
Edited by

Computational 
Intelligence and 
Soft Computing 
Recent Applications

Kóczy T. László and István A. Harmati
Printed Edition of the Special Issue Published in Symmetry

www.mdpi.com/journal/symmetry



Computational Intelligence and Soft
Computing: Recent Applications





Computational Intelligence and Soft
Computing: Recent Applications

Editors
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Editorial

Symmetry or Asymmetry? Complex Problems and Solutions by
Computational Intelligence and Soft Computing

László T. Kóczy 1,2

1 Department of Informatics, Széchenyi István University, 9026 Győr, Hungary; koczy@tmit.bme.hu
2 Department of Telecommnnication and Media Informtics, Budapest University of Technology and Economics,

1111 Budapest, Hungary

1. Searching for Symmetry in the Solution of Complex Problems

What is the role of symmetry in the seemingly far away topics of solving complex ap-
plied problems by approaches offered by Soft Computing and Computational Intelligence?
At first sight, it may be hard to give a direct answer. Nevertheless, there is a very important
aspect that I try to explain in this little introductory study that forms a bridge between the
two concepts.

When solving complex problems, setting up models for complex systems, and de-
veloping algorithms for search and optimization in such models and systems, it must be
considered that such problems are intractable from the mathematical point of view. For the
concept of intractability, see e.g., the very classic textbook [1]. This means that for problems
of a given type, it is impossible to give an exact or optimal solution if the size of the problem
(i.e., the number of components) exceeds a usually quite low value. Researchers unfamiliar
with the theory of computational complexity may reply that it is a matter of computer speed
and capacity, but it is absolutely not true. It is easy to show that the “Galactic Computer”, a
hypothetical computer consisting of all atoms of the Galaxy, operating with the speed of
light, would not be able to exactly solve even problems of everyday life in the mathematical
sense. It may be then surprising that such problems are often tackled rather efficiently by
human experts, operators, or simple technical solutions. Is there any contradiction? Of
course, there is none, just it must be realised that most complex problems do not need a
really exact solution, but a “good enough” one, one which satisfies the expectations of
the problem setter. In a general sense, such complex problems I will call “engineering
problems”, even though they often come from management, economics, social sciences,
and the like. In a general sense, these problems have a common feature, namely, they reflect
real phenomena, where the number of components is very high (this is why they are a
priori intractable), and/or they contain elements that must be considered non-deterministic
from the point of view of the problem solver, moreover, they often contain uncertainty in
the formulation of the problem itself from the side of the problem setter. Let us assume
there is an imaginary scale, where in one pan of the scale the expectations of the problem
setter, while in the other, the resources offered by the problem solver are put. How can be
this scale brought in balance, with other words, how can this approach made symmetric?
Of course, the next question is, symmetric, but in what sense? Can highly complex and
mathematically intractable problems somehow be weighed? Can solutions be weighed?
Definitely, not in the ordinary sense, but there must be some measure found that connects
the two sides and that may serve as the unit which helps balance the scale. This unit
or measure is referred to in the literature as cost. As a matter of course, the cost is not
considered a financial matter but the amount of resources, such as capacity and speed,
used, as the loss of accuracy of the solution, and there may be other points.

A study of this issue considered from a specific point of view, applying rule-based
Fuzzy Systems for modelling was given in [2]. This approach is definitely one of the key
components of Computational Intelligence and it was the actual initial sub-discipline of
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Soft Computing, both proposed by Zadeh (cf. [3]). There exists, however, an analytic
mathematical approach that studies the question of whether an optimal solution for setting
up a fuzzy rule-based model, where the cost is a combined function of the amount of
needed resources (space and time complexity), and the efficiency of the method (say, the
accuracy), both expressed in a merged way by a formula “total time needed”, can be found.
Such an optimal solution may be considered as an idealistically symmetric solution. In our
paper [4], we found that for certain special cases, this optimum could be exactly found,
while for some more complex cases, the existence of such an optimum could be proved [4].

Nowadays, meta-heuristic methods are widely applied, and in this Special Issue, we
also published a paper on the successful application of a certain novel meta-heuristics
for a rather difficult problem class. Meta-heuristic approaches offer probably the best
solution when NP-hard or other highly complex problems have to be solved, and nowadays,
evolutionary, memetic, and other population-based approaches have really produced
sometimes marvelous results. This Special Issue presents a large variety of such papers,
as I will show it in the second part of the Editorial. The mentioned meta-heuristics form
another very important component of Computational Intelligence. In our experience,
especially, memetic algorithms produce excellent results. The concept originates from [5],
and a more recent overview was published in [6]. The main idea is that evolutionary or
population-based algorithms may be used as a “wrapper”, as a global search or optimisation
technique, while a local search is conducted by some more traditional mathematical method,
such as gradient-based search, for example. But the main point is in applying different
algorithms for global and local search, thus speeding up and improving the accuracy of the
algorithm: affecting the total cost in the pan of the computational resources of the scale.
Various evolutionary algorithms have often rather different costs in this sense. An earlier
comparison of some widely applied techniques was given in [7], another one can be found
in [8].

The highly complex and mathematically intractable flow shop scheduling problem is
definitely one of the rather sophisticated and complex problems, where a feasible solution
needs a good meta-heuristic. In our paper, we proposed to use the new modified discrete
bacterial memetic evolutionary algorithm (DBMA) where in a stricter sense, both the
global and the local search are conducted by a certain meta-heuristic, the latter, namely,
by Simulated Annealing. The results thus obtained proved to be better than any other
approach for this problem. Here, it can be nicely pointed out that by the proper weighing of
the costs, namely, the error in the accuracy of the optimization in one pan and the need for
resources, especially, the running time of the optimization meta-heuristics in the other one
must be brought to equilibrium, this way generating a symmetry in the solution. The exact
position of the symmetrical (balanced) solution can, however, be calibrated by the designer
of the solution, thus it may fit the application context of the concrete problem, considering
the available resources and the expected quality of the quasi-optimum found. Thus, the
asymmetric role played by the problem to solve and the model/algorithm for the solution
must be balanced and, that way, the whole problem–solution complex must be brought into
a symmetrical configuration. It is worthwhile mentioning that a very recently published
article in the same journal tackles a similar type of highly complex problem, and proposes
a rather different meta-heuristic for a solution, with some promising results [9]. There
is a certain symmetry in the problem solution itself, but the general concept of targeting
symmetry of costs in the optimal solution is applicable here, too. Finally, one more closely
related paper may be mentioned here [10], where a logistic type path planning problem
is tackled, although it is obvious that the solution method is easily applicable in other
related fields, very likely, in VLSI design, among others. Here, the well-known Greedy
Algorithm is proposed for path optimisation. Let me refer to our earlier paper where the
same algorithm is applied, although, in a more complex embedding [11]. In this paper,
the problem of symmetry and balance is clearly occurring twice, hierarchically, at the level
of the costs of resources and accuracy loss that was mentioned above, and at the level of
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balancing the adaptive scheduler costs (runtime overhead) with the overall optimisation
costs of the basic problem on hand.

It is possible to introduce other types of costs when analysing CI approaches in solv-
ing complex applied problems. Once Mamdani established his fuzzy model and control
algorithm [12], an amazing explosion of applications followedThe most striking success
was first observable in Japan [13], where an incredible number of successful commercial
applications emerged within less than a decade—after a decade of stagnation of fuzzy ap-
plications, following the first few attempts. What was the reason for this success? Japanese
scientists agree that the transparency of the fuzzy rule-based models, the possibility of
directly tuning the parameters of fuzzy controllers based on expert domain knowledge,
and the lack of necessity of using complicated analytical calculations such as, e.g., Lagrange
transform, opened the door to efficient control of highly non-linear and partly uncertain
systems, even for engineers with a modest knowledge of control theory. Thus, transparency
is one of the most important features of SC and CI approaches, which may weigh in the
pan of the wage representing the symmetric approach from our point of view.

And last but not least, there is another pair of cost components that heavily weigh in the
desire to establish symmetry in the intertwined system of the problem and solution complex.
This pair is what we referred to as predictability, and “universality”, more precisely, general
applicability of an approach, which is especially important when problems of similar type
(e.g., various NP-hard discrete problems, cf. [1]) are in the focus of the solution. Sometimes,
if there is a “guarantee” for obtaining a reasonably good solution for a particular concrete
problem, where the expected time and space costs can be well estimated for arbitrary
size, the applier is happier than when having a sometimes more efficient, but for some
topologies, problem sub-classes, or certain large sizes inapplicable algorithm. This is rather
typical for the metaheuristics which occur in a considerable number in this Special Issue.
Our very paper here, optimising job scheduling came to life from the starting assumption
that Discrete Bacterial Memetic Evolutionary Algorithm had its “universal” applicability.
There are plenty of references in the paper showing evidence for this approach being
quite well applicable in many different discrete problem groups. So, it was worthwhile to
try—and we obtained good results, better than other authors so far!

Summarising the above thoughts, in one pan we collect the costs of space and time
complexity (resource intensity), the overhead in the case of hierarchically built-up algo-
rithms, and the lack of transparency, predictability, and general applicability, while in the
other pan, there is the expectation of the applier, the accuracy, the feasibility, and similar
components. As well, the solution provider attempts to find a well-balanced, in other
words, symmetrical solution.

2. Let Us Quickly Overview Now the Contents of This Special Issue

The three main pillars of CI/SC are Fuzzy Systems (FS), Artificial Neural Networks/
Connectionist Systems (NN), and Evolutionary/Population-Based Algorithms (EA), which
the latter of which includes Swarm Intelligence as well.

Although recently, the number of papers published in the fuzzy field seems to be
braked a little, in this Special Issue, there are five papers, roughly one quarter, applying this
by now well-established branch of non-conventional mathematics. Cruz-Aguilar et al. pro-
pose a combined Failure Mode and Effect Analysis and fuzzy method for the non-invasive
measurement of methane and carbon dioxide. A. Łyczkowska-Hanćkowiak applies trape-
zoidal fuzzy numbers in portfolio analysis. A connected topic is K. Piasecki et al.’s paper on
present value evaluation by oriented fuzzy numbers. One of the guest editors, I. Harmati,
discusses the dynamics of fuzzy-rough cognitive networks. Finally, M. Holčapek et al. deal
with fuzzy interpolation using extensional fuzzy numbers.

The situation is similar with Artificial Neural Networks. The number of related papers
is five or even seven (counting two connected to the EA pillar as well) In a broader sense,
the connectionist hybrid approach by Y. Zhao et al. on Key performance indicator (KPI)
anomaly detection applies bi-directional long short-term memory replacing a traditional
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feedforward NN. H. Achicanoy et al. discuss the matter of generating synthetic images by
applying StyleGAN, which latter reliably attributes every generated image to a particular
network. E. Jeczmionek et al. deal with layer pruning in Convolutional Neural Networks. P.
Li et al. discuss text summarisation based on the Dynamic Memory Network. Z. Xiao et al.
apply a special NN for image processing: lung segmentation. S. Zeybek et al. combine the
population-based Bees Algorithm for training recurrent NNs. At last, E. Kaya et al.’s work
hybridises ANN and EA in their nonlinear system identification approach.

The last main group of papers deals with some version of the EA approach. In addition
to the above-mentioned two hybrid NN and EA methods, eight further articles fall into this
category. Z. H. Chin et al. apply a Genetic Algorithm (GA) for calculating Proof-of-Work
blockchains. L. Wang et al. deal with Android malware detection, deploying a self-variant
GA. A. H. G. Ruiz with co-authors also apply GA, for energy saving in an air-conditioning
system. S. Nantogma and co-authors propose the use of artificial immune-based algorithms
for learning in air-defence systems. A. Agárdi et al., including the present Guest Editor,
offer a hybrid, Bacterial Evolutionary and Simulated Annealing memetic algorithm for the
so far most efficient solution to the Job Scheduling Problem. Another hybrid approach is
proposed by M. Zhang and co-authors, the combination of Butterfly and Particle Swarm
Optimisation in the presence of high dimensionality. The paper by H. El Raoui et al.
discusses the very important general problem of using meta-heuristics in problem-solving.
This topic reflects the thoughts in the first part of this Editorial.

At last, a paper authored by K. K. Sharma et al. applying modified spectral clustering
for the prediction of customer churn may be mentioned, the latter being an alternative
technique for machine learning.

I am convinced the Reader will find a number of extremely interesting and thought-
provoking ideas in this rich collection of articles.

Funding: This research was funded by the Hungarian Office for Research Innovation and Develop-
ment (NKFIH), grant number K-124055.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Lung cancer has one of the highest morbidity and mortality rates in the world. Lung nodules
are an early indicator of lung cancer. Therefore, accurate detection and image segmentation of
lung nodules is of great significance to the early diagnosis of lung cancer. This paper proposes
a CT (Computed Tomography) image lung nodule segmentation method based on 3D-UNet and
Res2Net, and establishes a new convolutional neural network called 3D-Res2UNet. 3D-Res2Net has a
symmetrical hierarchical connection network with strong multi-scale feature extraction capabilities.
It enables the network to express multi-scale features with a finer granularity, while increasing the
receptive field of each layer of the network. This structure solves the deep level problem. The network
is not prone to gradient disappearance and gradient explosion problems, which improves the accuracy
of detection and segmentation. The U-shaped network ensures the size of the feature map while
effectively repairing the lost features. The method in this paper was tested on the LUNA16 public
dataset, where the dice coefficient index reached 95.30% and the recall rate reached 99.1%, indicating
that this method has good performance in lung nodule image segmentation.

Keywords: lung nodule segmentation; 3D-UNet; 3D-Res2UNet; multi-scale features; deep learning

1. Introduction

Lung cancer is one of the most common cancers worldwide and the main cause of death for cancer
patients. According to “Global Cancer Statistics” [1], in 2018, there were approximately 2.1 million
new cases of lung cancer worldwide and 1.77 million lung cancer-related deaths. Since lung cancer has
no obvious symptoms in the early stages and is difficult to detect, it is often discovered in the middle
and late stages of cancer, and the best treatment time is missed. On the one hand, studies have found
that most of the lung cancer is in the form of lung nodules. The lung nodules are divided into benign
and malignant. The probability of malignant lung nodules becoming cancerous are greatly increased.
An accurate early identification of benign and malignant lung nodules is essential for the prevention of
lung cancer. On the other hand, lung nodules are present as three-dimensional spherical shapes in
images and are affected by factors such as variable shapes, different sizes, and complex surrounding
tissues. The shape of pulmonary nodules is especially critical for doctors to screen. The process of
using CT images to detect lung cancer is actually a process of identifying lung nodules.

The current research on lung nodules mainly focuses on two kinds of methods.
The first method is based on traditional image processing segmentation methods. Carvalh et al. [2]

combined traditional image processing methods with machine learning methods. First, the lung
parenchyma was segmented from the CT image as the region of interest. Then, the candidate nodules
are detected in terms of shape, texture, and extraction of expression features (such as size) through

Symmetry 2020, 12, 1787; doi:10.3390/sym11111787 www.mdpi.com/journal/symmetry
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segmentation methods. Messay et al. [3] designed an algorithm for the segmentation-based detection of
nodules using candidate nodule shape, location, brightness, and gradient characteristics. Although the
methods in [2,3] have achieved significant results, the edges of the lung nodules in the CT image are
blurred due to the small size of the lung nodules (usually between 3 and 30 mm) and low contrast;
additionally, the image gray scale is uneven due to adhesions. The influence of noise and artifacts also
limits the accuracy of such methods in detecting and segmenting lung nodules.

The second segmentation method used to detect lung nodules is based on machine learning or
deep learning. With the continuous development of deep learning, more and more deep learning-based
convolutional neural networks have played a vital role in lung nodule research, mainly focusing on
methods based on 2D convolutional neural networks and 3D-based methods.

(1) Methods based on the 2D convolutional neural network. Ding et al. [4] borrowed from the
successful application of deep convolutional neural networks (DCNNs) in natural image
recognition and proposed a lung nodule detection method based on DCNNs. In the faster
R-CNN neural network, a deconvolution structure is introduced for candidate detection of axis
slices. Aiming at the problem that the size of lung nodules is too small, and it is easy to lose
features, a deconvolution is added after the VGG16 network to restore the size of the feature map
so that the network can capture features more accurately. Deng Zhonghao et al. [5] aimed at
solving the problem of low detection sensitivity of traditional algorithms and reducing the large
number of false positives. The UNet network was improved to reduce the complexity of a deep
neural network while maintaining its sensitivity. Although the two-dimensional detection and
segmentation methods have made great progress compared with the traditional methods, a CT
image is a three-dimensional image sequence, and the lung organs of the human body are not
based on a two-dimensional plane, so making inferences about a three-dimensional object from
single plane cuts is often not objective or specific enough. The artificial reduction of one dimension
of information often results in low recall rates and high false positives. This undoubtedly brings
a lot of unnecessary work to physicians. Therefore, because lung organs and lung nodules
are three-dimensional objects, a three-dimensional convolutional neural network is required to
further improve the detection and classification accuracy.

(2) Methods based on the 3D convolutional neural network. Aiming at the characteristics of lung
nodules in a three-dimensional space and its variability in shape, Zhu et al. [6] considered the
three-dimensionality of lung CT data and the compactness of the dual-path network, and designed
two deep three-dimensional DPNs for the nodules: Detection and classification. Specifically,
a three-dimensional fast convolutional neural network area (R-CNN) is designed for nodule
detection. This modified R-CNN uses a three-dimensional dual-path block and UNet encoding
and decoding structure to effectively learn nodule characteristics. This method makes full use
of a lung nodule’s spatial information and integrates feature maps with different abstract levels
to repair the lost features, making the detection accuracy higher. Gong et al. [7] proposed an
automatic computer-aided detection scheme for lung nodules based on deep convolutional
neural networks (DCNNs). A three-dimensional dynamic neural network (SE-ResNet) based on a
compressed excitation network and residual network was used to detect lung nodules and reduce
false positives. Specifically, by fusing the 3D-SE-ResNet module to design a three-dimensional
area suggestion network, with a UNet network structure to detect candidate lung nodules,
the 3D-SE-ResNet module recalibrates the residual characteristic response of the channel to
enhance the network. The model uses the 3D-SE-ResNet module to effectively learn the
characteristics of nodules and improve nodule detection performance. Although this method
detects lung nodules in three dimensions and can make full use of the spatiality and completeness
of CT image sequences, it does not fully consider the adhesion of lung nodules and surrounding
tissues, resulting in inaccurate segmentation.
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Considering the influence of the surrounding tissues of lung nodules on the segmentation of lung
nodules, as well as the diversification of lung nodules, this paper proposes a CT image lung nodule
segmentation method based on the 3D convolutional neural network. Compared with other methods,
the main difference is the 3D feature extraction method. By making full use of three-dimensional spatial
information, our network can learn more feature information than two-dimensional networks. We also
transform the Res2Net module into a 3D-Res2Net module and integrate it into the 3D-UNet network
and design a 3D-Res2UNet network for candidate nodule detection and segmentation. Therefore,
the network takes CT image sequences as input, can make full use of the spatial information of
lung nodules, and minimizes artificial loss of dimensionality. First of all, in the designed network,
the improved Res2Net network module can make the overall network deeper, effectively solving the
problems of gradient explosion and gradient disappearance that are prone to deep networks. Secondly,
the 3D-UNet network acts as the basic network, which can ensure its effectiveness while restricting the
size of the feature map and repairing the lost features. Experiments have shown that, compared with
the existing methods, the method in this paper can detect lung nodules more accurately and segment
them effectively.

This article combines the Res2Net module with 3D-UNet and has achieved good results on small
targets. This structure is not only suitable for the detection of lung nodules, but also for the detection
of small particles and irregular objects in other fields. Thus, this research has laid the foundation for
future applied work.

2. Related Work

2.1. UNet Segmentation Network

UNet [8] is a semantic segmentation network developed based on a fully convolutional neural
network. The network has a total of 23 layers, and the number of layers is far less than the other
networks while ensuring accuracy. The UNet network mainly includes two parts, down-sampling
and up-sampling. Down-sampling is also called the feature extraction part, which mainly uses the
convolutional and pooling layer to extract features of the input image. Up-sampling uses a deconvolution
operation to up-sample the feature map. This structure of down-sampling and up-sampling is also
called a decoder-encoder structure. In the down-sampling part, the input image passes through the
convolutional and pooling layer to obtain feature maps of different levels. These feature maps contain
image features with different levels of abstraction. In the up-sampling part, the deconvolution layer is
used to gradually restore the size of the feature map, and the down-sampled feature map is merged to
repair the less abstract detail information lost in the training process and improve the segmentation
accuracy of the network.

However, because the lung is a three-dimensional structure, the UNet network uses two-dimensional
convolution and pooling operations to extract the features of lung nodules in lung CT images,
which will cause a lot of spatial information to be lost. Thus, a lot of contextual information is lost
in the down-sampling process. It cannot be fully restored during up-sampling, which leads to fuzzy
up-sampling results and insensitiveness to the details of the image. Combined with the above problems,
it requires a three-dimensional network for further optimization.

2.2. 3D-UNet Segmentation Network

3D-UNet [9] is an improved semantic segmentation network based on UNet, since a lot of data
in the field of medical imaging are three-dimensional data. Therefore, if you directly use the UNet
network to process images, you need to perform slice preprocessing on the 3D data first. That is to
divide the three-dimensional image into multiple layers of two-dimensional data, and then divide
the two-dimensional data. This method is not only cumbersome and inefficient, but also loses the
dimensional information of the three-dimensional data. This leads to the loss of correlation between
adjacent slices, making the network accuracy low. The 3D-UNet network mainly includes an encoder
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part and a decoder part. Additionally, in the encoder part, a 3D convolution layer and a 3D pooling layer
are used to extract the expressive features of the input image, and in the decoder part, 3D deconvolution
is used to restore the feature map size. Moreover, the feature maps of the decoder and the encoder are
merged through the cascade operation, which brings richer semantic information to the segmentation.
This makes the segmentation accuracy higher.

3. Method

Since the lung CT image is a three-dimensional tomogram, and lung nodules are small in size,
have a variable morphology, and have rich semantic information around the lung nodules (such as
blood vessels and bronchus), the 3D segmentation of lung nodules is an extremely difficult research
problem. However, these disadvantages can be mitigated by the Res2Net module because of its ability
to capture the characteristics of tiny particles. In this work, the module is converted from 2D to 3D,
which optimizes the 3D-UNet network to establish a 3D-Res2UNet network. This ensures that the
entire network can be more accurate to improve image segmentation of lung nodules.

3.1. 3D-Res2Net

On the one hand, with the development of deep learning, deep neural networks have made a
series of achievements in image classification tasks. This relies on the ability of deep neural networks
to capture features more effectively. The number of these features can be increased by stacking more
layers, which shows that this method is effective to establish connections within the network through a
multi-layer end-to-end approach. On the other hand, in order to make the neural network achieve
better learning results, the increasing number of network layers has brought some problems to the
training of the network, of which gradient disappearance and gradient explosion are most important.

A residual network (ResNet) [10] effectively solves this problem. The residual learning unit
introduces identity mapping to establish a direct correlation channel between the output and input;
therefore, the parameterized layer can learn the input and output, and the residual difference between
them achieves the purpose of protecting the integrity of the information and simplifies the goal and
speed of learning.

For visual tasks, different scale information contains different features, so it is very important to
be able to express features on multiple scales. Considering the general applicability of the 3D network
in the future, this paper proposes to add a channel to the original Res2Net [11] module to upgrade it to
the 3D level. The 3D-Res2Net module is shown in Figure 1.

3D-Res2Net changes the internal structure of the basic residual module. Compared with the basic
residual unit, the new module replaces the original filter with multiple sets of 3 × 3 × 3 filters and
combines different filter groups. The residual cascade is connected to construct a new layered residual
connection in a single residual block. A 3D-SE block is added, after the last 1 × 1 convolution, to each
channel to reallocate weight. As shown in Figure 1, the 3D-Res2Net module uses a new size. It is the
number of feature groups with scale = 4 so that the feature map sent to this structure is converted to
eight channels after the 1 × 1 × 1 convolution. In addition, x_1 represents the feature map with channel
numbers 1, 2, and x_2 represents the feature map with channel numbers 3 and 4; in this way, if the
channels are grouped and then trained, the weight of the convolution kernel trained by each grouped
channel is also different. Compared with the weight of each channel convolution kernel caused by
non-group training, this technique shows a greater advantage. Although the computational load of the
Res2Net module is similar to the residual network architecture, the hierarchically connected network
has strong multi-scale feature extraction capabilities, which enables the network to express multi-scale
features at a finer granularity, and increases the network capacity of each layer. The output formula is
as follows:

y

⎧⎪⎪⎪⎨⎪⎪⎪⎩
xi i = 1

Ki(xi) i = 2
Ki(xi + yi−1) 2 < i ≤ s

(1)
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x

Figure 1. Three-dimensional residual network (3D-Res2Net) module.

Here, s is the number of groups that Res2Net integrates the 3 × 3 volumes of the original residual
module into groups. Although a similar external jump connection is performed inside a bottleneck,
the concat operation is performed on y_1, y_2, y_3, and y_4, so that the channel remains unchanged.
The direct mapping of the first x_1 to y_1 is based on two considerations. The first is to reduce network
parameters, and the second is to reuse features.

3.2. Network Design

This article combines the 3D-Res2Net module with the 3D-UNet network to form a new network
structure, namely 3D-Res2UNet. The network structure diagram is shown in Figure 2.

Figure 2. Three-dimensional residual UNet (3D-Res2UNet) network structure diagram.
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Down-sampling is the most important process of extracting features in a network, and it can extract
feature details well, which has an important significance for subsequent segmentation operations.
Compared with the 3D-UNet convolutional neural network, the 3D-Res2UNet convolutional neural
network changes the original CBR module in the two down-samplings, namely Conv + BN + ReLU,
and replaces the 3D basic convolution module with the 3D-Res2Net module as a whole. Therefore,
the method of integrating the residual network into the entire network can make the network deeper,
and because of the strong feature extraction ability of the 3D-Res2Net module and the phased update
of the convolution kernel weights of each channel, the overall network is able to capture very small
features. With an improved performance, the connection method where x_1 is directly mapped to
y_1 in the module effectively reduces network parameters and the resource consumption. Therefore,
the network will not affect the network speed due to excessive redundancy.

4. Experience and Results

4.1. Dataset

This method is validated on the public dataset of LUNA16 [12]. The dataset contains a total of
888 sets of CT images with a total of 1186 lung nodules. During the experiment, the data was randomly
divided into three parts, 70% of the data was used for training, 20% of the data was used for testing,
and 10% of the data was used for verification. The criterion for judging a nodule in the LUNA16
dataset is that at least three of the four radiologists determine that the radius of the nodule is greater
than 3 mm. Therefore, in the annotations of the dataset, non-nodules, nodules with a radius less than
3 mm, and nodules with a radius greater than 3 mm are considered by one or two radiologists as
unrelated findings.

4.2. Data Preprocessing

4.2.1. Data Format Conversion

In the dataset, each chest CT sample mainly contains two parts: (1) The raw data of chest CT,
including two files with the suffix zraw and mhd. The zraw file saves the original CT data and the mhd
file saves the header file information of the CT data. The most important information is establishing an
axis origin and pixel spacing. The origin represents the coordinates of the origin of the CT data in
the world coordinate system, while the spacing subdivides the CT data to a length of a pixel in the
world coordinates. (2) A CSV (Comma Separated Values) file with nodule annotation information.
The content of the file is shown in Table 1.

Table 1. Labeling information of pulmonary nodules in a CSV file.

Seriesuid CoordX CoordY CoordZ Diameter (mm)

LKDS-00539 −70.7218023 −87.5886319 36.5 9.4028638
LKDS-00540 −50.2048319 −90.0324701 50.5 7.9106295

Since the CT data are expressed in a natural coordinate system, the world coordinates of the lung
nodules need to be converted to the natural coordinates of the CT voxels to correspond to the CT data
before the actual operation. The conversion formulas are as follows:

voxelcoord =
(coord− origin)

spacing
(2)

voxeldiam =
daimeter_mm

spacing
(3)
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The terms voxelcoord and voxeldiam, respectively represent the coordinates and diameter of
the lung nodule in the CT pixel coordinate system, the terms coord and diameter_mm, respectively
represent the coordinates and diameter of the nodule in the world coordinate system.

4.2.2. Lung Parenchymal Segmentation

Since the lung tissue is relatively complex, there are a large number of lung trachea, pulmonary
blood vessels, tissue mucosa, and other structures around the lung nodules. As a result, there are some
inevitable errors in the direct use of the original slice image to segment the lung nodules. If the data are
preprocessed first, the lung parenchyma are segmented before the detection step. The lung nodules are
detected in the lung parenchyma, which can avoid the interference of the external tissues and organs
of the lung parenchyma on the detection task, thereby improving the detection accuracy. The lung CT
image is shown in Figure 3.

 

Figure 3. CT image of lung.

In this paper, the method proposed by Mansoor et al. [13] is used to segment the lung parenchyma.
After the lung is segmented, the lung parenchyma is accurately segmented to remove the influence of
surrounding tissues. This has a positive effect on lung nodule segmentation. Since the lung is a 3D
model, the segmentation is divided into multiple horizontal layers, and the overall segmentation result
is shown in Figure 4.

 

Figure 4. Results of lung parenchymal segmentation.
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4.2.3. Voxel Value Normalization

X-rays are used to scan the lungs when collecting data in CT. Since different tissues of the human
body have different X-ray absorption characteristics, different ray attenuations will occur when X-rays
pass by, and the remaining X-rays after attenuation will be converted into a digital signal to acquire the
desired CT value. The CT values of different human tissues are shown in Table 2.

Table 2. CT values of different human tissues.

Name of Organization HU Values

Air −1000
Lung −500
Fat −100~−50

Water 0
Aorta 35~50

Kidney 40~60
Bones 150~3000

Table 2 shows that the CT value of the lung is at −500, so the HU value of the CT sample is
intercepted as [−1000, +400]. The [−1000, +400] is normalized to a [0, 1] range. This helps reduce the
influence of other scalings and enhances the ability of neural networks to capture features.

4.2.4. Data Enhancement

Medical image data are essential for training the model. The severe imbalance of positive and
negative samples in the dataset will affect the network performance. As a result, the network weight
cannot reach the optimal value. Therefore, the AugGAN network [14] proposed by Huang SW et al. is
used for data enhancement. It can solve the problem of insufficient positive samples to a certain extent.
This also helps slow down the occurrence of model overfitting. In addition, the detection accuracy of
lung nodules can also be improved. The resulting lung nodules are shown in Figure 5.

 

Figure 5. Lung nodules generated by the adversarial network.

4.3. Evaluation Standard

This article evaluates the article method from two perspectives, namely the dice index recall rate
(Recall) and the average number of false positives per sample (FP/scan).

The dice index [15] refers to the degree of fit between the original target and the segmented
target. The more the two objects fit, the higher the dice value and the lower the loss function value,
indicating that the network segmentation of the lung nodules is more complete. The dice coefficient
formula is as follows:

dice =
2Ntruepositive

2Ntruepositive + N f alsepositive + N f alsenegative
(4)

The relationship between the dice coefficient and loss coefficient is as follows:

loss = 1− dice (5)

Here, Ntruepositive represents the area where the lung nodule exists and is correctly segmented,
Nfalsepositive represents the area where the lung nodule exists but is not correctly segmented,
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and Nfalsenegative represents the area where the lung nodule does not exist and is not segmented.
When the invalid dice coefficient is close to 1, the loss function loss is infinitely close to 0. At this time,
the model segmentation result matches the real result.

The Recall indicator refers to the sensitivity of the network to lung nodules, describing the ability
to segment lung nodules. The larger the value, the more the lung nodules found through the network
are complete. Among them, N’real is the number of real nodules detected by the network, and Nnodule is
the number of real nodules in the sample. The formula is as follows:

Recall =
N′real

Nnodule
(6)

The average number of false positives (FP/scan) describes the network’s ability to judge lung
nodules, whether it can effectively avoid vascular tomography or lung tissue, and accurately distinguish
lung nodules, where N’no is the network detected. The number of non-nodules, Nsample is the total
number of training samples, and the formula is as follows:

FP/scan =
N′no

Nsample
(7)

4.4. Experimental Results

The method in this paper is tested on the LUNA16 public dataset. There are many types of lung
nodules in the sample, which are divided into three categories according to the nodule’s density,
e.g., solid nodules, mixed nodules, and ground glass nodules. The variable density structure can fully
detect the ability of network segmentation and avoid the occurrence of contingency.

Figure 6 shows the results of the detection of lung nodules by the 3D-Res2UNet neural network and
the overall effect of segmentation, and Figure 7 shows the local effect of lung nodule segmentation. In the
local renderings, it can be found that the lung nodules are completely segmented. Either ellipse-like
smooth edges or prominent feature edges can be accurately segmented by the 3D-Res2UNet neural
network. This is not only helpful to assist doctors in the diagnosis and treatment, but also lays the
foundation for the follow-up study of false positive detection of lung nodules.

 

(a) (b) 

Figure 6. The detection results of lung nodules. (a) Results of lung nodule detection. (b) The overall
effect of lung nodule segmentation.
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Figure 7. Local effect diagram of lung nodule segmentation.

In addition, Figure 8 lists some images whose segmentation is not very accurate. This is because
the shape of such lung nodules is different from most lung nodules. Its edges are rough and jagged.
Such lung nodules require a deeper network structure when segmenting the edges. However, a deeper
network will inevitably lead to an increase in neural network training time and waste of resources.
In fact, the ultimate purpose of segmentation of lung nodules is to assist doctors in the diagnosis,
but the false positive probability of such nodules is relatively high. Therefore, the practical value of
deepening the network for a more precise segmentation of such lung nodules is very small.

 

Figure 8. Image of lung nodules whose segmentation effect is not very accurate.

Model Comparison

The experiment first compared the ability of 3D-Res2UNet and the original network to segment
and fit lung nodules. The comparison parameters are shown in Table 3.

Table 3. The dice coefficient of different networks.

Network Name Dice (%)

UNet 81.32
3D-UNet 89.12

3D-UNet+fully CRF [16] 93.25
3D-Res2UNet (Ours) 95.30

Due to the three-dimensional CT tomogram of the lungs, as shown in the table, the 3D network
has obvious advantages in capturing lung nodules compared with a 2D network. Since the 3D-Res2net
module fused in this paper uses multiple sets of 3 × 3 filters, and different filter sets are connected
by the residual cascade, a new structure is constructed in a single residual block. The hierarchical
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residual class is connected and finally a 3D-SE block is added to re-assign a weight to each channel.
Such hierarchical filtering and gradual fusion of details make the 3D-Res2Unet network more sensitive
to the small edges often found in lung nodules; thus, this method can more accurately restore the
original shape of lung nodules during segmentation. The final dice coefficient is significantly better
than the other networks by 95.30%, as shown in Figure 9, where the abscissa is the number of epochs
and the ordinate is the dice coefficient.

Figure 9. 3D-Res2UNet network dice coefficient.

Secondly, in terms of recall rate and the average number of false positive lung nodules, this article
compares traditional and existing methods, as shown in Table 4.

Table 4. Comparison of detection algorithms.

Algorithm Recall (%) Number of False Positive Lung Nodules/CT

ISICAD [17] 85.7 329.3
ETROCAD [18] 92.2 333.0

DIAG_CONVENT [19] 93.3 269.0
LUNA16_V1 [20] 94.4 622.0

Dou [21] 97.1 219.1
LUNA16_V2 [20] 98.3 850.2

3D-Res2UNet (Ours) 99.1 276.3

In Table 4, ISICAD [17] is a traditional image processing method that uses artificially designed
features to detect lung nodules and processes them according to the edge shape of lung nodules.
This method mainly focuses on the main characteristics of large nodules. The eature extraction
of mixed nodules and ground glass nodules is insufficient, so the overall recall rate is relatively
low. LUNA16_V1 [20], as the official method, is representative of traditional image processing
methods. It integrates the advantages of all previous traditional methods. This method has a high
sensitivity to high-density nodules. The method works best on solid nodules and other large nodules.
LUNA16_V2 [20] is an upgraded version based on LUNA16_V1. In addition to focusing on high-density
large nodules, the network also has targeted designs for low-density mixed nodules and ground glass
nodules. However, the impact on other lung tissues and the indiscriminate detection of vascular
cross-sections has led to a sharp increase in the number of false positive lung nodules, which has
caused great trouble for doctors when reading the film. A three-dimensional fully convolutional
neural network designed by Dou et al. [21] can effectively detect the lung nodule memory. However,
because the network does not have an up-sampling process, it cannot effectively repair the degree of
abstraction lost in the training process due to the low detail information. The method in this paper
can effectively restore the lost information. At the same time, this method can also extract detailed
information many times to significantly improve the recall rate.
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Finally, since the down-sampling process is a gradual amplification process, this article adds
the 3D-Res2Net module to the second and third down-sampling of the 3D-UNet network to form
symmetry in order to capture more target information. This effectively prevents the network from
not capturing enough detail because the target is too large in the first down-sampling. What is
more, it also avoids the target area of being too limited in the last down-sampling. In order to prove
its rationality, the following comparative experiments were done. The comparison of experimental
correlation coefficients is shown in Table 5. What is more, the dice coefficient variation curve is shown
in Figure 10. Among them, the upper corner is marked as the position where the 3D-Res2Net module
was added to the down-sampling.

Table 5. Comparison of the parameters of the 3D-Res2Net module in different positions.

Name Dice Recall Number of False Positive Lung Nodules/CT

3D-Res2UNet 1,2 92.4 97.2 320.7
3D-Res2UNet 1,3 92.7 96.6 351.5
3D-Res2UNet 2,4 93.50 98.5 300.1
3D-Res2UNet 3,4 94.52 98.8 330.4
3D-Res2UNet 2,3 95.30 99.1 276.3

 
(a) (b) 

 
(c) (d) 

Figure 10. 3D-Res2UNet contrast network dice coefficient. (a) Describe the dice coefficient of
3D-Res2UNet 1,2, (b) describe the dice coefficient of 3D-Res2UNet 1,3, (c) describe the dice coefficient of
3D-Res2UNet 2,4, (d) describe the dice coefficient of 3D-Res2UNet 3,4.

Figure 11 shows the changes in the recall rate caused by the 3D-Res2Net module that is being
added to different positions. Among them, the recall rate is the best when the module is added to the
second and third down-sampling.
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Figure 11. Comparison of recall rates of the 3D-Res2Net module added to different positions.

The method proposed in this paper has a dice coefficient of 95.30%, a recall rate of 99.1%, and a false
positive nodule: 276.3 false positive nodules appear on each CT sample. These results are significantly
better than the other design methods in terms of segmentation fit and recall.

5. Discussion

This article quantitatively analyzes the performance of the network through experiments. Firstly,
for the situation of pulmonary nodules with variable shapes and different sizes, we chose the Res2Net
module for improvement. The module is upgraded from two- to three-dimensional. This is because the
3D-Res2UNet network uses the means of decomposing and then fusing the input to effectively perform
the multi-layer feature extraction. It helps improve the segmentation accuracy of the network, and it
can more accurately distinguish the edges of lung nodules from other irrelevant tissues. Secondly,
adding the 3D-Res2Net module twice during down-sampling is to be able to complement information at
multiple levels. With the continuous enlargement of the feature map, the multi-layer detection network
can progressively capture the missing target points in the previous layer to achieve better results.

The network proposed in this paper has achieved good results in the segmentation of lung nodules,
and has made great progress in the segmentation of small nodules. This method can be effectively
applied to other fields related to small detection and segmentation tasks. However, this method also
has limitations, including high training costs and high false positives. This is also the direction of
continued efforts in the future. It can be expected that 3D detection and segmentation methods will
have better development in the future.

6. Conclusions

This paper proposes a CT image lung nodule segmentation method based on 3D-UNet and
Res2Net. The 3D-Res2UNet neural network improves the training speed of the model while making
the segmentation method more complete. Before the experiment, the preparation of and preprocessing
methodology applied to the experimental data are introduced. After the experiment, the experimental
results of the method in this paper are shown. The experimental results are compared with an original
basic network, an existing same-task network, and the method presented in this paper. After testing,
the method in this paper demonstrated better results than the other methods in terms of the dice
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coefficient and recall rate. The method in this paper also has a good overall performance in lung
nodule segmentation.
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Abstract: In order to solve the problem that the butterfly optimization algorithm (BOA) is prone to low
accuracy and slow convergence, the trend of study is to hybridize two or more algorithms to obtain a
superior solution in the field of optimization problems. A novel hybrid algorithm is proposed, namely
HPSOBOA, and three methods are introduced to improve the basic BOA. Therefore, the initialization
of BOA using a cubic one-dimensional map is introduced, and a nonlinear parameter control strategy
is also performed. In addition, the particle swarm optimization (PSO) algorithm is hybridized with
BOA in order to improve the basic BOA for global optimization. There are two experiments (including
26 well-known benchmark functions) that were conducted to verify the effectiveness of the proposed
algorithm. The comparison results of experiments show that the hybrid HPSOBOA converges quickly
and has better stability in numerical optimization problems with a high dimension compared with
the PSO, BOA, and other kinds of well-known swarm optimization algorithms.

Keywords: butterfly optimization algorithm (BOA); particle swarm optimization (PSO); cubic map;
nonlinear; high dimension

1. Introduction

The butterfly optimization algorithm (BOA) was proposed by Arora and Singh in 2018 [1].
The method and concept of this algorithm was proposed [2] firstly at the 2015 International Conference
on Signal Processing, Computing and Control (2015 ISPCC). After the algorithm was proposed,
the authors have performed many studies on BOA. Arora and Singh [3] proposed an improved
butterfly optimization algorithm with ten chaotic maps for solving three engineering optimization
problems. Arora and Singh [4] proposed a new hybrid optimization algorithm which combines the
standard BOA with Artificial Bee Colony (ABC) algorithm. Arora and Singh [5] used the BOA to
solve the node localization in wireless sensor networks and compared the results with the particle
swarm optimization (PSO) algorithm and firefly algorithm (FA). Arora et al. [6] proposed a modified
butterfly optimization algorithm for solving the mechanical design optimization problems. Singh and
Anand [7] proposed a novel adaptive butterfly optimization algorithm, which a novel phenomenon
of changing the sensory modality of the basic BOA. Sharma and Saha [8] proposed a novel hybrid
algorithm (m-MBOA) to enhance the exploitation ability of BOA with the help of the mutualism phase
of symbiosis organisms search (SOS). Yuan et al. [9] proposed an improved butterfly optimization
algorithm, which is employed for optimizing the system performance that is analyzed based on annual
cost, exergy and energy efficiencies, and pollutant emission reduction. Li et al. [10] proposed an
improved BOA for engineering design problems using the cross-entropy method. A hybrid intelligent
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predicting model was proposed for exploring household CO2 emission mitigation strategies derived
from BOA [11]. Tan et al. [12] proposed an improved BOA to solve the wavelet neural networks problem
based on solutions for elliptic partial differential equations. Malisetti and Pamula [13] proposed a novel
BOA based on quasi opposition for the problem of cluster head selection in wireless sensor network
(WSNs). Sharma et al. [14] proposed a bidirectional butterfly optimization algorithm for solving the
engineering optimization problems. Above the studies of BOA, which are improvement research or
applied research, there is only one paper for a hybrid algorithm with ABC and BOA.

In addition, concerning the optimization algorithms that were proposed, these are mainly
divided into three categories according to their principles, and the famous meta-heuristic algorithm
mainly including evolutionary algorithms: Genetic Algorithm (GA) [15,16], Differential Evolution
(DE) [17]; swarm intelligence algorithms: Particle Swarm Optimization (PSO) [18], Ant Colony
Optimization (ACO) [19], and Artificial Bee Colony (ABC) algorithm [20]; physics-based algorithms:
Gravitational Search Algorithm (GSA) [21], Sine Cosine Algorithm (SCA) [22], and Henry Gas Solubility
Optimization (HGSO) algorithm [23]. In the past ten years, scholars have proposed many new swarm
intelligence optimization algorithms, which are based on the behavior of animals in nature and also
named nature-inspired heuristic algorithms, such as Bat-Inspired Algorithm (BA) [24], Krill herd
(KH) [25], Fruit Fly Optimization Algorithm (FOA) [26], Grey Wolf Optimizer (GWO) [27], Moth-flame
optimization (MFO) algorithm [28], Whale Optimization Algorithm (WOA) [29], Salp Swarm Algorithm
(SSA) [30], Grasshopper Optimization Algorithm (GOA) [31], and Marine Predators Algorithm
(MPA) [32]. For more details, the reader can refer to the papers [33–35], where the recent and popular
algorithms are well reviewed.

The research status of the hybrid algorithm of different intelligent optimization algorithms
and PSO algorithm are introduced. Zhen et al. [36] proposed a new memetic algorithm called
shuffled particle swarm optimization (SPSO), which combines the PSO with the shuffled frog leaping
algorithm (SFLA). Niu and Li [37] proposed a new hybrid global optimization algorithm PSODE
combining PSO with DE. Lai and Zhang [38] proposed a novel hybrid algorithm, which combines
PSO and GA, and the experiment for 23 benchmark problems was also presented. Mirjalili and
Hashim [39] proposed a new hybrid PSOGSA algorithm for function optimization. Wang et al. [40]
proposed a hybrid algorithm based on krill herd and quantum-behaved particle swarm optimization
(QPSO) for benchmark and engineering optimization. Trivedi et al. [41] proposed a novel hybrid
PSO-DA algorithm, which combined the PSO algorithm with the dragonfly algorithm (DA) for global
numerical optimization. Trivedi et al. [42] proposed a novel PSOWOA for the global numerical
optimization problems. Laskar et al. [43] proposed a new hybrid HWPSO algorithm for electronic
design optimization problems according to the studies of hybrid algorithms with PSO and other
meta-heuristic algorithms. In addition, the structure of PSO algorithm and BOA has certain similarities,
and it is meaningful for a novel hybrid algorithm of PSO with BOA to be studied.

For the research of chaotic theory and chaotic attractors of nonlinear control systems, a general
polynomial function was derived for Hopf controlling bifurcations using nonlinear state feedback by
Xu and Chen [44]. Xu et al. [45] analyzed the n-scroll chaotic attractors of modified Chua’s circuit
and proved the chaos of the Chua system. Yu and Lü [46] studied three-dimensional chaotic systems
for Hopf controlling bifurcations in detail. In addition, Yu et al. [47] used the inverse trigonometric
function, tan−1(x), to obtain one-, two-, and three-directional multiscroll integer and fractional order
chaotic attractors, and they analyzed stabilization of the chaotic system with the application of chaos
theory in the improvement of swarm intelligent optimization algorithms [48,49], and it has been
recognized by scholars in the field.

In order to improve the ability of the algorithm for high-dimensional optimization problems that
we proposed, the method for hybrid the meta-heuristic algorithms, which combines the basic PSO and
BOA, and the chaotic theory, is also used in the improved method. In addition, the control parameter
of the power exponent a in BOA is also analyzed in detail, and a nonlinear control strategy is proposed
for adjusting the ability of the global search and local search capabilities of the improved algorithm.
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The rest of this paper is organized as follows: Section 2 presents the basic BOA model. The basic
PSO model is presented in Section 3. In Section 4, a novel HPSOBOA algorithm is proposed, and three
improved strategies are also introduced in detail. Section 5 illustrates the experimental results on
26 high-dimensional optimization problems and the comparison results of two experiments are also
introduced in detail. Finally, conclusion and future studies are summarized in Section 6.

2. The Basic Butterfly Optimization Algorithm (BOA)

The nature-inspired meta-heuristic algorithm is proposed, named BOA [1,2], which simulates the
foraging and mating behavior of the butterfly. One of the main characteristics of BOA different from
other meta-heuristics is that each butterfly has its own unique scent. The fragrance can be formulated
as follows:

fi = cIa (1)

where fi is the perceived magnitude of fragrance, c represents the sensory modality, and I is the
stimulus intensity, and a represents the power exponent based on the degree of fragrance absorption.

Theoretically any value of the sensory morphology coefficient c in the range [0,∞] can be taken.
However, its value is determined by the particularity of the optimization problem in the iterative
process of the BOA. The sensory modality c in the optimal search phase of the algorithm can be
formulated as follows:

ct+1 = ct + [0.025/(ct·Tmax)] (2)

where Tmax is the maximum number of iterations of the algorithm, and the initial value of parameter c
is set to 0.01.

In addition, there are two key steps in the algorithm, they are, respectively, global search phase
and local search phase. The mathematical model of the butterflies’ global search movements can be
formulated as follows:

xt+1
i = xt

i +
(
r2 × gbest − xt

i

)
× fi (3)

where xt
i denotes the solution vector xi of the ith butterfly in t iteration and r means a random number

in [0,1]. Here, gbest is the current best solution found among all the solutions in the current stage.
Particularly, fi represents the fragrance of the ith butterfly. The local search phase can be formulated
as follows:

xt+1
i = xt

i +
(
r2 × xk

i − xt
j

)
× fi (4)

where xt
j and xk

i are jth and kth butterflies chosen randomly from the solution space. If xt
j and xk

i belong
to the same iteration, it means that the butterfly becomes a local random walk. If not, this kind of
random movement will diversify the solution.

Both global and local searches for food and a mating partner by the butterfly in nature can occur.
Therefore, a switch probability p is set to convert the normal global search and the intensive local
search. In each iteration, the BOA randomly generates a number in [0,1], which is compared with
switch probability p to decide whether to conduct a global search or local search.

3. The Basic Particle Swarm Optimization (PSO) Model

PSO algorithm [18] is based on the swarm of birds moving for searching food in a multidimensional
search space. The position and velocity are the important characteristics of PSO, which are used to find
the optimal value.

Each individual is called a particle, and each particle is first initialized with random position and
velocity within the search space. The position of the best global particle in the optimal solution is
as follows:

vt+1
i = w·vt

i + c1·rand1 ×
(
pbest − xt

i

)
+ c2·rand2 ×

(
gbest − xt

i

)
(5)

xt+1
i = xt

i + vt+1 (6)
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where vt+1
i and vt+1 represent the velocity of ith particle at iteration number (t) and (t + 1). Usually,

c1 = c2 = 2, rand1, and rand2 are the random numbers in (0, 1). The w can be calculated as:

w(t) = wmax −
(
wmax −wmin

)
·Ti

Tmax
(7)

where wmax = 0.9, and wmin = 0.2, and Tmax represents the maximum number of iterations.

4. The Proposed Algorithm

In this section, a novel hybrid algorithm is proposed, and the initialization of BOA by a cubic
one-dimensional map is introduced, and a nonlinear parameter control strategy is also performed.
In addition, the PSO algorithm is hybridized with BOA in order to improve the basic BOA for
global optimization.

4.1. Cubic Map

Chaos is a relatively common phenomenon in nonlinear systems. The basic cubic map [50] can be
calculated as follows:

zn+1 = αz3
n − βzn (8)

where α and β represent the chaos factors, and when β in (2.3, 3), the cubic map is chaotic. When α = 1,
the cubic map is in the interval (−2, 2), and the sequence in (−1, 1) with α = 4. The cubic map can also be:

zn+1 = ρzn
(
1− z2

n

)
(9)

where the ρ is control parameter. In Equation (8), the sequence of the cubic map is in (0, 1), and when
ρ = 2.595, the chaotic variable zn generated at this time has better ergodicity. A graphical presentation
of the cubic map for 1000 iterations is in Figure 1.

 
(a) chaotic bifurcation (b) chaotic mapping 

Figure 1. Visualization of implemented cubic map with ρ in (1.5, 3) and ρ = 2.595, respectively.

In Figure 1, it can be seen that the chaotic map can distribute the population of butterflies to the
random value in the interval (0, 1) during the search phase.

We propose the cubic map to initialize the position of the algorithm, and in order to ensure that
the initialized interval is in (0, 1), the z (0) of cubic map is set to 0.315 in the proposed algorithm.

4.2. Nonlinear Parameter Control Strategy

From Equations (1), (3), and (4), we can see that the power exponent a plays an important role in
BOA’s ability to find the best optimization. When a = 1, it means that no scent is absorbed—that is,
the scent emitted by a specific butterfly is perceived by other butterflies—which means that the search
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range will be narrowed and the local exploration ability of the algorithm will be improved. When a = 0,
it means that the fragrance emitted by any butterfly cannot be perceived by other butterflies, so the
group will expand the search range—that is, improve the global exploration ability of the algorithm.
However, a = 0.1 in basic BOA, and taking a as a fixed value cannot effectively balance the global and
local search capabilities. Therefore, we propose a nonlinear parameter control strategy as:

a(t) = a f irst −
(
a f irst − a f inal

)
· sin (

π
μ
(

t
Tmax

)
2
) (10)

where a f irst and a f inal represent the initial value and final value of parameter a, μ is tuning parameter,
and Tmax represents the maximum number of iterations. In this paper, μ = 2, Tmax = 500, a f irst = 0.1,
and a f inal = 0.3.

It can be seen from Figure 2a that for the intensity indicator coefficient a, the nonlinear control
strategy based on the sine function proposed in this paper has a larger slope in the early stage, which can
speed up the algorithm’s global search ability. The mid-term slope is reduced, which is convenient for
entering a local search. The later slope is gentle to allow the algorithm to search for the optimal solution.
Therefore, it can effectively balance the global search and local search capabilities of the algorithm.

 
(a) (b) 

 
(c) 

=1.5
=2
=2.5
=3
=4
=5

Figure 2. Variation curve of different intensity coefficients and convergence curve of test function.
(a) Two control parameter strategies, (b) Convergence curve of Schwefel 1.2, (c) Convergence curve of
Schwefel 1.2 with Dim = 100 for different parameter values setting.

From Figure 2, It can be seen from (b) that the convergence curve of improved BOA with the
nonlinear parameter control strategy is better than the basic BOA in the optimal test of Schwefel 1.2
function. The curve has many turning points, indicating that the improved algorithm has the ability to
jump out of the global optimum from Figure 2b.
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The results of the main controlling parameter μ values of parameter a are shown in Figure 2c.
As the value of parameter μ increases, the effect of the improvement strategy gradually worsens.
It can be seen from (c) that the convergence curve of improved BOA with μ = 2 is best in the seven
convergence curves. When μ ≥ 4, the convergence curve is worse than the original BOA.

4.3. Hybrid BOA with PSO

In this section, a novel hybrid PSOBOA is proposed, which is a combination of separate PSO
and BOA. The major difference between PSO and BOA is how new individuals are generated.
The drawback of the PSO algorithm is the limitation to cover a small space for solving high-dimensional
optimization problems.

In order to combine the advantages of the two algorithms, we combine the functionality of both
algorithms and do not use both algorithm one after another. In other words, it is heterogeneous because
of the method involved to produce the final results of the two algorithms. The hybrid is proposed
as follow:

Vt+1
i = w·Vt

i + C1·r1 ×
(
pbest −Xt

i

)
+ C2·r2 ×

(
gbest −Xt

i

)
(11)

where C1 = C2 = 0.5, and w can be also calculated by Equation (7), r1 and r2 are the random number
in (0, 1).

Xt+1
i = Xt

i + Vt+1 (12)

In addition, the mathematical model of the global search phase and local search phase in the basic
BOA, which can be calculated by Equations (3) and (4). However, the global search phase of the hybrid
PSOBOA can be formulated as follows:

Xt+1
i = w·Xt

i +
(
r2 × gbest −w·Xt

i

)
× fi (13)

The local search phase of the hybrid PSOBOA can be formulated as follows:

Xt+1
i = w·Xt

i +
(
r2 ×Xk

i −w·Xt
j

)
× fi (14)

where Xk
i and Xt

j are jth and kth butterflies chosen randomly from the solution space, respectively.
The pseudo-code of hybrid PSOBOA is shown in Algorithm 1.

Algorithm 1. Pseudo-code of hybrid PSO with BOA (PSOBOA)

1. Generate the initialize population of the butterflies Xi (i = 1, 2, . . . , n) randomly
2. Initialize the parameter r1, r2, C1 and C2
3. Define senser modality c, power exponent a and switch probability p
4. Calculate the fitness value of each butterflies
5. While t = 1: the max iterations
6. For each search agent
7. Update the fragrance of current search agent by Equation (1)
8. End for

9. Find the best f
10. For each search agent
11. Set a random number r in [0,1]
12. If r < p then
13. Move towards best position by Equation (13)
14. Else

15. Move randomly by Equation (14)
16. End if

17. End for

18. Update the velocity using Equation (11)
19. Calculate the new fitness value of each butterflies
20. If fnew < best f
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21. Update the position of best f using Equation (12)
22. End if

23. Update the value of power exponent a
24. t = t + 1
25. End while

26. Return the best solution and its fitness value

4.4. The Proposed HPSOBOA

In order to combine the advantages of the three improvement strategies proposed in this paper,
a novel hybrid HPSOBOA is proposed in this section, which is a combination of the cubic map for the
initial population, nonlinear parameter control strategy of power exponent a, PSO algorithm, and BOA.

The pseudo-code of novel HPSOBOA is shown in Algorithm 2.

Algorithm 2. Pseudo-code of novel HPSOBOA

1. Generate the initialize population of the butterflies Xi (i = 1, 2, . . . , n) using cubic map
2. Initialize the parameter r1, r2, C1 and C2 and switch probability p
3. Define senser modality c and the initial value of power exponent a
4. Calculate the fitness value of each butterflies
5. While t = 1: the max iterations
6. For each search agent
7. Update the fragrance of current search agent by Equation (1)
8. End for

9. Find the best f
10. For each search agent
11. Set a random number r in [0,1]
12. If r < p then
13. Move towards best position by Equation (13)
14. Else

15. Move randomly by Equation (14)
16. End if

17. End for

18. Update the velocity using Equation (11)
19. Calculate the new fitness value of each butterflies
20. If fnew < best f
21. Update the position of best f using Equation (12)
22. End if

23. Update the value of power exponent a using Equation (10)
24. t = t + 1
25. End while

26. Output the best solution

5. Experiments and Comparison Results

In this section, we choose the 26 high-dimensional test functions from CEC benchmark functions,
and the name, range, type, and theoretical optimal value of the test functions are shown in Table 1.
Then, two experiments are performed with ten algorithms, including improved BOA, novel BOAs
in this paper, and other swarm algorithms or natural science-based algorithms. The performance of
experiment 1 was compared through experimental data, which were compared with six algorithms by
six benchmark functions in dimensions 100 and 300, respectively. Then, the performance of experiment
2 was, respectively, compared with the ten algorithms by 26 high-dimensional test functions in Dim = 30.
Finally, the statistical methods were conducted, and the boxplots for the 30 times fitness of 26 test
functions were also compared.
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5.1. Numerical Optimization Funtions and Experiments

The experiments were carried out on the same experimental platform. The results of all the
algorithms were compared using MATLAB 2018a installed over Windows 10 (64 bit), Intel (R) Core
(TM) i5-10210U, and @2.11G with 16.0GB of RAM.

5.1.1. The 26 Test Functions

The properties of unimodal and multimodal benchmark functions for numerical optimization,
which are also high-dimensional test functions, are listed in Table 1, where Dim indicates the dimension
of the function, and Range is the boundary of the function’s search space. These functions are used to
test the performance of the algorithms.

5.1.2. Experiment 1: Comparison with BOA, CBOA, PSOBOA, HPSOBOA, LBOA, and IBOA

In order to analyze the effectiveness of the improvement strategies proposed in this paper,
the comparison experiment for BOA [1], CBOA, PSOBOA, HPSOBOA, LBOA [5], and IBOA [9] was
designed for six high-dimensional functions from Table 1 with Dim= 100 and Dim= 100 as experiment 1.
Additionally, there are three unimodal problems and three multimodal problems. The CBOA combines
the basic BOA with the cubic map and nonlinear control strategy of the power exponent a. The hybrid
PSOBOA just combines the basic BOA with PSO algorithm, the novel HPSOBOA is a combination of
three improvement strategies in Section 4. In addition, two improved BOAs are also compared in this
experiment; LBOA [5] was proposed by Arora and Singh, which was used in the improved algorithm
to solve the node localization in wireless sensor networks in 2017. The IBOA [9] was proposed by
Yuan et al., which was employed for optimizing the system performance that was analyzed based on
annual cost, exergy and energy efficiencies, and pollutant emission reduction in 2019.

5.1.3. Experiment 2: Comparison with Other Swarm Algorithms

In order to prove the novel hybrid algorithm superior to other swarm algorithms, the experiment 2
was designed for 26 benchmark functions with Dim = 30. There are ten algorithms in this experiment,
and we chose four swarm intelligence optimization algorithms besides the six algorithms in the
experimental one. The four swarm algorithms including PSO [18], GWO [27], SCA [22], and MAP [32]
were proposed in different years, and their principles are also different. The PSO and GWO algorithms
simulate the behavior of animals in nature. The SCA is a physics-based algorithm, which moves
towards the best solution using a mathematical model based on sine and cosine functions. The MPA is
based on the widespread foraging strategy, namely Lévy and Brownian movements in ocean predators
along with optimal encounter rate policy in the bio-logical interaction between predator and prey.

5.1.4. Performance Measures

In order to analyze the performances of the algorithms, three criteria of different swarm algorithms
are considered, including the Mean (Avg), the Standard deviation (Std), and the Success Rate (SR).
Here, we will use the Mean which is defined as:

Avg =
1
m

m∑
i=1

Fi (15)

where m is the number of optimization test runs, and Fi is the best fitness value.
The Standard deviation (Std) is defined as follows:

Std =

√√
1
m

m∑
i=1

(Fi −Avg)2 (16)
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The Success Rate (SR) is defined as follows:

SR =
msu

mall
× 100% (17)

where mall is the total number of optimization test runs, and msu is the times of the algorithm successfully
reached to the specified value that ε < 10−15 is called the specified value.

5.2. Comparison of the Parameter Settings of Ten Algorithms

In the experiments, ten comparison algorithms were selected, namely, BOA [1], CBOA, PSOBOA,
HPSOBOA, LBOA [5], IBOA [9], PSO [18], GWO [27], SCA [22], and MPA [32]. The parameter settings
of the ten algorithms are shown in Table 2. In addition, the population number of each algorithm is
set to 30, and the max iteration is set to 500. Each algorithm is run for 30 times, and the Mean (Avg),
Standard deviation (Std), Success Rate (SR), and Friedman rank [51] of the results are all taken in the
two experiments.

Table 2. Parameter settings for algorithms.

NO. Algorithms Population Size Parameter Settings

1
Butterfly

Optimization
Algorithm (BOA)

30 a = 0.1, c(0) = 0.01, p = 0.6

2

Butterfly
Optimization

Algorithm with
Cubic map (CBOA)

30 afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6,
x(0) = 0.315, ρ = 0.295

3 PSOBOA 30 a = 0.1, c(0) = 0.01, p = 0.6, c1 = c2 = 0.5

4
Hybrid PSO with

BOA and Cubic map
(HPSOBOA)

30 afirst = 0.1, afinal = 0.3, c(0) = 0.01, p = 0.6,
x(0) = 0.315, ρ = 0.295, c1 = c2 = 0.5

5

Butterfly
Optimization

Algorithm with Lévy
flights (LBOA)

30 a = 0.1, c(0) = 0.01, p = 0.6, λ = 1.5

6
Improved Butterfly

Optimization
Algorithm (IBOA)

30 a(0) = 0.1, c(0) = 0.01, p = 0.6, r(0) = 0.33,
μ = 4

7 Particle Swarm
Optimization (PSO) 30 c1 = c2 = 2, Vmax = 1, Vmin = −1,

ωmax = 0.9, ωmin = 0.2

8 Grey Wolf Optimizer
(GWO) 30 afirst = 2, afinal = 0

9 Sine Cosine
Algorithm (SCA) 30 a = 2, r1(0) = 2

10 Marine Predators
Algorithm (MPA) 30 a = 0.1, c(0) = 0.01, p = 0.6

5.3. Results of Experiment 1

For the results of experiment 1, in order to analyze the robustness of the hybrid algorithm by three
improved control strategies with other swarm intelligence algorithms, the convergence curves for six
benchmark functions (Dim = 100) plots are shown in Figure 3.

It can be verified from the convergence curve that the proposed HPSOBOA converges faster
than the other algorithms from Figure 3. The results show that the improved algorithm based on
the three improvement strategies in this paper can effectively improve the convergence trend of the
basic BOA when Dim = 100. From Figures 3 and 4a–f, it can be seen that the proposed HPSOBOA for
those functions has a better convergence than the original BOA except the Schwefel 1.2 function when
Dim = 300.
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(a) Schwefel 1.2 (b) Sumsquare 

 

(c) Zakharov (d) Rastrigin 

 

(e) Ackley (f) Alpine 

Figure 3. Convergence curve for six algorithms with Dim = 100; the six test functions’ names are
Schwefel 1.2, Sumsquare, Zakharov, Rastrigin, Ackley, and Alpine, respectively.

In order to analyze the robustness of the hybrid HPSOBOA by three improved control strategies
with other five algorithms, the dimension of the six optimization problems is set to 300, and the
convergence curves for six benchmark functions plots are shown in Figure 4.
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(a) (b) 

 
(c) (d) 

 

(e) (f) 

Figure 4. Convergence curve for six algorithms with Dim = 300; the six test functions’ names are
Schwefel 1.2, Sumsquare, Zakharov, Rastrigin, Ackley, and Alpine, respectively. (a) Schwefel 1.2,
(b) Sumsquare, (c) Zakharov, (d) Rastrigin, (e) Ackley, (f) Alpine.

Figure 5 shows the box plots of optimization results of six high-dimensional problems by the six
algorithms. The optimization result of the hybrid HPSOBOA is better than other algorithms from
Figures 3–5.
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(a) Dim = 100 (b) Dim = 100 

 

(c) Dim = 300 (d) Dim = 300 

Figure 5. Boxplot for the 30 times fitness of six test functions with Dim = 100 and Dim = 300. (a) the three
functions’ names are Schwefel 1.2, Sumsquare and Zakharov with Dim = 100; (b) the three functions’
names are Rastrigin, Ackley, and Alpine Dim = 100; (c) the three functions’ names are Schwefel
1.2, Sumsquare, and Zakharov with Dim = 300; (d) the three functions’ names are Rastrigin, Ackley,
and Alpine Dim = 300.

In addition, statistical tests are essential to check significant improvements by novel algorithms
over others, which were proposed. The Friedman rank test [51] was applied on the mean solutions,
we used this method to compare the improved algorithms by different control strategies. The Avg-rank
and overall rank are shown in Table 3. From the Friedman rank, the HPSOBOA outperforms all the
comparison algorithms on six numerical optimization problems (Schwefel 1.2, Sumsquare, Zakharov,
Rastrigin, Ackley, and Alpine), and the order of six algorithms with Dim = 100 is HPSOBOA > PSOBOA
> IBOA > LBOA > CABOA > BOA. However, when the Dim = 300, the order of six algorithms is that
HPSOBOA > PSOBOA > IBOA > CABOA > LBOA > BOA.

From the results of the analysis, we can see that although the order of HPSOBOA is better than
others, the IBOA with chaotic theory for improving the control parameters also performed well.
Thus, different one-dimensional chaotic maps can also have a good performance for improving the
basic BOA.

5.4. Results of Experiment 2

In experiment 2, the performance of the proposed algorithm was compared with the other
optimization algorithms using the 26 test functions with Dim = 30. The statistical results include the
Mean (Avg), the Standard deviation (Std), the Success Rate (SR), Friedman rank test [51], and Wilcoxon
rank-sum test [52] because the statistical test is a significance method to analyze the improved algorithm,
and these comparison results are presented in Tables 4–8.
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Table 5. The Success Rate for 26 benchmark functions.

Functions BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F1 0.00 43.33 93.33 100.00 0.00 100.00 0.00 100.00 0.00 100.00
F2 0.00 76.67 86.67 100.00 0.00 100.00 0.00 100.00 0.00 0.00
F3 0.00 30.00 100.00 100.00 3.33 100.00 0.00 0.00 0.00 0.00
F4 0.00 0.00 90.00 100.00 0.00 100.00 0.00 0.00 0.00 0.00
F5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F7 0.00 100.00 56.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F8 0.00 80.00 100.00 100.00 100.00 100.00 80.00 100.00 0.00 100.00
F9 0.00 56.67 100.00 100.00 3.33 100.00 0.00 100.00 0.00 100.00
F10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F11 0.00 63.33 90.00 100.00 0.00 100.00 0.00 100.00 0.00 100.00
F12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F13 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F14 100.00 100.00 96.67 100.00 100.00 100.00 100.00 100.00 100.00 100.00
F15 50.00 100.00 86.67 100.00 100.00 100.00 0.00 0.00 0.00 100.00
F16 3.33 100.00 90.00 100.00 100.00 100.00 0.00 0.00 0.00 50.00
F17 0.00 0.00 83.33 93.33 30.00 100.00 0.00 0.00 0.00 0.00
F18 0.00 46.67 93.33 100.00 23.33 100.00 0.00 93.33 0.00 100.00
F19 0.00 0.00 86.67 100.00 56.67 100.00 0.00 33.33 0.00 23.33
F20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F22 16.67 100.00 90.00 100.00 96.67 100.00 0.00 0.00 0.00 13.33
F23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
F24 23.33 100.00 96.67 100.00 100.00 100.00 0.00 0.00 0.00 100.00
F25 0.00 0.00 10.00 100.00 30.00 100.00 0.00 0.00 0.00 0.00
F26 0.00 86.67 93.33 100.00 3.33 100.00 0.00 100.00 0.00 100.00

times 2 7 4 18 7 19 3 9 3 11
SR rank 8 5 6 2 5 1 7 4 7 3

Table 6. The rank test for 26 benchmark functions.

Rank BOA CABOA PSOBOA HBOAPSO LBOA IBOA PSO GWO SCA MPA

F1 7.97 5.93 2.10 1.53 6.97 2.83 9.00 3.83 10.00 4.83
F2 8.00 4.87 1.93 1.63 6.97 2.83 9.03 3.87 9.97 5.90
F3 6.00 4.00 1.70 1.33 5.00 2.97 9.00 7.03 10.00 7.97
F4 7.17 4.07 1.83 1.47 5.97 2.87 9.00 7.77 10.00 4.87
F5 8.83 2.93 10.00 4.07 6.00 7.13 2.07 4.93 8.03 1.00
F6 6.87 6.67 2.43 1.77 7.07 1.80 9.47 5.27 9.53 4.13
F7 9.53 3.68 9.43 3.65 8.00 7.03 1.00 4.53 6.00 2.13
F8 8.97 6.97 1.90 1.60 6.20 4.93 7.87 2.73 10.00 3.83
F9 8.00 6.00 1.90 1.30 7.00 2.93 9.00 3.93 10.00 4.93
F10 7.70 3.90 9.13 6.97 5.30 6.30 2.97 2.63 9.07 1.03
F11 7.90 5.90 2.67 1.03 6.90 2.87 9.00 3.87 10.00 4.87
F12 6.23 2.97 7.83 8.60 4.70 6.17 4.00 2.77 10.00 1.73
F13 10.00 7.20 5.03 3.13 8.93 7.40 5.70 1.00 4.57 2.03
F14 9.97 7.57 3.83 2.07 8.97 7.30 5.67 1.50 4.33 3.80
F15 5.90 3.68 4.28 3.68 3.68 3.68 9.47 7.80 9.13 3.68
F16 8.90 3.18 4.02 3.18 3.18 3.18 8.53 7.13 9.07 4.62
F17 6.60 7.57 2.47 2.12 3.57 1.98 8.83 6.10 9.87 5.90
F18 7.87 5.82 3.30 2.97 6.75 2.97 9.00 3.37 10.00 2.97
F19 6.33 7.33 2.23 1.37 4.17 2.80 9.00 6.77 10.00 5.00
F20 7.03 2.00 8.03 3.00 5.03 6.03 8.87 4.00 10.00 1.00
F21 8.00 2.83 9.00 3.97 6.00 7.00 1.50 5.00 10.00 1.70
F22 8.40 4.93 2.30 1.03 4.03 2.87 6.53 8.33 9.73 6.83
F23 8.00 1.10 9.70 2.27 6.07 6.93 2.80 4.97 9.30 3.87
F24 6.43 3.58 3.68 3.58 3.58 3.58 7.97 9.00 10.00 3.58
F25 8.77 4.80 5.90 1.07 3.47 2.00 9.03 6.77 9.20 4.00
F26 7.97 4.60 3.53 3.23 6.97 3.23 9.00 3.23 10.00 3.23

Avg-rank 7.82 4.77 4.62 2.75 5.79 4.29 7.05 4.93 9.15 3.83
Final rank 9 5 4 1 7 3 8 6 10 2
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Table 7. The p-value of Wilcoxon rank-sum (WRS) test for 26 benchmark functions.

Ranksum BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1
3.02 ×
10−11

3.02 ×
10−11 0.035137 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F2
3.02 ×
10−11

3.02 ×
10−11 0.325527

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F3
3.02 ×
10−11

3.02 ×
10−11 0.001597 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F4
3.02 ×
10−11

3.02 ×
10−11 0.014412 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F5
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.31 ×
10−8

3.02 ×
10−11

3.02 ×
10−11

F6
4.20 ×
10−10

2.15 ×
10−10 0.200949

1.33 ×
10−10 0.520145

3.02 ×
10−11

7.38 ×
10−10

3.02 ×
10−11

2.44 ×
10−9

F7
5.18 ×
10−12

1.00 ×
100

5.18 ×
10−12

5.18 ×
10−12

5.16 ×
10−12

1.19 ×
10−13 0.009689 5.18 ×

10−12
9.85 ×
10−11

F8
3.02 ×
10−11

3.02 ×
10−11 0.122353

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F9
3.02 ×
10−11

3.02 ×
10−11 0.001302 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F10 0.340288
3.02 ×
10−11

3.16 ×
10−5 0.003671 0.200949

2.20 ×
10−7

4.50 ×
10−11

1.34 ×
10−5

3.02 ×
10−11

F11 0.340288
3.02 ×
10−11

3.16 ×
10−5 0.003671 0.200949

2.20 ×
10−7

4.50 ×
10−11

1.34 ×
10−5

3.02 ×
10−11

F12
8.48 ×
10−9

4.69 ×
10−8

4.12 ×
10−6

8.48 ×
10−9

8.48 ×
10−9

1.43 ×
10−8

5.57 ×
10−10

3.02 ×
10−11

5.57 ×
10−10

F13
3.02 ×
10−11

3.02 ×
10−11 0.00557 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

1.21 ×
10−12

1.29 ×
10−9

2.53 ×
10−4

F14
3.02 ×
10−11

3.02 ×
10−11 0.001953 3.02 ×

10−11
3.02 ×
10−11

4.62 ×
10−10 0.09049

7.69 ×
10−8

9.06 ×
10−8

F15
1.27 ×
10−5 NaN 0.041926 NaN NaN

1.21 ×
10−12

1.19 ×
10−12

1.21 ×
10−12 NaN

F16
1.21 ×
10−12 NaN 0.041926 NaN NaN

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12

1.27 ×
10−5

F17
6.03 ×
10−11

2.89 ×
10−11 0.248673

5.93 ×
10−7 0.160802

2.37 ×
10−12

2.80 ×
10−10

2.37 ×
10−12

6.24 ×
10−10

F18
1.21 ×
10−12

4.57 ×
10−12 0.160802

4.57 ×
10−12 NaN

1.21 ×
10−12 0.160802

1.21 ×
10−12 NaN

F19
3.02 ×
10−11

3.02 ×
10−11 0.003671 3.02 ×

10−11
3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F20
3.02 ×
10−11

3.08 ×
10−8

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.34 ×
10−11

3.02 ×
10−11

1.09 ×
10−10

F21
3.02 ×
10−11

9.51 ×
10−6

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

4.12 ×
10−6

F22
3.02 ×
10−11

3.02 ×
10−11

1.58 ×
10−4

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

F23
3.02 ×
10−11

1.39 ×
10−6

3.02 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.11 ×
10−4

2.37 ×
10−10

3.02 ×
10−11

1.86 ×
10−6

F24
1.95 ×
10−9 NaN 0.333711 NaN NaN

1.21 ×
10−12

1.21 ×
10−12

1.21 ×
10−12 NaN

F25
3.02 ×
10−11

5.49 ×
10−11

1.09 ×
10−10

8.89 ×
10−10

8.48 ×
10−9

1.90 ×
10−11

3.02 ×
10−11

3.02 ×
10−11

1.55 ×
10−11

F26
1.21 ×
10−12

2.93 ×
10−5 0.160802

1.21 ×
10−12 NaN

1.21 ×
10−12 NaN

1.21 ×
10−12 NaN
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Table 8. The hypothesis (H) of WSR test for 26 benchmark functions.

H BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1 1 1 1 1 1 1 1 1 1
F2 1 1 0 1 1 1 1 1 1
F3 1 1 1 1 1 1 1 1 1
F4 1 1 1 1 1 1 1 1 1
F5 1 1 1 1 0 1 1 1 1
F6 1 0 0 1 1 1 1 1 1
F7 1 1 1 1 1 1 1 1 1
F8 1 1 0 1 1 1 1 1 1
F9 1 1 1 1 1 1 1 1 1
F10 0 1 1 1 0 1 1 1 1
F11 0 1 1 1 0 1 1 1 1
F12 1 1 1 1 1 1 1 1 1
F13 1 1 1 1 1 1 1 1 1
F14 1 1 1 1 1 1 0 1 1
F15 1 0 1 0 0 1 1 1 0
F16 1 0 1 0 0 1 1 1 1
F17 1 1 0 1 0 1 1 1 1
F18 1 1 0 1 0 1 0 1 0
F19 1 1 1 1 1 1 1 1 1
F20 1 1 1 1 1 1 1 1 1
F21 1 1 1 1 1 1 1 1 1
F22 1 1 1 1 1 1 1 1 1
F23 1 1 1 1 1 1 1 1 1
F24 1 0 0 0 0 1 1 1 0
F25 1 1 1 1 1 1 1 1 1
F26 1 1 0 1 0 1 0 1 0

The alpha is set to 0.05 in the Wilcoxon rank-sum (WRS) test and Friedman rank test, and there
are two hypotheses called the null and alternative. The null hypothesis is a significant difference from
the proposed algorithm and the others. According to the statistical value, the null is accepted if this
statistical value is greater than the value of alpha; otherwise, the alternative is accepted. The p-value
and the Friedman rank depicted that this supremacy is statistically significant. Note, the last row in
Table 4, Table 5, Table 6 represents the rank of each algorithm with the number of the best solutions.
The p-value and the Friedman rank depicted that this supremacy is statistically significant.

From the comparison results of Table 4, it is proved that the HPSOBOA yields the best results
on the 26 test functions with Dim = 30 except F6, F7, F10, F12, F13, F14, F17, F20, F21, F23, and F25.
For functions F6, F7, F10, F12, and F23, the hybrid HPSOBOA can obtain the optimal fitness value,
which is close to other algorithms but slightly worse. However, for F13, F14, F17, F20, F21, and F25,
the best solutions of these functions are searched by the other algorithms, such as GWO, PSO, MPA,
and IBOA, and MPA obtains the best solution twice. Additionally, the IBOA also obtains the best
solution twice, which is improved by the logistic map for the control parameters. Combining the
comparison results in Tables 5 and 6, we can see that the IBOA is better than others in the SR rank,
which is set to ε < 10−15, and is called the specified value, and the order of ten algorithms is IBOA
> HPSOBOA > MPA > GWO > CABOA = LBOA > PSOBOA > PSO = SCA > BOA. The order of
HPSOBOA and IBOA is only different once on the function F17, and the SR of HPSOBOA is 93.33%,
but the SR of IBOA is 100% for searching the global optimization value, which is set to ε < 10−15, and is
accepted in this paper. Therefore, the performance of the proposed algorithm needs to be improved in
future work.

In addition, the comparison results of the Friedman rank test are shown in Table 6; from the
Avg-rank, we can obtain that the final order of the rank means of the Friedman rank test—the ten
swarm algorithms—is HPSOBOA >MPA > IBOA > PSOBOA > CABOA > GWO > LBOA > PSO >
BOA > SCA. The WRS test values are given in Tables 7 and 8 for the 26 high-dimensional test functions
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of HPSOBOA vs. the others, respectively, where N/A means not applicable in Table 7. It can be seen
from these tables that there is a significance different between the proposed hybrid HPSOBOA and the
other algorithms for the 26 test functions with Dim = 30. In Table 8, if H=1, this indicates rejection
of the null hypothesis at the 5% significance level. If H=0, this indicates a failure to reject the null
hypothesis at the 5% significance level. In addition, Table 9 shows the comparison results of t-test for
26 benchmark functions of the proposed HPSOBOA with the other algorithms.

Table 9. The t-test for 26 benchmark functions.

t-tset BOA CABOA PSOBOA LBOA IBOA PSO GWO SCA MPA

F1 6.6456 6.6456 2.1068 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F2 6.6456 6.6456 0.9832 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F3 6.6456 6.6456 3.1565 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F4 6.6456 6.6456 2.4468 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F5 6.6456 −6.6456 6.6456 6.6456 6.6456 −6.6456 5.6846 6.6456 −6.6456
F6 6.2464 6.3499 1.2789 6.4238 0.6431 6.6456 6.1577 6.6456 5.9655
F7 6.9005 0.0000 6.9005 6.9005 6.9010 −7.4180 2.5867 6.9005 −6.4692
F8 6.6456 6.6456 1.5450 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F9 6.6456 6.6456 3.2156 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F10 0.9536 −6.6456 4.1618 −2.9051 −1.2789 −5.1819 −6.5865 4.3540 −6.6456
F11 6.6456 6.6456 3.7183 6.6456 6.6456 6.6456 −6.5865 6.6456 6.6456
F12 −5.7585 −5.4628 −4.6053 −5.7585 −5.7585 −5.6698 −6.2021 6.6456 −6.2021
F13 6.6456 6.6456 2.7721 6.6456 6.6456 6.6456 −7.1040 6.0690 −3.6591
F14 6.6456 6.6456 3.0973 6.6456 6.6456 6.2316 −1.6928 5.3741 5.3446
F15 4.3649 NaN 2.0343 NaN NaN 7.1040 7.1063 7.1040 NaN
F16 7.1040 NaN 2.0343 NaN NaN 7.1040 7.1040 7.1040 4.3650
F17 6.5431 6.6523 1.1536 4.9936 −1.4024 7.0110 6.3094 7.0110 6.1844
F18 7.1040 6.9183 1.4024 6.9182 NaN 7.1040 1.4024 7.1040 NaN
F19 6.6456 6.6456 2.9051 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F20 6.6456 −5.5368 6.6456 6.6456 6.6456 6.6456 6.6308 6.6456 −6.4534
F21 6.6456 −4.4279 6.6456 6.6456 6.6456 −6.6456 6.6456 6.6456 −4.6053
F22 6.6456 6.6456 3.7774 6.6456 6.6456 6.6456 6.6456 6.6456 6.6456
F23 6.6456 −4.8271 6.6456 6.6456 6.6456 3.8661 6.3351 6.6456 4.7680
F24 6.0023 NaN 0.9667 NaN NaN 7.1040 7.1040 7.1040 NaN
F25 6.6456 6.5569 6.4534 6.1281 5.7585 6.7136 6.6456 6.6456 6.7434
F26 7.1040 4.1785 1.4024 7.1040 NaN 7.1040 NaN 7.1040 NaN

Figure 6 shows the box plots of the optimization results of 26 high-dimensional problems by the
ten algorithms. It is clear from Figure 6 that the outcomes of the average of the fitness function are not
normally distributed, in which each algorithm is run for 30 times for the 26 test functions. The values
of SCA are relatively poor in the ten algorithms.

 
(a) F1–F4 (b) F5–F8 

Figure 6. Cont.
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(c) F9–F12 (d) F13–F16 

 
(e) F17–F20 (f) F21–F24 

 
(g) F25, F26 

Figure 6. Boxplot for the algorithms run 30 times for the fitness of 26 test functions with Dim = 30.

6. Conclusions and Future Work

In this paper, we proposed three improvement strategies, and they are as follows: (1) the
initialization of BOA by cubic map; (2) a nonlinear parameter control strategy for the power exponent
a; (3) hybrid PSO algorithm with BOA. These strategies all aim to improve the ability for global
optimization of the basic BOA.
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In order to analyze the effectiveness of the improvement strategies, a novel hybrid algorithm
was compared with other swarm algorithms, and two experiments were designed. To deal with
26 high-dimensional optimization problems, a cubic map was employed for the initial population of
HPSOBOA, and the experimental results show that the initial fitness value is superior to the BOA and
other algorithms. In addition, the experimental results show that the one-dimensional chaotic maps
may also have a good performance for improving the basic BOA. The MPA proposed in 2020 will be
applied in more fields.

In future work, the performance of the proposed algorithm needs to be improved, and the improved
BOA includes adjusting its control parameters to optimize algorithm performance. The two-dimensional
and three-dimensional chaotic systems can also improve the BOA or other swarm intelligence algorithms
in theory. The improved algorithm can also solve real-world problems, such as engineering problems,
wireless sensor network (WSNs) deployment problems, proportional-integral-derivative (PID) control
problems, and analysis of regional economic activity [53].
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Abstract: The article develops further directions stemming from the arithmetic of extensional fuzzy
numbers. It presents the existing knowledge of the relationship between the arithmetic and the
proposed orderings of extensional fuzzy numbers—so-called S-orderings—and investigates distinct
properties of such orderings. The desirable investigation of the S-orderings of extensional fuzzy
numbers is directly used in the concept of S-function—a natural extension of the notion of a function
that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate
subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy
interpolation method, investigation of its properties and an illustrative experimental example on real
data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation
method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical
methods stemming from the concept of S-function and from the arithmetic of extensional fuzzy
numbers in general.

Keywords: extensional fuzzy numbers; MI-algebras; similarity; arithmetics of fuzzy numbers;
orderings; fuzzy interpolation; economic data

1. Introduction

Fuzzy interpolation is a generally well-established area with crucial results. Indeed,
it is a natural area that has a deep connection to distinct areas. We can consider, e.g., the
interpolation of fuzzy rule bases with logical motivations stemming from approximate
reasoning where the pairs of antecedent and consequent fuzzy sets of a fuzzy rule base
establish “pairs of fuzzy points” and the task is to infer an appropriate output fuzzy set
for an input fuzzy sets lying in between of the antecedents. In this logical setting, such an
interpolation task leads to the solvability of fuzzy relational equations—an area initiated
by Sanchez [1] and followed by many others, see [2–5]. The interest of the community
in this area does not seem to disappear [1] as it moves to the investigation of distinct
extensions [6–8].

Another direction of fuzzy interpolation was rather geometrically motivated although
the connection to fuzzy rule-based systems was declared too. The geometrical approaches
often stem from usual interpolations (linear [9] or spline [10]) extended to fuzzy numbers
and allow the interpolation of sparse rule bases [11,12]. Due to the importance of the
interpolation for the approximate reasoning, decision-making or optimization, we may
observe the interest of the community into this direction too [13]. For the comparison of
some fundamentals, we refer readers to [14] and we also highlight a work that up to some
degree combines both approaches and serves us one of our motivations [15].

Our work follows this attempt of joining both views. It works with pairs of fuzzy
numbers representing ague quantities [16] and interpolates even a sparse case. However,
the fuzzy numbers as well as the manipulation with them will be deeply stemming from
fuzzy relational calculus [17], similarity relations, extensional hulls and other concepts
related to the approximate reasoning [18].
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In particular, we will deal with the MI-algebra-based arithmetics based on extensional
fuzzy numbers, i.e., extensional hulls of crisp numbers constructed with respect to some
similarity relations [19]. Such arithmetic serves as an alternative to other technical ap-
proaches [20,21] allowing the formalization of the ideas of Mareš [22] in a way that splits
the often time-consuming process of calculating operations on fuzzy numbers into a two-
step procedure: one calculating the standard operation on crisp points, the other one on
processing the similarity relations forming fuzzy numbers around the crisp points. Indeed,
as the extensional fuzzy numbers are nothing else but extensional hulls of crisp numbers,
we get genuine representations of vague quantities—collections of points similar to the
given crisp point. And operations on such objects, e.g., when summing up “about 3” and

“about 5”, are intuitively performed by a human brain by adding the crisp numbers 3 and 5
to a partial result 8 which is later viewed with a tolerance measure respecting that both
entries were imprecise. This tolerance measure is nothing else but a similarity relation
that is a result of the operation on similarities used in the construction of both extensional
fuzzy numbers.

The difference in the used arithmetic, of course, also changes the interpolation method
and its results. Any classical interpolation can be extended to a fuzzy interpolation method,
assuming that the used arithmetic is functional and equipped with all the necessary
operations. Apart from the arithmetical operations, also other fundamental mathematical
concepts, such as ordering of fuzzy numbers, must be developed. Thus, we adopt the
orderings of extensional fuzzy numbers introduced in [23] and studied in [24]. It is
important to note that such an ordering is tightly connected to the arithmetic itself, which
we find essential.

The structure of the article is as follows. Section 2 recalls the basic preliminaries
about the arithmetics of extensional fuzzy numbers. Section 3 recalls the approach to
the orderings of extensional fuzzy numbers and Section 4 sets up their crucial properties.
Section 5 leads the investigation towards fuzzy interpolation that is, later, in Section 6
experimentally demonstrated on an illustrative example from the real practice. Section 7
closes the article with a brief discussion.

2. Preliminaries—Arithmetical Operations on Extensional Fuzzy Numbers

2.1. Motivation and the Main Concepts

The arithmetic of extensional fuzzy numbers has been originally proposed in [25,26]
as an alternative to other functional arithmetics that are often stemming from Zadeh’s ex-
tension principle. Such arithmetics often consider the α-cut calculus and they are more tech-
nically oriented based on distinct parametric representations of fuzzy numbers [21,27,28].

The proposed alternative (detail description in [19]), was motivated from the non-
preservation of some algebraic properties by the existing approaches, especially the non-
existence of inverse elements. This is nothing surprising as the models of vague quantities
provided by fuzzy numbers are rather fuzzy intervals than fuzzy numbers, and the absence
of an inverse element is a feature of the interval calculus, see [29]. However, as pointed out
by Mareš [16], instead of considering only a single crisp neutral element, we may observe
infinitely many “neutral-like” elements so, when solving equations with vague quantities,
we get the equality of both sides up to “nearly zero”. Therefore, there is no absence of
the inverse, the operations on inverses only do not lead to the genuine neutral (identity)
element but to any of the identity-like elements. This idea of Mareš is then developed
in [19] and it leads to the MI-algebras (MI stands for many identities). Algebraically, it drops
the standard field structure of real numbers (R,+, ·) however, it does not harm its ideas,
just incorporates them with a certain vagueness.

Above-recalled alternative approach [29] correctly stems from the fact that the lack of
the preserved algebraic properties is caused by the interval character of fuzzy numbers and
the non-preservation inherited from interval calculus, is “healed” by using the concept of
gradual numbers that are conceptually sort of inverse to the usual fuzzy numbers (intervals).
Indeed, a gradual fuzzy number ã is a mapping from the interval (0, 1] to the real line
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and the (crisp) real number a is its special case such that ã(α) = a for arbitrary α ∈ (0, 1].
Then the arithmetic operating on such functions preserves the algebraic properties such as
existence of an inverse to any element. Note that the concept is so general that it does not
assume any restriction on the “shape” (e.g., on monotonicity or continuity) which is, on
one hand, an advantage, on the other hand, it allows dealing with or obtaining functions
hardly interpreting any vaguely given quantity.

The arithmetic of extensional fuzzy numbers stemmed from a natural model of a
vague quantity and formalized human-style calculus with them. It models a vaguely given
quantity “about a” as an extensional hull of the crisp value (singleton) a with respect to a
given similarity relation. Thus, it has a genuine construction determining a fuzzy set of
values similar to a. On one hand, as we stated, it is a fuzzy set of elements so, it leads to a
set-like concept that will never possess the arithmetical properties of numbers however,
it was not constructed as an (fuzzy) interval and the generating crisp number a ∈ R is
available for further purposes including the calculus.

The price we pay for such a restriction to extensional hulls of crisp numbers is not
high as we do not see other than technical reasons stemming from the usual arithmetics
themselves (e.g., results of limits) to consider technical definitions allowing dealing with
e.g., upper semi-continuous fuzzy sets as models of fuzzy numbers. In our opinion,
the restriction pays off in the subsequent advantages.

Let us fix the notation for a set of fuzzy sets defined on a universe X: F (X) = {A |
A : X → [0, 1]} ; and of the support of a fuzzy set A: Supp(A) = {x ∈ R | A(x) > 0}. Now,
we recall the well-known fundamental definitions adopted to the universe of real numbers.

Definition 1. [30,31] Let ⊗ be a left-continuous t-norm. A binary fuzzy relation S ∈ F (X) is
called ⊗-similarity if the following holds

(i) S(x, x) = 1 (reflexivity)
(ii) S(x, y) = S(y, x) (symmetry)
(iii) S(x, y)⊗ S(y, z) ≤ S(x, z) (⊗-transitive)

for all x, y, z ∈ R.

Definition 2. [19] Let S be a ⊗-similarity relation. It is called separable if S(x, y) = 1 implies
that x = y.

Definition 3. [19] Let S be a ⊗-similarity relation. It is called shift-invariant if S(x, y) =
S(x + z, x + z) for any x, y, z ∈ R.

Convention 1. Due to the practical importance of the separability property, we assume that all
⊗-similarity relations considered in this paper are separable.

Definition 4. [30] A fuzzy set A ∈ F (R) is called extensional regarding a ⊗-similarity relation
S if the following holds:

A(x)⊗ S(x, y) ≤ A(y) , x, y ∈ R .

Example 1. Binary fuzzy relations on R given by

Sp(x, y) = (1 − p|x − y|) ∨ 0 , p > 0 (1)

are the shift-invariant ⊗-similarity relations where ⊗ is the Łukasiewicz t-norm.

Example 2. Binary fuzzy relations on R given by

Sp(x, y) = e−p|x−y| , p > 0 (2)

are the shift-invariant ⊗-similarity relations where ⊗ is the product t-norm.
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Remark 1. The shift-invariance is a useful property for connecting similarities and arithmetics,
see Proposition 6. An example of similarity relation that is not shift-invariant can be found in
Remark 2.2 in [19].

An extensional hull of a fuzzy set A is the least fuzzy superset of A that is extensional.

Theorem 1. [31] Let S be a ⊗-similarity relation and let A ∈ F (R). The extensional hull of A,
denoted by EXT(A) ∈ F (R), is given by

EXTS(A)(x) =
∨

y∈R
(A(y)⊗ S(x, y)). (3)

If we consider a singleton representation of a real number a ∈ R that is a fuzzy set
ã ∈ F (R) such that ã(a) = 1, and ã(x) = 0 for any x �= a we can construct an extensional
hull of a real number. Such an object is called extensional fuzzy number or a fuzzy point,
see [18,31,32].

Definition 5. [19,25] Let a ∈ R and let S be a ⊗-similarity. Then aS ∈ F (R) given as follows:

aS(x) = EXTS(a)(x) (4)

is called extensional fuzzy number.

A correct version of Formula (4) would consider the extensional hull of the singleton
EXTS(ã)(x) but as there is no danger of confusion, we will neglect the difference between
a and ã and stick to the simpler denotation. The extensional fuzzy number may be easily
calculated by a simple substitution.

Lemma 1. [19] Let a ∈ R and let S be a ⊗-similarity. Then aS(x) = S(a, x), for any y ∈ R.

Convention 2. We restrict our choice of similarities to those ensuring that the fuzzy numbers aS
are formed by α-cuts (aS)α that are closed intervals in R.

2.2. Arithmetic of Extensional Fuzzy Numbers

The construction as well as the denotation of the extensional fuzzy number emphasizes
its semantics—number a with close numbers around it—where the closeness is determined
by similarity S. Such a restriction to a subclass of fuzzy numbers is reasonable and justified
by the most natural representation of a vague quantity reflecting the semantics already
in its construction. Furthermore, the construction allows the derivation of appropriate
models of the arithmetic [25,26]—algebraically leading to MI-algebraic structures. We
avoid going into algebraic details and only refer interested readers to the relevant sources,
mainly to [19] and furthermore, to [33,34] for the quotient MI-groups, and to [35] for
the topological MI-groups. Here, we continue only with the computational part of the
arithmetic of extensional fuzzy numbers.

Consider a system of nested ⊗-similarities S with the bottom element ⊥S and the set
of all fuzzy numbers that are extensional with respect to a similarity from the given system:

FS (R) = {aS | a ∈ R and S ∈ S}

preserving the Convention 2. Then the arithmetic operations on FS (R) are given as

aS + bT = (a + b)max(S,T) , aS · bT = (a · b)max(S,T) , S, T ∈ S (5)

with the maximum operating on the set of similarities S is defined via the inclusion:

S ⊆ T if S(x, y) ≤ T(x, y) , x, y ∈ R .
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The operations given by (5) are motivated by calculus performed by humans. Indeed,
when one is asked to sum up “about 20” and “about 30”, she or he ends up with “about 50”
without any technical (α-cut-based) calculus simply by summing up 20 and 30 to 50, and by
adding some neighborhood. The arithmetic (5) acts analogously, it sums up a and b to a + b
in the first phase, and, in the second phase, performs some operation on similarities to
determine what are the acceptably close numbers. This approach is very fast, and it does
not result inevitably wide fuzzy numbers after a few operations.

Remark 2. The proposed calculus that does not widen the resulting fuzzy sets may be for some
readers unusual, yet we do not view it unintuitive. Let us recall the argumentation used in [36]
cit. “Suppose that we have two factors that affect the accuracy of a measuring instrument. One
factor leads to errors ±10%—meaning that the resulting error component can take any value from
−10% to +10%. The second factor leads to errors of ±0.1%. What is the overall error? From the
purely mathematical viewpoint, the largest possible error is 10.1%. However, from the common
sense viewpoint, an engineer would say: 10%.” These arguments in favor of common-sense in
summing up errors (in our case similarities) are not left only on the motivation level but elaborated
also mathematically based on the Hurwicz criterion [37], for details see [36].

The bottom element ⊥S ∈ S (the “narrowest” similarity) is used in the construction
of the so-called strong identity elements for the arithmetic operations, in particular:

0 = 0⊥S = ⊥S (0, ·), 1 = 1⊥S = ⊥S (1, ·) .

Inverses are obtained using the arithmetic operations, i.e., −(aS) = (−a)S and
(aS)

−1 = (a−1)S, where the division by “zero” must be omitted. The (non-strong) identi-
ties (pseudoidentities) are elements of FS (R) obtained as results of operations applied to
elements and their inverses:

I0
S = {aS + (−a)S | aS ∈ FS (R)} , I1

S = {aS · (a−1)S | aS ∈ FS (R)� I0
S} .

Example 3. The set S = {Sp | p ∈ [�, r]} where Sp is given by (1) or (2) and is a parametric
system of nested similarities with the bottom element ⊥S = Sr. The arithmetic operations are then
given as follows:

aSp + bSp′ = (a + b)Sp′′ , aSp · bSp′ = (a · b)Sp′′ , where p′′ = min{p, p′} .

Remark 3. As the classical equality “=” is a ⊗-similarity for arbitrary t-norm ⊗, we can consider
the systems of similarities from Example 3 with the parametrization p ∈ [�,+∞) and additionally
defined S∞ as the crisp equality. Then by adding this element to S , we obtain a system S∞ = S ∪ S∞
allowing us to deal with crisp numbers as well. The bottom element will be then formed by the crisp
equality ⊥S∞ = S∞.

Let us fix the denotation S∞ for a system containing the crisp equality and let us call
them systems of nested similarities with the crisp bottom element.

For the purposes of our work, it is sufficient to recall a single particular structure
with properties sufficient for the further studies. It is an MI-prefield (FS (R),+,−, ·,−1 )
preserving: the existence of the sets of pseudoidentities I0

S and I1
S ; associativity and

commutativity of both arithmetic operations; closeness of the sets of pseudoidentitites with
respect to the arithmetic operations (e.g., aS + bT ∈ I0

S for any aS, bT ∈ I0
S ); existence of

inverse elements; and the distributive law:

aR · (bS + cT) = aR · bS + aR · cT .

As the MI-prefield structure possess most of the appropriate properties, though we often
do not need such a rich structure in the subsequent sections of the article, we will always
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assume we are given an MI-prefield. This assumption will help the brevity and readability
of the article.

3. Orderings of Extensional Fuzzy Numbers

3.1. Motivation

The necessity of defining the ordering (also ranking) of fuzzy numbers (or generally
even fuzzy sets) has been pointed out already by Zadeh [38] and then in many other works,
e.g., in [39–41] leading to distinct applications [42]. Moreover, the ordering is essential for
defining monotonous fuzzy rule bases [43–45] and reasoning with them which is a topic
extremely closely connected to the area of fuzzy interpolation [7,8].

The simplest yet maybe most natural example of an ordering is the ordering
of intervals

[a, b] ≤i [c, d] ⇔ a ≤ c and b ≤ d

applied to all α-cuts of the fuzzy numbers:

A ≤i B ⇔ Aα ≤i Bα ∀α ∈ (0, 1] . (6)

In the following lemma, we show two equivalent definition of the ordering of fuzzy
numbers using the orderings of their α-cuts.

Lemma 2. Let A, B be fuzzy numbers. Then the following statements are equivalent.

(1) A ≤i B,
(2) for any α ∈ (0, 1] and x ∈ Aα, there exists y ∈ Bα such that x ≤ y, and vice versa, for any

y ∈ Bα, there exists x ∈ Aα such that x ≤ y.
(3) for any x ∈ R, there exists y ∈ R such that x ≤ y and A(x) ≤ B(y), and vice versa, for any

y ∈ R, there exists x ∈ R such that x ≤ y and B(y) ≤ A(x).

Proof. (1) ⇒ (2) Let α ∈ (0, 1]. Assume that x ∈ Aα. Since Aα ≤i Bα, it is sufficient to put
y = max Bα, and we obtain that y ∈ Bα such that x ≤ y. Similarly, if y ∈ Bα, from Aα ≤i Bα,
it is sufficient to put x = min Aα, and we obtain that x ∈ Aα such that x ≤ y.

(2) ⇒ (3) Let x ∈ R. If A(x) = 0, then it is sufficient to consider any y ∈ R such
that x ≤ y. Assume that A(x) = α > 0. By (2), there exists y ∈ Bα such that x ≤ y and
A(x) ≤ B(y) holds. Let y ∈ R. Again, if B(y) = 0, then it is sufficient to consider any
x ∈ R such that x ≤ y. If α = B(y), then by (2), we find that there exists x ∈ Aα such that
x ≤ y and B(y) ≤ A(x) holds.

(3) ⇒ (1) Let α ∈ (0, 1], and consider Aα = [a, b] and Bα = [c, d]. By (3), for b ∈ Aα,
there exists y ∈ R such that α ≤ A(b) ≤ B(y) and b ≤ y. Since y ∈ Bα, we find that
b ≤ y ≤ d. Similarly, for c ∈ Bα, there exists x ∈ R such that α ≤ B(c) ≤ A(x) and x ≤ c.
Since x ∈ Aα, we find that a ≤ x ≤ b. Hence, we obtain that Aα ≤i Bα.

This approach, however, does not preserve any information about the vagueness so,
we will not apply it to extensional fuzzy numbers FS (R). Indeed, general fuzzy sets or
technically defined fuzzy numbers A, B do not necessarily encode the information on the
position and the neighborhood unlike the extensional numbers that are generically created
from these two sources of the information.

Another flaw of the α-cut-based ordering is that it is not a total ordering and, for ex-
ample, two fuzzy numbers depicted in Figure 1 are not comparable. The totality in the
strict sense, as with the one we know from classical mathematics, is not an unavoidable
property. However, cases such as the one in Figure 1 are so intuitive that anyone would
expect that A is smaller than B. Incidentally, appropriate arithmetic confirms this intuition
as it leads to a positive result of the difference (B − A) .
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Figure 1. Fuzzy numbers modeling the vague quantity “about 3” (A), and the vague quantity “about
5” (B).

There are different approaches attempting to avoid the problem of the missing totality,
mostly they consist of determining a certain ranking index (a crisp number representing
the fuzzy number). On the other hand, this leads to a reduction of information. One of the
exceptions that we found very elegant and formally founded was defined by Bodenhofer
in [46,47]. It works with extending the original fuzzy numbers by constructing their
extensional hulls up to the situation when the extended fuzzy numbers can be already
ordered regarding their α-cuts. Naturally, this approach is very closely connected to the
arithmetic of extensional fuzzy numbers and thus, it served for us a motivation, yet our
approach comes from a bit more abstract setting and then lands to a particular type of
Bodenhofer’s ordering.

3.2. Definitions and Examples

With the goal to encode the necessary vagueness and preserve it as an essential
property over the whole computational process, we extend the standard binary order-
ing relation (between crisp numbers) to a ternary relation ≤ operating on the Cartesian
product FS (R)×FS (R)× S . As there is never a danger of confusion between the order
operating on real numbers and the newly defined order operating on extensional fuzzy
sets, the difference will be always clear from the context, we will use the same symbol ≤.

Definition 6. Let (FS (R),+,−, ·,−1 ) be an MI-prefield of extensional fuzzy numbers with
respect to a system S of nested ⊗-similarities on R. A ternary relation ≤ on FS (R)×FS (R)×S
is called an S-ordering on FS (R) provided that

(O1) ∃P ∈ S : (aS, aT , P) ∈≤ , (reflexivity)
(O2) (aS, bT , Q) ∈≤ & (bT , aS, R) ∈≤⇒ aS − bT ∈ I0

S , (anti-symmetry)
(O3) (aS, bT , Q) ∈≤ & (bT , cU , R) ∈≤⇒ ∃P ∈ S : (aS, cU , P) ∈≤ , (transitivity)

holds for any a, b, c ∈ R and for any Q, R, S, T, U ∈ S .

Notation 1. For the case of brevity and clarity, let us introduce the following notation (aS ≤ bT)U
denoting the fact that (aS, bT , U) ∈≤. Furthermore, let aS ≤ bT denotes the fact that there exists
some U ∈ S such that (aS ≤ bT)U. This second notation losses the information on which particular
U ∈ S must be used to obtain a triplet (aS, bT , U) ∈≤ however, in certain situations, such a
Boolean information about the order of two fuzzy numbers will be sufficient.

Using Notation 1, the axioms of the S-ordering on FS (R) can be rewritten to a very
convenient form:

(O1) ∃P ∈ S : (aS ≤ aT)P , (reflexivity)
(O2) (aS ≤ bT)Q & (bT ≤ aS)R ⇒ aS − bT ∈ I0

S , (anti-symmetry)
(O3) (aS ≤ bT)Q & (bT ≤ cU)R ⇒ ∃P ∈ S : (aS ≤ cU)P (transitivity) .

Let us recall some examples that first appeared in a bit different formalism in [23,48].
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Example 4. Let (FS (R),+,−, ·,−1 ) be an MI-prefield. Then ≤max defined as

≤max= {(aS, bT , max(S, T)) | a, b ∈ R & S, T ∈ S}

is an S-ordering on FS (R).

The simple denotation of the fact (aS, bT , max(S, T)) ∈≤max is according to Notation 1
very convenient, in particular, we may write (aS ≤max bT)max(S,T) or in general aS ≤max bT .

Relation ≤max demonstrates an S-ordering reflecting the arithmetic operations: the
width of the result of the arithmetic operations determines also the “width of the fuzzy
truth” of the proposition stating that aS is smaller or equal to bT that is encoded in the
third component of the triplet (aS, bT , max(S, T)). If we mirror this idea into particular
arithmetics from Example 3, we get the following ternary relation:

≤max= {(aSp , bSp′ , min(p, p′)) | a, b ∈ R & Sp, Sp′ ∈ S}

where S = {Sp | p ∈ [�, r] |} and Sp is given by (1). The demonstration of such an ordering
is visualized in Figure 2.

Figure 2. Fuzzy numbers xSp′ and ySp′′ determined by the Łukasiewicz similarities from Example 3
based on values x = 4 and p′ = 0.8 (“left” solid fuzzy set), y = 5.5 and p′′ = 0.3 (“right” solid fuzzy
set). Fuzzy sets xSp′ and ySp′′ cannot be ordered by ≤i of α-cuts however, if we use ≤max, we obtain
the dashed fuzzy sets EXTSp′′ (xSp′ ) and EXTSp′′ (ySp′′ ), respectively, and thus xSp′ ≤max ySp′′ .

Let us present another example of an S-ordering. It assumes that set of similarities S
has the greatest element.

Example 5. Let �S be the greatest element of S , i.e., R ⊆ �S for all R ∈ S . Then the ternary
relation ≤�S given by:

≤�S= {(aS, bT ,�S ) | aS, bT ∈ FS (R) & ∃R ∈ S : EXTR(aS) ≤i EXTR(bT)}

is an S-ordering.

The order ≤�S orders two fuzzy numbers if there exists a similarity such that the
extensional hulls of both fuzzy numbers with respect to this similarity are α-cut ordered.
Here we see a direct link to the works of Bodenhofer [46,47] that will not be here commented
more detail but will turn to be very important in the subsequent sections.

Remark 4. Note that the particular similarity relation R that was used to order the extensional
hulls of two fuzzy numbers via their α-cuts is not mirrored in the information (aS ≤�S bT)�S .
This feature, which is not present here, will also turn to be important in the subsequent sections. It
actually tells us that ≤�S is not that appropriate S-ordering as it does not provide meaningful all
three components of the triplet. But it is important to mention that even such structures meet the
axiomatic definition of the S-ordering.
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Let us consider, e.g., the product t-norm and

S = {Sp | p ∈ [1, 5] and Sp(x, y) = e−p|x−y|} .

The ordering ≤�S can be visually demonstrated by Figure 3 where one can see two
extensional fuzzy numbers 4S2.5 and 5.5S1.2 (displayed by solid lines) and their extensional
hulls EXTS5(4S2.5) = 4S5 (left dashed fuzzy set) and EXTS5(5.5S1.2) = 5.5S5 (right dashed
fuzzy set) that due to their interval-ordering 4S5 ≤i 5.5S5 allow the ordering of the original
fuzzy numbers (4S2.5 ≤�S 5.5S1.2)�S .

Figure 3. Demonstration of the S-ordering ≤�S .

Let us equip the system of similarities S with its bottom element ⊥S . Then, as S is the
system of nested similarities, it has all infima, i.e., inf{S ∈ C | C ⊆ S} exists for any subset
C. Then, we can define the ordering that determines the third component of the triplet (the
tolerance added to the ordering) as the “narrowest” similarity relation that is sufficient to
get ordered α-cut of extensional hulls (with respect to this similarity) of the given fuzzy
numbers. Mathematically, such a S-ordering ≤inf will be given by the intersection of all
such similarities that lead to the interval-ordering of α-cuts of the extensional hulls:

≤∩= {(aS, bT , E) | aS, bT ∈ FS (R) & E = ∩{R ∈ S | EXTR(aS) ≤i EXTR(bT)}} .

The visualization of the ordering ≤∩ is provided in Figure 4.

Figure 4. Example of ≤∩ applied to fuzzy sets from Figure 2.

Let us now come back to the properties of the S − orderings that were foreshadowed
above. In particular, we will recall the so-called pre-order compatibility [23,24] and the
real-order compatibility [24].

Definition 7. Let ≤ be an S-ordering on an MI-prefield (FS (R),+,−, ·,−1 ). Then ≤ is called
pre-order compatible if for any aS, bT ∈ FS (R) and R ∈ S ,

(aS ≤ bT)R ⇒ EXTR(aS) ≤i EXTR(bT). (7)
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The name of the pre-order compatibility comes from the close connection to the works
of Bodenhofer where the author dealt with pre-orderings of fuzzy sets, see [46,47]. The na-
ture of the property is indeed such that it puts the given S-ordering into the perspective of
the above-mentioned pre-orderings. In other words, an S-ordering that is pre-order com-
patible reflects in the third component of the triplet the width (similarity) of the extension
that is necessary to obtain α-cut ordered extensional hulls of given fuzzy numbers.

The provided examples of S-orderings ≤max,≤�S , and ≤∩ are examples of pre-order
compatible orderings. Now, we will show how easy it is to construct S-orderings that
will meet the axioms of Definition 6 but will not be pre-order compatible. There will be
two such examples, each of them harming the pre-order compatibility from a different
perspective. The first example harms the reflection of the necessary extension.

Example 6. Let S be equipped with the bottom element ⊥S . Then the ternary relation ≤⊥S
given by

≤⊥S= {(aS, bT ,⊥S ) | aS, bT ∈ FS (R) & a ≤ b}
is an S-ordering that is not pre-order compatible.

The construction of ≤⊥S focuses only on the core elements—crisp numbers a, b ∈ R

and ignores the widths of the extensional fuzzy numbers aS, bT ∈ FS (R) constructed above
them. In other words, the fuzzy truth (similarity, tolerance) of the proposition aS is smaller
or equal to bT is thus meaningless, it does not store any information and we get only binary
information on the mutual position of a and b.

The other way how the pre-order compatibility can be easily harmed is presented in
the following example that reverses the linear order on R.

Example 7. The ternary relation ≤rev
max defined as follows

≤rev
max= {(aS, bT , max(S, T)) | aS, bT ∈ FS (R) & b ≤ a}

is an S-ordering that is not pre-order compatible.

Unlike the S-ordering ≤⊥S , the construction of ≤rev
max reflects the necessary extension

and the third component of the triplet would not be meaningful; however, it reverses
the order. Thus, we get the information that “about 4” below “about 2”. Please note
that reversed order is still order so, nothing wrong in a sense that ≤rev

max would harm
Definition 6.

Let us present a lemma which demonstrates the practical impact of the pre-order
compatibility as the crucial property of S-orderings.

Lemma 3. Let ≤ be a pre-order compatible S-ordering on an MI-prefield (FS (R),+,−, ·,−1 ).
If aS ≤ bT for certain S, T ∈ S then a ≤ b.

Proof. Let ≤ be pre-order compatible. Then aS ≤ bT (according to Notation 1) means that
there exists U ∈ S such that EXTR(aS) ≤i EXTR(bT). Let us expand the formula for the
extensional hull of aS

EXTR(aS)(z) =
∨

y∈R
aS(y)⊗ R(y, z)

and let us determine its core, i.e., let us put it equal to 1:

1 =
∨

y∈R
aS(y)⊗ R(y, z) =

∨
y∈R

S(a, y)⊗ R(y, z) ≤

∨
y∈R

max(S, R)(a, y)⊗ max(S, R)(y, z) ≤ max(S, R)(a, z),
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Due to the separability property assumed in Convention 1, we get max(S, R)(a, z) = 1 if
and only if a = z. Thus, the sought core (α-cut for α = 1) is EXTR(aS)1 = {a}. Analogously,
we get EXTR(bT)1 = {b}. Finally, EXTR(aS)1 ≤ EXTR(bT)1 can be directly rewritten as
a ≤ b, which concludes the proof.

Example 8. Let us demonstrate Lemma 3 on examples. Consider the case depicted in Figure 2.
For the pre-order compatible S-ordering ≤max, the assumptions of the lemma are met, and it can be
seen that xSp′ ≤max ySp′′ as well as x ≤ y holds. For the S-ordering ≤rev

max the assumption on the
pre-order compatibility is dropped and from ySp′′ ≤

rev
max xSp′ we cannot deduce that y ≤ x as the

opposite is true.
However, Lemma 3 claims only one direction implication, not the equivalence, and so, it does

not exclude the possibility of a pre-order S-ordering that would preserve the implication. Indeed,
consider ≤⊥S that is defined in such a way that from xSp′ ≤⊥S ySp′′ we can easily deduce x ≤ y.

Naturally, one may revisit the pre-order compatibility defining Formula (7) and
consider it with the equivalence instead of the implication. However, such a condition
would be too restrictive and the only order that would in general meet such a requirement
would be ≤∩. However, we can weaken the opposite implication and require only weaken
version that ensures some dependence on the order of the real line but without reflecting
the particular similarity. The reflection of the necessarily used similarity mirrored only in
one of the implications—the one in Formula (7)—will turn to be sufficient, see Section 4.

Definition 8. Let ≤ be an S-ordering on an MI-prefield (FS (R),+,−, ·,−1 ). Then ≤ is called
real-order compatible if for any aS, bT ∈ FS (R) and R ∈ S the following holds

EXTR(aS) ≤i EXTR(bT) ⇒ aS ≤ bT . (8)

The S-orderings ≤max,≤�S , ≤∩, and ≤⊥S presented above are real-order compatible
however, for example, ≤rev

max is not real-order compatible. Can we construct an S-ordering
that is unlike ≤rev

max pre-order compatible however, it is not real-order compatible? Indeed,
the following example focusing only on the left points of the supports provides such
an example.

Example 9. The ternary relation ≤L
max defined as follows

≤L
max= {(aS, bT , max(S, T)) | aS, bT ∈ FS (R) & inf Supp(aS) ≤ inf Supp(bT)}

is an S-ordering that is pre-order compatible but it is not real-order compatible.

Now, putting both compatibilities together gives us an S-ordering with properties
sufficient for proving further results.

Definition 9. If an S-ordering is pre-order compatible and real-order compatible, it is said to be
strongly compatible.

Remark 5. The S-orderings ≤max,≤�S , and ≤∩ presented above are strongly compatible.

Another crucial property is the linearity or totality of the order. Naturally, also this
property deserves to be incorporated into the context of S-orderings.

Definition 10. Consider an MI-prefield (FS (R),+,−, ·,−1 ) and an S-ordering ≤ on FS (R).
Then ≤ is called total if the following holds for arbitrary aS, bT ∈ FS (R):

aS ≤ bT or bT ≤ aS . (totality)
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Let us focus on the relationship of the real-order compatibility and the totality.

Proposition 1. Let (FS (R),+,−, ·,−1 ) be an MI-prefield and let ≤ be an S-ordering on FS (R).
If ≤ is real-order compatible then it is also total.

Proof. We prove the proposition by contradiction. Let us assume that for some aS, bT ∈
FS (R) it holds that aS �≤ bT & bT �≤ aS.

The assumption aS �≤ bT means that there does not exist any R ∈ S such that
EXTR(aS) ≤i EXTR(bT). Indeed, if it existed, the real-order compatibility would lead to
the contradiction with the assumption. As for any α, the α-cuts EXTR(aS)α and EXTR(bT)α

are of the same width and EXTR(aS) �≤i EXTR(bT) holds then necessarily EXTR(bT) ≤i
EXTR(aS) which, due to the real-order compatibility, means that bT ≤ aS.

4. Properties of S-Orderings

4.1. Wang–Kerre Properties of Orderings of Fuzzy Numbers

As the orderings and rankings of fuzzy numbers attracted significant interest of
the researcher, it is not surprising that some of them aimed at their properties. Many
ordering techniques rely on comparing certain crisp numbers (indices or representative
numbers) instead of comparing the original fuzzy numbers [49]. The natural consequence
is a partiality of such orderings that is viewed as a problem by some authors. This is
sometimes heuristically overcome by using multiple indices. This article does not focus
on an exhaustive survey of all such methods and we are convinced that every single
approach has its motivation justifying its existence. However, if we intend to apply the
proposed arithmetic of extensional fuzzy numbers to the problem of fuzzy interpolation
where orderings of fuzzy numbers play a crucial role, we need to know more about it.
In particular, we should investigate under which conditions our approach preserves the
most natural properties.

We have adopted the investigations of Wang and Kerre [49,50] as the starting point.
This step is rather natural as the authors set up the most intuitive properties of orderings
of fuzzy numbers and our goal is not to mimic such works but to investigate our technique
in such a generally accepted framework.

Remark 6. No matter if using indices or not, several techniques for ordering/ranking of fuzzy
numbers operate on a finite subset of (reference) fuzzy numbers to which the ordering can be applied.
Therefore, the ordering of two fuzzy numbers compares both to the reference set first. This fact is
mirrored in the Wang–Kerre properties (axioms) recalled below. When mimicking the properties
in our formalism of extensional fuzzy numbers, the properties will need to be slightly modified to
drop the reference set(s), one of the properties will become totally redundant without considering the
reference set.

Wang–Kerre properties: Let us consider F (R) and let H, H1, and H2 be arbitrary finite
subsets of F (R) (the reference sets). Furthermore, let h ∈ R. Then

A1: A � A, for A ∈ H;
A2: A � B and B � A ⇒ A ∼ B, for A, B ∈ H;
A3: A � B and B � C ⇒ A � C, for A, B, C ∈ H;
A4: sup Supp(A) ≤ inf Supp(B) ⇒ A � B, for A, B ∈ H;
A5: Let A, B ∈ H1 ∩ H2. Then A � B in H1 ⇔ A � B in H2;
A6: Let A � B in H1 = {A, B}. Then A + C � B + C in H2 = {A + C, B + C};
A7: Let 0 ≤ h and A, B, h · A, h · B ∈ H.

Then A � B in H1 = {A, B} implies h · A � h · B in H2 = {h · A, h · B}.

For the sake of brevity, when recalling the Wang–Kerre properties A1–A7, we dared
to relax the precise definitions of the used symbols � and ∼ as the main motivation is to
provide the readers with the ideas that must be accommodated to a different formalism in
the framework of extensional fuzzy numbers anyhow.
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4.2. Wang–Kerre Properties for S-Orderings and Their Preservation

The implementation of the above-recalled Wang–Kerre properties to the framework
of S-orderings and extensional fuzzy numbers requires some modifications, for example,
any use of reference sets is meaningless, S-orderings of not use them to order objects from
FS (R) at all. Consequently, axiom A5 is omitted from our consideration as whenever no
reference set is used, it is always automatically fulfilled. Otherwise, one can see that the
modification is only formal and preserving the same ideas and motivations.

Let aS, bT , cR ∈ FS (R) and let h ∈ R. Then the modified Wang–Kerre properties are
given as follows:

A1’: aS ≤ aS;
A2’: aS ≤ bT and bT ≤ aS ⇒ (aS − bT) ∈ I0

S ;
A3’: aS ≤ bT and bT ≤ cR ⇒ aS ≤ cR;
A4’: sup Supp(aS) ≤ inf Supp(bT) ⇒ aS ≤ bT ;
A6’: aS ≤ bT ⇒ aS + cR ≤ bT + cR;
A7’: 0 ≤ h and aS ≤ bT ⇒ h · aS ≤ h · bT ;

The goal of the subsequent parts of the article is to investigate under which conditions
an S-ordering preserves the properties A1’–A7’.

Proposition 2. Let ≤ be an S-ordering. Then it preserves properties A1’, A2’, and A3’.

Proof. Using the reflexivity axiom (O1) from Definition 6, for any S, T ∈ S there must exist
P ∈ S such that (aS ≤ aT)P which implies aS ≤ aT . It suffices to put S = T to complete the
proof of A1’.

The anti-symmetry axiom (O2) from Definition 6 states that (aS ≤ bT)Q and (bT ≤ aT)R
implies aS − bT ∈ I0

S . As it holds for any for any S, T, Q, R ∈ S , we directly obtain the
proof of A2’.

Finally, the transitivity axiom (O3) from Definition 6 states that (aS ≤ bT)Q and
(bT ≤ cU)R implies (aS ≤ cU)P for some P ∈ S . As it holds for any for any S, T, U, Q, R ∈ S ,
we directly obtain the proof of A3’.

The preservation of A4’ is not as automatic as the preservation of A1’-A3’ that stemmed
directly from the axioms (O1)-(O3). An additional property must be assumed.

Proposition 3. Let ≤ be a real-order compatible S-ordering. Then it preserves the property A4’.

Proof. If sup Supp(aS) ≤ inf Supp(bT) holds, we immediately get the interval-ordering
for all α-cuts of both fuzzy numbers: aS ≤i bT or equivalently EXTS(a) ≤i EXTT(b) by
Lemma 1. Put R = min(S, T). Recall that the composition of similarities U and V is defined
as U ◦ V(x, y) =

∨
z∈R U(x, z)⊗ V(z, y). Obviously, we have S = S ◦ R and T = T ◦ R,

where R = min(S, T). Indeed, assume that R = S. Then S = S ◦ S follows immediately
from the transitivity of S. In addition, we have

T ◦ S(x, y) =
∨

z∈R
T(x, z)⊗ S(z, y) ≥ T(x, y)⊗ S(y, y) = T(x, y)⊗ 1 = T(x, y), x, y ∈ R,

therefore, T ⊆ T ◦ S. On the other side, from S ⊆ T and the transitivity of T, we have

T ◦ S(x, y) =
∨

z∈R
T(x, z)⊗ S(z, y) ≤

∨
z∈R

T(x, z)⊗ T(z, y) = T(x, y), x, y ∈ R,

therefore, T ◦ S ⊆ T, and hence, we obtain T = T ◦ S. Similarly, one can show the equalities
for R = T. Since EXTS(a) ≤i EXTT(b), using the previous equalities, we simply find that
EXTR(aS) = EXTS◦R(a) = EXTS(a) ≤i EXTT(b) = EXTT◦R(b) = EXTR(bT) which jointly
with the real-order compatibility leads to aS ≤ bT .
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Example 10. Let us again demonstrate Proposition 3 on examples. Let us consider two (disjoint)
extensional fuzzy numbers such that sup Supp(aS) ≤ inf Supp(bT). For the real-order compatible
S-ordering ≤max, we easily obtain aS ≤max bT. However, for the S-ordering ≤rev

max that is not
real-order compatible, we get the opposite, in particular bT ≤rev

max aS.

The real-order compatibility turned to be useful in proving the preservation of A4’
however, it is not sufficient to prove the preservation of A5’. As it will be shown, we
will need to use “the other direction” encoded in the pre-order compatibility and thus,
the strong compatibility will be assumed.

Proposition 4. Let ≤ be a strongly compatible S-ordering, and let any similarity from S be
shift-invariant. Then it preserves the property A6’.

Proof. Let aS, bT , cR ∈ FS (R) and let aS ≤ bT where ≤ is strongly compatible. Put
U = max(S, T, R). From the reflexivity axiom (O1) we have (aU ≤ aS)P and (bT ≤ bU)Q
for certain similarities P, Q ∈ S , i.e., aU ≤ aS and bT ≤ bU , and by the transitivity axiom
(O3), we find that (aU ≤ bU)V for a certain similarity V ∈ S , i.e., aU ≤ bU . In what follows,
for simplicity, we do not mention the existence of similarities P and Q in S , and we will
directly write S-ordering. Since ≤ is strong compatible, there exists W ∈ S such that
EXTW(aU) ≤i EXTW(bU). We show that EXTW((a + c)U) ≤i EXTW((b + c)U) also holds.
By Lemma 2, one can simply check that for any x ∈ R, there exists x′ ∈ R such that
x ≤ x′ and

EXTW(aU)(x − c) =
∨

y∈R U(a, y)⊗ W(y, x − c) ≤ ∨
z∈R U(b, z)⊗ W(z, x′ − c) = EXTW(bU)(x′ − c) (9)

and vice versa, for any x′ ∈ R, there exists x ∈ R such that x ≤ x′ and

EXTW(bU)(x′ − c) =
∨

z∈R U(b, z)⊗ W(z, x′ − c) ≤ ∨
y∈R U(a, y)⊗ W(y, x − c) = EXTW(aU)(x − c). (10)

Hence, and using the shift-invariance of U and W, e.g., U(a + c, y) = U(a, y − c) or
W(y, x) = W(y − c, x − c), if x ∈ R, then there exists x′ ∈ R such that x ≤ x′ and (9) holds,
which implies

EXTW((a + c)U)(x) =
∨

y∈R
U(a + c, y)⊗ W(y, x) =

∨
y∈R

U(a, y − c)⊗ W(y − c, x − c)

= EXTW(aU)(x − c) ≤ EXTW(bU)(x′ − c) =
∨

z∈R
U(b, z − c)⊗ W(z − c, x′ − c)

=
∨

z∈R
U(b + c, z)⊗ W(z, x′) = EXTW((b + c)U)(x′).

Similarly, if x′ ∈ R, then there exists x ∈ R such that x ≤ x′ and (10) holds, which implies

EXTW((b + c)U)(x′) =
∨

z∈R
U(b + c, z)⊗ W(z, x′) =

∨
z∈R

U(b, z − c)⊗ W(z − c, x′ − c)

= EXTW(bU)(x′ − c) ≤ EXTW(aU)(x − c) =
∨

y∈R
U(b, y − c)⊗ W(y − c, x − c)

=
∨

y∈R
U(b + c, y)⊗ W(y, x) = EXTW((b + c)U)(x).

By Lemma 2, we find that EXTW((a + c)U) ≤i EXTW((b + c)U), and using the real-order
compatibility, we obtain (a + c)U ≤ (b + c)U . Using reflexivity (O1), it holds that (a +
c)max(S,R) ≤ (a + c)U and (b + c)U ≤ (b + c)max(T,R), and by transitivity (O3), we obtain
aS + cR = (a + c)max(S,R) ≤ (b + c)max(T,R) = bT + cR.
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Example 11. Let us demonstrate Proposition 4 on some examples. Let us again consider the case
depicted in Figure 2 with xSp′ and ySp′′ that are shift-invariant. Furthermore, let us consider zSp′′′

such that z is an arbitrary number from R and Sp′′′ ≥ max(Sp′ , Sp′′) (i.e., p′′′ < min(p′, p′′) ).
If we consider a strongly compatible S-ordering ≤max then we have xSp′ ≤max ySp′′ and

easily, we can check that also (x + z)Sp′′′ ≤max (y + z)Sp′′′ holds, where the left-hand side is equal
to xSp′ + zSp′′′ and the right-hand side is equal to ySp′′ + zSp′′′ .

Now, let us consider the S-ordering ≤L
max and that is not strongly compatible, see Example 9.

Due to the position of the left-hand sides of the supports, the following ySp′′ ≤L
max xSp′ holds.

However, xSp′ + zSp′′′ = (x + z)Sp′′′ and ySp′′ + zSp′′′ = (y + z)Sp′′′ so, we get two extensional
fuzzy number of the same width and as (x + y) ≤ (y + z), also the left-hand sides of the supports
are ordered in this way. Consequently, (x + z)Sp′′′ ≤

L
max (y + z)Sp′′′ which harms the property A6’.

Again, note that the proposition states only one implication but the opposite implication
does not hold. Therefore, if we consider the S-ordering that reverses the order ≤rev

max, we get
ySp′′ ≤

L
max xSp′ as well as (y + z)Sp′′′ ≤

L
max (x + z)Sp′′′ and thus, A6’ is preserved even though

≤rev
max is not strongly compatible.

The last axiom that must be checked will be preserved again under the assumption
of the strong compatibility. Additionally, the presence of the crisp bottom element in the
considered MI-pregroup will be assumed.

Proposition 5. Let ≤ be a strongly compatible S-ordering on an MI-prefield (FS∞(R),+,−, ·,−1 )
with the crisp bottom element. Then it preserves the property A7’.

Proof. As S∞ contains the crisp bottom element ⊥S (classical equality), we may incorporate
the representation of the scalar multiplication in FS∞(R):

h · aS = h⊥S · aS = (h · a)max(S,⊥S ) = (h · a)S .

If aS ≤ bT and ≤ is pre-order compatible, then a ≤ b and necessarily h · a ≤ h · b for any
h > 0. Since (EXT⊥S ((h · a)⊥S ))α = {h · a} and (EXT⊥S ((h · b)⊥S ))α = {h · b} for any
α ∈ (0, 1], we find that EXT⊥S ((h · a)⊥S ) ≤i EXT⊥S (h · b)⊥S ), which implies (h · a)⊥S ≤
(h · b)⊥S as a consequence of the real-order compatibility. Using the reflexivity axiom (O1),
we obtain (h · a)S ≤ (h · a)⊥S and (h · b)⊥S ≤ (h · b)T , and from the transitivity axiom (O3),
we find that (h · a)S ≤ (h · b)T .

Corollary 1. Let ≤ be a strongly compatible S-ordering on an MI-prefield (FS∞(R),+,−, ·,−1 )
with the crisp bottom element. Then it simultaneously preserves axioms A1’-A4’ and A6’-A7.

Proof. We have to prove that A6’ remains true if the shift-invariance is omitted in FS∞(R)
(cf. Proposition 4). Let aS, bT , cR ∈ FS∞(R). As with the proof of Proposition 5, if aS ≤
bT and ≤ is pre-order compatible, then a ≤ b and necessarily a + c ≤ b + c. Since
EXT⊥S ((a + c)⊥S ) ≤i EXT⊥S (b + c)⊥S ), we find that (a + c)⊥S ≤ (b + c)⊥S because
of the real-order compatibility. Using the reflexivity axiom (O1), we obtain aS + cR =
(a + c)max(S,R) ≤ (a + c)⊥S and (b + c)⊥S ≤ (b + c)max(T,R) = bT + cR, and from the
transitivity axiom (O3), we obtain aS + cR ≤ bT + cR.

Corollary 1 directly gathers the results from Propositions 2–5 and shows an elegant
and safe way how to construct a system of similarities and an S-ordering that is safe in the
sense of meeting all the preferable properties. Indeed, the list of assumptions may seem
high, but it is not restrictive at all. As we showed above, the most natural and intuitive
S-orderings are strongly compatible and analogously, including the crisp equality as the
crisp bottom element to the system of nested similarities is more natural than starting from
a wider bottom element.

63



Symmetry 2021, 13, 170

Definition 11. Let (FS (R),+,−, ·,−1 ) be an MI-prefield, and let ≤ be an S-ordering on FS (R).
The structure (FS (R),+,−, ·,−1 ,≤) will be called an S-ordered MI-prefield provided that
for any aS, bT , cR ∈ FS (R) and U, V ∈ S , it holds that

(P1) aS ≤ bT ⇒ aS + cU ≤ bT + bU,
(P2) 0U ≤ aS and 0V ≤ bT ⇒ ∃W ∈ S : 0W ≤ aS · bT.

The following statement shows that the shift-invariance of similarities and strong
compatibility of S-ordering are sufficient conditions to get a S-ordered MI-prefield.

Proposition 6. Let (FS (R),+,−, ·,−1 ) be an MI-prefield such that any similarity from S is shift-
invariant, and let ≤ be a strongly compatible S-ordering on FS (R). Then (FS (R),+,−, ·,−1 ,≤)
is an S-ordered MI-prefield.

Proof. (P1) follows from Proposition 4. Let 0U ≤ aS and 0V ≤ bT for aS, bT ∈ FS (R)
and U, V ∈ S . According to reflexivity of S-ordering, we obtain 0S ≤ 0U and 0T ≤ 0V ,
and by transitivity, we find that 0S ≤ aS and 0T ≤ bT . Denote R = max(S, T). Then we
have 0R = 0S · 0T and (ab)R = aS · bT . We will show that 0R ≤ (ab)S. Since ≤ is strongly
compatible, as a consequence of the real-order compatibility, it is sufficient to show that
there exists W ∈ S such that

EXTW(0R) ≤i EXTW((ab)R). (11)

By Lemma 2, we will show that for any x ∈ R there exists x′ ∈ R such that x ≤ x′ and∨
y∈R

R(0, y)⊗ W(y, x) ≤
∨

z∈R
R(ab, z)⊗ W(z, x′) (12)

and vice versa, for any x′ ∈ R there exists x ∈ R such that x ≤ x′ and∨
z∈R

R(ab, z)⊗ W(z, x′) ≤
∨

y∈R
R(0, y)⊗ W(y, x). (13)

Let W ∈ S be an arbitrary similarity. Since R and W are shift-invariant, for any x ∈ R,
we obtain∨

y∈R
R(0, y)⊗ W(y, x) =

∨
y∈R

R(ab, y + ab)⊗ W(y + ab, x + ab) =
∨

y∈R
R(ab, z)⊗ W(z, x′),

where we put x′ = x + ab. Since R is strongly compatible, by Lemma 3 we find that 0 ≤ a
and 0 ≤ b, which implies x ≤ x + ab = x′. Similarly, for any x′ ∈ R, we obtain

∨
z∈R R(ab, z)⊗ W(z, x′) =

∨
z∈R R(0, z − ab)⊗ W(z − ab, x′ − ab) =

∨
y∈R R(0, y)⊗ W(y, x), (14)

where we put x = x′ − ab, and thus x ≤ x′. By Lemma 2, we obtain (11) and thus
0R ≤ (ab)R = aS · bT , which concludes the proof of (P2).

Example 12. Let (FS∞(R),+,−, ·,−1 ) be the MI-prefield with S∞ = {Sp | p ∈ (0,+∞]},
where Sp is given by (1) for any 0 < p < +∞ and S∞ is the crisp equality (see, Remark 3), which
is enriched by a strong compatible S∞-ordering ≤. Since any similarity from S∞ is shift-invariant
(see, Example 1), by the previous proposition, (FS∞(R),+,−, ·,−1 ,≤) is an ordered MI-prefield.

Since S-ordering on an MI-prefield FS (R) is determined by the set S of similarities
that is referred in the index of the MI-prefield, for convenience, we will omit S in “S-
ordered MI-prefield” and write only “ordered MI-prefield”. In the following definition, we
introduce the isomorphism of ordered MI-prefields which is used in our demonstration of
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fuzzy interpolation. As with algebraic literature, for convenience, we do not distinguish the
operations and orderings of ordered MI-prefields using indexes if no confusion can appear.

Definition 12. Let (FS1(R),+,−, ·,−1 ,≤) and (FS2(R),+,−, ·,−1 ,≤) be ordered MI-prefields.
A map h : FS1(R) → FS2(R) is a homomorphism of ordered MI-prefields provided that

(H1) h(aS + bT) = h(aS) + h(bT), h(0⊥S1
) = 0⊥S2

and h(−aS) = −h(aS) for any aS, bT ∈
FS1(R);

(H2) h(aS · bT) = h(aS) · h(bT), h(1⊥S1
) = 1⊥S2

and h((aS)
−1) = h−1(aS) for any aS, bT ∈

FS1(R) \ I0
S1

;
(H3) aS ≤ bT ⇒ h(aS) ≤ h(bT) for any aS, bT ∈ FS1(R).

A homomorphism h of ordered MI-prefields is called an isomorphism provided that h is a bijec-
tive map.

In the following example we show an isomorphism using the ordered MI-prefield
FS∞(R) from Example 12.

Example 13. Let (FS∞(R),+,−,−1 ,≤) be an ordered MI-prefield with a strong compatible
S-ordering ≤. Let r ∈ R such that 0 < r. The the map hr : FS∞(R) → FS∞(R) given by
hr(aSp) = aSr·p for any aSp ∈ FS∞(R) is an isomorphism of ordered MI-prefields. It is easy to see
that hr is a bijective map, since f (p) = r · p for p ∈ (0, ∞] is a bijection from (0, ∞] onto (0, ∞],
where we naturally define r · ∞ = ∞. Let us show that hr satisfies (H1) and (H2). Since the proofs
are analogous for + and ·, we verify only (H1). For any aSp1

, bSp2
∈ FS∞(R), we have

hr(aSp + bSp2
) = hr((a + b)max(Sp1 ,Sp2 )

= hr((a + b)Smin(p1,p2)
) = (a + b)Sr·min(p1,p2)

=

(a + b)Smin(r·p1,r·p2)
= (a + b)max(Sr·p1 ,Sr·p2 )

= aSr·p1
+ bSr·p2

= hr(aSp1
) + hr(bSp2

).

For the zero element 0S∞ in FS∞(R), we obtain hr(0S∞) = 0Sr·∞ = 0S∞ , where we use r · ∞ = ∞.
Finally, for any aSp ∈ FS∞(R), we have hr((aSp)

−1) = hr((a−1)Sp) = (a−1)Sr·p = (aSr·p)
−1 =

hr(aSp)
−1. Now, we show that (H3) also holds. Let aSp1

bSp2
∈ FS∞(R) such that aSp1

≤
bSp2

. Since ≤ is strong compatible, to prove that hr(aSp1
) ≤ hr(bSp2

), it is sufficient to show
that there exists Sq ∈ S∞ such that EXTSq(aSrp1

) ≤i EXTSq(bSrp2
); the desired inequality is a

straightforward consequence of the real-order compatibility of ≤. Recall that Sp ◦ Sq = Sq whenever
Sp ⊆ Sq or equivalently p ≥ q (see the proof of Proposition 3). Since aSp1

≤ bSp2
and ≤ is pre-order

compatible, we find that a ≤ b according to Lemma 3. Put q = min(rp1, rp2). Then we obtain
EXTSq(aSrp1

) = aSq and EXTSq(bSrp2
) = bSq . Indeed, for any y ∈ R, we have

EXTSq(aSrp1
)(y) =

∨
z∈R

Srp1(a, z)⊗ Sq(z, y) = (Srp1 ◦ Sq)(a, y) = Sq(a, y) = aSq(y),

where ⊗ is the Łukasiewicz multiplication, and similarly for the second equality. Now, for any
α ∈ (0, 1], we can simply calculate that

(EXTSq(aSrp1
))α =

[
a − 1 − α

q
, a +

1 − α

q

]
and (EXTSq(bSrp2

))α =

[
b − 1 − α

q
, b +

1 − α

q

]
,

which implies that EXTSq(aSrp1
) ≤i EXTSq(bSrp2

) as a consequence of a ≤ b.

5. Application to Fuzzy Interpolation

5.1. The Concept of S-Function

We will approach fuzzy interpolation from the analytical perspective rather than from
the logical one. Therefore, we will always have in mind some function that is partially
given (in a finite number of points) and our goal is to complete it to a total mapping that
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assigns an output to an arbitrary input. Therefore, first, we must start from defining such
fundamental objects as a function operating on extensional fuzzy numbers.

Remark 7. Deliberately, we avoid the notion of a fuzzy function as it has been used by many
authors for distinct objects with distinct definitions. Usually, the ideas and motivations are similar,
but the technical aspects differ. As the natural name involving the “extensional fuzzy numbers”
might be too long, for the sake of brevity we adopt the name S-function.

Definition 13. Let ≤ be an S-ordering on an MI-prefield (FS (R),+,−, ·,−1 ) and let D be a
non-empty subset of FS (R). A mapping f : D → FS (R) is an S-function if there exists a
function g : R → R such that

∀xS ∈ D ∃S′ ∈ S : f (xS) = g(x)S′ . (15)

Equation (15) states that each S-function is determined by a real-valued function. This
allows the introduction of fundamental properties known from mathematical analysis,
such as monotonicity, injectivity, or surjectivity of functions, in an analogous way.

For example, an S-function f : D → FS (R) is called increasing if

∀uR, vS ∈ D : uR ≤ vS ⇒ f (uR) ≤ f (vS) . (16)

Analogously, we could define monotonically decreasing S-function and of course,
also strictly increasing and strictly decreasing S-function. Note the importance of the
choice of the S-ordering and the fact that the same ordering is used on both sides of the
definition. Indeed, for distinct choices of the S-ordering, the given S-function may be
or must not be monotonous. The generalization of the definition that would allow the
use of different ordering on the left-hand side than the one used on the right-hand side is
technically possible yet, would need to be strongly motivated by the modeled problem.

Using the concept of S-function, we can very naturally define extensions of classical
functions using the arithmetic operations, for example:

f (xS) = aT · xS + bR , for aT , bR ∈ FS (R)

is a linear S-function;

f (xS) = aT0 + aT1 · xS + · · ·+ aTn · xn
S , for aT0 , . . . , aTn ∈ FS (R)

is a polynomial S-function (of the n-th order).
Moreover, we can define natural extensions of other fundamental functions, for example

e(xS) = (ex)h(s) , log (xS) = log(x)h(s) , h : S → S

is an exponential (logarithm) S-function;

sin(xS) = sin(x)h(S) , cos(xS) = cos(x)h(S) , h : S → S

is a sine (cosine) S-function.
The crucial for transferring the vagueness will be the choice and appropriateness of

the mapping h. The most trivial would be to put h equal to the identity mapping however,
such a choice would not be probably adequate for managing the uncertainty.

5.2. S-interpolation

The fuzzy interpolation task can be in general formally define as follows. Let us be
given two finite equal sized sets of fuzzy sets A1, . . . , An and B1, . . . , Bn on the universe
R (or its non-empty subsets). We search for a mapping F : F (R) → F (R) such that the
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condition F(Ai) = Bi holds for any i = 1, . . . , n. Let us reformulate the problem into the
formalism of S-functions.

Definition 14. Let (FS (R),+,−, ·,−1 ) be an MI-prefield and let ≤ be an S-ordering on FS (R).
Let xi, yi ∈ R for i = 1, . . . , n and let (x1

S1
, y1

T1
), . . . , (xn

Sn
, yn

Tn
) ∈ FS (R)2 such that xi

Si
≤ xi+1

Si+1
for any i = 1, . . . , n − 1. We say that an S-function f S-interpolates above-given pairs of
extensional fuzzy numbers if

f (xi
Si
) = yi

Ti
, i = 1, . . . , n .

Naturally, we may mimic the classical interpolation methods that are well-founded.
For example, the linear S-interpolation will be defined for an arbitrary xS ∈ FS (R) such
that xi

Si
≤ xS ≤ xi+1

Si+1
as follows:

f (xS) = yi
Ti
+ (xS − xi

Si
) ·

yi+1
Ti+1

− yi
Ti

xi+1
Si+1

− xi
Si

. (17)

Remark 8. The linear interpolation in the crisp sense can be computed by several formulas that
are equivalent. Therefore, a natural question is whether this would hold also for the case of S-
interpolations stemming from these crisp equivalent formulas. The answer is positive. Due to the
particular used arithmetic, the computation runs over the “centers” and the similarities are, in the
second phase, calculated over their maximum. Therefore, as long as we use extensions of formulas
that are equivalent in the crisp case, and the inputs are the same, the results of the extended formulas
must be equal too. However, note that if we use another type of MI-algebra with different calculus
over the similarities (see [19] for some examples), the results could differ.

We will present a short lemma that will be used in the latter. The basically states that
if an input is between two input nodes, the output obtained by Formula (17) is between the
respective output nodes.

Lemma 4. Let (FS (R),+,−, ·,−1 ) be an MI-prefield such that any similarity from S is shift-
invariant and let ≤ be a strongly compatible S-ordering on FS (R). Let xi, yi ∈ R for i = 1, . . . , n
and let (x1

S1
, y1

T1
), . . . , (xn

Sn
, yn

Tn
) ∈ FS (R)2 such that xi

Si
≤ xi+1

Si+1
for any i = 1, . . . , n − 1.

For xi
Si
≤ xS ≤ xi+1

Si+1
and for the S-function f given by (17) it holds that:

yi
Ti
≤ f (xS) ≤ yi+1

Ti+1

Proof. Using the fact that xi
Si
≤ xS ≤ xi+1

Si+1
and Lemma 3 we obtain xi ≤ x ≤ xi+1. Using

Formula (17), we obtain f (xS) = yT such that

y = yi + (x − xi) · yi+1 − yi

xi+1 − xi

and T = max(Si, Si+1, Ti, Ti+1, S). Hence, we find that yi ≤ y ≤ yi+1. We show that
EXTT(yi) ≤i EXTT(y). Put d = y − yi. Since T is shift-invariant, for any x ∈ R, we obtain
EXTT(yi)(x) = T(yi, x) = T(yi + d, x + d) = T(y, x + d) = EXTT(y)(x + d), where x ≤ x +
d, and vice versa, for any x′ ∈ R, we obtain EXTT(y)(x′) = T(y, x′) = T(y − d, x′ − d) =
T(yi, x′ − d) = EXTT(yi)(x′ − d), where x′ − d ≤ x′. By Lemma 9, we find that EXTT(yi) ≤i
EXTT(y). Similarly, one can show that EXTT(y) ≤i EXTT(yi+1). Since Ti ⊆ T and Ti+1 ⊆ T
and from the transitivity of similarities, we have T = Ti ◦ T, T = Ti+1 ◦ T and T = T ◦ T as
has been verified in the proof of Proposition 3. Hence, we have EXTT(yi) = EXTTi◦T(yi) =
EXTT(yi

Ti
), EXTT(y) = EXTT◦T(y) = EXTT(yT), and EXTT(yi+1) = EXTTi+1(y

i+1) =
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EXTT(yi+1
Ti+1

), which implies EXTT(yi
Ti
) ≤i EXTT(yT) ≤i EXTT(yi+1

Ti+1
), and due to the real-

order compatibility of ≤, we obtain yi
Ti
≤ f (xS) ≤ yi+1

Ti+1
.

There are two important observations coming from the definition of the S-interpolation
and the formula for the linear S-interpolation.

First, the choice S-ordering is absolutely crucial as the technique assumes all fuzzy
points in the input space to be linearly ordered and moreover, every input needs to lie in
between of two neighboring fuzzy points. Thus, the totality of the S-ordering seems to be
a natural requirement of the highest importance.

Secondly, the technique may determine reliably a unique solution for an extensional
fuzzy number xS that possesses the following position xi

Si
< xS < xi+1

Si+1
however, if the

input point xS is one of the given points, say, xS = xi
Si

then there are two approaches
leading to two results that need not be equal. In particular, the first approach (interpolation
from the right) considers xS to lie between xi

Si
and xi+1

Si+1
:

f (xS) = yi
Ti
+ (xi

Si
− xi

Si
) ·

yi+1
Ti+1

− yi
Ti

xi+1
Si+1

− xi
Si

= yi
Ti
+ 0max(Si ,Si+1,Ti ,Ti+1)

= yi
max(Si ,Si+1,Ti ,Ti+1)

,

while the other approach (interpolation from the left) considers xS to be positioned between
xi−1

Si−1
and xi

Si
:

f (xS) = yi−1
Ti−1

+ (xi
Si
− xi−1

Si−1
) ·

yi
Ti
− yi−1

Ti−1

xi
Si
− xi−1

Si−1

= yi−1
Ti−1

+ (yi − yi−1)max(Si−1,Si ,Ti−1,Ti)
= yi

max(Si−1,Si ,Ti−1,Ti)
.

Moreover, none of the two results is necessarily equal to yi
Ti

which means that the
interpolation condition would not be met. This problem is not critical at all as then word
interpolation actually assumes that it focuses on points between the given nodes so, nothing
prevents us from defining the outputs for the given nodes f (xi

Si
) = yi

Ti
.

However, the problem arises when the input is not equivalent to the node only due to
a different width, i.e., we consider xi

S such that S �= Si. In such a case, the interpolation
from the right would give us f (xi

S) = yi
max(Si ,Si+1,Ti ,Ti+1,S) while the interpolation from the

left would lead to f (xi
S) = yi

max(Si−1,Si ,Ti−1,Ti ,S)
. As it is not clear which result should be

adopted and both “directions” can be justified, we can choose the one that lowers the
uncertainty by picking

f (xi
S) = yi

T where T = min(max(Si, Si+1, Ti, Ti+1, S), max(Si−1, Si, Ti−1, Ti, S)) . (18)

However, we should check whether if we impose some reasonable properties, the pro-
posed approach meets them. The most natural property one would expect is the monotonic-
ity with respect to the uncertainty, i.e., less uncertain inputs cannot lead to more uncertain
outputs:

xS, xT , yU , yV ∈ FS (R) s.t. yU = f (xS), yV = f (xT) it holds that: S ≤ T ⇒ U ≤ V . (19)

It is easy to assume conditions to preserve the uncertainty monotonicity condition
(19) for any x �= xi, i = 1, . . . , n but its preservation for x = xi must be ensured. Indeed,
Formula (18) can easily lead to Ti < T although S ≤ Si. Therefore, let us introduce a linear
S-interpolation that meets the constraint.

Definition 15. Let (FS (R),+,−) and (FS (R), ·,−1 ) be MI-pregroups and let ≤ be an S-
ordering on FS (R) that is strongly compatible. Let xi, yi ∈ R for i = 1, . . . , n and let (x1

S1
, y1

T1
), . . . ,

(xn
Sn

, yn
Tn
) ∈ FS (R)2 such that xi

Si
≤ xi+1

Si+1
for any i = 1, . . . , n − 1. The linear S-interpolation
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of the given pairs of extensional fuzzy numbers is an S-function f : D → FS (R), where D ⊆
FS (R) such that D = {xS | x ∈ [x1, xn] & S ∈ S}, i.e., for any xS ∈ FS (R) given as follows:

f (xS) =

⎧⎪⎪⎨⎪⎪⎩
(17) , if xi

Si
≤ xS ≤ xi+1

Si+1
& x �= xi, xi+1 ,

(18) , if x = xi & Si < S ,
yi

Ti
, if x = xi & S ≤ Si .

(20)

Remark 9. Let us note that as the basis for the above-introduced S-interpolation, we have chosen
the simplest crisp interpolation—the linear one. However, the concept of S-function allows much
more, basically, any standard interpolation method can be extended in this way, for example,
Lagrange polynomial interpolation or Newton polynomial interpolation. On the other hand, one
must take into account that such interpolations do not consider only neighboring points but basically
all nodes which, using the arithmetic, causes inevitable widening of the results, which is exactly the
problem that was aimed when introducing the arithmetic of extensional fuzzy numbers.

Indeed, when calculating with two extensional fuzzy numbers, the result does not get wider
than the widest one which is a positive aspect compared to arithmetics using Zadeh’s extension
principle. On the other hand, if we consider all nodes, the result will always be as wide as the widest
one, which is a positive result when the used similarities are more or less of the same widths. But it is
not very positive when we deal with significantly different values (e.g., daily COVID-19 increases in
a particular country ranging from individuals to thousands per day) and the interpolation between
two vaguely defined small (and thus also narrow) quantities would result into something as wide as
the width of the highest values in the set of nodes. Such cases must be treated by special similarity
transformation techniques or by using “relative” similarities flexibly changing the widths of the
fuzzy numbers.

5.3. Properties

Proposition 7. The linear S-interpolation:

(a) S-interpolates the given pairs of extensional fuzzy numbers;
(b) preserves uncertainty monotonicity condition (19) .

Proof. The proof is constructed directly. Let xS = xi
Si

then (20) directly assigns yi
Ti

which
meets the interpolation conditions and thus, a) holds.

Let us consider xS and xR such that S ≤ R and let us split the situation. First, let
x = xi. If both S and R are narrower than Si then the result is yi

Ti
and the monotonicity

condition is preserved. If S ≤ Si and Si ≤ R then according to (18):

f (xR) = yi
T where T = min(max(Si, Si+1, Ti, Ti+1, R), max(Si−1, Si, Ti−1, Ti, R))

and clearly, Ti ≤ T which again preserves the monotonicity.
Let x �= xi then Formula (17) applies to f (xS) and f (xR) leads to ymax(Si ,Si+1,Ti ,Ti+1,S)

and ymax(Si ,Si+1,Ti ,Ti+1,R), respectively, with y ∈ R being the solution of the crisp linear
interpolation problem. As S ≤ R and all the other similarities are present in both solutions,
the uncertainty monotonicity condition (19) is preserved and thus, (a) holds.

Finally, we investigate another important property of the interpolating S-function
that is, the preservation of the monotonicity with respect to the inputs. This property,
naturally, makes sense only if the described dependency that is being modeled is assumed
to be monotone. This assumption, though might be viewed as too restrictive, belongs to
crucial and very usual properties. In the context of the approximate reasoning, the first
studies on monotonicity of fuzzy rule bases were introduced by Van Broekhoven and
De Baets [44,51,52]. Later, the original studies focusing mainly (not exclusively) on Mam-
dani–Assilian type of fuzzy rules, were followed by works aiming at the preservation
of the monotonicity of implicative fuzzy rules [45,53,54]. Such research starts always by
assuming that the given fuzzy rule base is monotone, i.e., abstracting from the mathe-
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matical formalism, considering any two antecedents, the bigger one is connected to a
bigger consequent. Interestingly, the resulting function after applying the defuzzification
is not always preserving the monotonicity, see [43]. Therefore, the other works aimed at
determining the conditions under which the monotonicity is preserved.

Other two approximate reasoning tasks related to the above-given monotonicity
problem are: preservation of the interpolation condition and monotonicity regarding
fuzzy inputs.

The very first one became a natural consequence of the works [7,8] that, in order to
preserve the monotonicity of the resulting function, modifies the original fuzzy rule base
by specific at-least and at-most modifiers [55,56]. Then naturally, one must ask whether
an input equivalent with one of the original antecedents still leads to the derived output
equivalent to the original consequent, although the fuzzy rule base used for the inference
contains already modified antecedents as well as consequents. The solution presented
in [7,8] investigated the conditions under which the interpolativity remains preserved.

The other problem arises whenever we do not intend to involve a defuzzification
and the inputs are fuzzy as well. Then the monotonicity preservation is investigated on a
higher layer, in particular, assuming that we are given a partial mapping from fuzzy sets to
fuzzy sets, e.g., by a fuzzy rule base, such that for any two fuzzy inputs (antecedents) that
are ordered, the respective fuzzy outputs (consequents) reflect the order. Moreover, as in
the above cases, the fuzzy inputs (are supposed to be ordered) and thus, the monotonic
description is provided, although in a discrete form. Now, the task is to complete this
partial mapping from fuzzy sets to fuzzy sets to a total one, but preserving the monotonicity.
Therefore, if two order fuzzy inputs are processed, the generated fuzzy outputs must
preserve the same order. Following the previous works, the whole description of the
monotonicity is provided for the increasing case as the decreasing case is directly obtained
by inverse steps.

This naturally leads to the investigation of the monotonicity of the S-interpolation.
Let us assume that the nodes are ordered xi

Si
≤ xi+1

Si+1
and the respective consequents are

reflecting the order, i.e., let yi
Ti
≤ yi+1

Ti+1
, for any i = 1, . . . , n − 1. Let us apply the linear S-

interpolation. Do we obtain a monotone S-function f ? The following proposition provides
us with the answer.

Proposition 8. Let (FS (R),+,−, ·,−1 ) be an MI-prefield such that any similarity from S is shift-
invariant and let ≤ be a strongly compatible S-ordering on FS (R). Let (x1

S1
, y1

T1
), . . . , (xn

Sn
, yn

Tn
) ∈

FS (R)2 such that xi
Si
≤ xi+1

Si+1
and yi

Ti
≤ yi+1

Ti+1
for any i = 1, . . . , n − 1 and let f be given by the

linear S-interpolation of the given pairs of extensional fuzzy numbers. Then f is increasing.

Proof. As the S-order is strongly compatible, it is also total and thus, the problem is
correctly defined. Let us consider inputs uR, vS ∈ FS (R) such that uR ≤ vS. The situation
splits into several cases.

First, let us assume that both inputs are indistinguishable from the nodes up to a
certain similarity, i.e., uR − xi

Si
∈ I0

S and vS − xi+k
Si+k

∈ I0
S for some i and some k such that

i + k ≤ n. Then necessarily u = xi and v = xi+k and the respective outputs f (uR) =
yi

M and f (vS) = yi+k
N for some M, N ∈ S . Due to the assumption of the theorem, we

know that yi ≤ yi+k. Put U = max(M, N). Since M ⊆ U and N ⊆ U, we obtain
U = M ◦ U and U = N ◦ U as has been verified in the proof of Proposition 3. As with
the proof of Lemma 4, from the shift-invariance of U, we simply obtain EXTU(yi) ≤i
EXTU(yi+1), and hence, EXTmax(M,N)(yi

M) = EXTM◦U(yi) = EXTU(yi) ≤i EXTU(yi+k) =

EXTN◦U(yi+k) = EXTmax(M,N)(y
i+k
N ). Due to the real-order compatibility we get yi

M ≤ yi+k
N

that is f (uR) ≤ f (vS).
Second, let us consider uR, vS such that they lie in different “intervals”, i.e., let xi

Si
≤

uR ≤ xi+1
Si+1

and let xi+k
Si+k

≤ vS ≤ xi+k+1
Si+k+1

for some i, k such that k ≥ 1 and i + k ≤ n − 1.
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Then using Formula (20) for the S-interpolation and Lemma 4 we obtain f (uR) ≤ yi+1
Ti+1

and yi+k
Ti+k

≤ f (vS) which, using the transitivity axiom (O3), proves that f (uR) ≤ f (vS).

Finally, we assume that both inputs belong to the same “interval”, i.e., xi
Si

≤ uR ≤
vS ≤ xi+1

Si+1
. Using an analogous technique, we used in the second case, we obtain f (uR) =

w1
M and f (vS) = w2

N such that w1 ≤ w2. Then, we proceed analogously to the first case
and we obtain EXTmax(M,N)(w1

M) ≤i EXTmax(M,N)(w2
N) that jointly with the pre-order

compatibility leads to the desirable conclusion that f (uR) ≤ f (vS).

Proposition 7 jointly with Proposition 8 provides us with the crucial answers. In par-
ticular, they confirm that the proposed linear S-interpolation interpolates the given pairs of
extensional fuzzy numbers and moreover, it is monotone in “both directions”, with respect
to the uncertainty as well as with respect to the ordering of vague quantities. Especially
the latter has a strong impact on modeling the approximate reasoning in distinct schemes,
namely when fuzzy interpolating a sparse fuzzy rule base.

6. Experimental Demonstration

The purpose of this experiment is not to demonstrate an exhaustive comparison of
the suggested approach with the existing ones. First, such a comparison would need to
have given a justified cost function on which we could evaluate some fair score. And the
fairness of such a cost function would be a nutshell from the objectivity point of view.
Indeed, for any interpolation function, there might be a cost function on which the par-
ticular method is optimal; however, this only creates biased information that we want to
avoid deliberately. Secondly, the aim of this article is not centrally focused on the fuzzy
interpolation problem. It provides a very general concept coming from the arithmetics of
extensional fuzzy numbers and allowing the construction of concepts such as S-ordering,
S-function, and/or S-interpolation that can be either directly used or further extended
to additional concepts known from the classical mathematical analysis. It is clear that a
particular comparison would rather give information on the particular setting. Not only
parametric but mainly conceptual, see Section 7.

However, for the sake of clarity, comprehensibility, and mainly for demonstrative
purposes, we find the experimental example as a crucial part of the work. Below, we
provide one such example that comes from the real-world problem, in particular, from our
long-term grant supported co-operation with economists.

6.1. Ice-Cream Sales Modeling

The world ice-cream market is dominated by several well-established players who
saturate a large market share. Their products are very similar and often differ only in
marketing and seasonal innovations. The market basically consists of three types of
products, namely artisanal ice-cream, pulse ice-cream, and take-home ice-cream, where
the latter dominates the global market, with hypermarkets and supermarkets being the
leading distribution channel. The largest market in terms of revenues is the US market,
although the highest growth rate is currently observed in Asia–Pacific market.

The experimental demonstration is focused on the Czech Republic with the average
per capital consumption close to 5 kg with low but stable annual growth of about 2% over
the last decade and the high sensitivity to weather conditions leading to large differences
between summer and winter sales, which is a feature observed in all countries outside the
(sub)tropics. Analysis of ice-cream market data (see e.g., www.statista.com) shows that
atypical weather conditions in seasons such as warm winter and early spring or colder
summer can cause a drop in the ice-cream market revenue growth. Therefore, it is desirable
to model the relationship between weather conditions in individual seasons and ice-cream
sales, which will be used to predict the ice-cream market revenue growth when weather
conditions are estimated.

For this purpose, we use dataset that consists of adjusted and normalized quarterly
sales in the Ice category (various kinds of, mostly, take-home ice-cream) of one of the largest
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market players over 2008–2014, i.e., 28 observations are available, in the Czech Republic.
It should be noted that only quarterly sales data are available; however, the production
process cannot be rescheduled every day and the product has a relatively long use, allowing
it to be stored relatively long in shops and households; therefore, the quarterly sales
prediction appears to be sufficient to optimize the production process. To illustrate the
S-interpolation also for quarterly ice-cream sales that are inaccurate for some reason, we
extend the crisp sales to extensional fuzzy numbers by adding a randomly determined
standard deviation to each sale (see, Table 1). The quarterly sale expressed as an extension
fuzzy number is then determined by the parameters (s, σs) and described as a fuzzy number
sT : R → [0, 1], where the similarity of the relation T on R is given (1) in Example 1, i.e.,

T(x, y) = 1 − |x − y|
σs

∨ 0, x, y ∈ R, (21)

and sT(x) = T(s, x). Unlike the quarterly ice-cream sale s expressed by a crisp number,
the extensional fuzzy number sT models the fact that the quarterly sale is “about s”; for
example, we have “about 1.53” in spring 2010 as could be seen in Figure 5a.

Table 1. Quarterly sales of ice-cream rounded to two decimals and standard deviations rounded to three decimals over
2008–2014 (Q1 = winter, Q2 = spring, Q3 = summer, Q4 = fall).

2008 2009 2010 2011 2012 2013 2014

Q1 (0.23, 0.029) (0.24, 0.053) (0.25, 0.030) (0.24, 0.048) (0.27, 0.032) (0.19, 0.047) (0.31, 0.18)
Q2 (1.54, 0.091) (1.77, 0.094) (1.53, 0.072) (1.72, 0.082) (1.66, 0.101) (1.51, 0.118) (1.60, 0.073)
Q3 (2.53, 0.171) (3.25, 0.299) (2.59, 0.260) (2.62, 0.433) (2.57, 0.204) (2.50, 0.399) (2.22, 0.244)
Q4 (0.32, 0.072) (0.17, 0.106) (0.35, 0.042) (0.35, 0.075) (0.22, 0.087) (0.36, 0.064) (0.27, 0.079)

To express weather conditions, for demonstration purposes, we will use the daily
average temperatures (in degree Celsius) at Václav Havel Airport in Prague. Because each
quarter contains approximately 90 records of temperature, and similarly to ice-cream sales,
we summarize the temperature into an extensional fuzzy number determined by two
parameters, namely the average temperature and the standard deviation in the quarter
(see Table 2), which contains more information than only average temperature. Please note
that the standard modeling of the relationship between temperatures and ice-cream sales
(e.g., based on the interpolation or regression) use the average temperature in the quarters,
while the random fluctuation of temperatures in the quarters expressed by the standard
deviation is not considered (cf. [57]).

Table 2. Quarterly temperatures and standard deviations rounded to two decimals over 2008–2014.

2008 2009 2010 2011 2012 2013 2014

Q1 (3.11, 3.55) (0.09, 4.44) (−0.75, 5.63) (0.94, 5.30) (1.16, 6.95) (−0.97, 4.04) (3.44, 4.16)
Q2 (13.37, 5.09) (14.09, 3.22) (12.70, 4.74) (14.46, 4.37) (13.94, 5.95) (12.32, 5.59) (13.19, 4.34)
Q3 (16.53, 4.60) (18.12, 2.96) (17.02, 4.85) (17.05, 3.26) (17.40, 3.99) (17.02, 4.64) (17.05, 3.60)
Q4 (4.75, 4.68) (4.53, 8.81) (2.13, 6.67) (4.84, 4.54) (3.96, 4.80) (4.96, 4.53) (6.35, 5.01)

An extensional fuzzy number expressing the temperature in a quarter and determined
by parameters (t, σt) is the fuzzy set tS : R → [0, 1], which is defined in the same way
as the similarity R for the quarterly sales. An example of the extensional fuzzy number
expressing the temperature “about 12.7” in spring 2010, which is determined by parameters
(12.70, 4.74) in Table 2, is displayed in Figure 5b.
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(a) Extensional fuzzy number determined
by (1.53, 0.094)

(b) Extensional fuzzy number determined
by (12.70, 4.74)

Figure 5. Extensional fuzzy numbers expressing the ice-cream sale “about 1.53” and temperature “about 12.70” in
spring 2010.

In the following subsection we will describe the procedure how to S-interpolate
extensional fuzzy numbers expressing temperatures and ice-cream sales in quarters in the
years 2008–2014.

6.2. General Description of S-Interpolation Procedure

Let (x1
S1

, y1
T1
), . . . , (xn

Sn
, yn

Tn
) be pairs of extensional fuzzy numbers such that xi

Si
≤ xi+1

Si+1
for any i = 1, . . . , n. We call these pairs of extensional fuzzy numbers as extensional fuzzy
data. In contrast to the interpolation of real data, we must be more careful in the direct use
of Formula (20) for extensional fuzzy data. The reason is that the fuzziness of extensional
fuzzy numbers on input, which is expressed by a similarity relationship, is distributed
through Formula (20) to another fuzziness specifying the similarity relation of extensional
fuzzy number on the output of S-interpolation. Since the input and output of extensional
fuzzy data are in practice obtained by the measurement on different scales, the meanings
of fuzziness are different for input and output fuzzy data, which leads to incorrect results
by direct application of (20). In other words, unless the same measurement scale is used
to determine the input and output fuzzy data, we cannot assume that extensional fuzzy
data can be handled in one ordered MI-prefield, and the S-interpolation introduced in
Definition 14 cannot be applied for them. This problem can be overcome by a normalization
procedure, which ensures that the normalized extensional fuzzy numbers will belong to
the same ordered MI-prefield.

In what follows, we assume that extensional fuzzy data generally belong to FSI (R)×
FSO(R), where FSI (R) and FSO(R) are ordered MI-prefields with a strongly compatible
SI-ordering ≤I and a strongly compatible SO-ordering ≤O. respectively. We use I and
O in the indexes to refer to the input and output, respectively. Let FS (R) be an ordered
MI-prefield with a strongly compatible S-orderings ≤, and let NI : FSI (R) → FS (R)
and NO : FSO(R) → FS (R) be isomorphisms of ordered MI-prefields. We say that a
pair (NI , NO) of isomorphisms is a normalization of extensional fuzzy numbers if the
composition N−1

I ◦ NO and N−1
O ◦ NI introduce natural correspondences between the

ordered MI-prefields FSI (R) and FSO(R), i.e., N−1
I ◦ N0(xS) is a natural image of xS in

FSO(R) and vice versa N−1
O ◦ NI(yT) is a natural image of yT in FSI (R). Please note that the

decision if the compositions N−1
I ◦ N0 and N−1

I ◦ N0 are natural correspondences between
the ordered MI-prefields FSI (R) and FSO(R) depends on the user. If FSI (R) = FSO(R),
i.e., SI = SO = S , the pair (NI , NO) given by NI = id = NO, where id is the identity map
on FS (R), defines the trivial normalization of extensional fuzzy numbers, nevertheless,
the user must agree that extensional fuzzy data are determined by the measurement on the
same scale and thus can be processed in the same ordered MI-prefield FS (R). Now, we
can introduce the procedure of S-interpolation of extensional fuzzy data.
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Let (x1
S1

, y1
T1
), . . . , (xn

Sn
, yn

Tn
) be extensional fuzzy data, and let NI : FSI (R) → FS (R)

and NO : FSO(R) → FS (R) define a normalization of extensional fuzzy numbers. We put
xNI

S = NI(xS) and similarly yNO
T = NO(yT). The procedure of linear S-interpolation of

extensional fuzzy data with respect to the normalization given by (NI , NO) is as follows:

Input: extensional fuzzy number xS from FSI (R)

Step 1: normalize xS with respect to NI to get xNI
S

Step 2: find xiNI
Si

, xi+1NI
Si+1

such that xiNI
Si

≤ xNI
S ≤ xi+1NI

Si+1

Step 3: compute zR from (xiNI
Si

, yiNO
Ti

) and (xi+1NI
Si+1

, yi+1NO
Ti+1

) by Formula (20)

Step 4: compute yT = N−1
O (zR) (a denormalization procedure)

Output: extensional fuzzy number yT from FSO(R)

It is easy to see that if FSI (R) = FSO(R) and the input and output extensional fuzzy
numbers were determined by the measurement on the same scale, one can set (NI , NO)
as the trivial normalization, and the output extensional fuzzy number coincides with the
extensional fuzzy number obtained directly by Formula (20).

6.3. Experimental Results

Our extensional fuzzy data consist of 32 pairs (ti
Si

, si
Ti
), where we put i = 1 for winter

2008, i = 2 for spring 2008, etc. Recall that each input extensional fuzzy number ti
Si

is
determined by parameters (ti, σi

t) displayed in Table 2, where ti is the average temperature,
σi the standard deviation in the i-th quarter and Si is given by (21). For the output values,
we will consider two situations:

(a) the ice-cream sales are crisp fuzzy numbers, i.e., extensional fuzzy numbers si
Ti

,
where Ti is the equality relation and only the first parameter in each pair (si, σi

s) is
considered in Table 1;

(b) the ice-cream sales are “true” fuzzy numbers, i.e., extensional fuzzy numbers si
Ti

,
where the similarity Ti is given by (21) and both parameters in each pair (si, σi

s) are
considered in Table 1.

The first situation is very common in practice and occurs when output data (ice-cream sales)
are available as real numbers, and we have no further information. The second situation
requires additional information, for example, quarterly sales are average ice-cream sales
that are calculated from weekly sales in quarters, where the standard deviation provides
additional information, or the expert expresses an inaccuracy in the total sale in the quarter.

Let FS∞(R) be the ordered MI-prefield introduced in Example 12. Obviously, our
extensional fuzzy data belong to FS∞(R)

2, where pi is the inverse element to the standard
deviation σi, i.e., pi =

1
σi

, but the input and output extensional fuzzy numbers cannot be
reasonably processed in this ordered MI-prefield without normalization. Indeed, the scale
for measuring temperature is different from the scale used for sales of ice-cream, and even
scales within different quarters are different as could be seen from Table 3, where we
display the standard deviations for the temperatures and ice-cream sales.

Table 3. Data for normalization computed in quarters 2008–2017.

Quarters Temperature st. Deviation (σt,j) Ice-Cream Sale st. Deviation (σs,j)

Q1 8.110 0.036
Q2 8.063 0.010
Q3 8.161 0.313
Q4 8.034 0.072

In contrast to the standard deviations of temperature in quarters (the standard devia-
tion for all temperatures in 2008–2014 is 8.17), which are almost the same, there are large
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differences between the standard deviations of ice-cream sales in quarters (the standard
deviation for all sales in 2008–2014 is 1.02). The variability of the standard deviations of
ice-cream sales forces us to model the relationship between temperature and ice-cream sales
in each quarter separately, otherwise the resulting sales uncertainty may be affected by
inaccurate normalization. This would certainly happen if we applied overall normalization
to all sales. Therefore, before we use the linear S-interpolation procedure introduced in the
previous subsection, we normalize the standard deviations with respect to the standard de-
viations of the temperatures and the sales in the respective quarters of the years 2008–2014,
see Table 3. Please note that the normalized values (i.e., standard deviations) are measured
in the unit of the standard deviation.

For any extensional fuzzy number tSp expressing a temperature in a quarter Qj (j =
1, . . . , 4), we define NI,j(tSp) = tSp′ with p′ = p · σt,j, where σt,j is the standard deviation
of temperatures in Qj. Similarly, for any extensional fuzzy number sTq expressing an
ice-cream sale in a quarter Qj, we define NO,j(sTq) = sTq′ with q′ = q · σs,j, where σs,j is the
standard deviation of sales in Qj. For p = q = ∞, we put p′ = q′ = ∞ · σt = ∞ · σs = ∞,
hence, NI,j(tS∞) = tS∞ and NO,j(sT∞) = sT∞ . Please note that p′ = p · σt,j (and similarly
q′ = a · σs,j) is derived from the following formula

1
p′

=

1
p

σ
j
t

where 1
p represents a standard deviation for p and 1

p′ a standard deviation for p′, and thus

the standard deviation 1
p′ is a normalization of the standard deviation 1

p with respect to
σt,j. According to Example 13, the maps NI,j and NO,j are isomorphisms from FS∞(R)
onto FS∞(R). In addition, we agree that these isomorphisms are appropriately selected for
normalization, where we do not measure in the original units, which are clearly different,
but in the units of standard deviations in quarters, which are abstract and the same for
input and output.

Unlike the standard linear interpolation, we cannot display the linear S-interpolation
in a clear way, because we have infinitely many extensional fuzzy numbers for any real
number. On Figure 6, we illustrate the linear S-interpolation on extensional fuzzy data
observed in summer that are crisp and fuzzy, and we show separately the use of each rule of
Formula (20) from Definition 15, where the computational algorithm is designed according
to the procedure established in the previous subsection. In Figure 6a-left, the temperature
measured as “about 17.7” and expressed by the extensional fuzzy number tSp with t = 17.7
and p = 1/4 (or σt = 4) gives the estimation of ice-cream sale sTq with s = 2.857 and
q = 1/0.153 (or σs = 0.153). Since the sales of ice-cream in output data are crisp numbers,
the uncertainty of the estimated sale is only affected by the uncertainty of the input data
temperatures and the uncertainty of the temperature for which the sale is estimated.
The standard deviation σt,3 = 8.161 for normalization and σs,3 = 0.313 for denormalization
are used in our procedure to get an appropriate estimation of the uncertainty of the ice-
cream sale. In Figure 6a-right, we consider the same input data as above, but the sales of
ice-cream in output data are “true” extensional fuzzy numbers. It can be seen that in both
situations the same estimate of ice-cream sales is obtained, which indicates a dominant
similarity among the used temperatures. In other words, the uncertainty present in the
sales nodes is lower than the uncertainty present in a used temperature. In Figure 6b-left,
the input temperature determined as “about 17.4” and expressed by tSp with t = 17.4 and
p = 1/3 (or σt = 3) gives the estimation of ice-cream sale that coincides with the crisp sale
output 2.57 for the temperature node t19

Sp19
with t19 = 17.4 and p19 = 1/3.99 (or σt19 = 3.99).

The reason is that t = t19 and simultaneously Sp ≤ Sp19 (i.e., p = 1/3 > 1/3.99 = p19),
and due to the uncertainty monotonicity condition (19), the uncertainty of ice-cream
sale corresponding to temperature tSp cannot be higher than the uncertainty of output
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corresponding to temperature node t19
Sp19

. Similarly, in Figure 6b-right, the estimation of

ice-cream sale coincides with the sale output s19
Tq19

with s19 = 2.57 and q19 = 1/0.204 (or
σs19 = 0.204). On the other side, in Figure 6c-left, the input temperature determined as
“about 17.4” and expressed by tSp with t = 17.4 and p = 1/4.3 (or σt = 4.3) gives the
estimation of ice-cream sale sTq with s = s19 = 2.57 and q = 1/0.165 (or σq = 0.165).
The reason is that t = t19 and simultaneously Sp > Sp19 and therefore, the uncertainty of
ice-cream sale output corresponding to temperature tSp can be higher than the uncertain of
output corresponding to temperature node t19

Sp19
(i.e., p19 = 1/3.99 > 1/4.3 = p), which

results in the application of Formula (18). In Figure 6c-right, we display the resulting
estimation of ice-cream sale in the situation when the input data are the same as above
and the ice-cream sales in the output data are expressed by extensional fuzzy numbers.
One can see that the estimation is the same as for sales expressed in real numbers, which
indicates a dominant similarity among the used temperatures similarly as in Figure 6a.

(a) An input temperature that differs from temperature nodes-applied Formula (17)

(b) An input temperature that differs from a temperature node up to similarity with lower similarity-applied the
third rule of Formula (20)

(c) An input temperature that differs from a temperature node up to similarity with higher similarity-applied
Formula (18)

Figure 6. Estimation of ice-cream sales based on the linear S-interpolation for selected temperatures in summer, where sale
data are crisp (left) and fuzzy (right); temperature and ice-cream sale nodes are colored red, the selected (input) temperature
and estimated (output) sale blue.
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In Figure 7, we illustrate the linear S-interpolation between three pairs of temperatures
and ice-cream sales observed in winter, where sales are expressed by extensional fuzzy
numbers, and show the estimation of ice-cream sales for three selected temperatures. Two
of them, namely “about 1.7” (σt1 = 3) and “about 3.3” (σt2 = 4.5), lie between temperature
nodes and “about 1.16” (σt3 = 7.35) coincides with the first node up to similarity with a
higher similarity. The estimation of ice-cream sales is “about 0.257” (σs1 = 0.032), “about
0.277” (σs2 = 0.029) and “about 0.266” (σs3 = 0.033).

Figure 7. Estimation of ice-cream sales based on the linear S-interpolation for selected temperatures
in winter.

It should be noted that in practice it is very difficult to predict the average temperature
in the coming quarter as a single number and it is more appropriate to use a confidence
interval or an extensional fuzzy number as in our case. The linear S-interpolation can be
then used to predict ice-cream sales in the coming quarter, providing important information
for production planning.

6.4. Comparing with Other Approaches—Discussion

As stated in the Introduction, fuzzy interpolation is a rather old problem with many
well-developed techniques, no matter we talk about the geometrically motivated or rather
logically motivated approaches. Thus, the formal apparatus designed in this article should
naturally face some comparison with them. In data sciences (e.g., in pattern recognition or
classification), we usually encounter an exhaustive experimental comparison with some ob-
jective evaluation on a given cost function. However, up to our best knowledge, there is no
generally accepted quality criterion determining for fuzzy interpolation tasks. Indeed, there
is always a way to define such a criterion, but it would be purely subjectively designed.

In such a case, we opt for a demonstrative comparison on the above-presented ice-
cream sales data with two prototypical representatives of existing methods employing
different paradigms. The first one that stems from the geometric motivation is the well-
known Kóczy–Hirota (abbr. KH) methods introduced in [9]. Although this method is
rather old and several improvements have been employed soon after its publication, it is a
fundamental basis for many other geometrically oriented techniques, see [58]. Moreover,
this method possesses the advantage of low computational costs and it is driven by the
same crisp technique—the classical linear interpolation. For observing the differences, we
find this choice very appropriate.

The second method stems from the logical (approximate reasoning) motivation and it
is the standard fuzzy relational inference. Such method models the existing rules by a fuzzy
relation that is either conjunctive (often called Mamdani–Assilian [59]) or implicative [60]
and connects the fuzzy relation to a composition-based inference, i.e., to an appropriate
image of a fuzzy set under the fuzzy relation. For more details on the distinct types of rules,
their properties and the connection to the compositions/images as inference mechanisms,
we refer to [61,62]. Briefly, the appropriate combinations are: (1) the implicative fuzzy
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rule base (antecedents and consequents are connected via a residated implication, rules are
aggregated with help of the minimum) together with the basic composition, which is the
well-known Compositional Rule of Inference (CRI); and (2) the conjunctive fuzzy rule base
(antecedents and consequents are connected via a t-norm, rules are aggregated with help of
the maximum) together with the Bandler–Kohout subproduct. The opposite combinations
may cause complications, see [63].

Remark 10. Many articles use the combination of the (Mamdani–Assilian) conjunctive fuzzy
rules base and the CRI. This is often totally correct as the vast majority of cases deals with crisp
inputs while the danger appears in the case of fuzzy inputs. Indeed, in the case of crisp inputs, no
matter we deal with CRI or the Bandler–Kohout subproduct, the inference degenerates into a simple
substitution of the crisp input into the given fuzzy relation so, we even cannot distinguish between
these two compositional inferences, they coincide. But for the fuzzy interpolation task with fuzzy
inputs, the choice of the combination is essential.

Now, let us focus on several examples from the above elaborated ice-cream sales
dataset. The first example considers “the simplest” case when the antecedents as well as
consequents are ordered with respect to the interval-ordering of α-cuts and the fuzzy input
lies “between” the antecedents, and the antecedents as well as consequents are overlapping.
This case is demonstrated on a part of the autumn data from the ice-cream sales problem,
see Figure 8. As we can see, the KH method and the proposed S-interpolation method
provides very comparable results. The proposed method generated a bit narrower output
however, this advantage is caused by a well-chosen relativization determined by the
standard deviation transformation caused and indeed, it could be easily lost. Therefore, we
do not dare to claim it as a generally valid principle. The third method determined by fuzzy
relational inference determined something that is logically correct however, not meeting
the expectations of the analytical interpolation that is used under the implicit assumption
of the satisfaction of the functionality axiom. Please note that the choice of the algebra has
no significant influence, for example, using the Łukasiewicz implications would lead to a
higher output fuzzy set but still reaching values around 0.6 at maximum and moreover,
with an unlimited support. Here, we would like to emphasize that this is nothing against
fuzzy relational inference. The problem lies in the fact that the antecedents are closer to
each other than the consequents and thus, the fuzzy rule base is not coherent [64] which is a
sort of consistency (non-conflictness) of the fuzzy rules. In other words, this means nothing
wrong about fuzzy relational inference but rather about its non-applicability on such
interpolative setting. Finally, the use of the other preferred combination (Mamdani–Assilian
rules with Bandler–Kohout subproduct) would lead to a subnormal and non-convex output
fuzzy set—again not meeting the implicit functionality axiom.

Now, let us consider the cases depicted on the right-hand side of Figure 6a. There,
the antecedents are not ordered with respect to the interval-ordering of α-cuts which
makes impossible to use the KH method (at least in its original form) while the proposed
S-interpolation works well due to the robustness of the S-ordering. The fuzzy relational
inference here can easily infer the outputs too as the ordering of antecedents does not
play any role. However, the consequent part makes the inferred outputs inappropriate,
in particular, the disjointness of the consequents is an extreme version of the incoherence
and thus, the implicative rules would infer a fuzzy set equal to zero on the whole universe.
For the completeness, let us mention that the Mamdani–Assilian rules would result again
subnormal and non-convex outputs without any functional meaning.
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(a) Linear S-interpolation

(b) KH linear interpolation method

(c) Fuzzy relational inference—implicative rules with the CRI inference,
the Gödel implication used.

Figure 8. Comparison of our method with two fundamental interpolation techniques on particular
part of autumn ice-cream sales.

Another similar example is depicted on the right-hand side of Figure 6b. It is the same
situation as in the previous case with the only difference that the fuzzy input is located in
one of the nodes for the antecedents; however, the input is narrower than the antecedent.
The figure shows how the proposed S-interpolation generates the outputs while up to our
best knowledge, KH method would not be applicable. But again, after some adjustments,
KH method would deal with this input too and infer some reasonable output. The fuzzy
relational inference would lead to the same as in the previous case.

The last case we consider is the situation of a sparse rule base where fuzzy relational
inference would not again meet the expectations imposed by the assumed functionality
axiom. In particular, if we were given two disjoint antecedents and the fuzzy input would
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be placed in between of them in such a way it would be disjoint with both, the inferred
output would be equal to 1 on the whole output universe (or to 0, in the case of the
Mamdani–Assilian rules with the Bandler–Kohout subproduct). Here, we would like to
again emphasize that this not wrong at all from the logical perspective. If the rules are
logical constraints stating that the consequent should be inferred under the assumption
that the antecedent holds, and none of the antecedent is met by the input, we may deduce
nothing, which is mirrored by the outputs 1 or 0, depending on the semantics of the rules.
This is only again a case where, without further improvement like the one proposed in [15],
relational inference is not appropriate for approximate reasoning schemes of this type of
sparse cases. Here, the KH method performs a practical advantage as it is deliberately
designed for the sparse rule bases. This case is not demonstrated on the real data as such a
case has not occurred in the ice-cream sales dataset at all. However, from the principal point
of view, the results obtained from the KH method and from the proposed S-interpolation
would be very comparable—mimicking the cases depicted in Figure 8.

7. Conclusions and Future Work

The presented approach stemmed from the particular fuzzy arithmetic, namely from
the arithmetic of extensional fuzzy numbers [19,25]. The first steps from the arithmetic
towards the ordering were published in [23,24] with the aim to construct metrics of fuzzy
numbers [48]. The original motivation came from the need for modeling the triangle
inequality in the metric-like structures. However, it is clear that the importance of S-
orderings is much only higher and mainly more general. Apart from the clear directions
coming from the mathematical analysis based on the extensional fuzzy numbers (fuzzy
approximation, mathematical analysis, construction of limits, convergences), already [24]
mentioned approximate reasoning as one of the related areas where this research can have
an importance.

Indeed, the fuzzy interpolation is one of the crucial problems in approximate reasoning
and it is not possible to study it from the analytical point of view if we cannot order the
used fuzzy sets (fuzzy numbers) in such a way to be able to state that an input lies “between
two given fuzzy nodes”. This article copes with this topic and incorporates the technique
of the S-interpolation generically from the formal roots (arithmetic, ordering, S-functions)
to the problem formalization (S-interpolation, uncertainty monotonicity, and standard
monotonicity) towards the practical implementation and the demonstrative example. It
is clear that the proposed calculation is just one of the rich pool of possibilities and as
mentioned in Remark 9 other techniques can be introduced analogously. The remark also
contains a discussion pointing the potential drawbacks of more sophisticated approaches
as well as the direction towards their elimination.

One can view the proposed approach as a single instance of more general classes of
S-interpolations not only form the linear, polynomial or other basis point of view, but also
form the point of view of processing the vagueness. Indeed, following the arithmetic
of extensional fuzzy numbers, also the S-interpolation is a sort of two-step procedure.
In the first one, the “crisp” part of the task is solved using the standard technique. In the
second one, the resulting vagueness (uncertainty, tolerance, etc.) is calculated as a result
of the computation with the similarities entering the interpolation problem. And as one
can modify the first step of the procedure and consider, e.g., polynomial interpolations,
the second step can be modified as well, and the resulting similarity may be deduced
differently. So far, the procedure coming from the arithmetic of extensional numbers was
naturally inherited as the linear S-interpolation is derived from the arithmetic operations.
However, considering the definition of the S-function that is more general and the above-
introduced examples (exponential, logarithmic, trigonometric), we are equipped with tools
that allow modeling of the spreading of the vagueness in distinct ways according to the
application or theoretical needs.

In our future research we plan to continue in the development of S-interpolation for
other types of functions and using metrics introduced in [48] we want to design more
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advanced interpolation approaches. For example, motivated by the Gaussian process
regression (kriging) that has become popular in Machine Learning [65], where the interpo-
lated values are modeled by Gaussian processes and are basically obtained as weighted
averages of known neighbor nodes (see, e.g., [66]). In addition, it is a very challenging
task to design an interpolation (regression) model that together admits probability and
fuzziness of the data. The proposed theory seems to provide promising tools for successful
solutions of this task.

Author Contributions: The conceptualization was contributed mainly by M.H. and M.Š.; method-
ology was mainly done by M.H.; software implementation was done by N.Š.; experimental design
was proposed by M.H. and contributed by the other two authors as well; formal analysis was mainly
done by M.Š. and contributed by the other authors as well; writing was done mainly by M.Š. and
reviewed by the other two co-authors; visualization was done by N.Š. and reviewed by M.H.; the
piloting ideas were created in joint brainstormings and discussions as a joint work. All authors have
read and agreed to the published version of the manuscript.

Funding: The 1-st author announces support of Czech Science Foundation through the grant 18-
13951S. The 2-nd author acknowledges funding from the project “Support of talented PhD students at
the University of Ostrava” from the program RRC/10/2018 “Support for Science and Research in the
Moravian-Silesian Region 2018”. The 3-rd author announces support of Czech Science Foundation
through the grant 20-07851S.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express their thanks to László T. Kóczy, Kaoru Hirota,
and Ulrich Bodenhofer for their inspiring works that brought our attention to this field. Furthermore,
we would like to express our thanks to the anonymous reviewers who helped to improve our article
and directed our future research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Perfilieva, I. Finitary Solvability Conditions for Systems of Fuzzy Relation Equations. Inf. Sci. 2013, 234, 29–43. [CrossRef]
2. Di Nola, A.; Sessa, S.; Pedrycz, W.; Sanchez, E. Fuzzy Relation Equations and Their Applications to Knowledge Engineering; Kluwer:

Boston, MA, USA, 1989.
3. Pedrycz, W. Applications of fuzzy relational equations for methods of reasoning in presence of fuzzy data. Fuzzy Sets Syst. 1985,

16, 163–175. [CrossRef]
4. De Baets, B. Analytical solution methods for fuzzy relational equations. In The Handbook of Fuzzy Set Series Vol. 1; Dubois, D.,

Prade, H., Eds.; Academic Kluwer Publ.: Boston, MA, USA, 2000; pp. 291–340.
5. Perfilieva, I.; Lehmke, S. Correct models of fuzzy IF-THEN rules are continuous. Fuzzy Sets Syst. 2006, 157, 3188–3197. [CrossRef]
6. Cornejo, M.E.; Lobo, D.; Medina, J. On the solvability of bipolar max-product fuzzy relation equations with the product negation.

J. Comput. Appl. Math. 2018, 354, 520–532. [CrossRef]
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25. Holčapek, M.; Štěpnička, M. Arithmetics of extensional fuzzy numbers–part I: Introduction. In Proceedings of the IEEE

International Conference on Fuzzy Systems, Brisbane, Australia, 10–15 June 2012.
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Abstract: Autonomous (unmanned) combat systems will become an integral part of modern defense
systems. However, limited operational capabilities, the need for coordination, and dynamic battlefield
environments with the requirement of timeless in decision-making are peculiar difficulties to be
solved in order to realize intelligent systems control. In this paper, we explore the application of
Learning Classifier System and Artificial Immune models for coordinated self-learning air defense
systems. In particular, this paper presents a scheme that implements an autonomous cooperative
threat evaluation and weapon assignment learning approach. Taking into account uncertainties
in a successful interception, target characteristics, weapon type and characteristics, closed-loop
coordinated behaviors, we adopt a hierarchical multi-agent approach to coordinate multiple combat
platforms to achieve optimal performance. Based on the combined strengths of learning classifier
system and artificial immune-based algorithms, the proposed scheme consists of two categories of
agents; a strategy generation agent inspired by learning classifier system, and strategy coordination
inspired by Artificial Immune System mechanisms. An experiment in a realistic environment shows
that the adopted hybrid approach can be used to learn weapon-target assignment for multiple
unmanned combat systems to successfully defend against coordinated attacks. The presented
results show the potential for hybrid approaches for an intelligent system enabling adaptable and
collaborative systems.

Keywords: air defense system; artificial immune system; command and control; learning classifier
system; multi-agent systems; weapon-target assignment

1. Introduction

In recent years, the challenges arising from the deployment of robotic systems in
defense and security applications have been addressed from several different perspectives.
As a typical multi-agent system, the complexity does not only emanate from the dynamics
of the application domain, but also the limited and uncertainty in perceived information.
In an attempt to handle these uncertainties, the research community has proposed several
theories [1–3].

In the domains of defense application, unmanned combat platforms may be deployed
to provide defense against targets and coordinated attacks by enemy adversaries. In these
regards, an important functionality required by the multi-agent system is the threat evalua-
tion and weapon assignment to targets that pose threats to its survival and/or the assets
being protected. The threat evaluation and weapon assignment functionality is one of
the fundamental problems in Command and Control Systems [4]. Threat evaluation and
weapon assignment includes the evaluation and assignment of defensive weapons to inter-
cept detected hostile threats with the primary objective of minimizing the total expected
survivability of the threat [5,6]. Threat evaluation and weapon assignment functionalities
are a fundamental part of achieving successful outcomes in naval combat scenarios.

To assist with the ever more complex and rapidly changing combat environment, com-
bat systems require access to real-time adaptable control systems that can handle uncertain
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information to provide intelligent decision-making when executing combat tasks. Research
work in this area seeks to realize the effective utilization of combat resources by minimizing
defensive assets loss, amount of resource utilized during interception, and maximizing the
effective kill probability while operating within the multiple constraints of the operating
platforms [5,7–10]. Effective combat systems in a multi-agent setting must be able to solve
conflicts of interest and optimize resource allocation.

Conflicts of interest and optimized resource allocation in general have received ex-
tensive attention in recent decades through the application of various approaches [11–13].
However, the limited operational capabilities and sophisticated battlefield environments
with the requirement of timeless in decision-making are peculiar difficulties to be solved
by Unmanned Combat Systems in modern battles. The dynamic and sophistication in
missions and situations encountered in the battlefield makes it challenging to design
intelligent and self-adaptive decision-making agents that are robust and fit for the battle-
field since the urgency associated with combat decision-making has many consequences.
Hence, the need to design methods and models to enable self-learning and coordinated
decision-making that is capable of adapting online by employing learning algorithms and
simulation-based training.

Multiple unmanned combat systems performing air defense operation is a typical
multi-agent system. In these type of missions, multiple entities are connected in a network,
with each system capable of computing and communicating autonomously and concur-
rently. Decision-making is based on the agents’ knowledge of the environment and various
entities in their locality of the network. The actions of individual agents in a multi-agent
system are suppressed or stimulated during the lifetime of the agents. This suppression
and stimulation are key characteristics of the artificial immune system.

The Artificial Immune System is an example of multi-agent and decentralized infor-
mation processing system that is capable of learning and remembering [14]. The artificial
immune system is based on working mechanisms exhibited by the Biological Immune
System. The complexity exhibited by the immune system has inspired various theories and
models which represent the different aspects proposed under the artificial Immune system
such as the immune network [15], Clonal Selection [16], Negative Selection, and Danger
Theory [17]. Several applications have been demonstrated based on these theories [18].
Despite the distributed nature of the immune system, their many engineering implementa-
tions are centralized.

On the other hand, the learning classifier system is one of the machine learning
techniques introduced by Holland in 1976. It combines evolution and learning in an
integrated way. A Learning classifier system evolves a group of IF − THEN rules called
classifiers [19] to find a suitable response of a learning system (agent) to incoming sensory
inputs. As opposed to other learning approaches such as neural networks, rules evolved by
a learning classifier system and its variants are easily understandable and general enough
for a wide range of learning tasks such as traffic control problems [20,21], multi-agent
control problems [22–25], and robotic control [26–28] etc. In the learning classifier system
approach, agents acquire appropriate strategies while interacting with an environment
by updating their classifier sets. The adaptation of classifiers is mostly done through
evolutionary computing based on genetic algorithms.

In this paper, a hybrid of artificial immune and learning classifier system is utilized to
design a self-learning system that implements autonomous cooperative threat evaluation
and weapon assignment learning. Based on the combined strengths of the two approaches,
we seek to realize an intelligent and adaptive system for a team of combat surface platforms
to successfully perform air defense weapon-target allocation against a coordinated attack of
heterogeneous targets in a realistic maritime environment. By considering the air defense
operation from a force coordination perspective, heterogeneous distributed combat systems
are required to make effective weapon-target assignment decisions to achieve interception
of fast and multi-batch targets. To meet the requirement of real-time decision-making,
combat systems are controlled by intelligent agents to coordinate and engage threats in
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stages based on the observed outcome of previous engagements. Threat evaluation and
weapon assignment is done in a distributed manner to reduce communication complexity.
Each agent only communicates and receives initial action strategies it generates with its
neighbors. This approach can increase the adaptability and success rate of the overall
mission. An experiment in a realistic environment shows that the method can be utilized
to learn weapon-target assignment for groups of combat platforms to successfully defend
against coordinated attacks. This research presents the following general contributions:

1. We investigate and demonstrate the applicability of a hybrid artificial immune and
Learning Classifiers System for realizing air defense intelligence.

2. A hierarchical self-learning scheme for multiple unmanned combat systems air de-
fense weapon-target allocation that integrates artificial Immune based algorithms
with learning classifier system is presented.

3. We propose an approach to facilitate learning by applying a negative selection concept
to filter out and condense situations from individual decision units.

The rest of this paper is presented as follows. In Section 2, the related work of this study
and a brief background of the learning classifier system and the artificial immune system
algorithms are discussed briefly. In Section 3, a description, analysis, and requirement of
the air defense system are described and the air defense problem formulated. Based on this
analysis and requirement, the framework allowing the multiple unmanned combat systems
to learn an air defense strategy using artificial Immune system and learning classifier
system is presented in Section 4. Having presented the framework for the autonomous
air defense strategy learning, experimental results in a realistic combat environment are
presented in Section 5. Finally, we present our concluding remarks by summarizing our
contribution and experimental results.

2. Background and Related Work

In this section, we first present some related works in unmanned combat vehicles
autonomous decision-making and learning approaches. Next, the biological principles
of the artificial immune system that are relevant to this work are presented. Finally,
the background knowledge of learning classifier system and it‘s working mechanism
is presented.

2.1. Related Work

It is expected that unmanned combat systems such as unmanned combat aerial ve-
hicles, unmanned combat surface vehicles, unmanned combat ground vehicles, etc., will
be deployed in diverse missions in the near future. However, the insufficient and noisy
information available for decision-making and control, simultaneous control variables,
several conflicting objectives toppled with a dynamic and complex operating environment
presents a challenge.

Several algorithms and approaches have been applied to realize control systems that
enable autonomous systems to execute complex missions [29–35]. For instance, an au-
tonomous decision-making for unmanned combat aerial vehicles (UCAVs) using genetic
fuzzy trees is presented by authors in [29]. The proposed system shows the capability of
obtaining strategies that are robust, aggressive and responsive against opponents. In [30],
an intelligent air combat learning system based on the learning dynamics of the human
brain is designed and its strategy acquisition without prior rules is demonstrated. The au-
thors in [34] used deep q-neural networks to obtain combat strategies in an attack-defense
pursuit-warfare of multiple UCAVs in a simplified environment. Alpha C2, an intelligent
Air Defense Commander operations using a deep reinforcement learning framework was
presented in [10]. The proposed system makes combat decision independent of human
decision-making. A multi-agent-based training system for USVs was presented in [35]
and a combat task for combat USVs was used to evaluate the system performance. Other
methods such as optimizations and game theoretic approaches have been reported [31–33].
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This work contributes to these body of literature by hybridising two known control and
decision-making approaches; Learning Classifier Systems and Artificial Immune Systems.

2.2. Learning Classifier Systems

In addition to the different variations proposed since its first introduction by Holland,
learning classifier systems have witnessed some improvement and real-world applications
in recent years [36–41]. One of the most main-stream and widely applied learning classifier
systems is the extended classifier system [42]. In the extended classifier system, classifiers
that always receive the same reward are sort after. As in a standard learning classifier
system, the extended classifier system consists of three main components; Performance,
Reinforcement, and Discovery components.

P(ai) =
Σclk∈[M]|ai

clk.p × clk.F
Σcll∈[M]|ai

cll .F
(1)

In the Performance Component, actions are selected and executed. To do this,
a matched set [M] of classifiers that match the current input messages in a population [P]
are formed and the acquisition reward for each action ai is calculated to obtain a prediction
array P(ai) using Equation (1). An action inferred from the prediction array is selected
and performed in the environment. Meanwhile, classifiers in P(ai) that have the selected
action are stored in an action set [A]. After the execution of the selected action, execution is
passed on to the Reinforcement component.

In the Reinforcement Component, the parameters of the classifiers in [M] are updated.
These parameters include the prediction p, the error ε which is the difference between the
reward received R and classifier prediction cl.p and the fitness of classifiers. To update the
p, the reward received from the environment is used as shown in Equation (2).

cl.p = cl.p + β(R − cl.p); (2)

where β is the learning rate. Consequently, the prediction error, ε is updated using Equation (3)

cl.ε = cl.ε + β(|R − cl.p| − cl.ε); (3)

cl.F = cl.F + β(λ̂(cl)− cl.F); (4)

λ(cl) =
{

1 i f ε < ε0
α( ε

ε0
)−v otherwise ; (5)

λ̂ =
cl.n × λcl

σclb∈[A]λ(b)× b.n (6)

On the other hand, the fitness of a classifier is updated based on its accuracy λ of the
classifier cl as represented in Equation (4), where λ̂ is the relative accuracy of the classifier.
And λ̂ is computed using Equation (6) by first computing the accuracy, λ of the classifier
with Equation (5). In Equation (5), ε0 is an accuracy criterion constant. A classifier cl is
deemed accurate when cl.ε is less than ε0. The variables α and v are used to control the
rate of reduction of accuracy.

Finally, the Discovery component applies Genetic Algorithms (GA) to generate new
rules. This is usually done by selecting two parents from [A] using a selection probability to
produce new offspring through a crossover process. The new off-springs further undergo
some mutation with a probability before they are added back to [P]. To keep the population
fixed, classifiers with lower fitness are deleted if the number of classifiers in [P] exceeds a
certain value. A subsumption process can be applied to replace classifiers whose condition
parts are included in more accurate and experienced classifiers.

A learning classifier system largely employs genetic algorithm for rules discovery. Ge-
netic Algorithm is a gradient-free and parallel optimization algorithms. Genetic Algorithm
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searches for global optimum using performance criteria for evaluation and population
of possible solutions. Due to its ability to handle complex and irregular solution spaces,
various difficult optimization problems have been studied with genetic algorithm. Gener-
ally, in a genetic algorithm, parameters of a possible solution are encoded as chromosomes
which are manipulated using genetic operators. In its simplest form, selection, crossover,
and mutation are the main operators applied in a genetic algorithm.

During Selection operation, higher fitted chromosomes in the population are selected
for reproduction. Thus, the fitter a chromosome, the more chances for it to be selected
to reproduce.

Crossover on the other hand, enables the creation of new offspring. By biologically
mimicking recombination between two single chromosome organisms, this process leads
to the exchange of sub-sequences between two chromosomes to create two offspring.

Lastly, Mutation operator changes the values of genes in the chromosome. In the case
of binary encoded chromosomes, some of the bits are randomly flipped. Mutation can
occur on any of the genes of the chromosome. In this paper, genetic algorithm is applied
as in standard learning classifier system for rules discovery at the strategy generation
level while the clonal selection and immune network theory are applied at the strategy
coordination level.

2.3. Artificial Immune System

The domain of artificial immune system involves the study and application of various
computational techniques based on the biological immune system [43]. The biological
immune system provides defense mechanisms that protect a host organism against harmful
foreign agents such as viruses and bacteria. The two main biological defense mechanisms
influencing each other include the Innate Immunity and the Adaptive Immunity that
utilizes a set of cells referred to as T-cell to recognize harmful foreign agents (antigens) and
B-cells to eliminate these harmful foreign agents. The acquired immune system located
in the vertebrates of the organism retains a memory of encountered exposures which is
recalled when reinfection occurs to cure the infection.

The dynamism exhibited by the biological immune system has inspired various
theories and models which represent the different aspects proposed under the artificial
Immune system such as the Immune Network [15], Clonal Selection [16], and the Danger
Theory [17]. These under-listed theories which are relevant to our proposed approach are
explained below.

2.3.1. Clonal Selection

The Clonal Selection Based Algorithms are inspired by the working mechanisms
of antigen-antibody recognition, binding, cell propagation, and separation into memory
cell [16]. The clonal selection algorithm, CLONALG [44] based on clonal selection and
affinity maturation principles with engineering applications are one such algorithm. Ac-
cording to the clonal selection theory, the presence of affinity between stimulated antigen’s
epitope and B-cell receptors causes the B-cells to divide. These divided cells then undergo
maturity to become plasma cells that secrete antibodies. Subsequently, the Antibodies with
higher affinities undergo reproduction through hyper-mutation of B-cells. Some matching
B-cells are retained by the Immune System. The adaptation feature emanates from the
mechanism of building up of concentrations of the B-cells and the diversity in mutation of
the cells in the bone marrow. The interaction in the clonal selection theory is between the
antigens and the antibodies only.

2.3.2. Danger Theory

Among the mechanisms that inspire the immune system theories is its ability to
identify events that signify danger and those that do not. The concept of responding to
these harmful events that cause damage form the hypothesis of the danger theory [17].
The idea of danger theory is that the immune systems does not just respond to foreign
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antigens but harmful ones. Which introduces the concept of discrimination on which
non-self/antigens to respond to. Hence, the immune system chooses to respond to danger
instead. Danger in this case, is measured by cells’ damage, indicated by distress signals
emanating from unnatural deaths of cell. These danger signals essentially establish a
danger zone. Consequently, only B-cells that match antigens within this danger zone are
stimulated and undergo the clonal expansion process [45].

Similarly, in an immunized air defense system, determining which threat to prioritize
is key to a successful defense. Since defense systems employ other mechanisms such
as jamming, weapon assignment decision should be made taking into concentration the
threatening level of the target. For instance, successfully jammed weapons should not be
intercepted by the defense system.

2.3.3. Immune Network Concepts

The network theory of the immune system proposed by Jerne in [15] presents a
generic view of the working mechanism of the biological immune system. It is premised
on the concept that the immune system is constructed as a large-scale closed system
of lymphocytes through mutual interaction between different species of lymphocytes.
The interaction of cells happens regardless of the presents of harmful foreign agents or
not. Jerne’s theory stipulates that, the antibody of an immune cell possess paratope and
idiotope. The idiotope of one antibody can be recognized by the paratope of another
antibody with or without the presence of an antigen that posses an epitope (analogous to
an idiotope). This recognition and interaction results in a network that is dynamic and
leads to stimulation and suppression. The recognised antibody is suppressed while the
recognizer antibody is simulated. This process of antibodies being able to recognize each
other drives the adoption of this theory to heterogeneous robotic applications.

3. Air Defense System Model

In this paper, the problem of threat evaluation and weapon assignment decision-
making for air defense operations is considered. In particular, this work considers the
problem where a team of unmanned combat systems is deployed to protect a high-value
target or contested region. The group consists of a heterogeneous set of unmanned combat
systems with different capabilities and multiple types of air-to-surface weapon systems.
In this scenario, high valued asset is to be protected from enemy air units trying to pen-
etrate the defense area and destroy the defended asset. This problem is challenging as
the characteristics of the scenario can scale to an unlimited number of stages based on
the following.

• The number of detected targets at the decision time.
• The types of targets (attackers),
• The weapon capability vector of attackers,
• The number of air defense platforms,
• The weapon capability vector of defenders
• The state of high valued assets being protected, etc.

In all the different stages that the mission can be modified, the objective is to destroy
enemy targets and protect the asset from being destroyed by enemy units. The objective is
in conflict with the enemy targets who seek to penetrate the defense area. Hence, an efficient
threat evaluation and weapon assignment system is required by both sides to achieve their
mission objectives. For every detected target, the control system should make its decision
based on the following.

• The defense system evaluation of the threat.
• The high valued asset state if any.
• Weapon capability and state of the unit.
• Available weapons and teammates.
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Taking these into consideration, the control system decides on whether to deploy a weapon
against the threat or not. If yes,

• the type of weapon to use against the target and
• quantity to be fired.

Formally, at a certain time T, the multi-agent system ag detects N targets H which can
be a weapon (e.g., missile) or hostile flying unit. Meanwhile, each agent has C categories
of weapons. Each category Cp has j quantity of ammunition, Cp = {cp1, cp2, ...cpj} to
intercept targets at different ranges and efficiency. Here, the objective is to survive the
attack with minimal loss and cost of resource utilization by maximizing targets being
destroyed while minimizing the cost of operations in other to be able to defend against
subsequent engagements. Hence, the objective can be formulated as:

Ob =

⎧⎪⎪⎨⎪⎪⎩
min ∑

H′(t)
j=1 ∑C

i=1 βiqijδij

max ∑
H′(t)
j=1 vj(1 − ∏C

i=1(1 − pij)
δij(s))

(7)

1. W is the total remaining number of employable weapons of the combat platform.
i.e., weapon that can be used against the contact by any member of the group.

2. H′ is the remaining number of unassigned detected targets
3. δij is the minimum delay before weapon i can be deployed against target j based on

ready time and current allocation of the weapon of a unit.
4. qij is the quantity of ammunition of weapon of type i allocated to target j,
5. βi represents the unit cost of the ammunition of weapon i
6. vj means the threat value of target j
7. pij is the weapon kill probability

In this mission, the two main problems to be solved are: action strategy selection and
cooperation. Action strategy selection in this case, involves deciding the type of weapon to
deploy, the salvo or number of weapons. Cooperation is the coordination of the multi-agent
system so that the assignment is distributed as much as possible among several agents to
minimize the time between target detection and interception.

4. Approach

In this section, we present the approach and scheme adopted in this paper to realize a
robust control system. The focus is to design a self-learning system to dynamically acquire
threat evaluation and weapon assignment and coordination strategies. In this section,
the details of system model are presented.

4.1. System Architecture

The framework which is an integration of artificial Immune system and learning
classifier system proposed in this work is shown in Figure 1. The general framework
is a typical multi-agent system consisting of two main agents; the Strategy Generation
Agent and Strategy Coordination Agent. The Strategy Generation Agent is a low level
agent that learns the appropriate weapons and quantity to deploys against a given target
using learning classifier mechanism. The Strategy Coordination Agent receives proposed
assignments from other agents and takes as input the generate classifiers as antigens
from the Strategy Generation Agent perform immune network dynamics to determine the
actions of the agent.
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Figure 1. Immunized air Learning Classifier System Model.

In the Strategy Generation Agent, each weapon type is an abstract B-cell (decision unit)
which is a vessel for carrying antibodies. Antibodies are classifiers that contain the control
decisions as its consequent. While detected contacts are modeled as antigens, whose epi-
topes are expressed in terms of their intent, capability, and opportunity. The characteristic
mapping based on the local detectors of antigen and individual B-cells and their activation
leads to the generation of possible classifier sets that forms a sub-population of classifiers
according to the specific targets. The competition between these sub-populations of classi-
fiers produces a single classifier whose action part is applied against a target. The Strategy
Generation Agent interfaces with the environment through the intermediate module which
provides local detectors for B-cells.

Strategy Coordination Agent performs the final actions selection based on the concen-
tration of classifiers in the Immune network by applying the AI algorithms. The Immune
network models a collection of classifiers of the various B-cells. Each classifier has a con-
nections part that is used to determine its appropriateness in a given situation with respect
to the other classifiers. Strategy Coordination Agent receives classifiers from the B-cells,
established their connections to form a network, and apply the immune network dynamics.
The individual classifiers that undergo genetic operations and updates are based on the
output classifiers of the immune network dynamics.

4.2. Classifier Representation and Encoding

In order to be able to apply immune network dynamics and coordinate classifiers
generated by different B-cells, the form of classifiers is changed. In this case, classifiers
generated by a b-cell are partitioned into 4 parts that corresponds to the paratope and
idiotope of a cell. These connections are synonymous with idiotope and indicate which
other classifiers it is connected to. The Identifier is used to indicate the particular b-cell
that the classifier belongs. The antecedent indicates when the B-cell and weapon type is
applicable while the consequent specifies quantity to fire. The parameters of standard
extended classifier still applies. The antecedent part is encoded as singletons of fuzzy sets
that represent the states of the variables of decision elements. The consequence part of
each classifier is the number of ammunition to fire. The weapon to employ can directly
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be inferred from the posted classifiers since classifiers are identified by B-cells which
represents the agent and weapon type. Figure 2 shows a schema of a classifier in our
system. Both unit and target states are vectors of the individual variable representations of
the classifier.

Figure 2. A schematic representation of a classifiers.

We design an intermediate module to further quantize all variable and apply binary
coding scheme for the antecedent with size equal to the sum of the states of quantization in
each input variable. The consequent part employs an integer coding scheme where each
gene contains the index of the state used for the corresponding output variable. The levels
of quantization of decision variables and continuous variables’ value ranges are mapped
to seven states from 1 to 7 of the corresponding value bits. For instance, consider the
continues variable of ’velocity, distance, heading’ of a detected target. If we are to quantize
them to 3 states (fuzzy sets) each as shown in Equations (8)–(10). The indexes are 1, 2,
and 3 from low to high. By this quantization, the velocity variable state can be represented
by 3-bits only, where allele ‘1’ means that the corresponding state/index is used in the
velocity variable. That is, the encoding ‘001’ means the velocity of a contact as read from
the environment is high.

velocity =

⎧⎪⎨⎪⎩
high when velocity > 500 m/s
medium when 250 < velocity ≤ 500 m/s
low when 0 ≤ velocity ≤ 250 m/s

(8)

distance =

⎧⎪⎨⎪⎩
high when distance > 1000 km
medium when 500 < velocity ≤ 1000 km
low when 0 ≤ distance ≤ 500 km

(9)

heading =

⎧⎪⎨⎪⎩
high when heading > 90 deg
medium when 45 < heading ≤ 90 deg
low when 0 ≤ heading ≤ 45 deg

(10)

Hence, a B-cell with sub characteristic detectors of distance, velocity and heading
respectively for a target as an input, can have a classifier as ‘1;2|100;010;001|2|1;3;5’
conforming schema as shown in Figure 2. The individual parts are separated by ‘|’ and
can be interpreted as; “IF distance IS low AND velocity IS medium AND heading IS high
THEN fire 2 ammunition USING weapon 2”. Also, in this particular example, the classifier
is connected to classifiers 1, 3, 5.

It is worth noting that each hypothetical B-cell (decision unit) implement an extended
classifier system for action selection. However, contrary to the many approach, the entire
prediction array from individual classifiers are synthesized with respect to other B-cells
predictions using the artificial immune network dynamics to obtain an optimal weapon-
target assignment for the current environment state.

4.3. Coping with Multiple Targets

Learning to prioritizing contacts to counter first by an autonomous defense system
when multiple threats are detected is key to a successful defense. Since each weapon is a
B-cell with specific characteristics with respect to the detected threats, the concept of danger
signals and affinity can be modeled. Based on the hypothesis of the danger theory, when a
target is detected, a danger zone is constructed based on the trajectory of the detected target.
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The value of the combat units within the danger zone signals how much priority should
be given in intercepting the target. This is important since combat systems with jamming
capability will succeed in jamming some incoming targets. Therefore it is unnecessary to
intercepts those targets after it has been jammed.

4.4. Action Strategy Selection

At time t during an engagement, an agent receives observation from the environment.
The trajectories of the targets are use to construct danger zone and the danger level of all
detected targets determined. The intermediate module process the targets information and
encode as antigens to the individual B-cells in range of the targets. The input information is
of two types: (1) The external observation from the battlefield which include the observed
state of detected targets, high value asset and teammate agents information. This informa-
tion includes basic information such as distance, heading, speed, and contact type, etc. for
detected targets as observed by a unit; (2) The characteristic internal state of decision units,
including weapon types and states, range, quantity, etc.

Based on the quantized variables and characteristics of each B-cell, a matched set is
generated by each B-cell for each target. To form the prediction array [Pa], the expected
action payoff for every action strategy of B-cells is calculated using Equation (11). � is the
affinity between B-cell of classifiers and antigens.

P(ai) =
Σclk∈[M]|ai

clk.p × clk.F ∗ �

Σcll∈[M]|ai
cll .F ∗ �

(11)

The affinity between B-cell’s generated classifiers and antigens is estimated base on
Equation (12). In Equation (12), q is the quantity of ammo suggested by the classifier, dg is
normalized distance between target c and combat unit (B-cell), pg is the speed advantage
of fire unit weapon against target. we is the effectiveness (kill probability) of the weapon
suggested, rt is the ready time of weapon if it were to be deployed and vc is the quantified
target type that estimates the value of the target.

� =

[
1 −

q

∏
i=1

(
1 − dg ∗ pg ∗ we ∗ rt

)]
∗ vc (12)

The classifiers are condensed by applying the negative selection described in the next
section. Next, the condensed classifier set is transmitted to its neighbors and execution is
passed to the Strategy Coordination Agent.

In the Strategy Coordination Agent, the connections of the classifiers are established
based on the classifiers from the Strategy Generation Agent and neighbor units. Classifier i
is said to be connected to classifier j if they produce antibodies for the same target. Based
on the classifiers’ connections the immune network dynamics are executed to obtain the
classifiers whose action will be posted to the environment by a combat unit. The classifiers
with the higher concentrations for each target are allowed to post their actions.

Since classifiers must cooperate and compete with other classifiers, each classifier has
a concentration level based on it connectivity and affinity to the observed environment
state. This concentration is determined by a system of ordinary differential equations,
which corresponds to the immune network dynamics introduced in [46]. Equation (13) is
used to control the network model’s dynamics in this work.

dai(t + 1)
dt

=

(
α

N

∑
j=1

mjiaj(t)− β
N

∑
j=1

mikak(t) + γmi − k

)
ai(t) (13)

where:

• N is the number of classifiers (antibodies) that composes the sub-population of classi-
fiers dealing with a target.
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• mi is the affinity between classifier i and current stimuli (antigen).
• mji is the mutual stimulus coefficient of antibody j into classifier i.
• mki represents the inhibitory effect of classifier k into classifier i.
• k is the rate of natural death rate of classifier i;
• a(t) is the bounded concentrations imposed on classifiers;
• the coefficients α, β and γ is weight factor that determines the significance of the

individual terms.

4.5. Methods for Coordinated Learning and Knowledge Sharing

The training of classifiers is done through the conventional extended classifier system
mechanisms and facilitated by the negative selection and immune network mechanism of
the artificial immune system. Figure 3 shows the top-level view of the negative selection
mechanism. The training and learning procedure are as follows.

Figure 3. Negative selection Mechanism during action strategy selection.

1. Before the training begins each B-cells’ population of individuals are initialized
randomly. In this work, partial Pittsburgh-Style is adopted. That is, classifiers are
treated both at the classifier level and as individuals. An individual is a collection of
classifiers. Each classifier connection part is initialized as empty since the connections
of a classifier are dynamically established during action selection. For each generation,
an individual from each agent B-cells’ population is selected and used to control the
agent’s actions. By initializing each population independently, a diverse population
of classifier are generated collectively. Based on the characteristics detectors and
quantized variables using the classifier encoding and representations above, the size
of classifiers in a population can be determined a prior. However, the initial number
of classifiers of an individual is chosen at the beginning of the training.

2. When individual B-cells generate their classifier sets based on the current environment,
Non-matching and characteristics detectors in a form of rules obtained from an expert
are used to filter out redundant classifiers in the matched set of the individual B-cells
after merging to produce a condensed set of classifiers that undergo further processing
for actions selection. In this case, manual rules are encoded to discriminates certain
classifiers in the match set from being processed further. For example, if the status of
a weapon is damage or a weapon has no ammunition remaining, all classifiers of that

95



Symmetry 2021, 13, 271

particular weapon are filtered out. This forms a first phase of matching and message
processing the system.

3. Next, the action selection mechanism in Section 4.4 is applied to obtain the weapon-
target assignment of the agent. After executing the actions in the environment,
the agent receives a reward based on the targets that were successfully intercepted
as against the resources utilized. The reward obtained and concentration value of
the classifier is used to update the fitness of classifiers within the individual under
evaluation whose actions resulted in the reward. Also, in order to properly evaluate
the classifiers of an individuals and their connections, each individual is simulated a
predetermined number of times in each generation. While the immune network is
applied each episode, genetic algorithm is applied on each extended classifier system
at the individual level.

4. Finally, classifiers of individual with high accuracy are cloned and merged with other
individuals of the same type. Two types of cloning are adopted: whole classifier
cloning and merging and classifier action cloning, and replacement with higher
accuracy classifiers’ actions after all the individuals in the populations are evaluated.

5. Experimental Setup

In order to realize autonomous combat platforms operations, intelligent agents are
required to interact with the battlefield environment during training. This is unrealistic
in the physical environment as the process can be dangerous and costly. Hence, for facili-
tating the development of military intelligence, the physical environments are normally
recreated in a virtual environment through modeling and simulation. To provide a realistic
environment for training and evaluation, a scenario of digital battlefield is established in a
real-time wargame, “Command: Modern Operations”. The system generates battlefield
data in real-time and log the damages of combat units after every engagement both in
stages and end of engagement. In this scenario, there are two parties involved the ground
combat units herein referred to as the ally (blue) faction who are the defending side and
the air combat units herein referred to us the enemy (red) faction which are the invaders.
The experiments setup for this work are described as follows.

5.1. Configuration of Ally Faction

The Ally faction consists of 7 combat ships. These include two (2) class A combat ships
with 4 different weapons of ranges and kill probabilities, four (4) class B combat ships with
two weapons types on board and one (1) carrier ship with 2 short ranges weapons on board.
The number of weapon types of all the units, M = 5, the main difference between these
weapons is the different interception range and probability of kill which is shown in Table 1.
The per salvo is the number that can be fired in succession without delay. The subscripts
for weapon types is the ID of the weapon used in classifiers.

Table 1. Information on weapons deployed on combat units.

Weapon Type Min. Range (nm) Max. Range (nm) Per Salvo Type

Weapon1 2 80 1 missile

Weapon2 2 21 1 missile

Weapon3 0.2 4 1 missile

Weapon4 0 1 5 Gun

Weapon5 1 1.8 40 Gun

The air defense weapons are deployed on the seven combat ships in different defensive
formation. The types and quantities of weapons equipped on each combat platform of
the Ally faction are indicated in Table 2. Zero (0) means that the unit is not equipped with
this type of weapon. Figure 4 depicts a typical confrontational setup of the digital battle
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environment. The survival of middle and large ships is the most critical requirement of a
successful defense in this work. In this defense formation, Unit7 is the center ship, and the
task of the entire formation is to intercept as many missiles as possible before the center
warship is destroyed.

Table 2. The number of weapons equipped on each warship.

Combat Platform ID Weapon1 Weapon2 Weapon3 Weapon4 Weapon5

Unit1 48 0 24 20 220

Unit2 48 0 24 20 220

Unit3 0 32 0 20 0

Unit4 0 32 0 20 0

Unit5 0 32 0 20 0

Unit6 0 32 0 20 0

Unit7 0 0 72 20 0

Figure 4. A typical air maritime combat digital battlefield scenario.

5.2. Reinforcement Program

In order for a learning system to improve its performance, reward function design is of
great importance. Hence, much attention is given to designing the reward and punishment
mechanisms employed in this work. In our case the destruction of Unit7 is deemed as
mission failure. However, the system must be encouraged to search for the best strategy
that can enable it to succeed. So, we define two types of wins; Confident Win and Weak
Win. The Ally Faction is said to win Confidently if more than two of its units survived
in addition to Unit7 after a confrontation in an episode. On the other hand, a weak win
is encountered if at most 2 other units survived in addition to Unit7. In addition to these
specifics, each weapon of the ally and the enemy factions are assigned a cost and reward
values respectively. The cost of losing a unit of the ally faction is function of the total
number of ammunition on the unit at the time of destruction. However, the cost of losing
Unit7 is always higher in any case. Also, each of the 3 types of enemy units are assigned
values which are rewarded to the ally faction when the enemy unit is destroyed. Table 3
shows the costs of weapons consumption. In addition, the interception of a bomber aircraft,
fighter jet T2 and UAVs T1 rewards the Ally Faction with 0.2, 0.15 and 0.1 respectively.
For the weapons deployed by these units of the enemy faction the rewards for intercepting
them are 0.25, 0.2 and 0.15 respectively. Also, the Ally Faction is reward 0 when Unit7 is
destroyed and +10 when it survived. A squashed function is used to normalize the final
rewards to a range between 0 and 1.
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Table 3. Costs of Ally Faction’s weapons consumption.

Weapon Type Cost of Consumption

Weapon1 0.004

Weapon2 0.002

Weapon3 0.001

Weapon4 0.0001

Weapon5 0.0001

5.3. Configuration of Enemy Faction

The Enemy faction consist of multiple hostile air units approaching the Ally faction
in formations. A formation consists of a maximum of 8 fighter units and can comprise
of different types of units. Each unit has a maximum of 8 ammunition of its weapon
type that it can deploy on a defensive unit. However, a unit may run out of fuel and
may need to return to based. Hence, not all weapons maybe deployed during its initial
engagement. It is assumed that the enemy faction already knows the location of the ally
faction, this means they only need to send out attackers. The enemy faction consists of
different units comprising bomber aircraft, fighter jet T2 and unmanned combat aerial
vehicles T1. The bombers have the shortest firing range and proximity hence must get
closed enough to drop the bombs. In doing so the enemy unit is exposed to the firing range
of the ally units. The other two types of units consist can also deploy short to medium
range missiles.

5.4. Scenarios Setup

The engagements and battle rounds are design based on three scenarios as follows:
Scenario 1: In this scenario, the defense units know the approach direction of the

enemy units. So, the defense units form a formation that ensures that the defended unit
is put at the rear of the formation. Also, the attack in this scenario is executed in a single
formation deployment. Each of the enemy units can fire only 3 of its ammunition before it
must return to base for refueling and there is no second wave of attack.

Scenario 2: In this scenario, a formation is formed around the defended unit which
is placed at the center. The enemy units can appear from multiple direction. The attack,
in this case, is done on 3 confrontations. In each confrontation, the formations can consist
of different units and each unit can fire as many weapons as possible within its maximum
allowed capacity. Also, they attack the ally units on different rounds. Each round presents
more challenges by increasing the number of enemy units and number of weapons fired.

Scenario 3: In the final scenario, the entire enemy units are divided into 4 groups of 8
each with each group approaching from the north, south, east and west of the ally faction.
However, the formation of the ally faction is similar to scenario 2. Also, jamming is enabled
in all scenarios except scenario one.

Each of these strategies are employed to train a different model independently from
scratch. During training, parallel simulations were run on three different machines simul-
taneously for almost 2400 training instances (generations). The population of individuals
was 20 for each classifier system and maximum number of classifiers in an individual was
set to 1000 with Mutation probability = 0.15. The results of the 3 scenarios are shown in
Figures 5–7. In each case, the score, win rate and rate of resource utilization is plotted as
the training progresses. As can be seen, the win rate for the ally faction increases whiles
the total quantity of weapons deployed reduces as training progresses. Except for scenario
3 which obtained a final win rate of around 50%, the other two models of scenario 2 and 3
attained a win rate of about 75%. Similarly, the resource utilization in all scenarios saw a
reduction of at least 30% at end of training Figure 8. The comparison of the 3 models with
regards to battle costs is presented in Figure 8d.
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(a) Model training performance score (b) Winning rate of model during training

Figure 5. Training performance on scenario 2.

(a) Model training performance score (b) Winning rate of model during training

Figure 6. Training performance on scenario 1.

(a) Model training performance score (b) Winning rate of model during training

Figure 7. Training performance on scenario 3.

(a) Rate of resource consumption in scenario 1 (b) Rate of resource consumption in scenario 2

Figure 8. Cont.
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(c) Rate of resource consumption in scenario 3 (d) Resource utilization of the 3 models during training

Figure 8. Individual and Compared resource utilization of the 3 scenarios models during training.

5.5. Baseline Heuristics

In order to evaluate the performance of the obtained strategies or models of the
system, a heuristic assignment strategy was developed. This heuristic model employs
multiple rules to govern the decision-making of the system to serve as a credible baseline
to benchmark this work.

Hence, in the heuristic baseline,

1. Weapon-target assignment is performed based on priority.
2. To achieve priority-based assignment, the threat value of targets is evaluated based

on the assigned targets values, heading and the distance to the Unit7.
3. Based on the computed values, a sorting algorithm is used to sort the targets in

ascending order. Targets with low computed values are considered to pose higher
threat to the ally faction.

4. After the threat levels are determined and sorted, for each target we select the closest
ally unit to attack it with any weapon within range. The number of ammunition to
fire is set to a maximum of 4.

5. When intercepting targets, targets identified as weapons are intercept first. This is
different from the threat level computation of targets. In other words, targets identified
as weapons are assigned first based on their threat level before non-weapons are also
assigned based on their threat levels.

6. Also, when a target is within multiple weapon range of a unit, the shortest ranged
weapon is utilized.

To evaluate the final models with the baseline, we run the simulations for 30 rounds
each. In this case, a round consists of 10 episodes of simulations. The results of the win
rate and average costs are presented in Figure 9. From the results, it can be seen that even
though model 2 took longer time to make a significant increase in win rate it turns our to
perform well in all the scenarios. On the other, model 3 turns to perform better in the other
scenarios than it performs in the trained scenario. The three models generalized well to
scenarios they were not trained in. Table 4 shows the summary of the percentage wins in
the final experiment conducted. Figure 10 shows a successful defense scenario run that
employs model 1 of in the first scenario. In this case, the yellow colored units means that
those units are not detected by any of the ally units.
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(a) Resource consumption for the 3 models and baseline model (b) Win rate for the 3 models and baseline model

Figure 9. Comparison of performance of the 3 models and baseline model.

Table 4. Detail Performance of trained models.

Scenario/Model
Scenario 1 (% Win) Scenario 2 (% Win) Scenario 3 (% Win)

Confident Weak Total Confident Weak Total Confident Weak Total

Model 1 44 35 79 23.8 28.2 52 20.3 19.7 40
Model 2 40.3 38.8 79.1 44.7 33.4 78.1 39.3 35.8 75.1
Model 3 28.7 37.9 66.7 33.9 30.8 64.7 29.6 24.6 54.2
Baseline 26.6 29.7 56.3 21.5 19.5 41 19.3 21.3 40.6

(a) Battle state At the beginning of confrontation (t = 10 s) (b) Battle state Mid-way during enemy confrontation (t = 20 s)

(c) Battle state towards the end of confrontation t = 30 s (d) At the end of confrontation (t = 40 s)

Figure 10. A typical confrontation details of model 1 on scenario 1.

5.6. Discussion

From the results presented, the trained models show a more efficient use of resources.
This can be realized from the models’ winning rate and rate of resource consumption
graphs of the respective models. In all cases, in addition to the ally faction winning mores
as training progresses, it does so with less resources. The trained models show better
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weapon distribution and target prioritization strategy compared with the baseline and
target prioritization approach. At the initial stages of training, the system will assign
weapons to targets that does not pose immediate danger to its survival. This behavior was
also peculiar to the baseline heuristic model. However, at the end of the training process
targets such as non-weapon units are ignored and only assigned in some instances when
no weapon targets were detected. Figure 11 depicts the two situations as indicated. Also,
as can be seen in Figure 11b, the model exhibits better cooperative behaviors as the threat
level of targets increases. In this case, detected targets are distributed among suitable units
for interceptions.

(a) Confrontation behavior of model 2 (before) (b) Confrontation behavior of model 2 (after)

Figure 11. A typical confrontation details of model 2 before and after training.

In comparison with other approaches such as neural network based models, the system
realized by this approach is interpretable and can be refined using prior knowledge.
The learning process is facilitate by prior specification and quantization of fuzzy sets
for classifier variables and the classifiers filtering introduced by the negative selection
mechanism. From the data presented, the performances and winning rates appear to
increase more sharply after 400 generations except for model 2. This might be attributed to
the complexity level of the scenario model 2 was trained on. Even though model 2 turns
out to be the most optimal of the 3. Therefore, even though more complex scenarios might
take time for performance to start manifesting, the resulting controllers can achieve more
optimal performances.

However, this approach also has its challenges, one of which is the memory consump-
tion to keep track of classifiers and their connections. Also, the computations of classifiers
concentrations with respect to other classifiers add additional computational burden on
the approach as the size and number of classifiers increase.

6. Conclusions

In this paper, the air defense problem is studied. We explore the application of
classifier system and artificial immune models for coordinated self-learning air defense.
In particular, this paper presents an approach for multiple unmanned combat systems for
coordinated air defense that implements autonomous cooperative threat evaluation and
weapon assignment learning approach. We investigate and demonstrate the applicability
of a hybrid artificial immune and learning classifiers system for realizing air defense
intelligence and presents a hierarchical self-learning approach for multiple unmanned
combat systems air defense operations that integrates artificial Immune based algorithms
with classifier systems. We further design a mechanism to speed up learning by applying
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a negative selection mechanism to filter out and condense situations from individual
decision units that proposed solutions for the situations in the battlefield using domain
knowledge. We evaluate the proposed approach by designing several simulation scenarios.
The experimental results of training multiple combat systems demonstrate the learning
ability of the approach. Finally the proposed scheme is compared with baseline heuristics
by comparing the resource utilization and win rate of the different models obtained and
the baseline. Based on the data presented, the most optimal model (model 2) was able to
increase its win rate to about 75% and reduce its resource utilization by 30%. The approach
is easily scalable since the addition of new units will only require the transfer of knowledge
from similar decision units. The ability to transfer and encode prior knowledge facilitates
transfer learning and prevent the system from learning from scratch when new units are
added to the team. This will speed up the learning process of the system. The model is
interpretable by humans compared to ’blackbox’ approaches, which is a desirable feature
for military applications. The generalization capability of the approach was validated by
testing them in the scenarios they were not trained in.

However, more work is still required to improve the performance of the system and
approach adopted in this work. For instance, there is a significant level of disparity between
the physical world and the simulation environment. In the physical environment, there
might not be an immediate confirmation of a successful interception. Hence, the perfor-
mance in the real battlefield might be degraded to some extend. Also, it will be interesting
to consider tuning or learning of the input variables and not just the appropriate consequent
as adopted in this approach. In this regard, the learning of the input variables for each
classifier system can either be done along with the rule base learning or one after the other.
Similarly, further investigation as to how to identify useful knowledge, and condense and
merge with other learning agents is needed. We plan to extend this framework to develop
a general training system for autonomous decision-making of unmanned combat vehicles
for cooperative missions.
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Abstract: Electricity is one of the most important resources for the growth and sustainability of the
population. This paper assesses the energy consumption and user satisfaction of a simulated air
conditioning system controlled with two different optimization algorithms. The algorithms are a
genetic algorithm (GA), implemented from the state of the art, and a non-dominated sorting genetic
algorithm II (NSGA II) proposed in this paper; these algorithms control an air conditioning system
considering user preferences. It is worth noting that we made several modifications to the objective
function’s definition to make it more robust. The energy-saving optimization is essential to reduce
CO2 emissions and economic costs; on the other hand, it is desirable for the user to feel comfortable,
yet it will entail a higher energy consumption. Thus, we integrate user preferences with energy-saving
on a single weighted function and a Pareto bi-objective problem to increase user satisfaction and
decrease electrical energy consumption. To assess the experimentation, we constructed a simulator
by training a backpropagation neural network with real data from a laboratory’s air conditioning
system. According to the results, we conclude that NSGA II provides better results than the state of
the art (GA) regarding user preferences and energy-saving.

Keywords: energy optimization; genetic algorithms; multi-objective optimization; artificial neural
network simulator

1. Introduction

Due to constant technological growth, it is now possible to integrate electronic circuits
and computer systems to develop, manage, and monitor a wide variety of devices in
many of the structures that surround us [1–3]. One of the main advantages of including
computational techniques in regular devices is the efficient administration of electrical
energy. Researchers have focused their efforts on optimizing these regular devices as
well as new research focused on the use of artificial intelligence, neural networks, and
fuzzy logic and a study on a new class of optimization problems of constrained interval
values [4,5]. This paper implements two evolutionary algorithms, a genetic algorithm (GA)
and a non-dominated sorting genetic algorithm (NSGA II), to optimize an air conditioning
system’s energy consumption. We chose to research air conditioning systems because they
consume a large amount of energy regardless of the purpose.
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In the literature, it is possible to find some papers focused on ensuring an adequate
administration of electrical energy through the so-called home energy management systems
which seek to promote renewable energy, lengthen device life, and avoid accidents. In [1],
Collota et al. present an example of this system, where a fuzzy controller is used to
improve the home energy management scheme; the results showed the system’s capability
to reduce the maximum load demand for electrical energy. Similarly, Attoue et al. [2]
used machine learning techniques, optimization, and data structures to create an energy
management system to satisfy the needs of an intelligent building; the results obtained
show the proposed mechanisms’ effectiveness to improve the performance.

Even though there is a wide variety of papers aiming to save electricity, air conditioners
still consume a significant amount of energy. In [6], the authors present a fuzzy controller
made in Simulink to lower air conditioning energy while dealing with thermal disturbances.
The results demonstrate that the fuzzy controller with triangular membership functions
gives the desired performance with an error lower than 1% and saving 25% of energy
consumption. Chen, Fu, and Liu [3] proposed a hybrid meta ensemble learning and stacked
auto-encoder (SAE), tested with data from the air-conditioning system from a commercial
building in Singapore. The proposed meta ensemble learning method showed efficient
energy management of the air-conditioning system.

Additionally, Arikiez et al. [7] proposed a heuristic algorithm based on mixed integer
linear programming (MILP) to minimize the cost of electrical energy caused by a set of
air conditioners. The result reveals that their algorithm can solve a massive problem in
a few seconds and gives reasonable suboptimal solutions. Moreover, Ullah and Kim [8]
proposed two improved optimization algorithms, a particle swarm optimization and a
genetic algorithm, to achieve maximum user comfort in the building environment with
minimum energy consumption. Results showed that the proposed optimization algorithms
produce better results than the baseline scheme in user comfort and consumed energy.

This paper proposes two metaheuristic algorithms to optimize an air conditioning
system while considering the users’ preferences, a genetic algorithm (GA) and a non-
dominated sorting genetic algorithm (NSGA II). The former intends to replicate the algo-
rithm from [8], and the latter was selected to analyze the performance of a multi-objective
optimization algorithm.

The remainder of the paper is as follows: Section 2 addresses the design of the
optimization algorithms; Section 3 shows our simulator design; Sections 4 and 5 describe
the experimental results and the discussion, respectively. Finally, Section 6 contains the
conclusions and future work.

2. Algorithm Design

2.1. Problem Definition

The proposed algorithms aim to tackle two objectives: energy-saving and user satis-
faction. These objectives are directly in conflict because the air conditioner system must be
turned on for extended periods of time to increase user satisfaction while increasing energy
consumption, which conflicts with energy-saving. Such a task seems relatively simple
for NSGA II due to its multi-objective nature. Additionally, the genetic algorithm used a
weighted objective function to optimize both objectives simultaneously. In this paper, we
use the formulation presented in [8] by Ullah and Kim. However, we modify Equations
(2)–(4) in two different ways. The first modification adds a cost to maintain the current
temperature. The second modification nullifies any energy cost when the laboratory’s
temperature is lower than the desired temperature. It is important to explain that our
climate is warm; therefore, we consider a cooling scheme and turn on the air conditioner
system to cool down the room, trying to reach the optimal desired temperature of 22 ◦C.
However, we considered a temperature of 27 ◦C and below as acceptable yet not no ideal.
Furthermore, temperatures below 22 ◦C are also not desired and would trigger a shutdown
of the air conditioner system, nullifying the energy cost and raising the temperature.
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For this formulation, expression (1) shows the user-accepted temperature range.

UserPre f erences = [Tmin, Tmax] (1)

where Tmin and Tmax represent the minimum and maximum temperatures accepted by the
user. It is worth noting that for our case, Tmin is the ideal temperature because we are in
a tropical environment and a colder climate is desired. Additionally, the current room
temperature is Tc, and the temperature recommended by the optimization algorithms is
named To|Tmin ≤ To ≤ Tmax .

With To, it is possible to calculate the optimal energy (Eo) needed to change or maintain
Tc if it were the same as To; see Equation (2). Additionally, if the current temperature is
lower than the optimized temperature (Tc < To), the air conditioner system should be
turned off; hence the zero in that case. To calculate this parameter, we need to know the
power required per unit change in temperature (PT).

Eo =

{
PT + PT ·(Tc − To) i f Tc ≥ To

0 i f Tc < To
(2)

Similarly, it is possible to calculate the minimum and maximum hypothetical energy
consumptions (Emin) and (Emax), as shown in expressions (3) and (4), which are used later
to calculate the energy-saving gain (Ges). For these equations, there is a similar condition as
Equation (2); where if Tc < Tmax or Tc < Tmin, it would mean that the current temperature
is lower than the maximum or minimum temperature and the air conditioner system will
not need to be turned on to reach those temperatures, hence requiring 0 energy.

Emin =

{
PT + PT ·(Tc − Tmax) i f Tc ≥ Tmax

0 i f Tc < Tmax
(3)

Emax =

{
PT + PT ·(Tc − Tmin) i f Tc ≥ Tmin

0 i f Tc < Tmin
(4)

Equations (5) and (6) show the user satisfaction gain (Gus) and the energy-saving gain
(Ges) where both gains range from 0 to 1, with 0 representing no gain and 1 represents
the most gain. Furthermore, both objectives are in direct conflict because increasing user
satisfaction entails an increased use of the air conditioner resulting in higher energy cost.

Gus =

(
Tmax − To

Tmax − Tmin

)2
∈ [0, 1] (5)

Ges = 1 −
(

Eo − Emin
Emax − Emin

)2
∈ [0, 1] (6)

Additionally, the user relevance factor for each objective is determined by αus for user
satisfaction and αes for energy-saving where αus + αes = 1. Therefore, the NSGA II would
maximize both objectives considering their relevance factor; see Equations (7) and (8).

Maximize(αusGuc) ∈ [0, 1] (7)

Maximize(αesGes) ∈ [0, 1] (8)

On the other hand, GA uses the weighted function in Equation (9).

Maximize(αusGuc + αesGes) ∈ [0, 1] (9)

Figure 1 shows an example of the calculation of user satisfaction gain (Gus) and the
energy-saving gain (Ges) for a given To and Tc.
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Figure 1. Example of user satisfaction gain (Gus) and the energy-saving gain (Ges) calculation.

2.2. GA and NSGA II

As we said before, we modify the formal definition of [8], trying to make it more
robust by considering new elements; however, we will not be able to compare directly
to their results because of the modifications in the definition. Thus, in this paper, we
implement their genetic algorithm as explained in [8], and a multi-objective NSGA II as our
proposal (both algorithms are available at https://github.com/ahgarciar/Air-Conditioner-
System-Controllers (accessed on 19 February 2021)).

We use the same population, selection, crossover, and mutation operators for both
algorithms with little modifications for the NSGA II, as explained below.

Population. We use a vector of one hundred solutions for both algorithms, where
each solution (Toi ∈ R) is a possible temperature between 22 and 27 ◦C.

Selection. The algorithms use a binary tournament between random individuals
of the population to select the parents for the crossover operator. The GA uses a binary
tournament, comparing the solutions’ objective values, and the winners are selected for
crossover. On the other hand, the NSGA II algorithm uses the rank of the Pareto front of
each solution to identify the winner, which will be the solution with the lowest level on the
Pareto front, meaning that it is less dominated than the other solution. However, suppose
both solutions are in the same level of the Pareto front. In that case, we use the crowded
comparison operator (>n), which identifies the solution with the largest crowding distance,
which will be explained further in this section.

Crossover. As stated before, our GA and NSGA II have a static population of one
hundred solutions; then, another one hundred solutions are produced as offspring, using
the Simulated Binary Crossover operator [9]. This operator requires two parents (p1 and
p2) to obtain two new individuals (Toi and Toi+1 ).

Here, we explain the crossover operator for our specific problem. Thus, we will change
some of the original notation of this crossover to match our variables.

First, we identify the two parents’ maximum and minimum temperature values; see
Equations (10) and (11).

max = MAX(p1, p2) (10)

min = MIN(p1, p2) (11)

Then, we calculate Equations (12) and (13) to produce β1 and α1, which also use a
random real number (u ∈ [0, 1]) and a constant η = 20 in Equation (14) to produce β1q.
Finally, we produce Toi as shown in Equation (15).

β1 = 1 +
2(min − Tmin)

max − min
(12)

α1 = 2 − (β1)−(η+1) (13)
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β1q =

⎧⎪⎨⎪⎩
(u · α1)

1
η+1 i f u ≤

(
1
a1

)
(

1
2−u·α1

) 1
η+1 otherwise

(14)

Toi = 0.5(max + min − β1q ∗ (max − min)) (15)

Then, we carry out a similar process to produce Toi+1 . However, the difference is that
β2 is calculated using Tmax instead of Tmin as β1, see Equations (16)–(19).

β2 = 1 +
2(Tmax − max)

max − min
(16)

α2 = 2 − (β2)−(η+1) (17)

β2q =

⎧⎪⎨⎪⎩
(u · α2)

1
η+1 i f u ≤

(
1

α2

)
(

1
2−u·α2

) 1
η+1 otherwise

(18)

Toi+1 = 0.5(max + min − β2q ∗ (max − min)) (19)

Figure 2 shows an example of the crossover operator.

 

Figure 2. Example of crossover process.

Mutation. As a mutation operator, we used the polynomial mutation operator [10],
which is applied to fifty percent of the solutions generated in the crossover operator.

Here, we modify the temperature produced by the crossover operation depending on
the δ value, which ranges from −1 to 1, and also uses a random real number (u ∈ [0, 1])
and a constant η = 20; see Equations (20)–(23).

Toi = Toi + δq(Tmax − Tmin) (20)

δ1 = (Toi − Tmin)/(Tmax − Tmin) (21)

δ2 = (Tmax − Toi )/(Tmax − Tmin) (22)

δq =

⎧⎪⎨⎪⎩
[
2u + (1.0 − 2.0 ∗ u) ∗ (1.0 − δ1)

η+1
] 1
(η+1) − 1 i f u ≤ 0.5

1 −
[
2(1 − u) + 2.0 ∗ (u − 0.5) ∗ (1.0 − δ2)

η+1
] 1
(η+1) otherwise

(23)

Figure 3 shows an example of the mutation operator.
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Figure 3. Example of the mutation process.

For this experimentation, we tested several values for constant η, resulting in a value
of twenty.

The NSGA II requires two additional procedures:
Fast Non-Dominated Sort. This procedure allocates the solutions of the pool of solu-

tions (P) into Pareto fronts of non-dominated individuals; this allows elitism in selecting
the parents for the offspring of NSGA II.

Crowding Distance. A particular solution’s crowding distance value is the average
distance of its two neighboring solutions [11]. Figure 4 shows the calculation of the crowd-
ing distance of the solution i, which is an estimate of the size of the largest cuboid enclosing
i without including any other solution. The algorithm used in this implementation is a
normalized version of the original algorithm with the minimum (MINm) and maximum
(MAXm) values per objective (m) [12]; this algorithm is calculated for each generation for
the current population. The algorithm requires a set of non-dominated individuals (l) to
calculate their distance.

 
Figure 4. Crowding distance calculation.

3. Simulator

To assess the optimization algorithms, we constructed a neural-network-based simu-
lator with temperature data from a specific room within our laboratory. The data acquired
was the internal and external temperature (in Celsius) and the state of the air conditioner
system. We recorded this data every five minutes using two temperature sensors (DHT22)
with an Arduino Mega controller in the second week of September from Monday to
Wednesday. Figure 5 shows a diagram from the data acquisition to the evaluation of the
neural-network-based simulator. Regarding the data acquisition, we force fluctuations in
the internal temperature (from the external temperature to 24 ◦C) during different moments
of the day, turning on and off the air conditioning system.
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Figure 5. Diagram from data acquisition to the evaluation of the simulator.

Once the data were acquired, we constructed a dataset with the external temperature,
internal temperature, air conditioning state, and the next internal temperature taken
from the next row. With this dataset, we trained a backpropagation neural network
implemented in C# and is available at https://github.com/ahgarciar/Air-Conditioner-
System-Controllers (accessed on 19 February 2021). We configured the neural network with
three input neurons, ten neurons in a hidden layer, and one output neuron. Additionally, it
was tested with the mean average percentage error (MAPE) [10], producing a 1.07% error;
this result shows that our simulator has a relatively good performance.

4. Experimental Results

This experimentation aims to assess energy-saving and user satisfaction for five whole
days. To do this, we executed both algorithms independently and used the neural network
to simulate the temperature changes, given each algorithm’s recommendation.

Figure 6 shows the external temperature acquired for five days and the simulated
internal temperature obtained by the neuronal-network-based simulator. The simulator
requires three parameters to forecast the new internal temperature: current external temper-
ature, current internal temperature, and the state of the air conditioner system; the latest is
obtained according to the optimizer recommendation, i.e., if the optimizer recommendation
is lower or equal to the internal temperature, the air conditioning system is turned on;
otherwise, it is turned off.

To avoid increasing computational costs, we execute the optimization algorithms
once every half hour. These experimentations consider three configurations (see Table 1):
prioritizing energy-savings (A), a balance between energy-saving and user satisfaction
(B), and prioritizing user satisfaction (C). These three configurations constitute the three
primary user profiles within our laboratory and, roughly, in any conventional home.

Table 1. Configurations of the user’s priorities.

Configuration αus αes

A 0.2 0.8
B 0.5 0.5
C 0.8 0.2
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Figure 6. Internal temperature simulation based on the optimizer recommendation.

We configured the algorithms with the values from Table 1; then, the algorithms pro-
duce their recommendations for five simulated days; where we use as a recommendation
the best solution produced by GA, and a single solution from the first Pareto front for the
NSGA II. To keep a fair comparison, we used the nadir point of the Pareto front, which is
the solution with the lowest Euclidian distance to a hypothetical optimal point in the space.
This hypothetical optimal point is (1, 1) because both objectives intend to maximize their
gain, and 1 is the largest possible value for both objectives; see Figure 7.

Figure 7. Nadir point calculation.

Figures 8–10 show the temperature recommended by GA and NSGA II for each
moment of the day analyzed (every half an hour) for each of the configurations.
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Figure 8. Temperature recommended by genetic algorithms using configuration A.

Figure 9. Temperature recommended by genetic algorithms using configuration B.

Figure 10. Temperature recommended by genetic algorithms using configuration C.

Here, we can see that for configuration A, both algorithms recommend higher tem-
peratures than the other configurations. However, GA does recommend lower values
than NSGA II. For configuration B, GA’s recommendations have larger fluctuations than
NSGA II, which mainly maintains its recommendations from 27 to 23.5 ◦C. Finally, for
configuration C, GA recommends the lowest temperature, about 22 ◦C, while NSGA II
increases its fluctuation.

Based on each algorithm’s recommended temperature, the simulator turns the air
conditioning on or off for half an hour to adjust the room temperature.

Figures 11–13 show the room temperature simulation results by applying the algo-
rithms’ recommendation for each configuration.
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Figure 11. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration A.

Figure 12. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration B.

Figure 13. Simulation of temperature according to the recommendation of the genetic algorithms for
configuration C.

In Figure 11, configuration A, both algorithms have similar behavior. However, NSGA
II produces lower values than GA. Figure 12, configuration B, shows that NSGA II has lower
temperature values than GA and both algorithms have considerably different behavior.
Finally, Figure 13 shows an almost identical behavior for both algorithms with a slight
tendency for the NSGA II to produce lower temperatures than GA.

The satisfaction level increases when the room temperature is closer to the minimum
user desired temperature Tmin. As stated before, we live in a warm environment; thus, we
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require a cooling scheme for the air conditioning system. Therefore, the algorithm that
keeps closer to Tmin provides greater satisfaction for the user.

Therefore, to measure user satisfaction, we created a satisfaction ratio, defined as the
sum of the absolute differences between the current simulated temperature and Tmin for
each moment of the day; this is because values lower than Tmin are unwanted.

A lower satisfaction ratio implies a higher level of satisfaction. Table 2 presents the
satisfaction ratios calculated for each algorithm for all the configurations.

Table 2. Satisfaction ratio for each algorithm.

Configuration NSGA II GA

A 698.10343 993.36546
B 316.98898 1058.35429
C 313.84696 313.88824

As we can see, the NSGA II algorithm achieves better performance over the GA in
maintaining the room temperature according to the user preferences. For the configura-
tion where the algorithm prioritizes energy-saving (A), the NSGA II outperformed the
GA’s satisfaction rate by about 295 units. Furthermore, for the second configuration (B),
which prioritizes a balance between energy-saving and user satisfaction, the NSGA II
outperformed the GA’s satisfaction rate by about 741 units. Finally, for the last configu-
ration (C), which prioritizes user satisfaction, both algorithms produced almost the same
satisfaction rate.

To measure the energy consumption, we evaluate the maximum and minimum energy
consumption by simulating two extreme scenarios for the whole test. The first with the air
conditioning system turned off and the second with the air conditioning system turned
on (see Figure 14). According to this simulation and during its execution, there was an
electrical energy use of 0 and 105 kWh, respectively.

Figure 14. Temperature simulation considering the air conditioning always off and always on.

Table 3 shows calculations of the number of kWh used by all the configurations from
Table 1 for both algorithms. Additionally, we estimated the cost of $2.997 Mexican pesos
for each kWh consumed. We took this electric cost from the Mexican Federal Electricity
Commission (CFE). Therefore, for the previous extreme scenario, where the air conditioning
system is turned on for the whole test, the cost produced would be $314.69.

Table 3 shows that NSGA II outperformed GA in the total cost of the electrical energy
consumption in two of the three configurations. However, in the non-winning configura-
tion, GA improves by a smaller margin to NSGA II than in the other cases.
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Table 3. Cost of maintaining the configurations.

Configuration
NSGA II GA

kWh Cost kWh Cost

A 83.74032 $250.97 86.01629 $257.79
B 94.29362 $282.60 93.56877 $280.43
C 89.98913 $269.70 91.99613 $275.71

5. Discussion

As we can see, NSGA II achieved a better performance than GA regarding user
preferences while also outperforming GA in two of three configurations regarding the
energy cost.

Although both algorithms adapt to the user preferences and the energy-saving, the
NSGA II algorithm provides greater satisfaction. The neural-network-based simulator
showed that the room temperature values of the NSGA II were closer to the user ideal
temperature for two of three configurations. In this sense, we can conclude that the NSGA
II algorithm produced better results than GA to control the air conditioning systems.

It is worth noting that the experimentation results were on a period of five days with
a single room in our laboratory. However, by extending the experimentation to a longer
time span and more laboratories/rooms, we can easily reach a cost of about $3700 for just
two rooms with the air conditioning turned on for one month. On the other hand, we
can decrease this cost to about $3000 with the NSGA II configured for energy-saving for
the same amount of time. This comparison shows that we can reach an energy-saving of
about nineteen percent by using the NSGA II optimizer, highlighting the impact of using
an intelligent system on electrical energy consumption.

6. Conclusions

In this paper, we tackle the problem of controlling an air conditioning system using
evolutive algorithms to increase energy-saving while considering user satisfaction.

Therefore, we assessed the performance of two genetic algorithms to control an air
conditioning system. The first algorithm was an implementation of a genetic algorithm
(GA) proposed in [8], while the second was our proposed NSGA II algorithm, which is
a multi-objective optimization algorithm. We considered the NSGA II an appropriate
alternative because the air conditioning system intends to increase energy-saving while
considering the user preference. Thus, both objectives are directly opposed, which is a key
identifier of a multi-objective problem, making NSGA II an excellent alternative for solving.

Additionally, we proposed a modification to the definition of the problem, enhancing
it to consider new elements, including the cost of maintaining the same temperature and
the cancellation of the cost of returning to a warmer temperature, which occurs if the room
is colder than the desired temperature.

Furthermore, we designed and implemented a neural-network-based simulator to
measure both algorithms’ performance in equal circumstances. This simulator showed a
relatively low mean average percentage error of 1.07.

Regarding the comparison between GA and NSGA II, the latter showed better energy-
savings and user satisfaction than GA. Therefore, our assumption that a multi-objective
algorithm would produce better results for controlling an air conditioning system with two
objectives proved right.

Finally, we are currently working on expanding the experimentation by adding other
services. As future work, we encourage researchers to develop an intelligent system
prototype using NSGA II as a decision-making engine, integrating different configura-
tions of user preferences and profiles and further studying the air conditioning system’s
energy cost.
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Abstract: In this study, a neural network-based approach is proposed for the identification of nonlinear
static systems. A variant called ABCES (ABC Based on Effective Scout Bee Stage) is introduced for
neural network training. Two important changes are carried out with ABCES. The first is an update of
“limit” control parameters. In ABC algorithm, “limit” value is fixed. It is adaptively adjusted according
to number of iterations in ABCES. In this way, the efficiency of the scout bee stage is increased.
Secondly, a new solution-generating mechanism for the scout bee stage is proposed. In ABC algorithm,
new solutions are created randomly. It is aimed at developing previous solutions in the scout bee
stage of ABCES. The performance of ABCES is analyzed on two different problem groups. First, its
performance is evaluated on 13 numerical benchmark test problems. The results are compared with
ABC, GA, PSO and DE. Next, the neural network is trained by ABCES to identify nonlinear static
systems. 6 nonlinear static test problems are used. The performance of ABCES in neural network
training is compared with ABC, PSO and HS. The results show that ABCES is generally effective in
the identification of nonlinear static systems based on neural networks.

Keywords: artificial intelligence; artificial bee colony algorithm; global optimization; neural network;
nonlinear static system

1. Introduction

One of the most important issues of artificial intelligence is heuristic optimization
algorithms. They are used to solve many real-world problems and provide many advan-
tages. Therefore, the number of heuristic optimization algorithms has increased recently.
Heuristic optimization algorithms are divided into different classes according to the source
of inspiration such as swarm intelligence, bio-inspired, physics and chemistry-based, and
other algorithms [1]. ABC algorithm is one of the most popular heuristic algorithms based
on swarm intelligence. It is used to solve many problems in different areas.

One of the other important usage areas of ABC algorithm is artificial neural network
(ANN) training. ANN produces output values by using input values. It can learn with
samples. The learning process continues according to a tolerance value. The information
obtained as a result of learning is stored in weights. In this way, using weights can produce
suitable results in the face of similar situations. This is a very important advantage of ANN.
It is one of the main reasons for choosing ANN within the scope of this study.

In our daily life, we encounter nonlinear systems in all areas. Some exhibit static,
others dynamic behavior. In fact, this is why the identification of nonlinear systems is
important. When the literature is examined, studies have been carried out on nonlinear
dynamic systems generally in system identification. In other words, nonlinear static systems
are ignored. Nonlinear dynamic systems are affected by previous times. Time series is
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one of the most important examples of these systems. Nonlinear static systems are time
independent. They are formed as a result of the interaction of independent variables. In
fact, many fields such as education, medicine, engineering, finance, business exhibit static
behavior. This is the main difference between nonlinear static and dynamic systems. This
structural difference affects the complexity level of the systems. This study focuses directly
on the identification of nonlinear static systems.

Neuro-fuzzy and ANN are popular methods used in prediction and modeling. Both
methods can learn with samples. The learning process makes the methods powerful. This
situation allows the generation of an output for input values that they do not know at all.
Although both methods have strengths and weaknesses according to problem types, there
is no definite inference. Experiences are decisive in this process. In [2–5], ANFIS, one of the
neuro-fuzzy models, was trained using ABC algorithm for the identification of nonlinear
dynamic/static systems. In these studies, the performance of ANFIS training-based ABC
algorithm on system identification was observed. However, the performance of ANN
training based on ABC algorithm in the identification of nonlinear static systems is unknown.
In [6], ANN was trained using the ABC algorithm for pattern classification. But it is not about
system identification. Therefore, ANN training is carried out by using ABC algorithm and
its variant to identify nonlinear static systems in this study. The performance of approaches
such as ABC algorithm, PSO and HS are analyzed comparatively in the identification of
nonlinear static systems for the first time. In this respect, it is a pioneering and innovative
study. In fact, it is one of the first studies whose main subject is the identification of nonlinear
static systems. Within the scope of this study, only standard ABC algorithm is not used for
ANN training. A novel algorithm called ABCES based on ABC algorithm is introduced
for ANN training. With ABCES, two important changes are realized in structure of ABC
algorithm. The first is adjustment of limit control parameter. Unlike standard ABC algorithm,
this control parameter is not fixed. It is determined adaptively. The second is updating of
solution generation mechanism belonging to the scout bee stage. In standard ABC algorithm,
the solutions for the scout bee stage are generated randomly. In the proposed method, a new
solution generation mechanism that uses the global best solution to ensure the continuity
of the gains achieved, has been proposed. In this way, the scout bee stage has been made
more effective. These changes are an innovative approach to improving the performance of
standard ABC algorithm.

2. Related Works

2.1. The Studies on ABC Algorithm

Some studies related to ABC algorithm are presented in this section. Horng [7] sug-
gested a max entropy thresholding (MET) approach based on ABC algorithm for image seg-
mentation. The study compared the results obtained with four different methods: PSO, hy-
brid cooperative-comprehensive learning-based PSO algorithm (HCOCLPSO), Fast Otsu’s
method and honey-bee mating optimization (HBMO). Karaboga [8] designed digital infinite
impulse response (IIR) filters by using ABC algorithm. Yeh and Hsieh [9] solved reliability
redundancy allocation problem by using a variant of ABC algorithm and the results were
compared with different methods in the literature. Hemamalini and Simon [10] used ABC
algorithm for economic load dispatch problem. Hong [11] proposed a model to predict
electric load based on support vector regression (SVR) and ABC algorithm. Şahin [12] used
GA and ABC to maximize the thermal performance of a solar air collector. Zaman et al. [13]
proposed a method based on ABC algorithm for synthesizing antenna arrays. Deng [14]
used ABC algorithm to classify customers in mobile e-commerce environment. Bulut and
Tasgetiren [15] developed a variant of ABC algorithm for economic lot scheduling problem.
There are many studies related to ABC algorithm out of these [16–18].

Although ABC algorithm’s global convergence speed is very good, its different vari-
ants have been proposed to increase the speed of local convergence of ABC algorithm. The
main purpose here is to improve the performance of ABC algorithm. Bansal et al. [19] pro-
posed adaptive version of ABC algorithm. Here, two important parameters were adjusted
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according to current fitness values adaptively: step size and “limit” control parameters.
Babaeizadeh and Ahmad [20] updated employed, onlooker and scout bee phases in ABC
algorithm. Draa and Bouaziz [21] suggested a new ABC algorithm for image contrast en-
hancement. Karaboga and Gorkemli [22] proposed a variant known as qABC and modified
solution generation mechanism belonging to onlooker phase. Gao et al. [23] presented new
solution generation mechanisms using more information about the population. Wang [24]
made two important updates via generalized opposition-based learning method and local
best solution in ABC algorithm. Kıran and Fındık [25] added direction information for each
dimension of each food source position to increase the speed of convergence of ABC algo-
rithm. Liang and Lee [26] updated ABC algorithm using different operations and strategies
such as elite, solution sharing, instant update, cooperative strategy and population manager
strategies. Karaboga and Kaya [4] used arithmetic crossover and adaptive neighborhood
radius to improve the performance of ABC algorithm. Different variants of ABC algorithm
have been proposed out of these [27–30].

2.2. The Studies on ANN and Neuro-Fuzzy

Due to advantages of ANN, it is seen that it is used successfully in solving many
real-world problems [31–35]. Capizzi et al. [36] proposed neural network topology to
model surface plasmon polaritons propagation. Sciuto et al. [37] suggested an approach
based on a spiking neural network for anaerobic digestion process. Capizzi et al. [38] used
a back-propagation neural network (BPNN) for automated oil spill detection by satellite
remote sensing. An effective training algorithm should be used to achieve effective results
with ANN. Therefore, heuristic algorithms have been used extensively in ANN training
recently. ABC algorithm is one of successful heuristic algorithms and it is used in ANN
training. Mohmad Hassim and Ghazali [39] suggested an approach for training functional
link neural network (FLNN) by using ABC algorithm for time series prediction. They
demonstrated that the proposed approach was better than FLNN model based on BP.
Zhang et al. [40] suggested a model based on a forward neural network for classifying
MR brain image and adjusted with ABC algorithm the parameters of a forward neural
network. Ozkan et al. [41] used a model-based neural network and ABC for modeling daily
reference evapotranspiration. Chen et al. [42] used an approach based on BPNN and ABC
algorithm for prediction of water quality. Karaboga and Ozturk [6] applied ABC algorithm
to train FFNNs on pattern classification. The benchmark classification problems were
used for performance analysis. Obtained results by using ABC algorithm was compared
with the well-known some algorithms. It was reported that training FFNN based on
ABC algorithm gave effective results on the related problem. Another usage area of ABC
algorithm is ANFIS training. Karaboga and Kaya [2,3] used standard ABC algorithm for
adaptive-network-based fuzzy inference system (ANFIS) training for nonlinear dynamic
systems identification. In a different study, Karaboga and Kaya [4] proposed a new ANFIS
training algorithm called an adaptive and hybrid artificial bee colony algorithm (aABC) to
obtain more effective results in the identification of nonlinear dynamic systems. In the next
study, Karaboga and Kaya [5] trained ANFIS by using aABC algorithm for nonlinear static
systems identification. The performance of aABC algorithm was tested on 5 nonlinear
static systems and compared with PSO, GA, HS and ABC algorithm.

3. Materials and Methods

3.1. Standard ABC Algorithm

The ABC algorithm is one of the popular swarm-based heuristic optimization algo-
rithms. It models the food searching behavior of the honey-bees [43]. It includes three
different types of bees named employed bees, onlooker bees and scout bees. There are some
assumptions in ABC algorithm. Some of these are: half of the colony consists of employed
bees. The other half is the onlooker bees. Specifically, the number of employed bees is equal
to the number of onlooker bees. The basic steps of ABC algorithm are as follows:
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In the initial phase, the positions of food sources are determined randomly by using (1).
Here, xi shows ith solution. i is in range [1, population size]. xmin

j is the lower value to be
taken by parameter j. Also, xmax

j is the upper value.

xij = xmin
j + rand(0, 1)

(
xmax

j − xmin
j

)
(1)

Every employed bee probabilistically develops a new food source using the solution
positions in memory. (2) is used to create a new solution in this process. Here, k is an integer
number in range [1, number of employed bees]. Θij is a random number in range [−1, 1].

vij = xij + Θij

(
xij − xkj

)
(2)

If the amount of nectar of the new source is higher than before, information belonging
to the previous position is deleted from the memory. At the same time, information be-
longing to the new food source is written to the memory. Otherwise, the previous position
is maintained. After the search process is completed, the employed bees share the food
source information with the onlooker bees. A onlooker bee evaluates the information of
all bees. It selects a source according to the probability value obtained from (3). As in the
employed bee stage, a new solution develops by modifying the current solution. And they
control the nectar quantity of the candidate solution. If the nectar amount of the candidate
solution is better, information of the previous solution is deleted from the memory.

pi =
f iti

∑SN
1 f itn

(3)

“Limit” is one of the important control parameters of ABC algorithm. If a position
is not improved up to the limit value, it is assumed that this food source was abandoned.
The abandoned food source is replaced by a new food source by scout bee.

3.2. Artificial Bee Colony Algorithm Based on Effective Scout Bee (ABCES)

One of the most important control parameters of ABC algorithm is “limit”. Failure
counter is the number of failures in producing the solution. When the failure counter
reaches “limit” value, a random solution is created instead of the previous solution. This
prevents the creation of qualified solutions. In the scout bee phase, instead of creating
solutions randomly, it is aimed to be transformed into more qualified individuals. In this
study, two major changes have been made in the structure of standard ABC algorithm. The
main purpose of these changes is to make the scout bee stage more effective. With this
modification, the convergence speed and solution quality of the algorithm are improved.

To make the scout bee stage more efficient, a strategy has been proposed to determine
the limit control parameter. In the standard ABC algorithm, limit value is fixed throughout
all iterations. This causes to go the scout bee stage less frequently to produce a new solution.
limit value is adaptively determined by using (4) to prevent this.

limit = 1 + w × D × FoodNumber × ((maxCycle − iter)/maxCycle) (4)

Here, the maximum value of limit value is 1 + D × FoodNumber. maxCycle is the maxi-
mum number of iterations, and iter represents the number of current iterations. The limit
value is adaptively adjusted according to the number of iterations. Initially, (maxCycle−iter)/
maxCycle gets the maximum value and limit has the greatest value in the same way. In
fact, the maximum value of limit is adaptively adjusted here. At each iteration, limit value
changes. limit is set according to the value of w. w is a random number in the range [0,1]. It
is ensured that the value of the limit is within the range [1, Upperlimit]. Upperlimit is found
by using (5).

Upperlimit = 1 + D × FoodNumber × ((maxCycle − iter)/maxCycle) (5)
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The scout bee stage becomes more effective with the change in limit. In this case, an
effective solution-generating mechanism is needed to obtain more qualified solutions. The
main purpose here is to continue with a more effective solution than the previous solution.
Therefore, the solution-generating mechanism given in (6) is proposed.

vij =

{
xijγ + xg

j (1 − γ), r1 < r2
xij + xij × δ, other

(6)

r2 = rand + ((maxCycle − iter)/maxCycle) (7)

Here, xg is the global best solution. r1 is a random number in the range [0,1]. r2 is
determined by (7). γ is the arithmetic crossover rate and is calculated randomly. δ is the
step size and is accepted as 0.01. Arithmetic crossover is applied between the current
solution and the global best solution. In other words, the quality of the current solution is
being improved by approximating the global best solution. The value of r2 is randomly
generated depending on the number of iterations. Thus, the related solution closes global
best solution at first. In this way, the local convergence speed of the algorithm increases.
Three different preventions are taken to prevent locally minimal risk. First, the arithmetic
crossover rate is randomly selected. Secondly, when not r1 < r2, a new solution is produced
in the neighborhood of the current solution. This is achieved via the step size (δ). In
particular, in high iterations, outside of global best solution, new solutions are produced
according to the current solution. Therefore, quality solutions can even be obtained in high
iterations. The third is the possibility of updating the current and global best solution in
employed and onlooker bee stages. At the same time, it has been ensured that the new
solutions are different from the global best solution with three different preventions.

In summary, adaptive adjustment of limit value is provided. The effectiveness of the
scout bee stage is increased with new limit calculation method. A new solution-generating
mechanism is proposed for the scout bee stage. In this way, the local convergence speed of
the algorithm is increased, and it is provided that better quality solutions are obtained.

3.3. Training Feed Forward Artificial Neural Networks

Artificial neural Networks (ANNs) are one of the artificial intelligence techniques.
ANNs consist of the interconnection of artificial neurons. Figure 1 shows the general struc-
ture of an artificial neuron. An artificial neuron consists of inputs, weights, bias value,
activation and transfer function. In this way, an output is obtained from the inputs of neu-
rons. The output of a neuron is calculated using (8). x is the input value. w are the weight
values corresponding to the input. b is bias value. f is the activation function. y corresponds
to the output of the artificial neuron.

y = f

(
m

∑
i=1

wixi + b

)
(8)

A FFNN consists of 3 layers as input, hidden and output. In FFNN, calculations
specified in (8) are performed in each neuron. In this way, each neuron affects the neurons
in the next layer. There is no interaction in the same layer. In FFNN, output is obtained
corresponding to the input values. This is only possible by creating a model for a related
problem. For this, the network needs to be trained. Training the network is the process of
determining the weights and bias values. Training algorithms are used for this. One of the
learning methods is learning with samples. Training dataset is required for this. It reflects the
characteristics of the network and the network learns in the training process. The learning
level of the network is related to the error value. Error value refers to the relationship
between the real output and predicted output. A low error value is very important for a
successful training process. For low error value, an effective training algorithm is required.

125



Symmetry 2021, 13, 419

Figure 1. General structure of an artificial neuron.

4. Simulation Results

4.1. Solution of Global Optimization Problems

In applications, 13 numerical test problems are used to analyze the performance
of ABCES algorithm. The related problems are given in Table 1. For ABC and ABCES
algorithms, population size is taken as 50. The results are obtained for different values of D
∈ {50,100,150,1000}. The number of evaluations has been used 100,000, 500,000, 1,000,000
values. Each application is run 30 times. Each initial population is determined randomly.

Table 1. Benchmark functions used in experiments.

Function Formulation

SumSquares f (x) = ∑n
i=1 ix2

i

Levy
f (x) = sin2(πw1) + ∑n−1

i=1 (wi − 1)2[1 + 10 sin2(πwi + 1)] + (wd − 1)2 + [1 + sin2(2πwd)]

wi = 1 + xi−1
4

Rosenbrock f (x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2 + (xi − 1)2]

The Sum of Different Powers f (x) = ∑n
i=1|xi|i+1

Zakharov f (x) = ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4

Ackley f (x) = −20 exp
(
−0.2

√
1
n ∑n

i=1 x2
i

)
− exp

(
1
n ∑n

i=1 cos(2πxi)
)
+ 20 + e

Step f (x) = ∑n
i=1(�xi + 0.5�)2

Rastrigin f (x) = ∑n
i=1

[
x2

i − 10 cos(2πxi) + 10
]

Griewank f (x) = 1
4000 ∑n

i=1 x2
i + ∏n

i=1 cos
(

xi√
i

)
+ 1

Rotated Hyper-Ellipsoid f (x) = ∑n
i=1 ∑i

j=1 x2
j

Dixon–Price f (x) = (x1 − 1)2 + ∑n
i=2 i(2x2

i − xi−1)
2

Perm f (x) = ∑n
k=1

[
∑n

i=1(i
k + β)

(( xi
i
)k − 1

)]2

Sphere f (x) = ∑n
i=1 x2

i

The results found with ABC and ABCES algorithms in 100,000 evaluations are given
in Table 2. 13 test functions are used, and the results are obtained for D = {50, 100, 150}
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in each function. In addition to the objective function and standard deviation values
are given here. When D is 50, 100 and 150, ABCES algorithm has better results than
ABC algorithm in SumSquares, Levy, Sphere, Rosenbrock, The Sum of Different Powers,
Zakharov, Ackley, Step, Griewank, Rotated Hyper-Ellipsoid, Dixon–Price and Perm. ABC
algorithm is only successful in Rastrigin. Apart from average objective function value,
ABCES algorithm is more successful in the standard deviation values. This shows that the
results obtained by using ABCES in 100,000 evaluations are more robust. The Wilcoxon
signed rank test is used to determine the significance of the results and it is given in
Table 3. The evaluation is made according to p = 0.05 level. 13 test functions are evaluated
in 3 different dimensions (D = 50, 100, 150). Specifically, the significance of 39 results is
examined. A significant difference is found in favor of the ABCES algorithm in 34 of these.
This result indicates that ABCES algorithm is better in 34 objective function value. There
is no significant difference in 4 results. In only one result, there is significant difference
indicating that ABC algorithm is more good.

Table 2. Comparison of the results obtained by using ABC and ABCES (D: Dimension, Mean: Mean Values, SD: Standard
Deviation, Population Size = 50, Number of Evaluation = 100,000.)

No Function Range D
ABC ABCES (Proposed)

Mean SD Mean SD

1 SumSquares [−10, 10]
50 9.61 × 10−10 1.94 × 10−9 2.25 × 10−14 2.65 × 10−14

100 7.87 × 10−3 3.96 × 10−2 4.75 × 10−6 4.74 × 10−6

150 9.90 × 10−1 2.60 5.80 × 10−4 4.62 × 10−4

2 Levy [−10, 10]
50 1.28 × 10−10 3.66 × 10−10 7.69 × 10−11 1.29 × 10−10

100 4.97 × 10−4 1.26 × 10−3 1.63 × 10−5 1.55 × 10−5

150 1.57 × 10−2 3.82 × 10−2 1.15 × 10−3 8.41 × 10−4

3 Sphere [−100, 100]
50 3.21 × 10−9 7.92 × 10−9 1.05 × 10−13 1.10 × 10−13

100 3.53 × 10−2 6.87 × 10−2 5.71 × 10−6 4.65 × 10−6

150 7.24 × 10−1 2.19 9.15 × 10−4 1.10 × 10−3

4 Rosenbrock [−30, 30]
50 4.55 5.63 2.33 2.70

100 2.10 × 102 1.16 × 102 1.45 × 102 6.80 × 101

150 6.69 × 102 4.65 × 102 4.63 × 102 3.54 × 102

5 The Sum of Different Powers [−1, 1]
50 4.48 × 10−17 1.92 × 10−17 2.65 × 10−18 2.24 × 10−18

100 3.34 × 10−11 1.16 × 10−10 1.06 × 10−15 1.50 × 10−15

150 1.98 × 10−7 7.54 × 10−7 1.83 × 10−11 4.07 × 10−11

6 Zakharov [−10, 10]
50 1.12 × 103 9.81 × 101 1.35 × 102 3.16 × 101

100 2.63 × 103 1.32 × 102 3.50 × 102 5.97 × 101

150 4.31 × 103 1.78 × 102 5.83 × 102 1.28 × 102

7 Ackley [−32, 32]
50 3.06 × 10−5 4.98 × 10−5 8.56 × 10−7 3.71 × 10−7

100 2.46 × 10−1 3.39 × 10−1 2.70 × 10−2 1.94 × 10−2

150 2.01 4.99 × 10−1 1.25 3.40 × 10−1

8 Step [−100, 100]
50 6.03 × 10−9 1.82 × 10−8 2.35 × 10−9 4.55 × 10−9

100 2.80 × 10−2 7.90 × 10−2 1.37 × 10−4 9.29 × 10−5

150 8.46 × 10−1 2.30 4.25 × 10−3 2.10 × 10−3

9 Rastrigin [−5.12, 5.12]
50 7.89 × 10−2 2.54 × 10−1 1.89 × 10−1 4.85 × 10−1

100 1.44 × 101 4.76 1.67 × 101 4.30
150 5.57 × 101 7.85 6.60 × 101 7.93

10 Griewank [−600, 600]
50 2.54 × 10−5 1.00 × 10−4 3.86 × 10−11 9.49 × 10−11

100 3.43 × 10−2 5.47 × 10−2 2.84 × 10−3 5.73 × 10−3

150 2.65 × 10−1 3.14 × 10−1 4.39 × 10−2 3.95 × 10−2

11 Rotated Hyper-Ellipsoid [−65536, 65536]
50 2.03 × 10−4 8.46 × 10−4 2.15 × 10−7 3.50 × 10−7

100 4.73 × 105 1.89 × 106 6.54 5.38
150 2.81 × 107 8.16 × 107 2.16 × 104 2.54 × 104

12 Dixon–Price [−10, 10]
50 4.71 × 10−2 1.20 × 10−1 4.51 × 10−2 2.53 × 10−2

100 2.42 × 101 1.43 × 101 1.48 × 101 8.03
150 7.48 × 101 3.42 × 101 5.92 × 101 1.68 × 101

13 Perm [−4, 4]
2 2.54 × 10−9 5.40 × 10−9 5.50 × 10−12 1.41 × 10−11

4 1.42 × 10−1 1.01 × 10−1 9.35 × 10−3 2.71 × 10−2

6 2.01 × 103 4.18 × 103 1.51 × 101 2.20 × 101
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Table 3. Wilcoxon signed rank test results between standard ABC and ABCES (Population Size = 50, Number of Evaluation = 100,000).

No Function Range D
Statistical Results

p-Value Significance

1 SumSquares [−10, 10]
50 0.000 +

100 0.000 +
150 0.000 +

2 Levy [-10, 10]
50 0.041 +
100 0.002 +
150 0.165 -

3 Sphere [−100, 100]
50 0.000 +

100 0.000 +
150 0.000 +

4 Rosenbrock [−30, 30]
50 0.021 +

100 0.019 +
150 0.019 +

5 The Sum of Different Powers [−1, 1]
50 0.000 +

100 0.000 +
150 0.000 +

6 Zakharov [−10, 10]
50 0.000 +

100 0.000 +
150 0.000 +

7 Ackley [−32, 32]
50 0.000 +

100 0.000 +
150 0.000 +

8 Step [−100, 100]
50 0.090 -

100 0.043 +
150 0.003 +

9 Rastrigin [−5.12, 5.12]
50 0.192 -

100 0.131 -
150 0.000 *

10 Griewank [−600, 600]
50 0.000 +

100 0.000 +
150 0.000 +

11 Rotated Hyper-Ellipsoid [−65536, 65536]
50 0.000 +

100 0.000 +
150 0.000 +

12 Dixon–Price [−10, 10]
50 0.006 +

100 0.002 +
150 0.024 +

13 Perm [−4, 4]
2 0.000 +
4 0.000 +
6 0.000 +

When the results are obtained in 100,000 evaluations are examined, it is seen that fast
convergence continues in the problems. Therefore, it is determined that better results can
be achieved in high iteration. Thus, the results found in 500,000 evaluations are given in
Table 4. In 500,000 evaluations, the quality of the solutions has improved at a high rate
according to 100,000 evaluations in Levy, Sphere, The Sum of Different Powers, Zakharov,
Ackley, Step, Rastrigin, Griewank and Rotated Hyper-Ellipsoid functions. The objective
function values are 10−15 and below in all dimensions (D = 50, 100, 150) in SumSquares,
Sphere, The Sum of Different Powers, Griewank and Rotated Hyper-Ellipsoid functions.
The results obtained for D = 50 are 10−15 and below in Levy, Rastrigin and Step functions.
They are between 10−10 and 10−15 for D = 100 and D = 150. Similarly, the objective
function value obtained in Ackley function is between 10−10 and 10−15. In Perm function,
the dimensions affected to the results a lot. Although the objective function value is
about 10−13 in D = 2, it is about 10−2 in D = 4. Along with that, it is about 5 in D = 6.
In Rosenbrock function, objective function values between 0.1 and 1 are obtained. In
Zakharov function, they are between 51 and 312. This function has the highest objective
function value. At the same time, Table 4 compares ABC and ABCDE algorithms. ABC
algorithm is only better in Levy, Step and Dixon–Price functions. In other problems, the
ABCES algorithm is more successful than the ABC algorithm. Although ABCES has better
results in Levy and Step functions in 100,000 evaluations, this situation has changed in
favor of the ABC algorithm in 500,000 evaluations. In Rastrigin function, while ABC
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algorithm is more successful in 100,000 evaluations, ABCES algorithm is better in 500,000
evaluations. The Wilcoxon signed rank test is performed between ABC and ABCES to
determine the significance of the results obtained in 500,000 evaluations and it is given
Table 5. The analyses are performed according to p = 0.05 level. The significance of 39
objective function values is examined. In 25 of them, a significant difference is obtained
with ABCES algorithm. This result shows that ABCES algorithm is more successful than
with ABC algorithm in these functions. ABC algorithm is only better in 8 of them. These
results belong to Levy, Step and Dixon–Price functions which ABC algorithm is effective.
In the remaining 6 results, no significant difference is found between ABC and ABCES.
Despite ABCES is especially better in Rosenbrock function, it is not significant. Also, as in
100,000 evaluations, the best standard deviation values are generally obtained by ABCES
algorithm in 500,000 evaluations.

Table 4. Comparison of the results obtained by using ABC and ABCES (D: Dimension, Mean: Mean Values, SD: Standard
Deviation, Population Size = 50, Number of Evaluation = 500,000).

No Function Range D
ABC ABCES (Proposed)

Mean SD Mean SD

1 SumSquares [−10, 10]
50 8.81 × 10−16 9.93 × 10−17 1.63 × 10−16 3.20 × 10−17

100 2.12 × 10−15 1.96 × 10−16 4.08 × 10−16 5.96 × 10−17

150 3.72 × 10−15 3.94 × 10−16 8.55 × 10−16 1.32 × 10−16

2 Levy [−10, 10]
50 8.63 × 10−16 9.66 × 10−17 1.71 × 10−15 8.02 × 10−16

100 2.14 × 10−15 1.89 × 10−16 1.03 × 10−13 1.73 × 10−13

150 3.59 × 10−15 2.05 × 10−16 6.61 × 10−12 1.82 × 10−11

3 Sphere [−100, 100]
50 9.10 × 10−16 9.92 × 10−17 1.64 × 10−16 2.95 × 10−17

100 2.10 × 10−15 2.19 × 10−16 3.97 × 10−16 5.60 × 10−17

150 3.88 × 10−15 3.57 × 10−16 8.99 × 10−16 1.42 × 10−16

4 Rosenbrock [−30, 30]
50 2.80 × 10−1 7.03 × 10−1 1.61 × 10−1 4.09 × 10−1

100 4.52 × 10−1 7.50 × 10−1 1.84 × 10−1 2.39 × 10−1

150 1.31 2.35 9.09 × 10−1 1.91

5 The Sum of Different Powers [−1, 1]
50 2.52 × 10−17 7.33 × 10−18 9.33 × 10−19 1.44 × 10−18

100 4.43 × 10−17 1.29 × 10−17 2.69 × 10−18 4.30 × 10−18

150 5.87 × 10−17 1.85 × 10−17 3.73 × 10−18 4.33 × 10−18

6 Zakharov [−10, 10]
50 9.24 × 102 9.83 × 101 5.19 × 101 1.57 × 101

100 2.51 × 103 1.19 × 102 1.88 × 102 2.45 × 101

150 4.07 × 103 2.04 × 102 3.12 × 102 5.00 × 101

7 Ackley [−32, 32]
50 6.59 × 10−14 5.36 × 10−15 3.26 × 10−14 2.89 × 10−15

100 1.57 × 10−13 1.03 × 10−14 7.61 × 10−14 7.23 × 10−15

150 3.34 × 10−10 4.23 × 10−10 2.47 × 10−12 5.58 × 10−13

8 Step [−100, 100]
50 8.88 × 10−16 1.10 × 10−16 2.00 × 10−15 1.50 × 10−15

100 2.12 × 10−15 2.25 × 10−16 6.98 × 10−14 1.17 × 10−13

150 3.76 × 10−15 2.98 × 10−16 5.13 × 10−12 1.18 × 10−11

9 Rastrigin [−5.12, 5.12]
50 0 0 0 0

100 1.14 × 10−13 7.19 × 10−14 4.93 × 10−14 6.35 × 10−14

150 2.38 × 10−12 4.09 × 10−12 1.65 × 10−12 6.54 × 10−13

10 Griewank [−600, 600]
50 9.99 × 10−17 1.66 × 10−16 0 0

100 4.22 × 10−16 3.44 × 10−16 0 0
150 1.60 × 10−15 1.05 × 10−15 2.26 × 10−16 2.52 × 10−16

11 Rotated Hyper-Ellipsoid [−65536, 65536]
50 8.83 × 10−16 1.12 × 10−16 1.60 × 10−16 3.63 × 10−17

100 2.13 × 10−15 2.29 × 10−16 4.29 × 10−16 5.87 × 10−17

150 1.95 × 10−12 3.39 × 10−12 3.24 × 10−15 6.81 × 10−16

12 Dixon–Price [−10, 10]
50 7.82 × 10−10 1.37 × 10−9 3.05 × 10−5 2.06 × 10−5

100 2.00 × 10−5 1.92 × 10−5 2.03 × 10−3 1.07 × 10−3

150 1.60 × 10−1 5.82 × 10−1 2.00 × 10−2 8.78 × 10−3

13 Perm [−4, 4]
2 5.97 × 10−12 2.38 × 10−11 1.09 × 10−13 2.58 × 10−13

4 3.39 × 10−2 2.65 × 10−2 2.51 × 10−2 4.81 × 10−2

6 2.80 × 102 2.83 × 102 4.91 8.31

129



Symmetry 2021, 13, 419

Table 5. Wilcoxon signed rank test results between standard ABC and ABCES (Population Size = 50, Number of Evaluation
= 500,000).

No Function Range D
Statistical Results

p-Value Significance

1 SumSquares [−10, 10]
50 0.000 +

100 0.000 +
150 0.000 +

2 Levy [−10, 10]
50 0.000 *

100 0.000 *
150 0.000 *

3 Sphere [−100, 100]
50 0.000 +

100 0.000 +
150 0.000 +

4 Rosenbrock [−30, 30]
50 0.271 -

100 0.111 -
150 0.688 -

5 The Sum of Different Powers [−1, 1]
50 0.000 +

100 0.000 +
150 0.000 +

6 Zakharov [−10, 10]
50 0.000 +

100 0.000 +
150 0.000 +

7 Ackley [−32, 32]
50 0.000 +

100 0.000 +
150 0.000 +

8 Step [−100, 100]
50 0.000 *

100 0.000 *
150 0.000 *

9 Rastrigin [−5.12, 5.12]
50 1.000 -

100 0.002 +
150 0.940 -

10 Griewank [−600, 600]
50 0.000 +

100 0.000 +
150 0.000 +

11 Rotated Hyper-Ellipsoid [−65536, 65536]
50 0.000 +

100 0.000 +
150 0.000 +

12 Dixon–Price [−10, 10]
50 0.000 *

100 0.000 *
150 0.000 +

13 Perm [−4, 4]
2 0.001 +
4 0.116 -
6 0.000 +

It is very important the success that optimization algorithms show in high-dimensional
problems. Therefore, the results obtained with ABC and ABCES algorithms are given
for D = 1000 on SumSquares, Levy, Sphere, Rosenbrock, The Sum of Different Powers,
Zakharov, Ackley, Step, Rastrigin, Griewank, Rotated Hyper-Ellipsoid and Dixon–Price
functions in Table 6. ABC algorithm is only better in Rastrigin function. ABCES is more
successful in all other problems. In particular, in Rotated Hyper-Ellipsoid function, the
objective function value is obtained as 6.40 × 108 by ABC algorithm and no effective
solution is found. In contrast, it is achieved as 6.25 × 102 by using ABCES. Other than that,
while the success rate of ABC algorithm on SumSquares, Sphere and The Sum of Different
Powers functions is low, more effective results are obtained with ABCES algorithm. The
Wilcoxon signed rank test is used to determine whether the results are significant, and it is
given in Table 7. The analyses are performed according to p = 0.05 level. The significance
status for 12 functions is examined. In 8 of them, a significant difference is found in favor
of ABCES. In only one function, a significant difference is obtained with ABC algorithm.
No significant difference is found in other functions. In addition, in all functions, the best
standard deviation values are achieved by using ABCES. When the results given in Tables 6
and 7 are evaluated, they show that ABCES algorithm is better than ABC algorithm on
high-dimensional problems.

130



Symmetry 2021, 13, 419

Table 6. Comparison of the results obtained by using ABC and ABCES (D: Dimension, Mean: Mean Values, SD: Standard
Deviation, Population Size = 50, Number of Evaluation = 1,000,000).

No Function Range D
ABC ABCES (Proposed)

Mean SD Mean SD

1 SumSquares [−10, 10]

1000

1.33 3.11 2.19 × 10−5 1.14 × 10−5

2 Levy [−10, 10] 2.46 × 10−3 4.85 × 10−3 1.35 × 10−4 1.41 × 10−4

3 Sphere [−100, 100] 1.36 × 10−1 3.13 × 10−1 6.82 × 10−6 2.62 × 10−6

4 Rosenbrock [−30, 30] 2.34 × 103 1.18 × 103 1.62 × 103 3.11 × 102

5 The Sum of Different Powers [−1, 1] 2.22 × 10−9 9.43 × 10−9 3.60 × 10−16 6.73 × 10−16

6 Zakharov [−10, 10] 3.16 × 104 4.80 × 102 2.38 × 103 2.69 × 102

7 Ackley [−32, 32] 6.05 × 10−1 1.28 5.95 × 10−2 3.13 × 10−2

8 Step [−100, 100] 5.76 × 10−2 1.30 × 10−1 4.63 × 10−4 3.14 × 10−4

9 Rastrigin [−5.12, 5.12] 1.86 × 102 2.02 × 102 2.20 × 102 2.16 × 101

10 Griewank [−600, 600] 5.60 × 10−2 1.13 × 10−1 4.45 × 10−3 2.01 × 10−2

11 Rotated Hyper-Ellipsoid [−65536, 65536] 6.40 × 108 2.97 × 109 6.25 × 102 2.68 × 102

12 Dixon–Price [−10, 10] 2.23 × 103 7.39 × 102 1.96 × 103 3.67 × 102

Table 7. Wilcoxon signed rank test results between standard ABC and ABCES (D: Dimension, Mean: Mean Values, SD:
Standard Deviation, Population Size = 50, Number of Evaluation = 1,000,000).

No Function Range D
Statistical Results

p-Value Significance

1 SumSquares [−10, 10]

1000

0.000 +
2 Levy [−10, 10] 0.082 -
3 Sphere [−100, 100] 0.000 +
4 Rosenbrock [−30, 30] 0.002 +
5 The Sum of Different Powers [−1, 1] 0.000 +
6 Zakharov [−10, 10] 0.000 +
7 Ackley [−32, 32] 0.000 +
8 Step [−100, 100] 0.339 -
9 Rastrigin [−5.12, 5.12] 0.000 *

10 Griewank [−600, 600] 0.000 +
11 Rotated Hyper-Ellipsoid [−65536, 65536] 0.000 +
12 Dixon–Price [−10, 10] 0.131 -

Comparison of GA, PSO, DE, ABC and ABCES algorithms is given in Table 8. In the
comparison, SumSquares, Sphere, Rosenbrock, Zakharov, Ackley, Step, Rastrigin, Griewank,
Dixon–Price and Perm functions are used. Results of GA, PSO, DE and ABC algorithm
are taken from [44]. The results are given for population/colony size is 50 and number
of evaluations is 500,000. In addition, values below 10−12 in [44] are assumed as 0 (zero).
For fair comparison, values below 10−12 are accepted as 0 (zero) in ABCES algorithm too.
When the related table is analyzed, 0 (zero) are obtained with PSO, DE, ABC and ABCES
algorithms in SumSquares, Sphere, Step functions. Algorithms other than GA and ABC
reach 0 (zero) value in Zakharov function. Also, ABC and ABCES algorithms find 0 (zero )
value in Ackley function. The best results for Rastrigin, Griewank and Dixon–Price functions
are achieved with ABC and ABCES algorithms. In addition, the best results for Rosenbrock
and Perm are obtained by using ABCES Algorithm. These results given in Table 8 show that
ABCES algorithm is generally more successful than GA, PSO, DE, and ABC algorithm.
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Table 8. Statistical results of 30 runs obtained by GA, PSO, DE, ABC and ABCES [44].

Function D Range Algorithm
Results

Mean Std.

SumSquares 30 [−10, 10]

GA 1.48 × 102 1.24 × 101

PSO 0 0
DE 0 0

ABC 0 0
ABCES (Proposed) 0 0

Sphere 30 [−100, 100]

GA 1.11 × 103 7.42 × 101

PSO 0 0
DE 0 0

ABC 0 0
ABCES (Proposed) 0 0

Rosenbrock 30 [−30, 30]

GA 1.96 × 105 3.85 × 104

PSO 1.52 × 101 2.42 × 101

DE 1.82 × 101 5.04
ABC 8.87 × 10−2 7.74 × 10−2

ABCES (Proposed) 5.36 × 10−2 1.62 × 10−1

Zakharov 10 [−5, 10]

GA 1.34 × 10−2 4.53 × 10−3

PSO 0 0
DE 0 0

ABC 2.48 × 10−4 1.83 × 10−4

ABCES (Proposed) 0 0

Ackley 30 [−32, 32]

GA 1.47 × 101 1.78 × 10−1

PSO 4.94 × 10−1 9.02 × 10−2

DE 0 0
ABC 0 0

ABCES (Proposed) 0 0

Step 30 [−100, 100]

GA 1.17 × 103 7.66 × 101

PSO 0 0
DE 0 0

ABC 0 0
ABCES (Proposed) 0 0

Rastrigin 30 [−5.12, 5.12]

GA 5.29 × 101 4.56
PSO 4.40 × 101 1.17 × 101

DE 1.17 × 101 2.54
ABC 0 0

ABCES (Proposed) 0 0

Griewank 30 [−600, 600]

GA 1.06 × 101 1.16
PSO 1.74 × 10−2 2.08 × 10−2

DE 1.48 × 10−3 2.96 × 10−3

ABC 0 0
ABCES (Proposed) 0 0

Dixon–Price 30 [−10, 10]

GA 1.22 × 103 2.66 × 102

PSO 10−8 1.83 × 10−9

DE 10−9 1.83 × 10−10

ABC 0 0
ABCES (Proposed) 0 0

Perm 4 [−4, 4]

GA 3.03 × 10−1 1.93 × 10−1

PSO 3.61 × 10−2 4.89 × 10−2

DE 2.40 × 10−2 4.60 × 10−2

ABC 4.11 × 10−2 2.31 × 10−2

ABCES (Proposed) 6.20 × 10−3 2.23 × 10−2

4.2. Training Neural Networks with ABCES Algorithm for the Identification of Nonlinear
Static Systems

In this section, the performance of ABCES algorithm is assessed on neural network
training for the identification of nonlinear static systems. In the applications, 6 nonlinear
static systems (S1, S2, S3, S4, S5, S6) given in Table 9 are used. S1 has one input. S2 and S3
consist of two inputs. S4 and S5 have three inputs. S6 has four inputs. Datasets are created
using the equations given here. For S1, S2 and S3, y output value is obtained by using the
input value(s) in the range of [0, 1]. The dataset contains 100 data for the first 3 systems.
80% of the dataset is used for training process and the rest is used for testing. The input
values are in the range of [1,6] for S4. A dataset consisting of 216 data is created using 6
values for each input. 173 data points of the dataset belong to the training process. The
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rest are chosen for testing. A dataset with 125 data is created using related equation in
S5. Input values are in the range of [0,1]. For S6, input values are used in the range of
[−0.25,0.25] and a dataset consisting of 125 data is created. In S5 and S6, 100 data points
are used for the training process. The rest are chosen for testing. According to the dataset
index value (i), mod (i, 5) = k operation is applied in all systems. If k = 0, the data is chosen
for testing. Otherwise, it is included to dataset of the training process. There are two
reasons for applying the mod operation according to 5 value: The first is to choose 80%
of the dataset for the training process. In this case, the rest belong to the test dataset. It
is ensured that the training dataset covers the whole dataset. This way, a more effective
training process is realized. At the same time, the test dataset reflects the whole system.
Feed forward neural network (FFNN) is used in this study. Sigmoid function is used for the
neurons in the hidden layer and the output layer. Three different network structures are
used for each system. 4, 8 and 12 neurons are used in the hidden layer. Training FFNN is
realized via ABCES algorithm. Flow chart of FFNN training based on ABCES algorithm for
the identification of nonlinear static systems is presented in Figure 2. Before the training,
the input and output pairs of the nonlinear static system are normalized in the range of
[0,1]. For ABCES algorithm, population size and maximum number of iterations are taken
as 20 and 5000, respectively. The number of training and test data used for each system is
given in Table 9. MSE (mean squared error) calculated as in (9) is used as error value for
training and testing process. Here, n is the number of samples. yi is real output and (ȳi) is
predicted output. Each application is run 30 times to analyze it statistically. Mean error
value (mean) and standard deviation (std) are obtained.

MSE =
1
n

n

∑
i=1

(yi − ȳi)
2 (9)

The results obtained with the ABCES algorithm are presented in Table 10. The increase
in the number of neurons in the hidden layer in S1 has increased the solution quality. The
best mean error values for training and test are achieved with the 1-12-1 network structure.
The number of neurons affects the mean training and test error values in S2 differently.
Although the best mean training error value is found with 2-12-1, the best mean test error
value is obtained with 2-8-1. The low number of neurons in S3 is more effective. The best
mean error values for both training and test are achieved with 2-4-1. Close performance is
observed in 3-8-1 and 3-12-1 network structures in S4. Similarly, the best mean training
error values for S5 are found with 3-8-12 and 3-12-1. However, the best mean test error
value is obtained by using 3-4-1. All the best results in S6 are 4-12-1. When all systems are
evaluated in general, it is possible to make four basic comments. First, network structure
affects performance. Increasing or decreasing the number of neurons exhibits different
behaviors depending on the system. Second, there is a difference between training and
test errors. This situation can be explained by the selection of the training and test dataset.
Third, generally low standard deviation values are obtained. This situation shows the
stability of the solutions. Finally, the low error values found indicate that the ABCES
algorithm is successful. In Figure 3, the graphs of the output found with ABCES algorithm
and the real output are compared. It is seen that effective output graphics are obtained
with ABCES algorithm in all systems. In fact, this is an indication that nonlinear static
systems are identified with high accuracy.

It is compared with PSO, HS and ABC algorithm to better evaluate the performance
of ABCES algorithm. The results are presented in Table 11. In S1, the best mean training
and test error values are found by ABCES algorithm. ABC algorithm is more effective after
ABCES algorithm. The same is true for S2. The best mean training error value in S3 is
found with ABCES. After ABCES, PSO is more effective. Although the best result in the
mean test error value is obtained with ABCES, the worst results are found with HS. In S4
it is clear that ABCES is effective. In S5, the best mean training error value is found with
ABCES, while the best mean test error value is obtained via PSO. The best results in S6 are
obviously found with ABCES. When the results are evaluated in general, ABCES algorithm
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is more successful in neural network training than others. After ABCES, the performances
are listed as ABC algorithm, PSO and HS, respectively.

Figure 2. Flowchart for FFNN training based on ABCES algorithm for the identification of nonlinear
static systems.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Comparison of real and predicted outputs for (a) S1 (b) S2 (c) S3 (d) S4 (e) S5 (f) S6.
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Table 9. Information on nonlinear static systems used.

System Equation Inputs Output Number of Training / Test Data Range

S1 y = 2 sin(πx1) x1 y 80/20 [0,1]
S2 y = 10.391{(x1 − 0.4)(x2 − 0.6) + 0.36} x1, x2 y 80/20 [0,1]
S3 y = tanh(x1 + x2 − 11) x1, x2 y 80/20 [0,1]
S4 y = 1 + x0.5

1 + x−1
2 + x−1.5

3 x1, x2, x3 y 173/43 [1,6]
S5 y = (x1 − 5.5)2 + (x2 − 5.5)2 + x2

3 x1, x2, x3 y 100/25 [0,1]
S6 y=e2x1 sin(πx4) + sin(x2x3) x1, x2, x3, x4 y 100/25 [−0.25,0.25]

Table 10. Results obtained with ABCES on nonlinear static system identification.

System Network Structure
Train Test

Mean Std Mean Std

S1

1-4-1 1.16 × 10−3 4.86 × 10−4 2.21 × 10−3 7.65 × 10−4

1-8-1 4.10 × 10−4 3.53 × 10−4 1.19 × 10−3 5.42 × 10−4

1-12-1 2.73 × 10−4 1.64 × 10−4 1.12 × 10−3 5.81 × 10−4

S2

2-4-1 8.49 × 10−4 5.09 × 10−4 5.62 × 10−3 3.46 × 10−3

2-8-1 2.52 × 10−4 1.03 × 10−4 2.47 × 10−3 1.62 × 10−3

2-12-1 1.99 × 10−4 7.06 × 10−5 2.61 × 10−3 1.23 × 10−3

S3

2-4-1 6.45 × 10−5 3.64 × 10−5 2.57 × 10−3 1.16 × 10−3

2-8-1 6.86 × 10−5 3.74 × 10−5 2.67 × 10−3 9.58 × 10−4

2-12-1 7.03 × 10−5 3.33 × 10−5 3.06 × 10−3 2.21 × 10−3

S4

3-4-1 7.17 × 10−4 2.13 × 10−4 1.21 × 10−3 3.92 × 10−4

3-8-1 4.35 × 10−4 1.87 × 10−4 9.50 × 10−4 3.88 × 10−4

3-12-1 4.33 × 10−4 1.67 × 10−4 1.07 × 10−3 5.56 × 10−4

S5

3-4-1 3.59 × 10−4 1.74 × 10−4 3.06 × 10−3 3.69 × 10−3

3-8-1 2.39 × 10−4 9.59 × 10−5 6.38 × 10−3 1.01 × 10−2

3-12-1 2.41 × 10−4 9.06 × 10−5 6.74 × 10−3 7.21 × 10−3

S6

4-4-1 6.71 × 10−4 1.82 × 10−4 9.02 × 10−4 3.49 × 10−4

4-8-1 4.56 × 10−4 1.46 × 10−4 8.42 × 10−4 8.09 × 10−4

4-12-1 3.76 × 10−4 1.19 × 10−4 6.90 × 10−4 3.32 × 10−4

Table 11. Comparison of results found by using GA, PSO, HS, ABC and ABCES for on nonlinear
static system identification based on neural network.

System Network Structure
Train Test

Mean Std Mean Std

S1

PSO 2.08 × 10−3 6.86 × 10−4 3.26 × 10−3 1.17 × 10−3

HS 1.29 × 10−2 7.38 × 10−3 1.44 × 10−2 8.17 × 10−3

ABC 5.86 × 10−4 1.72 × 10−4 1.22 × 10−3 4.20 × 10−4

ABCES (Proposed) 2.73 × 10−4 1.64 × 10−4 1.12 × 10−3 5.81 × 10−4

S2

PSO 1.95 × 10−3 8.65 × 10−4 7.56 × 10−3 3.55 × 10−3

HS 2.50 × 10−2 1.00 × 10−2 3.94 × 10−2 1.82 × 10−2

ABC 5.53 × 10−4 2.07 × 10−4 4.19 × 10−3 3.30 × 10−3

ABCES (Proposed) 1.99 × 10−4 7.06 × 10−5 2.61 × 10−3 1.23 × 10−3

S3

PSO 8.17 × 10−5 3.35 × 10−5 3.74 × 10−3 1.29 × 10−3

HS 1.21 × 10−3 7.68 × 10−4 8.43 × 10−3 4.73 × 10−3

ABC 2.60 × 10−4 9.02 × 10−5 3.56 × 10−3 1.70 × 10−3

ABCES (Proposed) 6.45 × 10−5 3.64 × 10−5 2.57 × 10−3 1.16 × 10−3

S4

PSO 1.96 × 10−3 9.17 × 10−4 2.31 × 10−3 7.28 × 10−4

HS 9.28 × 10−3 8.00 × 10−3 8.71 × 10−3 7.41 × 10−3

ABC 1.21 × 10−3 2.97 × 10−4 1.84 × 10−3 4.87 × 10−4

ABCES (Proposed) 4.35 × 10−4 1.87 × 10−4 9.50 × 10−4 3.88 × 10−4

S5

PSO 4.88 × 10−4 3.38 × 10−4 2.16 × 10−3 4.01 × 10−3

HS 2.94 × 10−3 1.45 × 10−3 8.58 × 10−3 5.24 × 10−3

ABC 8.62 × 10−4 2.69 × 10−4 6.30 × 10−3 6.43 × 10−3

ABCES (Proposed) 3.59 × 10−4 1.74 × 10−4 3.06 × 10−3 3.69 × 10−3

S6

PSO 2.72 × 10−3 1.44 × 10−3 2.61 × 10−3 1.33 × 10−3

HS 1.58 × 10−2 7.14 × 10−3 1.65 × 10−2 9.56 × 10−3

ABC 9.91 × 10−4 2.63 × 10−4 1.58 × 10−3 1.23 × 10−3

ABCES (Proposed) 3.76 × 10−4 1.19 × 10−4 6.90 × 10−4 3.32 × 10−4

In Table 11, it is seen that the solution quality of ABCES algorithm is better than other
algorithms. Besides the quality of the solution, the convergence speed is also important.
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Therefore, the convergence graphs of PSO, HS, ABC and ABCES on all systems are com-
pared in Figure 4. It is observed that the convergence of ABCES algorithm is more effective
on all systems. These graphics show that ABCES algorithm has better convergence speed
than other algorithms. After the ABCES algorithm, the best convergence is achieved with
the ABC algorithm, except S3 and S5. PSO has a more effective convergence than the ABC
algorithm on S3 and S5.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Comparison of convergences of PSO, HS, ABC and ABCES on (a) S1 (b) S2 (c) S3 (d) S4 (e)
S5 (f) S6.
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5. Discussion

ABCES algorithm generates new solutions by using the information of previous
solutions instead of random solution in the scout bee stage. “Limit” value is not fixed and
is determined adaptively according to the number of iterations. How these changes affect
the performance of ABCES algorithm is examined on two different problem groups: global
optimization problems and FFNN training for the identification of nonlinear static systems.

The proposal of a new solution generation mechanism for the scout bee stage has
been effective in solving global optimization problems. Many applications are realized in
different number of evaluation and different problem dimensions. In these application
results, it is observed that ABCES algorithm is generally more effective than ABC algorithm.
Especially in high-dimensional problems, the performance of the algorithm has been
significantly improved. The occurrence of a clear performance difference between the
standard ABC algorithm and ABCES algorithm shows the effect of the scout bee stage and
“Limit” control parameter. At the same time, it is seen that ABCES algorithm has more
success in general compared to heuristics such as GA, PSO and DE. This is an indication
that ABCES algorithm can compete with different heuristic algorithms. ABCES algorithm
also finds low standard deviation values parallel to the low error value. This shows that
the results are robust.

The identification of nonlinear static systems is one of the difficult problems due to
system behavior. The effect of changes on both the scout bee stage and the “limit” control
parameter are analyzed on 6 nonlinear static systems. Generally, as the number of neurons
in the hidden layer increases, more effective results are obtained. This situation shows that
the problem is difficult, and it reveals the necessity of more weight values to explain the
relationship. With ABCES algorithm, a performance increase of 50% and above has been
achieved in all systems compared to ABC algorithm. The changes in the scout bee stage
have increased the convergence speed of ABCES algorithm. ANN training aims to find
the closest output to the real output. It is seen from the analyzes that ABCES algorithm is
an effective training algorithm in this regard. It is compared with heuristics such as PSO,
HS and ABC to better understand the success of ABCES algorithm. The results show that
ABCES algorithm is successful in FFNN training.

It is seen that the changes realized on the scout bee stage and limit control parameter
with ABCES algorithm positively affect the result. Different solution-generating mech-
anisms for the scout bee stage can be integrated to further improve the performance of
ABCES algorithm. At the same time, different approaches can be put forward to determine
“limit” control parameter adaptively.

6. Conclusions

This paper proposes a neural network-based approach for the identification of nonlin-
ear static systems. A new training algorithm called ABCES (ABC Based on Effective Scout
Bee Stage) is introduced to achieve effective results in modeling with artificial neural net-
works. Standard ABC algorithm basically consists of three stages: employed bee, onlooker
bee and scout bee. Employed and onlooker bee stages are more efficient than the scout bee
stage. When the scout bee stage is reached, it is understood that better new solution is not
developed. In this case, a random solution is created in the scout bee stage of standard ABC
algorithm. In fact, this means failure to use of information obtained. If this is prevented, a
more effective algorithm will be created. For this purpose, ABCES algorithm is proposed to
create a more effective scout bee stage. In this algorithm, two important changes are made
according to standard ABC algorithm. First, “limit” control parameter is set to adaptive
according to the number of iterations. Secondly, a new solution generation mechanism that
enables the adjustment of the new position according to the global best solution in the scout
bee stage, is proposed. With these changes, an effective ABCES algorithm has been created.
The performance of ABCES algorithm is evaluated on two different problem groups. First,
the applications are realized on 13 numerical optimization test problems. It is compared
with GA, PSO, DE and ABC algorithms. The Wilcoxon signed rank test is applied to deter-
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mine the significance of the results. The results show that ABCES algorithm is generally
more successful than other algorithms in solving numerical optimization problems.

Secondly, FFNN is trained by using ABCES algorithm for the identification nonlinear
static systems. Six nonlinear static systems are used in the applications. The effect of different
network structures on performance is examined. The performance of ABCES algorithm
is compared with PSO, HS and ABC algorithm in terms of solution quality and speed of
convergence. The results show that ABCES algorithm is generally more successful than other
algorithms in the identification of nonlinear static systems based on neural networks.

In this study, ABCES algorithm is used first time and it is evaluated on global op-
timization problems and training FFNN. In future studies, it is possible to examine the
performance of ABCES algorithm on different types of problems. As a continuation of this
study, FFNN training can be performed by using ABCES algorithm to identify nonlinear
dynamic systems. Additionally, neuro-fuzzy models can be trained with ABCES algorithm
to identify nonlinear dynamic and static systems. Its performance on neuro-fuzzy training
can be evaluated. Apart from system identification, ANN and neuro-fuzzy training can be
carried out with ABCES for the solution of real-world problems.
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Abstract: In general, the present value (PV) concept is ambiguous. Therefore, behavioural factors
may influence on the PV evaluation. The main aim of our paper is to propose some method of
soft computing PV evaluated under the impact of behavioural factors. The starting point for our
discussion is the notion of the Behavioural PV (BPV) defined as an imprecisely real-valued function
of distinguished variables which can be evaluated using objective financial knowledge or subjective
behavioural premises. In our paper, a BPV is supplemented with a forecast of the asset price closest
to changes. Such BPV is called the oriented BPV (O-BPV). We propose to evaluate an O-BPV by
oriented fuzzy numbers which are more useful for portfolio analysis than fuzzy numbers. This fact
determines the significance of the research described in this article. O-BPV may be applied as input
signal for systems supporting invest-making. We consider here six cases of O-BPV: overvalued asset
with the prediction of a rise in its price, overvalued asset with the prediction of a fall in its price,
undervalued asset with the prediction of a rise in its price, undervalued asset with the prediction of a
fall in its price, fully valued asset with the prediction of a rise in its rice and fully valued asset with the
prediction of a fall in its rice. All our considerations are illustrated by numerical examples. Presented
examples show the way in which we transform superposition of objective market knowledge and
subjective investment opinion into simple return rate.

Keywords: behavioural finance; imprecision; oriented fuzzy number; oriented present value; ori-
ented return

1. Introduction

The starting point for evaluating any financial asset is its present value (PV), defined
as a current equivalent of a cash payable in a fixed moment of the future [1]. It results in
the fact that the PV of a future cash flows may be an imprecise value. For this reason, the
reliable PV evaluation requires the use of soft computing a commonly accepted model of
an imprecise value is a fuzzy number (FN) [2]. The natural consequence of this approach
is estimating PV with FNs. Therefore, fuzzy PV may be defined as a discounted fuzzy
prediction of a future cash flow value [3].

The concept of using FNs in financial arithmetic comes from Buckley [4]. The Ward’s
definition [3] was generalized in [5] to the case of imprecisely assessed postponement.
Sheen [6] expanded the Ward’s definition to the case of fuzzy interest rate. The problems
connected to calculating fuzzy PV were considered in [4,7–9]. Huang [10] expanded the
Ward’s definition to the case of future cash flow described by a fuzzy variable. A more
general definition of fuzzy PV was proposed by Tsao [11], who assumed that future cash
flow can be treated as a fuzzy probabilistic set. Calzi [12] has formulated an axiomatic
definition of fuzzy PV. All those authors depicted PV as a discount of an imprecisely
evaluated future cash flow. A different approach was introduced in [13], where the fuzzy
PV is determined as imprecise approximation of the current quoted price of an evaluated
asset. Some applications of fuzzy PV were considered in [12–18]. FNs are also used in
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quantitative finance for modelling imprecision of financial data. In most of the papers
regarding imprecision in finance, it is assumed a priori that the return rate from a security
is a FN [19–29]. Yet, this assumption is connected, in most cases, to uncertain or unclear or
incomplete information available to the investor. Then, authors apply mostly possibility
theory [30,31] and credibility theory [32]. Kahraman et al. [33] introduced a research in
which both cash flows and return rates are evaluated by trapezoidal FNs. Limiting them
to the case of trapezoidal FNs stems from the fact that arithmetic for trapezoidal FNs
is significantly simpler than arithmetic for any FNs. More information on this topic is
presented in competent monographies [34,35].

Ordered FNs are defined by Kosiński et al. [36], who in this way introduced a FN
additionally equipped with an orientation. For formal reasons [37], the Kosiński’s theory
was revised in [38]. If ordered FN is linked to the revised theory, then it is called Ori-
ented FN (OFN) [39–42]. Ordered FNs are applied in decision-making, economics and
finance [42–63].

In [1,64], the behavioural PV (BPV) was defined as fair price approximation deter-
mined under impact of behavioural factors. Then, BPV is imprecisely estimated by FN.
In [65], the BPV is supplemented with a qualitative prediction of the price trend. This sub-
jective prediction is implemented in a BPV model as an orientation of FN. The existence of
such forecasts is proved by the observed balance between the supply and demand reported
by investors in financial markets. In this way, the BPV was replaced by oriented BPV
(O-BPV) described by an ordered FN. This approach makes portfolio analysis difficult [57].
These difficulties arise from the fact that the sum of the FNs may, in fact, not be an ordered
FN.

For this reason, in this paper we present a revised approach to O-BPV. Our main goal
is to describe O-BPV by means of OFNs. In the future, this approach will facilitate portfolio
analysis because of OFNs are more useful for portfolio analysis than FNs. Therefore, we
intend to apply O-BPV for management of portfolio risk of imprecision determined by some
behavioural factors. Such possibilities of future applications determine the significance of
the studies described in this work.

In [65], the O-BPV is determined with use ordered FNs. Moreover, its membership
function was described by a logically complicated system of identities. This also caused
very difficult application of the proposed O-BPV model. Therefore, we will try to simplify
the identities describing the O-BPV membership function.

This paper is organised as follows. Behavioural aspects of PV definition are presented
in Section 2. Section 3 contains basic information of OFNs. In Section 4, we explain the
notion of oriented fuzzy PV. BPV is generally defined in Section 5. An interval representa-
tion of BPV is described in Section 6. Fuzzy representation of BPV is discussed in Section 7.
The concept of O-BPV is introduced in Section 8. Some examples of O-BPV applications
are presented in Section 9. There, O-BPV is used for determining return rate. Section 10
contains final conclusions.

2. Behavioural Essence of Present Value

Any PV is used for discounting the money value. This is the basic tool of financial
arithmetic. The starting point for the financial arithmetic development was the interest
theory. Development of the financial arithmetic theory has resulted in axioms formulated
by Peccati, who has defined PV as an additive function of the payment value [66]. This
theory is developed in recent years [67].

Among other things, it has been proved that any PV fulfils the conditions of Peccati’s
definition if and only if it is a linear discount [66], meaning that this PV can be represented
by the product of the payment value and the discounting factor defined as a nonincreasing
function of the payment time. On the basis of the interest theory, assuming constant interest
rate, we meet only with exponential discount factors. It has been shown that any compound
discount is represented by an exponential discounting factor.
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On the other hand, many different kinds of discounting factors were described during
the study on a behavioural aspects of dynamic money evaluation. The first mathematical
model of behavioural finance was introduced by Ramsey [68], who explained the rela-
tionship between the marginal product of capital value, the subjective discount rate and
the real interest rate. Samuelson [69] introduced an exponential model of the subjective
discount factor. This model was adjusted in [70].

The Samuelson’s model [69] assumes that the subjective discount rate is constant over
time. This assumption is one of the many criticised problems of the exponential model.
The exponential discount model has “anomalies” related to the behavioural effect that
subjective discount rate varies in time [71–74]. Dynamically inconsistent time preferences
with this effect are described in [75,76].

Imperfections of the exponential discounting were found, causing the creation of
new discounting models and approaches. The hyperbolic discounting was introduced
by Mazur [77] who generalised some particular function applied in [78,79]. Some kinds
of discount hyperbolic models are discussed in [73,80]. In [81], we can find arithmetic
discounting. This discounting describes bill discounting method specified by financial law.
The hyperbolic discounting was generalised to hyperboloid one in [72]. Quasi-hyperbolic
discounting [82] is used by economists hoping to preserve as much of the exponential
model as possible. In the discrete time version this discounting method was introduced
in [83]. The quasi-hyperbolic discounting can also be used for the case of continuous
time [84]. Moreover, as an alternative to the percentage decrement for delayed payments
may be used a fixed cost model to exponential discounting [84]. Some authors [82,85–92]
consider it to be important to extend the hyperbolic function by the behavioural exponents.
Very frequently, those models are only some modifications of hyperbolic or exponential
discounting.

Hyperbolic models are also criticised (see, for example, in [75,76,92]). Read [92] pro-
posed his model as such exponential discounting that the discount factor occurs within
the given time window. Arguing with Weber–Fechner Law [93], Roelofsma [89] proposed
his model as an exponential discounting where the exponent is directly proportional to
logarithm of time. Ebert and Prelec [90] defined their Constant Sensitivity discounting
factor as the Cobb–Douglas function. The Constant Relative Decreasing Impatience dis-
count factor is defined as the constant relative risk aversion function [94]. In an analogous
way, Constant Absolute Decreasing Impatience discount factor is defined as a constant
absolute risk aversion function [94]. In [81], a discount factor is defined by means of
the assumption that its marginal change follows the Stevens’ power law [95,96] which
says that “a psychologically effective variable is a power function of its physical cause”.
Multi-threaded results of studies on the discounting factors were competently discussed
in [80]. Moreover, in [97–99] the discount factor is defined for such discounting under
continuous capitalisation which is determined by a constant Arrow-Pratt’s measure of
absolute risk-aversion. The axiomatic theory of discount factors was introduced in [100]
and developed in [101]. Rotschedla et al. [102] present such a discounting model that the
discounted value is given as a hedonic price dependent on fundamentals. Let us note that
PV defined in this way does not meet the axiomatic conditions determined by Peccati for
PV.

The variety of discount approaches described above justifies our approach to PV as an
ambiguous value.

Let us summarise the PV studies described above. We see that the impact of be-
havioural premises differentiates the discounting factors used to determine PV. Moreover,
Peccati [66] has shown that any PV may be defined by a discounting factor. It means that
Peccati’s definition of PV depends on behavioural premises which are always subjective.
On the other side, financial arithmetic requires an objective PV definition. Therefore, any PV
is defined as a current equivalent of a cash flow [1]. There financial flow utility is set by the
multicriteria comparison consisting of temporal preference [103] and wealth preferences.
This definition of PV is more general than the Peccati’s definition. The PV determined by
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Rotschedla et al. [102] fulfil the conditions of a generalised PV. Generalised PV is defined
without a discounting factor. Therefore, a generalised PV definition is independent of a
priori given behavioural phenomena. For this reason, the notion of generalised PV is a
valid tool to study the behavioural impact on a discount.

The research domain of behavioural finance is the paradoxes and anomalies in fi-
nancial markets, which are difficult to explain based on neoclassical economic theory.
Behavioural analysis of financial markets points to the psychological aspect of an invest-
ment as the reason for this state of affairs. At present, an extensive bibliography is already
devoted to the results of those studies. The consequence of this intensive research is aiming
to obtain such formal models which explain behavioural mechanisms of the financial
market. Here, we can distinguish a few approaches to this topic.

The most typical behavioural finance model is a formal prospect theory [104,105]. In
this theory, a subjective transformation of the objective probability is distinguished as a
behavioural basis for investment decisions.

Barberis et al. [106] develop the prospect theory. They additionally point out imprecise
estimation of PV, as a result of the subjective approach to security valuation.

Daniel et al. [107] show the diversified responses of individual investors to received
information as the reason for the disclosure of the market paradoxes. Assumed lack of the
strong effectiveness of the financial market is one of characteristics of this theory.

Hong and Stein [108] describe the investment activity, as the game amongst investors
applying fundamental analysis and investors applying technical analysis. This interaction
of two rational theories produces such market phenomena, which are paradoxes from a
point of view of the economic theory. PV behavioural aspects are enclosed here in the
choice of a cognitive strategy.

Behavioural experiments [75,109–111] present the regularities of subjective discount-
ing. There it is show that

• the receivables are discounted by a higher discount rate than liabilities and
• smaller amounts are discounted by a lower discount rate than large amounts.

The above behavioural paradoxes may be explained by means of the prospect theory
in its final version. Kahneman and Tversky [112] say that any evaluation depends on risk
aversion and on loss aversion. The loos aversion implies that the accelerated consump-
tion is less desirable than the delayed one [73,113]. From economical point of view, any
receivable may be considered as delated consumption. In analogous way, any liability
can be interpreted as accelerated consumption. It explains why we discount liabilities
less than receivable. Unfortunately, this explanation is not sufficient for determining such
discounting functions which differentiate the receivable discount and liability discount.
Behavioural analysis of financial markets points to the psychological aspect of investors’
activities as the reason for this state of affairs. The behavioural impact on PV has been
confirmed by experiments [81,88,113–115].

In the general case, each of Peccati’s models of PV [66] is inconsistent with the results
of behavioural experiments which explain the financial practice. The subject of behavioural
finance research is the phenomena which are paradoxes, inter alia, from the viewpoint
of the interest theory. This intensive research consequence is prospecting for such formal
models which explain the observed paradoxes.

In recent years, the concept of financial flow utility has played an important role in the
behavioural finance research. This problem is discussed, for example, in [73,80,81,116–121].
PV is defined there as the financial flow utility. As we see, the behavioural approach to
PV is similar to the neoclassical one. All PV models mentioned in this paragraph meet the
conditions of a generalised PV definition [1]. In this definition, the financial flow utility
is defined in a such way that the receivable utility is positive and the liabilities utility is
negative. Therefore, generalised PV may be applied for evaluation of behavioural asym-
metry between receivable discount and liability discount described in [73,75,109–111,113].
Note that the notion of the negative utility was introduced only by Rabin [122]. All above
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references prove that many researchers accept the view that the behavioural factors have
an impact on evaluating PV.

In [13,64], the BPV was defined as fair price approximation determined under impact
of behavioural factors. Such an approach is in line with the approach proposed later by
Rotschedla et al. [102]. It causes that any PV estimation is in fact an imprecise number.
Because FN is a commonly accepted model of an imprecise number, BPV should be
described by an FN.

3. Oriented Fuzzy Numbers—Basic Facts

The symbol F (R) denotes the family of all fuzzy subsets in the real line R. Any
fuzzy subset A ∈ F (R) is described by its membership function μA ∈ [0, 1]R, as the set of
ordered pairs

A = {(x, μA(x)); x ∈ R}. (1)

Among other things, this fuzzy subset A may be characterised by its support closure
[A]0+ given in a following way:

[A]0+ = lim
α→0+

{x ∈ R : μA(x) ≥ α}. (2)

FN is usually defined as a fuzzy subset of the real line R. The most general definition
of FN is given as follows.

Definition 1. [2] The fuzzy number (FN) is such a fuzzy subset L ∈ F (R) with bounded support
closure [L]0+ that it is represented by its upper semi-continuous membership function μL ∈ [0; 1]R

satisfying the conditions
∃x∈R μL(x) = 1, (3)

∀(x,y,z)∈R3 x ≤ y ≤ z ⇒ μL(y) ≥ min{μL(x); μL(z)}. (4)

The set of all FN we denote by the symbol F.

Theorem 1. [123,124] For any FN L there exists such a non-decreasing sequence (a, b, c, d) ⊂ R

that L(a, b, c, d, LL, RL) = L ∈ F (R) is determined by its membership function μL(x|a, b, c, d, LL,
RL) ∈ [0, 1]R described by the identity

μL(x|a, b, c, d, LL, RL) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [a, d],

LL(x), x ∈ [a, b[ ,
1, x ∈ [b, c],

RL(x), x ∈ ] c, d],

(5)

where the left reference function LL ∈ [0, 1[ [a,b[ and the right reference function RL ∈ [0, 1[ ]c,d] are
upper semi-continuous monotonic ones meeting the condition

[L]0+ = [a, d]. (6)

The FN L(a, a, a, a, LL, RL) = a represents the real number a ∈ R. Therefore, we can
say R ⊂ F.

Any function G : R ⊃ A → R may be considered as an unary operator on real num-
bers. Using the Zadeh’s extension principle, we can extend this operator to the fuzzy
case. Let us write this extended operator as the function G̃ : F ⊃ D → F described by the
equation

K(e, f , g, h, LK, RK) = G̃(L(a, b, c, d, LL, RL)), (7)

where

• FN L(a, b, c, d, LL, RL) is represented by its membership function

μL(x) = μL(x|a, b, c, d, LL, RL), (8)
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• FN K(e, f , g, h, LK, RK) is represented by its membership function

μK(x) = μK(x|e, f , g, h, LK, RK). (9)

In line with the Zadeh extension principle, the unary operator (7) is uniquely defined
by its membership function μK ∈ [0, 1]R given by the identity

μK(x) = min{max{μL(y)} : y = G(x)}. (10)

Moreover, the following concepts may be applied for description of the unary operator
(7) in detail.

Definition 2. [124] For any upper semi-continuous non-decreasing function L ∈ [0, 1][u, v], its
cut-function L� ∈ [u, v][0;1] is determined by the identity

L�(α) = min{x ∈ [u, v] : L(x) ≥ α}. (11)

Definition 3. [124] For any upper semi-continuous non-increasing function R ∈ [0, 1][u, v], its
cut-function R� ∈ [0, 1][u, v] is determined by the identity

R�(α) = max{x ∈ [u, v] : R(x) ≥ α}. (12)

Definition 4. [124] For any bounded continuous and non-decreasing function l ∈ [l(0), l(1)][0,1],
its pseudo-inverse l� ∈ [0, 1][l(0), l(1)] is determined by the identity

l�(x) = max{α ∈ [0, 1] : l(α) = x}. (13)

Definition 5. [124] For any bounded continuous and non-increasing function r ∈ [r(0), r(1)][0,1],
its pseudo-inverse r� ∈ [0; 1][r(1), r(0)] is determined by the identity

r�(x) = min{α ∈ [0, 1] : r(α) = x}. (14)

Using the theorems proved by Goetschel and Voxman [124], we can show that if the
unary operator G : R ⊃ A → R is decreasing, then the unary operator (7) is given by the
identity

L(G(d), G(c), G(b), G(a), LK, RK) = G̃(L(a, b, c, d, LL, RL)), (15)

where
∀α∈[0,1] lK(α) = G(L�

L(α)), (16)

∀α∈[0,1] rK(α) = G(R�
L(α)), (17)

∀y∈[G(d),G(c)[ LK(y) = r�K (y), (18)

∀y∈]G(b),G(a)] RK(y) = l�K (y). (19)

The notion of ordered FN is introduced by Kosiński et al. [36]. An important disad-
vantage of Kosiński’s theory is that there exist such ordered FNs which are not linked to
any membership function [37]. For formal reasons, the Kosiński’s theory is revised in [38].
In revised theory, ordered FN is replaced by oriented FN (OFN) defined as follows.
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Definition 6. [38] For any monotonic sequence (a, b, c, d) ⊂ R, OFN
↔
L(a, b, c, d, SL, EL) =

↔
L is

the pair of orientation
→

a, d = (a, d) and FN described by membership function μL(·|a, b, c, d, SL, EL)

∈ [0, 1]R given by the identity

μL(x|a, b, c, d, SL, EL) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [a, d] ≡ [d, a],

SL(x), x ∈ [a, b[ ≡ ] b, a],
1, x ∈ [b, c] ≡ [c, b] ,
EL(x), x ∈ ] c, d] ≡ [d, c[ ,

(20)

where the starting function SL ∈ [0, 1[ [a,b[ and the ending function EL ∈ [0, 1[ ]c,d] are upper
semi-continuous monotonic ones meeting the condition (6).

The identity (20) additionally describes such modified notation of intervals which is
used in the OFN theory. The notation I ≡ K means that “the interval I may be equivalently
replaced by the interval K”.

The symbol K denotes the space of all OFNs. Any OFN describes an imprecise
number with additional information about the location of the approximated number. This

information is given as an orientation of OFN. If a < d, then OFN
↔
L(a, b, c, d, SL, EL) has the

positive orientation
→

a, d. If a > d, then OFN
↔
L(a, b, c, d, SL, EL) has the negative orientation

→
a, d. If a = d, OFN

↔
L(a, a, a, a, SL, EL) = a describes an unoriented number a ∈ R.

Kosiński has defined arithmetic operators on ordered FNs in an intuitive way consis-
tent with the results obtained by Goetschel and Voxman [124]. For OFNs, any arithmetic
operator is defined alike. In this way, any unary operator G : R ⊃ A → R may be ex-
tended to OFN case. Using the Kosiński’s approach, we define an extended unary operator
↔
G : K ⊃ H → K as follows:

↔
K(G(a), G(b), G(c), G(d), SK, EK) =

↔
G(L(a, b, c, d, SL, EL)), (21)

where
∀ α ∈ [0, 1] sK(α) = G(S�

L(α)), (22)

∀ α ∈ [0, 1] eK(α) = G(E�
L(α)), (23)

∀ y ∈ [G(a), G(b)[ SK(y) = s�K (y), (24)

∀ y ∈ ]G(c), G(d)] EK(y) = e�K (y). (25)

When we compare the dependencies (15–19) and (21–25), then we notice that for the
case of decreasing unary operator G : R ⊃ A → R , its extension to OFNs differs from its
extension to FNs. This is an important difference between OFNs and FNs.

In Sections 8 and 9, we restrict our considerations to the case of strictly monotonic
starting and ending functions. Then, for any monotonic unary operator G : R ⊃ A → R ,
Equation (21) is simpler because then we have

∀ y ∈ [G(a), G(b)[ SK(y) = SL

(
G−1(y)

)
, (26)

∀ y ∈ ]G(c), G(d)] EK(y) = EL

(
G−1(y)

)
. (27)

4. Oriented Fuzzy Present Value

The start point for our considerations is a notion of PV defined as a current equivalent.
In Section 2, we have shown that PV may be imprecise. This observation agrees with
understanding PV as equivalent of future cash flow. The natural consequence of these
conclusions is estimating PV with FNs. Therefore, such PV is called a fuzzy one (F-PV).
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In Section 1, the evolution of F-PV model is described in detail. In general, fuzzy PV is
characterised by a non-decreasing sequence

(
Vs, Vf , P̌, Vl , Ve

)
, where

• P̌ is a quoted price,
• [Vs, Ve] ⊂ R+ is an interval of all possible values of PV,

•
[
Vf , Vl

]
⊂ [Vs, Ve] is an interval of all prices which do not noticeably differ from a

quoted price P̌.

Then F-PV is estimated by FN

P̃V = L
(

Vs, Vf , Vl , Ve , SPV , EPV

)
, (28)

where the reference functions SPV ∈ [0, 1[ [Vs ,Vf [ and EPV ∈ [0, 1[ ]Vl ,Ve ] are the given ones.
Moreover, the F-PV estimation should be supplemented by a forecast of price closest

changes. For example, price closes changes may be predicted with the use of prediction
table presented in [125]. In [126], it is shown that OFN application for a portfolio analysis
is more useful than the analogous application of FN. For these reasons, an imprecise PV
may be evaluated by OFN [42,62]. PV determined in this way is called an oriented one
(O-PV). Any O-PV is characterised by a monotonic sequence

(
Vs, Vf , P̌, Vl , Ve

)
and then

it is estimated as follows:

↔
PV =

↔
L

(
Vs, Vf , Vl , Ve, LPV , RPV

)
. (29)

If we predict a increase in price, then O-PV has positive orientation. If we predict a
fall in price, then O-PV has a negative orientation.

In this paper, O-PV is used for modelling imprecise assessments of PV. After Klir [127],
the imprecision is composed of ambiguity and indistinctness. In the considered case, the
ambiguity is understood as a lack of clear indication of a one value out of many. An
indistinctness is interpreted as a lack of an explicit distinction between values equal to PV
and values different from PV.

5. Behavioural Present Value

Let us consider a fixed asset which is the subject of a trade on a financial market. The
quoted price P̌ of this asset may fluctuate over time. Therefore, we can consider a quotation
trend. If the demand for this asset is equal to its supply, then the quoted price P̌ is equal to
balanced price P0. Then, the asset market is balanced, and it meets the market equilibrium
condition. In general, the balanced price varies with time. Nevertheless, at any point in
time the current value of a balanced price can be determined by the econometric model
contained in the Arbitrage Price Theory [128]. In this way, the balanced price P0 may also
be substantively justified by fundamental factors. Of course, the balanced price may be
computed in a different way. It is important here that the investor accepts the calculated
value P0 as the balanced price.

Fama [129] introduces a well-known notion of a market informational efficiency.
Then, Fama hypothesises that the highly informationally efficient markets do not exist.
In 1980, Grossman and Stiglitz [130] show that information efficiency increases with a
decrease in the cost of acquiring and analysing information. Since then, we have been
observing the intensive development of computerisation, among others in the economic
and financial sphere. This development significantly reduces the cost of processing in-
formation. Therefore, today we can assume that the considered asset market is highly
informationally efficient. This assumption is consistent with a base of the behavioural
finance theory [104,105,112].

Using technical analysis, we assume that the quoted price P̌ converges to the balanced
price P0. If

P̌ < P0 (30)
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then the considered asset is undervalued. For the case

P̌ > P0 (31)

the considered asset is overvalued. We call both of these cases financial disequilibrium
states. For the case of financial equilibrium

P̌ = P0 (32)

the considered asset is fully valued.
The accrued market knowledge is the unique basis for determining the value of

balanced price P0. This value is a synthetic image of knowledge about the state of financial
market. On the highly efficient financial market, each market player determines the same
value P0, which is an objective in this situation. At the same time, all investors observe the
identical value of quoted price P̌. Therefore, this value is an objective in its essence. The
knowledge of both of these values is sufficient for rational investment-making. In case (30),
the rationale suggests buying the considered asset. This transaction is only possible if a sale
offer is proposed. The natural question here is, what were the reasons of the investor selling
undervalued asset. Similarly, for case (31) the rationale suggests selling the considered
financial instrument. This transaction is only possible if a purchase offer is proposed. This
raises the question of what were the reasons for the investor buying the valued asset and
what premises direct investors buying this security. We discuss above only balancing the
demand and supply reported by the investors. Liquidity traders perform their transactions
only when this balance vanishes. This phenomenon is widely observed. The answer to the
above two questions can be only one. An explanation is only the influence of behavioural
factors.

Financial disequilibrium is described by the alternative of inequalities (30) or (31). If
a highly efficient financial market is under the financial disequilibrium, then the market
equilibrium is maintained due to irrational premises. It causes that every transaction is
concluded under the influence of irrational premises. These premises may be behavioural
in nature. Therefore, consideration of behavioural factors helps to clarify the paradox of the
paradox of maintaining market equilibrium in the conditions of financial disequilibrium in
highly efficient market.

The finance theory suggests that PV should be equal to the quoted price P̌. On the
other hand, a balanced price P0 may influence the PV deviation from the observed quoted
price. This deviation depends on the investor receptivity to behavioural factors.

Therefore, PV evaluation is determined, inter alia, under the influence of behavioural
factors. Each behavioural evaluation is subjective. In Section 2, we have shown that
subjective assessment of PV is ambiguous. Each of the valuation alternatives is called
a possible PV (PPV). The behavioural PV (BPV) is defined as a convex set of all PPV.
According to the classical finance theory, the quoted price P̌ is also PPV. For this reason,
BPV is a strong generalisation of PV model proposed by Rotschedla et al. [102]. The BPV
dependence on subjective financial factors means that each investor designates their own
version of BPV. Thus, we will conduct all further considerations for the established single
investor.

6. Interval Representation of Behavioural Present Value

Any convex crisp subset of real numbers is an interval. For this reason, the subject of
our first considerations is BPV represented by an interval.

We begin our considerations on BPV by discussing case (32) of financial equilibrium.
This assumption causes that any PPV is approximation of the quoted price P̌. The consid-
ered PPV domain always depends on a specific investor’s susceptibility to the influence
of behavioural factors. Therefore, each investor subjectively distinguishes the following
values:

• Pmin the minimal PPV expected under the financial equilibrium condition (32),
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• Pmax the maximal PPV expected under the financial equilibrium condition (32).

In general, the investor may not be aware of these values. However, when preparing
any investment decision support system, we can ask the investor about these values.
Therefore, we assume the values Pmin and Pmax are known to us.

In the considered case, each investor must take into account the possibility of changes
in quotations. Then, the range of PPV variability fulfils the condition

0 < Pmin < P0 < Pmax. (33)

Numerical interval [Pmin, Pmax] is the BPV image determined for the case of the finan-
cial equilibrium.

We lead further considerations on BPV for any quoted price P̌. Then BPV should be
dependent on deviation

ΔP = P̌ − P0. (34)

of the quoted price from the balanced price. For each investor, we determine the following
values:

• Vmin the minimal PPV expected for the quoted price P̌,
• Vmax the maximal PPV expected for the quoted price P̌.

In line with Barberis et al. [106], we assume that both values are dependent on the
sentiment index α ∈]0, 1]. We consider sentiment index as an individual investor’s charac-
teristic. The value α ∈]0, 1] describes the degree of the influence of cognitive conservatism
phenomenon [131]. This phenomenon is a frequent topic of discussion in behavioural
finance. The value 1 − α ∈ [0; 1[ informs us about the intensity of the impact of deviation
ΔP on the investor’s beliefs.

The investor determines the minimal PPV Vmin as the weighted average of the assumed
minimal PPV Pmin and its current correction Pmin + ΔP. The weight of the minimal PPV
Pmin is equal to the value α of the investor’s sentiment index. In determining the minimal
PPV Vmin, the investor must consider that the minimal PPV is not greater than the quoted
price P̌. We get

Vmin = min
{
(1 − α)·(Pmin + ΔP ) + α·Pmin, P̌

}
= min

{
Pmin + (1 − α)·ΔP, P̌

}
= min

{
Pmin + (1 − α)·

(
P̌ − P0

)
, P̌

}
.

(35)

The investor determines the maximal PPV Vmax, as the weighted average of the
assumed maximal PPV Pmax and its current correction Pmax + ΔP. The weight of the
maximal PPV Pmax is equal to the value α of the investor’s sentiment index. In determining
the maximal PPV Vmax, the investor must consider that the maximal PPV is not less than
the quoted price P̌. We get

Vmax = max
{
(1 − α)·(Pmax + ΔP) + α·Pmax, P̌

}
= max

{
Pmax + (1 − α)·ΔP, P̌

}
= max

{
Pmax + (1 − α)·

(
P̌ − P0

)
, P̌

}
.

(36)

We note that in case
P̌ ≤ Pmin − P0

α
+ P0 (37)

the minimal PPV Vmin is equal to the quoted price P̌. Then, the BPV model excludes a
possibility of decline in quotation because of the considered asset is uniquely identified as
undervalued. Furthermore, when

P̌ ≥ Pmax − P0

α
+ P0 (38)

then maximal PPV Vmax is equal to the quoted price P̌. Then, the BPV model excludes a
possibility of rise in quotation because of the considered asset is uniquely identified as
overvalued.
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We see that only in the case of large deviations ΔP, rationale is the only reason to
invest. Range of behavioural reasons’ impact is described by the inequalities

Pmin − P0

α
+ P0 < P̌ <

Pmax − P0

α
+ P0. (39)

Finally, for each investor we can determine a PPV variability range

BPV
(

P̌
)
= [Vmin, Vmax] =

⎧⎨⎩
[
P̌, Pmax + (1 − α)·ΔP

]
f or (37)

[Pmin + (1 − α)·ΔP, Pmax + (1 − α)·ΔP] f or (39)[
Pmin + (1 − α)·ΔP, P̌

]
f or (38)

.

(40)
Analogous results were obtained in [63–65]. In this way, we have set the image of

market information impact on the investor’s beliefs. Determined above range [Vmin, Vmax]
is an interval representation of BPV (I-BPV) depending on the variables below:

• P̌ a quoted price,
• P0 a balanced price,
• Pmin the minimal PPV expected under financial equilibrium condition (32),
• Pmax the maximal PPV expected under financial equilibrium condition (32),
• α a sentiment index.

The assumed PPV range [Pmin, Pmax] and a value of sentiment index α ∈ ]0; 1] are
dependent on the investor’s receptivity to influence of behavioural factors. Thus, each
investor is characterised by different values of these variables. In Section 5, we pointed
out that the quoted price P̌ and the balanced price P0 are objective in nature. Any BPV
model considered in this paper will be characterised by the vector

(
P̌, P0, Pmin, Pmax, α

)
.

Finally, we note that for a given vector
(

P̌, P0, Pmin, Pmax, α
)
, the vector

(
P̌, P0, Vmin, Vmax

)
is uniquely defined. Therefore, we keep our further discussion for a given value of the
second parameters’ vector.

Example 1. For considered asset Y its substantially justified balanced price is P0 = 30$. A
financial analyst assumes that under financial equilibrium condition (32)

• minimal PPV is Pmin = 10$,
• maximal PPV is Pmax = 60$.

An investor observes a quoted price P̌ = 60$. We have ΔP = 30$. Therefore, we see
that the asset Y is overvalued. Because of investor’s cognitive conservatism characterised
by a sentiment index α = 1

3 , using (40) we obtain I-BPV given as the interval BPV(60) =
[30, 80] = [Vmin, Vmax].

7. Fuzzy Representation of Behavioural Present Value

Let a fixed parameter vector 𝓋𝓋𝓋 =
(

P̌, P0, Vmin, Vmax
)

be given. In the considered
case, the interval BPV

(
P̌
)
= [Vmin, Vmax] of PPV variability is determined explicitly. A

relative distance between any x ∈ R and the quoted price P̌ is determined by function
β(·|𝓋𝓋𝓋) ∈ [0, 1]R given as follows:

β( x|𝓋𝓋𝓋) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, x /∈ [Vmin, Vmax],
x−P̌

P̌−Vmin
, x ∈

[
Vmin, P̌[ ,

0, x ∈
[
P̌, P̌

]
,

x−P̌
Vmax−P̌

, x ∈ ] P̌, Vmax
]
.

(41)
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Then, the degree of a similarity [132] to the quoted price P̌ is defined as a function
γ(·|𝓋𝓋𝓋) ∈ [0, 1]R given by the identity

γ( x|𝓋𝓋𝓋) = 1 − β( x|𝓋𝓋𝓋). (42)

Using any I-BPV model, we treat all PPV as equally acceptable. Nevertheless, we can
suppose that the investor accepts more PPVs that are closer to the quoted price. This implies
that individual PPVs differ in their degrees of acceptance. We see that I-BPV insufficiently
describes the behavioural effects complexity. This means that it necessary to create a
BPV model describing the variability of an individual PPV acceptance, leading directly to
defining BPV as a fuzzy subset B̃PV(𝓋𝓋𝓋) ∈ F (R) of all PPV. In this way we determine fuzzy
BPV (F-BPV). F-BPV is described by its membership function μBPV(·|𝓋𝓋𝓋) ∈ [0, 1]R assigning
an acceptance degree to each PPV. It means that the value μBPV( x|𝓋𝓋𝓋) is a truth value of the
sentence “the number x ∈ R is accepted as PPV”.

The similarity degree γ(·|𝓋𝓋𝓋) will be considered as the first reference point for de-
termining the F-BPV membership function μBPV(·|𝓋𝓋𝓋). As the second reference point for
determining this membership function, we take a rational forecast of next change in the
quotation. This forecast is based on the following facts:

• if the disequilibrium condition (30) is met, then rationale excludes the decrease in a
quotation;

• if the disequilibrium condition (31) is met, then rationale excludes the increase in a
quotation; and

• if the equilibrium condition (32) is met, then rationale cannot exclude any future
quotation.

Thus, the rational forecast of next quotation change is described by a rationality degree
Θ(·|𝓋𝓋𝓋) ∈ {0, 1}R given as follows:

Θ( x|𝓋𝓋𝓋) =
{

0,
(
x − P̌

)
·δP > 0,

1,
(
x − P̌

)
·δP ≤ 0,

(43)

where

δP =
P̌ − P0

P̌
. (44)

For any quoted price P̌, an investor assesses the acceptance degree as a weighted aver-
age of rationality degree and the similarity degree. The weights are appointed regarding to
the assumption that the influence of the rationality degree increases with an increase in
a relative distance |δP| between the quoted and balanced price and with the increase in
a similarity degree γ(·|𝓋𝓋𝓋). Therefore, without the generality loss we can assume that the
weight of a rationality degree is directly proportional to the product γ( x|𝓋𝓋𝓋)·|δP|. Then, the
acceptance degree is given as follows:

μBPV( x|𝓋𝓋𝓋) = 1
1 + γ( x|𝓋𝓋𝓋)·|δP| ·γ( x|𝓋𝓋𝓋) + γ( x|𝓋𝓋𝓋)·|δP|

1 + γ( x|𝓋𝓋𝓋)·|δP| ·Θ( x|𝓋𝓋𝓋) = γ( x|𝓋𝓋𝓋)·(1 + |δP|·Θ( β|𝓋𝓋𝓋))
1 + γ( x|𝓋𝓋𝓋)·|δP| . (45)

It implies that the membership function μBPV(·|𝓋𝓋𝓋) is determined by the identity

μBPV( x|𝓋𝓋𝓋) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [Vmin, Vmax],

h( x|𝓋𝓋𝓋). x ∈
[
Vmin, P̌[ ,

1, x ∈
[
P̌, P̌

]
,

k( x|𝓋𝓋𝓋), x ∈ ] P̌, Vmax
]
,

(46)
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where the reference functions h(·|𝓋𝓋𝓋) ∈ [0, 1[ [Vmin ,P̌[ and k(·|𝓋𝓋𝓋) ∈ [0, 1[ ]P̌,Vmax ] are defined by
the identities

h( x|𝓋𝓋𝓋) =

⎧⎨⎩
(x−Vmin)(1+δP)

P̌−Vmin+(x−Vmin)·δP
, δP > 0,

x−Vmin
P̌−Vmin−(x−Vmin)·δP

, δP ≤ 0,
(47)

k( x|𝓋𝓋𝓋) =

⎧⎨⎩
Vmax −x

Vmax −P̌+(Vmax −x)·δP
, δP > 0,

(Vmax −x)(1−δP)
Vmax −P̌−(Vmax −x)·δP

, δP ≤ 0.
(48)

We observe that both reference functions are strictly monotonic. This fact is very
important for future considerations in Section 9.

In line with Theorem 1, F-BPV is FN

B̃PV(𝓋𝓋𝓋) = L
(
Vmin, P̌, P̌, Vmax, h(·|𝓋𝓋𝓋), k(·|𝓋𝓋𝓋)

)
(49)

which approximates the quoted price P̌. F-BPV is described by its membership function
μBPV determined separately for undervalued assets fulfilling the condition (30), fully
valued assets fulfilling the condition (32), and overvalued assets fulfilling the condition
(31). Figure 1a–c shows a graph of these membership functions.

   

(a) (b) (c) 

Figure 1. A graphs of membership function of F-BPV (a) for overvalued assets, (b) for fully valued assets and (c) for
undervalued assets.

Example 2. In Example 1, we have evaluated the asset Y by means of I-BPV. This asset is
represented by the parameters vector 𝓋𝓋𝓋 = (60$, 30$, 30$, 80$). Now, using (28–30) we evaluate an
asset Y by F-BPV equal to FN

B̃PV(𝓋𝓋𝓋) = L(30, 60, 60, 80, h(·|𝓋𝓋𝓋), k(·|𝓋𝓋𝓋)), (50)

where
h( x|𝓋𝓋𝓋) = 4x − 120

x + 60
for x ∈ [30, 60[ , (51)

k( x|𝓋𝓋𝓋) = 3x − 240
x − 140

for x ∈ ]60, 80]. (52)

In line with (48), the membership function μBPV(·|𝓋𝓋𝓋) ∈ [0, 1]R F-BPV is given in
following way:

μBPV( x|𝓋𝓋𝓋) =

⎧⎪⎪⎨⎪⎪⎩
0 , x /∈ [30, 80],

4x−120
x+60 , x ∈ [30, 60[ ,
1, x ∈ [60, 60],

3x−240
x−140 , x ∈ ]60, 80].

(53)

We see that F-BPV is fuzzy extension of PV model proposed by Rotschedla et al. [102].
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8. Behavioural Present Value Represented by Oriented Fuzzy Numbers

Let us give the fixed parameter vector 𝓋𝓋𝓋 =
(

P̌, P0, Vmin, Vmax
)

representing evaluated
asset. In the previous chapter, we have considered its F-BPV represented by FN (46). The
behavioural nature of investors is discussed in [133]. Among other things, this discussion
shows that investors are also guided by their subjective predictions of quoted price closest
changes. If we take into account these predictions, then we substitute F-BPV by oriented
BPV (O-BPV) given as OFN

↔
BPV =

↔
L

(
Vs, P̌, P̌, Ve, SBPV , EBPV

)
, (54)

where
[Vs, Ve] ∈ {[Vmin, Vmax], [Vmax, Vmin]} (55)

is the interval of all PPV,

SBPV(x) =
{

h( x|𝓋𝓋𝓋) Vs < Ve,
k( x|𝓋𝓋𝓋) Vs > Ve,

(56)

EBPV(x) =
{

k( x|𝓋𝓋𝓋) Vs < Ve,
h( x|𝓋𝓋𝓋) Vs > Ve.

(57)

The membership function μBPV(·|𝓋𝓋𝓋) of OFN
↔

BPV(𝓋𝓋𝓋) is given by the identity (46).
Positive O-BPV orientation predicts a rise in assets price. Then, O-BPV is given by the

formula ↔
BPV(𝓋𝓋𝓋) =

↔
L

(
Vmin, P̌, P̌, Vmax, h(·|𝓋𝓋𝓋), k(·|𝓋𝓋𝓋)

)
. (58)

In this way, we obtain three cases of O-BPV predicting a rise in asset price: for
overvalued assets, for fully valued assets and for undervalued assets. The membership
functions of these O-BPV kinds are presented in Figure 2a–c.

  
(a) (b) (c) 

Figure 2. A graph of membership function of O-BPV predicting rise in price (a) for overvalued assets, (b) for fully valued
assets and (c) for undervalued assets.

Negative O-BPV orientation predicts a fall in asset price. Then, O-BPV is given by the
formula ↔

BPV(𝓋𝓋𝓋) =
↔
L

(
Vmax, P̌, P̌, Vmin, k(·|𝓋𝓋𝓋), h(·|𝓋𝓋𝓋)

)
. (59)

In this way, we obtain three cases of O-BPV predicting fall in asset price: for overvalued
assets, for fully valued assets and for undervalued assets. The membership functions of
these OBPV kinds are presented in Figure 3a–c.
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(a) (b) (c) 

Figure 3. A graph of membership function of O-BPV predicting fall in price (a) for overvalued assets, (b) for fully valued
assets and (c) for undervalued assets.

Example 3. Among other things, in Example 1 we show that asset Y is overvalued. In Example 2,
we evaluate asset Y by means of F-BPV (50).

Andrew and Helen are two people whose subjective forecasts of the change of future
prices differ. Contrary to the recommendations of the economic theory, Andrew believes
that Y quotations will increase in the near future. Therefore, he evaluates the asset Y by
O-BPV: ↔

BPV(𝓋𝓋𝓋) =
↔
L(30, 60, 60, 80, h(·|𝓋𝓋𝓋), k(·|𝓋𝓋𝓋)), (60)

where the functions h(·|𝓋𝓋𝓋) and k(·|𝓋𝓋𝓋) are given, respectively, by (51) and (52). The O-BPV
(60) is positively oriented. Its membership function is determined by (53).

In line with the economic theory, Helen is sure that the Y quotations will decrease in
the near future. Therefore, she evaluates the asset Y by O-BPV:

↔
BPV(𝓋𝓋𝓋) =

↔
L(80, 60, 60, 30, k(·|𝓋𝓋𝓋), h(·|𝓋𝓋𝓋)). (61)

The O-BPV (61) is negatively oriented. Its membership function is given by (53).
Moreover, this membership function may be equivalently determined as follows:

μBPV( x|𝓋𝓋𝓋) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [80, 30],

3x−240
x−140 , x ∈ [80, 60[ ,
1, x ∈ [60, 60],

4x−120
x+60 , x ∈ ]60, 30].

(62)

Let us note that membership functions (53) and (62) have the same graphs.
Each membership function of F-BPV or O-BPV is represented by a graph called the

shortly BPV graph. The main objective of the presentation in Figures 1–3 is to show the
similarities between BPV graphs dedicated to different kinds of assets related to the same
vector (P0, Pmin, Pmax, α). We see that these graphs are similar. In particular, for considered
case, we have here

• all overvalued assets have identical BPV graphs,
• all fully valued assets have identical BPV graphs,
• all undervalued assets have identical BPV graphs.

Therefore, we can conclude that a BPV graph and a BPV orientation are independent
characteristics of BPV.

If we change vector (P0, Pmin, Pmax, α), then obtained BPV graphs will only differ from
one another in volatility range and its intensity of convexity.
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9. Oriented Expected Return Determined by Behavioural Present Value

In this section, we apply O-BPV to determining the return rate similarly as Japanese
candles were used in [42]. We will consider the asset represented parameters vector
𝓋𝓋𝓋 =

(
P̌, P0, Vmin, Vmax

)
.

For given due date t > 0, the considered asset is characterised by following values:

• Predicted FV Vt,
• Evaluated PV V0.

The benefits from owning this asset are characterised with use of a simple return rate
rt determined as follows:

rt =
Vt − V0

V0
=

Vt

V0
− 1. (63)

In [42], it is justified in detail that FV is a random variable Ṽt : Ω → R+ where the
symbol Ω denotes a space of all elementary states ω of the financial market. In a conven-
tional approach to a return rate estimation, an asset PV is equal to quoted price P̌. Then,
the return rate is a random variable given in the following way:

rt(ω) =
Ṽt(ω)− P̌

P̌
. (64)

We define any risk as a possibility of negative effects of taken actions. Uncertainty risk
results from the lack of knowledge about the future conditions of the activities undertaken.
In a financial analysis, an uncertainty risk is usually described by the probability distribu-
tion of return rate (64). The expected value r of this distribution is called expected return
rate. We can assume that expected return rate r exists. The mentioned probability distribu-
tion can always be described by its cumulative distribution function Fr(·|r ) : R → [0, 1] .
From (64), we immediately get

Ṽt(ω) = P̌·(1 + rt(ω)). (65)

If we take together (63) and (65), then we obtain the following formula describing the
return rate:

rt = rt(V0, ω) =
P̌·(1 + rt(ω))

V0
− 1. (66)

It implies that the expected return rate is given by formula

R(V0) =
∫ +∞

−∞

P̌·(1 + y)
V0

− 1dFr(y|r) =
P̌·(1 + r)

V0
− 1. (67)

In this manner, we determine the expected return rate R : R+ → R as a unary oper-
ator transforming PV. If PV is imprecisely estimated by O-PV, then using the Kosinski’s

approach, we define the expected return rate by an extension
↔
R : K → K of a unary

operator (67).

We consider now the case of O-PV equal to O-BPV
↔

BPV(𝓋𝓋𝓋) given by (54). Its starting
and ending functions are strictly monotonic. Therefore, the identities (21), (26), (27), and
(67) imply that the expected return rate is given by an equation

↔
L

(
P̌·(1 + r)

Vs
− 1, r, r,

P̌·(1 + r)
Ve

− 1, SR, ER

)
=

↔
R

(↔
L

(
Vs, P̌, P̌, Ve, SBPV , EBPV

))
, (68)

where

∀
r∈[ P̌·(1+r)

Vs −1,r[
: SR(r) = SBPV

(
R−1(r)

)
= SBPV

(
P̌·1 + r

1 + r

)
, (69)

∀
r∈]r, P̌·(1+r)

Ve −1]
: ER(r) = EBPV

(
R−1(r)

)
= EBPV

(
P̌·1 + r

1 + r

)
, (70)
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where the interval [Vs, Ve] is determined by (55). If we compare (69) and (70) with (56) and
(57), then we get

SR(r) =

⎧⎨⎩ h
(

P̌· 1+r
1+r

∣∣∣𝓋𝓋𝓋)
, Vs < Ve,

k
(

P̌· 1+r
1+r

∣∣∣𝓋𝓋𝓋)
, Vs > Ve,

(71)

ER(r) =

⎧⎨⎩ k
(

P̌· 1+r
1+r

∣∣∣𝓋𝓋𝓋)
, Vs < Ve,

h
(

P̌· 1+r
1+r

∣∣∣𝓋𝓋𝓋)
, Vs > Ve.

(72)

The identities (54) and (68) show that O-BPV and the expected return rate determined
by are it appositively oriented. Therefore, we can say the following.

• If O-BPV describes a subjective belief about rise in quotations, then we can anticipate
a decline in the expected return rate.

• If O-BPV describes a subjective belief about fall in quotations, then we can anticipate
an upturn in the expected return rate.

In finance, both of above facts are well known. This observation proves that the
extension of F-PV model to the case of O-PV model is an appropriate direction for the
development of fuzzy finance theory.

Example 4. The asset Y is overvalued. Despite this, Andrew believes that Y quotations will
increase in the near future. Therefore, he evaluates the asset Y by positively oriented O-BPV (60).
On the other hand, the Y quotations are characterised by an expected quarterly return rate r = 0.02.

If Andrew determines the expected return rate
↔
R with use O-BPV, then he gets

↔
R =

↔
L(1.04, 0.02, 0.02,−0.235, SR, ER) (73)

where
SR(r) =

124.8 − 120·r
121.2 + 60·r , (74)

ER(r) =
56.4 + 240·r

201.2 + 140·r . (75)

We see that expected return is negatively oriented. Moreover, Andrew shows that

membership function of the expected return rate
↔
R is given as follows

ρ( r|𝓋𝓋𝓋) = μBPV

(
61.2
1 + r

∣∣∣∣𝓋𝓋𝓋)
=

⎧⎪⎪⎨⎪⎪⎩
0, r /∈ [1.04, −0.235],

124.8−120·r
121.2+60·r , r ∈ [1.04, 0.02[ ,

1, r ∈ [0.02, 0.02],
56.4+240·r

201.2+140·r , r ∈ ]0.02, −0.235].

(76)

10. Conclusions

Apart from the theory of interest, any PV is an ambiguous value determined under
the influence of, among others, behavioural premises. This view was fully substantiated
by the literature study presented in Section 2. This sufficiently proves the need to use soft
computing techniques for PV evaluation.

For this reason, in Section 5, BPV is generally defined as the set of all real numbers
equal to possible PVs. It is obvious that BPV is an imprecise number. In this paper, we
discuss BPV approximation given as following kinds of imprecision numbers:

• I-BPV approximated by interval numbers in Section 6,
• F-BPV approximated by FNs in Section 7,
• O-BPV approximated by OFNs in Section 8.

Interval numbers are definitely a poorer form of information than FNs. For this
reason, we should always replace I-BPV with F-BPV. This replacement does not require any
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additional data. In [126], it is shown that oriented PV application for a portfolio analysis
is more useful than the analogous application of fuzzy PV. This makes the use of O-BPV
more preferred than the use of F-BPV.

Each of the proposed BPV models is determined by a specific membership function.
We are of the opinion that each of the above-mentioned models can be described by means
of different membership functions. The search for new membership function proposals
may be very fruitful direction for further research.

In [134,135], it is shown that BPV may be valued by intuitionistic FNs [136]. We believe
that other types of imprecise numbers can also be used as BPV models. Looking for such
opportunities is an interesting direction for further research. However, we must remember
that each proposed modelling method for BPV should be carefully justified by serious
financial or behavioural reasons. Proposing new BPV models, researchers should also
remember about the results contained in [137].

Section 9 describes in detail an application of O-BPV for determining return rate. This
result facilitates the use of O-BPV for an analysis of assets with PV estimated by OFN. It is
expedient to further develop the fuzzy finance theory based on OFN. On the other hand,
the O-BPV may be applied in such algorithms based on financial technical analysis which
support invest-making. For example, here we can apply the advice-making algorithms
described in [61,62]. Moreover, we can use O-BPV as input signal to fuzzy or neuro-fuzzy
systems explained in detail in [138]. The assessment of the suitability of BPV to support
decisions is an interesting direction for further research.
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Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp. 223–238.

50. Kacprzak, D. Input-Output Model Based on Ordered Fuzzy Numbers. In Theory and Applications of Ordered Fuzzy Number;
Prokopowicz, P., Czerniak, J., Mikołajewski, D., Apiecionek, Ł., Ślȩzak, D., Eds.; Springer: Berlin, Germany, 2017; Volume 356, pp.
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Abstract: Calculating and monitoring customer churn metrics is important for companies to retain
customers and earn more profit in business. In this study, a churn prediction framework is developed
by modified spectral clustering (SC). However, the similarity measure plays an imperative role
in clustering for predicting churn with better accuracy by analyzing industrial data. The linear
Euclidean distance in the traditional SC is replaced by the non-linear S-distance (Sd). The Sd is
deduced from the concept of S-divergence (SD). Several characteristics of Sd are discussed in this
work. Assays are conducted to endorse the proposed clustering algorithm on four synthetics, eight
UCI, two industrial databases and one telecommunications database related to customer churn. Three
existing clustering algorithms—k-means, density-based spatial clustering of applications with noise
and conventional SC—are also implemented on the above-mentioned 15 databases. The empirical
outcomes show that the proposed clustering algorithm beats three existing clustering algorithms in
terms of its Jaccard index, f-score, recall, precision and accuracy. Finally, we also test the significance
of the clustering results by the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test,and sign tests.
The relative study shows that the outcomes of the proposed algorithm are interesting, especially in
the case of clusters of arbitrary shape.

Keywords: S-divergence; S-distance; spectral clustering

1. Introduction

Advancements in information technology have given rise to digital innovation in
the service industry; e.g., the e-commerce industry, banking, telecom, airline industry,
etc. [1]. Customers now have easy access to enormous amounts of data for their desired
service or consumables. This in turn has generated a scenario in which companies are
finding it a very difficult task to retain their existing customer base. Companies have thus
become more cautious to increase customer acquisition and to control customer churn.
Consumers switching from one firm to another for a specified period negatively impacts the
economy of the company. Thus, customer acquisition and churn management have become
key factors for the service sector. Several methods exist to effectively increase customer
acquisition and to manage customer churn, such as improving customer acquisition by
nurturing effective relationship with customers, identifying the customers who are likely
to leave and giving proactive solutions to the causes of their dissatisfaction, improving
sales approaches and improving marketing strategies and customer services. Technology
is also responsible for the reframing of marketing to increase customer loyalty through the
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examination of stored information and customer metrics. It also allows customer relations
to be connected with business demand [2]. However, the problem of identifying the best
set of clients who can subscribe to a product or service is considered NP-hard [3].

It is important to utilize and allocate resources effectively and efficiently by distin-
guishing high-value customers. It is also imperative for industrial enterprises to customize
marketing strategies in such a way that they can achieve an edge over their competitors.
There is a need to use an unsupervised machine learning clustering algorithm in order
to group customers according to some similarity or common trend, especially when the
customer database is growing constantly, when the average transaction size increases or
when the frequency of transactions per customer increases. In other words, a cluster-
ing algorithm helps to analyze the different needs of different groups of customers or to
customize marketing strategies for an organization to acquire customers and to manage
customer churn. These problems can be handled using analytical methods, which use
the concepts of statistics, machine learning and data mining [4]. In [5], data mining by
evolutionary learning using the genetic algorithm was presented for churn predictions
for telecom subscriber data. Machine learning algorithms—for instance, decision tree
(DT) and neural networks (NN)—have been exploited to predict customer churn by con-
sidering billing information, demographics, call detail, contract/service status, records
and service change logs [6]. An approach to recognizing potential bank customers who
may react to a promotional offer in direct marketing based on customer historical data
using support vector machine (SVM) was presented in [7]. Churn prediction in online
games using records of players’ login was addressed using the k-nearest neighbors (KNN)
algorithm in [8,9]. Various machine learning algorithms such as logistic regression, DT,
NN and SVM were adopted and compared to anticipate the victory of telemarketing calls
for selling bank long-term investments in [10]. SVM [11] and KNN [12] were also used
to predict potential online buyers based on browser session data and hypertext transfer
protocol level information. In [13], deciding the active demand reduction potential of
wet appliances was considered and solved using the expectation-maximization clustering
algorithm. Hierarchical and fuzzy k-means clustering were compared in order to improve
business models in demand response programs [14]. In [15], density and grid-based (DGB),
density-based spatial clustering of applications with noise (DBSCAN), fast search and
find of density peaks (FSFDP) and other clustering algorithms were exploited for DNA
microarray industrial data, finding DGB is more suitable for clustering databases with
arbitrary shapes than the traditional approaches. E-customer behavior characterization
was done by utilizing Web server log data using association rules in [16].

It can be observed from the literature that almost all the conventional unsupervised
machine learning algorithms have been exploited in industrial applications, especially in
churn prediction, by analyzing the behaviors of customers. However, the performance of
an unsupervised clustering algorithm relies on data/features, similarity/distance measure,
objective functions, initial cluster centers and the clustering algorithm itself. The similarity
measure plays an important role in disclosing hidden patterns and understanding the
massive industrial data properly. A substantial amount of research work has been done
for the study of clustering using various linear distance measures such as Euclidean,
Manhattan, Pearson correlation, Eisen cosine correlation, Spearman correlation, Kendall
correlation, Bit-Vector, Hamming, the Jaccard Index and the Dice Index, but this has drawn
little attention, especially in terms of introducing non-linearity into similarity measures for
data clustering [17,18]. Surprisingly few of these approaches do not abide by the triangle
inequality property [19]. The aim of investigating non-linearity in clustering algorithms is
to identify a more accurate boundary between two groups. The Bregman divergence was
considered as a measure of similarity and merged with the traditional k-means to increase
its efficacy in [19]. Currently, a few studies on various divergence-based similarity measures
in clustering are underway [20,21]. In this work, the spectral clustering (SC) algorithm is
adopted and modified using the non-linear S-distance (Sd), which is obtained from the
S-divergence (SD). Some characteristics of Sd are also discussed in this study. The proposed
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SC algorithm is implemented on four toy databases, eight real-world UCI databases, two
service industrial databases and one telecommunications database related to customer
churn. The proposed SC algorithm is compared with conventional SC algorithms; i.e., the
SC algorithm with linear Euclidean distance (Ed) [22], k-means [22] and DBSCAN [15]. All
the achieved outcomes show that the proposed clustering algorithm performs better than
the three existing approaches.

The rest of the article is structured as follows: Sd and its properties are presented in
Section 2. The graph Laplacian and its characteristics are shown in Section 3. The modified
SC algorithm and its proof of convergence are addressed in Section 4. Section 5 presents
empirical outcomes and discussion. Section 6 concludes the work.

2. S-Distance and Its Properties

In d-dimensional Euclidean space �d
+, p and q are two points [23]. Equation (1) is

employed to compute the Sd.

Definition 1. dists : �d
+ ×�d

+ → �+ ∪ {0} as

dist2
s (p, q) =

d

∑
l=1

[log((pl + ql)/2)− (log(pl) + log(ql))/2] (1)

Let f be an injective function stated as f : �d
+ → Md such that f(p) = diag((p1, p2, ..., pd)),

where Md represents the positive definite matrices of size d × d. Thus, the Sd is well-stated.
The Sd is obtained from the idea of SD, which is denoted arithmetically by Equation (2).

distsd
2(P, Q) = log

(∣∣∣∣ P + Q
2

∣∣∣∣) − log(|P|) + log(|Q|)
2

, (2)

where |.| is a determinant of a matrix and dists(p, q) = distsd( f (p), f (q)). At the moment,
we ensure that Sd meets all the characteristics for becoming a metric. The characteristics
are given below:

Proposition 1. Non-negativity: dists(p, q) ≥ 0

Proof. The modified form of Equation (1) is presented below:
dist2

s (p, q) = ∑d
l=1[log((pl + ql)/2) + log((plql)

−1
2 )]

=⇒ ∑d
l=1

[
log

(
(pl + ql)

2
√

plql

)]
= ∑d

l=1

[
log

(
1
2

(√
pl
ql

+

√
ql
pl

))]
≥ 0

∴ dists(p, q) ≥ 0

Proposition 2. Equality: dists(p, q) = 0 iff p = q.

Proof. Proposition 2 can be written as dist2
s (p, q) = ∑d

l=1

[
log

(
1
2

(√
pl
ql

+

√
ql
pl

))]
Now,

if p and q are the same then q can be substituted by p in the above Equation and the

adjusted Equation is dist2
s (p, q) = ∑d

l=1

[
log

(
1
2

(√
�pl

�pl
+

√
�pl

�pl

))]
=⇒ d[log(1)] = 0

∴ dists(p, q) = 0 iff p = q.

Proposition 3. Symmetry: dist2
s (p, q) = dist2

s (q, p)

Proof. The Sd amid p and q is expressed as given below:

dist2
s (p, q) = ∑d

l=1

[
log

(
1
2

(√
pl
ql

+

√
ql
pl

))]
[as already noted in Proposition 1] = dist2

s (q, p)

∴ dists(p, q) = dists(q, p). Thisimplies that the Sd also abides by the symmetric metric
property.
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Proposition 4. Triangle Inequality: In d-dimensional Euclidean space �d
+, p, q and o are any

three points. Then, this proposition states that the sum of any two sides—namely, dists(p, o) and
dists(o, q)—of a triangle is equal to or exceeds the length of the third side dists(p, q). Mathemati-
cally, dists(p, q) ≤ dists(p, o) + dists(o, q).

Proof. The following can be written by utilizing propositions 1 and 2:
dists(p, q) ≥ 0, dists(p, o) ≥ 0, and dists(o, q) ≥ 0
∴ dists(p, q) ≤ dists(p, o) + dists(o, q).

Thus, Sd is a metric. At this time, some of the characteristics of Sd are presented below:

Theorem 1. Sd is not a Bregman divergence.

Proof. This may be demonstrated by refutation. At the beginning, we can assume that the
Sd is a Bregman divergence. This implies that dists(p, q) is rigorously convex in p. It will
be necessary to demonstrate that dists(p, q) is not convex in p.

Take the double derivative for both sides of the following Equation with regard to pl .
Then,
∂dist2

s
∂pl

=
1

pl + ql
− 1

2pl

If l �= r, then
∂2dist2

s
∂pr∂pl

= 0;

otherwise,
∂2dist2

s

∂p2
l

=
−1

(pl + ql)2 +
1

(2pl)2 We get
∂2dist2

s

∂p2
l

< 0 only when ql < (
√

2 − 1)pl

∀l ∈ {1, . . . , d}, we get
∂2dist2

s

∂p2
l

≤ 0 for l ∈ {1, . . . , d}. Thus, a Hassian matrix that has

negative diagonal entries would be attained. So, we have verified that the Sd is not a
Bregman divergence.

Theorem 2. The a ◦ p is employed to denote the Hadamard product amid a and p. Then, this can
be written dist2

s (a ◦ p, a ◦ q) = dist2
s (p, q) for a ∈ �d

+.

Proof. This can be written as a ◦ p = (a1 p1, . . . , ad pd) as per Hadamard product. Thus,
dist2

s (al pl , aql) = log((al pl + alql)/2) − 0.5(log(al pl) + log(alql)) = log((al(pl + ql))/2) −
0.5(log(pl) + log(ql) + 2 log(al))

= log((pl + ql)/2)− 0.5(log(pl) + log(ql))

= dist2
s (p, q) =⇒ ∑d

l=1 dist2
s (al pl , alql) = ∑d

l=1 dist2
s (pl , ql)

∴ dist2
s (a ◦ p, a ◦ q) = dist2

s (p, q)

Theorem 3. Sd is not an f-divergence.

Proof. If ql is substituted by plνl , where νl ∈ �d
+ in Equation (1), then

dist2
s (p, q) = ∑d

l=1[log((pl + plνl)/2)− (log(pl) + log(pl)νl)/2]
=⇒ dist2

s (p, q) = ∑d
l=1[log((1 + νl)/2)− (log(νl))/2]

=⇒ ∑d
l=1 U(νl) = ∑d

l=1 U
(

ql
pl

)
Thus, dist2

s (p, q) cannot be denoted as ∑d
l=1 pldiag

(
ql
pl

)
.

∴ dists() is not an f-divergence.
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Remark 1. Figure 1 displays the line of the norm-balls of the Sd and Ed around the point
(5000, 5000) in �d

+, where d = 2. One can observe from Fig. 1 that the lines of Sd and Ed
look like distorted triangles and concentric circles, respectively. Further, the contour plots of Sd
approach each other as we get close to the origin. When two points get close to the origin, then Sd
would be high. On the contrary, the Sd of two points would be low when they are far from the origin.
In contrast, the Ed of two points would be the same in both cases. Thus, Sd works well if the larger
clusters are far from the origin and the smaller clusters are nearer to the origin.

(b) 
 

(a)

Figure 1. Contour plot of the norm balls for (a) Ed and (b) S-distance (Sd).

Remark 2. Sd abides by the principle of Burbea–Rao divergence in �d
+ with condition f (p) =

−∑d
l=1 log(pl). Thus, f (p) is convex in �d

+.

3. Graph Laplacian and Its Properties

Consider a database D = {p1, . . . , pn} with n number of points in d-dimensional
Euclidean space, where pi ∈ �d

+ expresses the ith point. W = (ℵ, Ψ, A) is another represen-
tation of the same database, where ℵ and Ψ is the set of points and edges of these points,
respectively. The A is used to express an affinity matrix or a symmetric weighted matrix
of the graph W. In order to build a W, we consider the local neighborhood relationships
of these points. Some approaches are available in the literature to construct affinity matri-
ces [24]. Despite that, we have utilized a symmetry-favored KNN to increase the modeling
of a graph and reduce outliers and the effect of noise. The graph W may be expressed by
the underlying manifold characteristics of the data space [25,26]. In SC, the proper selection
of the pairwise similarity measure is crucial [24,26]. Equation (3) is employed to produce
an asymmetry-weighted matrix Π ∈ �n×n connected to W.

Πi,j =

⎧⎨⎩exp(− dist2
s (pi ,pj)

dists(pi ,kpi)dists(pj ,kpj)
), if pj ∈ distk(pi)

0, otherwise
, (3)

where dists() is the Sd between two data points pi and pj,
kpi represents the kth NN of

pi ∈ ℵ and distk() is the set of KNN of pi.
The weighted symmetric matrix of graph W is achieved by utilizing Π using Equation (4).

Ai,j =

⎧⎪⎨⎪⎩
1, if pj ∈ distk(pi) and pi ∈ distk(pj)

Πi,j, if pj ∈ distk(pi) and pi /∈ distk(pj)

Πj,i, otherwise

(4)
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Equation (4) is adopted to build the symmetry-favored KNN graph of W. Figure 2 shows a
pictorial representation of the difference between a symmetry-favored KNN graph and a
KNN graph. The weights of symmetric edges of W are higher than the asymmetric edges
because the points associated with symmetric edges belong to the same sub-manifold.

                          (a )  (b )                              

Figure 2. (a) 3NN and (b) symmetry-favored 3NN (higher edge weights are denoted by bold edges).

The degree matrix ζ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ1 . . . . . . . . .
. . . σ2 . . . . . .
...

... σi
...

. . . . . . . . . σn

⎫⎪⎪⎪⎬⎪⎪⎪⎭, where σi is determined using Equation (5).

σi =
n

∑
j=1

Πi,j (5)

The essential components of an SC are graph Laplacian matrices, which are of two
types: normalized and unnormalized [27]. Equation (6) is employed to estimate the
unnormalized graph Laplacian matrix.

Wun = ζ − A (6)

In contrast, Equation (7) is exploited to calculate the normalized graph Laplacian matrix.

Wno = ζ−
1
2 Wunζ

1
2 = I − ζ−

1
2 Aζ

1
2 , (7)

where I is an identity matrix. The μ0, . . . , μn−1 and τ0, . . . , τn−1 are the eigenvalues and
eigenvectors of Wno, respectively. Proposition 5 presents a discussion of the properties
of Wno.

Proposition 5. Three properties of Wno are given below:

1. We have

gTWnog =
1
2

n

∑
i,j=1

ai,j(
gi√
σi

−
gj√
σj
)2 (8)

for every g ∈ �n.
2. Wno is symmetric and positive semidefinite.
3. Wno consists of n non-negative and real-valued eigenvalues 0 = μ0 ≤ · · · ≤ μn−1, where n

is the number of points in D.

4. Proposed Spectral Clustering Algorithm and Analysis

In SC, a graph partitioning problem is approximated in a manner so that low weights
are assigned to edges, which are between clusters. This means that the association between
clusters is low or clusters are not similar. On the other hand, high edge weights are
assigned when clusters are similar. In [28], a similarity graph with an adjacency matrix
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A is partitioned by solving the mincut problem. This consists of the selection of partition
B1, . . . , Bk, which minimizes Equation (9).

cut(B1, . . . , Bk) =
c

∑
i=1

cut(Bi, Bi), (9)

Here, Bi is the complement of Bi, where Bi is a disjoint subset of ℵ points. In reality,
the mincut problem does not give us satisfactory partitions. So, this problem can be solved
using a normalized cut, Ncut, which is defined by Equation (10).

Ncut(B1, . . . , Bk) =
k

∑
i=1

cut(Bi, Bi)

vol(Bi)
, (10)

The Ncut problem can be relaxed and helps to derive the normalized SC [24]. Equation (11)
is used to represent the cluster indicator vector, gj = (g1,j, . . . , gn,j)

′.

gi,j =

⎧⎨⎩
1√

vol(Bj)
, if pi ∈ Bj

0, otherwise
, (11)

where 1 ≤ i ≤ n, 1 ≤ j ≤ k and a matrix G can be constructed as G = (gi,j)1≤i≤n,1≤j≤k

and G′G = I with gi
′ζgi = 1 and gi

′Wnogi = 2
cut(Bi, Bi)

vol(Bi)
. So, Equation (12) is utilized to

denote the minimization of Ncut.

min
B1,...,Bk

Tr(G′WnoG), subject to G′ζG = I (12)

where Tr is the trace of a matrix. After relaxing the discreteness condition and replacing
V = ζ

1
2 G, the relaxed problem is as shown in Equation (13):

min
V∈�n×k

Tr(V′ζ
−1
2 Wnoζ

−1
2 V) subject to V′V = I (13)

Equation (13) consists of a matrix V that contains the first k eigenvectors of Wno as
columns. Let V = {v1, . . . , vn} be a given set of vectors in �k

+. Equation (13) can be further
simplified as Equation (14).

min
V∈�n×c

Tr(V′WnoV) subject to V′V = I (14)

Equation (13) is the trace minimization problem that is solved by a matrix V, contain-
ing the first k eigenvectors of Wno in columns. We want to assign vi ∈ V to any mutually
exclusive class such that 2 ≤ k ≤ n. A mathematical way to design this problem as follows:

χ : minimize h(Q, C) =
n

∑
i=1

k

∑
j=1

aijdist2
s (vi, cj) subject to

k

∑
j=1

aij = 1 where aij ∈ {1, 0} and C = {c1, . . . , ck}, cj ∈ �k
+

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , k} (15)

The solution to the above problem χ uses k-means with Sd, which converges to a local
optimal solution of χ in finite iterations [29]. Algorithm 1 shows the modified SC.
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Algorithm 1 The proposed SC algorithm.

Input: ℵ, k, k � ℵ—a set of points, nearest neighbors for affinity matrix and number of
clusters
Output: Cluster labels of all the points

1. Compute the KNN graph and the weight matrix A using (3)–(4)
2. To get the normalized graph Laplacian Wno by (5)–(7) as

Wno = ζ−
1
2 Wunζ

1
2 = I − ζ−

1
2 Aζ

1
2

3. Calculate the k smallest eigenvalues {μi}i=1,...,c and their corresponding eigenvec-
tors {σi}i=1,...,k using the affinity matrix Wno in (7) and form a matrix Υ ∈ �n×k

4. Convert Υ matrix to Γ ∈ �n×k by normalizing the Υ such that the rows to have unit

length (i.e. Γij =
Υij

(∑l Υ2
il)

1
2

)

5. Cluster data points Γi=1,...,n ∈ �k in to k clusters via k-means clustering with either
Ed or Sd

6. At the end, allot each point pi to cluster j if and only if ith row of matrix Γ was
allotted to cluster j

5. Experimental Results and Discussion

A laptop Intel(R) Core(TM) i7-2620M CPU@2.70GHz and 4-GB RAM running on
Windows 10 with a 64-bit Python 3.6.5 compiler was used for this study. Every aspect of
the work was done in the Spyder 3.2.8 Python development environment.

5.1. Database Description

In total, 15 databases of three classes are considered in this work to compare the
performance of the proposed clustering algorithm with three existing approaches.

5.1.1. Synthetic Databases

Four synthetic/toy databases were considered. In varied distributed database (DB1),
data points are distributed with varied variances. Four concentric circles are present in noisy
four-circles (DB2), where each circle represents a class. The blob database (DB3) consists
of isotropic Gaussian blobs with three classes. The data point distribution is anisotropic
in nature for the anisotropically distributed database (DB4). Table 1 presents the title of
the toy databases, the number of sample points of these databases, the number of facets
in each point and the number of clusters. The data distribution in the two-dimensional
Euclidean space of each of these four synthetic databases is shown in Figure 3. The x-axis
and y-axis of each plotted distribution denote feature 1 and feature 2, respectively, as two
features are present in each of the toy databases.

(a) DB1 (b) DB2 (c) DB3 (d) DB4
Figure 3. Four Toy Databases.
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Table 1. Databases.

S.No. Category Databases Samples Features Clusters

1 Synthetic Varied Distributed Data (DB1) 1500 2 3

2 Synthetic Noisy 4-Circles (DB2) 1500 2 4

3 Synthetic Blobs (DB3) 1500 2 3

4 Synthetic Anisotropically Distributed
Data (DB4) 1500 2 3

5 UCI Avila database (DB5) 10430 10 12

6 UCI Breast Cancer database (DB6) 569 30 2

7 UCI Digits database (DB7) 1797 64 10

8 UCI Iris database (DB8) 150 4 3

9 UCI Letter Recognition database
(DB9) 20000 16 26

10 UCI Poker Hand database (DB10) 25010 10 10

11 UCI Shuttle database (DB11) 43500 9 7

12 UCI Wine database (DB12) 178 13 3

13 Industrial Banking marketing database
(DB13) 45211 12 2

14 Industrial Online Shoppers’ Purchasing
Intention (DB14) 12330 18 2

15 Industrial Telecommunication customer
churn database (DB15) 7044 21 2

5.1.2. UCI and Industrial Databases

Eight popular realistic databases—Digits, Iris, Breast cancer, Wine, Avila, Letter, Poker
and Shuttle—were adopted from the UCI repository [30,31]. A brief portrayal of these UCI
databases is given in Table 1. On the other hand, two industrial databases—namely, Bank
telemarketing [10] and Purchasing intention [32]—are considered in this work. A database
related to telecommunication customer churn was adopted from the Kaggle repository to
study the customer data for retaining and maximizing benefit by devising suitable business
plans. Brief details of these databases are given in Table 1. Outliers and data reconciliation
are not handled separately in this work. However, normalization was carried out before
applying the proposed algorithm to model the data correctly. As mentioned in section 2,
Sd is defined in d-dimensional Euclidean space �d

+; thus, raw data were normalized to
obtain a positive scale by shifting data with the absolute of the most negative value such
that the most negative value would be the minimum positive non-zero value and all other
data points would be positive.

5.2. Evaluation Indices

Accuracy is one of the most adopted validation indices. It denotes the ratio of correct
outcomes that a machine learning algorithm has attained. The higher the accuracy obtained
by an algorithm, the better and more useful that algorithm is. However, this may mislead
researchers due to the accuracy paradox. Accuracy adopted along with other indices; for
instance, the Jaccard index, f-score, recall, and precision [33–35]. Interested readers are
referred to [36] to learn about the various validation indices in depth. Non-parametric
statistical hypothesis tests, called the Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum
test and sign test, were conducted as well at the 5% significance level to determine whether
two dependent samples were chosen from the data [37,38].
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5.3. Results and Discussion

In this study, the proposed SC—i.e., an SC with Sd (SC-S)—is compared with the
conventional SC (SC-E) [22], k-means [22] and DBSCAN [15] on the basis of 14 databases.
As we know, an affinity matrix helps to represent data points graphically and the affinity
matrix depends on a symmetric favored KNN. So, in the first experiment, two methods—
SC-S and SC-E—were executed on four synthetic databases only and the performances
were judged based on five validation indices; namely, the Jaccard index, f-score, recall,
precision and accuracy. A significant amount of time has been devoted by the research
community to deciding the best value of k for KNN. Still, this is an open problem. So, the
value of k is determined based on empirical results in this work. Initially, 10 is considered
as the value of k. Later on, this reaches 30 with a step size of 5. The achieved Jaccard
index, f-score, recall, precision and accuracy using SC-S and SC-E are shown in Figures 4–8,
respectively. It is observed from Figures 4–8 that the SC-S always outperforms the SC-E for
the five evaluation metrics. Moreover, KNN was stable when the value of k was 20, which
is used for the rest of the work [25].

(a) (b) (c) (d)
Figure 4. Comparative analysis using the accuracy index on various toy databases using SC-E and
SC-S in the case of varying neighborhoods for the construction of an affinity matrix. (a) DB1 (b) DB2
(c) DB3 and (d) DB4.

(a) (b) (c) (d)
Figure 5. Comparative analysis using the precision index on various toy databases using SC-E and
SC-S in the case of varying neighborhoods for the construction of an affinity matrix. (a) DB1 (b) DB2
(c) DB3 and (d) DB4.

(a) (b) (c) (d)
Figure 6. Comparative analysis using the recall index on various toy databases using SC-E and SC-S
in the case of varying neighborhoods for the construction of an affinity matrix. (a) DB1 (b) DB2 (c)
DB3 and (d) DB4.
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(a) (b) (c) (d)
Figure 7. Comparative analysis using the fscore index on various toy databases using SC-E and SC-S
in the case of varying neighborhoods for the construction of an affinity matrix. (a) DB1 (b) DB2 (c)
DB3 and (d) DB4.

(a) (b) (c) (d)
Figure 8. Comparative analysis using the Jaccard index on various toy databases using SC-E and
SC-S in the case of varying neighborhoods for the construction of an affinity matrix. (a) DB1 (b) DB2
(c) DB3 and (d) DB4.

In the second experiment, the SC-S was compared with SC-E, k-means and DBSCAN
on 14 databases. Figures 9–12 show the data distribution of each toy database separately
after applying four clustering algorithms. Here, different colors are used to denote different
clusters. The number of colors depends on the number of clusters in each database.
However, the colors are assigned in each database randomly. So, no color is used to fix a
particular cluster. It is clear from Figures 9–12 that the k-means performs worst compared
to the rest of the three methods, but it is difficult to comment on these three methods with
regard only to Figures 9–12. In Fig. 10, the result of k-means shows that k-means works
better in the case of spherical data only. While the other methods perform better compared
to k-means, more information is required to say more about the four clustering algorithms.
Figure 13 shows the obtained Jaccard index, f-score, recall, precision and accuracy using
the four clustering algorithms. Here, two parameters—the radius (Eps) and a minimum
number of points (MinPts)—are required to execute DBSCAN. The values of Eps and
MinPts are 0.5 and 3, respectively [39]. Figure 13 illustrates that the proposed clustering
algorithm SC-S is the best among the four used clustering algorithms in terms of the five
evaluation metrics.

(a) (b) (c) (d)
Figure 9. Result of clustering algorithm on DB1 using four methods: (a) SC-E (b) DBSCAN, (c)
k-means clustering and (d) SC-S.
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(a) (b) (c) (d)
Figure 10. Result of Ccustering algorithm on DB2 using four methods: (a) SC-E (b) DBSCAN, (c)
k-means clustering and (d) SC-S.

(a) (b) (c) (d)
Figure 11. Result of clustering algorithm on DB3 using four methods: (a) SC-E (b) DBSCAN, (c)
k-means clustering and (d) SC-S.

(a) (b) (c) (d)
Figure 12. Result of clustering algorithm on DB4 sets using four methods: (a) SC-E (b) DBSCAN, (c)
k-means clustering and (d) SC-S.

(a) (b) (c)

(d) (e)
Figure 13. Comparative analysis of SC-E, SC-S, DBSCAN and k-means clustering on toy data sets
using various validation indices: (a) precision, (b) recall, (c) f-score, (d) Jaccard index and (e) accuracy.

The proposed method along with three existing approaches was executed on eight
UCI databases as discussed in Figure 14. In addition, two industrial databases and one
telecommunication database were used for customer churn analysis, and the achieved
results are displayed in Figure 15. Figure 15 shows the accuracy and TP rates obtained
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for the test cases with regard to the prediction horizon, which is calculated as the number
of tasks performed by the users before leaving the commercial web site. As shown in
Figure 15, it is clear that the SC-S has the highest accuracy compared to other existing
approaches. Long-term deposits are favored by banks to maintain funds with minimal
interest. Thus, this long-term deposit policy is better at generating higher successful
sales, even if it requires some effort in communicating with customers. Under these
circumstances, the proposed model SC-S shows higher accuracy as compared to the other
existing approaches, as discussed in Figure 15. In this type of database, human agents
have less probability to convert any call into successful calls. The telecommunication
database is clustered into two clusters; namely, stable customers and churning customers.
The objective is to predict customer behavior in the future based on these features. This
analysis using clustering can help enterprises to develop efficient marketing strategies to
select valuable customers and those that are necessary to retain, while customers that are
going to churn can be contacted with appropriate retention measures to maximize profits.
Further, enterprises can perform a deep analysis of the stable customers and can target
more similar customers to increase their market space.

(a) (b) (c)

(d) (e)
Figure 14. Comparative analysis of SC-E, SC-S, DBSCAN and k-means clustering on UCI data sets
using various validation indices: (a) precision, (b) recall, (c) f-score, (d) Jaccard index and (e) accuracy.

In this experiment, the non-parametric significance test of the SC-S was compared
with other methods: SC-E, k-means and DBSCAN. First, a pairwise comparison of the SC-C
with SC-E was performed and is labeled as “M1”. Second, a pairwise comparison was
done with k-means and marked as “M2”. Finally, SC-S was compared with DBSCAN and
denoted as “M3”. This pairwise experiment was performed for three indices; namely, the
Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test and sign tests [40]. These pairwise
tests are the easiest ways to test statistics that can be conducted within the framework
of an empirical study by a researcher. These non-parametric tests are also executed by
considering the p-values (in Table 2) that are obtained based on accuracy only. The results
of Table 2 allow us to refute the null hypothesis at a 5% level of significance. So, SC-S is
statistically superior to the three existing approaches. Some insignificant p-values higher
than 0.05 are also reported in Table 2.
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(a) (b) (c)

(d) (e)
Figure 15. Comparative analysis of SC-E, SC-S, DBSCAN and k-means clustering on industry data
sets using various validation indices: (a) precision, (b) recall, (c) f-score, (d) Jaccard index and (e)
accuracy.

Table 2. Significance test using the accuracy validation index.

Rank-Sum Sign-Rank Sign Test
Databases M1 M2 M3 M1 M2 M3 M1 M2 M3

DB1 0.04937 0.00016 0.00195 0.0047 0.00492 0.00492 0.00195 0.04937 0.0015
DB2 0.00016 0.00016 0.00016 0.0047 0.00448 0.00448 0.00195 0.00195 0.00195
DB3 0.00195 0.00016 0.00016 0.0047 0.00492 0.00492 0.00195 0.00016 0.00195
DB4 0.28992 0.00016 0.0015 0.0047 0.00492 0.00492 0.00195 0.00195 0.0015
DB5 0.00016 0.00289 0.00016 0.00492 0.00492 0.00492 0.00195 0.0015 0.00195
DB6 0.00016 0.00016 0.00016 0.00492 0.00492 0.00492 0.00195 0.00195 0.00195
DB7 0.00016 0.00016 0.00016 0.00492 0.00492 0.0047 0.0015 0.00016 0.00195
DB8 0.00289 0.00016 0.00016 0.00492 0.00492 0.00492 0.00195 0.00195 0.00492
DB9 0.00016 0.00492 0.0015 0.00448 0.00448 0.0047 0.00195 0.00195 0.00195

DB10 0.00016 0.00016 0.00016 0.00492 0.00492 0.00492 0.0015 0.00195 0.00195
DB11 0.00016 0.00492 0.00016 0.00492 0.00492 0.00492 0.00195 0.00195 0.00492
DB12 0.00016 0.00016 0.0015 0.00492 0.00492 0.00492 0.00195 0.00195 0.00195
DB13 0.0015 0.00016 0.00016 0.00407 0.0047 0.00492 0.00195 0.00195 0.00195
DB14 0.00016 0.00016 0.00016 0.00492 0.00492 0.00492 0.00195 0.00195 0.00492
DB15 0.0047 0.04937 0.00195 0.00492 0.00448 0.00492 0.00289 0.00195 0.0047

6. Conclusions

In this work, an enhanced SC based on Sd is proposed to predict customer churn
with better accuracy by analyzing industrial data. The traditional KNN is replaced by a
symmetric-favored KNN in the proposed algorithm in order to increase the efficacy of clus-
tering. Extensive experiments are performed on four synthetics, eight UCI, two industrial
databases and one telecommunication database for customer churn analysis, validating the
proposed algorithm by the comparison with three existing clustering algorithms; namely,
SC-E, k-means and DBSCAN. All the outcomes show that the proposed algorithm performs
better than the three existing approaches in terms of five validation metrics: the Jaccard
index, f-score, recall, precision and accuracy. The statistical significance of the SC-S is also
measured by considering Wilcoxon’s signed-rank test, Wilcoxon’s rank-sum test and sign
tests. This study can be extended to large databases by optimizing the step of eigenvalue
computation using either the Hadoop architecture or parallel computation. The real-world
databases consist of categorical as well as numerical attributes. This study proves that the
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SC-S works well on databases with numerical attributes only. However, the SC-S cannot
work on databases with categorical attributes, which deserves further study.
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Abstract: We present an extractive summarization model based on the Bert and dynamic memory
network. The model based on Bert uses the transformer to extract text features and uses the pre-
trained model to construct the sentence embeddings. The model based on Bert labels the sentences
automatically without using any hand-crafted features and the datasets are symmetry labeled. We
also present a dynamic memory network method for extractive summarization. Experiments are con-
ducted on several summarization benchmark datasets. Our model shows comparable performance
compared with other extractive summarization methods.

Keywords: text summarization; recurrent neural network; embedding; dynamic memory network

1. Introduction

Summarization is an import problem of natural language understanding and infor-
mation retrieval. The aim of the summarization is to condense the input text and remain
the core meaning of the input text. The methods of the summarization are classified into
two categories: extractive summarization method and abstractive summarization method.
These two methods are symmetry important. The extractive summarization method se-
lects the salient content from the documents while the abstractive summarization method
paraphrases the content of the document. The earlier research mainly concentrated on
extractive summarization method and the recent research focuses on neural extractive
summarization and neural abstractive summarization. In this paper, we only pay attention
to the extractive summarization method.

The early work of the extractive summarization method which was done by Edmund-
son [1] scores the sentences by considering the title words, clue words, and the sentence
positions. Lin [2] uses some regulations to find the topic sentences and trains a model to
predict the topic sentences based on the positions.

As the development of deep learning, researchers mainly concentrate on using the
neural network method to resolve the extractive summarization problem. In particular, the
development of the neural network language model [3] and the text representation meth-
ods [4] make the natural language processing take off. Cao [5] applies the neural network
to extractive query-focused summarization which is a task of information retrieval. In their
model, they employ the CNN(Convolutional Neural Network) to project the sentences of
the document and the query to latent space. To get the document representation, they use
the weighted-sum pooling over the sentence embedding. Lastly, they rank and select the
sentences of document after comparing the similarity between the sentence embedding
and document embedding.

Because of the success of the RNN (Recurrent Neural Network) in machine transla-
tion [6], Rush [7] first employs the RNN based on an attention mechanism for abstrac-
tive summarization.

Nallapati [8] uses the sequence model based on RNN to extract summarization of a
single document, which is the problem we are focusing on. In their model, they see the
extractive summarization task as a binary classification task and use the RNN model as a
sentence classifier. Recently, Zhou [9] integrates the MMR (Maximal Marginal Relevance)
selection strategy proposed by Carbonell and Goldstein [10] into the scoring model. In their
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model, they employ the BiGRU (Bidirectional Gated Recurrent Unit) [4] as their encoder
to get the sentence representation and document representation and they construct their
labeled training data by maximizing the ROUGE-2 F1 score [2] . These neural extractive
summarization methods mentioned above are all using the RNN as their encoder and the
labeled data construction method is computationally expensive. Narayan [11] employs
the CNNs [12] as the sentence encoder and employs the RNN as the document encoder.
Because of the strong ability to extract text features, we will use the transformer [13] as the
encoder just like Bert [14] does.

Our main contributions are as follows:

1. We propose an extractive summarization model that achieves the comparable result
against other baselines.

2. We propose a simple and effective sentence label method used in the extractive
summarization problem.

3. We incorporate the positional encoding to a dynamic memory network.
4. We propose to use a dynamic memory network method for extractive summarization.

2. Materials and Methods

2.1. Problem Formulation

A document is represented as D and S represents the sentence of the document. D is
defined as Equation (1):

D = {S1, S2, . . . , Sn} (1)

The n in Equation (1) is represented as the max number of the document sentences.
The target of the extractive summarization task is to extract r sentences of the docu-
ment (r < n) and the r sentences maintain the core information of the document. We make
the extractive summarization task as a binary classification task just like Cheng [15] and
Nallapati [8] do. Given a sentence si (0 ≤ i ≤ n), which consists of tokens represented as
wj (0 ≤ j ≤ m), we predict the probability of P(Y|S) (Y ∈ {0, 1}). The last hidden output
of the Bert is denoted as hk (0 ≤ k ≤ m) and the output of the sentence encoder is denoted
as si

′
, which is the embedding representation of sentence i. The target sentence in training

set is denoted as tl (0 ≤ l ≤ p) and p is the length of the target summaries. The embedding
of the tl is denoted as tl

′
. The bl is denoted as the sentence labeled with 1.

2.2. Extractive Summarization Based on Bert
2.2.1. Sentence Encoder

Differentiated with Narayan [9,11], we don’t use the hierarchical encoder and only
use the sentence encoder. The architecture of the sentence encoder is shown in Figure 1.
Because of the strong ability to extract the text features, we use the Bert to get the word
embeddings of the sentences. We refer you to the detailed description of the pre-training
Bert model in the paper written by Jacob [14]. Using the Bi-Transformer and the masked
language model makes the Bert better than other pre-training models.

The input of the sentence encoder is the one-hot representations of the words in a sen-
tence and the model parameters of pre-training are loaded in the sentence encoder model.
Given sentence I, through the pre-training Bert model, we will get a list of embeddings.
The embedding of sentence I is calculated as Figure 2. We just use this sentence encoder in
the process of building a labeled training set and the process of the prediction and extractor
will use the fine-tuned Bert directly:

Si
′
= (h1 + h2 + · · ·+ hm)/m (2)
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Figure 1. Overview of the sentence encoder based on Bert.
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Figure 2. Overview of the labeling process.

2.2.2. Label Training Set

We conduct our experiments on the CNN/Dailymail dataset [16] and several other
datasets. We will train a binary classifier on these datasets. However, there is no labeled
training dataset. In order to construct this labeled dataset, we need to label the sentence of
the document with 0 and 1. The label 0 shows that this sentence should not be included in
the summaries, and label 1 shows that this sentence should include the summaries. Differ-
entiated with Zhou [9,11], we don’t use the rouge method to build the supervised datasets,
and we will use the semantic similarity method to label the training set. The overview of
the labeling process is shown in Figure 2.

Given the si
′

and the tl
′
, the equations of calculating the semantic similarity are shown

as Equations (3) and (4). For every sentence in the target summaries, we find the maximum
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similarity sentence from the source document. These selected sentences are labeled with 1
and the others are labeled with 0:

similarity = cos (si
′
, tl

′
) (3)

cos (si
′
, tl

′
) =

si
′ · tl

′

‖si
′ ‖ × ‖tl

′ ‖
(4)

2.2.3. Sentence Extractor

We directly use the fine-tuned Bert model to train our binary classifier which will
predict the probability of the sentence to be extracted. The classify model that loaded the
pre-training parameters reads a single sentence, and the classified probability is denoted
as Equation (5). In Equation (5), the C is the final hidden state of the input representation
in the Bert model, and the W are the new parameters to be learned. The loss function is a
cross entropy loss function that is denoted as Equation (5). In the test phase, we predict the
probability of the label when we input the test dataset. We assume that the probability of
label 1, which is greater than the probability of label 0, should be the extractive summary.
The max sequence length of the input sequence is set to 128:

P(Y|S) = Softmax(CW�) (5)

Loss = −logP(Y|S) (6)

2.3. Extractive Summarization Based on the Dynamic Memory Network

Kumar et al. first introduce the DMN (dynamic memory network) for the QA (question
answering) problem [17]. Caiming et al. [18] propose several improvements over the base
dynamic memory network. The DMN consists of input module, question module, episodic
memory module, and answer module. The episodic memory module will produce the
focusing parts of the inputs through the input module and question module. The answer
module will generate the answers based on the outputs of the memory module. Because the
similarity of the QA problem and the summarization problem, we employ the DMN as our
base model to classify the sentences.

Dynamic Memory Network

In order to extract the summarizations from the document, we propose a dynamic
memory network that is composed of input module, memory module, summarization
module, and linear module. What we are focusing on is to memorize the salient content of
the sentence and then classify the facts. The modules of our model are showed in Figure 3.

Input Module: the inputs of our model are the all sentences of our document sets. We
need to encode the sentences by using an encoder. The encoder of [17] is a GRU (gated
recurrent network) [4,19,20]. The input of the GRU is the word embeddings and then the
encoder calculates the hidden states of the words, which are concatenated as the sentence
representations. The hidden state of the token i can be defined as hi = GRU(xi, hi−1), where
xi is the embedding of token i and hi−1 is the hidden state of previous token. The GRU is
defined as:

zt = σ
(

W(z)xt + U(z)ht−1 + b(z)
)

(7)

rt = σ
(

W(r)xt + U(r)ht−1 + b(r)
)

(8)

h̃t = tanh
(

Wxt + rt ◦ Uht−1 + b(h)
)

(9)

ht = zt ◦ ht−1 + (1 − zt) ◦ h̃t (10)

where zt is the update gate and rt is the reset gate, the W and U are the weights, and the b
is the bias. The σ and the tanh are the activation functions.
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Figure 3. Input module.

The input of our model is one sentence, and we encode one sentence by using a
bi-GRU. Thus, we can use not only the information of previous words but also use the
information of the afterwards words. When we encode the sentences, we also consider
the positions of the words and the positions of the sentences. Differentiated with [17], we
combine the word positional encoder and sentence positional encoder with the sentence
encoder. The word positional encoder [13] is defined as:

WPE(wordPos,2i) = sin
(

wordPos/100002i/d
)

(11)

WPE(wordPos,2i+1) = cos
(

wordPos/100002i/d
)

(12)

where the wordPos is the position of the word, i is the dimension, and d is the dimension
of the word embedding. From previous research, we can find that the position of the
sentence is very important when extracting the sentences from the document. We define
the sentence positional encoder as:

SPE(i) = pi (13)

where the pi is the absolute position of the sentence. In our experiments, we also consider
using the Bi-RNN [21] and the transformer [13] as the encoder. In the BiRNN model,
the forward RNN encodes the input sequence as

−→
f =

(−→
h 1, · · · ,

−→
h Tx

)
(14)

and the backward RNN encodes the input sequence as

←−
f =

(←−
h 1, · · · ,

←−
h Tx

)
. (15)
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The final representation of word j is denoted as

�hj =
[−→

h �
j ;

←−
h �

j

]�
. (16)

Through the�hj, we will get the sentence embedding.
Summarization Module: in the problem of question and answer, the dynamic memory

model should encode the question by using the question module. However, in our model,
there is no question. In order to memory the salient content in the source sentence, we
need to encode the salient content, which is the abstracts of the document in the training
phase, while, in the testing phase, it is the first three sentences of the document. We call
this encoder module as the summarization module. The summarization module is very
similar to the input module. The difference between the summarization module and input
module is that we use the RNN as encoder when we encode the content .

Memory Module: the memory module mainly gets the similarity representation of
the sentence to be classified and the salient content of the document. The input of the
memory module is the sentence representation that is the output of the input module
and the summarization representation, which is the output of the summarization module.
In order to get the similarity representation, we employ the same mechanism as [17] to
compute the representation of similarity. In our module, we only compute three episodes.
In order to capture the similarities of the input module and summarization module, we
define the similarity content as

z(I, S) = Concat(I ∗ S, S ∗ memory, |S − memory|, |I − S|, ) (17)

where I is the output of the input module, and S is the output of the summarization module.
The memory is initialized with I. The gate function in our model is defined as

g = σ
(

W(2) tanh
(

W(1)z(I, S) + b(1)
)
+ b(2)

)
. (18)

With the gate function g and the similarity content representation z, we compute the
episode as:

ht = gtRNN
(
�I, ht−1

)
+ (1 − gt)ht−1. (19)

The memory is updated as

memory = GRU(ht). (20)

Linear Module: in the linear module, we need to map the similarity representation
to a two-dimensional output by using a linear layer and then get a probability by us-
ing a softmax layer. Through this probability, we can train our model with the labeled
training set:

outi = L
(

RNN(ht,�S)
)

(21)

Pi = so f tmax(outi) (22)

3. Experimental Setup

We will present our experimental setup for assessing the performance of our model
which we call ESBOB and SDMN in this section. We will discuss the datasets used for
training and evaluation. The implementation details and the evaluation method are
described for comparison.

3.1. Datasets

We train and evaluate our model on the non-anonymized CNN and DailyMail
datasets [16], which are developed for the question-answering system. We split the dataset
for 287, 226 training pairs, 13,368 validation pairs, and 11,490 testing pairs followed
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by [22–24]. Because the CNN/Dailymail datasets don’t include the reference extractive
summarization, we will use the abstractive summarizations as the reference summariza-
tions.

The second dataset we use is the WikiHow developed by Koupaee and Wang [25] . This
dataset is a diverse dataset that is extracted from an online knowledge base. The dataset
has 168,128 training pairs and 6000 testing pairs

The third dataset we use is the XSum developed by Narayan [26] . This dataset is a
one-sentence summary dataset. The summaries in this dataset are written professionally.

3.2. Baselines

In order to compare, we choose some approaches as our baselines. These baselines are
listed below:

(1) Leading three sentences (Lead-3). This method constructs the summary by extracting
the first three sentences of the document. We have given our lead-3 result and the
Lead3 result of [23] .

(2) Cheng and Lapata [15] . Cheng and Lapata propose an extractive model which consist
of the hierarchical document encoder and an attention-based extractor.

(3) SummaRuNNer [8] . This model is based on a recurrent neural network.
(4) REFRESH [11] . Narayan makes the extractive summarization task as a sentence rank-

ing task and optimizes the rouge metrics through the reinforcement learning object.
(5) NEUSUM [27] . This model makes the sentence scoring and sentence selection to an

end-to-end neural network framework.
(6) BANDITSUM [28] . In the field of text summarization, many methods have been

proposed with reinforcement learning. In this model, a policy gradient reinforcement
learning algorithm is used to train to select the summarization sentences.

3.3. Implementation Details

The pre-trained Bert we use in the process of labeling, training, and testing is the
uncased Bert-base model. In the pre-trained model, there are 12 transformer blocks.
The model employs 768 hidden sizes and 12 self-attention heads. The optimizer used in
our model is Adam optimizer [29] with initial learning rate 0.001. We use a batch size of
128 and an epoch of 3 at training time. We train our sentence classifier on 4 Tesla K80 GPU.
At test time, we extract the first three sentences as the baseline because of the LEAD3 is a
commonly used baseline. We also extract the sentences of the training set as the reference
summarizations based on the semantic similarity and the abstractive summarizations.

When we train our dynamic memory network, we also use the Adam optimizer [29]
with an initial learning rate of 0.001. The batch size we use is 32, and we train our model in
two epochs. The training set we use is the data labeled by Bert. The summarizations we
use in the summarization module are the first three sentences of the document. We train an
extractive system based on the dynamic memory network on 1 Tesla K80 GPU.

3.4. Evaluation

The F1 ROUGE value [30] is used to evaluate our summarization model. We will
report the f scores of ROUGE-1, ROUGE-2, and ROUGE-L. We will compare our model
against the lead-3 baseline which just selects the first three sentences in the document as
the summary. On the CNN/Daily mail dataset, the result of the approach put forward
by Cheng and Lapata [15] is reported. We compare our model against the approach
called BanditSum [28] and the approach called Refresh [11], which trains the extractive
summarization with reinforcement learning. We also compare our model against the
approach called SummaRuNNer [8], which treats the extractive summarization as a binary
classify task. The result of approach called Neusum [9] is also reported.
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4. Results

4.1. Results on CNN/Daily Mail

Table 1 shows the experiment results by using the dynamic memory network called
SDMN. We can find that the SDMN is effective in processing the summarization prob-
lem. Incorporation the pre-training method into the SDMN model, the experiment result
performs very well. There are three encoders that we have used in our experiments.
The Bi-LSTM (Bi directional Long Short Term Memory) encoder with the dynamic memory
network shows the best result. Thus, in some extent, the Bi-LSTM has not been replaced by
transformers.

Table 1. ROUGE evaluation (%) on the CNN/DailyMail test set using dynamic memory network
(SDMN) with different encoders.

Method ROUGE-1 ROUGE-2 ROUGE-L

SDMN + BiGRU + pe 36.69 15.53 33.14
SDMN + BiLSTM + pe 40.24 17.53 36.49
SDMN + trans + pe 40.2 17.5 36.48

Table 2 shows the experiment results using automatic metrics. We report the lead3
result which is supplied by [23], and the second method result is supplied by [11]. From the
table, we can find that the neusum [9] achieves the state-of-the-art result. The method
trained by reinforcement learning depends on the rouge score when labeling the dataset
and training the model, which leads to the hard improvement on the experiment result. The
semantic experiment is conducted by us, which extracts the summarizations by semantic
similarity. However, this semantic similarity approach can not be applied into the inference
phase. From the result, we can find out that the training set built on semantic similarity
is effective to a certain extent. In order to improve the experiment result, we need to find
some more effective method to label the training set or use some methods to extract the
summarizations without labeling the training set such as reinforcement learning method.
Our method does not beat the method neusum and method banditsum. However, our
method named SDMNTransPe achieves a comparable result as other methods. From this,
we can find that our method is effective.

Table 2. ROUGE evaluation (%) on the CNN/DailyMail test set. Models marked with * are trained
and evaluated on the anonymized dataset, and so are not comparable to our results.

Method ROUGE-1 ROUGE-2 ROUGE-L

LEAD3 (ours) 39.89 17.24 36.12
LEAD3 (See et al.) 40.3 17.7 36.6
SemanticSim 50.54 27.63 46.77
Cheng and Lapata 35.5 14.7 32.2
SummaRuNNer * 39.6 16.2 35.3
REFRESH 40.0 18.2 36.6
NEUSUM 41.59 19.01 37.98
BANDITSUM 41.5 18.7 37.6
SDMNTransPe 40.2 17.5 36.48

4.2. Results on WikiHow and XSum

WikiHow is a summarization dataset that has short summaries. The XSum dataset has
symmetry long summaries. We will evaluate the short summarization dataset to find the
result by using the extractive summarization method. In Table 3, the first section contains
the lead-1 result and the second section contains the groundtruth result. From Table 3,
we can reconfirm that the first line in the document contains the important information.
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The last section in Table 3 shows the result of our extractive summarization method. The last
result is improved on the lead-1 result and is not comparable to oracle results. Thus, we can
use the extractive summarization to improve the result on short summarization datasets.

The summary in the WikiHow contains one sentence. The average number of the
sentences in the XSum summary is 8.4 and the average number of the sentences in the
CNN/DailyMail dataset is 4.8. The XSum dataset is the long summaries dataset. Our
model is effective in processing short summaries dataset and one sentence summary
dataset. In order to prove that our model is effective on the long summaries dataset, we
conduct the experiments on the XSum dataset. When we train our model, we select the one
sentence, two sentences, and all sentences from the summaries as the candidate summary.
From Table 4, we can find that the more sentences we select, the better performance the
extractive summarization model gets.

Table 3. ROUGE evaluation (%) on the WikiHow test set. Lead indicates selecting the first sentence
as the summary.

Method ROUGE-1 ROUGE-2 ROUGE-L

Lead 24.97 5.83 23.24
oracle 35.59 12.98 32.68
SDMN 30.23 7.58 27.34

Table 4. ROUGE evaluation (%) on the XSum test set. Num indicates the number of sentences
we choose to form a candidate summary. All indicates the sentences the model selected from the
candidate summary.

Method ROUGE-1 ROUGE-2 ROUGE-L

SDMN (1) 21.15 4.11 15.23
SDMN (2) 22.82 4.21 16.54
SDMN (all) 23.51 4.35 17.43

5. Analysis

Our analysis is driven by the following two questions:

(1) Where are the salient sentences in the document?
(2) Why is our method effective compared with other methods?

In order to find the discipline about the positions of the salient sentences in the
document. We choose the CNN/DM, WikiHow, and XSum datasets. There are relations
between the extractive summarization method and the abstractive summarization method.
The abstractive summarization model is to find the salient sentences or salient words in the
document and then paraphrase the selected contents. What the extractive summarization
model does is just what the abstractive method needs. The discipline of the positions of
the salient sentences in the document is very important to the abstractive summarization
problem and the extractive summarization problem.

Figures 4–6 show the salient sentences’ positions inspected by the Bert in the three datasets.
We can find that the XSum dataset contains one sentence summary, the CNN/Dailymail
dataset contains the medium summary sentences, and the WikiHow dataset contains the
large summary sentences. The salient sentences are not always in the first line of the
document. The salient sentences are always located in the whole article and the two salient
sentences have nearly equal distance. Table 5 shows the title, first sentence and the labeled
sentence in the XSum dataset. We can find that the sentence labeled by the Bert Model is
more adherent to the title than the first sentence of the document. When the authors are
editing the article, they always highlight the gist in some paragraphs. Thus, when we write
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the summarization automatically, we should not just concentrate on the first lines of the
document but on the whole paper.

The document we are processing is always the long text. In order to select the salient
sentences from the document, we need to classify the sentences of the document. Relatively
speaking, the sentences of the document are short text. The transformer encoder is good at
processing the long text with the attention mechanism while the LSTM encoder is good at
processing the short text. That makes our model get equal performance when we choose
the transformer and the LSTM as the encoder. The model based on the reinforcement
learning depends on the rouge score when they label the dataset and train their model
while we label our dataset using the semantic matching method which makes our method
comparable with other methods. Our method makes full use of the reference summaries
when training our model by using the dynamic memory network. The dynamic memory
network mechanism can help our model find the most important sentence in the document.
Our method is slightly weaker than the methods based on the reinforcement learning.

In the encoder phase, we employ the GRU, LSTM, and transformer as our encoder.
The difference between our model and someone else’s model is that the sentences labeled
for the classification model are identified by pre-training model Bert. While other models
only use the sentences’ information, we incorporate the sentence position information into
the encoder model. Our model makes full use of the referenced summarizations. First,
we use the referenced summarizations and the Bert model to spot the salient sentences in
the document. Second, we use the dynamic memory network to compute the similarity
representations of the document sentences and the reference summarizations for the
classification model. The similarity feature is computed dynamically, which is good for the
classification model. The characteristics of our model described above make our model
comparable with other extractive models.

Figure 4. Positions of the salient sentences in the document of the cnndm dataset.

190



Symmetry 2021, 13, 600

Figure 5. Positions of the salient sentences in the document of the wikihow dataset.

Figure 6. Positions of the salient sentences in the document of the xsum dataset.

Table 5. The sentences in the xsum document.

Doc Title|First, Sentence|Labeled Sentence

doc1 Spend £3.3 m fund on Wales-based stars, says Gareth Davies
doc2 Alliance Party east Belfast alert was a hoax, PSNI say
doc3 UK energy policy ‘deters investors’

doc1 New Welsh Rugby Union chairman Gareth Davies believes a joint £3.3 m WRU-regions fund should be used to retain home-based talent
such as Liam Williams, not . . .

doc2 A suspicious package left outside an Alliance Party office in east Belfast has been declared a hoax
doc3 The UK’s international reputation for a strong and well-balanced energy policy has taken another knock

doc1 3 m should be spent on ensuring current Wales-based stars remain there

doc2 Condemning the latest hoax, Alliance MLA Chris Lyttle said: “It is a serious incident for the local area, it causes serious disruption,
it puts people’s lives at risk, . . . ”

doc3 A spokesman for her department, commenting on the WEC report, said: “We’ve made record investments in renewables and are
committed to lower-carbon . . . ”

6. Related Work

Recently, with the springing up of the deep learning method, all kinds of neural
network methods are applied in extractive summarization [5,9,11,15,28].
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Cheng [15] sees the task of sentence extractive summarization and word extractive
summarization as a binary classifier task. In the sentence encoder, they employ a hierarchi-
cal encoder which uses a single-layer CNN for obtaining the sentence-level representations
and use a recurrent neural network for obtaining document representations. The sentence
extractor in [15] is an MLP(Multi-layer Perceptron) with an attention mechanism. When
building the training dataset, Cheng uses the rule-based method including taking into
account the position of the sentence in the document. Cao [5] presents a query-focused
extractive summarization system which is used in information retrieval. This extractive
summarization system consists of the CNN Layer, Pooling Layer, and Ranking Layer.
The sentence ranking process only compares the semantic similarity between the sen-
tence embedding and the document embedding. Nallapati [8] presents an RNN based
sequence model for extractive summarization of documents. In their work, they also
treat extractive summarization as a sequence classification problem. They use a two-layer
bi-GRU for obtaining the word-level representation and the sentence-level representation.
The sentence extractor uses a logistic layer. They build the labeled training dataset by
maximizing the rouge score with respect to gold summaries. Zhou [9] obtains the sentence
representations by using a hierarchical encoder which consists of BiGRU. They couple
the sentence scoring step and sentence selection step. The sentence extractor consists of
a BiGRU and a MLP(Multi-Layer Perceptron). Narayan [11] conceptualizes extractive
summarization as a sentence ranking task and proposes a novel training algorithm with
a reinforcement learning objective [31] which optimizes the rouge metric. They use a
convolutional sentence encoder and a LSTM document encoder. The sentence extractor
consists of LSTM cells and a softmax layer. When they rank the sentences, they train their
model in a reinforcement learning framework. This reinforcement learning avoids labeling
the training set and makes the model better at discriminating among sentences. Dong [28]
treats the extractive summarization as a contextual bandit problem. They also use a policy
gradient reinforcement learning algorithm to select sentences and maximize rouge score.
The difference between [11] and [28] is the action space. In [11], they approximate the
action space while Ref. [28] uses the true action space.

There are some extractive summarization methods that used the pretrained
model [32–35].

7. Conclusions

In this work, we put forward an extractive summarization model that is based on Bert
and dynamic memory network. In our model, we use a simple semantic matching method
to label the training set and train our model using the pre-trained Bert model. A strong
ability to extract the text features makes the model effective. Experimental results show
that the model based on Bert and dynamic memory network achieves the comparable
result against other extractive systems on the datasets. The dynamic memory network
with the bi-LSTM encoder we use for the extractive summarization problem achieves good
results. In the future, we will incorporate this extractive summarization method to the
abstractive method.
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Abstract: Fuzzy-rough cognitive networks (FRCNs) are interpretable recurrent neural networks,
primarily designed for solving classification problems. Their structure is simple and transparent,
while the performance is comparable to the well-known black-box classifiers. Although there are
many applications on fuzzy cognitive maps and recently for FRCNS, only a very limited number
of studies discuss the theoretical issues of these models. In this paper, we examine the behaviour
of FRCNs viewing them as discrete dynamical systems. It will be shown that their mathematical
properties highly depend on the size of the network, i.e., there are structural differences between
the long-term behaviour of FRCN models of different size, which may influence the performance of
these modelling tools.

Keywords: fuzzy-rough cognitive network; fuzzy cognitive map; granular computing; fuzzy-rough
sets; stability; convergence

1. Introduction

Artificial Intelligence (AI) models and methods are parts of our lives. However, most
of the AI techniques are blackboxes in the sense, that they do not explain how and why they
arrived at a specific conclusion. Explainable AI try to overcome this situation, developing
models with interpretable semantics and transparency [1,2]. Fuzzy Cognitive Maps (FCMs)
are one of the earliest EAI models, introduced by B. Kosko [3]. FCMs are recurrent neural
networks employing weighted causal relation between the model’s concepts. Due to their
modelling ability and interpretability, these models have a wide range of application [4,5].

Although FCMs have an enormous number of applications, only a few studies are
devoted to the analytical and not empirical discussion of their behaviour. Boutalis et al. [6]
examined the existence and uniqueness of fixed points of FCMs. Lee and Kwon studied
the stability of FCMs using Lyapunov method [7]. Knight et al. [8] analyzed FCMs with
linear and sigmoid transfer functions. In [9], the authors generalized the findings of [6]
to FCMs with arbitrary sigmoid function. All of these studies arrived to the conclusion
(although in a different form) that when the parameter of the sigmoid threshold function
is small enough, then the FCM converges to a unique fixed point, regardless of the initial
activation values.

The hybridisation of rough set theory and fuzzy set theory [10,11] provide a not
only promising, but fruitful combination of different methods of handling and modelling
uncertainty [12,13].

The application areas encompass a wide variety of sciences, so only a few of them are
mentioned here, without the need for completeness. Fuzzy rough sets and fuzzy rough
neural networks have been applied in feature selection problems [14], evolutionary fuzzy
rough neural networks have been developed for stock prediction [15]. Fuzzy rough set
models are used in multi-criteria decision-making in [16]. Classification tasks have been
solved by fuzzy rough granular neural networks in [17]. The combination of unsupervised
convolutional neural networks and fuzzy-rough C-mean was used effectively for clustering
of large-scale image dataset in [18]. The environmental impact of a renewable energy
system was estimated using fuzzy rough sets in [19]. The interval-valued fuzzy-rough
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based Delphi method was applied for evaluating the siting criteria of offshore wind farms
in [20]. Another current direction is the fusion of neutrosophic theory and rough set
theory [21]. An example of its application is the emission-based prioritization of bridge
maintenance projects [22]. Nevertheless, in the aspect of this paper, fuzzy rough granular
networks [23] are the most exciting applications of the synergy of fuzzy and rough theories.

Granular Computing [24] uses information granules, such as classes, clusters, subsets
etc., just like humans do. Granular Neural Networks (GNNs) [25] make a synergy between
the celebrated neural networks and granular computing [26]. Rough Cognitive Networks
(RCN) are GNNs, introduced by Nápoles et al. [27], combining the abstract semantic of the
three-way decision model with the neural reasoning mechanism of Fuzzy Cognitive Maps
for addressing numerical decision-making problems. The information space is discretized
(granulated) by using Rough Set Theory [28,29], which has many other interesting applica-
tions [30–33]. According to simulation results, RNN was capable to outperform standard
classifiers. On the other hand, learning the similarity threshold parameter had significant
computational cost.

Rough Cognitive Ensembles (RCEs) was proposed to overcome this computational
burden [34]. It employs a collection of Rough Cognitive Networks as base classifiers,
each operating at a different granularity level. This allows suppressing the requirement
of learning a similarity threshold. Nevertheless, this model is still very sensitive to the
similarity threshold upon which the rough information granules are built.

Fuzzy-Rough Cognitive Maps (FRCNs) has been introduced by Nápoles et al. [35].
The main feature of FRCNs is that the crisp information granules are replaced with fuzzy-
rough granules. Based on simulation results, FRCNs show performance comparable to the
best blackbox classifiers.

Vanloffelt et al. [36] studied the contributions of building blocks to the FRCNs’
performance via empirical simulations with several different network topologies. They
concluded that the connections between positive neurons might not necessary to maintain
the performance of FRCNs. The theoretical study by Concepción et al. [37] discussed the
contribution of negative and boundary neurons. Moreover, they arrived at the conclusion
that negative neurons have no impact on the decision, and the ranking between positive
neuron remains invariant during the whole reasoning process.

Besides the results presented in [37], this paper was motivated by the fact that only a
few studies are discussing the behaviour of cognitive networks from the strict mathematical
point of view. Nevertheless, such studies may provide us with information about what
we can or cannot achieve with these models. Analyzing the behaviour and contribution of
the building blocks unveils the exact role of components of the complex structure: which
part is crucial and which one is unnecessary etc. In this paper, we do not develop, neither
implement another new fuzzy-rough model. Instead, we analyze the behaviour of FRCNs,
which are comparable in performance to the best black-box classifiers. Because of their
proven competitiveness [35], there is no need for further model verification and validation.

In the current paper, the dynamical behaviour of fuzzy-rough cognitive networks is
examined. The main contributions are the following: first, we show that stable positive
neurons have at most two different activation values for any initial activation vectors. Then
we show that a certain point with equal coordinates (called trivial fixed point) is always a
fixed point, nevertheless, not always a fixed point attractor. Furthermore, a condition for
the existence of a unique, globally attractive fixed point is also stated. Complete analysis of
the dynamics of positive neurons for two and three decision classes is provided. Finally,
we show that for a higher number of classes, the occurrence of limit cycles is a necessity
and the vast majority of initial activation values lead to oscillation. The rest of the paper
is organized as follows. In Section 2, we recall the construction of fuzzy-rough cognitive
maps and overview the existing results about their behaviour. In Section 3, a summary
of the mathematical background necessary for further investigation of the dynamics of
FRCNs is provided, including contraction mapping and elements of bifurcation theory.
Section 4 presents general result about the dynamics of positive neurons, condition for
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unique fixed point attractor and refinement of some findings of [37]. Section 5 introduces
size-specific results for FRCNs, providing a complete description for the case of two and
three decision classes and pointing out that over a specific size, oscillation behaviour will
be naturally present. Section 6 discusses the relation of the behaviour of positive neurons
to the final decision class of FRCNs. The paper ends with a short conclusion in Section 7.

2. Fuzzy-Rough Cognitive Networks

In this section, we shortly summarize the basic notions of fuzzy-rough cognitive
networks and the findings about their dynamical properties reported in the literature. It is
based on the works [35–37].

2.1. Construction of FRCNs

Building up FRCNs includes the following three steps: information space granulation,
network construction and finally, network exploitation.

Information space granulation means dividing available information into granules.
Let U denote the universe of discourse and X = {X1, . . . , XN}, X ⊂ U . Then Xc ⊂ U is
the subset containing all objects assigned (labelled) to decision class Dc. The membership
degree of x ∈ U to Xc is computed in a binary way:

μXc(x) =
{

1 , x ∈ Xc
0 , x /∈ Xc

. (1)

Membership function μP(y, x) is the next component, using similiraty degree between
two instances x and y:

μP(y, x) = μXc(x)ϕ(x, y) = μXc(x)(1 − δ(x, y)), (2)

where μP : U × U → [0, 1] is the membership degree of y to Xc, given that x belongs to Xc
(in this sense, it is a conditional membership degree). It is composed by the previously
defined binary membership function μXc(x) and the similarity degree ϕ(x, y). The later is
based on a normalized distance measure δ(x, y). Membership functions for the lower and
upper approximation for any fuzzy set Xc, respectively:

μP∗(Xc)(x) = min
{

μXc(x), inf
y∈U

I(μP(y, x), μXc(x))
}

, (3)

μP∗(Xc)(x) = max

{
μXc(x), sup

y∈U
T (μP(y, x), μXc(x))

}
. (4)

Here I denotes an implication function and T denotes a conjunction function. As a
next step, we calculate the membership functions associated to the positive, negative and
boundary regions:

μPOS(Xc)(x) = μP∗(Xc)(x), (5)

μNEG(Xc)(x) = 1 − μP∗(Xc)(x), (6)

μBND(Xc)(x) = μP∗(Xc)(x)− μP∗(Xc)(x). (7)

After determining the membership functions of the decision classes, we construct a
network using four type of neurons:

• D = {D1, . . . , DN} is the set of decision neurons,
• P = {P1, . . . , PN} is the set of positive neurons,
• N = {N1, . . . , NN} is the set of negative neurons,
• B = {B1, . . . , BN} is the set of boundary neurons.

The recurrent neural network have N output neurons (decision neurons). The number
of input neuron is between 2N and 3N, depending on the number of non-empty boundary
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regions. The ‘wiring’ between the neurons is based on the following steps (see Algorithm 1).
Positive, negative and boundary neurons influence themselves with intensity 1. Each
positive neuron influence the decision neuron related to it with intensity 1, moreover these
neurons act on the other positive and decision neurons with intensity −1. Finally, if two
decision classes share non-empty boundary regions, then each boundary neuron influences
both decision neurons with intensity 0.5. As it is clear from this setting, the weights of a
FRCN are not determined by learning methods, they are based on the semantic relations
between the information granules.

Algorithm 1: The construction procedure of the fuzzy-rough cognitive network.

for each subset Xc do
Add a neuron Pc as the c-th positive region
Add a neuron Nc as the c-th negative region
Add a neuron Bc as the c-th boundary region
Add a neuron Dc as the c-th decision class

end
for each neuron Ci do

if Ci �= Di then
wii = 1.0

end
for each neuron Cj do

if Ci = Pc then
if Cj = Dc then

wij = 1.0
end
else if Cj = Dv �=c then

wij = −1.0
end
else if Cj = Pv �=c then

wij = −1.0
end

end
if Ci = Nc and Cj = Dc then

wij = −1.0
end

if Ci = Bc and Cj = Dv and min
x∈U

{
μBND(Xc)(x), μBND(Xv)(x)

}
> 0 then

wij = 0.5
end

end

end

The computation of initial activation values (A(0)
i s) of the neurons is based in the

similiraty degree between the new object y and all x ∈ U , and the membership degree of
every x to positive, negative and boundary regions. The initial activation value of decision
neurons is zero.

Positive neurons (Pi): A(0)
i =

∑x∈U T (ϕ(x, y), μPOS(Xc)(x))

∑x∈U μPOS(Xc)(x)
(8)

Negative neurons (Ni): A(0)
i =

∑x∈U T (ϕ(x, y), μNEG(Xc)(x))

∑x∈U μNEG(Xc)(x)
(9)

Boundary neurons (Bi): A(0)
i =

∑x∈U T (ϕ(x, y), μBND(Xc)(x))

∑x∈U μBND(Xc)(x)
(10)
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After determining the initial values, the next step is network exploitation, by the
iteration rule

A(t+1)
i = f

(
N

∑
j=1

wij A
(t)
j

)
. (11)

or in matrix vector form A(t+1) = f (WA(t)), where f is understood coordinate-wise. Here
wij is the weight of the connection from neuron Cj to neuron Ci. Function f (x) = 1

1+e−λx

keeps the values in the (0, 1) range. For high λ values, f (x) tends to behave like the step
function, while for very small λ values, the activation values converge to a unique fixed
point attractor, regardless of the initial activation values, producing the same output for
every input values. The λ = 5 choice is widely used in FCM applications, FRCNs employ
this parameter value, too. The iteration stops when

• activation values converge to a fixed point attractor (practically it means that the
consecutive values do not show reasonable change ), or

• a predefined maximal number of iteration is reached.

Finally, the label of the decision neuron with highest activation value is assigned the
classified object. Figure 1 shows the FRCN’s structure for a binary classification problem.

B1 D1 D2 B2

N1 N2

P1 P2

1

0.5

0.5 0.5

0.5

1

1 1

−1 −1

1

−1

−1

1

1−1

−1

1

Figure 1. The structure of a fuzzy-rough cognitive network for binary classification.

2.2. Preliminary Results on the Dynamics of FRCNs

In this subsection, we shortly summarize the main contributions of [37] regarding
the dynamics of fuzzy-rough cognitive networks. For detailed explanations and proofs,
see [37].

• Negative and boundary neurons always converge to a unique fixed value. This value
depends on parameter λ, but the convergence and uniqueness are independent of λ.

• The ranking between positive neurons remains invariant during the recurrent rea-
soning. As we will see in Section 5, although this statement is absolutely true in the
strict mathematical sense, from the practical point if view, in some cases it has very
limited applicability.

• In an FRCN with N decision classes, there will always be N − 1 positive neurons with
activation values less than or equal to 1/2 (after at least one iteration step).

• In an FRCN there will be at most one neuron with activation value higher or equal to
1/2 (after at least one iteration step).

Consider the updating rule A(t+1)
i = f

(
∑N

j=1 wij A
(t)
j

)
(see Equation (11)), where f is

the sigmoid function with parameter λ. Assuming that positive neurons reach stable states,
for every i it holds, that P(t+1)

i = P(t)
i = f

(
∑N

j=1 wijP
(t)
j

)
. Recall that each positive neuron

199



Symmetry 2021, 13, 881

is influenced by the other positive neurons with weight −1, while influences itself with
weight 1 (i.e., if i = j, then wij = 1, otherwise wij = −1). Consequently, we have

P(t)
i = P(t+1)

i =
1

1 + e
−λ

(
P(t)

i −
N
∑

j=1,j �=i
P(t)

j

) =
1

1 + e
−λ

(
2P(t)

i −
N
∑

j=1
P(t)

j

) . (12)

Now let us further investigate the equation P(t)
i =

1

1 + e
−λ

(
2P(t)

i −
N
∑

j=1
P(t)

j

) . Expressing

N
∑

j=1
P(t)

j we get the following equation:

N

∑
j=1

P(t)
j =

1
λ

ln
1 − P(t)

i

P(t)
i

+ 2P(t)
i , (13)

on the left hand side we find the sum of all activation values, which depends on the value
of P(t)

i (recall that P(t)
i is the stabilized activation value of any positive neuron). The sum of

the activation values is a function of P(t)
i , of course. Define the following real function:

s(x) =
1
λ

ln
1 − x

x
+ 2x. (14)

From the behaviour of s(x), the authors derived some properties of the positive neurons:

• If λ ≤ 2, then s(x) is monotone decreasing, thus a specific value can be produced
by a single input value x. It means that if λ ≤ 2 and the positive neurons are stable
(converge to a fixed point), then they have the same activation value.

• If λ > 2, then s(x) produces the same value for at most three different input values in
(0, 1). It means that if the vector of positive neurons converges to a fixed point, then
this vector has at most three different coordinate values.

In Sections 4 and 5, we refine these statements and introduce some additional results
regarding the dynamics of FRCNs.

3. Mathematical Background

The updating rule of FRCNs suggest to handle them as discrete dynamical systems.
In this section, we briefly summarize the most important notions and methods used in the
forthcoming sections.

3.1. Contraction Mapping

In the network exploitation phase, we apply the iteration rule Equation (11) again
and again until the activation values stabilize (or the number of iterations reaches the
predefined maximum). If the activation values stabilize (i.e., arrive an equilibrium state),
then the difference between the outputs of two consecutive iteration steps will be smaller
and smaller. In other words, the iteration contracts a subset of the state space (or the whole
state space) into a single point. The following definition provides a strict mathematical
description of this property.

Definition 1 (see [38], p. 220). Let (X, d) be a metric space, with metric d. If ϕ maps X into X
and if there is a number c < 1 such that

d(ϕ(x), ϕ(y)) ≤ cd(x, y) (15)

for all x, y ∈ X, then ϕ is said to be a contraction of X into X.
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If the iteration reaches an equilibrium state, then this state will not change by applying
the updating rule. Mathematically speaking, it is a fixed point of the mapping generating
the iteration. The following famous theorem establishes connection between the contraction
mapping and a unique fixed point.

Theorem 1 (Contraction mapping theorem or Banach’s fixed point theorem, see [38], pp.
220–221). If X is a complete metric space, and if ϕ is a contraction of X into X, then there exists
one and only one x ∈ X such that ϕ(x) = x.

The proof to this theorem is constructive (see [38], p. 221) and offers a straightforward
way to find this unique fixed point. We only have to pick an arbitrary element of X
and apply mapping ϕ again and again. The limit will be the unique fixed point of ϕ:
xn = ϕ(xn−1), then limn→∞ xn = x∗ and ϕ(x∗) = x∗.

An arbitrary fixed point x∗ is said to be asymptotically stable if starting the iteration
close enough to x∗, the limit will be x∗. Moreover, the fixed point x∗ is said to be globally
asymptotically stable if starting the iteration from any element of the state space, the limit
will be x∗. Based on Theorem 1 and its constructive proof, it is clear that the unique fixed
point of a contraction is globally asymptotically stable.

3.2. Elements of Bifurcation Theory

The dynamics of a discrete dynamical system may change, if its parameters are varied.
A qualitative change of the dynamical behaviour, e.g., a transition from a unique stable fixed
point to multiple fixed points or oscillation, is called bifurcation and the corresponding
critical parameter is called bifurcation point.

The detailed description of the dynamics of FRCNs requires the application of the
elements of bifurctaion theory. Here only the most important notions are listed. For more
details, see [39,40].

Consider a discrete-time dynamical system depending on only one parameter λ
(G : Rn → Rn):

xk+1 = G(xk, λ), xk ∈ Rn, λ ∈ R, (16)

where function G is smooth with respect to x and λ. Let’s assume that x0 is a fixed point of
the mapping with parameter λ0. The local stability (resistance agianst small perturbations)
of the fixed point depends on the eigenvalues of the Jacobian evaluated at x0 (JG(x0)). If
the Jacobian has no eigenvalues on the unit circle, x0 is said to be hyperbolic. Hyperbolic
fixed points can be categorized according to the eigenvalues of JG(x0):

• If all of the eigenvalues lie inside the unit circle (i.e., the absolute value of the eigen-
values is less than one), then it is an asymptotically stable fixed point. In other words,
this fixed point attracts the space in every direction in its (sometimes very small)
neighborhood. Consequently, its basin of attraction is an n dimensional subset of then
n dimensional space.

• If there are some eigenvalues (at least one) with absolute value greater than one, and
there are some (at least one) eigenvalues with absolute value less than one, then it is a
saddle point. It means that this fixed point may attract points of the space in some,
but not every direction in its neighborhood. Consequently, the dimension of its basin
of attraction is less than n.

• If all of the eigenvalues has absolute value greater than one, then it is an unstable
fixed point (repeller fixed point).

In the FCM theory and similary in FRCN terminology, stable fixed point is a fixed
point, that can be a limit of the iteration. In this sense, stable and saddle fixed points are
considered as stable in the FCM (FRCN) sense. Nevertheless, their dynamical behavior
could be very different. We will see in Section 5 that different type of fixed points have
significantly different size of basin of attractions. In other words, some fixed points are less
important than others.

The simplest ways the hyperbolicity can be violeted are the following:
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• A simple positive eigenvalue crosses the unit circle at α = 1. The bifurcation associated
to this scenario is called saddle-node bifurcation. It is a birth of new fixed points.

• A simple negative eigenvalue crosses the unit circle at α = −1. This causes period-
doubling bifurcation, the birth of limit cycles.

• A pair of complex conjugate eigenvalues approaches the unit circle at α1,2 = eiφ,
φ ∈ (0, π). This is the so-called Neimark-Sacker bifurcation, causes the occurence of a
closed invariant curve.

It will be shown in Section 5, that depending on the size of the FRCN, different types
of bifurcations determine the main dynamics of the system.

4. General Results on the Dynamics of Positive Neurons

In this section, we introduce some general results about the dynamics of positive
neurons. Size specific results are presented in Section 5.

With start with the refinement of a result from [37]. Further investigation of the
function s(x) (see Equation (14)) provides more information about the possible fixed points
of positive neurons (see Figure 2). It has been shown that there are at most one positive
neuron with activation value higher than 1/2. If s(x) > 1, then a specific value may be
produced by at most three different values of x. But two of these values are higher than
1/2, thus only one of them get a role in the activation vector. It means that one coordinate
of the activation vector is greater than 1/2 and the remaining ones are less than 1/2 and
they have equal values.

Consider now the case, when s(x) < 1. Observe that the graph of s(x) is symmetrical
about the point (1/2, 1) (it can be easily verified analytically). Let us choose a specific
value γ = s(x), such that the horizontal line y = γ has three intersection points with the
graph. Denote the first coordinates of theses point by x1, x2, x3 (x1 < x2 < x3). Using the
symmetry of the function, we can conclude that x1 > 1 − x3. Consequently, x1 + x3 > 1.
Since the sum of the activation values is less than 1 (s(x) < 1), it follows that there can be
at most two different values (x1 and x2) in the activation vector for any given s(x).

Summarizing this short argument, if the activation vector of positive neurons con-
verges to a fixed point, then it may have at most two different coordinate values.

Figure 2. The graph of s(x) = 1
λ ln 1−x

x + 2x, with λ = 5. Observe that the curve is symmetrical
about the point (1/2, 1).

The iteration rule for the updating of the neurons’ activation values has the form
A(t+1) = f

(
WA(t)

)
, where the sigmoid is applied coordinate-wise and W is the connection

matrix of the network. Based on the construction of the network (see Algorithm 1), it has
the following block form:
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W =

neuron sets
D
B
N
P

D B N P⎡⎢⎢⎣
O WB −I WD
O I O O
O O I O
O O O WP

⎤⎥⎥⎦, (17)

where O, I denote zero matrix and identity matrix, respectively. WB describes the connec-
tions from boundary to decision neurons (it contains 0 s and 0.5 s, their positions depend
on non-empty boundary regions), WP describes the connections between positive neurons
(if i = j, then wij = 1, else wij = −1), WD = WP contains the connections from positive
neurons to decision neurons.

Because of the upper-diagonal block structure, instead of dealing with the whole
matrix, we can use the blocks. It has been proved in [37] that activation values of the
negative and boundary neurons converge to the same unique value, which depends on
λ, but independent of the initial activation values. Positive neurons influence themselves,
each other and decision neurons, but do not receive input from other set of neurons. Their
activation values are propagated to the decision neurons. In a long run, when neurons reach
a stable state (or the iteration is stopped by achieving the maximal number of iterations),
the propagated value is their stable (or final) state. In the following, we examine the
long-term behaviour of positive neurons.

Lemma 1. For every λ > 0 and every number of decision classes N, there always exists a fixed
point of the positive neurons, whose coordinates are the same. Nevertheless, this fixed point is not
always a fixed point attractor.

Proof. Consider the fixed point equation for every 1 ≤ j ≤ N:

P = f (WPP) (18)⎡⎢⎣ P1
...

PN

⎤⎥⎦ = f

⎛⎜⎝WP

⎡⎢⎣ P1
...

PN

⎤⎥⎦
⎞⎟⎠ (19)

In coordinate-wise form:

Pj =
1

1 + e
−λ

(
Pj− ∑

i=1,j �=j
Pi

) =
1

1 + e
−λ

(
2Pj− ∑

i=1
Pi

) (20)

If Pj = x for every 1 ≤ j ≤ N, then it simplifies to the following equation:

x =
1

1 + e−λ(2−N)x
=

1
1 + eλ(N−2)x

(21)

We show that there always exists a unique solution to this equation. Let us introduce
the function

g(x) = x − 1
1 + eλ(N−2)x

. (22)

Function g(x) is continuous and differentiable, moreover g(0) = −0.5 < 0 and
g(1) = 1 − 1

1+eλ(N−2) > 0, thus it has at least one zero in (0, 1). According to Rolle’s
theorem, between two zeros of a differentiable function its derivative has a zero. The
derivative is

g′(x) = 1 +
λ(N − 2)eλ(N−2)x

(1 + eλ(N−2)x)2
, (23)
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which is always positive. It means that there is exactly one zero of g(x) in (0, 1). Conse-
quently, we have shown that for any given λ > 0 and N, there is exactly one fixed point
of the positive neurons with equal coordinates. There may be other fixed points, but their
coordinates are not all the same.

The following lemma plays a crucial role in the proof of Theorem 2 and in the exami-
nation of the Jacobian of the iteration mapping.

Lemma 2. Let WP be an N × N matrix with the following entries:

wij =

{
1 if i = j
−1 if i �= j

(24)

Then the eigenvalues of WP are 2− N (with multiplicity one) and 2 (with multiplicity N − 1).

Proof. Basic linear algebra.

Theorem 2. Consider a fuzzy cognitive map (recurrent neural network) with sigmoid transfer
function ( f (x) = 1/(1 + e−λx)) and with weight matrix Wp whose entries are

wij =

{
1 if i = j
−1 if i �= j

(25)

If

λ <
4

max{2, |2 − N|} ,

then it has exactly one fixed point. Moreover, this fixed point is a global attractor, i.e., the iteration
starting from any initial activation vector ends at this point.

Proof. We are going to show that if the condition in theorem is fulfilled, then the mapping
P → f (WPP) is contraction, thus according to Banach’s theorem, it has exactly one fixed
point and this fixed point is globally asymptotically stable, i.e., iterations starting from
any initial vectors arrive to this fixed point. Let us choose two different initial vectors,
P and P′. Then

‖ f (WPP)− f (WPP′)‖2 =

⎛⎝ N

∑
i=1

[
f

(
N

∑
j=1

wij pj

)
− f

(
N

∑
j=1

wij p′j

)]2
⎞⎠1/2

(26)

≤

⎛⎝ N

∑
i=1

[
λ

4

(
N

∑
j=1

wij pj −
N

∑
j=1

wij p′j

)]2
⎞⎠1/2

=
λ

4

⎛⎝ N

∑
i=1

[
N

∑
j=1

wij(pj − p′j)

]2
⎞⎠1/2

(27)

=
λ

4
‖Wp(P − P′)‖2 =

λ

4
‖Wp(P − P′)‖2

‖P − P′‖2
‖P − P′‖2 (28)

≤ λ

4
‖Wp‖2‖P − P′‖2 (29)

Here the first inequality comes from the fact that the derivative of the sigmoid function
f (x) is less than or equals λ/4 and f (x) is Lipschitzian, while the second inequality comes
from the definition of the induced matrix norm. Since Wp is a real, symmetric matrix its
spectral norm (‖ ∗ ‖2) equals the maximal absolute values of its eigenvalues. By Lemma 2,
‖Wp‖2 = max{2, |2 − N|}. According to the definition of contraction (Equation (15)), if
the coefficient of ‖P − P′‖2 is less than one, then the mapping is a contraction and by
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Theorem 1 it has exactly one fixed point and this fixed point is globally asymptotically
stable. The inequality in the Theorem comes by a simple rearranging:

λ

4
‖Wp‖2 =

λ

4
max{2, |2 − N|} < 1 ⇐⇒ λ <

4
max{2, |2 − N|} . (30)

The immediate corollary of Theorem 2 and Lemma 1 is if there is a unique globally
attracting fixed point, then its coordinates are equal. We will refer to fixed point with equal
coordinates as trivial fixed point. The whole complex behaviour of positive neurons (and
in such a way, fuzzy-rough cognitive networks) evolves from this trivial fixed point via
bifurcations (see the flowchart Figure 3 for the way to the first bifurcation). In Section 5,
we show that different size of FRCNs (different number of decision classes N) may show
significantly different qualitative behaviour.

trivial FP
max{|eig|} < 1

max{|eig|} = 1

limit cyclenew FPs

λ increases

eig = −1eig = 1

Figure 3. Flowchart of the way to first bifurcation. The trivial fixed point loses its global stability
when the eigenvalues of the Jacobian (evaluated at the trivial fixed point) reach ±1 and the first
bifurcation occurs. As parameter λ increases, the absolute values of the eigenvalues increase. Due to
the symmetry of the weight matrix, we do not have to count with complex eigenvalues.

5. Dynamics of Positive Neurons

First we provide the Jacobian at the trivial fixed point. In general (except the case
N = 2), this fixed point is a function of λ and N. Let us denote the coordinates of the trivial
fixed point by p∗. Then the (i, j) entry of the Jacobian of the mapping f (WpP) at this point,
using the fact that f (WpP∗) = p∗ and for the sigmoid function f ′ = λ f (1 − f ):

∂ f
∂pi

∣∣∣
P=P∗

= λ f (WpP∗)(1 − f (WpP∗))wij = λp∗(1 − p∗)wij (31)

The whoole Jacobian matrix evaluated at the trivial fixed point is the following:

Jp∗ = λp∗(1 − p∗)Wp. (32)

Its eigenvalues are λp∗(1 − p∗) times the eigenvalues of Wp: (2 − N)λp∗(1 − p∗) and
2λp∗(1 − p∗). As the value of λ increases, at a certain point the absolute value of the
eigenvalue with the highest modulus reaches one, the trivial fixed point loses its global
stability and a bifurcation occurs. The type of this bifurcation has great effect on the
further evolution and dynamics of the system. Based on the eigenvalues of WP, we see that
Neimark-Sacker bifurcation does not occur here, but saddle-node and perido-doubling
bifurcations do play an important role.
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5.1. N = 2

Consider first the case when we have only two decision classes. The relations between
the positive neurons can be seen in Figure 1. The weight matrix describing the connections
is the following (subscript P refers to positive):

WP =

[
1 −1

−1 1

]
(33)

Easy to check the the point [0.5, 0.5]T is always a fixed point of the mapping f (WpP) = P, since[
1 −1

−1 1

][
0.5
0.5

]
=

[
0
0

]
(34)

and f (0) = 0.5. According to Theorem 2, if λ < 2, then it is the only fixed point, moreover it
is globally asymptotically stable, i.e., strating from any initial activation vector, the iteration
will converge to this fixed point. The Jacobian of the mapping at this fixed point is

λ · 0.5(1 − 0.5)]
[

1 −1
−1 1

]
=

λ

4

[
1 −1

−1 1

]
(35)

and its eigenvalues are 0 and λ/2. When the eigenvalue λ/2 = 1 (λ = 2), a bifurcation
occurs, giving birth to two new fixed points. In the following, we are going to show that
for every λ > 2, there are exactly three fixed points, moreover these fixed points have the
following coordinates: [0.5, 0.5]T , [x∗, 1 − x∗] and [1 − x∗, x∗], where x∗ is a fixed point of a
one dimensional mapping described below.

Let us assume that (x1, x2)
T is a fixed point of the mapping, then[

x1
x2

]
= f

([
1 −1

−1 1

][
x1
x2

])
=

(
f (x1 − x2)
f (x2 − x1)

)
(36)

Since f is the sigmoid function, we have that f (−x) = 1 − f (x), consequently

x1 = f (x1 − x2), (37)

x2 = f (x2 − x1) = f (−(x1 − x2)) = 1 − f (x1 − x2) = 1 − x1. (38)

So for a fixed point the coordinates are (x1, 1 − x1). The first equation leads to the
following fixed point equation:

x1 = f (2x1 − 1). (39)

It means that the FPs of the positive neurons can be determined by solving Equation (39).
From the graphical point of view, easy to see that if λ ≤ 2, then it has exactly one solution
(x1 = 0.5), but if λ > 2, then there are three different solutions: 0.5, x∗ and 1 − x∗ (see
Figure 4).

From the analytical viewpoint, we have to solve the equation

x =
1

1 + e−λ(2x−1)
. (40)

Applying the inverse of f (x) and rearranginig the terms:

1
λ

ln
1 − x

x
+ 2x = 1 (41)

As it was pointed out in [37], if λ > 2, then the left hand side has local minimum at
1
2 −

√
λ−2
4λ less than one, and local maximum at 1

2 +
√

λ−2
4λ greater than one. If λ ≤ 2, then

the function is strictly monotone decreasing. Using continuity of the function, we conclude
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that there are exactly three solutions for every λ > 2 and there is a unique solution if λ ≤ 2
(see Figure 5).

=

=

=

Figure 4. The graph of the function f (2x − 1). It has exactly one fixed point if λ ≤ 2 and three fixed
points for λ > 2. One of them is unstable, referring to the trivial fixed point of positive neurons, the
other two fixed points are stable.

For λ = 5, the fixed points are (0.5, 0.5), (0.0072, 0.9928) and (0.9928, 0.0072).

1

Figure 5. Possible values of the positive neurons in function of parameter λ, for N = 2 decision
classes. Green line denotes the value of the trivial fixed point, while orange and blue denote the high
and low value of the other two fixed points. Observe the pitchfork bifurcation at λ = 2.

Let us examine the basins of attraction for the three different fixed points, i.e., λ > 2
and the fixed points are [0.5, 0.5]T , [x∗, 1 − x∗] and [1 − x∗, x∗], with x∗ > 1/2. Consider a
point (x1, x2)

T as initial activation vector (see Figure 6).

• If x1 = x2, then the iteration leads to the fixed point (0.5, 0.5), since

f
([

1 −1
−1 1

][
x1
x2

])
=

[
f (x1 − x2)
f (x2 − x1)

]
=

[
f (0)
f (0)

]
=

[
0.5
0.5

]
. (42)

• If x1 > x2, then f (x1 − x2) > f (0) > f (x2 − x1), so this ordering remains invariant
during the iteration process. Moreover, after the first iteration step it reduces to a one
dimensional iteration with initial value x = f (x1 − x2) > 1/2 and updating equation
x = f (2x − 1). If x > 1/2, then fixed point x∗ attracts this one-dimensional iteration.
Consequently, the original two-dimensional itertaion converges to (x∗, 1 − x∗)T .
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• Similarly, if x1 < x2, then the iteration ends in (1 − x∗, x∗)T .

1

2

Figure 6. Basin of attraction of the fixed points for N = 2 decision classes and λ = 5 in the (P1, P2)

plane. Fixed point attractors are denoted by large black dots.

The size of the basin of attraction can be considered as the number of its points. In the
strict mathematical sense it is infinity, of course. On the other hand, the basin of fixed point
(0.5, 0.5) is a one dimensional object (line segment), while the basins of (x∗, 1 − x∗) and
(1 − x∗, x∗) are two-dimensional sets (triangles), so they are ‘much more bigger’ sets.

In applications, we always work with sometimes large, but finite numbers of points,
based on the required and available precision. Let us define the level of granularity as
the length of subintervals, when we divide the unit interval into n equal parts. Then
the division points are 0, 1/n, 2/n, . . . , 1, so we have n + 1 points. The basin of fixed
point (0.5, 0.5) contains n + 1 points, while the basins of the two other fixed points have
n(n + 1)/2, n(n + 1)/2 points. By increasing the number of division points, the proportion
of the basins tend to zero and 1/2, as it was expected.

lim
n→∞

n + 1
(n + 1)2 = 0 (43)

lim
n→∞

n(n + 1)/2
(n + 1)2 =

1
2

(44)

In a certain sense, it means that fixed points (x∗, 1 − x∗)T and (1 − x∗, x∗)T are more
important than fixed point (0.5, 0.5)T , since much more initial activation values lead to
these points.

5.2. N = 3

The structure of the connections between positive neurons can be seen in Figure 7.
In this case, the eigenvalues of WP are −1 (with multiplicity one) and 2 (with multiplicity
two). The fixed point with equal coordinates loses its global asymptotic stability when
the absolute value of its larger eigenvalue equals one. Since the positive eigenvalue has
the higher absolute value, this bifurcation results in new fixed points. Nevertheless, this
eigenvalue has multiplicity two, so it is not a simple bifurcation, i.e., not only a pair of new
fixed points arise, but a couple of new FPs. The trivial fixed point becomes a saddle point,
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i.e., it attracts points in a certain direction, but repells them in other directions. If we further
increase the value of the parameter λ, then the absolute value of the negative eigenvalue
reaches one and the trivial fixed point suffers a bifurcation again. Since the eigenvalue is
−1, this is a period-doubling bifurcation, giving birth to a two-period limit cycle.

We show that there are three type of fixed points:

• The trivial fixed point with equal coordinates (FP0);
• Fixed points with one high and two low values (FP1);
• Fixed points with one low and two medium coordinates (FP2).

P1

P2 P3

Figure 7. Topology of the connections between the positive neurons in case of N = 3 decision classes.
Self connections have weight 1, other connections have weight −1.

The existence of FP0 is clear, as it was shown by Lemma 1. As it was pointed out in
Section 4, the non-trivial fixed points have two different coordinate values. Let us denote
these values by x, x and y. Then the fixed point equation is⎡⎣ x

x
y

⎤⎦ = f

⎛⎝⎡⎣ 1 −1 −1
−1 1 −1
−1 −1 1

⎤⎦⎡⎣ x
x
y

⎤⎦⎞⎠ =

⎛⎝ f (−y)
f (−y)

f (y − 2x)

⎞⎠, (45)

which simplifies to the following system of equations:

x = f (−y) (46)

y = f (y − 2x) (47)

By substituting x, we have

y = f (y − 2x) = f (y − 2 f (−y)) =
1

1 + e−λ(y−2 f (−y))
=

1

1 + e
−λ

⎛⎝y−2
1

1 + eλy

⎞⎠ (48)

It is again a fixed point equation, whose number of solutions depends on the value of
parameter λ (see Figure 8):

• if λ ≤ 2.2857 (rounded), then there is exactly one solution, it refers to the trivial fixed
point (FP0);

• if λ > 2.2857, then there are three different solutions, one refers to FP0, one to FP1s
and one to FP2.

Using the values of y, we can determine the values of x. Furthermore, if y is high, then
based on the equation x = f (−y) = 1 − f (y), we may conclude that x is low. Similarly, if y
is low, then x is medium. Finally, there are seven fixed points:

• the fixed point with equal coordinates (FP0);
• three fixed points with one high and two low values (FP1);
• three fixed points with one low and two medium values (FP2s).

For λ = 5, these fixed points are (rounded to four decimals)
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• (0.2355, 0.2355, 0.2355) (FP0),
• (0.9926, 0.0069, 0.0069) and its permutations (FP1),
• (0.4904, 0.4904, 0.0076) and its permutations (FP2).

Initial activation values lead to these fixed points according to the following:

• if P0
1 = P(0)

2 = P(0)
3 , then the iteration converges to FP0;

• if P0
1 > P(0)

2 ≥ P(0)
3 , then the iteration converges to FP1;

• if P0
1 = P(0)

2 > P(0)
3 , then the iteration converges to FP2.

1

Figure 8. Possible values of positive neurons in function of parameter λ, for N = 3 decision classes.

Ranking is preserved between positive neurons, in the sense that if P(0)
x ≥ P(0)

y , then
P∗

x ≥ P∗
y . Since the number of possible outcomes is very limited (only three cases without

permutations), it means that some differences in the initial activation values will magnified,
for example if the initial activation vector is (0.3, 0.2, 0.1), then the iteration converges to
(0.9926, 0.0069, 0.0069). On the other hand, some large differences will be hidden: initial
activation vector (1, 0.95, 0) leads again to (0.9926, 0.0069, 0.0069).

Limit cycle occurs, when the negative eigenvalue of the Jacobian computed at the
trivial fixed point reaches −1 (at about λ = 5.8695). Similarly to the trivial fixed point,
the elements of the limity cycle have equal coordinates. Let us denote these points by
(x1, x1, x1) and (x2, x2, x2). The members of a two-period limit cycle are fixed points of the
double iterated function.⎡⎣ x1

x1
x1

⎤⎦ = f

⎛⎝WP

⎡⎣ x2
x2
x2

⎤⎦⎞⎠ and

⎡⎣ x2
x2
x2

⎤⎦ = f

⎛⎝WP

⎡⎣ x1
x1
x1

⎤⎦⎞⎠ (49)

In coordinate-wise form this provides the following system of equations:

x1 = f (−x2) (50)

x2 = f (−x1) (51)

From which we have

x2 = f (−x1) = f (− f (−x2)) =
1

1 + eλ f (−x2)
=

1

1 + e
λ

1
1 + eλx2

(52)
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If λ ≤ 5.8695, then it has a unique solution. It refers to the trivial fixed point, since
this point is a fixed point of the double-iterated function, too. If λ > 5.8695, then there are
two other solutions, low and medium, these are the coordinates of the two-period limit cycle.
For example, for λ = 7, these points are 0.0563 and 0.4027.

For a general case, basins of attraction of a dynamical systems are difficult to determine
and sometimes it is analytically not feasible task [41,42], enough to mention the famous
graph of Newton’s method’s basin ofattractions [43]. We examined the basin of attraction
of the fixed points by putting an equally spaced grid on the set of possible initial values
of positive neurons P1, P2 and P3, and applied the grid points as initial activation values.
Table 1 shows the sizes of the basins of attraction for different granurality. Results are
visualized in Figures 9 and 10.

Figure 9. Basins of attraction of all the fixed points of the positive neurons for λ = 5, N = 3
in the (P1, P2, P3) space. The fixed points are (0.2355, 0.2355, 0.2355), (0.4904, 0.4904, 0.0076) and
its permutation, (0.9926, 0.0069, 0.0069) and its permutations. The fixed points are denoted by
large dots.

Figure 10. Basin of attraction of trivial fixed point (0.2355, 0.2355, 0.2355) and fixed points with two
medium and one low values (0.4904, 0.4904, 0.0076) and its permutation in the (P1, P2, P3) space. The
fixed points are denoted by large dots.
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Table 1. Number of points in basin of attraction in percentage of the total number of points for
N = 3 decision classes, λ = 5. FP0 refers to fixed point with equal coordinates, FP1 refers to fixed
points with one high and two low values, while F2 refers to fixed points with two medium and one
low values.

Number
of Classes

Granurality FP0 FP1 FP2 LC Total Number of Points

N = 3 0.5 11.11 55.56 33.33 0 33

0.25 4.00 72.00 24.00 0 53

0.2 2.78 76.39 20.83 0 63

0.1 0.83 86.78 12.39 0 113

0.05 0.23 92.97 6.80 0 213

0.01 0.01 98.52 1.47 0 1013

5.3. N ≥ 4

If the FRCN has N = 4 decision classes, then the eigenvalues of the Jacobian at the
trivial fixed point have the same magnitude, but with different sign. So positive and
negative eigenvalues reaches one (in absolute value) at the same value of parameter λ (see
Figure 11), causing the appearance of new fixed points and limit cycle simultaneuosly. The
trivial fixed point is no longer an attractor, but fixed points with pattern one high, three
low and two medium, two low values do exists.

= =

= =

= =

Figure 11. Eigenvalues of Jacobian evaluated at the trivial fixed point. Orange: positive eigenvalue,
blue: absolute value of the negative eigenvalue. Curves are slightly shifted for visibility in N = 4.
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If N ≥ 5, then the absolute value of the negative eigenvalue of the Jacobian evaluated
at the trivial fixed point is higher then the positive value, consequently first a period-
doubling bifurcation occurs and the trivial fixed point loses its attractiveness. We should
note that occurence of fixed points of type FP1 and FP2 is not linked to the other (positive)
eigenvalue, since they occur earlier, for a smaller value of λ.

For the general case (N decision classes), there exist two types of fixed points with the
following patterns: one high, N − 1 low values and two medium, N − 2 low values. The
fixed point equations for the one high (x1), N − 1 low (x2) pattern

x1 = f (x1 − (N − 1)x2) (53)

x2 = f (−x1 − (N − 3)x2), (54)

which leads to the following one-dimensional fixed point problem:

x1 = (N − 1) f
(

4 − 2N
N − 1

+
N − 3
N − 1

f−1(x1)

)
+ f−1(x1) (55)

The pattern two medium (x1), N − 2 low (x2) values leads to the following equations:

x1 = f (−(N − 2)x2) (56)

x2 = f (−2x1 − (N − 4)x2), (57)

from which we get the a one-dimensional fixed point problem:

x2 = − 1
N − 4

f−1(x2)−
2

N − 4
f (−(N − 2)x2) (58)

Nevertheless, these fixed points are less important for multiple decision classes.
Finally, we provide a geometrical reasoning of the structure of fixed points. Consider

two fixed points of type FP1, i.e., they have one high and N − 1 low coordinates. Their
basins of attractions are separated by a set, whose points do belong to none of them,
but lie on an N − 1 dimensional hyperplane ‘between’ them. Without loss of generality,
we may assume that one fixed point is P∗

1 = (α, β, . . . , β) and the other one is P∗
2 =

(β, α, β, . . . , β). Because of symmetry, the hyperplane is perpendicular the line connecting
P∗

1 and P∗
2 , i.e., its normal vector is paralel to

−−→
P∗

1 P∗
2 = (β − α, α − β, 0, . . . , 0). Additionally,

the hyperplane crosses the line at the middle point of P∗
1 and P∗

2 , which has coordinates(
α+β

2 , α+β
2 , β, . . . , β

)
. Consequently, the equation of the separating hyperplane is x1 = x2.

The separating set is a subset of this plane with the additional constrain xi < x1, for every
i �= 1, 2. Consequently, a fixed point of type FP2 has two medium coordinates with equal
values (x1 = x2), and N − 2 equal, but low coordinates. Since there are N fixed points of

type FP1, there are
(

N
2

)
fixed points of type FP2.

Simulation results show, that for N ≥ 4, limit cycles tend to steal the show. Limit
cycle oscillates between two activation vectors with equal coordinates (the equality of the
coordinates is an immediate consequence of symmetry). Let us denote these points by
(x1, . . . , x1) and (x2, . . . , x2). The members of a two-period limit cycle are fixed points of
the double iterated function.⎡⎢⎣ x1

...
x1

⎤⎥⎦ = f

⎛⎜⎝WP

⎡⎢⎣ x2
...

x2

⎤⎥⎦
⎞⎟⎠ and

⎡⎢⎣ x2
...

x2

⎤⎥⎦ = f

⎛⎜⎝WP

⎡⎢⎣ x1
...

x1

⎤⎥⎦
⎞⎟⎠ (59)
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In coordinate-wise form this gives the following system of equations:

x1 = f (−(N − 2)x2) (60)

x2 = f (−(N − 2)x1) (61)

From which we have

x2 = f (−(N − 2)x1) = f (−(N − 2) f (−(N − 2)x2)) =
1

1 + e
λ(N−2)

1

1 + eλ(N−2)x2

. (62)

For λ values generally applied in fuzzy cognitive maps and for λ = 5 used in FRCNs,
this fixed point equation has three solutions: one refers to the trivial fixed point, which
is no longer a fixed point attractor, the other two (low and medium) are coordinates of the
elements of the limit cycle (see Figure 12).

= =

Figure 12. Fixed point of the double-iterated function (Equation (62)), for N = 6 and λ = 5. At the
middle fixed point, the value of the derivative is greater than one, so it is a repelling fixed point. The
two other fixed points, with low and medium values are stable.

Simulation results show that by increasing the number of decision classes, more and
more initial values arrive to a limit cycle. We put equally spaced N dimensional grid on
the set [0, 1]N with stepsize 0.5, 0.25, 0.2 and 0.1, then applied the gridpoints as initial
activation values of the positive neurons. Since any particular real-life dataset finally turns
into initial activation values for the FRCN model, it means that these gridpoints can be
viewed as representations of possible datasets, up to the predefined precision (i.e., step
size). Iteration stopped when convergence or limit cycle was detected or the predefined
maximum numbers of steps reached. As we can observe in Table 2, most of the initial
values finally arrive to a limit cycle.
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Table 2. Number of points in basin of attraction in percentage of the total number of points, for
different number of classes (N) and level of granularity, λ = 5. FP1 refers to fixed points with one
high and N − 1 low values, while F2 refers to fixed points with two medium and N − 2 low values,
LC stands for limit cycle.

Number
of Classes

Granurality FP0 FP1 FP2 LC Total Number of Points

N = 4 0.5 0 39.51 14.81 45.68 34

0.25 0 48.64 9.60 41.76 54

0.2 0 45.68 6.02 48.30 64

0.1 0 48.77 3.36 47.87 114

0.05 0 50.34 1.41 48.25 214

N = 5 0.5 0 24.69 8.23 67.08 35

0.25 0 27.52 0.96 71.52 55

0.2 0 23.21 2.06 74.73 65

0.1 0 17.34 0.50 82.16 115

0.05 0 16.24 0.14 83.62 215

N = 6 0.5 0 13.99 4.12 81.89 36

0.25 0 7.22 0.29 92.49 56

0.2 0 7.52 0.13 92.35 66

0.1 0 4.75 0.04 95.21 116

N = 7 0.5 0 7.36 1.92 90.72 37

0.25 0 2.72 0.08 97.20 57

0.2 0 1.90 0.03 98.07 67

0.1 0 1.13 0.00 98.87 117

N = 8 0.5 0 3.66 0.00 96.34 38

0.25 0 0.95 0.00 99.05 58

0.2 0 0.60 0.00 99.40 68

0.1 0 0.03 0.00 99.97 118

6. Relation to Decision

It has been proved previously, that values of negative and boundary neurons converge
to the same value (it is ≈ 0.9930 for λ = 5) and the dynamical behaviour of positive
neurons was analyzed in the preceding sections. Now we examine their effect on the
decision neurons and such a way, on the final decision.

Decision neurons have only input values, they do not influence each other, neither
other types of neurons. As a consequence, the sigmoid transfer function f (x) only trans-
form their values into the (0, 1) interval, but does not change the order of the values (with
respect to the ordering relation ‘≤’), since f (x) is strictly monotone increasing. Before
analyzing the effects of the results of the previous sections, we briefly summarize the
conclusion of [37]: assuming that the activation values of positive neurons reach a stable state,
they concluded that negative neurons have no influence on FRCNs’ performance, but
the ranking of positive neurons’ activation values and the number of boundary neurons
connected to each decision neuron have high impact. Based on the previous sections, below
we ad some more insights to this result.

If positive neurons reach a stable state (fixed point), then this stable state have either
the pattern one high and N − 1 low values (FP1) or two medium and N − 2 low values (FP2),
the trivial fixed point with equal coordinates (FP0) plays a rule only for 2 and 3 decision
classes. These values are unique and completely determined by the parameter λ and the
number of decision classes N. It means that the number of possible final states is very
limited. This fact was mentioned in the case of N = 3 decision classes, but valid for
every N ≥ 3 cases. Namely, small differences between the initial activation vales could be
magnified by the exploitation phase. Almost equal initial activation values with proper
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maximum lead to the pattern of one high and N − 1 low values, resulting in something like
a winner-takes-all rule. Although the runner-up has only a little smaller initial value, after
reaching the stable state, it needs the same number of boundary connections to overcome
the winner, as the one with very low initial value needs.

If the maximal number of iterations is reached without convergence (i.e., the activation
value vector oscillates in a limit cycle), then the iteration is stopped and the last activation
vector is taken. It has either (low, . . . , low) or (medium, . . . , medium) pattern with equal
coordinates. In this case, the positive neurons have absolutely no effect on the final decision.
The classification goes to the neuron with the highest number of boundary connections,
regardless of the small or large differences between the initial activation values of the
positive neurons.

7. Conclusions and Future Work

The behaviour of fuzzy-rough cognitive networks was studied applying the theory of
discrete dynamical systems and their bifurcations. The dynamics of negative and positive
neurons was fully discussed in lthe iterature, so we focused on the behaviour of positive
neurons. It was pointed out, that the number of fixed points is very limited and their
coordinate values follow a specific pattern (FP0, FP1, FP2). Additionally, it was proved that
when the number of decision classes is greater than three, the limit cycles unavoidably
occur, causing the recurrent reasoning inconclusive. Simulations show that proportion of
initial activation values leading to limit cycles increases with the number of decision classes,
and the waste number of scenarios lead to oscillation. In this case, the decision relies totally
on the number of boundary neuron connected to each decision neurons, regardless of the
initial activation value of positive neurons.

The method applied in the paper may be followed in the analysis of other FCM-like
models. As we have seen, if the parameter of the sigmoid threshold function is small
enough, then an FCM has one and only one fixed point, which is globally asymptotically
stable. If we increase the value of the parameter, then a fixed-point bifurcation occurs,
causing an entirely different dynamical behaviour. If the weight matrix has a nice structure,
for example in the case of positive neurons, then there is a chance to find the unique fixed
point in a simple form or as a limit of a lower-dimensional iteration and determine the
parameter value at the bifurcation point. Similarly, based on the eigenvalues of the Jacobian
evaluated at this fixed point we can determine the type of bifurcation. Nevertheless, general
FCMs have no well-structured weight matrices, since weights are usually determined by
human experts or learning methods. It means some limitations on the generalization of the
method applied. Theoretically, we can find unique fixed points and the bifurcation point,
but this task is much more difficult for a general weight matrix.

Another exciting and important research direction is the possible generalization of the
results to the extensions of fuzzy cognitive maps. Some well-known extensions are fuzzy
grey cognitive maps (FGCMs) [44], interval-valued fuzzy cognitive maps (IVFCMs) [45],
intuitionistic fuzzy cognitive maps (IFCMs) [46,47], temporal IFCMs [48], the combination
of fuzzy grey and intuitionistic FCMs [49], interval-valued intuitionistic fuzzy cognitive
maps (IVIFCMs) [50]. This future work probable requires deep mathematical inspection on
interval-valued dynamical systems and may lead to several new theoretical and practical
results on interval-valued cognitive networks, as well.
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Abstract: This paper deals with the flow shop scheduling problem. To find the optimal solution
is an NP-hard problem. The paper reviews some algorithms from the literature and applies a
benchmark dataset to evaluate their efficiency. In this research work, the discrete bacterial memetic
evolutionary algorithm (DBMEA) as a global searcher was investigated. The proposed algorithm
improves the local search by applying the simulated annealing algorithm (SA). This paper presents
the experimental results of solving the no-idle flow shop scheduling problem. To compare the
proposed algorithm with other researchers’ work, a benchmark problem set was used. The calculated
makespan times were compared against the best-known solutions in the literature. The proposed
hybrid algorithm has provided better results than methods using genetic algorithm variants, thus it
is a major improvement for the memetic algorithm family solving production scheduling problems.

Keywords: discrete bacterial memetic evolutionary algorithm; simulated annealing; flow shop
scheduling problem

1. Introduction

This paper investigates whether a new meta-heuristic proposed by the authors, an
improved and modified version of the discrete bacterial memetic evolutionary algorithm,
is capable of solving the flow shop scheduling problem (FSSP) in an efficient way, possibly
in a more efficient way than other approaches proposed by other authors. FSSP was first
published in 1954 by Johnson [1]. Although there exist exact solution algorithms, they
are not feasible for the large-sized scheduling problem, as FSSP is an NP-hard problem.
Many researchers have addressed the problem since its introduction. The overview of the
proposed solution is as follows.

Wei et al. [2] introduced a hybrid genetic simulated annealing algorithm, which
combines the individual steps and operators of the simulated annealing and the genetic
algorithm (HSGA). In their solution, the genetic algorithm (GA) finds a new optimal
solution, and the simulated annealing attempts to improve that solution. To compare their
solution, the widely used Taillard data set [3] was used, which is a reference benchmark for
FSSP. The Taillard data set contains benchmark data between 20 and 500 jobs and between
5 and 20 machines for the flow shop scheduling problem. The following state-of-the-art
algorithms were compared in [2]: memetic algorithm, iterated greedy algorithm with a
referenced insertion scheme, hybrid genetic algorithm (i.e., GA with improved local search
method that searches in a larger neighborhood), improved iterated greedy algorithm (using
Tabu mechanism to escape from local minima), and discrete self-organizing migrating

Symmetry 2021, 13, 1131. https://doi.org/sym13071131 https://www.mdpi.com/journal/symmetry219
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algorithm. Their hybrid genetic simulated annealing algorithm proved to be the best for
the test data set.

Another hybrid genetic algorithm, which combined two local search methods with
GA, was introduced by Tseng et al. [4]. Their hybrid genetic algorithm is compared with the
primitive genetic algorithm, genetic algorithm+ insertion search, and genetic algorithm+
insertion search with cut-and-repair. Their algorithm found better results than the reference
benchmark problems.

The results for the flow shop problem were also compared with the following algo-
rithms: Johnson’s algorithm, Nawaz–Enscore–Ham (NEH) heuristic, iterated local search
algorithm, and iterated greedy algorithm. Based on the paper of Belabid et al. [5], the NEH
heuristic gives better results than the others.

The flow shop scheduling problem has been solved with a relatively new algorithm
called the flower pollination algorithm by Qu et al [6]. Compared with other heuristic
algorithms, such as Tabu-based reconstruction strategy (TMIIG), discrete particle swarm
optimization algorithm (DPSO), improved iterated greedy algorithm (IIGA), effective
hybrid particle swarm optimization (HPSO), hybrid differential evolution approach (HDE),
and genetic algorithm (GA), the flower pollination approach was the most efficient one.

An invasive weed optimization (IWO) algorithm was introduced in [7] for FSSP. The
authors also used the Taillard benchmark to test the efficiency of their algorithm. The
algorithm was compared with Nawaz–Enscore–Ham (NEH) algorithm. Their solution
obtained better makespan than the NEH algorithm for every instance of 12 different scale
benchmarks. It has proved to be better in terms of both final accuracy and convergence.
The reason is that the global exploration in [7] based on normal distribution is better than
the other algorithms.

Simulated annealing is another efficient optimization algorithm; there are several
articles on the topic that solve the flow shop scheduling problem with this algorithm, for
example, Ogbu and Smith [8], Lin et al. [9], and Aurich et al. [10].

The following section formulates the FSPP problem itself, and then an overview is
given on the state-of-the-art of approximate solving algorithms. Next, the proposed new
memetic algorithm is presented, which may be considered as a further development and
improvement of the discrete bacterial memetic evolutionary algorithm, an approach that
has already been successfully applied to the solution of other discrete NP-hard problems.
The authors executed some benchmark-based tests and compared the results with the
algorithms discussed in the overview of the state-of-the-art. The table of the results with
comparisons and explanations and, finally, some concluding notes are presented in the
last section.

2. Formulation of the Flow Shop Scheduling Problem

In the case of the flow shop scheduling problem [2], n jobs and m machines are given
with the following constraints: (1) The jobs have the same processing route. (2) Each job
must be run on all machines exactly once. (3) All jobs and machines must be ready to
work at time zero. (3) All jobs have m processing steps. (4) Neither machines nor jobs
have priority. (5) A single machine can do a single job at a time. (6) If a job is started on a
machine, no process can interfere. During processing, all jobs must follow the first in–first
out (FIFO) rule. The mathematical model of the flow shop scheduling problem can be
written in the following way:

J = {1, 2, . . . , n}: Set of jobs
M = {1, 2, . . . , m}: Set of machines
pi,j: processing time of job i on machine j
Si,j starting time when job i is processed on machine j
Ci,j finishing time when job i is processed on machine j
π = {π1, π2, . . . , πn} the job sequence
Cmax(π): the makespan of a job sequence
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The objective function is the minimization of the makespan. Makespan is the overall
length of finishing the job sequence. The objective function can be written in the follow-
ing way:

(Cmax(π))→min (1)

where the following conditions must be met:

(1) A job can only be processed by one machine at a time:

If Xt
i,j > 0 then pi,k = 0 ∀k∈ [1, 2, . . . , n], k �= i (2)

(2) A machine can only process a single job at a time:

If pi,j > 0 then pk,j = 0 ∀k∈ [1, 2, . . . , m], k �= j (3)

(3) The next job cannot start until the current job is completed on the given machine:

Ci,j ≤ Si+1,j (4)

(4) If machine j + 1 is not ready, the job will delay at machine j until machine j + 1 will
be free:

Ci,j ≥ Ci−1,j+1 (5)

(5) For any job i, the completion time is the starting and processing time on machine j:

Ci,j = Si,j + pi,j (6)

(6) The makespan of the schedule is the time when the last job finishes on the last machine:

Cmax(π) = Cπn,m (7)

Benchmark Data Sets

To compare the efficiency of flow shop scheduling problems, researchers use bench-
mark data sets. In this paper, the Taillard data set will be used. It consists of 120 benchmark
instances. It also provides the best-known upper bounds for the makespan criterion.
There are other benchmark data sets provided by Carlier (8 instances) [11], Heller (2
instances) [12], and Revees (21 instances) [13]. These are smaller problems that are straight-
forward to solve by simple algorithms.

There are two significant indices for measuring the performance of an algorithm. The
first one is the solution quality, which can be represented by relative percentage deviation
(RPD) over the best-known upper bound. The second important indicator is running time
(tr), which is counted until the cycle taken to reach the last improvement. In this paper we
had no investigation into running time.

3. The Family of Bacterial Evolutionary Memetic Algorithms

Bacterial evolutionary algorithm (BEA) is an evolutionary computing algorithm,
which was inspired by microbial evolution [14].

BEA is inspired by the interesting process of bacterial recombination. The algorithm
uses two operators, bacterial mutation and gene transfer. The first step is to generate an
initial population. Then, those two genetic type operations are employed to create new
individuals and evaluate them by a fitness function. These operations are repeated until
the stop condition.

As the first implementation, the bacterial evolutionary algorithm was only used for
finding the optimal parameters of a fuzzy rule-based system. Over the years, it turned out to
be efficiently applicable to many other optimization tasks, e.g., interactive nurse scheduling
optimization problem [15], automatic data clustering [16], and three-dimensional bin
packing problem [17].
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According to the early definitions, memetic algorithms are modified genetic algo-
rithms that use an additional local search operator; see Moscato et al. [18]. The idea of
combining the BEA with local search came first when an attempt was taken to improve
the approximation and optimization capability of the approach when estimating the pa-
rameters of fuzzy rule bases. As the latter may be interpreted as black boxes generating
input–output functions, the scope of potential benchmark problems was extended to sev-
eral additional areas, beyond the examples the original Nawa and Furuhashi paper had
discussed. Mechanical, chemical, and electrical engineering problems were tested along
with transcendental mathematical functions, while the local search applied was a second-
order gradient-based method (the Levenberg–Marquardt algorithm). The results turned
out to be better than the original ones, even better than any other approach applied in
the literature for optimizing the parameters of trapezoidal fuzzy membership functions in
fuzzy rule-based “function generators [19]. Later, first-order gradient methods were also
tested as local search algorithms, and the results were promising [20].

In the next step, the idea of bacterial memetic evolutionary algorithm was tested on
discrete, permutation-based problems, where, as a matter of course, the local search applied
was also a discrete process. The first proposed operator family was the n-opt local search,
and after some simulations, it was narrowed to the subsequent application of the be 2-opt
or 3-opt operators, as when applying n ≥ 4, the overhead time proved to be too large, thus
the efficiency of the algorithm was decreased. The 2-opt operator was first applied to the
traveling salesman problem [21], where two edges are exchanged in the graph. 3-opt [22]
is similar to the 2-opt operator; the only difference is that, here, three edges are exchanged
in one step.

The pseudo-code of the DBMEA is given in Algorithm 1 [23,24]. The algorithm has five
input parameters, these are as follows: Nind, Nclones, Ninf, Iseg, and Itrans; Nind is the number
of individuals in the population, Nclones is the number of clones in the bacterial mutation,
Ninf is the number of infections in the gene transfer, Iseg is the number of segments in the
bacterial mutation, and Itrans is the length of the gene transferred part. Step 1 generates an
initial population. Step 2 is the application of the bacterial mutation. The third step is the
local search (also called as the memetic step). Local search tries to improve on a particular
solution (by producing neighbor solutions) until it finds a better neighbor solution. The
algorithm stops when it can no longer find a better individual in the neighborhood, i.e.,
it finds a local optimum. Then, the gene transfer operation is performed. The algorithm
repeats steps 2–4 until the termination condition triggers. Then, it returns the best solution.

The following notation is used:

x1: the actual gene transferred solution,
xbest: the best solution found so far,
f : fitness function,
Nind: the number of individuals.

3.1. Discrete Bacterial Memetic Evolutionary Algorithm

Algorithm 1 Discrete Bacterial Memetic Evolutionary algorithm

1: BEGIN PROCEDURE DBMEA (Nind, Nclones, Ninf, Iseg, Itrans)
2: Step 1: Generate initial population P.
3: WHILE (termination criteria is not met) DO
4: Step 2: Bacterial mutation (Population, Nclones Iseg)
5: Step 3: local search
6: Step 4: x1 = Gene transfer (Population, Ninf, Itrans)
7: IF f(x1) < f(xbest) THEN DO
8: Step 5: xbest = x1
9: END IF

10: END WHILE
11: RETURN xbest
12: END PROCEDURE
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3.2. Bacterial Mutation

The bacterial mutation [23] operates throughout the population by performing special
mutation operations on each individual (see Algorithm 2). As input parameters, the initial
population, the number of clones (Nclones), and the length of the segment (Iseg) are passed.
Steps 1–6 are performed on each element of the population. A certain number of clones
(Nclones) are made from each bacterium; see Figure 1. The original bacterium is broken
down into segments. As the algorithm shows, it happens with high probability for coherent
segments, and with low probability for loose segments. During both the coherent and loose
segment operations, we go through each segment. We select a non-mutated segment. First,
the elements of the segment are inverted to form the first clone. Then, we randomly change
the elements of the segment to create other clones. This way, we generate a total of Nclones
clones. At the end of the mutation, the best clone takes the place of the original bacterium.

Algorithm 2 Bacterial Mutation

1: BEGIN PROCEDURE Bacterial mutation (Population, Nclones, Iseg)
2: FOR i to size(Population) DO
3: Step 1. Create a random number between 0 and 1
4: Step 2. Get the ith element of the population: p = Population(i)
5: Step 3. create Nclones clones of p and a random number r [0..1]
6: IF (r ≤ COHERENT_LOOSE_RATE)
7: Step 4. cut p into coherent segments with Iseg length
8: ELSE
9: Step 5. cut p into loose segments with Iseg length

10: END IF
11: Step 6. replace Population(i) with the best set of the clones and p
12: END FOR
13: RETURN Population
14: END PROCEDURE

Figure 1. Bacterial mutation.

In the case of a coherent segment, the segments are arranged one after the other
(Figure 2). In the case of a loose segment, the elements of the segments are not adjacent
(Figure 3).

Figure 2. The coherent segment mutation.

223



Symmetry 2021, 13, 1131

Figure 3. The loose segment mutation.

3.3. Gene Transfer

The gene transfer [23] operates on the whole population. At first, the elements of
the population are ranked based on the fitness values. Then, the population is divided
into two parts, a superior and an inferior part, according to the fitness values. As the next
step, the gene transfer operator is executed Ninf times with a randomly selected element
from the superior and one from the inferior part. During the gene transfer operation, a
randomly selected segment with length Itrans is transferred from the superior bacterium
to the inferior bacterium, so that there are no duplicates in the thus established new
bacterium. This process is illustrated in Figure 4. Algorithm 3 presents the process.

Algorithm 3 Gene transfer

1: BEGIN PROCEDURE Gene transfer (Population, Ninf, Itrans)
2: Step 1. sort the Population according to the fitness values

3:
Step 2. divide the population into superior and inferior parts based on the
fitness values

4: FOR i to Ninf DO
5: Step 3. selecting a random bacterium from the superior part (psource)
6: Step 4. selecting a random bacterium from the inferior part (pdestination)
7: Step 5. selecting a random segment from psource with Itrans length
8: Step 6. copying the segment into pdestination bacterium in a random position
9: Step 7. eliminating the duplicates in pdestination

10: END FOR
11: RETURN Population
12: END PROCEDURE

Figure 4. The gene transfer operator.

4. The Simulated Annealing Algorithm

Simulated annealing (SA) [25] operates on a single solution rather than on a whole
population. SA first produces a random new neighboring solution. If this neighbor
is better than the current solution, it accepts it deterministically as new current solu-
tion. If it is not better, the algorithm still may decide probabilistically whether to keep
the current one, or replace it with the new neighboring one. The input parameter of
the algorithm is the “temperature” (T), which determines the probability of accepting
worse solutions in the algorithm. The temperature continuously decreases; it is deter-
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mined by the temperature control parameter (α). Algorithm 4 illustrates the SA algorithm.

Algorithm 4 Simulated Annealing

1: SIMULATED ANNEALING
2: BEGIN PROCEDURE Bacterial mutation (T,α,L)
3: WHILE termination condition is not met DO
4: WHILE L processing length is not reached DO
5: Step 1. Create the neighbor (SN) of the current solution (SC)
6: Step 2. Calculate ΔE as follows: ΔE = E(SN) − E(SC)
7: IF ΔE > 0 THEN
8: Step 3. SC = SN
9: ELSE IF P(E(SN), E(SC), T) > rand[0, 1]) THEN DO

10: Step 4. SC = SN
11: END WHILE
12: Step 5. Reduce temperature (T)
13: END WHILE
14: END PROCEDURE

5. A Novel Algorithm: A Hybrid Discrete Bacterial Memetic Evolutionary Algorithm
with Simulated Annealing

We could see in the DBMEA pseudo-code that the algorithm uses discrete local search.
The originally proposed algorithm applies the 2-opt and 3-opt methods, which operate
on individual elements of the population. To improve the efficiency of the local search
in the solution of the particular problem on hand, we propose now to use simulated
annealing for local search instead. This latter accepts a worse new solution with some
probability, and this way allows getting out of small local optimum areas. In addition,
we have introduced a mortality rate (Nmort). It practically means that certain elements of
the population are to be dropped and replaced by randomly generated new individuals.
The pseudo-code of our algorithm is shown in Algorithm 5, where Nind is the number of
individuals; Nclones is the number of clones; Ninf means the number of times the gene transfer
operator is executed; Iseg is the length of the segment; Itrans is the length of the segment,
which is transferred from the source to the destination bacterium; T is the temperature,
which is decreasing along the iterations by α; and L is the iteration control parameter.

Algorithm 5 The Discrete Bacterial Memetic Evolutionary Algorithm with Simulated Annealing

1:
BEGIN PROCEDURE DBMEA_SA (Nind, Nclones, Ninf, Iseg, Itrans, T,
α, L, Nmort)

2: Step 1: Generate initial population P.
3: WHILE (termination criteria is not met) DO
4: Step 2: Bacterial mutation (P, Nclones, Iseg)
5: FOR i IN Population DO
6: Step 3: Simulated annealing (P(i), T, α, L)
7: END FOR
8: Step 4: Gene transfer (P, Ninf, Itrans)
9: Step 5: Sort the population, based on the fitness values

10:
Step 6: Generate new elements in the population in place of the worst
Nmort elements

11: Step 7: Store the best solution
12: END WHILE
13: RETURN best solution
14: END PROCEDURE

6. Experimental Results

The proposed hybrid algorithm was implemented for a personal computer with 8th
generation Intel i7 CPU and 16 GB memory. The Typescript programming language was
used, as it allowed the ability to quickly implement the algorithm variants in a portable
way. The authors ran the tests on a Windows 10 operating system. Full source codes are
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available at [26]. To compare the results of the new method with other ones known from
the literature, the Taillard benchmark dataset [3] was used. There are 10 individuals for
each benchmark data type in the set. Table 1 contains the makespan values calculated by
the following algorithms.

Table 1. Experimental results compared with other up-to-date approaches.

Instance n × m
Lower
Bound

Best
Known

DBMEA + SA IWO [7] HGSA [2] HGA [4]
HMM-PFA

[6]

Ta001 20 × 5 1232 1278 1283 1389 1324 1449 1486
Ta002 20 × 5 1290 1359 1360 - 1442 1460 1528
Ta003 20 × 5 1073 1081 1081 - 1098 1386 1460
Ta004 20 × 5 1268 1293 1293 - 1469 1521 1588
Ta005 20 × 5 1198 1235 1235 - 1291 1403 1449
Ta011 20 × 10 1448 1582 1587 2207 1713 1955 2044
Ta012 20 × 10 1479 1659 1681 - 1718 2123 2166
Ta013 20 × 10 1407 1496 1510 - 1555 1912 1940
Ta014 20 × 10 1308 1377 1384 - 1516 1782 1811
Ta015 20 × 10 1325 1419 1420 - 1573 1933 1933
Ta021 20 × 20 1911 2297 2308 3226 2331 2912 2973
Ta022 20 × 20 1711 2099 2120 - 2280 2780 2852
Ta023 20 × 20 1844 2326 2349 - 2480 2922 3013
Ta024 20 × 20 1810 2223 2223 - 2362 2967 3001
Ta025 20 × 20 1899 2291 2316 - 2507 2953 3003
Ta031 50 × 5 2712 2724 2724 3020 2731 3127 3160
Ta032 50 × 5 2808 2834 2848 - 2934 3438 3432
Ta033 50 × 5 2596 2621 2634 - 2638 3182 3210
Ta034 50 × 5 2740 2751 2776 - 2785 3289 3338
Ta035 50 × 5 2837 2863 2864 - 2864 3315 3356
Ta041 50 × 10 2907 2991 3059 3465 3198 4251 4274
Ta042 50 × 10 2821 2867 2933 - 3020 4139 4177
Ta043 50 × 10 2801 2839 2931 - 3055 4083 4099
Ta044 50 × 10 2968 3063 3077 - 3124 4480 4399
Ta045 50 × 10 2908 2976 3041 - 3129 4316 4322
Ta051 50 × 20 3480 3850 3957 5475 4105 6138 6129
Ta052 50 × 20 3424 3704 3823 - 3992 5721 5725
Ta053 50 × 20 3351 3640 3760 - 3900 5847 5862
Ta054 50 × 20 3336 3720 3823 - 3921 5781 5788
Ta055 50 × 20 3313 3610 3737 - 4020 5891 5886
Ta061 100 × 5 5437 5493 5495 5839 5536 6492 6361
Ta062 100 × 5 5208 5268 5290 - 5302 6353 6212
Ta063 100 × 5 5130 5175 5213 - 5221 6148 6104
Ta064 100 × 5 4963 5014 5023 - 5044 6080 5999
Ta065 100 × 5 5195 5250 5265 - 5358 6254 6179
Ta071 100 × 10 5759 5770 5825 6815 5964 8115 8055
Ta072 100 × 10 5345 5349 5414 - 5596 7986 7853
Ta073 100 × 10 5623 5676 5727 - 5796 8057 8016
Ta074 100 × 10 5732 5781 5892 - 5928 8327 8328
Ta075 100 × 10 5431 5467 5567 - 5748 7991 7936
Ta081 100 × 20 5851 6202 6407 9405 6395 10,745 10,675
Ta082 100 × 20 6099 6183 6334 - 6433 10,655 10,562
Ta083 100 × 20 6099 6271 6480 - 6689 10,672 10,587
Ta084 100 × 20 6072 6269 6409 - 6419 10,630 10,588
Ta085 100 × 20 6009 6314 6518 - 6536 10,548 10,506
Ta091 200 × 10 10,816 10,862 11,002 11,783 11,120 15,739 15,225
Ta092 200 × 10 10,422 10,480 10,627 - 10,658 15,534 14,990
Ta093 200 × 10 10,886 10,922 11,088 - 11,224 15,755 15,257
Ta094 200 × 10 10,794 10,889 11,004 - 11,075 15,842 15,103
Ta095 200 × 10 10,437 10,524 10,666 - 10,793 15,692 15,088
Ta101 200 × 20 10,979 11,195 11,483 15,217 11,642 20,148 19,531
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Table 1. Cont.

Instance n × m
Lower
Bound

Best
Known

DBMEA + SA IWO [7] HGSA [2] HGA [4]
HMM-PFA

[6]

Ta102 200 × 20 10,947 11,203 11,535 - 11,683 20,539 19,942
Ta103 200 × 20 11,150 11,281 11,603 - 11,930 20,511 19,759
Ta104 200 × 20 11,127 11,275 11,634 - 11,791 20,461 19,759
Ta105 200 × 20 11,132 11,259 11,549 - 11,728 20,339 19,697
Ta111 500 × 20 25,922 26,059 26,652 30,730 26,859 49,095 46,121
Ta112 500 × 20 26,353 26,520 27,115 - 27,220 49,461 46,627
Ta113 500 × 20 26,320 26,371 n/a - 27,511 48,777 46,013
Ta114 500 × 20 26,424 26,456 26,974 - 26,912 49,283 46,396
Ta115 500 × 20 26,181 26,334 n/a - 26,930 48,950 46,251

• DBMEA + SA: Discrete Bacterial Memetic Algorithm + Simulated Annealing;
• IWO: Invasive Weed Optimization [7];
• HGSA Hybrid Genetic Simulated Annealing [2];
• HGA: Hybrid Genetic Algorithm [4];
• HMM-PFA: Hormone Modulation Mechanism Flower Pollination Algorithm [6].

In the test we carried out, twelve different problem sizes were selected; these can be
found in the column “n × m: job and machine numbers”, namely, 20 × 5, 20 × 10, 20 × 20,
50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, 100 × 20, 200 × 5, 200 × 10, and 200 × 20. The
instance names run from Ta001 to Ta120. Table 1 shows five instances for each problem set,
while the full table with comparisons of the results applying the five approaches mentioned
above is published also in [26].

For the evaluation of the obtained optima, it is worthwhile to compare both our
own results and the ones obtained by other authors. There is an estimation method for
an absolute theoretic lower bound, which is proposed in [3] and can be calculated as
follows: let bi the minimum amount of time before machine starts working and ai is the
minimum time until it remains inactive after the end of the operation and let Ti be its total
processing time:

bi = min
j

(
i−1

∑
k=1

pkj

)
(8)

ai = min
j

(
m

∑
k=i+1

pkj

)
(9)

Ti =
n

∑
j=1

pij (10)

Let Cmax denote the optimal makespan time; it must be greater or equal to the maxi-
mum between the minimum of time required by the machines and the minimum of time
required each job. This value is called “lower bound”, and Table 1 displays this theoretical
minimum in the third column:

Lower bound = max

{
max

i
(bi + ai + Ti), max

j

(
m

∑
i=1

pij

)}
≤ Cmax (11)

Our hybrid DBMEA + SA algorithm ran within a reasonably short time, even though
no direct measurements were done. In the case of some large instances, however, the
running time exceeded the limitation of the available computer resources. Those cases are
indicated in Table 1 by n/a entries. Our algorithm always found a better or equal result
compared with all other approaches in the literature. It found the best-known solution in
9 cases out of 120. In a further 56 cases, the deviation from the optimal solution was less
than 1%; in the remaining 52 cases, the difference was between 1% and 3%. In three cases,
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the running time exceeded the set limit. Where the algorithm did not find the best-known
solution, it got very close to it. Compared with all other algorithms published by other
authors, as mentioned above, the proposed new algorithm provided much better results in
all cases.

7. Conclusions

There is an interesting symmetry–asymmetry issue when solving complex problems,
setting up models for complex systems, and developing algorithms for search and opti-
mization in them. In this paper, the highly complex and mathematically intractable flow
shop scheduling problem is in one pan of the scale, while in the other, the new modified
discrete bacterial memetic evolutionary algorithm (DBMA) is found. By proper weighing
of the costs, namely, the error in the accuracy of the optimization in one pan and the need
for resources, especially, the running time of the optimization meta-heuristics in the other
one must be brought to equilibrium, this way generating a symmetry in the solution. The
exact position of the symmetrical (balanced) solution can, however, be calibrated by the
designer of the solution, thus it may fit the application context of the concrete problem,
considering the available resources and the expected quality of the quasi-optimum found.
Thus, the asymmetric role played by problem to solve and model/algorithm for solution
must be balanced and, that way, the whole problem–solution complex must be brought in
a symmetrical configuration.

In our approach, there is, however, another aspect of the symmetry–asymmetry
concept present. Memetic algorithms consist of two essential components, the “outer” shell
that is an evolutionary or population based global searcher, and the “inner” core that is a
local searcher, whether traditional gradient based, or exhaustive search type, respectively;
or, as in the novel algorithm proposed in this paper, another meta-heuristic method. The
two components must also form a symmetric combination in the above sense: the two
must be in proper balance of resource intensity and need. Many results have shown that
too much local search will slow down the whole optimization procedure, while too little
(compared to the outer global search) may lead to ever randomly wandering attempts to
approach the optimum, where even the most efficient local search can only produce a local
optimum. We trust that, in this novel algorithm, a very efficient and well balanced, let us
say, symmetric enough, solution for the combination of the two components of the memetic
algorithm was found.

In our paper, the DBMA was very successfully applied for the approximate solution
of other, similarly NP-hard discrete problems. Namely, the original DBMA with n-opt
type local search method was developed for TSP problems. We found, however, that this
local search provided relatively poor results for solving the flow shop scheduling problem.
In the proposed new and improved algorithm, we have replaced the local search by the
simulated annealing algorithm, a method that has been applied with some success itself
for solving similar tasks. We found that this hybrid DBMEA and SA algorithm became
unambiguously more efficient, compared with all other population-based metaheuristic
approaches proposed by other researchers. The authors calculated the make span times
for a known benchmark data set and compared the results with the algorithms in other
papers as well as with the best known solutions (it should be clearly stated that the optimal
solution cannot be calculated owing to the size of the problem, so the best known published
makespan times were used as the basis of the comparison). The proposed new algorithm
indeed over-performed all the state-of-the-art algorithms. The calculated makespan times
were very close to the best known solutions, while the computing time still remained
reasonable, even on a standard personal computer. So, the proposed algorithm has the
capability to so far most efficiently solve large-scale FSPP problems.
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Abstract: The rapid growth of performance in the field of neural networks has also increased their
sizes. Pruning methods are getting more and more attention in order to overcome the problem
of non-impactful parameters and overgrowth of neurons. In this article, the application of Global
Sensitivity Analysis (GSA) methods demonstrates the impact of input variables on the model’s output
variables. GSA gives the ability to mark out the least meaningful arguments and build reduction
algorithms on these. Using several popular datasets, the study shows how different levels of pruning
correlate to network accuracy and how levels of reduction negligibly impact accuracy. In doing
so, pre- and post-reduction sizes of neural networks are compared. This paper shows how Sobol
and FAST methods with common norms can largely decrease the size of a network, while keeping
accuracy relatively high. On the basis of the obtained results, it is possible to create a thesis about
the asymmetry between the elements removed from the network topology and the quality of the
neural network.

Keywords: global sensitivity analysis; Sobol procedure; fast algorithm; convolutional neural network;
structure reduction; pruning; quality

1. Introduction

Since the beginning of the twenty-first century, computational intelligence (CI) [1],
in the guise of artificial intelligence and machine learning, has been experiencing great
strides in its development, both practically [2] and theoretically [3]. The term embraces
fuzzy logic, genetic and evolutionary algorithms, swarming intelligence, rough sets and
artificial neural networks. Artificial neural networks (ANNs) are computational systems
developed on the basis of the biological structure of the brains of living organisms, and
they consist of objects representing neurons and the connections between them. In ANNs,
there are layers made of neurons. The first (input layer) is used to enter data into the
network, and the last (output layer) returns the generated results [4], while a number of
hidden layers exists in between. As the number of layers increases, the network processing
time automatically increases. Therefore, the optimization of the structure of the neural
network is an important issue.

ANNs play a very important and often unheralded role in the modern world. Calcu-
lations made with their help can be found, among others, in forecasting air pollution [5]
or when conversing via cell phone [6]. A popular and recent development is the use
of neural networks in natural language processing, in particular, for text generation [7],
automatic text translation [8], text analysis [9], spam message detection [10] and spoken
text recording [11]. Due to their versatility and the possibility of modeling non-linear
processes, ANNs are used in the automotive industry (navigation systems, autopilot),
telecommunications and robotics [12].
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Convolutional neural networks (CNNs) were introduced in 1980–1982, under the
term “neocognitron” [13], but their rather dynamic development began to be felt only
from around 2010. Since then, many ready-made CNN neural networks have been created.
Indeed, it can be said that this type of neural network is the basic structure in the class of
deep neural networks [14].

CNNs require the use of high-powered computers, as they are, in reality, often over-
sized for purpose. To prevent the exaggerated growth of size, pruning methods are needed
and have been subjected to research. There are two categories of pruning based on purpose:
pruning for performance [15] or pruning for size [16]. The method shown in this article can
be applied in order to minimize the number of reduction cycles and the number of neurons
in each reduction cycle.

Sensitivity analysis methods were designed to assess the impact of a model’s input
on its output. Two major subgroups are Local Sensitivity Analysis (LSA) [17] and Global
Sensitivity Analysis (GSA) [18]. The first method measures sensitivity by varying only one
input parameter, while GSA changes all inputs simultaneously.

The main focus of this article is to propose a reduction layer based on sensitivity
analysis that is combined with a flattening layer. The presence of a large number of
convoluted feature matrices and the substantial size of first fully connected layer generates
enormous numbers of permutation. In some cases, these weights are responsible for 90% of
the total parameters in the network. This research concentrates on minimizing unnecessary
connections between the convolutional layer and the fully connected network.

In a large number of algorithms, the removal of certain elements from their structure
determines the simplification of such procedures. Unfortunately, such symmetry reduces
the quality of the results obtained. In the proposed algorithm for reducing the structure of
the neural network, asymmetry between the reduction in the topological structure of the
neural network and the obtained results is observed. The above is largely realized by way
of the use of sensitivity analysis precursors, thanks to which the weakest links of the tested
CNN flattening layer are determined.

Decomposition and pruning are common techniques applied to compress the architec-
tures of neural networks. Tucker decomposition is a well-known Low-Rank factorization
method to decompose both convolutional and fully connected layers [19]. Another popular
method is tensor rank decomposition. This is based on the superdiagonal core tensor of
Tucker decomposition [20,21]. Filter pruning is a natural approach in CNN compression.
Moreover, a team of Nvidia researchers has presented a kernel pruning algorithm based on
a minimization of the Taylor series expansion of the error [16]. The attention mechanism
introduced by a Google research team [22] has also been applied to prune CNN with
regard to the classification problem [23]. Both decomposition and pruning methods can be
combined for better network compression [24].

This article is divided into the following sections. Section 2 describes the concept of a
convolutional neural network, and it includes a discussion on what is sensitivity analysis
and what methods are utilized in the research. Section 3 presents the algorithm used for
a proposed reduction method. Section 4 consists of a description of the datasets and an
analysis of the results obtained from applying variants of the reduction algorithm. The last
section, Section 5, summarizes the results and and provides the obtained conclusions.

2. Methods

2.1. Convolutional Neural Network

The convolutional neural network (CNN) is a modern architecture of a neural network
used in anomaly detection [25] and natural language processing (such as in sentence
modeling) [26], as well as in classification [27].

The major area of CNN application is in computer vision, including object detection [2],
image classification [28] and segmentation [29]. CNNs that have been around for a few
years, such as GoogLeNet, present human-like accuracy of classification [30], and perfor-
mance of these networks has been under continuous improvement. In this paper, attention
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is focused upon the classification problem. CNN, mostly applied on problems concerning
images, is built upon the input image undergoing a series of convolutional operations. The
mathematical formula for convolution operation is presented in Equation (1).⎡⎢⎣ A1,1 . . . A1,N

...
. . .

...
AM,1 . . . AM,N

⎤⎥⎦ ∗

⎡⎢⎣ B1,1 . . . B1,N
...

. . .
...

BM,1 . . . BM,N

⎤⎥⎦ =
M−1

∑
i=0

N−1

∑
j=0

A(M−i),(N−j)B(i+1),(j+1) (1)

This CNN includes many kernels (also called ‘filters’). The task of the kernel is to learn
feature extraction. If many convolutional layers are stacked, the first layers are responsible
for deriving so-called ‘high level features’, such as the image’s basic outlines or curves. The
following layers, through the application of matrices of convoluted features, extract more
and more detailed characteristics. Generally, multiple convolutions of an image would
generate large matrices, extending computation time and memory usage. To resolve the
issue, a ‘pooling layer’ was introduced. Its first purpose is to reduce the size of a matrix by
applying the functions of a pooling kernel. The most common of these are averaging and
maximizing. The second task of the pooling layer is to reduce non-dominant properties
by leaving only the most important feature, hence reducing image ‘noise’. Convolutional
and pooling layers are put together in many combinations. A popular approach to CNN
modeling is to form a stack of one or two convolutional layers, followed by a pooling layer.

The two previously described layers are responsible for learning an image’s features.
They result in a vector of low-level convoluted features matrices. To assign an image to
a category, a classification network is required. Before this can be done, the output of
convolutional and pooling layers has to be flattened to a single vector. A fully Connected
Network (FCN) is a feed-forward network, the purpose of which is to learn the likelihood
of membership to a category. However, having an output that is a vector of the number of
features assigned to each individual class is not desirable. To simplify the results and make
these more understandable, a softmax function is incorporated. Softmax, acting in the form
of an activation function in the last layer, returns only one value assigned to a category,
with the highest number of features corresponding to that category being grouped together.

In this article, two CNNs were used, Figure 1 for 2D datasets and Figure 2 for 1D
datasets. For faster convergence, a dropout layer was added to each CNN. This layer zeroes
weights with set probability. Hence, all networks end with a FCL of a size corresponding
to the number of categories in the dataset, and they use ReLU as an activation function. In
both the 1D CNN and the 2D CNN, categorical cross-entropy is considered a loss function.
Their treatment differs in that the Adam optimizer was set in the 1D CNN and a Stochastic
Gradient Descent was established in case of 2D CNN. The 1D datasets of the 1D CNN
are composed of double 64 3 × 3 kernels, followed by a dropout layer with probability of
50%. Subsequently, a max pooling layer of size 2 × 2 and consisting of 100 neurons in a
fully connected layer is attached. 2D CNN is more complicated and is structured with a
double sequence of two 32 3 × 3 filters, followed by a 2 × 2 max pooling layer and the 25%
dropout layer. The 2D CNN ends with a 512 neuron FCL and a 50% dropout layer. Table 2
lists the number of neurons in the first layer of the FCN, the total number of parameters in
the CNN, the number of frozen non-trainable parameters in their convolutional layers and,
finally, the number of trainable parameters in FCN.
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Figure 1. CNN model architecture dedicated for 2D image input.

Figure 2. CNN model architecture dedicated for 1D series input.
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2.2. Global Sensitivity Analysis

Sensitivity analysis (SA) consists of a group of methods used for finding how the
uncertainty in the model output can be assigned to the uncertainty of the model input [31];
hence, they are used to discover the connection between uncertainty of the model input
and output [32]. Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA)
are subgroups of SA. The LSA approach alters one input parameter at a time with all
others remaining constant [17], while the GSA approach modifies all input parameters
concurrently. The most common approaches for evaluating the impact on the models’
output are regression methods, screening algorithms [33] and variance-based methods. The
variance-based procedures used in this article are Sobol [34], Fourier Amplitude Sensitivity
Test (FAST) [35] and extended Fourier Amplitude Sensitivity Test (eFAST) [36,37].

The difference between FAST and eFAST methods is that the former calculates only the
first-order sensitivity, while the latter also calculates total order sensitivity. For simplicity,
both these algorithms are heretofore called FAST. In this article, both first and total order
sensitivities are used.

Sobol’s method is based on decomposition of output variance into a sum of input
variances. It measures the impact of each individual input and the permutations between
them on the output. It is achieved by calculating first-order, second-order, higher-order and
total-order sensitivity indices. To calculate the indices, a Monte Carlo integration is applied.

The FAST method is derived from the time series Fourier decomposition in signal
theory. The original FAST method provided only first-order indices, but extension of the
method generates higher-order sensitivities. To compute the indices pattern, a search based
on sinusoidal functions is applied.

3. Pruning Algorithm in Flattening Layer

This section describes the algorithm (Algorithm 1) used to prune the input of FCN.
Global sensitivity analysis has not been previously applied to compress CNNs, and pruning
could be its natural application. The aim of the algorithm is to provide a flattening layer
pruning algorithm. This approach only reduces the weights between the convolutional and
fully connected layers. The proposed procedure can be easily stacked with other pruning
and decomposition compression procedures. In fact, stacking a few different procedures
can lead to better compression [24]. The presented algorithm was applied to a simple
CNN to validate its utility. As mentioned before, developers should not solely rely on this
method as a standalone solution. GSA methods are still under research, the intent being to
create an algorithm to compress all the layers of a CNN.

First the CNN has to be created and trained on the chosen dataset. The algorithm will
then execute R sensitivity calculations, and each time it will prune D parameters. For each
reduction cycle, pretrained CNN has to be loaded. Weights of convolutional layers must
also be kept unchanged, the only part of the network subjected to training should be the
FCN. What is more, all convolutional parameters have to be frozen. The next step is to
join pretrained CNN and freshly initialized FCN with a reduction layer. This reduction
layer is a flattening layer that has the ability to filter neurons. The large number of outputs
from the convolutional layers, allied with the large number of input neurons of the FCN,
results in permutations that unnecessarily consume resources. The task of the reduction
layer is to prune non-impactful connections inputs. This leads to a reduction in the size
of the network. The subsequent step is to calculate the sensitivity by applying one of the
previously mentioned methods and aggregate it with the chosen norm. The inputs are then
sorted by their sensitivity, and the least impactful ones are removed by the reduction layer.
The process is repeated until reaching a given number of reduction cycles. The algorithm
was implemented in Python and uses the Keras library. Computations were executed via
Google’s Colaboratory service.
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Algorithm 1: FCN input reduction
Result: CNN with reduction layer
load dataset
pretrain CNN
for number of reductions R do

load pretrained CNN and freeze convolutional layers
join convoluitional layers with reduction layer and FCN
retrain the network
calculate sensitivity
aggragte sensitivity using one of norms
sort FCN inputs by sensitivity
for number of pruned parameters D do

prune the input with the smallest sensitivity from reduction layer
end

end

4. Results

As previously mentioned, CNNs consist of two main parts. The first embodies
the convolutional and pooling layers that produce the extracted features. The second
incorporates classification layers, mostly FCN. Between these two parts, a custom reduction
layer is proposed. It disables the least significant parameters coming from the flatten layer.
In each dataset, reduction is applied R times, with D parameters pruned each time. The
convolutional part of the network is pretrained, all its parameters are non-trainable, and
the FCN alone is trained from scratch each time to adjust to the reduced input. The focus
of the research is to sustain or improve test accuracy. To do this, two methods with two
sensitivities—Sobol (first order), Sobol total (order), FAST (first order) and FAST total
(order)—and three norms—Euclidean, absolute value and maximum—are compared. In
each training cycle, when sensitivity matrices are calculated for all outputs, a selected norm
is applied to aggregate output sensitivity matrices. FCN input weights are then sorted by
aggregated sensitivities of output. Weights with the least sensitive values are pruned, and
the procedure is repeated.

4.1. Data Sets

This research is based on a total of four classification datasets (Table 1). Two of these
are vectors of features, while the others contain images. The credit card fraud dataset
is a Kaggle dataset [38] detecting frauds on the basis of 28 parameters. With regard to
the set, confidentiality of financial data has forced application of PCA transformation. In
the original dataset only 492 cases out of 284,807 transactions are marked as frauds. A
new dataset had, therefore, to be created to overcome the unbalance of data. It contains
984 transactions, of which 50% are fraud cases. The dataset was randomly divided into
80% for the training set and 20% for the test set.

The Beans dataset is a 2020 UCI dataset [39] classifying dry bean grains into seven
species, registered with a high-resolution camera. It contains 13,611, 16-element vectors of
features. Each dataset record is composed of 12 dimension parameters and 4 shape forms.
In this case, the dataset was also divided randomly into training and test sets in a ratio of
80%/20%.

MNIST and FASHION MNIST are image classification datasets made easily available
through the Keras library [40]. Both are composed of 28 × 28 grayscale images with
60,000 elements in the training sets and 10,000 elements in the test sets. The differences
between these datasets are the types of images found. MNIST is made up of images of
digits, while FASHION MNIST consists of images of clothes and accessories. MNIST is
a dataset created from the US National Institute of Standards and Technology’s Special
Database 1 and Special Database 3. It gathers handwritten digits from around 250 writers,
where writers for training and test sets were disjoined. FASHION MNIST is an attempt to
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replace the MNIST dataset. The authors of FASHION MNIST criticized MNIST in that it is
too easy to achieve high accuracy, is overused and does not represent modern computer
vision tasks.

Table 1. Datasets comparison.

Dataset Data Type Train/Test Set Size Labels

MNIST 28 × 28 greyscale images 60 k/10 k 10

FAHION MNIST 28 × 28 greyscale images 60 k/10 k 10

Beans 16 parameters 10,888/2723 7

Credit Card Fraud 28 parameters after PCA 786/198 2

4.2. MNIST and FASHION MNIST

MNIST and FASHION MNIST are similar datasets with different types of images.
Results and conclusions for both datasets are similar and will be placed in a joined section.
Figures 3 and 4 present the detailed results that are further discussed in this section. For
these two datasets, the test accuracy was found to be larger than the train accuracy. This
was not expected and was probably caused by high dropout percentage, where, through
probability, neurons were not considered for training. In the case of the CNN used for these
datasets, its flatten layer output size was 1024, and a total number of 20 reduction cycles
was performed. In each cycle, 50 least impactful parameters were pruned. The original
total number of parameters was 594,922, of which 529,930 were considered trainable. At
the last step, the number of trainable parameters was decreased to 43,530. This is an over
ten times reduction. The cost for so high a reduction in size is a decrease of 10% for test
accuracy. A gentle decline in accuracy is observed until around 600 pruned neurons, and
further reduction resulted in a more radical decrease. All methods and norms presented
very competitive results.
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Figure 3. FCN reduction for the MNIST dataset by methods and norms on train and test sets.
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Figure 4. FCN reduction for the Fashion MNIST dataset training and test sets, by methods and norms.

4.3. Credit Card Fraud

The credit card fraud data are a post-PCA transformation. This suggests that there is
no large potential for further pruning. In our experiment, the reduction was performed
17 times, each time reducing 30 parameters. The original FCN inputs had 768 parameters
and were reduced to 288 parameters at the last run. This led to a drop of trainable
parameters from 77,102 to 29,102, while the total number of parameters dropped from
89,710 to 41,710. We found that the in the PCA transformation, reduction had little influence
on accuracy. For both methods, Sobol and FAST, the test accuracy did not change or was
improved at some point in each scenario. As seen in Figure 5, the Sobol scenario test
accuracy results are more flat, while in the case of FAST, they slightly decrease. In most
of the cases, the maximum cost for reducing the size of the network by half is up to
2 percentage points of test accuracy drop.

4.4. Beans

This set was reduced 15 times with 20 pruned parameters at each run. The original
number of FCN input parameters was 384 and was reduced to 104. This resulted in a
decrease in total network parameters from 51,815 to 23,815, while FCN parameter accuracy
fell to 50%. In the case of the first-order Sobol method, abs and euc norms test accuracy
reached a peak training accuracy. Similar results are observed when the Sobol total method
was applied. Here, test accuracy, when max norm was applied, reached the level of training
accuracy after a cycle of 100 reductions. In contrast, Abs test accuracy approached training
accuracy at the end of a reduction after a high drop. Test accuracy reached or exceeded
train accuracy in all cases when FAST and FAST total methods were applied. As seen in
Figure 6, abs and euc norms test accuracy reached training accuracy after just 50 neurons
were reduced, with accuracy maintained to the end of the run. Max norm was found
to outperform other norms, but only when a large number of FCN inputs were reduced.
Finally, abs norms preserved the highest test accuracy. This was only a few percentage
points lower than the training accuracy of the original non-reduced network. What is
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more, Euc norms presented similar results for both FAST and FAST total scenarios, while
abs norm significantly reduced test accuracy for FAST total, when large reductions are
taken into account. For FAST total, max norm had the highest test accuracy, outperforming
training accuracy in the last reduction runs.
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Figure 5. FCN reduction for the Credit Card Fraud dataset training and test set, by methods
and norms.
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Figure 6. FCN reduction for the Bean dataset training and test set, by methods and norms.
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4.5. Discussion of the Results

Sobol and Fashion MNIST sets sustained stable, low-accuracy drops until half the pa-
rameters were reduced. Subsequently, the accuracy drop reached 10% with 90% reduction
in FCL neurons. The fraud dataset showed that reduction of non-meaningful data does not
have to impact the accuracy. In that case, accuracy fluctuated around a constant value. The
Beans dataset is the most surprising. Here, test accuracy largely exceeded train accuracy.
We also noted that GSA was proven not only to be able to reduce the impact, but also to
keep high accuracy and, indeed, to improve test accuracy. Table 3 presents post-reduction
numbers of input FCN parameters, total number of parameters and number of parameters
for CNN and FCN, similarly to Table 2.

On comparing Tables 2 and 3, in extreme cases, it can be seen that the size of the
network was reduced from 54% for the Credit Card Fraud and Bean datasets to up to 82%
in the case of MNIST and Fashion MNIST datasets.

Table 2. CNN parameters pre-reduction.

Before Reduction

Datasets Input Size Total Non-Trainable Trainable

MINST/Fashion MNIST 1024 594,922 64,992 529,930

Credit Card Fraud 768 89,710 12,608 77,102

Beans 384 51,815 12,608 39,207

Table 3. CNN parameters post-reduction.

Final Maximal Reduction

Datasets Input Size Total Non-Trainable Trainable

MINST/Fashion MNIST 74 108,522 64,992 43,530

Credit Card Fraud 288 41,710 12,608 29,102

Beans 104 23,815 12,608 11,207

The proposed procedure was expected to prune flattening layer connections and
minimize accuracy loss with pretrained convolutional layers. This was observed in the
case of MNIST and FASHION MNIST datasets. Utilization of the Credit card fraud dataset
presented surprising results. Besides a general training accuracy drop with deleted connec-
tions, some norm functions were able to improve the accuracy of the applied test sets. The
same, yet more clearer, phenomenon was observed in the results of Beans classification. In
all cases, besides the Sobol total order indices method, a Euclidean norm function boosted
the test set accuracy to the level of the training set accuracy. In this scenario, the presented
GSA-based pruning algorithm not only decreased network size, but also vastly improved
test set accuracy of the network. The algorithm pruned only the flattening layer. In further
work, GSA methods are going to be applied to other layers of the CNN to create a pruning
method for the whole structure. We hope to create a pruning method that is able not only
to compress the structure, but also to increase its performance.

5. Conclusions

This article applied the GSA methods of Sobol and FAST to reduce the number of
FCN input neurons in CNNs. Originally, the full number of connections between matrices
of convoluted features and FCN led to a large number of training parameters. When we
applied the described reduction algorithms that are based on GSA methods and three
norms, we were able to cut-down the number of unnecessary parameters while keeping
near to the original accuracy levels. For some datasets, the proposed pruning provided
accuracy levels close to the original solution.
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The reduction in the structure of the internal neural network has a very positive effect
on several aspects. The first is faster computation time. This applies both to the current
time related to the recovery mode and also to learning time, as neural networks often need
to be retrained when new data come in, and the greater volume of data, the more time is
needed in doing so. The second aspect discussed here is the issue of neuronal structure
overfitting. In practice, various types of treatments are often used to address the problem
of overfitting, such as data reorganization, drop-out procedure and the use of a special
penalty function during training. However, the method proposed in the text of the article
solves the problem naturally because removing redundant neurons implies the existence of
fewer points of freedom and, therefore, the likelihood of overfitting being minimized.

For datasets other than that originally used, accuracy was decreased, but it was
disproportionately less when compared to the size of the reduction. As the algorithm is
able to significantly reduce the size of the network with a cost of small performance drop,
it can, therefore, enable the use of previously overlarge networks on devices with less
memory, such as mobile systems. The smaller number of parameters also directly relates to
improvement in the network’s prediction time.

The proposed procedure can be applied as either a supervised or unsupervised algo-
rithm. In the first case, it is necessary to leave the validation sample on the basis of which
the quality of the network computation can be checked in each iteration of neuron removal.
Of course, this is related to more computation time. In the case of treating the reduction
procedure as unsupervised, we can assume in advance the number of neurons we want
to remove.

The above proposal of the neural network reduction algorithm also addresses research
related to the analysis of the significance of individual components of CNN. This is espe-
cially true because, in most cases, neural networks are treated as black-box models, their
internal elements being not subject to analysis. What is more, during the neural network
system synthesis, one does not try to understand the meaning of individual elements but
bases the application exclusively on empiric performance.

Further research plans will be related to understanding and assessing the use of
reduction methods inside CNN neural networks, in particular, in the layers of the fully
connected part. This action will be aimed at reducing the topological structure of the neural
network and, as a consequence, slashing computation time and enhancing the efficiency of
neural computations.
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Abstract: In solving classification problems in the field of machine learning and pattern recognition,
the pre-processing of data is particularly important. The processing of high-dimensional feature
datasets increases the time and space complexity of computer processing and reduces the accuracy of
classification models. Hence, the proposal of a good feature selection method is essential. This paper
presents a new algorithm for solving feature selection, retaining the selection and mutation operators
from traditional genetic algorithms. On the one hand, the global search capability of the algorithm is
ensured by changing the population size, on the other hand, finding the optimal mutation probability
for solving the feature selection problem based on different population sizes. During the iteration
of the algorithm, the population size does not change, no matter how many transformations are
made, and is the same as the initialized population size; this spatial invariance is physically defined
as symmetry. The proposed method is compared with other algorithms and validated on different
datasets. The experimental results show good performance of the algorithm, in addition to which we
apply the algorithm to a practical Android software classification problem and the results also show
the superiority of the algorithm.

Keywords: feature selection; machine learning; asexual; genetic algorithm; android malicious
application detection

1. Introduction

Data classification is one of the tasks of data mining in the field of machine learning
and in the framework of pattern recognition [1]; the quality of the data has a significant
impact on the performance of these data mining methods. When training machine learning
models, irrelevant, redundant, and noisy data have an enormous impact on the time and
the spatial complexity of the machine and can also affect the algorithm’s performance.
Therefore, pre-processing techniques for data are necessary [2]. In machine learning
classification tasks, the dataset’s size determines the number of features in the dataset, but
not all features are helpful for training classifier models, and high-dimensional features
can instead lead to dimensionality disasters. Data dimensionality reduction methods
include feature extraction(FE), where features are transformed into a smaller dimension,
and feature selection(FS) [3], where features are selected from the complete set of features
to build a subset of features without transformation [4]. The method chosen in this paper
is feature selection, the aim of which is to identify the most distinct subset of features in the
whole feature set and thus provide a suitable recognition rate for a particular classifier [5].

Traditional feature selection methods can be divided into three main categories: filter,
wrapper and embedded algorithms. In filter algorithm, the feature selection phase is
carried out independently of the training learner phase. The method uses traditional
information theory, chi-square tests, mutual information and correlation coefficients to
make a rough selection of features. For example, the Mutual Information based Feature
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Selection method [6,7] and the Conditional Mutual Information Maximization [8] etc. These
methods propose to pre-process the feature set and filter out the least relevant features
to reduce the feature set’s dimensionality, but due to the complexity of the formulae and
the high time, complexity can only be used for smaller data sets and pre-classification.
Wrapper algorithm differ from filter algorithm in that the performance results of the learner
determine the selection of a subset of features. Embedded algorithm complete feature
selection and learner training in the same optimization process. Wrapper algorithms select
features mostly in conjunction with machine learning classifiers and intelligent algorithms.
In this paper, the meta-heuristic algorithm decides whether a feature in the full set of
features is added to the feature subset, and the performance of the algorithm determines
the number of features selected, so the use of the algorithm to determine feature selection
belongs to the wrapper algorithm.

Assuming that there are n features in the feature set, the search space for feature
selection is 2n . Feature selection being an NP-hard problem, traversing it to get all possible
solutions is impossible in some cases [9]. Meta-heuristics have the advantages of high
efficiency, superiority, and robustness compared to the traditional greedy algorithm hill-
climbing algorithm and the ability to obtain a solution or several near-optimal solutions
within a sufficient space and time scale, and are therefore increasingly used by researchers
to solve complex optimization problems. As part of the meta-heuristic algorithm, the
evolutionary algorithm is inspired by the phenomenon of biological evolution in nature.
Dr. Holland first proposed the genetic algorithm in 1975 [10], which follows Darwin’s
’survival of the fittest, natural selection’ law of evolution, whereby populations are renewed
by three leading evolutionary operators: selection, crossover, and mutation. However, in
nature, species reproduce not only sexually in pairs but also in a few species that have only
one parent and do not require gametes. The brood itself does not combine with sex cells
to produce offspring such as lower multicellular animals, unicellular plants, algae, ferns,
fungi, and bacteria. These species are characterized by a small number of species and a
single community that can reproduce in a short period. However, this is both an advantage
and a disadvantage; when there is a sudden change in the environment, the community’s
organisms die off in large numbers, indicating that the populations produced by asexual
reproduction are not well adapted. In 2009, J Cantó et al. [11] proposed an asexual
genetic algorithm for solving complex mathematical function maximization problems with
two variables and optimizing the parameters of the chi-square test in model fitting. The
algorithm does not require crossover operators to generate offspring, and offspring are
renewed like the way bacterial cells are divided by a single parent randomly selecting
different points within a narrow domain, and both parents are always retained if they are
more suitable than the offspring. Experimental results showed that this codeless asexual
genetic approach is more efficient than traditional genetic algorithms in solving continuous
optimization problems, and it is also computationally cheap and requires fewer generations
to reach a global solution. In 2010, Alireza Farasat et al. [12] built mathematical models
based on the budding mechanism of asexual reproduction to solve optimization problems
and decision problems. The experimental results proved the convergence of the algorithm.
They verified that the asexual reproduction algorithm has excellent advantages in solving
real-time decision problems by exploring the search space without limiting the convergence
time and has superior performance compared to these swarm intelligence algorithms of
PSO. In 2013, Anabela Simões et al. [13] proposed an asexual permutation genetic algorithm
inspired by the DNA sequence structure discovered by Barbara McClintock in the 1950s.
Unlike the simple permutation of a sexual mechanism, the asexual permutation genetic
algorithm has single parents, while transposons and insertion points are made on a single
individual. The genetic algorithm is compared to genetic algorithms with single, multiple,
and random crossover operators and finds that it always finds better optima than other
sexual reproduction algorithms for both large and small populations. In 2015, Mehrdad
Amirghasemi et al. [14] proposed an effective asexual genetic algorithm to solve JSP
problems, which combined asexual genetics, an elite pool, and tabu search, with the biased
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mutation to increase the diversity of the search space and update to the elite pool used to
balance exploration and exploitation. The results also demonstrated the effectiveness and
efficiency of using this asexual genetic algorithm in solving JSP problems.

The advantages of asexual genetic algorithms in solving optimization problems in
different domains have been reviewed above. The genetic algorithm itself, a discrete coding
approach, is naturally well equipped to solve feature selection problems, and there is a
dearth of research on single asexual genetic algorithms for FS problems, so the following
analysis is given in this paper to demonstrate that the algorithm performs equally well in
solving FS problems. The main contributions of this paper are concluded as follows:

(1) The effect of population size on the genetic algorithm was verified.
(2) There is no crossover operator in the asexual genetic algorithm, so this paper verifies

the effect of different mutation probabilities on the algorithm foe feature selection.
(3) The performance of the improved genetic algorithm is demonstrated in Android

malicious application detection.
(4) The improved genetic algorithm is implemented for feature selection.

The rest of this paper is organized as follows. Section 2 introduces background and
method. Section 3 proposes the algorithm of this paper. Section 4 applies the algorithm to
the Android malware detection problem. Section 5 demonstrates the effectiveness of the
algorithm proposed in this paper through experiments. Section 6 summarizes the article.

2. Background and Method

2.1. Feature Selection

The feature selection problem differs from traditional optimization problems. It is
identified as a discrete binary problem where the search space is an n-dimensional lattice
space of Boolean type, and the solution to feature selection is to display and update at each
corner of the hypercube [15].

Xi = (xi1, xi2, ....xiD), xij ∈ {0, 1} (1)

where xij = 1 represents the j-th feature is selected into the i-th feature subset xi, whereas
xij = 0 means this feature is not selected.

Thus, the feature selection problem can be formulated as the following optimiza-
tion problem: ⎧⎪⎨⎪⎩

max f (X)

s.t.X = (x1, x2, ....xD), xi ∈ {0, 1}
1 � {Xi} � D

(2)

where {X} represents the set of selected feature subsets, i.e., a subset of features. f (X) de-
notes the fitness of the selected feature subset X, which is the accuracy of the classification.

2.2. Genetic Algorithm

The purpose of feature selection is to select some of the most compelling features
from the original features in order to reduce the dimensionality of the dataset. A subset
of the selected features will result in higher classification accuracy [9]. As a class of
optimization problems, many researchers have applied evolutionary algorithms and swarm
intelligence optimization algorithms to this. The particle swarm optimization algorithm
is a collaborative group-based search algorithm that simulates the foraging behavior of
a flock of birds, using the individual extremum pbest and the group extremum gbest to
find the algorithmic optimum (solution) [16,17]. The artificial bee colony algorithm is an
optimization algorithm based on the honey bee colony’s honey harvesting behavior [18].
The grey wolf optimization algorithm, inspired by the predatory behavior of grey wolf
packs, finds optimal solutions through collaboration between wolf packs [19,20]. The
pigeon flocking algorithm simulates pigeon homing behavior with minimal adjustment
parameters and is easy to implement [21]. Genetic algorithm, one of the most classical
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evolutionary algorithms, is a learning method inspired by biology. It is a random search
and optimization algorithm. Genetic algorithms balance the exploration and exploitation of
algorithms through three major evolutionary operators: selection, crossover and mutation,
preventing premature maturation of the algorithm and thus finding the optimal solution.
It has now been widely used in various fields, such as circuit wiring problems, task
scheduling, and machine learning classification tasks. For example, in 1998 Jing-Wein
Wang et al. [22] proposed the use of a genetic algorithm as an evaluation function for
feature selection, which largely improved the performance of the selected subset of features.
The algorithm searches a huge candidate object space and finds the best performing objects
according to the fitness function. Individuals with good fitness will be retained during
the iteration. Flawed individuals are eliminated or selectively mutated to enter the next
iteration. As the iterative process increases, the initial population is updated until the
termination conditions are satisfied, or a certain threshold is reached to obtain the final
individuals. The flow of the above algorithm to solve the FS problem is shown in Figure 1.

Figure 1. Intelligence algorithm optimization model.

The standard genetic algorithm simulates the evolution process of natural organisms,
and the selection operator embodies the environmental selection process of “natural selec-
tion, the survival of the fittest” in the evolution of organisms. The crossover and mutation
operators play a key role in population renewal during the iterative process. The crossover
operator simulates the mating process of individuals in nature, thus increasing the popu-
lation diversity and theoretically improving the global search capability of the algorithm;
unlike the crossover operator, the mutation operator simulates the genetic mutation of
individuals in the population by mutating a gene position of an individual (chromosome)
from the individual itself, thus improving the local search capability of the algorithm.

2.3. Random Forest Algorithm

The random forest algorithm is part of a large branch of machine learning currently
known as ensemble learning. As the name suggests, the algorithm is derived from the
decision tree algorithm, where a number of weak classifiers make predictions and then
the final strong classifier gives the result. The more correlated any two trees in the forest
are, the greater the error rate, while the stronger the classification ability of each tree, the
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lower the error rate of the whole forest, i.e., the random forest integrates the advantages of
each tree’s classification result. The classifiers before the fourth section all use the random
forest algorithm.

3. The Proposed Self-Variant Genetic Algorithm (SV-GA)

3.1. Theoretical Basis

In general, the feature selection problem is encoded in binary, and even if the feature
values correspond to real values, they are mapped to binary space when solving the
problem.To theoretically demonstrate the redundancy of the crossover operator, we first
simulated the process of chromosome change in the algorithm.

A population M(t) with n chromosomes is randomly generated, and each chromo-
some is composed of a string p of size N. Each position i in the string represents the locus
of each chromosome, p_i = 1 means that the feature is selected, p_i = 0 means that the
feature is not selected, that is, the current gene position is assigned a value of 1, and the
number of 1 in the chromosome gene position represents the number of features carried by
the current chromosome. The chromosome initialization code is shown in Figure 2.

Figure 2. Feature encoding method.

To better understand the advantages of asexual genetic algorithms in feature selection,
this paper proposes to analyze its principles by fictionalizing different individuals.

Individual 1 with random 0–1 sequence, as shown in Figure 3:

Figure 3. Individual 1.

Individual 2 with random 0–1 sequence, as shown in Figure 4:

Figure 4. Individual 2.

Individual 3 with random 0–1 sequence, as shown in Figure 5:

Figure 5. Individual 3.

In a standard genetic algorithm, two different or identical chromosomes can be crossed
by a single point to obtain a new and different chromosome from the parent, that is,
randomly find a cut, exchange its head or tail to obtain a new individual, and reproduce

249



Symmetry 2021, 13, 1290

the process biological reproduction. The single-point crossing process of the above two
benign individuals is as follows:

The single point of intersection of individual 1 and individual 2 is shown in Figure 6:

Figure 6. Schematic diagram of single point crossing.

Get new offspring individuals 3, 4, as shown in Figure 7:

Figure 7. Crossingto produce new individuals.

The Individual 2 mutates to obtain the Individual 3 situation, as shown in Figure 8:

Figure 8. Schematic representation of the changes in individuals after mutation.

From the above crossover variation process, it is clear that the paternal chromosome
crossover may only change the value of one gene locus, with no change in the rest of
the gene locus other than the crossover point, and the same is true for two-point and
multi-point crossovers, where only the value of the gene near the crossover point changes.

3.2. Fitness Function

In machine learning classification tasks, the accuracy of the classification is usually
used as a fitness function. Still, for feature selection problems, the fitness function is
determined not only by considering the classification accuracy but also by taking into
account the number of feature subsets. When different algorithms have the same accuracy,
it is better to choose the algorithm with fewer features. The fitness function is defined
as follows:

Fitness(Xi) = f (Li), f (Li) =
correctly predicted samples

total number o f samples
(3)

Fitness = α f (Li) + β
n
N

(4)

where Xi and Li are the i-th individual and corresponding feature subset, f (Li) is the
accuracy of the random forest classifier, n is the number of features selected, and N is the
number of features in the dataset, where α usually takes 0.99 and β takes 0.01 as know
in [23].

3.3. The Algorithm Flow of the SV-GA

According to the above description, we can find that in solving the feature selection
problem, what affects the accuracy of the classifier is the number of selected feature bits
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in the individual, i.e., the number of sign bits of 1. Then the corresponding ones in the
genetic algorithm are the gene bits of each chromosome. When the chromosome undergoes
mutation, each gene bit can be operated by changing 0 to 1 and 1 to 0. At this point we can
roughly assume that a single mutation operation can satisfy the needs of the features when
performing classification. The steps of its application in feature selection are as follows:

Step1: Initialize the population N, t is the number of current iterations, and the total
number of features is P.

Step2: Calculate the fitness value of individuals in the current population, and obtain
the fitness value F(n) of each chromosome after n calculations, that is, obtain the fitness
value of each individual with different characteristics.

Step3: Selection. In the SV-GA algorithm, the selection method is tournament selection,
and the number of individuals selected each time is 3, and the tournament selection method
is replacement sampling. Three individuals are randomly selected from the population to
calculate their fitness, and the better individual directly enters the next generation.

Step4: Mutation. According to a certain mutation probability, a mutation operation is
performed on each chromosome in the population, and the mutated individuals differ from
those after the selection operation and carry different characteristics, and these individuals
with different characteristics constitute a new population.

Step5: Algorithm termination conditions. If it satisfies the artificially set number of
iterations, the algorithm terminates, set the number of iterations then output the feature
subset selected by the algorithm and skip to Step6 at the end of the iteration. If not, then
execute Step2.

Step6: Output results. The individual with the highest fitness value is output and the
feature with a gene position of 1.

3.4. Computational Complexity Analysis

In SV-GA, the factors affecting the time complexity of the algorithm are not only the
population size N, but also the number of iterations t. The feature selection problem, as a
class of optimization problems, aims to improve the classification accuracy by reducing
the number of features for training, and the dimensionality D of the features in the sample
set also affects the efficiency of the algorithm in the process of algorithm optimization. In
summary, the time complexity of the algorithm can be summarized as O(t ∗ N ∗ D), and
the number of individuals in the population and the feature dimension are the main factors
affecting the computational complexity.

3.5. Numerical Analysis

The SV-GA changes the iterative process of the traditional genetic algorithm, and
increases the diversity of individuals in the population by changing the population size.
The impact of mutation operations on the performance of the algorithm should not be
underestimated. In this section we first verified the effect of different mutation probabilities
on the algorithm, comparing the performance of GA and SV-GA, and then we verified
the effect of different population sizes on the algorithm. All results are mean results from
10 independent runs with 100 iterations.

3.5.1. Datasets

To verify the effectiveness and applicability of the algorithms, this paper uses SV-GA
to test on different UCI standard binary classification test datasets [24]. Table 1 provides
the name of the dataset, the number of samples contained in the dataset, the total number
of features, and the number of features selected by different algorithms.
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Table 1. Dataset Properties.

No. Dataset Number of Samples Number of Features

D1 SPECT Heart 267 22
D2 CMC 962 9
D3 Sonar 207 60
D4 Credit6000 6000 65
D5 Heart-statlog 270 13
D6 Spambase 4600 57

3.5.2. Results with Different Mutation Rate

In the meta-heuristic algorithm, the search operator will deal with the overall selection
pressure, convergence problem, randomization, and diversity, which are all dedicated
to exploration and exploitation [25]. Based on the characteristics of the feature selection
problem, we retain the selection and mutation operators in the SV-GA algorithm. On the
one hand, we change the number of initial population sizes to increase the diversity of
the population, i.e., to improve the global search capability of the algorithm, and on the
other hand, we experimentally verify the effect of the mutation rate on the accuracy while
keeping the population size constant. This subsection is to verify the effect of mutation
probabilities on the performance of SV-GA.

To ensure that the variables are unique, the population size for the results of the
iterative curve shown in Figure 9 is set to 30 (pop = 30). The results on the six datasets show
that the algorithm performs poorly when the mutation rate is set to 0.01, 0.02 and 0.6. The
results on all six datasets are the worst when the rate is 0.01. It is not difficult to analyze
that the performance of the genetic algorithm with the crossover operator omitted depends
on the magnitude of the variance, and when the variance is set to 0.01, the algorithm is
close to 0 variance, i.e., the features involved in the classification are initialized features,
the structure of the population does not change significantly and the algorithm falls into a
local optimum solution. Overall, on both the SPECT heart and the Spambase, the algorithm
performed optimally when the probability of variation of the algorithm was set to 0.2,
when the population was best adapted.

Figure 9. The evolutionary curves of different mutation rate for datasets.
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3.5.3. Comparison between GA and SV-GA

Table 2 shows the parameter settings for GA and SV-GA when comparing experiments
on different UCI datasets.

Table 2. Parameter settings.

Algorithms Parameter Value

population 30
GA Selection Tournament Tournize = 3

Crossover One-point Cxpb = 0.5
Simple Mutate Mupb = 0.2

population 30, 50, 100
SV-GA Selection Tournament Tournize = 3

Simple Mutate Mupb = 0.2

The iteration curves shown in Figure 10 show a comparison of the algorithms for GA
and SV-GA. The algorithms were both iterated 100 times, with a population size of 30 for
both GA and SV-GA and a mutation probability of 0.2, with a crossover probability of
0.5 for the former. From the experimental results, it is easy to see that the fitness value
of SV-GA is increasing with the number of iterations. The effect is more evident on the
SPECT Heart, CMC, Sonar, Credit6000, and Spambase datasets, while in Heart-statlog, the
fitness value of the algorithm is unstable if not as good as GA. Still, the algorithm later
convergence is faster than the former. It is easy to see from the graphs of the iterations of the
two algorithms on different datasets that the asexual genetic algorithm has an advantage
in solving the feature selection problem.

Figure 10. The evolutionary curves of GA and SV-GA.

3.5.4. Symmetry Theory and Algorithms

Symmetry is defined in both mathematics and physics. Mathematically, symmetry
is defined as graphical symmetry and numerical palindromes; physically, symmetry is
defined as invariance after some operation, both in time and space. In the asexual genetic
algorithm proposed in this paper for solving the feature selection problem, the population
size does not change due to a change in strategy. For example, if the number of individuals
in the initialized population is 30, then as the number of iterations increases, the number of
individuals remains at 30. The optimal solution is the best value (maximum or minimum)
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among the 30 individuals when solving the optimization problem. Therefore, in the
following subsection, we verify the algorithm results for population sizes of 30, 50, and
100, respectively.

3.5.5. Results of the Population Size

A comparison of the fitness values of the standard GA with those of the SV-GA
algorithm for different population sizes is shown in Table 3, where the SV-GA algorithm
selects the operator for tournament selection and the mutation probability is set to the
best mutation probability of 0.2 as experimentally demonstrated above. Analysis of the
values in this table shows that the algorithm with a population size of 100 performs
better than the algorithm with population sizes of 30 and 50 while keeping the variation
probability constant.

Table 3. Mean and standard deviation results of acc on fitness and its competitors for six Datesets.

GA SV-GA(30) SV-GA(50) SV-GA(100)
Mean (Std) Mean (Std) Mean (Std) Mean (Std)

D1 0.865 (0.006) 0.882 (0.003) 0.887 (0.008) 0.897 (0.006)
D2 0.752 (0.008) 0.747 (0.004) 0.748 (0.006) 0.755 (0.007)
D3 0.868 (0.015) 0.871 (0.012) 0.882 (0.013) 0.887 (0.013)
D4 0.846 (0.002) 0.849 (0.001) 0.849 (0.002) 0.850 (0.002)
D5 0.891 (0.018) 0.894 (0.020) 0.898 (0.016) 0.904 (0.012)
D6 0.938 (0.002) 0.939 (0.001) 0.940 (0.002) 0.943 (0.002)

The reason for this is that the local search capability of the algorithm is stable when
the variation probability is constant, while the more individuals within the population, the
greater the diversity of the population, i.e., the greater the global search capability of the
algorithm. By varying the population size and variation probability, the SV-GA balances
the exploitation and exploration capability of the algorithm, thus facilitating the algorithm
to find the global optimal solution.

4. Android Malicious Application Detection Based on SV-GA Algorithm

Feature selection is an important step in processing classification tasks and in the pre-
processing phase of data mining, with the aim of improving the accuracy of the classifier.
In order to verify the performance benefits of the proposed algorithm, we apply it to the
Android malicious application detection problem and propose a framework process to
solve the problem.

4.1. Android Malicious Application Detection

With the continuous advancement of time and the increase in the number of third-
party application markets, many researchers have explored the detection methods of
Android malicious applications from a software perspective to achieve the purpose of
protecting system stability. In this paper, we focus on solving the security problem at
the application level of Android by compiling the corresponding feature sets based on
the source code information obtained by the decompiler tool and feeding them into the
classifier model for training to classify benign and malicious applications. Due to the
high dimensionality of the acquired feature attributes, it inevitably causes a dimensional
disaster or increases the time and space complexity of model training, which affects the
efficiency of Android malicious application detection. It is vital to choose a suitable feature
selection method to reduce the number of features while improving the accuracy of the
classification model.

Malicious application detection methods are frequently updated and changed with
the deepening of research. The main research trends are in the following two aspects: one is
based on the improvement of a single machine learning classification algorithm; the other
is based on the study of feature selection methods. Machine learning methods are currently
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the most widely used technical means in the artificial field. The classification methods in
supervised learning play a driving role in the detection of Android malicious applications
(such as the KNN algorithm, Naive Bayes algorithm, Logistic Regression, and Decision Tree
algorithm). The disadvantage is that the training model speed needs to be improved, and
it can only make a simple judgment of the malicious software that has already appeared on
the market and cannot realize the detection of unknown types of applications. Feizollah A,
Nor B, Salleh R et al. [26] evaluated the performance of K-means and Mini batch K-means
clustering algorithms in Android malware detection and analyzed the network traffic of
benign and malware on two algorithms. The result showed that the overall performance
of the Mini batch K-means clustering algorithm was better than the K-means algorithm.
Nath, Hiran V et al. [27] applied the classification algorithm in machine learning to features
such as n-gram model and byte sequence extracted from malware. The algorithm included
classification methods such as decision trees and boosted decision trees. The results proved
the machine learning classification algorithm could realize the simple classification of
malware. However, only using machine learning algorithms to judge the quality of the
application is slightly thin. Rajesh Kumar et al. [28] proposed a method based on the
combination of probabilistic statistical analysis and machine learning algorithms to reduce
the dimensionality of features and achieved classification between known and unknown
benign and malicious software.

Android malicious application detection based on feature selection method is divided
into static analysis and dynamic analysis methods [29]. Static analysis involves obtaining
the source code of an Android application by decompiling software without running the
application, analyzing it to extract relevant syntactic and semantic information, permission
information in configuration files, intent, the corresponding API calls, etc., coding and
mapping its code integration into vector space, and combining it with machine learning
classification in order to achieve malicious application classification. In contrast, dynamic
analysis is similar to the black-box testing of software. The source code structure is not taken
into account, and only relevant features are obtained during the installation or use of the
application, such as network traffic analysis, application power consumption, user behav-
ioral features. Dynamic analysis has the advantage of a large feature selection space and a
wide range of input classifiers. For example, Zarni Aung et al. [30] extracted single permis-
sion as a feature for training, designed and implemented a framework based on machine
learning technology classify malware and benign software. Shanshan Wang et al. [31] con-
ducted an in-depth study on the behavior of network traffic generated by the application
during use, mapped the mobile terminal traffic information flow to the server-side, ana-
lyzed the network traffic characteristics, and combined the C4.5 algorithm to complete the
detection of malicious applications. Du W, Yin H et al. [32] proposed a method to describe
Android malware that relied on API calls and package-level information in bytecode and
determined the category of unknown application software based on known Android mali-
cious applications. Compared with the classifier based on permission features, the KNN
classifier’s accuracy was as high as 99%. Daniel Arp et al. proposed a lightweight detection
framework: Drebin [33]. This method extensively collected application characteristics
(permissions, hardware combinations, etc.) obtained from static analysis and mapped them
to the joint vector space, using traditional PCA to reduce dimensional method selection
features. The biggest advantage of this framework is the ability to identify malicious
applications on smartphones directly. Wang W, Gao Z, Zhao M et al. [34] proposed an
Android malicious application detection model: DroidEnsemble. The classification features
in the model analyze static string features such as permissions in each application code
pattern and include structural feature s such as control flow graphs and data flow graphs,
such as function call graphs. The results of classifying these two types of features show
that the model’s detection accuracy is greatly improved, while the false alarm rate is also
reduced. The approach based on feature selection has certain advantages, but it can lead
to the high dimensionality of the feature combinations, leading to the high complexity of
the algorithm’s training process in space and time and affects the accuracy of the machine
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learning and data mining methods. Therefore, the selection of features with good detection
performance is key to the method.

4.2. Construction of Feature Sets

Feature selection aims to reduce the number of features used for classification while
maintaining classification accuracy [35]. Based on the dynamic and static analysis men-
tioned above, we have chosen the static analysis method to classify the software. One
is that the static analysis method is not only simpler but also less harmful to mobile de-
vices. When using a mobile device, the application will request a permission to respond
during installation and the system will simultaneously check whether the permission is in-
voked. Permissions become one of the indispensable static features for detecting malicious
Android applications [36].

4.3. APK Pre-Processing

The Android application package (APK) of the third-party application market is
not presented in source code but is similar to the packaged file format (zip). In order to
obtain the information in the package, it is necessary to use a decompiler tool to realize
the pre-processing of APK decompression. The tool used in this article, Apktool [37], is
a lightweight decompilation tool, a closed binary Android application tool, which can
decode resources and applications into the most primitive state of java source code, and
automatically realize file structure processing. It can be used locally and supports multiple
platform analysis applications. As shown in Figure 11 is the file resource list obtained by
decompiling a real Android application using this apktool tool.

Figure 11. Example of file resource list.

After decompiling the APK, it can see the permission information in the total con-
figuration file Androidmanifest.xml. Figure 12 shows a partial list of permissions for a
test APK. P is the total set of possible permissions that some applications in the android
platform can request. Moreover, each android application is represented in the framework
of the required permission set. Therefore, assuming that the size of P is N, each application
is represented by a binary string p of size N, where each position i of the string represents
the i-th permission in a set of possible permissions, so that p_iin0, 1. If the application does
not need permission i, then p_i = 0; if the application requires permission i, then p_i = 1.

Figure 12. Example of file resource list.

4.4. Coding

When classifying Android malware, permission features are binary coded in such
a way that if total permission sets of Android applications are defined as P, then the
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permissions applied by each software are N(N <= P), coded one by one, and if a feature
in permission set P appears, then a permission bit in N is flagged as 1, otherwise it is 0. An
example of matching permissions for a single application is shown below :

0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,
0,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0,0,0,1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,0,1

There are 88 permission bits in this example. The exact number of settings is described
in the numerical experiments section. When each benign application is developed, the
permissions applied are very few (compared to the official permission set). The number of
“1” s in the gene position of each chromosome is relatively small. The number of permissions
requested by malicious applications is greater than or equal to that of benign applications.

4.5. System Framework

This paper proposes a system model based on the permissions requested by Android
applications, including three modules: decompilation, feature selection, and application
classification. The block diagram of Android malicious application detection is shown in
Figure 13. The proposed model consists of the following modules:

1. Decompilation module. Use the decompilation tool “Apktool” [37] to decompress
each application package file to obtain the total configuration file Androidmani-
fest.xml of the application and obtain the permission list for each APK. All the
extracted permissions are used as the original feature set.

2. Feature selection module. This module optimizes the original data set and selects the
feature subset that dramatically impacts the classification effect. The original subset is
randomly selected as the initial iterative group, then iterated through the improved
genetic algorithm to screen the group, and finally, get the set of permission features
that optimize the classification effect.

3. Classification module. The feature data set extracted by the decompiler module is
selected by an asexual genetic algorithm to obtain a feature subset, which is fed into
a machine learning classifier for training, and its classification accuracy judges the
feature selection method to achieve the classification of Android software.

Figure 13. System model diagram.

5. Experimental Research

In this subsection, the feasibility of the asexual genetic algorithm for binary feature
selection is further demonstrated with experimental data using different data sets and
comparisons between different feature selection methods.
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5.1. Numerical Verification

There are 1788 benign samples and 932 malicious samples in the experimental data of
this paper. Among them, 532 malicious samples are from the Canadian Institute of Cyber
Security [38], the samples contain typical Android platform malware, such as malicious
ransomware applications, threatening SMS applications, and advertising applications;
there are also 400 malicious samples from the data set of Dr. Wang’s repository (http:
//infosec.bjtu.edu.cn/wangwei/?page_id=85 (accessed on 17 July 2020)). Total 188 benign
Android applications, mainly from Google play and Xiaomi App Market. After security
testing, these apps are released to the app market and are therefore deemed benign and
safe. Besides, there are 1600 benign samples from Dr. Wang’s database.

5.1.1. Permission Description

The number of permissions matched by the samples from Canadian Institute, Google
play market, and Xiaomi app market is the official 144 permissions, while the number of
permissions given by Dr. Wang’s dataset is the most frequently selected 88 permissions after
filtering, so the number of permissions for unified features in this paper is set to 88. The
88-feature datasets are input to logistic regression (LR), random forest (RF), Gaussian Naive
Bayes (GNB) and K-nearest neighbor (KNN) classifiers for training and testing, respectively.

5.1.2. Classifier Model Evaluation

The primary objective when classifying Android applications is to flag malicious
applications from the list, as only malicious software poses a risk to the system and user
security, and not all software can be correctly classified when the classifier is trained, so
we need an confusion matrix to describe the different types of errors and measure the
severity of the errors separately. In the confusion matrix, as shown in Table 4, each column
represents the instances in a predicted class, and each row represents the instances in
an actual class. A specific table layout allows visualization of the performance of the
classifier [17]. In this article, the positive class represented malicious applications, and the
negative class represented benign applications.

Table 4. Classification results of the four classifiers under 88 permission features.

Malware Class Benign Class

Malware prediction TP FP
Benign prediction FN TN

Let TP (True Positive) be the number of malicious applications correctly predicted as
Android malware. FP (False Positive) be the number of benign applications incorrectly
predicted as Android malware. FN (False Negative) is the number of malicious applications
that are incorrectly detected as benign applications, and TN (True Negative) be the number
of benign applications correctly detected as benign applications. The following is the
evaluation standard formula of the classifier:

Sample Accuracy (ACC) represents the percentage of the overall data set that is
correctly classified. The higher the ACC value, the better the classification effect. It is
defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(5)

True positive rate (TPR) represents the probability that a positive sample will be
correctly predicted as positive. The higher the value, the more effective the classifier is. It
is defined as follows:

TPR =
TP

TP + FN
(6)
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False Positive Rate (FPR) represents the probability that a negative sample is falsely
predicted to be positive. The higher the value, the worse the effect of the classifier. It is
defined as follows:

FPR =
FP

FP + TN
(7)

Precision (P) represents the probability that a positive sample is predicted to be
positive, and is defined as follows:

P =
TP

TP + FP
(8)

Recall is the probability that a positive sample is predicted to be positive, and the
equation is the same as the true rates. It is defined as follows:

Recall =
TP

TP + FN
(9)

F1-score (F − S) This indicator considers both precision rate and recall rate, so that
both reach the highest at the same time, defined as follows:

F − S =
2 · P · Recall
P + Recall

(10)

In order to find a classifier that makes the best classification performance among
many machine learning classification models, this paper uses unselected (unpreprocessed)
datasets of features input to different classifiers, relying on the goodness of the above classi-
fication metrics to determine the classification model applied in the following comparison
experiments. The experimental results are shown in Table 5.

Table 5. Classification results of the four classifiers under 88 permission features.

No. Classifier ACC TPR FPR F − S

1 LR 0.901 0.833 0.097 0.372
2 RF 0.867 0.958 0.136 0.337
3 GNB 0.955 0.958 0.136 0.337
4 KNN 0.933 0.208 0.018 0.247

The purpose of feature selection is to improve the classification accuracy while reduc-
ing the number of features for training the classification model; therefore, high precision
and high true rate become the indicators for judging the good and bad pairs of classification
models. The experimental results show that the GNB has the highest ACC and TPR and the
model’s best overall performance when classifying the dataset without feature selection.

5.2. Discrete and Continuous Algorithms

In a feature selection optimization problem, the search space is a hypercube, and
all solutions lie only at values of 0 or 1 [20]. Genetic algorithms do not require changes
to them in solving FS problems due to their natural discrete encoding. In contrast, in
swarm intelligence algorithms such as GWO, WOA, and ACO, where the search range of
the algorithm is a continuous space, many researchers have proposed a binary form of
the algorithm in order to enable optimization of discrete problems. Kennedy proposed a
binary version of PSO in 1997 [39], and much work has been done around this version. The
algorithm uses a sigmoid function to map a vector in continuous space to a two-dimensional
space, and the mapping equation is shown below.

S
(

Xt
ij

)
=

1

1 + e−Xt
ij

(11)
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Xt+1
ij =

{
1 i f S

(
Xt

ij

)
> σ

0 otherwise
(12)

Xt+1
ij =

⎧⎨⎩
(

Xt
ij

)−1
i f T

(
Xt

ij

)
> σ

Xt
ij otherwise

(13)

In addition to this, four S-shaped and V-shaped mapping functions were introduced by
Shahrzad Saremi et al. [40] to transform the continuous space. The equation for the change
in Xt+1

ij when using the S-shaped mapping function is Equation (12) and for the V-shaped
mapping function is Equation (13). The mapping functions are shown in the Table 6. Any
of the continuous optimization algorithms can achieve binary conversion by means of
S-shaped and V-shaped map functions.

Table 6. S-shaped and V-shaped mapping functions.

S-Shaped V-Shaped

S1 T(x) = 1
1+e−2x V1 T(x) =

∣∣∣∣√2
π

∫ (√π/2)x
−0 et2

dt
∣∣∣∣

S2 T(x) = 1
1+e−x V2 T(x) = |tanh(x)|

S3 T(x) = 1
1+e−(x/2) V3 T(x) =

∣∣∣(x)/
√

1 + x2
∣∣∣

S4 T(x) = 1
1+e−(x/3) V4 T(x) =

∣∣∣ 2
π arctan

(
π
2 x

)∣∣∣
5.3. Comparison Algorithm and Their Parameter Setting

The purpose of feature selection is to select a subset of feasible features by eliminating
irrelevant, redundant, or noisy features [41]. In order to evaluate the proposed algorithm,
a number of existing feature selection algorithms were selected, such as the grey wolf
optimization algorithm(GWO) [42], the whale optimization algorithm(WOA) [43] and the
ant colony algorithm(ACO) [44]. The methods used in evolutionary algorithms to solve
the feature selection problem are as follows:

• Traditional genetic algorithms [10];
• A new binary version of the grey wolf optimization algorithm [23];
• S-type binary whale optimization algorithm [45];
• Ant colony algorithm for binary encoding [46]

In order to be fair, the proposed algorithm is compared with these algorithms under
the same parameter settings. The population size for all algorithms is 30, except for the
population size for SV-GA, the number of runs is equal to be 10, the iterations is equal to 100.
In [46], this paper draws on the parameter settings of α and β in the ant colony algorithm
tested in that paper to get the best results, so that α = 1 and β = 3, for comparison with the
algorithm in this paper. To verify the performance of the proposed algorithm, we divide
each dataset into a training set and a test set, e.g., k-fold cross-validation, dividing the
sample set into k subsamples of equal size, selecting k−1 subsamples as the training set
and all the remaining subsamples as the test set. Among the many supervised classifiers,
we choose the better-performing GNB.

5.4. Experimental Results and Analysis
5.4.1. Fitness Performance

In the simulation experiments section, we compare the SV-GA algorithm with pop-
ulation sizes of 30, 50, and 100 with the GA, GWO, ACO, and WOA algorithms. All
experimental data are mean results of independent runs.

Table 7 shows the statistical results using Equation (4) as the fitness function. To
show that our proposed algorithm’s performance is significantly better than that of the
comparison algorithms, we used a non-parametric statistical test: Wilcoxon rank-sum test
with a significance level of α = 0.05. The null hypothesis is that the proposed algorithm is
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not significantly different from the comparison algorithm, and the alternative hypothesis
is that the proposed algorithm is significantly different from the comparison algorithm.
We use the symbols +,=,− to indicate that the proposed algorithm’s performance is
significantly better, no significant difference, and significantly inferior to the corresponding
comparison algorithm.

Table 7. Comparison of Fitness results on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std)

Android
Dataset

0.922(0.004)+ 0.927(0.003)+ 0.930(0.003)+ 0.936(0.002) 0.947(0.005)− 0.935(0.004)+ 0.925(0.004)+

SPECT Heart 0.865(0.006)+ 0.882(0.003)+ 0.887(0.008)+ 0.897(0.006) 0.801(0.033)+ 0.830(0.029)+ 0.856(0.012)=
CMC 0.752(0.008)= 0.747(0.004)+ 0.748(0.006)= 0.755(0.007) 0.647(0.028)+ 0.644(0.048)+ 0.733(0.009)+
Sonar 0.868(0.015)+ 0.871(0.012)+ 0.882(0.013)= 0.887(0.013) 0.755(0.011)+ 0.750(0.045)+ 0.878(0.020)+
Credit6000 0.846(0.002)+ 0.849(0.001)= 0.849(0.002)= 0.850(0.002) 0.842(0.004)+ 0.774(0.061)+ 0.841(0.002)+
Heart-statlog 0.891(0.018)= 0.894(0.020)= 0.898(0.016)= 0.904(0.012) 0.709(0.058)+ 0.725(0.125)+ 0.841(0.029)+
Spambase 0.938(0.002)+ 0.939(0.001)+ 0.940(0.002)+ 0.943(0.002) 0.926(0.012)+ 0.833(0.047)+ 0.921(0.003)+
+/−/= 5/0/2 5/0/2 3/0/4 6/1/0 7/0/0 6/0/1

As can be seen from the table, the fitness value of SV-GA with an initial population
size of 100 on the Android, SPECT Heart, CMC, Sonar, Credit6000, Heart-statlog, and
Spambase data sets are all higher than those of traditional GA and SV-GA of population
size of 30 and 50, the fitness values are 93.6%, 89.7%, 75.5%, 88.7%, 85.0%, 90.4%, and 94.3%.
When compared with other algorithms, WOA has the best performance on the Android
dataset. In addition, the fitness value of SV-GA with a population size of 100 far exceeds
other algorithms. The results of the statistical tests showed that on the Android dataset,
SV-GA(100) results were significantly more significant than the other algorithms on the
Android dataset, except for the non-significant results compared with the GWO algorithm.
On the SPECT Heart dataset, WOA was not significantly different, and the results were
significant on the rest of the datasets. On the CMC, Sonar, Credit6000, Heart-statlog, and
Spambase datasets, the results were significant compared to the GWO, ACO, and WOA
algorithms. Overall, SV-GA(100) ranked first in terms of performance.

5.4.2. Classification and Selected Features

Table 8 shows the results of using Equation (3) as the fitness function. Unlike
Equation (4), Equation (3) does not take into account the number of features, and the
results of the classifier are used directly as the fitness function. From the experimental re-
sults in Table 8, the performance of the genetic algorithm without the crossover operator is
worse than that of the traditional genetic algorithm on the SPECT Heart, CMC, Credit6000,
and Heart-statlog datasets. The reason for this result is, on the one hand, because of the
small number of samples in the dataset and the relatively small number of features in the
examples. When no crossover operation is performed, the population’s diversity is not
guaranteed. The algorithm tends to fall into premature maturity, making it difficult to
find the global optimal solution. The results in Table 9 show that on the seven datasets of
Android, SPECT Heart, CMC, Sonar, Credit6000, Heart-statlog, and Spambase, the SV-GA
with a population size of 100 selected the smallest proportion of features in more than
half of the datasets, which is consistent with the goal of optimizing the feature selection
problem, i.e., is the accuracy of the classifier is not high, and the number of features selected
is low. Still, the final results obtained for both in proportion to specific parameters indicate
that the algorithm performance is good. It can be demonstrated that the algorithm has
some advantage in solving the FS problem. The graphical results of Tables 8 and 9 are
shown in Figure 14a,b. The red bars are the algorithms compared with other algorithms in
all experiments.
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Table 8. Comparison of ACC results on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std) Mean(std)

Android
Dataset

0.917(0.004) 0.923(0.002) 0.941(0.004) 0.940(0.004) 0.947(0.005) 0.935(0.004) 0.925(0.004)

SPECT Heart 0.925(0.004) 0.811(0.006) 0.817(0.010) 0.860(0.008) 0.801(0.033) 0.830(0.029) 0.856(0.012)
CMC 0.900(0.072) 0.762(0.009) 0.821(0.103) 0.806(0.064) 0.647(0.028) 0.644(0.048) 0.733(0.009)
Sonar 0.884(0.014) 0.886(0.012) 0.871(0.012) 0.869(0.009) 0.755(0.011) 0.750(0.045) 0.878(0.020)
Credit6000 0.855(0.001) 0.853(0.002) 0.854(0.002) 0.849(0.001) 0.842(0.004) 0.774(0.061) 0.841(0.002)
Heart-statlog 0.958(0.027) 0.824(0.010) 0.892(0.011) 0.862(0.013) 0.709(0.058) 0.725(0.125) 0.841(0.029)
Spambase 0.936(0.003) 0.950(0.002) 0.947(0.002) 0.951(0.002) 0.926(0.012) 0.833(0.047) 0.921(0.003)

Table 9. Comparison of feature number on different algorithms for different datasets.

Datasets
GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

SF(%) SF(%) SF(%) SF(%) SF(%) SF(%) SF(%)

Android
Datase

46.5(52.84) 47.9(54.43) 46.8(53.18) 43.307(49.213) 43.800(49.773) 42.5(47.852) 64.400(73.182)

SPECT Heart 11.5(52.27) 10.5(47.73) 12.2(54.45) 9.9(45) 11.8(53.636) 17.4(79.090) 8.1(36.818)
CMC 6(66.67) 5.6(62.22) 3.9(43.33) 3.769(41.880) 3.9(43.333) 5.5(61.111) 5(55.556)
Sonar 29.6(49.33) 32.6(54.33) 31.3(52.17) 29.6(49.33) 27(45) 31.7(47.692) 22.4(37.333)
Credit6000 31.9(49.08) 30.7(47.23) 34.5(53.08) 31.7(48.77) 32.7(50.308) 31(47.692) 6.1(9.384)
Heart-statlog 7.368(56.680) 9(69.23) 7.6(58.46) 6.227(47.902) 7(53.846) 8(61.538) 4.9(37.692)
Spambase 32.1(56.32) 34.2(60) 32.3(56.67) 27.176(47.678) 27.6(48.421) 35.9(62.982) 40.2(70.526)

(a) Comparison of accuracy of different datasets (b) Comparison of the number of features in
different datasets

Figure 14. Comparison between different methods and different datasets on ACC and SF.

5.4.3. Running Time

In this paper, the SV-GA is influenced not only by the initial population size but also by
the variation rate. Table 10 shows the mean results for ten independent runs of the different
algorithms. It is easy to see from the results that the GA times are much higher than the
SV-GA for arbitrary populations. The reason for this result is that the crossover operator
increases the algorithm’s time complexity. When compared to the other algorithms, GWO
takes the least time, which may depend on the co-evolutionary strategy of the algorithm
itself to speed up finding the optimal solution. Still, the overall SV-GA time does not pull
away from this algorithm by a large margin, and to some extent, there is no significant gap.
When solving the feature selection problem, the time complexity depends heavily on the
number of samples and the number of features. For example, Credit6000 has the highest
number of instances of any of the seven datasets, so no matter how well the algorithm
performs, the time on that dataset is bound to exceed that on any of the remaining datasets.
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Table 10. Comparison of running-time on different algorithms for different datasets.

Datasets GA SV-GA(30) SV-GA(50) SV-GA(100) GWO ACO WOA

Android
Dataset 102.739 10.195 9.254 9.174 8.595 10.265 198.043

SPECT Heart 57.345 4.582 4.559 5.405 3.229 1.360 14.501
CMC 70.033 5.403 6.032 7.025 3.278 11.812 39.057
Sonar 99.635 4.938 5.573 6.459 4.189 3.865 11.678
Credit6000 70.528 33.297 35.857 52.305 15.421 217.895 391.099
Heart-statlog 59.316 4.770 5.267 6.453 3.134 4.455 11.919
Spamabse 247.696 19.128 23.238 22.507 10.612 91.235 445.082

5.5. Discussions

It is necessary to understand the drawbacks of each proposed stochastic algorithm.
The algorithm proposed in this paper is designed to solve the specific optimization problem
of feature selection, and the crossover operator redundancy is only for this class of opti-
mization problems; the method may not be effective when solving continuous optimization
problems. Secondly, the FS problem is optimized for a dataset, and the number of samples
and the dimensionality of the data features are the most critical factors affecting the running
time of the algorithm, so how to apply the algorithm to high-dimensional instances without
increasing the computational complexity is a significant task for future research.

6. Conclusions

By summarizing the characteristics of the asexual genetic algorithm and analyzing the
feature selection problem, we use the asexual genetic algorithm for the first time to solve
the feature selection problem. The article demonstrates for the first time the advantages of
the asexual genetic algorithm for solving this type of problem from a theoretical point of
view, followed by the development and exploration ability of the algorithm by changing the
population size and mutation rate to balance the algorithm to get the best variation rate for
solving this type of problem, and finally the algorithm is used to solve the actual problem
of Android Malware Application Detection, the results demonstrate that the algorithm is a
feasible alternative in solving the feature selection problem.
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Abstract: Recurrent neural networks (RNNs) are powerful tools for learning information from
temporal sequences. Designing an optimum deep RNN is difficult due to configuration and training
issues, such as vanishing and exploding gradients. In this paper, a novel metaheuristic optimisation
approach is proposed for training deep RNNs for the sentiment classification task. The approach
employs an enhanced Ternary Bees Algorithm (BA-3+), which operates for large dataset classification
problems by considering only three individual solutions in each iteration. BA-3+ combines the
collaborative search of three bees to find the optimal set of trainable parameters of the proposed deep
recurrent learning architecture. Local learning with exploitative search utilises the greedy selection
strategy. Stochastic gradient descent (SGD) learning with singular value decomposition (SVD) aims to
handle vanishing and exploding gradients of the decision parameters with the stabilisation strategy
of SVD. Global learning with explorative search achieves faster convergence without getting trapped
at local optima to find the optimal set of trainable parameters of the proposed deep recurrent learning
architecture. BA-3+ has been tested on the sentiment classification task to classify symmetric and
asymmetric distribution of the datasets from different domains, including Twitter, product reviews,
and movie reviews. Comparative results have been obtained for advanced deep language models and
Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms. BA-3+ converged
to the global minimum faster than the DE and PSO algorithms, and it outperformed the SGD, DE,
and PSO algorithms for the Turkish and English datasets. The accuracy value and F1 measure have
improved at least with a 30–40% improvement than the standard SGD algorithm for all classification
datasets. Accuracy rates in the RNN model trained with BA-3+ ranged from 80% to 90%, while the
RNN trained with SGD was able to achieve between 50% and 60% for most datasets. The performance
of the RNN model with BA-3+ has as good as for Tree-LSTMs and Recursive Neural Tensor Networks
(RNTNs) language models, which achieved accuracy results of up to 90% for some datasets. The
improved accuracy and convergence results show that BA-3+ is an efficient, stable algorithm for the
complex classification task, and it can handle the vanishing and exploding gradients problem of
deep RNNs.

Keywords: bees algorithm; training deep neural networks; metaheuristics; opinion mining; recurrent
neural networks; sentiment classification; natural language processing

1. Introduction

Deep recurrent neural networks (RNNs) are powerful deep learning models with the
ability to learn from the large sets of sequential data that characterise many tasks such
as natural language processing [1], time series prediction [2], machine translation [3] and
image captioning [4]. Deep RNNs have self-looped connected deep layers, which can retain
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information from the past and make it possible to learn arbitrarily long time sequences.
However, despite their theoretical power, they have well-known computational issues such
as training difficulties due to vanishing and exploding gradients [5], the need for implemen-
tation in hardware and memory limitations [6]. Besides, designing a deep learning model
to perform a particular task could be very time-consuming as it involves many optimisation
steps such as selecting a proper network architecture, finding the optimum hyperparame-
ters of the selected architecture, and choosing the correct training algorithm for the model.
Training a deep RNN is making it learn higher-level nonlinear features from large amounts
of sequential data, which is typically a nonconvex optimisation problem [6]. This problem
can be formulated as the minimisation of nonlinear loss functions with multiple local
optima and saddle points. From the perspective of optimisation, even convex optimisation
problems have many challenges. Additional difficulties therefore arise in training deep
neural networks because of the nonconvex nature of the problem. For example, Stochastic
Gradient Descent (SGD), which is a commonly used training algorithm, could easily get
trapped at local minima or saddle points, and it cannot guarantee convergence to the
global optimum because of the nonlinear transformations in each hidden layer. Moreover,
the gradient of nonlinear activation functions cannot be computed backward through the
network layers without vanishing or exploding over many training time steps, which
causes the loss of direction in parameter updating to reach a feasible solution [7].

To date, researchers have mainly focused on two alternative pathways to deal with
long-term dependencies. The first pathway is to devise new network architectures such
as Long Short-Term Memory (LSTM) models [8], Gated Recurrent Units (GRU) [9] and
Temporal Restricted Boltzmann Machines (TRBM) [10]. Although these architectures have
proved successful in many applications, they are more complex to implement and require
long implementation and computation times, in addition to specialised software and
powerful hardware. The second pathway is to develop search methods and optimisation
algorithms specifically to handle the vanishing and exploding gradient problem. Recently,
two popular methods, gradient clipping and gradient scaling, were proposed to avoid the
gradient explosion issue. Gradient clipping [5] which employs a shrinking strategy when
the gradient becomes too large, is used to avoid remembering only recent training steps.
Shrinking has also been employed by second-order optimisation algorithms, but these have
been replaced by simple SGD as a fair and practical technique because of the computational
cost of Hessian matrices in second-order optimisation [11].

The learning performance of deep learning models does not depend only on improving
the training algorithm. The initial design parameters also play a key role in the ability to find
global optima without becoming trapped at local stationary points. For example, the initial
weights of a deep network can significantly affect training performance and good solutions
often cannot be reached with gradient-based training algorithms because of the nonlinearity
and “butterfly-effects” of the iterative updating procedure [5]. Generally, design parameters
are adjusted manually, and the designer has to evaluate the model performance repeatedly
to determine the best objective functions, learning rates, or training algorithm for their
task. Besides, even when the optimal model could be designed, additional regularisation
strategies such as dropout [12] are required to handle the overfitting problem of a deep
model. It is well-known that these procedures are very time-consuming, and new strategies
are needed to develop practical solutions.

Numerical methods and exact algorithms cannot handle the nonconvexity of the objec-
tive functions of deep RNNs, which are unable to capture curvature information, causing
the optimisation process to be trapped at local solutions. Nature-inspired metaheuristic
algorithms have been developed to handle nonlinear, multi-constraint and multi-modal
optimisation problems. They have proved to be robust and efficient optimisation tools
that can avoid the issue of local optima. They can adapt to problem conditions like the
nature of the search space (i.e., continuous or discrete), decision parameters, varying con-
straints and other challenges encountered in the training and designing of RNN models.
Previous research into the optimisation of deep learning models has focused on three main
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areas, namely, hyperparameter optimisation, neural architecture or topology optimisation,
and weight optimisation. These studies have been conducted for specified tasks with the
numbers of hidden and recurrent neurons limited to a maximum of five, and new practical
approaches are needed to be useful for deeper RNN models [13].

This paper proposes using an enhanced Ternary Bees Algorithm (BA-3+) to obtain the
optimum weights of a deep RNN model for sentiment classification. Existing population-
based optimisation algorithms need to operate with large populations and, as a result,
are generally slow. The Bees Algorithm [14] is a population-based algorithm that has
been successfully employed to solve many complex real-world optimisation problems
including continuous [15] and combinatorial [16] optimisation problems. It is able to find
both local and global optima without needing to calculate the gradient of the objective
function. The Ternary Bees Algorithm (BA-3) first described in [17] is an improvement
on other population-based algorithms that employs a population of just three individual
solutions. The BA-3+ algorithm presented in this paper is an enhanced version of BA-3,
that also uses only three individual solutions, the global-best solution, the worst solution
and an in-between solution. BA-3+ combines the exploration power of the basic Bees
Algorithm to escape from local optima and the greedy exploitation drive of new local
search operators to improve solutions. The new local search operators comprise one for
neighbourhood search using Stochastic Gradient Descent (SGD) and one for search control
employing Singular-Value Decomposition (SVD). SGD is a greedy operator for reaching a
local optimum quickly. SVD is adopted to stabilise the trainable parameters of the model
and overcome the problem of vanishing and exploding gradients of the selected weights
when SGD is applied to derive the in-between solution. The aim is to use the strengths
of gradient-based backpropagation training as the most commonly used RNN training
method, but without its limitations like local optimum traps and vanishing and exploding
gradients through long time dependencies. As the proposed algorithm uses only three
individual bees, it is very fast, being able to find the global optimum within polynomially-
bounded computation times [17]. Experiments with the sentiment classification of English
and Turkish movie reviews and Twitter tweets show that the Ternary BA performs well,
providing faster and more accurate results compared to previous studies.

The rest of the paper is structured as follows. Section 2 briefly reviews methods to
handle vanishing and exploding gradients (VEG) problem of the deep RNNs. Section 3
presents detailed information about deep RNNs and the difficulties with training them.
Section 4 details the proposed algorithm and its local search operators, and describes its
configuration for training deep RNNs for sentiment classification. Section 5 provides infor-
mation about the datasets used, the hyperparameters of the model, and the experimental
results obtained. Section 6 concludes the paper.

2. Related Work

This section reviews the approaches that have been used to handle the vanishing and
exploding gradient (VEG) problem in deep RNN training.

The first way to handle the VEG problem is to use newer types of RNN architec-
tures such as Long-Short-Term Memory (LSTM) [8], Gated-Recurrent Units (GRUs) [9]
and Echo-State-Networks (ESNs) [18]. These architectures can model sequences and they
produced good results for many applications [19]. However, they have issues such as
limited non-linearity learning abilities [20], training times that can sometimes be many
days or even months, and are still not completely free from the same gradient problem.
Some metaheuristic approaches have been implemented to handle these issues of the
advanced deep recurrent networks. Yang et al. proposed an improved whale optimization
algorithm (IWOA) to predict the carbon prices, hybrid model, incorporating modified
ensemble empirical mode decomposition (MEEMD) and LSTM [21]. Peng et al. proposed
a fruit fly optimization algorithm (FOA) to find optimal hyper-parameter of the LSTM
network to solve time series problems [22]. ElSaid et al. have also proposed employing
the ACO algorithm to evolve the LSTM network structure [23]. Rashid et al. proposed to
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use Harmony Search (HS), Gray Wolf Optimizer (GWO), Sine Cosine (SCA), and Ant Lion
Optimization algorithms (ALOA) algorithms to train LSTMs for classification and analysis
of real and medical time series data sets [24]. Besides these, hyperparameter optimisation
and initial parameter tuning are also needed to improve their performances [25]. For exam-
ple, an improved version of the sine cosine optimization algorithm (SCOA) was used to
identify the optimal hyperparameters of LSTM [26]. Similarly, Bouktif et al. proposed to
use GA and PSO algorithms to find optimum hyperparameters of the LSTM-RNN model
for electric load forecasting [27]. In a similar way to the using of new architectures, some
researchers have proposed to use new activation functions. [28] had been proposed to use
Rectified linear unit (ReLU) function instead of hyperbolic tangent or sigmoid functions.
Similarly, Glorot et al. has proposed Deep Sparse Rectifier Neural Networks (SRNNs),
that helps optimizing weights during training with rectifier units [29]. However, these
approaches have limitations as well. For example, since the ReLU function is positive
definite, it causes a bias shift effect and behaves like a bias term for the next layer of the
model [30]. Hence, it decreases the learning capacity of the model [31].

The second way to handle the VEG problem is the stabilisation of the updated re-
current weights [32]. Gradient clipping [5] is a well-known heuristic approach to rescale
gradients. It controls parameter updating by using a given threshold and prevents un-
expected falls to zero or rises to infinity before operating the gradient-descent learning
rule. L1 and L2 regularisation has also been applied to the recurrent weights to prevent
overfitting. They are used as a penalty term during training mainly to bring weights
closer to zero [6]. Initialisation methods have also been employed to limit the values of the
updated parameters by using the identity or orthogonal shared matrix. Le et al. showed
that combining the proper initialisation with rectified linear units can handle the VEG
problems of RNNs [33]. Xu et al. proposed a hybrid deep learning model by combining
RNNs and CNNs, which is used Rectified Linear Units(ReLUs) and initialised with the
identity matrix [34]. Vorontsov et al. used Singular Value Decomposition (SVD) to find the
orthogonal matrices of the weight matrix, They proposed to update the parameters at each
iteration by using geodesic GD and Cayley methods [35]. Similarly, [36] proposed to use
the SVD operator to stabilise gradients of deep neural network, which has been proposed
as a Spectral-RNN. However, these methods require the computation of inverse matrices
and the unitary initial matrices cannot be held after many training iterations, and the same
issues arise again.

In addition to the aforementioned approaches, Hessian-free (HF) optimisation meth-
ods and novel training algorithms have also been proposed to model the curvature of the
nonlinear functions of deep RNN models using random initialisation. Martens et al. has
proposed to train RNNs by using hessian-free optimisation [20]. They have been inspired
by the second-order derivative method and Newton optimisation method, which is also
called a truncated Newton or the pseudo-Newton method [37]. Nevertheless, besides their
sophisticated nature, they do not have enough generalisation ability to learn and need
additional damping among hidden layers when they have been applied to large-scale
architectures [11]. To date, Kag et al. proposed a novel forward propagation algorithm,
(FPTT) to handle the VEG problem, which has been outperformed by the BPTT for many
tasks including language modeling [38]. Some gradient independent methods have been
developed to address the training difficulties of the Depp RNNs. One of the first best-
known heuristic approaches is the simulated annealing method that performs a random
neighborhood search to find the optimal weights of the system [7]. In addition to their
advantages, the simulated annealing training period may be very long, hence Bengio et al.
have recommended improving alternative practical training algorithms [7].

To date, metaheuristic algorithms have been successfully applied to solve many
nonlinear optimisation problems with their good initialisation strategies and local search
abilities that bring crucial advantages to handle local optima issues such as getting trapped
at local optima [39]. Although the number of studies for optimisation of deep architectures
is less than that for conventional architectures [40], some studies have been carried out to
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improve the optimisation performances for the specified and generalized tasks using the
intelligent nature of population-based algorithms [41]. The studies are mainly focused on
hybridisation approaches, which are used to evolve deep architectures and to optimise the
hyperparameters of the deep learning models. They can focuses on various application
field such as time-series forecasting [42], classification problem [43], prediction problem [44]
and design problem [45].

Studies for evolving network topology with metaheuristics aim to design optimum
network architecture. For example, Dessel et al. have proposed to evolve a deep RNN
network by using ACO [46]. They present a strategy to design an optimal RNN model
with five hidden and five recurrent layers to predict aviation flights. Similarly, Juang et al.
proposed a hybrid training algorithm combining GA and PSO for evolving RNN archi-
tecture. They called the algorithm HGAPSO and applied the algorithm for RNN design
to a temporal sequence production problem [47]. The NeuroEvolution of Augmenting
Topologies (NEAT) approach has been developed based on the GA for the optimisation of
neural model architectures [48]. Desell et al. have used Ant Colony Optimisation (ACO) to
design a deep RNN architecture with five hidden and five recurrent units for predicting
flight data [46]. Similarly, Ororbia et al. have implemented Evolutionary eXploration of
Augmenting Memory Models (EXAMM) and different versions of it such as GRU, LSTM,
MGU and, UGRNN to evolve RNNs [49]. Wang et al. proposed an evolutionary recurrent
neural network algorithm for the proxy of image captioning task [50]. A Random Error
Sampling-based Neuroevolution (RESN) has been proposed as an evolutionary algorithm
to evolve RNN architecture for prediction task [51]. Mo et al. proposed an EA for topology
optimisation of the hybrid LSTM-CNN network for remaining useful life prediction [52].

Studies to find the optimum weights and to handle VEG problem of the RNN network
focused on hybrid training algorithms. Kang et al. proposed a hybrid training algorithm
to get rid of the local optima and saddle points by using the PSO and backpropagation
algorithm. They got an improvement on convergence and accuracy results of four dif-
ferent datasets [53]. Ge et al. have presented the modified particle Swarm Optimisation
(MPSO) [54] algorithm for training dynamic Recurrent Elman Networks [55]. The proposed
method aims to find the initial network structure and initial parameters to learn the optimal
value of the network weights for controlling Ultrasonic Motors. Xiao et al. have proposed
a hybrid training algorithm with PSO and backpropagation (BP) for Impedance Identifi-
cation [56]. The RNN architecture has been trained based on finding the minimum MSE
and the largest gradient. Zhang et al. have also proposed hybrid PSO and Evolutionary
Algorithm (EA) to train RNN for solar radiation prediction [57]. Likewise, Cai et al. have
used hybrid PSO-EA for time series prediction with RNN [58]. A real-coded (continuous)
Genetic Algorithm (GA) has been employed for training RNN by updating weight parame-
ters using random real-valued chromosomes [59]. Nawi et al. proposed a Cuckoo Search
(CS) algorithm for training Elman Recurrent Networks combined with backpropagation for
data classification compared to the Artificial Bee Colony and conventional backpropagation
algorithm [60]. A recurrent NARX neural network has been trained by a Genetic Algorithm
(GA) to improve the state of charge (SOC) of lithium batteries [61].

Although the proposed hybrid approaches can train or optimize the topology of the
RNNs, those networks do not have so many hidden layers that they can be considered
as deep architectures, since the number of hidden layers of most studies is not as high
as deep learning architectures. For example, Bas et al. proposed RNN models that have
two to five hidden layers for forecasting using the PSO algorithm. The performance of the
proposed algorithm was compared to the LSTM and Pi-Sigma NN architectures, which are
trained by using gradient-based algorithms that performed similar [62]. There have only
been limited studies into optimizing the architecture of a deep RNN [46] or deep LSTM [23]
models. The authors of [46] have used ACO to convert fully connected RNNs into less
complex Elman ANNs.

In addition to these studies, some examples of metaheuristic approach focusing on
network training in recent years. A neural network training algorithm was proposed by
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Kaya et al. namely ABCES (Artificial Bee Colony Algorithm Based on Effective Scout
Bee Stage) [63]. They proposed to use ABCES to train a feedforward neural network
model to detect the nonlinearity of given static systems, including 13 different numerical
optimisation problems. Shettigar et al. proposed an ANN model for surface quality
detection, which is trained by using traditional backpropagation algorithm, GA, ABC
algorithms compared to the RNN architecture. RNN and BP-NN algorithms performed
comparable, and ABC-NN and RNN models gave better results compared to the others [64].
A BeeM-NN algorithm has been proposed as a bee mutation optimizer for training the
RNN model for cloud computing application [65]. A Parallel Memetic Algorithm (PMA)
has been proposed to train RNNs for the energy efficiency problem by Ruiz et al. [66].
Hu et al. implement a hybrid grey wolf optimizer (GWO) and PSO to determine the
endometrial carcinoma disease with Elman RNN. on the [67]. Tian et al. have also proposed
a metaheuristics recommendation system for training deep RNNs to optimise real-world
optimization problems, such as the aerodynamic design of turbine engines and automated
trading [68]. Roy et al. have proposed an Ant-Lion optimizer for training RNN to find
energy scheduling in micro grid-connected system [69]. A data-driven deep learning
model has been proposed by Aziz et al. by using 10 different classification datasets [70].
Elman RNN and NN models have been trained by PSO that improved the classification
accuracy. Similarly, Hassib et al. proposed a data-driven classification framework using
Whale Optimization Algorithm (WOA) for feature selection and training the Bidirectional
Recurrent Neural Network [71]. A Global Guided Artificial Bee Colony (GGABC) algorithm
proposed for Recurrent Neural Network training by for breast cancer prediction dataset [72].
Kumar et al. proposed hybrid flower pollination and PSO algorithm for training LSTM-
RNN model to predict Intra-day stock market [73].

According to the review study, recently over two hundred studies have been made
focusing on evolutionary swarm intelligence and deep learning models for topology
optimization, hyper-parameter optimization, and training parameter optimisation [74].
Table 1 reports some of the selected works related to deep RNNs. Even though there
are many studies focusing on training artificial neural networks, most of the proposed
metaheuristics for training recurrent deep learning models do not comprise many deep
hidden layers that could cause the VEG problem. The existing proposed methods have
worked over big population numbers, and they are not trying to optimize the deep RNN
architectures. The proposed BA-3+ algorithm has only three bees as a population number,
and as we proved in Section 5, the total training time is much lower than the Differential
Evolution (DE) and Particle Swarm Optimization (PSO). In addition, the choice of the
BA-3+ algorithm is motivated by the No Free Lunch theorem [75], as it released there is no
universally efficient algorithm for all kinds of problems. Hence we can say if algorithm A
could perform better than algorithm B in some class of problems and datasets, algorithm B
could perform better than algorithm A in some other class of problems and datasets. Hence
in this study, we focus on exploring the advantages of the BA-3+ approach for improving
the deep recurrent learning abilities as a solution for the VEG problem, which has been
discussed in detail in the next section.
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Table 1. Selected related work to handle the VEG problem of the deep RNNs.

Study/Year Proposed Solution Algorithm/Function

[62] 2021 Metaheuristic Training PSO
[70] 2021 Metaheuristic Training PSO
[63] 2021 Metaheuristic Training ABC
[38] 2021 New Gradient-based Training FPTT
[65] 2021 Metaheuristic Training BeeM-NN
[22] 2021 Hyperparameter optimization FOA
[52] 2021 Topology Optimisation EA
[73] 2021 Hybrid Metaheuristics Training FP & PSO
[76] 2021 Metaheuristic Training BSO
[64] 2020 Hybrid Metaheuristics Training GA & ABC
[71] 2020 Metaheuristic Training WOA
[21] 2020 Metaheuristic Training IWOA
[26] 2020 Hyperparameter optimization SCOA
[27] 2020 Hyperparameter optimization GA & PSO
[77] 2020 Metaheuristic Training ABSA
[51] 2020 Topology Optimisation RESN
[72] 2019 Hybrid Metaheuristic Training GGABC
[49] 2019 Topology Optimisation EXAMM
[61] 2019 Metaheuristic Training GA
[69] 2019 Hybrid Metaheuristic Training Ant-Lion
[67] 2019 Hybrid Metaheuristic Training GWO & PSO
[66] 2019 Metaheuristic Training PMA
[36] 2018 Gradient Stabilisation SVD
[23] 2018 Topology Optimisation ACO
[24] 2018 Metaheuristic Training GWO, ALOA, SCA, HS
[44] 2018 Metaheuristic Training PSO
[53] 2017 Hybrid Metaheuristic Training PSO & BP
[45] 2017 Metaheuristic Training DE
[34] 2016 Initialisation Training tricks for RNNs
[33] 2015 A New Deep Architecture RNN& CNN
[46] 2015 Topology Optimisation ACO
[60] 2015 Metaheuristic Training CS
[57] 2013 Hybrid Metaheuristic Training PSO & EA
[29] 2011 A New Deep Architecture SRNNs
[20] 2011 Hessian-free methods Hessian-free optimisation
[28] 2010 A New Activation Function ReLU
[56] 2007 Hybrid Metaheuristic Training PSO & BP
[58] 2007 Hybrid Metaheuristic Training PSO & EA
[55] 2007 Hybrid Metaheuristic Training MPSO & BP
[18] 2004 A New Deep Architecture Echo-State-Networks (ESNs)
[47] 2004 Hybrid Metaheuristic Training GA & PSO
[48] 2002 Topology Optimisation GA (NEAT)
[59] 2001 Metaheuristic Training GA

3. Recurrent Neural Networks and Problem Preliminaries

3.1. Problems with Training Deep Recurrent Neural Networks

In this section, a deep recurrent neural network (RNN) model is described based on
the standard RNN model for the sentiment classification task for both the English and
Turkish languages. A many-to-one deep RNN model is presented and formulated for a
clear understanding of the training difficulties of the proposed model.

3.2. Model Description and Problem Preliminaries

Let x(i) = (x1, x2, . . . , xt−1, xt) is a sequential feature vector of the sequence of
words, i.e., n-dimensional word embedding or word vector for each observation in the
dataset. The proposed deep RNN model has been constructed using the sequences of the
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following recurrence formula and defined below for each time step t with two commonly
used nonlinear activation functions, tanh and sigmoid:

ht = tanh(Whh ht−1 + Wxh xt + bh) (1)

y = sigmoid(Why ht + by) (2)

The hidden state of the model ht passes the information from the previous time step
ht−1, and uses it to classify the given observation x(i). The sigmoid function is used to
predict the sentiment class of x(i), i.e., each review or tweet from the dataset. The objective
of the RNN model is to maximise the correct estimation by using each pair of (y(i), t(i)) or
to minimise the BCE error between predicted y(i) and target data t(i).

The training algorithm searches for the optimal values of the learnable parameters
Wxh, Whh, Why, bh, by. Most of the training algorithms, such as SGD are based on the
gradient descent learning rule by backpropagation through time (BPTT) [78] using the
following update rule for each time step t as follows:

θt+1 = θt − η ∇θ L( f (xi, θ), ti)) (3)

Here η is the learning rate, that is one of the most important hyperparameters of
the deep learning models. Once the loss function is calculated at the feedforward step,
the proposed partial derivatives ∂L

∂Why
, ∂L

∂by
, ∂L

∂Whh
, ∂L

∂Wxh
, ∂L

∂bx
represented as ∇θ in the (3)

above need to be calculated for updating the set of trainable parameters of the system.
In this study, we focused on binary sentiment classification datasets for the English

and Turkish languages. Turkish classification datasets include movie reviews [79], multi-
domain product reviews [79] and Twitter dataset [80] with a raw text format. English
dataset includes the huge English IMDB movie reviews dataset [81], small movie reviews
dataset [82] and Yelp dataset including reviews about businesses, check-in, photos, and tips
of the users [83]. Table 2 presents the detailed information about the datasets. Here, the
Yelp dataset is asymmetric distributed and the others are symmetric distributed datasets.

Table 2. Turkish and English datasets.

Dataset Size

TR Books [79] 700 P, 700 N
TR DVD [79] 700 P, 700 N

TR Electronics [79] 700 P, 700 N
TR Kitchen Appliances [79] 700 P, 700 N
Turkish Movie Reviews [79] 5331 P, 5331 N
Turkish Twitter Dataset [80] 12,490 P, 12,490 N

English IMDB Movie Reviews [81] 12,500 P, 12,500 N
English Movie Reviews [82] 1000 P, 1000 N

English Yelp dataset [83] 3337 P, 749 N

During the backpropagation, since the same weight parameters are shared at each
time step, the recursive nature of the training process causes the vanishing and exploding
gradients problem which leads to a huge loss of information across the deep hidden layers.
From the perspective of dynamical systems, when the model keeps its state in the same
stable state for a long time, the same issue occurs and the updating information about the
system is lost [7].

3.3. Vanishing and Exploding Gradients (VEG) Problem

This section contains a mathematical proof of the vanishing and exploding gradients
(VEG) problem encountered when training deep RNNs.
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The objective of the RNN model is to maximise the correct estimation by using each
pair of (y(i), t(i)) or to minimise the BCE error between predicted y(i) and target data t(i)

as follows:

L(t, y) =
N

∑
i=1

Lt(yi, ti)

∂L
∂Whh

=
Nout

∑
t=1

∂Lt

∂Whh

=
Nout

∑
t=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂Whh

∂ht

∂Whh
= tanh′t(Whhht−1 + Wxhxt + bh)[ht−1 + Whh

∂ht−1

∂Whh
]

(4)

ht and ht−1 are both a function of Whh, so the product rule of the derivative should be used
for every time step as follows:

∂ht−1

∂Whh
= tanh′t−1(Whhht−2 + Wxhxt−1)[ht−2 + Whh

∂ht−2

∂Whh
] (5)

∂ht−2

∂Whh
= tanh′t−2(Whhht−3 + Wxhxt−2)[ht−3 + Whh

∂ht−3

∂Whh
] (6)

The rightmost term of the should be expanded until t = 1 to calculate ∂h1
∂Whh

, and the fol-
lowing backpropagated sequence is found if tanh′t(Whhht−2 +Wxhxt−1 + bh) is represented
as tanh′t:

∂ht

∂Whh
= tanh′t

[
ht−1 + Whhtanh′t−1

[
ht−2 + . . . +Whh

∂h1

∂Whh

] ]
= tanh′t ht−1 + tanh′t Whhtanh′t−1ht−2 + . . .

(7)

Here the partial derivatives of ht are calculated with respect to the previous time step
hk. Therefore, the total loss can backpropagated according to Whh as follows:

∂L
∂Whh

=
t

∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk
∂Whh

(8)

Here ∂ht
∂hk

= ∏t
s=k+1

∂hs
∂hs−1

for any time state s of the system, and each ∂hs
∂hs−1

is the

Jacobian matrix for h ∈ RDn defined as follows:

∂hs

∂hs−1
=

[
∂hs

∂hs−1,1
. . .

∂hs

∂hs−1,Dn

]

=

⎡⎢⎢⎢⎣
∂hs,1

∂hs−1,1
· · · ∂hs,1

∂hs−1,Dn
...

. . .
...

∂hs,Dn
∂hs−1,1

· · · ∂hs,Dn
∂hs−1,Dn

⎤⎥⎥⎥⎦
(9)

Equation (8) becomes the following:

∂L
∂Whh

=
T

∑
t=1

t

∑
k=1

∂Lt

∂yt

∂yt

∂ht
(

t

∏
s=k+1

∂hs

∂hs−1
)

∂hk
∂Whh

(10)
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Since ht = tanh (Whhht−1 + Wxhxt + bh), the term ∏t
s=k+1

∂hs
∂hs−1

gives the diagonal
matrix from (9) and (10), that can be seen from the following equation:

t

∏
s=k+1

∂hs

∂hs−1
=

t

∏
s=k+1

WT
hhdiag(tanh′(Whhhs−1) ) (11)

Let a and b be both the upper bounds, or largest singular values of the matrices WT
hh

and diag(tanh′(Whhhs−1)), respectively. The 2-norms of these matrices are bounded by ab
defined as follows for any time state s of the system:∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ =
∥∥∥WT

hh

∥∥∥∥∥diag
(
tanh′(Whhhs−1)

)∥∥ ≤ ab (12)

∥∥∥∥ ∂ht

∂hk

∥∥∥∥ =

∥∥∥∥∥ t

∏
s=k+1

∂hs

∂hs−1

∥∥∥∥∥ ≤ (ab)t−k (13)

During training, the same weight matrix Whh is used across the layers, so as t → ∞
the term (a.b)t−k vanishes at the very small value such as (ab)t−k → 0 or explodes to the
extremely large value such as (a.b)t−k → ∞.

It has been shown that [5,7], if the absolute value of the largest eigenvalue of the WT
hh

is smaller than 1
b , then the gradients vanish as follows:

∀ s,
∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ ≤
∥∥∥WT

hh

∥∥∥∥∥diag
(
tanh′(Whhhs−1)

)∥∥
≤ ab <

1
b

.b < 1

∃ γ,
∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ ≤ γ < 1∥∥∥∥ ∂ht

∂hk

∥∥∥∥ =
t

∏
s=k+1

∂hs

∂hs−1
≤ (γ)t−k

(14)

As t → ∞, it is clear that lim
t→∞

∏t
s=k+1

∂hs
∂hs−1

= 0. Similarly, when the largest eigenvalue

of the WT
hh is bigger than 1/b, gradients explode and lim

t→∞
∏t

s=k+1
∂hs

∂hs−1
= ∞.

4. An Enhanced Ternary Bees Algorithm (BA-3+) to Handle VEG Problem of Training
Deep RNN

In this section, a population-based search algorithm for training deep RNNs is pre-
sented. The learnable parameters θ = (Wxh, Whh, Why , bh, by) are the same as in SGD,
which is defined as a candidate solution in BA-3+, and try to minimise the binary cross-
entropy loss function L(y, t) for each pair of the sequential input (x1, x2, . . . , xt−1, xt),
the desired-targeted output t, and the predicted value y.

Gradient-based learning algorithms are particularly sensitive to the initial value of the
weights and noise variance of the dataset in non-convex optimisation. Hence, the difficulty
of the training deep RNN model depends on not only keeping the information through
long-term time but also initial values of the parameters. Most initialisation methods are
generally based on the random initialisation [84] or researchers choose to initiate the
weights as an identity matrix or close to the identity conventionally [85]. Therefore, finding
optimum initial parameters for a specified model and exploring which parameters should
be updated and learned are still remains an open difficult optimisation task, due to the lack
of the exact knowledge about the which properties of these parameters are kept or learned,
under which conditions [6].

As mentioned above, this work uses an enhanced Ternary Bees Algorithm (BA-3+)
for training deep RNNs. BA-3+ combines exploitative local search with explorative global
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search [17]. Improvements to the training of deep RNN models with BA-3+ have been made
in three key areas: finding promising candidate solutions and initialising the model with
good initial weights and biases, improving local search strategies to enhance good solutions
by neighbourhood search, particularly to overcome the vanishing and exploding gradients
problem, and performing exploration to find new potential solutions with global search.

4.1. Representation of Bees for Deep RNN Model

The Bees Algorithm was developed by Pham et al. with inspiration from clever
foraging behaviours of the honey bees in nature [14]. In the proposed method the bee
represents a sequential deep RNN model, which is modelled for the binary sentiment
classification task. As can be seen in Figure 1, every bee (Sequential model) instance has
the input layer, hidden deep RNN layers, and the output layer. The proposed model has
the learnable parameters θ = (Wxh, Whh, Why, bh, by), and aims to classify the sequential
input data (x1, x2, . . . , xt−1, xt) to its targeted class t.

Figure 1. A Deep RNN architecture representing a bee in the proposed algorithm. Black lines are the
forward pass of RNN cell at time t (unfolded version at upper) and red lines representing the error
backpropagation through long-term dependencies.

Based on the training procedure of the RNN model, each “bee model” has its own
forward propagation action to calculate the initial solutions, local search procedure by
gradient descent training with singular value decomposition (SVD), and global search
actions to find the optimal parameters θ = (Wxh, Whh, Why, bh, by) via the binary cross-
entropy loss function (fitness function) LBCE( f (x(i), θ), y(i)) as defined Section 3.3.

BA-3+ does not require a large population, which is a drawback with other population-
based methods. BA-3+ employs only three individual bees for each training time. Each
iteration begins with these three initial solutions as a forward pass of the model and
continues with specified search strategies including exploitative local search, stochastic
gradient descent (SGD) stabilised by Singular Value Decomposition (SVD), and explorative
global search.

As with the basic Bees Algorithm [14], the initial candidate solutions are sorted.
The maximum fitness value is selected as the best RNN bee for the local exploitative search.
The worst fitness value (third bee) is selected for global search to avoid getting trapped at
local optima, and the remaining RNN, i.e., the middle RNN bee is selected for stochastic
gradient-descent learning with the stabilisation strategy of SVD operator to update weights
and biases without vanishing and exploding gradients.

Figure 2 represents the flowchart of the proposed algorithm. (x(train), t(train)) is the
training sample from the dataset, that x(i) = (x1, x2, . . . , xt−1, xt) is defined as an n-
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dimensional sequential input and t(i) ∈ {0, 1} is its targeted sentiment class. Parameters
of the deep RNN model trained by using BA-3+ are shown in Table 3. Three initial solutions
are calculated with the initial trainable parameters θ (see Table 4) and sorted according to
the loss function. The elite (best) RNN bee performs the local search operator, the middle
RNN bee performs stochastic gradient-descent with SGD operator, and the third RNN bee
performs global search. The optimisation continues with a new population of bees until
the stopping criteria met; in other words, until the loss value is converged to zero.

Figure 2. Flowchart of the proposed enhanced Ternary Bees Algorithm (BA-3+).

Table 3. Parameters of the deep RNN model trained by using BA-3+.

Parameters Information

x(i) = (x1, x2, . . . , xt−1, xt) ith temporal sequential input from the input training set
t(i) ith targeted class of the output training set
y(i) ith predicted class of the x(i)

Wxh Weight matrix from input layer to hidden layer
Whh Weight matrix from hidden layer to hidden layer
Why Weight matrix from hidden layer to output layer
bh, by Biases for the hidden layer and the output layer

nScout Number of scout bees for initialisation
ngh Neighbourhood size for the local search

nhidden Hidden layer size
η Learning rate for SGD
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Table 4. Learnable (trainable) parameters.

Parameters Dimension

Wxh Rnumber of hidden layers × dimension of each word

Whh Rnumber of hidden layers × number of hidden layers

Why R |V|× number of hidden layers

bh R number of hidden layers

by R number of output layers

|V| : number of words in the vocabulary

4.2. Local Search Operator

The local search procedure in the basic Bees Algorithm includes improving a promising
solution within the neighbourhood of the selected solution parameters. In Algorithms 1 and 2,
ngh represents the initial size of the neighbourhood for the local search. The neighbourhood
begins as a large area and it is reduced by using a shrinking method [86] at each iteration
according to the formula ngh(t + 1) = α ngh(t). Here, α is usually a number between 0 and
1. The neighbourhood matrix is generated with the same dimension of each weight matrix
of the learnable parameters θ = (Wxh, Whh, Why , bh, by), and then is aded to the original
weight matrix to obtain the updated weights. The pseudo-code to generate neighbourhood
weights is given in Algorithm 2. The updated local weights are used for the local search of
BA-3+ that can be seen in Algorithm 4.

Algorithm 1: Pseudo-code to generate neighbourhood weights.
Input: weight matrix : w, ngh
Output: updated ngh weights

1 Function generateNghWeight(w, ngh):
2 for each we ∈ w do
3 ngh ← random number ∈ [−ngh, ngh]
4 wngh ← we + ngh

5 return wngh

Algorithm 2: Pseudo-code of the local search operator of BA-3+.
Input: Bee, ngh : neighbourhood radius
Output: Local Bee with Updated Parameters

1 Function LocalSearch(Bee, ngh):
2 for each w ∈ θ = (Wxh, Whh, Why , bh, by) do

3 dimw ← dimension(w)
4 wngh ← generateNghWeight(w, ngh)
5 Bee.w ← wngh

6 return Bee

4.3. Enhanced Local Search by SGD and Singular Value Decomposition (SVD) Operator

As analysed in Sections 3.2 and 3.3 due to the sharing the same hidden matrix Whh
across the deep hidden layers and multiplying it again and again at every time step of
the BPTT algorithm, the eigenvalues of the Jacobian matrix exponentially grow or vanish
after t time steps. To handle this issue, it has been proposed to use a singular value
decomposition of the hidden layer matrix to stabilise the eigenvalues of the updated
matrix in the enhanced local search of BA-3+. As an example, assume that the eigenvalues
of the Whh are represented λ1, λ2, . . . , λn The singular values of Whh can be founded by
using the positive eigenvalues of the matrix WhhWhh

T , for every λi ≥ 0 ∈ λ1, λ2, . . . , λn,
and Si =

√
λi if Whh is positive semi-definite square matrix [87]. Since the learnable
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parameters of the RNN can also be rectangular matrices, it is needed to find singular values
of an arbitrary matrix A.

It is well-known that every arbitrary real matrix can be represented by the product
of three matrices as A = USVT , which is called singular value decomposition (SVD) of
matrix A, which is used to find the singular values [88]. Figure 3 represents the SVD of
an n × m dimensional matrix. Here, S is the r × r dimensional diagonal matrix Sn×n =
diag[S1, S2, . . . , ..., Sn] that each Si represents the singular values of the matrix A, and U
and V contain the corresponding singular vectors where U and V are orthogonal matrices
with the n × r and r × m dimensions, respectively.

Figure 3. Singular Value Decomposition (SVD) of matrix A.

After updating each parameter of the θ = (Wxh, Whh, Why, bh, by) by SGD rule,
the SVD operator has used to control the eigenvalues of each parameter. The method
aims to keep the singular values of the updated matrix close to 1 for gradient stabilisation.
To this end, the SVD decomposition of the updated matrix is performed to find the singular
values, and then every singular vector is controlled to be close to the unit vector. As given
in Algorithm 3, the singular values of the updated weight matrix are restricted to the
interval [1/(1 + ngh), 1 + ngh] to avoid updating in the wrong direction. Here, ngh is the
initial neighbourhood size, which is chosen between (0, 1). As a result, Whh can be updated
over time without vanishing or exploding gradients.

Algorithm 3: Pseudo-code of SGD with the SVD operator.
Input: Learning rate:η, Bee, ngh : neighbourhood radius
Output: Bee with Updated Parameters

1 Function SGDSVD(η, θ):
2 for each w ∈ θ = (Wxh, Whh, Why, bh, by) do

// Update θ by using gradient descent rule

3 θt+1 = θt − η ∇θ L( f (xi, θ), yi))
4 Calculate SVD for each w :
5 U, S, VT = SVD(w)
6 for each si ∈ S do
7 if si ≥ (1 + ngh) then
8 si = 1 + ngh
9 else if si ≤ 1/(1 + ngh) then

10 si = 1/(1 + ngh)

11 Bee.w ← wSVD

12 return Bee

4.4. Global Search Operator

Besides the enhanced local search procedures, the proposed algorithm also includes
a global search operator that combines random sampling chances which is also a good
strategy for escaping local optimum points of the solution space. The third bee in a colony
is used for the random exploration for potential new solutions of the search space. If the
updated random weights gave a better solution for the loss function, then the third bee is
updated with new global searched weights. This procedure gives the advantage to escape
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getting trapped at local optima, which results in converging to the global optimum faster
during the training process. Algorithm 4 shows the pseudo-code of the proposed enhanced
Ternary Bees Algorithm (BA-3+). The source code of the proposed algorithm is given at
Appendix A.

Algorithm 4: Pseudo-code of the enhanced Ternary Bees Algorithm (BA-3+) for
training deep RNN model.

Input: nScout, learning rate:η, ngh: neighbourhood
radius, dataset

1 Function BA-3+(nScout,η, ngh, dataset):
2 Start
3 inputs ← CreateInputs(dataset)
4 targets ← labels(y)
5 items ← convert dataset to list o f // x=sentences and t=targets

6 for each (x(i), t(i)) ∈ items do
7 Initialize population with ternary RNNBee
8 while stopping criterion not met do
9 Evaluate fitness of the population

10 y, Loss ← FORWARD(RNNBee, x(i))
11 Sort population according to loss values
12 localbee ← LOCALSEARCH(bestBee, ngh)
13 Evaluate fitness of localBee
14 if localBee better than bestBee then

// Update First Bee

15 bestBee = localBee

16 SGDSVDBee ← SGDSVD(secondBee, ngh)
17 Evaluate fitness of SGDSVDBee
18 if SGDSVDBee better than secondBee then

// Update Second Bee

19 secondBee = SGDSVDBee

20 globalBee ← GLOBALSEARCH(thirdBee)
21 Evaluate fitness of globalBee
22 if globalBee better than thirdBee then

// Update Third Bee

23 thirdBee = globalBee

24 Evaluate fitness of the new population
25 Sort population according to loss values
26 Best Model = Best Bee

27 return Best Model (Best Bee)

In this study, sentiment analysis is considered as a binary classification problem.
The F1-score or F1 measure was used as a statistical measure for the analysis of the binary
classification problem in addition to the accuracy measure. F1 measure is calculated
as follows:

F1 =
2 Precision Recall
Precision + Recall

(15)

Precision =
TP

(TP + FP)
(16)
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Recall =
TP

(TP + FN)
(17)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(18)

Precision is the total count of true positives divided by the total number of positive
results. The recall is the total number of true positive results divided by the number of all
samples that should have been classified as positive. F1 measure can also be defined as a
harmonic mean of the precision and recall value. The next section reports the details of the
proposed algorithm’s experimental setup and performance results and benchmarks.

5. Results

5.1. Experimental Setup

The proposed algorithms were implemented using the Tensorflow library with Keras
Sequential model in Python on the macOS Catalina on MacBook Pro, 3.1 GHz quad-core
Intel Core i5 hardware. The proposed BA-3+ algorithm was run with batch size 1 for
each (x(i) = (x1, x2, . . . , xt−1, xt), t(i)) pair of datasets. Each dataset was divided into a
training set (%80 of the dataset) and a validation set (%20 of the dataset) by using 5-fold
cross-validation. The training was performed with BA-3+ and SGD according to BCE loss
value over 100 independent runs, each involving 100 epochs. The BA-3+ training procedure
was online learning and happened incrementally over each iteration, which means the
learnable parameters were updated after each forward and backward propagation of
each training sample [89]. Figure 4 represents the flowchart of the proposed classification
model. The model implemented with Python Programming language with on Google
Colab IDE [90] by using various tools and libraries, including TensorFlow [91], Keras [92],
SciPy [93], NumPy [94], Pandas [95], and Matplotlib [96].

Figure 4. Flowchart of the proposed classification model.

5.2. Parameter Tuning

Table 5 reports the parameters of BA-3+. The number of scout bees represents the
number of sequential RNN networks. Each training sample of the input data x(i) =
(x1, x2, . . . , xt−1, xt) is padded to the maximum sequence length after pre-processing
steps of the given dataset. Nine widely-used sentiment classification datasets in Turkish
and English from three different domains (movie reviews, multi-domain product reviews,
and Twitter reviews) were adopted to verify the proposed algorithm.
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Table 5. Parameter setting.

Parameter Value

x(i) = (x1, x2, . . . , xt−1, xt) max length = 200
nScout 3

nEiteSiteBee 1
nSelectedSiteBee 1

ngh 0.5
nhidden 32

epoch 100
independent runs (solution numbers) 100

batch size 1
upper limit of max singular value 1 + ngh
lower limit of min singular value 1/(1 + ngh)

η (learning rate) 0.01

For each dataset, the sequential model was implemented with the same hyperparam-
eters for the sake of fair comparison. Every sequential model was constructed with the
input layer, hidden RNN layers, and the output layer. The embedding layer was used as
the input layer, which converts the indexes of the sequential input to the fixed size dense
vectors as an input of the model. The vocabulary size of each dataset was used as the input
dimension of the embedding layer. The random uniform function was used as a weight
initialiser for both the embedding layer and hidden layers.

As a critical hyper-parameter, the neighbourhood size (ngh) of the BA-3+ is set to 0.5.
The learning rate (η) of the SGD is set to 0.01. The neighbourhood size is used for both the
local search and the stabilisation of the largest and the smallest eigenvalue of the updated
parameters. The number of hidden layers is set to 32 for each model. Each element of the
learnable (trainable) parameter of the θ = (Wxh, Whh, Why , bh, by), the dimension of the
weight matrices is changed according to hidden layer numbers, and the corresponding
dimensions of the weight matrix can be seen in Table 4, in Section 4.2.

5.3. Results and Discussion

Table 6 reports the best and average accuracy, loss, and F1 measures obtained by
both the BA-3+ and SGD algorithms. The accuracy and loss values of the training and
validation datasets are given as percentages. The average values were calculated after
100 independent training runs. Figure 5 shows the loss values for each dataset after one
independent run which contains 100 training epochs. According to experimental results,
the proposed BA-3+ algorithm guarantees fast convergence to the optimum value and the
lowest error rate for each dataset. As can be clearly seen in Figures 6 and 7, BA-3+ obtained
the best solution within the first 20 iterations for each dataset. Besides, the gap between
training and validation performance is small, which means BA-3+ prevents overfitting.
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Figure 5. Comparison of the loss values of BA-3+ (TBA) and SGD for one independent run.

Figure 6. Distributions of the loss values of the training and validation dataset for 100 independent runs.

Figures 6 and 7 represent the distributions of the loss values for both BA-3+ and
SGD over 100 independent runs. Table 6 reports the best and average accuracy and loss
values of the training datasets and validation datasets. BA-3+ performs better compared to
traditional SGD. Results showed that BA-3+ can be used as an effective learning method
for the sentiment classification task. The performances of BA-3+ were better both in terms
of the best and average accuracy compared to SGD. Similarly, the best and average values
of BA-3+ were lower than for SGD for each dataset.
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Figure 7. Distributions of the loss values of the training and validation dataset for 100 independent runs.

Table 6. Comparison of the results of 100 independent experiments with 100 epochs.

Accuracy Results Loss Results F1 Score

Datasets Alg. TrainBest ValBest TrainAvg ValAvg TrainBest ValBest TrainAvg ValAvg TrainAvg ValAvg

TR Book BA-3+ 0.99 0.99 0.801 0.882 0.00 0.00 0.0769 0.117 0.81 0.78
SGD 0.73 0.64 0.527 0.51 0.686 0.688 0.695 0.697 0.68 0.67

TR DVD BA-3+ 0.99 0.99 0.923 0.91 0.00 0.00 0.076 0.089 0.80 0.78
SGD 0.52 0.39 0.519 0.389 0.686 0.701 0.708 0.748 0.70 0.70

TR Elect. BA-3+ 0.99 0.99 0.915 0.916 0.00 0.00 0.084 0.083 0.83 0.81
SGD 0.99 0.58 0.615 0.549 0.092 0.684 0.640 0.849 0.75 0.73

TR Kitchen BA-3+ 0.99 0.99 0.81 0.810 0.00 0.00 0.189 0.191 0.81 0.75
SGD 0.52 0.54 0.507 0.525 0.692 0.689 0.640 0.813 0.70 0.67

EN IMDB BA-3+ 0.99 0.99 0.911 0.90 0.00 0.00 0.032 0.006 0.77 0.75
SGD 0.58 0.47 0.579 0.469 0.68 0.693 0.81 0.870 0.71 0.70

TR Twitter BA-3+ 0.99 0.99 0.914 0.830 0.00 0.00 0.017 0.029 0.76 0.73
SGD 0.99 0.55 0.747 0.456 0.112 0.691 0.51 0.909 0.59 0.57

TR Movie BA-3+ 0.99 0.99 0.93 0.855 0.00 0.00 0.00 0.05 0.80 0.77
SGD 0.9 0.58 0.58 0.494 0.376 0.689 0.668 0.725 0.66 0.63

EN Movie BA-3+ 0.99 0.99 0.896 0.87 0.00 0.00 0.024 0.058 0.81 0.80
SGD 0.640 0.610 0.585 0.601 0.655 0.668 0.69 0.678 0.77 0.75

EN Yelp BA-3+ 0.99 0.99 0.87 0.86 0.00 0.00 0.030 0.02 0.75 0.70
SGD 0.87 0.809 0.79 0.854 0.325 0.318 0.490 0.424 0.61 0.57

BA-3+ has been compared with Differential Evolution (DE) and Particle Swarm Opti-
mization (PSO) algorithms. For the sake of comparison, PSO has been evaluated with three
particles as we propose to employ only three scout bees over 100 epochs. However, DE
has been employed with 100 generations since it gave too low accuracy when it employees
with only three generations. Table 7 reports the time consumption of the SGD, BA-3+,
DE, and PSO algorithms in second. As can be seen in Table 8, BA-3+ has outperformed
the DE and PSO, and its computation time of the BA-3+ is lower from DE and PSO. Al-
though BA-3+ time consumption was longer than standard SGD, the accuracy value and F1
measure have improved for all classification datasets, at least with a 30–40% improvement.
Furthermore, BA-3+ was more stable and converged faster than the DE and PSO algorithms
since it employs only three individual bees as a population. As is expected SGD model has
the lowest computation time, but the accuracy result is also lower compared to all other
metaheuristic training algorithms.
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Table 7. Total training time (sec) of the BA-3+, DE, PSO and SGD algorithms.

Datasets SGD Total Time
BA3+ Total

Time
DE Total Time PSO Total Time

TR Book 237.36 393.139 871.608 544.914
TR DVD 233.92 407.187 860.439 520.700
TR Elect. 233.15 411.297 1317.971 512.482

TR Kitchen 235.73 417.765 855.125 513.929
TR Movie 1021.38 1394.631 3827.576 3969.091
TR Twitter 4334.98 8340.9 16,178.52 8978.6
EN IMDB 12,100.00 22,347.5 31,724.76 25,674.5
EN Movie 1293.718 2206.8 3361.95 2399.71
EN Yelp 4691.78 12,112.8 21,157.6 13,894.9

Table 8. Comparison of BA-3+ performance with DE and PSO and SGD.

Datasets SGD Acc. BA3+ Acc. DE Acc. PSO Acc.

TR Book 0.527 0.801 0.789 0.690
TR DVD 0.519 0.923 0.808 0.678
TR Elect. 0.58 0.915 0.786 0.696

TR Kitchen 0.507 0.81 0.794 0.686
TR Movie 0.58 0.93 0.887 0.759
TR Twitter 0.747 0.914 0.74 0.709
EN IMDB 0.579 0.91 0.778 0.701
EN Movie 0.585 0.896 0.78 0.69
EN Yelp 0.79 0.87 0.71 0.68

Since we aim to improve the learning capacity of RNN as good as advanced deep
learning language models such as LSTMs, we compared the proposed training algorithm
with the advanced neural language models, including chain-structured and tree-structured
language models. For this purpose, LSTM has been modeled with the same hidden layer
number and training optimizer. Tree-LSTM has been modeled with similar hyperparam-
eters to the RNTN model, which operates over MS-TR treebank [97]. The results of the
Recursive Neural Tensor Network (RNTN) model have been taken from [97]. Table 9
reports the hyperparameters of the advanced deep language models and Table 10 reports
comparisons of accuracy results of advanced recurrent and recursive language models for
Turkish binary classification datasets over test dataset. According to the experiments, it
is observed that the RNN model combined with the BA-3+ training algorithm performed
close or as good as advanced recurrent and recursive deep language models and gave
comparable results.

Table 9. Parameter setting for LSTM and Tree-LSTM models.

Parameter Value

x(i) = (x1, x2, . . . , xt−1, xt) max length = 50
embedding dimension 300

nhidden 32
epoch 100

batch size 32
optimizer SGD

learning rate 0.01
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Table 10. Comparisons of average accuracy results of advanced recurrent and recursive language
models for Turkish binary classification datasets.

Models Book Electr. DVD Kitchen Movie Twitter

LSTM 0.823 0.725 0.751 0.75 0.835 0.895
Tree-LSTM 0.883 0.853 0.85 0.82 0.88 0.89

RNTN 0.86 0.866 0.824 0.798 0.88 0.835
RNN BA3+ 0.88 0.801 0.866 0.818 0.854 0.838
RNN SGD 0.808 0.75 0.734 0.704 0.721 0.744

As it can be clearly seen from Figure 8, RNN-SGD performed well for only one dataset.
Accordingly, we can say that the performance of the systems can be better when the
models are trained with huge datasets such as the Twitter classification dataset (see Table 2).
However, in all other cases, we found that the BA algorithm performed well and yielding
results just as well as advanced language models. The experimental results demonstrate
that BA-3+ gives us a chance to get rid of the disadvantages of the SGD algorithm and
can handle the VEG problem. Although BA-3+ time consumption is longer than SGD,
the accuracy value and F1 measure are higher for all classification datasets. Furthermore,
since BA-3+ employs only three scout bees, the total training time is shorter than the DE
and PSO algorithms and it outperformed the DE and PSO (see Tables 7 and 8). BA-3+ and
PSO runtimes are similar, but BA-3+ gave better results in terms of accuracy. Even though
the DE algorithm was tested for 100 generations, it could not reach the BA-3+ performance.

Figure 8. Comparison of BA-3+ performance with advanced models and RNN model trained with
SGD for some datasets.

The success of BA-3+ depends on its hybrid metaheuristic nature. BA-3+ evaluates
only three candidate models, each having the same deep RNN architecture with differ-
ent learnable parameters. The training process starts with these three candidate models
(number of scout bees), which dynamically search for the optimum values of the learnable
parameters, and continues selecting the best model for local search to find better solutions.
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This is the feature of BA-3+ that brings good initial parameters for the iterative learning
process. After each iteration of the proposed algorithm, if more optimum values of the
learnable parameters are found, they will be updated incrementally. This feature of BA-3+
yields faster convergence. Additionally, as BA-3+ combines local SGD training with the
SVD, it can exploit the learning ability of SGD while controlling vanishing and exploding
gradients, making BA-3+ a hybrid meta-learning algorithm combining gradient-free and
gradient-based optimisation. Finally, BA-3+ has a random exploration operator, namely,
a global search operator, which enables the exploration of new promising solutions while
preventing the optimisation process from being trapped at local stationary points. Be-
sides these advantages, critical hyperparameters, such as learning rate and neighbourhood
size, were empirically selected for BA-3+ as for SGD.

In the future, the proposed algorithm will be compared to the recent metaheuristic
methods, such as advanced backtracking search optimisation algorithm (ABSA) [77], which
has proved its performance superiority compared to the GA, DE, and backtracking search
optimization algorithm (BSA) for global optimisation [76]. Since we recommend using only
three individual bees as population size, we think it would be unfair to compare BA-3+ with
all other population-based metaheuristic algorithms using higher population sizes without
any SGD-SVD local search. Therefore, the previous population-based metaheuristics should
be improved with hybrid approaches to work well with lower population sizes in the future.
Furthermore, the hyperparameter tuning study will be done since the deep learning model
and metaheuristic algorithms are sensible to critical hyperparameters. The proposed
algorithm will also be tested for fine-grained classification problems with more than
two classes. Although the accuracy rate of the proposed algorithm is high, strategies
should be found to ensure faster convergence in terms of time. Learning large datasets
may also require the parallel running of the proposed algorithm and more powerful
hardware resources.

6. Conclusions

This paper has described the use of the Ternary Bees Algorithm (BA-3+) as a training
algorithm for finding the optimal set of parameters of a sequential deep RNN language
model for the sentiment classification task. BA-3+ has been modeled as a sequential model
and tested on nine different datasets including Turkish and English text. The model con-
ducts an exploitative local search with the best bee and an explorative global search with
the worst bee. The in-between bee is used for improved Stochastic Gradient Descent (SGD)
learning with Singular Value Decomposition (SVD) to stabilise the updated model parame-
ters after the application of SGD. This strategy is adopted to prevent the vanishing and
exploding gradients problem of SGD training. The proposed BA-3+ algorithm guarantees
fast convergence as it combines local search, global search, and SGD learning with SVD,
and it is faster than other iterative, metaheuristic algorithms, as it employs only three can-
didate solutions in each training step. BA-3+ has been tested on the sentiment classification
task with different datasets, and comparative results were obtained for chain-structured
and tree-structured deep language models, Differential Evolution (DE), and Particle Swarm
Optimization (PSO) algorithms. BA-3+ converged to the global minimum faster compared
to the DE and PSO algorithms and it outperformed the SGD, DE, and PSO algorithms
both for the Turkish and English datasets. According to the experimental results, BA-3+
performed better compared to the standard SGD training algorithm and RNN combined
with BA-3+ performs as good as for advanced deep neural language models. The small
differences between the training and validation results for the nine datasets have confirmed
the efficiency of the proposed algorithm, with BA-3+ indeed offering better generalisation
and faster convergence than the SGD algorithm.

Author Contributions: Conceptualization, S.Z., D.T.P.; methodology, S.Z.; validation, S.Z., D.T.P.,
E.K., A.S.; formal analysis, S.Z.; investigation, S.Z.; writing—original draft preparation, S.Z., D.T.P.;
writing—review and editing, S.Z., D.T.P., E.K., A.S.; visualization, S.Z.; supervision, D.T.P., E.K., A.S.;
funding acquisition, S.Z. All authors have read and agreed to the published version of the manuscript.

288



Symmetry 2021, 13, 1347

Funding: This research was funded by The Scientific and Technological Research Council of Turkey
(TUBITAK), 2214-A International Research Fellowship Programme, Grant No. 1059B141800193.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: This research was supported by The Scientific and Technological Research
Council of Turkey (TUBITAK), (Grant No: 1059B14180019) and Fatih Sultan Mehmet Vakif University
(FSMVU).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

Appendix A

The source code of the proposed method can be found at https://tinyurl.com/4hh8
msy2 (accessed on 24 July 2021).
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Abstract: Deep learning applications on computer vision involve the use of large-volume and repre-
sentative data to obtain state-of-the-art results due to the massive number of parameters to optimise
in deep models. However, data are limited with asymmetric distributions in industrial applications
due to rare cases, legal restrictions, and high image-acquisition costs. Data augmentation based on
deep learning generative adversarial networks, such as StyleGAN, has arisen as a way to create train-
ing data with symmetric distributions that may improve the generalisation capability of built models.
StyleGAN generates highly realistic images in a variety of domains as a data augmentation strategy
but requires a large amount of data to build image generators. Thus, transfer learning in conjunction
with generative models are used to build models with small datasets. However, there are no reports
on the impact of pre-trained generative models, using transfer learning. In this paper, we evaluate
a StyleGAN generative model with transfer learning on different application domains—training
with paintings, portraits, Pokémon, bedrooms, and cats—to generate target images with different
levels of content variability: bean seeds (low variability), faces of subjects between 5 and 19 years
old (medium variability), and charcoal (high variability). We used the first version of StyleGAN due
to the large number of publicly available pre-trained models. The Fréchet Inception Distance was
used for evaluating the quality of synthetic images. We found that StyleGAN with transfer learning
produced good quality images, being an alternative for generating realistic synthetic images in the
evaluated domains.

Keywords: data augmentation; fine-tuning; generative models; StyleGAN; transfer learning

1. Introduction

Deep learning methods, a subset of machine learning techniques, have achieved out-
standing results on challenging computer vision problems, such as image classification,
object detection, face recognition, and motion recognition, among others [1]. However,
the use of deep learning requires a large volume of representative annotated data to learn
general models that achieve accurate results [2]; data are still scarce with asymmetric
distributions, i.e., disproportionate number of examples between classes, in most applica-
tions related to healthcare, security and industry, due to legal/ethical restrictions, unusual
patterns/cases, and image annotation costs [3–5].

As an alternative, image data augmentation has emerged to create training data with
symmetric distributions by increasing data and reducing overfitting in deep learning
models [6]. Data augmentation has been used through simple transformations, such as
rotations, mirroring, and noise addition [4]. However, simple transformations produce
a reduced number of valid data which usually are highly correlated and produce overfit
models with poor generalisation capacity.
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Generative Adversarial Networks (GANs) [7] have emerged as an alternative to cre-
ate synthetic images by learning the probability distribution from data and generating
images with high diversity and low correlation that can be used to build deep learning
models [4,5,8–13]. GANs are used in medical applications, such as CT image segmen-
tation [4,14] and disease/injure detection [12,13,15–17]. Nevertheless, since GANs are
deep-learning-based models, they also require a significant amount of data and computa-
tional time to be trained from scratch. This drawback limits the use of GANs in generating
images in applications where data are scarce, such as security and industry. A way to cope
with this disadvantage is the use of transfer-learning techniques, which allow building new
models from pre-trained ones in other applications or source domains with an abundance
of training data by transferring the main features and reducing the training time [2].

Transfer learning has been widely used to address image classification [18–20] and
segmentation [21,22] problems. However, the effect of StyleGAN-transfer learning on
generating image quality is poorly reported. Wang et al. [23] evaluated the transferability
of features, using different source and target domains to build generative models applying
transfer learning, with some limitations, such as the generation of low-resolution images
and the lack of evaluation of the impact of content variability in target domains.

In this paper, we evaluate a data augmentation strategy based on transfer learning and
StyleGAN [24]. We use the first version of StyleGAN due to the large number of publicly
available pre-trained models. In particular, we evaluate the capability of StyleGAN and
transfer learning to generate synthetic images (data augmentation) considering variability
levels on content. Thus, we assess quantitatively and visually the quality of the generated
images, using three target domains with fine-tuned StyleGANs from five pre-trained
models—source domains. The evaluated target domains correspond to three image sets
derived from industrial processes with different levels of content variability, shown in
Figure 1: bean seeds (low variability), faces of people aged between 5 and 19 years (medium
variability), and chars obtained during coal combustion (high variability). The assessed
source domains, to transfer features and build generative models, correspond to five pre-
trained StyleGANs with images of paintings, portraits, Pokémon, bedrooms, and cats.
Distinct from the commonly used transfer learning strategy, which consists of using related
source and target domains, the evaluation is focused on source and target domains that
are completely different. Obtaining the results shown, StyleGAN with transfer learning
is suitable for the generation of high-resolution images in industrial applications due to
having a good generalisation capability regarding content variability of the target image.

Bean seeds

Young faces

Chars

Figure 1. Illustration of target domains for image generation.

The rest of the paper is structured as follows: Section 2 presents the theoretical
background on StyleGAN, GANs assessment, and transfer learning. Section 3 summarises
the relevant related works. Section 4 details the data augmentation strategy used as an
evaluation pipeline. Section 5 describes the performed experiments and results. Section 6
presents the discussion on the obtained results, focusing on the effect of pre-trained models
for synthetic image generation; Section 7 depicts the conclusions and future research lines.
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2. Theoretical Background

2.1. StyleGAN

StyleGAN [24] combines the architecture of Progressive Growing GAN [25] with
the style transfer principles [26] in Figure 2. StyleGAN’s architecture addresses some
limitations of the GAN models, such as stability during training and lack of control over
the images generated.

Figure 2. The StyleGAN architecture [27] is composed of three neural networks. (a) Mapping
network, which converts a random into a style signal. (b,c) Progressive generator network, which
receives the style signal (A) and random noise (B), and produces images progressively. (d) The
progressive discriminator network, which compares real and generated images to update all the
weights for the three networks, improving their performance.

In a traditional GAN model, a generative network receives as input a random vector Z,
or latent vector, to generate a new image. In contrast, in the StyleGAN architecture, a latent
vector Z (512-dimensional) feeds an 8-layer neural network, called a mapping network,
that transforms the latent vector into an intermediate space W (512-dimensional), which
defines the style of the image to be generated; see Figure 2a.

An image style defined in the intermediate space W is transferred to the progressive
generative network (Figure 2b), where the technique AdaIN (Adaptive Instance Normal-
ization) [26] transforms the latent vector W into two scalars (scale and bias) that control the
style of the image generated at each resolution level. In addition to the style guide provided
by AdaIN, the progressive generator network has as an input a constant argument. This
constant corresponds to an array of 4 × 4 × 512 dimensions, i.e., an image of 4 × 4 pixels
with 512 channels, which is learned during network training and contains a kind of sketch
with the general characteristics of the training set images. Furthermore, StyleGAN has
noise sources injected at each resolution level to introduce slight variations in the gener-
ated images (Figure 2c). The improvements in the StyleGAN generative network allow
optimising the quality of the generated synthetic images. Finally, the back propagation
algorithm is applied to adjust the weights of the three networks, improving the quality of
the images generated during the following iterations (Figure 2d).

2.2. GANs Model Evaluation

Evaluating GAN architectures is particularly hard because there is not a consensus
on a unique metric that assesses the quality and diversity of generated images [4,23].
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However, a widely used metric in the literature is the Fréchet Inception Distance (FID) [28],
defined as follows:

FID =
∥∥μr − μg

∥∥2
+ Tr

(
Σr + Σg − 2

(
ΣrΣg

)( 1
2 )

)
, (1)

where μr, μg are mean vectors and Σr, Σg are variance–covariance matrices. Equation (1)
is a distance measurement between real and generated images. Xr ∼ N(μr, Σr) and
Xg ∼ N(μg, Σg) are multidimensional normal distributions of 2048 dimensions of real and
generated images, respectively, which are extracted from the third layer of polling of the
Inception-v3 network [29].

The closer the distributions, the lower the metric value. FID values close to zero
correspond to a larger similarity between real and generated images, resulting in the
differences between the distributions.

2.3. Transfer Learning

Transfer learning models involve applying the knowledge learned in a source domain—
where a large amount of training data are available—to a target domain that has a reduced
amount of data, as illustrated in Figure 3. The objective is to transfer most characteristics
obtained from a source domain into a target domain in order to reduce training time and
use deep learning models with limited data [30].

Figure 3. Transfer learning scheme [2]. The learning task to be accomplished in the source domain
is provided by a vast number of training data. The target domain usually has a limited number of
training data.

The transfer learning is defined as follows: given a source domain DS, a source learn-
ing task TS, a target domain DT , and a target learning task TT , the transfer learning aims
to improve the learning of the target predictive function fT(.) in DT using the knowledge
learned in DS and TS, where DS �= DT or TS �= TT . A domain D is defined by two com-
ponents: a feature space X and a marginal probability distribution P(X), D = {X, P(X)}.
Similarly, a learning task T consists of two components: a labels space Y and a target
predictive function f (.), T = {Y, f (.)}.

In unsupervised models, such as GANs, the Y labels space does not exist, and the
learning task objective is to estimate the generative distribution of data. For this purpose,
a particular transfer learning technique, known as fine tuning, is used. Fine tuning is a
transfer learning technique in which a model that has been trained for a specific task is
used to perform a new task, with similar characteristics to the first task, by adjusting model
parameters. This process means that a model is not built from scratch, but rather takes
advantage of the characteristics learned from the original task.
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3. Related Works

GANs are capable of image generation in two categories: low-resolution [4,8,12,13,15,16,23]
and high-resolution [14,17,31–41]. A summary of these approaches is presented in Table 1.
The first group comprises mostly studies between 2017 and 2018. A predominance of
medical image augmentation focus on cancer detection [4,15], cerebral diseases [16] and
COVID-19 [12,13] is observed. The image generation is motivated by the high cost of
medical images acquisition that translates into a limited number of samples to train deep
learning models. Publications include studies that evaluated the effectiveness of GANs
data augmentation, using computer vision benchmarks datasets [8,23]. Particularly, the
work of Wang et al. [23] corresponds to the only attempt to use transfer learning with
generative models. This study concluded that it is possible to apply transfer learning in a
Wasserstein GAN model [42], using source and target domains with low-resolution images.

The second group includes studies from 2019 to date, driven by new GAN architec-
tures, such as StyleGAN [24], generating images with high-resolution. There are three
application areas: agriculture [31,32], medical [14,17,36,37], and electrical domains [35].
Particularly, Fetty et al. [17] presented a complete analysis of StyleGAN models trained
from scratch for data augmentation of pelvic malignancies images.

Transfer learning on generative models for limited data has been the subject of study
for the last three years [33,34,38–41], focusing on evaluating the impact of freezing the
lower generator layers [33,34], the lower discriminator layers [39], and both the generator
and discriminator lower layers [40], using mainly general purposes datasets of indoors (e.g.,
LSUN, Bedroons) and faces (e.g., CelebHQ, FFHQ, CelebA). The results show a reduction
in the overfitting derived from the knowledge transfer and training time. However, transfer
learning in conjunction with generative models has not been evaluated with a focus on the
capability to generate synthetic images with high-resolution, considering the variability
levels of content.

We aim to fill this literature gap using the proposed pipeline to evaluate the transfer
capability of the knowledge obtained from certain source domains to target domains with
different levels of content variability, such as bean seed images (with simple shape, texture,
and colour), young faces and chars images (with more complex visual features). These
target domains correspond to real industrial applications.
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4. Evaluation Synthetic Images Generation Pipeline

We proposed a five-step pipeline based on the fine tuning of StyleGAN pre-trained
models from five source domains, as is shown in Figure 4—paintings, portraits, Pokémon,
bedrooms, and cats—in order to generate synthetic images in three target domains: bean
seeds, young faces, and chars. Although, there is a new version of StyleGAN, called
StyleGAN2 [43], we selected the first version of StyleGAN, due to the large number
of publicly available pre-trained StyleGAN models. Moreover, in practice, training a
StyleGAN model from scratch requires a huge number of images, computational resources
(preferably with multiple GPUs) and processing time.

In the proposed image generation pipeline, first, we select the images target domain
of bean seeds, young faces, or chars, as input. Second, images from the target domain
are pre-processed to improve the transferability of features by adjusting image resolution.
Third, pre-trained StyleGAN models are fine tuned with pre-processed images. Fourth,
the FID evaluation metric is used for selecting the best source domain. Fifth, the synthetic
images for the input target domain are generated with the best source domain.

Figure 4. Evaluation pipeline: (a) Input images from a target domain. (b) Pre-processing of target
domain images to improve the transferability of the features. (c) Transfer learning using StyleGAN
pre-trained models from source domains. (d) Selection of the best source domain using the FID
metric. (e) Generation of synthetic images for the target domain.

4.1. Input Target Domain Images

We used images from three application domains—bean seeds, young faces and chars—
with different variability levels of content and potential industrial applications; see Figure 1.

Bean seeds: The dataset [44] has 1500 seed images from 16 bean varieties. Bean
seed images are classified as low content variability since shape, colour, and texture
characteristics are homogeneous for the analysed seed varieties, corresponding to oval
shapes with limited range of red, cream, black, and white colours. In addition, the acquired
images share the same background colour. Synthetic images of bean seeds are valuable in
developing evaluation tools of genetic breeding trials. These tools are used to preserve the
genetic pedigree of seeds over time, accomplish market quality requirements, and increase
production levels [45].

Young faces: The images set consists of 3000 images randomly selected from pub-
licly available datasets with reference to age estimation problems: IMDB-WIKI [46],
APPA-Real [47], AgeDB [48]. Images correspond to individuals aged between 5 and 19
years. This range of ages was selected because it presents the lowest frequencies in the
considered facial datasets. In addition, young faces are crucial in cybersecurity applica-
tions, such as access control, the detection of Child Sexual Exploitation Material or the
identification of victims of child abuse [49–51]. Young facial images are considered to be of
medium variability content since faces have a similar shape structure; the StyleGAN model
was originally designed for faces generation.

Chars: The dataset contains 2928 segmented char particle images from coals of high,
medium, and low reactivity. Char images are considered to be of high variability content
due to the complex particle shapes and lack of colours. Synthetic images of char particles
are useful to train models to estimate the combustion parameters in power generation
plants [52].

Table 2 contains a summary of the target domains, including the source, number of
images, number of classes, and content variability type.
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Table 2. Description of target domain datasets.

Target Domain # of Images # of Classes Content Variability

Bean seeds [44] 1500 16 Low
Young faces [46–48] 3000 14 Medium

Chars [52] 2928 3 High

4.2. Pre-Processing Target Domain Images

Input images are pre-processed to improve the transfer of features from the source
domain images into the target domain. The pre-processing consists of equally adjusting the
images resolution to the resolution of the source domain. In short, operations of resizing,
up-scaling, or down-scaling are applied, depending on the difference between the target
and source images’ dimensions.

4.3. Transfer Learning from Source Domains

We used five pre-trained StyleGAN models—paintings, portraits, Pokémon, bedrooms,
and cats—shown in Figure 5. The selection of pre-trained models was based on the (i)
public availability of models, and (ii) diversity of images used to build models. Table 3
presents relevant information about pre-trained models: the images source, required
images resolution, and the number of iterations used for training.

Paintings

Portraits

Pokémon

Bedrooms

Cats

Figure 5. Illustration of generated images using the training source domain models.

Table 3. Description of pre-trained StyleGAN models (source domains).

Source Domain Image Resolution Number of Iterations

Paintings [53] 512 × 512 8040
Portraits [54] 512 × 512 11,125
Pokemon [55] 512 × 512 7961
Bedrooms [56] 256 × 256 7000

Cats [56] 256 × 256 7000

Transfer learning is performed by fine tuning the pre-trained StyleGAN models (source
domains) with images of the target domain to build new image generators. During the fine
tuning of StyleGAN models, the learning rate is set to 0.001 and the number of minibatch
repetitions is set to 1 based on those reported in [57]. The selected values for the learning
rate and minibatch repetition increase the stability and speed during training.
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4.4. Selection of the Best Source Domain

Once the StyleGAN models are fine tuned, the best source domain is selected based
on the best FID metric value to generate images of a target domain. In particular, the
StyleGAN model with the lowest FID value has a better performance since the model
generates images with a distribution similar to the target domain.

4.5. Synthetic Images Generation (Output)

The StyleGAN with the best performance is used to generate as many images as
needed for the target domain (data augmentation).

5. Experimental Evaluation

We assess the transfer learning capability of pre-trained models from five source
domains—paintings, portraits, Pokémon, bedrooms, and cats—to build StyleGAN models
for generating images of unrelated target domains with different levels of content variabil-
ity: bean seeds, young faces, and chars. Pre-processed images from target domains are used
to fine tune pre-trained StyleGAN models (source domains) over 1000 iterations, using
the hyperparameters described in Section 4.3. We run the experiments on a GNU/Linux
machine with a GPU Nvidia TITAN Xp 11GB, Cuda 10.1, and CuNDD 7. The source code
is available at https://github.com/haachicanoy/stylegan_augmentation_tl (accessed on
28 July 2021).

Table 4 presents the FID values obtained for the fine-tuned StyleGAN models, and
Table 5 illustrates the generated images by the target domain.

Table 4. FID values for StyleGAN models built for target domains by fine tuning pre-trained models
from different source domains. The best source domain to generate images of a target domain by
transfer learning is highlighted in bold. Lower FID values indicate better performance.

Source Target Bean Seeds Young Faces Chars

Paintings 23.26 27.77 38.13
Portraits 35.04 30.11 —
Pokémon 27.06 27.56 —
Bedrooms 39.31 16.98 34.81

Cats 57.92 20.48 61.52

Table 5. Generated images for target domain using fine tuned StyleGAN models.

Source Target Bean Seeds Young Faces Chars

Original image

Paintings

Portraits —

Pokémon —

Bedrooms

Cats

The results show that StyleGAN models are able to generate bean seed images (low
content variability) through transfer learning with excellent performance. FID values
range between 23.26 and 57.92, corresponding to the source domains of paintings and cats,
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respectively. Hence, the best source domain to generate bean seed images is paintings. It
indicates that the colour pattern in these images is more similar to beans in comparison to
the other source domains.

Regarding the generation of young face images (medium content variability), the
bedrooms source domain achieves the best results (FID of 16.98). Bedrooms are one of
the most complete source domains, standing out for colour and shape features that are
efficiently transferred to generate facial images. It is essential to highlight that the five
source domains yield FID values lower than 30.11. This performance may be related to the
fact that the StyleGAN architecture was specifically developed for generating synthetic
face images.

During the fine tuning of models to generate char images, we observed that the source
domains of Pokémon and portraits do not converge, leading the training to fail. This is
presumably because of the high content variability of chars with complex shapes, varying
sizes, and changes in colour intensities that make it difficult to adapt the features from
these two source domains. The remaining source domains (paintings, bedrooms, and cats)
have features that can be successfully transferred to the generation of char images. In
particular, bedrooms achieve the best performance (FID of 34.81).

In most of the cases, fine tuned models generate images of bean seeds, young faces
and chars with visual characteristics that are similar to the original ones (see Table 5).
However, in some cases, the generated images have visual defects; see Figure 6. Defects
on bean seed images comprise bean shape deformation, stains, and changes in colour
intensities. Defects on young facial images correspond to colour spots and alterations in
the hair, skin, and smile. Defects on chars images include blurring and undefined shapes.
Therefore, the generated images have to be filtered to remove images with defects before
using them in any application, e.g., the training of an image classifier. A sample of 1000
synthetic images of target domains generated from the best source domains is available at
https://doi.org/10.7910/DVN/HHSJY8 (accessed on 23 July 2021).

Bean seeds

Young faces

Chars

Figure 6. Defects in generated images by target domain.

6. Effect of Pre-Trained Models on Synthetic Images Generation

Figure 7 shows the evolution of the FID metric across the iterations of fine tune
StyleGAN models for evaluating target domains (bean seeds, chars and young faces). The
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results show that, in most cases, the trained models for a target domain—regardless of
the source domain—tend to stabilise and converge to a constant FID value, after a certain
number of iterations. This occurs for all cases, except for target domains with high content
variability (chars) where some source domains do not converge—portraits and Pokémon.
Hence, we conclude that transfer learning and generative models, such as StyleGAN, can
be successfully used to build generators of images with low and medium content variability,
such as seeds and faces. However, the generation of synthetic images with high content
variability is limited by the characteristics of source domains. In particular, the best FID
values are obtained for the source domains of paintings (bean seeds) and bedrooms (chars
and young faces).

Figure 7. FID metric vs. StyleGAN training iterations for the evaluated source domains grouped by
target domain.

We also analysed the loss score values of the generator and discriminator networks
during training, shown in Figure 8. Similar to the observed for the FID values, the loss
scores of the source domains exhibit a steady behaviour, except for the cats’ domain,
indicating an instability around 500 iterations.

Furthermore, the use of transfer learning reduces significantly the number of images
(up to 1500 for beans) and iterations (up to 1000 or 2 days) required to build StyleGAN
models, in comparison to models trained from scratch (70,000 images and 14 days) [24].

Regarding the quality of the synthetic images, Figure 9 presents a bar graph of the FID
values by source domains—paintings, portraits, Pokémon, bedrooms, and cats—grouped
by the target domain: bean seeds, chars, and young faces. The bar highs correspond to
median values of the FID obtained during the fine tuning of StyleGAN models by a source
domain, while the black line on the bars represents dispersion of the median FID values.
The length of the line denotes the range of the dispersion. Larger lines indicate that the
images generated from a source domain differ significantly from the target domain.

The source domains with the best performance—lower median FID value and
dispersion—are bedrooms, for the young faces and chars, and paintings, for the bean
seeds. Despite bedrooms yielding the lowest FID value in the target domain of chars, this
source domain is the one with the largest dispersion, indicating a possible generation of
char images with defects.
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Figure 8. Loss scores vs. StyleGAN training iterations for the evaluated source domains grouped
by target domain. Solid and dotted lines correspond to discriminator and generator network scores,
respectively; following the source domains colours.

Figure 9. FID (median) for target domains and their source domains.

7. Conclusions

StyleGAN with transfer learning is a strategy for generating synthetic images with a
limit number of images from the target domain. We evaluated the application of StyleGAN
with transfer learning on generating high-resolution images by a pipeline based on the fine
tuning of StyleGAN models. The evaluation was conducted using three target domains
from industrial applications with different content variability (bean seeds, chars, and young
faces) and five source domains from general applications (paintings, portraits, Pokémon,
bedrooms, and cats) to perform transfer learning.

The experimental evaluation confirmed the potential of StyleGAN with transfer learn-
ing for generating synthetic images for industrial applications. The proposed pipeline
performed better with target domains with low and medium content variability in terms of
colour and shape, such as bean seeds and young faces. Moreover, the time and number of
images required to build the models were reduced in all cases, which validates the use of
StyleGAN with transfer learning for generating synthetic images.
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As future work, strategies to optimise the fine tuning hyper-parameters will be evalu-
ated to improve the performance of image generators with high content variability and
reduce the defects in synthetic images. General purpose datasets will be assessed, such as
FFHQ and LSUN.
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Abstract: Oriented fuzzy numbers are a convenient tool to manage an investment portfolio as they
enable the inclusion of uncertain and imprecise information about the financial market in a portfolio
analysis. This kind of portfolio analysis is based on the discount factor. Thanks to this fact, this
analysis is simpler than a portfolio analysis based on the return rate. The present value is imprecise
due to the fact that it is modelled with the use of oriented fuzzy numbers. In such a case, the
expected discount factor is also an oriented fuzzy number. The main objective of this paper is to
conduct a portfolio analysis consisting of the instruments with the present value estimated as a
trapezoidal oriented fuzzy number. We consider the portfolio elements as being positively and
negatively oriented. We test their discount factor. Due to the fact that adding oriented fuzzy numbers
is not associative, a weighted sum of positively oriented discount factors and a weighted sum of
negatively oriented factors is calculated and consequently a portfolio discount factor is obtained as a
weighted addition of both sums. Also, the imprecision risk of the obtained investment portfolio is
estimated using measures of energy and entropy. All theoretical considerations are illustrated by an
empirical case study.

Keywords: oriented fuzzy number; imprecision; present value; discount factor; portfolio; finance

1. Introduction

Imprecision is one of the characteristic features of information on financial markets.
According to the uncertainty theory, any unknown future state of affairs is uncertain [1,2].
Uncertainty arises from our ignorance of the future state of affairs. This means that it can
be modelled with a certain probability, as long as we are able to indicate a specific time at
which the considered state of affairs will be known to the observer [3–9]. This was initially
conceived by Kolmogorov [5,6] and is called “Kolmogorov’s postulate”. Imprecision is
perceived as a combination of ambiguity and indistinctness of information [10]. Ambiguity
is understood as a lack of a clear recommendation between one alternative among various
others. Indistinctness is interpreted as a lack of explicit distinction between recommended
and unrecommended alternatives. Modelling the imprecision by its membership function
of the fuzzy set is a commonly used method [11]. In this paper, we describe imprecision
using oriented fuzzy numbers. In portfolio analyses, we use uncertain and imprecise
information about the financial market.

A security is an authorization to receive future financial income that is payable to a
specified maturity. The value of this income is described as an anticipated future value of
capital. The present value (PV) is defined as a current equivalent of a payment available at
a stated time in the future [12]. It is assumed that the present value of future cash flows is
an approximated value and therefore it can be modelled by fuzzy numbers. In this paper,
PV is modelled by oriented fuzzy numbers (OFN) defined in [13]. In recent years, OFNs
have been increasingly used to describe and analyze economic [14,15], financial [16–25]
and decision-making [26–33] problems. The application of OFNs in financial analysis
may minimize imprecision risk, which was presented, for instance, in [32]. The family of
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all oriented fuzzy numbers has a symmetry axis that is equal to the family R of all real
numbers, which was discussed in detail in [32,34].

The base of any security assessment is the return rate, generally defined as an arbitrary
non-increasing function of present value and a non-decreasing function of future value.
An arbitrary, finite set of securities will be called a financial portfolio. After Markowitz,
we also assume simple return rates, which means that the current value is positive and
the future value is a random variable with a normal distribution [35]. It allows for some
of the parameters, considered in existing portfolio theory, such as return rate or present
value [36–38] or probability distribution parameters [39], to be fuzzy. Fuzzy systems
are increasingly used in portfolio analysis [40–45]. A detailed evolution of research was
presented in [17,32].

In financial arithmetic, fuzzy numbers appeared in 1987 due to Buckley [46]. The
definition, which was proposed by Ward [47], was generalized to the case of imprecisely
assessed postponement [48], fuzzy nominal interest rate [49], future cash flow described
by a fuzzy variable [50], and to the case when future cash flow can be treated as a fuzzy
probabilistic set [51]. The current fuzzy value was axiomatically defined by Calzi [52], while
in Piasecki [53] the fuzzy PV was estimated based on the current quoted price of a financial
asset. More detailed elaboration on that topic can be found in [17,32], among others.

A portfolio with a trapezoidal fuzzy PV was investigated, for instance, in [45]. In
financial portfolio management, utilizing oriented fuzzy numbers is more useful than uti-
lizing fuzzy numbers. We use trapezoidal oriented fuzzy numbers in the portfolio analysis
because performing summation operations on them is much easier than on oriented fuzzy
numbers. Oriented fuzzy numbers can be approximated by trapezoidal fuzzy numbers,
as shown in [54]. Operations on oriented fuzzy numbers are much more computationally
complicated, as can be seen in [17]. In [21], Piasecki and Łyczkowska-Hanćkowiak showed
a universal method of representing Japanese candlesticks with oriented fuzzy numbers.
In our paper, we investigate portfolios with PVs described by oriented fuzzy numbers.
Moreover, a portfolio analysis based on a fuzzy discount factor is simpler than a portfolio
analysis based on a return rate. For this reason, here we use a discount factor evaluated
by oriented fuzzy numbers as defined in [25]. This paper presents an original method of
using the imprecision expected discount factor in the portfolio analysis. We also show that
portfolio diversification may lower uncertainty risk and imprecision risk. The addition
of oriented fuzzy numbers is not associative. Therefore, we calculate the weighted sum
of positively oriented discount factors and the sum of negatively oriented discount fac-
tors separately. Then, the portfolio discount factor is obtained by the weighted addition
of these sums. Such a procedure for determining the discount factor of the portfolio is
justified by economic premises. The criterion of the maximization of the expected return
rate is replaced by the criterion of the minimalization of the expected discount factor. In
decision analysis, a convenient tool for measuring the indistinctness risk is the entropy
measure. In each of the considered cases, a return rate is a function of future value, which
is uncertain by its nature. This uncertainty results from the ignorance of the future state
of matters. This ignorance causes the investor to be unsure of future gains or losses. An
increase in uncertainty may increase the uncertainty risk, which is the risk of making an
incorrect financial decision. An increase in ambiguity means an increase in the amount of
highly recommended alternative information about the state of affairs. This increase in the
ambiguity of imprecise expected discount factors indicates that the number of alternative
decisions that can be selected will be greater. This implies an increased ambiguity risk,
i.e., selecting an incorrect assessment from among the recommended ones. This can cause
a decision that will result in less than the maximum profit. Ambiguity and uncertainty
risk have the same description of the dangers caused by risks taken and the effects of
decisions made but they differ in their causes. For this reason, both types of risk should
be assessed by different methods. We estimate the ambiguity risk of encumbering the
imprecise expected discount factor with the energy measure. An increase in the indistinct-
ness of the imprecise expected discount factor suggests that the differences between the
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recommended and unrecommended decision alternatives are harder to differentiate. This
suggests that the indistinctness risk may increase. This means that we can choose an option
that is not recommended. We estimate the indistinctness risk of the imprecise expected
discount factor using the entropy measure. The risk of imprecision is the combination
of the ambiguity and indistinctness risk. To assess the ambiguity and indistinctness risk,
we use the energy measure and entropy measure, respectively. The main objective of this
paper is to prove that it is possible to effectively manage a financial asset portfolio while
accounting for both imprecision and uncertainty of information about the market. By using
OFNs in the analysis, we minimize the imprecision risk.

The paper is organized as follows. Section 2 outlines trapezoidal fuzzy numbers and
their basic properties as a theoretical background for our future considerations. Section 3
contains the evaluation of imprecision for oriented fuzzy numbers. In Section 4, we
introduce the notion of imprecisely estimated PVs, which are evaluated using trapezoidal
oriented fuzzy numbers. We use the obtained model in Section 5, where the expected
discount factor is researched. In Section 6, we compare the original method for determining
multi-asset portfolios with trapezoidal oriented fuzzy PVs. Our research is illustrated
by a case study. This case study sufficiently explains the proposed method of portfolio
evaluation. Finally, Section 7 concludes the article and summarizes the main findings.

2. Trapezoidal Oriented Fuzzy Numbers—Basic Facts

The family of all fuzzy subsets in the real line R we denote by F(R). Any fuzzy subset
A ∈ F(R) is described by its membership function μA ∈ [0, 1]R as a set of ordered pairs:

A = {(x, μA(x)); x ∈ R}. (1)

Fuzzy subset A may be characterized by its support closure [A]0+ , given in the
following way:

[A]0+ = lim
α→0+

{x ∈ R : μA(x) ≥ α}. (2)

The core ࣝℴंℯ(ܣ) is defined by the formula:ࣝℴंℯ(ܣ) = ݔ} ∈ ॿ: ߤ(ݔ) = 1}. (3) 

A fuzzy number (FN) is usually defined as a fuzzy subset of the real line R. The most
general definition of FN is given as follows:

Definition 1 [55]. The fuzzy number is such a fuzzy subset L ∈ F(R) with a bounded support
closure [L]0+ that it is represented by its upper semi-continuous membership function μL ∈ [0; 1]R,
satisfying the conditions:

∃x∈R μL(x) = 1, (4)

∀(x,y,z)∈R3 x ≤ y ≤ z =⇒ μL(y) ≥ min{μL(x); μL(z)}. (5)

The set of all FNs we denote by the symbol F. Any FN may be represented in the
following way:

Theorem 1 [56,57]. For any FN L there exists such a non-decreasing sequence (a, b, c, d) ⊂ R

that L(a, b, c, d, LL, RL) = L ∈ F(R) is determined by its membership function
μL(· |a, b, c, d, LL, RL ) ∈ [0, 1]R described by the identity:

μL(x|a, b, c, d, LL, RL) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [a, d],

LL(x), x ∈ [a, b],
1, x ∈ [b, c],

RL(x), x ∈ [c, d],

(6)
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where the left reference function LL ∈ [0, 1][a,b]. and the right reference function RL ∈ [0, 1][c,d] are
upper semi-continuous monotonic ones meeting the condition:

[L]0+ = [a, d]. (7)

The FN L(a, a, a, a, LL, RL) = 〚a〛 represents the real number a ∈ R, i.e., R ⊂ F.
The notion of ordered FNs is introduced by Kosiński et al. in [58]. For formal reasons,

Kosiński’s theory is revised in [13]. In the revised theory, the notion of ordered FNs is
narrowed down to the notion of oriented FNs (OFN), defined as follows:

Definition 2 [13]. For any monotonic sequence (a, b, c, d) ⊂ R, an oriented fuzzy number
↔
L(a, b, c, d, SL, EL) =

↔
L is the pair of orientation

−→
a, d = (a, d) and FN L ∈ F is described by

membership of the function μL(·|a, b, c, d, SL, EL) ∈ [0, 1]R, given by the identity:

μL(x|a, b, c, d, SL, EL) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [a, d] ≡ [d, a],

SL(x), x ∈ [a, b] ≡ [b, a],
1, x ∈ [b, c] ≡ [c, b],

EL(x), x ∈ [c, d] ≡ [d, c],

(8)

where the starting function SL ∈ [0, 1][a,b]. and the ending function EL ∈ [0, 1][c,d] are upper
semi-continuous monotonic ones meeting condition (7).

In Equation (8), we use modified interval notation, often used in the theory of oriented
fuzzy numbers. The notation I ≡ K means that “the interval I may be equivalently
replaced by the interval K”. The relationships between FNs, ordered FNs, and OFNs are
discussed in detail in [34].

The symbol K denotes the space of all OFNs. If a < d, then OFN
↔
L(a, b, c, d, SL, EL)

has a positive orientation
−→
a, d. It informs us about the possibility of an increase in the

approximated number. If a > d, then OFN
↔
L(a, b, c, d, SL, EL) has the negative orientation

−→
a, d. It informs us about the possibility of a decrease in the approximated number. If a = d,

then OFN
↔
L(a, a, a, a, SL, EL) = 〚a〛 describes the real number a ∈ R.

Trapezoidal fuzzy numbers (TrOFNs) are a special case of OFNs.

Definition 3 [13]. For any monotonic sequence (a, b, c, d) ⊂ R, TrOFN
↔
Tr(a, b, c, d) =

↔
T is

OFN
↔
T ∈ K, determined explicitly by its membership functions μT ∈ [0, 1]R as follows:

μT(x) = μTr(x|a, b, c, d) =

⎧⎪⎪⎨⎪⎪⎩
0, x /∈ [a, d] ≡ [d, a],

x−a
b−a , x ∈ [a, b] ≡ [a, b],

1, x ∈ [b, c] ≡ [c, b],
x−d
c−d , x ∈ [c, d] ≡ [c, d].

(9)

The space of all trapezoidal oriented fuzzy numbers, TrOFNs, we denote as KTr.
By K+

Tr we denote the space of all TrOFNs that have a positive orientation and by K−
Tr

we denote the space of all TrOFNs that have a negative orientation. A crisp number
a ∈ R, which is unoriented, is denoted as the following trapezoidal oriented fuzzy number
↔
Tr(a, a, a, a) = 〚a〛.

Let symbol ∗ denote any arithmetic operation defined in R and symbol ∗ denote an
extension of an arithmetic operation ∗ to K [13]. Kosiński has defined arithmetic operators
on ordered FNs in an intuitive way, but the addition of a dot product extended to the
space K has a very high level of formal complexity [34]. Therefore, in many applications
researchers limit their calculations to arithmetic operations determined in the space KTr.
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In line with Kosinski’s approach, we can extend the basic arithmetic operators in the

case of KTr in such way that for any pair
(↔

Tr(a, b, c, d),
↔
Tr(p − a, q − b, r − c, s − d)

)
∈ K2

Tr

and β ∈ R, arithmetic operations of extended sum � and dot product � are defined as
follows [34]:

↔
Tr(a, b, c, d)�

↔
Tr(p − a, q − b, r − c, s − d) =

=

{ ↔
Tr(min{p, q}, q, r, max{r, s}), (q < r) ∨ (q = r ∧ p ≤ s),
↔
Tr(max{p, q}, q, r, min{r, s}), ( q < r) ∨ (q = r ∧ p > s).

(10)

β �
↔
Tr(a, b, c, d) =

↔
Tr(β·a, β·b, β·c, β·d). (11)

It is very easy to check that for any pair
(↔

Tr(a, b, c, d),
↔
Tr(e, f , g, h)

)
∈ K+

Tr ×K+
Tr ∪

K−
Tr ×K−

Tr, we have:

↔
Tr(a, b, c, d)�

↔
Tr(e, f , g, h) =

↔
Tr(a + e, b + f , c + g, d + h). (12)

Any unary operator G : R ⊃ A −→ R may be extended in the case of TrOFNs. Using

Kosiński’s approach, we define an extended unary operator
↔
G : KTr ⊃ H −→ K as follows:

↔
L(G(a), G(b), G(c), G(d), SL, EL) =

↔
G

(↔
Tr(a, b, c, d)

)
(13)

where the starting function and the ending function are given by the formulas:

∀ y ∈ [G(a), G(b)] SL(y) =
G−1(y)− a

b − a
, (14)

∀ y ∈ [G(c), G(d)] EL(y) =
G−1(y)− d

c − d
. (15)

OFN (12) is TrOFN if and only if its starting function and ending function are linear.

3. Evaluation of Imprecision for Oriented Fuzzy Numbers

Information imprecision we understand as a superposition of ambiguity and indis-
tinctness of information [10]. Ambiguity is comprehended in such a way that neither
option is unequivocally recommended. Indistinctness is comprehended in such a way that
recommended and unrecommended alternatives are not clearly distinguishable.

The increase in OFN ambiguity implies a higher number of recommended alternatives.
This increases the risk of choosing the wrong alternative from among the recommended
ones. This can eventually lead to one making a decision that will result in the loss of
ex-post chances. The possibility of this happening is called the ambiguity risk. Hence, an
increase in the ambiguity of OFN causes an increase in the ambiguity risk. A convenient
tool for measuring the oriented fuzzy number ambiguity is an extension of energy measure,
defined by the following formula:

d

(↔
L(a, b, c, d, LL, RL)

)
=

∣∣∣∣∫ d

a
μL(x|a, b, c, d, LL, RL)dx

∣∣∣∣. (16)

This energy measure is an extension of the energy measure d ∈
[
R+

0
]F, defined for

fuzzy numbers by de Luca and Termini [59]. In decision analysis, to measure the ambiguity
risk is to exploit the energy measure.
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A comfortable instrument for measuring the indistinctness of an oriented fuzzy num-
ber is the entropy measure e ∈

[
R+

0
]F. This measure was also proposed by de Luca and

Termini [60] and was then modified by Piasecki [61].
In [62], Kosko described the most widely known kind of entropy measure. Unfortu-

nately, in [44,45] it is shown that Kosko’s entropy measure is not convenient for portfolio
analysis. For this reason, in [23,34] the tool for measuring the OFN indistinctness is
proposed as the entropy measure e ∈

[
R+

0
]K, defined by the identity:

e
(↔
L(a, b, c, d, LL, RL)

)
=

∣∣∣∣∫ d

a
min{μL(x|a, b, c, d, LL, RL), 1 − μL(x|a, b, c, d, LL, RL)}dx

∣∣∣∣. (17)

This entropy measure is an extension of the entropy measure e ∈
[
R+

0
]F, introduced

for FNs by Czogała, Gottwald, and Pedrycz in [63]. In decision analysis, we use the entropy
measure as a measure of the indistinctness risk. Imprecision risk consists of both ambiguity
and indistinctness risk combined.

For any TrOFN
↔
Tr(a, b, c, d), its energy and entropy are determined based on the

following equations [34]:

d

(↔
Tr(a, b, c, d)

)
=

1
2
·|d + c − b − a|, (18)

e
(↔

Tr(a, b, c, d)
)
=

1
4
·|d − c + b − a|. (19)

The results can be described in a form convenient for the analysis of an investment
portfolio. An asset benefit index is the value of the relative profit of owned capital. This
relative profit of the owned asset (for example return rate, discount factor) is a function
that is dependent on the profit value and the asset value [34].

The benefit index for a two-assets portfolio is equal to the average of the portfolio
component benefit indexes. This model is often used to analyze the effects of portfolio
diversification. In our research, the portfolio component benefit indexes are imprecisely
estimated. If portfolio component benefit indexes are described by trapezoidal oriented

fuzzy numbers
↔
K,

↔
L ∈ KTr, then the portfolio benefit index is determined by the function

� : (KTr)
2 × [0, 1] → KTr , given by this formula [34]:

�

(↔
K,

↔
L, λ

)
=

(
λ �

↔
K

)
�

(
(1 − λ)�

↔
L

)
. (20)

The method of determining the parameter λ depends on the kind of considered
relative benefits [45].

Theorem 2 [34].For any real number λ ∈ [0, 1], we have:

• f or any pair
(↔
K,

↔
L

)
∈

(
K−

Tr ×K−
Tr

)
∪

((
K+

Tr ∪ R
)
×

(
K+

Tr ∪ R
))

d

(
�

(↔
K,

↔
L, λ

))
= λ·d

(↔
K

)
+ (1 − λ)·d

(↔
L

)
, (21)

e

(
�

(↔
K,

↔
L, λ

))
= λ·e

(↔
K

)
+ (1 − λ)·e

(↔
L

)
, (22)

• f or any pair
(↔
K,

↔
L

)
∈

((
K+

Tr ∪ R
)
×K−

Tr
)
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݀ ቀ߸൫ࣥ⃖ሬ⃗ , ℒ⃡, ൯ቁߣ ≤ ቐߣ ∙ ࣸ൫ࣥ⃖ሬ⃗ ൯ − (1 − (ߣ ∙ ࣸ ቀࣝℴंℯ൫ℒ⃡൯ቁ , ߸൫ࣥ⃖ሬ⃗ , ℒ⃡, ൯ߣ ∈  ॶ்ା ∪ ℝ,(1 − (ߣ ∙ ࣸ൫ℒ⃡൯ − ߣ ∙ ࣸ ቀࣝℴंℯ൫ࣥ⃖ሬ⃗ ൯ቁ , ߸൫ࣥ⃖ሬ⃗ , ℒ⃡, ൯ߣ ∈  ॶ்ି ∪ ℝ, (23) 

• for any pair
(↔
K,

↔
L

)
∈

((
K+

Tr ∪ R
)
×K−

Tr
)
∪

(
K−

Tr ×
(
K+

Tr ∪ R
))

e

(
�

(↔
K,

↔
L, λ

))
≤ min

{
λe

(↔
K

)
, (1 − λ)e

(↔
L

)}
. (24)

4. Oriented Fuzzy Present Value

According to the uncertainty theory, any unknown future state of affairs is uncertain [1,2].
The uncertainty results from our lack of knowledge about the future state of affairs. We
can model uncertainty with some probability. It is possible when we are able to indicate a
specific time in the future, when the effect of a considered situation will already be known
to the observer [3–9]. This was initially formulated by Kolmogorov [5,6] and is called
“Kolmogorov’s postulate”.

We understand a security as an authorization to receive a future financial income
payable to a certain maturity. The value of this income is understood as an anticipated
future value of an asset. In our research, we can point to this particular time in the future
at which the considered revenue will already be known to the observer. For this reason,
the future value is not burdened by Knight’s uncertainty [64]. Together with Kolmogorov′s
postulate, this allows us to conclude that the future value is a random variable.

In [12], a present value (PV) was redefined as a present equivalent of a payment
available at a given time in the future. In our research, the estimation of the fuzzy present
value is supplemented by a forecast of the closest changes in price. It was shown in [65]
that the closest price changes can be forecasted using a prediction table. The use of oriented
fuzzy numbers for a portfolio analysis is more useful than the use of fuzzy numbers, as
discussed in detail in [34]. For this reason, an imprecise present value may be estimated
using oriented fuzzy numbers [21,32]. PV, defined in this way, is called an oriented present
value (O-PV). Any O-PV is described by a monotonic sequence

(
Vs, Vf , P̌, Vl , Ve

)
and

then it is estimated by a trapezoidal oriented fuzzy number:

↔
PV =

↔
Tr

(
Vs, Vf , Vl , Ve

)
(25)

where the monotonic sequence
(

Vs, Vf , P̌, Vl , Ve

)
is determined in the following way:

• P̌ is a quoted price.
• [Vs, Ve] ⊂ R+ is an interval of all possible values of PV.

•
[
Vf , Vl

]
⊂ [Vs, Ve] is the interval of all prices that do not noticeably differ from the

quoted price P̌.

If we anticipate a price increase, then PV is described by a positively oriented trape-
zoidal fuzzy number. If we anticipate a price decrease, then PV is described by a negatively
oriented trapezoidal fuzzy number.

In our research, oriented present value is used for modelling imprecise evaluations
of PV. The imprecision consists of ambiguity and indistinctness. We comprehend the
ambiguity in such a way that neither value is unequivocally indicated. An indistinctness is
comprehended in such a way that values equal to the present value and values different
from the present value are not clearly distinguishable. We use the energy and entropy to

measure the ambiguity and indistinctness of the O-PV given by
↔

PV =
↔
Tr

(
Vs, Vf , Vl , Ve

)
.
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Let the fixed security Ŝ be given. Using Equations (18), (19) and (25) for fixed security
Ŝ, we get:

d

( ↔
PV

(
Ŝ
))

=
1
2
·
∣∣∣Ve + Vl − Vf − Vs

∣∣∣, (26)

e
( ↔

PV
(
Ŝ
))

=
1
4
·
∣∣∣Ve − Vl + Vf − Vs

∣∣∣. (27)

Examples of trapezoidal O-PVs are the Japanese candle model [21] and the Heikin-
Ashi candle model [24].

Example 1 [32]. We consider a portfolio of company stocks included in WIG20 quoted on the
Warsaw Stock Exchange (WSE). Based on a session closing on the WSE on 28 January 2020,
for each observed stock we evaluated its oriented present value assessed by trapezoidal oriented
fuzzy number, describing its Japanese candle [21]. Table 1 contains these stocks’ O-PVs. For each
considered stock Ŝ, we notice its quoted price P̌sis the initial price on 29 January 2020.

Table 1. Recorded values of the portfolio π stocks.

Company’s Stock Present Value
↔

PVs Quoted Price P̌s
Energy

Measure
Entropy
Measure

ALR
↔
Tr(27.42; 27.30; 27.00; 26.84) 27.00 0.44 0.07

CCC
↔
Tr(83.35; 88.00; 88.00; 89.65) 88.00 3.15 1.575

CDR
↔
Tr(271.50; 271.50; 276.30; 276.30) 277.00 4.8 0

CPS
↔
Tr(26.42; 26.60; 27.04; 27.34) 27.20 0.68 0.12

DNP
↔
Tr(155.00; 155.00; 155.10; 157.30) 155.30 1.2 0.55

JSW
↔
Tr(18.60; 19.36; 20.14; 20.14) 20.32 1.16 0.19

KGH
↔
Tr(91.78; 93.60; 93.70; 94.90) 94.24 1.61 0.755

LTS
↔
Tr(83.88; 83.40; 81.16; 80.26) 81.44 2.93 0.345

LPP
↔
Tr(8205.00; 8380.00; 8395.00; 8460.00) 8385.00 135 60

MBK
↔
Tr(367.00; 366.00; 359.80; 357.00) 359.00 8.1 0.95

OPL
↔
Tr(7.01; 7.05; 7.20; 7.35) 7.17 0.245 0.0475

PEO
↔
Tr(97.22; 97.70; 98.20; 98.66) 98.20 0.97 0.235

PGE
↔
Tr(7.08; 7.15; 7.30; 7.40) 7.30 0.235 0.0425

PGN
↔
Tr(3.91; 3.88; 3.86; 3.82) 3.87 0.055 0.0175

PKN
↔
Tr(83.22; 83.00; 81.62; 81.18) 81.90 1.71 0.165

PKO
↔
Tr(34.59; 34.68; 34.90; 35.26) 34.93 0.445 0.1125

PLY
↔
Tr(35.82; 35.94; 36.76; 37.20) 36.70 1.1 0.14

PZU
↔
Tr(40.72; 40.73; 40.89; 41.11) 40.88 0.275 0.0575

SPL
↔
Tr(276.20; 278.00; 281.80; 283.80) 287.00 5.7 0.95

TPE
↔
Tr(1.51; 1.53; 1.56; 1.56) 1.56 0.04 0.005

We calculate the energy and entropy measure of the oriented present value using
Equations (26) and (27), respectively.

It is noteworthy that CCC, CDR, CPS, DNP, JWS, KGH, LPP, OPL, PEO, PGE, PKO,
PLY, PZU, SPL, and TPE are estimated by positively oriented trapezoidal fuzzy numbers. It
means that they are evaluated by positively oriented present values. Hence, we anticipate
that their quoted prices will increase. Conversely, ALR, LTS, MBK, PGN, and PKN are
estimated by negatively oriented trapezoidal fuzzy numbers, which means that they are
evaluated by negatively oriented present values; thus, we anticipate that their quoted
prices will decrease.
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5. Expected Discount Factor

Let us assume that the time horizon t > 0 of an investment is fixed. In this case, the
considered asset is determined by two values:

• the anticipated future value (FV), Vt.
• the assessed present value (PV), V0.

The basic property of benefits from owning this asset is a simple return rate rt, given
by the formula:

rt =
Vt − V0

V0
=

Vt

V0
− 1. (28)

According to Kolmogorov’s postulate [5,6], FV is a random variable Ṽt : Ω −→ R+ ,
where Ω is a set of elementary states ω of the financial market. In a classical approach to a
return rate estimation, present value is identified with the observed quoted price P̌. Thus,
the return rate is a random variable determined by identity:

rt(ω) =
Ṽt(ω)− P̌

P̌
. (29)

Uncertainty risk is a result of a lack of knowledge about the future state of affairs. In
the practice of financial market analysis, the uncertainty risk is usually described by the
probability distribution of return rate (29). This function may be given by a cumulative
distribution function Fr(·|r ) : R −→ [0, 1] . We assume that the expected return rate r of
this distribution exists. The expected discount factor (EDF) v must therefore also exist and
is determined by the dependency:

v = (1 + r)−1. (30)

To simplify the reading of Equation (30) and further where Equation (30) is used, ω
has been omitted.

Taking (28) and (29), we obtain the following formula describing the return rate:

rt = rt(V0, ω) =
P̌·(1 + rt(ω))

V0
− 1. (31)

It implies that the expected return rate may be expressed in the following way:

R(V0) =
∫ +∞

−∞

P̌·(1 + y)
V0

− 1dFr(y|r) =
P̌·(1 + r)

V0
− 1. (32)

In this way, we express the return rate as a decreasing unary operator R : R+ −→ R

transforming PV. If PV is imprecisely estimated by TrOFN (25), then in line with (13), (14)
and (15), the imprecise return rate is given as OFN:

R
(
Ŝ
)
= R

( ↔
PV

(
Ŝ
))

= R

(↔
Tr

(
Vs, Vf , Vl , Ve

))
=

↔
L

(
P̌·(1+r)

Ve
− 1, P̌·(1+r)

Vl
− 1, P̌·(1+r)

Vf
− 1, P̌·(1+r)

Vs
− 1, SL, EL

)
,

(33)

where the reference functions are given by the formulas:

∀ y ∈
[

P̌·(1 + r)
Vs

− 1,
P̌·(1 + r)

Vf
− 1

]
SL(r) =

P̌·(1+r)
1+r − Vs

Vf − Vs
, (34)

∀ y ∈
[

P̌·(1 + r)
Vl

− 1,
P̌·(1 + r)

Ve
− 1

]
EL(r) =

P̌·(1+r)
1+r − Ve

Vl − Ve
. (35)
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It is noteworthy that the above reference functions are not linear. It implies that OFN
(33) is not TrOFN. The use of the return rate does not allow us to bypass the complexity of
the arithmetic operations of OFN.

In the next step, we consider the discount factor vt, which is determined by the return
rate rt. From (28), we get:

vt = (1 + rt)
−1. (36)

Then, taking (36) and (29) together, we obtain the following random variable describ-
ing a discount factor:

vt = rt(V0, ω) =
V0

P̌·(1 + rt(ω))
. (37)

This implies that the expected discount factor EDF may be expressed in the following
way:

V(V0) =
∫ +∞

−∞

V0

P̌·(1 + y)
dFr(y|r) =

V0

P̌·(1 + r)
=

(
P̌·(1 + r)

V0

)−1

=
v
P̆
·V0. (38)

Using this equation, we determine the imprecise EDF V : R+ → R+ as an increasing
operator transforming PV. If PV is imprecisely estimated by TrOFN (25), then in line with
(13)–(15), the imprecise EDF is given as TrOFN:

↔
V

(
Ŝ
)
=

↔
V

( ↔
PV

(
Ŝ
))

=
↔
L

(
Vs·v

P̌
,

Vf ·v
P̌

,
Vl ·v

P̌
,

Ve·v
P̌

, SL, EL

)
(39)

where the reference functions are given by the formulas:

∀ y ∈
[

Vs·v
P̌

,
Vf ·v

P̌

]
SL(v) =

v·P̌
v − Vs

Vf − Vs
=

P̌·v − Vs·v
v·

(
Vf − Vs

) , (40)

∀ y ∈
[

Vl ·v
P̌

,
e·v
P̌

]
EL(v) =

v·P̌
v − Ve

Vl − Ve
=

P̌·v − Ve·v
v·(Vl − Ve)

. (41)

Note that both the above reference functions are linear. This implies that if an impre-
cise PV is given by TrOFN (25), then the imprecise EDF V is TrOFN, which is given by
the formula:

↔
V

(
Ŝ
)
=

↔
V

( ↔
PV

(
Ŝ
))

=
v
P̌
�

↔
PV

(
Ŝ
)
. (42)

In this case, it is clear that in financial analysis the imprecise EDF is more useful than
the imprecise expected return rate. If we apply EDF, then the criterion of maximization of
the expected return rate is replaced by the criterion of EDF minimalization.

Using (35), (18) and (19), the energy measure and the entropy measure of the expected

discount factor EDF
↔
V

(
Ŝ
)

are determined by the formulas:

d
(↔
V

(
Ŝ
))

=

∣∣∣∣∣∣
(

Ve + Vl − Vf − Vs

)
·v

2P̌

∣∣∣∣∣∣, (43)

e
(↔
V

(
Ŝ
))

=

∣∣∣∣∣∣
(

Ve − Vl + Vf − Vs

)
·v

4P̌

∣∣∣∣∣∣. (44)

Example 2. All considerations in this paper are run for the quarterly period of the investment time
t = 1 quarter. We researched the stocks of the portfolio π presented in Table 1. For an average
expected return rate r = 0.10144 from (30), we get an expected discount factor v = 0.9079. Using
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the one-year time series of quotations, for each considered stock Ŝusing (42), we calculate a quarterly
expected discount factor O-EDF.

For example, for the O-EDF of ALR company stock, we get:

↔
V(ALR) =

↔
V

( ↔
PV(ALR)

)
= v

P̌
�

↔
PV(ALR) = 0.9079

27 �
↔
Tr(27.42; 27.30; 27.00; 26.84)

= 0.0336 �
↔
Tr(27.42; 27.30; 27.00; 26.84) =

↔
Tr(0.9220; 0.9180; 0.9079; 0.9025)

We calculate the O-EDF in a similar way for other company stocks.
Additionally, using Equations (43) and (44), we determine, respectively, the energy

and entropy measure of the O-EDF. All evaluations obtained in this way are presented in
Table 2.

Table 2. O-EDF of portfolio π components and their energy and entropy measures.

Company’s Stock OEDF
↔
Vs Energy Measure Entropy Measure

ALR
↔
Tr(0.9220; 0.9180; 0.9079; 0.9025) 0.0148 0.0024

CCC
↔
Tr(0.8599; 0.9079; 0.9079; 0.9249) 0.0325 0.0163

CDR
↔
Tr(0.8899; 0.8899; 0.9056; 0.9056) 0.0157 0.0000

CPS
↔
Tr(0.8819; 0.8879; 0.9026; 0.9126) 0.0227 0.0040

DNP
↔
Tr(0.9062; 0.9062; 0.9067; 0.9196) 0.0070 0.0032

JSW
↔
Tr(0.8311; 0.8650; 0.8999; 0.8999) 0.0518 0.0085

KGH
↔
Tr(0.8842; 0.9017; 0.9027; 0.9143) 0.0155 0.0073

LTS
↔
Tr(0.9351; 0.9298; 0.9048; 0.8948) 0.0327 0.0039

LPP
↔
Tr(0.8884; 0.9074; 0.9090; 0.9160) 0.0146 0.0065

MBK
↔
Tr(0.9281; 0.9256; 0.9099; 0.9028) 0.0205 0.0024

OPL
↔
Tr(0.8876; 0.8927; 0.9117; 0.9307) 0.0310 0.0060

PEO
↔
Tr(0.8988; 0.9033; 0.9079; 0.9122) 0.0090 0.0022

PGE
↔
Tr(0.8805; 0.8892; 0.9079; 0.9203) 0.0292 0.0053

PGN
↔
Tr(0.9173; 0.9103; 0.9056; 0.8962) 0.0129 0.0041

PKN
↔
Tr(0.9225; 0.9201; 0.9048; 0.8999) 0.0190 0.0018

PKO
↔
Tr(0.8991; 0.9014; 0.9071; 0.9165) 0.0116 0.0029

PLY
↔
Tr(0.8861; 0.8891; 0.9094; 0.9203) 0.0272 0.0035

PZU
↔
Tr(0.9044; 09046; 0.9081; 0.9130) 0.0061 0.0013

SPL
↔
Tr(0.8737; 0.8794; 0.8915; 0.8978) 0.0180 0.0030

TPE
↔
Tr(0.8788; 0.8904; 0.9079; 0.9079) 0.0233 0.0029

Note that the O-EDF of a security described in this way is a TrOFN with an identical orientation to the O-PV used
for its estimation.

6. Expected Discount Factors for Portfolio

By a financial portfolio, we mean an arbitrary, finite set of assets. Any asset is treated
as a fixed security in a long position. On the other hand, any portfolio is also a security.
Let us consider the case of a multi-asset portfolio π∗, built of assets Yi . We describe this
portfolio as the set π∗ = {Yi : i = 1, 2, . . . , n}. Any asset Yi is determined by a block of ni
of stocks Ŝi quoted at the price P̌i ∈ R+. Any security is characterized by its imprecise PV
evaluated by TrOFN:

↔
Tr

(
V(i)

s , V(i)
f , V(i)

l , V(i)
e

)
. (45)

This means that: ↔
PV(Yi ) = ni �

↔
PV

(
Ŝi

)
(46)

where the quoted value is equal to:

Mi = ni·P̌i (47)
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and by its EDF vi determined by (30). Taking into account all of the above, we evaluate any
asset Yi by its imprecise EDF

↔
V(Yi ) =

↔
V

(
Ŝi

)
=

↔
Tr

(
D(i)

s , D(i)
f , D(i)

l , D(i)
e

)
. (48)

Example 3. We construct a portfolio π consisting of the stocks presented in Table 1. Table 3 contains
information on the number of stocks of a given company in the portfolio, the value of the current
block of these stocks, and their price. For example, for ALR we get, from (46):

↔
PV(Y1 ) = 170 �

↔
PV(ALR) = 170 �

↔
Tr(27.42; 27.30; 27.00; 26.84)

=
↔
Tr(4661.40; 4641.00; 4590.00; 4562.80)

and from (47), we get: M1 = 170·27.00 = 4590.00. We do the same with the other assets.

Table 3. Recorded values of the portfolio π stocks.

Assets Company’s Stock Number of Stocks in Block Present Value
↔

PVs Price Mi

Y1 ALR 170
↔
Tr(4661.40; 4641.00; 4590.00; 4562.80) 4590.00

Y2 CCC 10
↔
Tr(833.50; 880.00; 880.00; 896.50) 880.00

Y3 CDR 17
↔
Tr(4615.50; 4615.50; 4697.10; 4697.10) 4709.00

Y4 CPS 50
↔
Tr(1321.00; 1330.00; 1352.00; 1367.00) 1360.00

Y5 DNP 5
↔
Tr(775.00; 775.00; 775.50; 786.50) 776.50

Y6 JSW 200
↔
Tr(3720.00; 3872.00; 4028.00; 4028.00) 4064.00

Y7 KGH 8
↔
Tr(734.24; 748.80; 749.60; 759.20) 769.92

Y8 LTS 50
↔
Tr(4194.00; 4170.00; 4058.00; 4013.00) 4072.00

Y9 LPP 1
↔
Tr(8205.00; 8380.00; 8395.00; 8460.00) 8385.00

Y10 MBK 25
↔
Tr(9175.00; 9150.00; 8995.00; 8925.00) 8975.00

Y11 OPL 100
↔
Tr(701.00; 705.00; 720.00; 735.00) 717.00

Y12 PEO 10
↔
Tr(972.20; 977.00; 982.00; 986.60) 982.00

Y13 PGE 100
↔
Tr(708.00; 715.00; 730.00; 740.00) 730.00

Y14 PGN 1200
↔
Tr(4692.00; 4656.00; 4632.00; 4584.00) 4644.00

Y15 PKN 50
↔
Tr(4161.00; 4150.00; 4081.00; 4059.00) 4095.00

Y16 PKO 30
↔
Tr(1037.70; 1040.40; 1047.00; 1057.80) 1047.90

Y17 PLY 60
↔
Tr(2149.20; 2156.40; 2205.60; 2232.00) 2202.00

Y18 PZU 25
↔
Tr(1018.00; 1018.25; 1022.25; 1027.75) 1022.00

Y19 SPL 10
↔
Tr(2762.00; 2780.00; 2818.00; 2838.00) 2870.00

Y20 TPE 200
↔
Tr(302.00; 306.00; 312.00; 312.00) 312.00

The present value of the portfolio is the sum of the present values of its components.
The components’ PVs are estimated by trapezoidal oriented fuzzy numbers. The addition
of TrOFN is not associative. Additionally, multiple addition depends on the order of the
components. For this reason, a portfolio’s present value, given as the sum of its components’
PVs, is not clearly defined. Therefore, calculating the portfolio PV, we order the portfolio
components. We use a method of ordering the assets proposed and justified in [22]. At the

outset, we distinguish the portfolio of rising assets π+ =

{
Yi ∈ π∗ :

↔
PVi ∈ K+

Tr

}
and the

portfolio of falling assets π− = π∗\π+. Then, using (29), we calculate the PV of portfolio
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π+, denoted by the symbol
↔

PV
+

, and the PV of portfolio π−, denoted by the symbol
↔

PV
+

.
Thus, we get:

↔
PV

+
=

↔
Tr

(
V(+)

s , V(+)
f , V(+)

l , V(+)
e

)
=

↔
Tr

(
∑

Yi∈π+

V(i)
s , ∑

Yi∈π+

V(i)
f , ∑

Yi∈π+

V(i)
l , ∑

Yi∈π+

V(i)
e

)
, (49)

↔
PV

−
=

↔
Tr

(
V(−)

s , V(−)
f , V(−)

l , V(−)
e

)
=

↔
Tr

(
∑

Yi∈π−
V(i)

s , ∑
Yi∈π−

V(i)
f , ∑

Yi∈π−
V(i)

l , ∑
Yi∈π−

V(i)
e

)
. (50)

Finally, we calculate the PV of portfolio π∗, denoted by the symbol
↔

PV
∗
. We then get:

↔
PV

∗
=

↔
PV

+
�

↔
PV

−
=

↔
Tr

(
V(+)

s , V(+)
f , V(+)

l , V(+)
e

)
�

↔
Tr

(
V(−)

s , V(−)
f , V(−)

l , V(−)
e

)
=

↔
Tr

(
V(∗)

s , V(∗)
f , V(∗)

l , V(∗)
e

)
. (51)

Example 4. For the portfolio determined in Example 3, we have the portfolio of rising assets:

π+ = {Y2, Y3, Y4, Y5, Y6, Y7, Y9, Y11, Y12, Y13, Y16, Y17, Y18, Y19, Y20}

and the portfolio of falling assets:

π− = {Y1, Y8, Y10, Y14, Y15}.

Using (49), (50) and (51), we get the O-PV of portfolios π+, π−, and π∗, respectively:

↔
PV

+
=

↔
Tr(29854.34, 30299.35, 30714.05, 30923.45),

↔
PV

−
=

↔
Tr(26883.40, 26767.00, 26356.00, 26143.80),

↔
PV

∗
=

↔
PV

+
�

↔
PV

−
=

↔
Tr(56737.74, 57066.35, 57070.05, 57070.05).

Now we can start calculating the EDFs of the considered portfolios. The values of
portfolios π+, π−, and π∗ are calculated in the following way, respectively:

M+ = ∑
Yi∈π+

Mi, M− = ∑
Yi∈π−

Mi, M∗ = M+ + M−. (52)

The share q+i of the asset Yi ∈ π+ in the portfolio π+ and the share q−i of the asset
Yi ∈ π− in the portfolio π− are given by the formulas:

q+i =
Mi
M+

, q−i =
Mi
M− . (53)

The share q+ of portfolio π+ in the portfolio π∗ and the share q− of portfolio π− in
the portfolio π∗ are given by the formulas:

q+ =
M+

M∗ , q− =
M−

M∗ . (54)

The EDF v+ of portfolio π+, the EDF v− of portfolio π−, and the EDF v∗ of portfolio
π∗ are calculated as follows:

v+ =

(
∑

Yi∈π+

q+i
vi

)−1

, v− =

(
∑

Yi∈π−

q−i
vi

)−1

, v∗ =
(

q+

v+
+

q−

v−

)−1

. (55)
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Due to the results obtained in [21,34,44] and (12), we find that:

• the imprecise EDF
↔
V

+
of portfolio π+ is given by the formula:

↔
V
+

=
↔
Tr

(
D(+)

s , D(+)
f , D(+)

l , D(+)
e

)
= v+ �

⎛⎝ +
Yi∈π+

⎛⎝ q+i
vi

�
↔
V

(
Yi

)⎞⎠⎞⎠ =Tr

⎛⎜⎝∑Yi∈π+
v+ ·q(+)

i
vi

·D(i)
s , ∑Yi∈π+

v+ ·q(+)
i

vi
·D(i)

f , ∑Yi∈π+
v+ ·q(+)

i
vi

·D(i)
l , ∑Yi∈π+

v+ ·q(+)
i

vi
·D(i)

e

⎞⎟⎠, (56)

• the imprecise EDF
↔
V

−
of portfolio π− is given by the formula:

↔
V

−
=

↔
Tr

(
D(−)

s , D(−)
f , D(−)

l , D(−)
e

)
= v− �

(
−

(
q−i
vi

�
↔
V(Yi )

))
=Tr

(
∑Yi∈π−

v−·q(−)
i

vi
·D(i)

s , ∑Yi∈π−
v−·q(−)

i
vi

·D(i)
f , ∑Yi∈π−

v−·q(−)
i

vi
·D(i)

l , ∑Yi∈π−
v−·q(−)

i
vi

·D(i)
e

)
, (57)

• the imprecise EDF
↔
V

∗
of portfolio π∗ is given by the formula:

↔
V

∗
=

↔
Tr

(
D(∗)

s , D(∗)
f , D(∗)

l , D(∗)
e

)
=

(
v∗·q+

v+
�

↔
V

+
)
�

(
v∗·q−

v−
�

↔
V

−)
. (58)

Then, using (56), (21) and (22), and mathematical induction, we find that the energy

measure and the entropy measure of EDF
↔
V

+
are determined by the formulas:

d
(↔
V

+
)
= ∑

Yi∈π+

v+·q(+)
i

vi
·d

(↔
V(Yi )

)
, (59)

e
(↔
V

+
)
= ∑

Yi∈π+

v+·q(+)
i

vi
·e

(↔
V(Yi )

)
. (60)

Similarly, using (57), (21) and (22), and mathematical induction, we find that the

energy measure and the entropy measure of EDF
↔
V

−
are determined by the formulas:

d
(↔
V

−)
= ∑

Yi∈π−

v−·q(−)
i

vi
·d

(↔
V(Yi )

)
, (61)

e
(↔
V

−)
= ∑

Yi∈π−

v−·q(−)
i

vi
·e

(↔
V(Yi )

)
. (62)

From (58), (23) and (24), the energy measure and entropy measure of EDF
↔
V

∗
of

portfolio π∗ meet the following conditions:

ࣸ൫ࣰ⃡∗൯ ≤ ⎩⎨
∗ݒ̅⎧ ∙ ାݒା̅ݍ ∙ ࣸ൫ࣰ⃡ା൯ − ∗ݒ̅ ∙ ିݒ̅ିݍ ∙ ࣸ ቀࣝℴंℯ൫ࣰ⃡ି൯ቁ , ࣰ⃡∗ ∈  ॶ்ା ∪ ℝ,̅ݒ∗ ∙ ିݒ̅ିݍ ∙ ࣸ൫ࣰ⃡ି൯ − ∗ݒ̅ ∙ ାݒା̅ݍ ∙ ࣸ ቀࣝℴंℯ൫ࣰ⃡ା൯ቁ , ࣰ⃡∗ ∈  ॶ்ି ∪ ℝ, (63) 

e
(↔
V

∗)
≤ min

{
v∗·q+

v+
·e

(↔
V

+
)

,
v∗·q−

v−
·e

(↔
V

−)}
. (64)

Example 5. For the portfolio used in Example 3, we use (52) to calculate the quoted values of
portfolios π+, π−, and π∗and we get M+ = 30,827.32, M− = 26,376.00, and M∗ = 57,203.32.
Table 4 contains information on the share q+i of the asset Yi ∈ π+in the portfolio π+and the share
q−i of the asset Yi ∈ π−in the portfolio π−. We obtained these values using (53).
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Table 4. The share q+i of the asset Yi ∈ π+ in the portfolio π+ and the share q−i of the asset Yi ∈ π−

in the portfolio π−.

Company Share of the Asset in the Portfolio

ALR 0.1740
CCC 0.0286
CDR 0.1528
CPS 0.0441
DNP 0.0252
JSW 0.1318
KGH 0.0250
LTS 0.1544
LPP 0.2720
MBK 0.3403
OPL 0.0233
PEO 0.0319
PGE 0.0237
PGN 0.1761
PKN 0.1553
PKO 0.0340
PLY 0.0714
PZU 0.0332
SPL 0.0931
TPE 0.0101

From (54), we calculate the share q+ = 0.5389 of portfolio π+ in the portfolio π∗

and the share q− = 0.4611 of portfolio π− in the portfolio π∗. Using (55), we obtain the
EDF v+ = 0.9077 of portfolio π+, the EDF v− = 0.9078 of portfolio π−, and the EDF
v∗ = 0.90775 of portfolio π∗. Utilising (56), (57) and (58), we calculate the imprecise
expected discount factors of portfolios π+, π− and π∗, respectively:

↔
V

+
=

↔
Tr(0.8797, 0.8927, 0.9050, 0.9112),

↔
V

−
=

↔
Tr(0.9253, 0.9214, 0.9072, 0.8999),

↔
V

∗
=

↔
Tr(0.9008, 0.9060, 0.9060, 0.9060),

The energy measure of EDF
↔
V

∗
of portfolio π∗ equals d

(↔
V

∗)
= 0.0027. On the

other hand, using (59) and (61) we get d
(↔
V

+
)
= 0.0218 and d

(↔
V

−)
= 0.0198 as well asࣸ ቀࣝℴंℯ൫ࣰ⃡ି൯ቁ = 0.0142, which is d

(↔
V

∗)
≤ 0.0053, which means that the condition (63)

is satisfied. Additionally, we get d
(↔
V

∗)
= 0.0027 ≤ 0.0053 ≤ min

{
d
(↔
V

+
)

, d
(↔
V

−)}
.

Similarly, the entropy measure of EDF
↔
V

∗
of portfolio π∗ is e

(↔
V

∗)
= 0.0013. On the other

hand, using (60) and (62) we get e
(↔
V

+
)

= 0.0048 and e
(↔
V

∗)
= 0.0028, meaning that

e
(↔
V

∗)
= 0.0013 ≤ min

{
e
(↔
V

+
)

, e
(↔
V

−)}
, which means that the condition (64) is also

satisfied. It is worth stressing that in [25] it was indicated that linear portfolio analysis is
not possible for the considered portfolio π∗.

The above results allow us to conclude that portfolio diversification reduces uncer-
tainty risk and imprecision risk. Additionally, it is worth noting that different orientations
of index profits significantly affect ambiguity and indistinctness of portfolio profit index.
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Note that if index profits are described by TrOFNs with different orientations then port-
folio diversification significantly reduces the ambiguity of the portfolio profit index and
if the index profits are described by TrOFNs with the same orientations, then portfolio
diversification only averages the ambiguity of the portfolio profit index. Similarly, if index
profits are described by TrOFNs with different orientations, then portfolio diversification
significantly reduces the indistinctness of the portfolio profit index and if index profits
are described by TrOFNs with the same orientations, then portfolio diversification only
averages the indistinctness of the portfolio profit index [23].

In order to make it easier for the reader to use the presented method, we present it in
a shortened form using a simple algorithm:

We consider a portfolio of company stocks.
STEP 1. Based on a session closing on, for example, the Warsaw Stock Exchange,

on a fixed day, for each observed stock we assess its O-PV equal to TrOFN, describing
its Japanese candle and we calculate the energy and entropy measure of the oriented
present value.

STEP 2. For each considered stock Ŝ, we note its quoted price P̌s as the initial price on
the next day.

STEP 3. For each considered stocks Ŝ, we calculate a quarterly expected discount
factor O-EDF.

STEP 4. We construct a portfolio π consisting of the stocks from STEP 1. We determine
the number of stocks of a given company in the portfolio and calculate the value of the
current block of these stocks and their price Mi.

STEP 5. For the portfolio from STEP 4, we describe the portfolio of the rising assets
π+ and the portfolio of the falling assets π−. We calculate the O-PV of portfolio π+, π−,

and π∗, i.e.,
↔

PV
+

,
↔

PV
−

, and
↔

PV
∗
=

↔
PV

+
�

↔
PV

−
.

STEP 6. We calculate the values of the portfolios π+, π−, and π∗, i.e., M+ = ∑Yi∈π+ Mi,
M− = ∑Yi∈π− Mi and M∗ = M+ + M−, the share q+i = Mi

M+ of portfolio π+ in portfolio

π∗ and the share q−i = Mi
M− of portfolio π− in portfolio π∗, the share q+ = M+

M∗ of portfolio

π+ in portfolio π∗ and the share q− = M−
M∗ of portfolio π− in portfolio π∗.

STEP 7. We calculate the EDF v+ =

(
∑Yi∈π+

q+i
vi

)−1
of portfolio π+, the EDF v− =(

∑Yi∈π−
q−i
vi

)−1
of portfolio π−, and the EDF v∗ = of portfolio π∗.

STEP 8. We calculate the imprecise EDF
↔
V

+
= v+ �

(
+ Yi∈π+

(
q+i
vi

�
↔
V(Yi )

))
of

portfolio π+, the imprecise EDF
↔
V

−
= v− �

(
−

(
q−i
vi

�
↔
V(Yi )

))
of portfolio π−, and the

imprecise EDF
↔
V

∗
=

(
v∗· q+

v+ �
↔
V

+
)
�

(
v∗· q−

v− �
↔
V

∗)
of portfolio π∗ and we calculate

the energy and entropy measures of these imprecise EDFs.

7. Conclusions

Statements describing particular definitions and facts influence the state of knowledge.
Linguistic variables (variables with values that are actually words or sentences of natural
language) are used to formulate statements. After Knight, imprecise information is identi-
fied with imperfect information. In the imprecision of information, we often distinguish
ambiguity and indistinctness [10,66]. The ambiguity of information can be defined as a lack
of unequivocal distinction of recommended options among many considered alternatives.
Indistinctness of information is defined as a lack of unequivocal distinction between an
information and its contradiction. Such a formal model of imprecision is a fuzzy set mem-
bership function. In our paper, imprecise information about a given financial instrument

324



Symmetry 2021, 13, 1722

is presented with the use of O-EDF
↔
V ∈ K. In this situation, the membership function of

O-EDF
↔
V ∈ K models the assessment imprecision of a financial instrument.

A rate of return is a function of a future value, which is uncertain. This is due to an
investor’s lack of certain knowledge about the future. It means that no investor is sure of
their future profits or losses. An increase of uncertainty may increase the risk of making
an incorrect financial decision. In this paper, we evaluate the uncertainty risk using the
oriented expected discount factor. An increase in ambiguity means an increase in the
amount of recommended alternative information about the state of affairs. The increase in
the ambiguity of O-EDF

↔
V ∈ K suggests a higher number of alternative recommendations

to choose from. This increases the risk of making an incorrect choice from among the
recommended alternatives.

This may imply making a decision that will result in less than the maximum profit,
which can be understood as a loss of certainty. Ambiguity and uncertainty have the same
depiction of the risks they cause. We will assess both risks using different methods because
the effects of a decision made both under the risk of ambiguity and under the risk of
uncertainty are the same, but their reasons are different. The ambiguity risk loading the

oriented fuzzy expected factor
↔
V is appraised by the energy measure d

(↔
V

)
. An increase in

the indistinctness of
↔
V means that it is more difficult to distinguish between recommended

and unrecommended decisions. It implies an increase in the indistinctness risk, that is,
the possibility of making an unrecommended decision. The indistinctness risk of O-EDF
↔
V is appraised by the entropy measure e

(↔
V

)
. Imprecision risk includes ambiguity and

indistinctness risk. Hence, an increase in uncertainty risk or in imprecision risk worsens
the conditions for making a decision. Risk assessment related to uncertainty as to the state
of affairs plays a very important role in the decision-making process. Piasecki [67] shown
that there exists a possibility of limiting the uncertainty risk by increasing the imprecision
risk. Taking indistinctness into account allows us to reject those decision options that have
a low cognitive value of the collected information, even if they are attractive from the
point of view of the relationship between the expected profits and the assessment of the
uncertainty risk.

In our paper, we examined the imprecise security evaluation in the context of uncer-
tainty. The main objective of this article was to analyze the possibility of managing the
risk of a portfolio of multiple assets. The portfolio was built using imprecise information
describing the present value of the component assets. These imprecise present values were
represented by TrOFNs. Relationships between the imprecision risk burdening portfolio
components and the same risk burdening multi–assets portfolios have been described. We
showed that the proposed portfolio analysis can be fully used for portfolios π+ of rising
securities and π− of falling ones. This allows the investor to manage the portfolio risk since
only rising securities can receive a BUY or ACCUMULATE recommendation, while only
falling securities can receive a SELL or REDUCE recommendation. We showed that the
portfolio diversification can lower uncertainty risk and imprecision risk. All conclusions
are compatible with financial practice and theory. Results obtained with the use of the
imprecise expected discount factor were applied as input data for the robo-advice systems
described in [32]. In further studies, we will compare the methods using trapezoidal
fuzzy numbers and trapezoidal oriented fuzzy numbers in portfolio analysis, and we will
show that the use of trapezoidal oriented fuzzy numbers is more useful. The aim of fur-
ther research will also be to investigate the relationship between oriented fuzzy numbers,
trapezoidal fuzzy numbers, and intuitionistic fuzzy numbers.
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31. Piasecki, K.; Roszkowska, E.; Łyczkowska-Hanćkowiak, A. Impact of the Orientation of the Ordered Fuzzy Assessment on the
Simple Additive Weighted Method. Symmetry 2019, 11, 1104. [CrossRef]
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54. Piasecki, K.; Łyczkowska-Hanćkowiak, A. On Approximation of Any Ordered Fuzzy Number by A Trapezoidal Ordered Fuzzy

Number. Symmetry 2018, 10, 526. [CrossRef]
55. Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–629. [CrossRef]
56. Delgado, M.; Vila, M.A.; Voxman, W. On a canonical representation of fuzzy numbers. Fuzzy Sets Syst. 1998, 93, 125–135.

[CrossRef]
57. Goetschel, R.; Voxman, W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986, 18, 31–43. [CrossRef]
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Abstract: Optimization problems are ubiquitous nowadays. Many times, their corresponding
computational models necessarily leave out of consideration several characteristics and features of
the real world, so trying to obtain the optimum solution can not be enough for a problem solving
point of view. The aim of this paper is to illustrate the role of metaheuristics as solutions’ generators
in a basic problem solving framework. Metaheuristics become relevant in two modes: firstly because
every run (in the case of population based techniques) allows to obtain a set of potentially good
solutions, and secondly, if a reference solution is available, one can set up a new optimization problem
that allows to obtain solutions with similar quality in the objectives space but maximally different
structure in the design space. Once a set of solutions is obtained, an example of an a posteriori
analysis to rank them according with decision maker’s preferences is shown. All the problem solving
framework steps, emphasizing the role of metaheuristics are illustrated with a dynamic version of
the tourist trip design problem (for the first mode), and with a perishable food distribution problem
(for the second one). These examples clearly show the benefits of the problem solving framework
proposed. The potential role of the symmetry concept is also explored.

Keywords: metaheuristics; optimization; tourist trip design; vehicle routing

1. Introduction

In most ’real world’ decision-making and/or optimization problems, countless de-
cision criteria and objectives can not be evidently included in their computational model
formulation; or, if included, they may increase the complexity of such models up to a point
where they can not be exactly solved. Final decisions (i.e., selecting a solution to deploy)
are often taken based not only on modeled objectives, but also on potentially subjective
decision makers goals, biases, and preferences [1].

Many mathematical optimization algorithms are devoted to finding single optimal
solutions to single-objective problems or, in the best case, to determine sets of non-inferior
solutions to multi-objective formulations [2–4]. In any case, it should never be forgotten
that we are, hopefully, obtaining the optimum solution for the model.

Assuming the existence of unmodeled (or hard to model) goals and parameters implies
that non-conventional solving approaches are needed, not only to search the decision space
for optimal solutions, but also to explore the decision region for alternative solutions with
good quality. Such solutions can be sub-optimal for the model point of view, but valuable
from additional perspectives.

It is here where the role of metaheuristics as solutions’ generators becomes relevant
in two senses. Firstly, because several runs (a single one, in the case of population based
techniques) allow to obtain a set of potentially good solutions. Secondly, let us suppose
a reference solution x∗ for a problem P is available. Then, it is possible to define a new

Symmetry 2021, 13, 2034. https://doi.org/10.3390/sym13112034 https://www.mdpi.com/journal/symmetry329



Symmetry 2021, 13, 2034

optimization problem P′ where the objective is to find a solution x that maximize the
difference with x∗ subject to f (x∗)− f (x) ≤ γ, being f the objective function from problem
P and γ the maximum variation in quality allowed. In other words, the aim in P′ is to
obtain solutions with similar quality but maximally different structure. This last approach
is the so-called ’Modeling to Generate Alternatives’ (MGA) approach proposed by [4–6].

Setting apart this MGA approach, the consideration of metaheuristics in the sense
posed here is not being explored (to the best of our knowledge). Most of the metaheuristics
publications emphasize their role as “solvers” trying to find the best possible solution for
the problem at hand usually without making further analysis.

In this context, the aim of this contribution, is to illustrate the role of metaheuris-
tics as solutions’ generators in a basic problem solving framework that considers the
problem formulation, its resolution, and the analysis of solutions beyond their objective
function value.

Two examples are considered. The first problem is a dynamic version of the tourist
trip design problem. In the static version, we have a set of points of interest (POI), each
one having a visit time and a level of interest. The aim is to select a subset of points that
maximizes the level of interest subject to certain available time. The problem is usually
modeled as a team orienteering problem [7].

In the dynamic version, the level of interest of a POI depends on the time that it
is being visited, thus adding an extra level of complexity. We will describe the many
characteristics associated with a solution and how difficult it is to include them a priori in a
model, thus requiring a different solving strategy.

The second one, is a perishable food distribution problem (basically, a vehicle routing
problem) [8]. Originally modeled as a many objectives’ problem, we describe a solving
strategy that first solves a sub-problem and then, using the obtained solution, sets a new
optimization problem with a fuzzy constraint that allows to obtain new solutions with
similar quality but maximally different structure (as in the MGA approach).

The paper is structured as follows. In Section 2 the proposed basic problem solving
framework is presented, together with an existing approach to rank solutions according to
the user’s preference. Next, Sections 3 and 4 present the two examples commented before.
For each one, every step of the solving framework is illustrated with a specific dataset, and
the corresponding analyses of results are presented.

In each example, a metaheuristic is used to generate a set of solutions. We should
highlight here that the specific details of the implemented methods are omitted, as they are
not relevant in this context: we do not want to make comparisons against other methods
over a set of well-defined objectives.

Finally, Section 5 is devoted to conclusions and further work.

2. Basic Problem Solving Framework

The role of metaheuristics as solutions’ generators is best seen when integrated in the
following problem solving framework. Although every step is clear enough, we describe
the mains aspects considered here.

Let us depart from an optimization problem P. The following steps are required to
solve it.

1. Problem description: determine a set of solutions’ features for problem P, F =
{ f1, f2, . . . , fn}. Such features are used to assess the quality of a solution;

2. Model formulation: Define the subset of features to be used in P optimization model
F′ = { fi, f j, . . . , ft}. For every feature, either a maximization or minimization goal
should be established;

3. Problem Solving: “Solve” the problem P. Depending on the solver algorithm:

(a) An optimum solution s∗ (or at least a reference one) is obtained. From such
solution, generate new ones with similar quality but as different as possible;

(b) A set of solutions is obtained;
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4. Analysis of Solutions: For every solution, calculate the corresponding values for the
features in F −F′;

5. Ranking: Rank the solutions according to the user’s preferences.

Let us illustrate these steps with the well known travelling salesmen problem (TSP).
Given a solution (a route), features like the distance travelled, time of the route, fuel
consumption, average length of the inter-city paths, the length of the longest path, and so
on can be measured.

In a basic TSP formulation, a single goal is defined: distance minimization.
It is in Step 3 where metaheuristics comes into play. Suppose we solve the problem

using a genetic algorithm, so it is easy to obtain a set of routes (Step 3.b). For example, the
best m solutions from the final population are kept.

Then, in Step 4, those m solutions can be organized in a matrix M as:

F −F′ F′

f1 f2 . . . fn
s1 M11 M12 . . . M1n
s2 M21 M22 . . . M2n
sm Mm1 Mm2 . . . Mmn

where Mij is the value achieved by solution si on feature f j. Those values Mij with
j ∈ F′ are given as the output of the optimization process, while those for j ∈ F −F′ are
calculated after the optimization.

Finally, in Step 5 the values in every M row can be combined (for example using some
aggregation function [9]) to obtain a score qi for every solution si. The relevance of the
objectives for the user can be expressed through a set of weights. Sorting according to qi
allows to rank the solutions.

Many options are available for this step. Here, we will use the approach in [10] that
allows to select a solution of interest from a set of solutions. The user states the preferences,
just providing a linear ordering of the objectives. A brief summary of the approach follows.

2.1. Ranking Solutions According to the User’s Preferences

Let us depart from the solutions’ matrix M. Additionally, suppose the user provides a
set of weights W = {w1, w2, . . . , wn} where if the feature fi is more relevant than f j for the
decision maker, then wi ≥ wj. It should hold that ∑m

j=1 wj = 1. Under these assumptions, a
score qi for the solution si can be calculated as ∑m

j=1 wj × xij.
However, this approach has a problem. Let us suppose we have just three criteria

and the given preference order is f2, f1, f3. Then, we need the weights in such a way that
w2 ≥ w1 ≥ w3 with w1 + w2 + w3 = 1. As the reader may notice, there are infinite values
for wi that verifies both conditions, and every possible set of values will give a different
score for the alternative.

Instead of a single score value, the authors in [10] proposed to calculate an interval
of the potential scores that a solution can attain and then sort the solutions in terms of
their intervals.

The main steps are detailed below.

1. Solutions’ matrix normalization: normalization is needed because different measure-
ments should be combined;

2. Intervals calculation: the user’s preferences are given as an ordinal relation among
features denoted as f1 &p f2 &p . . . &p fn. The symbol &p is to be read as “at least as
preferred to”. This implies that the weights are ordered as w1 ≥ w2 ≥ . . . ≥ wm.
All the potential scores that a solution si can attain are included in the interval
denoted as Ii = [Li, Ui] with Li, Ui are, respectively, the minimum, and the maximum
scores (obtained through solving two simple linear programming problems. See [10]
fo details);
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3. Select a reference solution s∗: such solution s∗ and its corresponding interval I∗ =
[L∗, U∗] is the one with the greatest lower bound ∀ i, L∗ ≥ Li, thus there is no solution
that always scores better than s∗;

4. Compare solutions against s∗: every solution si is compared against s∗ using a pos-
sibility function that measures the possibility degree of a solution being better than
another using their corresponding intervals.
Let us have two solutions sX, sY with their corresponding non-negative intervals
X = [xl , xr], Y = [yl , yr] and xl , xr, yl , yr ∈ R+

0 . The possibility degree of sX being
greater than sY is stated in terms of P(X ≥ Y) as in [10] and considering a user with a
neutral attitude is defined as follows [11]:

(a) if X ∩ Y = ∅ (intervals do not overlap)

P(X ≥ Y) =
{

0 xr ≤ yl
1 xl ≥ yr

(b) if X ∩ Y �= ∅ (intervals overlap)

P(X ≥ Y) =
xr − yl

xr − xl + yr − yl

5. Ranking of Solutions: for every solution, si the value P(si ≥ s∗) is calculated. Then,
they are are sorted based on such possibility degree values.

3. The Time-Dependant Tourist Trip Design Problem

The tourist trip design problem (TTDP) involves two essential aspects: the selection of
points of interest suitable to the tourist’s preferences, and the generation of itineraries to
visit these points (all or a subset of them). Although the first aspect is usually related to
recommendation systems, which have to identify user preferences, the second is related to
decision and optimization issues.

In general, TTDP models are based on the well-known orienteering problem (OP), team
orienteering problem (TOP) and their variants for route design ([12–16].

3.1. Problem Description

The tourist trip design problem with time-dependent scores (TTDP-TDS) starts from a
set N of nodes or points of interest (POIs). Each node i ∈ N has an associated interest or
score Si and several recommendation factors fit to weight the interest according to the time
at which the node is visited. The travel time from node i to node j is given by tij.

On the other hand, not all nodes in the set can be visited due to there is a maximum
available time (Tmax). There is a node nini defined as the starting and ending point of the
route (for example, the location of a hotel).

A solution to the problem will be a permutation of a subset of nodes (POIs), i.e., the
ordered list of POIs to visit. Over such a list, it is easy to imagine the many features that
could be calculated.

3.1.1. Features

• I, Overall interest;
• #POIs, Number of POIs in the route;
• Tvisit, Time spent visiting POIs;
• Ttravel , Total walking time between POIs on the route;
• Troute, Overall trip duration: Tvisit + Ttravel ;
• E, Route “efficiency”: 100 × (1 − Tvisit/troute), the percentage of time in the POIs with

respect to the trip time;
• Average, maximum. and minimum time spent in POIs;
• Average, maximum and minimum travel time between POIs;
• Average number of POIs visited in every time period;
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• Percentage of POIs visited at the best time of the day.

Considering all of these features in a single model is, if not impossible, very difficult.
Moreover, different optimization problems can be defined: Max I, Max #POIs, (Max I, Min
#POIs), (Max I, Max E), etc.

In this contribution, we depart from the following model.

3.1.2. Parameters

• N—Node set (the POIs);
• nini—Index of the start/end node of the route;
• T—Number of time periods;
• Si—Interest of node i;
• tij—Travel time between node i and node j;
• fit—Recommendation factor to visit node i in period t;
• vi—Time required to visit node i (service time);
• Tmax—Maximum time available for the route.

3.1.3. Decision Variables

The following variables are considered:

• yit, a binary variable. If the node i is visited in time period t, then yit = 1, and
0 otherwise;

• π, a permutation of k elements (the length of route) where π(i) represents the node
that is visited at position i of the route.

3.1.4. Objective Function

Max I = ∑
i∈N\{nini}

∑
t∈T

Si · fit · yit (1)

subject to:

Tvisit + Ttravel ≤ Tmax (2)

where
Tvisit = ∑

i∈N\{nini}
∑
t∈T

vi · yit (3)

Ttravel = tini,π(1) +

(
k−1

∑
i=1

tπ(i),π(i+1)

)
+ tπ(k),ini (4)

Although a visit to a point can span two different time periods, here the contribution
of such point to the overall interest is determined by the period at which its visit starts.

3.2. Problem Solving and Generation of Solutions

We describe next the basic details of the metaheuristic used, the dataset and the way
the set of solutions is generated.

3.2.1. Metaheuristic

A crossover-less evolutionary algorithm (EA) is used to solve this problem.
Each individual of the initial population is generated using a GRASP-like procedure.

Initially, an initial POI is randomly selected. Subsequently, a list of candidate POIs is
constructed, an element from the list is randomly chosen and then added to the solution.
The process is repeated as long as the maximum time available is not exceeded.

In each generation, from the current population of popSize individuals, K parents
are chosen by roulette wheel selection and incorporated into an intermediate population.
Using one of the several mutation operators available, a child solution is generated from
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each parent. If the new solution is feasible and better than the parent, it is incorporated
into the intermediate population.

Finally, the intermediate population is sorted, and the best popSize elements are taken
to replace the original population.

The proposed algorithm always operates with feasible solutions. Therefore, non-
feasible solutions obtained by mutation are discarded.

3.2.2. Dataset

A dataset with the 50 most visited POIs of Granada city, Spain is used. The distribution
of these POIs is shown in Figure 1 and the dataset is available at http://18.156.111.23/
TTDP-TDS/web/ (accessed on 1 August 2021).

Figure 1. Map of Granada and set of points of interest.

Four time slots (T = 4) and a value Tmax = 360 are considered. Each time slot has a
duration of 90 min.

3.2.3. Generation of Solutions

The generation of solutions is done running the EA several times. More specifically,
we made 40 independent runs of the EA with different parameters. Every run deals with
popSize = 50 solutions and 100 generations. After every run, we kept the best solution,
thus obtaining a set of 40 solutions.

3.3. Analysis of Solutions’ Diversity

In order to explore the relation between the interest and the diversity of the solutions,
we will use the Jaccard’s similarity coefficient to assess how similar two solutions A, B
(considered as two sets of POIs) are. The coefficient is defined as:

J(A, B) =
|A ∩ B|
|A ∪ B| (5)

It is easy to see that if routes A and B contain the same POIs, A = B = A ∩ B = A ∪ B,
then J(A, B) = 1. On the other hand, if routes A and B do not share any element at all,
|A ∩ B| = 0, so J(A, B) = 0.

From the set of 40 solutions S = {s1, s2, . . . , s40}, we select the best one in terms of
interest (s∗) and compute J(s∗, si) ∀ i.

The scatter plot in Figure 2 displays the relation between similarity and interest
difference for every si ∈ S and s∗.

Solutions 5, 12, 14, 5 have the same interest that s∗ but a different structure, with a
Jaccard coefficient ≤ 0.8. There are other three solutions (3,4, 10) with a minor difference
in cost (less than 2 units) and rather different from s∗, (J < 0.7). If the user may allow
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routes with less interest (up to 6%) then all the solutions in the range of interest difference
between 2 and 4 are available.

Figure 2. Similarity vs. Interest difference for every solution against s∗. The lower the values in both
axis, the better the solution is.

3.4. Users Profiles and Ranking

Now, having those 40 solutions, we calculate the values of several additional features
(beyond the route interest I) which are:

• I, Route Interest;
• #POIs, Number of visited POIs;
• E, Route efficiency;
• Ttravel , total walking time.

The corresponding values for every solution are shown in Table A1 (Appendix B),
while Table 1 summarizes the values of the features over the 40 solutions. We can observe
that a wide variety of values are available. There are solutions ranging from 11 to 15 POIs,
with an interest which is (in the worst case) 18% lower than the best solution. Regarding
the travel time, values from 25 min to almost an hour of walking between POIs can be
considered and looking at the efficiency, it is clear that the solutions are very effective at
reducing the travel time while maximizing the visit time.

Table 1. Summary of values for every feature considered, over the generated 40 solutions.

Min Max Mean Std. Dev.

Number of POIs 11 15 13.33 1.57
Interest 74.00 90.00 83.01 4.57
Travel Time 24.78 54.78 37.19 6.36
Efficiency 84.77 92.60 89.18 1.60

Now, let us define the following three profiles.

1. Guided tour: A tourist wanting to visit as many of the city’s most interesting POIs
as possible while maximizing the time available. To do so, we rank the solutions
taking the interest of the solution as the main criterion, ordering the rest of features as
I &p #POIs &p E &p Ttravel ;

2. Casual visit: A visitor, who is in the city for another reason, wants to visit the most
interesting places in the city but wants to have as much free time as possible during
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this visit. In this case, we maximize the Effectiveness of the visit and order the rest of
the criteria by E &p I &p #POIs &p Ttravel ;

3. Large groups or people with reduced mobility: Due to the size of the groups or the
mobility problems of the visitors, it is necessary to keep the journeys to be made as
short as possible. In this last profile we minimize travel time between POIs Ttravel ,
and we set the order of the rest of the criteria by Ttravel &p I &p #POIs &p E

For every profile, the procedure described in Section 2.1 is applied. Figure 3 shows
the best 10 solutions of the corresponding rankings. The values for the reference solution
(s∗) are indicated in the top row, and the columns are ordered in terms of the criteria
importance. Values in red cells are worse than the reference value, while the green ones
are better.

Regarding Profile 1, the reference solution s∗ = s9 is the top ranked alternative.
Solution 4 has a slightly lower value of interest while attaining the same values in the rest
of features. Nevertheless, this solution is quite different from s∗, having J(s∗, s4) = 0.58.

Solutions 5, 12, and 14 have the same value of interest, but they are slightly worse in
the rest of the factors.

(a) Profile 1 (b) Profile 2

(c) Profile 3

Figure 3. Best 15 solutions for the defined user profiles.

Regarding Profile 2, again the reference solution s∗ = s9 is the top ranked alternative
followed by s4. Then, solution s37 appears (which was not among the top 15 solutions for
Profile 1). This solution has better efficiency and travel time than the reference solution,
but is ranked in third place due to the interest (which is 10 units less than the reference).
Solution s39 is also interesting because it is better in efficiency and travel time, while just
having 6 units less of interest. In turn, the route uses 12 POIs instead of 15 which is a
remarkable point.

Finally, for Profile 3, we observe that the reference solution is ranked in the fourth
place. Solutions 37, 39, and 27 are top ranked, providing improvements in travel time
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(shorter displacements between POIs) and greater efficiency. All of them had 12 POIs
which nevertheless allowed to reach up to 88% of the reference interest (90 units).

So, Profiles 1 and 2 share the top two solutions. The third solution from Profile 2 does
not even appear for Profile 1. None of the top 3 solutions from Profile 3 are available in
Profile 1 and the third solution from Profile 3 does not appear in Profile 2.

These results clearly highlight the need of having a set of solutions to choose from
instead of concentrating the efforts in obtaining one single best solution.

4. The Perishable Food Distribution Problem

Perishable food distribution has become increasingly tricky due to the features of
these goods: perishables have a short shelf life, and their quality deteriorates over time
during the distribution process until it is consumed. Therefore, ensuring food quality has
become a major priority that must be met if customers are to be satisfied.

In a real-world setting, the distribution of perishable food entails a set of complex spec-
ifications that might be difficult to incorporate into mathematical models. Such parameters
are frequently conflicting and, in some cases, unquantifiable [2,17,18].

A well-designed distribution plan that prioritizes short transit times and distances
can help to preserve products quality while reducing waste. However, improving the
sustainability of perishables distribution network necessitates balancing several competing
goals, such as minimizing the travel costs (e.g., fuel consumption costs, refrigeration costs,
the damage cost), maximize the average freshness, meeting consumers requirements to
ensure their satisfaction (e.g., on-time delivery, good service level), and reducing environ-
mental effect.

4.1. Problem Description

The problem is represented as a direct graph denoted by G = (V, A), being V =
{0, 1, . . . , n+ 1} the set of vertices, nodes 0 and n+ 1 represent the depot, and the remaining
nodes C = {1, . . . , n} are the customers to serve. Each customer i should be served within
a specific time slot defined by [ei, li].

The problem is modeled under the assumption of fleet homogeneity: all the refrig-
erated trucks have the same refrigeration characteristics, the same load capacity, and the
same constant velocity.

When considering solutions for the perishable food distribution problem, several
features can be defined.

4.1.1. Features

• Fixed, transportation and refrigeration costs;
• Damage cost;
• Average freshness;
• Quality of Service (or Service level);
• Total Tardiness.

From this set of available objectives, we deal with the following model formulation.

4.1.2. Parameters

• C(i,j): the transportation cost from node i to j;
• F: fixed cost associated to a vehicle;
• T(i,j): the travel time from i to j;
• d(i,j): the distance between node i and j;
• Ce: the cost per unit time for the refrigeration during the transportation process;
• Ui: the unloading time at customer i;
• C′

e: the unit refrigeration cost during the unloading;
• Si: the necessary time to serve customer i;
• qi: the demand of customer i;
• Q: the loading capacity of trucks;
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• K: the fleet of trucks;
• [ei, li]: the time window of customer i.

4.1.3. Decision Variables

• xk
(i,j): a 0–1 decision variable, equal to 1 in case the truck k travels on arc (i, j), 0

otherwise;
• yk

i : a 0–1 decision variable, equal to 1 in case the customer i is served by the truck k, 0
otherwise;

• tk
i : a continuous decision variable representing the starting service time at customer i

using the truck k.

4.1.4. Objective Function

The objective is to minimize the travel cost, calculated from: C1, the fixed costs for
using a vehicle denoted; C2, the transportation costs and C3 the refrigeration costs.

• C1, The fixed costs: represent the vehicle’s maintenance and depreciation costs.

C1 = F ∑
k∈K

yk
0 (6)

where k is the number of refrigerated trucks available and F represents the fixed cost
related to a vehicle;

• C2, The transportation costs: are proportional to the vehicle mileage. We consider
only the fuel consumption cost and express it as:

C2 = ∑
k∈K

∑
i∈V

∑
j∈V

C(i,j)x
k
(i,j)d(i,j) (7)

• C3, The refrigeration costs: are calculated as

C3 = C31 + C32 (8)

where C31 are the refrigeration costs of the transportation process:

C31 = Ce ∑
k∈K

∑
i∈V

∑
j∈V

xk
(i,j)T(i,j) (9)

and C32 is the cost of energy supplied during the unloading:

C32 = C′
e ∑

k∈K
∑
i∈V

yk
i Ui (10)

Considering the objectives described above, the problem can be formulated as a mixed
integer program (MIP) giving by the following:

Min C1 + C2 + C3 (11)

subject to:
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xk
(i,i) = 0, ∀i ∈ V, ∀k ∈ K (12)

xk
(0,n+1) = 1, ∀k ∈ K (13)

∑
k∈K

yk
i = 1, ∀i ∈ C (14)

∑
i∈V

xk
(i,j) = yk

j , ∀j ∈ C, ∀k ∈ K (15)

∑
j∈V

xk
(i,j) = yk

i , ∀i ∈ C, ∀k ∈ K (16)

∑
j∈v

xk
(0,j) ≤ 1, ∀k ∈ K (17)

∑
i∈v

xk
(i,n+1) ≤ 1, ∀k ∈ K (18)

∑
i∈C

Diyk
i ≤ Q, ∀k ∈ K (19)

ti + Si + T(i,j)x
k
(i,j) − M(1 − xk

(i,j)) ≤ tj, ∀i, j ∈ V, ∀k ∈ K (20)

ei ≤ tk
i ≤ li, ∀i ∈ C, ∀k ∈ K (21)

∑
k∈K

yk
0 ≤ K (22)

∑
j∈V

xk
(i,j) ≤ yk

i , ∀i ∈ V, ∀k ∈ K (23)

The objective (11) corresponds to the total cost minimization. Constraint (12) avoids
going from a point to itself. Constraint (13) avoids going from the depot to node n + 1
which represent the depot. Constraint (14) states that only one vehicle visits each customer
exactly once. Constraint (15) and (16) ensure that each vehicle that arrives at a customer
must depart for another destination. The vehicle departs from the depot 0, and returns to
the depot node n + 1 according to the Constraint (17) and (18). Constraint (19) guarantees
the respect of vehicle loading capacity. The connection between the start service at a specific
customer and the next one is established by Constraint (20). Constraint (21) is the time
window constraint. Constraint (22) guarantees that the number of trucks departing from
the depot do not exceed the available fleet of trucks K. Constraint (23) states that the vehicle
must traverse the arc (i, j) in order to serve the customer j.

4.2. Problem Solving and Generation of Solutions

We describe next the basic details of the metaheuristic used, the dataset and the way
the set of solutions is generated.

4.2.1. Metaheuristic

To solve the proposed problem, we use a basic implementation of a general variable
neighborhood search GVNS metaheuristic. In GVNS, variable neighborhood descent
(VND) is used for local search. When designing a GVNS, one should take the following
decisions: the number of neighborhood structures, the order in which they will be explored,
how the initial feasible solution is generated, the acceptance criterion and the stopping
conditions. These elements define the configuration of the GVNS.

GVNS starts by an initialization phase in which a feasible solution is generated. The
best solution is set as the first feasible solution. After selecting the neighborhood structures
for the shaking stage Ns, and for local search Nk, the stopping condition is then chosen.
The stopping condition corresponds to a number of iterations M that will be set in the
computational experience. The shaking process, the local search, and the move decision
are repeated until completing all neighborhood structures (S = Smax). In the shaking
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phase a solution X′ is generated randomly at the Sth neighborhood ofX∗(X′ ∈ Ns(X∗)).
Then, the local search is performed to find a better solution X” from X′ using the NK
neighborhood structures.

4.2.2. Dataset

The proposed approach is evaluated through a dataset of 50 customers in Granada,
Spain. The customers’ time window takes a random value in the interval [0, 240] with an
interval width ≥ 45. For customer’s target time, we assume that it is the midpoint of the
corresponding time window. The dataset is available at http://18.156.111.23/PER-FOOD/
DataPerishableFood.csv (accessed on 1 August 2021).

The refrigerated vehicles used to deliver products have a fixed cost of 25 e, and the
fuel consumption is estimated to 3 e/km. The other parameters are: P = 20 e/unit,
∂1 = 0.002, ∂2 = 0.003, Ce = 0.03 e/unit, C′

e = 0.04 e/unit and δ = 0.8.

4.2.3. Generation of Solutions

Although multiple runs of GVNS may allow to obtain a set of solutions, we illustrate
here a different approach inspired in the so called ’Modeling to Generate Alternatives’
(MGA) strategy [5,6]. MGA tries to generate a set of solutions that are quantifiable good
across all the modeled goals, while remaining as different as possible from each other (in
the decision space).

Let us assume that the best solution obtained for the problem is X∗, with Z∗ = F(X∗)
as the objective value. To generate alternative solutions X that are maximally different
from X∗, the following problem is addressed:

Min Jaccard(X, X∗) (24)

Subject to:
X ∈ D (25)

|F(X)− Z∗| ≤ f T (26)

where Jaccard(x1, x2) is the similarity coefficient used in the previous example. In the
original MGA approach, the problem is stated as maximizing a dissimilarity function. The
parameter T is the tolerance threshold related to the optimal objective value Z∗ and should
be defined by the decision maker.

We define the Jaccard’s coefficient between two routing solutions as the ratio of the
number of shared arcs to the number of total arcs used in both solutions. Let yijk = 1 if arc
(i, j) from vertex i to vertex j is used by any vehicle in solution rk, and yijk = 0 otherwise.

Jaccard(p, q) =

n

∑
i=0

n

∑
j=0

yijp · yijq

n

∑
i=0

n

∑
j=0

sign(yijp + yijq)

(27)

where yijp · yijq = 1 iff arc (i, j) is used by both solutions, and sign
(
yijp + yijq

)
= 1 if any of

the solutions use it. If solutions p and q are the same, the sum in the numerator will equal
the sum in the denominator, and therefore Jaccard(p, q) = 1. On the other hand, if they are
two completely different solutions with no arc in common, the numerator will equal 0, and
then Jaccard(p, q) = 0

In second place, we need to manage the fuzzy constraint (26) (which is crisp in the
original MGA approach). The membership function that represents the satisfaction degree
of the fuzzy constraint is is defined as:
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μ(τ) =

⎧⎨⎩
1 ; τ < T

1 − τ−T
Δt ; T ≤ τ < T′

0 ; τ ≥ T′
(28)

where T′ = T + Δt is the endurable distance threshold, τ = |F(X) − Z∗| is the cost
difference between the reference solution and the obtained alternative.

Using the concept of α − cuts and the parametric approach [19], the fuzzy constraint
is transformed into:

|F(X)− Z∗| ≤ T + Δt(1 − α) (29)

Now, the GVNS parameters, we use the following values: δ1 = 0, δ2 = 1, Λ = 2, μ = 1.
The stopping criteria M which correspond to the number of iterations, is fixed to 10. The
other parameters are: P = 20 e/Unit, ∂1 = 0.002, ∂2 = 0.003, Ce = 0.03 e/unit, C′

e = 0.04
e/unit and δ = 0.8.

To generate a set of alternative solutions, we start by finding a reference solution X∗

by running 10 times the GVNS metaheuristic. The best solution obtained (according to
Equation (12)) is considered as the reference solution X∗.

Then, using X∗, the new problem considering as objective the Equation (24) subject to
the constraints (25) and (29) is solved for α ∈ [0, 0.2, 0.4, 0.6, 0.8, 1]. For each value of α, a
tailored version of GVNS is run 10 times.

At the end, 62 different solutions are obtained and the corresponding values for the
following features are calculated: the damage cost, the average freshness, the service
level, and the tardiness. The mathematical definition of these criteria can be found in
Appendix A.

Table A2 (in the Appendix B) shows the results obtained for every value of α. It
should be noted that several solutions per GVNS were obtained and just the different ones
are reported.

4.3. Analysis of Solutions’ Diversity

Table 2 summarizes the values of the features over the 62 solutions. It is clear that a
wide variety of alternatives are available to choose from.

Table 2. Summary of values for every feature considered, over the generated 62 solutions.

Min Max Mean Std.Dev

Travel Cost 1167.85 1252.36 1215.43 24.97
Total damage 7530.24 8024.43 7709.90 109.80
Average freshness 20.12 22.39 21.11 0.51
Tardiness 69,137.18 216,830.61 134,649.45 36,362.44
Service level 15.96 20.31 18.10 1.07

As we explicitly generate the set of solutions minimizing the similarity with X∗, it
is interesting to observe the relation between the Jaccard coefficient, and the differences
in the calculated values for every solution. This information is shown in Figure 4 (for
visualization purposes, just a subset of solutions are shown in every case). The Y axis
reflects the difference as percentage.

When considering the distance (which is correlated with the travel cost), Figure 4a
shows that all the solutions are worst in this feature. This is not surprising, as X∗ has the
lowest distance. There are several interesting solutions, like 10, 5, 6, and 9, that had a quite
similar distance but a Jaccard similarity below 0.9. Solution 28 is also interesting because it
has a low level of similarity (less than 0.45), while attaining a quite similar distance value
(less than 2% of difference).

With an increment in the distance between 2% and 5%, up to eight solutions can be
found with a Jaccard value between [0.4, 0.62].
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For the average freshness and service level, the situation is more interesting, because
there are better and worse solutions than the reference one. Focusing in the average
freshness (Figure 4b), those solutions with a positive value in Y are better than the reference
solution. Solution 15 allows to improve up to 4% in the criteria while having a similarity
value of 0.7. Other improvements between 1% and 2% can be obtained with quite different
routes (solutions 47, 25, 52).

The results in terms of the service level are shown in Figure 4c. Here, solution 59
provides more than a 10% of improvement with a moderate value of similarity (less than
0.65). Several solutions providing improvements higher than 6% and similarity below 0.5
are available. In this case, even solution 37 may be interesting, as it has a minor decrement
in service level but very low level of similarity.

Finally, Figure 4d shows the solution in terms of the Tardiness criteria. Here, all the
solutions are better than the reference one. It is clear here that tardiness more similar than
the reference solution can not be attained. Great improvements can be obtained, but with
quite different solutions (look at the low values for similarity).

(a) Distance (b) Average Freshness

(c) Service Level (d) Tardiness

Figure 4. Variation of individual criterion and Jaccard’s coefficient with respect to the reference
solution. Just a subset of solutions is shown.

4.4. User Profiles and Ranking

The previous analysis is useful for detecting good solutions when analysed from just
two points of view: similarity vs. a single criterion.

Here, we define three user’s profiles, representing the preferences of a decision maker.
As stated before, the preferences are indicated through a linear ordering of the criteria that
is described below.

• Economic-centric (E-c): Travel Cost = Total Damage &p Average freshness &p Tardi-
ness &pService level;

• Product-centric (P-c): Average freshness &p Travel Cost &p Total Damage&p Tardiness
&p Service level;

• Customer Satisfaction-centric (C-c): Tardiness = Service level &p Travel Cost &p Total
Damage &p Average freshness.

where the symbol &p should be read as “at least as preferred to”.
For every profile, the procedure described in Section 2.1 to rank the solutions is

applied. The best 15 solutions under each user profile are shown in Table 3–5.
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Every solution is compared against the reference solution in terms of the following
criteria: travel cost, total damage, average freshness, service level, and tardiness. Values in
red cells are worse than the reference value, while the green ones are better.

Table 3. Ranking of solutions under the Economic−centric profile.

Travel Cost Total Damage Average Freshness Tardiness Service Level
Reference
Solution

1168.4 8024.42 21.52 134,158.6 17.45

18 1.72 −3.64 −1.46 −34.27 10.44
30 5.78 −3.29 0.17 −48.47 9.57
26 3.46 −4.90 −3.64 −43.70 −1.87
53 3.54 −4.78 −6.35 −35.80 7.88
3 4.50 −3.31 −0.99 −42.35 4.25
62 2.60 −4.22 −1.41 −39.59 −3.35
5 0.19 −5.60 −4.46 −29.38 −5.88
28 1.46 −3.61 −0.95 −32.17 −2.33
45 3.94 −3.00 0.24 −29.08 8.69
52 2.21 −2.07 1.39 −28.91 5.09
37 7.06 −4.11 −2.21 −44.00 −1.67
10 −0.04 −5.13 −6.21 −14.61 2.23
9 0.17 −3.18 −1.48 −17.28 2.45
6 0.14 −4.61 −4.48 −15.06 2.22
59 3.24 −4.77 −3.61 −14.21 12.28

Table 4. Ranking of solutions under the product-centric profile.

Average Freshness Travel Cost Total Damage Tardiness Service Level
Reference
Solution

21.52 1168.4 8024.42 134,158.60 17.45

30 0.17 5.78 −3.29 −48.47 9.57
52 1.39 2.21 −2.07 −28.91 5.09
3 −0.99 4.50 −3.31 −42.35 4.25
62 −1.41 2.60 −4.22 −39.59 −3.35
45 0.24 3.94 −3.00 −29.08 8.69
37 −2.21 7.06 −4.11 −44.00 −1.67
28 −0.95 1.46 −3.61 −32.17 −2.33
18 −1.46 1.72 −3.64 −34.27 10.44
26 −3.64 3.46 −4.90 −43.70 −1.87
47 1.47 6.07 −3.06 −18.42 4.74
32 −2.41 2.93 −2.79 −35.33 −4.58
15 4.01 2.54 −0.45 −1.24 9.68
34 1.53 6.61 −3.40 −12.16 4.29
25 1.16 5.57 −2.27 −14.17 7.58
46 0.23 3.58 −3.47 −15.53 3.11

Table 5. Ranking of solutions under the customer-centric profile.

Tardiness Service Level Travel Cost Total Damage Average Freshness
Reference
Solution

134,158.60 17.45 1168.4 8024.42 21.52

30 −48.47 9.57 5.78 −3.29 0.17
3 −42.35 4.25 4.50 −3.31 −0.99
26 −43.70 −1.87 3.46 −4.90 −3.64
18 −34.27 10.44 1.72 −3.64 −1.46
37 −44.00 −1.67 7.06 −4.11 −2.21
53 −35.80 7.88 3.54 −4.78 −6.35
62 −39.59 −3.35 2.60 −4.22 −1.41
45 −29.08 8.69 3.94 −3.00 0.24
52 −28.91 5.09 2.21 −2.07 1.39
32 −35.33 −4.58 2.93 −2.79 −2.41
28 −32.17 −2.33 1.46 −3.61 −0.95
5 −29.38 −5.88 0.19 −5.60 −4.46
40 −21.31 6.99 4.11 −4.01 −2.64
38 −21.90 2.07 3.57 −4.42 −3.11
59 −14.21 12.28 3.24 −4.77 −3.61
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We can observe that the proposed approach allowed to generate a variety of alternative
solutions, each of which shows a different behavior for each criterion. This diversity allows
the decision maker (DM) to select the most appropriate solution, considering different
perspectives and depending on his preference. Regarding the E-c profile, solution 18 is
the top-ranked alternative. This solution is quite different from the reference solution X∗

having a Jaccard coefficient J(X∗, s18) = 0.49. s18 performs better than X∗ in terms of
service level, tardiness, and damage. On the other hand, has approximately the same travel
cost as the reference solution. Solution 30 is slightly worse in terms of travel cost. However,
it allows improvement in all the remaining criteria. Regarding the P-c profile, solution 30 is
now the best one. This solution has a worse travel cost than the reference solution, but it is
better in the remaining criteria. Solution 52 appears in the second place. Note that it was
ranked in the 10th position for the E-c profile. Regarding the C-c profile, solution 30 retain
the first place by improving significantly all the criteria, with a slight increase in travel cost
compared to X∗.

It should be noted that solutions 26 and 30 are among the TOP-3 best alternatives for
both the E-c and C-C profile. Another interesting alternative is solution 3 which maintains
its place in the TOP-3 for the P-C and C-c profile. Solution 18 is the best alternative for
a DM that have economic focus, and retain the third position in terms of service level
improvement. However, this solution does not have interest if the focus is on the product
freshness or customer satisfaction.

It is highly remarkable that the solution X∗ does not appear among the top 15 solutions
for all the profiles, which illustrate the ability of our proposed approach in generating
performant and quite dissimilar solutions that will serve the decision maker to select the
appropriate solution from his perspective.

5. Conclusions

The computational models of relevant optimization problems necessarily leave out of
consideration several characteristics and features of the real world. So trying to obtain the
optimum solution can not be enough for a problem solving point of view. Moreover, it is
doubtful that a single solution would be able to meet all the real specifications. Therefore,
it is desirable for the decision maker to have a set of solutions that are good enough for the
modeled objective, but can perform also well when it comes to other unmodeled criteria.

In the context of a basic problem solving framework, we illustrated the role of meta-
heuristics as solutions’ generators. In the tourist trip design problem, independent runs
of an evolutionary algorithm allowed to obtain the set. In the case of perishable food
distribution, a more complex strategy was used, inspired from the MGA approach.

Considering a set of solutions and different user profiles, allows to properly rank
the available solutions. Using a similarity measure, such as the Jaccard’s coefficient, also
allowed to better understand the relation between the reference solution and the other
ones, not only in the objectives space, but also in the decision space.

This opportunity to consider different perspectives will grant a decision better suited
to the real context.

As future work, we will further explore MGA-like approaches, where some measure-
ment of similarity between solutions is needed. Here, the concept of symmetry appears
to be crucial as potentially symmetric solutions in the design space can be equal in the
objectives space. In other words, different ways to attain the same results can be explored
with a proper usage of the symmetry/anti-symmetry ideas.

Finally, connecting the solutions’ analysis with multicriteria decision-making ap-
proaches will be also explored.
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Appendix A. Additional Quality Criteria for the Perishable Food Distribution

Problem

The alternative solutions generated will be evaluated for a set of criteria relevant
to perishable food distribution. It is expected that they can help the decision maker in
selecting the most appropriate solution according to his or her preferences. In this work,
we consider the four criteria described below:

Appendix A.1. Damage Cost

The quality of perishable foods degrades with the progression of time and temperature
fluctuations during transportation and handling. Damage costs are incurred when product
quality falls below a certain threshold. The following feature can be used to express the
quality of refrigerated products: Dt = D0e−∂t, where Dt, and D0 are, respectively, the
quality of product at time t and from the depot 0. The parameter ∂ is the product’s spoilage
rate, which is assumed to increase as the temperature rises (Ref. [20]). As a result, we
distinguish between damage cost during distribution Cdmg, and the damage cost during
the unloading C

′
dmg due to the temperature changes (∂ varies also). The damage cost Cdmg

is expressed as follows:

Cdmg = ∑
k∈K

∑
i∈C

yk
i Pqi

(
1 − e−∂1(tk

i −tk
0)

)
(A1)

where the coefficient ∂1 reflects the spoilage rate of product when the vehicle is locked,
tk
i the arrival time of vehicle k at customer i, tk

0 the departure time of vehicle k from the
depot,and yk

i is 0–1 variable taking the value 1 in case the vehicle k is servicing the customer
i, and 0 otherwise.

The damage cost during the unloading C42 is defined as:

C
′
dmg = ∑

k∈K
∑
i∈C

yk
i Pqin

(
1 − e−∂2Si

)
(A2)

with qin the remaining quantity of product after servicing the customer i, the necessary
time to serve is customer i is Si, and ∂2 is the spoilage rate when the vehicle is opened.

Appendix A.2. Average Freshness

The average freshness, denoted by AVGF, is defined as [21]:

AVGF =

∑
k∈K

∑
i∈C

yk
i qie

−∂1(tk
i −tk

0)

∑
i∈C

qi
(A3)

Appendix A.3. Service Level

This criterion reflects the fact that customers may want to obtain their products at a
certain time so that they can begin planning meals, for example. We use the target time as
an indicator to determine the service level using the following function:
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SLi(ti) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 ti < ei
f (ti) ei ≤ ti < Ti

g
1 ti = Ti

g
g(ti) Ti

g < ti ≤ li
0 ti > li

(A4)

SLi(ti) represents the service level ensured for customer i if we deliver his demand at
time ti. Ti

g is the target time, ei and li are, respectively, the lower, and upper bounds of the
time window. The function f is a non-decreasing function, while g is a decreasing function
defined as follows:

f (ti) =
ti − ei

Ti
g − ei

(A5)

g(ti) =
li − ti

li − Ti
g

(A6)

A good alternative solution is the one that maximizes the following function:

SL = ∑
i∈C

SLi(ti) (A7)

Appendix A.4. Total Tardiness

We assume that we have a pre-defined set of customers’ priorities and they must
be served according to their priority level. To consider priority indexes, we define a
precedence matrix P, where Pij = 1 indicates that the customer i should be supplied before
the customer j, and Pij = 0 if customer i might be supplied after customer j.

A good solution is the one that minimize the tardiness as much as possible. Tardiness
is increased when a lower-priority customer is served before a higher-priority customer,
and can be expressed using the following formula:

∑
i∈C

∑
j∈C

tj − ti (A8)

With tj, ti are the arrival times at customer j and i, respectively.

Appendix B. Sets of Solutions

The set of solutions for both problems, together with the calculated values for all
the features, are provided here. Table A1 shows the 40 solutions for the time-dependant
tourist trip design problem, and Table A2 shows the 62 solutions for the perishable food
distribution problem grouped in terms of every α value
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Table A1. Set of solutions for the dynamic tourist trip design problem. X∗ is the reference solution.

Solution Interest # POIs Efficiency Travel Time

X∗ 90.00 15 90.57% 33.83

1 86.50 15 89.88% 35.47
2 86.00 15 88.33% 41.60
3 88.00 15 88.40% 41.33
4 88.50 15 90.57% 33.83
5 90.00 15 87.61% 44.53
6 86.50 15 89.12% 39.08
7 81.00 15 87.03% 46.18
8 86.50 15 88.80% 39.10
9 90.00 15 90.57% 33.83

10 88.00 14 86.57% 48.08
11 82.50 15 90.28% 34.47
12 90.00 14 89.33% 38.22
13 74.50 14 87.54% 44.12
14 90.00 14 90.16% 34.92
15 84.50 15 84.77% 54.78
16 86.00 15 89.76% 36.52
17 86.00 15 89.24% 38.60
18 86.50 15 88.50% 40.30
19 86.00 15 86.42% 47.93
20 80.00 14 86.46% 46.98
21 82.00 13 88.43% 39.92
22 82.00 12 90.05% 32.03
23 84.00 12 89.83% 33.95
24 82.00 12 90.10% 33.50
25 84.00 13 89.58% 33.72
26 78.00 11 91.19% 28.50
27 82.00 12 90.92% 29.47
28 78.00 12 90.17% 31.08
29 86.00 14 88.32% 39.03
30 82.00 11 90.57% 30.70
31 74.00 12 86.71% 44.43
32 79.50 12 90.13% 31.75
33 80.00 11 90.53% 30.85
34 80.00 11 90.51% 30.92
35 78.00 11 88.28% 39.83
36 76.00 12 88.70% 35.68
37 80.00 12 92.60% 24.78
38 74.00 11 89.84% 33.93
39 84.00 12 91.48% 28.42
40 78.00 12 90.10% 35.15
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Table A2. Set of solutions for the perishable food distribution problem in terms of every α value. X∗

is the reference solution.

Jaccard
Coeff

Travel Cost Total Damage Average Freshness Tardiness Service Level

X∗ 1168.40 8024.42 21.52 134,158.60 17.45
1 0.47 1168.35 8024.43 21.53 134158.60 17.45
2 0.45 1218.24 7871.47 21.53 160,106.88 18.81
3 0.58 1220.88 7759.02 21.31 77,340.90 18.19
4 0.44 1211.40 7642.49 20.80 150,318.80 16.34
5 0.75 1170.63 7574.83 20.57 94,747.56 16.42
6 0.78 1170.01 7654.86 20.56 113,959.93 17.84
7 0.45 1183.76 7593.93 20.96 172,670.60 19.66
8 0.58 1184.17 7647.87 20.92 134,514.11 20.10
9 0.87 1170.28 7769.21 21.21 110,974.37 17.88

10 0.62 1167.85 7613.17 20.19 114,563.32 17.84
11 0.70 1172.65 7665.73 20.62 129,750.23 17.06
12 0.62 1196.22 7989.30 21.64 129,427.45 18.24
13 0.47 1242.50 7719.73 21.16 145,819.23 17.91
14 0.44 1224.65 7530.24 20.12 179,372.30 17.95
15 0.72 1198.04 7988.70 22.39 132,493.70 19.14
16 0.51 1205.16 7774.37 21.70 163,477.79 20.08
17 0.62 1236.82 7581.91 20.45 145,892.33 18.78
18 0.49 1188.44 7732.66 21.21 88,179.91 19.27
19 0.42 1235.29 7753.68 21.27 121,543.30 15.96
20 0.56 1244.36 7745.72 21.81 189,232.09 17.86
21 0.33 1239.06 7594.26 20.71 188,649.18 18.59
22 0.26 1243.11 7713.25 21.52 149,117.63 18.95

α = 1

23 0.45 1228.98 7703.10 21.26 124,985.42 17.27
24 0.62 1236.82 7581.91 20.45 161,864.14 18.78
25 0.56 1233.45 7842.50 21.78 115,142.75 18.77
26 0.49 1208.76 7631.62 20.74 75,526.48 17.13α = 0.8

27 0.56 1244.36 7745.72 21.81 216,830.61 15.80
28 0.42 1185.46 7734.76 21.32 90,998.06 17.04
29 0.53 1187.79 7670.50 20.70 115,110.98 18.45
30 0.44 1235.87 7760.68 21.56 69,137.18 19.12
31 0.42 1214.54 7647.11 20.82 155,266.90 16.94
32 0.51 1202.58 7800.86 21.01 86,761.52 16.65
33 0.62 1236.82 7581.91 20.45 203,346.27 18.78
34 0.33 1245.61 7751.62 21.86 117,838.20 18.20
35 0.47 1200.82 7735.57 21.40 130,465.05 16.65

α = 0.6

36 0.38 1244.21 7543.49 20.62 113774.55 17.98
37 0.37 1250.88 7694.87 21.05 75,133.26 17.16
38 0.38 1210.05 7669.48 20.86 104,778.07 17.81
39 0.58 1240.43 7729.76 21.06 179,606.29 16.77
40 0.37 1216.35 7702.60 20.96 105,564.80 18.67
41 0.62 1235.22 7830.84 21.72 119,825.69 18.02

α = 0.4

42 0.47 1243.45 7605.22 21.20 175925.44 19.00
43 0.44 1211.40 7642.49 20.80 141,176.06 16.34
44 0.44 1224.65 7530.24 20.12 163,449.29 17.95
45 0.40 1214.36 7784.08 21.58 95,139.87 18.97
46 0.62 1210.16 7746.02 21.58 113,320.22 17.99
47 0.53 1239.28 7778.74 21.84 109,442.38 18.28

α = 0.2

48 0.58 1240.43 7729.76 21.06 179,606.29 16.77
49 0.51 1205.16 7774.37 21.70 163,477.79 20.08
50 0.49 1230.69 7570.80 20.39 176,408.72 18.37
51 0.75 1170.63 7574.83 20.57 139,394.36 16.42
52 0.60 1194.15 7858.23 21.83 95,379.98 18.34
53 0.45 1209.71 7640.73 20.16 86,129.95 18.83
54 0.53 1247.40 7721.07 21.20 187,736.49 17.34
55 0.56 1247.56 7696.99 21.08 182,320.04 18.63
56 0.49 1252.36 7717.77 21.18 195,880.30 17.59
57 0.47 1216.26 7955.55 21.68 126,305.39 17.12
58 0.47 1198.73 7679.40 20.83 158,445.86 18.63
59 0.62 1206.17 7641.84 20.75 115,100.21 19.60
60 0.40 1208.93 7632.71 20.95 148,361.60 20.31
61 0.40 1235.61 7747.33 21.33 125,947.14 19.89

α = 0

62 0.40 1198.73 7686.03 21.22 81,051.91 16.87
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Abstract: Key performance indicator (KPI) anomaly detection is the underlying core technology
in Artificial Intelligence for IT operations (AIOps). It has an important impact on subsequent
anomaly location and root cause analysis. Variational auto-encoder (VAE) is a symmetry network
structure composed of encoder and decoder, which has attracted extensive attention because of
its ability to capture complex KPI data features and better detection results. However, VAE is not
well applied to the modeling of KPI time series data and it is often necessary to set the threshold
to obtain more accurate results. In response to these problems, this paper proposes a novel hybrid
method for KPI anomaly detection based on VAE and support vector data description (SVDD). This
method consists of two modules: a VAE reconstructor and SVDD anomaly detector. In the VAE
reconstruction module, firstly, bi-directional long short-term memory (BiLSTM) is used to replace
the traditional feedforward neural network in VAE to capture the time correlation of sequences;
then, batch normalization is used at the output of the encoder to prevent the disappearance of KL
(Kullback–Leibler) divergence, which prevents ignoring latent variables to reconstruct data directly.
Finally, exponentially weighted moving average (EWMA) is used to smooth the reconstruction error,
which reduces false positives and false negatives during the detection process. In the SVDD anomaly
detection module, smoothed reconstruction errors are introduced into the SVDD for training to
determine the threshold of adaptively anomaly detection. Experimental results on the public dataset
show that this method has a better detection effect than baseline methods.

Keywords: key performance indicator (KPI); anomaly detection; variational auto-encoder (VAE);
support vector data description (SVDD)

1. Introduction

In recent years, with the development of technologies, such as machine learning and
deep learning, the concept of Artificial Intelligence for IT operations (AIOps) has been
proposed. AIOps combines Artificial Intelligence (AI) with operation and maintenance (O
and M) to automatically monitor and manage IT services, and improve O and M efficiency.
KPI (key performance indicator) anomaly detection is an underlying core technology of
intelligent operation and maintenance. Most of the key technologies of intelligent operation
and maintenance depend on the results of KPI anomaly detection [1]. In order to provide
an efficient and reliable service, KPIs must be monitored in real time to detect anomalies
on time. It is necessary for those KPI fluctuations with relatively short durations that
must also be accurately monitored to avoid future economic losses. KPI data is a time
series data with specific meaning, obtained through periodic sampling in the format of
(timestamp, value). KPIs can be roughly divided into two types: service KPIs and machine
KPIs. Service KPIs can reflect the scale and quality of web services, such as web page
response time, web page visits, number of connection errors, etc. Machine KPIs can reflect
the health status of machines (servers, routers, and switches), such as CPU utilization,
memory utilization, disk IO, network card throughput, etc. In addition, KPIs also show
diversity in shape characteristics, which can be roughly divided into periodic KPIs, stable
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KPIs, and continuously fluctuating KPIs. In the actual scenes, the occurrence frequency
of anomalies is very low, which leads to extremely unbalanced data samples. Due to the
complexity of the business system, it will be constantly updated and upgraded, resulting
in the diversity of anomaly types. Because of these characteristics, the precision and recall
of existing anomaly detection algorithms are not high, and there are a lot of false positives
and false negatives. This not only increases the workload of operation and maintenance
personnel, but also makes them unable to find abnormal KPIs timely and accurately.

At present, a series of KPI anomaly detection methods have been proposed by the
academia and industry, and these methods are gradually changing from statistical methods
to machine learning methods. Deep learning is a subset of machine learning that can
automatically learn features from data to achieve good performance and flexibility. As a
powerful symmetrical neural network, deep generative models have been widely used in
the field of anomaly detection. The learning goal of deep generation models is to narrow the
gap between the restored data and the original data as much as possible. Based on the idea
that normal data patterns occur frequently and anomalies rarely occur, the “compression
restore” process will find the main data patterns instead of restoring the abnormal patterns.
Anomaly detection needs to learn the normal pattern of data, so generation models are
very suitable. Among them, the representative algorithms are variational auto-encoder
(VAE) [2] and generative adversarial network (GAN) [3].

VAE is an unsupervised generative network model, which is composed of encoder
and decoder. The encoder maps the input data X to latent variable Z, and the decoder maps
the latent variable Z back to X. Generally, the encoder and decoder are the same and share
network parameters, so this architecture is called symmetrical [4]. VAE and GAN learn
the distribution of normal data, while abnormal data cannot fit this distribution. Anomaly
detection is based on the asymmetry of normal data and abnormal data distribution. VAE
obtains the distribution of data by variational inference. GAN directly uses the generator to
simulate the distribution of data, and the discriminator determines whether the distribution
simulated by the generator is good or bad. VAE is less difficult to train and more robust to
noise than GAN, so it is more suitable for KPI anomaly detection. However, KPI anomaly
detection methods based on VAE still have the following problems:

(1) VAE is not well suited for time series modeling. Previous VAE-based KPI anomaly
detection methods [5,6] regard time series as sliding windows, ignoring the time
relationship between sliding windows in the encoding process. In order to solve this
problem, researchers combine LSTM [7] and VAE. Specifically, LSTM is used to replace
the feedforward neural network in VAE, which can extract the characteristics, such as
time dependence and correlation between data [8,9]. However, when VAE combines
with the strong autoregressive decoder (LSTM), KL (Kullback–Leibler) divergence
will disappear [10]. Because of the autoregressive of decoder, latent variables in VAE
are often ignored and data is reconstructed directly. At this time, the approximate
posterior is close to the prior, which causes the KL divergence term in the loss function
to be reduced to 0. Some studies [10–13] have tried to solve this problem before, but
additional parameters or training processes need to be added.

(2) VAE needs to set the threshold for anomaly detection. VAE detects anomalies by
comparing the reconstruction results with the original inputs, that is, reconstruction
errors. To some extent, the reconstruction error represents an instantaneous measure
of anomaly degree. If a threshold is set directly on the reconstruction error, it will
lead to a large number of false positives and false negatives. Moreover, for a large
number of different types of KPIs, it is difficult to set a unified threshold for recon-
struction errors. Early VAE-based anomaly detection studies [5,14] often ignored
the importance of threshold selection. Some studies [14,15] adjusted the threshold
through cross-validation. However, anomalous samples are rare, and establishing
a sufficiently large validation set is a luxury. Other attempts [5,16] only evaluate
the best performance of models in the test set, which makes it difficult to reproduce
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the results in practical application. Therefore, anomaly detection models need to
determine the threshold automatically.

In response to the above-mentioned problems, this paper applies VAE and SVDD to
KPI anomaly detection. We use the public data set collected from the real operation and
maintenance environment to prove the effectiveness of this method. The main contributions
of this paper are summarized as follows:

(1) In order to better capture the time correlation of the KPI time series, the encoder and
decoder of the VAE are designed as BiLSTM [17]. Compared with LSTM, BiLSTM
processes sequences in both positive and negative directions. Its advantage lies in
considering not only past KPI data, but also future KPI data.

(2) It focuses on the problem of the disappearance of KL divergence in the loss function
during model training, avoiding the strong autoregressive decoder to ignore latent
variables and directly reconstruct the data. In this paper, batch normalization [18]
is used at the output of the encoder to make the KL divergence have a lower bound
greater than zero. This method can effectively prevent the disappearance of KL
divergence without introducing any new model components or modifying targets.

(3) Due to the unpredictability of system behavior, normal behavior can also lead to sharp
error peaks. In this paper, EWMA [19] is used to smooth the reconstruction error to
suppress frequent error peaks. Simultaneously, the effect of eliminating short-term
trends and retaining long-term trends can be achieved, which will minimize false
positives and false negatives in the detection process.

(4) In order to solve the threshold adaptation problem of KPI anomaly detection, smoothed
reconstruction errors are put into the SVDD [20] for training. The threshold de-
termined by the SVDD has good adaptability and improves the performance of
anomaly detection.

2. Related Work

At present, there are few anomaly detection methods for KPI, but, as a kind of time
series data, many time series anomaly detection methods are worthy of reference. The exist-
ing studies in this section are divided into three categories: traditional statistical methods,
supervised machine learning methods, and unsupervised machine learning methods.

The method based on traditional statistics is the earliest method to study time series.
The general idea of this method is to make some assumptions about the distribution of data,
and then use the statistical inference method to find the anomalies under this assumption.
For example, the well-known 3 − σ [21] criterion assumes that data follow a normal
distribution, and, if some values exceed 3 standard deviations, they can be considered
outliers. With the development of technology, the ARIMA [22,23] and Holt–Winters [24]
methods are proposed. Both of these algorithms use a predictive idea to fit the law of
time series. Then, prediction results are compared with actual time series, and anomalies
are determined by setting a threshold for prediction errors. However, anomaly detection
methods based on traditional statistics usually have simple assumptions about time series.
Moreover, experts are required to select detectors for given time series and fine-tune the
parameters of detectors based on the training data. Therefore, it does not apply to complex
monitoring indicator data in actual O and M scenes.

The method based on supervised machine learning can avoid parameters adjustment
in traditional statistical algorithms. Among them, the EGADS [25] framework developed by
Yahoo and the Opprentice [26] framework developed by then Tsinghua Netman Laboratory
are very representative. EGADS and Opprentice are supervised ensemble learning methods.
These two methods use anomaly scores output by various traditional anomaly detection
algorithms as features, and use user feedback as labels to train anomaly classifiers, which
have achieved good results in KPI anomaly detection. However, supervised methods rely
heavily on good manual labeling, which is usually not feasible in practical applications.
In addition, the ensemble learning classifier based on multi anomaly detectors also faces
some problems, such as a large amount of calculation, imbalance of positive and negative
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samples, among others. Therefore, unsupervised learning methods have become the main
research direction of KPI anomaly detection.

The method based on unsupervised machine learning determines the “normal area” by
using a single class label (normal KPI samples). Then, by comparing the difference between
the KPI observation value and “normal area”, we can infer the abnormal degree of data.
Since normal samples are far more numerous than abnormal samples in anomaly detection,
the model can still be trained even without labels. However, traditional unsupervised
machine learning methods need to spend a lot of time to extract the features of data
for anomaly detection, such as OCSVM [27], K-means [28], GMM [29], etc. Since deep
generative models can automatically capture complex features from data and have higher
accuracy, they have received extensive attention. Donut [5] was the first unsupervised
model that applied a deep generative model to KPI anomaly detection. Donut puts forward
innovations, such as M-ELBO, MCMC iteration, and missing value zero fillings on the basis
of VAE, which has excellent performance on periodic KPIs. Subsequently, Buzz [6] solved
the problem that was difficult for donut as it handles more complex data distribution.
It measures the distance of data distributions and generates distributions through the
Wasserstein distance. In fact, Buzz optimizes the likelihood evidence lower bound of a
variant VAE by adversarial training. Buzz has a better detection effect on aperiodic KPIs.
However, the KPI anomaly detection method based on VAE does not consider the time
dependence of data, which limits its applicability to time series. Although LSTM-VAE [8]
solves this problem, it will encounter the problem of KL divergence disappearing during
training. In addition, the VAE judges anomalies by means of reconstruction, with manual
determination of thresholds that have poor adaptability. Some recent studies [30,31] have
achieved good results by using models to automatically determine thresholds.

This paper uses the public benchmark data set, with related research works of anomaly
detection under the same data set that are introduced as follows. KPI-TSAD [32] is a time
series deep learning model based on convolution and long short-term memory (LSTM)
neural network, and uses a variational auto-encoder (VAE) oversampling model to solve
the imbalanced classification problem. Although the method based on supervised learning
has achieved good performance in anomaly detection, it needs a lot of labeled data for
training. LSTM-based VAE-GAN [9] regards the long short-term memory (LSTM) network
as the encoder, generator, and discriminator of VAE-GAN, and jointly trains the encoder,
generator, and discriminator. In the anomaly detection stage, anomalies are detected based
on reconstruction errors and discrimination results. However, it needs to accumulate
certain data to adjust the threshold of the abnormal score. PAD [33] is a method for robust
prediction and unsupervised anomaly detection. The prediction block (LSTM) obtains a
clean input from the time series reconstructed by the VAE, making it robust to anomalies
and noise. At the same time, because LSTM helps to maintain a long-term sequence
pattern, VAE performs better in anomaly detection. ALSR [34] is a machine learning
scheme for continuous interval KPI anomaly detection. The anomaly detection scheme
is optimized by using the different characteristics of abnormal points in the continuous
anomaly interval, so that it has better detection accuracy. FluxEV [35] mainly improves
SPOT [36], which is only sensitive to extreme values and therefore cannot detect local
fluctuations. The method of moment estimation is used to optimize maximum likelihood
estimation in SPOT to improve computational efficiency. This paper mainly aims at solving
the problems of KPI anomaly detection based on VAE. However, the works discussed
above are different from the problems addressed in this paper. For example, KPI-TSAD [32]
solves the problem of data imbalance through VAE. LSTM-based VAE-GAN [9] aims to
resolve the problem of errors in the mapping of GAN from real-time space to potential
space. PAD [33] considers two aspects: state prediction and anomaly detection. ALSR [34]
mainly focuses on anomaly detection in continuous intervals. FluxEV [35] focuses on
improving computational efficiency.
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3. Anomaly Detection Method

3.1. Method Flow

The problem to be solved in this paper is how to detect anomalies in KPI time series
data. In order to solve this problem, a novel hybrid anomaly detection method is proposed.
The method flow is shown in Figure 1, which mainly includes data preprocessing, a
VAE-based reconstruction module, and SVDD-based anomaly detection module. In the
training stage, data preprocessing was firstly carried out, that is, missing value filling
and data normalization were performed on the original KPI time series. Then, the VAE
reconstruction was carried out, that is, the BiLSTM-VAE model was trained and batch
normalization was used to prevent the disappearance of the KL divergence. Finally, SVDD
anomaly detection was carried out, and reconstruction errors smoothed by EWMA were
put into the SVDD for training. The center a and radius R of the SVDD hypersphere were
calculated, and the radius R is the threshold of anomaly detection. In the test stage, the
test data were preprocessed and input into the trained BiLSTM-VAE model to obtain the
reconstructed test data. If the smoothed reconstruction error was less than or equal to the
threshold R, it would be judged as normal. If it was greater than the threshold R, it would
be judged as abnormal.

Figure 1. Method flow chart.

3.2. Data Preprocessing
3.2.1. Missing Value Processing

In the real scene, there may be a small number of missing reports or noise data may be
deleted in the original KPI data, resulting in the loss of values in the data. Supplementing
appropriate data is helpful for subsequent model training. When the number of missing
values is small, the effects of nearest neighbor interpolation, linear interpolation, and cubic
polynomial interpolation are similar [37]. There are fewer missing values in the KPI dataset
used in this paper. After measuring speed and simplicity, the linear interpolation method
was selected to deal with missing values. First, the slope was calculated according to the
data before and after the missing value, and then the missing KPI data was supplemented
according to the slope. Figure 2 shows the interpolation method. If the data xk was lost,
the slope would be calculated as follows:

b =
xk+1 − xk−1
tk+1 − tk−1

, (1)

Next, the missing KPI data xk was calculated based on the slope b:

xk = xk−1 + b × (tk − tk−1), (2)

355



Symmetry 2021, 13, 2104

x x
x

k-x

+kx
+kxkx

t t t k-t kt +kt +kt

tx

t

Figure 2. Schematic diagram of the interpolation method.

3.2.2. Data Standardization

In order to eliminate the dimensional influence between indicators, data standardiza-
tion is needed. After data standardization, all indicators are in the same order of magnitude,
which is suitable for comprehensive comparative evaluation. In addition, it can reduce
the training time of the model and make the training process converge as soon as possible.
This paper normalizes the KPI data, and the data was mapped to the range of 0–1. The
normalization formula is as follows:

x∗ =
x − min

max − min
, (3)

3.3. Reconstruction Module Based on VAE
3.3.1. BiLSTM-VAE Model

In physics, symmetry has a more profound meaning, which refers to invariance under
certain transformations. In the VAE, the data is invariant in time and space after encoding
and decoding operations, so it just conforms to the concept of symmetry.

The encoder of the VAE is used to learn the distribution of training data and generate
the compressed value of training data, and the decoder reconstructs the compressed data.
The basic idea is to use a deep neural network to model two complex probability density
functions: posteriori probability distribution and conditional probability distribution.
The neural network fitting x → z is called the inference network q

ϕ
(z | x), as shown in

Formula (4). The neural network fitting z → x is called the generative network p
θ
(x | z),

as shown in Formula (5).
z ∼ Enc(x) = q

ϕ
(z | x), (4)

x ∼ Dec(z) = p
θ
(x | z), (5)

KPI data belongs to time series. Using the memory function of LSTM [7], LSTM
network units are introduced into the VAE network to replace traditional neural units in
the inference network and generation network. The time dependence and correlation of
input data can be learned, which is helpful to extract appropriate features in the hidden
layer and reconstruct the input sequence. In this paper, BiLSTM [17] is used as the encoder
and decoder of VAE. Compared with LSTM, the advantage of BiLSTM is not only to
consider the past KPI data, but also to consider the future KPI data. Figure 3 shows the
network structure of BiLSTM-VAE.
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Figure 3. BiLSTM-VAE network structure.

Firstly, time series were divided into sub-sequences corresponding to input variables
by the sliding window with a certain step size. Each input sample of the encoder was a
vector of a specific size, expressed as x = {x1, x2, x3, · · ·, xt}. Then, the encoder encoded
input variables into latent variables through the inference network. It was assumed that
the true posterior of latent variables z obeys the standard Gaussian distribution (standard
normal distribution), i.e., p

θ
(z) = N(0, I). According to the description of reference [2], the

standard normal distribution can simulate any distribution through a sufficiently complex
function. It can be proved by the inverse transformation sampling theorem. F(x) is a
cumulative distribution function; U is a standard normal distribution variable between 0
and 1; and F−1(U) is a sample of the target distribution. Then, the following formula can
be obtained:

P(F−1(U) ≤ x)

= P(U ≤ F(x))

= F(x)

, (6)

In short, we can use a normal distribution to obtain a complex distribution through
the D(z) function of the decoder to output x̃. In this way, x̃ and x have the same probability
distribution and content. Therefore, this assumption was reasonable. Specifically, given a
real sample xt, we assumed that there is a distribution p

θ
(z | xt) exclusively belonging to

xt, and further assumed that this distribution is (independent and multivariate) normal
distribution. If p

θ
(z | xt) belongs exclusively to xt, it is reasonable to say that z sampled

from this distribution should be restored to xt. Since the distributions assumed above are
normal distributions, it was necessary to obtain the corresponding variance and mean.
Then, a zt was sampled from this exclusive distribution and x̃ was obtained through a
decoder x̃t = D(zt).

The approximate posterior distribution q
ϕ
(z | x) also obeys the Gaussian distribution

N(μ, σI), where μ and σ are the mean and variance of the Gaussian distribution. It is not
difficult to see that the function of the encoder is to generate the mean μ and variance σ
through two networks. The encoder was parameterized through BiLSTM with an activation
function to generate hidden state sequences in both directions, forward → and backward
←. The final encoder hidden states of both passes were concatenated with each other to
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produce the vector ht = [
→
h t,

←
h t]. μ and σ were derived from the final encoder hidden state

ht using two fully connected layers with linear and Softplus activations, respectively.
Latent variables were obtained by reparameterization, that is, z = μ + σ ' ε. Among

them, ε ∼ N(0, I) is an auxiliary noise variable, and ' represents the product at the element
level. Evidently, noise will increase the difficulty of reconstruction. Resampling essentially
adds “Gaussian noise” to the encoder result (the mean value), so that the decoder result can
be robust to noise. Another encoder result (the variance) was used to dynamically adjust
the intensity of noise. Intuitively, when the decoder is not well trained, it will appropriately
reduce the noise to make the fitting easier (the reconstruction error becomes smaller). On
the contrary, if the decoder is well trained, the noise will increase, making the fitting more
difficult (the reconstruction error becomes larger).

Finally, the decoder decoded latent variables back to the original data space through
the generation network p

θ
(x | z), so as to obtain reconstructed data samples.

In VAE, the parameters of the network were optimized by maximizing the lower
bound of evidence ELBOvae, as shown in Formula (7):

ELBOvae = Eqϕ (z|x)[log p
θ
(x | z)]− DKL(qϕ

(z | x) | p
θ
(z)), (7)

where the first term represents the reconstruction term, and Eqϕ (Z|X) is the logarithmic

likelihood estimate of the posterior probability of x. The second term represents the
regularization term, which measures the gap between approximate posterior q

ϕ
(z | x)

and true posterior p
θ
(z) by KL divergence. The goal of optimization is to maximize

the likelihood function of generated data and minimize the KL divergence between the
approximate posterior distribution and the true posterior distribution. In short, on the one
hand, the output was fitted to the input as much as possible. On the other hand, the noise
was appropriately increased through the KL divergence to prevent over-fitting.

3.3.2. Batch Normalization Prevents the Disappearance of KL Divergence

When VAE is used with a powerful autoregressive decoder (LSTM), KL divergence
often disappears. This is generally believed due to the strong autoregression of the decoder,
that is, the generated network p

θ
(x | z) is too strong. This will cause the model to abandon

the use of the approximate posterior of encoder and directly use the latent variables of the
model. At the same time, the KL divergence term will quickly decrease to 0, that is, prior
and approximate posterior are equal. In addition, the reparameter operation will introduce
noise during training. When it has high noise, latent variables are difficult to be used, so
the VAE ignores latent variables and carries out the reconstruction independently. When
the KL divergence is 0, the encoder outputs a constant vector. The use of VAE usually
focuses on its ability to construct coding vectors unsupervised. Therefore, the problem of
the KL divergence disappearance must be solved when applying VAE.

Based on the batch normalized-VAE (BN-VAE) method proposed in reference [18], this
paper solves the problem of KL disappearance. This method has good results in language
modeling, text classification, and dialog generation. This paper applies it to the field of
anomaly detection for the first time. The core idea of BN-VAE is to apply BN to the mean
vector output by the encoder, so as to ensure that the expected lower limit of KL divergence
distribution is positive, as shown in Figure 4.
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Figure 4. Adding BN to VAE prevents the disappearance of the KL divergence.

In order to explain how BN was associated with KL divergence, the KL divergence
term formula is given first:

KL =
1
2

d

∑
i=1

μ2
i + σ2

i − log σ2
i − 1, (8)

In the above formula, d is the dimension of latent variables. μi and σi are the mean
and standard deviation of posterior distribution of the i-th dimension of latent variables,
respectively. In the actual calculation, we often used batch training, so the above formula
was further calculated during the training process:

KL =
1
2b

b
∑

j=1

d
∑

i=1
(μ2

i,j + σ2
i,j − log σ2

i,j − 1)

=
1
2

d
∑

i=1
(

∑b
j=1 μ2

i,j
b +

∑b
j=1 σ2

i,j
b − ∑b

j=1 log σ2
i,j

b − 1)

, (9)

In the above formula, b is the size of batch. When b is large enough, the KL term
will approximate the average value of KL of the whole data set. Thus, we limited the
distribution of KL in the data set by limiting the distribution of mean and variance. In this
way, KL was equivalent to the distribution of posterior distribution parameters of latent
variables. Therefore, the above formula can be expressed as follows:

E[KL] =
1
2

d
∑

i=1
(Var[μi] + E2[μi] + E2[σ2

i ]− E[log σ2
i ]− 1)

≥ 1
2

d
∑

i=1
(Var[μi] + E2[μi])

, (10)

In the above formula, E2[σ2
i ]− E[log σ2

i ]− 1 ≥ 0 can be derived from ex ≥ x + 1, so
the inequality holds. Through this transformation, it is not difficult to realize that batch
normalization can be used to constrain the distribution of mean. The mean value in the
posterior distribution was performed as follows:

μ̂i = γ
μi − μBi

σBi
+ β, (11)

In the above formula, μ̂i is the mean value of μi transformed by the BN layer. μBi
and σBi represent the mean and standard deviation of μi. β and γ are parameters in
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batch normalization, which can control the variance and mean value of μi distribution,
respectively. Finally, Formula (12) was obtained by replacing μi in KL formula:

E[KL] ≥ 1
2

d
∑

i=1
(Var[μi] + E2[μi])

=
d
2
(γ2 + β2)

, (12)

Therefore, as long as β and γ are well controlled (mainly γ is fixed to a certain constant),
the KL divergence term can have a positive lower bound. In this way, KL divergence and
BN were cleverly linked to avoid the disappearance of KL divergence.

3.3.3. EWMA Smoothing Reconstruction Errors

The difference sequence d = | x̃ − x | can be obtained by comparing reconstructed KPI
sequence with the original sequence. However, the original difference sequence represents
an instantaneous measure of the predictability of the current input. Nevertheless, in many
practical applications, the underlying system is inherently unpredictable. In this case,
predictable change usually means meaningless behavior. This is seen, for example, in
the latency of HTTP requests for websites. Although the latency is usually low, it is not
uncommon for random jumps to reach the peak corresponding to anomaly scores. In
fact, abnormal observations usually occur continuously, and it is acceptable to trigger an
alarm in a short time. Setting thresholds directly on original difference sequences will lead
to many false positives. Therefore, this paper uses EWMA [19] to smooth the difference
sequence to suppress the frequently occurring error peaks. System behavior is usually not
perfectly predictable, and normal behavior can also cause sharp peaks in error values [38].
At time k, the smoothed sequence ek was obtained according to the original difference
sequence dk. The calculation process is shown in Formula (13):

ek = αdk + (1 − α)ek−1, (13)

In the above formula, α(0 < α < 1) is the weight coefficient of EWMA for the historical
measurement value. The closer its value is to 1, the lower weight for the past measurement
value. α determines the ability of EWMA to track sudden changes in actual data, namely
timeliness. With the increase in α, the timeliness of EWMA is stronger; otherwise, it is
weaker. EWMA also shows a certain ability to absorb instantaneous bursts. By controlling
α, short-term fluctuations are eliminated and long-term development trends are retained,
providing a smooth form of sequences.

3.4. Anomaly Detection Module Based on SVDD

SVDD [20] is an algorithm that can describe the target data in a hypersphere, which
can contain as many data points as possible. It can be described as: if only one class can be
judged, then the smallest hypersphere needs to be found through SVDD to include all the
data of this class. When the hypersphere is used to identify new data, if the data fall within
the hypersphere, the data are considered to belong to this class. Otherwise, the data do not
belong to this class.

When training the SVDD classifier, this paper inputs the reconstruction error of
normal data into the SVDD for training to determine the threshold. In the test phase, the
reconstruction error of abnormal data was greater than that of normal data, so it exceeded
the threshold to realize anomaly detection. However, different KPI curves correspond to
different reconstruction error curves. If a fixed threshold is set based on human experience,
a large number of false positives and false negatives will be caused. Therefore, this paper
inputs the reconstruction error into SVDD for training to determine the threshold, which
can adaptively set different thresholds for different KPIs.

The goal of the SVDD is to find support vectors and use them to construct a minimal
closed hypersphere that contains all or most of the target training samples. In this paper,
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target training samples are the smoothed reconstruction error of normal KPI, expressed as
e = {e1, e2, et, · · ·, en}, where n is the number of samples. The sample was distributed in a
ball with center a and radius R, i.e., ‖et − a‖2 ≤ R2. By introducing the slack variable ξt,
it was allowed that some samples were no longer in the ball, that is, ‖et − a‖2 ≤ R2 + ξt.
The training objective was to minimize the value of radius R and slack variable ξt, so the
objective function was expressed as Formula (14):

minF(R, a, ξt) = R2 + C
n
∑

t=1
ξt

s.t.

{
‖et − a‖2 ≤ R2 + ξt, (t = 1, 2, · · ·, n)

ξt ≥ 0

}
,

(14)

Among them, ξt is the slack variable, which is used to measure a small amount of
abnormal data outside the hypersphere. C is the penalty coefficient used to control the
volume of the hypersphere, and its value ranges from 0 to 1. The slack variable ξt prevented
the model from being “destroyed” by individual extreme data points. In short, if most data
points are in a small area and only a few abnormal data are far away from them, the model
prefers to regard those few data points as anomalies. To avoid the model making excessive
sacrifices to cater to few data points, the model tolerated some data points that did not
meet the rigid constraints and gave them some elasticity. C adjusted the influence of the
slack variable. Generally speaking, the slack space is given to those data points that need
slack. If C is large, the loss caused by the slack variable in the loss function is large. Then,
the slack variable will be reduced during training. In this way, the model does not tolerate
those outliers and just wants to include them. On the contrary, if C is small, the model will
give outliers greater elasticity, so that they can not be included.

In order to make the training process easier to understand, the hypersphere was
visualized in two-dimensional and three-dimensional space respectively, as shown in
Figures 5 and 6. The hypersphere corresponds to a curve in two-dimensional space and a
sphere in three-dimensional space. Under normal circumstances, the data will not show
spherical distribution, so the Gaussian kernel function method was used to improve the
expression ability of model. Figures 5a and 6a show the contour distance visualization of hy-
persphere in two-dimensional and three-dimensional space, respectively. Figures 5b and 6b
show the decision boundary visualization of hypersphere in two-dimensional and three-
dimensional space, respectively.

(a)  (b)  

Figure 5. Visualization of the hypersphere in two-dimensional space: (a) Contour of distance; and
(b) Decision boundary.
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(a) (b) 

Figure 6. Visualization of the hypersphere in three-dimensional space: (a) Contour of distance; and
(b) Decision boundary.

The optimization problem was solved by the Lagrange multiplier method, and the
following Lagrange function was obtained:

L(R, a, ξt) = R2 + C
n

∑
t=1

ξt −
n

∑
t=1

λt

[
R2 + ξt − ‖et − a‖2

]
−

n

∑
t=1

βtξt, (15)

where λt and βt are Lagrange multipliers. The distance from et to a is recorded as g(et),
and the calculation formula is as follows:

g(et) = ‖et − a‖ =

√√√√(et, et)− 2
n

∑
i=1

λi(ei, et) +
n

∑
i=1

n

∑
j=1

λiλj(ei, ej), (16)

The calculation formula of radius R is as follows:

R =

√√√√(es, es)− 2
n

∑
i=1

λi(ei, es) +
n

∑
i=1

n

∑
j=1

λiλj(ei, ej), (17)

Among them, es is a support vector on the sphere of the hypersphere. ei and ej are
any two samples input to the SVDD. In addition, in order to make the samples linearly
separable in the feature space, it was necessary to map samples from the original space to
the high-dimensional feature space by using a kernel function. In this paper, a Gaussian
kernel function is used to map samples from original space to appropriate feature space.
The expression of Gaussian kernel function is:

KGauss(ei, ej) = exp(−‖ei − ej‖2/s2), (18)

where s is the Gaussian kernel parameter.
In the anomaly detection stage, g(etest) > R indicates that the distance from etest to a is

greater than R, then xtest is the abnormal KPI data. g(etest) ≤ R indicates that the distance
from etest to a is less than or equal to R, then xtest is the normal KPI data. The process of
anomaly detection is shown in Figure 7.
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Figure 7. Anomaly detection based on SVDD.

4. Experimental Procedure

The experimental environment of this paper was Windows 10 (64-bit) operating
system. The hardware configuration was Intel (R) Core (TM) i7-8700CPU@3.20 GHz
16 G RBM and 237 G solid state drive. The development language was python3.6, the
development framework was Keras, and the back-end engine was TensorFlow.

4.1. Dataset

The KPI dataset used in this paper was published by the AIOps challenge competition (http:
//iops.ai/competition_detail/?competition_id=5&flag=1 (accessed on 10 September 2021)),
which provides the KPI desensitization time series with anomaly labels. The data were
collected from the real operation and maintenance environment of top Internet companies,
such as Sogou, Tencent, eBay, Baidu, and Alibaba, and the sampling interval was 1 min.
We randomly selected two KPIs to verify the proposed method in this paper. As shown in
Table 1, the ratio of normal samples to abnormal samples in the data set was obviously very
uneven, and abnormal samples account for less than 10% of the total number of samples.
Figure 8 shows the visualization effect of two KPIs. It can be observed that KPIs showed a
certain degree of periodicity and trend.

Table 1. Dataset details.

Dataset KPI 1 KPI 2

Total points 128,562 129,035
Anomaly points 10,550/8.21% 7666/5.94%
Missing points 3233/0.02% 2755/0.02%

Duration 91 days 91 days
Sample Frequency 1412.77 1417.97
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Figure 8. Two KPIs from real production environments.

4.2. Evaluation Metrics

In the anomaly detection module, this paper determines the threshold through SVDD.
When the reconstruction error was greater than the threshold, the point was judged as
an anomaly. Operation and maintenance personnel usually only care about whether
the anomaly detection algorithm can detect a continuous anomaly interval, rather than
detecting each anomaly point in the anomaly interval. Therefore, the evaluation of this
paper adopts the strategy described in the literature [5]. If the anomaly detection algorithm
made a judgment fast enough (before the maximum allowable delay) after the beginning
of anomalies, it was considered to have successfully detected the whole anomaly segment.
The alarm delay was the time difference between first anomaly point and first detection
point in the anomaly segment. If the anomaly detection algorithm did not issue any alarm
before the maximum allowable delay, even if the anomaly detection algorithm detected
the anomaly, we considered that the algorithm failed to successfully detect the anomaly
segment. Figure 9 shows the anomaly detection results with an alarm delay of 1 min (1 grid).
The first line represents the real labeled data, including 10 consecutive time points and
2 anomaly intervals. The second line represents the output results of the anomaly detection
method. The third line represents the anomaly detection results corrected according to
the alarm delay. For the first anomaly interval, if the anomaly detection method found an
anomaly within the longest delay alarm, it was considered that the whole anomaly interval
was successfully detected. For the second anomaly interval, it was considered that the
anomaly interval was not successfully detected, because the detection result exceeded the
alarm delay.

00 00 11 11 11 00 00 11 11 11

11 00 00 11 11 11 00 00 00 11

11 00 11 11 11 11 00 00 00 00

ground truth

point-wise result

adjusted result

Figure 9. Description of anomaly detection policies.
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Therefore, the anomaly detection of time series can be regarded as a classification
problem. In this paper, Precision, Recall, and F1-score are used to evaluate the performance
of detection. Precision represents the proportion of correct prediction being positive in
relation to the total prediction being positive. Recall represents the proportion of correct
prediction being positive in relation to the total actual being positive. F1-score is the
weighted harmonic average of Precision and Recall. The calculation formula is as follows:

Precision =
TP

TP + FP
, (19)

Recall =
TP

TP + FN
, (20)

F1-score =
2 × Precision × Recall

Precision + Recall
, (21)

where TP is the number of anomaly points correctly detected; FP is the number of normal
points incorrectly identified as anomaly points; and FN is the number of anomaly points
incorrectly identified as normal points.

4.3. Experimental Parameter Setting

In the experiment, each KPI time series was divided into training set and test set
by 8:2. After the many repeated experiments that were conducted in the context of this
paper, the final hyperparameters are shown in Table 2 on the premise of balancing the
time-consuming and detection effect.

Table 2. Main hyperparameter settings.

Hyperparameter Name Hyperparameter Value

Batch size 256
Number of iterations 100

Optimizer Adam
Learning rate 0.0005

LSTM unit size 128
Latent variable dimension 10

Sliding window length 12
Alarm delay 7

Penalty coefficient of SVDD 0.25
Gaussian kernel parameter of SVDD 9

In the process of adjusting the parameters, we found that the sliding window length
W and latent variable dimension K had a great influence on the results of the anomaly
detection. Too short sliding windows could not obtain the relationship between adjacent
points. Too long sliding windows relied too much on historical information and lacked
sensitivity to current values. Latent variables represent all the important information
needed to contain the original data point. The representation ability of potential space
varies with the dimension of latent variables. Therefore, this paper tests the best F1-score
of algorithm under different sliding window lengths and latent variable dimensions, as
shown in Figure 10. It can be seen that, when the sliding window length W = 12 and latent
variable dimension K = 10, the F1-score reaches the optimal value. In addition, when SVDD
determined the threshold, the selection of the penalty coefficient and kernel parameters
also had an important impact on the effect of anomaly detection. In this paper, the accuracy
of anomaly detection is used as the fitness function, and the penalty coefficient C = 0.25
and the Gaussian kernel parameter s = 9 are obtained by the particle swarm optimization
algorithm [39].
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(a) (b) 

Figure 10. The best F1-score under different sliding window lengths and latent variable dimensions: (a) Different sliding
window lengths; and (b) Different latent variable dimensions.

4.4. Experimental Results of Anomaly Detection

In this paper, normal data are used to train BiLSTM-VAE model and the distribution of
normal data is learned. During the test phase, the model did not reconstruct the anomalous
data well, because of the different distributions of the anomalous data from the normal
data. To visually observe this, we plotted the reconstruction effect of two KPIs on a partial
test set. As shown in Figure 11, normal samples of two KPIs can be reconstructed well,
while abnormal samples cannot be reconstructed well, resulting in higher reconstruction
errors. Figure 12 shows original the reconstruction errors of two KPIs. It can be seen that
reconstruction errors of normal points are closer to 0, while abnormal points will lead to
the error peak. However, setting a fixed threshold directly on the original reconstruction
error threshold will not only lead to a large number of false positives and false negatives,
but also to the need to adjust the threshold manually. In addition, it is unrealistic to set a
unified threshold for different KPIs, which may lead to poor adaptability. Therefore, this
paper uses EWMA to smooth the reconstruction error and SVDD to adaptively determine
the threshold. Figure 13 shows smoothed reconstruction errors of two KPIs, and the red
dotted line is the threshold determined by SVDD. It can be seen from the figure that the
threshold of KPI 1 is 0.04, and the threshold of KPI 2 is 0.018. The errors of normal points are
lower than the threshold, and the errors of abnormal points are higher than the threshold.
In summary, the method in this paper can accurately detect anomalies and adaptively
determine the optimal threshold for each KPI.

 
(a) (b) 

Figure 11. The reconstruction effect of two KPIs: (a) KPI 1; and (b) KPI 2.
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(a) (b) 

Figure 12. Original reconstruction errors of two KPIs: (a) KPI 1; and (b) KPI 2.

  
(a) (b) 

Figure 13. Smoothed reconstruction errors of two KPIs: (a) KPI 1; and (b) KPI 2.

4.5. Comparative Experiment and Analysis

In order to verify the effectiveness of this method, we selected three methods as
baseline to test the detection effect of each method on the KPI data set. These methods
included the VAE-based anomaly detection method Donut [5] and LSTM-VAE [8]. In fact,
VAE was part of our approach. In order to make a fair comparison, the hyperparameters
of Donut and LSTM-VAE were the same as the method in this paper. In addition, we also
compared the supervised learning method Opprentice [26] as the most competitive method
of non-deep learning:

• Opprentice [26] is an ensemble supervised algorithm that uses random forest clas-
sifiers. Its principal concept is to use more than ten different types of detectors to
extract hundreds of abnormal features. Then, using the manually labeled data and
anomaly features, the anomaly detection problem can be transformed into a super-
vised classification problem in machine learning. The extracted features are used as
the input of machine learning algorithm. The points on the KPI curve are divided into
normal points and abnormal points through a classification algorithm, so as to realize
anomaly detection.

• Donut [5] is an unsupervised anomaly detection algorithm based on VAE. Through
the improved variational lower bound and Markov chain Monte Carlo interpolation
technology, the algorithm can be used without labels. Donut applies a sliding window
on the KPI to obtain the sub-sequence, and tries to identify the normal pattern. Then,
anomalies are determined by reconstruction probability. In fact, it selects a threshold
for each KPI.

• LSTM-VAE [8] combines LSTM and VAE to make it more suitable for time series
modeling. Specifically, it replaces the feedforward neural network in VAE with
LSTM. LSTM-VAE fuses sequences and reconstructs their expected distribution by
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introducing a schedule based variational a priori. In the anomaly detection phase, it
uses an anomaly score based on reconstruction probability and a state-based threshold.

Table 3 shows the best Precision, Recall, and F1-score of various anomaly detection
methods on two KPIs. Opprentice based on machine learning performed worse than VAE
based on deep learning, and it needed labels for training, which was difficult to achieve in
the actual scene. Donut made a series of improvements based on VAE so that it can train
without labels. Since Donut treats time series as sliding windows and does not process
time information, Donut’s performance was poor when anomaly detection relies on time
information. LSTM-VAE can extract the time correlation of sequence better than Donut,
so a better detection effect was obtained. The method in this paper is VAE-SVDD—VAE
uses BiLSTM as encoder and decoder; batch normalization avoids the disappearance of the
KL divergence; EWMA smooths the original reconstruction error; and SVDD adaptively
determines the threshold. Through the above improvements, VAE-SVDD had higher
Precision, Recall, and F1-score compared to other baseline methods.

Table 3. Experimental results of various anomaly detection methods.

Method
KPI 1 KPI 2

Precision Recall F1-Score Precision Recall F1-Score

Opprentice 0.72 0.66 0.69 0.78 0.70 0.74
Donut 0.83 0.76 0.79 0.86 0.83 0.84

LSTM-VAE 0.91 0.84 0.87 0.90 0.85 0.87
VAE-SVDD 0.95 0.96 0.95 0.97 0.96 0.96

VAE-SVDD uses VAE to reconstruct KPI data and uses SVDD to train the recon-
struction error again. It is necessary to compare the complexity of VAE-SVDD with other
detection methods. This paper records the anomaly detection time of various anomaly
detection methods. Table 4 shows the average duration of 5 anomaly detections performed
by each method on the test set (containing 26,358 data). The Opprentice method is based on
a random forest, and it can improve efficiency through parallelization, so the detection time
is short. Donut based on VAE is more complex than the Opprentice method, resulting in
slightly longer detection time. LSTM-VAE integrates LSTM and VAE, which evidently leads
to a longer detection time. In VAE-SVDD, the encoder and decoder of VAE were designed
as BiLSTM, and the threshold was determined by SVDD. However, these optimization
mechanisms also increased the detection time. Although the detection time of VAE-SVDD
was slightly longer than other methods, the detection was more accurate. Therefore, it is
still acceptable in the actual situation.

Table 4. Average detection time.

Evaluation Index Opprentice Donut LSTM-VAE VAE-SVDD

Detection time (s) 34.5 46.3 53.8 65.2

4.6. Effects of Different Components
4.6.1. Time Correlation

In this paper, BiLSTM network is used as the encoder and decoder of VAE, which can
better capture the time correlation of sequence data. We compared the distribution of latent
variables between VAE and BiLSTM-VAE to prove that time correlation has a positive
effect. In order to verify this time correlation, part of the test set containing anomalies was
selected. At the same time, the hours of timestamp were extracted as labels, that is, there
were 24 types of labels.

In order to facilitate visualization, we used a principal component analysis (PCA) [40]
and t-distributed Stochastic Neighbor Embedding (t-SNE) [41] to reduce the dimension of
latent variables to 2. Latent variables can be regarded as the characteristic representation of
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data. PCA replaces original 10 features with a smaller number of 2 features. New features
are the linear combination of old features. These linear combinations maximize the sample
variance and try to make new features irrelevant to each other. The mapping from old
features to new features captures the inherent variability in the data. In addition, it has
the advantage of being quick and easy to implement. However, the nonlinear correlation
between samples may be lost after linear dimension reduction using PCA. In contrast,
t-SNE is a nonlinear dimension reduction method. It converts the similarity of data points
into joint probability and optimizes the KL error between low-dimensional data and high-
dimensional data. t-SNE dimension reduction can not only maintain the difference of data,
but also maintain the local structure of data. However, the results of t-SNE have a certain
degree of randomness, rather than the consistency of PCA results. Therefore, we combined
the two methods to visualize latent variables after dimension reduction. It can be more
reasonable to prove that our method better captures the potential pattern of data, that is,
time correlation.

Figure 14 shows the two-dimensional visualization effect of VAE latent variables on
KPI 1. Figure 15 shows the two-dimensional visualization effect of BilSTM-VAE latent
variables on KPI 1. Figure 16 shows the two-dimensional visualization effect of VAE
latent variables on KPI 2. Figure 17 shows the two-dimensional visualization effect of
BilSTM-VAE latent variables on KPI 2. All subgraphs (a) are the visualization effect of the
PCA on latent variables after dimension reduction. All subgraphs (b) are the visualization
effect of t-SNE on latent variables after dimension reduction. Evidently, the latent variables
distribution of BiLSTM-VAE is more regular than VAE. It was proved that BiLSTM-VAE
captures the time correlation of sequences better than VAE. It can be observed from the
figure that the latent variables of the time-aligned sequence are roughly in the same area,
and the anomaly moment will show a large deviation (such as 8 o’clock). The literature [5]
explains this effect for the first time, which is called time gradient.

(a) (b) 

Figure 14. Two-dimensional visualization of the VAE latent variables for KPI 1: (a) PCA on z; and (b) t-SNE on z.
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(a) (b) 

Figure 15. Two-dimensional visualization of the BiLSTM-VAE latent variables for KPI 1: (a) PCA on z; and (b) t-SNE on z.

(a) (b) 

Figure 16. Two-dimensional visualization of the VAE latent variables for KPI 2: (a) PCA on z; and (b) t-SNE on z.

(a) (b) 

Figure 17. Two-dimensional visualization of the BiLSTM-VAE latent variables for KPI 2: (a) PCA on z; and (b) t-SNE on z.

4.6.2. Batch Normalization

We used batch normalization to prevent the disappearance of the KL divergence during
model training. In order to highlight the effect of batch normalization, we visualized the
loss and accuracy of the model during training. As shown in Figure 18a, the accuracy of
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the model with BN (97%) is significantly higher than that of the model without BN (87%).
From the perspective of training speed, the model with BN is already very close to the final
convergence at the 22nd iteration. The model without BN is close to the final convergence
at the 42nd time, indicating that the model with BN is faster. As shown in Figure 18b, the
model with BN is lower than the model without BN, regardless of the loss of training set or
test set. In conclusion, BN can accelerate the training speed of the model and even play a
positive role in improving accuracy and reducing loss.

 
(a) (b) 

Figure 18. Comparative effects of batch normalization are introduced during training: (a) Model accuracy; and
(b) Model loss.

4.6.3. EWMA Smoothing

We used EWMA to smooth the error sequence, which reduces false positives and false
negatives during the detection process. To prove that the smoothing operation can improve
the effectiveness of anomaly detection, we compared the detection effects of no smoothing
and EWMA smoothing on two KPIs, as shown in Table 5. As can be seen from the table,
Precision, Recall, and F1-score all improved greatly after EWMA smoothing.

Table 5. EWMA smoothing effect.

Dataset Method Precision Recall F1-Score

KPI 1
No smoothing 0.88 0.85 0.86

EWMA smoothing 0.95 0.96 0.95

KPI 2
No smoothing 0.91 0.88 0.89

EWMA smoothing 0.97 0.96 0.96

4.6.4. Adaptive Threshold

We used SVDD to determine the threshold of anomaly detection, so that different
thresholds can be set adaptively for different KPIs. Figure 19 shows the PRC curve and
ROC curve of the two threshold methods, proving that the adaptive threshold has a better
effect than the fixed threshold. The larger the area under the curve is, the better the model
effect is. Compared with the traditional fixed threshold, the adaptive threshold not only
has a higher precision rate and recall rate, but also produces a higher true positive rate
(TPR) under the same false positive rate (FPR).
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(a) (b) 

Figure 19. Comparison of the adaptive threshold and fixed threshold: (a) PRC; and (b) ROC.

5. Conclusions

In this paper, a novel KPI anomaly detection method is proposed by combining
VAE and SVDD. In this method, firstly, the encoder and decoder of VAE were designed as
BiLSTM to capture the time dependence of data. Then, batch normalization was used on the
output of the encoder to prevent the KL divergence from disappearing. In addition, EWMA
was used to smooth reconstruction errors to eliminate accidental error peaks. Finally,
smoothed reconstruction error sequences were put into the SVDD for training to determine
the threshold of anomaly detection adaptively. In the experiment, the appropriate sliding
window length and latent variable dimension were selected. The visualization effect
of latent variables showed that time-aligned sequences are in the same region of latent
variables space, and the model can better capture the time correlation of sequences. Batch
normalization can speed up training and reduce loss. The reconstruction error after
smoothing can reduce false positives and false negatives in the detection to some extent.
Compared with the fixed threshold, the adaptive threshold has more flexibility and a better
effect. The comparison result with current advanced baseline methods shows that the
method in this paper has a better detection effect. Moreover, although the method in this
paper is applied to KPI’s univariate time series, it is also applicable to multivariate time
series. The adaptive threshold can be applied not only to reconstruction errors, but also
effectively to prediction errors.

In the future, we will continue our work focusing on the following two aspects:

(1) The linear interpolation method is too simple. When there are many missing values,
some errors may be caused. Next, we will explore interpolation methods that can
handle both linear and nonlinear data, such as modeling interpolation.

(2) The duration of anomaly detection is important. Next, we can improve the VAE-SVDD
model structure and adjust parameters to obtain better performance.
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Abstract: This paper combines the use of two tools: Failure Mode and Effect Analysis (FMEA) and
Fuzzy Logic (FL), to evaluate the functionality of a quantifier prototype of Methane gas (CH4) and
Carbon Dioxide (CO2), developed specifically to measure the emissions generated by cattle. Unlike
previously reported models for the same purpose, this device reduces damage to the integrity of the
animal and does not interfere with the activities of livestock in their development medium. FMEA
and FL are used to validate the device’s functionality, which involves identifying possible failure
modes that represent a more significant impact on the operation and prevent the prototype from
fulfilling the function for which it was created. As a result, this document presents the development
of an intelligent fuzzy system type Mamdani, supported in the Fuzzy Inference System Toolbox of
MatLabR2018b®, for generating a risk priority index. A Fuzzy FMEA model was obtained to validate
the prototype for measuring Methane and Carbon Dioxide emissions, which allows considering
this prototype as a reliable alternative for the reliable measurement of these gases. This study was
necessary as a complementary part in the validation of the design of the prototype quantifier of CH4

and CO2 emissions. The methods used (classic FMEA and Fuzzy FMEA) to evaluate the RPN show
asymmetric graphs due to data disparity. Values in the classical method are mostly lower than the
Mamdani model results due to the description of the criteria with which it is evaluated.

Keywords: FMEA; Fuzzy Logic; greenhouse gases

1. Introduction

There are methodologies applied to security and reliability engineering, which include
fuzzy FMEA, fuzzy Bayesian networks, fuzzy Markov chains, to name a few. When
developing prototypes, it is not always possible to obtain fully reliable data due to the
unavailability of primary observations and the consequent scarcity of data on the failure of
their components [1]. To handle such situations, fuzzy set theory has been used successfully
in approaches to security and reliability evaluation under conditions of uncertainty.

The use of Fuzzy Logic to help decision-making was applied in health in conjunction
with the Failure Mode and Effects Analysis (FMEA) to improve decision-making. This was
achieved by improving the way patients were processed before the study, the assessment,
and treatment assignment; the use of Fuzzy Logic in the application of the FMEA was
considered better than its conventional use [2]. The use of software to manage the risks of
failure in medical equipment was developed around the use of the FMEA; it is described
that the classic use of the FMEA is not enough to achieve an accurate analysis, so, in this
case, additionally the use of the Fuzzy Logic was made to replace how the three main
parameters of the FMEA are evaluated [3]. FMEA has been applied extensively in the
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reliability engineering domain. Risk Priority Number (RPN), which is the product of
Occurrence (O), Severity (S), and Detection (D) of a failure, is the most important measure
used in FMEA for prioritizing risk, and they integrate fuzzy belief structure and grey
relational projection method (GRPM) to avoid the use of traditional RPN [4].

According to work “An extension to fuzzy developed failure mode and effect analysis
FDFMEA application for aircraft landing system,” the use of FMEA methodology and Fuzzy
Logic was implemented for the evaluation of commercial aircraft in Iran, as described in this
work; the main focus of the study was the analysis of the components of the landing systems
since a large number of failures were recorded annually, in addition to the results of the
Fuzzy Logic model also evaluated by the conventional method to offer a comparison of the
results, the defuzzification method applied to the Fuzzy Logic model was Center of Gravity
and for the construction of the model five participating experts to describe according to
their knowledge the elements of evaluation of Severity, Occurrence, and Detection, and
with the results, it was possible to establish measures and prioritize failures [5].

In the analysis of a lathe-type polishing machine, the fuzzy approach with the FMEA
was also used, in this case, to improve reliability, because one of the most important parts
of the entire polishing system presented a series of failures, and it was considered to
individually evaluate the components of this part of the machine. As in other works, a
model of Fuzzy Logic was used, and some of the important data that are mentioned in work
around the use of the FMEA are that conventional use considers the evaluation of RPN
almost equally in the evaluation criteria of Severity, Occurrence, and Detection; since these
are pre-established, the assessment of the RPN is inadequate, instead they consider that
each criterion should be based around the context of this problem with different weights
and that these should also be established at the discretion of the experts in the field, so the
use of Fuzzy Logic was chosen to improve this part of the methodology [6].

Greenhouse Gas (GHG) emissions are an important factor contributing to current
climate change; it is said that of the sources that contribute to the increase in emissions due
to livestock activities [7], the breeding of cattle is pointed out as one of the activities of this
sector that contributes the most in emissions, although in the absence of reliable monitoring
methods there is imprecision in terms of the data reported worldwide, and due to this
different works have been done to quantify the emissions of livestock, through the creation
of measurement devices to determine more precisely to what extent livestock influences
emissions; however, according to this work reporting on this type of device, these have not
been suitable for: the comfort and integrity of the animal and neither to measure in the
natural conditions where cattle usually develop.

A device capable of belching CO2 and CH4 gas emissions from cattle was developed
since, at the time in Mexico, there were no reports about the development of this type of
device, and due to the cattle ranching activity present in several of the states, one of them
was the state of Veracruz. The only countries that documented the development of this
type of device were the United States, Colombia, and Argentina [8].

The prototype was statistically analyzed to verify that the proposed design is func-
tional [9]. This device presents an alternative to measure GHG without harming the animal;
however, it is necessary to carry out functionality studies, so an FMEA is used to evaluate
the possibilities of failures, to explain the possible causes and the effects they can represent.

The application of the FMEA in conjunction with the Artificial Intelligence technique
called Fuzzy Logic (FL), is proposed to ensure the correct functioning of the prototype
through a functional evaluation, which implies identifying possible failure modes that
represent a more significant impact on the operation and prevent the prototype from
fulfilling the function for which it was created. The FL, in this case, is used to address
the imprecision of the evaluation criteria of the classic FMEA and adapt them to the
specific problem and facilitate the evaluation process commonly used in this tool. In this
case, the prototype quantifier of gas emissions was put into operation in a group of cows
previously selected to carry out a series of measurement tests; during the realization of
these tests, different failures were observed in the equipment, and possible failure modes
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were considered, creating uncertainty about the correct functioning of the other elements
that make up the device and the possibility that these may fail at a certain time and affect
the measurements.

Due to the behaviors that cattle perform, especially in natural development conditions,
several parts of the device are exposed to situations that represent a certain degree of risk for
the proper functioning of the device, and the possibility of risk to failure in some elements
was unknown before the performance of the tests of the quantifier. During the trials carried
out, they resulted in damage: sensors, connectors, and the support structure that holds the
device to the cow; these failures caused mostly inaccuracy in the measurements as verified
after repairing some of these failures.

This work aims to know and assess the risk of possible failure modes, causes, and
effects of a device that quantifies carbon dioxide (CO2) and methane (CH4) emissions from
cattle; through the use of the Failure Mode and Effect Analysis (FMEA) and Fuzzy Logic
(LD) methodology.

Currently, the application of the FMEA methodology has been extended in different
areas and adapted to specific needs. However, it is generally recognized that there are
four types of FMEA: system, design, process, and service [10]. Failure mode and effects
analysis (FMEA) is a typical prevention reliability analysis method that has an inherent
advantage in improving systems and processes. However, traditional FMEA also contains
some deficiencies in rating risks, weighing risk factors, and ranking failure modes [11].

To overcome the inherent drawbacks of the conventional FMEA method and the uncer-
tainty regarding the experts’ evaluation, fuzzy methods, for example, triangular/trapezoidal
and fuzzy sets, have been developed [12].

As mentioned by [2,13], combining the FMEA method with fuzzy theory provides a
more efficient tool than the classic FMEA method in the presence of imprecise information
and uncertainty. Fuzzy Logic could be used to reduce the drawback in assessing and
prioritizing failures of traditional FMEA with more certainty.

Fuzzy Logic is a technique that allows us to represent and manipulate some variables’
imprecise and uncertain nature. However, its use is not limited only to these variables but
also to those that are known and precise to a certain degree; the technique allows us to make
these types of variables coexist mainly in cases of decision making and the development of
intelligent systems, cases where imprecision and uncertainty modeling is necessary and
also the inclusion of known variables for a joint analysis.

In a work related to fuzzy FMEA assessment of hydroelectric earth dam failure modes,
the rule bases for the two stages and the membership functions were obtained through
in-depth interviews with a focus group composed of experts. The fuzzification process
assured more consistency to the RPN calculation, treated the imprecision, and provided
fair management value to prioritize actions and improve monitoring processes [14], which
is the goal of this proposed work.

The use of analysis methods such as classic FMEA to assess the safety and reliability
of a system relies heavily on knowledge of component failure. Any uncertainty that arises
in the probability of component failure will impact the results [1]. On the other hand, the
lack of availability of failure data would introduce uncertainty in the analysis results in this
sense. To reduce this uncertainty, it is proposed to use fuzzy FMEA.

2. Materials and Methods

2.1. Prototype Description

The prototype to be evaluated fulfills the primary function of estimating the emissions
of gases that cattle generate and exhale, specifically those of CO2 and CH4 gas, the main
components in this device are: an emitter and a receiver; in turn, the subcomponents are: a
battery, a support structure that adjusts to the characteristics of the bovine tube, two sensors
that quantify gas emissions, straps that attach the support structure and other components
to the head of the animal and the receiver which is connected to the computer to record the
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information of the measurements. The following image shows the device as well as the
installation in cattle (Figure 1).

Figure 1. Gas emission quantifier for cattle. Source: Retrieved from Autodesk 3ds Max, self-made
content.

Components associated with major failures and representing a negative impact on the
operation of the quantifier were strategically selected (Table 1).

Table 1. Elements selected for the development of the fault study Receiver Sender.

Receiver Sender

Emitter-battery connection Receiver-computer connection
Emitter-sensor connection Receiver DIP

Issuer’s DIP On-screen light trimmer potentiometer
Battery XBee Coordinator Module
Straps

Support structure
Sensors

Sensor holder
XBee Router Module

The proposed framework for dealing with fuzzy FMEA is illustrated in Figure 2. The
framework comprises three main phases, including (1) prototype components under study;
(2) classic FMEA development; (3) determining the NPR through a Mamdani-type Fuzzy
Logic model; (4) fuzzification process; and (5) defuzzification.

 
5. Defuzzification

4. Fuzzification process

3. Determining the NPR by means of a Mamdani-type Fuzzy 
Logic model

2. Classic FMEA development

1. Prototype components under study

Figure 2. The methodology flowchart.
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2.2. Classic FMEA Development

For the development of the FMEA, those components associated with important faults
and that represent a great negative impact on the operation of the quantifier was selected.
For the selection of the necessary elements to carry out the prototype failure risk study,
first, a group of specialists participating in the design of the device was the ones who,
through brainstorming, managed to generate a list of both potential components and
subcomponents for the study, after an analysis based on the relationship of components
and their importance in the operation, it was possible to prioritize the said list, the resulting
elements that will be used for the development of the study are shown below (Table 2).

Table 2. Classic FMEA.

Main
Component

Subcomponent No Failure Mode Causes of Failure Failure Effects

Emitter Battery-emitter line

1 Unplugging
connectors

Line exposed to the outside of the
emitter stuck with objects in the

environment.

Emitter and sensors out of
operation due to lack of electrical

power supply, interruption of
measurements.

2 False in connectors
Non-fixed plug-type connectors,

contact of the line with the animal’s
body or objects in the environment.

Electric current and intermittent
emitter operation, uncalibrated

sensor, discontinuous and incorrect
data sending.

3 Short circuit
Connectors discovered outdoors,

the humidity of the environment, or
animal fluids.

Partial or total damage to internal
components of the emitter and/or

battery.

Emitter Emitter-sensor line

4 Unplugging
connectors

Line exposed to the outside of the
emitter, inadequate line length, line

stuck with objects in the
environment.

Sensors out of operation due to lack
of electrical power supply.

5 False in connectors
Non-fixed plug-type connectors,

contact of the line with the animal’s
body or objects in the environment.

Electric current and intermittent
sensor operation, sensor

uncalibrated, incorrect and
discontinuous measurements.

6 Short circuit Connectors discovered outdoors,
ambient humidity, or animal fluids.

Partial or total damage to the
sensors and/or internal controllers

of the emitter.

Emitter Emitter DIP

7 Inactive electric
current function

Switch exposed to the elements,
deactivated by contact with the
animal’s body or objects in the

environment.

The passage of electric current from
the emitter to each of the sensors is

not allowed; the sensors will not
make measurements.

8 Inactive ground
current function

Switch exposed to the elements,
deactivated by contact with the
animal’s body or objects in the

environment.

Emitter components and sensors are
vulnerable to damage from

electrical surges.

9 Inactive TX radio
frequency function

Switch exposed to the elements,
deactivated by contact with the
animal’s body or objects in the

environment.

The sensors perform measurements,
but the XBee Coordinator module
does not transmit the data to the

receiver for data recording.

Emitter

10 Inactive TX radio
frequency function

Switch exposed to the elements,
deactivated by contact with the
animal’s body or objects in the

environment.

The signal of the measurements is
transmitted from the XBee
Coordinator module, but

communication with the XBee
Router module of the receiver is not

achieved.

11 Fractured switches
Exposed switch location, sudden

movements of the animal, or
improper handling of the operator.

Difficulty manipulating the
functions of the switches in the

emitter.

12 Short circuit Connectors discovered outdoors,
ambient humidity, or animal fluids.

Instability of functions, damage of
emitter components.
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Table 2. Cont.

Main
Component

Subcomponent No Failure Mode Causes of Failure Failure Effects

Emitter Battery

13 Thermal leakage The inadequate protective case
against high or low temperatures.

Poor battery performance,
interruption of measurements,

incomplete measurement periods.

14 Short circuit
Lack of tightness, broken protective
sheath, moisture filtration from the

environment, or animal fluids.

Damage to emitter box components
and/or sensors.

Emitter Straps

15 Loose safety clasps Animal struggle, poor operator fit,
or poorly resistant plastic material.

Instability of the structure at the
animal head or loose structure of the

animal head.

16 Breaking of security
bands

Friction wear, moisture
deterioration, sudden movement of
the animal, or low resistance of the

material.

Instability of the structure at the head
of the animal or loose structure of the

head of the animal.

Emitter Support structure

17 Folded metal arms Flexible material, animal struggle,
or operator mismanagement.

Improper position of the sensor to the
animal’s tube, low sensor

measurement range, unreliable gas
estimates with a high level of

variation.

18 Desoldered arm
joints

Poor welding work, poorly resistant
welding, or overexertion of the

structure.

Instability of the structure at the head
of the animal or loose structure of the

head of the animal.

Emitter Sensors

19 Low measurement
sensitivity

Obstruction of the sensor by food
debris or mucus from the animal,

poor posture, and strong wind
currents.

Unreliable gas estimates with a high
level of variation.

20 Short circuit
The printed circuit of the discovered

sensor, ambient humidity, animal
mucus, or food debris.

Instability of electric current in
sensors, discontinuous measurement
lapses, the partial or total damage to

the sensor.

21
Led measurement
indicator without

operating.

Led desoldering of the printed
circuit, damaged by moisture or

melted by shocks.

Difficulty identifying sensor
malfunction in real-time.

Emitter Sensor holder

22 Bent structure

Slightly rigid structural material,
sudden movements of the animal’s

tube, and/or the wrong fit in the
animal’s tube.

Improper position of the sensor to the
animal’s tube, low sensor

measurement range, unreliable gas
estimates with a high level of

variation.

23 Loose Assembly
Snaps

Sudden movements of the animal’s
trunk and obstruction with objects

in the environment.

Instability of sensors to the animal’s
trunk.

Receiver
XBee Modules

(Router and
Coordinator)

24 Communication
signal loss

Unfavorable topographical
conditions, interference from other
signals, or low range capability of

the modules.

Gas measurement data loss during
signal interruption between XBee

modules.

Receiver Receiver DIP

25 Inactive electric
current function

Operator mishandling or fractured
switch.

The passage of electric current from
the computer is not allowed, difficulty

manipulating the functions of the
switches.

26 Inactive grounding
function

Operator mishandling or fractured
switch.

In case of short circuit damage of the
receiver components, difficulty

manipulating the functions of the
switches.

27 Inactive TX radio
frequency function

Operator mishandling or fractured
switch.

The receiver does not send back the
communication signal to the
transmitter, having difficulty

manipulating the switches’ functions.

28 Inactive TX radio
frequency function

Operator mishandling or fractured
switch.

The receiver does not receive the
signal from the transmitter, difficulty

manipulating the functions of the
switches on the receiver.
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Table 2. Cont.

Main
Component

Subcomponent No Failure Mode Causes of Failure Failure Effects

Receiver
Trimmer LCD

Screen
Potentiometer

29 Incorrect light
regulation

The sweeping regulator, presence of
moisture or internal dirt.

Difficulty manipulating the lighting
intensity on the receiver screen.

Receiver
Receiver-computer

connection 30 Incorrect light
regulation

Error in software drivers, operator
mishandling.

Interruption in the transfer of
information, loss of data in the logger

software.

2.3. NPR through a Mamdani-Type Fuzzy Logic Model3

For the elaboration of the fuzzy FMEA model, the MatLabR2018b® LD toolbox was
used. This toolbox made it possible to define a fuzzy system through dialogs and windows
that facilitated data entry. A set of functions was available to analyze the behavior of
these systems.

In the adaptation of the criteria and the RPN, it is also necessary to provide the
linguistic or categorical values that serve as a reference to use as values that allow the
Mamdani type model to assess rules; it is based on these values that the ranges of values
will be considered representative by the specialists, which in fuzzification is where the
categorical criteria will be modeled with these scales, geometric figures, and the criteria
proposed for evaluation by specialists are those shown in the following table (Table 3).

Table 3. Adequacy of parameters for the assessment of the Risk Priority Number.

Linguistic
Value

Severity
Linguistic

Value
Occurrence

Linguistic
Value

Detection

Very Low

It does not represent
significant affectation; the
operation of the prototype

will be almost normal.

Remote Just once for each
measurement period. Very High

In most tests are
identified, detailed
inspections are not

necessary.

Low

It represents minimal
affectation; the prototype

will work with slight
affectations.

Low
Approximately up to
three times for each

measurement period.
High

They are almost always
detected in tests; no

detailed inspections are
necessary.

Medium

The affectations are
significant; the device will

work, the information
generated will be unreliable.

Regular
Approximately up to

five times per
measurement period.

Medium

Sometimes they are
detected during testing;

basic inspection is
necessary.

High

The affectations are severe;
sometimes, it will not work,
the information generated

will not be reliable.

High
Approximately up to
seven times for each
measurement period.

Low
Hardly detected during

testing, a detailed
inspection is necessary.

Very High
The affectations will not

allow the operation of the
prototype.

Very High
More than seven for
each measurement

period.
Very Low

They are seldom
detected during testing;
inspection with special
methods is necessary.

The Fuzzy Logic model is proposed to evaluate the risk of possible failures in the
prototype; the construction is done around the variables used by the FMEA. The process
for obtaining the risk or RPN is carried out through inference rules based on human
knowledge.

Model Architecture

For this case study, the general architecture of the Pure Type Fuzzy System or Mamdani
was used [15]. Mamdani fuzzy models do not require mathematical models of the system
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to control and are obtained from fuzzy rules or fuzzy conditional statements [16], like
the one presented in this work. The structure of the fuzzy model poses input and output
variables, with the inputs for this model being the evaluation criteria Severity, Occurrence,
and Detection and output being the RPN indicator.

The development of the Mamdani model consists of three important processes [15]:
fuzzification, the introduction of inference rules, and the defuzzification of the outputs.
The following diagram represents the structure of this type of model applied to the case
(Figure 3).

 

Figure 3. General diagram of the Mamdani Type Fuzzy Logic model for evaluating the quantifying
prototype Source: Own elaboration.

2.4. Fuzzification Process

The fuzzification process is carried out for the input and output variables of the model,
these being those of the FMEA: Severity, Occurrence, Detection and the RPN, for each
variable, the geometric figures that best fit the membership function to the type of variable
that is modeled are assigned, the approximate ranges of the variables are also established
and are associated with linguistic values, being those that will represent the fuzzy sets of
the Mamdani model.

The input variables for this model are Severity (W) (Table 4, Figure 4), Occurrence (X),
and Detection (Y). Based on these and from the resulting fuzzy sets, the inference rules that
determine the corresponding output scenarios will be established; these variables in the
model represent the evaluation parameters with which it is sought to analyze the risk or
RPN (Z) of each of the rulings raised in the FMEA.

Table 4. Characteristics of the fuzzy sets of the input variable Severity (W).

Fuzzy Sets Fuzzy Range Geometric Figures Values

Very Low 0–2 [0, 0, 1, 2]
Low 1–4 [1, 2, 3, 4]

Medium 3–6 [3, 4, 5, 6]
High 5–8 [5, 6, 7, 8]

Very High 7–10 [7, 8, 10, 10]
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Figure 4. Fuzzy Sets Severity Variable (Retrieved from MATLAB R2018b, Screenshot of Membership
Function Editor window, self-made content).

Equation (1). Severity Fuzzy Set “Very Low” (W).

μVery Low(Severity) =

⎧⎨⎩1 −
1; W ≤ 1

W−1
2−1 ; 1 < W < 2

0; 2 ≤ W
(1)

Equation (2). Severity Fuzzy Set “Low” (W).

μLow(Severity) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; W ≤ 1

1 − 2−W
2−1 ; 1 < W < 2
1; 2 ≤ W ≤ 3

1 − W−3
4−3 ; 3 < W < 4
0; 4 ≤ W

(2)

Equation (3). Severity Fuzzy Set “Medium” (W).

μMedium(Severity) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; W ≤ 3

1 − 4−W
4−3 ; 3 < W < 4
1; 4 ≤ W ≤ 5

1 − W−5
6−5 ; 5 < W < 6
0; 6 ≤ W

(3)

Equation (4). Severity Fuzzy Set “High” (W).

μHigh(Severity) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0; W ≤ 5

1 − 6−W
6−5 ; 5 < W < 6
1; 6 ≤ W ≤ 7

1 − W−7
8−7 ; 7 < W < 8
0; 8 ≤ W

(4)

Equation (5). Severity Fuzzy Set “Very High” (W).

μVery High(Severidad) =

⎧⎨⎩1 −
0; W ≤ 7

8−W
8−7 ; 7 < W < 8

1; 8 ≤ W
(5)

In this model, the Occurrence was raised in considering the measurement periods,
that is, to establish a reference metric on how often failures may occur in the prototype.
The time in which it was used for the gas measurement studies in the cattle was taken into
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account, which in this case was per week: 5 days of measurement and two days of rest,
and for each day of measurement, two tests were taken so that in a measurement period
the prototype was used on ten occasions, in this context it is that the scale was established
regarding the failures that occurred and from this, it was possible to relate the frequency
to categorical values that qualify the occurrence. As a result, the following fuzzy sets are
proposed with the representative ranges of each geometric figure (Table 5).

Table 5. Characteristics of the fuzzy sets of the input variable Occurrence (X).

Fuzzy Sets Fuzzy Range Geometric Figures Values

Remote 0–2 [0, 0, 1, 2]
Low 1–4 [1, 2, 3, 4]

Regular 3–6 [3, 4, 5, 6]
High 5–8 [5, 6, 7, 8]

Very High 7–10 [7, 8, 10, 10]

The detection variable represents the ease with which the prototype operator can
identify the failure modes during the tests and/or after the tests, the scale established as in
the conventional way reaches up to 10, for this case the sets associated with such a scale are
the following (Table 6).

Table 6. Characteristics of the fuzzy sets of the input variable Detection (Y).

Fuzzy Sets Fuzzy Range Geometric Figures Values

Very High 0–2 [0, 0, 1, 2]
High 1–4 [1, 2, 3, 4]

Medium 3–6 [3, 4, 5, 6]
Low 5–8 [5, 6, 7, 8]

Remote 7–10 [7, 8, 10, 10]

3. Results

3.1. Risk Priority Number

For the RPN output variable, it was considered appropriate to use seven fuzzy sets
associated with linguistic terms and denoting a category that allows evaluating the intensity
of the variable (Table 7), the scale that is used for the sets, as well as that used in the classic
FMEA, is up to 1000, to make a comparison or make symmetry analysis between the results
of the Mamdani model and those of the conventional method (Figure 5).

Table 7. Characteristics of the fuzzy sets of the output variable Risk Priority Number (Z).

Fuzzy Sets Fuzzy Range Geometric Figures Values

Very Low 0–250 [0, 125, 250]
Low 125–375 [125, 250, 375]

Significant 250–500 [250, 375, 500]
Middle

Predominant
375–625
500–750

[375, 500, 625]
[500, 625, 750]

High
Very high

625–875
750–1000

[625, 750, 875]
[750, 875, 1000]
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Figure 5. Fuzzy sets of the Risk Priority Number variable; Source: Retrieved from MATLAB R2018b,
Screenshot of Membership Function Editor window, self-made content.

Equation (6). RPN Fuzzy Set “Very Low” (Z).

μVery Low(RPN) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 0

1 − 125−Z
125−0 ; 0 < Z ≤ 125

1 − Z−125
250−125 ; 125 < Z < 250

0; 250 ≤ Z

(6)

Equation (7). RPN Fuzzy Set “Low” (Z).

μLow(RPN) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 125

1 − 250−Z
250−125 ; 125 < Z ≤ 250

1 − Z−250
375−250 ; 250 < Z < 375

0; 375 ≤ Z

(7)

Equation (8). RPN Fuzzy Set “Significant” (Z).

μSigni f icant(RPN) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 250

1 − 375−Z
375−250 ; 250 < Z ≤ 375

1 − Z−375
250−375 ; 375 < Z < 500

0; 500 ≤ Z

(8)

Equation (9). RPN Fuzzy Set “Middle” (Z).

μMiddle(NPR) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 375

1 − 375−Z
375−250 ; 375 < Z ≤ 500

1 − Z−375
250−375 ; 500 < Z < 625

0; 625 ≤ Z

(9)

Equation (10). RPN Fuzzy Set “Predominant” (Z).

μPredominant(NPR) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 500

1 − 625−Z
625−500 ; 500 < Z ≤ 625

1 − Z−625
750−625 ; 625 < Z < 750

0; 750 ≤ Z

(10)

Equation (11). RPN Fuzzy Set “High” (Z).

μAlto(RPN) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 625

1 − 750−Z
750−625 ; 625 < Z ≤ 750

1 − Z−750
875−750 ; 750 < Z < 875

0; 875 ≤ Z

(11)
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Equation (12). RPN Fuzzy Set “Very High” (Z).

μVery High(NPR) =

⎧⎪⎪⎨⎪⎪⎩
0; Z ≤ 750

1 − 875−Z
875−750 ; 750 < Z ≤ 875

1 − Z−875
1000−875 ; 875 < Z < 1000

0; 1000 ≤ Z

(12)

The inference rules used for this Mamdani type model were considered according to
the number of input variables and their sets, all possible combinations that represent the
scenarios that can be presented given the conditions that are established were considered;
as a result, 125 inference rules were formulated, the outputs were defined by specialists,
to assign in each case the corresponding categorical rating of the RPN. These rules were
introduced into the MATLAB model, as shown in the following figure (Figure 6).

Figure 6. Mamdani Type Fuzzy Logic Model Inference Rules for Evaluating the Quantifying Prototype
Source: Retrieved from MATLAB R2018b, Rule Viewer window screenshot, self-made content.

3.2. Defuzzification Process

The values that correspond to the sets of the RPN output variable are obtained numer-
ically, according to the case of the rule activated in the Mamdani model when evaluating
the different failure modes of the FMEA. The potential failure modes that were identified
in the prototype were 30. Each failure mode was assessed using the defuzzification method
above, and the values obtained from RPN are as shown below (Table 8).
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Table 8. Defuzzification of the RPN variable from the Mamdani model was applied to the quantifying
prototype.

Failure Mode RPN Fuzzy Model

1 625
2 250
3 625
4 625
5 375
6 500
7 500
8 375
9 375
10 250
11 125
12 375
13 125
14 625
15 125
16 375
17 375
18 125
19 750
20 500
21 125
22 500
23 125
24 125
25 500
26 375
27 375
28 250
29 125
30 250

As shown in the table above, the RPN values obtained from the Mamdani model are
repeated between some failure modes. This is because the values provided by the “Center
of Gravity” defuzzification method have not been manipulated, but left by default in the
Mamdani model, and in this way only one rule is activated per failure mode as the case
may be, and although the sets that make up the rules are several of these coincide since in
the output variable you only have seven sets, but if instead of leaving the default values
that allow only one rule to be activated when the input sets are provided and the input
values of each variable will be manipulated, more rules could be activated at the same
time so that the value in the output may be different from the seven that are repeated. This
would occur when the provided values enter the regions of intersection between sets, and
what this causes is that other rules are activated and the result is different depending on
these rules and the method of defuzzification used.

For this case, the default values have been left since the evaluation was intended to be
carried out around using the linguistic terms of input so that only the necessary rule will
be activated.

3.3. Response Surfaces

In this type of application, the use of the response surfaces that result from the
Mamdani model of MATLAB are not a direct resource to obtain the type of result that is
sought, which is to obtain the level of risk in a particular way in the sets of the output
variable. However, these surfaces allow us to visualize and understand the logic that exists
in the graphical representation of the RPN. That means the risk assessment is possible once
the fuzzy rules have been established as a precedent in the inference base of the system.
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Therefore, a detailed analysis of the surfaces is not necessary in this model as in other
application cases.

4. Discussion

With the defuzzification method “Center of Gravity”, it was possible to obtain the RPN
results for each mode of failure of the FMEA, as shown in the following figure (Figure 7).
The numbering of the “failure modes” corresponds to that presented in the format of
Table 7.

Figure 7. Response Surface Occurrence vs. Severity of the Risk Assessment Model to Failure Source:
MATLAB R2018b software capture, self-developed content.

The response surfaces generated from the model are shown in Figures 8 and 9. In
them, you can see how the level of risk increases or decreases depending on the input
criteria Severity, Occurrence, and Detection, when these tend to take a certain value on the
lower axes of the three-dimensional plane.

Mamdani Model

Figure 8. Representation of the Risk Priority Number by the Fuzzy Logic model.
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Classic Model

Figure 9. Representation of the Risk Priority Number by the classic model.

The results obtained from the methods used (classic FMEA and Fuzzy FMEA) to
evaluate the RPN show asymmetric graphs. In the classical method, the values are mostly
lower compared to the results of the Mamdani model; this is due to the description of the
criteria with which it is evaluated.

There are two main reasons why the results vary significantly. The evaluation criteria
in the Fuzzy Logic model for the FMEA have been appropriate to the context of the problem
so that both linguistic and numerical values have a very different meaning in the evaluation.

In the classical method, the criteria used do not fit or comprehensively represent the
context of what is being evaluated; obtaining the RPN is given through the multiplication
of the evaluation criteria (Severity x Occurrence x Detection) in this method, not always the
failures with greater severity are the priority.

It sometimes happens that failures with less severity but with higher value of occur-
rence or detection when multiplied, give a higher RPN value and take higher priority;
that is, the priority depends in the first instance on the highest RPN value based on the
evaluation parameters, without considering their relevance and only when the values are
repeated, then the individual criteria assessment is deemed to be determined according to
their significance which should go first.

Severity is addressed first because it relates to the effects of failures; Detection is
used over the Occurrence because it depends on the client, which is more important than
just failure frequencies (Stamatis, 2003); however, due to this classic method of obtaining,
priority is given to failures with a higher number of RPN than to those with greater Severity.

The method used in the Mamdani model to obtain the RPN is inference through rules,
and these are established according to the knowledge and reasoning of specialists about
the level or intensity of the evaluation criteria; in this method, the highest RPN is assigned
based on the relevance suggested in the literature of the evaluation criteria, in the order:
Severity, Detection, and Occurrence, therefore the values obtained from the Mamdani
model are considered with greater validity, and because the description of each criterion
has been appropriate to the specific situation of the problem, therefore the results are more
representative than in a conventional way.

The relevant fundamentals of the classic FMEA are described and later the use of fuzzy
set theory is proposed as an alternative to reduce the uncertainty that can be generated by
the NPR calculated with the traditional method, hence the disparity of data mentioned is
made between Figures 8 and 9. The review shows the context in which the technique may
be more appropriate and highlights the potential usefulness of fuzzy set theory to address
uncertainty specifically in this case study, in software engineering, security and reliability.

There are methodologies applied to security and reliability engineering, which include
fuzzy FMEA [1]. When prototypes are developed, it is not always possible to obtain
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reliable data; this is because they are recently created and, in most cases, due to the lack
of availability of primary observations and the scarcity of data on the failure of their
components. It is also difficult to establish risk parameters. To handle such situations, fuzzy
set theory is an alternative for the evaluation of security and reliability under conditions of
uncertainty, such as what is presented in this work.

5. Conclusions

The description of recommended actions for this case was established for failure modes
whose RPN values were equivalent to those of the fuzzy “Significant” set, whose value was
equal to or greater than 250. The FMEA methodology aims at continuous improvement,
so it is necessary to carry it out periodically to identify failures and establish actions, in
this case being a prototype, and it is essential to develop improvement actions for most
failures to ensure operation, so it was determined to establish as a reference a low RPN
for the context of the problem, to address most of the prototype’s shortcomings and then
re-evaluate the results.

It can be seen that in the classical method, the values are mostly lower compared
to the results of the Mamdani model; this is due to the description of the criteria with
which it is evaluated, and it can be said that there are two main reasons why the results
vary significantly. One is that the evaluation criteria in the Fuzzy Logic model have been
appropriate to the context of the problem so that both linguistic and numerical values have
a very different meaning in the evaluation, while in the classical method the criteria used
do not fit or represent in their entirety the context of what is evaluated.

The implementation of the Fuzzy FMEA allowed us to collect, order, and evaluate the
information of the prototype concerning the operational failures of the different compo-
nents; it can be said that the design of the studied quantifier is better in some important
characteristics compared to other prototypes designed for the same purpose, however; the
operating uncertainty conditions to which the quantifier is subjected affect the precision.
Specifically, they are the characteristics related to the configuration or arrangement of the
sensors to the tube of the animal that needs to be modified so that the sensors are no longer
affected since, by their design and location, they suffer rubbing with solid surfaces that
damage them. In general terms, these are the aspects that need to be improved to achieve
greater accuracy.
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Abstract: In blockchains, the principle of proof-of-work (PoW) is used to compute a complex mathe-
matical problem. The computation complexity is governed by the difficulty, adjusted periodically
to control the rate at which new blocks are created. The network hash rate determines this, a phe-
nomenon of symmetry, as the difficulty also increases when the hash rate increases. If the hash rate
grows or declines exponentially, the block creation interval cannot be maintained. A genetic algo-
rithm (GA) is proposed as an additional mechanism to the existing difficulty adjustment algorithm
for optimizing the blockchain parameters. The study was conducted with four scenarios in mind,
including a default scenario that simulates a regular blockchain. All the scenarios with the GA were
able to achieve a lower standard deviation of the average block time and difficulty compared to the
default blockchain network without GA. The scenario of a fixed difficulty adjustment interval with
GA was able to reduce the standard deviation of the average block time by 80.1%, from 497.1 to 98.9,
and achieved a moderate median block propagation time of 6.81 s and a stale block rate of 6.67%.

Keywords: blockchain; difficulty adjustment; genetic algorithm; proof-of-work

1. Introduction

The first prominent application in this field was conceptualized in a paper published
by a pseudonymous author, or authors, named Satoshi Nakamoto. The paper is titled
“A peer-to-peer electronic cash system” [1] and it proposed a framework for a decentral-
ized electronic currency called Bitcoin. The framework actualized the research that was
previously proposed by Haber and Stornetta [2], and was then coupled with a patent on
the Merkle tree [3]. It was then implemented and proven to be a workable decentralized
electronic currency that is immutable with limited circulation, similar to a sovereign-backed
currency but without a centralized authority.

The core of the decentralization is the method for validating each transaction, where
anyone can contribute processing resources to assist in validating the transactions in the
electronic currency network. As it is decentralized, the process requires consensus between
the nodes (miners) that are validating the transactions. The overall process is called proof-
of-work (PoW) [4]. To obtain the consensus, the Bitcoin network conducts voting among
the miners approximately every 10 min on the state of the Bitcoin network, to consolidate
the validated transactions into a block (block time). In order to maintain the period between
voting, that is the 10 min interval or the block time, the miners agree among themselves to
adjust a variable called the difficulty, which is directly related to the overall computational
resources that are available in the Bitcoin network. With more computational resources, the
difficulty is set higher, and with less, it is set lower.
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Bitcoin has grown in worldwide acceptance, and since its introduction, other electronic
currencies (cryptocurrencies) have emerged. As the miners are rewarded for their effort in
solving a mathematical puzzle (mining), the miners will tend to provide their computation
resources to the most profitable cryptocurrency. This causes “coin-hopping”, where miners
switch to the more profitable cryptocurrency [5]. As the miners switch their resources to
mine a different cryptocurrency, the cryptocurrency they departed from will still have the
same difficulty settings, until the next consensus is conducted. This can cause an issue
with attempting to maintain the block time, due to a lack of computation resources for
mining with high difficulty settings. Bitcoin’s difficulty adjustment algorithm is therefore
susceptible to this drawback [6].

In PoW blockchains, the phenomenon of symmetry is observed, as difficulty also
increases when the hash rate increases [7]. The block time can only be maintained by
the difficulty adjustment algorithm if the overall computation resources (known as the
hash rate) are constant. In the event of an increase in hash rate, the block time decreases
and is adjusted through a retargeting mechanism regarding the difficulty, to maintain this
equilibrium. However, as the retargeting takes place only after 2016 blocks in Bitcoin, the
equilibrium is not maintained for a considerable length of time. Further, the network is
not able to retain the block time if the hash rate rises or falls exponentially. In this paper, a
genetic algorithm (GA) is introduced into the difficulty adjustment protocol to reduce the
effect of the symmetry of the hash rate on the block time due to fluctuating hash rates in
the Bitcoin network.

Proof-of-Work (PoW)

Dywork and Noar introduced PoW as a concept to address the issue of junk mail and
administering access to shared resources [8], but the term “proof-of-work” was conceived
by Jakobsson and Juels [9]. In order to access a shared resource, a feasible function that is
reasonably hard must be computed as a requirement, and this serves to fend off malicious
utilization of the shared resource.

Bitcoin implements PoW to provide resilience and security. A PoW process known as
“mining” creates new Bitcoins, where the user or “miner” attempts to find a solution for a
mathematical problem (PoW algorithm) through a particular piece of software. The target
(T) is the threshold set for the block hash computed (to be less than) by the miner, for the
candidate block to be valid. The difficulty (D) is a metric that indicates how hard it is to
find a hash that is smaller than a specific target. As it is difficult to discover a block hash
that is smaller than an already tiny value, a lower T will result in a larger D.

The new target, Ti+1, is calculated by multiplying T by the actual time it took to mine
2016 blocks and dividing it by the expected time, which is 20,160 min, as shown by the
following equation [10]:

Ti+1 = T ∗ ∑2016
i=1 Xi

20160 min
(1)

where D is calculated by multiplying the target of the genesis block (gT) with the current
target (cT), given by

D =
gT
cT

(2)

The block time (B), which is the expected time taken to mine a block in Bitcoin, is
approximately 10 min. A retargeting mechanism will automatically and independently
ensure that the block time B is as close as possible to the expected 10 min [4]. In this case, T
is periodically and dynamically adjusted to meet the expected B of 10 min. Whenever the
block time falls below 10 min due to an increasing hash rate, T is lowered (increasing the
difficulty) during the adjustment, and vice versa. In addition, a limit is also imposed on the
adjustment to prevent drastic changes to D, as shown in Algorithm 1.

However, PoW does not respond or react well when the hash rate experiences sudden
changes. This was evident in some blockchain networks where a rapid shift in hash rate was
experienced when capable powerful mining hardware for other networks was repurposed
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specifically for these networks. Since Bitcoin only retargets once every 2016 blocks (approx-
imately 2 weeks), mining is performed at an extremely slow pace until the next retargeting
event occurs, when enough blocks are created. The difficulty adjustment algorithm acts as
a feedback controller, where the difficulty is the input, and it is manipulated towards the
desired block time based on the actual time taken to mine a block (measured output). This
reactive approach has a few vital shortcomings [11]:

1. The difficulty adjustment may overshoot or undershoot, thus causing the block time
to oscillate significantly.

2. Cryptocurrencies are susceptible to “coin-hopping” or “pool-hopping” attacks, where
miners choose to only mine a specific cryptocurrency when it is profitable, and switch
to another when it is not.

As a means of mitigating these issues, a GA is introduced into the difficulty adjustment
protocol to regulate the variation of the parameters (i.e., block time, retargeting interval,
etc.). We show that it is possible to achieve a more dynamic retargeting mechanism that is
able to meet the network objectives.

Algorithm 1 Target adjustment limit

Set targetTimeSpan = expected time taken to mine a block (s) × difficulty readjustment
interval
Set totalInterval = actual time taken to mine N blocks
if totalInterval < targetTimeSpan then

totalInterval = targetTimeSpan / 4
end if
if totalInterval > targetTimeSpan then

totalInterval = targetTimeSpan × 4
end if

2. Literature Review

Several approaches have been introduced to improve the difficulty adjustment proto-
col, and in the process reduce the block time fluctuation. Bissias, Thibodeau and Levine
proposed a proactive difficulty adjustment algorithm known as Bonded Mining (BM) in
response to the relatively reactive nature of typical difficulty adjustment algorithms in
PoW [11]. In BM, miners are required to commit to a hash rate which is financially bound
to “bonds”, where the committed hash rate in turn adjusts the difficulty of the network. As
the miners are bound to their commitments, they are required to follow through with them
even when it is no longer profitable to do so. However, the commitments only last until
the next block is created, and if the miners choose to “deviate from their commitment”,
they suffer a fine that is equal to their divergence. In evaluating BM, block time stability
simulations were carried out. The simulations compared the BM difficulty adjustment
algorithm to the one used in Bitcoin Cash (BCH). The results showed that for BCH, the
resulting block times diverged significantly from the intended time whenever the hash rate
fluctuated, with the lowest block time reaching approximately 250 s and the highest reach-
ing around 1500 s, with a recovery period of at least a day for the correction. Oscillation of
the resulting block times was also observed, although the hash rate was maintained. With
BM, a relatively lower amplitude in the oscillation and divergence of the block time was
maintained, and no oscillation was observed when the hash rate was maintained, resulting
in a block time that was closer to the intended block time.

Noda, Okumura and Hashimoto examined the behavior of the winning rate in place
of the difficulty, and they found that the winning rate was “mathematically more trace-
able” [12]. Let W represent the winning rate, which is the probability that a block hash
found by a miner is smaller than the target. H represents the hash rate, the total number
of hash attempts per time unit. Based on observations, the average block time (B∗) can
be calculated as 1/(W × H). The winning rate can be adjusted to achieve a B∗ of 10 min.
Noda et al. concluded that Bitcoin’s difficulty adjustment mechanism made it difficult to
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maintain steady block creation compared with Bitcoin Cash (BCH). The Bitcoin difficulty
adjustment algorithm performed poorly on average, as the winning rate differed from the
predicted outcome, and only 63.7% of the required 12,096 blocks were produced. BCH’s
difficulty adjustment algorithm, on the other hand, was able to create new blocks on a
regular basis since the winning rate was modified once every block, based on the simple
moving average block time of the preceding 144 blocks since August 2017 [13]. A total of
12,049 blocks were constructed, which was 99.6% of the expected 12,096 blocks, despite the
winning rate fluctuating significantly. Bitcoin’s difficulty adjustment algorithm produced a
greater mean block time and mean standard deviation when comparing block times. When
the hash rate varied, Bitcoin’s difficulty adjustment algorithm was unable to modify the
winning rate to the correct value.

In the case of soft computing approaches for PoW-based blockchains, Zhang and Ma
suggested a difficulty adjustment algorithm with a two-layer neural network [14]. The
difficulty in Ethereum was adjusted according to Algorithm 2. In order to forecast the
state of the blockchain, different variations of previous actual times taken to mine a block
(Tk) served as the input features. A two-layer neural network was utilized to perceive
distinct patterns based on the obtained variance of Tk. For simplicity and easy computation,
a simple neural network with a single hidden layer was chosen. Based on the actual
data collected from Ethereum for comparison between the proposed algorithm and its
initial complexity modification algorithm, improvements in the nominal hash rate were
simulated. During the training phase, a Monte Carlo simulation was performed. Each
sample started with a hash rate of 1.46× 1014 hash/s. For typical and atypical changes,
the scale of hash rate variations was from −60% to +60% of the starting hash rate. The
factor affecting the accuracy was the number of blocks mined after the hash rate change,
since the accuracy of the neural network steadily improved as time elapsed after the abrupt
hash rate change. A sudden hash rate shift was manufactured by injecting an extra 20%
hash rate into the mining pool at block height 50,000, which was then removed at block
height 100,000. An additional 40% of the hash rate was also inserted into the mining pool
at block heights 150,000 and 200,000, then removed at block heights 155,000 and 250,000,
respectively. The proposed neural-network-based approach maintained the quick updating
and low volatility of the block difficulty in simulations based on real data. The suggested
method was better at detecting irregularities and dealing with irregular occurrences such as
hash rate surges or drops that only last a short time. However, when the hash rate suddenly
increased or decreased, the approach tended to delay changing the difficulty by gradually
increasing or reducing the difficulty to the predicted value over a longer period, rather than
instantaneously, to guarantee that it was not a malicious assault. This slowed down the
difficulty adjustment reaction time in exchange for a smoother and more stable adjustment,
resulting in a longer time to achieve the intended difficulty, and stabilized the time needed
to mine a block.

Algorithm 2 Ethereum’s difficulty adjustment algorithm

New difficulty = parent block’s difficulty + floor(parent block’s difficulty/1024)
if current block’s timestamp - parent block’s timestamp < 9 then

New difficulty = new difficulty × 1
else

New difficulty = new difficulty × −1
end if

Zheng et al. proposed a linear-prediction-based difficulty adjustment method for
Ethereum to address the present difficulty adjustment algorithm’s drawbacks, such as its
lack of versatility and sensitivity to hash rate fluctuations [15]. They defined a new term,
PTn = dn

rn
, where dn is the difficulty and rn is the hash rate at the nth block. Despite having a

one-block delay compared to the real PTn, the linear predictor was accurate and obtained a
low mean squared error (MSE). The fundamental reason for this was that the PTn fluctuated
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with the hash rate, which was precipitated by miners and constantly changing. As a result,
the linear prediction could only take the previous PTn as the primary input and alter it
according to the expected trend. The concept of linear prediction was to anticipate present
and future values using previously observed values, but only the actual time taken to mine
a block could be observed in an actual blockchain. Thus an additional computation step
was required to calculate PTn. The authors proposed two methods to obtain the PTn value:
(i) using the smoothed actual time taken to mine a block or (ii) using the integrated actual
time taken to mine a block. The results showed that the linear-prediction-based difficulty
adjustment algorithm with integrated actual time taken to mine a block was able to obtain
a lower deviation. Nonetheless, while the prediction was capable of generating a value
that was close to the actual value, in some cases, such as sudden change in hash rate, the
predicted value was considerably higher or lower than the actual value.

In Zhang and Ma’s proposal, the difficulty adjustment algorithm determined whether
the actual time taken to mine a block was experiencing no change, normal change or
abnormal change. When the neural network detected an abnormal change, the algorithm
was implemented to adjust the difficulty [14]. In contrast, Zheng et al. suggested using a
linear predictor to adjust the difficulty accordingly [15].

In this investigation, we implemented GA to suppress the fluctuations in the average
block time and difficulty, and to enable faster adjustment of the difficulty. This was achieved
by adjusting the expected time taken to mine a block and the difficulty adjustment interval.
The implementation could react faster as it was no longer needed to wait for the next
difficulty adjustment to set the accurate difficulty value. A difficulty adjustment could be
scheduled immediately after detecting significant deviations from the default time to mine
a block.

3. Methods

3.1. Observation of Blockchain Behaviors with Reparameterization

For the initial investigation, a total of 24 virtual machines (VMs) with equivalent speci-
fications were used to simulate and observe the Bitcoin blockchain network for different
parameter settings. The VMs were divided into 3 separate blockchain network groups,
consisting of 8 VMs per group. Each VM acted as a full node, running the Bitcoin Core soft-
ware and a miner at the same time. The parameters for the deployed blockchain networks
are shown in Table 1. The 3 different blockchain network groups, referred to as Coin A,
Coin B and Coin C, were as follows:

• Coin A, the first blockchain network group, was representative of an actual Bit-
coin network.

• For Coin B, the default values of 10 min and 1 MB were used for the block time and
block size, respectively. The difficulty adjustment interval was set to 60 blocks, and
thus the difficulty would be readjusted once for every 60 blocks mined. The value of
60 for the difficulty adjustment interval was selected based on the data obtained by
Friedenbach [16].

• For Coin C, the block time and block size were set at 1 min and 1 MB, respectively,
while the difficulty adjustment interval was set to within a range of 1 to 20,000.

Data for the observation were collected for 150 days for both Coin A and Coin B.
For Coin C, due to the nature of the setup, data were collected for 200 days. The three
blockchain networks were allowed to run for a considerable lead time, so that the block
time and difficulty reached a steady state.

397



Symmetry 2022, 14, 609

Table 1. Differences between 3 groups of VMs.

Coin A Coin B Coin C

Block interval 10 min (default) 10 min 1 min
Block size 1 MB (default) 1 MB 1 MB

Difficulty adjustment interval (block) 2016 (default) 60 Variable within constraints
Number of history blocks 2016 (default) 60 Same as difficulty adjustment

3.1.1. Coin B

As shown in Table 2, we were able to obtain a lower standard deviation, decreased by
63.18%, with Coin B compared to Coin A. Additionally, the maximum value of the daily
average block time for Coin B was 14.08, which was relatively close to the expected value
of 10, whereas it was 27.91 for Coin A.

Table 2. Statistical data for daily average actual time taken to mine a block.

Coin A Coin B Coin C

Min 2.00 3.16 0.63
Max 27.91 14.08 3.43

Mean 10.60 10.48 1.11
Median 10.15 10.33 0.99

Standard Deviation 3.54 1.25 0.44

On commencement of the experiment, it was observed that the obtained block time
deviated from the expected time and it took 17 days or 2 sequences of difficulty adjustment
before it reached the expected block time of 10 min, as shown in Figure 1.During the
experiment, a sudden decrease in hash rate was simulated by lowering the hash rate of each
miner. We decreased the overall hash rate by 50% on Day 71, which was 200 blocks away
from the next difficulty adjustment at that time. As observed in Figure 2, there was a steep
increase in the block time after the decrease in hash rate up to Day 73, lasting for 3 days
for Coin A. This was due to the fact that the difficulty adjustment algorithm was unable to
react rapidly by adjusting the difficulty in response to the sudden drop in hash rate. The
block time recovered back to around the expected time of 10 min on Day 74 because the
difficulty adjustment occurred immediately before the end of Day 73. Following this, we
increased the hash rate back to its value before the drop on day 75. From that time, we
observed a decrease in block time due to the increase in hash rate. Since the hash rate was
increased at the beginning of the 2016-block cycle for difficulty adjustment, it took about
7 days of mining before the difficulty adjustment took place. On Day 82, the block time
was back to within the expected range. The Coin A blockchain network showed relatively
smooth changes in difficulty due to the fact that the difficulty was only readjusted once
every 2016 blocks. In total, the difficulty was readjusted only nine times over the course of
the investigation.

On the other hand, Coin B was able to reach the expected block time of 10 min right
away, after the two sequences of difficulty adjustments at the beginning. Since the difficulty
readjusted once every 60 blocks instead of every 2016 blocks, only about 24 h was needed,
as shown in Figure 3. Moreover, although the obtained block time increased to 13.77 min
with the same occurrence of a decreased hash rate on Day 71 as in the previous experiment,
we observed that Coin B was able to stabilize and obtain a block time of 10.20 min on
the next day, as shown in Figure 4. In addition, the increase in hash rate on Day 75 only
decreased the obtained block time to 7.59 min for one day, and it returned to around the
expected block time on the following day. Figure 5 shows the recorded difficulty of the
Coin B network. Throughout the experiment, the difficulty for Coin B readjusted a total of
200 times within 148 days. Furthermore, as shown in Table 3, Coin B was able to obtain a
lower standard deviation compared to Coin A, even though it fluctuated a great deal in
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comparison, as shown in Figure 5. The network was able to react to the changes in hash
rate by readjusting the difficulty, due to the shorter difficulty interval.

Figure 1. Average block time for Coin A.

Figure 2. Average block time for Coin A from Day 60 to Day 85.

Table 3. Statistical data for difficulty.

Coin A Coin B Coin C

Min 1.00 1.00 0.00
Max 6.62 4.66 17.23

Mean 2.78 2.86 0.24
Median 2.60 2.92 0.23

Standard Deviation 1.07 0.60 0.14
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Figure 3. Average block time for Coin B.

Figure 4. Average block time for Coin B from Day 60 to Day 85.

3.1.2. Coin C

Reparameterization of the blockchain PoW for Coin C was achieved manually by
changing the parameters once when at least 10,000 blocks had been mined (varying de-
pending on the difficulty adjustment interval). Unlike the other experimental setups, this
blockchain network was set to a block interval of 1 min, with varying difficulty adjustment
intervals ranging from 1 block to 20,000 blocks. A block interval of 1 min was deployed
instead of the default 10 min to reduce the length of the experiment. Moreover, the initial
and minimum difficulty was set to 0.00024414, unlike in previous experiments where it
was set to 1 to ensure that the miners were able to mine a block every minute. This was
because the miners were unable to mine a block every minute with a minimum difficulty
of 1, even when the maximum hash rate was available. The value of 0.00024414 was taken
from Dogecoin, as Dogecoin has the same block interval of 1 min. The available hash rate
was set to the maximum value throughout the experiment.
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Figure 5. Difficulty graph for Coin B (sampled daily).

Tables 4 and 5 record the statistical data for the obtained block time and difficulty
for Coin C, with a difficulty adjustment interval of 1 to 20,000. We modified the difficulty
adjustment interval and then waited for 10,000 blocks to be mined before setting a new
difficulty adjustment interval (Tables 4 and 5). A difficulty interval of 1 indicates that the
difficulty will be adjusted once a block is mined, whereas a difficulty interval of 20,000
indicates that the difficulty will be adjusted after 20,000 blocks are mined. From Figure 6,
when the difficulty was readjusted once for every block mined, we observed that the
difficulty fluctuated widely, with a standard deviation of 2.40 and a standard deviation of
0.47 for the obtained block time. Moreover, the standard deviation of the obtained block
time of 0.47 was the second-highest value. Considering that only the actual time taken to
mine a block for the previous block was referred to when adjusting the difficulty, it tended
to overshoot or undershoot. Thus, the actual block time deviated from the expected value
and was unable to maintain the expected time, as observed in the left-most part of Figure 7.

Table 4. Statistical data for block time for Coin C.

Difficulty Adjustment Interval Min Max Mean Median Standard Deviation

1 1.03 2.72 2.34 2.50 0.47
100 0.98 1.04 1.01 1.01 0.01
200 0.89 1.09 1.00 0.99 0.06
400 0.95 1.09 1.02 1.02 0.04
800 0.88 1.06 0.98 1.00 0.06
1000 0.82 1.13 1.01 1.04 0.10
1500 0.81 1.36 1.03 0.98 0.16
2000 0.91 1.47 1.03 0.96 0.18
4000 0.85 1.52 1.02 1.00 0.15
8000 0.78 1.88 1.08 0.98 0.29

10,000 0.74 2.24 1.02 0.91 0.32
20,000 0.63 3.43 1.12 0.96 0.58
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Table 5. Statistical data for difficulty for Coin C.

Difficulty Adjustment Interval Min Max Mean Median Standard Deviation

1 0.00 17.24 0.73 0.43 2.40
100 0.15 1.17 0.26 0.26 0.08
200 0.13 0.32 0.26 0.27 0.04
400 0.15 0.27 0.23 0.24 0.03
800 0.11 0.27 0.22 0.25 0.05
1000 0.16 0.27 0.21 0.20 0.03
1500 0.19 0.30 0.25 0.28 0.04
2000 0.24 0.30 0.28 0.29 0.02
4000 0.25 0.30 0.28 0.29 0.02
8000 0.23 0.30 0.25 0.24 0.02

10,000 0.21 0.26 0.22 0.23 0.02
20,000 0.17 0.24 0.20 0.20 0.01

Figure 6. Difficulty graph for Coin C with difficulty adjustment interval of 1 block (Day 1 to
Day 10). Data were recorded for every block; the graph only shows the difficulty when there was an
adjustment.

In our next experiment, the difficulty adjustment interval was set to 100 blocks and the
block time and difficulty history were recorded as shown in Figures 8 and 9, respectively.
Compared to a difficulty adjustment interval of 1, a decrease in the deviation of the difficulty
and the block time was observed. Moreover, the obtained block time deviated minimally
from the expected block time, thus maintaining the obtained block time as close to the
expected value as possible with the lowest standard deviation. Nonetheless, an even lower
standard deviation of 0.04 for the difficulty was obtained with a difficulty adjustment
interval of 200 blocks, as recorded in Table 5, despite an increase in the standard deviation
of the block time. As observed from Figures 10 and 11, the obtained block time deviated
slightly from the expected value, but the deviation of the obtained difficulty decreased as
the difficulty only readjusted once every 200 blocks.
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Figure 7. Average block time for Coin C.

For Coin C, we were able to observe that as the difficulty adjustment interval increased,
the standard deviation of the block time increased, while the standard deviation of the
difficulty decreased. Although the standard deviation of the difficulty was lowest when the
difficulty adjustment interval was equal to 20,000, this value gave the highest standard de-
viation for the block time. This was a consequence of the difficulty not adjusting frequently.
If there was a sudden increase or decrease in the hash rate with a difficulty adjustment
interval of 20,000, the difficulty was unable to readjust in response. For example, when the
total hash rate decreased by 50% while the difficulty remained the same immediately after
the difficulty adjustment, the block time increased to 20 min instead of the expected 10 min.
With a block time of 20 min, in the worst-case scenario, it would be approximately 278 days
before the next difficulty adjustment. Therefore, there must be a balance between the block
time and the difficulty.

Figure 8. Average block time for Coin C with difficulty adjustment interval of 100 blocks.
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Figure 9. Difficulty graph for Coin C with difficulty adjustment interval of 100 blocks (Day 10 to
Day 22). Data were recorded for every block; the graph only shows the difficulty when there was an
adjustment.

Figure 10. Average block time for Coin C with difficulty adjustment interval of 200 blocks.

3.2. Optimization of Parameters with Genetic Algorithm

As the main contribution of this research, GA is proposed as a reparameterization
mechanism for the PoW protocol, to remedy the inherent trade-offs in the difficulty ad-
justment in PoW. Through simulations, the key factors that dramatically influence the
performance of the PoW protocol are determined, together with their suitability regarding
the GA optimization. The proposed method is not intended to be a replacement for the
Bitcoin difficulty adjustment mechanism. In fact, it serves the same purpose, i.e., to govern
the pace at which Bitcoins are issued. The GA helps by determining the best settings to use
in order to control the length of time it takes to mine a block. The total actual time needed
to mine the previous N blocks is used as the deterministic seed in the GA, to maintain
consistency across all nodes. Otherwise, nodes may arrive at different parameters and the

404



Symmetry 2022, 14, 609

state consensus would be lost. In this study, the variables considered for optimization are
the block interval (s) and the difficulty adjustment interval (number of blocks).

Figure 11. Difficulty graph for Coin C with difficulty adjustment interval of 200 blocks (Day 22 to
Day 29). Data were recorded for every block; the graph only shows the difficulty when there was an
adjustment.

The block interval requires a minimum value of 1 s and a maximum value of 600 s.
The difficulty adjustment interval dictates the number of blocks mined before the difficulty
readjustment. In Bitcoin, the difficulty readjusts once every 2016 blocks (approximately
14 days). In this study, the difficulty adjustment interval could be set as low as retargeting
once every block up to retargeting once every 4032 blocks. Because there are at least two
optimization variables to consider, we utilized the non-dominated sorting genetic algorithm
II (NSGA-II) [17], which is a multi-objective GA.

A Java-based architecture for multi-objective optimization with metaheuristics, jMetal
6.0, was used as a basis and modified to suit our purpose [18]. A version of NSGA-II known
as “parallel NSGA-II” was chosen for our experiment as it benefits from a multi-core
processor to perform the feature evaluations of in parallel. At the time, there was only
one option for assessing a solution list in parallel, called “synchronous parallelism”. This
suggests that this parallel algorithm’s action was similar to that of a sequential algorithm.
The computation of the output, however, was impaired because the algorithm alternated
between parallel and sequential, and hence it did not scale well. However, it was considered
more than adequate for our use case.

The simulations were performed using an adaptation of SimBlock [19], an event-driven
blockchain network simulator. During the simulation, the default starting values for the
block interval and the difficulty adjustment interval for the experiments were 600 s and
2016 blocks, respectively. The GA was set to run throughout the whole simulation, as it
detected whether the latest N blocks were mined too fast or too slow compared to the
expected time for mining N blocks. It approximated the state of mining for each set of
optimization variables, where each set of optimization variables was applied to mining
10,000 blocks. The set of optimization variables were evaluated based on two objectives:

1. Standard deviation of average block time.
2. Standard deviation of difficulty.

The goal was to control the variations in the difficulty and average block time, in
addition to achieving faster adjustment with the utilization of the GA, and the objective
functions were chosen based on these criteria. Studies were performed to investigate the
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effectiveness of the objective functions. In our simulations with SimBlock, every simulation
was furnished with the same set of hash rates, ending when a total of 10,000 blocks were
generated. The overall flow of the simulation is described in Algorithm 3. Firstly, the
network was constructed based on the number of nodes, the degree distribution and the
region. The latency, download and upload bandwidths of the node were determined by the
region in which it was located. A check was subsequently conducted for each block mined
to decide whether the average actual time taken to mine N blocks was too fast or too slow.
The GA was activated if the average actual time taken to mine the N blocks was 25% slower
or faster than the planned time. For the GA, the fitness score was generated for selection
after simulated mining of 10,000 blocks. Next, crossover and mutation were continued until
convergence was achieved and the best solution was obtained. The best solution was then
applied to the network, and new blocks were mined with the new parameters thereafter.
The GA had to wait until the difficulty was adjusted before it was able to optimize again.
This was to ensure that the previously found best solution was given ample time to affect
the network.

Algorithm 3 Overall flow of simulation
start
Construct network based on the number of node, distribution of degree and region
repeat

Generate block
if actual time taken to mine the latest N blocks are too fast or too slow then

GA optimization
end if
if current block height == difficulty adjustment interval then

adjust difficulty
end if

until current block height == 10,000
end

Table 6 shows the hyperparameters for the GA applied in the simulations, while
Table 7 shows the parameters used for our blockchain simulation. For the hyperparameters
of the GA, simulations were performed to obtain the optimal hyperparameters for our
studies. On observation, the results from these hyperparameters were comparable to
results obtained with higher population sizes and max generation at shorter execution
times. Due to the nature of both optimization variables, the differences in some values,
such as 3103 blocks and 3105 blocks, were negligible. Although a higher population size
and max generation can cover more possible solutions, it significantly increased the time
needed to complete the optimization, and the improvement in the obtained objectives was
minimal. With these hyperparameters, the average run time of the GA for one iteration in
our simulation was 165.74 s or 2.7 min, and the GA was run several times within an iteration
of our simulations. Since mining of blocks was ongoing while the GA was optimizing, the
faster the GA finished, the better the optimization.

Table 6. Hyperparameters of the GA.

Parameter Value

Population size 200
Max generation 50

Crossover probability 90%
Crossover distribution index 20

Mutation probability 50%
Mutation distribution index 20
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Table 7. Blockchain parameters for simulation.

Parameter Value

Number of nodes 9000
Average of hash rate 80,093,787 TH/s
Average block size 1 MB
End block height 10,000

Geographical distribution Based on the Bitcoin network
Bandwidth and latency Based on data collected from 6 regions

4. Results and Discussion

The parameters shown in Table 7 were collected based on the data from the Bitcoin
network from June 2019 to December 2019. However, in this case, the number of nodes
refers to the reachable public listening nodes at that time and not the total number of full
nodes in the Bitcoin network.

The simulations were performed for four scenarios with a runtime of 20 iterations for
each scenario:

1. Default;
2. Fixed block interval;
3. Fixed difficulty adjustment interval;
4. Variable block and difficulty adjustment intervals.

Each iteration simulated the mining of 10,000 blocks for all the scenarios, and at
intervals of 1500 blocks, the available hash rate was increased. For Scenario 1, the simulation
used fixed default values for both optimization variables and ran without GA, i.e., there
were no modifications to the optimization variables to represent a Bitcoin blockchain
network. Since there were no other experiments using similar methods to the best of
our knowledge, comparisons were made with the Bitcoin network. We set one of the
optimization variables in Scenarios 2 and 3 to the default values, while allowing the GA to
adjust the other optimization variable within the range defined. In addition, in Scenario 4,
the GA was able to modify all the optimization variables. Table 8 records the outcomes of
the simulations.

As shown in Table 9, in Scenario 2 the GA was activated 3.4 times on average, with
a minimum of 3 times and a maximum of 7 times. For Scenario 3, the GA was triggered
5.3 times on average, with a minimum of 5 times and a maximum of 7 times, which was
slightly higher in terms of the minimum and average but with the same maximum as in
Scenario 2. In contrast, the GA was triggered 7.9 times on average in one iteration for
Scenario 4. The minimum number was 6 times and the maximum was 12 times.

Table 8. Average of Objective 1, Objective 2, median block propagation time (tMBP) and stale block
rate (rs) for 20 iterations. Objective 1: standard deviation of average block time. Objective 2: standard
deviation of difficulty.

Scenarios Objective 1 Objective 2 tMBP (s) rs (%)

Without GA (default) 497.10 2.83 × 1015 6.40 1.12
GA (fixed block interval) 376.80 1.92 × 1015 6.44 1.80
GA (fixed difficulty adjustment interval) 98.90 2.18 × 1014 6.81 6.67
GA (variable block and difficulty adjustment intervals) 102.75 2.86 × 1014 7.02 32.04

Table 9. The number of times GA ran within an iteration.

Scenarios Min Average Max

GA (fixed block interval) 3 3.4 7
GA (fixed difficulty adjustment interval) 5 5.3 7
GA (variable block and difficulty adjustment intervals) 6 7.9 12
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4.1. Fixed Block Interval

For this scenario, the block interval was fixed to 10 min, only allowing the GA to
optimize the difficulty adjustment interval within a range of 1 to 4032 blocks. The value
obtained for Objective 1 in Scenario 2 was 376.80, a 24.2% decrease compared to the value
of 497.10 obtained if GA was not applied (Table 8). Additionally, the value obtained
for Objective 2 showed a decrease of 32.15%, from 2.83 × 1015 to 1.92 × 1015. During
each simulation, a sudden rise in hash rate was implemented by increasing the hash rate
immediately after the first six blocks were mined. For all iterations, the hash rate increased
by 655.43%. For all 20 iterations, it was noted that after the GA had run for the first time,
the difficulty adjustment interval was still optimized to 4006. The subsequent GA run then
refined the difficulty adjustment interval to at least 3300 blocks. Values ranged from 566 to
4030 for the remaining tailored difficulty adjustment intervals, but the difficulty adjustment
period was more than 3000 blocks for 90 percent of the time.

On the other hand, tMBP and rs showed small increases of 0.63% and 60.71%, respec-
tively. When the difficulty adjustment interval was low, an improvement in the stale block
rate was seen. However, as the difficulty adjustment interval increased from 800 blocks to
20,000 blocks, the stale block rate only increased by 1.44%. Experiments were conducted
to study the effects of different difficulty adjustment intervals on tMBP and rs. Additional
simulations were conducted with SimBlock but without GA, and the results are reported
in Table 10. The findings show that the difficulty adjustment interval influenced rs, in
one direction or the other. When the difficulty adjustment interval was 1 block, where
the difficulty changed after a block was mined, rs was largest. By increasing the difficulty
adjustment interval to just 10 blocks, the obtained value of rs decreased to 0.41%, an ap-
proximately 90.16% decrease. Nevertheless, we noted an increase in rs as the difficulty
adjustment interval increased, although the value of rs obtained with a difficulty adjust-
ment interval of 4000 blocks was still lower than for the difficulty adjustment interval
of 1 block. This was caused by the low difficulty adjustment interval (1 block), as a low
difficulty adjustment interval has the tendency to overshoot or undershoot. On the other
hand, tMBP was highest with a difficulty adjustment interval of 1 block, whereas with
difficulty adjustment intervals from 10 blocks to 4000 blocks, a slight increase in tMBP was
observed as the difficulty adjustment interval increased. However, the obtained tMBP value
was lowest when the difficulty adjustment interval was 100 blocks.

Table 10. Effect of difficulty adjustment interval on tMBP and rs.

Difficulty Adjustment Interval (Blocks) tMBP (s) rs (%)

1 6.62 4.17
10 6.34 0.41

100 5.84 0.47
1000 6.39 0.89
4000 6.44 1.82

4.2. Fixed Difficulty Adjustment Interval

The difficulty adjustment interval was fixed at 2016 blocks, and the block interval
started at 600 s but was optimized by the GA within a range from 1 to 600 s. As shown in
Table 8, even lower values for Objective 1 and Objective 2 were obtained than in the two
previous simulations. The decreases were 80.10% and 92.29%, respectively, compared to
when GA was not applied. An identical occurrence was observed in this scenario where,
for all the 20 iterations, the block interval was optimized to 78 s after the first GA run.
Throughout the simulations, the minimum block interval was 4 s while the maximum was
152 s. We observed that the GA seemed to favor a lower block interval, mainly due to the
objectives. A lower block interval reduced the mean of the actual time it takes to mine
a block, while lowering the standard deviation. In addition, since a lower difficulty was
required so that the desired actual time taken to mine a block could be reached, a lower
block interval caused the mean and standard deviation of the difficulty to decrease. A block
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interval of less than 10 s in the actual Bitcoin environment is implausible, since the median
block propagation time of Bitcoin was measured at 8.7 s [20].

It takes time for information from a freshly mined block to propagate from the miner
to the remaining nodes. A higher block interval can ensure that the newly mined block
is able to propagate to a majority of the nodes. Stale blocks are blocks that have been
mined but are no longer part of the longest chain. They occur when more than one miner
concurrently manages to mine a valid block. There is a temporary fork, where each node
in the network sees a separate block tip every time this event occurs. The stale block rate
increases when the block interval decreases [21], even more so if the block interval is lower
than the median block propagation time. The probability of the nodes generating a stale
block rises proportionally with the block interval and the time passed until a node in the
network learns of the new block. Based on a new analysis by Neudecker [22], the median
block propagation time in the real Bitcoin network has been reduced to less than 1 s for most
of the time, with enhancements to the block propagation time after the implementation of a
Bitcoin enhancement protocol (BIP) such as BIP 0152 in 2016. This does not mean, however,
that the block interval should be set to a very low value such as 1 s. For a block interval of
1 s, the difficulty is very low, and thus it is too easy for a miner to mine a block. Therefore,
this increases the likelihood of miners successfully mining a block concurrently, increasing
the numbers of stale blocks.

In this scenario, tMBP and rs were increased by approximately 6.4% and 495%, re-
spectively, compared to when the GA was not used. Nevertheless, we performed some
simulations with low block intervals and a fixed difficulty adjustment interval of 2016.
It was observed that the lower the block interval, the higher the value of rs, as shown
in Table 11. Moreover, with a block interval of 1 s, the value of rs obtained was a huge
1144.65%. This translated to approximately 11.4 stale blocks produced per mined block.
Interestingly, the tMBP was also affected by the block interval, increasing with an increasing
block interval. The obtained value of tMBP was highest when the block interval was 100 s.

Table 11. Effect of block interval on tMBP and rs.

Block Interval (s) tMBP (s) rs (%)

1 6.59 × 10−3 1144.65
10 4.05 119.00
100 7.15 11.28
300 6.59 3.88

4.3. Variable Block and Difficulty Adjustment Intervals

In Scenario 4, Objectives 1 and 2 achieved a decrease of 79.33% (102.75 vs. 497.1)
and 89.89% (2.86 × 1014 vs. 2.83 × 1015), respectively. For the block interval and diffi-
culty adjustment interval, the range of applied values was 1 s to 190 s and 5 blocks to
4027 blocks, respectively. In contrast, the tMBP value increased slightly by 9.6%, from 6.40 s
to 7.02 s. However, rs increased significantly from 1.12% to 32.04%, which was an increase
of 2760.71%.

The huge increase in rs for Scenario 4 was due to the fact that the variable block
interval could be as low as 1 s. The increase in tMBP was believed to be due to the fact
that some available bandwidths were utilized to propagate stale blocks, thus causing a
slight increase in the block propagation time. However, Objectives 1 and 2 for Scenario
4 increased by 3.89% and 31.19%, respectively, compared to Scenario 3. This was mainly
due to the recorded minimum value of 1 s for the block interval being even lower than the
block interval of 4 s for Scenario 3, where the GA was only able to optimize in terms of the
block interval, thus contributing to the higher value of rs.

Figures 12 and 13 show the recorded difficulty history for Default and Scenario
4. From Figure 12, without GA, the difficulty was unable to reach the expected value
before the mining ended, even after five difficulty adjustments. With GA (Figure 13), the
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blockchain was quicker to reach the intended difficulty, reaching it just after the third
difficulty adjustment, and it was comparatively stable.

Figure 12. Difficulty history (Default).

Figure 13. Difficulty history (Scenario 4).

4.4. Application Considerations

The average elapsed GA time (population size = 200 and maximum generation = 50)
was 165.74 s or 2.7 min during our simulations, with parallel processing enabled, using
10 threads out of a total of 16 threads. A rise in central processing unit (CPU) usage was
observed during this period, with a maximum of around 90% with an Intel Xeon E5-2650
v2 processor (2.6 GHz, 8 cores and 16 threads). If the GA was applied on an actual Bitcoin
blockchain network, the machines running the nodes may suffer some loss of processing
power, and this varies between different hardware specifications. One response is to detect
an anomaly or abnormality in the block time. When the average actual block time is greater
or smaller than a predetermined threshold, the GA runs in place of the default parameters.
Furthermore, to ensure consistency across all the nodes, the total actual time taken to mine
the previous N blocks is used as the determinant seed in the GA, otherwise, the nodes may
arrive at different parameters and state consensus would be lost.

Although lower standard deviations for average block time and difficulty were ob-
tained, increases in tMBP and rs were found. Although a stale block is not directly harmful
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and does not cause major problems on the network, there are a few ways in which it can
impact the network slightly, such as causing poor propagation of the network [23]. In
addition, double spending is one of the potential problems caused by stale blocks. On
27 January 2020, a USD 3 double-spend from a stale block occurred, which was the first
stale block found since 16 October 2019. Because of the low value involved, it was very
unlikely to be a targeted attack. In addition, the distributed aspect of a blockchain ensures
that the success of an attack depends on managing 51% of the network’s mining hash rate,
making these types of attacks nearly impossible. The growing rs also impacts tMBP, as
a certain bandwidth is lost when propagating stale blocks, thereby increasing the tMBP
whenever rs is high.

Moreover, the GA was observed to be tending towards a block interval that was as low
as possible. This was caused by a low block interval resulting in a low standard deviation of
the average block time, which was one of the objective functions. A low block interval such
as 1 s gives rise to a high rs, as time is needed to propagate the block. As seen in one study,
the longer the network propagation time, the more frequently miners were mining on top
of old blocks, hence increasing the stale block rate [24]. It is worth looking at defining a
new range for the optimization variables. Block intervals of 1 s or 2 s are not suggested,
and therefore these numbers might be removed from the range for better results. In order
to increase the GA’s performance, new optimization variables and goal functions may be
considered. For example, additional objective functions such as the block propagation
time and stale block rate allow the GA to produce better optimization by not focusing
solely on low block intervals and difficulty adjustment intervals (to obtain low average
block times and difficulties), as they should also decrease the median block propagation
time and stale block rate at the same time. However, this could also have an adverse
effect, as these objective functions may interfere with the original intention of optimizing
the block and difficulty adjustment intervals. On the other hand, decoupling the sliding
window from the difficulty adjustment interval for the optimization variables should assist
in improving the performance for low difficulty adjustment intervals. Alternatively, the
timing of when to activate the GA for optimization and alternative strategies to prevent the
GA from continuously optimizing could be examined. This will be the subject of future
investigation.

5. Conclusions

A GA was proposed as an optimization approach for the difficulty adjustment intervals
of a PoW blockchain. The aim of integrating the GA was to ensure that, by tuning the block
and difficulty intervals, the blockchain could respond quickly to any sudden occurrence
such as a large decrease or increase in hash rate. Using an evolutionary approach, the
GA was expected to evolve to identify suitable intervals for changing the difficulty rates,
in order to minimize the standard deviation of the average block time, defined as the
time to generate one block. The GA optimized two variables (block interval and difficulty
adjustment interval) based on the two objective functions (the standard deviations of
average block time and difficulty). The optimal combination of variables was chosen and
the new block mined was based on the new parameters.

The suggested difficulty adjustment technique aimed to be reliable enough to reduce
the standard deviation of difficulty variations, resulting in minimal volatility. The purpose
was to produce equal and consistent difficulty outputs from each chain in the network,
while keeping the computation simple. However, issues such as when to activate the GA
for optimization and how to prevent the GA from continuously optimizing could also
be investigated.
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Abstract: Coronavirus disease (COVID-19), which affects the whole world, continues to spread. This
disease has infected and killed millions of people worldwide. To limit the rate of spread of the
disease, early detection should be provided and then the infected person should be quarantined. This
paper proposes a Deep Learning-based application for early and accurate diagnosis of COVID-19.
Compared to other studies, this application’s biggest difference and contribution are that it uses Tree
Seed Algorithm (TSA)-optimized Artificial Neural Networks (ANN) to classify deep architectural
features. Previous studies generally use fully connected layers for end-to-end learning classification.
However, this study proves that even relatively simple AlexNet features can be classified more
accurately with the TSA-ANN structure. The proposed hybrid model provides diagnosis with 98.54%
accuracy for COVID-19 disease, which shows asymmetric distribution on Computed Tomography
(CT) images. As a result, it is shown that using the proposed classification strategy, the features of
end-to-end architectures can be classified more accurately.

Keywords: ANN; AlexNet; COVID-19; transfer learning; TSA

1. Introduction

The SARS-CoV-2 virus, which emerged in 2019, affected the whole world and is
still an ongoing problem all over the world [1,2]. Although it is proclaimed by the
World Health Organization (WHO) that the mortality rate of the virus is lower than
other coronaviruses, the high spread rate of the virus obligated the WHO to declare
the virus, also called COVID-19, as a pandemic on 11 March 2020 [3–5]. Due to the
contagious effect of COVID-19, curfews were imposed in many countries and social life
was restricted. Because of this restriction, people spent more time at home and used social
media platforms more intensively [6]. Worldwide, from 8 December 2020 to the present
(10 June 2022), more than 530 million people have been infected and 6.3 million deaths
have occurred due to COVID-19 [7]. Fever, dry cough, loss of appetite, and fatigue are
the most common symptoms of COVID-19. In some cases it is possible to encounter liver
injury, septic shock, and pneumonia [8].

The main diagnostic approaches in COVID-19 today are generally real-time Reverse
Transcription Polymerase Chain Reaction (rRT-PCR), chest Computed Tomography (CT)
imaging, X-ray imaging, etc. [9]. The rRT-PCR is a method that reveals the presence of a
specific genetic sequence in a pathogen which can be a virus. The most important advantage
of this method is the ability to create an almost instant result. Therefore, the rRT-PCR test
is the most-used diagnostic method to detect COVID-19 [10]. However, the percentage
of rRT-PCR positives in throat swab samples is reported as roughly 30–60% because of
limitations in sample collection, kit performance and transportation [11,12].

The most common alternative to rRT-PCR is chest Computed Tomography (CT) imag-
ing. CT images of different angles of the chest area are used for COVID-19 diagnosis. This
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method has better sensitivity in COVID-19 diagnosis than rRT-PCR tests [9,12]. Unlike the
rRT-PCR test, CT imaging does not need any extra equipment over hospital equipment.
Although the CT imaging method has many advantages as mentioned above, the main
disadvantage of the CT imaging method is that professional personnel are required for
the interpretation of CT images [13]. Although this need can be easily met under normal
conditions, the heavy workload of specialist doctors can cause problems in pandemic
conditions. All healthcare professionals are also under a heavy workload, as the COVID-19
pandemic is causing significant constraints on healthcare systems around the world [14].

Recently, Artificial Intelligence (AI), which represents a symmetrical imitation of
the human brain, is becoming more capable in many areas including medical imaging
tasks such as CT imaging, MR imaging, and X-ray imaging [13]. In literature, AI has
been employed for various tasks such as bone age determination, COVID-19 diagnosis,
abnormal problems in the chest or tuberculosis detection etc. [15–17]. Deep Learning (DL),
which is the trend application of artificial intelligence today, is now successfully used in
many medical diagnostic applications due to the huge amount of data available. One of
the most important features of DL is that it processes big data efficiently. It also eliminates
the need to manually extract image features. In this respect, it provides superiority to
Machine Learning (ML) methods such as Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). In DL, hierarchical feature extraction is performed by deriving
high-level features from lower-level features.

Researchers have conducted numerous studies in the past to diagnose COVID-19
based on Convolutional Neural Networks (CNN) to take advantage of DL. Most of these
works use popular CNN architectures such as AlexNet, ResNet, Xception, etc. Wu et al. [18]
presented a ResNet50 architecture-based algorithm to identify COVID-19 patients, and
their accuracy rate was 76%. Ardakani et al. [19] presented a DL-based application using
CT scan images to diagnose COVID-19. They benchmarked different CNN models trained
on CT scan images with each other, and finally calculated that ResNet-101 and Xception
models had 99.51% and 99.02% accuracy rates, respectively. These models had better accu-
racy than the other CNN models. Jaiswal et al. [20] developed a transfer learning-based
application using the pre-trained Densenet 201 architecture. This CNN module classified
COVID-19 and non-COVID-19 data with 96.21% accuracy. Wang et al. [21] stated that
a clinical diagnosis can be achieved before pathogenic testing with AI techniques, and
in this context, they conducted a study that analyzed changes in CT images of infected
patients. For this, they modified the pre-trained Inception model. The overall accuracy
was 89.66%. Sethy and Behera [22] extracted features using a large number of different
pre-trained CNN models such as ResNet50, ResNet101, InceptionV3, GoogleNet, and
VGG16. The authors then provided the classification with SVM. They stated that the
ResNet-SVM structure provides high accuracy of 95.33%. Deng et al. [23] used five CNN
models, including Xception, ResNet50, etc., to diagnose COVID-19 from chest X-ray and
CT images. They achieved accuracies of 84% and 75% for Chest X-ray and CT scan im-
ages, respectively. Narin et al. [24] used CNN models, ResNet50, Inception-ResNetV2,
InceptionV3, ResNet152, and ResNet101 for diagnosis of COVID-19-infected patients
using chest X-ray images. The ResNet50 model gave the most successful classification ac-
curacy according to the performance values obtained using five-fold cross-validation.
Aslan et al. [13] performed a novel hybrid model to classify chest X-ray images as
COVID-19, Viral Pneumonia, or Normal. For hybrid architecture, they combined modified
AlexNet and Bidirectional Long Short-Term Memory (BiLSTM). At the end of the study,
the authors stated that the hybrid architecture achieved 98.702% classification success.
Mukherjee et al. [25] designed a CNN—tailored Deep Neural Network (DNN) that can
collectively train and test both CT scans and chest X-ray images. In practice, the authors
provided an overall accuracy of 96.28%. Aslan et al. [26] first performed lung segmenta-
tion with ANN for the detection of COVID-19 with CT images. They classified features
extracted from segmented lung images with deep CNN models using different machine
learning methods. They determined the parameters of each machine learning model
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by hyperparameter optimization. At the end of the study, the authors stated that the
highest accuracy was obtained with the DenseNet201-SVM structure, with an accuracy
of 96.29%. Serte et al. [27] used a generative adversarial network (GAN) in addition to
data augmentation to increase the number of CT samples in a small dataset. They then
fed the images generated with data augmentation and GAN into different CNN models
and performed COVID-19 detection. At the end of the study, 89% diagnostic accuracy
was achieved.

It is possible to observe that previously made DL-based methods often have high
classification success in detecting COVID-19. These studies are promising in terms of
early COVID-19 detection, but many hyperparameters which belong to the DL network
may increase also the success rate of the detection of infection. In literature, Artificial Bee
Colony (ABC) [28], Bayesian Optimization [29], Tree Seed Algorithm (TSA) [30], and other
optimization methods are used in various fields. These optimization techniques can tune
hyperparameters in the deep network for a stronger prediction. However, for the detection
of COVID-19, few studies have used optimization methods to improve current success.
Ucar and Korkmaz [31] used Bayesian optimization to fine-tune the hyperparameters of
the SqueezeNet CNN architecture, and as a result, they achieved a classification success of
98.3%. Nour et al. [32] designed a CNN model with five convolution layers for COVID-19
diagnosis. The deep-network features obtained with this CNN model were used to feed the
ML algorithms, the k-nearest neighbor, SVM, and decision tree. The hyperparameters of
the ML methods have been optimized using the Bayes optimization algorithm. As a result,
the highest classification accuracy of 98.97% was obtained with SVM. Elaziz et al. [33]
applied a modified Bayesian optimization algorithm together with an ML for the selection
of useful features from CT images. Toğaçar et al. [34] used MobileNetV2 and SqueezeNet
architectures to detect COVID-19. The most effective features were determined with the
Social-Mimic Optimization method. Then, the features were fused and classified with the
SVM algorithm, and their accuracy rate was 99.27%.

In this study, a DL-based COVID-19 detection system using CT-scans is proposed. A
publicly available SARS-CoV-2 CT scan dataset [35,36] is used in this study. The dataset
includes 1230 and 1252 CT scans of uninfected and infected patients, respectively. The
application of COVID-19 detection can be addressed in two steps. The first step performs
feature extraction and classification by modifying the pre-designed AlexNet architecture,
as in many previous studies. The second step gives the extracted features to the optimized
ANN classifier to improve the results in the first step. The ANN is trained by Tree Seed
Algorithm (TSA) optimization method. In order to determine the best structure, various
transfer functions and hidden layer neuron numbers are examined. The results prove that
optimized ANN increases classification success.

The contributions of this study are listed as follows:

• A high-accuracy diagnosis of COVID-19 has been performed automatically.
• To improve the classification performance of end-to-end architectures, ANN is applied

instead of fully connected layers.
• For a high classification performance, ANN is optimized by the TSA method.
• The proposed method can increase the diagnostic accuracy of previous studies using

the CNN model.
• The applied experimental work outperforms many previous studies.

The remainder of the paper is organized as follows. In Section 2, the dataset and
suggested methods are explained in detail. Section 3 contains the results of the proposed
method. Section 4 discusses the proposed method and makes comparisons with previous
studies. Finally, Section 5 concludes the work overall and provides information about
future work.

2. Materials and Methods

This section provides detailed information about the dataset, TSA optimization,
mAlexNet architecture, and the proposed hybrid model.
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2.1. SARS-CoV-2 Ct-Scan Dataset

In this study, a publicly available dataset called SARS-CoV-2 Ct-Scan Dataset [35,36]
is used due to having large numbers of data and the ability to compare previous studies
done with this dataset. Five researchers from Lancaster University United Kingdom
and Public Hospital of the Government Employees of Sao Paulo created this dataset
with 1252 infected patients’ CT scans and 1230 uninfected patients’ CT scans in May
2020. There are a totally of 2482 CT scans in the dataset. The data in this dataset were
generated by collecting asymmetrical CT scans of real patients in hospitals in Sao Paulo,
Brazil. CT scans of two patients with positive and negative diagnosis of COVID-19 are
shown in Figure 1.

  
(a) (b) 

Figure 1. Positive and negative images in the SARS-CoV-2 Ct-Scan dataset. (a) CT scan of a patient
infected with COVID-19; (b) CT scan of a patient not infected with COVID-19.

2.2. The Tree Seed Algorithm (TSA)

The TSA algorithm is based on natural phenomena between trees and their spread
seeds. The land where trees are grown is assumed as search space. Each tree is a solution
candidate for the problem to be optimized. The seeds are produced by the trees in order
to grow a new tree, which is going to be a candidate for the solution of the problem.
The purpose of the optimization process is to generate new coordinates of the seeds
using the available information. Two equations used for this purpose are presented in
Equations (1) and (2) [30].

Sij = Tij+ ∝ij ×
(

Bj − Trj
)

(1)

Sij = Tij+ ∝ij ×
(
Tij − Trj

)
(2)

In Equations (1) and (2), Sij represents the jth dimension of ith seed and Tij is the jth
dimension of the ith tree. Bj is the jth dimension of the best tree ever found. Trj is the
jth dimension of the rth tree, which is randomly selected from the population. ∝ is the
scaling factor which is randomly produced between 1 and −1. In seed production, two
equations are presented, thus there has to be a criterion that determines which equation
will be used. This is controlled by the search tendency (ST) parameters in the range of 0
to 1. While the higher value of ST makes the algorithm condense on local solutions, the
lower ST value forces it to make a global search. Although the number of seeds produced
by a single tree was completely random, TSA’s performance analysis determined that TSA
performed best when the number of seeds produced by each tree was between 10% and
25% of the population size [30].

In the initial of the algorithm, the optimization parameters are created randomly in a
range of specific upper and lower bounds for each parameter. Then, for each dimension
of each seed of each tree in the population, Equation (1) or Equation (2) is randomly
applied and new seeds are created. The termination criteria are checked each iteration.
These criteria may be the number of iteration limits, error threshold or no change in error,
etc. When termination criteria are met, the best result in the population is reported. The
flowchart of TSA is presented in Figure 2.
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Figure 2. Flow diagram of Tree Seed Algorithm.

2.3. Proposed mAlexNet Architecture

Due to the high performance of CNNs in various image recognition applications,
they are highly preferred [37,38]. In this study, to classify the CT-scan images, a modified
AlexNet (mAlexNet) created by using transfer learning is used. AlexNet is made up of
25 layers together with a convolution layer, Rectified Linear Unit (ReLU), fully connected
(fc) layer, normalization layer, pooling layer, etc. The three layers at the end of the AlexNet
model have been slightly modified (fine-tuning) to be compatible with existing study inputs.
In order to distinguish whether a CT image shows COVID-19 or not, these final three layers
are removed. Other parameters of the pre-trained AlexNet architecture are retained. Instead
of the removed layers, new layers suitable for this study are added, as in Figure 3. This
new architecture is called the modified AlexNet (mAlexNet). In the fc8 layer of pre-trained
AlexNet, the number of the neurons is 1000. The number of features used for classification
in our application is 25. Therefore, the number of neurons in the fc8 layer is changed to
25 in the mAlexNet architecture. In Figure 3, the mAlexNet structure is presented. Table 1
shows the layer parameters and training options of mAlexNet. When the training options
are examined, it can be realized that the Mini Batch parameter, which provides the training
data to be divided into smaller parts, is 40. The optimization algorithm Stochastic Gradient
Descent with Momentum (SGDM) is applied to reduce the training error. Parameters of the
SGDM algorithm are also shown in Table 1.

θl+1 = θl − α∇E(θl) + γ(θl − θl−1) (3)

419



Symmetry 2022, 14, 1310

 
Figure 3. mAlexnet model.

Table 1. mAlexnet layer parameters and training options.

Layer Name Size Filter Size Stride Padding Output Channel Activation Function

conv1 55 × 55 11 × 11 4 0 96 relu
maxpool1 27 × 27 3 × 3 2 0 96 -

conv2 27 × 27 5 × 5 1 2 256 relu
maxpool2 13 × 13 3 × 3 2 0 256 -

conv3 13 × 13 3 × 3 1 1 384 relu
conv4 13 × 13 3 × 3 1 1 384 relu
conv5 13 × 13 3 × 3 1 1 256 relu

maxpool5 6 × 6 3 × 3 2 0 256 -
fc6 - - - - 4096 relu
fc7 - - - - 4096 relu
fc8 - - - - 25 relu
fc9 - - - - 2 softmax

Training Options

Optimization Alg. Maximum Epoch Mini Batch Size Initial Learning Rate (α) Momentum (γ)

SGDM 25 40 0.001 0.95

With SGDM, the weights of the network are updated according to the estimation error.
Equation (3) is used to update the weights. With this equation, the weights are updated
according to the loss function (E(θl)). In order for the error value to decrease after each
update, the loss function is moved in the direction of the negative gradient. The speed of
this movement depends on the learning rate (α). The contribution of the current weight
value to the weight value in the previous iteration is determined by the Momentum (γ)
coefficient. The values of α and γ parameters in Equation (3) are shown in Table 1.

2.4. Proposed TSA-ANN Model

This section discusses the classification of mAlexNet features using TSA-optimized
ANN (TSA-ANN). The mAlexNet architecture described in the previous section is com-
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bined with the TSA-ANN structure as in Figure 4. 25; features extracted via mAlexNet are
given to the TSA-ANN structure for classification.

bias weightbias weight

bias

weight

Figure 4. mAlexNet—TSA-ANN model.

The proposed ANN modsel consists of an input layer, two hidden layers, and an
output layer. In the input layer, there are 25 neurons. It is also the same as the size of the
input features. The number of neurons in both hidden layers is determined to be five by
the trial and error method. The output layer has a single neuron.

The activation functions used in the neural network are Hyperbolic Tangent Sigmoid
and Logarithmic Sigmoid functions. Since the range of the output layer is [0 1], the
activation function of the output layer is determined to be a Logarithmic Sigmoid function.
The activation functions of hidden layers are determined to be Hyperbolic Tangent Sigmoid
functions by the trial and error method. The Logarithmic Sigmoid and Hyperbolic Tangent
Sigmoid functions are presented in Equations (4) and (5), respectively.

AF(x) =
1

1 + e−x = logsig(x) (4)

AF(x) =
ex − e−x

ex + e−x = tansig(x) (5)

421



Symmetry 2022, 14, 1310

The applied input data are transferred to each neuron in the first hidden layer by
multiplying the corresponded coefficient W(k,i,j). The (k, i, j) indexes indicate the connection
coefficient in the kth layer, between ith data and jth neuron. For each neuron, there
is also a bias value represented by B(k,j) symbol. Then, the sum all of the inputs to a
neuron is applied to an Activation Function (AF). The result of this function is the value
of the neuron. This value of the jth neuron in the kth layer V(k,j) can be calculated by the
following formula:

V(k,j) = AF

(
Nk−1

∑
i=1

V(k−1,i)W(k,i,j) + B(k,j)

)
(6)

where the Nk−1 is the number of neurons in the (k − 1)th layer. As seen from the formula,
in each layer, there are Nk−1 ∗ Nk W parameters and Nk B parameters. Thus, the total
number of parameters that need to be optimized is (Nk−1 + 1) ∗ Nk. In Table 2, the number
of neurons, activation functions, and parameter count of each layer are presented.

Table 2. Neural network properties.

Layers Number of Neurons Activation Function Parameter Count

Layer 1 (Input Layer) 25 - -
Layer 2 (1st Hidden Layer) 5 Hyperbolic Tangent Sigmoid 130
Layer 3 (2st Hidden Layer) 5 Hyperbolic Tangent Sigmoid 30

Layer 4 (Output Layer) 1 Logarithmic Sigmoid 6

As presented in Table 2, the weight and bias values of each layer after the input layer
of the ANN are optimized with TSA. This optimization process can be thought of as the
training phase of the network. For example, 25 × 5 + 5 = 130 parameters for Layer 2,
5 × 5 + 5 = 30 parameters for Layer 3 and 5 × 1 + 1 = 6 parameters for the output layer
should be optimized. This optimization process aims to minimize the error value. Therefore,
the objective function is related to the error between the target value and the predicted
value. A total of 166 network parameters need to be optimized for the training of the
network. During this period, the training dataset is used. The Mean Absolute Error (MAE)
(see Equation (7)) for the training dataset generated by the ANN with network parameters
is used as the objective function of TSA optimization. The n, y, and ŷ in Equation (7)
represent the number of data, the actual output value, and the estimated output value,
respectively. During the optimization, the error value is reduced in each iteration. After
the optimization is completed, the ANN is updated with the determined parameters. This
ANN is called a trained ANN from now on. The performance of the trained ANN is
determined by using a test dataset. These results are presented in detail in Section 3.

MAE =
1
n ∑|y − ŷ| (7)

3. Results

The performance of both architectures expressed above is calculated by using a test
dataset. Both architectures are created with the architectural parameters specified in Table 1.
Training and testing of the methods developed within the scope of this application are
carried out on a laptop computer with Intel Core i7-7700HG CPU, NVIDIA GeForce GTX
1050 4 GB, 16 GB RAM. Firstly, 80% of the COVID-19 dataset is used in the training of
the mAlexNet structure in Figure 3. The training graph is successfully obtained as seen
in Figure 5. Then, the performance of mAlexNet is tested with the remaining 20% of the
dataset, called the test dataset.
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Figure 5. Training graphics of mAlexNet model.

Figure 6 shows the confusion matrix of mAlexNet and TSA-ANN implementations.
Figure 6a is the confusion matrix obtained by classifying test data with mAlexNet. Figure 6b
is the confusion matrix obtained as a result of the application that enables classification of
mAlexNet features with the optimized ANN (TSA-ANN) structure. The parameters used
for the optimization algorithm in the TSA-ANN application are as follows: population size:
50, number of iterations: 1000, and search tendency: 0.1. When both confusion matrices are
examined, it is seen that COVID-19 infected scans with asymmetrical patterns are more
successfully diagnosed with the TSA-ANN structure. Additionally, various performance
metrics such as accuracy, specificity, MCC, F1-score, recall, and precision are calculated and
presented. For each metric, formulations are given between Equations (8)–(13) [13,39,40].
These metrics prove the robustness and unbiasedness of the classification performance
obtained as a result of the proposed method. Table 3 shows the results for these performance
metrics. According to Table 3, both applications are successful in detecting COVID-19
infection using CT scans. But the performance of the hybrid TSA-ANN added mAlexNet
model is better than the single mAlexNet structure in terms of accuracy. The accuracy rates
of models are 97.92% and 98.54% for mAlexNet and mAlexNet + TSA-ANN, respectively.
Additionally, Precision, Sensitivity, F1-Score, MCC, and Specificity indicators are also better
in hybrid architecture, as seen in Table 3. It is possible to conclude that deep architecture
using the TSA-ANN classification has better performance and unbiased classification.

Accuracy =
tp + tn

tp + f p + tn + f n
× 100 (8)

Sensitivity =
tp

tp + f n
(9)

Specificity =
tn

tn + f p
(10)

Precision =
tp

tp + f p
(11)

F1-score =
2tp

2tp + f p + f n
(12)
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MCC =
(tp ∗ tn)− ( f n ∗ f p)√

(tp + f n) ∗ (tn + f p) ∗ (tp + f p) ∗ (tn + f n)
(13)

tp: True Positive
tn: True Negative
f p: False Positive
f n: False Negative

(a) (b) 

Figure 6. Confusion matrices of proposed models. (a) mAlexNet; (b) mAlexNet + TSA-ANN.

Table 3. Performance metrics of the proposed models.

Model Accuracy Sensitivity Specificity Precision F1-Score MCC

mAlexNet 97.92 0.9820 0.9768 0.9732 0.9776 0.9582
mAlexNet + TSA-ANN 98.54 0.9775 0.9923 0.9909 0.9841 0.9708

To prove the robustness of the proposed method, the same application is also per-
formed on a different dataset. For this, the COVID-19 Radiology database [17] is preferred.
Only the COVID-19 and Normal classes in this dataset are used. However, the data num-
bers in this dataset are unbalanced. The number of COVID-19 classes is 219, while the
Normal (non-COVID) class number is 1341. Therefore, first, data augmentation is applied
for the class with few data, resulting in a total number of images of 2436. 80% of all data is
allocated as training and 20% as testing. Figure 7 shows the confusion matrices obtained
after applying the proposed method on the COVID-19 Radiology database. Figure 7a is
provided by mAlexNet and average accuracy is 99.38%. Figure 7b is provided by mAlexNet-
TSA-ANN with an average accuracy of 99.59%. The results show that the proposed method
is also effective in different datasets.
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Figure 7. Confusion matrices of proposed models on COVID-19 Radiology database. (a) mAlexNet;
(b) mAlexNet + TSA-ANN.
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4. Discussion

Many DL-based diagnostic methods developed so far have directly used CNN models.
However, different techniques can be used to improve the performance obtained with
a CNN model. The aim of this study is to show that the mAlexNet–TSA-ANN hybrid
structure is highly effective in detecting COVID-19. Moreover, this experiment was imple-
mented on AlexNet, which is simpler than other CNN models. The results showed that
even a fine-tuned AlexNet (mAlexNet) combined with the TSA-ANN method outperforms
many studies. Some of the previous studies suggesting different DL-based methods are
shown in Table 4. According to Table 4, it is seen that the proposed mAlexNet–TSA-ANN
structure is superior to previous studies using the same dataset.

Table 4. Benchmarking of the proposed mAlexNet-TSA-ANN with previous studies.

Study Method Accuracy (%)

Soares et al. [41] xDNN 97.38%
Özkaya et al. [42] CNN + SVM 94.03%
Tetila et al. [43] Inception-Resnet-v2 98.4%

Panwar et al. [44] Color Visualization (Grad-CAM) 95%
Wang et al. [45] Contrastive Learning 90.83 ± 0.93

Jaiswal et al. [20] DenseNet201 96.25%
Öztürk et al. [46] WOA-MLP 88.06%
Silva et al. [47] EfficientNet 98.50%

Yazdani et al. [48] Attentional Convolutional Network 92%
Proposed approach mAlexNet—TSA-ANN 98.54%

Although the proposed method is superior to previous studies in terms of accuracy, it
has some limitations. The most important limitation is that the developed optimization
approach slows down the training process of the network. Only the mAlexNet structure
realizes faster training. Another limitation is that the TSA optimization method used also
needs parameter optimization. In addition, the results obtained are valid only for the
datasets used. Its success on other different datasets is unpredictable. For a general success,
a study should be done that includes all different datasets.

5. Conclusions

Early detection of COVID-19 disease is crucial due to the high rate of spread among
humans. This study uses computed tomography (CT) images to quickly and accurately
diagnose COVID-19. Both proposed models include the AlexNet architecture. In the
first model, mAlexNet architecture is created and classification is performed. In the
second model, 25 features extracted from each image with mAlexNet are given to the
TSA-optimized ANN for classification. The different aspect of this study compared to other
studies is the use of the TSA-ANN-based hybrid model. The high accuracy achieved with
the hybrid architecture shows that the model is a powerful classifier. By feeding the trained
hybrid architecture with CT images, COVID-19 can be detected quickly. In future studies,
to increase the success of the system, the lungs will be determined from the CT images by
applying semantic segmentation. Then, the number of images will be increased with the
obtained lung images through data enhancement methods. It is planned to achieve higher
accuracy by testing different architectures with these images.
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34. Toğaçar, M.; Ergen, B.; Cömert, Z. COVID-19 detection using deep learning models to exploit Social Mimic Optimization and

structured chest X-ray images using fuzzy color and stacking approaches. Comput. Biol. Med. 2020, 121, 103805. [CrossRef]
[PubMed]

35. Angelov, P.; Almeida Soares, E. SARS-CoV-2 CT-Scan Dataset. Available online: https://www.kaggle.com/plameneduardo/
sarscov2-ctscan-dataset (accessed on 10 June 2022).

36. Angelov, P.; Almeida Soares, E. Explainable-by-Design Approach for COVID-19 Classification via CT-Scan. medRxiv 2020.
Available online: https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v1 (accessed on 10 June 2022).

37. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

38. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
39. Aslan, M.F.; Sabanci, K.; Durdu, A. A CNN-based novel solution for determining the survival status of heart failure patients with

clinical record data: Numeric to image. Biomed. Signal Process. Control 2021, 68, 102716. [CrossRef]
40. Sabanci, K.; Aslan, M.F.; Ropelewska, E.; Unlersen, M.F. A convolutional neural network-based comparative study for pepper seed

classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2021, 45, e13955. [CrossRef]
41. Soares, E.; Angelov, P.; Biaso, S.; Froes, M.H.; Abe, D.K. SARS-CoV-2 CT-Scan Dataset: A Large Dataset of Real Patients CT Scans for

SARS-CoV-2 Identification. medRxiv 2020. Available online: https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3
(accessed on 10 June 2022).
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Abstract: The introduction and ever-growing size of the transformer deep-learning architecture have
had a tremendous impact not only in the field of natural language processing but also in other fields.
The transformer-based language models have contributed to a renewed interest in commonsense
knowledge due to the abilities of deep learning models. Recent literature has focused on analyzing
commonsense embedded within the pre-trained parameters of these models and embedding missing
commonsense using knowledge graphs and fine-tuning. We base our current work on the empirically
proven language understanding of very large transformer-based language models to expand a limited
commonsense knowledge graph, initially generated only on visual data. The few-shot-prompted
pre-trained language models can learn the context of an initial knowledge graph with less bias
than language models fine-tuned on a large initial corpus. It is also shown that these models can
offer new concepts that are added to the vision-based knowledge graph. This two-step approach
of vision mining and language model prompts results in the auto-generation of a commonsense
knowledge graph well equipped with physical commonsense, which is human commonsense gained
by interacting with the physical world. To prompt the language models, we adapted the chain-
of-thought method of prompting. To the best of our knowledge, it is a novel contribution to the
domain of the generation of commonsense knowledge, which can result in a five-fold cost reduction
compared to the state-of-the-art. Another contribution is assigning fuzzy linguistic terms to the
generated triples. The process is end to end in the context of knowledge graphs. It means the triples
are verbalized to natural language, and after being processed, the results are converted back to triples
and added to the commonsense knowledge graph.

Keywords: commonsense; knowledge graph; linguistic terms; language models; deep learning

1. Introduction

There has been a renewed interest in commonsense as a stepping stone toward achiev-
ing human-level intelligence. Some of the new research has shown how important com-
monsense knowledge graphs can be in training artificial intelligence (AI) models, which
exhibit commonsense [1,2].

Commonsensical concepts should be symmetric to any changes in their representation.
In the case of an ideal commonsense knowledge graph and an ideal language model,
transforming concepts between the two representations of knowledge should not change
their meaning. By an ideal language model, we mean a language model that is sufficiently
large and capable that can understand language and all the concepts within. At the same
time, an ideal commonsense knowledge graph is a knowledge graph that contains all
correct commonsensical concepts.

The knowledge-symmetric transformation depends on the architecture of the language
model and the knowledge graph, both of which are not ideal. These issues make deriving a
transformation process that symmetrically maps knowledge from one to the other challeng-
ing and impractical. To compensate for this, we introduce a prompting methodology based
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on questions and answers to extract from the language model the knowledge missing in
the knowledge graph. In that way, the symmetry of concepts is preserved by mapping
them between two knowledge storage paradigms.

The main building blocks of knowledge graphs used to represent commonsense
knowledge are subjects, predicates, and objects. Subjects and objects are other words for
the nodes of the graph. The tail of a relationship is called an object, and the head is called a
subject. The directed edge connecting the two is called a predicate. Knowledge graphs are
directed heterogeneous graphs in some sense.

Artificial intelligence (AI) models are reported to have limited commonsense abili-
ties [3,4]. Acquiring commonsense by AI systems can make the sample efficient in adapting
to new environments, as proposed in [5]. Commonsense knowledge graphs can help AI
systems both explicitly and implicitly: explicitly by querying the commonsense knowl-
edge graph itself, or implicitly by knowledge transfer methods, such as the fine-tuning of
language models as reported in [1]. This is similar to how a BERT model is fine-tuned on
a SQuAD dataset for reading comprehension [6]. In addition, expressing commonsense
knowledge in the symbolic format can help with commonsense knowledge explainability
and the vetting process.

Using only vision to generate commonsense knowledge as proposed in [7,8] has
its advantages and disadvantages. By processing images and videos, we can perceive
visual cues that are not usually written or spoken about, but they make our common
understanding of how physical entities exist and interact. On the other hand, fine-tuned
vision-based deep learning models are limited to the concept and relation vocabulary that
they are trained on, which is usually limited, and are not usually capable of understanding
the intricacies of natural language. An ideal self-supervised vision model, which can absorb
and learn all the visual interactions, could theoretically suffice. However, the current vision
models have shortcomings that we believe can be addressed via the utilization of language
models. For example, scene graph generation models are limited regarding the number of
detected relationship types. Increasing the number of relationship types does not provide a
satisfying solution, as there is still a bias toward the frequently seen relationships in the
supervised training [9].

In this paper, we explore and use the extra knowledge that language models offer to
expand on the limited auto-generated vision-based commonsense knowledge graphs. We
chose to use few-shot learning in larger transformer-architecture-based language models,
as larger models have shown to perform well on language benchmarks without requiring
further fine-tuning on a specific task. We experiment with not only adding new concepts to
the vision-based commonsense knowledge graph but also new types of relationships with
fuzzy-style linguistic weights.

1.1. Commonsense Definition

Having a good definition of commonsense is imperative to better understand and
discuss the work and results. Commonsense is simple, as almost everyone knows it, and is
challenging, as no one often talks or writes about it.

Yann LeCun, an inventor of convolutional neural networks, believes that a collection
of models of the world that represents what is likely, plausible, or impossible makes our
commonsense [3]. John McCarthy classifies human commonsense into two categories
of knowledge and ability. The commonsense ability is the action based on the gained
commonsense knowledge [10].

Commonsense knowledge is inherently uncertain and context-dependent. The degree
of correctness of commonsense knowledge depends on the common group of observers.
For instance, the people who live in the northern hemisphere know July to be a hot summer
month, while the people in the southern hemisphere observe it as a colder winter month.

Commonsense can also be classified into different topics, such as physical interactions,
order of events, and social dynamics. In this paper, we mainly focus on physical common-
sense, such as the usage of an object and its relative location, compared to other objects.
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In a nutshell, commonsense knowledge graphs are graphs that represent facts and
relations between them that are characteristic of real-world scenarios and situations. Such
graphs focus on elements and aspects related to everyday activities, arrangements of things,
and normal/natural circumstances, such as flower in vase, tree has trunk, food on plate, shoe is
less likely made of metal, or arm is most likely to be able to move, bend and be strong.

Such facts seem very obvious and normal/natural for a human being, but this knowl-
edge is not easy to be acquired by a machine. The gap in the processes of learning that type
of information is filled out by techniques and methods linked to collecting and representing
commonsense knowledge.

1.2. Contributions

The goal is to utilize transformer-based language models to expand vision-based com-
monsense knowledge graphs. In this paper, we propose an extension of the methodology
for constructing a commonsense knowledge graph proposed in [7,8] with a technique based
on questions and answers prompting very large language models. The new technique ad-
dresses generating prompts that are used as inputs to the language models. First, a prompt
is entered into the model. Then, the obtained response that contains facts/information is
added to expand a knowledge graph. The method is illustrated in Figure 1.

LANGUAGE 
MODEL

Commonsense
Knowledge Graph

interaction
with 

Language 
Model

generation
of new
triples

Expanded
Commonsense

Knowledge Graph

Figure 1. Expansion of a vision-based commonsense knowledge graph with relevant but new information.

In particular, the contributions of the paper are as follows:

• A multi-modal methodology for constructing commonsense knowledge graphs;
• A process of generating question/answer-based prompts for language models based

on triples extracted from an existing commonsense knowledge graph, or based on the
input from users;

• An expansion of the standard structure of knowledge graphs by introducing an
approach to add degrees of likeliness as indicators of the ‘strength’ of triples that are
added to commonsense knowledge graphs; the degrees are expressed with linguistic
terms , such as more likely, less likely;

• An evaluation process based on Amazon Mechanical Turk.

2. Related Work

The work presented in this paper falls into the category of tasks that focus on com-
pletion and expansion of a commonsense knowledge base. There is related literature that
addresses the methods and tools to achieve these goals.

2.1. Expansion of Knowledge Bases

The work presented in [11,12] focuses on link prediction between known entities
within a graph. These methods are not able to expand beyond the current conceptual
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knowledge in the graph. They are more suited toward finding possible relations between
currently known concepts.

Recent works have tried to use language models, especially transformers [13], to
achieve better results in the tasks of the completion and expansion of the knowledge base.
The authors of [14] use language models to construct knowledge graphs: they assume
to have a subject and object and then use the language model to predict an appropriate
relationship between them.

Ref. [15] indicates that using the next token prediction capability of pre-trained lan-
guage models, one can use them as a factual knowledge base, e.g., to find the birthplace of
a specific person. Among the language models analyzed, the largest transformer-based
language model, BERT-Large [16], performed better than others. This paper confirms the
overall consensus in the research community that the larger the language models become,
the more capable they become.

There has been recent works to train very large generic transformer-based language
models, such as GPT-3 by OpenAI [17], Meta’s OPT-175B [18], and Google’s PaLM [19].
There is a common consensus among all recent findings that larger language models can
potentially be more capable of performing diverse tasks. Additionally, they do not need
costly fine-tuning and data collection. Yet, providing appropriate prompts to language
models can be challenging.

Processes of generating prompts are a subject of recent research publications. Prompts
serve as input to large language models [20] and are used to reduce the amount of data
required for fine-tuning [21]. By prompt, we mean a set of tokens and a short text that
constitute the input to the model. Prompts could have different purposes, such as providing
context, tone, or a sample of expected responses. They are part of the few-shot-learning
process and are usually used instead of fine-tuning a language model. While prompts
benefit the overall performance, their design does not follow a specific rule. Some even
call the process ‘prompt engineering.’ Question and answering tasks are improved by
few-example prompts when using large language models [17]. Extra chain-of-thought
language prompts that contain reasoning steps are shown to improve more complex tasks
related to arithmetics and commonsense [20]. The chain-of-thought process helps find
missing parts of knowledge [22]. The work is similar to unsupervised data creation [23].
However, questions and answers used in this paper serve as prompts to foundation models.
They are not used directly on text for reading comprehension.

2.2. Construction and Expansion of Commonsense Knowledge

A body of literature [1,2] focuses on annotating commonsense knowledge graphs to
train language models for predicting commonsense information based on the given subject
and predicate. The human-annotated knowledge graphs are typically in the size of millions
and cover social interactions, events, and entity commonsense. The ATOMIC-COMET
work [1] is based on manually creating a commonsense knowledge graph. This graph
is used to train a small language model, such as GPT-2, on the human-annotated data.
Our approach is different. We focus on generating a commonsense knowledge graph
automatically rather than manually. The method comprises two phases, the first based
on vision and the second enriching the results using language. The manual generation of
commonsense knowledge graphs can become costly, as shown in [21]. Our approach seems
to be more similar to [2], where GPT-3 is utilized to generate commonsense knowledge
graphs. The proposed method is different in multiple ways. One is that we use a two-step
method, where the feed for GPT-3 is provided by visual data, while [2] uses human-
annotated data. Moreover, [2] only generates the most probable results, while we generate
both highly probable and less probable results. Our approach has a cost of roughly one-fifth
of the method described in [2] when considering the linguistic generation part and using
the same GPT-3 model size. The reduced cost is because our prompt method accommodates
the generation of N = 5 triples in one pass. Another difference is that [2] is proposed to
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only find an object given the subject and predicate, while our approach works in both ways
and can suggest an appropriate subject given the predicate and object.

Several papers have experimented with the new very large transformers, such as
GPT-3 [2]. This work focuses on prompting GPT-3 with some annotated commonsense
triples, then extracting GPT-3’s commonsense and adding it to a graph. It assumes pre-
defined predicates and does not explicitly discuss the weight of the triples. The process
takes subjects and predicates and uses causal language models to predict the most suitable
objects. The method we introduce in this paper can also predict the triples’ subjects.

It was discussed in [24,25] that training a model on commonsense knowledge base
completion (CKBC) task suffers from low-coverage training data. Therefore, training on
specific data results in the model’s over-fitting and reduces its performance on novel data.
Based on these observations, we focused our efforts on generically trained language models,
which are large enough to accommodate few-shot learning.

A few recent works report on generating knowledge graphs from visual data. As an
example, the NEIL method [26] extracts object relationships in images and results in 10,000
triples using 10 types of predicates.

One of the main physical commonsense knowledge graphs is ConceptNet [27]. As
much as it can be helpful and treated as a reference, it has some drawbacks that our work
can potentially resolve in the future. First, ConceptNet is mainly human annotated and
cannot be continuously and cost-effectively updated. Our work suggests a methodology
to continuously and automatically update the missing commonsense knowledge. Second,
ConceptNet has a limited predicate related to location–the vague AtLocation predicate. Our
method is able to enrich the commonsense knowledge with more fine-grained relations,
such as Above, Below, and others. Third, ConceptNet is limited in terms of its predicate
types, too. Our approach can enrich ConceptNet with new types of predicates, such as
NotIsA or CanEat. An essential weakness of ConceptNet is its lack of context. For example,
finding a desk in a classroom is more probable than in a bar. Our approach can potentially
expand and enrich ConceptNet with weighted contextual relations. Moreover, it can be
done automatically if part of ConceptNet is used as a seed commonsense knowledge graph.

3. Image-Based Construction of Commonsense Knowledge Graph

In our previous works, we introduced methodologies to generate a commonsense
knowledge graph, called world-perceiving knowledge graph (WpKG), by only using visual
data [7,8]. Like human infants who gain commonsense details about their physical world
before they learn to express them in language, the introduced process focuses on deducing
commonsense knowledge by observing many images.

The WpKG paper [7] introduces a methodology to auto-generate commonsense using
deep learning models to perform object detection and relation prediction. The final WpKG
graph has 7000 triples using 50 predicate and 150 entity types. [8] expands on the previous
work to generate contextual and weighted commonsense knowledge graph, C-WpKG, in
93 contexts using state-of-the-art object and relation detection models. In the following
sub-sections, we describe the process of reaching these results.

3.1. Extraction of Scene Graphs

The first step in the process is to analyze each image individually by detecting the
existing objects and extracting possible relations between the objects in the image. The
resulting graph representing objects in images as nodes and their relationships as edges is
called a scene graph.

A convolutional neural network (CNN) model, such as Faster-RCNN [28], is used
to detect the objects. To produce image features, ResNeXt-101-FPN CNN model [29] is
utilized, which is needed for the region proposal network (RPN) of the Faster-RCNN model.
The output of the pre-trained object detection model includes objects in the image, together
with their bounding boxes and class scores.
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To predict relations between the objects and generate a scene graph for each image,
the MOTIFS model [30] unbiased by the Causal-TDE method [9] is used. Then, the scene
graph for each image is generated based on the object features and relations between them.

3.2. Fusion of Scene Graphs

Regularly observed phenomena make up collective commonsense knowledge. Simi-
larly, we aggregate the scene graphs extracted from the images into a single knowledge
graph that comprises possible commonsense relations. To differentiate between relation-
ships to know if a phenomenon is a one-time event or a typical one, we assign weights to
the links representing the relations. Different methods of assigning weights to the observa-
tions are investigated. Among them, a probability-based approach is selected. It correlates
the most with human commonsense during human evaluations. This weight assignment
method follows Equation (1).

wti =
|DT |
∑
j=1

δ
(
ti, tj

)
· P(tj) (1)

where wti is a weight of the ti triple, δ(·) is Kronecker delta function, P(tj) represents the
probability of detecting each instance of triple tj, which is made of a subject (s), predicate
(p), and object (o). The weights are also normalized by max{wti : ti ∈ DT}. The list of all
detected triples is represented by DT .

Variations of the same method have been shown to work in context-free and contextual
scenarios. In this paper, we only focus on context-free visual commonsense knowledge.

4. Expanding Knowledge Graph Using Language Model

The automatic construction of commonsense knowledge graphs requires retrieving
commonsense knowledge. It seems natural—also for a human being—to start that process
by analyzing images and pictures representing real-world situations. Yet, to further increase
commonsense knowledge and expand knowledge graphs, other sources of information are
required and beneficial. One of them is verbal, textual information.

Therefore, to diversify information embedded in vision-based commonsense knowl-
edge graphs and further expand them, we propose a human-like method of assimilating
commonsense knowledge using linguistic-based data sources.

4.1. Methodology

The proposed method is intuitive and straightforward. It starts with interaction with a
language model using short texts created based on the commonsense knowledge graph to
be expanded. Then, the obtained results, i.e., the retrieved pieces of information and facts,
are added to the graph as triples. The overview of the process is illustrated in Figure 2. It
shows the WpKG as a graph from which some triples are extracted. The information from
these triples is used to instantiate prompt templates (Section 4.3) that represent training
data for a language model. The instantiated prompts are entered into the model. As a
result, the obtained pieces of information are converted into new triples. These new triples
are added to the WpKG, leading to its expansion.

4.2. Language Models

Larger language models, such as GPT-3, have shown promising results on diverse
benchmarks with only a few examples of each task. The results are sometimes even
comparable with smaller language models, which are fine-tuned on a large corpus of data.
Recent research has shown the usefulness and effectiveness of large language models
in automatic commonsense knowledge generation [2]. In this paper, we utilize different
versions of a large language model, called GPT-3 [17], to expand vision-based commonsense
knowledge graphs.
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Figure 2. Process of expanding a graph using language model.

GPT-3 is a causal language model with almost the same yet larger architecture as
previous iterations of the same model (GPT and GPT-2). The goal of a causal model is to
predict the next token given the previous tokens. The language model assigns a probability
to all the tokens to decide which one could happen next.

Choosing the highest probability next token may not be the best option, given the task.
In this paper, we use nucleus (top-p) sampling to generate the text responses [31] and also
adjust the temperature of the sampling to reach better results.

By reducing the temperature, we basically increase the likelihood of high-probability
next tokens and reduce the likelihood of low-probability next tokens. This setting results
in more deterministic next tokens to be chosen when selecting the next token randomly.
The temperature is implemented as a coefficient inside the softmax function. Empirically,
we observed that lower temperature works better for simpler cases, while the higher
temperature can work for more complex cases that need diverse results, e.g., finding objects
that are less likely to exist given a subject and a predicate.

In nucleus (top-p) sampling, instead of sampling from all the tokens, the algorithm
chooses from the set of tokens that their cumulative probability of occurrence next is smaller
than a given probability p. In our experiments, we keep the p value equal to one to choose
from the most diverse vocabulary possible.

4.3. Language Model Prompts

Retrieving information from GPT-3 involves prompting the model with a few exam-
ples that serve as a few-shot learning training data. The content and the structure of the
responses depend on these prompts. Therefore, experimentation with different prompts to
achieve the desired structure is necessary. Formally, the examples that define the structure
and content of an interaction with a language model are called prompts.

The purpose of a prompt is to ‘show’ the model how to interpret and respond to an
input text appended to the prompt, which in our case is a question. For example, one

435



Symmetry 2022, 14, 1715

wants to retrieve a piece of information about the most common items found on a table in a
conference room. In such a case, the following prompt is constructed and used:

prompt: Q: What can be found on table in bar? Name five.
A: bottle, class, cup, napkin, fork.
Q: What can be found on table in conference room? Name five.

GPT-3 response: paper, glass, laptop, phone, box.

This example is a simple explanation of the role of the prompt. As it can be seen, the
first part of the prompt—Q and A—is one-shot training data and ‘teaches’ the model that
for a type of question like Q, a proper response looks like A. After that, the ‘real’ question
Q: What can be found on table in conference room? is asked. Then, finally, the model responds
with five items it ‘thinks’ represents the most suitable response.

Sometimes, one example is not enough, and multiple examples need to be provided to
serve as few-shot learning training data. Empirically, we find that explaining the task and a
well-defined question format help the model respond better.

To achieve more accurate results, we also utilize the chain-of-thought prompting
method introduced in [20] for the fuzzy and the predicate expansion cases, described in
Sections 5.2 and 5.3, respectively. In each example answer in the prompt, we hand-craft
a reasoning that can help narrow down to the correct response. The model learns to
generate a similar pattern and, as a result, generates a reasoning before answering the
asked question.

5. Expansion of Commonsense Graph

To illustrate the benefits of using a language model for expanding the WpKG, we
extract information from GPT-3 to construct different triples. It shows how versatile the
interaction with the model can be and how different results are obtained. The presented
utilization of GPT-3 involves the following scenarios:

• Asking for subjects and objects for given relations using a basic prompt template;
• Asking for the most and least likely subjects and objects for given relations to construct

fuzzy triples;
• Asking for the most and least likely objects with novel relations given by a user.

Expanding the existing graph means ‘asking’ the language model to provide answers
that contain the most suitable pieces of information that are directly added to the graph
as nodes—subjects and objects—and relations that link the existing nodes to the newly
added ones.

The questions are prepared based on templates that are initialized with facts/information
obtained from the WpKG or from a user. Three sets of templates are constructed, one for
each type of defined-above scenarios.

5.1. Simple Triples

In the beginning, a straightforward scenario that involves adding simple triples, i.e.,
triples that are not associated with degrees of strength of relations between subjects and
objects, is presented. In such a case, GPT-3 is asked questions that result in retrieving from
the model facts that are interpreted as subjects or as objects. It means that the questions are
of the format 〈?s, relationX, objectX〉 when subjects are asked for, or 〈subjectX, relationX, ?o〉
when objects are asked for. The retrieved subjects and objects are added as triples with the
relationX to the WpKG.

In a nutshell, the process—for a single relationX—is as follows:

• Extract five triples with the relationX from the WpKG.
• Select randomly one triple from the set of five, say, triple k; it is used in the process

of customization of a prompt template for the relationX .
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– Extract a set of five most popular objects Objk fitting 〈subjectk, relationX, -〉
from the WpKG.

– Extract a set of five most popular subjects Subk fitting 〈 -, relationX, objectk〉
from the WpKG.

– Audit the instantiated prompt and make changes if necessary.

• For each extracted triple 〈subjecti, relationX, objecti〉:
– Put subjecti and relationX into the question template and append to the prompt.
– Put the prompt to the language model to initiate the text generation.
– Extract the five new objects ObjLM from the generated text.
– Add five new triples 〈subjecti, relationX, -〉 with objects from ObjLM to WpKG.
– Put relationX and objecti into the question template and append to the prompt.
– Put the prompt to the language model to initiate the text generation.
– Extract the five new subjects SubLM from the generated text.
– Add five new triples 〈-, relationi, objectX〉 with subjects from SubLM to WpKG.

As it is described above, the process of asking GPT-3 involves the instantiation of
prompt templates. For the simple triples case, the prompt templates for asking for both
objects and subjects are shown in Table 1. Following the aforementioned process, it can be
seen that the prompts are filled out with facts/information obtained originally from WpKG,
and the same initialization is used for prompting GPT-3 for all other objects or subjects
obtained from the randomly selected relationXs. Depending on the predicate relationX,
different variations of the prompt templates are created to result in meaningful questions
and answers.

Table 1. Sample template for simple triple.

SIMPLE_TEMPLATE_A for 〈subject〉
prompt: Answer with five items separated with comma.

Q: What is 〈relationX〉 〈objectk〉? Name five.
A: elements of Subk
Q: What is 〈relationX〉 〈objecti〉? Name five.

SIMPLE_TEMPLATE_B for 〈object〉
prompt: Answer with five items separated with comma.

Q: What 〈subjectk〉 can be 〈relationX〉? Name five.
A: elements of Objk
Q: What 〈subjecti〉 can be 〈relationX〉? Name five.

The templates from Table 1 are used with five different relations: behind, in, has, on,
and watching. The instantiated prompt templates, together with the results of querying
GPT-3 for the relation on, are shown in Table 2 for extracting subjects, and in Table 3 for
extracting objects.

It can be seen that, for example, selecting objectA = plate, we obtain the following triples:
〈food, on, plate〉, 〈drink, on, plate〉, 〈utensils, on, plate〉, 〈napkin, on, plate〉, and 〈tablecloth, on,
plate〉, Table 2. Similarly selecting subjectA = hair, we obtain the triples such as 〈hair, on,
head〉, 〈hair, on, beard〉, 〈hair, on, eyebrows〉, 〈hair, on, eyelashes〉, and 〈hair, on, pubic〉 (Table 3).
Another example, this time in a graphical form, that shows an expansion of the triple
〈window, on, building〉 is illustrated in Figure 3. Besides the original triple, the figure
includes its extension on both subject and object sides.
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Table 2. Query and results for 〈-, on, -〉 for subject.

user: Answer with five items separated with comma.
Q: What is on building? Name five.
A: letter, door, sign, leaf, light.

Q: What is 〈relationA〉 〈objectA〉? Name five.

where: relationA = on
objectA = { building, sign, man, plate, head }

GPT-3 responses for
building: subjectA ∈ {letter, door, sign, leaf, light}
sign: subjectA ∈ {words, letters, numbers, shapes, colors}
man: subjectA ∈ {shirt, pants, belt, shoes, socks}
plate: subjectA ∈ {food, drink, utensils, napkin, tablecloth}
head: subjectA ∈ {hair, hat, ear, eyebrow, eyelash }

Table 3. Query and results for 〈-, on, -〉 for object.

user: Answer with five items separated with comma.
Q: What window can be on? Name five.
A: pole, car, bus, house, tree.

Q: What 〈subjectB〉 can be 〈relationB〉? Name five.

where: subjectB = { window, letter, hat, food, hair }
relationB = on

GPT-3 responses for
window: objectB ∈ {pole, car, bus, house, tree}
letter: objectB ∈ {A, B, C, D, E }
hat: objectB ∈ {baseball, cowboy, graduation, party, winter}
food: objectB ∈ {apple, banana, orange, pear, grape}
hair: objectB ∈ {head, beard, eyebrows, eyelashes, pubic}

Of course, not all obtained subjects and objects are correct, especially in the case of
asking for objects. For example, triples generated for the subject letter, Table 3, are quite
inferior. A human-wise evaluation was performed; see Section 6.3 for details.

In the prompts, we chose the What question word, as it is generic enough to result in
diverse types of results. However, a more fine-tuned selection of the question word may
result in more relevant results, as suggested in [23].
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Figure 3. Expanded WpKG—simple triples: original triple (a); and after its extension (b).
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We utilized the largest GPT-3 model, with 175 billion parameters, for the experiments.
We started with a softmax temperature of 0.0 to obtain more deterministic results. However,
we observed that the model sometimes shies away from generating text with this tempera-
ture setting and immediately generates an end token. To fix the problem, we increased the
temperature to 0.7 and then to 1.0 to increase the chances for a good response.

5.2. Fuzzy Triples with Linguistic Terms

The remarkable abilities of GPT-3 can be utilized to extract subjects and objects when
the triples need to be labeled with the degrees of the plausibility of their occurrence. Triples
with such information can be added to the WpKG when the prompt, and its question-and-
answer parts, used to query GPT-3 are constructed/designed in a specific way. The prompt
templates presented in the previous section have to be modified.

To invoke responses from GPT-3 that give a quantifiable assessment of relation strength,
the prompts should be more verbal to contextualize interaction with the model. The
experiments with multiple approaches have led to the prompts that are the same, even if
GPT-3 is asked to provide facts related to a variety of topics.

Due to the fact that two degrees of relation strength are considered, two prompts are
designed and used: one for generating triples that represent high likeliness and one for
building triples that are of low likeliness. Both of them are shown in Table 4. A quick look
at them indicates that the prompts refer to quite different domains/topics—the questions
are related to window and number. Yet, they work very well with the relations we use as
examples—the same as for the simple triples in Section 5.1.

Another interesting ‘feature’ of these prompts is the very little need for instantiation.
Only the last questions, QS for subjects and QO for objects, Table 4, are initialized to reflect
the relations of interest.

Table 4. Template for fuzzy triple with linguistic terms.

FUZZY_TEMPLATE_X for the linguistic term most likely

prompt: Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through. Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written on different things for information.

Therefore, train, sidewalk, track, street, building.

QS: What is most likely〈relationX〉 〈objectX〉? Name five.
QO: What does/is 〈subjectX〉 most likely be/- 〈relationX〉? Name five.

FUZZY_TEMPLATE_Y for the linguistic term less likely

prompt: Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through. Therefore, hat, drawer, vase, basket, box.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written on different things for information.

Therefore, window, people, rock, tree, jacket.

QS: What is less likely〈relationY〉 〈objectY〉? Name five.
QO: What does/is 〈subjectY〉 less likely be/- 〈relationY〉? Name five.

As an example of using the prompt templates, the results for a relationX = relationY = on
are included. Please note that different question templates are developed to fit various
types of relations. The obtained subjects and objects are in Tables 5 and 6 for the linguistic
terms most likely and less likely, respectively.
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Again, not all obtained subjects and objects are correct. For example, triples 〈hat, (most

likely) on, -〉, Table 5, or 〈hat, (less likely) on, person〉, 〈food, (less likely) on, stove〉, Table 6,
are quite inferior. As before, there is also a graphical representation in Figure 4 of the
addition of new triples with the relation on that have building as their object. It can be seen
that the most likely subjects are quite reasonable, while the less likely subjects are a bit odd.
A human-wise evaluation is performed; see Section 6.3 for details.

For the most likely case, the softmax temperature starts at 0.0 and increases to 0.7 and
1.0, in the case that no text is generated. For the less likely case, we observe better results if
the initial temperature is set to 0.7 and increases to 1.0 if needed.

Table 5. Query and results for 〈-, most likely on, -〉 for object.

user: Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What 〈subjectX〉 can most likely be 〈relationX〉? Name five.

where: subjectX = { window, letter, hat, food, hair }
relationX = on

GPT-3 responses for
window: objectX ∈ {train, building, house, car, bus}
letter: objectX ∈ {train, sidewalk, track, street, building}
hat: objectX ∈ {baseball cap, fedora, beanie, cowboy hat, sun hat}
food: objectX ∈ {apple, banana, orange, grape, strawberry}
hair: objectX ∈{person, animal, doll, toy, statue}

Table 6. Query and results for 〈-, less likely on, -〉 for object.

user: Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What 〈subjectY〉 can less likely be 〈relationY〉? Name five.

where: subjectY = { window, letter, hat, food, hair }
relationY = on

GPT-3 responses
window: objectY ∈ {number, people, rock, tree, jacket}
letter: objectY ∈ {number, people, rock, tree, jacket}
hat: objectY ∈ {window, book, cat, person, wall}
food: objectY ∈ {sink, counter, stove, refrigerator, table}
hair : objectY ∈ {shoulder, leg, foot, arm, hand}
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Figure 4. Expanded WpKG—triples with linguistic terms.

5.3. Fuzzy Triples with Novel User-Provided Relations

The last scenario focuses on the generation of new triples that contain novel relations
provided by a user. It means the user gives relations that do not exist in the initial vision-
based knowledge graph. We selected three novel relations: used for, made of, and has property.
We opted for triples with linguistic terms and their respective prompts instead of the simple
triples scenario, as more information about triples is obtained. The prompt templates used
here are included in Table 4.

The results obtained for a subjectX = arm and the user provided relationX ∈ {used for,
made of, has property} are included in Table 7 for the fuzzy term most likely, and in Table 8
for the fuzzy term less likely. Graphically, the generated triples for subjectX = shoe are in
Figure 5. As in the previous cases, not all triples—constructed based on the obtained sets of
objects—are satisfactory. The human evaluation results are presented in Section 6.3.

Table 7. Query and results for 〈-, (most likely) used for/made of/has property, -〉 for object.

user: Answer with five items separated with comma.
Q: What most likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can most likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What is 〈subjectX〉 most likely 〈relationX〉? Name five.

where: subjectX = arm
relationX ∈ {used for, made of, has property}

GPT-3 responses for
used for: objectX ∈ {lifting, carrying, pushing, pulling, holding}
made of: objectX ∈ {human, animal, plastic, metal, wood}
has property: objectX ∈ {to move, to bend, to be strong, to be flexible, to grip}
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Table 8. Query and results for 〈-, (less likely) used for, -〉 for object.

user: Answer with five items separated with comma.
Q: What less likely has window? Name five.
A: Window is usually used to see through.

Therefore, train, building, house, car, bus.

Q: What number can less likely be on? Name five.
A: Number is made of digits and can be written on

different things for information.
Therefore, train, sidewalk, track, street, building.

QO: What is 〈subjectY〉 less likely 〈relationY〉? Name five.

where: subjectX = arm
relationX ∈ {used for, made of, has property}

GPT-3 responses for
used for: objectX ∈ {hat, drawer, vase, basket, box}
made of: objectX ∈ {metal, plastic, glass, wood, fabric}
has property: objectX ∈ {number, window, glass, bottle, box}

shoe

running
walking
hiking

climbing
dancing

cloth
leather
rubber
plastic
metal

have: a sole
a heel
laces

 a tongue
an upper

most 
likely

less 
likely

used_forS-b

degree

degree

degree

used_forb-O

being: alive
made of metal
see-through

a liquid
a gas

plastic
metal
glass
wood
stone

window
drawer

hat
vase
box

degree

degree

degree

made_ofb-O

has_propertyb-O
made_ofb-O

used_forb-O

has_property
b-O

Figure 5. Expanded WpKG–fuzzy triples with shoe as their subject and user-provided relations
has_property, made_of, used_for.

6. Discussion

The presented method for expanding existing commonsense knowledge graphs repre-
sents an example of a new approach to constructing knowledge graphs in a specific domain
using very large language models and prompts. It can be said that these techniques are in
their infancy; therefore, there are a number of aspects that need to be investigated regarding
the approach itself as well as evaluation of the obtained results.

6.1. Vision-Based Commonsense Graph

Similar to how toddlers learn about their environment, our approach is based on two
steps. First, we generate commonsense knowledge using vision models and then expand it
using language models.

The evaluation of the weighted commonsense knowledge graph generated using
only visual data is presented in Table 9 from our previous work [7,8]. Three different
approaches for determining the weights (strengths) of relations are proposed and evaluated.
Depending on the weighting mechanism, the accuracy of the generated commonsense
triples ranges from 87.6% to 93%. Among these, the DPbM (detection probability-based
method) correlates highly with human commonsense, while other methods still show
good results.
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Table 9. Human evaluation of the three weighting mechanisms defined in [8]. Three reviewers were
given top 100 triples from each restaurant and classroom contextual commonsense knowledge graphs
(total of 600 evaluations per method). Alpha is Krippendorff’s Alpha [32] measuring consensus
among evaluators.

Weighing
Schema

Accept Reject N/A
Accuracy

(%)
Alpha

DPbM 560 22 18 93.0 0.78
ROM 526 60 14 87.6 0.63
WOM 538 51 11 89.7 0.72

6.2. Preliminary Experiments with Language Models

The high accuracy obtained using automatic vision-based weighted commonsense
knowledge generation does come with some specific challenges of its own. For example, the
concept and relation vocabulary is limited only to the dictionary provided to the underlying
models during the supervised training of the vision models. Adding a new vocabulary
requires several time-consuming and costly tasks. They include human annotation on
images to label objects and relations between them and then the fine-tuning of models
for object detection and scene graph generation. Even if we accept the time and cost of
adding a new vocabulary, it is shown in [9] that there is a bias toward the most common
relationship type. It prevents the process from effectively going beyond specific vocabulary.

To address the issue of limited vocabulary, we have investigated using language
models to extend the initial vision-based commonsense knowledge graph. We opted to use
very large language models, such as GPT-3, for two main reasons. One is their capability to
offer new concepts beyond the known ones with acceptable precision. The other reason is
the flexibility and time/cost saving of using prompts instead of fine-tuning, which usually
requires large amounts of costly human-annotated data.

Our experimental results support the overfitting statement explained in [24,25] stating
that training on specific data reduces performance on novel data. We initially experimented
with comparing one-shot-prompted 175-billion-parameter unsupervised-trained GPT-3
versus variations of smaller language models fine-tuned on an initial 5000-triple vision-
based commonsense knowledge graph. Although the GPT-3 result accuracy was lower than
a fine-tuned language model, the novelty of the vocabulary offered was much better. GPT-3
with 175 billion parameters predicted 15 times more vocabulary than the RoBERTa-large
model with 355 million parameters.

6.3. Evaluation of Commonsense Knowledge Graph

To the best of our knowledge, there is limited benchmark data or a well-established
method suitable for evaluating constructed commonsense knowledge graphs, especially
when there are mostly novel generated concepts. There are benchmarks introduced in works
such as [33], but are more related to knowledge base completion rather than expansion to
new concepts. For mostly novel concepts, human evaluation of the results seems to be the
preferred method, mainly in generative model scenarios, as performed in [2].

In this work, the process applied to assess the quality of the constructed commonsense
knowledge graph is fully based on human evaluation using Amazon MTurk annotators.
Amazon Mechanical Turk https://www.mturk.com (accessed on 12 August 2022) (MTurk)
is a crowd-sourcing marketplace that provides, among multiple services, assistance in data
annotation tasks. Three sets of validation tasks are performed for simple triples (Section 5.1),
fuzzy triples (Section 5.2), and fuzzy triples with user-provided relations (Section 5.3).

The evaluation results are shown in Table 10 for only the new triples that did not
exist in the original commonsense knowledge graph. As it can be seen, the results are
encouraging. To gain some insight into the evaluation process and to better understand
the evaluation results, it should be stressed that MTurk controls who is involved in the
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evaluation task. To increase the confidence in results, each triple is evaluated by three
independent annotators.

To make the evaluation task easier and more intuitive for the annotators, we generated
sentences from triples. Based on each predicate, a manual pattern is introduced. Once a
sentence is generated using a fixed pattern, it is passed through an off-the-shelf grammar
correction module to fix obvious errors. The sentences are then manually vetted to make
sure they are grammatically correct and are based on the original triples.

In the description given, the annotators were asked to assume visual commonsense
when encountering any of these statements. For example, in the case of It is likely to see
cloud behind cow., we asked them to imagine that they are in a field and they see cows. Then
it makes sense to see clouds behind the cows.

Some examples of the triples and their evaluation scores are presented:

• Shoe is used for running. –> Correct with 0.95 confidence.
• Shoe is not likely to be alive. –> Incorrect with 0.95 confidence.
• Shoe is not usually made of stone. –> Correct with 0.65 confidence.

As we can see in the examples, finding a well-understood and easy-to-annotate
verbalization of triples can affect the result. For example, in the case of Shoe is not likely to be
alive., the statement makes sense based on our understanding; however, it was not the case
with the three annotators.

Table 10. Results of human evaluation of generated triples. Overall, Likely and Unlikely columns
show the accuracies regarding total triples, most-likely triples, and less-likely triples, respectively.
N represents the number of triples evaluated in each case.

Triple Type N Overall
Accuracy

Likely
Accuracy

Unlikely
Accuracy

Simple 122 72.95% N/A N/A
with Linguistic

Terms 287 67.94% 68.09% 67.81%

with New
Relations 148 72.97% 66.22% 79.73%

A few examples are analyzed under Table 11 to understand the obtained results better.
Triples without linguistic terms are called Simple. Triples with Linguistic Terms contain two
terms, most likely and less likely. Triples with New Relations refer to triples with linguistic
terms generated with predicates that do not exist in the initial commonsense knowledge
graph. For brevity, the initial parts of the prompts are removed. Only the last part of the
prompt (question) is kept. The process of generating triples with Linguistic Terms and with
New Relation uses the chain-of-thought prompting methods, shown in Sections 5.2 and 5.3,
while Simple triples are generated using a simple question and answering prompting
method, shown in Section 5.1.

The obtained results are compared with the results found in similar works. Tran-
sOMCS paper [34] reports an overall accuracy of 56% while focusing on the automatic
mining of commonsense knowledge from linguistic graphs. The results in TransOMCS are
based on 100 randomly selected tuples from the overall results set, which five Amazon
mTurk workers evaluated. Another comparable work focuses on symbolic knowledge dis-
tillation from large language models, mostly about commonsense social relations, without
relationship weights [2]. This work reports a human-evaluated correctness percentage of
73.3% when GPT-3 is used with prompts to complete a knowledge graph. The reported
value is close to the comparable case of Simple triples as shown in Table 10. The approach
used in [2] requires text completion for every subject and predicate to generate each triple.
On the other hand, our approach uses prompts that generate N = 5 new concepts during a
single run. It results in roughly one-fifth of the cost when both methods use the same model.
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Table 11. Examples: two correct and one incorrect for each type of generated triple. Correct parts of
the response are in teal color, while the incorrect parts are in red color.

Simple with Linguistic Terms with New Relations

Q: What is in room? Name
five.

Q: What is most likely to be
in bowl? Name five.

Q: What is shoe most likely
used for? Name five.

A: bed, table, chair, lamp,
computer.

A: Bowl is a container and
can hold different things.
Therefore, rice, cereal, milk,
soup, fruit.

A: Shoe is used to protect feet.
Therefore, running, walking,
hiking, climbing, dancing.

Q: What does face have?
Name five.

Q: Where is flower less likely
in? Name five.

Q: What property does side-
walk most likely have? Name
five.

A: eyes, nose, mouth, ears,
chin.

A: Flower is a natural thing
and needs soil, water and
sunlight to grow. There-
fore, sink, oven, book, pencil,
phone.

A: Sidewalk is a path for
pedestrians. Therefore, it is
usually level, made of con-
crete, has a curb, is smooth,
and is wide.

Q: What food can be on?
Name five.

Q: What hat can most likely
be on? Name five.

Q: What property does arm
less likely have? Name five.

A: apple, banana, orange,
pear, grape.

A: Hat is worn on the head
and can be made of different
materials. Therefore, baseball
cap, fedora, beanie, cowboy
hat, sun hat.

A: Arm is a body part and
usually has skin, muscle,
bone, and hair. Therefore,
number, window, glass, bot-
tle, box.

To further demonstrate the scalability of the proposed method, we generated 1905
triples with linguistic terms. Triples with 13 different predicate types from our vision-based
commonsense knowledge graph were used for the generation purpose. There are 1075
triples with the linguistic term less likely and 830 with the term more likely.

All the triples were evaluated using three Amazon mTurk annotators on the Amazon
SageMaker platform. The human evaluations of more likely triples resulted in higher
accuracy of 72.15%, while the less likely triples resulted in an accuracy of 62.1%. We only
considered triples with at least 95% evaluation confidence among the three annotators
(662 triples). The evaluation of triples with different predicate types and linguistic terms
resulted in different accuracies, as shown in Figure 6. This scaling experiment shows that
the generated dataset size can expand from the initial hundreds of triples to thousands
and beyond.
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Figure 6. Human (mTurk) annotation accuracy of different predicate types and linguistic terms.

7. Conclusions

There is a growing interest and a need for collecting and storing knowledge that
represents information about real-world scenarios and things and activities of everyday
life. That type of information—named commonsense—becomes essential when one wants
to build autonomous systems that exist around us and assist us in daily duties.

The commonsense knowledge is present in different visual and verbal forms and is
learned via observations, experiences, and interaction with others.

A simple attempt to address extracting commonsense knowledge and representing it
as a graph is presented here. The previous work [7] showed a method of analyzing images
and constructing a commonsense knowledge graph via the fusion of multiple scene graphs
extracted from images.

This paper, perceived as a continuation of the work on images, presents a methodology
for expanding existing commonsense graphs with facts retrieved from language models.
The development of very large language models opens an opportunity to use them for
multiple tasks involving retrieving pieces of information and facts in various domains. This
capability of the models was utilized here to pull out commonsense information that is
easily added to the existing knowledge graphs. Specific prompts and their templates were
constructed to retrieve related information. This information was transformed into triples
and added to the commonsense graph. Three different types of new triples were considered:
simple ones, fuzzy ones with linguistic terms describing degrees of their likeliness, and
ones with specific relations provided by the user.

A validation process of new triples was designed and executed—the Amazon service
called Mechanical Turk was utilized. The obtained evaluations confirmed the usefulness of
the proposed methodology for expanding commonsense graphs.

At the same time, more work is needed to construct prompts that improve the cor-
rectness of retrieved information and create triples with more subtle degrees of likeliness.
Additionally, more investigation regarding the suitability of different language models is
mandated. In this paper, we used the chain-of-thought prompting method [20]. While this
prompting method leads to good results, it seems interesting and important to investigate
other prompt methods, such as [35], to see if better and more accurate results are achievable.
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The following abbreviations are used in this paper:

WpKG World-Perceiving Knowledge Graph
C-WpKG Contextual World-Perceiving Knowledge Graph
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