulsive Noise with
SαS Distribution
Reprinted from: Sensors 2021, 21, 6471, doi:10.3390/s21196471 . . . . . . . . . . . . . . . . . . . . 83

Dipayan Mitra, Aranee Balachandran and Ratnasingham Tharmarasa

Ground Target Tracking Using an Airborne Angle-Only Sensor with Terrain Uncertainty and
Sensor Biases
Reprinted from: Sensors 2021, 22, 509, doi:10.3390/s22020509 . . . . . . . . . . . . . . . . . . . . . 103

Mahendra Mallick, Xiaoqing Tian, Yun Zhu and Mark Morelande

Angle-Only Filtering of a Maneuvering Target in 3D
Reprinted from: Sensors 2022, 22, 1422, doi:10.3390/s22041422 . . . . . . . . . . . . . . . . . . . . 129

Asfia Urooj, Aastha Dak, Branko Ristic and Rahul Radhakrishnan

2D and 3D Angles-Only Target Tracking Based on Maximum Correntropy Kalman Filters
Reprinted from: Sensors 2022, 22, 5625, doi:10.3390/s22155625 . . . . . . . . . . . . . . . . . . . . 151

Kutluyil Dogancay

Optimal Geometries for AOA Localization in the Bayesian Sense
Reprinted from: Sensors 2022, 22, 9802, doi:10.3390/s22249802 . . . . . . . . . . . . . . . . . . . . 173

Yidi Chen, Linhai Wang, Shenghua Zhou, and Renwen Chen

Signal Source Positioning Based on Angle-Only Measurements in Passive Sensor Networks
Reprinted from: Sensors 2022, 22, 1554, doi:10.3390/s22041554 . . . . . . . . . . . . . . . . . . . . 191

Gabriele Oliva, Roberto Setola and Alfonso Farina

Intelligence-Aware Batch Processing for TMA with Bearings-Only Measurements
Reprinted from: Sensors 2021, 21, 7211, doi:10.3390/s21217211 . . . . . . . . . . . . . . . . . . . . 209

v



Shenghua Zhou, Linhai Wang, Ran Liu, Yidi Chen, Xiaojun Peng, Xiaoyang Xie, et al.

Signal Source Localization with Long-Term Observations in Distributed Angle-Only Sensors
Reprinted from: Sensors 2022, 22, 9655, doi:10.3390/s22249655 . . . . . . . . . . . . . . . . . . . . 233

vi



About the Editors

Mahendra Mallick

Mahendra Mallick received an M.S. degree in computer science from Johns Hopkins University,

Baltimore, MD, USA, in 1987, and a Ph.D. degree in quantum solid-state theory from the State

University of New York, Albany, NY, USA, in 1981. He is a co-editor and a co-author of the

book entitled Integrated Tracking, Classification, and Sensor Management: Theory and Applications

(New York, NY, Wiley/IEEE, 2012). His research interests include nonlinear filtering, multisensor

multitarget tracking, multiple hypothesis tracking, random-finite-set-based multitarget tracking,

satellite orbit and attitude determination, over the horizon radar tracking, and distributed fusion.

Dr. Mallick was the Associate Editor-in-Chief of the online journal of the International Society

of Information Fusion (ISIF) in 2008–2009. He was the Lead Guest Editor of the special issue on

“Multitarget Tracking” in the IEEE Journal of Selected Topics in Signal Processing in June 2013. He

is currently an Associate Editor for target tracking and multisensor systems of the IEEE Transactions

on Aerospace and Electronic Systems. He is the Lead Guest Editor of the Sensors 2021-2022 Special

Issue on Advances in Angle-Only Filtering and Tracking in Two and Three Dimensions. He is a

Senior Life Member of IEEE.

Ratnasingham Tharmarasa

Ratnasingham Tharmarasa received the B.Sc. Eng. degree in electronic and telecommunication

engineering from University of Moratuwa, Sri Lanka in 2001, and the M.A.Sc and Ph.D. degrees in

electrical engineering from McMaster University, Canada in 2003 and 2007, respectively.

Currently he is an assistant professor in the Electrical and Computer Engineering Department

at McMaster University, Canada. From 2001 to 2002 he was an instructor in electronic and

telecommunication engineering at the University of Moratuwa, Sri Lanka. During 2002-2007 he was

a graduate student/research assistant in ECE department at the McMaster University, Canada. In

2008, he has worked as a researcher at DRS Technologies Canada Limited, Ottawa, Canada. From

2008 to 2019 he was a research associate in ECE department at the McMaster University, Canada.

He is currently an Associate Editor for Elsevier Signal Processing. He is the Guest Editor of the

Sensors 2021-2022 Special Issue on Advances in Angle-Only Filtering and Tracking in Two and Three

Dimensions.

His main areas of expertise are target tracking, information fusion, sensor resource management

and performance prediction with application to surveillance systems, autonomous vehicles and

intelligent transportation. He has published more than 60 peer-reviewed journal articles and 65

conference papers in the above areas, in addition to three book chapters. He has also worked on the

development of many real-world target tracking, sensor fusion and resource management systems.

vii





Preface to ”Advances in Angle-Only Filtering and

Tracking in Two and Three Dimensions”

Two-dimensional bearing-only filtering (BOF) arises in many real-world tracking problems,

including underwater tracking using a passive sonar, aircraft surveillance using a passive radar,

robot navigation using a passive sonar, and undersea exploration of natural resources using sonar.

Single-sensor BOF is also a challenging nonlinear filtering problem due to poor observability and the

nonlinear measurement model. This filtering problem and the associated tracking problem have been

studied extensively.

Angle-only filtering (AOF) in 3D is the counterpart of BOF in 2D. Real-world AOF problems

include passive ranging using an infrared search and track (IRST) sensor, passive sonar, passive

radar in the presence of jamming, ballistic missile and satellite tracking using a telescope,

satellite-to-satellite passive tracking, and missile guidance using bearing-only seekers. The number

of publications in the AOF and angle-only tracking in 3D is rather limited compared with the

corresponding problems in 2D. This Special Issue contains twelve papers, which are grouped into

three sections. The first section deals with nonlinear filters, estimators, and localization, and has six

papers.

The first paper by Lebon et al. discusses target motion analysis (TMA) using cosine of conical

angles acquired by a towed array. It estimates the trajectory of a target moving with constant velocity

(CV) at an unknown constant depth. The sound emitted by the target can reach the antenna through

the direct path as well as through bounces off the sea bottom and/or off the sea surface. The authors

analyze the observability by first identifying the presence of ghost targets and then estimating the

target trajectory efficiently.

The second paper by Bu et al. considers the pseudolinear Kalman filter (PLKF) for the

bearings-only tracking problem. Current PLKF algorithms use bias compensation to improve the

accuracy of the state estimator. The authors present a stable PLKF without bias compensation in

the minimum mean square error (MMSE) framework and compare their results with the posterior

Cramer–Rao Lower Bound (PCRLB).

The next paper by Li et al. studies the hybrid source localization problem using differential

received signal strength (DRSS) and angle of arrival (AOA) measurements. The authors develop a

closed-form pseudolinear estimator by incorporating the AOA measurements into a linearized form

of DRSS equations. Finally, they propose a selected-hybrid-measurement-weighted instrumental

variable (SHM-WIV) estimator that has superior bias reduction and mean-squared error performance.

In the fourth paper, Dogancay studies the optimal sensor placement for target localization

using AOA measurements in 2D with a Gaussian prior. Optimal sensor locations are determined

analytically for a single AOA sensor using the D- and A-optimality criteria and an approximation of

the Bayesian Fisher information matrix (BFIM). Then, these results are extended to a target moving

with nearly constant velocity (NCV). For the NCV trajectory of the target, it is observed that the two

optimality criteria generate significantly different optimal sensor trajectories.

Luo et al. consider the robust bearings-only source localization in impulsive noise with

symmetric distribution based on the Lp-norm minimization criterion. To reduce the bias due to

the correlation between system matrices and noise vectors, the authors propose a Total Lp-norm

Optimization (TLPO) algorithm by minimizing the errors in all elements of the system matrix and

data vector based on the minimum dispersion criterion. They obtain an equivalent form of TLPO

and propose two algorithms to solve the TLPO problem by using Iterative Generalized Eigenvalue

ix



Decomposition (IGED) and Generalized Lagrange Multiplier (GLM), respectively.

Oliva et al. investigates the TMA with bearings-only measurements in 2D using an

intelligence-aware batch processing algorithm. A constrained maximum likelihood estimation (MLE)

is developed by extending the Cramér–Rao lower bound (CRLB) for the MLE problems with

inequality constraints. The ownship motion is selected based on the Artificial Potential Fields

technique that is typically used by mobile robots to reach a goal while avoiding obstacles. The MLE

is performed by evolutionary ant colony optimization software.

Three papers in the next section investigate 3D AOF . The paper by Mitra et al. considers

the 3D tracking of a ground target with terrain uncertainty and bias in angle measurements of an

airborne sensor. They derive equations for the PCRLB by considering terrain uncertainty and sensor

measurement bias in addition to the process and measurement noises. It is shown that the biased

PCRLB provides a tighter lower bound when compared with the PCRLB while evaluating the position

error. The authors propose an algorithm to select optimal targets of opportunity and optimal platform

trajectory to estimate the bias using the biased PCRLB.

The second paper by Mallick et al. studies AOF of a maneuvering target in 3D using bearing and

elevation measurements from a passive IRST sensor. The target moves with a nearly constant turn

(NCT) in the XY-plane and nearly constant velocity (NCV) along the Z-axis. The NCT motion in the

XY-plane cannot be discretized exactly. The continuous-time NCT model is discretized using the first

and second-order Taylor approximations and the polar velocity and Cartesian-velocity-based states

for the NCT model in a cubature Kalman filter (CKF). Numerical results for realistic scenarios show

that the second-order Taylor approximation provides the best accuracy using the polar velocity or

Cartesian-velocity-based models.

The third paper by Urooj et al. considers 2D and 3D AOF using the maximum correntropy (MC)

Kalman filters, where the measurement noise is non-Gaussian. The authors formulate the UKF and

new sigma point Kalman filter (NSKF) using the Gaussian kernel (GK) and Cauchy kernel (CK) in the

MC framework. Consequently, they develop the MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK for

the non-Gaussian AOF filtering problems.

Tracking and localization with multiple angle-only sensors are addressed in the third section.

Wei et al. consider 2D bearings-only multisensor-multitarget tracking using multidimensional

assignment (MDA). They propose a new coarse gating strategy to reduce the computational cost

of the MDA algorithm. The two-stage multiple hypothesis tracking framework uses the proposed

coarse gating strategy for multisensor-multitarget tracking.

Chen et al. investigate the multitarget localization problem using a sensor network with 3D

angle-only sensors. The authors propose a data association technique based on minimum distance

and analyze the target localization accuracy as a function of the angle measurement accuracy and

platform self-positioning accuracy. Their numerical result shows that the proposed algorithm can

achieve a required data association rate and a high positioning accuracy with a low computation

cost.

The paper by Zhou et al. considers the position and velocity estimation of a target moving with

constant velocity using a passive sensor network with communication links. The sensors move with

constant velocity and measure the azimuth and elevation angles. The authors present centralized

and distributed fusion algorithms based on least squares (LS) and analyze the communication and

computation requirements of each algorithm.

Mahendra Mallick and Ratnasingham Tharmarasa

Editors
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Abstract: This paper deals with the estimation of the trajectory of a target in constant velocity motion
at an unknown constant depth, from measurements of conical angles supplied by a linear array.
Sound emitted by the target does not necessarily navigate along a direct path toward the antenna,
but can bounce off the sea bottom and/or off the surface. Observability is thoroughly analyzed to
identify the ghost targets before proposing an efficient way to estimate the trajectory of the target of
interest and of the ghost targets when they exist.

Keywords: target motion analysis; observability; fisher information matrix; Cramér–Rao lower
bound; conical angles; nonlinear estimation

1. Introduction

Bearings-only target motion analysis (BOTMA) is a problem that has been widely
studied and various solutions have been proposed in the literature: batch [1–5] or recursive
filter (such as extended Kalman filter [6–8], unscented Kalman filter [9], particle filter [10],
modified instrumental variable [11–13]), or a mix of recursive and batch methods [14].
Citing all the papers dealing with this topic is now a hard task. Among the abundant
literature, most papers share the same assumption: the target is moving in a straight line
with a constant speed, while the passive observer is maneuvering adequately in order to
ensure the observability of the target [15–17]. The bearings are the measurements.

In this paper, we are concerned with the same problem, except that the available
measurements are the cosine of the relative bearings, also called conical angles because the
target belongs to the cone of ambiguity whose revolution axis is the line along which the
towed array is moving (see [18] p. 39). Implicitly, we consider a target moving in 3D at a
constant and unknown depth in near field; in this case, the two more energetic rays are the
direct and the reflected paths (bottom or surface). In most cases, the sound bounces off the
sea bottom. Therefore, we extend our analysis to surface- and sea bottom-bounced rays.

Indeed, the array detects the cosine of the relative angle of the direction of arrival by
means of a suitable spatial filtering method such as beamforming, or more sophisticated
techniques (see [19]). In the near field, sound can propagate to the sensor array along the
direct path and/or the bottom-reflected path, and/or the surface-reflected path. Most of
the time, at most, two rays coming from the same target are detected [18,20].

Unlike Gong [21] and Blanc-Benon [22], who addressed the three-dimensional target
motion analysis (TMA) from a sequence of time differences of arrival (TDOA) of a signal
traveling by two different paths coupled with a sequence of azimuths, we assume in this
paper that the available measurements are the cosines of the conical angles only. In [23],
a similar problem was addressed, but observability was not studied. We will consider two
situations: the first case is devoted to TMA when sound propagates along a non-direct path
at each sampling time. This will be the topic of Section 3: we will conduct observability

Sensors 2021, 21, 4797. https://doi.org/10.3390/s21144797 https://www.mdpi.com/journal/sensors1



Sensors 2021, 21, 4797

analysis and identify all the ghost targets, given a set of noise-free measurements. We will
prove that an assumption of the target’s depth makes the target’s trajectory observable,
but not estimable (in the sense that the asymptotic performance given by the Cramér–Rao
lower bound—CRLB—of the estimator of the depth is out of the physical constraints, that
is, the source is navigating between the surface and the sea bottom).

In the fourth section, we will consider scenarios in which the antenna changes its own
route. We will prove that the trajectory of the target is almost certainly observable.

In the fifth section, we will assume that sound will propagate along the direct path and
the bottom-reflected path. The two rays will be assumed as being detected. Observability
analysis will reveal that only three ghost targets at most exist without maneuvering the
antenna. We will check that, in this case, the depth is not “estimable”. We will give a
palliative, allowing us to propose an estimator which is operationally acceptable, the price
being a small bias. Convincing simulations will be given at the end of this section, proving
that, even when the duration of the scenario is short, the estimated trajectory is very close
to the true one. A conclusion ends the paper.

2. Notation and Problem Formulation

We consider two underwater vehicles moving at their own constant depth. The
first mobile is a surface vessel or a submarine towing a horizontal sensor array, and the
second one is the target of interest. Given a Cartesian coordinate system, the acoustic
center of the array is located at time t at

(
xO(t) yO(t) zO

)T . At the same time, the

target is at
(

xT(t) yT(t) zT
)T . The respective horizontal positions of the target of

interest and of the center of the array at time t are denoted by PT(t) =
(

xT(t) yT(t)
)T

and PO(t) =
(

xO(t) yO(t)
)T . The sea bottom depth (assumed to be a constant) is de-

noted as D. The source is said to be endfire to the line array if its trajectory is in the
same line as the array (which implies that the array and the source are at the same
depth, and share the same route). It is broadside to the antenna if it navigates in the
vertical plane orthogonal to the line array and passing by the acoustic center of the ar-
ray. The sensor array detects the line of sight of the target; more precisely, ad hoc array
processing (or spatial filtering) delivers at time t the cosine of the conical angle ca(t)
given by cos(ca(t)) = cos(θ(t)− h(t)) cos(φ(t)) � m(t), where θ(t) and φ(t) are, re-
spectively, the azimuth (or bearing) and the elevation of the path along which the sound
emitted by the source propagates. The angle h(t) is the heading of the sensor array.
Denoting the relative position coordinates of the source with reference to the acoustic
center of the array by xOT(t) = xT(t) − xO(t) and yOT(t) = yT(t) − yO(t), we have
θ(t) = arctan(xOT(t), yOT(t)). Figure 1 displays the different angles and the two actors
(the observer reduced to the linear array, and the target).

The ray of the sound (or signal) emitted by the source can be reflected by the bottom
and/or the surface or travels in the surface or deep channel. The sound–speed profile
makes the paths curve. In this paper, we will consider that the target is in the near field
(the distance between the source and the array is less than 20 km), and the bottom depth
is in the range 2000–5000 m. Due to the large curvature of the ray (about 80 km), we
will approximate the path of the sound as a set of zigzags defined by the reflections on
the bottom or on the surface. So, we implicitly use the Snell law widely employed in
geometrical optics. An image-source is created whose depth ζT will be called “image-
depth”. A path is then defined by the triplet (δ, nB, nS), where

• δ indicates the direction of the path of the sound emitted by the source: if the path is
toward the surface, δ = −1, otherwise δ = +1,

• nB is the number of bottom reflections, and
• nS is the number of surface reflections.

2
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Figure 1. A typical scenario, viewed from the sky.

Figure 2 illustrates three different paths

Figure 2. Three examples of ray paths: the solid line represents the direct path (δ, nB, nS) = (+1, 0, 0),
the dashed-dotted line represents the bottom reflected path (δ, nB, nS) = (+1, 1, 0), and the dashed
line represents the bottom-surface-bottom reflected path (δ, nB, nS) = (+1, 2, 1).

We have to consider the depth difference between the array and the image-source
defined by ζOT � ζT − zO if the ray has been reflected (by the sea bottom or by the surface),
or ζOT � zT − zO if the sound wave uses the direct path.

A general expression of ζOT based on the triplet (δ, nB, nS) is given by ζOT(δ, nB, nS) =
−2δnB(−1)nS+nB D− zO +(−1)nS+nB zT. Notethat,giventhepath, thelinkbetween ζOT(δ, nB, nS)
and zT is linear: ζOT(δ, nB, nS) = azT + b, the constants being a function of the triplet (δ, nB, nS), D,
and zO. Moreover, ζOT(δ, nB, nS) is null if and only if the antenna and the target are navigating at the
same depth (zT = zO), and sound is traveling in the direct path. In this case, cos(φ(t)) = 1. For the
sake of simplicity of the notations, we will simply subsequently denote ζOT instead of ζOT(δ, nB, nS).

For the above examples, we have ζOT(1, 0, 0) = zT − zO (direct path), ζOT(+1, 1, 0) =
2D − (zT + zO) (bottom-reflected path), and ζOT(+1, 2, 1) = 4D − (zT + zO) (bottom-
surface-bottom reflected path). Note that ζOT(δ, nB, nS) can be negative (the image-
source is above the surface). Consequently, the cosine of the elevation is cos(φ(t)) =√

x2
OT(t)+y2

OT(t)√
x2

OT(t)+y2
OT(t)+ζ2

OT(δ,nB ,nS)
.

Figure 3a displays the cone of ambiguity, defined by the set of sources sharing the
same cos(φ(t)). In Figure 3b, we plot a direct ray and a bottom-bounced ray, which allows
us to figure out the various angles with which we will work.

3
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(a) (b) 

Figure 3. Cones of ambiguity. (a) The cones that the target belongs to, and the one that the image-target belongs to.
(b) Example of conical angles of the target and of the image-target, for a bottom-reflected ray: φD and φB are the elevations
of the direct path and of the bottom-reflected path, respectively.

We assume that the source is moving in constant velocity (CV) motion during the
scenario. Our challenge is to estimate its trajectory, i.e., the state vector defining it,
X �

(
xT(t∗) yT(t∗) zT

.
xT

.
yT

)T , for a chosen t∗, from noisy measurements.
We consider two situations:

1. Only one ray is detected by the array during the scenario; in this case, we have at
each time t a measurement m(t), given the path along which the wave propagates.

2. Two rays (traveling on two different paths) arrive at the sensor’s antenna. In this case,
the available measurement at time t is a couple of measurements, say (m1(t), m2(t)),
given the two paths along which the wave propagates.

After the spatial filtering, the antenna supplies a noisy measurement of m(t) or a
noisy measurement of (m1(t), m2(t)). The noisy measurements are regularly acquired at
tk = (k − 1)Δt, k ∈ {1, . . . , N}, for a fixed sampling time Δt.

Before attempting to estimate X, we must answer several questions:

1. Is the vector X observable from the set of measurements {m(t), t ∈ [0, T]}? Note that,
in TMA problems, observability is often analyzed in continuous time (see [15,17], for
example), even though the noisy measurements are given in discrete time.

2. If not, what are the ghost targets (those which could be detected at the same set of
measurements {m(t), t ∈ [0, T]})?

3. How do we make X observable or with which new information?
4. Is the vector X observable from the set of couples {(m1(t), m2(t)), t ∈ [0, T]}?

For the cases where X is observable, we have then to compute the asymptotical
performance of an unbiased estimator (given by the CRLB [24]), and the performance of
our estimators in terms of bias and the covariance matrix. It is worth noting that using
the FIM to prove observability can lead to a wrong conclusion [25]. This why we use an
analytic approach.

3. TMA from One Ray

In this section, we consider the case where the array collects the cosine of a coni-
cal angle, the path of the ray being known by the operator. We start by analyzing the
observability of the trajectory of the source of interest.

4
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3.1. Observability Analysis

Theorem 1. Let a linear antenna measure the cosine of a conical angle in the direction of a source,
both in CV motion. The path of the sound emitted by the source is known, as is also the sea
bottom depth.

1. If the target is broadside to the antenna, then the set of ghost targets is composed of virtual
sources broadside to the antenna.

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources
endfire to the antenna.

3. If the target has the same heading as the array (but is not endfire to it), then the set of ghost
targets is composed of virtual targets with the same heading as the antenna. More precisely,
the ghost image of each ghost target is moving on a cylinder whose axis is the antenna axis,
and whose radius is a positive scalar β. The relative ghost target velocity is equal to β times
the target’s velocity. The initial distance between the ghost image and the center of the antenna
is equal to β times the initial distance between the target-image and the center of the antenna.

4. In any other case, for a chosen image-depth ζG, the set of ghost targets is composed of virtual
targets whose motion relative to the array is defined by POG(t) = βPOT(t) or POG(t) =
βSPOT(t), where S is the 2D axial symmetry around the line of the array, and β is a positive
scalar. The scalar β is equal to |ζOG |

|ζOT | if ζOT �= 0. If ζOT = 0 (which can happen with a direct
path only), β can have any positive value.

Preamble: In the following proof, we choose t∗ = 0. Instead of working with the state
vector X =

(
xT(0) yT(0) zT

.
xT

.
yT

)T , we will use the relative state vector of the

image source, which is Y �
(

x0T(0) yOT(0) ζOT
.
xOT

.
yOT

)T . The reason for this is
that we are able to recover X from Y without ambiguity.

We will prove this theorem in the special case where the heading of the antenna is
equal to 0◦, and the value yOT(t) is positive. This can be easily obtained with an ad hoc
rotation of the whole scenario. This will simplify the expression of the measurement,
without loss of generality.

Proof of Theorem 1. We are seeking the ghost target whose horizontal position at time t is(
xG(t) yG(t)

)T , detected in the same cosine of the conical angle, that is
yOT(t)√

x2
OT(t)+y2

OT(t)+ζ2
OT

= yOG(t)√
x2

OG(t)+y2
OG(t)+ζ2

OG
, with xOG(t) = xG(t) − xO(t), yOG(t) =

yG(t)− yO(t), and ζOG is the image-depth of the ghost target. This equality is equivalent to

y2
OT(t)

x2
OT(t) + y2

OT(t) + ζ2
OT

=
y2

OG(t)
x2

OG(t) + y2
OG(t) + ζ2

OG
(1)

Note that because the target is moving (as is the ghost target also), the denominators of the
left term and of the right term of (1) are two polynomial functions of degree 2.

Case 1: yOT(t) is a zero function, i.e., ∀t yOT(t) = 0.
This means the source is broadside to the antenna: YT =

(
x0T(0) 0 ζOT

.
xOT 0

)T.
In this case, yOT(t) = 0, ∀t ∈ [0, T]. Hence, the set of ghost targets is composed of the

virtual targets broadside to the antenna: YG =
(

x0G(0) 0 ζOG
.
xOG 0

)T .
Case 2: yOT(t) is not a zero function.
If

.
yOT = 0, then yOT(t) is a constant. To respect the degrees of the terms of (1), yOG(t)

is a constant too.
If

.
yOT �= 0, then there is a root, say t̃, such as yOT

(
t̃
)
= 0, since yOT(t) is a polynomial

function of degree 1. Consequently, yOG
(
t̃
)
= 0, and ∀t �= t̃, yOG(t) �= 0.

5
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We deduce that, in both cases (
.
yOT = 0, and

.
yOT �= 0), there exists a positive value β

such that yOG(t) = βyOT(t).

(1) ⇔
{[

x2
OG(t) + y2

OG(t) + ζ2
OG

]
− β2[x2

OT(t) + y2
OT(t) + ζ2

OT
]}

y2
OT(t) = 0

⇔ x2
OG(t) + ζ2

OG = β2[x2
OT(t) + ζ2

OT
] (2)

The quantity x2
OT(t) + ζ2

OT can be equal to zero at any time, or at one time or never.
Subcase 1: ∀t, x2

OT(t) + ζ2
OT = 0.

Then, xOT(t) = 0, ∀t and ζOT = 0. Note that this case is the one when the target is
traveling in the endfire to the array and at the same depth as the antenna and the path is
the direct one. For the same reason, xOG(t) = 0, ∀t and ζOG = 0. The set of ghost targets
is hence composed of virtual targets traveling in the endfire to the array and at the same
depth as the antenna.

Subcase 2: ∃t̆ such that x2
OT

(
t̆
)
+ ζ2

OT �= 0.
We deduce from (2) that

x2
OG(0) = β2x2

OT(0) + β2ζ2
OT − ζ2

OG (3)

xOG(0)
.
xOG = β2xOT(0)

.
xOT (4)

.
x2

OG = β2 .
x2

OT (5)

If
.
xOT = 0, then

YG =
(

±
√

β2x2
OT(0) + β2ζ2

OT − ζ2
OG βyOT(0) ζOG 0 β

.
yOT

)T
, for any posi-

tive constant β and any positive constant ζOG less than
√

β2x2
OT(0) + β2ζ2

OT . Note that,

when
.
yOT = 0, the target is motionless relative to the center of the array (both have the

same velocity); and when
.
yOT �= 0, the target has the same heading as the array.

If
.
xOT �= 0, then squaring the elements of (4), and using (5), we draw from (3) that

β2ζ2
OT = ζ2

OG. If ζOT = 0, then ζOG = 0, and the scalar β can take any positive value;

else β = |ζOG |
|ζOT | . In both cases, the trajectory of a ghost target is defined by the state vector

YG =
(
±βxOT(0) βyOT(0) βζOT ±β

.
xOT β

.
yOT

)T . �

Remark 1.

1. When the source and the observer are at the same depth, and the path is direct, Theorem 1
recovers the conclusions given in [26].

2. The cases (1), (2) and (3) of Theorem 1 are “rare events”, since the events of dealing with a
source in endfire, broadside or having the same heading as the antenna during the scenario
occur with a probability equal to 0. However, when the target has a trajectory close to one of
these special cases, the estimates will have a poor behavior.

3. For case (4), when the detected ray is not a direct path, for example, when the ray is bottom-
reflected, a hypothesis about the source is sufficient to obtain one solution, corresponding to a
ghost target. Indeed, if we suppose that the depth of the target is zAs (whereas the true value
is zT), then we have β = 2D−(zAs+zO)

2D−(zT+zO)
, whose biggest value βMax = 2D−zO

2D−(zT+zO)
, and the

minimum value is βMin = 2D−(zMax+zO)
2D−(zT+zO)

, where zMax is the largest depth of a submarine
vehicle. Typically, in deep water, D ≥ 4000 m. A reasonable choice of zMax could be 400 m.
We can then have a range of β: [βMin, βMax] =

[
7600−zO

8000−(zT+zO)
, 8000−zO

8000−(zT+zO)

]
. For instance,

when the depths of the antenna and the target are, respectively, 200 and 100 m, we have
[βMin, βMax] = [0.974, 1.013]. In this way, we bound the set of ghost targets, and we can
expect that the bias induced by a wrong choice of zAs is very low.

4. For case (4) again, with a direct path, if the target is not at the same depth as the antenna,
β = zAs−zO

zT−zO
. Because β is a positive number, zAs − zO has the same sign as zT − zO: if

zT > zO, then zO < zAs ≤ zMax, and [βMin, βMax] =
[
0, zMax−zO

zT−zO

]
; if zT < zO, then

6
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0 ≤ zAs < zO, and [βMin, βMax] =
[
0, zO

zT−zO

]
. In both cases, the range [βMin, βMax] is too

wide to be useful. If the target and the antenna are at the same depth, β can take any positive
value.

3.2. Estimation of the Trajectory

We run 500 Monte Carlo simulations for a typical scenario described as follows:
The observer starts from

(
0 0

)T at the depth zO = 200 m. Its speed and heading

are, respectively, 5 m/s and 0◦. The initial position of the target is
(

5000 7000
)T and its

depth is zT = 100 m. Its route is 45◦ and its speed is 4 m/s.

• The measurements are collected every 4 s (Δt = 4 s). The scenario lasts 20 min.
• The sea bottom depth is 4000 m. The detected ray is a bottom-reflected ray.
• The assumed target depth is zAs = 200 m (whereas the true one is 100 m).
• First, the measurements have been corrupted with an additive Gaussian noise whose

standard deviation is σ = 1.7 × 10−2.

Then, we choose the least squares estimator, which is identical to the maximum
likelihood estimator with these assumptions. Note that, in open literature about TMA,
the confidence regions are given by the confidence ellipsoid obtained with the covariance
matrix of the estimate. Since the maximum likelihood estimate is asymptotically efficient
under nonrestrictive conditions, we use here the Cramér–Rao lower bound to compute
such confidence regions.

The result of the simulation is presented in Table 1 and illustrated in Figure 4. Obvi-
ously, even if the assumption made on the target’s depth makes the state vector observable,
it remains inestimable: the hugeness of the diagonal elements of the CRLB does not allow
this kind of TMA to be employed. We note in Figure 4 that the cloud of horizontal estimates
is hyperbola-shaped. This is because the state vector is “weakly” estimable. The parametric
equation of this hyperbola is{

x(ω) = ζAssinh(ω)

y(ω) = ζAsm√
1−m2 cosh(ω)

, with ζAs = 2D − (zAs + zO), and m = yOT(0)√
x2

OT(0)+y2
OT(0)+ζ2

OT

Table 1. Performance of the estimator of the reduced state vector when σ = 1.7 × 10−2, in terms of
bias, sample standard deviation and the one given by the square root of the diagonal of the CRLB.

Xr Bias σsamp σCRLB

5000 m −3525 6962 13,356
7000 m −2367 4052 5599

2.83 m/s −1.37 1.81 4.35
2.83 m/s 0.53 1.62 2.75

7
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Figure 4. The cloud of estimated position (in green), a piece of the hyperbola (intersection of the cone
of ambiguity and the plane z = zAs(= 200 m), for σ = 1.7 × 10−2.

We further reduced the standard deviation to σ = 1.7 × 10−4 in order to appreciate
the behavior of the MLE. With this (unrealistic) value, the MLE is efficient, as shown in
Table 2 and in Figure 5 (which validates our observability analysis).

Table 2. Performance of the estimator of the reduced state vector with σ = 1.7 × 10−4.

Xr Bias σsamp σCRLB

5000 m 60.40 138.67 133.56
7000 m 88.20 58.42 55.99

2.83 m/s 0.043 0.044 0.044
2.83 m/s 0.037 0.028 0.028

Figure 5. The cloud of estimated position (in green) for σ = 1.7 × 10−4. The cloud is no longer
hyperbola-shaped. The small black segment is the 90%-confidence ellipsoid.

Our conclusion is that the state vector is not estimable, even though it is observable
with an assumption on the target’s depth.

This is why we propose to maneuver the antenna in order to render the state vector
observable with no assumption on the target’s depth, and to augment the information
about it.

4. TMA with One Ray When the Array Maneuvers

In this section, the antenna maneuvers, i.e., it changes its own heading. We start by
proving that the state vector is observable (without any assumption on the target’s depth).
Then, we have recourse to perform Monte Carlo simulations to evaluate the performance
of the MLE.

8
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4.1. Observability Analysis

Theorem 2. Suppose the antenna’s trajectory is composed of two successive legs at constant velocity
(however with the same speed). Let the target be in CV motion. The linear array acquires the conical
angles of the wave emitted from the target, the path of the ray being known as well as the sea bottom
depth. If the target is broadside or endfire to the antenna during a leg, then there is at most a ghost
target. Otherwise, there is no ghost target.

Due to its length, the proof of this theorem is given in the Appendix A.

4.2. Estimation

In this subsection, we present the result of 500 Monte Carlo simulations that are run
to illustrate the behavior of the proposed estimators. First, we give the scenario used here.

The center of the array and the initial position of the source are, respectively, at(
0 0 200

)T and
(

5000 7000 100
)Tat the very beginning of the scenario. The speed

of the array is a constant along the scenario and is equal to 5 m/s. The trajectory of the
array is composed of two legs linked by an arc of a circle. The first leg lasts 1 min 40 s,
during which the array’s heading is 135◦. Then, the array turns to the right with a turn rate
equal to 20◦/min to adopt a new heading equal to 270◦. The duration of the maneuver is
hence equal to 6 min 44 s. The second leg lasts 5 min, so the total duration of the scenario
is 13 min and 20 s. Meanwhile, the target is navigating with a heading equal to 45◦ and a
speed of 4 m/s. The bottom depth is D = 4000 m.

The state vector we have to estimate is hence X =
(

5000 7000 100 2.83 2.83
)T .

The array is assumed to measure the cosines of the conical angles of the bottom-
reflected path given by

m(tk) =
yOT(tk)√

x2
OT(tk) + y2

OT(tk) + [2D − (zT + zO)]
2
+ εk

Measurements are acquired every Δt = 4 s, with tk = (k − 1)Δt.
The noise vector εk is assumed to be Gaussian, 0-mean and its standard deviation

equal to σ = 1.7 × 10−2. The vectors εk are also assumed to be temporally independent.
Again, we choose the least squares estimator.

4.2.1. Estimation of X

The 500 obtained estimates of the initial horizontal position are plotted in Figure 6,
together with the trajectory of the target, the 90%-confidence ellipse and the trajectory of
the array. Again, the view is from the sky.

Figure 6. The cloud of the 500 initial positions estimates and the 90%-confidence ellipse.

The performance of the estimator (bias and standard deviation of each component) is
presented in Table 3.
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Table 3. Performance of the estimator of the plain state vector.

X Bias σsamp σCRLB

5000 m −44.77 854.72 868.12
7000 m −68.16 1162.1 1173.60
100 m 7.14 558.55 545.99

2.83 m/s 0.092 1.67 1.65
2.83 m/s 0.194 2.72 2.68

A convenient way to evaluate the behavior of an estimator is to compute the so-called
normalized estimation error squared (NEES) [27], defined as Nl =

(
X̂l − X

)T F
(
X̂l − X

)
,

where F is the FIM, and X̂l is the estimate computed at the l-th simulation. If X̂l is Gaussian-
distributed with X as the mathematical expectation and the CRLB as the covariance matrix,
then Nl is chi-square distributed with d degrees of freedom (χ2

d), where d is the dimension
of X (here 5). From the central limit theorem, the averaged NEES NS � 1

NSim
∑NSim

l=1 Nl is
approximately Gaussian; its mathematical expectation is d, and its standard deviation is

equal to
√

2d
NSim

.
From our simulations, we obtain NS = 5.34.
In conclusion, the estimator can be declared efficient. However, the minimum standard

deviation of the target’s depth is not compatible with the physical constraints: with the
standard deviation given in Table 3, the target could be up above the sea surface! Therefore,
a palliative of this is to impose a depth on the target. Indeed, we saw in Section 3.1 that a
supposed depth creates a small bias in estimation of the horizontal position of the target.

4.2.2. Estimation of X Reduced When the Depth of the Target Is Fixed

Now, the third component of X does not have to be estimated. The new state vec-
tor is the denoted as Xr =

(
xT(0) yT(0)

.
xT

.
yT

)T . We impose that zAs = 200 m
(whereas the true depth is still 100 m). Hence, we introduce a bias.

Figure 7 displays the position’s estimates in the same manner as Figure 6. The bias is
not visible to the naked eye. However, Table 4 reveals this bias, which may be acceptable
in a real situation. Even though the averaged NEES (=7.31) is out of its 90% confidence
interval, its value remains acceptable.

Figure 7. The cloud of the 500 initial positions estimates with the reduced state vector and the
90%-confidence ellipse.
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Table 4. Performance of the estimator of the reduced state vector.

Xr Bias σsamp σCRLB

5000 m 65.40 655.61 606.41
7000 m 93.05 831.75 762.56

2.83 m/s 0.034 1.71 1.58
2.83 m/s 0.063 2.76 2.52

The main interest of assuming the depth to be known is to economize on the CPU
time, and reduce the standard deviation of the remaining components to estimate. We are
in the presence of the well-known bias–variance tradeoff.

4.2.3. Estimation of the Reduced State Vector by the Conventional BOTMA

In such a scenario, the conventional BOTMA can be run by neglecting the site effect, so
by imposing that cos(φ(t)) = 1, ∀t. The (incorrect) noise-free measurement model is then

cos(α(t)) = cos(θ(t)− h(t)).

The results are plotted in Figure 8. Obviously, a huge bias appears, leading to an
averaged NEES equal to 1960. More precisely, the bias on the components of the reduced
state vector is

(
−3062.8 −2319.9 14.4 15.8

)T , rendering the BOTMA inoperative.
Clearly, the conventional BOTMA cannot be recommended for the near field. This justifies
a posteriori the interest in taking the site effect and the nature of the wave ray into account,
as previously pointed out in the introduction of [23].

Figure 8. The cloud (in green) of the 500 initial positions estimates given by the classic BOTMA
together with the 90%-confidence ellipse.

5. TMA from the Direct Path and the Bottom-Reflected Path

We assume in this section that the sound wave emitted by the target travels on the
direct path and the bottom-reflected path.

5.1. Observability

Theorem 3. Let a linear antenna and a source both be in CV motion.
The antenna acquires the cosines of the conical angles of the direct path and of the bottom-

reflected path.

1. If the target is broadside to the array, then the set of ghost targets is uncountable: it is composed
of all the (virtual) targets at broadside to the array.

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources at
endfire to the antenna.

3. If the route of the antenna and the route of the target are parallel, then the set of ghost targets
is uncountable: at each depth zG, there are two ghost targets moving on a cylinder whose axis

11
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is the antenna axis, and the radius is a positive scalar β =
√

D−zG
D−zT

. The relative ghost target
velocity is equal to β times the target’s velocity. The initial distance between the ghost image
and the center of the antenna is equal to β times the initial distance between the ghost image
and the center of the antenna.

4. If the route of the antenna and the route of the target are not parallel, then there are three ghost
targets whose motion relative to the antenna is POG(t) = SPOT(t), POG(t) = βPOT(t), and
POG(t) = βSPOT(t), where S is the matrix of the axial symmetry around the line of the
antenna, and β � D−zO

D−zT
. If the depth of the antenna is equal to the depth of the source, then

there is one single ghost target given by POG(t) = SPOT(t).

Proof of Theorem 3. With no loss of generality, we will again assume that the axis of
the sensor array is pointed toward north and that the target is in the half-space where
the second component y of any vector is positive. A convenient rotation helps us in
this case. So the noise-free measurements at time t are m1(t) =

yOT(t)√
x2

OT(t)+y2
OT(t)+z2

OT
, and

m2(t) =
yOT(t)√

x2
OT(t)+y2

OT(t)+[2D−(zT+zO)]2
.

We have to seek a five-dimensional state vector XG =
(

xG(0) yG(0) zG
.
xG

.
yG

)T

defining the trajectory of a ghost target, i.e., producing the same noise-free measurement as X,
that is m1(t) =

yOG(t)√
x2

OG(t)+y2
OG(t)+z2

OG
, and m2(t) =

yOG(t)√
x2

OG(t)+y2
OG(t)+[2D−(zG+zO)]2

.

hence satisfying the two following equalities (in time):

yOT(t)√
x2

OT(t) + y2
OT(t) + z2

OT

=
yOG(t)√

x2
OG(t) + y2

OG(t) + z2
OG

(6)

yOT(t)√
x2

OT(t) + y2
OT(t) + [2D − (zT + zO)]

2
=

yOG(t)√
x2

OG(t) + y2
OG(t) + [2D − (zG + zO)]

2
(7)

under the constraint that zG is in [0, D].
Case 1: yOT(t) is a zero function, i.e., ∀t yOT(t) = 0.
The target is broadside to the antenna, so any ghost targets will be too (see Case 1 in

the proof of theorem 1).
Case 2: yOT(t) is not a zero function.
From Case 2 of the proof of theorem 1, there is a positive scalar β such that yOG(t) =

βyOT(t).

(6) ⇔
√

x2
OG(t) + y2

OG(t) + z2
OG = β

√
x2

OT(t) + y2
OT(t) + z2

OT
⇔

[
x2

OG(t) + y2
OG(t) + z2

OG
]
= β2[x2

OT(t) + y2
OT(t) + z2

OT
] (8)

(7) ⇔
[

x2
OG(t) + y2

OG(t) + [2D − (zG + zO)]
2
]
= β2

[
x2

OT(t) + y2
OT(t) + [2D − (zT + zO)]

2
]

(9)

Subtracting (9) from (8), we get z2
OG − [2D − (zG + zO)]

2 = β2
[
z2

OT − [2D − (zT + zO)]
2
]
.

Now, we simplify the expressions of these two terms:

z2
OG − [2D − (zG + zO)]

2 = −4(D − zG)(D − zO)

z2
OT − [2D − (zT + zO)]

2 = −4(D − zT)(D − zO)

We deduce from this that

β =

√
D − zG
D − zT

(10)
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Note that β = 1 iif zG = zT .

(8) ⇔ x2
OG(t) + y2

OG(t) + z2
OG = β2[x2

OT(t) + y2
OT(t) + z2

OT
]

⇔ x2
OG(t)− β2x2

OT(t) = β2z2
OT − z2

OG
(11)

Since x2
OG(t)− β2x2

OT(t) is a polynomial function of degree 2, (11) is equivalent to

x2
OG(0) = β2x2

OT(0) + β2z2
OT − z2

OG (12)

xOG(0)
.
xOG = β2xOT(0)

.
xOT (13)

.
x2

OG = β2 .
x2

OT (14)

First case
.
xOT = 0

Equation (14) implies that
.
xOG = 0.

Consequently, for any zG in [0, D], the vector XOG =(
±
√

β2x2
OT(0) + β2z2

OT − z2
OG βyOT(0) zOG 0 β

.
yOT

)T
(with β =

√
D−zG
D−zT

) defines
the trajectory of a ghost target.

Second case
.
xOT �= 0

Using (14), and squaring the terms of (13), we get x2
OG(0) = β2x2

OT(0).
Reporting this in (12), we obtain finally β2z2

OT = z2
OG, i.e.,

β2 =

(
zOG
zOT

)2
(15)

If zT = zO, then zG = zO. In this case, β = 1, and consequently yOG(t) = yOT(t) and
x2

OG(t) = x2
OT(t) from (11). The source’s trajectory is observable up to the axial symmetry

around the (Oy)-axis.

Equations (10) and (15) give us D−zG
D−zT

=
(

zOG
zOT

)2
.

The unknown zG is hence a root of the following equation of degree 2:

(zG − zO)
2 − (zT−zO)2

D−zT
(D − zG) = 0 which can be expanded as follows:

z2
G + zG

[
−2zO + (zT−zO)2

D−zT

]
− D(zT−zO)2

D−zT
+ z2

O = 0.

Of course, zT is a root of this equation. For this value, zG = zT , hence β = 1.

The second root (zG itself) is hence 2zO − zT − (zT−zO)2

D−zT
� zG. We can check readily

that zG − zO = zO − zT − (zT−zO)2

D−zT
= (zO−zT)(D−zT)−(zT−zO)2

D−zT
.

Hence, zG−zO
zT−zO

= zO−D
D−zT

(which is negative).
We deduce from this that:

1. when the target’s depth is larger than the array’s depth, there is a ghost whose depth
is smaller than the array’s depth, and vice versa.

2. β, which is a positive coefficient, is equal to D−zO
D−zT

, or 1.

Therefore, we have identified three ghost targets:
the first one is defined by XOG =

(
−xOT(0) yOT(0) zOT − .

xOT
.
yOT

)T ,

the second is defined by XOG =
(

βxOT(0) βyOT(0) −βzOT β
.
xOT

.
βyOT

)T
,

and the third by XOG =
(

−βxOT(0) βyOT(0) −βzOT −β
.
xOT

.
βyOT

)T
. �

Remark 2. Most of the time, the depth of a submarine vehicle is under the operational constraint:
values of zT are in [0, zMax] and zMax � D. For example, zMax = 400 m, while D = 4000 m.

The proof of the previous theorem must be adapted to this new constraint.

First, we use the fact that the function u → f (u) � 2zO − u − (u−zO)2

D−u is an involution, i.e.,
f ( f (u)) = u.
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Since f (0) = 2zO − z2
0

D , f
(

2zO − z2
0

D

)
= 0.

Now the question is: what are the values of zO for which the following inequality holds: 2zO −
z2

0
D ≤ zMax, the greatest value of zO guaranteeing that 2zO − z2

0
D−zT

≤ zMax is D − D
√

1 − zMax
D

(which is less than zMax).
If zO > D − D

√
1 − zMax

D , then zG > zMax. In this case, there is a unique ghost target given

by XG =
(
−xT(0) yT(0) zT − .

xT
.
yT

)T .

If zO ≤ D − D
√

1 − zMax
D , then zG ≤ zMax. In this case, there are three ghost targets:

one is defined by XG =
(
−xT(0) yT(0) zT − .

xT
.
yT

)T,

the second is defined by XG =
(

βxT(0) βyT(0) f (zT) β
.
xT β

.
yT

)T,

and the third by XG =
(
−βxT(0) βyT(0) f (zT) −β

.
xT β

.
yT

)T .
Note that the operational constraint allows us to benefit from the following range:
D−zMax

D ≤ β ≤ D
D−zMax

. For example, when zMax = D
10 , 0.9 ≤ β ≤ 1.11. Consequently, the

ghost target is very close to the target of interest.

5.2. Estimation of the Trajectory

This section is devoted to the estimation of the target’s trajectory, or in other words,
the estimation of X with t∗ = 0 (the first time). Before going into detail, we compute
the so-called Cramér–Rao lower bound to evaluate the asymptotical performance of any
unbiased estimator.

We have considered two typical scenarios. In both, the array is assumed motionless (or,
more realistically, all the mobiles are referenced to it) at the depth zO = 200 m, and the state vec-
tor defining the target’s trajectory is given by the state vector
X =

(
5000 7000 100 2.83 2.83

)T. The standard deviation of the measurement
is σ = 1.7 × 10−2. The total duration of the scenario is 5 min, and the sampling time is Δt = 4
s; consequently, the number of measurement couples is N = 75.

In the first scenario, the bottom depth is D = 2000 m, while in the second, D = 4000 m.
Note that in the first scenario, β = 0.89, and in the second one, β = 0.97. The ghost

target is hence very close to the target of interest.

5.2.1. Estimability

As pointed out in Section 1, the state vector X is “estimable” if its asymptotical
performance given by the CRLB is compatible with the physical constraints. Typically, if
the minimum standard deviation defined by the square root of the third diagonal element
of the CRLB (hence of the depth) is much larger than the depth, then X is declared non-
estimable.

1. First scenario

For this scenario, the square root of the diagonal of the CRLB σCRLB

=
(

1.16 × 106 1.59 × 106 8.22 × 105 637.9 646.1
)T .

2. Second scenario

With the bottom depth, things are not much better, since σCRLB

=
(

6.59 × 105 8.96 × 105 9.73 × 105 352.6 362.2
)T .

In both cases, the minimum standard deviations are huge. We can conclude that the
state vector is not estimable. Computations of minimum standard deviations were made
for various scenarios; in all, the state vector is not estimable.

A palliative of this is to fix the depth of the source at an arbitrary and realistic value, say
zAs, and compute the CRLB of the reduced state vector Xr �

(
xT(0) yT(0)

.
xT

.
yT

)T

14
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when we assume that zT = zAs. For example, for zAs = 300 m, the minimum standard
deviations are

σCRLB =
(

281.17 319.37 1.78 2.02
)T for the first scenario, and

σCRLB =
(

130.1 115.3 0.80 0.71
)T for the sec ond one.

Therefore, we propose to estimate the state vector with this hypothesis (zAs = 300 m).
In so doing, we introduce a bias. The next subsection gives us the result of the 500 Monte
Carlo simulations.

5.2.2. Monte Carlo simulations

The computation of the maximum likelihood estimator (MLE) is made with the Gauss-
Newton routine. No numerical issue was encountered.

1. First scenario

The performance of the MLE is summarized in Table 5. We have numerically computed
the bias and the empirical standard deviation (given, respectively in the second and third
column of the table). We can see that the empirical standard deviation is very close to that
given by the CRLB. However, as expected, the MLE is biased (of course, there is no bias if
we choose zAs = zT). In Figure 9, the 90% confidence ellipse is drawn, together with the
cloud of the 500 estimates (in pink).

Table 5. Performance of the estimator of the reduced state vector.

Xr Bias σsamp σCRLB

5000 m 401.12 281.85 281.17
7000 m 557.24 330.87 319.37

2.83 m/s 0.13 1.58 1.78
2.83 m/s 0.12 1.81 2.02

Figure 9. The location of the sensor array (in black), the cloud of the 500 estimates and the 90%-
confidence ellipse when D = 2000 m, zAs = 300 m, and zT = 100 m. The symmetrical cloud is
plotted too.

2. Second scenario: Bottom depth D = 4000 m.

Again, the performance is presented in Table 6. The bias of the estimator is similar
to the one obtained for the first scenario. Only the empirical standard deviations of(

xT(0) yT(0)
)T are larger than that computed from the CRLB. However, Figure 10

shows us that the cloud of estimates is close to the true value and not spread.
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Table 6. Performance of the estimator.

Xr Bias σsamp σCRLB

5000 m 306.81 219.28 130.08
7000 m 432.46 276.61 115.26

2.83 m/s 0.18 0.74 0.80
2.83 m/s 0.18 0.66 0.71

Figure 10. The location of the sensor array (in black), the cloud of the 500 estimates of the initial
positions, and the 90%-confidence ellipse when D = 4000 m, zAs = 300 m, and zAs = 100 m,
together with the symmetrical cloud.

What is remarkable is the short duration and still the very good performance (in terms
of accuracy) of the result. Numerous simulations (not reported here) were performed;
all confirm the correct performance of the MLE. The shortness of the scenario is crucial,
because everything that we propose here works properly under the condition that the sea
bottom is a plane. During a short scenario, this assumption is likely.

6. Conclusions

In this paper, conical-angle TMA has been addressed, and various multipaths of sound
have been taken into account. The sensor is a line array. Observability was analyzed deeply,
allowing all the existing ghost targets to be identified. The main results are that, if the array
detects one ray (corresponding to one path), the trajectory is not observable: the set of
ghost targets is composed of trajectories that are homothetic to the trajectory of the target
of interest, and their symmetrical images by the axial symmetry around the line array. If
the array detects two rays (corresponding to two different paths), the number of ghost
targets is reduced to three (except when the target is endfire or broadside to the antenna).
When the antenna maneuvers, the target’s trajectory is observable (apart from the special
scenario where there is one single ghost target). Even for “observable” scenarios, the depth
of the target is not estimable (its asymptotical standard deviation is huge). In these cases,
we give a non-restrictive palliative that allows us to provide estimates close to the truth.

In the future, in this context, many problems remain to be faced: identification of
the paths, maneuvering targets, and fusion of data collected by other sensors, as in [28].
The problem of seeking a “good” maneuver of the observer, as it was solved in a 2D
environment [29–31], will be addressed in the future. Some of these problems are already
under investigation.
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Appendix A

Proof of Theorem 2. The proof is made when the first leg is towards North (as previously).

Hence, V1 =

[
0
v

]
, V2 =

[
v sin(α)
v cos(α)

]
, S1 =

[ −1 0
0 1

]
,

and S2 =

[ − cos(2α) sin(2α)
sin(2α) cos(2α)

]
.

Moreover, we assume α �= kπ.
From Theorem 1, we have to consider the four following cases for each leg:

• the target is broadside to the antenna,
• the target is endfire to the antenna,
• the target has the same heading as the array (but is not endfire to it),
• the other cases.

Note that if the target is in case (1) during the first leg, then in case (2) during the
second one (provided that this situation is possible), the conclusion about observability
will be the same as if the target is in case (2) during the first leg, then in case (1) during the
second leg. To be convinced of this, we just have to reverse the time in the equation. This
remark allows us to shorten the proof.

Case 1: the target is broadside to the antenna during the first leg.

Hence, PT(0) =

[
xT(0)

0

]
, and VOT =

[
cT
0

]
during the first leg, which implies

POT(t) =

[
xT(0) + tcT

0

]
for t ≤ τ. The ghost targets are also in the broadside, hence

POG(t) =
[

xG(0) + tcG
0

]
and VOG =

[
cG
0

]
for t ≤ τ.

Can the target be endfire to the antenna? If so, the target has the same heading as the
antenna during the second leg or, in other words, VT − V2 = λV2, and POT(t), which is
equal to POT(t) = POT(τ) + (t − τ)(VT − V2), is collinear with V2, whenever t ≥ τ. The

first condition cannot be satisfied since VT =

[
cT
v

]
, and V2 =

[ ±v
0

]
. There is no ghost.

We skip the case where the target is in case (3) during the second leg. This will be
treated later. Therefore, we now have to consider the other cases during the second leg.
There are two possibilities for the ghost targets: those whose trajectories are defined by (i)
POG(t) = βPOT(t), and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both
for t ≥ τ.

The derivative of (i) is VG − V2 = βVT − βV2, hence VG = βVT + (1 − β)V2.

⇔
[

cG
v

]
= β

[
cT
v

]
+ (1 − β)v

[
sin(α)
cos(α)

]
,

which implies that (1 − β) cos(α) = 1 − β. Since cos(α) �= 1, β = 1. There is no ghost
given by (i).

The derivative of (ii) is VG − V2 = βS2VT − βV2, hence VG = βS2VT + (1 − β)V2.

⇔
[

cG
v

]
= β

[ −cT cos(2α) + v sin(2α)
cT sin(2α) + v cos(2α)

]
+ (1 − β)v

[
sin(α)
cos(α)

]
.

We deduce that β = v 1−cos(α)
cT sin(2α)+v cos(2α)−v cos(α) .

One ghost exists if cT sin(2α) + v cos(2α)− v cos(α) is a positive quantity. If so, we
then compute cG. There is one ghost at most.

Case 2: the target is endfire to the antenna during the first leg.
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Hence, PT(0) =

[
0

yT(0)

]
, and VOT =

[
0
cT

]
, which implies that

POT(t) =

[
0

yT(0) + tcT

]
for t ≤ τ. During this first leg, the ghost targets are also

endfire to the antenna, so POG(t) =
[

0
yG(0) + tcG

]
for t ≤ τ, and VG − V1 =

[
0

cG

]
.

Again, we skip the case where the target is in case (3) during the second leg. This will
be treated later. So, we now have to consider the other cases during the second leg.
There are two possibilities for the ghost targets: those whose trajectories are defined by (i)
POG(t) = βPOT(t) and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both
for t ≥ τ.

The derivative of (i) is VG − V2 = βVT − βV2, hence VG = βVT + (1 − β)V2.

⇔
[

0
cG + v

]
= β

[
0

cT + v

]
+ (1 − β)v

[
sin(α)
cos(α)

]
.

We deduce that β = 1. There is no ghost.
Now, differentiating (ii) gives us VG − V2 = βS2VT − βV2, hence VG = βS2VT +

(1 − β)V2.

⇔
[

0
cG + v

]
= β(cT + v)

[
sin(2α)
cos(2α)

]
+ (1 − β)v

[
sin(α)
cos(α)

]
.

⇒ β(cT + v) sin(2α) + (1 − β)v sin(α) = 0 .
We deduce that β = −v sin(α)

cT sin(2α)+v sin(2α)−v sin(α) . One ghost exists if cT sin(2α) +

v sin(2α)− v sin(α) is a negative quantity. If so, we then compute cG. There is one ghost at
most.

Case 3: the target has the same heading as the array (but is not endfire to it)

As in case (2), VOT =

[
0
cT

]
, but here, the first component of POT(t) is not zero.

Hence, VT =

[
0

cT + v

]
, and the target cannot be endfire to the antenna during the second

leg. In this case, VOG =

[
0

βcT

]
, hence VG =

[
0

βcT + v

]
.

Can the target be broadside to the antenna? The answer is positive if V2⊥VT and VOT

is collinear to POT(t), when t ≥ τ. The first condition implies that V2 =

[ ±v
0

]
. Since

POT(t) = POT(τ) + (t − τ)(VT − V2), the second condition is satisfied if POT(τ) is collinear
to VT − V2. This is not the case when the first component of POT(τ) is zero, while the first
component of VT − V2 is ±v.

So, we now have to consider the other cases during the second leg. There are two
possibilities for the ghost targets: those whose trajectories are defined by (i) POG(t) =
βPOT(t) and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both for t ≥ τ.

The derivative of (i) is VG − V2 = βVT − βV2, hence VG = βVT + (1 − β)V2 or, in other
words,[

0
βcT + v

]
=

[
0

β(cT + v)

]
+ (1 − β)v

[
sin(α)
cos(α)

]
. We conclude that β = 1, i.e.,

there is no ghost.
If POG(t) = βS2POT(t), then VG = βS2VT + (1 − β)V2[

0
βcT + v

]
= β(cT + v)

[
sin(2α)
cos(2α)

]
+ (1 − β)v

[
sin(α)
cos(α)

]
.

This implies that α = 0, which must be rejected by assumption. There is no ghost.
The other cases:
In the other cases, the motion of ghost targets is defined during the first leg by
when t ≤ τ,

POG(t) = β1POT(t) (A1)

or POG(t) = γ1S1POT(t) (A2)
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and during the second leg by
when t ≥ τ,

POG(t) = β2POT(t) (A3)

or POG(t) = γ2S2POT(t) (A4)

Hence, at time τ, the position of a ghost target is

POG(τ) = β1POT(τ) (A5)

or POG(τ) = γ1S1POT(τ) (A6)

and POG(τ) = β2POT(τ) (A7)

or POG(τ) = γ2S2POT(τ) (A8)

Of course, (A5) and (A6) are not compatible, and neither are (A7) and (A8).
Now, let us show that (A5) is not compatible with (A8):
Indeed, if POG(τ) = β1POT(τ) = γ2S2POT(τ), then

β1

γ2
POT(τ) = S2POT(τ) (A9)

Equation (A9) implies that POT(τ) is an eigenvector of S2, with the eigenvalue β1
γ2

. Since β1
γ2

is positive, this eigenvalue is equal to 1, i.e., γ2 = β1. Hence, POT(τ) is in the second leg.
Hence, the set of ghost targets is reduced to those whose positions at time τ are given

by (A5) or (A6), and (A7). Now suppose that a ghost target satisfies (A6) and (A7). By the
same computation, we conclude that POT(τ) is in the first leg, which is impossible since
POT(τ) is in the second leg.

We have proven that (A5) and (A7) only are compatible. It follows that a ghost target
verifies these two equalities (given by (A1) and (A3)):

POG(τ) = β1POT(τ) = β2POT(τ).
Hence, β1 = β2.
Now taking the derivative of the two members of (A1) and of (A3), we obtain
VG = β1(VT − V1) + V1 = β1(VT − V2) + V2, which is equivalent to
(β1 − 1)(V2 − V1) = 0.
Since V2 �= V1, β1 = 1.
Putting this value into (A1) or (A3), we finally get PG(t) = PT(t). The “ghost” is the

target of interest. In conclusion, there is no ghost target. �
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Abstract: In bearings-only tracking systems, the pseudolinear Kalman filter (PLKF) has advantages
in stability and computational complexity, but suffers from correlation problems. Existing solutions
require bias compensation to reduce the correlation between the pseudomeasurement matrix and
pseudolinear noise, but incomplete compensation may cause a loss of estimation accuracy. In this pa-
per, a new pseudolinear filter is proposed under the minimum mean square error (MMSE) framework
without requirement of bias compensation. The pseudolinear state-space model of bearings-only
tracking is first developed. The correlation between the pseudomeasurement matrix and pseudolin-
ear noise is thoroughly analyzed. By splitting the bearing noise term from the pseudomeasurement
matrix and performing some algebraic manipulations, their cross-covariance can be calculated and
incorporated into the filtering process to account for their effects on estimation. The target state
estimation and its associated covariance can then be updated according to the MMSE update equation.
The new pseudolinear filter has a stable performance and low computational complexity and handles
the correlation problem implicitly under a unified MMSE framework, thus avoiding the severe bias
problem of the PLKF. The posterior Cramer–Rao Lower Bound (PCRLB) for target state estimation is
presented. Simulations are conducted to demonstrate the effectiveness of the proposed method.

Keywords: bearings-only tracking; pseudolinear estimation; correlation analysis; MMSE framework

1. Introduction

Target tracking has been researched for decades with a wide range of applications
in civilian and military areas. It refers to estimate a moving target’s state using the noise-
corrupted measurements collected by one or more sensors at fixed locations or on moving
platforms [1–5]. The typical measurements include target range, Doppler velocity and
bearing angles, while in passive bearings-only tracking (BOT) systems [6–11], the sensors
listen for signals emitted by a target and only acquire the bearing data.

Bearings-only tracking has been under intensive investigation in recent decades,
and the main challenge is the intrinsic nonlinearities in measurement equations. Early
research used the extended Kalman filter (EKF) to estimate target state in Cartesian co-
ordinates, but this filter shows poor performance due to premature collapse of the error
covariance matrix [12]. Later on, a modified polar coordinate EKF (MPEKF) was devel-
oped in [13] to improve the stability. However, both the EKF and MPEKF require good
initialization to avoid divergence. The unscented Kalman filter [14] (UKF) and particle
filter [15–17] (PF) are also applied for bearings-only tracking. The UKF has better estimation
performance than the EKF, but still faces the divergence problems. The PF can exhibit a
good performance but at the price of heavy computation load.

Another basic and famous recursive Bayesian estimator is the pseudolinear Kalman
filter [18] (PLKF). The PLKF solves the bearings-only tracking problem by converting
the nonlinear measurement equation to the pseudolinear equation and then applying the
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Kalman filter (KF) to produce target state estimates. The PLKF is superior in computational
complexity and robust to initialization errors compared to the above nonlinear filtering
methods [19,20]. However, the pseudomeasurement matrix is a function of the noisy
bearing measurements and correlated with the pseudolinear noise. This makes the PLKF
exhibit a bias which can be severe in unfavorable geometries and degrades the tracking
performance [21].

Several methods have been presented to improve the performance of the PLKF by
compensating or reducing the pseudolinear estimation bias. In [22], a modified pseudo-
linear estimator (MPLE) is developed to reduce the bias by defining the target motion
parameters in a new coordinate system related to modified polar coordinates. In [23],
a bias-compensated PLKF (BC-PLKF) method is developed to compensate for the bias of
the PLKF. The estimate of the cross-term that contains the pseudomeasurement matrix and
pseudolinear noise is calculated and then subtracted from the PLKF estimate to generate the
final state estimate. The unbiasedness of methods in [22,23] can only be guaranteed under
the assumption of small measurement noise, and their performances will be adversely
affected at large measurement noise.

The well-known instrumental variable [24] (IV) estimation is also applied for reducing
the bias of the PLKF. The essential step of the IV approach is the formulation of the so-
called IV matrix, which is statistically independent of the pseudolinear noise and is strongly
correlated with pseudomeasurement matrix. Several IV-based estimators are developed
in [25–27], but they do not have closed-form solutions and require good initialization to
guarantee convergence. The methods in [28,29] utilize the bias compensated estimator
to construct an IV matrix, and then implement the IV estimation procedure to obtain
asymptotically unbiased estimates. However, the correlation between the IV matrix and
the pseudomeasurement matrix can be weaken in the presence of large measurement noise
and in unfavorable geometries, which can lead to the estimation performance degradation.
To maintain a strong correlation between the IV matrix and pseudomeasurement matrix,
an IV Kalman filter (IVKF) based on selective-angle-measurement [30] (SAM) strategy is
presented in [23], resulting in the SAM-IVKF method. According to the SAM threshold,
the IVKF is implemented in the case of small measurement noise, and the BC-PLKF is
selected in the large measurement noise. Benefit from the SAM strategy, the SAM-IVKF
has a better tracking performance than the BC-PLKF and the IVKF methods, and is robust
to the measurement noise and initialisation errors. However, the SAM-IVKF method is a
hybrid method, and its theoretical framework is not unified. In addition, the SAM-IVKF
method utilizes a empirical scheme to select the SAM threshold, and the threshold values
will have a great influence on the tracking performance [31].

The above methods rely on bias compensation to reduce the correlation between the
pseudomeasurement matrix and pseudolinear noise, which can improve the performance
of the PLKF. As variants of the PLKF, they all show a stable performance and low compu-
tational complexity. However, the bias compensation is not always perfect, especially in
case of large measurement noise and unfavorable geometries, which will lead to loss of
estimation accuracy and consistency.

In this paper, we propose a new pseudolinear filter under the MMSE framework
without requirement of bias compensation. Inspired by the methods in [32,33], we make
a thorough analysis about the correlations between the pseudomeasurement matrix and
pseudolinear noise, and evaluate their impacts on the estimation results. First, the pseu-
dolinear state-space model of bearings-only tracking problems is formulated. Under the
MMSE framework, we provide the expression of each step in the filtering process according
to its definition. It is found out that in the step of measurement prediction covariance
calculation, the correlation between pseudomeasurement matrix and pseudolinear noise
will cause the cross-items that contain the two components to be nonzero matrices, which
is different from the traditional linear state-space model. Similar situations can be found in
the step of calculating the covariance between the state and measurement. Accordingly,
we thoroughly analyze the correlation between the pseudomeasurement matrix and pseu-
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dolinear noise, and incorporate their cross-covariance into the corresponding processing
steps of the filtering process to account for their effects on the estimation results, resulting
in the new pseudolinear filter. The proposed method inherits the merits of the PLKF
and implicitly handles the correlation under the MMSE framework, which guarantees its
low computational complexity and the stable estimation accuracy. The superiority of the
proposed method is illustrated by numerical simulations.

The rest of this paper is organized as follows. In Section 2, the bearings-only tracking
problem is formulated. In Section 3, the pseudolinear state-space model is constructed
and the new pseudolinear filter is presented in detail. The posterior Cramer–Rao lower
bound [34,35] (PCRLB) of the state estimation is derived in Section 4. Section 5 presents
the simulation results, followed by conclusions in Section 6.

2. Problem Formulation

The problem of bearings-only target tracking by a single moving sensor in the two-
dimensional (2D) plane is shown in Figure 1.

Figure 1. 2D bearings-only target tracking geometry.

As shown in Figure 1, pk = [px,k, py,k]
T and vk = [vx,k, vy,k]

T are the position and
velocity of the target at time instant k, respectively, which constitute the unknown target
state vector xk = [px,k, py,k, vx,k, vy,k]

T . rk = [rx,k, ry,k]
T is the position of the sensor and

assumed to be precisely known at each time instant, and dk is the distance vector pointing
from the sensor to the target. We assume that the target follows the nearly constant velocity
(NCV) motion [1] in the whole paper. The target state equation is given by

xk = Fxk−1 + wk−1 (1)

where F is the target state transition matrix, and wk−1 is the zero-mean Gaussian white
process noise with known covariance Qk−1. The matrices F and Qk−1 are given by

F =

⎡⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ (2)

Qk−1 =

⎡⎢⎢⎢⎣
T3

3 qx 0 T2

2 qx 0
0 T3

3 qy 0 T2

2 qy
T2

2 qx 0 Tqx 0
0 T2

2 qy 0 Tqy

⎤⎥⎥⎥⎦ (3)

where T is the sampling interval, and qx and qy are power spectral densities of the process
noise in the x-coordinate and y-coordinate, respectively.
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According to the geometric relationship in Figure 1, the true bearing angle at time
instant k is θk = tan−1(py,k − ry,k, px,k − rx,k), which is corrupted by the independent
Gaussian noise nk with zero mean and variance σ2

θ . The bearing measurement equation is
given by

θz
k = θk + nk = tan−1

(
py,k − ry,k, px,k − rx,k

)
+ nk (4)

where θz
k is the bearing measurement at time instant k. To ensure the target is observable,

the sensor needs to maneuver while collecting the bearing measurements [28].
Equations (1) and (4) formulate the state-space model for bearings-only target track-

ing, and the objective is to estimate the target state using the noise-corrupted bearing
measurement at each time instant. Due to the nonlinearity of the bearing measurement
equation, the KF cannot be used to obtain the target state estimation. The nonlinear filtering
methods such as the EKF and UKF are intuitive solutions for bearings-only target tracking
but can lead to instability problems. The PLKF is an attractive alternative due to its stable
performance and low computational complexity. However, this method suffers from the
correlation problem and results in severe bias problem. Accordingly, it is necessary to find
an effective method to solve the PLKF correlation problem, which will be investigated in
the next section.

3. The New Pseudolinear Filter

In this section, we propose a new pseudolinear filter under the MMSE framework for
bearings-only target tracking, which is referred as the pseudolinear-MMSE (PL-MMSE).
The PL-MMSE does not require analysis of the PLKF bias caused by the correlation, and per-
forms the bias compensation procedure. Instead, the proposed method evaluates the
correlation between the pseudomeasurement matrix and pseudolinear noise, and their
cross-covariance is involved in the filtering process to account for their effects on the state
and covariance update. The pseudolinear state-space model is presented in the next section,
followed by the filtering process of the PL-MMSE.

3.1. The Pseudolinear State-Space Model

To be able to apply linear filtering method to the bearings-only tracking, the bear-
ing measurement equation must be linearized. According to the geometry in Figure 1,
the bearing measurement equation in (4) is rewritten as

sin(θz
k − nk)

cos(θz
k − nk)

Δ
=

sin θk
cos θk

Δ
=

py,k − ry,k

px,k − rx,k
(5)

where sin θk =
py,k − ry

‖dk‖
and cos θk =

px,k − rx

‖dk‖
. The symbol ‖ · ‖ denotes the Euclidean

norm, and the distance vector dk is a function of the target position and sensor position.
That is

dk = Cxk − rk, C =

[
1 0 0 0
0 1 0 0

]
. (6)

We expand (5) according to the triangle formula and have

rx,k sin θz
k cos nk − ry,k cos θz

k cos nk = px,k sin θz
k cos nk − py,k cos θz

k cos nk
−(px,k − rx,k) cos θz

k sin nk − (py,k − ry,k) sin θz
k sin nk

. (7)

Dividing both sides of (7) by cos nk, we have

rx,k sin θz
k − ry,k cos θz

k = px,k sin θz
k − py,k cos θz

k

−
[
(px,k − rx,k) cos θz

k + (py,k − ry,k) sin θz
k

] sin nk
cos nk

. (8)
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Substituting θz
k = θk + nk into the third item in the right side of (8), we have

1
cos nk

[
(px,k − rx,k) cos θz

k + (py,k − ry,k) sin θz
k

]
= (px,k − rx,k)(cos θk − sin θk tan nk) + (py,k − ry,k)(sin θk + cos θk tan nk)

= (px,k − rx,k)(
px,k − rx,k

‖dk‖
−

py,k − ry,k

‖dk‖
tan nk)

+(py,k − ry,k)(
py,k − ry,k

‖dk‖
+

px,k − rx,k

‖dk‖
tan nk)

=
(px,k − rx,k)

2 + (py,k − ry,k)
2

‖dk‖
= ‖dk‖

. (9)

After the manipulations in (5)−(9), the nonlinear bearing measurement equation in (4)
is converted into a pseudolinear function of the state vector xk

zk = Hkxk + ηk (10)

where the measurement zk, the pseudomeasurement matrix Hk, and the pseudolinear noise
ηk are, respectively, given by

zk = rx,k sin θz
k − ry,k cos θz

k . (11)

Hk = [sin θz
k , − cos θz

k , 0, 0]. (12)

ηk = −‖dk‖ sin nk. (13)

The bearing noise nk is assumed to be zero-mean Gaussian white variable. In this case,
one has [36]

E[cos nk] = e−
σ2

θ
2 . (14a)

E[sin nk] = 0. (14b)

E[cos2nk] =
1 + e−2σ2

θ

2
. (14c)

E[sin2nk] =
1 − e−2σ2

θ

2
. (14d)

E[cos nk sin nk] = 0. (14e)

Accordingly, the mean μk and the variance Rk of the pseudolinear noise ηk are

μk = E[ηk] = −‖dk‖E[sin nk] = 0. (15a)

Rk = E[η2
k ] = ‖dk‖2E[sin2nk] =

1 − e−2σ2
θ

2
‖dk‖2. (15b)

Using the pseudolinear measurement, Equation (10), the pseudolinear state-space
model for bearings-only target tracking can be described as

xk = Fxk−1 + wk−1. (16a)

zk = Hkxk + ηk. (16b)

The pseudomeasurement matrix Hk and the pseudolinear noise ηk in (16b) both are
functions of bearing noise nk, which causes Hk and ηk to be correlated. This leads to the
significant difference between the pseudolinear state-space model (16a)−(16b) and the
traditional linear state-space model. The PLKF ignores the correlation between Hk and
ηk, and directly applies the KF to estimate the target state according to the pseudolinear
state-space model. To solve this problem, we analyze the correlation between Hk and
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ηk, and incorporate their cross-covariance into the filtering process under the MMSE
framework to account for the effects on the estimation results.

3.2. Filtering Process

In this subsection, the filtering process of the PL-MMSE is presented under the MMSE
framework, including the prediction stage, covariance calculation stage and update stage.

3.2.1. Prediction Stage

According to Equation (16a), the one-step predicted state is

x̂k|k−1 = E[xk

∣∣∣Zk−1 ] = E[Fxk−1 + wk−1

∣∣∣Zk−1 ] = Fx̂k−1|k−1 (17)

where Zk−1 denotes the sequence of measurements available at time instant k − 1. Subtract-
ing the above from (16a) yields the state prediction error

x̃k|k−1 = xk − x̂k|k−1 = Fx̃k−1|k−1 + wk−1. (18)

The state prediction covariance is

Pk|k−1 = E
[
x̃k|k−1 · x̃T

k|k−1

∣∣∣Zk−1
]
= E

[
(Fx̃k−1|k−1 + wk−1)(Fx̃k−1|k−1 + wk−1)

T
∣∣∣Zk−1

]
= FPk−1|k−1 FT + Qk−1

(19)

where the cross-items contains x̃k−1|k−1 and wk−1 vanish since the process noise wk−1 is
independent zero-mean Gaussian white variable.

The predicted measurement ẑk|k−1 is obtained by taking the expected value of (16b)
conditioned on Zk−1. That is,

ẑk|k−1 = E
[
zk

∣∣∣Zk−1
]
= E

[
Hkxk + ηk

∣∣∣Zk−1
]

= Hk · E
[
xk

∣∣∣Zk−1
]
+ E

[
ηk

∣∣∣Zk−1
]
= Hk x̂k|k−1

(20)

where Hk is a deterministic vector according to (12), which can be pulled out from the
expectation operator. Subtracting the above from (16b) yields the measurement predic-
tion error

z̃k|k−1 = zk − ẑk|k−1 = Hkxk + ηk − Hk x̂k|k−1 = Hk x̃k|k−1 + ηk. (21)

3.2.2. Covariance Calculation Stage

In this part, we will present the steps to calculate the measurement prediction co-
variance Pzz, and the covariance Pxz between the state and measurement. As discussed in
Section 1, the correlation between Hk and ηk will cause the cross-terms in Pzz that contains
the two components to be nonzero matrices. Similar situations can be found in Pxz. Ac-
cordingly, we will first present the expression of Pxz and Pzz according to their definitions.
By splitting the bearing noise term from the pseudomeasurement matrix and performing
some algebraic manipulations, the estimates of the cross-terms that contains Hk and ηk can
be calculated.

The measurement prediction covariance is

Pzz = E[z̃k|k−1 z̃T
k|k−1 ] = E

[
(Hk x̃k|k−1 + ηk)(Hk x̃k|k−1 + ηk)

T
]

= E[Hk x̃k|k−1 x̃T
k|k−1 HT

k + Hk x̃k|k−1 ηT
k + ηk x̃T

k|k−1 HT
k + η2

k ]

= HkPk|k−1HT
k + E[Hk x̃k|k−1 ηT

k ] + E[ηk x̃T
k|k−1 HT

k ] + Rk

(22)
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where Hk and ηk both are functions of bearing noise nk and correlated with each other, caus-
ing the second and third items in (22) to be nonzero matrices, which should be calculated
as follows.

First, split nk out of Hk. That is,

Hk = [sin(θk + nk), − cos(θk + nk), 0, 0]
= [(sin θk cos nk + cos θk sin nk), (− cos θk cos nk + sin θk sin nk), 0, 0]
= cos nk[sin θk, − cos θk, 0, 0] + sin nk[cos θk, sin θk, 0, 0]

. (23)

For simplicity, we denote

H1,k = [ sin θk − cos θk 0 0 ]. (24a)

H2,k = [ cos θk sinθk 0 0 ]. (24b)

and (23) can be rewritten as

Hk = cos nkH1,k + sin nkH2,k. (25)

Second, we substitute sin θk =
py,k − ry

‖dk‖
and cos θk =

px,k − rx

‖dk‖
into (25). Since

the target position pk = [px,k, py,k]
T is unavailable in practice, the approximate forms

px,k = x̂k|k−1 (1) + x̃k|k−1 (1) and py,k = x̂k|k−1 (2) + x̃k|k−1 (2) are used as substitutes.
Therefore, the second cross-term of (22), i.e., E[Hk x̃k|k−1 ηT

k ], can be rewritten as

E
[
Hk x̃k|k−1 ηT

k

]
= E

[
(cos nkH1,k + sin nkH2,k)x̃k|k−1 (−‖dk‖ sin nk)

]
= E

[
−sin2nk‖dk‖H2,k x̃k|k−1

]
= E

[
−sin2nk

]
E
{
‖dk‖[cos θk, sin θk, 0, 0]x̃k|k−1

}
=

e−2σ2
θ − 1
2

×E

{
‖dk‖

[
x̂k|k−1 (1) + x̃k|k−1 (1)− rx,k

‖dk‖
,

x̂k|k−1 (2) + x̃k|k−1 (2)− ry,k

‖dk‖
, 0, 0

]
x̃k|k−1

}

=
e−2σ2

θ − 1
2

E
{[

x̂k|k−1 (1) + x̃k|k−1 (1)− rx,k, x̂k|k−1 (2) + x̃k|k−1 (2)− ry,k, 0, 0
]
x̃k|k−1

}
=

e−2σ2
θ − 1
2

[
Pk|k−1 (1, 1) + Pk|k−1 (2, 2)

]

(26)

where Pk|k−1 (j, j) represents the element located at the jth row and jth column of Pk|k−1 .
The third item E[ηk x̃T

k|k−1 HT
k ] of (22) is the transpose of E[Hk x̃k|k−1 ηT

k ] and given by

E
[
ηk x̃T

k|k−1 HT
k

]
=

e−2σ2
θ − 1
2

[
Pk|k−1 (1, 1) + Pk|k−1 (2, 2)

]
. (27)

The measurement noise variance Rk in (22) is
1 − e−2σ2

θ

2
‖dk‖2 according to (15b), where

the distance vector dk = Cxk − rk is unavailable due to the unknown state xk. To overcome
this, the predicted distance vector d̂k|k−1 = Cx̂k|k−1 − rk, approximated from dk, is used as
a substitute.

Substituting all the required matrices into (22), the measurement prediction covariance
can be rewritten as

Pzz = HkPk|k−1HT
k + (e−2σ2

θ − 1)
[
Pk|k−1(1, 1) + Pk|k−1(2, 2)

]
+

1 − e−2σ2
θ

2

∥∥∥d̂k|k−1

∥∥∥2
. (28)
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Similar to the derivation of Pzz, the covariance Pxz between the state and measurement
is given by

Pxz = E
[
x̃k|k−1 z̃T

k|k−1

]
= E

[
x̃k|k−1 (Hk x̃k|k−1 + ηk)

T
]

= E
[
x̃k|k−1 x̃T

k|k−1 (cos nkH1,k + sin nkH2,k)
T − sin nk‖dk‖x̃k|k−1

]
= E[cos nk]E

[
x̃k|k−1 x̃T

k|k−1 HT
1,k

]
= e−

σ2
θ
2 Pk|k−1 HT

1,k

(29)

where H1,k relies on the true bearing angle θk as shown in (24a), which is unavailable in
practice. To make the result useful, we replace the unknown true bearing angle θk with the
predicted angle θ̂k|k−1 computed from x̂k|k−1. That is,

θ̂k|k−1 = tan−1
(

x̂k|k−1 (2)− ry,k, x̂k|k−1 (1)− rx,k

)
. (30)

Ĥ1,k =
[
sin θ̂k|k−1 , − cos θ̂k|k−1 , 0, 0

]
. (31)

We can rewrite the covariance between the state and measurement as

Pxz = e−
σ2

θ
2 Pk|k−1 ĤT

1,k. (32)

3.2.3. Update Stage

Based on the above results, the state and covariance update equations at time instant
k under the MMSE framework can be given by

x̂k|k = x̂k|k−1 + PxzP−1
zz (zk − ẑk|k−1 ). (33)

Pk|k = Pk|k−1 − PxzP−1
zz PT

xz. (34)

The filtering process of the PL-MMSE is carried out in the pseudolinear state-space
model, thereby ensuring the low complexity and stable performance like the PLKF method.
Meanwhile, the PL-MMSE incorporates the cross-covariance between the pseudomeasure-
ment matrix and pseudolinear noise into its filtering process, so the correlation problem
can be handled implicitly under a unified MMSE estimation framework. This can avoid
the severe bias in estimation results of the PLKF. Additionally, the PL-MMSE does not
require bias compensation like the previous reduced-bias methods, thus avoiding the loss
of estimation accuracy caused by the possible incomplete compensation.

4. Lower Bound of Performance

Since the bearing measurement, Equation (4), is nonlinear, the optimal solution to
the bearings-only tracking problem cannot be derived analytically. A theoretical lower
bound of performance would be helpful to assess the level of approximation introduced
by the proposed method. The PCRLB on the variance of estimation error provides the
performance limit for any unbiased estimator of a fixed parameter, which is derived briefly
as follows.

The lower bound on the estimation error is determined by the Fisher information
matrix Jk, and the covariance of x̂k|k is bounded by

E{(x̂k|k − xk)(x̂k|k − xk)
T} ≥ J−1

k = PCRLBxk . (35)

The general frame work for derivation of PCRLB of an unbiased estimator for nonlin-
ear discrete-time system is described in [34], and the information matrix can be calculated
by recursion [34,37]

Jk = D22
k−1 − D21

k−1

[
Jk−1 + D11

k−1

]−1
D12

k−1 (36)
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where

D11
k−1 = FTQ−1

k−1F (37a)

D12
k−1 = −FTQ−1

k−1 =
[
D21

k−1

]T
(37b)

D22
k−1 = Q−1

k−1 + Exk

{[
∇xk θk

T
][

σ2
θ

]−1[
∇xk θk

T
]T
}

(37c)

where the expectation E{·} in (37c) is taken over xk, ∇xk is the gradient operator, and
[
∇xk θk

T
]T

is the Jacobian matrix of θk evaluated at the true target state xk. For simplicity, we denote

Vk =
[
∇xk θk

T
]T

, which is given by

Vk =

[
∂θk

∂px,k
,

∂θk
∂py,k

,
∂θk

∂vx,k
,

∂θk
∂vx,k

]
(38)

and the entries of Vk are

∂θk
∂px,k

= −
py,k − ry,k

‖pk − rk‖2 . (39a)

∂θk
∂py,k

=
px,k − rx,k

‖pk − rk‖2 . (39b)

∂θk
∂vx,k

=
∂θk

∂vy,k
= 0. (39c)

Using the matrix inversion lemma, we can show that (36) and (37a)−(37c) are equiva-
lent to the following recursion:

Jk =
[
Qk−1 + FJ−1

k−1FT
]−1

+
1
σ2

θ

Exk

{
VT

k Vk

}
. (40)

The PCRLBs of the target state components are calculated as the corresponding
diagonal elements of the inverse information matrix

PCRLBxk (j, j) =
[
Jk

−1
]

jj
(41)

where PCRLBxk (j, j) denotes the PCRLB of the jth component of the state xk, and [·]jj
represents the element located at the jth row and jth column of a matrix.

The recursion in (40) can be implemented based on Monte Carlo simulation averaging
over multiple realizations of the target trajectory. Given the initial information matrix,
we can calculate the PCRLB through the recursion in (40). In practice, the recursion can
be initialized with the inverse of the initial covariance matrix of the filtering method as
Jk = P1|1

−1, which will be presented in Section 5.2.

5. Simulation Results

Simulations and performance comparisons are presented in this section to evaluate
the effectiveness of the proposed method. The proposed PL-MMSE method is compared
with the existing PLKF [18], BC-PLKF [23] and SAM-IVKF [23] methods. In the simulations,
M = 10,000 Monte Carlo runs are carried out on the given experiment, and the number of
the sampling time instants is set as N = 150 in each run.
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5.1. Performance Metrics

Several performance metrics are introduced in this subsection to evaluate the perfor-
mance of these methods, including the root mean square errors (RMSEs), the bias norms
(BNorms) and the normalized estimation error squared [1] (NEES). The PCRLB is also used
as the performance benchmark to quantify the best achievable accuracy.

The position and velocity RMSEs are, respectively, defined by

RMSEp
k =

√√√√ 1
M

M

∑
i=1

∥∥∥p̂i
k|k − pi

k

∥∥∥2
(42a)

RMSEv
k =

√√√√ 1
M

M

∑
i=1

∥∥∥v̂i
k|k − vi

k

∥∥∥2
(42b)

where pi
k = Cxi

k and p̂i
k|k = Cx̂i

k|k are the true and estimated target positions at the ith

Monte Carlo run at time instant k, vi
k = Dxi

k and v̂i
k|k = Dx̂i

k|k are the true and estimated
target velocities, where

D =

[
0 0 1 0
0 0 0 1

]
. (43)

The position and velocity BNorms are, respectively, defined by

BNormp
k =

∥∥∥∥∥ 1
M

M

∑
i=1

(p̂i
k|k − pi

k)

∥∥∥∥∥. (44a)

BNormv
k =

∥∥∥∥∥ 1
M

M

∑
i=1

(v̂i
k|k − vi

k)

∥∥∥∥∥. (44b)

The position and velocity PCRLBs at time instant k are the square root of the sum of
the corresponding elements on the diagonal of PCRLBxk , which are, respectively, given by

PCRLBp
k =

√
PCRLBxk (1, 1) + PCRLBxk (2, 2) (45a)

PCRLBv
k =

√
PCRLBxk (3, 3) + PCRLBxk (4, 4) (45b)

where PCRLBxk (j, j) has been defined in (41).
To compare the average performance of these methods at different noise levels,

the time-averaged RMSEs, BNorms and PCRLBs are also utilized. The time-averaged
RMSEs, BNorms and PCRLBs are, respectively, defined by

RMSEp
avg =

√√√√ 1
MU

M

∑
i=1

N

∑
k=L

∥∥∥p̂i
k|k − pi

k

∥∥∥2
(46a)

BNormp
avg =

1
U

N

∑
k=L

(∥∥∥∥∥ 1
M

M

∑
i=1

(p̂i
k|k − pi

k)

∥∥∥∥∥
)

(46b)

RMSEv
avg =

√√√√ 1
MU

M

∑
i=1

N

∑
k=L

∥∥∥v̂i
k|k − vi

k

∥∥∥2
(46c)

BNormv
avg =

1
U

N

∑
k=L

(∥∥∥∥∥ 1
M

M

∑
i=1

(v̂i
k|k − vi

k)

∥∥∥∥∥
)

(46d)

PCRLBp
avg =

√
PCRLBavg(1, 1) + PCRLBavg(2, 2) (46e)
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PCRLBv
avg =

√
PCRLBavg(3, 3) + PCRLBavg(4, 4) (46f)

where

PCRLBavg =
1
U

N

∑
k=L

PCRLBxk . (47)

Here, U = N − L + 1, where L is an offset parameter to make the time-averaged per-
formance metrics unaffected by the initial estimation errors. We set L = 60 in the simulations.

5.2. Simulation Parameters

We consider a single target tracking problem with a single bearings-only sensor in the
2D plane. To perform an objective and fair performance comparison with the SAM-IVKF,
we use the same target-observer geometry as in [23]. Specifically, the trajectory of the sensor
is five constant-velocity legs with the end position of each leg set to [60, 0]T m, [0, 7.5]T m,
[60, 15]T m, [0, 22.5]T m, [60, 30]T m and [0, 77.5]T m. The sensor trajectory is depicted in
Figure 2 and its initial position is marked with Pentagram. The sensor collects bearing mea-
surements at regular time instants tk = kT, k ∈ {1, 2, . . . , 150} with the sampling interval
being T = 0.1 s. The measurement noise nk is assumed to be i.i.d. with known variance σ2

θ ,
whose value will be given next. The moving target takes a constant velocity [0, 12]T m/s
starting from the position [30, 42]T m. The power spectral densities of the process noise are
set to qx = qy = 0.2 m2/s3. In the simulations, track initialization is obtained as in [38] by
generating a target state estimate x̂1|1 from a Gaussian distribution around the true target
state x1 with the covariance given by P1|1 = ρ2diag(2.62, 2.62, 0.262, 0.262). The variable ρ
controls the level of track initialization error and is used to evaluate the performance of the
tracking algorithms with respect to initialization error levels.
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Figure 2. Sensor trajectory.

5.3. Tracking Performance

The tracking performance of the proposed PL-MMSE, the PLKF, the BC-PLKF and
the SAM-PLKF for different measurement noise levels is compared in this subsection.
In practice, the initialization error ρ is often proportional to the measurement noise σθ ,
and their values in each level are given in Table 1. According to [23], the performance of the
SAM-IVKF depends on the selection of the threshold κ. Therefore, the SAM-IVKF under
the thresholds κ = 4, 3 and 2 is compared with the proposed PL-MMSE method.
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Table 1. The bearing noise standard deviation and initialization error in each level.

Level 1 2 3 4 5 6 7 8 9 10

σθ (degree) 1 2 3 4 5 6 7 8 9 10

ρ 1 2 3 4 5 6 7 8 9 10

The time-averaged RMSEs and BNorms of the target position and velocity estimates
versus the bearing noise standard deviations are shown in Figures 3–5. The SAM-IVKF
under the thresholds κ = 4, 3 and 2 are plotted in this figures, respectively. Additionally,
the evolution of RMSEs and BNorms of the target position and velocity estimates for
σθ = 7◦ and κ = 4, 3 and 2 are presented in Figures 6–8, respectively. The PCRLB is used
to quantify the best achievable accuracy.

As shown in Figures 3–5, the PLKF suffers from severe bias problem and provides
unsatisfactory RMSEs and BNorms performances at both small and large bearing noise
levels. As the noise standard deviation σθ increases, the time-averaged RMSEs and BNorms
performances of the PLKF deteriorate rapidly. The previously developed BC-PLKF and
SAM-IVKF methods compensate for the bias and have a performance improvement com-
pared to the PLKF. The BC-PLKF shows a good performance at small noise levels, but the
bias cannot be completely compensated under large bearing noise (σθ ≥ 7◦), which leads to
a decrease in performance. Benefit from the SAM strategy, the time-averaged RMSEs and
BNorms of the SAM-IVKF are lower than those of the BC-PLKF under the best choice of the
threshold, i.e., κ = 4, as shown in Figure 3. However, the performance of the SAM-IVKF
may vary greatly as the SAM thresholds change, and its performance is even worse than
the BC-PLKF under the threshold κ = 2, as shown in Figure 5.
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Figure 3. Time-averaged RMSEs and BNorms versus bearing noises for the PLKF, the BC-PLKF and
the SAM-IVKF with κ = 4, as well as, the proposed PL-MMSE.
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Figure 4. Time-averaged RMSEs and BNorms versus bearing noises for the PLKF, the BC-PLKF and
the SAM-IVKF with κ = 3, as well as, the proposed PL-MMSE.
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Figure 5. Time-averaged RMSEs and BNorms versus bearing noises for the PLKF, the BC-PLKF and
the SAM-IVKF with κ = 2, as well as, the proposed PL-MMSE.
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Figure 6. RMSEs and BNorms versus time k for σθ = 7◦ for the PLKF, the BC-PLKF and the
SAM-IVKF with κ = 4, as well as, the proposed PL-MMSE.
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Figure 7. RMSEs and BNorms versus time k for σθ = 7◦ for the PLKF, the BC-PLKF and the
SAM-IVKF with κ = 3, as well as, the proposed PL-MMSE.
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Figure 8. RMSEs and BNorms versus time k for σθ = 7◦ for the PLKF, the BC-PLKF and the
SAM-IVKF with κ = 2, as well as, the proposed PL-MMSE.

The proposed PL-MMSE method also has a significant performance improvement
compared to the PLKF, and shows good stability at both small and large bearing noise levels.
The target state RMSEs of the PL-MMSE approach the PCRLB. Compared with the BC-
PLKF, the PL-MMSE has lower time-averaged RMSE and BNorm values, and still maintains
a good and stable performance at large bearing noise. Additionally, the PL-MMSE provides
the comparable RMSE and BNorm performance to the best choice SAM-IVKF (i.e., κ = 4)
as shown in Figure 3. As mentioned above, the SAM-IVKF relies on the selection of the
thresholds. When the SAM thresholds change (i.e., κ = 3, 2), there are visible degradations
in the performance of the SAM-IVKF, as shown in Figures 4 and 5, which is inferior to
the proposed PL-MMSE. The selection of the SAM threshold depends on experience and
there is no guarantee that the best threshold can be selected in practical applications. As a
contrast, the PL-MMSE is derived under the unified MMSE estimation framework and
does not depend on experience to choose any parameter, so it has stable performance.
The PL-MMSE handle the correlation problem implicitly under the MMSE framework and
does not require bias compensation as performed in BC-PLKF, so its estimation accuracy
still can be guaranteed at large bearing noise level. Figures 6–8 show the RMSEs and
BNorms of the target position and velocity estimates versus time instant k for σθ = 7◦ with
threshold κ = 4, 3 and 2, respectively. Similar results can be found in Figures 6–8 as in
Figures 3–5.

For the purposes of computational complexity comparison, the methods are executed
on the same platform and their averaged runtimes are presented in Table 2. For convenience,
the averaged runtimes of the BC-PLKF, the SAM-IVKF and the PL-MMSE are normalized
by that of the PLKF.

Table 2. Averaged runtimes.

Algorithm PLKF BC-PLKF SAM-IVKF PL-MMSE

Runtime 1 1.18 1.71 1.46
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In Table 2, it can be seen that the PLKF has the lowest computational complexity, but it
provides an unsatisfactory tracking performance in both small and large bearing noise
levels. The BC-PLKF and SAM-IVKF have 18% and 71% longer runtimes compared to the
PLKF due to the extra time to perform bias compensation steps. Similarly, the proposed
PL-MMSE requires 46% longer runtimes than the PLKF to handle the correlation problems.
Compared with the PLKF and the BC-PLKF, although sacrificing a bit of computational
complexity, the PL-MMSE significantly outperforms the two methods in terms of the
RMSE and BNorm performance. In addition, the SAM-IVKF requires larger computational
complexity than the proposed PL-MMSE, and can only provide performance comparable
to the PL-MMSE when selecting the best SAM threshold. Accordingly, the PL-MMSE is
superior to the SAM-IVKF in both computational complexity and estimation accuracy.

In the following, the consistency of the methods is examined based on the evaluation
of the NEES. The bearing noise standard deviation is σθ = 7◦, and the SAM threshold of the
SAM-IVKF is κ = 4. Here, we use the two-sided 95% probability region, where the upper
and lower bounds are 3.46 and 4.57, respectively. The NEES results of the four methods are
presented in Figure 9.
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Figure 9. Consistency test of the PLKF, BC-PLKF, SAM-IVKF and the proposed PL-MMSE.

The results in Figure 9 show the inconsistency of the PLKF since its NEES values are
outside the region of 95%. The NEES values of the BC-PLKF, SAM-IVKF and PL-MMSE all
fall within the 95% probability region, which indicates that the three methods are consistent.
Among these methods, the proposed PL-MMSE can provide the most stable and accurate
tracking performance.

6. Conclusions

In this paper, a new pseudolinear filtering method is proposed under the MMSE
framework to solve the bearings-only target tracking problem. The proposed PL-MMSE
does not require performing bias compensation to solve the correlation problem of PLKF.
Instead, the PL-MMSE analyzes the correlation between the pseudomeasurement matrix
and the pseudolinear noise, and their cross-covariance is incorporated into the filtering
process under the MMSE framework to account for their effects on estimation. Accordingly,
the correlation problem can be handled implicitly in the filtering process of the PL-MMSE.
Simulations show that the PL-MMSE meets the consistency requirement and can provide
stable and accurate tracking performance, which is superior to the PLKF and BC-PLKF at
both small and large bearing noise levels. Additionally, the PL-MMSE is comparable to
the best choice SAM-IVKF, and is better than the SAM-IVKF in terms of computational
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complexity. These results verify the effectiveness of the proposed PL-MMSE to solve the
bearings-only target tracking problem.
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Abbreviations

The following abbreviations are used in this manuscript:

PLKF Pseudolinear Kalman filter
MMSE Minimum mean square error
PCRLB Posterior Cramer–Rao Lower Bound
BOT Bearings-only tracking
EKF Extended Kalman filter
MPEKF Modified polar coordinate extended Kalman filter
UKF Unscented Kalman filter
PF Particle filter
KF Kalman filter
MPKF Modified pseudolinear estimator
BC-PLKF Bias-compensated pseudolinear Kalman filter
IV Instrumental variable
IVKF Instrumental variable Kalman filter
SAM Selective-angle-measurement
SAM-IVKF Selective-angle-measurement instrumental variable Kalman filter
2D Two-dimensional
NCV Nearly constant velocity
PL-MMSE Pseudolinear-MMSE
RMSEs Root mean square errors
BNorms Bias Norms
NEES Normalized estimation error squared
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Abstract: This paper investigates the hybrid source localization problem using differential received
signal strength (DRSS) and angle of arrival (AOA) measurements. The main advantage of hybrid
measurements is to improve the localization accuracy with respect to a single sensor modality. For
sufficiently short wavelengths, AOA sensors can be constructed with size, weight, power and cost
(SWAP-C) requirements in mind, making the proposed hybrid DRSS-AOA sensing feasible at a
low cost. Firstly the maximum likelihood estimation solution is derived, which is computationally
expensive and likely to become unstable for large noise levels. Then a novel closed-form pseudolinear
estimation method is developed by incorporating the AOA measurements into a linearized form
of DRSS equations. This method eliminates the nuisance parameter associated with linearized
DRSS equations, hence improving the estimation performance. The estimation bias arising from
the injection of measurement noise into the pseudolinear data matrix is examined. The method of
instrumental variables is employed to reduce this bias. As the performance of the resulting weighted
instrumental variable (WIV) estimator depends on the correlation between the IV matrix and data
matrix, a selected-hybrid-measurement WIV (SHM-WIV) estimator is proposed to maintain a strong
correlation. The superior bias and mean-squared error performance of the new SHM-WIV estimator
is illustrated with simulation examples.

Keywords: hybrid localization; differential received signal strength localization; bearings-only
localization; maximum likelihood; pseudolinear estimator; least squares; instrumental variables

1. Introduction

Source localization plays an important role in wireless sensor networks, providing
location information about sensor nodes and emitters from sensor measurements. Several
sensor modalities have been considered for source localization such as angle of arrival
(AOA), differential received signal strength (DRSS), time of arrival, time difference of
arrival, and frequency difference of arrival. This paper develops new closed-form source
localization methods using hybrid DRSS-AOA measurements, built on pseudolinear DRSS
and AOA equations combined in a unique way to eliminate the undesirable nuisance
parameter associated with pseudolinear DRSS equations.

Source localization and tracking using AOA measurements has been an active re-
search area for several decades. The nonlinear relationship between source location and
sensor measurements is the key challenge with AOA localization. This challenge is also
shared to varying degrees by other sensor modalities. The pioneering work of Stans-
field [1] established the basis for most AOA localization algorithms proposed to this day.
The Stansfield estimator is a weighted least-squares estimator which requires prior knowl-
edge of the source range from each AOA sensor. The maximum likelihood estimator
(MLE) for AOA localization [2,3] solves a nonlinear optimization problem representing
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the log-likelihood function by using iterative algorithms such as the Gauss–Newton and
Levenberg–Marquardt algorithms [4]. While the MLE enjoys asymptotic efficiency and
unbiasedness, it is computationally expensive as a result of iterative computations and can
suffer from divergence issues caused by poor initialization and threshold effect [5]. This
makes the MLE unsuitable for most practical implementations.

The pseudolinear estimator (PLE) was developed as a closed-from alternative to the
MLE, where the nonlinear estimation problem is converted into a linear problem, allowing
for a computationally simple least squares solution [6]. An estimator identical to the PLE
was also presented in [7]. Despite its simplicity, the PLE was discovered to produce biased
estimates [3,8]. This led to an intensive research effort to reduce or eliminate the PLE bias
(see, e.g., [9–18]). Among those, two ideas that have gained popularity are bias compensa-
tion and weighted instrumental variables (WIV) [13]. The bias compensation method is
based on estimation and subtraction of bias, whereas the method of weighted instrumental
variables reduces bias by introducing an instrumental variable matrix, which is statistically
independent of measurement noise, into the WLS solution. In [19], a closed-form AOA lo-
calization algorithm is presented with no prior knowledge of AOA measurement variances.
AOA-based self localization algorithms built on the PLE were developed in [20,21].

Received signal strength (RSS) localization offers a low-cost alternative to other lo-
calization systems as RSS measurements are readily available in most wireless systems.
As different from RSS localization, DRSS localization methods use the differences between
RSS measurements taken at pairs of sensor nodes, which eliminates the requirement for
prior knowledge of transmit power at the source. This makes DRSS better suited for
practical applications [22–24]. DRSS values, measured in dB, correspond to the ratio of
source-sensor ranges from two sensors. Therefore, the DRSS source localization problem
is reduced into a circular intersection problem where each circle represents a locus of
possible source locations with the same range ratio from a pair of sensors as given by the
corresponding DRSS measurement (the Apollonian circles theorem [25]). The research
on DRSS localization has also focused on solving nonlinear and nonconvex optimization
problems. Some of the existing solutions for DRSS localization include the MLE [22],
weighted least-squares (WLS) [24,26,27], the generalized trust region subproblem (GTRS)
estimator [24], semi-definite programming [24,28] and the PLE with bias reduction [29,30].
The derivation of DRSS equations and a summary of basic methods for DRSS localization
are provided in [31].

Hybrid localization algorithms combining AOA and RSS measurements have been
reported in the open literature. The work in [32–37] uses different linearization methods to
convert both RSS and AOA equations into a linear form with a common unknown vector.
The source location is easily obtained by using the WLS. However, the WLS estimates
obtained from linearized RSS measurements have a bias problem, which has not been
widely discussed in the current research. In contrast, for hybrid localization methods using
TDOA-AOA measurements, besides the MLE and the WLS solution [38,39], the PLE with a
bias reduction method has also been developed. For example, the work in [40] proposes
bias compensation and weighted instrumental variable methods to reduce the bias.

Hybrid DRSS-AOA localization has not attracted much research despite the great
potential it offers as a feasible and low-cost localization method compared with RSS-AOA
and TDOA-AOA methods. The work in [41] proposes a hybrid RSS-AOA localization
algorithm that treats the transmit power as unknown parameter, based on second-order
cone programming relaxation techniques. In this paper, we present new hybrid localization
algorithms using DRSS and AOA measurements based on the PLE and its instrumental
variable variants. In DRSS localization, the knowledge of source transmit power is not
required and therefore its estimation is not necessary. The conventional MLE is also
derived, which is capable of achieving the Cramer–Rao lower bound (CRLB) with low
bias, but has convergence problems and suffers from high computational complexity.
The PLE is developed by converting the nonlinear measurement equations into linear
form. The PLE is a closed-form estimator and has the advantage of low computational

42



Sensors 2021, 21, 7159

difficulty. In addition, the proposed PLE is free of nuisance parameter introduced into the
linearized DRSS equations, thereby avoiding complications with constrained parameters in
the solution vector. The PLE can be solved by using least squares (LS) and WLS. However,
both these solutions have a bias problem due to the injection of measurement noise into
the data matrix during the linearization process. The bias problem can be mitigated
by introducing an instrumental variable matrix which correlates strongly with the data
matrix and is independent of noise. However, when the measurement noise is high,
the correlation between the instrumental variable matrix and data matrix is weakened.
This can be remedied by adopting a selective measurement method when constructing the
instrumental variable matrix, resulting in the selective-hybrid-measurement WIV (SHM-
WIV) estimator. The SHM-WIV estimator is shown to outperform the MLE, LS, WLS
and WIV estimators by way of simulation examples. The multipath effects on AOA and
DRSS measurements are ignored even though shadowing effects are taken into account by
lognormal noise on DRSS measurements.

The paper is organized as follows. Section 2 defines the hybrid localization problem
addressed in this paper. The MLE and CRLB for the hybrid DRSS-AOA localization
problem are presented in Section 3. In Section 4, linearized AOA and DRSS measurement
equations are derived, and it is shown how the nuisance parameter present in the linearized
DRSS measurement equation can be eliminated by incorporating the AOA measurements.
The hybrid DRSS-AOA equation free of nuisance parameter is then solved using LS, WLS,
WIV and SHM-WIV in Section 5. Comparative simulation results are demonstrated and
discussed in Section 6. Concluding remarks are made in Section 7.

2. Problem Definition

We consider a 2D DRSS-AOA localization problem depicted in Figure 1, where the
objective is to estimate the unknown source location p = [x, y]T from DRSS and AOA
measurements collected by N sensors at fixed and known locations ri = [xi, yi]

T , i =
1, . . . , N. The distance between the source and a sensor is given by di = ‖di‖ where
di = p − ri and ‖ · ‖ denotes the Euclidean norm. Letting r1 be the reference sensor location
for DRSS measurements, we set r1 = 0 after appropriate geometric translation with no loss
of generality.

Figure 1. DRSS-AOA localization geometry.
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The noisy AOA measurements at sensor i are given by

θ̃i = θi + ni, i = 1, . . . , N, (1)

where ni ∼ N (0, σ2
θi
) is an independent additive noise with zero mean and variance σ2

θi
.

The true angle θi is
θi = tan−1(y − yi, x − xi), θi ∈ (−π, π] (2)

where tan−1 is the 4-quadrant inverse tangent. The covariance matrix of the AOA measure-
ments [θ̃1, . . . , θ̃N ] is a diagonal matrix:

WAOA = diag(σ2
θ1

, . . . , σ2
θN
). (3)

The power difference (DRSS) measurements with respect to the reference sensor at r1
follow the propagation path loss model [24,26,29,30,42]

p̃i,1 = pi,1 + εi,1, i = 2, . . . , N, (4)

where pi,1 = 10γ log10
d1
di

is the true power difference between sensor i and the refer-
ence sensor (in dBm or dBW), γ is the path loss exponent which is assumed known a
priori, and εi,1 ∼ N (0, σ2

p1
+ σ2

pi
) is the log-normal noise representing shadowing effects

with variance σ2
p1
+ σ2

pi
, which is the sum of RSS log-normal noise variances at r1 and ri.

The covariance matrix of the DRSS measurements [ p̃2,1, . . . , p̃N,1] is

WDRSS = σ2
p1

1N−1 + diag(σ2
p2

, . . . , σ2
pN
) (5)

where 1N−1 is an (N − 1)× (N − 1) matrix of ones.
The (2N − 1)× 1 hybrid measurement vector combining the AOA and DRRS mea-

surements is

ψ̃ = ψ + β, (6)

where
ψ̃ = [θ̃1, . . . , θ̃N , p̃2,1, . . . , p̃N,1]

T , (7a)

ψ = [θ1, . . . , , θN , p2,1, . . . , pN,1]
T , (7b)

β = [n1, . . . , nN , ε2,1, . . . , εN,1]
T . (7c)

The covariance matrix of β is a (2N − 1)× (2N − 1) block-diagonal matrix

W = E{ββT} =

[
WAOA 0

0 WDRSS

]
. (8)

Observe that the AOA and DRSS measurement errors are not correlated. This is
because the AOA measurement errors arise from thermal noise and possibly some interfer-
ence at sensors while the log-normal noise in DRSS measurements is caused by shadowing.
The two noise sources are physically independent phenomena.

3. Maximum Likelihood Estimator

The likelihood function for the hybrid measurements is a multivariate Gaussian
pdf [43], which is given by

p(ψ̃|p̂) = 1
(2π)(2N−1)/2|W|1/2

× exp
{
− 1

2
(ψ̃ − ψ(p̂))TW−1(ψ̃ − ψ(p̂))

}
,

(9)
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where | · | denotes matrix determinant or scalar absolute value, and

ψ(p̂) = [θ1(p̂), . . . , , θN(p̂), p2,1(p̂), . . . , pN,1(p̂)]T (10)

is the (2N − 1)× 1 vector of DRSS-AOA estimates constructed by substituting the estimated
source location p̂ = [x̂, ŷ]T for the true source location p:

θi(p̂) = tan−1(ŷ − yi, x̂ − xi), θi(p̂) ∈ (−π, π], i = 1, . . . , N, (11a)

pi,1(p̂) = −10γ log10
‖p̂ − ri‖
‖p̂‖ , i = 2, . . . , N. (11b)

The maximum likelihood estimate (MLE) of the source location is obtained by maxi-
mizing the log-likelihood function ln p(ψ̃|p̂) over p̂, which is equivalent to

p̂ML = arg min
p∈R2

hT(p)W−1h(p), (12)

where
h(p) = ψ̃ − ψ(p). (13)

The nonlinear minimization problem in (12) can be solved numerically by an iterative
search algorithm such as the steepest-descent, Levenberg–Marquardt, trust region and
Gauss–Newton method [44]. In this paper, the Gauss–Newton method is adopted, which
calculates the MLE using the following iterations:

p̂(j + 1) = p̂(j) + (JT(j)W−1J(j))−1JT(j)W−1h(p̂(j)), j = 0, 1, . . . (14)

Here J(j) is the (2N − 1)× 2 Jacobian matrix of ψ(p̂) evaluated at p = p̂(j):

J(j) = [JT
θ1
(j), . . . , JT

θN
(j), JT

p2,1
(j), . . . , JT

pN,1
(j)]T , (15)

where

Jθk (j) =
[− sin θi(p̂(j)), cos θi(p̂(j))]

‖p̂(j)− ri‖
, i = 1, . . . , N (16a)

Jpi,1(j) =
10γ

ln(10)

(
(ri − p̂(j))T

‖ri − p̂(j)‖2
2
+

p̂T(j)
‖p̂(j)‖2

2

)

=
10γ

ln(10)

⎡⎣− cos θi(p̂(j))
‖p̂(j)−ri‖ + cos θ1(p̂(j))

‖p̂(j)‖
− sin θi(p̂(j))

‖p̂(j)−ri‖ + sin θ1 p̂(j)
‖p̂(j)‖

⎤⎦T

, i = 2, 3 . . . , N.

(16b)

The GN is initialized by p̂(0), which needs to be selected carefully.
Being asymptotically efficient and unbiased, the MLE is often considered to be a

benchmark in performance comparisons. However, the iterative methods used in MLE
calculation can diverge if they are poorly initialized or the noise is too large, causing
threshold effects (sharp degradation in estimation performance as the measurement noise
increases above a threshold value). Furthermore, the MLE algorithms have a large compu-
tational complexity.

The Cramer–Rao lower bound for the hybrid DRSS-AOA localization problem is given
by [43]

CRLB =
(

JT
0 W−1J0

)−1
, (17)

where J0 is the Jacobian matrix in (15) evaluated at the true source location p.
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4. Pseudolinear Equations for Hybrid Measurements

4.1. Linearized AOA Equations

According to [6,40], the pseudolinear form for AOA measurements is

Aθi p = bθi + eθi , i = 1, . . . , N (18)

where
Aθi = [sin θ̃i,− cos θ̃i], (19a)

bθi = [sin θ̃i,− cos θ̃i]ri, (19b)

eθi = di sin ni ≈ dini. (19c)

The approximation in (19c) is valid for sufficiently small AOA measurement noise.

4.2. Linearized DRSS Equations

The DRSS measurement Equation (4) can be rewritten as

10
p̃i,1
10γ di = 10

εi,1
10γ d1, i = 2, . . . , N. (20)

Squaring both sides of the above equation yields

Ai,1y = bi + ei, i = 2, . . . , N (21)

where

Ai,1 = [−2 × 10
p̃i,1
5γ rT

i , 10
p̃i,1
5γ − 1] (22a)

y =

[
p

‖p‖2

]
(22b)

bi = −10
p̃i,1
5γ ‖ri‖2 (22c)

ei =

(
10

εi,1
5γ − 1

)
d2

1 (22d)

A key challenge with the linearized DRSS Equation (21) is the presence of a nuisance
parameter, viz., ‖p‖2, in y, that depends on the source location, thereby creating an
undesirable nonlinear constraint in the solution. This constraint must be imposed on
the estimate of y to assure good estimation performance.

4.3. Linearized DRSS-AOA Equations

Here we show how the nuisance parameter in the linearized DRSS equation can be
eliminated by using hybrid DRSS-AOA measurements, leading to a linear matrix equation
free of nuisance parameter and nonlinear constraints. To do this, first consider the noiseless
DRSS equation

pi,1 = −10γ log10
di
d1

, i = 2, . . . , N (23)

which can be rewritten as
10−

pi,1
10γ ‖p‖ = di. (24)

Next, consider the triangle formed by the corner points p, r1 and ri, which shown in
Figure 2. From the dot products ri · p and ri · di, we obtain

cos α1i =
rT

i p
‖ri‖‖p‖ ⇒ ‖p‖ =

rT
i p

‖ri‖ cos α1i
, (25a)

46



Sensors 2021, 21, 7159

cos α2i = − rT
i di

‖ri‖di
⇒ di = − rT

i di

‖ri‖ cos α2i
. (25b)

Figure 2. Triangle formed by corner points p, r1 and ri.

The angles of the triangle α1i and α2i are easily obtained from the AOA angles θ1 and
θi as follows:

ϑ1i = ∠ri (26a)

α1i = θ1 − ϑ1i, −π < α1i ≤ π (26b)

α2i = π − θi + ϑ1i, −π < α2i ≤ π (26c)

where ∠ denotes the vector angle. Note that both α1i and α2i are wrapped to the interval
(−π, π].

Substituting (25a) and (25b) into (24) yields

10−
pi,1
10γ

rT
i p

‖ri‖ cos α1i
= − rT

i di

‖ri‖ cos α2i
(27a)

10−
pi,1
10γ rT

i p cos α2i = −rT
i di cos α1i. (27b)

Finally, plugging di = p − ri into (27b), we obtain the following linearized DRSS
equation incorporating AOA, which is free of nuisance parameter:

Āpi,1 p = b̄pi,1 (28)

where

Āpi,1 =

(
10−

pi,1
10γ cos α2i + cos α1i

)
rT

i

and
b̄pi,1 = ‖ri‖2 cos α1i.

Replacing the true AOA and DRSS values with noisy measurements, (28) becomes

Api,1 p = bpi,1 + epi,1 , (29)

where epi,1 is given by (A5) in Appendix A, and
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Api,1 =

(
10−

p̃i,1
10γ cos α̃2i + cos α̃1i

)
rT

i (30a)

bpi,1 = ‖ri‖2 cos α̃1i (30b)

α̃1i = α1i + n1 (30c)

α̃2i = α2i − ni. (30d)

As AOA and DRSS measurement errors are zero mean, we have

E{epi,k} ≈ 0. (31)

Stacking N AOA measurements and N − 1 DRSS measurements, we obtain the lin-
earized DRSS-AOA matrix equation:

Ap = b + e, (32)

where

A = [AT
θ1

, . . . , AT
θN

, AT
p2,1

, . . . , AT
pN,1

]T , (33a)

b = [bθ1 , . . . , bθN , bp2,1 , . . . , bpN,1 ]
T , (33b)

e = [eθ1 , . . . , eθN , ep2,1 , . . . , epN,1 ]
T (33c)

and
E{e} ≈ 0. (34)

Note that (32) does not have a nuisance parameter. Therefore it can be solved without
any constraint on the unknown vector as described in the next section.

5. Hybrid Pseudolinear Estimators

5.1. LS Solution and Bias Analysis

The least-squares solution for the linear matrix equation Ap ≈ b (see (32)) is [43]

p̂LS = arg min
p∈R2

‖Ap − b‖2 (35a)

= (ATA)−1ATb. (35b)

Substituting (32) into (35b), the least-squares estimate in terms of the pseudolinear
noise vector e can be written as

p̂LS = (ATA)−1ATb

= (ATA)−1AT(Ap − e)

= p − (ATA)−1ATe.

(36)

The least-squares estimation bias is

δLS = E{p̂LS} − p = −E{(ATA)−1ATe}, (37)

and the error covariance matrix of the estimate is

CLS = E{(p̂LS − p)(p̂LS − p)T}
= E{(ATA)−1ATeeTA(ATA)−1}.

(38)
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For sufficiently large N and under mild assumptions, Slutsky’s theorem [45] allows
(37) to be approximated by the product of expectations:

δLS ≈ −E

{
ATA

2N − 1

}−1

E

{
ATe

2N − 1

}
. (39)

Using (33), the cross-correlation between A and e is

E{ATe} =
N

∑
i=1

E{AT
θi

eθi}+
N

∑
i=2

E{AT
pi,1

epi,1}. (40)

According to (19a) and (19c), even for small AOA noise, we have [40]

E

{
AT

θi
eθi

}
≈ σ2

θi
di �= 0. (41)

An approximate expression for E{AT
pi,1

epi,1} can be derived from (30a) and (A4). Firstly,
expanding the cosine terms of Api,1 and approximating Api,1 using (A3), we obtain

Api,1 ≈
(

C1i cos α2i + cos α1i − C2iεi,1 cos α2i

+ C1ini sin α2i − n1 sin α1i

− C1i
n2

i
2

cos α2i + C3iε
2
i,1 cos α2i

− C2iniεi,1 sin α2i −
n2

1
2

cos α1i

+ C2i
n2

i
2

εi,1 cos α2i + C3iniε
2
i,1 sin α2i

− C3i
n2

i
2

ε2
i,1 cos α2i

)
rT

i .

(42)

Taking the expectation of AT
pi,1

epi,1 yields

E

{
AT

pi,1
epi,1

}
≈

(
− C2

1i‖ri‖
σ2

θi

2
cos2 α2i − C1i‖ri‖

σ2
θi

2
cos α2i cos α1i

+ 3C1iC3i‖ri‖σ2
pi,1

cos2 α2i + C3i‖ri‖σ2
pi,1

cos α2i cos α1i

+ C2
1i‖di‖

σ2
θi

2
cos3 α2i + C1i‖di‖

σ2
θi

2
cos2 α2i cos α1i

− 3C1iC3i‖di‖σ2
pi,1

cos3 α2i − C3i‖di‖σ2
pi,1

cos2 α2i cos α1i

− C2
1i‖di‖σ2

θi
sin2 α2i cos α2i + C1i‖ri‖

σ2
θ1

2
cos α2i cos α1i

+ ‖ri‖
σ2

θ1

2
cos2 α1i − C1i‖p‖

σ2
θ1

2
cos α2i cos2 α1i

− ‖p‖
σ2

θ1

2
cos3 α1i + ‖p‖σ2

θ1
sin2 α1i cos α1i

+ C2
1i‖ri‖σ2

θi
sin2 α2i − ‖ri‖σ2

θ1
sin2 α1i

)
‖ri‖rT

i

(43)

It is clear that E
{

AT
pi,1

epi,1

}
cannot be guaranteed to be zero for all i = 2, . . . , N. Thus,

E

{
AT

pi,1
epi,1

}
�= 0.
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Based on (41) and (43), we conclude that

E{ATe} =
N

∑
i=1

E

{
AT

θi
eθi

}
+

N

∑
i=2

E

{
AT

pi,1
epi,1

}
�= 0 (44)

which means δLS �= 0 and the least-squares estimate (35b) is biased.

5.2. WLS Solution and Bias Analysis

The weighted least-squares estimate for p is obtained from [43]

p̂WLS = arg min
p∈R2

(
Ap − b

)T
W−1

PLE
(
Ap − b

)
(45a)

= (ATW−1
PLEA)−1ATW−1

PLEb. (45b)

where WPLE is the weighting matrix that approximates the covariance of the noise vector e:

WPLE = E{eeT} =

⎡⎢⎣W11 W12 W13
WT

12 W22 W23
WT

13 WT
23 W33

⎤⎥⎦. (46)

The entries of WPLE are given by

W11 = E{e2
θ1,k

} ≈ ‖p‖2σ2
θ1

, (47a)

W12 = E{eθ1,k [eθ2,k , . . . , eθN,k ]} = 01×(N−1), (47b)

W13 = E{eθ1 [ep2,1 , . . . , epN,1 ]}
≈

[
‖r2‖2‖p‖ sin α12 − ‖r2‖‖p‖2 sin α12 cos α12,

. . . , ‖rN‖2‖p‖ sin α1N − ‖rN‖‖p‖2 sin α1N cos α1N

]
σ2

θ1
(47c)

W22 = E{[eθ2 , . . . , eθN ]
T [eθ2 , . . . , eθN ]}

≈ diag(. . . , ‖di‖2σ2
θi

, . . .)i=2,...,N , (47d)

W23 = E{[eθ2 , . . . , eθN ]
T [ep2,1 , . . . , epN,1 ]}

≈ diag

(
. . . ,

(
C1i‖ri‖2‖di‖ sin α2i

− C1i‖ri‖‖di‖2 sin α2i cos α2i

)
σ2

θi
, . . .

)
i=2,...,N

(47e)

W33 = E{[ep2,1 , . . . , epN,1 ]
T [ep2,1 , . . . , epN,1 ]}

= [β2,1, . . . , βN,1]
T [β2,1, . . . , βN,1]σ

2
θ1

+ diag

(
. . . ,

(
C1i‖ri‖2 sin α2i

− C1i‖ri‖‖di‖ sin α2i cos α2i

)2
σ2

θi
, . . .

)
i=2,...,N

+ [η2,1, . . . , ηN,1]
T [η2,1, . . . , ηN,1]WDRSS. (47f)

where
β2,i = ‖ri‖2 sin α1i − ‖ri‖‖p‖ sin α1i cos α1i, (48a)

η2,i = C2i‖ri‖‖di‖ cos2 α2i − C2i‖ri‖2 cos α2i. (48b)
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Note that di, ri, α1i, α2i, C1i and C2i require prior knowledge of the source location p,
which is not available. We replace p with p̂LS to calculate those terms.

Substituting (32) into (45b), we have

p̂WLS = p − (ATW−1
PLEA)−1ATW−1

PLEe (49)

whence the estimation bias is obtained as

δWLS = E{p̂WLS} − p = −E{(ATW−1
PLEA)−1ATW−1

PLEe}. (50)

Similar to (39), for large N, (50) can be approximated as

δWLS ≈ −E

{
ATW−1

PLEA

2N − 1

}−1

E

{
ATW−1

PLEe
2N − 1

}
. (51)

As A and e are correlated as shown in Section 5.1, E{ATW−1
PLEe} �= 0, which implies

δWLS �= 0 and the WLS estimate is biased.

5.3. WIV Solution

The bias in the LS and WLS estimates can be significantly reduced by employing the
method of instrumental variables. A weighted instrumental variable (WIV) estimator is
obtained by introducing an IV matrix G which is strongly correlated with the matrix A

while being statistically independent of e. The WIV solution is given by [45]

p̂WIV = (GTW−1
PLEA)−1GTW−1

PLEb. (52)

The IV matrix G is selected such thatE
{

GTW−1
PLEA

2N−1

}
is nonsingular andE

{
GTW−1

PLEe
2N−1

}
→

0 as N → ∞ [46]. A practical IV matrix that meets these requirements can be constructed
from an initial source location estimate, such as the LS or WLS estimate, as described
below. This procedure is based on [47]. Consider the following row partitioning of the IV
matrix G:

G = [GT
θ1

, . . . , GT
θN

, GT
p2,1

, . . . , GT
pN,1

]T , (53)

where

Gθi =
[

sin θ̂i, cos θ̂i

]
, i = 1, . . . , N (54a)

Gpj,1 =

(
10−

p̂j,1
10γ cos α̂2j + cos α̂1j

)
rT

j , j = 2, . . . , N. (54b)

Here the AOA, triangle angle and DRSS estimates are obtained from the initial source
location estimate p̂ = [x̂, ŷ]T as

θ̂i = tan−1(ŷ − yi, x̂ − xi), θ̂i ∈ (−π, π] (55a)

α̂1j = θ̂1 − ϑ1j, −π < α̂1i ≤ π (55b)

α̂2j = π − θ̂j + ϑ1j, −π < α̂2j ≤ π (55c)

p̂j,1 = 10γ log10
‖p̂‖

‖p̂ − r j‖
. (55d)

The bias of the WIV estimate is given by

δWIV = E{p̂WIV} − p

= −E{(GTW−1
PLEA)−1GTW−1

PLEe}
(56)
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which, for sufficiently large N, can be approximated as

δWIV ≈ −E

{
GTW−1

PLEA

2N − 1

}−1

E

{
GTW−1

PLEe
2N − 1

}
(57)

where

E

{
GTW−1

PLEe
2N − 1

}
≈ 0.

As a result, δWIV ≈ 0 and, therefore, the WIV estimate is approximately unbiased.

5.4. SHM-WIV Solution

A selective hybrid measurement method is introduced here to keep the IV matrix
G, constructed from an initial source location estimate, and the data matrix A strongly
correlated as there is a high probability that G and A lose correlation when the measurement
noise is large [18]. The principle of selective hybrid measurements is to decide which rows
of G should remain identical to those of A based on a measure of difference between them.

Consider the difference between the first N rows of A and G corresponding to the
AOA measurements:

Aθi − Gθi =
[
sin θ̃i − sin θ̂i, cos θ̃i − cos θ̂i

]
= 2 sin

(
θ̃i − θ̂i

2

)[
cos

(
θ̃i+θ̂i

2

)
, − sin

(
θ̃i+θ̂i

2

)]
.

(58)

The common factor sin
(
(θ̃i − θ̂i)/2

)
suggests that it will be appropriate to use the

angle difference |θ̃i − θ̂i| as a measure of row difference [18], which leads to the following
criterion for using θ̂i, instead of θ̃i, in the ith row of the IV matrix G:

|θ̃i − θ̂i| ≤ λ1. (59)

The recommended range of values for the threshold is 5σθi ≤ λ1 ≤ 20σθi , i = 1, . . . , N.
Following extensive simulation studies, we have concluded that selecting λ1 in this range
achieves the intended effect of making the IV matrix strongly correlated with the data
matrix. In general, the larger the angle noise, the larger λ1 should be.

The row difference between A and G for the DRSS measurements is

Api,1 − Gpi,1 =

(
10

p̃i,1
−10γ cos α̃2i + cos α̃1i

)
rT

i −
(

10
p̂i,1
−10γ cos α̂2i + cos α̂1i

)
rT

i

=

((
10

p̃i,1
−10γ − 10

p̂i,1
−10γ

)
(cos α̃2i − cos α̂2i) +

(
10

p̃i,1
−10γ − 10

p̂i,1
−10γ

)
cos α̂2i

+ 10
p̂i,1
−10γ (cos α̃2i − cos α̂2i) + (cos α̃1i − cos α̂1i)

)
rT

i

(60)

where the following terms determine the magnitude of difference∣∣∣∣10
p̃i,1
−10γ − 10

p̂i,1
−10γ

∣∣∣∣ (61a)

| cos α̃1i − cos α̂1i| =
∣∣∣∣2 sin

(
α̃1i + α̂1i

2

)
sin

(
θ̃i − θ̂i

2

)∣∣∣∣ (61b)

| cos α̃2i − cos α̂2i| =
∣∣∣∣2 sin

(
α̃2i + α̂2i

2

)
sin

(
θ̃1 − θ̂1

2

)∣∣∣∣. (61c)
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From (61a) we obtain the following criterion for using p̂i,1, instead of p̃i,1, in G:

| p̃i,1 − p̂i,1| ≤ λ2 (62)

where the recommended range for λ2 is 5σpi,1 ≤ λ2 ≤ 20σpi,1 with σpi,1 =
√

σ2
p1
+ σ2

pi
.

This range was confirmed to yield satisfactory estimation performance through extensive
simulation studies.

Equations (61b) and (61c) result in the same criterion as (59). Thus, applying the dif-
ference measures in (59) and (62) to (60) yields the hybrid measurement selection criterion:

| p̃i,1 − p̂i,1||θ̃1 − θ̂1|+ | p̃i,1 − p̂i,1|+ |θ̃1 − θ̂1|+ |θ̃i − θ̂i| ≤ λ1λ2 + λ2 + 2λ1. (63)

We refer to the WIV estimate incorporating (59) and (63) in the construction of the IV
matrix G as the selective hybrid measurement WIV (SHM-WIV) algorithm.

6. Simulation Results

6.1. Simulation Set-Up

The RMSE and bias performance of the MLE, LS, WLS, WIV and SHM-WIV algorithms
is compared using Monte Carlo simulations. The simulated network topology has ten
sensor nodes at fixed locations and a source, all contained within a 60 m × 60 m region.
The path loss exponent is assumed to be γ = 4. The range of AOA and DRSS measurement
noise is indicated by a noise index given in Table 1. The average SNR values for AOA and
DRSS measurements are also included. AOA and DRSS measurements have different SNR
values because the AOA noise power is the variance of the additive thermal (Gaussian)
noise and the DRSS measurements are corrupted by the shadowing log-normal noise.
The AOA measurements are obtained from an antenna array with m = 10 elements,
using [48]

SNRi =
6

m3σ2
θi

, i = 1, . . . , N (64)

which assumes the Cramer–Rao lower bound is achieved. The DRSS SNR values are for a
source with transmit power of 40 dBm (10 W). The MLE uses the iterative Gauss–Newton
method with initialization obtained from the LS estimate. The SHM-WIV threshold values
are given in Table 2.

Table 1. Noise index for AOA/DRSS measurements.

Index 1 2 3 4 5 6 7

σθi (degrees) 0.1 0.2 0.3 0.4 0.5 0.6 0.7
σpi,1 (dBm) 1 1.5 2 2.5 3 4 5

AOA SNR (dB) 32.95 26.92 23.40 20.90 18.96 17.38 16.04
DRSS SNR (dB) −22.70 −23.20 −23.70 −24.20 −24.70 −25.70 −26.70

Table 2. λ1 and λ2 for SHM-WIV.

Noise Index 1 2 3 4 5 6 7

AOA λ1 6.5σ 6.5σ 6.5σ 6.5σ 6.5σ 18σ 20σ

DRSS λ2 6.5σ 6.5σ 6.5σ 6.5σ 6.5σ 18σ 20σ

6.2. Fixed Source Location

We start with a fixed network topology simulation where the source is stationary
at a fixed location p = [10, 56]T as shown in Figure 3. The simulations consist of 10,000
Monte Carlo runs. Figures 4 and 5 present the RMSE and bias results versus noise index.
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The MLE achieves the CRLB at small noise (noise index 1 and 2), but starts to diverge
for large noise. The LS exhibits significant bias and poor RMSE compared to the other
estimates for all noise levels. The WLS has a better bias and RMSE performance than the
LS, but still shows a large bias and deviates from the CRLB for large noise. The WIV attains
the CRLB when the noise index is below 6, but its RMSE rapidly deviates from the CRLB at
noise index 7. The SHM-WIV exhibits the best overall RMSE and bias performance for the
entire noise range.

For noise index 1 and 4, individual location estimates along with mean locations for
the simulated algorithms are shown in Figures 6 and 7, respectively, to demonstrate the
spread of estimates. The standard deviations of Monte Carlo simulation results that led
to the bias and RMSE values plotted in Figures 4 and 5 are listed in Table 3. The standard
deviation is left blank for algorithms that exhibit divergence.

The total run times of the simulated algorithms are listed in Table 4. We observe that
the LS runs the fastest; however, it has a poor performance. The WLS is approximately
three times slower than the LS due to weighting matrix computation. The MLE and WLS
have comparable run times, even though the Gauss–Newton iterations can take longer
time depending on initialization. The WIV is roughly five times slower than the LS because
of computational overheads associated with weighting matrix and IV matrix computations.
The SHM-WIV is slightly slower than the WIV method because of the additional SHM step.
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(0, 50)

(50, 0)

(50, 50)

(25, 5)

(25, 45)

(12, 15)

(12, 35)

(37, 15)

(37, 35)

(10, 56)

Anchors position
Target position

Figure 3. DRSS-AOA geometry with fixed source location.

1 2 3 4 5 6 7
Index of noise standard derivation

0

1

2

3

4

5

6

7

8

R
M

SE
[m

]

MLE
LS
WLS
WIV
SHM-WIV
CRLB

Figure 4. RMSE versus noise with fixed source location.
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Figure 5. Bias versus noise with fixed source location.
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Figure 6. (a) Plot of individual location estimates for noise index 1; (b) Plot of mean location estimates
for noise index 1.
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Figure 7. (a) Plot of individual location estimates for noise index 4; (b) Plot of mean location estimates
for noise index 4.
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Table 3. Standard deviations of Monte Carlo results for bias/RMSE values.

Index bias/RMSE MLE LS WLS WIV SHM-WIV

1 Bias 0.0007 0.0069 0.0004 0.0002 0.0001
RMSE 0.0024 0.0098 0.0183 0.0147 0.0044

2 Bias 0.0013 0.0095 0.0013 0.0002 0.0003
RMSE 0.0037 0.0115 0.0268 0.0019 0.0110

3 Bias 0.0017 0.0113 0.0029 0.0012 0.0008
RMSE 0.0053 0.0123 0.0351 0.1219 0.0203

4 Bias 0.0033 0.0170 0.0045 0.0018 0.0012
RMSE 0.1676 0.0159 0.0417 0.1596 0.0237

5 Bias 0.0184 0.0062 0.3103 0.0020
RMSE 0.0206 0.0503 0.4246 0.0453

6 Bias 0.0233 0.0070 0.0044 0.0041
RMSE 0.0294 0.0641 0.4337 0.4022

7 Bias 0.0288 0.0125 56.8201 0.0048
RMSE 0.0302 0.0771 5682 0.4105

Table 4. Total simulation run time in MATLAB.

MLE LS WLS WIV SHM-WIV

Time (s) 15.7860 5.5127 14.5313 24.3188 25.7447

6.3. Randomized Source Location

In these simulations 100 source locations are generated randomly in the 60 m × 60 m
region, and, for each source location, RMSE and bias are evaluated using 10,000 Monte
Carlo runs. The RMSE and bias results are shown in Figures 8 and 9, respectively. The MLE
has a divergence problem across the whole noise range. Among the remaining algorithms,
the LS has the largest bias and RMSE. The WLS shows improved performance compared
to the LS. The WIV and SHM-WIV have the best RMSE and bias performance with the
SHM-WIV slightly outperforming the WIV at large noise levels.
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(a) RMSE capped at 8 m
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(b) Unlimited RMSE

Figure 8. (a) RMSE versus noise with randomized source location (RMSE is capped at 8 m); (b)
RMSE versus noise with randomized source location (MLE is missing in (a) as it diverges for entire
noise range).
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Figure 9. (a) Bias versus noise with randomized source location (bias is capped at 2 m); (b) Bias versus
noise with randomized source location (MLE is missing in (a) as it diverges for entire noise range).

7. Conclusions

A new pseudolinear hybrid DRSS-AOA localization method, free of nuisance param-
eter (squared source range from the reference sensor), was developed by exploiting the
geometric relationship between AOA and DRSS measurements. To solve the resulting
linear matrix equation for the source location, several variants of the pseudolinear esti-
mator were proposed. These estimators are closed-form, leading to fewer computational
steps than the MLE. However, the LS and WLS solutions have severe bias problems as
verified by the simulations. The WIV estimator, on the other hand, was seen to be capable
of alleviating the bias problem, achieving approximately zero bias for a large number
of sensor measurements and small noise. The SHM-WIV was developed to guarantee
a strong correlation between the IV matrix and the linearized data matrix for the WIV
method as this correlation can be weakened when the noise is large. Simulation studies
were carried out to compare the performance of the proposed estimators in fixed and
randomized localization geometries. It was observed that the MLE has severe stability
issues and cannot be considered an optimal solution at large noise. In the simulation
studies the SHM-WIV outperformed all the estimators with an RMSE close to the CRLB
and bias approaching zero.
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Appendix A. Derivation of Linearized DRSS Equation Noise

From (29), we have

epi,1 = Api,1 p − bpi,1

=
(

10
p̃i,1
−10γ cos(α2i − ni) + cos(α1i + n1)

)
rT

i p − ‖ri‖2 cos(α1i + n1).
(A1)
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Expanding (A1), we obtain

epi,1 = 10
p̃i,1
−10γ ‖ri‖2 (cos α2i cos ni + sin α2i sin ni)

− 10
p̃i,1
−10γ ‖ri‖‖di‖(cos2 α2i cos ni + sin α2i cos α2i sin ni)

+ ‖ri‖‖p‖
(

cos2 α1i cos n1 − sin α1i cos α1i sin n1

)
− ‖ri‖2 (cos α1i cos n1 − sin α1i sin n1) .

(A2)

When the measurement noise is sufficiently small, we have

cos ni ≈ 1 − n2
i

2
, (A3a)

sin ni ≈ ni, (A3b)

and

10
p̃i,1
−10γ = 10

pi,1
−10γ 10

εi,1
−10γ

≈ 10
pi,1
−10γ

⎛⎜⎜⎝1 − εi,1

10γ
ln 10 +

(
εi,1

−10γ ln(10)
)2

2

⎞⎟⎟⎠
≈ 10

pi,1
−10γ − εi,1

10γ
10

pi,1
−10γ ln 10 + 10

pi,1
−10γ

ε2
i,1 ln2(10)

200γ2 .

(A3c)

Substituting (A3) into (A2) yields

epi,1 ≈ −C1i‖ri‖2 n2
i

2
cos α2i − C2i‖ri‖2εi,1 cos α2i

+ C2i‖ri‖2εi,1
n2

i
2

cos α2i + C3i‖ri‖2ε2
i,1 cos α2i

− C3i‖ri‖2ε2
i,1

n2
i

2
cos α2i + C1i‖ri‖2ni sin α2i

− C2i‖ri‖2εi,1ni sin α2i + C3i‖ri‖2ε2
i,1ni sin α2i

+ C1i‖di‖‖ri‖
n2

i
2

cos2 α2i + C2i‖di‖‖ri‖εi,1

(
1 − n2

i
2

)
cos2 α2i

− C3i‖di‖‖ri‖ε2
i,1

(
1 − n2

i
2

)
cos2 α2i − C1i‖di‖‖ri‖ni cos α2i sin α2i

+ C2i‖di‖‖ri‖εi,1ni cos α2i sin α2i − C3i‖di‖‖ri‖ε2
i,1ni cos α2i sin α2i

+ ‖ri‖2 n2
1

2
cos α1i + ‖ri‖2n1 sin α1i − ‖p‖‖ri‖

n2
1

2
cos2 α1i

− ‖p‖‖ri‖ cos α1i sin α1in1

(A4)

where C1i = 10−
Pi,1
10γ , C2i =

ln 10
10γ 10−

Pi,1
10γ and C3i =

ln2 10
200γ2 10−

Pi,1
10γ . Neglecting the second and

higher-order noise terms in (A4), epi,1 can be further simplified:

epi,1 ≈ −C2i‖ri‖2εi,1 cos α2i + C1i‖ri‖2ni sin α2i

+ C2i‖ri‖‖di‖εi,1 cos2 α2i − C1i‖ri‖‖di‖ni sin α2i cos α2i

+ ‖ri‖2n1 sin α1i − ‖ri‖‖p‖n1 sin α1i cos α1i.

(A5)
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Abstract: The problem of two-dimensional bearings-only multisensor-multitarget tracking is ad-
dressed in this work. For this type of target tracking problem, the multidimensional assignment
(MDA) is crucial for identifying measurements originating from the same targets. However, the
computation of the assignment cost of all possible associations is extremely high. To reduce the
computational complexity of MDA, a new coarse gating strategy is proposed. This is realized by
comparing the Mahalanobis distance between the current estimate and initial estimate in an iterative
process for the maximum likelihood estimation of the target position with a certain threshold to
eliminate potential infeasible associations. When the Mahalanobis distance is less than the threshold,
the iteration will exit in advance so as to avoid the expensive computational costs caused by invalid
iteration. Furthermore, the proposed strategy is combined with the two-stage multiple hypothesis
tracking framework for bearings-only multisensor-multitarget tracking. Numerical experimental
results verify its effectiveness.

Keywords: bearings-only multisensor-multitarget tracking; multidimensional assignment (MDA);
coarse gating; Mahalanobis distance; maximum likelihood estimation; multiple hypothesis tracking

1. Introduction

Multitarget tracking (MTT) refers to jointly estimating the number of targets and their
states in the presence of false alarms and missed detections using single or multiple sen-
sors [1]. It has been widely used in many fields such as surveillance and tracking of ground
moving targets [2], maritime surveillance [3], sonar tracking of submarines [4], simultaneous
localization and mapping [5], unmanned air vehicles [6], etc. For different application
scenarios, tracked targets can be considered as point targets or extended targets [7]. If the
distance between the sensor and target is large enough as in radar-based air surveillance
applications, the target can be treated as a point target. In this case, it is usually assumed
that a target can give rise to at most one measurement in a scan [8]. However, if multiple
resolution cells of the sensor are occupied by a target, for example, in vehicle tracking using
automotive radar, the target is regarded as an extended target [9]. In such a case, each target
can give rise to multiple measurements [10]. Only point targets will be discussed below.

Multitarget tracking has been studied for decades and many effective algorithms are
available. The earliest and simplest MTT algorithm is the global nearest neighbor (GNN)
algorithm [11], which attempts to search for the single most likely hypothesis for track
update and new track initiation [12]. Although the GNN algorithm is intuitively attractive
and easy to implement, it is prone to track loss in scenarios with closely spaced targets and
high false alarm density [13]. The joint probabilistic data association (JPDA) algorithm is an
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extension of the probabilistic data association (PDA) algorithm to the multitarget case [14].
The standard JPDA algorithm evaluates the association probabilities of measurement-to-
track and combines them to obtain the state estimate of the target [15], which means that
one observation may contribute to updating multiple tracks [16]. Many variants of the
JPDA algorithm are abundant, such as the joint integrated PDA (JIPDA) algorithm [17]
and multiscan JPDA (MS-JPDA) algorithm [18]. Multiple hypothesis tracking (MHT) is
a deferred decision algorithm for MTT. It handles uncertainty of measurement-to-track
associations by considering all possible association hypotheses in subsequent multiple
scans [19]. Compared with GNN and JPDA algorithms that rely on the current scan,
the MHT algorithm is computationally expensive, but it has significantly better tracking
performance [20]. There are two different implementations of MHT algorithm, namely
hypothesis-oriented MHT [21] and track-oriented MHT [22]. Between them, the track-
oriented MHT algorithm, which uses the score function to evaluate the quality of tracks,
is considered a more effective alternative to a hypothesis-oriented MHT [21]. Among the
above three data association-based MTT algorithms, i.e., GNN, JPDA, and MHT, MHT is
considered as a leading algorithm in high false alarm density and dense target scenarios [23].

The random finite set (RFS) algorithm [24] represents the multitarget state and mea-
surements as a random finite set, which allows multitarget tracking to be cast in a Bayesian
framework to obtain an optimal multitarget Bayes filter. Due to the high computational
complexity of a multitarget Bayes filter [25], many approximate filters have been devel-
oped, such as probability hypothesis density (PHD) [26], cardinalized PHD (CPHD) [27],
second-order PHD [28], and multitarget multi-Bernoulli (MeMBer) [29] filters. It should
be note that none of these filters can obtain distinguishable target tracks. The generalized
labeled multi-Bernoulli (GLMB) [20] is the RFS based MTT algorithm that produces tracks.
In recent years, the GLMB filter has been widely studied, and fruitful achievements have
been achieved in both theory and application [30]. In addition, the GLMB filter has been
used to develop an MTT algorithm with structures similar to MHT [19].

Multisensor-multitarget tracking (MSMTT) has two basic architectures: centralized
and distributed tracking [7]. In centralized MSMTT, the raw measurements from all sensors
are sent to the fusion center (FC) where data association is followed by filtering, while
in distributed MSMTT, each sensor first processes its own measurements and then sends
the results to FC for further processing. Both frameworks have their own advantages
and disadvantages in terms of communication requirements, computational complexity,
performance, robustness, etc. In general, the centralized MSMTT framework has higher
accuracy [31]. However, in practical applications, due to network bandwidth limitations, it
is often not feasible to communicate all measurements to FC. Comparatively, the distributed
MSMTT framework can reduce communication cost and has better flexibility and reliability,
but it is more challenging.

For distributed MSMTT based on data association, one approach is that each sensor
sends the local track estimates to the FC, which performs track-to-track association and
fusion [32]. Another type of approach is to perform measurement space tracking at indi-
vidual local sensors to suppress clutter and then send the associated measurements to the
FC where the measurement-to-track association is performed [33]. In addition, distributed
MSMTT based on RFS has also been widely studied in recent years [34].

Depending on the types of sensors used, target tracking can be split into two classes:
active and passive tracking [35]. The sensors used for active tracking first transmit signals
(such as acoustic waves, electromagnetic waves) into the environment and then obtains
range, bearing, elevation, and other measurements of the target of interest from the received
echo [36]. Passive sensors sense the signal from the target of interest to acquire bearing,
elevation, and other measurements. In comparison, passive tracking has the advantages of
strong anti-interference and good concealment [37].

Passive tracking also involves a unique set of challenges. One of the key challenges
in bearings-only tracking is that the range between the passive sensor and the target is
unavailable. This results in an unobservability of the target state [38]. A basic observable
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condition is that the sensor performs a higher order maneuver than all targets [39]. An
alternative approach is to use multiple spatially separated sensors for triangulation, that
is, the passive MSMTT [40]. But for this approach, the attendant problem is the well-
known ghosting. In order to reduce the number of ghosts, three or more sensors should
be used [41]. In this case, multidimensional assignment (MDA) can be used to associate
the measurements from different sensors to identify common targets, which also makes
this approach computationally costly for a large number of measurements. One of the
main reasons is that in MDA, most of the time (at least up to 80%), is spent in calculating
the association cost [42]. To reduce calculation times, many fast MDA methods have been
proposed. Among them, it was proposed in [43] to cluster the measurements of different
sensors before forming possible association hypotheses, thus reducing the requirement for
calculating the association cost. In addition, two improved MDA methods using prior track
information were proposed in [44].

A new coarse gating strategy is studied for the passive MSMTT. First, in order to
reduce the computational complexity of MDA, a new coarse gating strategy is proposed.
Second, the proposed strategy is combined with a two-stage MHT (TS-MHT) framework
for distributed MSMTT. The remainder of the paper is organized as follows. Section 2
formulates the problems of bearings-only MSMTT. Section 3 briefly summarizes MDA for
measurement-to-measurement association. In Section 4, a new coarse gating is proposed.
Section 5 presents the combination of the proposed new coarse gating driven MDA with the
TS-MHT framework. Section 6 provides numerical examples to illustrate the effectiveness
of the proposed coarse gating strategy. Section 7 concludes the paper.

2. Problem Formulation and Notations

The two-dimensional (2D) bearings-only MSMTT is considered. The bearing measure-
ment is shown in Figure 1.

Figure 1. Illustration of two-dimensional bearing measurement.

Assume that there are S synchronous passive sensors and sensor s, s ∈ {1, 2, · · · , S},
can acquire Ns bearing measurements {zs,js

k }Ns
js=1 at time k. Here, Ns may not be equal to the

number of true targets due to false alarms and nonunity detection probability PDs of sensor
s. For the sake of simplicity, each target is assumed to move with nearly constant velocity
(NCV) in the XY-plane. Then, the discrete-time dynamic system can be written as follows:

xi
k = Fk−1xi

k−1 + wi
k−1, (1)

zs,js
k =

{
h
(
xi

k, ps
k
)
+ vs,js

k if zs,js
k originates from target i

z̃js
k otherwise

, (2)

where xi
k is the state vector consisting of the target position

[
xi

k yi
k
]′ and velocity

[
ẋi

k ẏi
k
]′,

i.e., xi
k =

[
xi

k ẋi
k yi

k ẏi
k
]′, Fk−1 is the state transition matrix for NCV motion model,

〈
wi

k−1

〉
is a sequence of zero-mean white Gaussian process noise, ps

k = [xs
k ys

k]
′ is the position of the

sensor s,
〈
vs,js

k
〉

is a sequence of zero-mean white Gaussian bearing measurement noise with
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variance σ2
s , and the measurement noises across sensors are independent; h is a nonlinear

function. The nonlinear relationship among βis
k , xi

k and ps
k is given by the following:

βs,is
k = h

(
xi

k, ps
k
)
= tan−1 (xi

k − xs
k, yi

k − ys
k
)
, (3)

where tan−1 refers to the four-quadrant inverse tangent function [45].
The purpose is to estimate the number of targets and their corresponding states in real

time. A list of nomenclatures is provided in Nomenclatures.

3. Measurement-to-Measurement Association

A brief description of measurement-to-measurement association is required to illustrate
the proposed strategy more clearly. For a single passive sensor, the range measurement
between target and sensor is not available, which makes the target state unobservable. Dur-
ing target tracking, especially for track initiation, at least two passive sensors are needed to
obtain the full position of the potential target. It should be noted that, in a two-dimensional
multitarget tracking scenario with only two sensors, one of the major problems is the occur-
rence of false intersections or ghosts . For example, as shown in Figure 2, the dashed lines of
different colors indicate bearing measurements originating from target 1, and the solid lines
of different colors indicate bearing measurements originating from target 2. Obviously, the
correct association pair cannot be identified with only two bearings-only sensors.

Figure 2. A scenario with 2 passive sensors and 2 targets.

Therefore, it is necessary to use three or more sensors if possible. However, the
consequent problem is that this also makes it computationally expensive for a large number
of measurements. Taking Figure 3 as an example, it shows the situation of two targets
observed by three passive sensors with measurement errors.

Figure 3. A scenario with 3 passive sensors and 2 targets.

As shown in the above figure, the sets of measurements obtained by different sen-
sors originating from the targets can be denoted by {z1,1

k , z1,2
k }, {z2,1

k , z2,2
k }, and {z3,1

k , z3,2
k },

respectively. For measurement-to-measurement associations, each candidate association,
consisting one measurement from each sensor, is denoted as the S-tuple of measurements
Z

j1 j2 j3
k . Even in the case where there are no false alarms or missed detections, the number of

S-tuples is as follows:
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c =
(

2
1

)(
2
1

)(
2
1

)
= 2 × 2 × 2 = 8, (4)

where
(

m
n

)
denotes the number of combinations of selecting n choices from m choices.

The corresponding geometric relationship is shown in Figure 4.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 4. Geometric relationship between sensors and S-tuples of measurements (a) Z111
k . (b) Z112

k .
(c) Z121

k . (d) Z122
k . (e) Z211

k . (f) Z212
k . (g) Z221

k . (h) Z222
k .

Each S-tuple of measurements is an association hypothesis. Obviously, only S-tuples
Z111

k and Z222
k (as in Figure 4a,h) originate from the targets, and the others are spurious

association hypotheses. Note that when there are false alarms or missed detections, and
the number of S-tuples that can be formed will increase.

The process of associating the S-tuples of measurements to targets is the well-known
measurement-to-measurement association problem. MDA based on likelihood ratio is
widely considered to be the most efficient method to deal with this problem, which
formulates the association between measurements from different sensors as a discrete
optimization problem given by the following:

min
ρ

j1 j2 ···jS
k

N1

∑
j1=0

N2

∑
j2=0

· · ·
NS

∑
jS=0

cj1 j2···jS
k ρ

j1 j2···jS
k (5)
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subject to
N2

∑
j2=0

N3

∑
j3=0

· · ·
NS

∑
jS=0

ρ
j1 j2···jS
k = 1, j1 = 1, 2, · · · , N1

N1

∑
j1=0

N3

∑
j3=0

· · ·
NS

∑
jS=0

ρ
j1 j2···jS
k = 1, j2 = 1, 2, · · · , N2

...
N1

∑
j1=0

N2

∑
j2=0

· · ·
NS−1

∑
jS−1=0

ρ
j1 j2···jS
k = 1, jS = 1, 2, · · · , NS

(6)

where js = 0 is the index of dummy measurement to indicate sensor s’s missed detection,
cj1 j2···jS

k is the cost of associating the S-tuple of measurements Z
j1 j2···jS
k to a target, and ρ

j1 j2···jS
k

is a binary decision variable such that the following is the case.

ρ
j1 j2···jS
k =

{
1 if Z

j1 j2···jS
k is associated with a candidate target

0 otherwise
. (7)

The equality constraints in Equation (6) are to ensure that each measurement is asso-
ciated with a unique target, or declared false, and that each target is assigned to at most
one measurement from each sensor. In Equation (5), cost cj1 j2···jS

k is defined as the following
negative log-likelihood ratio:

cj1 j2···jS
k = − ln

p
(
Z

j1 j2···js
k | pi

k
)

p
(
Z

j1 j2···js
k | pi

k = ∅
) , (8)

where p
(
Z

j1 j2···jS
k | pi

k = ∅
)

is the likelihood that measurements in S-tuple Z
j1 j2···jS
k are all

spurious, and p
(
Z

j1 j2···js
k | pi

k
)

is the likelihood that these measurements originate from a
common target at position pi

k =
[
ξ i

k ηi
k
]′. They can be calculated as follows, respectively:

p
(
Z

j1 j2···jS
k | pi

k = ∅
)
=

S

∏
s=1

[
1
ψs

]u(js)
, (9)

p
(
Z

j1 j2···jS
k | pi

k
)
=

S

∏
s=1

(1 − PDs)
1−u(js)

[
PDs p

(
zs,js

k | pi
k
)]u(js)

, (10)

where ψs is the volume of the field of view of sensor s, and u(js) is a binary indicator function.

u(js) =

{
1 if js �= 0 ( an actual measurement of sensor s)
0 if js = 0 ( a dummy measurement )

. (11)

It should be noted that, in Equation (10), pi
k is unknown. Therefore, in order to

calculate likelihood p
(
zs,js

k | pi
k
)
, the corresponding Z

j1 j2···jS
k is used to obtain the maximum

likelihood estimation (MLE) of the target position.

p̂i
k = arg max

pi
k

p
(
Z

j1 j2···jS
k | pi

k
)

(12)

Substituting Equations (9), (10) and (12) into Equation (8), required cost cj1 j2···jS
k can be

calculated. Note that the optimization problem given by Equations (5) and (6) is NP-hard
for S ≥ 3. However, a number of efficient methods to obtain sub-optimal solution have
been proposed [46–49].
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4. A New Coarse Gating Strategy for MDA

The MLE p̂i
k of the position of potential target in Equation (12) is a nonlinear opti-

mization problem. In this section, a new coarse gating strategy is proposed to eliminate
infeasible association hypotheses by comparing the Mahalanobis distance between the cur-
rent estimate and initial estimate in an iterative process for the MLE of the target position.

Each S-tuple of measurements Z
j1 j2···jS
k can form a corresponding stacked measurement

vector denoted by z
j1 j2···jS
k =

[
z1,j1

k , z2,j2
k , · · · zS,jS

k
]′. The relationship between the stacked

measurement vector and position of the corresponding target can be written as follows:

z
j1 j2···jS
k =

⎡⎢⎢⎢⎢⎣
z1,j1

k
z2,j2

k
...

zS,jS
k

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
h
(
pi

k, p1
k
)

h
(
pi

k, p2
k
)

...
h
(
pi

k, pS
k
)
⎤⎥⎥⎥⎦+ wk = h

(
pi

k, ps
k
)
+ wk, s = 1, 2, · · · , S (13)

where pi
k = [ξ i

k ηi
k]
′ is the position of target in XY-plane, ps

k = [ξs
k ηs

k]
′ is the position of

sensor s, and wk is the stacked measurement vector of measurement noises with covariance
Rk = diag(σ2

1 , σ2
2 , · · · , σ2

S).
The MLE p̂i

k of the target position can be solved by iteration, and the iterative process
can be denoted [50] by the following:

p̂i,l+1
k = p̂i,l

k +
(
(Jl

k)
′R−1

k Jl
k

)−1
(Jl

k)
′R−1

k
[
z

j1 j2···jS
k − h

(
p̂i,l

k , ps
k
)]

(14)

where the following is the Jacobian matrix:

Jl
k =

∂h
(
pi

k, ps
k
)

∂pi
k

∣∣∣∣∣
pi

k=p̂i,l
k

(15)

and p̂i,l
k is the position estimation of target after iteration l. The initial estimate p̂i,0

k can be
obtained from the intersection of the bearing measurements of any two of all sensors.

The mean square error of final target position estimate can be calculated by the following.

Ri,l+1
k � E

[(
p̂i,l+1

k − pi
k
)(

p̂i,l+1
k − pi

k
)′]

=
(
(Ji,l

k )′R−1
k Ji,l

k

)−1
. (16)

For stacked measurement vectors formed by incorrect associations, their elements
do not originate from common targets. Therefore, in this case, it is irrational to solve the
position estimation given in Equation (12). A natural idea is to analyze the differences
of different measurement vectors in the iterative process so as to roughly delete some
infeasible associations.

In the iteration, the initial position estimate p̂i,0
k can be obtained from the intersection of

any two bearing components of stacked measurement vector. Moreover, the corresponding
covariance Ri,0

k can be computed by Equation (16). Note that the initial estimate (p̂i,0
k , Ri,0

k )

is determined by the measurements of only two sensors, while the estimate (p̂i,l
k , Ri,l

k ) after
l iterations, l ≥ 1, is determined by the measurements of all sensors together. That is,
these two estimates are not generated by the same measurements. If these measurements
are not originated from a common target, the position estimate p̂i,l

k will deviate from the
initial estimate p̂i,0

k in the iterative process. This will easily result in inconsistencies between
these two estimates. Here, the inconsistency between two estimates refers to the fact that
the difference between their means is greater than what can be expected based on their
respective error covariance estimates [51].

Taking Figure 4c in Section 3 as an example, the stacked measurement vector formed
by the S-tuple of measurements Z121

k is z121
k =

[
z1,1

k , z2,2
k , z3,1

k
]′. Suppose that, in the iterative

process, the initial position estimate (p̂i,0
k , Ri,0

k ) is obtained by the bearing measurements of
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sensors 1 and 3. If the initial estimate (p̂i,0
k , Ri,0

k ) and the estimate (p̂i,l
k , Ri,l

k ) after l iterations,
l ≥ 1, are as shown in Figure 5, it means that the two estimates are inconsistent with
each other. It should be noted that Figure 5 is only a schematic diagram and not a real
experimental result. Numerical experiments will be presented in Section 6.

p R

p R, ,

Figure 5. An illustration of the inconsistency between the two estimates. (p̂i,0
k , Ri,0

k ) is the initial
estimate and (p̂i,l

k , Ri,l
k ) is the estimate after l iterations.

Therefore, it is necessary to quantitatively analyze the difference between the two esti-
mates. One mechanism for detecting statistically significant deviations between estimates
is to calculate the Mahalanobis distance [52]. The Mahalanobis distance between estimates
(p̂i,0

k , Ri,0
k ) and (p̂i,l

k , Ri,l
k ) is defined as follows.

di,l
k =

(
p̂i,0

k − p̂i,l
k
)′(

Ri,0
k + Ri,l

k
)−1(

p̂i,0
k − p̂i,l

k
)
. (17)

It can be roughly interpreted to mean that p̂i,l
k lies within an ellipsoid centered around

p̂i,0
k [53]. A larger Mahalanobis distance tends to indicate that the two estimates are

inconsistent; that is, the components in the corresponding stacked measurement vector do
not originate from the common target [51]. Therefore, it is necessary to set an appropriate
threshold T according to the measurement accuracy of the sensors. When di,l

k ≤ T, it means
that the components may originate from the common target. In this case, iteration (14) will
be repeated until l > Nmax or the following occurs:

Δp � ‖p̂i,l+1
k − pi,l

k ‖ < ε (18)

where Nmax is preset maximum number of iterations, ‖ · ‖ is the norm of a vector, ε

is a sufficiently small positive real number. Final position estimate p̂i,l
k will be used to

calculate assignment cost cj1 j2···jS
k . When di,l

k > T, this means that measurements in the
vector originate from different targets. Therefore, the iteration will be terminated and the
corresponding association cost will be assigned to infinity.

A threshold T is required to detect inconsistencies between the two estimates (p̂i,0
k , Ri,0

k )

and (p̂i,l
k , Ri,l

k ), l ≥ 1, which decides whether it is necessary to further calculate the asso-

ciation cost cj1 j2···jS
k for MDA. The choice of the threshold T is inherently problem depen-

dent [54]. In bearings-only MSMTT, it is closely related to the position and measurement
accuracy of the passive sensors. In order to avoid deleting incorrect associations, the
threshold should not be too small. For a small number of remaining incorrect associations,
the subsequent MDA can be used for further identification. In practical applications, an a
priori threshold can be determined in advance with the help of cooperative targets.

For some infeasible associations, terminating the iterations when the Mahalanobis
distance between the initial estimate of the iterative estimate is greater than a set threshold
T can effectively save computational cost. The proposed strategy is denoted by coarse
gating in iterations (CGI). The CGI-driven MDA is summarized in Algorithm 1.
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Algorithm 1: CGI driven MDA

Input: position ps
k = [ξs

kηs
k]
′ of each sensor, stacked measurement vectors,

minimum threshold ε of iterations, maximum number Nmax of iterations,
threshold T

Output: the binary decision variable ρ
j1 j2···jS
k in Equation (5)

1 foreach stacked measurement vector z
j1 j2···jS
k do

2 calculate the initial position estimate p̂i,0
k and covariance Ri,0

k using any two
non-dummy measurements;

3 l ← 1;
4 while (Δp > ε and l < Nmax) do

5 calculate the position estimation p̂i,l
k after l iterations and corresponding

covariance matrix Ri,l
k via Equations (14) and (16), respectively;

6 calculate Mahalanobis distance di
k via Equation (17);

7 only if;
8 if di,l

k > T then

9 cj1 j2···jS
k ← +∞;

10 break;
11 end

12 calculate Δp via Equation (18);
13 l ← l + 1;
14 end

15 calculate the assignment cost cj1 j2···jS
k via Equation (8);

16 end

17 solve the optimization problem in Equation (5)

5. Two-Stage MSMTT

In this section, the CGI-driven MDA is combined with a TS-MHT framework to
perform bearings-only MSMTT. The framework is given in Figure 6.

Figure 6. Framework of TS-MHT.

First, MHT is performed at each sensor, and only the measurements used to update
the tracks are sent to the FC. Here, these measurements are referred to as “effective mea-
surements.” Second, the effective measurements from different sensors are combined and
augmented to form stacked measurement vectors. Note that each measurement vector is a
potential association hypothesis. The proposed CGI is then used to eliminate infeasible asso-
ciation hypotheses. After this, the measurement-to-measurement association is performed
using the MDA algorithm. Finally, target tracks are obtained by using the second stage MHT.
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The advantages of the above framework are mainly in the following aspects. In
the framework shown in Figure 6, using the first stage MHT can eliminate most of the
false measurements obtained by individual sensors, thus reducing the number of stacked
measurement vectors. This further reduces the computational requirement of associations,
and it also helps improve the accuracy of MDA. In turn, accurate data association facilitates
track initialization in the second stage MHT and avoids infeasible hypothesis generation.

5.1. First Stage MHT

For the first stage, bearings-only multitarget tracking needs to be performed at each
local passive sensor. Many existing methods are available [23,33,55]. Since this part is not
the focus of this work, only one of the methods is considered.

The method proposed in [33] is to define the target state in Cartesian coordinates, thus
performing single sensor state-space tracking. It should be noted that in [33], the target
moves in three-dimensional space, and frequency information is available. In order to
use the strategy for two-dimensional bearings-only MSMTT, it is simplified so that the
dynamical system of the target can be described by Equations (1) and (2).

First, the one-point initialization approach is performed by combining the detection
range of the sensor and all measurements at the initial time. Suppose that the detection
range of sensor s is within the interval [rs

min, rs
max]. Correspondingly, the initial range

between the target and the sensor and the corresponding variance can be calculated [33]
as follows.

rs =
rs

min + rs
max

2
, σ2

r =
(rs

max − rs
min)

2

12
. (19)

Then, the estimate of the initial state vector and the associated covariance are the
following:

x̂
js
0|0 =

⎡⎢⎢⎢⎣
xjs

0
ẋjs

0
yjs

0
ẏjs

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
rs sin(zs,js

0 ) + xs
0

0
rs cos(zs,js

0 ) + ys
0

0

⎤⎥⎥⎥⎦, (20)

P
js
0|0 = J′RJ, (21)

where the following is the case:

R = diag
(
σ2

r , σ2
s , σ2

ẋ , σ2
ẏ
)
, (22)

J =
∂zs,js

0

∂x̂
js
0|0

, (23)

and σ2
s represents the measurement noise variance of sensor s, and σ2

ẋ and σ2
ẏ are the velocity

variances based on their a priori maximum values.
It should be noted that, for this method, parameter rs is only used for track initiation.

That is to say that only bearing measurements are used to update tracks during the course
of track maintenance. In addition, the measurements used for updating will be sent to the
second stage.

5.2. Second Stage MHT

After the first stage MHT, most false measurements from each local sensor are elimi-
nated, and the effective measurements are sent to the FC. Considering that the tracking
performance of single passive sensor is quite limited in the first stage, these effective mea-
surements can be divided into three categories: measurements originated from the target,
false measurements due to false association, and dummy measurements due to missed
detection. Therefore, in the second stage, the measurement-to-measurement association
still needs to be performed.
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First, all effective measurements from different sensors are combined and augmented
to form stacked measurement vectors. Each stacked measurement vector is a potential
association hypothesis. Then, the proposed CGI is used to delete infeasible associations.
For each stacked measurement vector, in the iterative process of obtaining the MLE of target
position, if the Mahalanobis distance di,l

k between the initial estimate (p̂i,0
k , Ri,0

k ) and the
iterative estimate (p̂i,l

k , Ri,l
k ) is greater than threshold T, then the association is determined

as infeasible and deleted. When di,l
k ≤ T, the estimate from the final iteration is naturally

regarded as the MLE of the target position in the XY-plane, i.e., the solution of Equation (12).
At the same time, it can be used for subsequent MDA. Finally, target tracks are obtained
through the second stage MHT.

6. Illustrative Examples

In this section, five illustrative examples are presented. First, a scenario with three
stationary targets (Scenario 1) is used to illustrate that, for incorrect associations, the initial
estimation and iterative estimation generated in the iterative process are often inconsistent
so as to verify the rationality and feasibility of the proposed strategy CGI. Second, a scenario
with 18 stationary targets (Scenario 2) is used to compare the performance difference of
three methods, MDA, CGI-driven MDA, and clustering-based MDA [43], to verify the
effectiveness of the proposed strategy. Finally, a single-target tracking scenario (scenario 3)
and multi-target tracking scenarios (scenarios 4 and 5) are used to further validate the
performance of the framework shown in Figure 6.

6.1. Verification of Inconsistency

This subsection uses a numerical example about stationary targets to illustrate the
difference in Mahalanobis distance between the current and initial estimates in an iterative
process for the MLE of different target positions so as to verify the feasibility of the CGI
proposed in Section 4.

Suppose there are three fixed passive sensors located at (0 m, 0 m), (1000 m, 600 m),
and (3000 m, 0 m) in the XY-plane. At time k, sensor s, s ∈ {1, 2, 3}, acquires bearing
measurements {zs,1

k , zs,2
k }, where zs,1

k and zs,2
k represents the measurements originated from

the targets 1 and 2, respectively. The positions of these two targets in the XY-plane are
(1500 m, 200 m) and (1800 m, 500 m). The standard deviations of the measurement errors
of these three sensors are σs = 17.5 mrad, s ∈ {1, 2, 3}.

In the absence of false alarms and missed detections, eight stacked measurement
vectors, i.e., association hypotheses, can be obtained. Figure 7 shows the bearing measure-
ments of each sensor in one of the Monte Carlo runs, where the dashed lines represent the
measurements originated from target 1, and the solid lines represent the measurements
originated from target 2. Figures 8–10 show initial estimate (p̂i,0

k , Ri,0
k ) and iterative estimate

(p̂i,l
k , Ri,l

k ), l = Nmax obtained using these stacked measurement vectors. Note that the only
condition for iteration termination in this scenario is l > Nmax. The uncertainty of the
position estimates in the XY-plane is represented by the 95% probability ellipses.

From Figure 8a,f, when all components of the stacked measurement vector originate
from the same target, the uncertainty ellipse of the iterative estimate is smaller than that of the
initial estimate, and these two estimates are consistent. From Figure 8b,d,e, it can be observed
that these two estimates obtained by z121

k , z211
k , and z221

k are inconsistent. For the other two
stacked measurement vectors z112

k and z212
k , since the initial and iterative estimates are too

far away from each other, they are shown in the subfigures of Figures 9 and 10, respectively.
It can be observed that the uncertainty ellipses of the iterative estimates are extremely large.
For this two cases, the initial and iterative estimates are also obviously inconsistent.

It can be demonstrated through the above experiments that for many infeasible
associations, the two estimates, (p̂i,0

k , Ri,0
k ) and (p̂i,l

k , Ri,l
k ), obtained in the iterations are

often inconsistent.
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Figure 7. Scenario 1 with 2 stationary targets and 3 passive sensors.

Furthermore, for each stacked measurement vector, the Mahalanobis distances be-
tween initial estimate (p̂i,0

k , Ri,0
k ) and all iterative estimates (p̂i,l

k , Ri,l
k ), l = {1, 2, · · · , Nmax}

are calculated. Table 1 presents the minimum and maximum Mahalanobis distances ob-
tained in the iterative process with the different stacked measurement vectors. It is the
statistic obtained from 2000 Monte Carlo runs.
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Figure 8. The initial estimate and the estimate after l iterations obtained using different stacked
measurement vectors. (a) z111

k . (b) z121
k . (c) z122

k . (d) z211
k . (e) z221

k . (f) z222
k .
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Figure 9. The initial estimate and the estimate after l iterations obtained using the stacked measure-
ment vector z112

k . (a) Initial estimate. (b) Estimate after l iterations.
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Figure 10. The initial estimate and the estimate after l iterations obtained using the stacked measure-
ment vector z212

k . (a) Initial estimate. (b) Estimate after l iterations.

Table 1. Mahalanobis distances between the initial estimate and the iterative estimates.

z111
k z112

k z121
k z122

k z211
k z212

k z221
k z222

k

Minimum Mahalanobis distances 0.8336 80.9022 17.9394 3.8289 4.7382 102.5766 15.8057 0.4970

Maximum Mahalanobis distances 1.1744 5.1467 × 104 45.7706 4.7942 7.0418 2.1429 × 104 56.0292 0.5112

It can be observed that, throughout the iterative process, the Mahalanobis distances ob-
tained by using correctly associated vectors z111

k and z222
k are significantly smaller. Therefore,

infeasible associations can be effectively eliminated by setting an appropriate threshold T.

6.2. CGI Driven MDA for Stationary Targets

In this subsection, the impact of the proposed CGI on the performance of MDA will
be analyzed. This scenario, as illustrated in Figure 11, consists of 3 bearing-only passive
sensors, 1 cooperative target, and 18 unknown non-cooperative targets.
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Sensor 1 Sensor 2 Sensor 3
Tragets Cooperative traget

Figure 11. Scenario 2 with 18 stationary targets and 3 passive sensors.

The positions of three passive sensors in the XY-plane are (−2000 m, −2500 m),
(2500 m, −2750 m), and (200 m, −3500 m), respectively. The standard deviations of the
measurement errors for all sensors are σs = 1 mrad, s ∈ {1, 2, 3}. The position of the
cooperative target is (600 m, −1600 m). The positions of other unknown non-cooperative
targets are shown in Table 2. For the sake of simplicity, it is assumed that all sensors have
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unity detection probability for each target and there are no false measurements. It is also
supposed that, at some point before these unknown targets are detected, three passive
sensors can only acquire the bearing measurements originating from the cooperative target.

Table 2. Positions of all targets in XY-plane.

(−1500 m, −500 m) (−900 m, −500 m) (−300 m, −500 m) (900 m, −500 m) (1500 m, −500 m) (−1500 m, −500 m)

(−1500 m, −1000 m) (−900 m, −1000 m) (−300 m, −1000 m) (900 m, −1000 m) (1500 m, −1000 m) (−1500 m, −1000 m)

(−1500 m, −1500 m) (−900 m, −1500 m) (−300 m, −1500 m) (900 m, −1500 m) (1500 m, −1500 m) (−1500 m, −1500 m)

In order to set a reasonable threshold T for the proposed CGI, the bearing measure-
ments originating from the cooperative target are used iteration of Equations (14) and (16).
The maximum Mahalanobis distance between the initial estimate (p̂i,0

k , Ri,0
k ) and each itera-

tive estimate (p̂i,l
k , Ri,l

k ), l ∈ {1, 2, · · · Nmax} was dmax = 11.6977 over 2000 Monte Carlo runs.
Considering that the Mahalanobis distance is closely related to the geometric structure
between the sensors and the cooperative target, threshold T should not be less than dmax.
In order to avoid deleting the correct association, the threshold in this scenario is set to
T = 12.

The Lagrangian relaxation method in [48] is used to obtain suboptimal solutions of
the MDA problem in Equation (5). Table 3 presents the performance comparison of three
different methods, MDA, CGI driven MDA, and clustering-based MDA [43], based on a
2000-run Monte Carlo average. The experimental results are obtained on MATLAB R2020b
with Intel(R) Core(TM) i5-9500 CPU @3.00GHz and RAM of 8 GB.

Table 3. The performance comparison of different methods.

MDA Clustering-Based MDA CGI Driven MDA

Number of all S-tuples 5832 5832 5832

Number of S-tuples after coarse gating - 103.74 83.82

Number of identified targets 19.58 18.97 18.02

Percent correct association 33.35% 81.67% 99.61%

Execution time to calculate assignment costs 3.9069 s 0.3917 s 0.3625 s

Execution time to obtain suboptimal solution 0.9163 s 0.1457 s 0.3543 s

It can be observed from Table 3 that the number of S-tuples reduced from 5832 to 83.82
after CGI. Moreover, the correct association rate of CGI-driven MDA is 99.61%, much higher
than that of the other two methods. This means that CGI can effectively eliminate a large
number of infeasible associations and can significantly improve the correct association rate
of MDA. In addition, for MDA, the execution time to calculate the assignment costs of all
S-tuples is 3.9069 s. This takes about 81% of the total execution time. For CGI-driven MDA,
the execution time for calculating all assignment costs is only 3 s, which accounts for about
50% of the total execution time. Obviously, the proposed CGI driven MDA has a significant
improvement in both computational efficiency and correct association probability. For the
clustering-based MDA method, the execution time of obtaining the suboptimal solution of
Equation (5) by the Lagrangian relaxation algorithm is less than that of the proposed CGI-
driven MDA method. This is due to the fact that the clustering method decomposes the entire
assignment problem into smaller subproblems, thus improving computational efficiency.

Table 4 illustrates the impact of five different thresholds on the performance of the
proposed CGI-driven MDA. It can be observed that the larger T is, the larger the number of
S-tuples obtained after CGI, and the more execution time is required. The correct association
rate when T = 1 is 78.14%, which is less than the correct association rate when T = 12.
Therefore, it is not the case that the smaller the threshold is, the better. Smaller thresholds
may result in the removal of some correct associations. Moreover, it can be found that when
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T = 24, the correct association rate is significantly smaller than the other two groups. This
is mainly due to the large number of retained S-tuples, which results in the degradation of
the performance of the Lagrangian relaxation algorithm used.

Table 4. The effect of different threshold T on the performance of CGI driven MDA.

T = 1 T = 6 T = 12 T = 16 T = 24

Number of all S-tuples 5832 5832 5832 5832 5832

Number of S-tuples after CGI 29.43 61.03 83.82 95.89 114.93

Number of identified targets 18.27 18.01 18.02 18.37 19.68

Percent correct association 78.14% 99.33% 99.61% 87.61% 69.39%

Execution time to calculate assignment costs 0.3597 0.3397 s 0.3625 s 0.3472 s 0.3439 s

Execution time to obtain suboptimal solution 0.0164 0.0964 s 0.3543 s 0.8761 s 1.3270 s

6.3. TS-MHT for Single Target Tracking in Clutter

In this subsection, a single target tracking scenario is considered to verify the perfor-
mance of the TS-MHT framework shown in Figure 6.

There are four passive sensors located at (1000 m, 2250 m), (1000 m, −2250 m), (6000 m,
2250 m), and (6000 m, −2250 m), respectively. Each sensor can only measure the bearing to
the target, and the sampling interval is 10 s. Their measurement errors are modeled as zero-
mean Gaussian white noises with same standard deviations σs = 17.5 mrad, s ∈ {1, 2, 3, 4}.
The maximum detection range of each sensor is 5 km and the detection probability is
PDs = 0.9, s ∈ {1, 2, 3, 4}. False measurements are uniformly distributed over the detection
range and their number is Poisson distributed with an average of 4 false measurements
per sensor per scan. Target moves in two dimensions with NCV, and its initial position
and velocity are [3500 m, −4000 m] and [0 m/s, 7.2 m/s], respectively. The process noise
covariance is Q = 0.012 I. The true trajectory of the target motion and the sensor positions
are shown in Figure 12, where the detection range of each sensor is indicated by dashed
lines of different colors.
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Figure 12. Scenario 3 for single target tracking with 4 passive sensors.

Figure 13 shows the tracking results of each sensor at the first stage. Here, threshold
T is set to 16. Superficially, there are significant differences between the tracking results
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of each sensor and the true track of the target. This is due to the unobservability of target
state for single passive sensor. Although, in track initiation, the initial position estimate of
the target can be obtained by the detection range of the sensor, it is also inaccurate.
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Figure 13. Tracking results of first stage MHT in each local sensor. (a) Sensor 1. (b) Sensor 2. (c) Sensor 3.
(d) Sensor 4.

It should be noted that, for the first stage of the TS-MHT framework shown in Figure 6,
its main purpose is to eliminate as many false measurements as possible by using prelim-
inary tracking. Moreover, only the measurements used to update these tracks are sent
to the second stage in real time. That is to say that it is more interested in whether the
measurements sent to the second stage originate from the true target than in the accuracy
of target state estimation. From Figure 13, it can be observed that the number of tracks
obtained by sensors are all one. These estimated numbers of tracks are close to the number
of true target. In addition, the estimated tracks by each sensor and the true track of the
target are on the same side of the corresponding sensor, and their orientations with respect
to the sensors are roughly the same. This means that the tracking results of the first stage
may not be that bad, although the tracking results still need to be further improved by the
measurements from other sensors during the second stage.

Figure 14 shows the tracking result of the second stage. It can be observed that the
second stage MHT can effectively track the target in clutter. At the same time, this in turn
shows that CGI-driven MDA can effectively delete infeasible associations.

The execution time of each stage is calculated over 2000 Monte Carlo runs. For the
first stage, the average execution time per frame of the MHT algorithm in each sensor is
approximately equal, and it is about 1.0741 s. For the second stage, the average execution
time of MHT algorithm is 0.1782 s per frame. Obviously, the execution time of the second
stage MHT is significantly smaller than that of the first stage MHT. This is due to the fact that
the first stage can effectively eliminate a large number of false measurements, thus effectively
reducing the number of feasible assumptions in the second stage. It should be noted that the
effective measurements in the first stage are sent to the second stage in real time.
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In addition, to verify the effect of different thresholds T on tracking performance,
the root mean square error (RMSE) is used to measure the performance of target tracking,
as shown in Figure 15. It can be observed that when T = 16, tracking performance is
significantly better than the other two groups. Combined with the experimental results of
Scenario 2, it can be further demonstrated that when preset threshold T is too large or too
small, and it may result in a decrease in the correct association rate of MDA, which further
affects tracking performance.
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Figure 14. Tracking results of second stage MHT.
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Figure 15. Position RMSE of different threshold T.

6.4. TS-MHT for Multitarget Tracking in Clutter

Consider two multitarget tracking scenarios with four sensors. For scenario 4, as
shown in Figure 16a, the two targets move simultaneously along the Y direction with a
nearly constant speed of 6.2 m/s, and their initial positions are [3500 m, −3500 m] and
[6500 m, −3500 m], respectively. For scenario 5 as shown in Figure 16b, the initial positions
of the two targets are [5000 m, −3500 m] and [8500 m, 0 m], and their initial velocities are
[0 m/s, 7.2 m/s] and [−5.2 m/s, 0 m/s], respectively. The other parameters are the same as
in Scenario 2.

By comparing Figures 16 and 17, it can be observed that the proposed strategy can
effectively tackle MSMTT.
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Figure 16. Multitarget tracking scenarios with 4 passive sensors. (a) Scenarios 4. (b) Scenarios 5.
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Figure 17. Tracking results. (a) Scenarios 4. (b) Scenarios 5.

7. Conclusions

The bearings-only multitarget tracking problem is investigated for synchronous pas-
sive sensors. In the target tracking process, especially for track initiation, MDA can be used
to identify the measurements originating from common targets. In order to reduce the
computational cost of the multidimensional assignment and improve its correct association
rate, a new coarse gating strategy, the CGI, has been proposed first. For MDA, iterative
processes can be used to obtain the MLE of target position corresponding to each possible
association and, thus, further calculate the assignment cost of that association. Since the
initial estimate and the iterative estimate are not obtained by the same measurements,
it has been proposed to eliminate infeasible associations by using the Mahalanobis dis-
tance between the initial estimate and the iterative estimate as a measure. The feasibility
and effectiveness of the proposed CGI is verified by two scenarios, i.e., scenarios 1 and
2, respectively. In addition, MDA driven by this strategy is combined with the TS-MHT
framework for distributed MSMTT. Numerical examples have verified the performance of
the proposed strategy. Moreover, the effectiveness of the proposed strategy in the tracking
process is further verified by two scenarios of single target and multitarget in clutter.
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Abbreviations

The following abbreviations are used in this manuscript:

MSMTT Multisensor-multitarget tracking;
MDA Multidimensional assignment;
MLE Maximum likelihood estimation;
TS-MHT Two-stage multiple hypothesis tracking;
MTT Multitarget tracking;
GNN Global nearest neighbor;
PDA Probabilistic data association;
JPDA Joint probabilistic data association;
JIPDA Joint integrated probabilistic data association;
MS-JPDA Multiscan joint probabilistic data association;
MHT Multiple hypothesis tracking;
RFS Random finite set;
PHD Probability hypothesis density;
CPHD Cardinalized probability hypothesis density;
GLMB Generalized labeled multi-Bernoulli;
FC Fusion center;
CGI Coarse gating in iterations;
2D Two-dimensional;
RMSE Root mean square error;
NCV Nearly constant velocity.

Nomenclatures

Notations Definitions

S Number of sensors
s Sensor index, s = 1, 2, · · · , S
i Target index
k Time index
js Bearing measurement index acquired by sensor s
Ns Number of bearing measurements acquired by sensor s
zs,js

k The jsth bearing measurement acquired by sensor s at time k
βs,is

k True bearing between target i and sensor s
z̃js

k False measurements
xi

k State vector of target i at time k
ps

k Position vector of sensor s
Fk State transition matrix at time k
wi

k Process noise vector of target i at time k
vs,js

k Measurement noise of sensor s at time k
σ2

s Measurement noise variance of sensor s
Z

j1 j2···jS
k An S-tuple of measurements, one from each sensor

cj1 j2···jS
k Cost of associating S-tuple of measurements with a target

ρ
j1 j2···jS
k Binary decision variables

PDs Detection probability of sensor s
ψs Volume of the field of view of sensor s
u
(

js
)

Binary indicator function
l iteration index
z

j1 j2···jS
k Stacked measurement vector corresponding to S-tuple Z

j1 j2···jS
k

pi
k Position vector of target i

p̂i,0
k Initial position estimate of target i
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p̂i,l
k Position estimation of target i after iteration l

Ri,l
k Covariance matrix corresponding to the position estimate p̂i,l

k
Jl

k Jacobian matrix
di,l

k Mahalanobis distance
T Threshold
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Abstract: This paper considers the problem of robust bearing-only source localization in impulsive
noise with symmetric α-stable distribution based on the Lp-norm minimization criterion. The existing
Iteratively Reweighted Pseudolinear Least-Squares (IRPLS) method can be used to solve the least
LP-norm optimization problem. However, the IRPLS algorithm cannot reduce the bias attributed
to the correlation between system matrices and noise vectors. To reduce this kind of bias, a Total
Lp-norm Optimization (TLPO) method is proposed by minimizing the errors in all elements of system
matrix and data vector based on the minimum dispersion criterion. Subsequently, an equivalent
form of TLPO is obtained, and two algorithms are developed to solve the TLPO problem by using
Iterative Generalized Eigenvalue Decomposition (IGED) and Generalized Lagrange Multiplier (GLM),
respectively. Numerical examples demonstrate the performance advantage of the IGED and GLM
algorithms over the IRPLS algorithm.

Keywords: bearing-only; source localization; robust estimation; least Lp-norm; total Lp-norm
optimization

1. Introduction

Bearing-Only Source Localization (BOSL) using spatially distributed sensors can
be widely applied in network localization [1], vehicle localization [2], gunshot localiza-
tion [3], animal behavior monitoring [4] and rigid body localization [5], to name but a
few. The problem of BOSL is to estimate the source location from a set of noise-corrupted
bearing measurements where its main challenge originates in the highly nonlinear nature
of the angle observations with the true source position. Under the assumption of Gaussian
measurement noise, many estimation approaches have been proposed to handle the non-
linearity, including the grid search method, the pseudolinear estimators [6,7], the iterative
maximum likelihood methods [8] and the subspace approaches [9]. However, in the com-
plex field environment, the sensor is vulnerable to external interference, enemy attack or
node failure. The bearing measurements may suffer impulse noise [10–13] and those outlier
data can degrade the localization performance dramatically. Therefore, it is necessary to
develop new estimators that are robust to impulsive noise.

In fact, non-Gaussian models corresponding to impulsive noise have been extensively
studied in the literature [13–15]. These studies have demonstrated that the Symmetric
α-Stable (SαS) distribution is more suitable to model impulsive noise than the Gaussian
distribution. The family of stable distribution is a generalization of the Gaussian distri-
bution under the stable law, including a large range of distributions with mutable values
of impulsiveness (α), skewness (β) and dispersion (γ). In particular, two special cases of
α-Stable distribution can be obtained by letting impulsiveness parameter α take values of 1
and 2. One is Cauchy distribution (α = 1), and the other is Gaussian distribution (α = 2).

In the present study, we focus on the problem of robust BOSL with impulsive noise
modeled as SαS distribution. In this situation, the methods derived using L2-norm opti-
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mization exhibit unreliable estimates because they are not robust to outliers. Therefore,
robust statistics need to be used to improve the localization performance. Under the
assumption of SαS measurement noise, a Maximum Likelihood Estimator (MLE) was
proposed in [16] to produce optimal estimates. Unfortunately, no closed-form expressions
exist for the general likelihood function in the cases of 1 < α < 2 and therefore no explicit
solution for MLE is possible. Although the SαS distribution does not have finite variance,
it has finite Fractional Lower Order Moments (FLOM) [13], which can be calculated by
its dispersion γ and its characteristic exponent α. Moreover, minimizing the FLOM of
estimation errors is equivalent to minimizing the dispersion. It is well known as the
minimum dispersion criterion, which minimizes the Lp-norm of the estimation residuals.
Unlike L2-norm minimization, the least Lp-norm estimator (1 < p < 2) does not have a
closed-form solution and consequently needs to be solved in an iterative manner [17].

The least Lp-norm estimator belongs to the M-estimator. The main idea of M-estimate
is to replace the sum of squares of least squares residuals with cost functions more robust
to impulsive noise, so as to reduce the sensitivity of estimators with respect to model er-
rors. These functions include Huber [18], Bi-square [19], the negative log-likelihood of the
Cauchy distribution [20], Wilcoxon [21], L1-norm [22,23], Lp-norm [24] and L∞-norm [25],
etc. Ref. [19] presented a distributed robust localization algorithm based on energy infor-
mation for sensor networks. The algorithm uses Bi-square function as the cost function of
M-estimate. A distributed incremental least mean square algorithm based on Wilcoxon
norm was proposed in [21] for parameter estimation of sensor networks. Ref. [26] proposed
a robust structure total least-squares algorithm for BOSL by using the improved Danish
weight function to suppress the impact of outlier data on the localization performance. In
addition to the M-estimator, there are other algorithms that can handle outlier data, such
as outlier detection [27], clustering [28] and game theoretic techniques [29]. The outlier
detection method [27] is to detect suspected outlier data first, and separate it from the
original data set. The clustering based techniques [28] can be used to classify normal and
abnormal sensors. In game theory [29], the defense strategies could be employed to detect
the outlier data and adaptive threshold selection can be also introduced.

Recently, an Iteratively Reweighted Pseudolinear Least-Squares (IRPLS) method was
proposed in [14] to reduce biases attributed to the impulsive noise. However, IRPLS still
suffers from a major bias problem caused by the correlation between system matrix and the
noise vector. This bias can be reduced by exploiting the use of an Instrumental-Variable (IV)
matrix [14] that is approximately uncorrelated with the noise vector. Inconsistent with the
IV method, we present a robust total least-squares method using Lp-norm minimization
that can reduce biases by minimizing the errors in the system matrix and the data vector
simultaneously. We first formulate the problem of BOSL subjected to impulsive noise
modeled as SαS distribution and review the pseudo-linear measurement model for BOSL.
Next, we present the Total LP-norm Optimization (TLPO) method for BOSL to minimize
the the errors in the system matrix and the data vector under the minimum dispersion
criterion. Two algorithms, named Iterative Generalized Eigenvalue Decomposition (IGED)
and Generalized Lagrange Multiplier (GLM), are designed to solve the TLPO problem.
The performance advantage of the proposed algorithms is demonstrated by numerical
simulations in terms of both bias and Root-Mean-Square-Error (RMSE) performance. The
main contributions of the proposed method can be summarized as follows:

• Development of a new bias reduced estimator based on TLPO for BOSL when the
measurement noise is modeled as SαS distribution;

• Development of two algorithms for TLPO optimization using the IGED approach and
the GLM method, respectively.

The rest of this paper is organized below. Section 2 briefly summarizes the SαS
distribution, presents the measurement model for BOSL and discusses the nonlinear least
Lp-norm for BOSL. In Section 3, the pseudolinear estimator and the iteratively reweighted
pseudolinear least-squares algorithm are reviewed. In Section 4, a new TLPO method
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is presented, and two iterative algorithms are developed to solve the TLPO problem.
Section 5 presents the Cramér-Rao Lower Bound and Section 6 illustrates the bias and
RMSE performance of PLE, TLS, LAR and TLAR using various numerical examples. Lastly,
conclusions are drawn in Section 7.

2. Lp-Norm Optimization for Robust BOSL

2.1. Symmetric Alpha-Stable Distribution

The impulsive noise is more likely to exhibit outliers than normal noise. Studies [13]
have shown that SαS distribution can model the impulsive noise better than Gaussian
distribution due to the reason that the SαS densities have heavier tails than the Gaussian
density. The characteristic function of SαS distribution is described as:

χ(τ) = exp{iδτ − γ|τ|α} (1)

where α (0 < α ≤ 2) denotes the characteristic exponent, γ indicates the dispersion
parameter and δ stands for the location parameter. The SαS distribution is completely
determined by these three parameters. The value of α indicates the heaviness of the tails
of the density function. A small positive value of α implies high impulsiveness, while a
value of α close to 2 shows a type of Gaussian-like shape. The dispersion γ performs like
the variance and δ controls the location of the density function.

A SαS distribution is called standard if δ = 0, γ = 1. Let x be a random variable
that follows the standard SαS distribution. By taking the inverse Fourier transform of its
characteristic function, the density function of x is of the form:

fα(x) =
1

2π

∫ +∞

−∞
exp(−ixτ − γ|τ|α)dτ (2)

It is known that a SαS distribution with characteristic exponent α only has finite
moments for orders less than α, which are called the Fractional Lower Order Moments
(FLOM). In particular, the FLOM of a standard SαS random variable x is given by

E{|x|p} = C(p, α)γp/α, 0 < p < α (3)

where E{·} denotes expectation operator,

C(p, α) =
2p+1Γ

(
p+1

2

)
Γ
(
− p

α

)
α
√

πΓ
(
− p

2
) (4)

is a constant that depends only on q and α and Γ(a) =
∫ +∞

0 y(a−1) exp(−y)dy is the Gamma
function. It is worth mentioning that the linear space of a SαS process is a Banach space for
α ∈ [1, 2), and it is only a metric space for α ∈ (0, 1) [30]. Therefore, the tools of Hilbert
space are not applicable when one solves a linear estimation problem with the SαS process.
In the present study, we only focus on the case of α ∈ (1, 2).

2.2. Measurement Model

The problem of robust BOSL is depicted in Figure 1, where t = [tx, ty]T denotes the
unknown target location vector, rm = [rx,m, ry,m]T represents the mth sensor location vector
and θm is the true bearing at sensor m. The nonlinear relationship between θm, t and rm is
given by [31]

θm = tan−1(ty − ry,m, tx − rx,m), θm ∈ [0, 2π) (5)

where tan−1 denotes the two-argument inverse tangent function and m = 1, 2, . . . , M.
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Figure 1. Illustration of the BOSL system.

The bearing measurement taken at sensor m is given by

θ̃m = θm + nm (6)

where nm follows independent zero mean SαS distribution with γm representing the
dispersion parameter and α accounting for the characteristic exponent. The dispersion γm
can vary with m. If the noise dispersion γm is known a priori, then the noise term nm can be
normalized. Let em = γ−1/α

m nm denote the normalized noise that has unit dispersion. The
normalized measurement equation can be written as

φ̃m = φm + em (7)

where φ̃m = γ−1/α
m θ̃m is the normalized bearing measurement and φm = γ−1/α

m θm is the
normalized true bearing. Stacking (7) in the vector form yields

φ̃ = φ + e (8)

where φ̃ = [φ̃1, φ̃2, . . . , φ̃M]T denotes the normalized measurement vector,
φ = [φ1, φ2, . . . , φM]T represents the true bearing vector and e = [e1, e2, . . . , eM]T indi-
cates the measurement noise vector.

2.3. Minimum Dispersion Criterion

The main difficulty for parameter estimation with the α-stable process is that all non-
Gaussian α-stable distributions have infinite variance. As such, the traditional nonlinear
least-squares techniques [32], which rely on the second order moments, are not suitable
for solving BOSL problems with impulsive noise. Fortunately, we can use the minimum
dispersion criterion instead of minimizing the variance. To do this, we first define the norm
of the SαS random variable x as

‖x‖α = γ
1
α , α ∈ [1, 2) (9)
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Thus, a suitable measure of the dispersion could be γ = ‖x‖α
α. Combining (3) and (9),

one can easily obtain

(
E{|x|p}
C(p, α)

) 1
p
≡ ‖x‖α, p ∈ (0, α), α ∈ [1, 2) (10)

Therefore, we may estimate the source location by solving the following nonlinear
Lp-norm optimization problem:

t̂ = arg min
t

J(t), J(t) = ‖φ̃ − φ‖p
p =

M

∑
m=1

|φ̃m − φm(t)|p (11)

where p ∈ (1, α). The definition of the Lp-norm of the vector ζ is

‖ζ‖p =

(
∑
k
|ζk|p

)1/p

(12)

In the present study, we do not consider the case of 0 < p ≤ 1, since the corresponding
Lp-norm cost function is not differentiable. For non-normalized bearing measurements,
the Lp-norm objective function in (11) becomes

J(t) =
M

∑
m=1

|γ−1/α
m (θ̃m − θm(t))|p (13)

The optimization problem listed in (11) can be solved numerically for a given 2D space
of interest. To be more specific, we can perform a grid search over that 2D space. The global
solution of maximum likelihood (ML) estimator is guaranteed for the given set of data as
long as the spacing between grids is small enough. However, if the range of the parameter
of interest is not confined to a relatively small interval or the dimension of unknown
parameter vector is high, the grid search approach is computationally infeasible. Instead,
one may resort to iterative optimization methods, such as gradient decent, and Gauss–
Newton [33], etc. In particular, the Gauss–Newton algorithm is

t̂(i+1)
= t̂(i) −

(
∇J(t)T∇J(t)

)−1
∇J(t)T

(
φ̃ − φ(t̂(i))

)
(14)

where ∇J(t) denotes the Jacobian matrix,

∇J(t) = p
M

∑
m=1

∂φm(t)
∂t

|em|p−1sign(em) (15)

If em > 0, sign(em) = 1 and −1 otherwise. The statistical properties of the nonlinear
Lp-norm minimizer have been studied in the literature [24]. The theoretical covariance B is
related to the value of p, and it is given by [24]:

B ≈ C(2p − 2, α)

(p − 1)2C2(p − 2, α)
(∇φT∇φ)−1 (16)

where ∇φ denotes the Jacobian matrix of φ with respect to t. By minimizing the scalar
term of B, we obtain the optimal choice of p

po = arg min
p

C(2p − 2, α)

(p − 1)2C2(p − 2, α)
(17)

where po denotes the optimal value of p.
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3. Pseudolinear Lp-Norm Minimization

3.1. Pseudolinear Estimator

The robust BOSL problem is nontrivial because the measurement Equation in (7) is
nonlinearly related to the unknown source location. An attractive solution is to set up a
pseudolinear equation by lumping the nonlinearities into the noise term. As illustrated in
Figure 1, an orthogonal vector sum between the measured angle vector and the true angle
vector can be geometrically described by

um = ũm + εm = t − rm (18)

where um is the true angle vector between rm and t, ũm is the measured angle vector
starting from rm and produces the noisy bearing θ̃m with respect to the horizontal direction
and εm is the error vector. Let μm = [cos θ̃m, sin θ̃m]T and νm = [sin θ̃m,− cos θ̃m]T denote
two orthogonal unit trigonometric vectors. Then, ũm and εm are given by

ũm = ‖um‖ cos nm · μm (19)

εm = ‖um‖ sin nm · νm (20)

where ‖ · ‖ denotes Euclidean norm. Note from (19) that ũT
mνm = 0. Substituting (19)

and (20) into (18) and multiplying (18) with νT
m yields

ξm = νT
mt − νT

mrm (21)

where ξm = ‖um‖ sin nm is a nonlinear transformed measurement error. Collecting the
pseudolinear equation errors as a vector ξ = [ξ1, ξ2, . . . , ξK]

T , we obtain

ξ = At − b (22)

where A = [ν1, ν2, . . . , νM]T , b = [νT
1 r1, . . . , νT

MrM]T are the measurement matrix and
vector, respectively.

The PLE requires that t be estimated by minimizing ‖At − b‖2
2 with respect to t in an

L2-norm optimization sense, and the solution is

t̂PLE = (AT A)−1 ATb (23)

The above PLE solution has a large bias because the abnormal nodes can produce
significantly large bearing measurement errors. As a typical robust estimation algorithm,
Lp-norm minimization has been widely used for parameter estimation using measurements
corrupted by impulse noise. In this paper, we aim to develop robust estimators using
Lp-norm optimization to reduce the bias as much as possible.

3.2. Iteratively Reweighted Pseudolinear Least-Squares Algorithm

This subsection reviews an Iteratively Reweighted Pseudolinear Least-Squares (IRPLS)
algorithm, which has been proposed in [14]. The IRPLS algorithm is derived from the
following Lp-norm optimization problem:

min
t

‖G(At − b)‖p
p = min

t

M

∑
m=1

|gm((At)m − bm)|p (24)

where G = diag(g1, g2, . . . , gM), gm = (γ1/α
m ‖t − rm‖)−1, (At)m and bm are the m-th ele-

ment of At and b, respectively. When the measurement noise is small, we have sin nm ≈ nm.
Then, |gm((At)m − bm)|p can be expressed approximately as

|gm((At)m − bm)|p ≈ γ
−p/α
m ‖t − rm‖−2|θ̃m − θm|(p−2)|(Ap)m − bm|2 (25)
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The above interpretation suggests an iterative reweighted pseudolinear least-squares
with the weight matrix for the i-th iteration given by

W (i) = diag

(
γ
− p

2α
1 ‖t̂(i−1) − r1‖−1

∣∣∣θ̃1 − θ̂
(i−1)
1

∣∣∣ p−2
2 , . . . , γ

− p
2α

M ‖t̂(i−1) − rM‖−1
∣∣∣θ̃M − θ̂

(i−1)
M

∣∣∣ p−2
2

)
(26)

where t̂(i−1) and θ̂
(i−1)
m denote the estimated source location and the mth bearing obtained

from the previous iteration i − 1. Using the weight matrix, the weight error for the k-th
iteration is given by

(
W (i)ξ(i)

)T
W (i)ξ(i) =

M

∑
m=1

|gm((At)m − bm)|p (27)

The homotopy method can be applied in the iterations by starting with a value for
p equals to 2 (the weight matrix is unit matrix) and decreasing it each iteration until it
reaches the designated value. Thus,

p(i) = max(p, κp(i−1)) (28)

where κ < 1 is the homotopy parameter. The source location can be estimated by perform-
ing least-squares estimation:

t̂(i) =
(
(W (i)A)TW (i)A

)−1
(W (i)A)TW (i)b (29)

The IRPLS algorithm is stopped when ‖t̂(i−1) − t̂(i)‖ ≤ ε, where ε is a
tolerance parameter.

Finally, the whole process of the IRPLS algorithm is summarized in Algorithm 1.

Algorithm 1 The IRPLS algorithm.

1: Initialization: Set t̂(0) = t̂PLE.
2: for i = 0; i ++ do
3: Compute the weight matrix using (31).
4: Determine the value of p for each iteration using (28).
5: Perform weighted least squares estimation using (29).

6: if ‖t̂(i−1) − t̂(i)‖ ≤ ε, we obtain the final solution, and stop the iteration. Otherwise
i = i + 1, go to step 3.

7: end for

The Lp-norm criterion ensures that the cost function in (24) gives less weight to
large deviations, and therefore reduces the bias formed by pseudolinear errors with large
residuals. However, the IRPLS algorithm implicitly assumes that only b is subjected to
errors. This is not the case, since the system matrix A is corrupted with measurement noises
as well. The correlation between A and b causes the IRPLS estimator to be inconsistent.
In this subsection, we analyze such bias attributed to the correlation between A and b.

Let t̂∗ denote the final solution of the IRPLS algorithm. This solution satisfies

t̂∗ =
(

ATW(t̂∗)A
)−1

ATW(t̂∗)b (30)

where

W(t̂∗) = diag
(

γ
− p

α
1 ‖t̂∗ − r1‖−2∣∣θ̃1 − θ̂∗1

∣∣(p−2)
, . . . , γ

− p
α

M ‖t̂∗ − rM‖−2∣∣θ̃M − θ̂∗M
∣∣(p−2)

)
(31)

and θ̂∗m denotes the mth bearing obtained from (5) by using t̂∗.
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According to (22) and (30), we can get

Δt = t̂∗ − t = −
(

ATW(t̂∗)A
)−1

ATW(t̂∗)ξ (32)

The analytical bias of IRPLS is given by [14]

E{Δt} = − 1
p − 1

E

{
ATW(t)A

M

}−1

E

{
ATW(t)ξ

M

}
(33)

where the weighting matrix W(t) is computed from (31) using true source location
parameter t.

4. Total Lp-Norm Optimization

In this section, we present a method of TLPO for BOSL. The IRPLS algorithm only
considers the deviation of the system vector b. But in fact, the system matrix A also has a
measurement residual. The IRPLS algorithm will inevitably cause a large bias, because the
system matrix A and the system vector b are statistically correlated.

4.1. Method Description

In order to improve the performance of the IRPLS algorithm and reduce the bias
caused by the correlation between A and b, we develop the TLPO method in this subsec-
tion. Unlike the IRPLS method, the TLPO method uses the correction matrix ΔA and the
correction vector Δb to compensate the system matrix A and system vector b, respectively.
The normalized equation can be written as

G(A + ΔA)t = G(b + Δb) (34)

where ΔA is the perturbation matrix of A and Δb is the perturbation vector of b. Let
K = G[A, b] and v = [t,−1]T be the augmented matrix and vector, and Equation (34) can
be rewritten as

(K + Ω)v = 0 (35)

where Ω = G[ΔA, Δb] is the error matrix.
In order to reduce the bias of IRPLS, we use the TLPO approach to minimize the

perturbation matrix ΔA and perturbation vector Δb simultaneously, and the TLPO problem
for BOTL can be formulated as

min
E,t

‖Ω‖p, s. t. (K + Ω)v = 0 (36)

for 1 < p < 2. Note that if p = 1, (36) becomes the total least absolute residual method,
and if p = 2, it is the well-known TLS method. To solve the TLPO problem conveniently, it
is necessary to develop an equivalent form of (36). The following proposition holds.

Proposition 1. Given the TLPO problem defined in (36), the estimation of t from the minimization
of ‖Ω‖p subject to (K + Ω)v = 0 is equivalent to

min
v

‖Kv‖p, s. t. ‖v‖q − 1 = 0 (37)

where v = [t,−1]T, 1
p + 1

q = 1 and 1 < p < α.
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Proof. From the constraint (K + Ω)v = 0, we have ‖Kv‖p = ‖Ωv‖p. Let ωT
m denote the

mth row of Ω. ‖Ωv‖p
p becomes

‖Ωv‖p
p =

M

∑
m=1

∣∣∣ωT
mv

∣∣∣p

≤
M

∑
m=1

‖ωm‖p
p‖v‖p

q (38)

for p and q satisfy the equation 1
p + 1

q = 1 and 1 < p < α. To derive (38), we used the
properties of hölder’s inequality [34]. If the Lq-norm of v satisfies ‖v‖q = 1, then the
inequality (38) becomes ‖Ωv‖p ≤ ‖Ω‖p. Therefore, we can conclude that the minimization
of ‖Ω‖p subject to (K + Ω)v = 0 is equivalent to (37).

Proposition 1 provides a facilitated way to solve the TLPO problem. In the following
two subsections, we concentrate on deriving the solution on this particular problem and
developing the IGED and GLM algorithms.

4.2. The IGED Algorithm

The optimization problem in Proposition 1 is equivalent to

min
v

‖Kv‖p
p, s. t. ‖v‖q

q − 1 = 0 (39)

To solve (39), we first transform it into an unconstrained optimization problem by
using the Lagrange multiplier method. The appropriate Lagrangian function of (39) can be
written as

L(v, λ) = ‖Kv‖p
p + λ(1 − ‖v‖q

q)

= vTKT DKv + λ(1 − vTCv) (40)

where D = diag(|(Kv)m|p−2), (Kv)m represents the mth element of vector Kv for
m = 1, 2, . . . , M, C = diag(|vq−2

1 |, |vq−2
2 |, |vq−2

3 |) and λ is the Lagrangian multiplier. Taking
the partial derivative of L(v, λ) with respect to v and setting it to zero yields

KT DKv = λCv (41)

After multiplying both sides of (41) with vT , it can be found that only λ = vTKT DKv
is the cost to be minimized. So, the optimal solution v∗ is the eigenvector of the smallest
generalized eigenvalue of (KT DK, C).

Figure 2 gives a flowchart to depict the whole process of the IGED algorithm. The al-
gorithm starts from the initialization procedure, where v0 is set as [t̂T

PLE,−1]T and t̂PLE
is obtained from (23). Given p and q, matrices C and D can be computed, respectively.
After performing generalized eigenvalue decomposition from the pair (KT DK, C), the so-
lution of v in (41) is the generalized eigenvector of (KT DK, C) that gives the minimum
generalized eigenvalue. Since IGED is an iterative algorithm, it requires the convergence
check. Let λi and λi+1 be the minimum generalized eigenvalues at the ith and i + 1th
iterations, respectively. If there exists ε such that∣∣∣∣λi+1 − λi

λi+1

∣∣∣∣ ≤ ε (42)

then we would get the final solution v∗ and the estimate for source location is

t̂ =
v∗(1 : 2)

v∗(3)
. (43)
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Figure 2. The flowchart of the IGED algorithm.

In summary, the IGED Algorithm 2 can be implemented by the following procedures.

Algorithm 2 The IGED algorithm.

1: Initialization: v0 = [t̂T
PLE,−1]T .

2: for i = 0; i ++ do
3: Compute C and D.
4: Perform generalized eigenvalue decomposition of the pair (KT DK, C).
5: Select the smallest generalized eigenvalue and its corresponding generalized eigen-

vector.
6: Set λi and λi+1 as the minimum generalized eigenvalues for iterations i and i + 1.

If |(λi+1 − λi)/λi+1| > ε, go to step 3. Otherwise, obtain the final solution v∗ and
stop.

7: Get the source location estimate t̂ using (43).
8: end for

4.3. The GLM Algorithm

The GLM method [35] is widely used for constrained optimization. Its basic principle
is to add a penalty term to the Lagrangian function to form an augmented Lagrangian
function, which can impose a larger penalty on infeasible points. Thus, the constrained
optimization problem (37) would be transformed into a new unconstrained optimization
problem that can be solved efficiently.

To solve (37) with the GLM method, we formulate an augmented Lagrangian function
as follows:

L(v, λ, s) = g(v) +
s
2
‖h(v)‖2

2 − λh(v) (44)

where g(v) = ‖Kv‖p and h(v) = 1 − ‖v‖q. Compared with the Lagrangian function,
the GLM cost function has an additional term s/2‖h(v)‖2

2. This item is a punishment
for violation of constraint h(v) = 0. The punishment parameter s determines the de-
gree of punishment, and it is generally sufficiently large. λ is a positive scalar, and the
term λh(v) is to ensure that the optimal solution is a strict local minimum point of
F(v) = g(v) + s

2‖h(v)‖2
2 under the condition of obeying the constraint h(v) = 0.

Figure 3 shows the flow diagram of the GLM algorithm. For the initialization step,
we set v0 = [t̂T

PLE,−1]T . Given initial multiplier λ, penalty factor s, admissible error ε,
scaling parameter a > 1 and parameter ρ ∈ (0, 1), the problem (44) can be solved by using
the existing unconstrained optimization methods, such as Newton, Interior point method,
simplex method, etc. We use fminsearch function in MATLAB to estimate v from (44).
Then, we check whether the termination criteria are satisfied. If ‖h(vi)‖ ≤ δ, the iteration
terminates and vi is the near optimal solution of (37). Otherwise, go to the next step which
is to control the convergence speed. If there exists ρ ∈ (0, 1) such that

‖h(vi)‖
‖h(vi−1)‖

≥ ρ (45)
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we can increase the penalty factor s by setting s = a · s (a > 1). If not, then we leave the
value of s unchanged. The penalty factor is used for multiplier update λ = λ + s‖h(vi)‖.
The updated λ and s are used to solve the unconstrained optimization problem (44) again.
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Figure 3. The flow diagram of the GLM algorithm.

Finally, the implementation process of the GLM algorithm is summarized in
Algorithm 3.

Algorithm 3 The GLM algorithm.

1: Initialization: v0 = [t̂T
PLE,−1]T , δ, λ, s, a > 1, ρ ∈ (0, 1).

2: for i = 0; i ++ do
3: Using vi as the initial point, find the minimum value of L(v, λ, s).
4: If ‖h(vi)‖ ≤ δ holds, stop the iterations and get the final solution v∗, and go to step

7. Otherwise, go to step 5.
5: If ‖h(vi)‖/‖h(vi−1)‖ ≥ ρ, update the penalty coefficient s = a · s, and go to step 6.

Otherwise, go to step 6 directly.
6: Update λ = λ − ρ‖h(vi)‖ and go to step 3.
7: Find the target position t̂ = v∗(1 : 2)/v∗(3).
8: end for

4.4. Computational Complexity Analysis

In this subsection, we analyze the computational complexities of the proposed al-
gorithms and compare with those of PLE and IRPLS. We only consider the asymptotic
computational cost. For each algorithm, we separate the complexity calculation to small
steps, e.g., multiplying two matrices of size n × m and m × p costs O(nmp). Let L1, L2 and
L3 denote the number of iterations with regarding to IRPLS, IGED and GLM, respectively.
The iterative implementation of IRPLS, IGED and GLM, however, could be very sensitive
to initialization. In this paper, we use the solution of PLE for initialization.

The computational costs are listed in Table 1. Table 1 summarizes the computational
complexities of the PLE and IRPLS, IGED and GLM algorithms. PLE requires the least
amounts of computation. IRPLS and IGED exhibit the similar computational costs. For the
GLM algorithm, we employ the Broyden–Fletcher–Goldfarb–Shanno (BFGS) [33] algorithm
to solve the unconstrained problem presented in (44). BFGS is an iterative method for
solving unconstrained nonlinear optimization problems by providing an approximation
to the Hessian matrix. We assume that the number of iterations for BFGS is Ni for the ith
iteration of GLM. For each iteration, we assume the order of computational complexity
of BFGS is Oi(M). The GLM algorithm needs to estimate v which is computationally
demanding. The estimation procedure needs to repeat L3 times since it is iterative.
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Table 1. Computational complexity.

Method Operation Cost

PLE
AT A, ATb O(4M) +O(2M)
(AT A)−1 O(23)

(AT A)−1 ATb O(4M)

IRPLS
Compute W (i)A L1 times O(2L1M)

Compute W (i)b L1 times O(L1M)
Compute (29) L1 times O(L1(10M + 8))

IGED Compute DK L2 times O(3L2M)
Perform GED L2 times O(33L2)

GLM L3 evaluations of BFGS O(∑L3
i=1 NiOi(M))

5. Performance Bound

In this section, we present the Cramér-Rao Lower Bound (CRLB) for robust BOSL
when the measurement noise is modeled as SαS distribution. We then discuss how the
CRLB is calculated. The CRLB for any unbiased estimator of t is derived by the inverse of
the Fisher Information Matrix (FIM) [36], which is computed as

CRLB(t) = J−1 (46)

where J is the FIM given by the 2 × 2 matrix

J = E

⎧⎪⎨⎪⎩
⎡⎢⎣

(
∂ f (φ̃|t)

∂tx

)2 ∂ f (φ̃|t)
∂tx

∂ f (φ̃|t)
∂ty

∂ f (φ̃|t)
∂tx

∂ f (φ̃|t)
∂ty

(
∂ f (φ̃|t)

∂ty

)2

⎤⎥⎦
⎫⎪⎬⎪⎭ (47)

where f (φ̃|t) denotes the Probability Density Function (PDF) of φ̃. Since e1, e2, . . . , eM have
the same standard dispersion, the PDF of φ̃m is

fα(e) = fα(φ̃m − φm) =
1

2π

∫ +∞

−∞
exp(−i(φ̃m − φm)τ − γ|τ|α)dτ (48)

According to [37], the FIM J for the parameters tx and ty is given by

J = κα

M

∑
m=1

⎡⎢⎣
(

∂φm
∂tx

)2 ∂φm
∂tx

∂φm
∂ty

∂φm
∂tx

∂φm
∂ty

(
∂φm
∂ty

)2

⎤⎥⎦ (49)

where κα is the Fisher information for the location of fα(e),

κα =
∫ +∞

−∞

( f ′α(e))2

fα(e)
de (50)

and the expressions of ∂φm
∂tx

and ∂φm
∂tx

are given by

∂φm

∂tx
= − ty − ry,m

‖t − rm‖
,

∂φm

∂ty
=

tx − rx,m

‖t − rm‖
(51)

Note that the value of κα depends on the parameter α. If α = 1, fα(e) follows a Cauchy
PDF and κα equals to 3

5 for γ = 1. In particular, when α = 2, fα(e) is Gaussian with variance
2γ and κα = γ. Therefore, the CRLB of t in the case of α = 2 is consistent with the CRLB
result given in [8].
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However, when 1 < α < 2, fα(e) has no closed-form expressions. Hence, computing
fα(e) involves numerically evaluating the integrals in (48). We use the MATLAB function
STBLPDF to compute the pdf of the SαS distribution. The derivative of fα(e) is also
calculated by using numerical differentiation methods.

6. Simulations

In this section, we present three simulation examples to illustrate the performance
of the proposed IGED and GLM algorithms and compare them with the PLE and IRPLS
algorithm, as well as the CRLB. The localization performance is characterized with the
bias norm and the root-mean-square-error (RMSE). The RMSE for source localization is
defined as

RMSE =

(
1
N

N

∑
n=1

‖t̂n − t‖2

)1/2

(52)

where N represents the total number of Monte Carlo runs, and t̂n denotes the source
location estimate at the nth Monte Carlo run. The expression of the bias norm is given by

BIAS =

∥∥∥∥∥ 1
N

N

∑
n=1

(t̂n − t)

∥∥∥∥∥ (53)

The RMSE given in (52) is bounded by the square root of the trace of the Cramér-Rao
Lower Bound matrix

RMSE ≥
√

tr(CRLB(t)) (54)

where tr(·) denotes the trace of a matrix.
In the simulations, we examine the localization accuracy versus three kinds of pa-

rameters: (1) noise dispersion; (2) number of sensors; and (3) noise impulsiveness. All the
sensors are uniformly placed in a 100 × 100 m2 plane centered at (50, 50) m. The source is
located at (100, 100) m. The IRPLS algorithm and the proposed IGED and GLM algorithms
are iterative and they are all initialized by the PLE derived from (23) for ensuring a fair
comparison. The termination parameters ε, ε and δ are set as ε = 10−5, ε = 10−10 and
δ = 10−5, respectively. For IRPLS, IGED and GLM, the maximum iteration is fixed at 200.

6.1. Various Levels of Noise Dispersion

In this example, we illustrate the RMSE and bias performance of PLE, IRPLS, IGED
and GLM versus noise dispersion. For convenience, we use the generalized signal-to-noise
ratio (GSNR) to characterize different noise levels. The GSNR is inversely proportional
to the noise dispersion γ and is calculated as 1/γ after normalized. The range of γ1/α is
from 2π/180 radian to 6π/180 radian. The characteristic exponent α is set to 1.5 and the
corresponding optimum value of p is 1.225.

Figure 4 plots the RMSE and bias curves of the PLE, IRPLS, IGED and GLM algorithms
together with the CRLB. For RMSE curves shown in Figure 4a, the green line with Asterisk
is the RMSE value for the PLE algorithm, the blue line with Point is for IRPLS, the black
line with Cross is for IGED, the red line with Square is for GLM and the blue dash line is
the CRLB. The PLE method can not give accurate target location estimates in the presence
of impulsive noise. The large bias norm formed by the outlier data in turn leads to a
poor performance for the PLE. The least-norm estimators, including IRPLS, IGED and
GLM, yield much better localization performance. However, the IRPLS method still has
a large estimation bias because it cannot overcome the bias attributed to the correlation
between the system matrix A and the data vector b. On the other hand, the IGED and
GLM algorithms utilizes the total Lp-norm optimization technique that can minimize the
errors in A and b simultaneously. Therefore, the IGED and GLM algorithms are capable of
outperforming the IRPLS in much lower RMSEs and biases.
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Figure 4. RMSE and bias performance comparison of PLE, IRPLS, IGED and GLM estimates with various GSNRs. (a) RMSE
results. (b) Bias norm results.

Beyond the RMSE and bias performance, we need to explore the number of iterations
and the computation time of IRPLS, IGED and GLM. The results are depicted in Figure 5.
The algorithms run on a laptop with CPU i5-7200U @ 2.5 GHz and RAM 8 GB. The version
of software is MATLAB 2017a. Collectively, the average number of iterations decreases
when the GSNR increases. The GLM appears to have the least number of iterations. Its
average number of iterations reduces from 1.05 to 1.01 when the GSNR ranges from 29.51 to
153.3. However, its computation time for single iteration is high (i.e., 0.1343 s), because the
GLM algorithm has the steps of unconstrained optimization. On the contrary, the IGED
algorithm has the least computing time since its computational complexity mainly lies in
generalized eigenvalue decomposition. The IRPLS algorithm has high computing time due
to the large number of iterations (over 30 iterations).
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Figure 5. Number of iterations and computing time versus GSNR for the IRPLS, IGED and GLM algorithms. (a) Number of
iterations. (b) Computing time.

6.2. Different Number of Sensors

In this subsection, we compare the RMSE and bias performance of the PLE, IRPLS,
IGED and GLM algorithms over the number of sensors M ranging from 10 to 30, five at
a time, when γ1/α is kept at 4π/180 radian. The other parameters remain the same. The
simulation results are shown in Figures 6 and 7.
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Figure 6. RMSE and bias performance comparison of PLE, IRPLS, IGED and GLM estimates with different number of
sensors. (a) RMSE results. (b) Bias norm results.
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Figure 7. Number of iterations and computing time versus number of sensors for the IRPLS, IGED and GLM algorithms.
(a) Number of iterations. (b) Computing time.

From Figure 6, we observe that the GLM algorithm has better RMSE and bias perfor-
mance than that of PLE, IRPLS and IGED. When M ≥ 20, the RMSE of GLM is close to the
CRLB. The IGED algorithm slightly deviates from the CRLB, because the algorithm has not
fully converged. Moreover, we also observe from Figure 7 that the average iterations is
kept at 2.5 and is almost the same as that of the GLM algorithm. Meanwhile, the bias of
IGED is higher than that of GLM. Setting more iterations would help the IGED algorithm
achieve better performance. As expected, the PLE exhibits unreliable results since it is
not robust to the impulsive noise. The bias of IRPLE does not vanish as the number of
sensors increases. This phenomenon is also validated in (33). In terms of computational
complexity, the total computing time for GLM is about 0.3378 s when the number of sensors
is fixed at 20. The IGED has the least amounts of computation and it only requires 0.01032 s
at N = 20.

6.3. Various Values of Noise Impulsiveness

To further verify the effectiveness of the proposed algorithms, we examine the perfor-
mance of the algorithms for different levels of noise impulsiveness. In the following figures
drawing the simulation results, the value of the noise impulsiveness level α deviates from

97



Sensors 2021, 21, 6471

1.9 to 1.1 and the corresponding optimum values of p are set as 1.546, 1.430, 1.348, 1.282,
1.225, 1.174, 1.127, 1.083, 1.041 from (17). In this example, γ1/α is fixed at 4π/180 radian.
The other parameters remain unchanged.

Figure 8 depicts the RMSE and bias performance with respect to various α. As shown
in Figure 8, the RMSE and the bias of PLE is much higher than that of IRPLS, IGED and
GLM, which is caused by the impulsive noise. As α decreases, the influence of the noise
impulsiveness becomes more significant. The level of noise impulsiveness also affects the
bias and RMSE performance of IRPLS. The GLM algorithm has relatively small bias and
its RMSE is very close to the CRLB when α ≥ 1.4. The IGED has the comparable RMSE
performance with the GLM. However, the bias of IGED slightly deviates from that of GLM
as α decreases. From Figure 9, we observe that the number of iterations of IRPLS, GLM
and IGED decrease as α increases, i.e., the number of average iterations reduces from 38.8
to 29.5 for IRPLS, from 4.4 to 1 for GLM and from 2.9 to 2.2 for IGED. The computation
time also decreases when α increases. Again, the computation time of GLM is much higher
than that of IGED.
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Figure 8. RMSE and bias performance comparison of PLE, IRPLS, IGED and GLM estimates with various noise impulsive-
ness. (a) RMSE results. (b) Bias norm results.
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Figure 9. Number of iterations and computing time versus noise impulsiveness for the IRPLS, IGED and GLM algorithms.
(a) Number of iterations. (b) Computing time.
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6.4. Different Number of Iterations

In order to further verify the influence of the number of iterations on the proposed
algorithm, we tested the performance of the algorithm for the increasing number of iter-
ations. The simulation results are shown in Figure 10, where the number of iterations is
set 50 for IRPLS and IGED, and 6 for GLM. The RMSE and bias are recorded every 10
iterations for IRPLS and IGED. The RMSE and bias performance of GLM is plotted for each
iteration. In this example, γ1/α is fixed at 4π/180 radian. The number of sensors is kept at
20. The characteristic exponent α is set to 1.5 and the corresponding optimum value of p
is 1.225.

Figure 10 describes the RMSE and bias performance of the IRPLS, IGED and GLM
algorithms versus different iterations. As shown in Figure 10a, the RMSE result of IRPLS
remains at 2.1 m after 30 iterations. We observe that the bias of the IRPLS algorithm
decreases as the number of iterations increasing, as shown in Figure 10b. However, the bias
does not vanish. It still has 0.41 m after 50 iterations. The RMSE value of IGED keeps at
1.8 m after 30 iterations and the bias of IGED reduces to 0.12 m using about 40 iterations.
Differing from the IRPLS and IGED algorithms, the RMSE result of GLM reaches at 1.8 m
using only four iterations. After 5 iteratios, the bias of GLM reduces to 0.12 m. From
Figure 10, we can observe that the RMSE and bias performance of IGED is almost the same
as that of GLM if IGED runs a sufficient number of iterations.
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Figure 10. RMSE and bias performance versus the number of iterations for IRPLS, IGED and GLM. (a) RMSE results.
(b) Bias norm results.

6.5. Scalability Evaluation

We analyze the scalability of the IRPLS, IGED and GLM algorithms in this subsection
for increasing number of sensors, from 20 to 100, and decreasing levels of noise impul-
siveness, from α = 1.1 to α = 1.9. To examine the scalability of the iterative algorithms,
the IRPLS, IGED and GLM algorithms share the same stopping condition. Let t̂i denote
estimation result for the ith iteration. The criterion for stopping these iterative algorithms
is given by ‖t̂i − t̂i−1‖ < 10−5.

Figure 11 compares the number of iterations, computing time for each iteration, RMSE
and bias performance of the IRPLS, IGED and GLM algorithms versus different numbers
of sensors. The other parameters remain the same as Section 6.4. It can be observed
from Figure 11 that the number of iterations of these algorithms does not reduce as the
number of sensors increases. Among them, the number of iterations for IRPLS and IGED
maintains at 35, while that of the GLM algorithm keeps at 10. The computing time for
each iteration, however, slightly increases as the number of sensors increasing. The RMSE
and bias performance decreases as the number of sensors increases due to the fact that
more normal sensors can be utilized. This result is also demonstrated in Figure 6. We also

99



Sensors 2021, 21, 6471

observe that the RMSE and bias curves of IGED and GLM are consistently lower than those
of IRPLS, which shows the performance advantage of the proposed algorithms.

Figure 12 shows the number of iterations, computing time for each iteration, RMSE
and bias performance of the IRPLS, IGED and GLM algorithms versus different levels
of noise impulsiveness. The number of sensors is set at 20. Other parameters remain
unchanged. From Figure 12a, we observe that the number of iterations for IRPLS scales
from 88 to 11, 43 to 7 for IGED. However, the iteration value does not change for GLM and
the number keeps at 7. That is because GLM performs optimization at each iteration to
reduce the impact of impulsive noise. Moreover, the RMSE and bias performance of these
algorithms decreases as increasing the value of α. As expected, IGED and GLM exhibit
almost the same performance. A small value of α results in a poorer IRPLE performance,
as illustrated in Figure 12b. When α is greater than 1.6, the RMSE and bias curves of IRPLS
reach those of IGED and GLM due to the fact that the level of noise impulsiveness has less
impact on the bias performance.
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Figure 11. Scalability analysis for various number of sensors. (a) Number of iterations and computing time. (b) RMSE and
bias performance.
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Figure 12. Scalability analysis for different levels of noise impulsiveness. (a) Number of iterations and computing time.
(b) RMSE and bias performance.

7. Conclusions

In this paper, a total Lp-norm optimization method is presented to solve the BOSL
problem and two algorithms, named IGED and GLM, are proposed to fulfill the optimiza-
tion of the total least Lp-norm. By minimizing the errors in the system matrix and the
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data vector simultaneously for the least Lp-norm optimization, the proposed algorithms
can overcome the bias arising from the correlation between the system matrix and the
pseudolinear noise vector.

Simulation results show that the proposed IGED and GLM algorithms have much
better RMSE and bias performance than the IRPLS algorithm. The number of iterations for
GLM remains at a low level. With only a few iterations, the RMSEs of GLM can approach
the CRLB. However, GLM expends more computation time than IGED under the same
number of iterations, since GLM requires unconstrained optimization in each iteration.
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Abstract: Airborne angle-only sensors can be used to track stationary or mobile ground targets. In
order to make the problem observable in 3-dimensions (3-D), the height of the target (i.e., the height
of the terrain) from the sea-level is needed to be known. In most of the existing works, the terrain
height is assumed to be known accurately. However, the terrain height is usually obtained from
Digital Terrain Elevation Data (DTED), which has different resolution levels. Ignoring the terrain
height uncertainty in a tracking algorithm will lead to a bias in the estimated states. In addition to
the terrain uncertainty, another common source of uncertainty in angle-only sensors is the sensor
biases. Both these uncertainties must be handled properly to obtain better tracking accuracy. In this
paper, we propose algorithms to estimate the sensor biases with the target(s) of opportunity and
algorithms to track targets with terrain and sensor bias uncertainties. Sensor bias uncertainties can
be reduced by estimating the biases using the measurements from the target(s) of opportunity with
known horizontal positions. This step can be an optional step in an angle-only tracking problem. In
this work, we have proposed algorithms to pick optimal targets of opportunity to obtain better bias
estimation and algorithms to estimate the biases with the selected target(s) of opportunity. Finally, we
provide a filtering framework to track the targets with terrain and bias uncertainties. The Posterior
Cramer–Rao Lower Bound (PCRLB), which provides the lower bound on achievable estimation
error, is derived for the single target filtering with an angle-only sensor with terrain uncertainty
and measurement biases. The effectiveness of the proposed algorithms is verified by Monte Carlo
simulations. The simulation results show that sensor biases can be estimated accurately using the
target(s) of opportunity and the tracking accuracies of the targets can be improved significantly using
the proposed algorithms when the terrain and bias uncertainties are present.

Keywords: angle-only sensor; terrain uncertainty; posterior Cramer–Rao lower bound; bias estimation;
path planning

1. Introduction

Tracking a ground target using an airborne sensor platform is frequently used in
various applications, such as surveillance, search, and rescue missions [1–3]. Airborne
radar sensors are of particular interest in various surveillance missions, because of their
‘day-and-night’ operational capabilities [4]. Airborne synthetic aperture radars (SAR) are
often used to acquire high-resolution images of ground targets [5,6]. In [7,8], authors
presented the application of airborne sensors for magnetic anomaly detection (MAD). MAD
is widely used in maritime surveillance, detection of shipwrecks, geophysical studies,
etc. [7].

Estimating the state of a ground target using the measurements from an angle-only
airborne sensor is one of the most practical applications. A number of works have exten-
sively studied the angle-only tracking problem in the 2-D Cartesian Coordinate System
(CCS) [9,10]. However, as the authors in [2] pointed out, the number of works on 3-D
angle-only tracking problems is relatively low. Some of the earlier works involving tracking
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ground targets in the 3-D coordinate system using angle-only sensors are reported in [11,12].
In [11], tracking an air target using a ground-based angle-only sensor is considered. Track-
ing a ground target using an airborne angle-only sensor is a slightly different problem since
additional information about the target height will be available. In this work, our focus is
to track a ground target using an airborne angle-only sensor platform.

One of the major challenges in angle-only tracking is observability. Considering the
additional information of the height of the target from the sea level, such observability
issue can be addressed. Since the target is on the ground, the target’s height is the same
as the height of the terrain from the sea level, which can be obtained from pre-stored
Digital Terrain Elevation Data (DTED) [13]. Most of the aforementioned works in 3-D
angle-only tracking considered the height of the ground target from the sea level is known
accurately [14–16]. However, in practical setups, such height information is associated with
uncertainty due to the errors in the DTED data. Ignoring the height uncertainty (i.e., using a
wrong height value) will lead to a bias in the estimated state. To the best of our knowledge,
not many analysis is performed on tracking a ground target with terrain uncertainty. This
is the motivation for this work to develop algorithms to handle the terrain uncertainty with
angle-only sensors.

Apart from the terrain uncertainty, possible biases in the sensor measurements play a
key role in determining the quality of the estimates. Possible sources of bias include sensor
alignment bias, sensor altitude bias, location bias, etc. [17]. In this work, we consider only
the measurement biases, i.e., the biases in the elevation and bearing angles. Sensor biases
and terrain uncertainty should be handled jointly in order to obtain better tracking results.

In this work, we propose a filtering algorithm to track a target with bias and altitude
uncertainties. With a larger bias uncertainty, a filter will take a longer time to reduce the
target state bias. If we have an option to reduce the sensor bias uncertainty before we start
tracking the target of interest, that will help to obtain a better estimate of the target faster.
Usually, an airborne platform will fly from a base station to the Region Of Interest (ROI),
where we have the target of interest. On the way to the ROI, a bias estimation could be
performed by pointing the angle-only sensor toward one more multiple stationary ground
object, called as targets of opportunity. In this work, this bias estimation is considered an
optional step. Note that the bias uncertainty will not be completely removed even with
this optional step. Hence, the filtering algorithm used for tracking the target should still
consider the bias uncertainty.

In this work, we explore the possibility of improving the bias estimation using targets
of opportunity by changing sensor trajectory. We also study the effect of increasing the
number of targets of opportunity and changing their locations with respect to the sensor
trajectory on bias estimation. Our proposed approach considers the bias estimation when
the x and y coordinates of the target of opportunity are known as well as unknown.
A number of bias estimation approaches are proposed in the literature [18–20]. However,
the challenges in the bias estimation with the terrain uncertainty are not considered in any
of the papers.

Predicting the performance of an estimator is essential to decide the optimal sensor
trajectory or optimal targets of opportunity locations. The covariance of an unbiased
estimator is bounded by the Posterior Cramer–Rao Lower Bound (PCRLB) [21,22]. When
the estimator is biased, the estimated covariance can not be directly bounded by the PCRLB.
In [23], the authors proposed a performance bound considering the gradients of the bias
state. Such a performance bound on the total variance of the estimator is referred to as
biased PCRLB [24]. The central idea behind using the gradient of the bias state is to have
a dependency on the non-constant part of the bias. In other words, the bias can not be
removed from the measurements by simple subtraction. In this work, PCRLB and a biased
PCRLB are derived for angle-only tracking problems with bias and terrain uncertainties.

In this paper, we consider two possible scenarios: ground target with terrain uncer-
tainty (1) remains stationary; (2) moves with a nearly constant velocity (CV) model [25].
We assume that the ground target (while moving in nearly CV) moves along the x–y plane,
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i.e., there is no velocity along the z-axis. Although the dynamic model of the target state is
linear, the angle-only measurements are non-linear functions of the target and the sensor
state [11]. For such an estimation problem, several non-linear filtering algorithms are pro-
posed in the literature. Some of the examples include Extended Kalman Filter (EKF) [26],
Cubature Kalman filter (CKF) [27], Unscented Kalman Filter (UKF) [28], and Feedback
Particle Filter (FPF) [29].

The computational complexity of the UKF is of the same order as the EKF while
providing improved estimation accuracy addressing the approximation issues of the EKF,
as shown in [30,31]. As a result, we propose a filtering algorithm using UKF. However,
UKF can easily be replaced by any other non-linear filter. One of the challenges in the
ground target tracking problem is filter initialization with terrain uncertainty. In this work,
we use the measurements obtained by the biased angle-only sensor to initialize the target
state by incorporating the terrain uncertainty. The estimate errors of the target trajectory
are compared with the PCRLB and a conventional approach to evaluate the accuracy and
the benefit of the proposed algorithms. The simulation results show that the proposed
approach provides better tracking results with all the given uncertainties.

The key contributions of our work can be stated as follows: (1) We derive the PCRLB
for this problem to predict/evaluate the performance of the estimator and optimize bias
estimation; (2) Bias estimation using a separate target(s) of opportunity is proposed with
optimal platform trajectory and optimal target of opportunity location selection; (3) We
propose a filtering approach to estimate a target with bias and terrain uncertainties.

This paper is organized as follows. We discuss the problem description in Section 2.
System model detailing the coordinate system, measurement generation, and the system
dynamics are introduced in Section 3. A discussion on performance bounds is presented in
Section 4. Bias estimation approaches and related analysis are detailed in Section 5. Filter
initialization, optional bias compensation, and ground target tracking are discussed in
Section 6. Simulation results are shown in Section 7 and the paper ends with the concluding
remarks in Section 8.

2. Problem Description

In this paper, our main objective is to track a ground target in 3-D using a biased
airborne angle-only sensor. The ground target can either remain stationary or move at a
nearly constant velocity. The height of the ground target from the sea level is obtained from
DTED; hence it has uncertainty. The two major sources of uncertainty are measurement
bias and terrain uncertainty.

To reduce the measurement bias uncertainty, the possible biases could be estimated
using separate target(s) of opportunity on the way to the region of interest from the base
station. Two possible cases that can happen with the target(s) of opportunity are (1) x and y
coordinates of the target(s) are known accurately, but the z coordinate is obtained from the
DTED data, which has error; (2) x and y coordinates of the target(s) are unknown, but the z
coordinate is obtained from the DTED data as in the first case. Platform trajectory and the
location of the target(s) of opportunity can be optimized to obtain a better bias estimate by
minimizing the additional time required to reach the destination. That is, we prefer if we
do not need to change the trajectory of the platform.

In this work, we make the following assumptions:

• Only a single target is considered. However, the proposed algorithm can be used for
multiple well-separated targets without any modification;

• The height of the ground target from the sea level is fixed, but not known accurately;
• The ground target can either remain stationary or move with a nearly constant velocity;
• Bias affecting the angle-only measurements are unknown constant and additive. Time-

varying bias is not considered in this work. However, the proposed approach can be
easily extended for time-varying biases;

• Data association issues are not considered, i.e., false alarms are not considered.
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In the next section, we introduce the coordinate system, the system dynamics and the
measurement model.

3. System Model

3.1. Coordinate System

The states of the ground target and the own-ship at time step k are defined as
xt

k = [xt
k, ẋt

k, yt
k, ẏt

k, zt
k]

T and xo
k = [xo

k , ẋo
k , yo

k, ẏo
k, zo

k]
T , respectively, where (.)T denote the

transpose operation. Note that the state of a stationary target is expressed as xt =
[xt, yt, zt]T . Here, (x, y, z) represent the three axes of 3-D CCS and the superscripts ‘t’ and ‘o’
are reserved to denote the target and the own-ship (airborne sensor platform), respectively.
In this manuscript, the terms own-ship and airborne sensor platform have been used
interchangeably. The velocity is denoted as [ẋ, ẏ]. Note that there is no velocity across
z-axis for the target and the own-ship, i.e., żt

k = 0 and żo
k = 0. It is assumed that the ground

is flat through out the region where the target moves, hence the target’s z does not change
over time, i.e., zt

k = zt.
In this work, we considered a locally flat earth model for all our calculations.

3.2. System Dynamics

In this work, a constant velocity (CV) model is used to model the system dynamics of
the ground target. Given the discrete-time state of a moving target xt

k, the state evolution is
expressed as,

xt
k+1 = Fkxt

k + Gkvk (1)

where Fk and Gk are the state transition and the gain matrices, respectively. The process
noise vk is a zero-mean Gaussian with covariance Qk, i.e., vk ∼ N (vk; 0, Qk). For a
stationary ground target, Fk is an identity matrix and the noise part is zero, hence xt

k+1 = xt
k.

Motion legs with CV and Constant Turn (CT) are used to model the system dynamics
of the own-ship trajectory. Transition matrices of CV and CT models are given in (A1)
and (A2), respectively.

3.3. Measurement Model

Figure 1 shows the target-sensor geometry in 3-D CCS. The on-board angle-only
sensor provides the bearing θk ∈ [−π, π] and elevation γk ∈ [−π

2 , π
2 ] measurements.

As the own-ship trajectory is deterministic, zo
k is known for all time-steps.

Figure 1. Target-sensor geometry.

Based on the assumptions from Section 2, a measurement is available for the target
height from the sea level, zm,

zm = zt + vz (2)

where vz is a Gaussian noise with zero-mean and standard deviation σzt , i.e., vz ∼ N (vz; 0, σ2
zt).
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The expressions for the true bearing and elevation angles are given by,

θtrue
k = tan−1

[
(xt

k − xo
k), (y

t
k − yo

k)
]

(3)

γtrue
k = tan−1

[
(zt

k − zo
k),

√
(xt

k − xo
k)

2 + (yt
k − yo

k)
2

]
(4)

Let us denote the bias vector of the sensor as bk = [θbk
, γbk

]T . In this work, we consider
the measurement biases to be additive and unknown constants. As a result, a separate
state transition matrix for the bias state evolution is not necessary. Measurement model for
acquiring bearing and elevation from the angle-only sensor is expressed as,

zk = h(xt
k, xo

k) + bk + wk (5)

where h(xt
k, xo

k) = [θtrue
k , γtrue

k ]T and measurement noise wk ∼ N (wk; 0, Rk) with covari-
ance Rk = diag(σ2

θ , σ2
γ). Here, σθ and σγ are the standard deviations for the bearing and the

elevation measurements, respectively.
In the next section, we introduce the necessary bounds to evaluate the performance of

an estimator.

4. Performance Bound

4.1. Posterior Cramer–Rao Lower Bound

Let us define ZK as the collection of all the measurements for time k = 1, . . . , K,
i.e., ZK = [z1, z2, . . . , zK]. The objective of an estimator is to find the conditional probability
distribution p(xt

k|ZK). Associated covariance matrix (Cx̂t) of an unbiased estimate of the
target state xt

k can be lower bounded by,

Cx̂t = E

[
(x̂t

k − xt
k)(x̂

t
k − xt

k)
T
]
≥ J−1

k (6)

where Jk is the Fisher Information Matrix (FIM) [21]. The above bound is called the PCRLB.
In [32] Tichavsky et al. proposed a recursive formulation to obtain the FIM. In our problem,
the target state evaluation is modeled by a discrete-time linear system. Knowing the state
transition matrix Fk, the process noise covariance Qk and the measurement noise covariance
Rk, a simplified expression for the recursive formulation of the FIM is expressed as,

Jk+1 =
(

FkJ−1
k FT

k + Qk

)−1
+ Jz(k + 1) (7)

where Jz(k + 1) is called the measurement contribution to the FIM, which is evaluated as

Jz(k) = E

[
qkHT

k R−1
k Hk

]
(8)

Here Hk is the Hessian matrix of the measurement equation (see (A3) for details on
the matrix construction) and qk is called Information Reduction Factor (IRF). In this work,
we do not consider the possibility of false alarms or miss detection. Hence, data association
uncertainty is absent, i.e., IRF qk = 1.

Finally, substituting Jz(k + 1) from (8) into (7), the FIM is evaluated as,

Jk+1 =
(

FkJ−1
k FT

k + Qk

)−1
+ HT

k R−1
k Hk (9)

Assuming the initial target state covariance to be P1, FIM is initialised as J1 = P−1
1 .
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4.2. Presence of Measurement Bias

It is well known that satisfying certain regulatory conditions, the performance of an
unbiased estimator is bounded by the PCRLB. However, in this problem, we consider the
additional uncertainty caused by the measurement bias. Hence, the estimates obtained by
the biased angle-only measurements can not be bounded directly by the PCRLB without
accounting for the additional bias uncertainty in the FIM (shown in (9)). In this section, we
discuss the following modifications to the FIM for obtaining a suitable performance bound
for this work.

Recalling the governing equation of Jz(k), it is clear that the measurement bias is
going to impact the measurement noise covariance Rk, whereas the Hessian matrix remains
unchanged. First, we form the covariance matrix for the bias as Rbias = diag

(
σ2

θ , σ2
γ

)
.

To provide bias compensation we obtain the bias compensated measurement covariance
matrix as,

Rb
k = Rk + Rbias (10)

=

[
σ2

θ + σ2
θb

0
0 σ2

γ + σ2
γb

]
(11)

Once the bias compensated measurement covariance matrix is obtained, substituting
Rb

k into Rk of (9) we obtain,

Jk+1 =
(

FkJ−1
k FT

k + Qk

)−1
+ HT

k

(
Rb

k

)−1
Hk (12)

Now, we focus on modifying the FIM to account for the terrain uncertainty.

4.3. Presence of Terrain Uncertainty

The prior information about the terrain height (2) is used to initialize the FIM at
k = 1. Note that this measurement can not be used more than once. In order to initial-
ize the FIM at k = 1 using the terrain height information and the first target measure-
ment, we consider a stacked measurement [θk, γk, zm] and corresponding covariance matrix
Rz = diag

(
σ2

θ , σ2
γ, σ2

zt

)
. The subscript ‘z’ indicates the initial time step where the terrain

uncertainty is considered. We use this notation throughout this paper. Combining with
Rbias the bias compensated covariance matrix is expressed as,

Rb
z = Rz + Rbias (13)

=

⎡⎢⎣σ2
θ + σ2

θb
0 0

0 σ2
γ + σ2

γb
0

0 0 σ2
zt

⎤⎥⎦ (14)

Once Rb
z is formed, corresponding Hessian matrix Hz is evaluated as shown in (A4).

Using Rb
z and the newly evaluated Hz, we can initialize FIM at k = 1 as

J1 =
(

FkJ−1
k FT

k + Qk

)−1
+ (Hz)

T
(

Rb
z

)−1
Hz (15)

4.4. Biased Posterior Cramer–Rao Lower Bound

A bound on the covariance of biased target state estimate x̂t
k is defined as biased

PCRLB. In [21,23,24], the biased PCRLB is expressed as,

Cx̂t ≥
(

I + Dk

)T
J−1

k

(
I + Dk

)
(16)
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where Dk is the bias gradient matrix. The FIM is evaluated following (9). The bias in the

state is written as bxt
k
=

(
E[x̂t

k]− xt
k

)
. Please note that the bias in the state is denoted as

bxt
k
, which is not to be confused with the measurement bias b. Given the target state xt

k,
bias gradient matrix is defined as,

Dk =
∂bxt

k

∂xt
k

(17)

In order to empirically obtain Dk from (17), first we have to form the bias state. For a
stationary ground target, the bias in the state vector is denoted as bxt

k
= [bxt

k
, byt

k
, bzt

k
].

Analytical form of the individual bias state coordinates can be obtained as,

bxt
k

=
zt

k sin(θtrue
k + θbk

)

tan(γtrue
k + γbk

)
− zt

k sin(θtrue
k )

tan(γtrue
k )

(18)

byt
k

=
zt

k cos(θtrue
k + θbk

)

tan(γtrue
k + γbk

)
− zt

k cos(θtrue
k )

tan(γtrue
k )

(19)

The bias gradient Dk is evaluated as shown below,

Dk =

⎡⎢⎢⎢⎢⎢⎣
∂bxt

k
∂xt

k

∂bxt
k

∂yt
k

∂bxt
k

∂zt
k

∂byt
k

∂xt
k

∂byt
k

∂yt
k

∂byt
k

∂zt
k

∂bzt
k

∂xt
k

∂bzt
k

∂yt
k

∂bzt
k

∂zt
k

⎤⎥⎥⎥⎥⎥⎦ (20)

The derivatives of (20) can be evaluated easily and not shown here in this paper.
Additionally, modifying (20) for moving ground target is straightforward and not shown
in this paper.

Intuitively the bias gradient represents the part of the bias which can not be removed
by simple subtraction, i.e., the non-additive component of the bias. As a result, the biased
PCRLB, shown in (16), depends on the gradient matrix Dk . Performance of the ground
target tracking, both stationary and moving, is validated against both PCRLB and biased
PCRLB in Section 7.2.

In the next section, we use the derived PCRLB to optimize the platform trajectory to
estimate the sensor biases using targets of opportunity.

5. Bias Estimation Using Targets of Opportunity

Recalling the discussions from Section 2, an optional two-step bias estimation using
targets of opportunity is presented in this section. To bring clarity and avoid confusion
with the original target, throughout this paper, we reserve the term ‘target of opportunity’
to indicate the target for which some prior information is known, or we are not interested
in estimating that target’s state. Note that this step is usually performed on the way to the
target region from the base station. Hence, we need to consider only a reduced bias error
when estimating the target state.

The two steps involved in our proposed bias estimation approach are as follows.
The first step is to identify one or more stationary targets of opportunity on the sensor’s
path to the tracking region. The next step is to estimate the biases in the measurements
using the identified targets of opportunity. Such a bias estimation approach has two
following benefits:

• The uncertainty in the sensor bias is reduced before the original ground target appears
in the sensor’s field of view. Hence, the tracking can provide better estimates from the
beginning. Otherwise, we may need to make more maneuvers to reduce the biases in
the state estimate to obtain a reasonable tracking accuracy;
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• The sensor can choose multiple targets of opportunity to improve the convergence of
the bias estimates. When we use only the interested target to correct the bias, it will
take a longer time to converge.

In this section, we analyze the impact on bias estimation caused by the change in sensor
trajectory, the number of targets of opportunity used and targets’ proximity to the sensor
trajectory. We consider both scenarios where the locations of the targets of opportunity are
known as well as unknown, but the terrain heights are not known accurately. PCRLB is
used to quantify the estimation quality in order to find the optimal platform trajectory and
the locations of the targets of opportunity. The terms ‘target of opportunity’ and ‘target of
opportunity with terrain uncertainty’ are used interchangeably in this section.

5.1. Known Location with Terrain Uncertainty

In this section, the bias estimation is performed with a known location of the target of
opportunity. To emphasize, the x and y coordinates of the target of opportunity are known,
and the height (z) information is obtained from DTED. Hence, there is an uncertainty
in the target’s z value. The following factors impact the bias estimation: the number of
targets of opportunity used, change in sensor trajectory and the proximity of the target of
opportunity with the sensor trajectory. In this section, two possible scenarios are analyzed,
and a conclusion on the optimal bias estimation is presented using the PCRLB. In the
first scenario, the sensor bias is estimated using one target of opportunity with various
sensor trajectories. In the second scenario, the sensor bias is estimated using two targets of
opportunity with possibly different terrain heights.

Let us denote the state vector of the stationary target of opportunity as xto
k = [xto

k , yto
k , zto

k ]
T .

Here, the superscript ‘to’ indicates the target of opportunity. The uncertainty in the height
of the target of opportunity is modeled as a zero-mean Gaussian with a standard deviation
of σzto . Although the location of the target of opportunity is known, zto

k is needed to be
estimated because of the presence of the terrain uncertainty. Therefore, the state vector of
the bias estimation problem at the time step k is expressed as x

aug1
k = [zto

k , θbk
, γbk

]T . Here,
the post-fix ‘aug1’ refers to the augmented state for the first scenario, i.e., known location
of the target of opportunity.

Our next step is to initialize the filter for bias estimation. Modeling the error associated
with the terrain uncertainty by a Gaussian with zero-mean and σzto standard deviation,
we can write zto

m ∼ N (zto
m ; zto, σ2

zto ). Hence, we can initialize the height of the target
of opportunity with the DTED information zto

m . The bias states are initialized as [0, 0]T .
Therefore, the state vector is initialized as x

aug1
1 = [zto

m , 0, 0]T . Moreover, the initial state

covariance P
aug1
1 is calculated using the FIM evaluated at the initial time step as P

aug1
1 =(

J
aug1
1

)−1
. After filter initialization, the non-linear filter (UKF in our work) is used to

estimate the augmented state. Note that, for initialization H
aug1
z is expressed as,

H
aug1
z =

⎡⎢⎢⎢⎣
∂zto

k
∂zto

k

∂zto
k

∂θbk

∂zto
k

∂γbk
∂θk
∂zto

k

∂θk
∂θbk

∂θk
∂γbk

∂γk
∂zto

k

∂γk
∂θbk

∂γk
∂γbk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎣
1 0 0
0 1 0√

xrto2
k +yrto2

k

xrto2
k +yrto2

k +zrto2
k

0 1

⎤⎥⎥⎦ (21)

The biased measurement covariance matrix, during initialization, of the augmented
state is expressed as R

aug1
z = diag

(
σ2

θ , σ2
γ, σ2

zto

)
. Once H

aug1
z and R

aug1
z are obtained for

k = 1, the FIM is evaluated from (9) as,

J
aug1
1 =

(
FkJ−1

k FT
k + Qk

)−1
+
(

H
aug1
z

)T(
R

aug1
z

)−1
H

aug1
z (22)
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After initialization, we obtain the PCRLB for the time steps k > 1. First, we obtain the
Hessian matrix H

aug1
k of the bearing and elevation measurement model as,

H
aug1
k =

⎡⎣ ∂θk
∂zto

k

∂θk
∂θbk

∂θk
∂γbk

∂γk
∂zto

k

∂γk
∂θbk

∂γk
∂γbk

⎤⎦ =

⎡⎣ 0 1 0√
xrto2

k +yrto2
k

xrto2
k +yrto2

k +zrto2
k

0 1

⎤⎦ (23)

where the relative state xrto
k = xto

k − xo
k. The measurement contribution J

aug1
z (k) =

(
H

aug1
k

)
(

R
aug1
k

)−1
H

aug1
k , where measurement noise covariance is R

aug1
k = diag

(
σ2

θ , σ2
γ

)
. With

J
aug1
z (k), H

aug1
k and R

aug1
k , PCRLB is evaluated using (9). As the sensor bias and the target

height are constants, we consider Fk = I, i.e., identity matrix of appropriate dimension.
In order to improve the bias estimation further, we consider two different cases below.

5.1.1. Change in Sensor Trajectory

For a given target of opportunity, we restrict our observations to two types of sensor
trajectories. The sensor can either follow the CV model and make a fly-by while estimating
the bias state or follow a combination of CV and CT models to make a turn around the
target to estimate the bias. In this work, the combination of CV and CT models is referred
to as CV-CT model. The aforementioned two types of sample sensor trajectories are shown
in Figure 2a,b, respectively.

0 500 1000 1500 2000 2500
x (m)

500

1000

1500

2000

y 
(m

)

Sensor Trajectory
Target of Opportunity

(a) (b)
Figure 2. Sensor trajectories for bias estimation using a stationary target with known location and
terrain uncertainty. Sensor trajectory follows: (a) the CV model, (b) the CV-CT model.

Let us assume that the target of opportunity remains in the sensor’s field of view for K
time steps. The x-axis indicates the sensor heading at the start time step. In other words,
when the sensor follows the CV model, ẏo

k = 0.
Let us now consider the case when the sensor follows the CV-CT model. We denote

KCV as the total number of time steps the sensor follows the CV model in this CV-CT model.
The platform switch to the CT model when the platform reaches the closest distance from
the target of opportunity. Considering the sensor velocity to be Vm/s and the sampling
rate to be T, we can write the total number of samples obtained while the sensor remains in

the CV model to be
(

1
T
|xto

1 −xo
1|

V

)
. Once the sensor starts following the CT model, the total

number of measurements obtained by completing one full cycle is denoted by
(

1
T

2π
ω

)
,

where ω is the turn rate. We consider the total number of time steps needed to obtain(
1
T

2π
ω

)
samples to be KCT .

Now we shift our focus into finding ω, for the sensor to follow the CT model. Let us
denote the x–y coordinates of the sensor at k = KCV as (xo

KCV
, yo

KCV
). From the discussions

of the previous paragraph, the maximum change in the y-coordinate occurs at k = KCT
2 .
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In this work, the idea behind finding ω is to ensure that the target of opportunity is inside
the circle formed by the CT model,∣∣∣∣yo

KCT
2

− yo
KCV

∣∣∣∣ ≥ ∣∣∣yo
KCV

− yto
1

∣∣∣ (24)

Now, using the CT model (A1), we can show that

yo
KCT

2
− yo

KCV
=

2
ω

ẋo
KCV

(25)

From (25) and (24), we can obtain,

2
ω

ẋo
KCV

≥
∣∣∣yo

KCV
− yto

1

∣∣∣
ω ≤ 2∣∣∣yo

KCV
− yto

1

∣∣∣ ẋo
KCV

(26)

However, the platform has a constraint on maximum turn, ωmax, that it can make,

hence we pick the ω as min

(
ωmax, 2∣∣∣yo

KCV
−yto

1

∣∣∣ ẋo
KCV

)
to reduce the additional time required

to reach the region of original target.
From (9), it is evident that the Hessian matrix H

aug1
k significantly affects the PCRLB.

When considering (23), the elements corresponding to the differentiation involving θk in
H

aug1
k are constant. Therefore, the measurement contribution from the bearing bias does

not depend on the sensor trajectory. On the other hand, the terms corresponding to the
differentiation involving γk in H

aug1
k depends on the location of both the sensor and the

target of opportunity. As a sensor trajectory formed by the CV-CT model reduces the
relative distance between the target of opportunity and the sensor, xrto

k and yrto
k reduces.

As a result, reduction in

( √
xrto2

k +yrto2
k

xrto2
k +yrto2

k +zrto2
k

)
(from (23)) leads to the reduction in PCRLB. Thus,

the sensor trajectory formed by the CV-CT model provides a better elevation bias estimation
when compared to that of the sensor trajectory formed by the CV model. A comparative
analysis between bias estimation performance while the sensor follows both the CV and
the CV-CT model is shown in Section 7.3.1. Note that we need to spend more time on this
bias estimation when we use the CV-CT model. With the CV model, no additional time is
needed to scan the target of opportunity since there is no change in the platform trajectory.

We now expand our analysis to show the effect of using two targets of opportunity
with known locations and additional terrain uncertainty.

5.1.2. Bias Estimation with Multiple Targets of Opportunity

In the previous section, we concluded that the sensor following a CV-CT trajectory
improves the estimate γ̂bk

, when compared to the case where the sensor follows only a CV
trajectory. In this section, we analyze the significance of adding a second stationary target of
opportunity in the sensor’s field of view. The goal here is to analyze whether the presence of
the second target of opportunity coupled with the sensor following the CV model provides
better γ̂bk

so that we do not need to change the platform trajectory. Note that the second
target of opportunity with a different terrain height could be located anywhere in the
sensor’s field of view. Figure 3 shows an example of two targets of opportunity located at a
distance of d1m and d2m from the sensor trajectory.
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Figure 3. Sensor trajectory following CV model for bias estimation using two targets with known
locations and terrain uncertainty.

Based on the assumption that only one target of opportunity is tracked at any given
time, the second target of opportunity is picked far away from the first target so that the
second target will be in the sensor’s field of view for a reasonable time after completing the
tracking of the first target. For instance, let us assume that the total number of time steps
taken by the sensor for estimating the bias using one target of opportunity with the CV-CT
model is K. Now, let us consider that the bias estimation is performed using two targets of
opportunity. Denoting K1 (where K1 < K) as the total number of time steps for which the
first target of opportunity is used, we obtain the total number of time steps used for the
second target of opportunity as K2 = K − K1. Note that an equal number of time-steps are
considered in both cases for a fair comparison. However, in practice, the total number of
time steps depends on the sensor’s field of view and the target locations.

A better elevation bias estimate can be obtained while the target of opportunity is
located closer to the sensor trajectory. To explain such a result, we analyze the reduction in
PCRLB.

To validate the above notion, we provide the following experimental analysis. Denot-
ing the first target of opportunity as t1 and the second target target of opportunity as t2,
from Figure 3, we can write the x-coordinates as xt1 = 1000 m and xt2 = 3000 m. Note
that, in presence of multiple targets of opportunity, we denote first, second, and third target
of opportunity with lower-case letter ‘t1’, ‘t2’, and ‘t3’, respectively. Such notation is used
to avoid conflict with the sampling time of sensors, which is denoted by the upper-case
letter ‘T’. The y-coordinates are changed (while keeping xt1 and xt2 unchanged) to locate
both the ‘t1’ and ‘t2’ at various relative distances from the sensor trajectory. A comparison
of the PCRLB of γb (in degree) at the end of the bias estimation is shown in Table 1. In this
analysis, the performance of the CV model with two targets is compared with a CV-CT
model with one target (t1), as described in the previous section.

113



Sensors 2022, 22, 509

Table 1. PCRLB (in degrees) of γb (in degrees) with different sensor trajectories and various locations
of two targets of opportunity.

y-Coordinates Sensor Trajectories

yt2 yt1 CV Model CV-CT Model

1300 0.0621 0.0703
1300 1600 0.0656 0.0734

1900 0.0687 0.0742

1300 0.0659 0.0703
1600 1600 0.0701 0.0734

1900 0.0740 0.0742

1300 0.0691 0.0703
1900 1600 0.0740 0.0734

1900 0.0786 0.0742

From Table 1, the following conclusions are drawn:

• The addition of the second target of opportunity with different terrain height (i.e.,
different error in the assumed height) provides additional information to the estimator.
Therefore, in most of the above simulation scenarios, estimation of γ̂b with the CV
model for sensor trajectory and two targets of opportunity provides better performance
than that of the CT model for sensor trajectory and one target of opportunity;

• Bias estimation accuracy diminishes with the distance of the targets from the sen-
sor. If the second target of opportunity is further away from the sensor trajectory,
the additional information contributed to the bias estimation is insignificant. In such a
scenario, the location of the first target of opportunity plays a significant role in the
performance of bias estimation. As shown on the {8 and 9}-th row of Table 1, when the
targets are relatively far away from the sensor trajectory, sensor trajectory with CV-CT
model and one target of opportunity outperforms bias estimation obtained by the CV
model along with two targets of opportunity;

• The bias estimation also depends on the error of the assumed height of the targets
of opportunity. For our analysis in Table 1, different height errors are used for dif-
ferent targets. As shown on the 3-rd and 7-th rows of Table 1, we obtain different
PCRLB estimates even with same y values ((yt1 = 1300, yt2 = 1900) and (yt1 = 1900,
yt2 = 1300)).

Additional results involving the Root Mean Square Error (RMSE) plots along with
the scenarios of positioning the second target of opportunity on two opposing sides of the
sensor trajectory are shown in Section 7.3.

From this analysis, we can conclude that we can obtain a better estimate of the biases
by using multiple targets of opportunity without wasting additional time that we discussed
in the previous section for the CV-CT model with a single target.

Although the bias estimation discussed in this section only considers targets of oppor-
tunity having known locations, we may need to pick an unknown stationary object as a
target of opportunity. In the next section, bias estimation with an unknown location of the
target of opportunity is introduced.

5.2. Unknown Location with Terrain Uncertainty

Following the same notations from Section 5.1, we consider a stationary target of
opportunity with unknown xto and yto to estimate the bias. Let us denote the unknown
stationary target and bias state as xto

k = [xto
k , yto

k , zto
k ]

T and bk = [θbk
, γbk

]T , respectively.
In order to estimate both x̂to and b̂k simultaneously, we form the augmented state vector
as x

aug2
k = [xto

k , yto
k , zto

k , θbk
, γbk

]T . Our goal here is to estimate the augmented state vector

x̂
aug2
k = [x̂to

k , ŷto
k , ẑto

k , θ̂bk
, γ̂bk

]T , even though we are not interested in the target location.
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We can write the initial augmented state vector x
aug2
1 = [xto

1 , yto
1 , zto

m , 0, 0]T , where xto
1

and yto
1 are converted position coordinates and zto

m is the assumed target height (equations
are provided later in (29) and ((30) of Section 6.2). The measurement covariance matrix
R

aug2
z = diag

(
σ2

θ , σ2
γ, σ2

zto

)
is used to find the initial covariance. Details about the construc-

tion of the Hessian matrix, i.e., H
aug2
z , is shown in (A6). Once H

aug2
z and R

aug2
z are obtained,

we obtain J
aug2
1 from (22). Initial covariance is evaluated as P

aug2
1 =

(
J

aug2
1

)−1
. Non-linear

filter is used to update the state x̂
aug2
k .

In order to evaluate the bias estimation performance, PCRLB is evaluated follow-
ing the formulation of Section 4. First, we evaluate the Hessian matrix H

aug2
k (details

about the matrix construction is shown in (A5)) and the measurement covariance matrix
R

aug2
k = diag

(
σ2

θ , σ2
γ

)
. With H

aug2
k and R

aug2
k , the measurement contribution of the PCRLB

is evaluated as J
aug2
z (k) =

(
H

aug2
k

)(
R

aug2
k

)−1
H

aug2
k . Substituting H

aug2
k , R

aug2
k and J

aug2
z (k)

into (9), PCRLB is evaluated.
In this section also, we study the possibility of improving bias estimation by,

• Changing sensor trajectory from the CV model to the CV-CT model;
• Choosing more than one target of opportunity in the sensor’s field of view.

5.2.1. Change in Sensor Trajectory

For a known location of the target of opportunity, in Section 5.1.1, we concluded that a
sensor trajectory comprised of the CV-CT model provides a relatively improved bias estima-
tion when compared to that of the CV model. Now, considering the targets of opportunity
with unknown locations are considered, we use PCRLB to explain the performance of bias
estimation. Considering H

aug2
k from (A5) (Appendix A), the differentiation involving θk

is dependent on xrto
k and yrto

k . As a result, a sensor trajectory formed by the CV-CT model
provides a reduced estimation error of θ̂k by reducing the relative distance between the
sensor and the target of opportunity. Note that this was not the case with the known target
location. However, for the differentiation involving γk, the relative height zrto

k is present in
the numerator. As the terrain uncertainty is considered, a similar conclusion on a preferred
trajectory can not be drawn for the estimation of γ̂k, as opposed to the estimation of θ̂k.

Similar to Section 5.1, we now expand our analysis by introducing multiple targets of
opportunity with unknown locations and terrain uncertainty.

5.2.2. Bias Estimation with Multiple Targets of Opportunity

In this section, we investigate the possibility of improving the bias estimation by
introducing multiple targets of opportunity in the sensor’s field of view. The sensor follows
a trajectory formed by the CV model as opposed to the CV-CT model.

As discussed in Section 5.1, the bias estimation depends on the proximity of the targets
of opportunity to the sensor trajectory. To analyze similar dependency for bias estimation
with unknown locations, we perform a comparison of PCRLB. Let us consider the ground
truth of x-coordinates of the first and second target of opportunity as xt1 = 1000 m and
xt2 = 3000 m. For 3 different values of yt1 and yt2, we obtain three different locations of the
target of opportunity based on its proximity to the sensor trajectory. Note that by location,
we refer to the ground truth needed to evaluate the PCRLB.

Let us analyze the PCRLB evaluations from Table 2. Firstly, we can draw the following
conclusions for θ̂bk

:

• When the sensor follows a trajectory formed by the CV-CT model, one target of
opportunity is sufficient to estimate the bearing bias. See Section 5.1.2 for explanations.

Secondly, the following conclusions can be drawn for γ̂bk
:

• When both the targets of opportunity are relatively far away from the sensor trajectory,
a better estimation of γ̂bk

is obtained when the sensor follows a trajectory formed by
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CV-CT model. The reason behind such result can be attributed to the reduction in
relative distance xrto

k and yrto
k , which, in turn, reduces the PCRLB;

• When t1 is away from the sensor trajectory, we draw the same conclusions as the
known locations of the targets of opportunity, discussed in Section 5.1.

Table 2. PCRLB (in degrees) for θbk
and γbk

estimation by changing sensor trajectories for various
true locations of the 2 targets of opportunity.

Sensor Trajectories

y-Coordinates for θ̂bk (in Degrees) for γ̂bk (in Degrees)

yt1 yt2 CV Model CV-CT Model CV Model CV-CT Model

1800 0.1083 0.0480 0.0726 0.0714
1400 1600 0.0944 0.0480 0.0694 0.0714

1400 0.0828 0.0480 0.0661 0.0714

1800 0.1202 0.0476 0.0771 0.0733
1600 1600 0.1054 0.0476 0.0733 0.0733

1400 0.0892 0.0477 0.0695 0.0733

1800 0.1286 0.0472 0.0817 0.0740
1800 1600 0.1107 0.0472 0.0770 0.0739

1400 0.0931 0.0473 0.0729 0.0740

Following the above discussions, following the CV-CT model with one target of
opportunity is a better choice than following the CV model with two targets of opportunity.
However, adding one more target of opportunity after completing the CV-CT model with
the first target of opportunity on the way to the destination with the CV model will help to
improve the elevation bias estimate.

6. Tracking Target with Terrain Uncertainty and Sensor Biases

In this section, we provide the algorithm for tracking stationary and moving targets
with terrain uncertainty and sensor biases. Note that even if we perform the bias estimation
using targets of opportunity, we do not find the exact bias to do the de-biasing before
passing the measurements to the tracker. The variance of the bias at the start of the tracking
will be larger if we do not perform the step proposed in Section 5. However, the tracking of
the target of interest should incorporate possible biases.

Since false alarms are not considered in this paper, the tracking includes initialization
and filtering.

6.1. Bias Compensation

For bias compensation, the bias state and the standard deviations are required to be
known. In this work, we consider two following cases: bias compensation based on a bias
prior and bias estimation using a target of opportunity.

• Let us assume that the bias state is known with a reasonable level of accuracy. In
this text, the term reasonable level of accuracy does not refer to any formal definition
of accuracy. We denote such a state with the superscript ‘deduced’. In other words
bdeduced = [θdeduced

b , γdeduced
b ] is known a-priori. Additionally, the corresponding bias

standard deviations σdeduced
θb

and σdeduced
γb

are known;
• However, in most applications, obtaining such prior information about the bias state

and the standard deviation is not practical. Hence, estimating the bias state b̂ = [θ̂b, γ̂b]
and σ̂θb , σ̂γb using a target of opportunity is a more suitable alternative, which is
discussed detail in Section 5.
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Once the bias state and the corresponding standard deviations are obtained, by either
of the two ways described above, we obtain the bias compensated measurements zc

k as,

zc
k = zk − z

prior
k (27)

where z
prior
k is the measurement obtained by substituting bk with bdeduced

k or b̂k in (5).
Similarly, the modified measurement covariance matrix Rc

k is obtained as,

Rc
k =

[
σ2

θ + σ̂2
θb

0
0 σ2

γ + σ̂2
γb

]
(28)

When the bias standard deviations are known a priori, σ̂θb and σ̂γb are substituted with
σdeduced

θb
and σdeduced

γb
, respectively.

6.2. Initialization

Recalling the discussions from Section 3, the height of the ground target is obtained
from DTED and it can be used for track initialization. Note that we should not use this
information again in the filtering steps to avoid double counting. From the target-sensor
geometry shown in Figure 1, we can write the converted Cartesian coordinates of the target
state as,

xt
1 =

zt
m

tan(γ1)
sin(θ1) (29)

yt
1 =

zt
m

tan(γ1)
cos(θ1) (30)

With the x and y coordinates from (29) and (30) along with zt
m, the initial state of the

ground target is written as xt
1 = [xt

1, 0, yt
1, 0, zt

m]
T . Note that the initial velocity along the x

and y-axis, ẋt
1 and ẏt

1, are considered to be 0 in this one-point initialization [33]. Similarly,
for the stationary target we can write xt

1 = [xt
1, yt

1, zt
m]

T .
In order to initialize the covariance P1, let us first introduce the covariance associated

with measurements, including the terrain height, as Rc
z = diag

(
σ2

θ + σ̂2
θb

, σ2
γ + σ̂2

γb
, σ2

zt

)
.

Similar to the other sections of this paper, we reserve the use of subscript ‘z’ to denote the
initial time step when the height information is considered to evaluate the measurement
covariance and the Hessian matrices. Note that Rc

z is different from that of the noise
covariance Rc

k, as the terrain uncertainty is considered only for the filter initialization. Now
following (9), we evaluate J1 to obtain P1 = J−1

1 . First, the measurement contribution for
initialization Jz(1) can be evaluated as Jz(1) = HT

z (R
c
z)

−1Hz, where the initial Jacobian
matrix Hz is,

Hz =

⎡⎢⎢⎢⎣
∂θ1
∂xt

1

∂θ1
∂ẋt

1

∂θ1
∂yt

1

∂θ1
∂ẏt

1

∂θ1
∂zt

1
∂γ1
∂xt

1

∂γ1
∂ẋt

1

∂γ1
∂yt

1

∂γ1
∂ẏt

1

∂γ1
∂zt

1
∂zt

1
∂xt

1

∂zt
1

∂ẋt
1

∂zt
1

∂yt
1

∂zt
1

∂ẏ1

∂zt
1

∂zt
1

⎤⎥⎥⎥⎦ (31)

Evaluating the partial derivatives from (31), we can write the analytical form of Hz as,

Hz =

⎡⎢⎢⎢⎢⎢⎣
yr

1

xr2
1 +yr2

1

0 −xr
1

xr2
1 +yr2

1

0 0

−xr
1zr

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) 0 −yr
1zt

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) 0

√
xr2

1 +yr2
1

xr2
1 +yr2

1 +zr2
1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (32)
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where xr
1, yr

1 and zr
1 denote the coordinates of the relative state at time step k = 1 (xrt

1 =
xt

1 − xo
1).

For the moving target, maximum possible target velocity, vmax, is used to evaluate
Jp = diag

(
0, 1

v2
max

, 0, 1
v2

max
, 0
)

. The initial covariance P1 is obtained by P1 = (Jz(1) + Jp)−1.

Evidently, for the stationary target J1 = Jz(1) and initial covariance P1 = J−1
z . Note that the

Hessian matrix, HS
z , for the stationary target is expressed as,

HS
z =

⎡⎢⎢⎢⎢⎢⎣
yr

1

xr2
1 +yr2

1

−xr
1

xr2
1 +yr2

1

0

−xr
1zr

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) −yr
1zr

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) √
xr2

1 +yr2
1

xr2
1 +yr2

1 +zr2
1

0 0 1

⎤⎥⎥⎥⎥⎥⎦ (33)

The superscript ‘S’ in HS
z , of (33), indicates the stationary target.

6.3. Filtering

Once the filter is initialized and the measurements are bias compensated, UKF is used
to handle the non-linearity and obtain the estimated target state x̂t

k and the associated
covariance P̂k [30]. The effect of terrain uncertainty is already considered in obtaining
the initial state and the associated covariance. Hence, only the bearing and elevation
measurements are used to update the state. Non-linear filtering uses (1) for the state
prediction and (5) for the measurement update. Proposed filtering approach using UKF
involves the following steps: calculation of the sigma points, measurement prediction and
update. These processes are well known and not discussed in this paper.

Now, in the next section, we present the simulation results for tracking both the
stationary and moving targets with terrain uncertainty using a biased angle-only sensor.

7. Simulations

7.1. Parameters

The target-sensor geometry is shown in Figure 4. We consider both mobile and
stationary targets for this simulation as shown in Figure 4a,b, respectively. The own-ship
follows a trajectory formed by the CV-CT model. Parameters used in this simulation are
provided in Table 3. Note that in all initial states, the positions along x, y, and z-coordinates
are in meter whereas the velocities ẋ, ẏ and ż are in m/s.

(a) (b)
Figure 4. Geometry of the airborne sensor and the ground target with terrain uncertainty. (a) Target
moves in nearly constant velocity. (b) Target remains stationary.
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Table 3. Parameters.

Parameters Value

Initial state of the own-ship
(
xo

1 = [xo
1, ẋo

1, yo
1, ẏo

1, zo
1]
)

[20, 40, 5000, 15, 7000]T

Initial state of the mobile target
(
xt

1 = [xt
1, ẋt

1, yt
1, ẏt

1, zt
1]
)

[3500, 20, 2000, 15, 100]T

Initial state of the stationary target
(
xt

1 = [xt
1, yt

1, zt
1]
)

[3500, 2000, 100]T

Standard deviation of terrain uncertainty (σzt ) 10 m
Bearing measurement noise standard deviation (σθ) 0.4◦

Elevation measurement noise standard deviation (σγ) 0.2◦

Sampling time (T) 1 s
Maximum velocity of the ground target (vmax) 35 m/s
Bearing bias (θbk

) 3◦

Elevation bias (γbk
) 1◦

Total simulation time 200 s

Considering σzt = 10 m, we obtain the error associated with the terrain uncertainty as
vz ∼ N (vz; 0, 102). The moving target trajectory follows the CV model.

7.2. Performance Bound

Figure 5a,b show the position error plots for tracking the stationary and moving
ground target, respectively. The position errors are obtained by performing square root
on the sum of the diagonal elements of the covariance matrix (elements representing the
x, y, and z coordinates). Position errors for both the biased PCRLB (see Section 4.4) and
the PCRLB (see Section 4.2) are evaluated to compare with that of the proposed filtering
approach. In order to evaluate the position error obtained by the estimated target states
using the proposed filtering approach, we performed 500 Monte Carlo simulations.
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Figure 5. Comparison of the performance bounds. (a) Stationary ground target. (b) Mobile ground target.

From Figure 5, it is clear that the biased PCRLB would provide a tighter bound on
position error when compared to the standard PCRLB.

7.3. Bias Estimation

In this section, we analyze the bias estimation for the true values of θbk
= 1◦ and

γbk
= 1◦. Non-linear filtering based on UKF is used to estimate the bias state using the

measurements obtained from the stationary target of opportunity. Note that, all the targets
of opportunity considered in this section have terrain uncertainty. We show the simulation
results for the two following scenarios. In scenario 1, we consider the location of the target
of opportunity is known with terrain uncertainty. In scenario 2, the location of the target of
opportunity is unknown.
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7.3.1. Scenario 1

Recalling the discussions from Section 5, one (or multiple) target of opportunity is
chosen to estimate the bias. Figure 6 shows the RMSE values for the bias estimation using
one stationary target of opportunity with known location. We consider the initial state of
the target of opportunity as xto

1 = [xto
1 , yto

1 , zto
1 ]

T = [1000, 1200, 100]T . The initial state of the
own-ship is xo

1 = [xo
1, ẋo

1, yo
1, ẏo

1, zo
1]

T = [0, 10, 1000, 0, 2500]T .
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(b) Estimation of γbk

Figure 6. RMSE evaluation for bias estimation using one target of opportunity with known location
and terrain uncertainty.

To simulate the effect of change in sensor trajectory, discussed in Section 5.1.1, the CV
model and the CV-CT model are used in this simulation. We obtain KCV = 1000

10 = 100 sec
as the time-step where the own-ship trajectory switches from the CV model to the CT
model (when the CV-CT model is considered). As discussed in Section 5.1.1, the CV-CT
model reduces the relative distances between the sensor and the target of opportunity. This
leads to the reduction in xrto

k and yrto
k , causing the reduction in PCRLB. Hence, justifiably,

the CV-CT model improves the estimate γ̂bk
when compared to that of the sensor trajectory

formed by the CV model. Recalling the discussions from Section 5.1.1, differentiation with
respect to θk for obtaining the Hessian matrix is constant. As a result, for estimating θ̂bk
there is no change in the RMSE evaluation (or PCRLB) while the trajectories are changed.
Note that the difference in RMSE, for both the CV and the CV-CT, is negligible before the
time step k = 100 s. Hence, to produce a meaningful RMSE comparison for the said sensor
trajectories, the last 181 time steps (starting from k = 100 s) are shown in Figure 6.

Now, we simulate the bias estimation results considering multiple targets of opportu-
nity. Recalling the conclusions from Section 5.1.2, two targets of opportunity with known
x and y coordinates, each having terrain uncertainty, are chosen. The sensor follows
a trajectory formed by the CV model. The first target of opportunity is initialized as
xt1

1 = [xt1
1 , yt1

1 , zt1
1 ]T = [1000, 1600, 100]T . Keeping zt2

1 = zt1
1 , the second target of oppor-

tunity is initialized as xt2
1 = [xt2

1 , yt2
1 , zt2

1 ]T = [3000, 1200, 100]T . For this simulation, we
assume that t2 is introduced in the sensor’s field of view at K1 = 2 × KCV . Evidently,
from Figure 7b, it is clear that the RMSE, as well as the PCRLB, for the estimate γ̂bk

drops
when t2 is introduced at K1 time-step. However, the addition of t2 has no impact on the
RMSE of θ̂bk

estimate.
The RMSE (as well as the PCRLB) obtained using one target of opportunity, while

the sensor follows the CV-CT model, are also plotted. When compared with the PCRLB
obtained using two targets of opportunity with the CV model, one target of opportunity
with the CV-CT model provides inferior γ̂bk

estimates. The reason behind such simulation
results can be largely attributed to the information gain facilitated by the addition of the
target of opportunity t2. However, for the θbk

estimation no performance difference is
observed. This result further confirms the conclusions obtained from Figure 6a, where we
verified the change in the sensor trajectory does not impact on the θbk

estimation. Figure 7
also validates the conclusions drawn in Section 5.1.2. 100 Monte Carlo runs are performed
to obtain these simulation results. Note that the differences in RMSE and PCRLB, for all
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the considered cases, are negligible before the time step k = 100 s. Hence, to produce a
meaningful comparison between the bias estimation approaches, only the last 360 time
steps (starting from k = 100 s) are considered in Figure 7.
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Figure 7. RMSE evaluation for bias estimation using two targets of opportunity with a known
location. Terrain uncertainty is present with the target height information.

Next, we analyze the significance of its close proximity to the sensor trajectory. We
consider the second target of opportunity is introduced at K1 = 200 s time step.

Table 1 (from Section 5.1.2) showed the RMSE comparison while the t2 is located either
close or away from the sensor trajectory. Now we consider the possibility of t2 to be located
on either side of the sensor trajectory. In Figure 8a, t2 is located at a distance of d2 = 300 m
from the sensor trajectory. The initial state vector of t2, is given as xt2

1 = [xt2
1 , yt2

1 , zt2
1 ]T =

[3000, 1300, 100]T . Whereas, we consider t3 as the second target of opportunity being
located d3 = 300 m away from the sensor trajectory, with the initial state vector expressed as
xt3

1 = [xt3
1 , yt3

1 , zt3
1 ]T = [3000, 700, 100]T . We consider σzt2 = σzt3 = 10 m, for the simulation.

Once xt2
1 and xt3

1 are initialized, the proposed filtering approach is used to estimate the bias
state b̂k. Note that the first target of opportunity (t1) is located at a distance of d1 = 600 m
from the sensor trajectory.
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Figure 8. Sensor trajectory formed by the CV model to estimate bias using two known targets
of opportunity with additional terrain uncertainty. (a) Second target of opportunity (t2) located
d2m away from sensor trajectory. (b) Second target of opportunity (t3) located d3m away the
sensor trajectory.

The PCRLB is a function of the relative distance between the sensor and the target
of opportunity. Hence, the bias estimates are not impacted by which side the target of
opportunity is located with respect to the sensor trajectory. RMSE evaluation results,
presented in Figure 9b, validate such notion. Close proximity of the target of opportunity
to the sensor trajectory reduces the relative distances, which, in turn, impacts the bias
estimation as shown in Table 1.

121



Sensors 2022, 22, 509

100 150 200 250 300 350 400 450 500

Time (in sec)

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

R
M

S
E

 (
in

 d
eg

re
e)

(a) Estimation of θbk

100 150 200 250 300 350 400 450 500

Time (in sec)

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

R
M

S
E

 (
in

 d
eg

re
e)

(b) Estimation of γbk

Figure 9. RMSE evaluation for bias estimation using two targets of opportunity with known lo-
cation and terrain uncertainty. The second target of opportunity is located on either side of the
sensor trajectory.

Similar to Figure 7, to produce a meaningful comparison between the bias estimation
approaches, only the last 360 time steps (starting from k = 100 s) are considered in Figure 9.
In total, 100 Monte Carlo simulations are performed to obtain all the Figures shown in
Scenario 1.

7.3.2. Scenario 2

We consider two targets of opportunity along with two types of sensor trajectories that
are formed with the CV and the CV-CT models. Figure 10 shows the RMSE and PCRLB
values of the bias estimation when the x and y coordinates of the targets of opportunity
are unknown.
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Figure 10. RMSE evaluation for bias estimation using two targets of opportunity with unknown
location and terrain uncertainty. The second target of opportunity is located on either side of the
sensor trajectory.

Ground truth for the first target of opportunity (t1) is xt1
1 = [xt1

1 , yt1
1 , zt1

1 ]T = [1000, 1400,
100]T . The ground truth for the second target of opportunity, which is d2 = 300 m away
from the sensor trajectory, xt2

1 = [xt2
1 , yt2

1 , zt2
1 ]T = [3000, 1400, 100]T . Similarly, the ground

truth of the target of opportunity t3, located d3 = 300 m away from the sensor trajectory
on the opposite side, can be expressed as xt3

1 = [xt3
1 , yt3

1 , zt3
1 ]T = [3000, 600, 100]T . Note that

only one of the two targets from t2 and t3 is used with target t1. The proposed filter is
initialized with the converted measurements obtained at time step k = 1.

Similar to Scenario 1, the own-ship trajectory switches from the CV to the CT model
at the time step KCV = 100 s (shown in Figure 10a). The sensor starts tracking the second
target of opportunity at K1 = 200 s time step. Similar to Scenario 1, it is assumed that the
second target of opportunity (either t2 or t3) is made available to the sensor’s field of view
at K1 = 2 × KCV time step. Unlike the estimation of θbk

in scenario 1, RMSE (as well as the
PCRLB) obtained by using one target of opportunity while following the CV-CT model
is lower than that of using two targets of opportunity and the CV model. As the x and y
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coordinates are unknown for both the targets of opportunity, adding t2 (or t3) in addition
to that of t1 does not improve the estimation of θbk

. However, as the height information of
both the targets of opportunity is known, the addition of t2 (or t3) improves the estimation
of γbk

, as shown in Figure 10b. However, because of the presence of the terrain uncertainty
for the first few time steps, the CV-CT model with one target of opportunity provides a
superior estimation of γbk

. With time, as the filter converges, the improvement caused by
the addition of the second target of opportunity while following the CV model becomes
evident. Similar to that of Section 1, no improvement is observed in the PCRLB estimates
while using t2 as opposed to t3.

Similar to Scenario 1, only the last 360 time steps (starting from k = 100 s) are
considered in Figure 10 to produce a meaningful comparison between the bias estima-
tion approaches. We performed 100 Monte Carlo simulations to obtain all the results of
Scenario 2.

Note that the ground truth of the bearing and the elevation biases of θbk
= 1◦ and

γbk
= 1◦ are chosen to validate our proposed bias estimation approaches. This is not to be

confused with the ground truth values of θbk
= 3◦ and γbk

= 1◦, as introduced in Table 3,
for tracking the original target. In the next section, for bias compensation, we choose
the bias estimation approach involving two targets of opportunities with known x and y
coordinates and the CV sensor trajectory.

7.4. Tracking Using Angle-Only Measurements

Let us recall the original tracking problem, where a ground target with terrain uncer-
tainty is tracked using a biased airborne angle-only sensor. Parameters for both the sensor
and the target initialization are presented in Table 3. The estimates of the biases from a
sample run are θ̂bk

= 2.89◦ and γ̂bk
= 1.03◦ with the associated variances σθ̂bk

= 0.0597◦

and σγ̂bk
= 0.0834◦.

Once bias compensation is performed to reduce the bias uncertainty, proposed filtering
approach is used for tracking both the moving or stationary target with terrain uncertainty.
Figures 11a and 12a show the 3D CCS representation of the sensor trajectories and the
estimated trajectories (or the estimates for the stationary target). The corresponding 2D
CCS representations are shown in Figures 11b and 12b, respectively. The RMSE plots
along with the corresponding PCRLBs are shown in Figure 13. To establish a baseline, we
evaluate the RMSE and the PCRLB considering no measurement bias, i.e., θbk

= 0◦ and
γbk

= 0◦. Corresponding RMSE plots considering both moving and stationary ground
targets, with terrain uncertainty, are shown in Figure 14a,b, respectively.
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Figure 11. Tracking a mobile ground target with terrain uncertainty using a biased angle-only
airborne sensor. (a) 3D CCS representation of the target-sensor geometry with the estimated trajectory.
(b) 2D CCS representation of the target and the estimated trajectory.
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Figure 12. Tracking a stationary ground target with terrain uncertainty using an airborne angle-only
sensor. (a) 3D CCS representation of the target own-ship geometry along with the estimates. (b) 2D
CCS representation of the stationary target and the estimates.

The effect of bias uncertainty on the estimates is observed in Figure 12b. A handful
of initial estimates are away from the original target. However, as the filter converges,
the effect of bias uncertainty is minimized. Although a similar estimation error is caused by
the bias uncertainty while considering the moving target tracking, it is not clearly observed
in Figure 11b because of the scaling of the y-axis. The RMSE analysis, shown in Figure 13,
validates our approach for both moving and stationary targets. All the simulation results
in this section are obtained by performing an average of over 500 Monte Carlo runs.
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(b) Stationary ground target

Figure 13. RMSE evaluation for tracking a ground target using airborne sensor platform with
angle-only bias-compensated measurements.
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(a) Mobile ground target
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(b) Stationary ground target

Figure 14. RMSE evaluation for tracking a ground target using an airborne sensor platform with
unbiased angle-only measurements.

Now, we analyze the performance of the proposed approach with a conventional
method, where the terrain uncertainty is ignored, for tracking both the stationary and
moving ground targets. The RMSE comparison with σzt = 30 m is shown in Figure 15.
As expected, our proposed approach provides better RMSE for both the stationary and the

124



Sensors 2022, 22, 509

moving ground targets. Although we ignore the terrain uncertainty, we use a wrong value
for the height of the target. Hence, it results in a bias in the estimate and that bias will not
even be reduced with more measurements. That is what we see in Figure 15 for both cases.
For moving target, because of the target sensor geometry, significant change in the RMSE is
noticed only after the first 300 s. Both the simulations were performed by taking an average
of over 100 Monte Carlo runs.
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(a) Stationary ground target
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Figure 15. Comparison of the RMSE of the proposed approach with an approach that ignores the
terrain uncertainty, when the σzt = 30 m.

8. Conclusions

In this paper, we have considered the 3-D tracking of a ground target with terrain
uncertainty using a biased angle-only airborne sensor. We derived the PCRLB bound for
the problem with sensor bias and terrain uncertainty. We provided a bias gradient-based
PCRLB formulation to find a tighter bound under biases. We showed that the biased PCRLB
provides a tighter lower bound when compared with the PCRLB while evaluating position
error. Using the derived PCRLB, we proposed a method to pick an optimal target(s) of
opportunity and optimal platform trajectory to estimate the bias. We demonstrated that
tracking of a ground target in 3-D could be performed with biased angle-only measurements
using UKF as a preferred non-linear filtering method.
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Appendix A

Let us denote the state transition matrices for the CV and CT motion as FCV and FCT .
We also denote the state of the ground target and the own-ship as xt

k = [xt
k, ẋt

k, yt
k, ẏt

k, zt
k]

T

and xo
k = [xo

k , ẋo
k , yo

k, ẏo
k, zo

k]
T . Given the sampling time T and turn rate ω, we can write,

FCV =

⎡⎢⎢⎢⎢⎣
1 T 0 0 0
0 1 0 0 0
0 0 1 T 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ FCT =

⎡⎢⎢⎢⎢⎢⎣
1 sin(ωT)

ω 0 cos(ωT)−1
ω 0

0 cos(ωT) 0 − sin(ωT) 0
0 1−cos(ωT)

ω 1 sin(ωT)
ω 0

0 sin(ωT) 0 cos(ωT) 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (A1)

Note, FCV is used to model the state transition of both the own-ship and the ground
target (when the ground target moves with nearly CV). However, FCT is used to model the
state transition of the own-ship for the bias estimation when the CV-CT model is used.

In order to model the system dynamics of the target, gain matrix G is required to
obtain the process noise. Gain matrix G is written as,

G =

⎡⎢⎢⎢⎢⎢⎣
T2

2 0
T 0
0 T2

2
0 T
0 0

⎤⎥⎥⎥⎥⎥⎦ (A2)

We denote the relative state vector as xr
k = xt

k − xo
k, where xt

k and xo
k are the state vector

of the target and the own-ship, respectively. Considering the angle-only measurements
zk = [θk, γk], the Jacobian matrix for the measurements can be formed as,

Hk =

⎡⎣ ∂θk
∂xt

k

∂θk
∂ẋt

k

∂θk
∂yt

k

∂θk
∂ẏt

k

∂θk
∂zt

k
∂γk
∂xt

k

∂γk
∂ẋt

k

∂γk
∂yt

k

∂γk
∂ẏt

k

∂γk
∂zt

k

⎤⎦

=

⎡⎢⎢⎢⎣
yr

k

xr2
k +yr2

k

0 −xr
k

xr2
k +yr2

k

0 0

−xr
kzr

k√
xr2

k +yr2
k

(
xr2

k +yr2
k +zr2

k

) 0 −yr
kzr

k√
xr2

k +yr2
k

(
xr2

k +yr2
k +zr2

k

) 0

√
xr2

k +yr2
k

xr2
k +yr2

k +zr2
k

⎤⎥⎥⎥⎦ (A3)

For track initialization at k = 1, the Jacobian matrix of the angle-only measurements
and the terrain height measurement can be formed as,

Hz =

⎡⎢⎢⎢⎣
∂θ1
∂xt

1

∂θ1
∂ẋt

1

∂θ1
∂yt

1

∂θ1
∂ẏt

1

∂θ1
∂zt

1
∂γ1
∂xt

1

∂γ1
∂ẋt

1

∂γ1
∂yt

1

∂γ1
∂ẏt

1

∂γ1
∂zt

1
∂zt

1
∂xt

1

∂zt
1

∂ẋt
1

∂zt
1

∂yt
1

∂zt
1

∂ẏt
1

∂zt
1

∂zt
1

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
yr

1

xr2
1 +yr2

1

0 −xr
1

xr2
1 +yr2

1

0 0

−xr
1zr

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) 0 −yr
1zr

1√
xr2

1 +yr2
1

(
xr2

1 +yr2
1 +zr2

1

) 0

√
xr2

1 +yr2
1

xr2
1 +yr2

1 +zr2
1

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (A4)

To estimate the bias with unknown targets, the state vector is formulated as x
aug2
k =

[xto
k , yto

k , zto
k , θbk

, γbk
]T . Knowing the measurement vector zk = [θk, γk], partial derivatives

with respect to the augmented state is shown below,
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For initialization, the Hessian matrix H
aug2
z is expressed as,
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Abstract: We consider the state estimation of a maneuvering target in 3D using bearing and elevation
measurements from a passive infrared search and track (IRST) sensor. Since the range is not observ-
able, the sensor must perform a maneuver to observe the state of the target. The target moves with
a nearly constant turn (NCT) in the XY-plane and nearly constant velocity (NCV) along the Z-axis.
The natural choice for the NCT motion is to allow perturbations in speed and angular rate in the
stochastic differential equation, as has been pointed out previously for a 2D scenario using range and
bearing measurements. The NCT motion in the XY-plane cannot be discretized exactly, whereas the
NCV motion along the Z-axis is discretized exactly. We discretize the continuous-time NCT model
using the first and second-order Taylor approximations to obtain discrete-time NCT models, and we
consider the polar velocity and Cartesian velocity-based states for the NCT model. The dynamic and
measurement models are nonlinear in the target state. We use the cubature Kalman filter to estimate
the target state. Accuracies of the first and second-order Taylor approximations are compared using
the polar velocity-based and Cartesian velocity-based models using Monte Carlo simulations. Nu-
merical results for realistic scenarios considered show that the second-order Taylor approximation
provides the best accuracy using the polar velocity or Cartesian velocity-based models.

Keywords: angle-only filtering in 3D; infrared search and track (IRST) sensor; maneuvering target
tracking; cubature Kalman filter (CKF); Itô stochastic differential equation

1. Introduction

Angle-only filtering in 2D and 3D finds many important applications in passive track-
ing [1–13]. The advantage of passive tracking over active tracking is that the presence of the
passive sensor cannot be detected by the target. Passive tracking arises in submarine track-
ing using a passive sonar [1,11], passive ranging using an infrared search and track (IRST)
sensor [2,4,5,8,12], passive radar tracking [4], satellite-to-satellite passive tracking [14],
video tracking [15], etc. In this paper, we focus on tracking an aircraft using an IRST sensor
on another aircraft. This problem is more difficult than the case where multiple sensors
are used. The bearings-only filtering (BOF) problem in 2D has been extensively studied,
and a vast number of publications exist in the research literature [1,10,16–19], Chapter 6
of [11,20]. However, research in the angle-only filtering (AOF) problem in 3D is limited
compared to that in the bearings-only filtering problem.

Observability is a major issue for the BOF problem in 2D [21] and AOF problem in
3D. In the 2D problem, a four or five-dimensional state is estimated from bearings-only
measurements for a non-maneuvering and maneuvering target, respectively. To observe the
state of the target, the sensor must perform maneuvers with a motion of higher order than
that of the target [18]. If a four-dimensional Cartesian state is used for the BOF problem
in 2D for a non-maneuvering target, it has been observed that the extended Kalman filter
(EKF) [22,23] diverges. Modified polar coordinates (MPC) [1,24,25] were formulated to
overcome the divergence of the EKF. The components of the MPC are bearing, bearing-rate,
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range-rate divided by range, and the inverse of range [1]. The first three components of
MPC are observable even before an ownship maneuver. MPC decouple the observable and
unobservable components of the state vector and provide improved performance of the
EKF. Use of MPC makes the dynamic model for the nearly constant velocity (NCV) model
nonlinear and complex, but the measurement model becomes linear. In addition to the EKF,
the unscented Kalman filter (UKF) [26], cubature Kalman filter (CKF) [27], Gaussian sum
filter (GSF) [28], particle filter (PF) [11], uncorrelated conversion based filter (UCF) [20], etc.
have also been applied to the BOF problem in 2D. In order to address the observability
problem, the multiple model-based range-parametrized (RP) EKF (RP-EKF) was proposed
by Peach [19] and Kronhamn [16]. In addition to the EKF, other filters can also be used in
the RP framework.

Most of the existing work on the angle-only filtering problem in 3D is for a non-
maneuvering target using the NCV model. The sensor must perform a maneuver to
observe the target state. For a non-maneuvering target, the EKF using the Cartesian state
for the AOF problem in 3D does not diverge [8], even though the filter diverges for the
corresponding BOF in 2D [11]. In analogy with the MPC in 2D, Stallard proposed the
modified spherical coordinates (MSC) in 3D [12,13]. The components of the MSC are
elevation, elevation-rate, bearing, bearing-rate times cosine of elevation, the inverse of
range, and range-rate divided by range. As in the case of MPC, the dynamic model for the
NCV motion using MSC is nonlinear and complex. However, the measurement model is
linear since bearing and elevation are components of MSC. The log spherical coordinates
(LSC) [29] can also be used as an alternate to the MSC. The first five components of the LSC
are the same as those of the MSC, but the inverse of range (sixth component) is replaced
by the logarithm of the range. Many studies have shown that the EKF using the MSC
(EKF-MSC) provides a better state estimation accuracy than the Cartesian EKF (CEKF) for
the NCV motion [2,12,13].

Starting with the work of Stallard, the EKF-MSC was used in [2,12,13,30]. Karlsson
and Gustafsson used the PF and compared the PF-based algorithms with the multiple
model-based range-parametrized EKF (RP-EKF) using the Cartesian state and MSC in a
number of tracking scenarios [6,7]. Their results showed the superiority of the PF-based
algorithms over the RP-EKF-based algorithms.

In our previous work [29], we compared the EKF-MSC and EKF-LSC using the
continuous-discrete filtering approach with the discrete-time CEKF. The results of this
study show that the EKF-MSC and EKF-LSC have comparable accuracy and perform bet-
ter than the discrete-time CEKF for low measurement accuracy. For high measurement
accuracy, the discrete-time CEKF has higher state estimation accuracy than the EKF-MSC
and EKF-LSC. Prior to our work in [8,31,32], the process noise using the MSC was mod-
eled approximately. We proposed new algorithms using the MSC to model the process
noise exactly. The AOF for the NCV motion can be solved in the following three possible
ways [8,31,32]:

• Use the discrete-time NCV model with the Cartesian state vector (with linear dynamic
model) and nonlinear measurement model;

• Use the exact discrete-time NCV model with the MSC (with nonlinear dynamic model)
and linear measurement model;

• Use the MSC with approximate discretization of the continuous-time dynamic model
(with nonlinear dynamic model) and linear measurement model.

In [8], we performed a comprehensive study of the AOF problem for a non-maneuvering
target in 3D using the EKF, UKF, and PF with Cartesian state vector and MSC. In this
study, new algorithms using the EKF, UKF, and PF with the MSC were formulated, and
improved filter initialization algorithms for the Cartesian state and MSC were presented.
Four versions of the PF were used in this work: the Cartesian bootstrap filter (CBF),
bootstrap filter using MSC with exact dynamic model (BF-MSC(E)), bootstrap filter using
MSC with an approximate dynamic model (BF-MSC(A)), and the optimal importance
density-based PF using MSC with an approximate dynamic model (ODIPF-MSC(A)). The
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initial range between the target and the sensor in the scenarios in [8] is higher than that
in [6,7]. Numerical results from this study indicate that the state estimation accuracy of the
PF-based algorithms is inferior compared with that of the EKF and UKF-based algorithms.
For the BOF problem in 2D Chapter 6 of [11], the measurement SD is of the order of a
degree and the measurement time interval is about 30–60 s. In this scenario, a PF has one of
the best state estimation accuracies Chapter 6 of [11,20]. Secondly, compared to the EKF,
the PF-based algorithms have about two orders of magnitude higher computational cost.
Thirdly, It is now well established that, when the measurement accuracy and data rate are
high (which is true for the current problem), PFs do not offer any advantage over the EKF,
UKF, and CKF [33–35]. Therefore, we did not consider the PF in this study.

A novel batch Bayesian weighted instrumental variable estimator for the 3D target
motion analysis problem using bearing and elevation measurements is presented in [36].
Results of this study show that the proposed algorithm outperforms its non-Bayesian
counterpart. The CEKF, Cartesian UKF (CUKF), Cartesian CKF (CCKF), and the Cartesian
new sigma point Kalman filter (CNSKF) were used in [3] to analyze the AOF problem in 3D
for a non-maneuvering target. Results of this study shows that these five filters have nearly
the same accuracy in operational scenarios. The particle flow filter (PFF), ensemble Kalman
filter (EnKF), EKF, UKF, and PF were compared for the AOF problem in 3D for a non-
maneuvering target in [37]. It was observed that the EKF-MSC, UKF-MSC, deterministic
EnKF-MSC, and Cartesian PFF had the best performance in operational conditions.

In [38], we studied the passive sonar tracking problem when the submarine and the
ownship move in different planes using the EKF, UKF, RP-UKF, and PF. Our results showed
that the depth of the non-maneuvering target can be estimated accurately, and the PF
had the best performance in the scenarios studied. The 3D instrumental variable-based
Kalman filter (3D-IVKF) is applied to an underwater passive sonar tracking scenario in [39]
for a non-maneuvering target using bearing and elevation measurements. It is observed
that at low measurement standard deviations (SDs) (<6°) the performance of the 3D-IVKF
is comparable to that of the UKF and CKF. However, at higher measurement SDs, the
3D-IVKF outperforms the UKF and CKF with lower computational cost.

To compare the accuracies of the filters used in the AOF problem with the best achiev-
able accuracy, we computed the posterior Cramér-Rao lower bound (PCRLB) [40] for a
non-maneuvering target using the NCV model in [41]. Our results show that when the
measurement accuracy is high, the root mean square (RMS) position and velocity errors
are close to the corresponding PCRLBs. The difference between RMS position and velocity
errors and corresponding PCRLBs increases with a decrease in the measurement accuracy.
In [42], a globally valid posterior Cramér–Rao lower bound was derived for the AOF prob-
lem. The authors claim the von Mises–Fisher distribution to be superior to the conventional
approach using additive Gaussian noise in measured angular coordinates.

A maneuvering target refers to an accelerating target [43]. Common accelerated
motions considered in tracking are the nearly constant acceleration (NCA), nearly constant
turn (NCT), and jerk [4,22,43]. The NCA and jerk models are linear, whereas the NCT
model is nonlinear in the target state. The number of publications for a maneuvering
target in the AOF problem is quite limited. In [5], the NCT model was used in the passive
ranging problem using an IRST sensor in air-to-air tracking scenarios. The authors used the
RP-UKF using the multiple model method. However, algorithm details are not presented
in the paper. The NCT model in the XY−plane has been studied extensively where
the angular rate is estimated [4,22,43–46]. This problem arises in the air-traffic control
(ATC) scenario [4,22,27,43,47]. In most cases, the conventional discrete-time NCT model is
approximate, since the state transition matrix and process noise covariance matrix cannot
be derived from the continuous-time model using a consistent procedure.

We consider the tracking of a maneuvering aircraft in 3D and assume that the aircraft
moves in the XY-plane with the NCT motion and has a NCV motion along the Z-axis. The
speed and angular rate are constant for the constant turn motion (CT) in the XY-plane.
Thus, it is natural to perturb the speed and angular rate in the NCT motion with the
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continuous-time white noise (Wiener processes) [22]. We follow this approach from [45]
to obtain the nonlinear stochastic differential equation (SDE) [48,49] for the NCT motion.
Since the SDE is nonlinear, it cannot be discretized exactly. We discretize the SDE using
the first and second-order weak Taylor (TS2) approximations [50] to obtain approximate
discrete-time dynamic models. The first-order stochastic Taylor series approximation is
also known as the Euler approximation. Two types of states for the NCT motion in the
XY-plane, namely the polar velocity and the Cartesian velocity-based states [43–46], are
used. The NCV motion along the Z-axis is discretized exactly. The Cartesian velocity state
in NCT comprises the 2D position, 2D velocity, and angular rate. In the polar velocity state,
the speed and heading replace the 2D Cartesian velocity.

An IRST sensor on another maneuvering aircraft collects azimuth and elevation
measurements. The accuracy of the angle measurements by an IRST sensor is usually
high (1 mrad). The data rate of an IRST sensor is also high (1 Hz). As sensor technology
improves, these factors are expected to improve. The AOF algorithm is required to process
the sensor measurements sequentially in real time. Thus, a batch algorithm is ruled out
for this tracking scenario. As discussed previously, a PF is not considered for this problem
due to its lack of state estimation accuracy and high computational cost. It has been
observed in [33–35] that when the measurement accuracy and data rate are high (which is
true for the current problem), the UKF and CKF have nearly the same accuracy, and the
accuracy of the EKF is somewhat lower. If the dimension of the state is n, then the UKF
and CKF have 2n + 1 and 2n sigma points and cubature points, respectively. As a result,
the computational cost of the CKF is lower than that of the UKF. If n > 3, then the first
weight in the UKF becomes negative and the rest of the 2n weights are positive. On the
contrary, each of the 2n weights in the CKF is positive and equal to 1/2n. This negative
weight may cause a filter-calculated covariance matrix to be non-positive definite in some
cases [27]. The CKF was also successfully used in our previous work on AOF in [9]. Hence,
we chose the third-degree spherical–radial cubature rule-based CKF [27] to estimate the
seven-dimensional state of the maneuvering target. The CKFs using the Euler and TS2
approximations are called CKF1 and CKF2, respectively. Thus, we consider four CKF filters;
CKF1P, CKF1C, CKF2P, and CKF2C, where the last letter in the filter refers to polar and
Cartesian velocity states.

Notation convention: For clarity, we use italics to denote scalar quantities and boldface
for vectors and matrices. A lower or upper-case Roman letter represents a name (e.g.
“s” for “sensor,” “RMS” for “root mean square,” etc.). We use “:=” to define a quantity
and A′ denotes the transpose of the vector or matrix A. The n−dimensional identity
matrix, m−dimensional null matrix, and m × n null matrix are denoted by In, 0m, and
0m×n, respectively.

The paper is organized as follows. Section 2 presents the dynamic models for the
target. Section 3 explains the discretization of target NCT models, and Section 4 describes
sensor dynamic and measurement models. A summary of the four CKF filters is given in
Section 5. Numerical simulations and results are presented in Section 6. Finally, Section 7
summarizes our contributions in the paper.

2. Target Dynamic Models

We assume that the IRST sensor trajectory is deterministic and the states of the sensors
are known exactly at measurement times. To improve the observability of the target
state, the IRST sensor performs maneuvers with a sequence of CV and constant turn (CT)
motions [5,8,31].

Two types of coordinates are commonly used for the NCT in the XY-plane: Cartesian
velocity and polar velocity-based models [43–46]. In addition to the 2D position and
velocity, the turn-rate or angular velocity ω is also estimated in the NCT model.

Let z(t) denote the Cartesian state along the Z-axis with position and velocity components

z(t) :=
[

z(t) ż(t)
]′. (1)
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For the NCT model in the XY-plane, we use η(t) and ξ(t) for state vectors where
the angular velocity ω is estimated. The velocity in η(t) and ξ(t) has Cartesian and polar
coordinates, respectively. Let s(t) and θ(t) denote the speed and heading of the target in the
XY-plane. In this paper, the heading is defined as the angle of the velocity in the XY-plane,
measured from the X-axis in the counter-clockwise direction, as shown in Figure 1.

Figure 1. Definition of heading θ(t) in the tracker coordinate frame, θ(t) ∈ [0, 2π).

Then η(t) and ξ(t) are defined, respectively, by

η(t) :=
[

x(t) y(t) ẋ(t) ẏ(t) ω(t)
]′, (2)

ξ(t) :=
[

x(t) y(t) s(t) θ(t) ω(t)
]′. (3)

Three-dimensional state vectors where angular velocity is estimated are defined,
respectively, by

xc(t) :=
[

η(t)′ z(t)′
]′, (4)

xp(t) :=
[

ξ(t)′ z(t)′
]′. (5)

We assume that the measurement time interval is constant; i.e., tk − tk−1 = T for all k.
In this paper, we use the discretized continuous-time models [22].

The discrete-time dynamic model for the NCV motion along the Z-axis is given by

zk = F1zk−1 + wz,k−1, (6)

where F1 is the state transition matrix and wz,k−1 is a zero-mean white Gaussian process
noise with covariance Qz,

F1 =

[
1 T
0 1

]
, (7)

Qz = qzB, (8)

B =

[
T3/3 T2/2
T2/2 T

]
, (9)

where qz is the power spectral density (PSD) of the continuous-time acceleration process
noise along the Z-axis [22].

The time derivative of ξ(t) is given by

ξ̇(t) =
[

ẋ(t) ẏ(t) ṡ(t) θ̇(t) ω̇(t)
]′. (10)

We have
ẋ(t) = s(t) cos θ(t), ẏ(t) = s(t) sin θ(t). (11)

133



Sensors 2022, 22, 1422

Since θ̇(t) = ω(t), (10) can be written as

ξ̇(t) =
[

s(t) cos θ(t) s(t) sin θ(t) ṡ(t) ω(t) ω̇(t)
]′. (12)

The time derivative of η(t) is

η̇(t) =
[

ẋ(t) ẏ(t) ẍ(t) ÿ(t) ω̇(t)
]′. (13)

In the constant turn (CT) model, the speed and turn rate are constant. The speed and
turn rate can be modeled as nearly constant in the NCT motion. Examining (12) and (13),
we find that for the NCT model, (12) is more suitable than (13), based on symmetry
considerations. Using conventional models in the engineering literature [22], for the NCT
model, we may write

ṡ(t) = ws(t), ω̇(t) = wω(t), (14)

where ws(t) and wω(t) are continuous-time zero-mean white acceleration and angular
acceleration process noises with power spectral densities qs and qω, respectively, [22]

E{ws(t)} = 0, E{ws(t)ws(τ)} = qsδ(t − τ), (15)

E{wω(t)} = 0, E{wω(t)wω(τ)} = qωδ(t − τ), (16)

where δ is the Dirac delta function [51]. We can write (14)–(16) mathematically rigorously
by defining

ds(t) =
√

qsdβs(t), dω(t) =
√

qωdβω(t), (17)

where dβs(t) and dβω(t) are standard independent Wiener processes [45,48]

E{dβs(t)dβs(t)} = dt, E{dβω(t)dβω(t)} = dt, (18)

E{dβs(t)dβω(t)} = 0. (19)

Define
fp(ξ(t)) :=

[
s(t) cos θ(t) s(t) sin θ(t) 0 ω(t) 0

]′, (20)

wp(t) :=
[

0 0 ws(t) 0 wω(t)
]′, (21)

Gp :=
[

0 0
√

qs 0 0
0 0 0 0

√
qω

]′
, (22)

dβ(t) :=
[

dβs(t) dβω(t)
]′. (23)

Then, conventionally, we can write ξ̇(t) as [23,48]

ξ̇(t) = fp(ξ(t)) + wp(t). (24)

We can write the time derivative of the polar state vector mathematically rigorously
using the Itô stochastic differential equation (SDE) [45,48,49]

dξ(t) = fp(ξ(t))dt + Gpdβ(t), (25)

where
E{dβ(t)dβ′(t)} = I2dt. (26)

We assume that the prior distribution of ξ is Gaussian,

ξ0 = ξ(t0) ∼ N (ξ0; ξ̄0, P
ξ
0). (27)

134



Sensors 2022, 22, 1422

The time derivative of η contains Cartesian accelerations ẍ and ÿ in (13). It is necessary
to transform them to derivatives of speed and angular velocity. The 2D Cartesian velocity
is given by

v(t) =
[

ẋ(t) ẏ(t)
]′ (28)

and the Cartesian acceleration is v̇(t). Using (11), the Cartesian acceleration is expressed by

v̇(t) =
[

ṡ(t) cos θ(t)− ω(t)ẏ(t) ṡ(t) sin θ(t) + ω(t)ẋ(t)
]′. (29)

Using a similar approach, the Itô SDE [45,48,49] for the Cartesian state is

dη(t) = fc(η(t))dt + Gc(η(t))dβ(t), (30)

where
fc(η(t)) :=

[
ẋ(t) ẏ(t) −ω(t)ẏ(t) ω(t)ẋ(t) 0

]′, (31)

Gc(η(t)) :=
[

0 0
√

qsẋ(t)/s(t)
√

qsẏ(t)/s(t) 0
0 0 0 0

√
qω

]′
. (32)

3. Discretization of Target NCT Models

3.1. The Euler Approximation

The Euler approximation is obtained by applying the Itô lemma [48] to the integral form
of the SDE and retaining only single integral terms. Applying the Euler approximation [50] to
the 2D polar velocity dynamic model, we obtain the stochastic difference equation [45]:

ξk = ξk−1 + Tfp(ξk−1) +
√

TGpw1, (33)

where fp(ξ) is defined in (20) and

w1 ∼ N (w1; 02×1, I2). (34)

The covariance of the polar velocity process noise w
ξ
k−1 =

√
TGpw1 is described by

w
ξ
k−1 ∼ N (wξ

k−1; 05×1, Qξ), (35)

Qξ = diag(0, 0, qsT, 0, qωT). (36)

From (36), we see that the polar velocity process noise is independent of the state.
Similarly, applying the Euler approximation to the Cartesian velocity dynamic model,

we obtain the stochastic difference equation [45]

ηk = ηk−1 + Tfc(ηk−1) +
√

TGc(ηk−1)w1, (37)

where fc(η) is defined in (31). The Cartesian velocity process noise w
η
k−1 =

√
TGc(ηk−1)w1

is described by
w

η
k−1(ηk−1) ∼ N (w

η
k−1; 05×1, Q

η
k−1), (38)

Q
η
k−1 = TE{Gc(ηk−1)G

′
c(ηk−1)}. (39)

We make the following approximation in calculating E{Gc(ηk−1)G
′
c(ηk−1)},

E{Gc(ηk−1)G
′
c(ηk−1)} ≈ Gc(η̂k|k−1)G

′
c(η̂k|k−1), (40)

where η̂k|k−1 is the predicted Cartesian velocity state estimate at time k. Then,

Q
η
k−1 ≈ TGc(η̂k|k−1)G

′
c(η̂k|k−1). (41)
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Simplification of (41) gives

Q
η
k−1 ≈

⎡⎣ 02 02 02×1
02 qsTAk−1(η̂k|k−1) 02×1

01×2 01×2 qωT

⎤⎦′

, (42)

where

Ak−1(η̂k|k−1) =
1

ŝ2
k|k−1

[
ˆ̇x2
k|k−1

ˆ̇xk|k−1 ˆ̇yk|k−1
ˆ̇xk|k−1 ˆ̇yk|k−1 ˆ̇y2

k|k−1

]′
. (43)

From (42) and (43), we see that the Cartesian velocity-based process noise covariance
is state-dependent.

From (4) and (5), we get the polar and Cartesian velocity-based states as

xp,k =
[

ξ′k z′k
]′, (44)

xc,k =
[

η′k z′k
]′. (45)

The 3D discrete-time dynamic model for the polar velocity-based model is given by

xp,k = xp,k−1 + Tf̃p(xp,k−1) + wp,k−1, (46)

where f̃p(xp) is defined by

f̃p(xp) =
[

s cos θ s sin θ 0 ω 0 ż 0
]′, (47)

wp,k−1 :=
[
(wξ

k−1)
′ w′

z,k−1

]′
, (48)

wp,k−1 ∼ N (wp,k−1; 07×1, Qp), (49)

Qp =

[
Qξ 05×2

02×5 Qz

]
. (50)

Similarly, the 3D discrete-time dynamic model for the Cartesian velocity-based model
is given by

xc,k = xc,k−1 + Tf̃c(xc,k−1) + wc,k−1, (51)

where f̃c(xc) is defined by

f̃c(xc) =
[

ẋ ẏ −ωẏ ωẋ 0 ż 0
]′, (52)

wc,k−1 :=
[
(w

η
k−1)

′ w′
z,k−1

]′
, (53)

wc,k−1 ∼ N (wc,k−1; 07×1, Qc,k−1), (54)

Qc,k−1 =

[
Q

η
k−1 05×2

02×5 Qz

]
. (55)

3.2. Order 2 Weak Taylor Approximation

Using the order 2 weak Taylor approximation [50] to the SDE, we obtain the discretized
dynamic model for the polar velocity-based model as [45]
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ξk = ξk−1 + Tfp,2(ξk−1) + Gp,2(ξk−1)w2, (56)

where

fp,2(ξk−1) =

⎡⎢⎢⎢⎢⎣
sk−1 cos(θk−1)− Tsk−1ωk−1 sin(θk−1)/2
sk−1 sin(θk−1) + Tsk−1ωk−1 cos(θk−1)/2

0
ωk−1

0

⎤⎥⎥⎥⎥⎦, (57)

Gp,2(ξk−1) = Ep(ξk−1)V(T), (58)

Ep(ξk−1) =

⎡⎢⎢⎢⎢⎣
√

qs cos(θk−1) 0 0 0√
qs sin(θk−1) 0 0 0

0 0
√

qs 0
0

√
qω 0 0

0 0 0
√

qω

⎤⎥⎥⎥⎥⎦, (59)

V(T) =
[ √

T3/3 0√
3T/2

√
T/2

]
⊗ I2, (60)

w2 ∼ N (w2; 04×1, I4). (61)

In (60), ⊗ refers to the Kronecker product [52].
The process noise wp,2,k−1 = Gp,2(ξk−1)w2 and associated covariance Qp,2,k−1 for the

second-order polar velocity-based model are described, respectively, by

wp,2,k−1 ∼ N (wp,2,k−1; 05×1, Qp,2,k−1), (62)

Qp,2,k−1 = E{Gp,2(ξk−1)G
′
p,2(ξk−1)}. (63)

Using a similar approximation as before, we obtain

Qp,2,k−1 ≈ Gp,2(ξ̂k|k−1)G
′
p,2(ξ̂k|k−1), (64)

where ξ̂k|k−1 is the predicted polar velocity state estimate at time k.
Simplification of Gp,2(ξk−1)G

′
p,2(ξk−1) gives

Gp,2(ξk−1)G
′
p,2(ξk−1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T3 cos2(θk−1)
3 qs

T3 sin(2θk−1)
6 qs

T2 cos(θk−1)
2 qs 0 0

T3 sin(2θk−1)
6 qs

T3 sin2(θk−1)
3 qs

T2 sin(θk−1)
2 qs 0 0

T2 cos(θk−1)
2 qs

T2 sin(θk−1)
2 qs Tqs 0 0

0 0 0 T3

3 qω
T2

2 qω

0 0 0 T2

2 qω Tqω

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (65)

The discretized dynamic model for the Cartesian velocity-based model using the TS2
approximation to the SDE is given by [45]

ηk = ηk−1 + Tfc,2(ηk−1) + Gc,2(ηk−1)w2, (66)

where

fc,2(ηk−1) =

⎡⎢⎢⎢⎢⎣
ẋk−1 − Tωk−1ẏk−1/2
ẏk−1 + Tωk−1 ẋk−1/2

−ωk−1ẏk−1 − Tω2
k−1 ẋk−1/2

ωk−1 ẋk−1 − Tω2
k−1ẏk−1/2

0

⎤⎥⎥⎥⎥⎦, (67)

Gc,2(ηk−1) = Ec(ηk−1)V(T), (68)
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Ec(ηk−1) =

⎡⎢⎢⎢⎢⎢⎣
√

qsẋk−1/sk−1 0 0 0√
qsẏk−1/sk−1 0 0 0

0 −√
qω ẏk−1

√
qs(ẋk−1 − Tωk−1ẏk−1)/sk−1 0

0
√

qω ẋk−1
√

qs(ẏk−1 + Tωk−1 ẋk−1)/sk−1 0
0 0 0

√
qω

⎤⎥⎥⎥⎥⎥⎦. (69)

The process noise wc,2,k−1 = Gc,2(ηk−1)w2, and corresponding covariance Qc,2,k−1 for
the second-order Cartesian velocity-based model are given, respectively, by

wc,2,k−1 ∼ N (wc,2,k−1; 05×1, Qc,2,k−1), (70)

Qc,2,k−1 = E{Gc,2(ηk−1)G
′
c,2(ηk−1)}. (71)

The approximate expression for the process noise is given by

Qc,2,k−1 ≈ Gc,2(η̂k|k−1)G
′
c,2(η̂k|k−1), (72)

where η̂k|k−1 is the predicted state estimate at time k. Simplification of Gc,2(ηk−1)G
′
c,2(ηk−1)

gives

Gc,2(ηk−1)G
′
c,2(ηk−1) =⎡⎢⎢⎢⎢⎢⎢⎣

T3

3 a2
1qs

T3

3 a1a2qs
T2

2 a1a3qs
T2

2 a1a4qs 0
T3

3 a1a2qs
T3

3 a2
2qs

T2

2 a2a3qs
T2

2 a2a4qs 0
T2

2 a1a3qs
T2

2 a2a3qs Ta2
3qs +

T3

3 ẏ2
k−1qω Ta3a4qs − T3

3 ẋk−1ẏk−1qω − T2

2 ẏk−1qω
T2

2 a1a4qs
T2

2 a2a4qs Ta3a4qs − T3

3 ẋk−1ẏk−1qω Ta2
4qs +

T3

3 ẋ2
k−1qω

T2

2 ẋk−1qω

0 0 − T2

2 ẏk−1qω
T2

2 ẋk−1qω Tqω

⎤⎥⎥⎥⎥⎥⎥⎦,
(73)

where
a1 =

ẋk−1
sk−1

, a2 =
ẏk−1
sk−1

, (74)

a3 =
ẋk−1 − Tωk−1ẏk−1

sk−1
, a4 =

ẏk−1 + Tωk−1 ẋk−1
sk−1

. (75)

3.3. Comparison with Conventional NCT Model

We consider the NCT model using the Cartesian velocity-based state, when the angular
rate is estimated. The NCT model using the direct discrete approach is described in
Chapter 11 of [22]. The discretized continuous-time NCT model [27] is described by

ηk = FC
NCT(ω)ηk−1 + wC

k−1, (76)

FC
NCT(ω) =

⎡⎢⎢⎢⎢⎢⎣
1 0 sin(ωT)

ω − 1−cos(ωT)
ω 0

0 1 1−cos(ωT)
ω

sin(ωT)
ω 0

0 0 cos(ωT) − sin(ωT) 0
0 0 sin(ωT) cos(ωT) 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦, (77)

wC
k−1 ∼ N (wC

k−1; 0, QC
k−1), (78)

QC
k−1 =

⎡⎢⎢⎢⎢⎣
qT3/3 0 qT2/2 0 0

0 qT3/3 0 qT2/2 0
qT2/2 0 qT 0 0

0 qT2/2 0 qT 0
0 0 0 0 qωT

⎤⎥⎥⎥⎥⎦, (79)

where q is the PSD of the acceleration process noise along the X or Y direction.
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Remark 1. The upper left 4 × 4 block of the state transition matrix in (77) is the state transition
matrix for the NCV model using Cartesian state [22]. Similarly, the upper left 4 × 4 block of
the process noise covariance matrix in (79) is the process noise covariance matrix for the NCV
model using Cartesian state [22]. They cannot be derived from a continuous-time model of the
NCT motion.

The second-order model with the TS2 approximation and Cartesian velocity-based
state was used in [53], and a superior RMSE was reported compared with the conventional
model described above.

4. Sensor Dynamic and Measurement Models

4.1. Sensor Dynamic Models

We assume that the motion of the sensor is deterministic and the state of the sensor at
each measurement time is exactly known. The sensor follows two types of motion: constant
velocity (CV) in 3D and the second type of motion with known angular velocity Ω. For both
types of motion, the Cartesian state vector of the sensor is appropriate and is defined by

xs(t) :=
[

xs(t) ys(t) ẋs(t) ẏs(t) zs(t) żs(t)
]′. (80)

The dynamic models of the sensor for the CV and CT are described, respectively,
by [8,31]

xs
k = FCV(T)xs

k−1, (81)

FCV(T) =

⎡⎣ I2 I2T 02
02 I2 02
02 02 F1

⎤⎦. (82)

xs
k = FCT(T, Ωk−1)x

s
k−1, (83)

where the state transition matrix F1 for CV is defined in (7), Ωk−1 is the angular velocity of
the sensor during [tk−1, tk) and the state transition matrix for CT is given by

FCT(T, Ω) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 sin(ΩT)/Ω −[1 − cos(ΩT)]/Ω 0 0
0 1 [1 − cos(ΩT)]/Ω sin(ΩT)/Ω 0 0
0 0 cos(ΩT) − sin(ΩT) 0 0
0 0 sin(ΩT) cos(ΩT) 0 0
0 0 0 0 1 T
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦. (84)

In passive IRST tracking, the sensor moves with a sequence of CV and CT motions [8,31].

4.2. Measurement Model

Let pk and ps
k denote the target and sensor position vectors, respectively, at time tk,

pk := [xk yk zk]
′, (85)

ps
k := [xs

k ys
k zs

k]
′. (86)

An IRST sensor measures the bearing and elevation angles of a target [5,8] , as shown
in Figure 2. We note that the bearing (φk) and elevation (εk) angles depend on the relative
position pk − ps

k in Cartesian and polar velocity-based models. Hence, for both type of
state vectors, the measurement model for the bearing and elevation angles is described by

yk = h(pk, ps
k) + nk, (87)

h(pk, ps
k) :=

[
φk
εk

]
=

[
tan−1(xk − xs

k, yk − ys
k)

arctan((zk − zs
k)/ρk)

]
, (88)
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where φk and εk lie in [0, 2π) and (−π/2, π/2), respectively and the ground range ρk is
defined by

ρk :=
√
(xk − xs

k)
2 + (yk − ys

k)
2, ρk > 0. (89)

Target
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TZ

Ownship
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z

Local 
North

Local 
East

Local 

Up

ε

φ

Figure 2. Definition of the tracker coordinate frame (T frame), bearing φ ∈ [0, 2π) and elevation
ε ∈ (−π/2, π/2).

We assume that the measurement noise is zero-mean Gaussian with covariance R

nk ∼ N (nk; 0, R), (90)

R := diag(σ2
φ, σ2

ε ), (91)

where σφ and σε are the bearing and elevation measurement standard deviations (SDs),
respectively.

5. Filtering Algorithms

We compare the performances of four CKF-based algorithms using the Euler and TS2
approximations with the polar and Cartesian velocity-based states. These four algorithms
are called CKF1P, CKF1C, CKF2P, and CKF1P. The discrete-time dynamic and measurement
models in these algorithms are nonlinear. The features of these algorithms are summarized
in Table 1. In [54], the authors have considered the maneuvering target tracking problem
using a CKF-based CDF filter with range, azimuth, and elevation measurements. They
claim that this is a very challenging problem. They use the prior distribution to initialize
the filter. The problem considered in our study is relatively harder since only azimuth, and
elevation measurements are available.

Table 1. Features of CKF based algorithms.

Filter 2D State in NCT Approximation Process Noise

CKF1P Polar velocity Euler State-independent
CKF1C Cartesian velocity Euler State-dependent
CKF2P Polar velocity TS2 State-dependent
CKF2C Cartesian velocity TS2 State-dependent

6. Numerical Simulation and Results

The IRST sensor trajectory and parameters in the simulation are similar to those used
in [8,31]. The target moves with an NCT motion in a plane parallel to the XY-plane and
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moves with an NCV motion along the Z-axis. Table 2 presents prior mean polar velocity-
based state parameters of the target. The NCT motion has a centripetal acceleration s1ω1 of
3 g, where g = 9.8 m2s−2. This scenario was used in [5]. We use the same filter initialization
with that in [54] in the current study. The prior variance of the 3D polar velocity-based
state is chosen as

P0,p,1 = diag(10002 m2, 10002 m2, 302 m2s−2, 0.0873 rad2, (4.95 × 10−3)2rad2 s−2,

1002 m2, 52 m2s−2). (92)

Using the Euler approximation, the process noise covariance in the polar velocity-
based model for the NCT motion can be calculated exactly. Hence, we use the Euler
approximation for the polar velocity-based model to generate true target trajectories for the
NCT motion in the XY-plane using 100 sub-sampling intervals for the measurement time
interval (T) of 1 s. The Z-component of the NCV trajectory is generated exactly. The process
noise parameters used in the simulation are qs = 0.2 m2s−3, qω = 5e − 07 rad2s−3, and
qz = 0.001 m2s−3. Figure 3 presents the true NCT trajectory of the target in the XY-plane
from the first Monte Carlo run.

Table 2. Prior polar mean velocity-based 3D state parameters of target.

Variable Value

x̄0 (m) 97,580.7358
ȳ0 (m) 97,580.7358

s̄0 (m/s) 297.0
θ̄0 (deg) 215.0

ω̄0 (deg/s) 5.672
z̄0 (m) 9000.0

¯̇z0 (m/s) 0.0

98 99 100 101 102 103 104

X (km)

94

95

96

97

98

99

Y
 (

km
)

Figure 3. Target true trajectory in the XY-plane from the first Monte Carlo run. The green circle and
the red diamond represent the start point and end point, respectively.

We assume that the motion of the sensor is deterministic. The sensor moves in a plane
parallel to the XY-plane at a fixed height of 10 km and follows a sequence of CV and CT
motions. The initial position and velocity vectors of the sensor are (0, 0, 10,000) m and (0,
264, 0) m/s, respectively. Table 3 presents the motion profile of the sensor. In Table 3, Δt
represents the duration of the segment, Δφs is the total angular change during the segment,
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and Ω is the angular velocity of the sensor during the segment. The measurement time
interval of the IRST sensor is 1 s and there are 101 measurements. The measurement error
SDs for bearing and elevation have the same value. We use two angle SDs of 1 mrad and
2 mrad in this simulation. The sensor trajectory in the XY-plane is shown in Figure 4.

Table 3. Motion profile of the sensor.

Interval (s) Δt (s) Δφs (rad) Motion Type Ω (rad/s)

[0, 15] 15 0 CV 0
[15, 31] 16 −π/4 CT −π/64
[31, 43] 12 0 CV 0
[43, 75] 32 π/2 CT π/64
[75, 86] 11 0 CV 0
[86, 102] 16 −π/4 CT −π/64

X (km)

0

5

10

15

20

25

Y
 (

km
)

Figure 4. Sensor trajectory in the XY-plane.

6.1. Comparison of Filtering Algorithms

We used 500 Monte Carlo runs to compute the root mean square (RMS) position,
velocity, and angular rate errors of the CKF1P, CKF1C, CKF2P, and CKF2C. Each filter is
initialized using the prior mean and covariance. The RMS errors for these four filters for
angle SDs of 1 mrad and 2 mrad are presented in Figures 5–7. Results in Figure 5 show that
RMS position errors of the CKF1P, CKF2P, and CKF2C are close and they are nearly the
same towards the end. On the contrary, the RMS position error of the CKF1C is significantly
higher during some measurement intervals and also significantly lower during a time
interval. We see in Figure 6 that the CKF2P and CKF2C have the best results and nearly the
same RMS velocity errors. The RMS velocity error of the CKF1P is slightly higher than that
CKF2P and CKF2C. The RMS velocity error of the CKF1C is significantly higher than that
of the other three filters. It appears that the CKF1C diverges for this maneuvering target
tracking scenario. A similar pattern is observed in the results of the angular rate errors in
Figure 7.
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Figure 5. RMS position error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle SD
of 1 mrad, (b) Angle SD of 2 mrad.
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Figure 6. RMS velocity error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle SD
of 1 mrad, (b) Angle SD of 2 mrad.
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Figure 7. RMS angular rate error using the prior variance P0,p,1 from 500 Monte Carlo runs. (a) Angle
SD of 1 mrad, (b) Angle SD of 2 mrad.
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To evaluate the overall performance of a filter, we use the root time-averaged mean
square (RTAMS) error [11] for position, velocity, and angular rate. Let pt

j,i and p̂t
j,i denote

the true and estimated position of the target, respectively, at time index j in the ith Monte
Carlo run. The RTAMS position error [11] is defined by

RTAMSpos =

√√√√ 1
NfM ∑

j∈Sf

M

∑
i=1

‖p̂t
j,i − pt

k,j‖2, (93)

where Sf is a set of time indices with Nf indices, and M is the number of Monte Carlo runs.
We have chosen time indices from 51 to 101 to define Sf. The RTAMS error [11] for velocity
and angular rate are similarly defined. Table 4 presents the RTAMS error metric for position,
velocity, and angular rate for measurement error SDs of 1 mrad and 2 mrad. Results in
Table 4 show that the CKF2P and CKF2C have the best RTAMS errors for position, velocity,
and angular rate, which are nearly the same.

Table 4. RTAMS position, velocity, and angular rate errors for CKF1P, CKF1C, CKF2P, and CKF2C
using the prior variance P0,p,1.

Metric Filter 1 mrad 2 mrad

Position error (km)

CKF1P 1.137 1.355
CKF1C 1.596 1.582
CKF2P 1.165 1.400
CKF2C 1.146 1.389

Velocity error (m/s)

CKF1P 28.628 28.178
CKF1C 75.853 77.691
CKF2P 18.959 21.132
CKF2C 18.867 21.334

Angular rate error (deg/s)

CKF1P 0.197 0.211
CKF1C 0.394 0.347
CKF2P 0.197 0.214
CKF2C 0.197 0.216

Table 5 presents CPU times for each Monte Carlo run and CPU times relative to the
CKF1P. Results in Table 5 show that the CKF1P has the fastest CPU time, being slightly
faster than the CKF2P.

Table 5. CPU times (s) for each Monte Carlo run and CPU times relative to CKF1P for angle SD of
1 mrad.

Filter CPU Time (s) CPU Relative to CKF1P

CKF1P 0.0377 1.0000
CKF1C 0.0386 1.0129
CKF2P 0.0391 1.0356
CKF2C 0.0789 2.0910

Let xk,i and x̂k,i be the true and filtered estimated X-coordinates at time k, respectively.
Similar definitions apply for other position coordinates. Then, the sample position bias is
given by [22,33]

bpos,k =
1
M

M

∑
i=1

[(xk,i − x̂k,i) + (yk,i − ŷk,i) + (zk,i − ẑk,i)]. (94)

For simplicity, we use “bias” to represent sample bias. Similarly, the biases for velocity
and angular rate can be defined. The bias at time k can be positive or negative. It is desirable
to have a small bias in the state estimate. The sample bias for position, velocity, and angular
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rate are shown in Figures 8 and 9. Results in Figure 8 show that the position biases of the
CKF1P, CKF2P, and CKF2C are small, and the velocity biases of CKF2P and CKF2C are
nearly zero. The angular rate biases of CKF1P, CKF2P, and CKF2C become smaller with
time and approach zero. The CKF1C has large position, velocity, and angular rate biases.
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Figure 8. Position and velocity bias errors for the 1 mrad case. (a) Position bias, (b) Velocity bias.
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Figure 9. Angular rate bias error for the 1 mrad case.

6.2. Dependence of Filtering Accuracy on the Prior Distribution

In order to analyze the dependence of filtering accuracy on the prior distribution, we
have chosen a larger prior variance for the 3D polar velocity-based state relative to that
used in (92)

P0,p,2 = diag(50002 m2, 50002 m2, 902 m2s−2, (3 ∗ 0.0873) rad2, (3 ∗ 4.95 × 10−3)2 rad2s−2,

5002 m2, 152 m2s−2). (95)

The prior variance of Cartesian position is increased by 25 times, and the other compo-
nents have been increased by 9 times. The prior mean is unchanged. The RMSE plots of po-
sition, velocity, and angular rate are presented in Figures 10 and 11 for the 1 mrad scenario.
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Figure 10. RMS position and velocity errors using the prior variance P0,p,2 with angle SD of 1 mrad.
(a) RMS position error, (b) RMS velocity error.
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Figure 11. RMS angular rate error using the prior variance P0,p,2 with angle SD of 1 mrad.

Table 6 presents the RTAMS error for position, velocity, and angular rate for measure-
ment error SDs of 1 mrad and the second prior distribution. Results in Table 6 show that
the CKF2P and CKF2C have the best RTAMS errors for position, velocity, and angular rate,
which are nearly the same.

6.3. Summary of Key Results

Based on RMS and RTAMS errors, the key results of our study are as follows:

• The CKF1P has the best position estimation accuracy. The position estimation accura-
cies of the CKF2P and CKF2C are close to that of the CKF1P;

• The CKF2P and CKF2C have the best velocity estimation accuracy;
• The state estimation accuracies of the CKF2P and CKF2C are comparable. However,

the computational cost of the CKF2C is about twice that of the CKF2P;
• The CKF1C does not perform well for this problem and has high estimation errors.
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Table 6. Comparison of RTAMS position, velocity, and angular rate errors for CKF1P, CKF1C, CKF2P,
CKF2C using prior variances P0,p,1 and P0,p,2 with angle SD of 1 mrad.

Metric Filter P0,p,1 P0,p,2

Position error (km)

CKF1P 1.137 7.175
CKF1C 1.596 13.559
CKF2P 1.165 7.178
CKF2C 1.146 7.454

Velocity error (m/s)

CKF1P 28.628 47.204
CKF1C 75.853 75.192
CKF2P 18.959 43.836
CKF2C 18.867 42.973

Angular rate error (deg/s)

CKF1P 0.197 0.265
CKF1C 0.394 0.440
CKF2P 0.197 0.265
CKF2C 0.197 0.274

7. Conclusions

We considered the challenging filtering problem of a maneuvering target in 3D using
the bearing and elevation measurements from a maneuvering passive IRST sensor. Research
on this problem is rather limited. The target moves with the NCT motion in the XY-
plane and has an NCV motion along the Z-axis. We discretized the continuous-time
stochastic differential equation for the NCT model using the first (Euler) and second-
order Taylor approximations to obtain discrete-time NCT models. Discrete-time dynamic
and measurement models are nonlinear. For each approximation, we used the polar
and Cartesian velocity-based states for the NCT model. The CKF was used in each case
giving rise to four filters: CKF1P, CKF1C, CKF2P, and CKF2C. Numerical results based on
Monte Carlo simulations suggest that the second-order Taylor approximation-based filters
CKF2P and CKF2C have the best state estimation accuracy for this scenario. Secondly, the
accuracies of these two filters are nearly the same.

Our future work will develop filter initialization algorithms that can be used with real
data. We shall also focus on calculating the PCRLB for the filtering problem to assess the
best achievable accuracy.
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Abbreviations

The following abbreviations are used in this manuscript:

3D-IVKF 3D instrumental variable based Kalman filter
AOF Angle-only filtering
ATC Air-traffic control
BOF Bearings-only filtering
CKF Cubature Kalman filter
CKF1C CKF using Euler approximation with Cartesian velocity
CKF1P CKF using Euler approximation with polar velocity
CKF2C CKF using order 2 weak Taylor approximation with Cartesian velocity
CKF2P CKF using order 2 weak Taylor approximation with polar velocity
CCKF Cartesian CKF
CEKF Cartesian EKF
CNSKF Cartesian new sigma point Kalman filter
CUKF Cartesian UKF
CT Constant turn
CV Constant velocity
EKF Extended Kalman filter
EKF-MSC EKF using the MSC
EnKF Ensemble Kalman filter
IRST Infrared search and track
LSC Log spherical coordinates
MPC Modified polar coordinates
MSC Modified spherical coordinates
MMSE Minimum mean square error
NCT Nearly constant turn
NCV Nearly constant velocity
PFF Particle flow filter
PCRLB Posterior Cramér–Rao lower bound
PSD Power spectral density
RP-EKF Range-parametrized EKF
RP-UKF Range-parametrized UKF
RMS Root mean square
SD Standard deviation
SDE Stochastic differential equation
TS2 Order 2 weak Taylor
UKF Unscented Kalman filter
UKF-MSC UKF using the MSC
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Abstract: In this paper, angles-only target tracking (AoT) problem is investigated in the non Gaussian
environment. Since the conventional minimum mean square error criterion based estimators tend
to give poor accuracy in the presence of large outliers or impulsive noises in measurement, a
maximum correntropy criterion (MCC) based framework is presented. Accordingly, three new
estimation algorithms are developed for AoT problems based on the conventional sigma point
filters, termed as MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK. Here MC-NSKF-GK represents
the maximum correntropy new sigma point Kalman filter realized using Gaussian kernel and MC-
NSKF-CK represents realization using Cauchy kernel. Similarly, based on the unscented Kalman
filter, MC-UKF-CK has been developed. The performance of all these estimators is evaluated in terms
of root-mean-square error (RMSE) in position and % track loss. The simulations were carried out
for 2D as well as 3D AoT scenarios and it was inferred that, the developed algorithms performed
with improved estimation accuracy than the conventional ones, in the presence of non Gaussian
measurement noise.

Keywords: nonlinear filtering; non Gaussian noise; maximum correntropy criterion; Gaussian kernel;
Cauchy kernel

1. Introduction

In state estimation, Kalman filter (KF) is a recursive solution used in various applica-
tions, such as information fusion, system control, integrated navigation, target tracking,
and GPS solutions [1–4]. Kalman filter gives optimal estimates provided the dynamical
system is linear and the noises assumed are Gaussian. However, it is extended to nonlinear
systems through suitable approximation of the nonlinear functions. Using the Taylor series
to linearize the nonlinear functions, the popular extended Kalman filter (EKF) [5] was
derived. Also various sigma point filters have been proposed in the literature such as
unscented Kalman filter (UKF) [6], cubature Kalman filter (CKF) [7], new sigma point
Kalman filter (NSKF) [8], to obtain improved estimation accuracy than the EKF.

Since these filters are based on minimum mean square error criterion, their perfor-
mance is likely to get deteriorated in the presence of non Gaussian noises such as heavy
tailed and impulsive noises [9]. This makes state estimation a very challenging problem in
the presence of nonlinear models and non Gaussian noise. Other possible solutions that can
provide robust state estimates are Gaussian sum filter (GSF) [10,11], particle filter (PF) [12],
Huber’s KF (HKF, also known as M-estimation) [13], H∞ filter [14] etc.

In order to improve the robustness of nonlinear state estimators in the presence of non
Gaussian noise, a local similarity measure called correntropy [15,16], based filter called
correntropy filter (C-Filter) was first proposed in [17]. Since it was developed by replacing
the minimum mean square error (MMSE) criterion with maximum correntropy criterion
(MCC), it proved beneficial for non Gaussian systems, but only for linear systems [18]. This
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algorithm made use of least squares and fixed point iteration, but failed to incorporate
covariance estimation. In order to avoid this, a maximum correntropy Kalman filter
(MCKF) involving fixed point iteration and covariance propagation was proposed in [19].
Similar issue was also addressed in [20], which used a cost function consisting of weighted
least square (WLS) and Gaussian kernel function, and hence was named as maximum
correntropy criterion-Kalman filter (MCC-KF).

To deal with nonlinear systems, extensions to the existing conventional algorithms
based on MCC criterion were also developed and were named as maximum correntropy
EKF (MC-EKF) [21], maximum correntropy UKF (MC-UKF) [22] and maximum correntropy
sparse grid Gauss-Hermite quadrature filter (MC-SGHQF) [23]. But in the presence of
large outliers in measurements, these filters incurred analytical problems in calculating
inverse of matrices. Thus, new algorithms involving new cost function, WLS and statistical
linearisation were proposed in [24], which were called as MC-UKF-constant and MC-UKF-
adaptive [25]. In developing the above mentioned estimators, Gaussian kernel played an
important role in suppressing the non Gaussian measurement noise. In target tracking
applications, we may receive measurements which have larger outliers. This could prove
to be a challenging task in successful estimation of states using Gaussian kernel as it may
be difficult to select a proper kernel bandwidth. Hence, Gaussian kernel may not always
prove to be the best choice for a kernel function. To overcome this drawback, a Cauchy
kernel function is constructed which gives reasonable estimation accuracy for a wide range
of kernel bandwidth [26,27].

This paper deals with angles only target tracking problem in 2D and 3D. The literature
presents with many variations of this tracking problem such as when the target is a curvi-
linear manoeuvring target [28,29]. However, as is common in passive sonar target tracking
applications, the objective here is to estimate the states of a moving constant velocity target
with the help of angles-only measurements, but corrupted with non Gaussian noise. The
observer continuously monitors for the signals, that are generated due to the sound radi-
ated by the target. The AoT can also be performed with other measurement sources like
IRST sensor [4], radar [30] and also through video tracking [31]. Any irregularities in these
signals received by the observer can be considered as glint noise. A mixture model of two
zero-mean Gaussian for glint noise has been proposed in [32]. This consists of one Gaussian
density with high probability and small variance while the other has small probability of
occurrence and large variance. Alternatively, it is also modelled in [33] as a mixture of zero
mean with small variance. In this work, the non Gaussian noise in angular measurements
is modelled as a mixture of Gaussian densities plus shot noise.

The main contribution of this paper is the development of three new nonlinear filters
for AoT problem, MC-UKF-CK, MC-NSKF-GK and MC-NSKF-CK, and their performance
evaluation in the context of angles-only tracking. Accordingly, conventional filters UKF
and NSKF have been reformulated based on maximum correntropy criterion. MC-UKF
and MC-NSKF based on Gaussian kernel (MC-UKF-GK, MC-NSKF-GK) and Cauchy
kernel (MC-UKF-CK, MC-NSKF-CK) functions have been derived. The performance
evaluation of these estimators are conducted considering RMSE in position and track
loss as the two performance metrics and a comparative discussion is presented. The
simulation results highlight that the existing solutions behave poorly in comparison to the
proposed algorithms.

The rest of the paper is organised as follows. Section 2 describes the problem formula-
tion for AoT in 2D as well as 3D. Section 3 illustrates the correntropy, its properties for two
random variables and MCC. In Section 4, the already existing Gaussian kernel based MC
state estimation framework is revisited. In Section 5, the Cauchy kernel based MC state
estimation framework for nonlinear systems is derived. Section 6 briefly discuss about
the state estimators on which the developed MCC framework is incorporated. Section 7
describes the realization of non Gaussian noise, followed by simulation study in Section 8.
Finally, the concluding remarks are given in Section 9.
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2. Problem Formulation

The aim of the angles only tracking problem is to track the target trajectory using the
noise corrupted angular measurements. The dynamics of the target is assumed to be a
constant velocity motion. The observer motion is deterministic, implying that the position
and velocity of the observer is known to us. The 2D and 3D target observer dynamics is
illustrated below.

2.1. Process Model

The target and observer state vector with position and velocity as its states is given as

Xt
k =

[
xtk ytk ẋtk ẏtk

]′
Xo

k =
[
xok yok ẋok ẏok

]′
.

The discrete time linear process model representing the target motion is given as

Xt
k = FXt

k−1 + wk−1. (1)

Now, the relative state vector dynamics is

Xk = FXk−1 + wk−1 − Xo
k−1 + FXo

k−1. (2)

where Xk, the relative vector is defined as

Xk = Xt
k − Xo

k

=
[
xtk − xok ytk − yok ẋtk − ẋok ẏtk − ẏok

]′
=

[
xk yk ẋk ẏk

]′
.

(3)

F is the state transition matrix and wk−1 is zero mean Gaussian process noise with Q

as the covariance matrix. For problem formulation in the two dimensional space (let n = 2),
F, Q matrices are defined as,

F =

⎡⎢⎢⎢⎣
1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦ and Q =

⎡⎢⎢⎢⎢⎣
T3

3 qx 0 T2

2 qx 0
0 T3

3 qy 0 T2

2 qy
T2

2 qx 0 Tqx 0
0 T2

2 qy 0 Tqy

⎤⎥⎥⎥⎥⎦.

The target observer dynamics in 2D for a moderately nonlinear scenario, is shown in
Figure 1. Similarly for n = 3, the state and the associated matrices are

Xt
k =

[
xtk ytk ztk ẋtk ẏtk żtk

]′
Xo =

[
xok yok zok ẋok ẏok żok

]′

Fk−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, Qk−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T3

3 qx 0 0 T2

2 qx 0 0
0 T3

3 qy 0 0 T2

2 qy 0
0 0 T3

3 qz 0 0 T2

2 qz
T2

2 qx 0 0 Tqx 0 0
0 T2

2 qy 0 0 Tqy 0
0 0 T2

2 qz 0 0 Tqz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where T is the sampling time interval and qx, qy, qz are the power spectral densities of the
process noise along the X, Y, and Z axes respectively.
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Figure 1. Target Observer Dynamics in 2D.

The 3D target observer trajectory referred in the problem is given by Figure 2.
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Figure 2. Target Observer Dynamics in 3D.

2.2. Measurement Model

2D AoT problem: The only available measurements are the bearing angles through
which the states of the relative state vector can be estimated. The measurement model and
the true angle measurements for the problem can be represented as

zk = h(Xk) + vk h(Xk) = βk = tan−1(xk, yk). (4)

where vk shall be modelled as the non Gaussian noise.
3D AoT problem: Figure 3 represents the target observer dynamics in Cartesian coor-

dinate.
The range vector r is defined as

r =
[
xtk − xok ytk − yok ztk − zok

]′
=

[
xk yk zk

]′
.
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Figure 3. Target Observer in Cartesian Coordinate Frame.

From Figure 3, r can be expressed in terms of bearing (β) and elevation (ε) as

r = [r cos ε sin β r cos ε cos β r sin ε]′,

and the actual range is rk =
√
x2

k + y2
k + z2

k . Here, the nonlinear noise corrupted mea-
surements are bearing (β) and elevation (ε) angles respectively, where β ∈ [0, 2π] and
ε ∈ [−π

2 , π
2 ]. The measurement model involving the bearing and elevation angle is

zk = h(Xk) + vk, (5)

where,

h(Xk) =

[
βk
εk

]
=

⎡⎢⎣ tan−1(xk, yk)

tan−1
(

zk√
xk

2+yk
2

)⎤⎥⎦.

Here, vk is to be modelled as the non Gaussian noise.

3. Correntropy Measure

Correntropy is directly related to the probability of how similar two random variables
are in the joint space controlled by the kernel bandwidth. The kernel bandwidth controls the
window in which the similarity has to be assessed, and hence provides a way to eliminate
the detrimental effect of outliers [16]. If X and Y are random variables, correntropy is
defined as

Vσ(X, Y) = E[kσ(X, Y)] =
∫∫

kσ(x, y)pXY(x, y) dx dy,

where kσ denotes a positive definite kernel function, pXY(.) denotes the joint PDF of X and
Y and E is the expectation operator. Since the joint density is not accessible and if only a
finite number of data points N are available, a sample estimator can be defined as

V̂σ(X, Y) =
1
N

N

∑
i=1

Gσ(xi − yi).
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Here Gσ(·) is the Gaussian kernel, defined as

Gσ(xi − yi) = exp

(
−‖xi − yi‖2

2σ2

)
, (6)

which is bounded, positive and reaches its maximum only when X = Y, leading to
the maximum correntropy criterion (MCC). By taking the Taylor series expansion of the
Gaussian kernel, correntropy can also be expressed as a weighted sum of all even order
moments of (xi − yi), i.e.,

Vσ(X, Y) =
∞

∑
k=0

(−1)k

2kσ2kk!
E[(X − Y)2k].

On the other hand, Cauchy kernel based non-linear state estimators can be developed
using Cauchy kernel instead of Gaussian kernel function. It is defined as [34]

Cδ(xi − yi) =
1

1 +
‖xi − yi‖2

δ

.

Here δ is a positive scalar, representing the Cauchy kernel bandwidth. Similar to the
Gaussian kernel, it can be shown that the Cauchy kernel also incorporates the higher order
moments, given as

Vδ(X, Y) =
∞

∑
k=0

(−1)k

δk

(
N + k − 1

k

)
E
[
(X − Y)2k

]
.

A detailed derivation of the above equation is given in Appendix A.

4. Gaussian Kernel Based Maximum Correntropy Estimation Framework

Let us consider the process model described in Equations (1) and (5). To accommodate
for the large outliers in measurements, the noise vk is considered non-Gaussian. Hence for
MC based estimation framework [24], the Gaussian assumption of vk is relaxed.

In order to deal with the non Gaussian noises in the measurement update step, a
statistical linearisation approach is employed. Consider that the nonlinear function h(·),
operating on vector random variables Xk is evaluated at N-points χk, k = 1, · · · ,N, with
zk = h(χk) + vk. Suppose that the weighted mean of χk is given by X̂k|k−1 = ∑N

k=1 Wkχk,
with ∑N

k=1 Wk = 1. Similarly, ẑk|k−1 = ∑N
k=1 Wkzk. Then the prior and cross covariance

Pk|k−1 and PXz are given as

Pk|k−1 =
N

∑
k=1

Wk

[
(χk − X̂k|k−1)(χk − X̂k|k−1)

′
]

and

PXz =
N

∑
k=1

Wk

[
(χk − X̂k|k−1)(zk − ẑk|k−1)

′
]
.

The nonlinear measurement function is represented in terms of measurement slope
matrix Hk, and a constant term ck as h(Xk) ≈ HkXk + ck. Here Hk and ck are computed by
minimizing the weighted least squares,

arg min
H̄k ,c̄k

Wk‖v̄k‖2, where vk = zk − HkXk − ck.
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Then the solutions are Hk =
(

P−1
k|k−1PXz

)′
and ck = ẑk|k−1 − HkX̂k|k−1. As the

mean of vk is zero, that is E[vk] = ẑk|k−1 − HkX̂k|k−1 − ck = 0, the covariance matrix Rk can
be calculated as

Rk =
N

∑
k=1

Wk[vkv′
k]

=
N

∑
k=1

Wk

[
(zk − ẑk|k−1)− Hk(Xk − X̂k|k−1)

][
(zk − ẑk|k−1)− Hk(Xk − X̂k|k−1)

]′
=Pzz − HkPXz − P′

XzH
′
k + HkPk|k−1H

′
k

=Pzz − HkPk|k−1H
′
k.

(7)

Thus, the linearised measurement equation is given as

zk = ẑk|k−1 + Hk

(
Xk − X̂k|k−1

)
+ vk with vk ∼ N (0, Rk). (8)

Accordingly, a cost function is formulated with the help of weighted least squares
(WLS) to handle Gaussian process noise. To handle non-Gaussian measurement noise,
statistical linearisation approach was used to define WLS function which in turn is used in
MCC. Hence the cost function can be defined as

J = ℘‖Xk − X̂k|k−1‖
2
P−1

k|k−1
− � exp

(
− ℵ′R−1ℵ

2σ2

)
,

where ℵ = zk − ẑk|k−1 − Hk(Xk − X̂k|k−1), ℘ and � are adjustable weights. In order to find
the optimal estimate of Xk, the cost function has to be minimized i.e.,

X̂k = arg min
Xk

J,

and the solution can be obtained as ∂J
∂Xk

= 0. This implies that

∂J

∂Xk
= ℘P−1

k|k−1(Xk − X̂k|k−1) +
�

2σ2 Gσ(ℵR)H
′
kR−1

k ℵ

= ℘P−1
k|k−1(Xk − X̂k|k−1) +

�LG
k H

′
kR−1

k
2σ2 ℵ = 0, (9)

where

LG
k = Gσ(ℵR) = exp

(
− ℵ′R−1ℵ

2σ2

)
. (10)

In order to guarantee the convergence of the algorithm to a corresponding state
estimator that follows a complete Gaussian assumption (when the kernel bandwidth σ
becomes infinity), the values for weights in J are taken as ℘ = 1 and � = −2σ2. Then
Equation (9) becomes

P−1
k|k−1(Xk − X̂k|k−1) = LG

k H
′
kR−1

k ℵ.

Rearranging, we get(
P−1

k|k−1 + LG
k H

′
kR−1

k Hk

)
Xk = LG

k H
′
kR−1

k

(
zk − ẑk|k−1

)
+
(

LG
k H

′
kR−1

k Hk + P−1
k|k−1

)
X̂k|k−1. (11)

Since LG
k is related to Xk, Equation (11) represents a fixed point equation that can

be solved using the fixed point iteration algorithm considering Xk equal to X̂k|k−1 in
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Equation (10). But as mentioned in [19,22,24], for a satisfactory estimation performance, a
single iteration is sufficient. Hence, adopting the same approach leads to the modification
of Equation (11) as

X̂k|k = X̂k|k−1 + KG
k

(
zk − ẑk|k−1

)
,

where

KG
k =

(
P−1

k|k−1 + LG
k H

′
kR−1

k Hk

)−1
LG

k H
′
kR−1

k and

LG
k = exp

(
−

(zk − ẑk|k−1)
′R−1

k (zk − ẑk|k−1)

2σ2

)
.

A more appropriate form for KG
k , in terms of reduced computational complexity, can

be derived using the matrix inversion lemma (detailed derivation is given in Appendix B) as

KG
k = Pk|k−1LG

k Hk
′(

Rk + HkPk|k−1LG
k H

′
k

)−1
. (12)

Now, the corresponding posterior error covariance matrix is given as

Pk|k =
(

I − KG
k Hk

)
Pk|k−1

(
I − KG

k Hk

)′
+ KG

k RkKG′
k .

5. Cauchy Kernel Based Maximum Correntropy Estimation Framework

In this section, we derive a maximum correntropy estimation framework using Cauchy
kernel for potential improvement in estimation accuracy, in the presence of large multi
dimensional non Gaussian noise. Hence the cost function becomes

JC = ℘C‖Xk − X̂k|k−1‖
2
P−1

k|k−1
− �CCδ

(
ℵR

)
where ℘C and �C are adjustable weights, and

Cδ

(
ℵR

)
=

1

1 +
ℵ′R−1

k ℵ
δ

,

with ℵ being the same as that mentioned in Section 4. To obtain the optimal estimate of Xk,

we equate
∂JC
∂Xk

= 0, giving ℘CP−1
k|k−1

(
Xk − X̂k|k−1

)
− �CLC

k
δ

H
′
R−1

k ℵ = 0, where

LC
k = C2

δ(ℵR) = C2
δ

(
‖zk − HkXk − ẑk|k−1 + HkX̂k|k−1‖R−1

k

)
.

We set ℘C = 1 and �C = δ so as to guarantee the convergence of the estimator when
kernel bandwidth δ tends to ∞. Rearranging,(

P−1
k|k−1 + LC

k H
′
kR−1

k Hk

)
Xk = LC

k H
′
kR−1

k

(
zk − ẑk|k−1

)
+
(

LC
k H

′
kR−1

k Hk + P−1
k|k−1

)
X̂k|k−1. (13)

Here also, LC
k is related to Xk and hence Equation (13) is a fixed point equation that is

to be solved using fixed point iteration algorithm, considering Xk equal to X̂k|k−1. Using
the same justification that was adopted in Gaussian kernel case that only a single iteration
is required, the expression for posterior mean is obtained as

X̂k|k = X̂k|k−1 + KC
k

(
zk − ẑk|k−1

)
,
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where

KC
k =

(
P−1

k|k−1 + LC
k H

′
kR−1

k Hk

)−1
LC

k H
′
kR−1

k and LC
k = C2

δ

(
‖zk − ẑk|k−1‖R−1

k

)
.

As per the proof given in Appendix B, Kalman gain can be modified as

KC
k = Pk|k−1LC

k H
′
k

(
Rk + HkPk|k−1LC

k H
′
k

)−1
. (14)

Then the posterior error covariance matrix shall be calculated as

Pk|k =
(

I − KC
k Hk

)
Pk|k−1

(
I − KC

k Hk

)′
+ KC

k RkKC′
k . (15)

Theorem 1. As the kernel bandwidth δ → ∞, the Cauchy kernel based MC estimator reduces to
the standard nonlinear state estimation algorithm.

Proof. As the time update is the same for the developed algorithms with respect to the
standard nonlinear state estimators, the prior mean and covariance is unchanged. Hence
the focus shall be on the posterior mean and covariance. This implies that the Kalman gain
equation has to be revisited. When δ → ∞,

lim
δ→∞

LC
k = lim

δ→∞
C2

δ

(
‖zk − ẑk|k−1‖R−1

k

)
= lim

δ→∞

1(
1 +

ℵ′R−1
k ℵ
δ

)2 = 1. (16)

Substituting the Equations (7) and (16) and Hk in KC
k , we have

KC
k = Pk|k−1(P

−1
k|k−1PXz)(Pzz − HkPk|k−1H

′
k + HkPk|k−1H

′
k)

−1 = PXzPzz
−1.

Since the expression of KC
k is similar to the Kalman gain of standard nonlinear state

estimator, posterior mean is also the same.
Now, for the posterior covariance Pk|k, consider Equation (15),

Pk|k = Pk|k−1 − Pk|k−1H
′
kKC′

k − KC
k HkPk|k−1 + KC

k

(
Rk + HkPk|k−1LC

k H
′
k

)
KC′

k . (17)

Post multiplying Equation (14) by (Rk + HkPk|k−1LC
k H

′
k) on both sides give

KC
k (Rk + HkPk|k−1LC

k H
′
k) = Pk|k−1LC

k H
′
k. (18)

Using Equations (16) and (18)

Pk|k = Pk|k−1 − Pk|k−1H
′
kKC′

k − KC
k HkPk|k−1 + Pk|k−1H

′
kKC′

k = Pk|k−1 − KC
k HkPk|k−1.

Substituting Hk, we get Pk|k = Pk|k−1 −KC
k P′

Xz. For the given condition, KC
k = PXzPzz

−1,
then P′

Xz = Pzz
′KC′

k . Thus Pk|k will become Pk|k = Pk|k−1 − KC
k Pzz

′KC′
k , which matches

with the posterior error covariance of standard nonlinear estimator.

Remark 1. For systems with non-Gaussian noise with large probability of abnormal noise, small
value of δ is likely to provide more robustness. If the occurrence of abnormal noise is less, large value
of δ could be considered.
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Remark 2. Cauchy kernel based nonlinear estimator with different δ performs with more estimation
accuracy than Gaussian kernel based nonlinear estimator with different σ. Hence it is easier to select
a value for δ that can provide accurate and robust estimates in the presence of abnormal noise.

6. Nonlinear State Estimators

This section deals with the nonlinear state estimators UKF and NSKF with a general-
ized algorithm for kernel based MC estimator.

6.1. Unscented Kalman Filter (UKF)

In the Bayesian framework, when the functions are nonlinear, the integrals encoun-
tered are intractable in nature and has to be evaluated using suitable numerical approx-
imation methods. The UKF, through its unscented transformation, provides a way to
numerically evaluate these integrals. Assuming that the integral to be approximated is

I(X) =
∫

h(X)pX(X)dX,

and X ∼ N (X̂, P), the unscented transformation defines a set of sigma points (X̂i) and
weights (Wi) such that [35]

I(X) �
N

∑
i=1

Wih(X̂i), where n is the dimension of the state space and N = 2n + 1.

The sigma points and weights are defined as

X̂1 = X̂, W1 =
κ

n + κ
,

X̂i = X̂+
(√

(n + κ)P
)

i
Wi =

1
2(n + κ)

, i = 1, · · · , n

X̂i = X̂−
(√

(n + κ)P
)

i
Wi =

1
2(n + κ)

, i = 1, · · · , n,

(19)

with κ being the tuning parameter and X̂ is the mean.

6.2. New Sigma Point Kalman Filter (NSKF)

From Equation (19), it can observed that in the unscented transformation, the maxi-
mum weight is assigned to the mean value. All the other sigma points are assigned equal
weights, i.e., same probability of occurrence. In NSKF, a new approach was considered
such that the sigma points closer to the mean will have more probability of occurrence.
To realize this, a new method was formulated for defining the sigma points and weights,
stated as [8]

X̂1 = X̂, W1 = 1 − ∑n
i=1 αi

2(∑n
i=1 αi + b)

X̂i+1 = X̂+

√
∑n

i=1 αi + b
mαi

Si, Wi+1 =
mαi

4(∑n
i=1 αi + b)

, i = 1, · · · , n

X̂i+1 = X̂−
√

∑n
i=1 αi + b
mαi−n

Si−n, Wi+1 =
mαi−n

4(∑n
i=1 αi + b)

, i = n + 1, · · · , 2n

X̂i+1 = X̂+

√
∑n

i=1 αi + b
(1 − m)αi−2n

Si−2n, Wi+1 =
(1 − m)αi−2n

4(∑n
i=1 αi + b)

, i = 2n + 1, · · · , 3n

X̂i+1 = X̂−
√

∑n
i=1 αi + b

(1 − m)αi−3n
Si−3n, Wi+1 =

(1 − m)αi−3n
4(∑n

i=1 αi + b)
, i = 3n + 1, · · · , 4n.

(20)
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Now the total number of sigma points N = 4n + 1, Pi and Si denote the ith column of
P and S respectively, and SS′ = P. The scalar variables are defined as b > { 1

4 max(mαi)−
1
2 ∑n

i=1 αi}, m ∈ (0.5, 1) and αi =
|<X̂,Pi>|
‖X̂‖2‖Pi‖2

.
The Algorithm 1 for the developed estimators, both Gaussian kernel and Cauchy

kernel based is given below. In this algorithm, Kk and Lk can be defined as per the chosen
kernel function. Rk is the noise covariance matrix which is assumed to be known in case
there are no measurement outliers.

Algorithm 1: For MC-UKF-CK and MC-NSKF-CK

Initialise X̂k−1|k−1 and Pk−1|k−1

X̂k|k−1 = Fk−1X̂k−1|k−1 − Xo
k + Fk−1Xo

k−1

Pk|k−1 = Fk−1Pk−1|k−1F′
k−1 + Q

Calculate X̂i and Wi using (19) or (20), i = 1, · · · , N

Zi,k|k−1 = h(X̂i)

ẑk = ∑N
i=1 WiZi,k|k−1

Pzz = ∑N
i=1 Wi[Zi,k|k−1 − ẑk][Zi,k|k−1 − ẑk]

′ + Rk

PXz = ∑N
i=1 Wi[X̂i,k|k−1 − X̂k|k−1][Zi,k|k−1 − ẑk]

′

Hk = (P−1
k|k−1PXz)

′

Rk = Pzz − HkPk|k−1H
′
k

Kk = Pk|k−1LkH
′
k(Rk + HkPk|k−1LkH

′
k)

−1.

Posterior mean: X̂k|k = X̂k|k−1 + Kk

(
zk − ẑk

)
.

Posterior covariance: Pk|k = (I − KkHk)Pk|k−1(I − KkHk)
′ + KkRkK′

k.

7. Modelling of Non Gaussian Noise in Angular Measurements

As mentioned in [36], a suitable way of modelling glint noise is to assume a Gaussian
mixture. It is observed that the glint is more like Gaussian around the mean but has a
non-Gaussian nature towards the tail region. The tail region represents the outliers, termed
as glint spikes [32]. But shot noise, on the other hand, is modelled as an impulse with
fixed amplitude at specific time steps. The mixture density of glint noise is modelled as
f (x) = (1 − μ) fg1(x) + μ fg2(x), where μ is the glint probability and fg1(x) ∼ N (0, σ2

1 ),
fg2(x) ∼ N (0, σ2

2 ) with σ1 �= σ2. The non Gaussian noises for angular measurements have
been modelled by taking appropriate values for μ, σ1 and σ2.

8. Simulation Results

The scenario for angles-only tracking problem in 2D as well as 3D Cartesian coordinate
frame is considered in this section. The parameters required for generating the target-
observer dynamics, and simulation results are discussed. For simulations, moderately
nonlinear tracking scenario for 2D as well as for 3D is considered. The simulation is carried
for 1000 Monte Carlo runs with sampling time interval denoted as T. The entire tracking
scenario is implemented and simulated in MATLAB software.
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8.1. 2D Scenario and Filter Initialisation

Figure 4 shows the tracking performance of MC-NSKF-CK, where the estimated target
path is plotted along with the truth target path, and the observer path for a single Monte
Carlo run. It should be noted that for each run, observer path remains the same where
as the target path varies due to the process noise. Further, the filter initialisation is also
changing because of the randomness introduced in each run, as mentioned in Equation (21).

The filter is initialised as given in [10]. It is to be noted that for filter initialisation,
we need an initial guess for speed, initial course and range of the target. Considering the
problem at hand, these estimates have to be obtained from the initial angle measurement
received. From these initial guess for parameters, the initial estimate for the states are
obtained which are the positions and velocities. Accordingly, the initial range, target
course and speed values are considered and mentioned in the Table 1. They are defined
as s = N (s, σ2

s ), cr = N (cr, σ2
c ) and r = N (r, σ2

r ) where cr can be defined as cr = z0 + π
with z0 as the first bearing measurement. Finally the initial state vector X̂0|0 and the initial
covariance P0|0 is calculated as

X̂0|0 =

⎡⎢⎢⎢⎣
r sin(z0)
r cos(z0)

s sin(cr)− ẋo0
s cos(cr)− ẏo0

⎤⎥⎥⎥⎦ P0|0 =

⎡⎢⎢⎢⎣
Pxx Pxy 0 0
Pyx Pyy 0 0
0 0 Pẋẋ Pẋẏ
0 0 Pẏẋ Pẏẏ

⎤⎥⎥⎥⎦ (21)

where

Pxx = r2σ2
β cos2(z0) + σ2

r sin2(z0) Pyy = r2σ2
β sin2(z0) + σ2

r cos2(z0)

Pxy = Pyx = (σ2
r − r2σ2

β) sin(z0) cos(z0) Pẋẋ = s2σ2
c cos2(cr) + σ2

s sin2(cr)

Pẏẏ = s2σ2
c sin2(cr) + σ2

s cos2(cr) Pẋẏ = Pẏẋ = (σ2
s − s2σ2

c ) sin(cr) cos(cr).

Table 1. Tracking parameters for 2D scenario.

Parameters Values

Initial Target Position
[
4.9286 0.8420

]
(km)

Initial Observer Position
[
0 0

]
(km)

Initial Target Speed (s) 4 (knots)
Initial Observer Speed 5 (knots)

Target Course −135.4◦

Observer manoeuvre From 780 to 1020 (s)
Initial Range (r) 5 (km)

Observation time 1800 (s)
qx, qy 9 × 10−12 (km2/s3)

σβ 1.5◦

σr 2 (km)
σs 2 (knots)

Sampling time T = 10 (s)
Initial Observer Course 140◦

Final Observer Course 20◦

σc π/
√

12
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Figure 4. Target truth and estimated path obtained from MC-NSKF-CK.

8.2. 3D Scenario and Filter Initialisation

Figure 5 shows the estimated target path obtained from MC-NSKF-CK and truth target
path with observer trajectory. The initial parameter values required for generating the 3D
scenario is given in the Table 2. Assuming that there are no outliers in the measurement,
Rk is defined as Rk = diag(σβ, σε). The bearing angle β is calculated with reference to the
true North.

Table 2. Target & Observer Initial Parameters.

Parameters Values

Initial Target Position
[
138/

√
2 138/

√
2 9

]
(km)

Initial Observer Position
[
0 0 10

]
(km)

Initial Target Speed (s) 0.297 (km/s)
Initial Observer Speed (s) 0.297 (km/s)

Target Course −135◦

Observer manoeuvre From 70 to 370 (s)
Initial Range (r) 150 (km)

Observation time 420 (s)
qx, qy 10−8 km2/s3

qz 10−10 km2/s3

σβ, σε 0.057◦

σr 13.6 (km)
σs 41.6 (m/s)

Elevation Angle 0.415◦

Sampling time T = 10 (s)

For each Monte Carlo run, according to the new measurement received, initial range r
and speed of the target s is assumed as mentioned in Table 2. According to these values,
the relative state is initialised using the range estimate r ∼ N (r, σr

2), initial bearing and
elevation estimate β̂1 and ε̂1 with headings α1 = β1 + π rad/s and γ1 = 0 rad/s, and
the initial speed estimate s ∼ N (s, σs

2) with s as 0.258 km/s. The σα1 = π/
√

12 and
σγ1

= π/60 respectively [37].
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Figure 5. Target truth and estimated path obtained from MC-NSKF-CK.

The initial relative state vector X̂0|0 is given as [38]

X̂0|0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r ζ1,0(ε̂1, σε
2) ζ0,1(β̂1, σβ

2)

r ζ1,0(ε̂1, σε
2) ζ1,0(β̂1, σβ

2)

r ζ0,1(ε̂1, σε
2)

s ζ1,0(γ1, σγ
2) ζ0,1(α1, σα

2)− ẋo1

s ζ1,0(γ1, σγ
2) ζ1,0(α1, σα

2)− ẏo1

s ζ0,1(γ1, σγ
2)− żo1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where ζ1,0(μ, σ2) = cos μ exp(−σ2/2) and ζ0,1(μ, σ2) = sin μ exp(−σ2/2).
The initial covariance matrix P0|0, whose entries are considered as mentioned in [38],

is defined as

P0|0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Pxx Pxy Pxz 0 0 0
Pxy Pyy Pyz 0 0 0
Pxz Pyz Pzz 0 0 0
0 0 0 Pẋẋ Pẋẏ Pẋż
0 0 0 Pẋẏ Pẏẏ Pẏż
0 0 0 Pẋż Pẏż Pżż

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

8.3. Performance Metrics

Performance analysis of the estimators formulated is evaluated by considering the
below mentioned error statistics.

1. RMSE: Root-mean-square error in resultant target position is computed as follows

RMSEk =

√√√√ 1
M

M

∑
j=1

[(xtj,k − x̂tj,k)
2 + (ytj,k − ŷtj,k)

2]

n=2

RMSEk =

√√√√ 1
M

M

∑
j=1

[(xtj,k − x̂tj,k)
2 + (ytj,k − ŷtj,k)

2 + (ztj,k − ẑtj,k)
2]

n=3

where k denotes the time steps and M the total number of Monte Carlo runs.
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2. Track Divergence: In order to identify if a track is divergent or not, a certain threshold
value (Tb) is set according to the position error computed at the final time instant of
observation (kmax) as

poserr =
√
(xtj,kmax

− x̂tj,kmax
)2 + (ytj,kmax

− ŷtj,kmax
)2

n=2

poserr =
√
(xtj,kmax

− x̂tj,kmax
)2 + (ytj,kmax

− ŷtj,kmax
)2 + (ztj,kmax

− ẑtj,kmax
)2

n=3

for j = 1, 2, · · · , M.

So, if the difference between estimated and truth target position is more than the
threshold value (Tb), then we can say that the estimated path is moving away from the
truth path. Thus, the track is considered to be divergent, and the number of such tracks are
counted over M Monte Carlo runs.

8.4. Performance Analysis

The performance analysis of the developed filters is evaluated in the presence of glint
plus shot noise in angle measurements. The accuracy of the estimators are evaluated by
computing root mean square error (RMSE) in position at the end of the simulation period
by imposing a track loss condition of 1 km.

vk =

⎧⎨⎩0.2N (0, σθ1
2) + 0.8N (0, σθ2

2) + 10◦, when k = 1200 and 900 s
0.2N (0, σθ1

2) + 0.8N (0, σθ2
2), otherwise.

(22)

The measurement noise vk for both the scenarios are given in Equations (22) and (23),
respectively. Here, σθ1 = 0.5◦, σθ2 = 5◦, (σβ1 , σε1 ) as 0.0001 rad and (σβ2 , σε2 ) as 0.01 rad.
The noise corrupted angle measurement for 2D is plotted as Figure 6. For 3D, the noise
corrupted bearing and elevation angle are as shown in Figures 7 and 8 respectively. For il-
lustration, in the figures, we have also plotted the angle measurements with Gaussian noise.

vk =

⎧⎪⎪⎨⎪⎪⎩
0.8N (0, diag([σβ1

2 σε1
2])) + 0.2N (0, diag([σβ2

2 σε2
2])) + [10◦ 1◦]T ,

when k = 270 and 390 s
0.8N (0, diag([σβ1

2 σε1
2])) + 0.2N (0, diag([σβ2

2 σε2
2])), otherwise.

(23)
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Figure 6. 2D: Angle measurement with glint plus shot noise.
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Figure 7. 3D: Bearing angle measurement with glint plus shot noise.
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Figure 8. 3D: Elevation angle measurement with glint plus shot noise.

With track loss condition of less than 1 km, the observed RMSE in position at the last
time instant and percentage track loss for 2D as well as 3D is given in the Tables 3 and 4
respectively. Also, RMSE in resultant position (after excluding the diverged tracks) is
evaluated and plotted in Figures 9 and 10. From these figures it can be inferred that in
the presence of non Gaussian noise the estimation accuracy of UKF deteriorates, whereas
filters based on MC framework performed with superior estimation accuracy. From the
tabulation results it is evident that the Cauchy kernel based MC-UKF and MC-NSKF gives
108.9 m, 108.8 m RMSE and 1.1 and 0.5% track loss which is much less than that of the
conventional UKF and NSKF which gives 152.8 m and 151.1 m RMSE with 4.4 and 2.8%
track loss in 2D scenario. Similar observations can be made with respect to Gaussian kernel
based MC-UKF and MC-NSKF giving much better accuracy but slightly less than Cauchy
kernel MC framework. However, in 3D scenario, the MC based filters gave even superior
estimation efficiency than that of the 2D scenario. UKF and NSKF in 3D with non Gaussian
noise resulted in 100% track loss. Hence it can be inferred that for the given problem set up
and noise statistics, UKF and NSKF failed to give estimates that met the track loss condition
set, where as the Gaussian and Cauchy kernel based maximum correntropy filters gave
more robust and accurate estimates. This can be inferred from the simulation results where
the developed filters incurred only 13 to 14% track loss, with a final error in range of around
500 m. All these simulations are carried out by assuming the bandwidth (σ, δ) for 2D
as (9,70) and for 3D as (11,75) such that the estimators can achieve maximum estimation
accuracy. Also, the tuning parameter value of NSKF, m = 0.6 is assumed for simulation.
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Figure 9. 2D: RMSE in position.

Table 3. 2D: RMSE in position and % Track Loss.

Filters % Track Loss RMSE (m)

UKF 4.4 152.8
MC-UKF-GK 1.1 111.0
MC-UKF-CK 1.1 108.9

NSKF 2.8 151.1
MC-NSKF-GK 1.2 109.6
MC-NSKF-CK 0.5 108.8

Table 4. 3D: RMSE in position and % Track Loss.

Filters % Track Loss RMSE (m)

UKF 100 -
MC-UKF-GK 14 496.1
MC-UKF-CK 13.5 499.8

NSKF 100 -
MC-NSKF-GK 14 496.8
MC-NSKF-CK 13.5 498.9
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Figure 10. 3D: RMSE in position.
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9. Conclusions

Since, measurements obtained in target tracking scenarios are corrupted with non
Gaussian noise, this paper presents a maximum correntropy framework for 2D as well as
3D angles-only target tracking problem. The reformulation of UKF and NSKF in terms of
Gaussian and Cauchy kernel based MC framework was realized. The non Gaussian noise is
modelled as a Gaussian mixture (glint noise) plus shot noise. Finally, the performance of the
estimators were evaluated and a comparative analysis is presented on the basis of RMSE
in position and % track loss. From the comparative analysis, it can be concluded that the
Gaussian and Cauchy kernel based MC framework provides improved estimation accuracy
than UKF and NSKF in non Gaussian noise environments. Thus, it can be inferred that
MC based estimators have the potential to give accurate and robust state estimates in the
presence of non Gaussian noises in angle measurements. As a future work, the proposed
estimation framework can be extended to track a manoeuvring target in the presence of
angles-only measurements corrupted with non Gaussian noise.
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Abbreviations

The following abbreviations are used in this manuscript:

Xt
k Target state vector at sample k

Xo
k Observer state vector at sample k

Xk Relative state vector at sample k
w Zero mean Gaussian process noise
Q Process covariance
F State transition matrix
T Sampling time
qx, qy, qz Power spectral densities of the process noise along the X, Y, and Z axes
zk Measurement vector at sample k
vk Non Gaussian measurement noise at sample k
r Range vector
β and ε Bearing and Elevation angle measurement
Rk Measurement noise covariance matrix at sample k
σβ and σε Standard deviations of error in bearing and elevation angles
kσ Kernel function
Gσ and σ Gaussian kernel and Gaussian bandwidth
Cδ and δ Cauchy kernel and Cauchy bandwidth
Xk|k−1 Prior mean at sample k
Pk|k−1 Prior covariance at sample k
Wk Weights at sample k
Hk Measurement slope matrix
PXz Cross covariance
Pzz Measurement covariance
J Cost function
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℘ and � Adjustable weights
LG

i Gaussian scalar term
KG

i Gaussian Kalman gain
Xk|k Posterior mean at sample k
Pk|k Posterior covariance at sample k
cr Initial course estimate
β̂1 and ε̂1 True initial bearing and elevation measurement estimate
α1 and γ1 Bearing and Elevation angle heading
Tb Threshold
RMSE Root Mean Square Error
MMSE Minimum Mean Square Error
MC-UKF-GK Maximum correntropy unscented Kalman filter Gaussian kernel
MC-UKF-CK Maximum correntropy unscented Kalman filter Cauchy kernel
MC-NSKF-GK Maximum correntropy new sigma point Kalman filter Gaussian kernel
MC-NSKF-CK Maximum correntropy new sigma point Kalman filter Cauchy kernel

Appendix A. Power Series Expansion of Cauchy Kernel Function

The binomial expansion of (1 + x)−N for negative integer −N is given as follows:(
1 + x

)−N
= 1 + (−N)x +

(−N)(−N − 1)
2!

x2 +
(−N)(−N − 1)(−N − 2)

3!
x3 + · · · ,

=
∞

∑
k=0

(−1)k
(

N + k − 1
k

)
xk, for |x| < 1.

Now the correntropy measure, by taking the binomial series expansion of Cauchy

kernel with x = (X−Y)2

δ is

Vδ(X, Y) =
∞

∑
k=0

(−1)k
(

N + k − 1
k

)(
(X − Y)2

δ

)k

=
∞

∑
k=0

(−1)k

δk

(
N + k − 1

k

)
E
[
(X − Y)2k

]
, for

∣∣∣∣∣ (X − Y)2

δ

∣∣∣∣∣ < 1.

Appendix B. Derivation of Kalman Gain

The Kalman gain for Gaussian kernel based nonlinear estimator is KG
k with LG

k as a
scalar term. Similarly, for Cauchy kernel, it is KC

k and LC
k respectively. A general expression

for Kalman gain is given as Kk = (P−1
k|k−1 + LkH

′
R−1

k H)−1LkH
′
R−1

k . Applying matrix
inversion lemma

Kk =
(

Pk|k−1 − Pk|k−1LkH
′
(Rk + HPk|k−1LkH

′
)−1HPk|k−1

)
LkH

′
R−1

k

= Pk|k−1LkH
′
R−1

k − Pk|k−1LkH
′
(Rk + HPk|k−1LkH

′
)−1HPk|k−1LkH

′
R−1

k

= Pk|k−1LkH
′(

R−1
k − (Rk + HPk|k−1LkH

′
)−1HPk|k−1LkH

′
R−1

k

)
= Pk|k−1LkH

′(
I − (Rk + HPk|k−1LkH

′
)−1HPk|k−1LkH

′)
R−1

k .

After certain algebraic manipulations, we get

Kk = Pk|k−1LkH
′
(I + R−1

k HPk|k−1LkH
′
)−1R−1

k = Pk|k−1LkH
′
k(Rk + HkPk|k−1LkH

′
k)

−1. (A1)

From the above equation, KG
k and KC

k can be defined by making necessary substitution
for LG

k and LC
k .
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Abstract: This paper considers the optimal sensor placement problem for angle-of-arrival (AOA)
target localization in the 2D plane with a Gaussian prior. Optimal sensor locations are analytically
determined for a single AOA sensor using the D- and A-optimality criteria and an approximation of
the Bayesian Fisher information matrix (BFIM). Optimal sensor placement is shown to align with the
minor axis of the prior covariance error ellipse for both optimality criteria. The approximate BFIM is
argued to be valid for a sufficiently small prior covariance compared with the target range. Optimal
sensor placement results obtained for Bayesian target localization are extended to manoeuvring target
tracking. For sensor trajectory optimization subject to turn-rate constraints, numerical search methods
based on the D- and A-optimality criteria as well as a new closed-form projection algorithm that aims
to achieve alignment with the minor axis of the prior error ellipse are proposed. It is observed that
the two optimality criteria generate significantly different optimal sensor trajectories despite having
the same optimal sensor placement for the localization of a stationary target. Analysis results and
the performance of the sensor trajectory optimization methods are demonstrated with simulation
examples. It is observed that the new closed-form projection algorithm achieves superior tracking
performance compared with the two numerical search methods.

Keywords: optimal target–sensor geometries; bearings-only localization; Fisher information matrix;
Bayesian estimation

1. Introduction

In target tracking and localization problems, target–sensor geometries are known to
play a significant role in determining the localization and tracking performance. In this
paper, we focus on optimal target–sensor geometries for angle-of-arrival (AOA) localization
in the 2D plane using a single moving sensor. First, the localization problem is cast as a
Bayesian estimation problem, which assumes the availability of prior information in the
form of a Gaussian prior for the unknown target location. For this problem, optimal sensor
placement results are developed using approximate estimation bounds. Next, the Bayesian
estimation problem is extended to target tracking using the Kalman filter, and optimal
sensor trajectories are developed to track a manoeuvring target.

Optimal sensor placement has been researched for several decades. Early works
included [1–3], where the performance of the extended Kalman filter (EKF) [4] and several
deterministic (non-Bayesian) estimators was reported for different bearings-only sensor
manoeuvres, mostly in sonar applications. In [5], optimal bearings-only sensor manoeuvres
for tracking a constant-velocity target were derived using optimal control theory. The sensor
trajectory optimization problem was formulated as a partially observable Markov decision
problem (POMDP) for a manoeuvring target using the trace of FIM, which is similar to
the A-optimality criterion (minimizing trace of inverse FIM), as the reward function in [6].
In [7], the D-optimality criterion, whereby the sensor location is determined to maximize
the determinant of the Fisher information matrix (FIM), was adopted to determine optimal
sensor trajectories for the localization of a stationary target. Optimal sensor manoeuvres
necessary to make a constant-velocity target observable were discussed in [8]. The sensor
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trajectory optimization problem in the Bayesian sense was considered in [9], where the
posterior Cramer–Rao lower bound (PCRLB) [10] was employed to minimize the largest
root-mean-square-error (RMSE)-bound approximated by the reciprocal of measurement
data contributions to target location information.

A comprehensive analysis of the 2D optimal AOA sensor placement problem for a
stationary target was presented in [11,12]. Optimal 3D AOA target–sensor geometries for a
stationary target were analysed in [13]. A gradient-descent algorithm for sensor path opti-
mization to minimize the mean-square error of predicted EKF target location estimates was
proposed in [14]. A UAV path optimization algorithm that solves a nonlinear programming
problem based on the D-optimality criterion was developed in [15] to geolocate a stationary
target using a heterogeneous mix of passive payload sensors. In [16], a unified framework
was proposed for AOA, range-only, and received signal strength localization when the
target was stationary. Optimal target–sensor geometries for maximum a posteriori (MAP)
target localization with a Gaussian prior were investigated in [17]. In [18], the optimality
criteria for target–sensor geometries in a Kalman filtering setting were analysed for several
sensor types using an approximation of the Bayesian FIM. A unified 2D target–sensor
geometry optimization framework was proposed in [19] for stationary target localization
with a Gaussian prior, reducing the optimization problem to minimization of the modulus
of a vector sum, akin to [11]. In [20], optimal sensor placement in 3D space was studied for
AOA target localization with a Gaussian prior, employing rotational invariance arguments.

This paper develops optimal sensor placement results for a single AOA sensor at
a fixed distance from the mean of the Gaussian prior. To do this, the Bayesian FIM is
approximated by replacing the expectation of the contribution form measurement data
with its instantaneous value calculated at the mean of the Gaussian prior. It is argued
that this approximation is valid when the covariance of the Gaussian prior is relatively
small compared with the target range. The optimal sensor placements for the D- and
A-optimality criteria are shown to be identical and align with the minor axis of the error
ellipse of the prior covariance. In the context of bearings-only manoeuvring target tracking,
numerical search methods based on the D- and A-optimality criteria and a new closed-form
projection algorithm that attempts to achieve alignment with the minor axis of the prior
covariance error ellipse are proposed for sensor trajectory optimization subject to turn-rate
constraints. It is observed that the D- and A-optimality criteria yield markedly different
optimal sensor trajectories even though they produce identical optimal sensor placement
for the localization of a stationary target. The projection algorithm is shown to outperform
the other two methods in simulation studies.

This paper is organized as follows. Section 2 investigates the optimal sensor placement
problem for a stationary target with a Gaussian prior using the D- and A-optimality criteria.
Section 3 extends the results of Section 2 to Kalman filter tracking of a manoeuvring target,
proposing two sensor trajectory optimization methods and a new closed-from projection
algorithm. Section 4 presents simulation examples to verify the optimal sensor placement
results derived in Section 2 and to compare and demonstrate the effectiveness of the sensor
trajectory optimization algorithms proposed in Section 3. Concluding remarks are made in
Section 5.

2. Optimal Target-Sensor Geometry with Gaussian Prior

In tracking problems with a state space that can be modelled or approximated as
a Gauss–Markov process, the Kalman filter has been extensively used to compute the
Gaussian prior for state estimates from the noisy sensor measurements available in each
recursion in the form of the predicted state estimate and predicted state covariance. Starting
with the Gaussian prior N (x0, P0), where x0 is the mean and P0 is the covariance of the
prior, the objective of optimal sensor placement is to determine a sensor location s at a
fixed distance of d = ‖d‖, where d = x0 − s, from the mean of the Gaussian prior (or
predicted target location estimate) x0 so that sensor measurements collected at the new
sensor location will optimize a well-defined objective function that is related to the Bayesian
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localization performance. The new measurements together with the Gaussian prior are then
used to compute the filtered state estimate and covariance, which are optimized in terms of
target–sensor geometry. We consider two optimality criteria for sensor placement: namely,
the D-optimality and A-optimality criteria [21–23], which are commonly used in practice.
Referring to Figure 1, the task of geometry optimization is reduced to finding a range vector
d or bearing angle θ(x0) pivoted at the mean of the Gaussian prior with d = ‖d‖ fixed,
which gives the location of the sensor to satisfy the chosen optimization criterion.

Figure 1. The 2D AOA geometry and 1-σ error ellipse for Gaussian prior with mean x0 and covari-
ance P0.

The bearing measurements collected by the sensor located at s are given by

θ = θ(x) + w (1)

where x ∼ N (x0, P0) is the Bayesian prior, w ∼ N (0, σ2) is the bearing angle noise, and

θ(x) = tan−1(x2 − s2, x1 − s1), −π ≤ h(x) ≤ π (2)

is the true bearing angle with x = [x1, x2]
T and s = [s1, s2]

T . In (2), tan−1(·) is the four-
quadrant arc-tangent. The objective of Bayesian estimation is to determine an estimate for
the unknown random target location x from the bearing measurement θ and the knowledge
of the Gaussian prior with mean x0 and covariance P0.

The optimality criteria considered in this paper employ estimation bounds obtained
from the FIM or CRLB. In Bayesian estimation problems that involve random unknown
parameters, these bounds are replaced by the Bayesian FIM (BFIM) or Bayesian CRLB
(BCRLB). The BFIM for the single-sensor AOA localization problem is defined as [24]

Φ = K0 + Ex

{
1

σ2d2(x)
u(x)uT(x)

}
(3)

where Ex{·} denotes the expectation over x,

u(x) =
[− sin θ(x)

cos θ(x)

]
(4)

is the unit vector orthogonal to the range vector, and d(x) = ‖x − s‖ is the target range
from the sensor positioned at s. The matrix K0 = P−1

0 represents the contribution of the a
priori information, and

Ex

{
1

σ2d2(x)
u(x)uT(x)

}
(5)

is the contribution of data. The inverse of the BFIM gives the BCRLB.
Equation (5) can be rewritten as
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Ex

{
1

σ2d2(x)
u(x)uT(x)

}
=

1
σ2 Ex

{
1

d2(x)
u(x)uT(x)

}
(6)

=
1
σ2

⎡⎣ E
{

sin2 θ(x)
‖x−s‖2

}
−E

{
sin θ(x) cos θ(x)

‖x−s‖2

}
−E

{
sin θ(x) cos θ(x)

‖x−s‖2

}
E
{

cos2 θ(x)
‖x−s‖2

} ⎤⎦ (7)

≈ 1
σ2d2 u(x0)uT(x0), u(x0) =

[− sin θ(x0)
cos θ(x0)

]
(8)

which gives

Φ ≈ K0 +
1

σ2d2 u(x0)uT(x0). (9)

The approximation in (9) is valid for a sufficiently “small” prior covariance compared
with the target range. Here, we measure the size of prior covariance by its trace (see (16)).
Referring to Figure 2, we have

sin θ(x) = sin θ(x0 + η) (10)

=
x0,2 − s2 + η2√

(x0,1 − s1 + η1)2 + (x0,2 − s2 + η2)2
(11)

where η = [η1, η2]
T ∼ N (0, P0), and x0 = [x0,1, x0,2]

T . Taking the expectation of the
squared sine function yields

E{sin2 θ(x)} ≈ E{(x0,2 − s2 + η2)
2}

E{(x0,1 − s1 + η1)2 + (x0,2 − s2 + η2)2} (12)

≈ (x0,2 − s2)
2 + E{η2

2}
d2 + E{η2

1}+ E{η2
2}

(13)

≈
(

x0,2 − s2

d

)2
(14)

≈ sin2 θ(x0) (15)

if
d2 � E{η2

1}+ E{η2
2} = tr P0. (16)

Here, tr denotes trace. Applying the same line of reasoning to E{sin θ(x) cos θ(x)}
and E{cos2 θ(x)}, we conclude that (16) is the condition that must be met to justify (9).

Figure 2. Geometric interpretation of instantaneous angle measurements.
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2.1. D-Optimality Criterion

The D-optimality criterion aims to maximize the determinant of the Fisher information
matrix (FIM). For the Bayesian estimation problem considered here, the FIM is replaced by
the Bayesian FIM (BFIM). Considering the optimization problem described in Figure 1, the
optimal placement for the sensor is obtained from the solution of

max
s

|Φ| (17)

where | · | denotes the determinant. The optimization problem in (17) determines the sensor
location s that maximizes the determinant of BFIM for a given Gaussian prior.

Noting that in (9) K0 is a square matrix and u(x0) is a column vector, the determinant
of the BFIM can be rewritten as a sum of two terms [25]

|Φ| ≈
∣∣∣∣K0 +

1
σ2d2 u(x0)uT(x0)

∣∣∣∣ (18)

≈ |K0|+
1

σ2d2 uT(x0)K∗
0u(x0) (19)

where K∗
0 is the adjoint of K0, defined by

K∗
0 = |K0|K−1

0 = |K0|P0. (20)

Thus, for a given Gaussian prior P0 and fixed d, the optimization problem in (17)
reduces to

max
θ(x0)

uT(x0)P0u(x0). (21)

Since u(x0) is a unit vector, (21) is a problem of quadratic form maximization over the
unit circle. Using the eigenvalues of P0, denoted by λ1, λ2 with λ1 ≥ λ2, the solution of (21)
is given by [26]:

λ1 = max
θ(x0)

uT(x0)P0u(x0) (22)

ν1 = arg max
u(x0)

uT(x0)P0u(x0) (23)

where ν1 is an orthonormal eigenvector of P0 corresponding to λ1. The optimal bearing
angle for the sensor, θopt, is easily obtained from the optimal unit vector ν1 by noting that it
is orthogonal to the range vector (see Figure 1). In other words, the optimal range vector
dopt must be aligned with the minor axis of the error ellipsoid of the Gaussian prior, as
shown in Figure 3.

Some remarks are in order here:

• If the Gaussian prior has a circular error ellipse with P0 given by a scaled identity
matrix, (21) becomes

max
θ(x0)

uT(x0)u(x0) or max
θ(x0)

1 (24)

which means that optimality is achieved by any bearing angle θ(x0).
• In all other cases, there are two optimal bearing angles aligned with the minor axis of

the error ellipse, producing two possible optimal sensor locations with range vectors
±dopt symmetric about x0.
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Figure 3. Optimal sensor placement in 2D using the D-optimality criterion with Gaussian prior
N (x0, P0).

2.2. A-Optimality Criterion

The objective of the A-optimality criterion is to minimize the trace of the BCRLB or
the inverse BFIM. In this case, the optimal sensor placement is obtained from

min
s

tr(Φ−1). (25)

Applying the matrix inversion lemma [27] to the approximate BFIM in (9), we get

Φ−1 ≈ P0

(
I − u(x0)uT(x0)P0

σ2d2 + uT(x0)P0u(x0)

)
(26)

It is clear that to solve (25), we need to maximize the trace of the second term on the
right-hand side of (26); i.e.,

max
s

tr
(

P0u(x0)uT(x0)P0

σ2d2 + uT(x0)P0u(x0)

)
(27)

or

max
u(x0)

uT(x0)P2
0u(x0)

σ2d2 + uT(x0)P0u(x0)
. (28)

To solve (28) for u(x0), let R =
uT(x0)P2

0u(x0)

σ2d2+uT(x0)P0u(x0)
and set its gradient equal to zero,

∂

∂u(x0)
R = 0 (29)

which results in

2P2
0u(x0)(σ

2d2 + uT(x0)P0u(x0))− 2(uT(x0)P2
0u(x0))P0u(x0)

(σ2d2 + uT(x0)P0u(x0))2 = 0 (30)

P2
0u(x0)(σ

2d2 + uT(x0)P0u(x0)) = (uT(x0)P2
0u(x0))P0u(x0) (31)

P2
0u(x0) = RP0u(x0). (32)

Left-multiplying both sides of the above equation with P−1
0 finally gives

P0u(x0) = Ru(x0) (33)
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where the nonzero scalar R is an eigenvalue of P0 and the unit vector u(x0) is the corre-
sponding eigenvector. We therefore conclude that R is maximized when u(x0) = ν1, which
is the eigenvector of P0 associated with its largest eigenvalue λ1. Note that this optimality
result is identical to that for the A-optimality criterion derived in Section 2.1.

3. Application to Tracking

In this section, sensor waypoint optimization algorithms are devised to embed the
optimal sensor placement results derived in Section 2 into the Kalman filter. As a specific
application, bearings-only manoeuvring target tracking is considered. When the target
is moving, it is often the case that the target dynamics and constraints on the motion of
a single sensor, such as turn-rates and distances between successive waypoints, do not
allow strictly optimal sensor placement geometries to be achieved from one Kalman filter
recursion to the next. We develop sensor trajectory optimization methods that respect
dynamic sensor constraints.

The principle we follow is based on the treatment of each Kalman filter recursion
as solving a Bayesian target localization problem with a Gaussian prior available from
the previous recursion and measurements taken at a new optimized sensor location to
compute filtered state estimates and an updated prior for the next Kalman filter recursion.
Figure 4 captures the computational steps of a Kalman filter recursion with sensor waypoint
optimization embedded into it. The details of how optimal sensor waypoints are computed
from Kalman filter parameters are discussed later in the section.

Figure 4. Optimal sensor waypoint computation in a Kalman filter recursion.

The single moving sensor collects AOA measurements from a manoeuvring target
at time instants k = 0, 1, 2, . . .. The sensor location at time k is denoted by sk. The process
equation for the target is

xk+1 = Fxk + nk, k = 0, 1, . . . (34)

where xk = [xk, ẋk, yk, ẏk]
T is the target state vector with [xk, yk]

T and [ẋk, ẏk]
T denoting the

target location and velocity, respectively, at time k. In (34) the dynamical constraint (the
state transition matrix) is given by

F =

[
A 0

0 A

]
, A =

[
1 T
0 1

]
(35)
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where T denotes the time interval between discrete-time instants k. The process noise nk
accounts for unknown target manoeuvres and is zero-mean white Gaussian with covariance

Q =

[
qxB 0

0 qyB

]
, B =

[
T4/4 T3/2
T3/2 T2

]
(36)

where qx and qy are often determined from maximum target acceleration [28].
The AOA measurement equation is

zk = h(xk) + wk (37)

where h(·) is the bearing angle of the target from the sensor location [see (2)], and wk ∼
N (0, σ2) is the bearing measurement noise. As the measurement Equation (37) is nonlinear,
the extended Kalman filter (EKF) is often used to estimate the target state vector, which is
given by the recursion:

State Prediction:

xk|k−1 = Fxk−1|k−1 mean of prior (38)

Pk|k−1 = FPk−1|k−1FT + Q covariance of prior (39)

State Update:

z̃k = zk − h(xk|k−1) (40)

Gk = Pk|k−1hT
k (hkPk|k−1hT

k + σ2)−1 (41)

xk|k = xk|k−1 + Gkz̃k state estimate (42)

Pk|k = (I − Gkhk)Pk|k−1 covariance of state estimate (43)

where xk|k−1 is the state prediction at time k given all measurements up to time k − 1, and
xk|k is the filtered state estimate at time k. The EKF replaces the nonlinear measurement
Equation (37) with

zk = hkxk + wk (44)

where hk is the Jacobian of h(xk) evaluated at xk|k−1:

hk =
1

dk|k−1

[
u1(xk|k−1) 0 u2(xk|k−1) 0

]
. (45)

Here, dk|k−1 is the target–sensor range estimate computed from xk|k−1 and sk, and
u(·) = [u1(·), u2(·)]T is the unit vector defined in (4).

The moving AOA sensor is assumed to travel with a constant velocity, which means
that the distance between successive waypoints is constant, i.e., ‖sk − sk−1‖ = s. Assuming
a maximum turn-rate of ±ϑmax in azimuth, the next waypoint is constrained to lie on an
arc defined by

sk = sk−1 + s υ(ϑk), |ϑk − ϑk−1| < ϑmax (46)

where υ(ϑk) = [cos ϑk, sin ϑk]
T is the sensor heading vector with heading angle ϑk at time

instant k.
The recursive BFIM for the Kalman filter tracking problem is given by [24]

Φk = (FΦk−1FT + Q)−1 +
1
σ2 Exk{h̃T

k h̃k} (47)

where h̃k is the Jacobian matrix in (45) calculated at target state xk. Equation (47) has
the same structure as (3) in that it is the sum of prior information (FΦk−1FT + Q)−1 and
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contribution from measurements 1
σ2 Exk{h̃T

k h̃k}. It is necessary to simplify (47) so that readily
available Kalman filter estimates can be used rather than resorting to computationally
expensive Monte Carlo simulations to calculate the expectation.

The contribution from measurements is approximated by

1
σ2 Exk{h̃T

k h̃k} ≈ 1
σ2 hT

k hk (48)

where hk is the Jacobian in (45). Thus, using P−1
k|k−1 as the prior information and (48) as the

contribution from measurements, we have

Φk ≈ P−1
k|k−1 +

1
σ2 hT

k hk (49)

where both Pk|k−1 and hk are calculated by the EKF. In the following subsections, we
show how to apply the D- and A-optimality criteria to the approximate recursive BFIM
expression in (49) to derive trajectory optimization algorithms.

3.1. Sensor Trajectory Optimization Using D-Optimality

Referring to (21) and (49), the optimal waypoint for the sensor at time k using the
D-optimality for the EKF takes the following form:

max
sk∈Sk

hkPk|k−1hT
k (50)

which can be rewritten as

max
sk∈Sk

1
d2

k|k−1

uT(xk|k−1)Ploc,k|k−1u(xk|k−1) (51)

where Sk is the set of permissible waypoints compliant with the turn-rate

Sk = {sk | sk − sk−1 = sυ(ϑk), |ϑk − ϑk−1| < ϑmax} (52)

and

Ploc,k|k−1 =

[
ploc,k|k−1(1, 1) ploc,k|k−1(1, 2)
ploc,k|k−1(2, 1) ploc,k|k−1(2, 2)

]
(53)

is the 2 × 2 covariance matrix for predicted target location, which is extracted from Pk|k−1
as shown below:

Pk|k−1 =

⎡⎢⎢⎣
ploc,k|k−1(1, 1) ∗ ploc,k|k−1(1, 2) ∗

∗ ∗ ∗ ∗
ploc,k|k−1(2, 1) ∗ ploc,k|k−1(2, 2) ∗

∗ ∗ ∗ ∗

⎤⎥⎥⎦. (54)

Note that as dk|k−1 also depends on sk (i.e., the fixed range constraint does not apply),
(51) does not have a simple closed-form solution. This means that it must be solved by a
numerical search over a finite number of permissible waypoints contained in the set Sk.

3.2. Sensor Trajectory Optimization Using A-Optimality

Using (28), the A-optimality criterion for sensor waypoints is given by

max
sk∈Sk

hT
k P2

k|k−1hk

σ2 + hT
k Pk|k−1hk

(55)

which is obtained by substituting hk for uT(x0)/d and Pk|k−1 for P0 into (28).
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Different from the D-optimality criterion in (51), (55) depends not only on the target
range dk|k−1 through the Jacobian hk, but also the bearing noise variance σ2. Again, it is not
straightforward to solve (55) for the optimal sk. A numerical search over the members of
the set Sk is necessary.

3.3. Projection Algorithm: A Closed-Form Solution

The D- and A-optimality solutions for determining optimal sensor waypoints de-
scribed above can be computationally expensive, especially if the numerical search must be
carried out over a large number of candidate waypoints in the set Sk. In this subsection,
we present an alternative closed-form solution, called the projection algorithm, inspired
by the ultimate objective of aligning the sensor with the minor axis of the prior covariance
error ellipse.

The idea behind the projection algorithm is illustrated in Figure 5. The next waypoint
sk is chosen to guide the sensor towards the closest point ψk that is aligned with the minor
axis of the target location prior Ploc,k|k−1 and is at the same distance from the mean of
the prior xloc,k|k−1 = [xk|k−1, yk|k−1]

T as the estimated target–sensor range dk|k−1. The next
waypoint is found by projecting the waypoint vector sk − sk−1 to ψk − sk−1 subject to
the turn-rate constraint. If the projection causes the sensor heading angle to exceed the
turn-rate, the next waypoint is chosen to have the maximum turn-rate. This projection also
brings the sensor closer to the target with dk < dk|k−1. The reduction in dk is proportional to
how far ψk is from sk−1. If xloc,k|k−1 − sk−1 is aligned with the major axis of the error ellipse,
which represents the worst geometry, the distance between sk−1 and ψk is maximized and
dk will have the maximum reduction.

Figure 5. Closed-form projection algorithm to determine the next waypoint sk. The heading angle ϑk
is constrained by the turn-rate |ϑk − ϑk−1| < ϑmax.

This behaviour makes sense because the optimality of a target–sensor geometry is
improved at the maximum rate by moving the sensor directly towards the optimal sensor
location for the given Gaussian prior with mean xloc,k|k−1 and covariance Ploc,k|k−1.

A detailed description of the projection algorithm is provided in Algorithm 1.
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Algorithm 1 Projection algorithm.

Input: sk−1, xloc,k|k−1, Ploc,k|k−1, ϑmax, ϑk−1, s
Output: sk
Calculate ν2, eigenvector of Ploc,k|k−1 associated with its smallest eigenvalue
Calculate dk|k−1 = ‖xloc,k|k−1 − sk−1‖
Calculate ψ±

k = xloc,k|k−1 ± dk|k−1ν2

If ‖ψ+
k − sk−1‖ < ‖ψ−

k − sk−1‖
ψk = ψ+

k

Else

ψk = ψ−
k

End
If sk−1 = ψk (sensor is already aligned with prior covariance minor axis)

Return sk = sk−1 + s[cos ϑk−1, sin ϑk−1]
T (no change in sensor heading)

Else

Calculate Δs = s ψk−sk−1
‖ψk−sk−1‖

Calculate Δϑ = ∠Δs − ϑk−1, −π ≤ Δϑ ≤ π (∠ denotes bearing angle)
If |Δϑ| < ϑmax

Return sk = sk−1 + Δs
Else

Calculate ϑk = ϑk−1 + sign(Δϑ)ϑmax

Return sk = sk−1 + s[cos ϑk, sin ϑk]
T

End
End

4. Simulation Examples

This section presents simulation examples to verify the optimization results and to
demonstrate the performance of the sensor trajectory optimization algorithms developed
in Sections 2 and 3. In the first set of simulations, the focus is on optimal target–sensor
geometries using the D- and A-optimality criteria for Bayesian target localization. The
Gaussian prior has zero mean x0 = [0, 0]T and covariance

P0 =

[
27.6047 −14.7721
−14.7721 22.3953

]
(56)

with eigenvalues λ1 = 40 and λ2 = 10. The minor axis of the error ellipse make an angle
of 50◦ with the positive x-axis. The AOA sensor is allowed to be located on a circle of
radius d = 50 km centred at the mean of the Gaussian prior x0, and the bearing angle noise
standard deviation is σ = 5◦.

Figure 6 shows the D- and A-optimality measures, |Φ| and tr Φ−1, respectively, versus
the bearing angle θ in the range 0 ≤ θ < π for the approximate and exact BFIM given by (9)
and (3), respectively. The exact BFIM was calculated using 50,000 Monte Carlo runs for
each bearing angle. As evident from Figure 6, the simulated optimal bearing angles are not
significantly different for the approximate and exact BFIM. This is also backed up by the
close proximity of the two curves in Figure 6. The optimal bearing angle obtained from
the approximate BFIM aligns with the minor axis of the error ellipse at θopt = 50◦ for both
D- and A-optimality criteria, which is in agreement with the analytical results derived in
Section 2.
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(a) (b)

Figure 6. (a) Plot of determinant of Φ (D-optimality criterion) versus bearing angle using approxi-
mate and exact BFIM. (b) Plot of trace of Φ−1 (A-optimality criterion) versus bearing angle using
approximate and exact BFIM.

To confirm that (9) is a valid approximation only for sufficiently small P0 compared
with the target range, we repeated the previous simulations for P0 increased by a factor of
two. Figure 7 shows the resulting D- and A-optimality measures for the approximate
and exact BFIM. While the approximate and exact BFIM still yield almost the same
optimal bearing angles, the curves corresponding to them exhibit significant discrepancy,
in particular at bearing angles away from θopt.

(a) (b)

Figure 7. (a) Plot of determinant of Φ (D-optimality criterion) versus bearing angle for large P0 using
approximate and exact BFIM. (b) Plot of trace of Φ−1 (A-optimality criterion) versus bearing angle
for large P0 using approximate and exact BFIM.

The optimal target–sensor geometry for the simulated scenario is depicted in Figure 8.
As expected, at the optimal bearing angle, the target–sensor range vector is perfectly aligned
with the minor axis of the error ellipse of the Gaussian prior. Note that there are, in fact, two
optimal sensor locations. The other one has the bearing angle θopt − 180 = −130 degrees.
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Figure 8. Optimal target–sensor geometry, where the target–sensor range vector is perfectly aligned
with the minor axis of the error ellipse of the Gaussian prior covariance.

In the next set of simulations, we consider sensor trajectory optimization in a bearings-
only manoeuvring target tracking problem. The algorithms in (51), (55) and Algorithm 1
are simulated for a single realization of target manoeuvres. The process noise parameter
for the target is qx = qy = 10−4 m2/s4. The bearing angle noise is assumed to be σ = 4◦.
The initial target dynamics are

x0|−1 = [0, 0, 0, 0]T (57)

and

P0|−1 =

⎡⎢⎢⎣
19.7500 0 9.0933 0

0 0 0 0
9.0933 0 9.2500 0

0 0 0 0

⎤⎥⎥⎦. (58)

The time interval between successive EKF recursions is set equal to T = 10 s. The
sensor is initially located at s0 = [−26.8116,−22.4976] km and moves with a constant speed
of 25 m/s (90 km/h). The maximum turn-rate for the sensor is 30◦ per 10 s. The separation
between successive sensor waypoints is s = 0.25 km. For the sensor trajectory optimization
methods based on the D- and A-optimality criteria, 10 uniformly spaced points are used
for numerical search over sensor waypoints in the set Sk.

The simulated sensor trajectory for the D-optimality criterion in (51) is depicted in
Figure 9. The 2-σ error ellipses for predicted target location estimates are plotted every
50 time instants. The initial error ellipse is drawn in black and all others are in grey. The
optimal sensor trajectory achieves a rapid reduction in the size of error ellipses. Following
the initial approach, the sensor chases the target by circling around it.

Figure 10 shows the simulated sensor trajectory for the A-optimality criterion in (55).
The optimal sensor trajectory has a markedly different behaviour to that observed for the
D-optimality criterion (see Figure 9) in that it seems to favour circling the target more
than getting close to it initially. As a consequence, it takes longer to achieve a significant
reduction in error ellipses than the A-optimality criterion.

The simulation results for the projection algorithm in Algorithm 1 are shown in
Figure 11. The sensor follows a more direct route towards the target than both the D- and
A-optimality methods, followed by circling manoeuvres. This is expected to produce faster
convergence to the minimum estimation error than the D- and A-optimality methods at
the expense of somewhat larger estimation error initially. This observation is confirmed by
the root-mean-square error (RMSE) of target location estimates shown in Figure 12, which
were computed from 5000 Monte Carlo simulation runs.
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Figure 9. Optimal sensor trajectory for D-optimality criterion.

Figure 10. Optimal sensor trajectory for A-optimality criterion.
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Figure 11. Optimal sensor trajectory using the projection algorithm.

Figure 12. RMSE comparison of sensor trajectory optimization methods. The projection algorithm
minimizes target tracking error fastest, followed by the D-optimality method.

5. Conclusions

Optimal sensor placement for the Bayesian AOA target localization problem was
considered. The concept of updating prior information with data from measurements
was extended to the Kalman filter tracking problem. Using an approximation of the
BFIM, the optimal sensor placement for a given Gaussian prior was shown to be aligned
with the minor axis of the prior error ellipse for both D- and A-optimality criteria. By
way of simulations, this result was shown to match the optimal sensor placement result
for the exact BFIM, which was numerically calculated using Monte Carlo simulations.
The D- and A-optimality criteria were adopted for optimal sensor guidance in target
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tracking applications. Simple methods requiring a numerical search over sensor heading
were developed and demonstrated in simulations. A new method, called the projection
algorithm, was also developed predicated on the optimal sensor placement result for the
D- and A-optimality criteria. The efficacy of the projection algorithm in achieving fast
minimization of tracking error was confirmed by numerical simulations. Even though
the D- and A-optimality criteria share the same optimal sensor placement result for a
stationary target, they generate quite different sensor trajectories in a target tracking setting
where optimal target–sensor geometries cannot be realized instantaneously because of
constrained sensor dynamics. The A-optimality method was observed to favour circular
motion around the target initially. This results in delays in minimizing the tracking error to
a desirable level.
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Abstract: Some passive sensors can measure only directions of arrival of signals, but the real positions
of signal sources are often desirable, which can be estimated by combining distributed passive
sensors as a network. However, passive observations should be correctly associated first. This
paper studies the multi-target data association and signal localization problem in distributed passive
sensor networks. With angle-only measurements from distributed passive sensors, multiple lines
in a 3-dimensional (3D) scenario can be built and then those that will intersect in a small volume in
3D are classified into the same source. The center of the small volume is taken as an estimate of the
signal source position, whose statistical distributions are formulated. If the minimum distance is less
than an association threshold, then two lines are considered to be from the same signal source. In
numerical results, the impacts of angle measurement accuracy and platform self-positioning accuracy
are analyzed, indicating that this method can achieve a prescribed data association rate and a high
positioning performance with a low computation cost.

Keywords: passive sensor network; signal localization; data association; angle-only measurements;
accuracy analysis

1. Introduction

Unlike active sensors such as radars, passive sensors do not transmit signals and thus
have no anti-jamming problem [1,2]. However, some passive sensors, such as infrared
sensors, photoelectric sensors, electronic counter measurement (ECM) and cameras, can
estimate only angles of signal sources. Therefore, their signal source positioning perfor-
mances are typically poor since they have no accurate range information of signal sources.
In order to estimate the positions of signal sources, passive sensors with angle-only ob-
servations can be connected with communication links into a network to measure signals
sources from different spatial locations. In this case, an algorithm to combine the angle-only
observations is needed [3–7]. Compared with the time of arrival (TOA) [8] and the time
difference of arrival (TDOA) localization , angle-only localization does not require accurate
time synchronization between distributed passive sensors for signal sources with low
speeds [6].

In a passive sensor network, there may be multiple signal sources, and before accurate
localization, one should first correctly associate observations regarding the same sources [9].
The multi-dimension assignment model is a classical method for data association in passive
sensor networks [10–12], but it needs the locations of signal sources, which is unavailable
before correct data association. A geometry-based localization algorithm for a distributed
sensor network is presented in [13], which constructs a test statistic based on the minimal
distance between the lines of sight for data association. The measurement errors are
considered, but the platform self-positioning errors are not considered.
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In this paper, how to perform data association and signal source localization in a
3-dimensional (3D) scenario for distributed passive sensors with only angle measurements
is studied. We improve the intersection localization algorithm for passive sensor networks
in a multi-target scenario. We first consider the data association problem and then the
signal source position estimation problem. The basic concept is to construct a set of lines
in a 3D scenario according to angle measurements of signal sources. In data association,
measurement lines that will intersect within a small space volume are categorized into the
same group. The statistical distribution of the minimal distances of the lines are formulated
and the minimum distance between any two observation lines is a random variable, proved
to follow the Chi-square distribution. The threshold for correct association is formulated
by the misassociation probability; namely, two observations are from the same signal
source but are classified into two groups. In the test statistics, not only the measurement
errors but also the platform positioning errors are considered, which makes the association
performance robust when the platform positioning errors exist.

After data association, observations regarding the same signal sources are grouped,
based on which the location of signal sources can be estimated. Three positioning algo-
rithms are considered. It is known that angle measurements are nonlinear functions of
coordinates of signal sources. With the Taylor expansion, the least square (LS) algorithm
linearizes the nonlinear angle measurements about the target position and then uses the LS
method to obtain the target position estimate [6,14–19]. In real applications, different pas-
sive sensors may obtain observations of different signal-to-noise ratios (SNRs) and then the
weighted least squares algorithm (WLS) [6,14] and total least square (TLS) algorithm [20]
can be used to obtain a better estimate. Another source location method is the intersection
localization algorithm [1,4,5,21–23]. The basic concept is that if multiple passive sensors
simultaneously measure the signal sources without measurement error, these measurement
lines of sight will intersect to the target position. The geometric method and algebraic
solution method use this property to estimate the positions of signal sources.

The data association process and target location process of this method are closely com-
bined, which ensures a lower algorithm complexity and a better positioning performance.
In numerical results, the improvement of data association and signal-source positioning
are analyzed. The impact of the target-sensor geometry on the localization accuracy is also
studied, indicating that the localization performance will be better if the lines associated
with different observations are perpendicular to each other.

We follow the convention that bold lower and upper case letters denote column vectors
and matrices, respectively. A symbol with an upper script o denotes the true value. For
instance, ao denotes the true value of a. diag(·) with a vector entry denotes a diagonal
matrix with the entry vector as diagonal elements. The notation diag(A1, A2, . . . , AN)
stands for the block-diagonal matrix formed by the matrices A1, A2, . . . , AN .

2. Localization with Angle-Only Passive Sensors

2.1. Signal Model of Passive Observations

Consider a passive sensor network with N widely separated sensors and M targets in
the surveillance volume. Assume that a coordinate system is available for all the sensors,
such as earth-centered earth-fixed (ECEF) of the World Geodetic System 84 (WGS84). The
real position of the nth sensor at instant t is denoted as
so

n(t) = [xo
n,s(t), yo

n,s(t), zo
n,s(t)]T, n = 1, 2, . . . , N, where (·)T denotes the transpose op-

eration, t denotes time, and xo
n,s(t), yo

n,s(t), zo
n,s(t) denote the x, y, z coordinates of the nth

sensor at instant t, respectively. The real position of the mth target at instant t is denoted
by go

m(t) = [xo
m,g(t), yo

m,g(t), zo
m,g(t)]T, m = 1, · · · , M, where xo

m,g(t), yo
m,g(t), zo

m,g(t) denote
the x, y, z coordinates of the mth target at instant t, respectively. Assume that there is a
self-positioning device to measure the position of each sensor. There are different kinds of
instruments that can measure the position of a platform, such as the Global Positioning
System (GPS) and inertial sensors. The topology of the passive sensors and targets are
shown in Figure 1.
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Figure 1. Measurement scenario of the passive sensors.

For the nth sensor, signals are detected at instants denoted by tk,n, k = 1, · · · , Nn,
where Nn denotes the number of observations of the nth sensor. At instant tk,n, assume that
the position of the nth sensors is measured as

sk,n = so
n(tk,n) + Δsn(tk,n) = [xn,s(tk,n), yn,s(tk,n), zn,s(tk,n)]

T, k = 1, · · · , Nn (1)

where Δsn(tk,n) denotes the sensor self-positioning error. For simplicity, we assume that
the positioning errors follow zero mean Gaussian distributions with covariance matrices
Ck,n = E(Δsn(tk,n)ΔsT

n(tk,n)), where E denotes the expectation operation. In practice,
the self-positioning error of the sensor is approximately subject to zero-mean Gaussian
distribution, so this assumption is reasonable and widely used.

For the angle-only sensors, the observations are directions of the signals and the
lth signal at instant tk,n is denoted by θl,k,n = [θl,k,n, ϕl,k,n]

T, where (l, k, n) ∈ Mk,n,
k = 1, · · · , Nn and n = 1, · · · , N, and Mk,n denotes a set of triples of signals detected
at the kth measurement by the nth sensor. Assume that |Mk,n| = Mk,n, where | · | over a
set denotes the cardinality of the set. As the existence of miss detection, false alarms and
overlapping of signal sources, Mk,n may not be equal to M. Denote Mn = ∪Nn

k=1Mk,n and
A = ∪N

n=1Mn, where ∪ denotes the union operation. The total number of observations by
N sensors is denoted by

Ns = |A| =
N

∑
n=1

Nn

∑
k=1

Mk,n. (2)

At instant tk,n, the real position of the mth signal source is denoted by

go
m(tk,n) = [xm,g(tk,n), ym,g(tk,n), zm,g(tk,n)]

T, m = 1, · · · , M. (3)

For the mth signal source, the real azimuth angle and elevation angle regarding the
nth sensor can be expressed by

θo
m,k,n = tan−1

(
yo

m,g(tk,n)− yo
n,s(tk,n), xo

m,g(tk,n)− xo
n,s(tk,n)

)
(4)

ϕo
m,k,n = arctan

(
(zo

m,g(tk,n)− zo
n,s(tk,n))/

√
(xo

m,g(tk,n)− xo
n,s(tk,n))2 + (yo

m,g(tk,n)− yo
n,s(tk,n))2

)
respectively, where θo

m,k,n ∈ (−π, π), ϕo
m,k,n ∈ (−π

2 , π
2 ), tan−1(∗) is called the two-argument

inverse tangent function [24,25] and arctan(∗) is the inverse tangent function. Denote
θo

m,k,n = [θo
m,k,n, ϕo

m,k,n]
T.

Each observation is associated with one of M targets or the false alarm indexed by 0,
represented by a set M = {0, 1, · · · , M}. It can be considered as a mapping ψ : A → M.
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According to our setting, the index set A can be partitioned into M + 1 disjoint sets
A0,A1, · · · ,AM defined by

Ai = {x|ψ(x) = i, x ∈ A}, (5)

where A0 denotes the index of observations corresponding to false alarms, and Am denotes
the index set of observations from the mth signal source. As a partition of A, we have
Ai ∩Aj = ∅, i, j ∈ M, i �= j, and A = ∪M

i=0Ai, where ∩ denotes the intersection operation
of sets.

If the mth signal source is detected and indexed as the (l, k, n) observation, then the
azimuth angle and elevation angle measurements can be written as

θl,k,n = [θl,k,n, ϕl,k,n]
T (6)

= θo
m,k,n + Δθl,k,n (7)

θl,k,n = θo
m,k,n + Δθl,k,n (8)

ϕl,k,n = ϕo
m,k,n + Δϕl,k,n (9)

Δθl,k,n = [Δθl,k,n, Δθl,k,n]
T (10)

where Δθl,k,n and Δϕl,k,n represent the measurement noise of the azimuth angle and ele-
vation angle, respectively. For simplicity, we assume that observation noises Δθl,k,n and
Δϕl,k,n, l = 1, · · · , Mk,n, k = 1, · · · , Nn, n = 1, · · · , N are statistically independent and
follow zero-mean Gaussian distribution by assumption. The covariance matrices of Δθ
are denoted by Cl,k,n = E(ΔθΔθT) ∈ C2×2, namely Δθ ∼ N (0, Cl,k,n), which is typically
affected by the SNR of the signal, where N (0, Cl,k,n) denotes the zero-mean Gaussian distri-
bution with mean 0 and covariance matrix Cl,k,n. It should be noted that modeling the angle
measurement noise as a zero-mean Gaussian distribution is a commonplace assumption.

2.2. The Distance of Observation Lines

The angle-only observations provide information on the directions of signal sources,
and in theory, the directions can be expressed by 3D lines. Therefore, it is important to study
the properties of the lines. Consider a simple scenario where the target can be deemed to
be static when the observations are recorded and the location of the mth signal is simplify
denoted by go

m. For passive observations, each observation, say (l, k, n), will contribute a
line in space and the line can be written as Ll,k,n

Ll,k,n : x = sk,n + αl,k,nel,k,n, αl,k,n ∈ R (11)

where αl,k,n, a parameter indicating the distance to the origin sk,n, en,m = [el,k,n,x, el,k,n,y, el,k,n,z]
T ∈

R3×1, is the normalized direction vector associated with the angle observation θl,k,n, and

el,k,n,x = cos(θl,k,n) cos(ϕl,k,n) (12)

el,k,n,y = sin(θl,k,n) cos(ϕl,k,n) (13)

el,k,n,y = sin(ϕl,k,n). (14)

It can be seen that the subscripts of the denotations are complicated. Therefore, for
two observations i, j ∈ Am, we simplify the expression of lines by

Li,m : x = si + αi,mei,m (15)

Lj,m : x′ = sj + αj,mej,m (16)

where the locations of two sensors regarding the two observations are denoted by si, sj,
αi,m, αj,m are two scalars indicating the distances to two origins, and ei,m and ej,m are two
normalized vectors associated with two observations.
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The difference between two points over the two lines are

⇒ x′ − x = sj − si + αj,mej,m − αi,mei,m (17)

= sj − si + (−ei,m, ej,m)α, (18)

where

α =

[
αi,m
αj,m

]
. (19)

Without measurement error, then there will be two αi,m and αj,m such that x′ − x = 0, i.e.,

gm = si + αi,mei,m = sj + αj,mej,m. (20)

In general, due to inevitable measurement errors, the lines even regarding the same
signal source may not coincide to each other. Therefore, we calculate minimal distance
between those lines. The distance between two points over two lines can be expressed by

d = ‖x′ − x‖2

= ‖sj − si + (−ei,m, ej,m)α‖2

= αTET
i,jEi,jα + 2αTET

i,j(sj − si) + (sj − si)
T(sj − si)

(21)

where ‖ · ‖ denotes the �2-norm, α = [αi,m, αj,m]
T, and Ei,j = [−ei,m, ej,m]. For simplicity,

the distance d is actually the squared distance, instead of the distance.
In particular, if ei,m = ej,m, namely two lines are parallel to each other, then

d = ‖sj − si + (αj,m − αi,m)ei,m‖2, (22)

and the minimal distance between points in two lines will be achieved if

αj,m − αi,m = eT
i,m(si − sj). (23)

It can be proved that the minimal distance is

d = ‖(ei,meT
i,m − I)(si − sj)‖2. (24)

If ei,m �= ej,m or |Ei,j| �= 0, the distance is a second order function of αi,m and αj,m, thus
the minimal value of d is unique, where | · | over a matrix denotes the determinant of the
input matrix. To obtain the minimal value, we take a derivative of d with respect to α,

dd
dα

=

[
dd

dαi,m
,

dd
dαj,m

]T

(25)

= 2ET
i,jEi,jα + 2ET

i,j(sj − si) (26)

where

dd
dαi,m

= −2eT
i,m(sj − si + Eα) (27)

dd
dαj,m

= 2eT
j,m(sj − si + Eα). (28)

Let the derivative be zero and then we obtain a solution

dd
dα

= 0 ⇒ ET
i,jEi,jα = −ET

i,j(sj − si). (29)

195



Sensors 2022, 22, 1554

Under the assumption that |Ei,j| �= 0, Ri,j = ET
i,jEi,j has a reverse matrix and then the

solution can be immediately obtained by

αopt = −(ET
i,jEi,j)

−1ET
i,j(sj − si). (30)

The minimal distance can be expressed by

dmin = (sj − si)
T(I − Ei,jR

−1
i,j ET

i,j)(sj − si) (31)

= ‖(I − Ei,jR
−1
i,j ET

i,j)(sj − si)‖2. (32)

In particular, if
Ei,jR

−1
i,j ET

i,j(sj − si) = sj − si, (33)

namely, sj − si is an eigenvector of Ei,jR
−1
i,j ET

i,j and the eigenvalue is 1, then

dmin = 0. (34)

It means that two lines will intersect at a point. Without measurement errors, observa-
tions regarding the same target will form lines intersecting at the target position.

In practice, the real mapping ψ should be estimated through an association algorithm.
Due to measurement errors, the estimated mapping may not be correct, and then, the
positioning error may raise. Therefore, an accurate data association method is important,
which will be studied subsequently.

3. Data Association Based on Minimal Distance

3.1. Data Association Model

In order to perform data association, we first need to build the statistical model of the
minimal distance of the observation lines. Because of both the platform positioning error
Δsi, Δsj and the angle measurement error Δθi,m and Δθj,m, i, j ∈ Am, the minimal distance
dmin is not zero and follows a certain distribution depending on the measurement errors,
where Δsi, Δsj denote the sensor self-positioning errors of the ith and the jth observations,
respectively, and Δθi,m, Δθj,m denote the angle measurement error of the ith and the jth
observations on the mth target.

In practice, the ith and the jth observations may belong to the same target or not, and
the data association problem is treated as a test to make a decision here. For i, j ∈ A, the
data association problem for a target can be formulated as the following hypothesis problem{

H0 : dmin = 0 ψ(i) = ψ(j)
H1 : dmin > 0 ψ(i) �= ψ(j).

(35)

To determine the statistical distribution of dmin under the H0 hypothesis, we first define

Ki,j = I − Ei,jR
−1
i,j ET

i,j (36)

and then
dmin = ‖Ki,j(sj − si)‖2. (37)

Next, we discuss the eigenvalues of Ki,j. It can be proved that KT
i,jKi,j = Ki,j and

KT
i,j = Ki,j. Therefore, Ki,j is a positive semi-definite matrix and its possible eigenvalues

are either 0 or 1. As Ki,j is not an all-zero matrix, then there is at least an eigenvalue of 1.

196



Sensors 2022, 22, 1554

The trace of the matrix K(i, j) satisfies

tr(Ki,j) = tr(I − Ei,jR
−1
i,j ET

i,j) (38)

= tr(I)− tr(Ei,jR
−1
i,j ET

i,j) (39)

= 3 − tr(ET
i,jEi,jR

−1
i,j ) (40)

= 3 − tr(Ri,jR
−1
i,j ) (41)

= 3 − tr(I2 ∈ R
2×2) = 1 (42)

where tr(·) with a matrix input denotes the trace of the matrix.
Therefore, it can be inferred that three eigvenvalues of Ki,j are 1, 0, 0 and the rank of

Ki,j is 1. In other words, Ki,j can be written as

Ki,j = eseT
s (43)

where es is a unity direction vector perpendicular to both ei and ej, defined by

es = ei × ej/
√

1 − (eT
i ej)2 (44)

and ei and ej denote the unity direction vectors associated with the ith and the jth observa-
tions, respectively.

With this fact, the minimal distance can be rewritten as

dmin = |eT
s (sj − si)|2. (45)

In practice, both sj − si and es may be inaccurate. A statistical distribution is necessary
to determine the impact of the measurement errors. In order to formulate the statistical
distribution of dmin under the H0 hypothesis, we define

r = eT
s (sj − si) (46)

and its relationship to dmin is dmin = |r|2.
The minimal distance varies with a total of 10 parameters; namely θi,m, θj,m, si,m and

sj,m, and the corresponding partial derivatives can be written as

∂r
∂θi,m

=

[
∂r

∂θi,m
,

∂r
∂ϕi,m

]T
(47)

∂r
∂θj,m

=

[
∂r

∂θj,m
,

∂r
∂ϕj,m

]T

(48)

∂r
∂si

= −es (49)

∂r
∂sj

= es. (50)

Consequently, under the H0 hypothesis, with denotation v = [θT
i,m, θT

j,m, sT
i,m, sT

j,m]
T, we

have an approximation

r ≈ ∂r
∂θT

i,m
Δθi,m +

∂r
∂θT

j,m
Δθj,m +

∂r
∂sT

i
Δsi,m +

∂r
∂sT

j
Δsj,m (51)

=
∂r

∂vT Δv (52)
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where Δv = [ΔθT
i,m, ΔθT

j,m, ΔsT
i,m, ΔsT

j,m]
T, and

∂r
∂vT =

[
∂r

∂θT
i,m

,
∂r

∂θT
j,m

,
∂r

∂sT
i

,
∂r

∂sT
j

]
. (53)

Under the assumption that the measurement errors Δθi,m, Δθj,m, Δsi,m, Δsj,m are statisti-
cally independent of each other and follow a zero-mean Gaussian distribution, r follows the
Gaussian distribution and then dmin follows the central weighted Chi-square distribution
with 1 degree of freedom, namely dmin ∼ χ2

1(λ), where λ is the variance

λ = E(
∂r

∂vT ΔvΔvT ∂r
∂v

) =
∂r

∂vT Cv
∂r
∂v

(54)

and
Cv = E(ΔvΔvT). (55)

The probability density function (PDF) and cumulative distribution function (CDF)
can be written as

pdmin(d) =
1

2λ
√

π
(

d
λ
)−

1
2 exp(− d

2λ
), d ≥ 0 (56)

Fdmin(d) =
1√
π

γ(
d

2λ
,

1
2
), d ≥ 0 (57)

respectively, where Γ(·) denotes the Gamma function and γ(·, ·) denotes the incomplete
Gamma function. If the decision rule is to keep the misassociation probability P(H1|H0) as
a constant, say pf, then the decision threshold can be obtained as

ρ = 2λγ−1(
√

π(1 − pf),
1
2
) (58)

where γ−1(·, 1
2 ) denotes the inverse incomplete Gamma function with 1

2 a degree
of freedom.

Therefore, the key is to derive the variance λ. In practice, as the measurements are
carried out by different sensors, it is reasonable to assume that the measurement errors are
statistically independent of each other. In this case, Cv is a block diagonal matrix and the
variance can be formulated conveniently.

3.2. Measurement Errors and Association Threshold

For simplicity, we first consider the self-positioning error Δsi, Δsj, whose covariance
matrices are assumed to be

Ci,s = E(ΔsiΔsT
i ) (59)

Cj,s = E(ΔsjΔsT
j ). (60)

Consequently, from (49) and (50), the variances due to the two terms are

λi,s = E(
∂r
∂si

Δsi,mΔsT
i,m(

∂r
∂si

)T) = eT
s Ci,ses (61)

λj,s = E(
∂r
∂sj

Δsj,mΔsT
j,m(

∂r
∂sj

)T) = eT
s Cj,ses. (62)
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Next, we consider the variance caused by the angle measurement error Δθi,m and
Δθj,m. Assume that the covariance matrices of Δθi,m and Δθj,m are

Ci,θ = E(Δθi,mΔθT
i,m) (63)

Cj,θ = E(Δθj,mΔθT
j,m) (64)

respectively. The variances caused by the two terms are

λi,θ =E(
∂r

∂θT
i,m

Δθi,mΔθT
i,m

∂r
∂θi,m

) =
∂r

∂θT
i,m

E(Δθi,mΔθT
i,m)

∂r
∂θi,m

=
∂r

∂θT
i,m

Ci,θ
∂r

∂θi,m
(65)

λj,θ =E(
∂r

∂θT
j,m

Δθj,mΔθT
j,m

∂r
∂θj,m

) =
∂r

∂θT
j,m

E(Δθj,mΔθT
j,m)

∂r
∂θj,m

=
∂r

∂θT
j,m

Cj,θ
∂r

∂θj,m
(66)

It can be seen that the distance is not a linear function of θ. As a cross product of
ei,m and ej,m, es is a complicated function. From (47) and (48), ∂r

∂θi,m
and ∂r

∂θj,m
are proved in

Appendix A.
Under these assumptions, Cv = diag(Ci,θ, Cj,θ, Ci,s, Ci,s). Consequently, the variance

λ can be expressed by
λ = λi,s + λj,s + λi,θ + λj,θ. (67)

It should be noted that under the H1 hypothesis, the distance may be arbitrary, and
for simplicity, we assume that the distance is uniformly distributed over the surveillance
volume. In this case, we can determine whether two observations are from the same target
by the following decision rule

dmin
H1
≷
H0

ρ. (68)

The association algorithm is a mapping ψ′ : A → M, which partitions A into M + 1
groups and this mapping may disagree with real ψ due to inevitable errors. In practice,
some knowledge about the targets of interest may be available and thus can be used for
better performance. For instance, if only targets on the ground are of interest, then we may
use this information and discard observations in which the cross points are obviously apart
from the ground, which will be studied in the future.

3.3. Localization Algorithms

With mapping ψ′, we obtain another partition A = ∪M
m=0A′

m, where A′
m = {x|ψ′(x) =

m, x ∈ A}. For observations in A′
m, we can conduct signal source positioning, and three

target positioning estimation methods will be introduced subsequently.
We first consider the intersection method. In presence of measurement errors, we

often have dmin �= 0 even if two observations are from the same target. In this case, over
two lines, the two points with minimal distance are

xi = si + αopt(1)ei,m (69)

xj = sj + αopt(2)ej,m. (70)

In this case, it is reasonable to take the middle of two points as the estimate of the
signal position, namely

ĝi,j =
1
2
(xi + xj)

=
1
2
(si + sj)−

1
2
(ei,m, ej,m)R

−1
i,j ET

i,j(sj − si).
(71)
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With more observations available, there will be an estimate of the target location for
each observation pair , and a simple estimate of the target location can be expressed by
their average, namely

ĝm =
1

Nm(Nm − 1) ∑
i,j∈Am

ĝi,j (72)

where Nm denotes the number of observations associated with the mth signal source.
In practice, another widely used localization algorithm is the LS algorithm. It stems

from the delta method concerned in [26]. From (4), the ith angle observation denoted by
θi,m actually contributes a geometric relationship, which can be expressed by

Gigm = Gisi, i ∈ Am (73)

where

Gi =

[
sin θi,m − cos θi,m 0

cos θi,m sin ϕi,m sin θi,m sin ϕi,m − cos ϕi,m

]
. (74)

In (74), we used the equality

(xo
m,g − xo

i,s) cos θo
i,m + (yo

m,g − yo
i,s) sin θo

i,m (75)

=
√
(xo

m,g − xo
i,s)

2 + (yo
m,g − yo

i,s)
2 (76)

=do
i,m cos ϕo

i,m

where the value do
i,m is the true range of go

m to so
i and can be expressed by do

i,m = ‖go
m − so

i ‖.
Next, we can combine the observations into an equation

Ggm = y (77)

where

G =

⎡⎢⎣ G1
...

GMm

⎤⎥⎦, y =

⎡⎢⎣ G1s1
...

GMm sMm

⎤⎥⎦. (78)

It should be noted that after the data association operation, the number of samples
associated with a target may not agree with the real number. For simplicity, we still use
Mm = |A′

m| to denote the number of observations associated with the mth target.
With Mm observations, there are in total 2Mm equations and three unknown parame-

ters in gm. Therefore, as if Mm ≥ 2, we can use the LS method to obtain an optimal solution
in the sense of the mean square error, as

ĝm = (GTG)−1Gy. (79)

In practice, different observations may have different SNRs, and then, the WLS algo-
rithm can also be used in this framework. Then, the angle measurement error and sensor
positioning error are equally weighted in the process of the LS algorithm. Assume that the
distribution of the angle measurement error and the positioning error of sensors are known
a priori. With this information, we can impose different weights over the observations,
which is the WLS algorithm.

With the following approximations

sin θi,m ≈ sin(θo
i,m) + ΔθT

i,m cos θo
i,m (80)

cos θi,m ≈ cos(θo
i,m)− ΔθT

i,m sin θo
i,m (81)

200



Sensors 2022, 22, 1554

we can put (80) and (81) into (73) and then write (73) as

εi = Gi(g
o
m − si) (82)

where

εi = [εi,1, εi,2]
T (83)

εi,1 = Δθi,mdo
i,m cos ϕo

i,m + aoT
i,mΔsi (84)

εi,2 = Δϕi,mdo
i,m + boT

i,mΔsi (85)

ao
i,m = [− sin θo

i,m, cos θo
i,m, 0]T (86)

bo
i,m = [− cos θo

i,m sin ϕo
i,m,− sin θo

i,m sin ϕo
i,m, cos ϕo

i,m]
T. (87)

In (84), we have used the equality (76). In (85), we have used the equality

(xo
m,g − xo

i,s) sin θo
i,m − (yo

m,g − yo
i,s) cos θo

i,m = 0 (88)

(go
m − so

i )
T[cos θo

i,m cos ϕo
i,m, sin θo

i,m cos ϕo
i,m, sin ϕo

i,m]
T = do

i,m (89)

which can be easily verified in the angle measurement equations.
The vector εi can be rewritten as

εi = Bo
i δi (90)

where

Bo
i =

[
do

i,m cos ϕo
i,m 0 ao,T

i,m
0 do

i,m bo,T
i,m

]
(91)

δi = [Δθi,m, Δϕi,m, ΔsT
i ]

T. (92)

Under the assumption that the self-positioning error and the angle measurement error
are decorrelated, it can be proven that the covariance matrix of εi can be written as

Qn = E(εεT) = diag(Cn,θ, Cn,s). (93)

Putting (90) into (82) and combining the observations into an equation yield

Boδ = Ggo
m − y. (94)

where

Bo =

⎡⎢⎣ Bo
1

...
Bo

Mm

⎤⎥⎦, δ =

⎡⎢⎣ δ1
...

δMm

⎤⎥⎦. (95)

In the WLS algorithm, the goal is to minimize the objective function J(gm) as

J(gm) = (Ggm − y)TW(Ggm − y) (96)

where W is the weighting matrix with the expression

W = E[BoδδTBoT]−1 = (BoQBoT)−1 (97)

and Q is the error covariance matrix with an expression Q = diag(Q1, Q2, . . . , QN).

201



Sensors 2022, 22, 1554

The variable gm to minimize the objective function J(gm) can be calculated by the least
square method and the estimate of the target positioning can be expressed by

ĝm = (GTWG)−1GTWy (98)

which is the WLS algorithm.
In WLS, the covariance matrices of different observations should be known a priori. If

the observations can be deemed to have close SNRs, then one can simply use the LS algo-
rithm. If the covariance matrices are not known with certain accuracy, some performance
loss may occur, which should be analyzed with numerical analysis.

4. Numerical Results

We first study the localization performance in the presence of a platform of self-
positioning errors and angle measurement errors. Then, the data association performance
will be analyzed, followed by the analysis of the impact of sensor-target geometry.

Consider a scenario where two sensors are installed on two aircraft and three targets of
interest are in the scope. Assume that two aircraft move at the same speed. The parameter
settings are shown in Table 1. For simplicity, we assume that two passive sensors collect
their observations on the same instants, namely, tk,i = tk,j for all k and i, j ∈ {1, · · · , N}.
Meanwhile, the sampling interval is 0.1 s and the simulation runs for 10 seconds. Assume
that the covariance matrices of angle measurement error for all sensors and all targets are the
same as Ck,θ = σ2

θ I2, ∀k. The self-positioning error covariance is Cn,s = σ2
s I3, n = 1, · · · , N.

Table 1. Positions and velocities of sensors and targets.

Position (m) at t = 0 s Velocity (m/s) Position (m) at t = 10 s

Sensor #1 so
1(0) = [0, 0, 0]T [50, 100, 0]T so

1(10) = [500, 1000, 0]T

Sensor #2 so
2(0) = [12,000, 10,000, −800]T [50, 100, 0]T so

2(10) = [12,500, 11,000, −800]T

Target #1 go
1(0) = [18,000, 12,000, 8000]T [20, 30, 0]T go

1(10) = [18,200, 12,300, 8000]T

Target #2 go
2(0) = [15,000, 13,000, 7000]T [20, 30, 0]T go

2(10) = [15,200, 13,300, 7000]T

Target #3 go
3(0) = [13,000, 12,000, 5000]T [20, 30, 0]T go

3(10) = [13,200, 12,300, 5000]T

4.1. Impact of Self-Positioning Error and Angle Measurement Error

We first study the impacts of sensor positioning error and angle measurement error in
the proposed intersection method. In order to make a comparison between the intersection
method, the LS algorithm [19] and the WLS algorithm [6], we first consider the positioning
accuracy of target #1 with the two sensors at t = 0 s.

In order to analyze the positioning performance of the concerned algorithms, we
measure the performance with the average root mean square error (RMSE), defined for a
target, e.g., target #1, by

RMSE =

√√√√ 1
Ns

Ns

∑
k=1

‖ĝ1(k)− go
1‖2 (99)

where ĝ1(k) denotes the estimate of the target position at the kth simulation run for the
target #1, and Ns denotes the number of simulation runs.

With Ns = 10,000 Monte Carlo runs, the RMSE of different self-positioning errors
are shown in Figure 2, under the assumption that the covariance matrix is C1,s = σ2

s I3,
where we always set σθ = 0.03◦ in this simulation. It can be seen that as σs rises from
0 to 20 m, the three algorithms have close performances and the WLS performs better,
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under the assumption that the covariance matrices of Ck,θ , k = 1, 2, 3 and Cn,s, n = 1, 2 are
known exactly.

Figure 2. Average RMSE of target localization algorithms based on angle measurements of two
sensors at a fixed angle measurement error.

The impacts of the angle measurement error are shown in Figure 3, where σθ raises
from 0◦ to 1.5◦, where we set σs = 5 m in this simulation. It shows that the three algorithms
have close performances and the intersection method and the LS method perform a little
worse than the WLS method. The rise of both the self-positioning error and the angle
measurement error will cause the rise of the target positioning error. However, with a better
weighting, the WLS algorithm often performs better than the intersection method and the
LS method.

Figure 3. Average RMSE of target localization algorithms based on angle measurements of two
sensors at a fixed self-positioning error.

4.2. Data Association Performance

Consider the parameters of the two sensors and the targets, as shown in Table 1. As the
targets are moving in this scenario, we set the sampling interval to 0.1 s. At each sampling
instant, each sensor has three measurements corresponding to the three targets. Therefore,
the two sensors will totally have nine measurement combinations at each sampling instant,
of which three combinations are correct. In data association, we set pf = 1% and then the
probability of correct association pc = 99%.

With Ns = 2000 Monte Carlo runs, the averaged correct association probability is
shown in Figure 4, where the self-positioning error is σs = 5 m, and the angle measurement
error is σθ = 0.03◦. It can be seen that during the whole sampling period, the correct associ-
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ation probability of the three targets is close to the present value 99%, namely 20 wrong
combinations, on average, for each instant.

Figure 4. Probability of correct association.

Next, we consider the location performance with observations after the data associa-
tion operation. The RMSEs of the algorithms over the three targets based on the proposed
method are shown in Figure 5. In Figure 5, the RMSEs of the three targets are 23.43, 30.05
and 14.45 m. Note that the data association error may affect the localization performance
in this case. From Figure 5, the relative position of the sensor and the target will affect
the positioning performance, so the impact of the geometry of sensors and targets on the
positioning performance will be studied subsequently.

Figure 5. The localization error of the three targets.

4.3. Impact of Target-Sensor Geometry

The geometry will play an important role in the positioning performance. Consider
the scenario shown in Figure 6, where a target is probed with two passive sensors and the
intersection angle of two azimuth lines is denoted by φ. In the 3D scenario, we also define
a new elevation angle η for convenience and the distance of the target is the same for both
the sensors, i.e., 8000 m.

It is assumed that the positions of the two sensors are accurately measured and
target #1 can be detected by both two sensors. The two sensors are symmetrically dis-
tributed on both sides of target #1. We explore the impact of geometry on the positioning
accuracy by changing φ and η. In order to illustrate that the errors caused by geometry on
the three coordinate axes are different, we define Δx, Δy and Δz to represent the RMSE on
the three coordinate axes, respectively, which can be expressed by
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Δx =

√√√√ 1
Ns

Ns

∑
k=1

‖x̂1,g(k)− xo
1,g‖2 (100)

Δy =

√√√√ 1
Ns

Ns

∑
k=1

‖ŷ1,g(k)− yo
1,g‖2 (101)

Δz =

√√√√ 1
Ns

Ns

∑
k=1

‖ẑ1,g(k)− zo
1,g‖2. (102)

With Ns = 10,000 Monte Carlo runs, the Δx, Δy, Δz and the spatial error sum denoted
by sum =

√
Δx2 + Δy2 + Δz2 are shown in Figure 7, under the assumption that η = 15◦,

and the angle measurement error σθ = 0.03◦. It can be seen that when the intersection
angle φ is changed, the positioning error Δx, Δy, Δz are different. When the intersection
angle φ is equal to 82.58◦, the spatial error sum is the best, about 5.58 m, and Δx, Δy and
Δz are approximately equal to each other. In fact, the angle around φ = 90o will all lead to
high accuracy.

O

x

y

z

s1 s2

target

φ

η

Figure 6. Definition of the intersection angle φ and pitch angle η of the plane.

Figure 7. Relationship between localization error and intersection angle φ.

The impacts of intersection φ and η on spatial error sum are shown in Figure 8. For η
in the range of 0◦ to 45◦ and φ in the range of 25◦ to 175◦, the spatial error sum is less than
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20 m. Therefore, in practice, one can look for geometry with sensors and targets nearly
perpendicular to each other to improve the positioning performance.

Figure 8. The relationship between spatial error sum and intersection angle φ, elevation angle η.

5. Conclusions

This paper studies the data association and signal source localization problems with
distributed passive sensors with angle-only observations. A geometry-based data associa-
tion method is considered, and the concept is that real targets will contribute observations
with a small minimal distance. The statistical distribution of the minimal distance of two
lines associated with the same target is formulated, based on which a data association
method based on hypothesis testing is also developed. The decision threshold is formu-
lated. Meanwhile, for observations that are classified into the same class, three positioning
algorithms are studied, namely the intersection method, the LS method and the WLS
method. Two kinds of measurements errors are considered, namely sensor self-positioning
error and angle measurement error.

In numerical results, we analyze the data association performance of the concerned
positioning algorithms and the signal source positioning performance in different scenarios,
indicating that the data association algorithm works well and the positioning performances of
the algorithms are very close to each other. Meanwhile, if the observation lines are approxi-
mately perpendicular to each other, then the localization performance is more accurate.

This algorithm can be used in laser, infrared, and other passive sensors with angle-
only measurements. In practice, other information, such as range, ground surface and sea
surface, may be available, which can be incorporated into the positioning and association
algorithms to improve performance.
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Appendix A

In this section, we derive the partial derivative vectors ∂r
∂θi,m

and ∂r
∂θj,m

from (47) and

(48). The elements in vector ∂r
∂θi,m

and ∂r
∂θj,m

can be expressed by

∂r
∂θi,m

=

(
∂r
∂ei

)T ∂ei
∂θi,m

= − sin θi,m cos ϕi,m
∂r

∂ei,x
+ cos θi,m cos ϕi,m

∂r
∂ei,y

(A1)

∂r
∂ϕi,m

=

(
∂r
∂ei

)T ∂ei
∂ϕi,m

(A2)

= − cos θi,m sin ϕi,m
∂r

∂ei,x
− cos θi,m sin ϕi,m

∂r
∂ei,y

+ cos ϕi,m
∂r

∂ei,z
(A3)

∂r
∂θj,m

=

(
∂r
∂ej

)T
∂ej

∂θj,m
= − sin θj,m cos ϕj,m

∂r
∂ej,x

+ cos θj,m cos ϕj,m
∂r

∂ej,y
(A4)

∂r
∂ϕj,m

=

(
∂r
∂ej

)T
∂ej

∂ϕj,m
(A5)

= − cos θj,m sin ϕj,m
∂r

∂ej,x
− cos θj,m sin ϕj,m

∂r
∂ej,y

+ cos ϕj,m
∂r

∂ej,z
(A6)

where

∂r
∂ei,x

= X− 1
2 (ej,yzi,j − ej,zyi,j)− X− 3

2 Y(e2
j,yei,x + e2

j,zei,x − ei,yej,yej,x − ei,zej,zej,x) (A7)

∂r
∂ei,y

= X− 1
2 (ej,zxi,j − ej,xzi,j)− X− 3

2 Y(e2
j,zei,y + e2

j,xei,y − ei,zej,zej,y − ei,xej,xej,y) (A8)

∂r
∂ei,z

= X− 1
2 (ej,xyi,j − ej,yxi,j)− X− 3

2 Y(e2
j,yei,z + e2

j,xei,z − ei,yej,yej,z − ei,xej,xej,z) (A9)

∂d
∂ej,x

= X− 1
2 (ei,zyi,j − ei,yzi,j)− X− 3

2 Y(e2
i,yej,x + e2

i,zej,x − ei,yej,yei,x − ei,zej,zei,x) (A10)

∂d
∂ej,y

= X− 1
2 (ei,xzi,j − ei,zxi,j)− X− 3

2 Y(e2
i,zej,y + e2

i,xej,y − ei,zej,zei,y − ei,xej,xei,y) (A11)

∂d
∂ej,z

= X− 1
2 (ei,yxi,j − ei,xyi,j)− X− 3

2 Y(e2
i,yej,z + e2

i,xej,z − ei,yej,yei,z − ei,xej,xei,z) (A12)

Y =

∣∣∣∣∣∣
xi,j yi,j zi,j
ei,x ei,y ei,z
ej,x ej,y ej,z

∣∣∣∣∣∣ (A13)

X =

∣∣∣∣ ei,y ei,z
ej,y ej,z

∣∣∣∣2 + ∣∣∣∣ ei,z ei,x
ej,z ej,x

∣∣∣∣2 + ∣∣∣∣ ei,x ei,y
ej,x ej,y

∣∣∣∣2 (A14)

where [xi,j, yi,j, zi,j]
T = sj − si.
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Abstract: This paper develops a framework to track the trajectory of a target in 2D by considering
a moving ownship able to measure bearing measurements. Notably, the framework allows one to
incorporate additional information (e.g., obtained via intelligence) such as knowledge on the fact the
target’s trajectory is contained in the intersection of some sets or the fact it lies outside the union of
other sets. The approach is formally characterized by providing a constrained maximum likelihood
estimation (MLE) formulation and by extending the definition of the Cramér–Rao lower bound
(CRLB) matrix to the case of MLE problems with inequality constraints, relying on the concept of
generalized Jacobian matrix. Moreover, based on the additional information, the ownship motion
is chosen by mimicking the Artificial Potential Fields technique that is typically used by mobile
robots to aim at a goal (in this case, the region where the target is assumed to be) while avoiding
obstacles (i.e., the region that is assumed not to intersect the target’s trajectory). In order to show
the effectiveness of the proposed approach, the paper is complemented by a simulation campaign
where the MLE computations are carried out via an evolutionary ant colony optimization software,
namely, mixed-integer distributed ant colony optimization solver (MIDACO-SOLVER). As a result,
the proposed framework exhibits remarkably better performance, and in particular, we observe that
the solution is less likely to remain stuck in unsatisfactory local minima during the MLE computation.

Keywords: target motion analysis; intelligence-aware estimation; radar; Cramér–Rao lower bound;
nonlinear estimation; constrained MLE; data fusion; smart estimation; intelligence analysis; critical
infrastructure protection; evolutionary ant colony optimization; MIDACO-SOLVER

1. Introduction

In the last decades, target motion analysis (TMA) has become an increasingly popular
research field, and in the literature, several approaches have been developed, such as batch
processing frameworks [1–4] and recursive ones [3,5–8]. The aim of TMA is to estimate
the state of a target (usually position and velocity) from noise-corrupted measurements
collected by an observer [9]. The TMA problem presents several challenges, mainly due
to the nonlinear relationship between the measurements and target state. Another chal-
lenge is that the observer must outmaneuver the target in order to make the target state
observable [10]. For instance, to track a target with constant velocity, the observer plat-
form must change its speed or course. Otherwise, there exist other target trajectories that
produce the same sequence of noise-free bearing angles [3].

Among other approaches, bearing-only target tracking [11–13] represents an increas-
ingly popular topic, with application scenarios ranging from underwater tracking [14,15]
to cooperative tracking for multiagent systems [15–18].

Other relevant approaches in the literature include, among other works: applications
to sensor network localization [19]; algorithms based on direction-of-arrival measurements,
modeled by von Mises–Fisher distributions [20]; pseudolinear estimators for 3D target
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motion analysis by a single moving ownship collecting azimuth and elevation angle
measurements [21]; a methodology based on a bank of batch maximum a posteriori (MAP)
estimators as a general estimation framework that provides the relinearization of the entire
state trajectory, multihypothesis tracking and an efficient hypothesis generation scheme [22];
an approach based on Newton–Raphson methods and Particle Swarm Optimization [23];
a methodology to combine target motion compensation and track-before-detect methods
within passive radar based on global navigation satellite systems (GNSS) for the detection
of maritime targets [24]; TMA from cosines of conical angles acquired by a towed array [25];
and a new pseudolinear filter for bearings-only tracking without the requirement of bias
compensation [26].

Notice that, in the literature, some approaches have been developed where the avail-
ability of road or traffic information is used to track a moving target. In particular, in [27],
the target is assumed to move in a a road network, and the tracking is performed via
an airborne sensor that exploits knowledge on the network; in [28], a similar setting is
considered, and a Bayesian approach is adopted; in [29], a particle filter is developed in
order to track multiple vehicles on multi-lane roads based on a microscopic traffic flow
model. However, such approaches require one to rely on a large deal of fine-grained
information (e.g., the structure of the road network) and can only be applied to scenarios
involving roads. However, in many cases, especially considering a maritime context,
only coarse-grained information is available: for instance, the environment might contain
physical obstacles or deterring entities such as warships that discourage the target from
passing nearby, or there might be rough evidence of the presence of a target in a given
zone (e.g., due to a witness or to cheap range-free sensors able to only detect the presence
of a target in a given zone). In this view, relying on such a coarse-grained information
could help improve the target’s trajectory estimate, also in contexts where road network
information cannot be leveraged upon without requiring huge computational resources.
This has been demonstrated, for instance, in [30] where such information is used in the
framework of network localization to overcome localization ambiguities.

This is the aim of this paper. In particular, this paper considers a scenario where
additional information is available to the ownship in charge of estimating the target’s
trajectory; specifically, the ownship is aware that the trajectory of the target lies in the
intersection of some sets and is not contained in the union of some other sets. This
additional information is exploited by developing a constrained MLE problem and an
approach for the selection of the ownship’s trajectory mimicking the Artificial Potential
Fields technique [31,32], which is typically used by mobile robots to aim at a goal (in
this case, the region where the target is assumed to be) while avoiding obstacles (i.e., the
region that is assumed not to intersect the target’s trajectory). Moreover, from a theoretical
standpoint, the CRLB on the estimation covariance matrix is characterized in the case of
MLE problems with inequality constraints; this is performed by extending the approach
in [33,34], where equality constraints where discussed, via the cast of inequality constraints
into nonsmooth equality ones and by the adoption of generalized Jacobian matrices [35],
which are set-valued on a zero-measure set where the derivative of the resulting nonsmooth
function is not defined.

The paper is complemented by an experimental analysis showing the effectiveness of
the proposed approach.

To summarize, the main contributions of the paper are as follows:

• We develop a novel MLE approach to carry out batch target-tracking estimation based
on noisy bearing-only measurements, which incorporates as inequality constraints
additional information in terms of sets where the target’s trajectory is assumed to be
contained and other sets which have empty intersection with the target’s trajectory;

• We characterize the CRLB associated to the constrained problem by considering a
generalized set-valued Jacobian matrix of the constraints function and by resorting to
nonsmooth theory;
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• We provide a heuristic way to select the ownship’s trajectory based on the although
coarse-grained available information regarding the target’s trajectory.

2. Materials and Methods

The aim of this section is to present the main algorithms, tools and derivations that
are used in the paper. Specifically, the section is organized as follows: in Section 2.1, we
present our problem statement; then, we discuss maximum likelihood estimation prob-
lems (in Section 2.2, we review the unconstrained case, while in Section 2.3 we develop
the proposed MLE approach with additional inequality constraints); Section 2.4 is de-
voted to addressing the computational aspects related to the approximated solution of
the above constrained and unconstrained MLE problems; Sections 2.5 and 2.6 address,
respectively, the characterization of the CRLB in the unconstrained and constrained case;
finally, Section 2.7 discusses a heuristic approach to choosing the ownship’s direction based
on the available information.

2.1. Problem Statement

Let us consider a scenario where a target moves in a linear motion on a plane; in
particular, considering a discrete-time sampling, let us assume that the target moves
according to the following equations:

xt(k) = xt0 + ẋt0kT +
1
2

ẍtk2T2

yt(k) = yt0 + ẏt0kT +
1
2

ÿtk2T2

ẋt(k) = ẋt0 + ẍtkT

ẏt(k) = ẏt0 + ÿtkT,

(1)

with T being the sampling time. Moreover, let us consider an ownship platform aiming to
estimate the parameter vector

ψ =
[
xt0 yt0 ẋt0 ẏt0 ẍt ÿt

]T , (2)

based on a batch of measurements, sampled at uniform discrete-time instants t = kT
during the ownship motion and evaluated over the time interval [0, kmaxT].

In more detail, we assume that the ownship attempts to sense the following nominal
measurement (e.g., see [36]):

h(ψ, k) = atan2(yt(k)− yo(k), xt(k)− xo(k)) (3)

where xo(k), yo(k) are the coordinates of the ownship at time t = kT along the x and y axes,
respectively. However, we consider a scenario where the ownship is actually provided
with noisy measurements with the following structure:

z(k) = h(ψ, k) + w(k),

where the terms w(k) ∼ N
(
0, σ2) are independent and identically distributed Gaussian

noises with zero-mean and variance σ2.
Further to that, let us assume that additional information is available; specifically, let

us assume that the ownship is aware that, during the considered time frame [0, kmaxT], the
position p(k) = [xt(k), yt(k)]T of the target is confined in a region P of the plane defined
as follows:

P =

{
p ∈ R

2 | p ∈
m⋂

i=1

Xi

}
, (4)
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where the sets Xi ⊆ R2 are convex, and their intersection is nonempty; moreover, the
ownship is aware that the position p(k) lies outside a region S of the plane defined
as follows:

S =

{
p ∈ R

2 | p ∈
r⋃

i=1

Yi

}
, (5)

where the sets Yi ⊆ R2 are convex.
The aim of this paper is to investigate how this additional information influences the

estimation of θ and how the ownship can leverage on this additional information to select
a trajectory that improves the estimation performance.

2.2. Maximum Likelihood Estimation without Additional Information

Let us discuss how to estimate the parameter vector ψ via the maximum likelihood
estimate (MLE) technique (see, for instance [37], p. 182). The MLE for a vector parameter ψ
is defined to be the value θ∗ that maximizes the likelihood function p(z1, z2, . . . , zm, θ) over
the allowable domain of θ. In what follows, where understood, we abbreviate the notation
by writing p(θ). When p(θ) is differentiable, we have that the MLE θ∗ satisfies

∂ ln(p(θ))
∂θ

∣∣∣
θ=θ∗

= 0n. (6)

It is worthwhile to mention that the solution of the above equation is unique in this case and
is theoretically asymptotically unbiased. For our case, we have the following expression
for the likelihood function [3]:

p(θ) =
1

2πσ

kmax

∏
k=1

exp
(
− (z(k)− h(θ, k))2

2σ2

)
. (7)

Notably, the maximization problem at hand can be formulated as

θ∗ = arg max
θ

p(θ) = arg max
θ

ln(p(θ)). (8)

Let us define λ(θ) = − ln(p(θ)). The above problem can be equivalently expressed as

θ∗ = arg min
θ

λ(θ) (9)

which, by simple computations is equivalent to solving [3]

θ∗ = arg min
θ

kmax

∑
k=1

(z(k)− h(θ, k))2

2σ2 . (10)

Notably, Equation (10) is recognized to be the classical least squares (LS) solution.

2.3. Maximum Likelihood Estimation with Additional Information

Let us now extend the above MLE framework in order to account for the additional
intelligence available to the ownship.

In particular, we notice that, by Equations (1) and (2), it holds that

p(k) = Q(k)ψ, (11)

with

Q(k) =
[

I2 kTI2
1
2

k2T2 I2

]
∈ R

2×6. (12)

Therefore, by plugging the above expression in Equation (4), we have that p(k) ∈ P if and
only if

Q(k)ψ ∈ P , ∀k ∈ {0, . . . , kmax}, (13)
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while p(k) �∈ S if and only if

Q(k)ψ �∈ S , ∀k ∈ {0, . . . , kmax}.

In the following section, we assume that the constraints in the form

Q(k)θ ∈ P , Q(k)θ �∈ S

can be equivalently expressed as

gk(θ) = g(Q(k)θ) ≤ 0q

for some q ≥ 0 and for some differentiable function g : R2 → Rq. In this view, the above
unconstrained MLE problem can be extended as follows:

θ∗ = arg min
θ

λ(θ)

subject to

gk(θ) ≤ 0q, ∀k ∈ {0, . . . , kmax}.

(14)

2.4. Computational Approach to Solve MLE Problems

Notice that, as remarked in [38], the MLE for bearings-only target motion analysis
does not admit a closed-from solution and must be implemented iteratively, considering
an initialization close to the true solution to avoid divergence. In particular, we point out
that the above MLE minimization problems (both in the unconstrained and constrained
fashion) are not, in general, convex, thus calling for approximated solution schemes that
typically aim to find a good local optimum. In this paper, we resort to the MIDACO-
SOLVER optimization software, which implements an extension of the evolutionary ant
colony optimization meta-heuristic [39] and which has been developed especially for
highly nonlinear real-world applications. See [40] or [41] for a focus of the performance
of MIDACO software with respect to the state of the art. Notably, MIDACO-SOLVER
allows one to evaluate the satisfaction of the constraints and the objective function from an
algorithmic standpoint, thus allowing one to also tackle the problems that are not easily
expressed in a closed form nor easily solved by traditional solvers. Note that the suggested
strategy is independent of a particular solver, but the nonconvex nature of the optimization
problem suggests an evolutionary approach, such as genetic algorithms [42].

2.5. CRLB of the Estimate in the Unconstrained Case

Let us now discuss a useful metric that represents a lower bound on the covariance ma-
trix associated to the MLE estimation process. Specifically, in this subsection, we consider
the unconstrained case, while the constrained one is discussed in the next subsection.

In particular, consider the problem of evaluating the CRLB for the estimated vector ψ
of target parameters (see, for instance [37], p.44). In particular, it is well known that the
covariance matrix is bounded by the inverse of the Fisher information matrix (FIM) J, i.e.,
it holds that

E{(θ∗ − ψ)(θ∗ − ψ)T} ≥ J−1(ψ) = CRLBunconstrained,

where
J(ψ) = E{[∇θλ(θ)][∇θλ(θ)]T}

∣∣∣
θ=ψ

.

Note that the expectations in the above equation are taken with respect to p(θ); moreover,
the derivatives in J(·) are evaluated at the true value of ψ (i.e., ψ = ψ) or, alternatively,
at the estimated value θ∗ (i.e., ψ = θ∗) if the true value is unknown. Let us now present
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a more direct expression of the FIM. To this end, let us express the gradient of λ(θ) with
respect to θ as [3]

∇θλ(θ) = −
kmax

∑
k=1

1
σ2 (z(k)− h(θ, k))∇θh(θ, k); (15)

then, we have that [3]

E
{
[∇θλ(θ)][∇θλ(θ)]T

}∣∣∣
ψ
=

1
σ4

kmax

∑
k=1

E{(z(k)− h(ψ, k))2}∇xh(ψ, k)∇ψh(ψ, k)T

=
1
σ2

kmax

∑
k=1

∇ψh(ψ, k)∇ψh(ψ, k)T ,

(16)

where in the first equation, we used the fact that the measures are independent in order to
neglect mixed terms, while the last equation follows from the consideration that

E
{
(z(k)− h(ψ, k))2

}
= E

{
w(k)2

}
= σ2.

Notice that, in the Appendix A, we provide the analytical expression of the entries of
∇ψh(ψ, k).

2.6. CRLB for Constrained MLE

As demonstrated in [33] (see also [34]), assuming θ ∈ Rn, when the MLE problem has
an equality constraint in the form

f (θ) = 0q, f : Rn → R
q,

the CRLB can be computed starting from the unconstrained case, according to the following
equation

CRLBconstrained = J−1(ψ)− J−1(ψ)F(ψ)
(

FT(ψ)J−1(ψ)F(ψ)
)−1

FT(ψ)J−1(ψ),

where F(ψ) is the n × q Jacobian matrix of the constraint function f , evaluated at ψ, i.e.,

F(ψ) = ∇θ f T(θ)
∣∣∣
θ=ψ

.

Let us now extend this method to the case of inequality constraints. To this end, consider a
constraint in the form of

g(θ) ≤ 0q

where g : Rn → Rq is differentiable. We point out that the inequality constraint can
equivalently be expressed in the form of an equality constraint using

f (θ) = max
{

g(θ), 0q
}
= 0q,

where max is intended component-wise. Notably, the max function is globally Lipschitz
(e.g., see [43]); hence, if g is differentiable everywhere, we have that f is differentiable for
all θ ∈ Rn \ Ω, where Ω is a zero-measure set in the form

Ω = {θ ∈ R
n | gi(θ) = 0, for some i ∈ {1, . . . , q}}.
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In this view, a natural extension is to resort to the generalized Jacobian of f . Specifically, it
follows from [35] that the generalized Jacobian FG(θ) of f (θ) is defined as

FG(θ)=co
{

lim
i→∞

F(θi) : θi → θ, θi �∈ Ω
}

, (17)

with co being the convex closure, F(θi) ∈ Rn×m the classical Jacobian whenever it exists,
and Ω the set of measure zero where F(θi) is not defined. In other words, FG(θ) is in
general set-valued at the points where the Jacobian is not defined and FG(θ) = {F(θ)}
when the Jacobian is defined. Consequently, in the case of inequality constraints, the CRLB
is also, in general, set-valued, and it holds that

CRLBconstrained =

{
J−1(ψ)− J−1(ψ)F

(
FT J−1(ψ)F

)−1
FT J−1(ψ)

∣∣∣ F ∈ FG(ψ)

}
.

Notice that, in the event that ψ coincides with a point in the zero-measure set Ω, any metric
based on the CRLB (e.g., variance for a specific parameter, norm of the matrix, etc.) is
computed considering the worst case over the elements in the set CRLBconstrained.

2.7. Ownship Trajectory Selection Based on Artificial Potential Fields

The availability of additional information (i.e., knowledge on P and S) can be lever-
aged by the ownship in order to select a trajectory that allows one to improve the accuracy
of the estimate, i.e., by moving along a direction that mediates between the attempt to get
closer to P and the will to avoid S . In this paper, we borrow some of the key concepts
of the so-called artificial potential fields (APF) technique [31,32] in order to accomplish
this task. Within the APF approach, a robot has to navigate in a space toward a goal while
avoiding one or more obstacles; this is achieved by associating a repulsive potential field to
each obstacle and an attractive potential field to the goal so that, depending on the robot’s
position, the robot moves in the direction of the force that corresponds to the antigradient
of the overall potential field.

For the application at hand in this paper, we consider a repulsive potential field to
be associated with each set Yi that the target is assumed not to cross and an attractive
potential field associated with each set Xi where the target is assumed to be confined in.
For simplicity, assume the ownship is initially in the origin, considering some fixed frame
of reference.

In detail, referring to yi and xi as the center of mass of Yi and Xi, respectively, the
potential field at a point p ∈ R2 is the superposition of a contribution

−1
2

αi(xi − p)T(xi − p)

for each set Xi and a contribution

1
2

βi(yi − p)T(yi − p)

for each set Yi, i.e.,

U(p) = −1
2

m

∑
i=1

αi(xi − p)T(xi − p) +
1
2

r

∑
i=1

βi(yi − p)T(yi − p),

from which the corresponding force at the origin is

f (02) = −∇pU(p)
∣∣∣

p=02
=

m

∑
i=1

αixi −
m

∑
i=1

βiyi,
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and we note that the force is the composition of terms that are attracting toward the points
xi and terms that are repulsive from the points yi.

Notice that, in this paper, we chose coefficients βi that are proportional to the area of
the corresponding set Yi (i.e., the larger Yi is, the more the force is repulsive); conversely,
we chose coefficients αi that are inversely proportional to the area of the corresponding set
Yi (i.e., the smaller Xi is, the more the force is attractive).

Ownship Trajectory

Based on the resulting force f (02) at the origin, the ownship computes the angle γ

between the vector
[
0 1

]T and f (02) and moves according to[
xo(kT)
yo(kT)

]
=

[
cos(γ) − sin(γ)
sin(γ) cos(γ)

][
ẋokT

A sin(ωxo(kT))

]
, (18)

i.e., the ownship moves of linear motion (and constant velocity ẋo) along the direction of
f (02) while performing sinusoidal motion around such a direction. Notably, Equation (18)
can be rearranged as[

xo(kT)
yo(kT)

]
=

[
cos(γ)ẋokT − A sin(γ) sin(ωxo(kT))
sin(γ)ẋokT + A cos(γ) sin(ωxo(kT))

]
. (19)

Figure 1 provides an example of the above procedure for the selection of f (02).

Figure 1. Example of the proposed approach for selecting the ownship’s trajectory. In this example,
we consider two sets, X1 and X2, and one setm Y1, represented by the circles shown with a solid
line and by a dotted line, respectively. The points x1 and x2 and the point y1 (i.e., the centers of the
circles) are shown with an x mark and with a cross, respectively. In this example, we choose α1 and α2

equal to the area of X1 and X2, respectively, while β1 is the reciprocal of the area of Y1. The resulting
direction for the ownship is shown with an arrow (the initial position for the ownship is given by the
starting endpoint of the arrow).
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3. Experimental Analysis

In order to experimentally demonstrate the effectiveness of the proposed approach,
we consider the scenario depicted in Figure 2, where the target has an initial position xt0 =
yt0 = 3 × 104 m and moves with constant velocity having components ẋt0 = 8.333 m/s
and ẏt0 = 7.778 m/s, while the acceleration is ẍt0 = ÿt0 = 0 m/s2.

-2 0 2 4 6 8 10 12
104

0

1

2

3

4

5

6

7

8

9

10

104

Figure 2. Scenario considered in the experimental analysis. We assume additional information is
available, in that the target’s trajectory is known to be confined in the intersection of the two solid
circles and to lie outside the dotted circle. The red (shorter) arrow represents the target’s trajectory.
The APF direction is shown with a black (longer) arrow.

Notice that we assume the additional information is available to the ownship regarding
the target’s trajectory. Specifically, we assume the target’s trajectory lies in the intersection
of the circles X1 and X2 and outside of the circle Y1; the centers x1, x2, y1 and the radii
ρX1 , ρX2 and ρY1 of such circles are reported in Table 1.

Table 1. Parameters describing the sets X1,X2 and Y1 considered in the experimental analysis.

Set Centroid Radius

X1 x1 = [104, 5 × 104]T m ρX1 = 5 × 104 m

X2 x2 = [2 × 104, 6 × 104]T m ρX2 = 4.5 × 104 m

Y1 y1 = [4 × 104, 8 × 104]T m ρY1 = 2.5 × 104 m

In our simulations, we consider a sampling time T = 2 s, a time horizon of 3600 s
and noise variance set to σ = 0.5◦.

As for the ownship, we consider four operational scenarios:

• No information: the ownship does not rely on the additional information and selects
the trajectory in Equation (19) with γ = 0 rad.
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• Unconstrained, APF direction: the ownship does not rely on the additional informa-
tion for the computations but selects the trajectory according to the proposed APF
approach; in other words, it selects the trajectory in Equation (19) with γ = 0.749 rad.

• Constrained, no APF direction: the ownship relies on the additional information for
the computations but selects the trajectory in Equation (19) with γ = 0 rad.

• Proposed Approach: the ownship follows the trajectory in Equation (19) with γ = 0.749
rad and, further to that, actively relies on the additional information during the com-
putation of the MLE solution, of the experimental covariance matrix and CRLB.

In all cases, we select the following parameters for the ownship: xo(0) = yo(0) = 0 m,
ẋo = 7.778 m/s, ω = 2.5 × 10−4 rad/s and A = 5 × 103 m.

The computation of the MLE solution with MIDACO-SOLVER was conducted on
an Intel® i7 quad-core @ 2.27 GHz. For each execution of MIDACO-SOLVER, we set
the number of evaluated solutions to 106. All other MIDACO-SOLVER parameters were
used by their default values, which especially means that a feasibility accuracy of 0.001
was used for all individual constraints. In all cases, we compute the MLE solution with
MIDACO-SOLVER, and we consider 100 MLE solutions for each operational scenario.

Table 2 reports the results obtained for the four operational scenarios, considering both
the best solution found (in terms of the objective function of the MLE) over the 100 runs
and the average of the solutions found. For each solution reported in the table, we use, as
a measure of quality of the estimate the relative position and relative velocity, defined as
follows:

rel. pos. err. =

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣

xt0 − x∗t0
xt0

yt0 − y∗t0
yt0

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥

2

(20)

rel. vel. err. =

∥∥∥∥∥∥∥∥
⎡⎢⎢⎣

ẋt0 − ẋ∗t0
ẋt0

ẏt0 − ẏ∗t0
ẏt0

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥

2

(21)

while, since the target moves of with zero acceleration, we consider the absolute accelera-
tion error

abs. acc. err. =

∥∥∥∥∥∥
⎡⎣ẍ∗t

ÿ∗t

⎤⎦∥∥∥∥∥∥
2

(22)

where the asterisk superscript is used for the estimated parameters. According to the table,
the best solution found in the first and proposed operative scenarios is comparable and
exhibits small error, while the error is larger for the third operational scenario. Conversely,
within the second operational scenario, the best solution also found is not satisfactory, due
to large relative velocity error. The situation is radically different considering the average
of the found solutions; in fact, we observe that while the proposed approach shows limited
error, the first and second operational conditions are characterized by erroneous average
solutions (especially for what concerns the estimate of the target’s initial velocity), while
the third one exhibits a limited but significant degradation. This suggests that, while the
proposed approach consistently finds a good solution over the different trials, the other
methods may become trapped by worst local minima.

This intuition is supported by Figure 3, where we show the distribution of the position
and velocity error values over the 100 trials. According to the figure, it can be noted that
the first two scenarios have, overall, worse performance than the second and third scenario.
Moreover, while outliers in the first two operative scenarios assume remarkably large
values, in the latter two scenarios the outliers exhibit only a limited increase.
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Figure 3. Ensemble view of the (relative) position and velocity error values over 100 runs (i.e., see
Equations (20) and (21)), considering the four operative scenarios.

In order to further analyze the different operational scenarios, Table 3 reports the norm
of the covariance matrix obtained experimentally from the 100 trials, the experimental
covariance limited to the solutions with errors within the 50th percentile, and the norm
of the CRLB. In other words, we experimentally evaluate the covariance by executing
100 instances of MIDACO-SOLVER with random initial choice for the parameters and
then taking the covariance of the 100 (or less, when only the 50th percentile is considered),
possibly different, solutions obtained via MIDACO-SOLVER.

Notably, for the proposed approach, due to the presence of inequality constraints, the
CRLB is in general set-valued and, following a worst-case philosophy, when the set is not a
singleton, we consider

max
C∈CRLBconstrained

‖C‖2. (23)

According to the table, the magnitude of the norm of the experimental covariance ma-
trices associated with the proposed approach is three orders of magnitude smaller than
those corresponding to the first and second operational scenarios, while it is two orders
of magnitude smaller than the covariance associated to the third operational scenario.
Moreover, the norm of the CRLB covariance matrices is two orders of magnitude smaller
than the one obtained for the first and second operational scenarios, while it is comparable
to the one associated with the third operational scenario. Moreover, we observe that,
while in the other cases the experimental covariance is between three and four orders of
magnitude larger than the CRLB, for the proposed approach, the experimental covariance
is just two orders of magnitude larger than the CRLB. Notably, the discrepancy experienced
between the experimental covariance computed over 100 trials and the CRLB one is due to
the structure of the problem at hand. In fact, the MLE problem being solved amounts to a
nonconvex, nonlinear programming problem and is thus characterized by the presence of
local minima. Since we are adopting an approximated solver for finding a solution, the
large experimental covariance is explained by the reach of different local minima across the
different trials. In fact, while analyzing the covariance restricted to solutions with errors
within the 50th percentile, we observe a significant drop with respect to the covariance
over all trials; in particular, we observe a reduction of two orders of magnitude for the
first two operational scenarios and one order of magnitude for the other two; moreover,
also in this case, the proposed approach shows a two orders of magnitude reduction of the
covariance with respect to the others.

Let us now discuss the computation times, which are collected in Table 4. According
to the table, we observe that the main differences arise between the unconstrained and the
constrained cases, the latter requiring a computational time that is, on average, about 46%
larger than the unconstrained case, while the standard deviation is sensibly larger, being
about 6.92 times the one obtained in the unconstrained case.
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Table 3. Euclidean norm of the parameter estimation via MIDACO-SOLVER for the different operational scenarios.

Experimental Covariance ‖ · ‖2 Experimental Covariance ‖ · ‖2 CRLB ‖ · ‖2

(Solutions with Errors ≤ 50th Percentile)

No information 3.851 × 108 3.743 × 106 7.713 × 105

Unconstrained, APF direction 5.666 × 108 4.144 × 106 7.713 × 105

Constrained, no APF direction 3.696 × 107 5.410 × 106 1.454 × 103

Proposed Approach 4.784 × 105 6.600 × 104 1.873 × 103

Table 4. Average and standard deviation over 100 trials of the computational time (in seconds) for
the computation of the MLE solution via MIDACO-SOLVER for the different operational scenarios.

Time (Average) s Time (Standard Deviation) s

No information 58.790 3.235

Unconstrained, APF direction 59.124 3.049

Constrained, no APF direction 85.926 21.231

Proposed Approach 86.230 22.395

Overall, the above results suggest that, while the implementation of the constrained
MLE computation without considering the APF direction has a positive effect on the
estimate, the APF direction alone has no particular benefit without constraining the MLE
based on the available information. Instead, when such innovations are combined, the
MLE error, the experimental covariance and the CRLB are greatly reduced. Notably, since
the proposed approach amounts to a constrained problem, the price to pay is a noticeable
but limited increase in the computation times.

Figures 4–9 provide an at-a-glance view of the performance gap when the additional
information is actively relied upon. Specifically, Figures 4 and 5 show the results of the
proposed operational scenario considering the average MLE solution over the 100 trials
(blue dashed line), along with 100 trajectories (in cyan) obtained by sampling the pa-
rameters from a Gaussian distribution with mean given by the average MLE result and
covariance corresponding to the experimental covariance matrix or the CRLB, respectively
(the ownship’s trajectory is shown via the blue sinusoidal dashed curve). Conversely,
Figure 6 shows the results obtained considering the case where the APF direction is used
but the additional information is not relied upon during the MLE computation; specifically,
the figure considers the best solution found and the CRLB matrix. Notably, in the latter
case, the large covariance yields sampled trajectories that are characterized by remarkably
large error, while the proposed approach (both considering the experimental and CRLB
covariance matrices) yields significantly better results. Figure 7 shows a zoomed version of
Figure 6; according to the figure, we observe that, while the APF approach without using
the additional information in the MLE computations is characterized by an initial position
that is relatively accurate, the velocities and accelerations are characterized by highly vari-
able and erroneous values, resulting in the inaccurate trajectories. Finally, Figures 8 and 9
show the results obtained considering the case where the APF direction is not used but the
additional information is relied upon during the MLE computation; specifically, Figure 8
consider the best solution found and the experimental covariance matrix, while Figure
8 considers the best solution found and the CRLB matrix; in this case, the trajectory is
characterized by an intermediate error and is outperformed by the proposed approach.
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Figure 4. Sampling of 100 trajectories (in cyan) based on the average solution found via the proposed
approach and on the experimental covariance matrix.

Figure 5. Sampling of 100 trajectories (cyan) based on the average solution found via the proposed
approach and on the CRLB covariance matrix.
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Figure 6. Sampling of 100 trajectories (cyan) based on the best solution found via the unconstrained,
APF direction approach and on the CRLB covariance matrix.

Figure 7. Zoomed version of a portion of Figure 6.

Figure 8. Sampling of 100 trajectories (cyan) based on the best solution found via for the constrained
case, but without relying on the APF, and on the experimental covariance matrix.
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Figure 9. Sampling of 100 trajectories (cyan) based on the best solution found via for the constrained
case, but without relying on the APF, and on the CRLB covariance matrix.

To conclude the section, we compare the proposed approach against other methods
in the literature. Specifically, our proposed comparison is based on two macro-steps:
(i) the estimation of the target’s trajectory for k ∈ {0, . . . kmax} via other approaches in the
literature and (ii) the comparison with the trajectory obtained based on the estimation of
the parameter vector ψ via the proposed approach. In particular, we estimate the target’s
trajectory by resorting to the following four algorithms:

• a standard extended Kalman filter (EKF) (e.g., see [44] and references therein), where
we approximate the nonlinear output function h(·) by its Jacobian matrix at each
time instant;

• the pseudolinear Kalman filter (PL-KF) [45], where the nonlinear and noisy output
z(k) = atan2(yt(k)− yo(k), xt(k)− xo(k)) + w(k) is approximated by

z̃(k) =
[

sin(z(k))
− cos(z(k))

] [
1 0 0 0 0 0
0 1 0 0 0 0

]
︸ ︷︷ ︸

M

x̂k|k + η(k),

where x̂k|k is the vector collecting the filtered states (i.e., the stack of the positions,
velocities and accelerations) of the target at time k and η(k) is a pseudolinear noise in
the form

η(k) ∼ N (0, Rk),

with
Rk ≈ ‖d̂k|k−1‖2σ2

and

d̂k|k−1 = Mx̂k|k−1 −
[

xo(k)
yo(k)

]
,

x̂k|k−1 being the vector collecting the prediction of the target’s states at time k;
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• a statistical linearization extended Kalman filter (SL-EKF) [46] where, instead of the
Jacobian of the output function h(·), we approximate the nonlinear measurement
function y(k) = h(x, k) + w(k) via the linear approximation H∗x, with

H∗ = arg min
H∈R2×6

‖y(k)− Hx̂k|k‖2.

• the shifted Rayleigh filter (SRF) [47], where z(k) is approximated by

z(k) ≈ Π(Mx(k) + u(k) + ω(k)),

where Π(r) = r/‖r‖, u(k) =
[
xo(k) yo(k)

]
and

ω(k) ∼ N
(

02, σ2E
[
‖Mx(k) + u(k)‖2

∣∣∣ z(1), . . . , z(k)
]

I2

)
.

Conversely, within the proposed approach, we estimate the parameter vector

ψ =
[
xt0 yt0 ẋt0 ẏt0 ẍt ÿt

]T

via the proposed constrained MLE formulation, and we compute the trajectory of the target
as follows

x(k) = Q(k)ψ,

where
x(k) =

[
xt(k) yt(k) ẋt(k) ẏt(k) ẍt(k) ÿt(k)

]T ,

and

Q(k) =

⎡⎢⎣ I2 kTI2
1
2

k2T2 I2

02×2 I2 kTI2
02×2 02×2 I2

⎤⎥⎦.

Regarding the initial condition for the algorithms compared against the proposed approach,
we consider three different scenarios, with a decreasing degree of uncertainty:

1. a scenario where the average initial condition x̂0|0 is drawn from a zero-mean Gaussian
variable with standard deviation equal to ψ, while the initial covariance Σ0|0 is equal
to the square of ψ, i.e.,

x̂0|0 ∼ N
(

06, diag(ψ)2
)

, Σ0|0 = diag(ψ)2;

2. a scenario where the average initial condition is drawn from a Gaussian variable with
a mean equal to ψ and standard deviation equal to ψ, while the initial covariance is
equal to the square of ψ, i.e.,

x̂0|0 ∼ N
(

ψ, diag(ψ)2
)

, Σ0|0 = diag(ψ)2

3. a scenario where the average initial condition is exactly ψ, while the initial covariance
is equal to the square of ψ, i.e.,

x̂0|0 = ψ, Σ0|0 = diag(ψ)2.

Figures 10–12 report the results of the comparison, where the four aforementioned
approaches are compared against the average MLE solution over 100 trials obtained via the
proposed methodology, considering the same simulation setting as in the fourth operational
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scenario described above. Specifically, we report the relative position and velocity errors
between the real target’s trajectory at time k and the estimated one, i.e.,

xt(k)− x̂(k)
xt(k)

,
yt(k)− ŷ(k)

yt(k)
,

ẋt(k)− ̂̇x(k)
ẋt(k)

,
ẏt(k)− ̂̇y(k)

ẏt(k)
,

where we denote by x̂(k), ŷ(k), ̂̇x(k) and ̂̇y(k), the estimate of the target’s positions and
velocities obtained according to the generic technique being compared. According to
Figure 10, the proposed approach achieves an error that is at least two orders of magnitude
less than the other approaches. Notably, while moving to a scenario where more informa-
tion on the initial condition is available for the four approaches used in the comparison,
the gap with PLKF and SL-EKF reduces to about one order of magnitude. Finally, when we
compare the initial condition for the methods against the proposed one, which is assumed
to have a mean that corresponds to the actual vector of parameter being estimated, we
observe that the proposed approach is comparable with SL-EKF, while being in general
better than the others.

Overall, the proposed comparison contributes to experimentally demonstrating the
effectiveness of the proposed approach with respect to the literature.

Figure 10. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, con-
sidering a scenario where the methods compared with the proposed one are initialized with
x̂0|0 ∼ N

(
06, diag(ψ)2) and Σ0|0 = diag(ψ)2.
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Figure 11. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, con-
sidering a scenario where the methods compared with the proposed one are initialized with
x̂0|0 ∼ N

(
ψ, diag(ψ)2) and Σ0|0 = diag(ψ)2.

Figure 12. Comparison of the proposed approach against EKF, PLKF, SRF and SL-EKF, considering
a scenario where the methods compared with the proposed one are initialized with x̂0|0 = ψ and
Σ0|0 = diag(ψ)2.
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4. Conclusions and Future Work

This paper presents a batch strategy to estimate the parameters describing the trajec-
tory of a target, based on a moving ownship able to measure bearings. In particular, the
proposed methodology allows one to incorporate additional information (e.g., obtained
via intelligence) such as knowledge of the fact that the target’s trajectory is contained
in the intersection of some sets or the fact it lies outside the union of other sets. The
approach is formally characterized by providing a constrained MLE formulation and by
extending the definition of the CRLB matrix to the case of MLE problems with inequality
constraints, relying on the concept of generalized Jacobian matrix. Moreover, based on the
additional information, the ownship motion is chosen by mimicking the Artificial Potential
Fields technique that is typically used by mobile robots to aim to a goal (in this case, the
region where the target is assumed to be) while avoiding obstacles (i.e., the region that is
assumed not to intersect with the target’s trajectory). As a result, the proposed framework
exhibits remarkably better performance, and in particular, we observe that the solution is
less likely to remain stuck in unsatisfactory local minima during the MLE computation
and is characterized by smaller covariance, (both considering the experimental and the
CRLB ones).

Future work will be mainly devoted to extending the framework along the following
research directions: (i) consider more sophisticated models for the target’s motion (e.g.,
nearly constant acceleration); (ii) consider dynamically changing constraints on the target’s
trajectory; (iii) provide adaptive strategies for the ownship trajectory based on the, although
partial, initial estimates (e.g., in order to avoid crossing the space where the target’s
trajectory is contained); (iv) filter possible outliers (e.g., resorting to the approach in [3],
Section 2.7); and (v) consider multiple targets.
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The following abbreviations are used in this manuscript:

APF Artificial potential fields
CRLB Cramér–Rao lower bound
DOAJ Directory of open access journals
EKF Extended Kalman filter
FIM Fisher information matrix
MAP Maximum a posteriori
MDPI Multidisciplinary Digital Publishing Institute
MIDACO-SOLVER Mixed integer distributed ant colony optimization solver
MLE Maximum likelihood estimation

228



Sensors 2021, 21, 7211

PL-KF Pseudo-linear Kalman filter
SL-EKF Statistical linearization extended Kalman filter
SRF Shifted Rayleigh filter
TMA Target motion analysis

Appendix A

In this appendix we provide the analytical expression of the partial derivatives of the
function h(ψ, k) with respect to the target’s motion parameters. For the sake of readability
let us define

Δx(k) = xt(k)− x(k),

Δy(k) = yt(k)− y(k).
(A1)

The partial derivatives of h(ψ, k) with respect to the target’s motion parameters are as
follows

∂h(ψ, k)
∂xt0

= − Δy(k)
Δx(k)2 + Δy(k)2

∂h(ψ, k)
∂yt0

=
Δx(k)

Δx(k)2 + Δy(k)2

∂h(ψ, k)
∂ẋt0

= −kT
Δy(k)

Δx(k)2 + Δy(k)2

∂h(ψ, k)
∂ẏt0

= kT
Δx(k)

Δx(k)2 + Δy(k)2

∂h(ψ, k)
∂ẍt0

= −1
2

k2T2 Δy(k)
Δx(k)2 + Δy(k)2

∂h(ψ, k)
∂ÿt0

=
1
2

k2T2 Δx(k)
Δx(k)2 + Δy(k)2 .

(A2)
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Abstract: Angle-only sensors cannot provide range information of targets and in order to determine
accurate position of a signal source, one can connect distributed passive sensors with communication
links and implement a fusion algorithm to estimate target position. To measure moving targets with
sensors on moving platforms, most of existing algorithms resort to the filtering method. In this paper,
we present two fusion algorithms to estimate both the position and velocity of moving target with
distributed angle-only sensors in motion. The first algorithm is termed as the gross least square
(LS) algorithm, which takes all observations from distributed sensors together to form an estimate
of the position and velocity and thus needs a huge communication cost and a huge computation
cost. The second algorithm is termed as the linear LS algorithm, which approximates locations of
sensors, locations of targets, and angle-only measures for each sensor by linear models and thus
does not need each local sensors to transmit raw data of angle-only observations, resulting in a
lower communication cost between sensors and then a lower computation cost at the fusion center.
Based on the second algorithm, a truncated LS algorithm, which estimates the target velocity through
an average operation, is also presented. Numerical results indicate that the gross LS algorithm,
without linear approximation operation, often benefits from more observations, whereas the linear LS
algorithm and the truncated LS algorithm, both bear lower communication and computation costs,
may endure performance loss if the observations are collected in a long period such that the linear
approximation model becomes mismatch.

Keywords: passive sensor networks; signal localization; angle-only observations; accuracy analysis

1. Introduction

For some passive sensors, such as infrared sensors, photoelectric sensors and cameras,
they can detect targets by receiving electromagnetic signals. As they do not emit signals,
they can probe targets in a stealth manner [1]. However, such sensors can measure only
angles of signals and thus are termed as angle-only sensors subsequently. The signal
position information, which is of great concern in many situations, cannot be obtained with
a sensor. To determine the position of signal sources, one can connect distributed sensors
with communication links and then estimate the position through a fusion algorithm. This
is a hot topic in recent years and gains wide attentions of scholars in different fields [2–5].

In the 3-dimensional (3D) scenario, the angle information measured by each passive
sensor includes the azimuth and elevation of the signal. From a mathematical perspective,
each angle observation can be represented by a straight line passing the sensor and a target
in space. If no error occurs in this process, all the lines will intersect in a point in space,
which is the location of a signal source. In practice, both sensor location measures and
angle measures are inevitably contaminated by measurement noises and then the lines
may not intersect a point in space. However, as if the signals are from the same target,
the lines will intersect in a small volume, whose center can be deemed as the location of a
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target. Following this concept, an angle-only positioning algorithm is presented in [6] and
a closed-form solution is derived.

In real applications, if the targets of interest are static, or if the sampling frequency
to the signals is too high in contrast to the velocities of possible targets, the algorithms
can be developed under an assumption that the velocity of the target is static. The least
squares (LS) algorithm is applied in the target position estimation based on angle-only
measurements by linearizing the angle observation equations [7–10]. The intersection
localization algorithm is obtained by considering that the straight lines formed by the angle
observations will intersect in a small volume in space [11–13]. Real sensor often makes
observations in an asynchronous manner, namely the observations are not obtained at the
same instants. The stationary target assumption will also make the sensor synchronization
problem easier, because we can totally drop the timing information of the observations.
If the target is stationary, even if the sensors are moving, the straight lines formed by the
angle measurements of multiple sensors at different times will converge to a small area near
the target location. Therefore, in this scenario, one just needs to solve a target positioning
algorithm in an asynchronous manner.

Once the target motion should be considered at different observation instants, target
location estimation will face greater biases and then one has to take the target motion
issue into consideration. Meanwhile, for moving targets, the observation instants should
be taken into account and then as the distributed fusion algorithm should take instant
information into account, the fusion algorithm becomes more complicated. There are
mainly two strategies available so far. The first strategy is to use the filtering algorithms,
such as the Kalman filter that can estimate target velocity through observations from
different instants. In the target tracking theoretical framework, the angle-only observations
can be described by a measurement equation, although it is heavily nonlinear. Therefore, a
nonlinear filtering algorithm should be used [14,15]. For instance, the extended Kalman
filtering (EKF) algorithm linearizes the angle measurement function through the first-
order Taylor approximation, and then uses the standard Kalman filtering algorithm for
the angle-only target tracking problem [16]. The cubature Kalman filter (CKF) [17], the
unscented Kalman filter (UKF) [18], the pseudo linear Kalman filter (PLKF) [19,20], the
particle filter [21] and a series of sigma-point based algorithms can also be used in the target
tracking problem with distributed angle-only sensors.

Although the tracking algorithms have been widely used to estimate moving target
positions, it requires the noise distribution parameters known a priori. It also faces the
convergence problem if the initial state is set improperly [22,23]. In distributed sensor
networks, if each observation undergoes a tracking process, the computation cost will also
be high since the data amount of observations are often intensive in practice. Therefore, a
good positioning algorithm should be implemented before filtering. For instance, in [15],
short-term angle-only observations are fused by a distributed positioning algorithm, whose
outputs are then processed by a tracking algorithm.

In the other strategy, the target position and velocity can be estimated together and then
the result is valid in a longer period. In this case, the tracking operation can be performed
in a longer period, so that the computation cost can be further reduced. However, if the
velocity is estimated, more optimization variables are involved and then the optimization
problem is more complicated. Meanwhile, in a distributed sensor configuration, the
communication cost between the sensors may be high if all the observations are transmitted
to a fusion center. In this paper, we study the distributed positioning of moving targets with
distributed asynchronous angle-only sensors. We consider the scenario where multiple
asynchronous passive sensors are linked with the fusion center through communication
links. First, we formulate an algorithm, termed as gross LS algorithm, that takes all angle
observations of multiple sensors together with their positions in certain period to estimate
the position and velocity of the target. Different observations contribute different lines and
with many lines available, both the target position and its velocity can be estimated. The
classical LS algorithm is formulated such that the computation cost is reduced a lot.
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Due to the huge amount of data, this algorithm still has high computational complexity
and high communication cost. In order to reduce the communication and computation
cost, we further present a distributed positioning algorithm, termed as linear LS algorithm,
that can implement the fusion algorithm in a parallel computation manner. In detail, both
positions and angle observations of local sensors are processed by LS operations, whose
outputs are zero and first orders of the Taylor series of corresponding parameters. The
outputs are then transmitted to a fusion center for which we derive a fusion algorithm
to efficiently combine position and velocity estimates for a higher parameter estimation
accuracy. The later algorithm can greatly compress the data rate from local sensors to
the fusion center, such that the communication cost is greatly reduced. Meanwhile, local
observations are represented by a few parameters and thus the fusion algorithm also needs
a lower computation cost. The sensor location can be recorded asynchronously with the
angle observations and thus can make the algorithm easier in applications. Meanwhile, a
truncated LS algorithm, which replaces the velocity estimation of the linear LS algorithm
by a simply average operation, is also presented.

Numerical results are obtained with distributed asynchronous angle-only sensors
measuring a moving target with certain velocity. The convergence performance of both the
algorithms are presented first, in order to examine the impact of the number of observations
on the positioning performance. Then the impact of the linear approximation of position
and angle measures on the estimation accuracy is analyzed. It will be found that the gross
LS algorithm often benefits from more observations. However, although the linear LS
algorithm and the truncated LS algorithm will perform good if the number of observations
is small, as the number of observations increase, their performances will degrade, as a
resulting of the linear model mismatching. The truncated LS algorithm will perform better
in a short period than the linear LS algorithm but worse in a longer time. To an extreme, the
estimation performance of the linear LS algorithm may deteriorate with more observations
if the model mismatching is severe. We also verify that the linear LS algorithm has a
lower communication cost in most situations and examine the performance loss due to
inaccurate platform velocity estimates. Numerical angle distortion errors under the linear
approximations are also analyzed.

2. Localization with Angle-Only Passive Sensors

2.1. Signal Model of Passive Observations

Consider a passive sensor network with N widely separated sensors and M targets in
the surveillance volume. All the N passive sensors can measure only direction of arrival
(DOA) of signals, based on which real position of a signal emitter can be estimated. Assume
that all the sensors operate in the same coordinate system through some inherent position
and attitude measurement devices, such as the Global Positioning System (GPS) and inertial
sensors. A typical coordinate system is the earth-centered earth-fixed (ECEF) of the World
Geodetic System 84 (WGS84). Both the targets and the sensors are in motion by assumption.
The real position of the nth sensor at instant t is denoted by po

n(t) = [xo
n,s(t), yo

n,s(t), zo
n,s(t)]T,

n = 1, 2, . . . , N, where (·)T denotes the transpose operation, and xo
n,s(t), yo

n,s(t), zo
n,s(t)

denote the x, y, z coordinates of the nth sensor in the common coordinate system at instant
t, respectively. The real position of the mth target at instant t is denoted by go

m(t) =
[xo

m,g(t), yo
m,g(t), zo

m,g(t)]T, m = 1, · · · , M, where xo
m,g(t), yo

m,g(t), zo
m,g(t) denote the x, y, z

coordinates of the mth target at instant t, respectively. The topology of the passive sensors
and targets are shown in Figure 1.
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Figure 1. Measurement scenario of the passive sensors.

For the nth sensor, signals are detected and their DOAs are measured at instants
denoted by tk,n, k = 1, · · · , Nn, where Nn denotes the number of observations of the nth
sensor. At the instant tk,n, assume that the position of the nth sensors is measured as

pk,n(tk,n) = po
n(tk,n) + Δpn(tk,n) = [xn,s(tk,n), yn,s(tk,n), zn,s(tk,n)]

T, k = 1, · · · , Nn (1)

where Δpn(tk,n) denotes the sensor self-positioning error. For simplicity, we assume that
the sensor self-positioning error follows zero mean Gaussian distributions with covariance
matrices Cs(k, n) = E(Δpn(tk,n)ΔpT

n(tk,n)), where E denotes the expectation operation.
At instant tk,n, the real position of the mth signal source is denoted by

go
m(tk,n) = [xo

m,g(tk,n), yo
m,g(tk,n), zo

m,g(tk,n)]
T, m = 1, · · · , M. (2)

Assume that all the observations regarding the same target are obtained in a short
period T = [T1, T2]. In this period, assume that the location of the mth target can be
expressed by

go
m(t) ≈ go

m(t0) + vo
m(t − t0) (3)

where go
m(t0) denotes the location of the target at the reference instant t0, and vo

m denotes
the velocity over T . The signal model in use depends on the velocity of the target and the
period of observations. If all the observations are collected in a short period and the velocity
is small, then one can simply assume go

m(t) ≈ go
m(t0) as [6]. Under the signal model (3),

more observations can be used to make an estimation of the target space locations. If the
observations are obtained in a long period and the velocity is huge, then this model may
also mismatch and higher order approximations may be used.

For the nth angle-only passive sensors, the lth observation at tk,n is indexed by a
triple (l, k, n), l = 1, · · · , Lk,n. For simplicity, we also encode all the triples available,
corresponding to all the observations available, with a one-to-one function Ω(l, k, n) → i.
Then we define a set Lk,n by

Lk,n = {i|i = (l, k, n), l = 1, · · · , Lk,n}, k = 1, · · · , Nn, n = 1, · · · , N (4)

denotes a set of signal indices detected at the instant tk,n by the nth sensor. Therefore,
Lk,n = |Lk,n|, where | · | over a set denotes the cardinality of the set. As the possibility of
miss detection, false alarms and overlapping of signal sources, Lk,n may not be equal to M.
Denote

Ln = ∪Nn
k=1Lk,n,L = ∪N

n=1Ln (5)
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where ∪ denotes the union operation. The total number of observations by N sensors is
denoted by

Ns = |L| =
N

∑
n=1

Nn

∑
k=1

Lk,n. (6)

Each observation is associated with one of M targets or the false alarm indexed by 0,
represented by a set M = {0, 1, · · · , M}. It can be considered as a mapping ψ : L → M,
which is a correct mapping and is thus typically unknown in practice. According to our
setting, the index set L can be partitioned into M + 1 disjoint sets A0,A1, · · · ,AM, and Am
is defined by

Am = {i|ψ(i) = m, i ∈ L}, (7)

where A0 denotes the index of observations corresponding to false alarms, and Am denotes
the index set of observations from the mth signal source. As a partition of A, we have
Ai ∩Aj = ∅, i, j ∈ M, i �= j, and A = ∪M

i=0Ai, where ∩ denotes the intersection operation
of sets. Assume that |Am| = Lm and there are totally L = ∑M

m=0 Lm observations available.
The signal indices in Am are composed of signal indices from all the sensors and the

sub set for the nth sensor is denoted by

An,m = Ln ∩Am (8)

which indicates the observations from the nth sensor probing the mth target. Denote
Kn,m = |An,m| and then we have Lm = ∑N

n=1 Kn,m and Am = ∪An,m.
For simplicity, we first assume that the mapping ψ is exactly known and then obser-

vations associated with Am is exactly known. For observation i ∈ Am, real azimuth angle
and elevation angle, regarding the nth sensor at tk,n, can be expressed by

θo
i = tan−1

(
yo

m,g(tk,n)− yo
n,s(tk,n), xo

m,g(tk,n)− xo
n,s(tk,n)

)
(9)

ϕo
i = arctan

zo
m,g(tk,n)− zo

n,s(tk,n)√
(xo

m,g(tk,n)− xo
n,s(tk,n))2 + (yo

m,g(tk,n)− yo
n,s(tk,n))2

respectively, where θo
i ∈ (−π, π), ϕo

i ∈ (−π
2 , π

2 ), tan−1(∗) is called the two-argument
inverse tangent function [24,25] and arctan(∗) is the inverse tangent function. Denote
ηo

i = [θo
i , ϕo

i ]
T. The azimuth angle and elevation angle measures can be written as

ηi = [θi, ϕi]
T = ηo

i + Δηi (10)

θi = θo
i + Δθi (11)

ϕi = ϕo
i + Δϕi (12)

Δηi = [Δθi, Δϕi]
T (13)

where Δθi and Δϕi represent the measurement noise of the azimuth angle and elevation
angle, respectively.

For simplicity, we assume that observation noises Δθi and Δϕi are statistically in-
dependent and follow zero-mean Gaussian distribution. The covariance matrices of Δη
are denoted by Cη(i) = E(ΔηΔηT) ∈ C2×2, namely Δη ∼ N (0, Cη(i)), which is typically
affected by the SNR of the signal, where N (0, Cη(i)) denotes the zero-mean Gaussian
distribution with mean 0 and covariance matrix Cη(i).

2.2. Estimation of Target Track

Each angle-only observation contributes a line in 3D space and without measurement
error, a target will be present at the line. With many angle-only observations, real position
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of the target can be determined. The line associated with the ith observation can be
expressed by

Li : x(ti) = pi + αiei, αi ∈ R (14)

where pi denotes the sensor location regarding the ith observation, αi is a parameter
indicating the distance to the origin pi, ei = e(ηi) = [ei,x, ei,y, ei,z]

T ∈ R3×1 is the normalized
direction vector associated with the angle observation ηi, namely ‖ei‖ = 1, ‖ · ‖ over a
vector denotes the �2-norm, and

ei,x = cos(θi) cos(ϕi) (15)

ei,y = sin(θi) cos(ϕi) (16)

ei,y = sin(ϕi). (17)

In what follows, we consider the observations in Am, m �= 0. From (3), we can rewrite

x(ti) = pi + αiei = g0,m + vg,m(ti − t0) + εe(i) = Ae(i)qm + εe(i) (18)

where qm = [gT
0,m, vT

g,m]
T, g0,m = go

m(t0), vg,m = vo
m(t0), εe(i) denotes the bias term,

Ae(i) = [I, (ti − t0)I] ∈ R
3×6 (19)

and I denotes the identity matrix. In (18), there are totally 7 unknown parameters and an
observation can provide 3 equations. In addition to an observation, one can obtain another
3 equations and the number of unknown parameters will increase by 1. Unless specified,
we always refer to the mth target and drop the subscripts m in situations without ambiguity
subsequently, e.g., denote g0,m → g0, vg,m → vg, qm → q.

In order to determine the location and velocity of the target, the optimization problem
can be formulated as

min
α,q

‖P + E diag(α)− Ah(16 ⊗ q)‖ (20)

where ‖ · ‖ refers to the �2−norm subsequently unless explicitly specified, α = [α1, · · · , αLm ]
T,

P is a matrix whose columns are pi, i ∈ Am, P = [p, · · · , pLm ], 16 denotes a 6 × 1 all-one
vector of length Lm, E is a matrix whose columns are ei, i ∈ Am, ⊗ denotes the Kronecker
product operation,

Ah = [Ae(i), · · · ] ∈ R
3×6Lm , i ∈ Am, (21)

and diag(·) with a vector entry denotes a diagonal matrix with the vector as diagonal
elements.

2.3. The Gross LS Algorithm

In practice, the observations are generally contaminated by measurement noise and
then the lines often do not intersect into a point in space. With Lm observations, there are
totally Lm + 6 unknown parameters and 3Lm equations. Therefore, if we have at least 3
observations from angle-only sensors, we can find 9 unknown parameters together. For
that purpose, let q̄ = [qT, αT]T and then we can reformulate (18). In order to minimize the
mismatch, the optimization problem can be rewritten as

min
α,q

‖p + Dα − Adq‖. (22)

The combination of equations for all observation indices in Am can be formulated as

Aaq̄ = p + εe (23)
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where p = vec(P), vec(·) denotes the vectorization operation.

εe = [εT(1), · · · , εT(Lm)]T (24)

Aa = [Ad,−D] ∈ R
3Lm×(6+Lm) (25)

Ad = [AT
e (1), · · · , AT

e (Lm)]T (26)

= [1, t]⊗ I ∈ R
3Lm×3 (27)

D = diag(e1, · · · , eLm) ∈ R
3Lm×Lm (28)

where t = [t1 − t0, t2 − t0, . . . , tLm − t0]
T, and diag(·) with some matrices inputs denotes a

block diagonal matrix with the input matrices as block diagonal elements.
For this optimization problem, we can find the classical LS solution as

q̂a = (AT
a Aa)

−1AT
a p. (29)

It can be proved that for symmetric matrices A and B, and C, all of appropriate sizes,[
A CT

C B

]−1

=

[
(A − CTB−1C)−1 −(A − CTB−1C)−1CTB

−B−1C(A − CTB−1C)−1 (B − CA−1CT)−1

]
(30)

Consequently, with a fact that DTD = I, we have

(AT
a Aa)

−1 =

[
AT

dAd −AT
dD

−DTAd DTD

]−1

=

[
X ZT

Z Y

]
(31)

where

X = (AT
dAd − AT

dD(DTD)−1DTAd)
−1 (32)

= (AT
dAd − AT

dDDTAd)
−1 ∈ R

6×6 (33)

Y = (DTD − DTAd(A
T
dAd)

−1AT
dD)−1 (34)

= (I − DTAd(A
T
dAd)

−1AT
dD)−1 ∈ R

Lm×Lm (35)

Z = (DTD)−1DTAdX (36)

= DTAd(A
T
dAd − AT

dDDTAd)
−1 ∈ R

Lm×3 (37)

and the following equation is used in above formulations.
It can also be proved that

AT
dAd =

[
LI TdI

TdI TDI

]
= M ⊗ I (38)

AT
dD =

[
E

Et

]
, (39)

where Td = ∑L
i=1(ti − t0), TD = ∑L

i=1(ti − t0)
2, Et = E diag(t)

M =

[
L Td

Td TD

]
⇔ M−1 =

1
LTD − T2

d

[
TD −Td
−Td L

]
(40)

and ⊗ denotes the Kronecker product operation.
Still evoke (30) and we have

(AT
dAd)

−1 = M−1 ⊗ I (41)
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and thus

Y−1 = I − 1
LTD − T2

d
[ET, ET

t ]

[
TDE − TdEt
−TdE + LEt

]
(42)

= I − 1
LTD − T2

d
(TDETE − TdET

t E − TdET
t E + LET

t Et). (43)

Meanwhile,

AT
a p =

[
AT

dp

−DTp

]
=

[
qt
−pe

]
(44)

where

qt = P[1, tT]T (45)

pe = diag(ETP). (46)

Therefore, the estimates for qm and α can be written separately as

q̂m =

[
ĝ0
v̂g

]
= Xqt − X

[
E

Et

]
pe (47)

α̂m = AT
dDXqt − Ype (48)

where X can be written in a concise form as

X−1 =

[
LI − EET TdI − EET

t
TdI − EtE

T TDI − EtE
T
t

]
. (49)

Under the assumption that all the sample under consideration is from the same target,
the track, parameterized by q, is identical for all observations hereafter.

2.4. The Linear LS Algorithm

In a long period, one can obtain a sequence of η = (θ, φ) observations. If we take
all the observations into consideration for optimization, a huge computation cost may be
required. In some cases, it is also unnecessary at all. We can extract information from local
observations and then transmit estimated parameters to the fusion center for target location
estimation. The target location has been approximated by a linear model. Next, we express
the DOA and sensor location by a linear model as well.

For DOA measures from a sensor, we can approximate a series of angle measures by

η =

{
θ ≈ θ0 + θ̇0(t − t0)

ϕ ≈ ϕ0 + ϕ̇0(t − t0).
(50)

Now consider the nth sensor and let{
θ0 → θ0,n

θ̇0 → θ̇0,n
⇒ θ̄n =

[
θ0,n
θ̇0,n

]
,

{
ϕ0 → ϕ0,n

ϕ̇0 → ϕ̇0,n
⇒ ϕ̄n =

[
ϕ0,n
ϕ̇0,n

]
. (51)

For all observations in An,m, we can write a polynomial regression problem as{
θn = Anθ̄n + εθ

ϕn = Anϕ̄n + εϕ
(52)
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where θn = [θi]i∈An,m ,ϕn = [ϕi]i∈An,m , εθ denotes bias for θn, εφ denotes bias for ϕn, and

Aa(n) =

[
1, ti − t0

...

]
∈ R

Kn,m×2, i ∈ An,m. (53)

It can be proved that the LS estimate of the directions for the nth sensor can be directly
written as

θ̂n = (Aa(n)TAa(n))−1Aa(n)Tθn =
1

LTD − T2
d

[
TDθT

n1 − TdθT
nt

−TdθT
n1 + LθT

nt

]
(54)

ϕ̂n = (Aa(n)TAa(n))−1Aa(n)Tϕn =
1

LTD − T2
d

[
TDϕT

n1 − TdϕT
nt

−TdϕT
n1 + LϕT

nt

]
. (55)

In this case, θ̂n and ϕ̂n, instead of θn and ϕn, will be transmitted to the fusion center,
such that the communication cost will be greatly reduced.

In (18), θ̂n and ϕ̂n affects the positioning accuracy through the normalized direction
vector ei, i ∈ An,m. With a linear approximation model, e can be rewritten as

e(t) ≈ e0 + ĖT
0 η̇0(t − t0) (56)

where e0 = e(t0),

θ̇ =
∂θ

∂t
, ϕ̇ =

∂ϕ

∂t
(57)

η0 = [θ0, ϕ0]
T, η = [θ, ϕ]T (58)

η̇0 = η̇|t=t0 = [θ̇0, ϕ̇0]
T, η̇ = [θ̇, ϕ̇]T (59)

Ė0 = Ė(η)|t=t0 = Ė(η0) (60)

and Ė(η) denotes the Jacobi matrix defined by

ĖT(η) =
∂e

∂ηT =

⎡⎣− sin(θ) cos(ϕ) − cos(θ) sin(ϕ)
cos(θ) cos(ϕ) − sin(θ) sin(ϕ)

0 cos(ϕ).

⎤⎦ (61)

For the nth sensor, denote e0 → e0,n, Ė0 → Ė0,n, η̇0 → η̇0,n, η0 → η0,n and so on.
In practice, the position of the platform is also measured by a device, such as an inertial

system or a positioning system. In either case, if the nth sensor is moving with speed vs at
t = t0, the position can be expressed by

pn(t) = p0,n + vs,n(t − t0) + εs(n) (62)

where p0,n denotes the position of the nth sensor, vs,n denotes the velocity, both at t = t0,
and εs denotes the bias of position estimation error.

For simplicity, we assume that the sensor location is measured at t = t̄k,n, k =
1, · · · , N̄n. In practice, in this configuration, the sensor location can be measured at instants
other than tk,n, k = 1, · · · , Nn. Now we can construct equations as

pk,n = p0,n + vs,n(t̄k,n − t0) + εs(k, n), k = 1, · · · , N̄n, n = 1, · · · , N (63)

or in another form as
ps,n = Asp̄n + εs(n) (64)
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where p̄n = [pT
0,n, vT

s,n]
T, ps,n = [pT

1,n, · · · , pT
N̄n ,n]

T, and

As(n) =

[
I, (t̄k,n − t0)I

...

]
k=1,··· ,N̄n

= [1, ts]⊗ I (65)

for which
(AT

s (n)As(n))−1 = M−1
s ⊗ I (66)

where M−1
s is similar to M in (40).

The LS estimate of p̄ is

p̂n =

[
p̂T

0,n
v̂s,n

]
= (AT

s (n)As(n))−1AT
s (n)ps,n (67)

= (M−1
s ⊗ I)

[
P1

Ptt

]
(68)

p̂0,n =
1

LTD − T2
d
(TDP1 − TdPtt) (69)

and

v̂s,n =
1

LTD − T2
d
(−TdP1 + LPtt). (70)

With above operations, we can obtain a linear sensor location parameter p̂n, linear
DOA parameters θ̂n, φ̂n, and linear target location parameters qm. The accuracy depends
on the interval of observations, the speed of the target, and the speed of the sensors. A series
of observations can now be approximated by two parameters and it is now unnecessary to
transmit all the local observation to a fusion center anymore.

With only one observation available, a fusion center can now estimate the target
position and velocity with the following equation

x(t) = g0 + vg(t − t0) + εa(n) = p0,n + vs,n(t − t0) + αn(t)en(t)

≈ p0,n + vs,n(t − t0) + (α0,n + α̇0,n(t − t0))(e0,n + ĖT
0,nη̇0,n(t − t0)) (71)

where α̇0,n represents the change rate of α0,n. By expanding equation (71) and ignoring the
second-order term, εa(n) can be reformulated as

εa(n) = p0,n + α0,ne0,n − g0 + (α0,nĖT
0,nη̇0,n + vs,n + α̇0,ne0,n − vg)(t − t0) (72)

where n = 1, 2 . . . , N and εa(n) denotes the bias term in approximation target position and
direction of arrival by the linear models.

The following equation can be obtained using (72) for N sensors,

εa = p0 + D0α0 − Īg0 + (Xdα0 + vs + D0α̇0 − Īvg)(t − t0) (73)
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where

α0 = [α0,1, α0,2, · · · , α0,N ]
T (74)

α̇0 = [α̇0,1, α̇0,2, · · · , α̇0,N ]
T (75)

p0 = [pT
0,1, pT

0,2, . . . , pT
0,N ]

T (76)

D0 = diag(e0,1, e0,2, . . . , e0,N) (77)

Xd = diag(ĖT
0,1η̇0,1, ĖT

0,2η̇0,2, . . . , ĖT
0,N η̇0,N) (78)

vs = [vT
s,1, vT

s,2, . . . , vT
s,N ]

T (79)

Ī = 1N ⊗ I3 ∈ R
3N×3 (80)

and

εa = [εT
a (1), εT

a (2), · · · , εT
a (N)]T. (81)

In order to minimize the total bias εa, we can minimize

min
qc,qv

‖p0 + D0α0 − Īg0 + (Xdα0 + vs + D0α̇0 − Īvg)(t − t0)‖, t ∈ T . (82)

where qc = [gT
0 , αT

0 ]
T and qv = [vT

g, α̇T
0 ]

T.
To ensure the bias is minimized for t ∈ T , both the initial position bias, p0 + D0α0 −

Īg0, and the speed bias, Xdα0 + vs + D0α̇0 − Īvg should be minimized. Therefore, we can
solve the optimization problem through solving the following two optimization problems
of smaller scale,

min
qc

‖p0 + D0α0 − Īg0‖ (83)

min
qv

‖Xdα0 + vs + D0α̇0 − Īvg‖. (84)

The solutions to the problems can be found directly through the LS algorithm as

q̂c = [ĝT
0 , α̂T

0 ]
T = (AT

c Ac)
−1AT

c p0 (85)

q̂v = [v̂T
g, ˆ̇αT

0 ]
T = (AT

c Ac)
−1AT

c (Xdα0 + vs) (86)

where

Ac = [1N ⊗ I3,−D0]. (87)

It can be proved that

AT
c Ac =

[
ĪT Ī −ĪTD0

−DT
0 Ī DT

0 D0

]
=

[
NI3 −E0
−ET

0 I

]
(88)

and then

(AT
c Ac)

−1 =

[
(NI − E0ET

0 )
−1 (NI − E0ET

0 )
−1E0

ET
0 (NI − E0ET

0 )
−1 I + ET

0 (NI − E0ET
0 )

−1E0

]
. (89)

where E0 = [e0,1, e0,2, . . . , e0,N ] and P0 = [p0,1, p0,2, . . . , p0,N ].
Meanwhile,

AT
c p0 =

[
P01

−DT
0 p0

]
(90)
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and thus,

q̂0 = [ĝT
0 , α̂T

0 ]
T = (AT

c Ac)
−1AT

c p0 (91)

ĝ0 = (NI − E0ET
0 )

−1P01 − (NI − E0ET
0 )

−1E0DT
0 p0

= (NI − E0ET
0 )

−1(P01 − E0DT
0 p0) (92)

α̂0 = DT
0 Īĝ0 − DT

0 p0

= DT
0 Ī(NI − E0ET

0 )
−1(P01 − E0DT

0 p0)− DT
0 p0 (93)

which is identical to the solution of (82). A minor difference is that the matrix inverse
operation is over an N × N matrix NI − E0ET

0 .
The solution to qv can be expressed by

AT
c (Xdα0 + vs) =

[
1T

N ⊗ I3
−DT

0

]
(vec(X diag(α0)) + vec(Vs))

=

[
Xα0 + Vs1

−va − ve

]
(94)

where

X = [ĖT
0,1η̇0,1ĖT

0,2η̇0,2, . . . , ĖT
0,N η̇0,N ] (95)

Vs = [vs,1, vs,2, . . . , vs,N ] (96)

va = diag(α0)E
T
0 X

= [α0,1eT
0,1ĖT

0,1η̇0,1, · · · , α0,NeT
0,N ĖT

0,N η̇0,N ]
T (97)

and

ve = [eT
0,1vs,1, · · · , eT

0,Nvs,N ]
T. (98)

Consequently, we can obtain

v̂g = (NI − E0ET
0 )

−1(Xα0 + Vs1 − E0va − E0ve) (99)

ˆ̇α0 = ET
0 (NI − E0ET

0 )
−1(Xα0 + Vs1)− va − ve − ET

0 (NI − E0ET
0 )

−1E0(va + ve) (100)

= ET
0 (NI − E0ET

0 )
−1(Xα0 + Vs1 − E0va − E0ve)− va − ve (101)

= ET
0 v̂g − va − ve. (102)

One can also derive in another way. According to (93), the change rate α̇0 of α0 can be
expressed as

α̇0 = XT
d Īĝ0 + DT

0 Īvg − XT
dp0 − DT

0 vs. (103)

Take (103) into (84), which can be rewritten as

min
vg

‖Xdα̂0 + vs + D0XT
d Īĝ0 − D0DT

0 vs − D0XT
dp0 + (D0DT

0 − I)Īvg‖. (104)

The solution of (104) can also be found through the LS algorithm, which can be expressed as

v̂g = (AT
vAv)

−1AT
vbv (105)

where

Av = (I − D0DT
0 )Ī (106)

bv = Xdα̂0 + vs + D0XT
d Īĝ0 − D0DT

0 vs − D0XT
dp0. (107)
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2.5. The Truncated LS Algorithm

For a better performance, it is necessary to estimate the change rate α̇ and if we ignore
this term, the optimization problem becomes

min
vg

‖Xdα0 + vs − Īvg‖ (108)

whose solution, termed as truncated LS algorithm subsequently, is

v̂g =
1
N
(Vs1 + Xα̂0) (109)

which is an average operation. Note that the truncated LS algorithm shares the same
position estimate with the linear LS algorithm.

The estimate of the target location at t ∈ T can be written as

ĝm(t) = ĝ0 + v̂g(t − t0), t ∈ T . (110)

In (99) and (109), the velocity terms vs,k, k = 1, · · · , N are unknown and should
be replaced by their estimates, typically v̂s estimated in the LS algorithm as in (70). In
practice, besides the linear regression method performed at local sensors, there may be
other methods that can output more accurate velocity and angle difference information.
For instance, some inertial devices can measure the velocity more accurately than the LS
algorithm in use. With a more accurate velocity estimate, it is possible to obtain a better
positioning performance.

Both the linear LS algorithm and the truncated LS algorithm estimate the velocity of
the target and thus can make the time-consuming nonlinear filtering operation update in a
longer time interval. Subsequently, the performances of these algorithms will be analyzed
in numerical results.

3. Numerical Results

In order to evaluate the performance of the concerned positioning algorithms, we first
consider a scenario where four angle-only sensors are estimating the position of a target
with their angle-only observations. Both the sensors and the target are moving with a
constant speed during the period of observation by assumption. The initial position and the
constant speed of the sensors and the target are shown in Table 1. The scenario is illustrated
in Figure 2.

All the sensors output observations at a frequency of 50 Hz, i.e., with a period of 20 ms.
But they operate on an asynchronous manner, namely the sensors record the observations
at independent instants. The differences of the sampling instants are randomly generated
within 20ms. This assumption is important in real situations because it allows distributed
sensors to operate asynchronously. We also assume that there is no error in recording the
instants of the observations and for all the sensors, no signal is missed in detection during
the observation period.

Table 1. Positions and velocities of sensors and the target.

Position (m) at t = 0 s Velocity (m/s)

Sensor #1 po
1(0) = [1000, 1000, 0]T [−100, 0, 0]T

Sensor #2 po
2(0) = [1000, 2000, 0]T [−100,−80, 0]T

Sensor #3 po
3(0) = [2000, 1000, 0]T [−100,−50, 0]T

Sensor #4 po
4(0) = [1500, 1500, 0]T [−100,−60, 0]T

Target #1 go
1(0) = [0, 100, 1000]T [200, 100, 0]T
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Assume that the self-positioning error is distributed with zero-mean normal distribu-
tion, whose variance is 1m for all the sensors, namely

Cs(k, n) = E(Δpn(tk,n)ΔpT
n(tk,n)) = I, n = 1, · · · , N. (111)

The angle measurement error also follows zero-mean normal distribution with vari-
ance of 0.5 degree for all the observations, namely

Cη(i) = E(ΔηiΔηT
i ) = 0.5I, i ∈ Am. (112)

At the current stage, we do not consider the measurement errors from the gyroscopes
installed on the platforms along with the sensors. Therefore, the angle measurement error
is caused by the sensors only.

Figure 2. The topology of the sensors and the target.

In order to evaluate the performance of the algorithms, we run Ne = 20 random
experiments and take the root mean square error (RMSE) as the resulting performance
metric. The RMSE of position, RMSE of velocity and the gross RMSE at instant t in scale
and in dB are defined by

RMSEp(t) =

√√√√ 1
Ne

Ne

∑
k=1

|ĝ0(t; k)− go
1(0)|2, RMSEp(t) : dB = 20 log10 RMSEp(t) (113)

RMSEv(t) =

√√√√ 1
Ne

Ne

∑
k=1

|v̂g(t; k)− vo
g,1(0)|2, RMSEv(t) : dB = 20 log10 RMSEv(t) (114)

RMSEg(t) =
√

RMSE2
p(t) + RMSE2

v(t), RMSEg(t) : dB = 20 log10 RMSEg(t) (115)

respectively, where ĝ0(t; k) denotes the initial position of the target at the kth experiment,
go

1(0) and vo
1(0) are constants during experiments, and v̂g(t; k) denotes the estimate of the

target speed at the kth experiment. At each random experiment, the position error and the
angle measurement error are generated randomly.

3.1. The Convergence Curves

As the number of observations increase, the localization performance will improve.
Figure 3 shows the mean RMSE of position and velocity and the gross RMSE of the gross
LS algorithm, the linear LS algorithm and the truncated LS algorithm.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. The convergence curves of the positioning errors with different numbers of observations.
(a) The RMSE of position estimation and its dB form (b); (c) The RMSE of velocity estimation and its
dB form (d); (e) The gross RMSE and its dB form (f).

From Figure 3a,b, it can be seen that with observations in a short while, roughly in
about 0.8 s corresponding to 40 observations, all the algorithms have close gross RMSE
curves. However, as more observations are available, the linear LS algorithm and the
truncated LS algorithm will perform worse and the position RMSE even increase with
sample number. It is a predictable result, because the linear approximations of the target
and platform motion will be inaccurate gradually, resulting a deteriorated positioning per-
formance. The gross LS algorithm will always benefit from the increase of the observations,
because it does not rely on the linear approximation, and more observations will contribute
more information of the target position.

From Figure 3c,d, with some initial observations, the truncated LS algorithm performs
the best and the linear LS algorithm performs the worst and close to the gross LS algorithm.
As more observations are involved, the truncated LS algorithm converges to a level much
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higher than that can be achieved by the gross LS algorithm and the linear LS algorithm.
Therefore, ignoring the term α̇0 will cause performance loss for long term observations.
The gross LS algorithm is still benefitting from the increase of observations and it is
slightly better than the linear LS algorithm for short term observations. The linear LS
algorithm can reach a lower RMSE level but will still suffer performance degradation due
to the linear model mismatch. With about 40 snapshots of observations, corresponding to
160 observations and 0.8 s period, the velocity estimation performances of two algorithms
will depart.

The gross RMSE of all the algorithms are shown in Figure 3e,f, which have very close
appearances to Figure 3c,d. That is because the velocity estimation errors are much greater
than the positioning errors. Therefore, although the algorithm can estimate the velocity
of targets, the accuracy is low due to a short observation period. In order to estimate the
velocity in a higher accuracy, one needs to use observations from a longer period, which
can be achieved through a filtering operation.

In order to show the way in which the algorithms converge to the real value, Figure 4a,b
are presented to show estimated target positions and velocities at the first 20 snapshots and
the latest 20 snapshots, respectively. It can be seen that with a few observations, the linear
LS algorithm will converge to the real position of the target to a high accuracy. However, as
more observations are available, the gross LS algorithm is closer to the real target position
and the linear LS algorithm converges to other locations. Therefore, the gross LS algorithm
is more robust in real applications.

(a)

(b)

Figure 4. The first (a) and last (b) 20 estimates of the position and velocity of the gross LS, the linear
LS and the truncated LS algorithms.
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3.2. Computation Cost

The advantage of the linear LS algorithm and the truncated LS algorithm lies in
its computation cost and communication cost. In applications of the LS algorithms, the
locations of the sensor will be approximated by a linear model, which is described by an
initial position and a velocity term, with totally 6 parameters. Therefore, it is unnecessary
to transmit all observations to the fusion center anymore and thus the communication
cost will be reduced. If 100 position estimates are described by 6 parameters, the data to
transmit will be reduced to 2%. Of course, there is a limit to which the data can be reduced
and the limit depends on the platform speed of the sensors, the positions of sensors, the
position of the target, and the periods of the observations.

The computation cost reduction, for both the linear LS algorithm and the truncated LS
algorithm, stems from reduced number of multiplication and summation operations at the
fusion center. The linear LS algorithm and the truncated LS algorithm can be implemented
in a structure like parallel computation, namely, the linear regression of the platform
position and the local DOA measures are performed at local sensors, and the fusion center
just operates on the results of local sensors. To illustrate this fact, we record the computation
times of the 20 random experiments for both the algorithms and show the computation
times in Figure 5a,b, in scale mode and dB mode respectively. It can be seen that as the
number of observations increases, the gross LS algorithm requires a longer computation
time, but the linear LS algorithm and the truncated LS algorithm have much plain slopes.
Meanwhile, the linear LS algorithm needs more computation cost, as a result of estimating
va and ve. In fact, the computation cost of the linear LS algorithm does not vary with the
sample number too much because it always computes with the same number of parameters,
namely the number of sensors N. The computation cost increase due to more observations
is imposed over local sensors now.

(a) (b)

Figure 5. The computation time in 10 random simulations of the gross LS, linear LS and truncated LS
algorithms, in scale (a) and dB (b). The program is run on a computer with an Intel™i7-10700 CPU
and 16 GB memory.

3.3. The Impact of Velocity Estimation Error

In theoretical derivations, we assumed that the velocities of sensors are estimated
by position measures from a device on a platform. In practice, the platform may provide
other means to measure the velocity in a higher accuracy. Meanwhile, in order to check
whether the performance degradation of the linear LS algorithm in a long period is a result
of inaccurate estimation of the platform velocity, we perform a simulation in a way that the
estimated velocity v̂g is replaced by its real value vg. In this case, there is no velocity error
and the only measurement bias is from position measurement. Note subsequently that the
linear LS algorithm shares the same position estimate with the truncated LS algorithm.
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The RMSE of position estimation is shown in Figure 6. In Figure 6a,b, the sensor
location uncertainty is zero-mean normal distributed with Cs(k, n) = I. It can be clearly
seen that for the linear LS algorithm, the RMSE curve with real sensor velocity is very
close to the RMSE curve using estimated sensor velocity. In order to examine whether a
higher position estimation error will make a difference, we make another simulation with
Cs(k, n) = 10I and the results are shown in Figure 6c,d. Two RMSE curves are still very
close. After some experiments with other position measurement errors, we find that the
platform location and velocity regression algorithms can reach a high accuracy and thus
will not cause too much performance degradation. This conclusion depends heavily on
a fact that the numbers of observations under consideration is often huge according to
our configurations.

(a) (b)

(c) (d)

Figure 6. The RMSE of position with velocity estimated replaced by real velocity in scale (a) and dB
(b) for Cs(k, n) = I, and in scale (c) and dB (d) for Cs(k, n) = 10I.

In fact, from (92), the position estimate of the target does not depend on the velocity
estimation of the sensor platform too much. However, there still an insignificant impact,
because in our simulation configuration, the sensor location at t = 0 is obtained by an
interpolation operation and if the platform velocity is exactly known a priori, the position
estimation will be more accurate.

From (105), the target velocity estimation depends on the sensor velocity more. In
order the examine the impact of the sensor velocity estimation on the target velocity
estimation performance, we run a simulation with Cs(k, n) = 10I and the results are shown
in Figure 7a,b, in scale and dB respectively. It can be seen that it makes a little difference to
use real sensor velocity instead of estimated velocity, especially in few earlier observations.
As more observations are taken into account, it makes a minor different to replace by real
platform velocities. That is because more observations make the velocity estimation more
accurate. However, accurate sensor velocity information does not make the target velocity
estimation better necessarily, and sometimes, its impact is a bit negative. As the target also
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moves in a constant velocity, it is reasonable to infer that the linear approximation of the
signal DOA has a great impact on the target position and velocity estimation accuracy, as
will be analyzed in the subsequent results.

(a) (b)

(c) (d)

Figure 7. The target velocity estimation results with real and estimated sensor velocity are shown in
(a) and (b) for Cs(k, n) = 10I. The azimuth (c) and elevation (d) angles of the target in the four sensors.

3.4. Nonlinearity of the DOA Approximation

In order to examine the impact of DOA nonlinearity on the final performance, Figure 7c,d
show the azimuth angles and elevation angles of the target in the four sensors. The azimuth
angle and elevation angle change by about 15o at most during 100 snapshots. Over 100 ob-
servations, corresponding to 2 s, the nonlinearity of both DOA angles becomes obvious.
One should refer to explicit numerical quantities to evaluate the nonlinearity acceptable.

4. Conclusions

This paper studies the target position and velocity estimation problem with distributed
passive sensors. The problem is formulated with distributed asynchronous sensors con-
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nected to a fusion center with communication links. We first present a gross LS algorithm
that takes all angle observations from distributed sensors into account to make a LS esti-
mation. The algorithm is simplified after some matrix manipulations, but as it needs local
sensors transmitting all local observations to a fusion center, the communication cost is high.
Meanwhile, the computation cost at the fusion center is also high. The communication cost
is mainly a result of high-dimensional received data. In order to reduce the communication
cost and computation cost, we present a linear LS algorithm that approximates local sensor
locations and angle observations with linear models and then estimate target position
and velocity with the parameters of the linear models. In order to simplify the velocity
estimation, we also present a truncated LS algorithm that just take an average operation to
estimate target velocity. In this manner, both the communication cost and the computation
cost at the fusion center are reduced significantly. However, the linear LS algorithm and
the truncated LS algorithm faces the model mismatching problem, namely, if the linear
approximation is not accurate anymore, the performance may degrade greatly. That is a
difference from the gross LS algorithm, which always benefits from more observations, as
if the linear target position model holds.

The performance of the concerned algorithms is verified with numerical results. It
is found that with less observations, the truncated LS algorithm performs the best. As
the number of observations increase, the linear LS algorithm and the gross LS algorithm
perform better. With more observations available, the linear model mismatch and then the
gross LS algorithm perform the best. The gross LS algorithm always benefits from more
local observations, which is a difference from the other two algorithms. The cost is a higher
communication cost and a higher computation cost at fusion center. We also examined the
angle distortion problem that is the only nonlinear term in the simulation configurations.
Our matrix operations often make the estimation need less computation costs.

Compared to localization and tracking framework, the algorithms with velocity esti-
mation needs a much lower rate of tracking operations, whose matrix inverse operation
often need huge computation cost. Meanwhile, it can provide more accurate measures
of target states and the tracking algorithm will also benefit from that. In our simulations,
the sensor location error is not taken into account. In practice, this is inevitable. If the
self-positioning error is non zero-mean Gaussian distributed, one may incorporate this goal
in a distributed angle-only based positioning algorithm, which will be considered in our
future works.
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