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Preface to ”Environmental Exposure to Toxic
Chemicals and Human Health”

It was recently reported that pollution was responsible for 9 million premature deaths in 2015,

making it the world’s largest environmental risk factor for disease and premature death. Throughout

life, people are exposed to both naturally occurring and human-made chemicals. Human health can

be influenced by many factors, including exposure to physical, chemical, biological, and radiological

contaminants in the environment. These exposures are a root cause of a significant disease burden

that could be prevented by reducing or removing chemical exposure. In recent decades, the awareness

of toxic chemicals among citizens has been a topic of interest, particularly concerning national and

international policy decision makers, expert/scientific platforms, and health protection organizations

(WHO, UNEP, CDC, EFSA, IPEN, etc.).

As a complex field, researchers continue to wrestle with important issues, which require an

integrative and multidisciplinary research approach to this problem, resorting to complementary

methodologies to measure human exposure to environmental chemicals and assess their health

effects.

Biomonitoring studies are a good example of this complementarity, encompassing the

measurement of internal levels of chemicals/metabolites in easily accessible biological fluids or

tissues, which help us to understand environmental health threats and to assist policy measures,

namely in susceptible populations.

Preventing diseases arising from chemical environments requires the development of a

consistent and rational approach to human biomonitoring as a complementary tool to assist in

providing evidence-based public health and environmental measures, confirming the health effects

of toxic chemical exposures, and validating regulatory actions and policies.
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Editorial

Environmental Chemicals: Integrative Approach to Human
Biomonitoring and Health Effects
Virgínia Cruz Fernandes 1,* and Diogo Pestana 2,*

1 REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto,
Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal

2 CINTESIS & NOVA Medical School | Faculdade de Ciências Médicas da Universidade Nova de Lisboa,
Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal

* Correspondence: virginiacruz@graq.isep.ipp.pt (V.C.F.); diogopestana@nms.unl.pt (D.P.)

In recent decades, citizen awareness of toxic chemicals has been a topic of interest,
particularly concerning national and international policy decision makers, expert/scientific
platforms, and health protection organizations (WHO, UNEP, CDC, EFSA, IPEN, etc.).
Even in a world of quick information access, synthesizing crucial scientific knowledge
and evidence about environmental exposure and related health problems into readily
understandable concepts and statistics remains a remarkable challenge.

Throughout life, people are exposed to both naturally occurring and human-made
chemicals. These exposures are a root cause of a significant disease burden that could be
prevented by reducing or removing chemical exposure. According to the WHO: in total,
more than 2 million deaths and 53 million disability-adjusted life years (DALYs) were
attributable to environmental exposure and management of selected chemicals, a higher
estimate compared with those in 2016 and 2012 [1]. The largest contributors were cardio-
vascular diseases (42%, 848,778 deaths), chronic obstructive pulmonary disease (COPD,
26%, 517,734 deaths) and cancers (17%, 333,867 deaths). However, only a small number of
chemical exposures, among the many chemicals we are exposed to, are considered in these
analyses [1].

People are exposed to a wide range of environmental chemicals in their daily lives, in
different contexts, and via multiple routes, including indoors and outdoors (e.g., air, soil, and
water contamination; consumer products (e.g., cosmetics, cleaning agents, textiles, food, etc.);
industrial chemicals; etc.) [2–7]. From this extensive exposure by several routes, the multiple
contaminants to which we are exposed is exhausting and worrying. Some examples of the
most reported toxic chemicals are pesticides [8–11], heavy metals [12] polycyclic aromatic hy-
drocarbon (PAH) [13,14], polychlorinated biphenyls (PCB) [15], pharmaceuticals [16], plastic-
related chemicals (e.g., flame retardants, phthalates, etc.) [17,18], and microplastics [19–21].
Currently, it is impossible to escape exposure to environmental chemicals, namely those with
endocrine-altering potential (endocrine-disrupting chemicals, EDCs).

Unintended exposure to pesticides can be extremely hazardous to humans and other
living organisms as they are designed to be poisonous. Pesticide exposure is linked with
various diseases including cancer, asthma, dermatitis, endocrine disorders, reproductive
dysfunctions, immunotoxicity, neurobehavioral disorders, and congenital defects [22–24].
Data from a number of PAH occupational health studies suggest that there is an association
between lung cancer and exposure to PAH compounds [25]. Studies in human and animals
suggest a correlation between flame retardants exposure and adverse health outcomes,
namely thyroid disorders; neurobehavior and development disorders; and reproductive,
immunological, metabolic, oncological, and cardiovascular diseases [17,26]. Phthalate
exposures were associated with all-cause and cardiovascular mortality, with societal costs
approximating USD 39 billion/year or more in the USA [27]. Recently, microplastics
that may cause inflammatory lesions, originating from the potential of their surface to
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interact with the tissues, have been reported. In addition, the increasing incidence of
neurodegenerative diseases, immune disorders, and cancers may also be related to the
increased exposure microplastics and their co-contaminants [19]. The effects of exposure
in human health are influenced not only by the type and concentration of the chemicals
but also by the effects and complexity of mixtures and, more importantly, by the timing
of exposure. Indeed, there is an increased vulnerability to chemical exposure in windows
of greater susceptibility, especially during childhood and pregnancy, which may impair
lifetime health. Therefore, there is a need to biomonitor and evaluate all exposures across
lifespans and its interaction with our own unique characteristics, the ‘exposome’.

As a complex field, researchers continue to wrestle with important issues, which re-
quires an integrative and multidisciplinary research approach to this problematic, resorting
to complementary methodologies to measure human exposure to environmental chemicals
and to assess their health effects. One can define three main pillars: (1) environmental
chemical analysis and development of new detection methods, with the identification
and quantification of biomarkers of exposure and/or effect and/or susceptibility and
development of new analytical methodologies for the detection of biomarkers in several
human matrices (e.g., blood, plasma, serum, urine, and adipose tissue); (2) evaluation of
biological effects, through the assessment of exposure impact on human health (e.g., general
population, and people with obesity or diabetes) and/or resorting to experimental and
mechanistic approaches (in vitro/in vivo models); and (3) data management and statistical
analysis, namely in study design and sampling in the human population.

Biomonitoring studies are a good example of this complementarity, encompassing
the measurement of internal levels of chemicals/metabolites in easily accessible biological
fluids or tissues, and aiming to understand environmental health threats and to assist
policy measures, namely in susceptible populations such as children. It requires analytical
methods of high selectivity and high sensitivity due to low concentrations and limited
sample volumes. Toxic chemicals cover a wide range of chemical groups with different
physical–chemical properties. Therefore, scientific literature presents several analytical
methods even for the same substance groups. Depending on the chemical group, the
human biomonitoring biomarkers are either parent compounds or metabolites. A large
variety of matrices have been analyzed (blood, urine, adipose tissue, hair, nails, breast
milk, etc.). This complexity calls for the urgent need to carry out further studies on the
appropriate analytical methods for each group of compounds and matrices. Biomonitoring
studies identify new chemicals in human tissues, monitor the distribution of exposures
among the general population, and provide a measure of potential health risk.

Preventing diseases arising from chemical environments requires the development of a
consistent and rational approach to human biomonitoring as a complementary tool to assist
in providing evidence-based public health and environmental measures, confirming the
health effects of toxic chemical exposures, and validating regulatory actions and policies.
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Human Exposure to Pesticides in Dust from Two Agricultural
Sites in South Africa
Céline Degrendele 1,2,*, Roman Prokeš 1,3, Petr Šenk 1, Simona Rozárka Jílková 1 , Jiří Kohoutek 1,
Lisa Melymuk 1 , Petra Přibylová 1, Mohamed Aqiel Dalvie 4 , Martin Röösli 5,6 , Jana Klánová 1
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Abstract: Over the last decades, concern has arisen worldwide about the negative impacts of pes-
ticides on the environment and human health. Exposure via dust ingestion is important for many
chemicals but poorly characterized for pesticides, particularly in Africa. We investigated the spatial
and temporal variations of 30 pesticides in dust and estimated the human exposure via dust ingestion,
which was compared to inhalation and soil ingestion. Indoor dust samples were collected from
thirty-eight households and two schools located in two agricultural regions in South Africa and were
analyzed using high-performance liquid chromatography coupled to tandem mass spectrometry. We
found 10 pesticides in dust, with chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and
tebuconazole quantified in >50% of the samples. Over seven days, no significant temporal variations
in the dust levels of individual pesticides were found. Significant spatial variations were observed
for some pesticides, highlighting the importance of proximity to agricultural fields or of indoor
pesticide use. For five out of the nineteen pesticides quantified in dust, air, or soil (i.e., carbendazim,
chlorpyrifos, diazinon, diuron and propiconazole), human intake via dust ingestion was important
(>10%) compared to inhalation or soil ingestion. Dust ingestion should therefore be considered in
future human exposure assessment to pesticides.

Keywords: plant protection products; residential exposure; agriculture; Africa; exposure pathway;
intake dose; temporal variations; spatial variations

1. Introduction

Pesticides are the only chemicals that have been synthetized for about 70 years for
their toxic properties. Their use has increased on a global scale, from 2.3 to 4.2 million
tons between 1990 and 2019 [1]. In addition to their toxicity to target organisms, many
pesticides cause a wide range of adverse effects for mammals, including humans [2,3]. For
example, long-term exposure to some organophosphate insecticides has been associated
with neurotoxic and developmental effects for chlorpyrifos [4], while diazinon exposure
has induced oxidative stress, immune disorders, and gut microbiota dysbiosis [5], and
exposure to several pesticides cause DNA damage [6,7]. Furthermore, there has been
significant evidence of pesticide contamination of several environmental matrices, such
as air, soil, or water [8–14]. Consequently, many concerns have arisen worldwide about
the negative impacts of pesticides on the environment and human health. In particular,
agricultural region residents are a highly exposed population, with higher quantification
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frequencies and levels of pesticides found in various environmental media from rural
areas, such as air [15,16], dust [17–19], silicone wristbands [20,21], and human samples
such as urine [22–24] and blood [25,26]. In addition, several epidemiological studies have
found an association between residential proximity to agricultural fields and diseases
such as autism [27,28], Parkinson’s disease [29], childhood cancer [30,31], and also with
neurobehavioral effects [32].

Humans are exposed to pesticides via three pathways: (i) ingestion of food, dust,
and soil; (ii) inhalation; and (iii) dermal contact with products or materials containing
pesticides [33]. For many legacy chemicals, food ingestion is generally the major contributor
(>90%) to human exposure [34,35] although some studies have reported that inhalation [36]
and dust ingestion [37] could also dominate the overall exposure. For pesticides that
are currently used, the contribution of each pathway to the overall exposure is not well-
understood, and contradictory results have been found [34,38–40]. However, a clear
understanding of exposure pathways is crucial to assess the pesticide exposome [41,42],
which has been a growing area of research in recent years [43].

The indoor environment, where humans spend about 90% of their time [44,45], is par-
ticularly important in terms of non-dietary exposure to pesticides or other pollutants [46,47].
Pesticides can penetrate indoors in four manners. Firstly, after their application to agricul-
tural areas, depending on the meteorological conditions and the type of equipment used,
up to 30% of pesticides do not reach their targets but are transported via the air to the sur-
rounding environment [48], a phenomenon known as spray drift [49]. In addition, several
weeks after outdoor application, pesticides can be transferred to the air (secondary drift)
via volatilization from soils and plants [50,51] and wind erosion of soil particles on which
pesticides are sorbed, followed by dispersion [42,52]. These pesticides present in outdoor
air can then infiltrate into indoor spaces via ventilation. Secondly, agricultural workers
(pesticide applicators, farm workers) can also bring pesticides indoors via shoes, clothes,
skin, or hair, also known as the take-home exposure pathway [53–56]. Thirdly, pesticides
can be directly applied indoors against insects (e.g., mosquitoes, fleas, ticks) [17,57]. Fourth,
pesticides can volatilize from products present indoors containing pesticides (e.g., wooden
furniture, textiles, carpets) [58]. Given this diversity of possible sources, it has often been
difficult to identify the major source of pesticides present indoors [54,59].

Dust is considered a marker of indoor pollution by organic compounds [44,47]. The
pesticides levels in indoor dust are affected by several factors, including their emissions
(indoor), rates of air transport from outdoor to indoor, outdoor soil brought in by shoes,
removal rates by ventilation and cleaning, indoor activities, and rates of degradation
indoors [33,47]. However, infiltration from outdoors seems to be the most dominant source,
as many studies have shown that humans living in proximity to agricultural fields had
higher levels in household dust compared to non-agricultural residents [18,42,54,55,60]. On
the global scale, the many studies performed earlier on pesticides in dust largely focused
on insecticides and more particularly on organophosphates and pyrethroids, while data for
fungicides and herbicides are still very limited [54]. In addition, the temporal variations of
pesticide levels in dust have mainly been investigated from a seasonal perspective [61,62],
while only two studies have focused on shorter time scales (i.e., days) [17,63]. In order
to reduce human exposure to pesticides and the related health effects for the agricultural
residents, it is therefore crucial to characterize the levels of pesticides in dust and to
understand their spatio-temporal variabilities.

Information on pesticide exposure of agricultural residents is extremely limited in
Africa [43] and particularly using dust samples [44]. Indeed, only one study has been done
in South Africa [64]. With about 26,000 tons of pesticides used on a yearly basis and about
700 active ingredients registered for agricultural use [65], this country contributes to about
one-third of all pesticides used in the African continent [1] and is therefore considered as a
high-risk country for pesticide pollution [66]. Unfortunately, only a few pesticides were
targeted (n = 8) in that study, and samples were only collected at a school. Therefore, there
is a real need to characterize the levels of pesticides in household dust in South Africa.
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Within the larger project “Child health Agricultural Pesticide cohort study in South
Africa” (CapSA), assessing the health impacts of pesticide exposure of 1000 children in
South Africa [67], we have previously highlighted the presence of many pesticides in air,
soil, water, and silicone wristbands of two rural agricultural areas [20,68–70]. In this study,
we present data on pesticides quantified in dust and assess the non-dietary exposure via
dust ingestion of humans living in two intensive agricultural areas in South Africa. The
specific aims of this study are to (i) assess the occurrence of pesticides in dust from two
agricultural areas in South Africa and its spatial and temporal variations, (ii) compare the
levels of pesticides in dust between children living on farms and those living in neighboring
villages, (iii) determine the human uptake of pesticides due to dust ingestion, and (iv) assess
the importance of exposure via dust ingestion compared to inhalation and soil ingestion.

2. Materials and Methods
2.1. Collection of Dust Samples

The sampling campaign occurred in Western Cape, South Africa, at two different
agricultural sites: Hex River Valley (33◦28′ S;19◦38′ E) and Grabouw (34◦12′ S;19◦5′ E),
located about 110 km from each other (Figure 1). These two sampling sites were selected
due to their intensive monoculture. At Hex River Valley, 98% of the agricultural land
consists of table grapes, while at Grabouw, pome fruits are the major (81%) crop [70].
In order to characterize the highest exposure to pesticides, the sampling campaign was
performed during the main pesticide application season at both sites (22 October 2018–29
October 2018 at Hex River Valley and 30 October 2018–6 November 2018 at Grabouw).
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Figure 1. Map of the sampling sites. Figure 1. Map of the sampling sites.

At each site, dust samples were collected in 19 individual households representing
different exposure scenarios and one school. Information on the recruitment of participants
is available elsewhere [20]. For each site, half of the households were located on the farms,
and half were located in the nearby village, within a distance to agricultural fields of <50 m
and >0.5 km, respectively. Dust samples were taken on the floor of the child’s bedroom for
the households and of three classrooms for the two schools. Dust sampling was repeated
after seven days at the same locations. A vacuum cleaner was used to collect dust samples,
as this technique detects more compounds than wiped dust [58] or doormat dust [53]. The
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dust samples were collected on a quartz fiber filter (QFF, QMA, 101.6 mm, Whatman, UK)
using a stainless steel inlet equipped with a pre-separation mesh sieving particles up to
1 mm connected to a conventional vacuum cleaner. This dust size fraction has been shown
to contain most organic contaminants and to be relevant in terms of human exposure [71,72].
Ethanol was used to clean the sampling head of the vacuum cleaner prior to each use. The
sampled surface varied from 1 to 8 m2. After vacuuming, dust samples were immediately
folded, wrapped in aluminum foil in order to avoid sunlight degradation, and placed into
a zip-lock polyethylene bag. All the samples were carried to the University of Cape Town
within a cooling box at 5 ◦C where they were stored in a freezer at −18 ◦C until shipment
to RECETOX, Czech Republic.

2.2. Sample Preparation and Chemical Analysis

From the samples collected, all those from day 7 (n = 41) and only 13 from day 1 were
analyzed for pesticides, resulting in a total amount of 54 dust samples. About 0.1 g of
the dust samples were extracted with 10 mL of methanol using an ultrasonic bath, then
centrifugated for 10 min at 10,000 rcf. This extraction was done for three cycles, and the
final extract volume was 30 mL. The extracts were concentrated at 40 ◦C with a gentle
stream of nitrogen and passed through Chromafil syringe filters (nylon membrane, 25 mm
diameter, pore size 0.45 µm, Machery-Nagel, Düren, Germany) into mini vials. The extract
volume was brought exactly to 0.5 mL by weight, and 0.5 mL of ultrapure water (Sartorius,
Göttingen, Germany) was added to have the final volume 1 mL methanol:water 1:1. All
samples were analyzed using a high-performance liquid chromatograph (Agilent 1290,
Agilent, Santa Clara, CA, USA) with a Phenomenex Luna C-18 endcapped analytical
column (100 mm × 2.0 mm × 3 µm). Analyte detection was performed by tandem mass
spectrometry using an AB Sciex Qtrap 5500 (AB Sciex, Concord, ON, Canada), operating in
positive electrospray ionization (ESI+). The isotope dilution method was used to quantify
the analytes. The instrumental limits of detection (iLOD) and quantification (iLOQ) were
defined as the quantity of an analyte with a signal-to-noise ratio of 3:1 and 10:1, respectively.
Details on the analytical method used have been described elsewhere [68,69].

In total, thirty individual pesticides, including seventeen herbicides (i.e., acetochlor,
alachlor, atrazine, chlorotoluron, chlorsulfuron, dimethachlor, diuron, fluroxypyr, iso-
proturon, metamitron, metazachlor, metribuzin, pendimethalin, pyrazon, simazine, S-
metolachlor, and terbuthylazine); nine insecticides (i.e., azinphos methyl, carbaryl, chlor-
pyrifos, diazinon, dimethoate, fenitrothion, malathion, parathion methyl, and pirimicarb);
and four fungicides (i.e., carbendazim, prochloraz, propiconazole, and tebuconazole) were
analyzed in this study. Among these 30 pesticides, 27 are registered for agricultural use
in South Africa [65]. In addition, 15 of the pesticides quantified in this study are widely
used on the global scale [73], and 14 have been identified as highly hazardous or high-risk
pesticides [74]. Even though the amount of pesticides investigated in this study is small
compared to the almost 700 pesticides authorized for agricultural use in South Africa [65], it
is more than most of the previous studies focused on the residential exposure to pesticides
of agricultural residents, which looked at a median of seven pesticides [43].

2.3. Quality Assurance and Quality Control

In this study, six field blanks and seven solvent blanks were analyzed as per samples.
None of the targeted pesticides were found in those blanks, suggesting that no contamination
occurred during sampling, transport, sample preparation, and analysis. Recoveries of indi-
vidual pesticides, determined from spiking experiments of QFFs, ranged from 42.5% ± 2.9
(acetochlor) to 120.1% ± 1.9 (chlorsulfuron) (Table S1 in the Supplementary Information).

2.4. Human Exposure via Dust Ingestion and Comparison with Inhalation and Soil Ingestion

The daily intakes of pesticides via dust ingestion (DIingestion_dust, in pg day−1 kg−1)
were estimated for children (6 to 11 years) who are more sensitive to pesticide exposure [3]
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and adults (>21 years) using both the median and the maximum concentrations observed
for each type of site as [75]:

DIingestion_dust =
Cdust × IngRdust × AF

BW
(1)

where Cdust is the dust concentration (in pg g−1), and IngRdust is the dust ingestion rate
(in g day−1), AF is the absorption factor via dust ingestion (unitless), and BW is the body
weight (in kg). All the input parameters used [75] are provided in Table S2. Here, we
assumed that the children spent 30% of their time at school and the remaining at home,
while exposure for adults were estimated as if they spent all their time at home. Many
studies have assumed that all pesticides present in dust were bioaccessible due to the lack
of knowledge on bioaccessibility of pesticides ingested from indoor dust [47], leading to a
possible overestimation of the health risks [76]. In a review, a bioaccessibility factor varying
from 0.06 to 0.52 was reported for both legacy and current-use pesticides with a median
of 0.14 [76], which we used in this study. We decided to not determine the human uptake
via dermal contact with dust, as the exposure factors needed are associated with large
uncertainties [47], and many studies for other organic pollutants have shown that this
exposure pathway was several orders of magnitude lower than dust ingestion [47,77].

The pesticide daily intakes from dust ingestion from this study were compared with
those from inhalation and soil ingestion previously reported from the same campaign [68].
In addition, we also estimated the health hazards due to the exposure via dust inges-
tion, inhalation, and soil ingestion of pesticides using (i) hazard quotients determined
as the ratio of the daily intake to the acceptable daily intake via all routes of exposure
obtained from European database [78], (ii) hazard index, and (iii) relative potency factors,
as previously described [68].

2.5. Data analysis

Mann–Whitney tests were used to compare the differences between the two sampling
days, the two studied areas, the two types of sites (farm vs. village), and the two population
groups in terms of the dust concentrations of pesticides and human exposure. Significant
differences were considered when p-value < 0.05. For these analysis, including summary
statistics, the pesticides that were quantified in >50% of the samples were considered, and
the values under LOQ were imputed with half LOQ. The software MATLAB® (version
R2017a) was used to perform the data analysis and create all figures except for the map
(Figure 1), which was done with the software QGIS (version 3.4 Madeira).

2.6. Ethical Statement

Informed consent was obtained from a member of each household. The study re-
ceived ethical clearance from the University of Cape Town’s Research Ethics Committee
(HREC 637/2018).

3. Results
3.1. Quantification Frequency and Levels of Pesticides in Dust

Out of the 30 pesticides targeted, 10 were found in at least one dust sample (Table 1
and Tables S3–S5, Figure 2). Chlorpyrifos and terbuthylazine were the most frequently
quantified pesticides (96% and 91%, respectively), followed by carbaryl, diazinon, car-
bendazim, and tebuconazole (59–74%). The remaining four pesticides were rarely found
(<10%) either only at Grabouw (i.e., diuron, malathion, and S-metolachlor) or at both sites
(i.e., propiconazole) and are not further discussed. All homes had at least three pesticides
in dust, and a maximum of eight pesticides was found for one household and one school,
both located in Grabouw. The median dust concentrations measured in households of
individual pesticides spanned several orders of magnitude and ranged from 4.38 ng g−1

(tebuconazole) to 365 ng g−1 (chlorpyrifos) (Table 1). Besides chlorpyrifos, only carbaryl
and diazinon had dust concentrations higher than 1 µg g−1.
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Figure 2. Quantification frequencies of the individual pesticides in air, soil, and dust. Data on
pesticides in air and soil were obtained from [68].

Table 1. Summary of the concentrations (in ng g−1) of individual pesticides found in the dust
samples collected in households. QF indicates quantification frequency in percentage, IQR indicates
interquartile range. For propiconazole, S-metolachlor, diuron, and malathion, only the concentrations
above the quantification limits were considered, while for the remaining pesticides, imputed data
were considered for statistics.
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All
n = 50

QF 96 90 76 72 60 58 8 4 2 4
Mean 1250 9.30 1020 122 16.3 13.6
Median 365 4.54 247 9.29 7.02 4.38
Min 0.19 0.05 5 0.29 0.14 0.19 3.63 10.3 26.8 43.9
Max 19,500 90.8 17,200 2210 257 99.0 12.5 46.6 26.8 150

IQR25 135 2.76 64 0.30 0.15 0.20
IQR75 986 9.25 544 31.2 14.2 15.8

Hex River
Valley
n = 25

QF 96 96 60 68 36 92 8 0 0 0
Mean 1810 5.38 292 136 17.5 25.1
Median 398 4.47 102 6.41 0.15 15.7
Min 0.19 0.05 5 0.29 0.14 0.20 3.63
Max 19,500 11.0 1980 1680 257 99.0 9.60

IQR25 142 3.04 5 0.29 0.15 7.96
IQR75 1850 7.70 266 15.5 7.45 35.4

Grabouw
n = 25

QF 96 84 92 76 84 24 8 8 4 8
Mean 690 13.2 1740 109 15.1 2.04
Median 268 4.62 525 11.2 11.0 0.20
Min 0.20 0.05 5 0.29 0.14 0.19 3.63 10.3 26.8 43.9
Max 4700 90.8 17,200 2210 64.1 19.6 12.5 46.6 26.8 150

IQR25 133 2.70 207 4.37 5.94 0.19
IQR75 948 13.6 1660 37.4 17.8 0.20
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3.2. Temporal and Spatial Variations in Pesticide Levels in Dust

For those twelve households and one school for which dust samples were analyzed,
on both day 1 and day 7, no significant temporal variations (p > 0.05, Mann–Whitney
test) were observed for none of the pesticides investigated (Figures 3 and S1). Indeed,
for about two-third of all the pairs (n = 78) investigated, the dust concentrations of the
individual pesticides measured on day 1 and day 7 were within 25% of each other, while
large differences (up to a factor of 100) were found in the remaining cases (Figures 3 and S1).

Figure 3. Temporal variations of pesticide levels in dust samples (in ng g−1) collected at Hex River
Valley (H) or Grabouw (G) at households living in farms (f), village (v), or at the school (s).

Significant differences in the levels of pesticides in dust were found between the areas
(i.e., Hex River Valley and Grabouw) and the locations (village, farm, school). Indeed,
when considering all samples (i.e., households, school, day 1, and day 7), the dust levels of
carbaryl and carbendazim were significantly higher at Grabouw compared to Hex River
Valley, while the opposite was found for tebuconazole (Figure S2). In addition, when
focusing only on those samples collected on day 7, differences were observed between the
different locations (farm, village, school) for some pesticides. Indeed, the concentrations
of chlorpyrifos at Grabouw and tebuconazole at Hex River Valley on the farm were on
average 6.16 and 2.22 times higher, respectively, than those in the village (Figure 4). On the
other hand, at Grabouw, diazinon and tebuconazole had, respectively, 35.8 and 11.4 times
higher levels in dust collected in village than those from the farm (Figure 4). Finally, at
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Grabouw, the two samples collected at the school had on average 12.2 times higher levels
of carbendazim than those collected in households (farm or village).

Figure 4. Spatial variations in dust levels of pesticides (in ng g−1) among the different sites and
areas from the samples collected on day 7 only (n = 41). H and G denote Hex River Valley and
Grabouw, respectively. Some outliers are not shown for better visibility. Boxplots represent the
25–75th percentile, whiskers represent the minimum and maximum values (excluding outliers which
are shown as the red crosses) and the line within the box represents the median value.

3.3. Daily Intakes of Pesticides via Dust Ingestion

The daily intakes of individual pesticides via dust ingestion for children (estimated
using the median concentrations measured in dust and the median ingestion rate) ranged
from 0.16 (tebuconazole) to 100 (chlorpyrifos) pg kg−1 day−1 (Table S6). The other cases
considered (i.e., adults, maximum concentrations, and high ingestion rate) are presented
in Tables S6 and S7 and will be discussed only when the findings differ. Chlorpyrifos
and carbaryl dominated the pesticide exposure via dust ingestion, as they contributed
respectively for 64–76% and 11–22% at Hex River Valley and 19–50% and 43–68% at
Grabouw, of the daily intakes (Figure 5). The total daily pesticides intakes of children were
about three times higher in Grabouw compared to Hex River Valley when the median
or maximum concentrations were used (Tables S6 and S7). Except for carbendazim at

12



Toxics 2022, 10, 629

Grabouw, the children had daily intakes on average 4.4 times higher than adults. For
carbendazim at Grabouw, the children-to-adult ratios of daily intake via dust ingestion
were 22 and 38 for village and farm, respectively. When using the higher ingestion rate, the
daily intakes of all individual pesticides were three times higher (Tables S6 and S7).

Figure 5. Daily intake of pesticides (in pg kg−1 day−1) via dust ingestion for children using the
median concentrations measured and the median ingestion rate.

3.4. Comparison of Daily Intakes from Dust Ingestion with Inhalation and Soil Ingestion

In addition to dust, the same pesticides were also quantified in air and soil samples
collected from this field campaign [68]. In total, 19 individual pesticides were found in at
least one of these three environmental media investigated. Among these, six (i.e., acetochlor,
alachlor, azinphos methyl, dimethachlor, malathion, and metazachlor) were found only in
air, two (i.e., isoproturon and pirimicarb) only in soil, and one (i.e., diuron) only in dust.
Therefore, their dominant routes of exposure were, respectively, inhalation, soil ingestion,
and dust ingestion. For the remaining pesticides, the results discussed here are for the
children using the median concentrations and ingestion rate (Figure 6), while those for
adults, maximum concentrations and high ingestion rate are shown in Figures S3–S7. For
these ten pesticides that were found in at least two environmental matrices, six (i.e., atrazine,
carbaryl, simazine, S-metolachlor, tebuconazole, and terbuthylazine) had inhalation as
the major route (>90%) of exposure via the three studied pathways (i.e., inhalation, soil
ingestion, and dust ingestion) at both sites. This was observed with all possible scenarios
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(Figures S3–S7), except for carbaryl. On the other hand, for diazinon, it was dust ingestion
(contributing for 62–94% depending on the site considered). For carbendazim, inhalation
was the major route at Hex River Valley (>90%), but at Grabouw, it was dust ingestion
(>97%). For propiconazole, inhalation was the major route at both sites, with dust ingestion
being significant (37%) at Grabouw. For chlorpyrifos, inhalation dominated exposure at
Hex River Valley (81% and 73% for the village and farm, respectively), while at Grabouw,
there were pronounced differences between the two types of locations, with a contribution
of inhalation, soil ingestion, and dust ingestion of 52%, 30%, and 18% at the village and
35%, 20%, and 45% at the farm. Using the high ingestion rate, the maximum concentrations
or the input parameters for adults do not substantially modify the contribution of each
exposure pathway for most of the pesticides investigated (Figure 6 and Figures S3–S7).
However, for carbaryl at Hex River Valley and tebuconazole at Grabouw, using the high
dust ingestion rate or the maximum concentrations led to a significant increase of the
contribution of dust ingestion, reaching about 20–30% of the overall daily intake.
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Figure 6. Contribution of three exposure pathways (dust ingestion, soil ingestion, and inhalation) on
the daily uptake of pesticides of children living at farm and village locations at Hex River Valley and
Grabouw using the median concentrations. Blank columns corresponds to the cases when a pesticide
was not quantified in air, soil, and dust.

In this study, all hazard quotients estimated using the daily intakes from the three expo-
sure pathways were three to twelve orders of magnitude lower than one (Tables S8 and S9),
suggesting minor risks. Carbaryl, chlorpyrifos, and tebuconazole were the compounds
having the highest hazard quotients, up to 1.33 × 10−3 (Tables S8 and S9). Similarly, the
cumulative exposures (data not shown) were at least three orders of magnitude lower than
one, suggesting negligible risks.

4. Discussion
4.1. Quantification Frequency and Levels of Pesticides Found

In this work, ten pesticides were quantified in dust samples collected from thirty-eight
households and two schools located in two agricultural areas in South Africa. The ratio of
quantified-to-targeted pesticides in this study (i.e., 0.33) was smaller than in others done in
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the Northern Hemisphere (i.e., 0.50–1.00) [53,60,63,79]. The presence of pesticides in indoor
dust is mainly affected by (i) the amount of pesticides applied in the vicinity (outdoors
and indoors), (ii) the application technique used, (iii) the physico-chemical properties of
individual pesticides and their degradation half-lives in air, dust and soil, and (iv) the
meteorological conditions [42,80]. The low amount of pesticides quantified in this study
could be related to the fact that pesticides are usually sprayed manually for these two crops
(i.e., pome fruits and table grapes), which could limit the distribution of pesticides beyond
the cropland in comparison to mechanical pesticide applications [81].

More specifically, chlorpyrifos, terbuthylazine, carbaryl, diazinon, carbendazim, and
tebuconazole were frequently quantified (in 59–96% of the samples). In particular, chlor-
pyrifos, which is associated with neurotoxic and developmental effects [4,82], was the
most frequently quantified pesticide in dust, similarly to what has been found in the
USA [17,19,38,83], Pakistan [84], or Taiwan [81]. Its widespread occurrence in the two
studied areas in environmental media (dust, air, soil, and water [64,68–70]) and human sam-
ples [64,82] is related to its common agricultural use, which was previously reported [70].
However, this pesticide, which is a candidate for the Stockholm Convention on Persis-
tent Organic Pollutants [85], is prone to long-range atmospheric transport [86], and some
fraction could have also been transported from other agricultural areas. Diazinon and
carbaryl have also frequently been reported in other studies [17,38,79,87,88]. The presence
of carbendazim and tebuconazole in dust samples has been only studied once from an
agricultural region in the Netherlands, where they were also frequently found (>50%) [53].

The analysis of the presence of these pesticides in dust in comparison to air and
soil that was previously reported [68] can provide valuable information. Among the
30 targeted pesticides, more were found in air (n = 16) [68] than in dust (n = 10) or in
soil (n = 9) at these two sampling sites (Figure 2). In particular, carbaryl, chlorpyrifos,
tebuconazole, and terbuthylazine were the pesticides found the most frequently in these
three environmental matrices (Figure 2), which highlights their widespread occurrence
in these two agricultural areas. Besides diuron, every pesticide found in dust was also
present in air, and except diazinon (at both sites) and carbendazim (at Grabouw), their
quantification frequencies in air were always higher than in dust. In addition, many
pesticides never found in soils were often quantified (>20%) in air samples but never or
rarely (<10%) in dust samples (e.g., malathion, propiconazole, S-metolachlor, acetochlor,
alachlor, azinphos methyl, and dimethachlor). This could suggest some influence from
medium- to long-range atmospheric transport and indicates that they do not penetrate
the indoor environment or that the concentrations in dust were too low to be quantified.
Atrazine and simazine, two relatively persistent triazines [78], were quantified only in soil
and air but not in dust, which likely reflects their past agricultural use and volatilization
from soils enhanced by higher temperatures [50]. Diuron was only quantified in dust in
one household, which likely reflects its use at the domestic level. Overall, these results
highlight the importance of air in the transport of pesticides from the outdoor environment
to the indoors. Due to the significant correlations observed between the levels in dust and
air of many organic compounds [79,89], several researchers have concluded that one matrix
could be used as a surrogate for the other one using partitioning models [33,90]. This
approach has been validated for many legacy pollutants [33,91,92] but showed rather poor
performance for predicting the levels of chlorpyrifos in dust [79]. For pesticides, the lack
of accurate data on their physico-chemical properties and the possible lack of equilibrium
between dust and air for compounds that have a high octanol–air partitioning coefficient
or that are currently used [33,79,93] limits our capacity to use these models [92]. However,
as more pesticides were quantified in air than in dust, the validity of these partitioning
models that were developed for more persistent substances is questionable.

The levels of individual pesticides reported here varied over several orders of mag-
nitude (Table 1). For chlorpyrifos, for which the most data are available in the literature,
the dust concentrations observed in this study were similar to those found in Taiwan [94],
North Carolina [38], and Australia [89] but lower than in Pakistan [84] and higher than
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in Spain [95]. To the best of our knowledge, only one study done in the Netherlands
investigated the levels of terbuthylazine, carbendazim, and tebuconazole in dust [53], in
which terbuthylazine was rarely found, while the levels of carbendazim were higher, and
those of tebuconazole were similar to the present study. Similar dust levels of diazinon
(e.g., 10–200 ng g−1) were reported by previous studies [38,63,88].

4.2. Temporal and Spatial Differences in Pesticide Levels

For all pesticides investigated, no significant temporal differences in the dust levels
measured at day 1 and day 7 were found for the 13 pairs investigated. This suggests
that within short time scales (i.e., one week), one dust measurement provides a reliable
estimate of human exposure. This finding is consistent with the findings from various
field and laboratory studies. Indeed, the only two field studies existing on short temporal
variations of pesticide levels in dust reported that within 5–8 days, measurements were
relatively stable indicators of potential indoor exposure to pesticides [17,63]. Additionally,
under laboratory conditions, the levels of cypermethrin and beta-cyfluthrin in dust samples
remained constant for 56 days, with a significant decrease only observed 112 days after
application [96]. This persistence in indoor dust could be due to limited solar radiation,
constant indoor temperatures, lower microbial population, and moisture [21,47,96].

In terms of spatial variations, significant differences in the dust levels of some pesti-
cides were found between the areas (i.e., Hex River Valley and Grabouw) and the locations
(village, farm, school), which can help to identify the sources of these pesticides. Regarding
the areas, three pesticides (i.e., carbaryl, carbendazim, and tebuconazole) showed signifi-
cant differences in their dust levels, with carbaryl and carbendazim being the highest at
Grabouw and tebuconazole at Hex River Valley. Interestingly, similar spatial variations
were also found with soil and air samples for carbaryl and tebuconazole but not for carben-
dazim [68]. These consistent spatial variations observed in the three studied environmental
matrices for carbaryl and tebuconazole suggests that agricultural activities control their
environmental levels. On the other hand, significant differences between the two areas in
the levels of terbuthylazine were found in air but not in soil or dust. This suggests that
these three environmental matrices do not necessarily react in the same manner to point
sources, further supported by the large spatial heterogeneity in levels of organic chemicals
observed in soil [50] or dust [47].

Significant differences in pesticide dust levels were also found between the two
locations (farm, village) studied. Indeed, the highest levels found in samples collected on
farms for chlorpyrifos at Grabouw and for tebuconazole at Hex River Valley confirm that
agricultural activities were the main source of pollution and that distance to agricultural
fields is an important factor determining the levels of these pesticides in indoor dust.
However, it is unclear whether these differences are due to spray drift and subsequent
partitioning to dust, to take home exposures, or brought in via shoes, as it is known that
indoor dust is composed of about 35% outdoor soil [97]. Negative associations between
the levels of pesticides in house dust and the distance from the farms have also previously
been reported in some studies [42,43,53,54,59,98] as well as positive ones between the
levels of pesticides in house dust and agricultural acreages around the house [99], but this
trend was not found in other studies [55,80,81]. In the present work, this was observed
only for two pesticides out of the ten found. Therefore, further epidemiological studies
should be cautious when using only geographic information systems (GIS) based on the
distance to agricultural lands to predict human exposure to a large number of pesticides [43].
On the other hand, for diazinon and tebuconazole at Grabouw, the significantly higher
levels found in dust collected from village compared to farm suggest these pesticides were
used at the household level. Unfortunately, although questionnaires were deployed in
this study [20], they failed to identify the specific active ingredients used at the domestic
household level. Several studies have also shown the importance of residential use of
pesticides on their dust levels for imidacloprid, malathion, chlorpyrifos, diazinon, carbaryl,
or prallethrin [53,54,57,59,63,81,87]. It is interesting to note that tebuconazole showed a
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distinct behavior between the two sites, which shows that generalization about the influence
of proximity to agricultural fields on the levels of pesticides in dust is not accurate, and
site-specific differences should be considered in further exposure assessment to pesticides.
Finally, at Grabouw, the significantly higher levels of carbendazim found at the school, for
which existing data are scarce [44,58], compared to the households suggests its use in the
close vicinity or within the school during the sampling campaign.

4.3. Daily Uptakes of Pesticides via Dust Ingestion

Chlorpyrifos and carbaryl, which are known for their toxic effects on humans [4,100],
had the highest daily intakes at both sites showing the importance of these two pesticides
in terms of human exposure for the agricultural residents of these two sites. Except
for carbendazim, children had daily intakes of pesticides about four times higher than
adults. This is similar to previous studies [89,95] and is due to their higher ingestion
rate and lower weight (Table S2). Considering that young children are a particularly
vulnerable group due to the well-documented detrimental effects of pesticide exposure
on child neurodevelopment [101,102], the higher exposure levels reported in this and
other studies require further attention. For carbendazim, the children-to-adult ratio of
daily intake via dust ingestion was much higher (i.e., 22–38 at Grabouw) due to the
significantly higher levels of carbendazim measured in the two dust samples collected at
schools where adults are not exposed. This highlights the importance of having several
micro-environments investigated when assessing human exposure to organic chemicals via
dust ingestion, particularly for children. In addition to the micro-environment frequented,
the dust ingestion rate is an important factor that can lead to uncertainties within a factor
of three and should therefore be better characterized.

4.4. Comparison of Daily Intakes from Dust Ingestion with Inhalation and Soil Ingestion

Daily uptakes of pesticides via dust ingestion were compared with those from in-
halation and soil ingestion previously reported [68]. Inhalation was generally the major
route of exposure (>90%) for 13 out of the 19 pesticides quantified in at least one of the
three environmental matrices investigated. For the remaining six pesticides, the major
pathway was soil ingestion for isoproturon and pirimicarb and dust ingestion for diuron
and diazinon, while chlorpyrifos and carbendazim differed depending on the site consid-
ered (Figure 6). Considering that the air concentrations were obtained from the outdoor
environment where concentrations of organic compounds such as pesticides are several
orders of magnitude lower than indoors [92], this highlights the importance of inhalation
in non-dietary exposure to pesticides. This is similar to what has been found for North
Carolina children, who were about 10 times more exposed to chlorpyrifos via inhalation
than via both soil and dust ingestion [38]. Similarly, it was estimated that dust was con-
tributing less than 15% of the levels of dialkyphosphates metabolites measured in urine [55].
One can notice the important role of input parameters such as the ingestion rate or the
concentrations used (median or maximum) in the contribution of dust ingestion for carbaryl
and tebuconazole, which increased by a factor of three. For other semi-volatile organic
compounds, several studies have found that uptake via inhalation was higher than via
dust ingestion and dermal contact with dust for compounds that are volatile, while the
opposite was found for the non-volatile compounds [36,79]. However, this influence of
physico-chemical properties on the contribution of different exposure pathways was not
observed in our study.

The health risks estimated in this study were negligible, both for individual pesticides
or cumulative exposure. This was also found by several other studies (focusing only on
dust ingestion) [63,89,95]. However, we should keep in mind that the risks estimated
in this study from several environmental matrices do not take into account dietary in-
gestion, which can dominate human exposure [38,103–105]. Carbaryl, chlorpyrifos, and
terbuthylazine, which were the pesticides the most frequently found in all the three ma-
trices investigated, had the highest hazard quotients. Therefore, further studies could
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investigate the health risks due to their transformation products, as many of them could
have significant health effects [106].

4.5. Limitations and Strengths

The main strengths of this study are: (i) the characterization of the levels of several
herbicides and fungicides that have been poorly characterized worldwide in dust, (ii) the
first characterization of daily intakes via dust ingestion of multiple pesticides in Africa,
and (iii) the improvement of our understanding on the contribution of several non-dietary
exposure pathways. This study has three main limitations. The first concerns the character-
istics of the sampling campaign, which was short (seven days at each site) and involved
a limited amount of samples (n = 54). In addition, dust is associated with large spatial
heterogeneity of the levels of contaminants [92,107], particularly before and after pesticide
use [39]. Therefore, the spot samples collected might not be representative of the entire
room. Secondly, there are high uncertainties associated with the input parameters of the
model used to characterize human exposure via the three pathways. Indeed, the data on
the bioaccessibility of pesticides or dust ingestion rates are highly uncertain [47], which
could contribute to a 20-fold variability in the daily doses estimates [108]. In addition,
outdoor and not indoor air levels of pesticides were used. However, we expect this to have
a minor effect, as several studies have found a significant correlation between these [19,98],
and levels indoors are usually higher than outdoors [92,109,110]. Finally, the outcome of
the health impact assessment is limited by the fact that it considers only a limited amount
of active ingredients and does not take into account synergistic effects [111]. Additionally,
some mechanisms of toxicity (e.g., suppressed expression of serotonin transporter genes)
are not considered in the definition of the reference dose [63].

5. Conclusions

In this study, the spatial and temporal variations of 30 pesticides in dust and the human
exposure via dust ingestion in comparison to inhalation and soil ingestion were investigated
at two agricultural sites in South Africa. Within seven days, no significant temporal
variations in the dust levels of individual pesticides were found. On the other hand,
significant spatial variations were observed for some pesticides, highlighting either the
importance of proximity to agricultural fields (chlorpyrifos at Grabouw and tebuconazole
at Hex River Valley) or use at the domestic level (diazinon at Grabouw and tebuconazole
at Grabouw) or applied at or in the vicinity of the school (carbendazim at Grabouw). The
agricultural residents of the two sites investigated were exposed to 10 pesticides via dust
ingestion. However, this exposure pathway was found negligible (<10%) compared to
inhalation or soil ingestion for 14 out of the 19 pesticides found in dust, air, or soil. Further
studies should confirm this finding by characterizing the levels of pesticides in several
environmental matrices and the contribution of several non-dietary exposure pathways in
both spraying and non-spraying seasons.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/toxics10100629/s1, Table S1: Average recoveries and their standard
deviations determined from spiking experiments; Table S2: Input parameters used for the assessment
of daily intakes from dust ingestion; Table S3: Basic statistics of pesticide levels found in all dust
samples; Table S4: Basic statistics of pesticide levels found in all household dust samples collected at
Hex River Valley; Table S5: Basic statistics of pesticide levels found in all household dust samples
collected at Grabouw; Table S6: Daily intake (in pg kg−1 day−1) of individual pesticides via dust
ingestion for a child; Table S7: Daily intake (in pg kg−1 day−1) of individual pesticides via dust
ingestion for an adult; Table S8: Hazard quotients of children due to the exposure to individual
pesticides via dust ingestion, inhalation, and soil ingestion found in this study; Table S9: Hazard
quotients of adults due to the exposure to individual pesticides via dust ingestion, inhalation, and soil
ingestion found in this study; Figure S1: Dust levels of individual pesticides in 12 households and one
school measured at day 1 and day 7; Figure S2: Boxplots of concentrations of individual pesticides in
dust samples; Figure S3: Contribution of three exposure pathways on the daily uptake of pesticides of
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a children living at farm and village locations at Hex River Valley and Grabouw using the maximum
concentrations; Figure S4: Contribution of three exposure pathways on the daily uptake of pesticides
of a children living at farm and village locations at Hex River Valley and Grabouw using the median
concentrations and high ingestion rate; Figure S5: Contribution of three exposure pathways on the
daily uptake of pesticides of an adult living at farm and village locations at Hex River Valley and
Grabouw using median concentrations; Figure S6: Contribution of three exposure pathways on the
daily uptake of pesticides of an adult living at farm and village locations at Hex River Valley and
Grabouw using the maximum concentrations; Figure S7: Contribution of three exposure pathways
on the daily uptake of pesticides of an adult living at farm and village locations at Hex River Valley
and Grabouw using the median concentrations and the high ingestion rate of dust.
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G.E.; et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a
Central European receptor area. Environ. Sci. Technol. 2016, 50, 4278–4288. [CrossRef]

51. Davie-Martin, C.L.; Hageman, K.J.; Chin, Y.-P.P.; Rougé, V.; Fujita, Y. Influence of temperature, relative humidity, and soil
properties on the soil-air partitioning of semivolatile pesticides: Laboratory measurements and predictive models. Environ. Sci.
Technol. 2015, 49, 10431–10439. [CrossRef]

52. FOCUS Air Group. FOCUS Pesticides in Air: Considerations for Exposure Assessment. Rep. Focus Work. Gr. Pestic. Air 2008, 327, 12–74.
53. Figueiredo, D.M.; Nijssen, R.; Krop, E.J.M.; Buijtenhuijs, D.; Gooijer, Y.; Lageschaar, L.; Duyzer, J.; Huss, A.; Mol, H.; Vermeulen,

R.C.H. Pesticides in doormat and floor dust from homes close to treated fields: Spatio-temporal variance and determinants of
occurrence and concentrations. Environ. Pollut. 2022, 301, 119024. [CrossRef] [PubMed]

54. Deziel, N.C.; Friesen, M.C.; Hoppin, J.A.; Hines, C.J.; Thomas, K.; Beane Freeman, L.E. A Review of Nonoccupational Pathways
for Pesticide Exposure in Women Living in Agricultural Areas. Environ. Health Perspect. 2015, 123, 515–524. [CrossRef] [PubMed]

21



Toxics 2022, 10, 629

55. Curl, C.L.; Fenske, R.A.; Kissel, J.C.; Shirai, J.H.; Moate, T.F.; Griffith, W.; Coronado, G.; Thompson, B. Evaluation of Take-Home
Organophosphorus Pesticide Exposure among Agricultural Workers and Their Children. Environ. Health Perspect. 2002, 110,
A787–A792. [CrossRef]

56. Lu, C.; Fenske, R.A.; Simcox, N.J.; Kalman, D. Pesticide exposure of children in an agricultural community: Evidence of household
proximity to farmland and take home exposure pathways. In Proceedings of the Environmental Research; Academic Press Inc.:
New York, NY, USA, 2000; Volume 84, pp. 290–302.

57. Gunier, R.B.; Ward, M.H.; Airola, M.; Bell, E.M.; Colt, J.; Nishioka, M.; Buffler, P.A.; Reynolds, P.; Rull, R.P.; Hertz, A.; et al.
Determinants of agricultural pesticide concentrations in carpet dust. Environ. Health Perspect. 2011, 119, 970–976. [CrossRef]

58. Raffy, G.; Mercier, F.; Blanchard, O.; Derbez, M.; Dassonville, C.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-volatile organic
compounds in the air and dust of 30 French schools: A pilot study. Indoor Air 2017, 27, 114–127. [CrossRef]

59. Deziel, N.C.; Beane Freeman, L.E.; Graubard, B.I.; Jones, R.R.; Hoppin, J.A.; Thomas, K.; Hines, C.J.; Blair, A.; Sandler, D.P.; Chen,
H.; et al. Relative contributions of agricultural drift, para-occupational, and residential use exposure pathways to house dust
pesticide concentrations: Meta-regression of published data. Environ. Health Perspect. 2017, 125, 296–305. [CrossRef]

60. Bennett, B.; Workman, T.; Smith, M.N.; Griffith, W.C.; Thompson, B.; Faustman, E.M. Longitudinal, seasonal, and occupational
trends of multiple pesticides in house dust. Environ. Health Perspect. 2019, 127, 017003. [CrossRef]

61. Li, H.; Ma, H.; Lydy, M.J.; You, J. Occurrence, seasonal variation and inhalation exposure of atmospheric organophosphate and
pyrethroid pesticides in an urban community in South China. Chemosphere 2014, 95, 363–369. [CrossRef]

62. Jiang, W.; Conkle, J.L.; Luo, Y.; Li, J.; Xu, K.; Gan, J. Occurrence, distribution, and accumulation of pesticides in exterior residential
areas. Environ. Sci. Technol. 2016, 50, 12592–12601. [CrossRef]

63. Quirós-Alcalá, L.; Bradman, A.; Nishioka, M.; Harnly, M.E.; Hubbard, A.; McKone, T.E.; Ferber, J.; Eskenazi, B. Pesticides in house
dust from urban and farmworker households in California: An observational measurement study. Environ. Health Glob. Access Sci.
Source 2011, 10, 19. [CrossRef] [PubMed]

64. Dalvie, M.A.; Sosan, M.B.; Africa, A.; Cairncross, E.; London, L. Environmental monitoring of pesticide residues from farms
at a neighbouring primary and pre-school in the Western Cape in South Africa. Sci. Total Environ. 2014, 466–467, 1078–1084.
[CrossRef] [PubMed]

65. AVCASA. Croplife South Africa Agricultural Remedies Database. Available online: https://www.croplife.co.za/images/croplife/
home/CROPLIFESOUTHAFRICAAGRICULTURALREMEDIESDATABASEINTRODUCTION.pdf (accessed on 30 August 2022).

66. Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210.
[CrossRef]

67. Chetty-Mhlanga, S.; Basera, W.; Fuhrimann, S.; Probst-Hensch, N.; Delport, S.; Mugari, M.; Van Wyk, J.; Roosli, M.; Dalvie, M.A.;
Röösli, M.; et al. A prospective cohort study of school-going children investigating reproductive and neurobehavioral health effects
due to environmental pesticide exposure in the Western Cape, South Africa: Study protocol. BMC Public Health 2018, 18, 857.
[CrossRef]
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P.; Klánová, J.; et al. Seasonal variations in air concentrations of 27 organochlorine pesticides (OCPs) and 25 current-use pesticides
(CUPs) across three agricultural areas of South Africa. Chemosphere 2022, 289, 133162. [CrossRef]

70. Curchod, L.; Oltramare, C.; Junghans, M.; Stamm, C.; Dalvie, M.A.; Röösli, M.; Fuhrimann, S. Temporal variation of pesticide
mixtures in rivers of three agricultural watersheds during a major drought in the Western Cape, South Africa. Water Res. X 2020,
6, 100039. [CrossRef]

71. Cao, Z.G.; Yu, G.; Chen, Y.S.; Cao, Q.M.; Fiedler, H.; Deng, S.B.; Huang, J.; Wang, B. Particle size: A missing factor in risk
assessment of human exposure to toxic chemicals in settled indoor dust. Environ. Int. 2012, 49, 24–30. [CrossRef]

72. Mercier, F.; Glorennec, P.; Thomas, O.; Bot, B. Le Organic contamination of settled house dust, a review for exposure assessment
purposes. Environ. Sci. Technol. 2011, 45, 6716–6727. [CrossRef]

73. Maggi, F.; Tang, F.H.M.; la Cecilia, D.; McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide
application rates from 2015 to 2025. Sci. Data 2019, 6, 170. [CrossRef]

74. Jepson, P.C.; Murray, K.; Bach, O.; Bonilla, M.A.; Neumeister, L. Selection of pesticides to reduce human and environmental
health risks: A global guideline and minimum pesticides list. Lancet Planet. Health 2020, 4, e56–e63. [CrossRef]

75. U.S. Environmental Protection Agency (EPA). Exposure Factors Handbook: 2011 Edition; EPA/600/R-09/052F; U.S. Environmental
Protection Agency (EPA): Washington, DC, USA„ 2011.

76. Raffy, G.; Mercier, F.; Glorennec, P.; Mandin, C.; Le Bot, B. Oral bioaccessibility of semi-volatile organic compounds (SVOCs) in
settled dust: A review of measurement methods, data and influencing factors. J. Hazard. Mater. 2018, 352, 215–227. [CrossRef]
[PubMed]

77. Besis, A.; Botsaropoulou, E.; Balla, D.; Voutsa, D.; Samara, C. Toxic organic pollutants in Greek house dust: Implications for
human exposure and health risk. Chemosphere 2021, 284, 131318. [CrossRef] [PubMed]

78. Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management.
Hum. Ecol. Risk Assess. 2016, 22, 1050–1064. [CrossRef]

22



Toxics 2022, 10, 629

79. Dodson, R.E.; Camann, D.E.; Morello-Frosch, R.; Brody, J.G.; Rudel, R.A. Semivolatile organic compounds in homes: Strategies
for efficient and systematic exposure measurement based on empirical and theoretical factors. Environ. Sci. Technol. 2015, 49,
113–122. [CrossRef]

80. Coronado, G.D.; Holte, S.; Vigoren, E.; Griffith, W.C.; Barr, D.B.; Faustman, E.; Thompson, B. Organophosphate pesticide exposure
and residential proximity to nearby fields: Evidence for the drift pathway. J. Occup. Environ. Med. 2011, 53, 884–891. [CrossRef]

81. Simaremare, S.R.S.; Hung, C.C.; Yu, T.H.; Hsieh, C.J.; Yiin, L.M. Association between pesticides in house dust and residential
proximity to farmland in a rural region of taiwan. Toxics 2021, 9, 180. [CrossRef]

82. Motsoeneng, P.M.; Dalvie, M.A. Relationship between urinary pesticide residue levels and neurotoxic symptoms among women
on farms in the Western Cape, South Africa. Int. J. Environ. Res. Public Health 2015, 12, 6281–6299. [CrossRef]

83. Fenske, R.A.; Lu, C.; Barr, D.; Needham, L. Children’s Exposure to Chlorpyrifos and Parathion in an Agricultural Community in
Central Washington State. Environ. Health Perspect. 2002, 110, 549–553. [CrossRef]

84. Waheed, S.; Halsall, C.; Sweetman, A.J.; Jones, K.C.; Malik, R.N. Pesticides contaminated dust exposure, risk diagnosis and
exposure markers in occupational and residential settings of Lahore, Pakistan. Environ. Toxicol. Pharmacol. 2017, 56, 375–382.
[CrossRef]

85. UNEP Stockholm Convention. Available online: http://chm.pops.int (accessed on 31 August 2022).
86. Balmer, J.E.; Morris, A.D.; Hung, H.; Jantunen, L.; Vorkamp, K.; Rigét, F.; Evans, M.; Houde, M.; Muir, D.C.G. Levels and trends

of current-use pesticides (CUPs) in the arctic: An updated review, 2010–2018. Emerg. Contam. 2019, 5, 70–88. [CrossRef]
87. Colt, J.S.; Lubin, J.; Camann, D.; Davis, S.; Cerhan, J.; Severson, R.K.; Cozen, W.; Hartge, P. Comparison of pesticide levels in

carpet dust and self-reported pest treatment practices in four US sites. J. Expo. Anal. Environ. Epidemiol. 2004, 14, 74–83. [CrossRef]
[PubMed]

88. Julien, R.; Adamkiewicz, G.; Levy, J.I.; Bennett, D.; Nishioka, M.; Spengler, J.D. Pesticide loadings of select organophosphate and
pyrethroid pesticides in urban public housing. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 167–174. [CrossRef] [PubMed]

89. Wang, X.; Banks, A.P.W.; He, C.; Drage, D.S.; Gallen, C.L.; Li, Y.; Li, Q.; Thai, P.K.; Mueller, J.F. Polycyclic aromatic hydrocarbons,
polychlorinated biphenyls and legacy and current pesticides in indoor environment in Australia–occurrence, sources and
exposure risks. Sci. Total Environ. 2019, 693, 133588. [CrossRef] [PubMed]

90. Wei, W.; Ramalho, O.; Mandin, C. A long-term dynamic model for predicting the concentration of semivolatile organic compounds
in indoor environments: Application to phthalates. Build. Environ. 2019, 148, 11–19. [CrossRef]

91. Wei, W.; Mandin, C.; Blanchard, O.; Mercier, F.; Pelletier, M.; Le Bot, B.; Glorennec, P.; Ramalho, O. Semi-volatile organic
compounds in French dwellings: An estimation of concentrations in the gas phase and particulate phase from settled dust. Sci.
Total Environ. 2019, 650, 2742–2750. [CrossRef]
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Abstract: Evaluating an illness’s economic impact is critical for developing and executing appropriate
policies. South Korea has mandatory national health insurance in the form of NHIS that provides
propitious conditions for assessing the national financial burden of illnesses. The purpose of our study
is to provide a comprehensive assessment of the economic impact of PM2.5 exposure in the subway
and a comparative analysis of cause-specific mortality outcomes based on the prevalent health-risk
assessment of the health effect endpoints (chronic obstructive pulmonary disease (COPD), asthma,
and ischemic heart disease (IHD)). We used the National Health Insurance database to calculate the
healthcare services provided to health-effect endpoints, with at least one primary diagnosis in 2019.
Direct costs associated with health aid or medicine, treatment, and indirect costs (calculated based
on the productivity loss in health effect endpoint patients, transportation, and caregivers, including
morbidity and mortality costs) were both considered. The total cost for the exposed population
for these endpoints was estimated to be USD 437 million per year. Medical costs were the largest
component (22.08%), followed by loss of productivity and premature death (15.93%) and other costs
such as transport and caregiver costs (11.46%). The total incurred costs (per 1000 persons) were
accounted to be USD 0.1771 million, USD 0.42 million, and USD 0.8678 million for COPD, Asthma,
and IHD, respectively. Given that the economic burden will rise as the prevalence of these diseases
rises, it is vital to adopt effective preventative and management methods strategies aimed at the
appropriate population.

Keywords: economic loss; subway PM exposure; health burden; long-term mortality; morbidity

1. Introduction

Exposure to pollution has short- and long-term effects on humans and poses a greater
risk to public health than other forms of pollution, such as groundwater contamination or
sludge contamination, because it affects more people. Particulate matter (PM) is a complex
aerosolized substance produced primarily by vehicle exhausts and road dust. As a result,
PM can have a wide range of particle sizes (2.5–10 µM), elemental compositions, and
surface areas, producing a variety of health effects on humans [1].

With over eight million daily passengers utilizing the Seoul Metropolitan Subway,
subway rail commuting is a major means of transportation in South Korea. However,
subway commuters are frequently exposed to indoor PM2.5 pollution which is generated
inside the subway stations and accumulates in subway platforms, waiting rooms, and train
cabins [2]. Elevated PM2.5 concentration levels have been reported in subway platforms
around the world, including in Los Angeles [3], London [4], Stockholm [5], Budapest [6],
and South Korea [1]. PM2.5 is a major air pollutant in Seoul’s subway system and has been
directly linked to several comorbidities in human health [7,8]. Furthermore, PM2.5-bound
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metals and polycyclic aromatic hydrocarbons (PAHs) have been related to major health
effects such as lung cancer and reduced immunological function [9]. Furthermore, because
of their high teratogenicity (pre- and early-pregnancy PM2.5 exposure has been linked to
a higher occurrence of congenital anomalies, exposure to air pollution during pregnancy
has, in particular, been linked to the development of congenital abnormalities, low birth
weight, stillbirth, and newborn respiratory illnesses) and carcinogenicity [10,11]. Many
countries, including the United States, China, the European Union, and India, have included
benzo[a]pyrene (B[a]P) and metals in their air quality monitoring standards [12,13]. Because
of the subway’s intrinsic characteristics, such as its compact size, airtight atmosphere, and
higher passenger density per unit area, great attention has been paid to the interior air
quality in subways or subterranean metro stations. Although passengers only spend a brief
time in subway stations, repeated exposure to everyday commuters, as well as short-term
exposure to excessive levels of air pollutants, can result in severe or acute health impacts.
Furthermore, personnel working in subterranean metro stations are exposed to high levels of
air pollution for extended periods of time, which might have long-term health repercussions.
Although subterranean metro stations have greatly reduced ambient air pollution, internal air
quality concerns may be more serious than outside air quality concerns [14–16].

South Korean legislation requires the surveillance of varied types of air pollutants,
including PM with diameters of 10 µm or less (PM10) and 2.5 µm or less (PM2.5), nitrogen
dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone [17]. Particle expo-
sure has been linked to a variety of health issues, including premature death in people with
respiratory disease, fatal and non-fatal heart attacks, heart palpitations, asthma, decreased
lung function, and increased respiratory symptoms like airway irritation, shortness of
breath, or breathing difficulties. In addition to increased cardiovascular morbidity and
mortality, recent large-population epidemiological studies have found that PM2.5 exposure
can contribute to the initiation and progression of diabetes mellitus (DM) as well as adverse
birth outcomes [18–24]. Air pollution causes alteration of the airway epithelial barrier
and signal transduction pathways, parenchymal damage, oxidative stress, phagocytosis
impairment, inflammatory cell infiltration, dysregulated cell immunity, epigenetic changes,
and autophagy [25]. Asthma prevalence, onset, symptoms, and treatment response can
all be influenced by air pollution [26]. Air quality is important in the early development
of asthma and as a cause of later-life asthma exacerbations. NO2 exposure throughout
childhood increases the risk of getting asthma. Exposure to traffic-related air pollution
during infancy has been linked to reduced lung function and long-term respiratory conse-
quences in susceptible newborns [27]. PM exposure may produce physiologic changes in
the respiratory system. PM suspensions increased cholinergic hyperresponsiveness while
decreasing host defense in mice, resulting in neutrophil influx, bronchoalveolar lavage
protein, and cytokine release in lung tissues. Ambient air particles may produce reactive
oxygen species and inflammatory factors in alveolar macrophages and polymorphonuclear
granulocytes [20], and bronchial epithelial cells. Reactive oxygen species, inflammatory
factor production, and respiratory inflammation all played important roles in lung tissue
destruction and the increased risk of COPD [28–30]. The amount of research addressing
the processes behind the influence of air pollution on CVD has expanded dramatically over
the last decade. The three most common starting mechanisms are (1) oxidative stress and
inflammation, (2) autonomic nerve imbalance, and (3) direct particle translocation. These
pathways may activate secondary pathways such as endothelial dysfunction, thrombotic
pathways, hypothalamic-pituitary-adrenal axis (HPA) activation, and epigenomic changes.
The pathways are distinct and occur at different times and locations throughout the body,
but they are highly interconnected, with effects that may converge at some point to increase
the risk of CVD outcomes [31–33]. In 2010, PM2.5 was responsible for approximately 7.1%
of global mortality. Ambient air pollution is widely established to have a variety of acute
and long-term consequences on human health. Several epidemiological studies have found
that the amount of particulate matter (PM2.5) or NO2 in the air is linked to daily mortality,
primarily from cardiovascular and respiratory disorders [34–37]. An epidemiological study
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by Kim et al. 2017, found considerable deleterious consequences of pollution that endure
over the long term. The study discovered that men and the elderly are the most affected,
whereas children appear to recover entirely from the early shocks [38]. Kim et al. 2020 and
Kim et al. 2022, in a study on the Indonesian population, present evidence of large and
long-term harmful consequences of air pollution on mental health. Using a natural experi-
ment in Indonesia, the study discovered that exposure to severe air pollution considerably
increases the prevalence of depressive symptoms in both men and women, as well as the
incidence of clinical depression in women, even 10 years later. The study also discovered
robust substantial effects of pollution on the intensity of moderate symptoms of depression
that persist over time in both sexes [39,40]. A study by Jayachandran 2009 on air pollution
due to wildfire in Indonesia in late 1997 found that the air pollution led to over 15,500 child,
infant, and fetal deaths. The study presented evidence of the most detrimental timing of
exposure to pollution in utero that has the greatest influence on survival. Particulate matter
has a significant influence on early-life mortality at levels that are common both indoors
and outdoors in many poor nations [41].

In 2016, PM2.5 was responsible for 4.09 million premature deaths, with chronic obstruc-
tive pulmonary disease (COPD), lower respiratory infections, lung cancer, and ischemic
heart disease (IHD) accounting for 19.23, 15.97, 6.83, and 38.51% of fatalities, respectively.
The health repercussions of PM2.5 have a direct influence on economic activity as measured
by national accounts and GDP (GDP). Researchers have calculated the economic cost of
extra illness and death caused by PM10 and 2.5 [42–46]. Kim et al. (2017) evaluated the
impact of air pollution on labor supply in the short and long run. Using the 1997 Indonesian
forest fires as a natural experiment, the researchers concluded that pollution had long-term
detrimental effects on hours worked. Based on their estimates, average pollution levels
in 1997, labor force participation rates, and Indonesian minimum wages, a conservative
value of roughly USD 10 billion was lost as a result of this pollution incident in the year
2000 alone [47]. The quantification of the impacts of air pollution is becoming an important
component in policy formulation. The effects of health on the economy can be seen from
the perspectives of the people and the country [48]. As a result, there are two techniques to
assess the health costs associated with air pollution: the economic burden of illness assess-
ment and the macroeconomic approach. The former is further subdivided into the human
capital approach and the willingness-to-pay technique, whilst the latter is further subdi-
vided into the macro-econometric approach and the general equilibrium approach [49,50].
Several studies link PM exposures to exacerbated chronic illnesses such as COPD and asthma
and ischemic heart disease. In this study, we specifically focus on PM2.5-associated long-
term illnesses, such as ischemic heart disease, and respiratory disorders, such as asthma and
COPD [33]. One of the primary goals of this research is to give a complete assessment of
the economic impact of PM2.5 exposure in the subway, as well as a comparative analysis of
cause-specific death outcomes based on the widespread health-risk assessment of the health
effect endpoint. The study is based on newly accessible subway PM2.5 concentration data as
well as an economic assessment of individual health-related expenditures.

2. Data and Methodology
2.1. Overview

As a prevalence-based technique that calculates the economic cost of all cases in a
particular time, we computed the yearly costs related to the health impact endpoints of
COPD, asthma, and IHD. The major source for cost estimates was the NHIS claims database,
which contained virtually all of Korea’s claim records [51,52]. A person was considered a
patient if they had at least one inpatient or outpatient claim that included a diagnosis. We
evaluated both direct and indirect expenses in our analyses. Direct costs were those related
to diagnosis and medication, whereas indirect costs were those associated with patient and
caregiver productivity loss associated with inpatient and outpatient treatment methods.
All costs are approximated in USD. The entire population exposed to PM2.5 from subway
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pollution was evaluated to determine the theoretical number of fatalities in the human
risk assessment.

2.2. Study Area

The Beomgye subway station in Seoul, South Korea, was chosen for the study and was
analyzed to determine the PM concentration and human economic loss due to PM2.5-induced
health damage. The PM levels of Beomgye subway station were obtained from the Korean
Railway Research Institute (KRRI).

2.3. Data Sources

PM10&2.5 levels of Beomgye station for the period January to March 2019 were obtained
from the KRRI. The average or mean concentration of PM10, PM2.5, and the average number
of passengers have been obtained from the KRRI. The 2019 GDP per capita data and total
GDP and mortality due to respiratory and circulatory system data were obtained from the
Korean Statistical Information Service (KOSIS) [53,54].

Daily PM levels of the platform, waiting room, and train cabin, and the number of
passengers boarding and getting off the train at Beomgye station, Seoul, South Korea were
obtained from the KRRI from January to March 2019 (Table 1). The 24 h data were averaged
for all values. The variations in PM10 and PM2.5 concentrations on the platform and the
waiting room are shown in Figure 1.

Table 1. Average concentrations of PM10 and PM2.5 and average number of patients traveled.

Platform µg/m3 Waiting Room µg/m3 Cabin
µg/m3

Avg. No. of People
Travelling per Day

PM10 PM2.5 PM10 PM2.5 PM10 PM2.5 Boarding Alighting

42.18 21.00 8.74 5.01 20.69 13.13 5478 5364

83.90 23.72 56.14 18.17 32.64 24.40 8331.6 8388

92.04 22.46 72.84 21.17 49.82 41.05 7306.2 7089

72.70 22.38 49.9 14.23 34.383 26.19 7038.6 6947
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2.4. Exposed Population

Given that air quality is highly connected to the degree of modernization of the
transportation system, everyday commuters who utilize the subway are the most likely
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population exposed to air pollution. As a result, conventional epidemiology considers
commuters to be the primary population susceptible to PM2.5.

The cabin data of passengers boarding and getting off trains and the data on the total
number of people and morbidity and mortality costs (sourced from NHIS) [54–56] of each
health effect endpoint passengers developing or at risk of PM2.5-associated health risks
reveal that an average of 30% of passengers will develop PM2.5-associated health problems
(Table 2). We further normalized to 30% (1000 commuters, 166.6 commuters in a cabin)
based on the obtained values of PM2.5 concentration and inhaled dose in a cabin linked
with PM2.5-associated comorbidities, assuming that this 30% of commuters are at risk of
developing PM-associated comorbidities.

Table 2. Burden of PM2.5 per 1000 persons for each health effect endpoint.

Disease
Risk/Prevalence/Development of

a Disease per 1000 Patients
(Morbidity)

Mortality-Associated Costs
(Million USD) per 1000 Persons

Average Median PM2.5
Exposure Concentration (µg)

COPD 373 9.3 1.05

Asthma 44 1.1 1.03

IHD 19 0.4 1.07

The GDP per capita, average per capita disposable income, and mortality due to
respiratory and circulatory system diseases in Korea in 2019 were sourced from KOSIS and
NHIS and were found to be USD 31,846.2, USD 21,882, 36,655, and 60,252, respectively.
Moreover, the highest concentrations of PM10 and PM2.5 were much more than the mini-
mum exposure concentration. The concentrations of PM observed in the subway platforms
exceeded the WHO-defined daily values of 50 and 35 µg/m3 for PM10 and PM2.5 [55,56]
(Figure 2).
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2.5. Exposure Route

The human body can be exposed to PM2.5 in two ways: through inhalation and eating.
PM2.5 can directly harm human health by allowing fine particles from the atmosphere to enter
the human body through the respiratory tract and travel through the bronchi, disrupting gas
exchange in the lungs. Fine dust in the environment can also fall into or settle on food or
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drink, affecting human health when consumed. To estimate the inhalational or ingested dose
of PM2.5, we adopted an equation from a study by Manojkumar et al., 2021 [55].

ID = C × MV × T (1)

where ID is the Inhaled dose per trip (µg), C is the exposure concentration (µg/m3), MV is
minute ventilation (m3 min−1), and T is the trip duration (min).

The equation has been widely adopted in previous studies [56–58]. In this study, the
per-minute ventilation rates recommended by the United States Environmental Protection
Agency’s Exposure Factors Handbook, EPA 2011 [59,60] were used and the per-minute
ventilation rate for active commuters was set as 0.015 m3 min−1. Earlier studies adopted
similar values for estimating inhaled doses [61,62]. The data are provided in Table 3.

Table 3. Average dose inhaled per trip at different time intervals.

Average Time Spent by a Commuter in the Subway (min) 30 60 90

Average exposure concentration PM2.5 (µg/m3) 16.22 16.22 16.22
Average minute ventilation rate by commuter (m3 min−1) 0.015 0.015 0.015

Inhaled dose per trip (µg) PM2.5 7.299 14.598 21.895

2.6. Health-Effect Endpoint

It has been proven that PM2.5 can cause severe health risks such as damage to the
lungs, respiratory system, and cardiovascular system, increased rates of premature death,
and increased risks of cancers, chronic bronchitis, emphysema, and asthma. Based on
this causation, we evaluated the economic loss due to PM2.5 on the following health
effect endpoints:

• COPD (Chronic Obstructive Pulmonary Disease).
• Asthma.
• Cardiovascular diseases.

3. Health Economic Accounting
3.1. Poisson Regression Model

The likelihood of any endpoint for health effects in the context of the overall popu-
lation is low, making them low-likelihood events. The actual distribution of endpoints is
consistent with the Poisson distribution statistics as a time-series model. The relative risk
model of Poisson regression is currently used in health-risk assessments of PM2.5 pollution.
This works by quantifying the health effect caused by increases in PM2.5 concentration by
calculating the corresponding health loss. We employed the Poisson regression model since
it has been widely adopted by other studies [57].

The formula is as follows:

E = exp[β(C − C0)] E0 (2)

∆E = E − E0 (3)

where E is the population health effect under the actual concentration of PM2.5, E0 is the pop-
ulation health effect under the PM2.5 threshold concentration, β is the exposure-response
relationship coefficient of a health-effect endpoint, C is the mean PM2.5 concentration (Mean
concentration of platform and waiting room 48.5 µg/m3), and C0 is the threshold concen-
tration of PM2.5 (35 µg/m3) [53,63]. ∆E is the excess health effect—that is, the difference in
health effects between the mean concentration and the threshold concentration.

3.2. Measurement of Direct and Indirect Cost
3.2.1. Direct Cost

The formal expenses for the diagnosis and treatment of asthma in the official health system
were described as direct medical costs and included the costs for inpatient and outpatient care,

30



Toxics 2023, 11, 113

as well as the costs for any prescription. The care costs assumed by the insurance company
were calculated based on the NHIS claims records and KOSIS statistics [63–66].

3.2.2. Indirect Cost

In general, indirect costs are described as “loss of productivity owing to discontinu-
ation or reduction in productivity due to sickness or death” [59]. In this study, indirect
costs were assessed using the human capital method, which assesses human output in
terms of market gains and includes sickness costs, death costs, and caregiver time costs
(average daily caregiver cost). In the case of patients with severe asthma, the indirect cost
was computed by multiplying the number of visits by age and gender, particular average
daily income, and employment rates for the age group 20 to 69 years. However, Loss of
productivity at work was not considered since the human capital approach is used. Instead,
we calculated the total loss of productivity based on (mortality and morbidity) in terms of
market gains (GDP). Mortality costs, defined as the loss of potential future income up to
the age of 69 due to early death, were calculated by multiplying the amount of associated
health effect endpoint by the amount of related health effect endpoint. Deaths in 2019 with
gender- and age-specific average yearly earnings and employment rates for each death
were used to calculate the present value of future admissions using a 3% discount rate. The
expenses of caregiving time were calculated using literature studies and NHIS claims. In
Korea, a family member, generally a middle-aged woman, provides practically all care for
each health effect endpoint. To measure both direct and indirect costs, we employed the
scheme of Lee et al., 2011 [63].

The scheme for estimating indirect costs was as follows:

• Morbidity costs
• Mortality costs
• Caregivers’ time costs
• Methods used to determine the health care costs are given in Table 4

Table 4. Methods used to determine health care costs.

Health Care Costs Outpatient Inpatient Formula

Direct medical costs X X • The NHIS database was used to get hospital expenses covered by co-payment plans in Korea for inpatients and outpatient visits, including Emergency
Department visits.

Nonmedical costs X X • Total transportation expenses were determined by multiplying transportation costs by the number of outpatient visits and hospitalizations based on NHIS claims
for each kind of hospital treatment.

• The overall caregiving expenses were estimated by dividing the average daily caregiving cost by the total days of hospital admissions obtained from the NHIS.
• Using the human capital method, productivity costs for patients under 70 and over 60 years old were assessed.

Transportation
Caregiving X

Indirect costs X X

Morbidity Costs

= ∑
j

{(
Iij + 1/3Oij

)}
DijEij (4)

where I is the age, j is the gender, I is the total number of inpatient days, O is the number of
outpatient visits, D is the average daily earnings, and E is the employment rate.

Mortality Costs

= ∑
i

∑
j

∑
t

[
Fijr

t+k
jj Eij

(1+r)k

]
(5)

where I is the age, j is the gender, t is the age of death, F is the number of deaths, γ is
the average yearly productivity at t k (The exponent “t + k denotes the adjusted years of
productivity loss due to premature death before the age of 70), E is the employment rate,
k is the number of years after death until the age of 70 (average years of life lost before the
age of 70), and r is the discount rate. For each health effect endpoint, the number of years
of life lost correlates with productivity loss.
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Caregivers’ Time Costs

∑i ∑j
(

Nij × IC
)

Ej ∑i≥10
(
0ij × IC

)
1/3

(6)

where I is the age, j is the gender, Nij is the number of days spent in the hospital, Oij is the
number of outpatient visits, and IC is the average daily informal care expenditures. The
caregiving expenses were determined by dividing the average daily caregiving cost by the
total days of hospital admissions obtained from the NHIS [42].

4. Results and Discussion

The changes in PM concentrations are characterized by the tallest column in Figure 1.
The highest concentrations of PM10 and PM2.5 on the platform and in the waiting room
were 150.38 and 43.24 µg/m3, and 177.27 and 53.24 µg/m3, respectively, and the lowest
were 20.34 and 4.32 µg/m3, and 5.55 and 0.34 µg/m3, respectively (Figure 1A,B). The con-
centrations also peaked from midday to midnight, indicating that temperature, ventilation,
and seasonal variation might play a major role in PM concentrations inside the subway.
As shown in Table 3, the inhaled doses estimated using the above formula were 7.2, 14.5,
and 21.8 µg for PM2.5 for 30, 60, and 90 min trips, respectively. Total costs were calculated
according to each component of direct and indirect costs. We applied the Poisson regression
model to estimate the risk of each health effect endpoint. To calculate a per capita cost,
the anticipated total expenditures were divided by the number of commuters at risk of
acquiring PM2.5 comorbidities for each health consequence endpoint. The data collected
were then statistically analyzed. The economic cost of each health effect endpoint was
measured using Equations (1)–(6). Using mortality and morbidity estimations and the
economic costs for each health effect endpoint, we calculated the total economic loss for the
exposed population developing PM2.5-related health effects (Table 5).

Table 5. Direct and indirect costs of each disease.

Disease
Direct Cost

(Million USD;
per 1000 Persons)

Indirect Cost
(Million USD;

per 1000 Persons)

Total Cost
(Million USD;

per 1000 Persons)

COPD 0.10591 0.0718 0.17771

ASTHMA 0.55 0.07 0.42

IHD 0.57478 0.294 0.86878

In this study, we analyzed the PM2.5 levels over a period of 3 months (January-March)
in Beomgye station, Seoul, Korea. The PM2.5 levels found in the subway, on the platform,
and in the waiting room exceed the defined values set by WHO, which in turn poses a
great risk to the commuters and the operators. People with chronic disease of the lung,
COPD, and asthma, and the aged are at higher risk of developing further complications.
On our comprehensive health risk assessment of each health effect endpoint, we estimated
that 373 (COPD), 44 (Asthma), and 19 (IHD) commuters (per trip in a train) were at risk of
developing PM2.5-mediated comorbidities for each health effect endpoint. The total cost
incurred by these comorbidities was estimated to be USD 437 million annually (Table 5).
Medical costs were the largest component (22.08%), followed by lost productivity and
premature deaths (15.93%) and nonmedical costs such as transportation and caregiver costs
(11.46%) (Table 6). The total costs incurred by health effect endpoints (per 1000 persons)
were estimated to be USD 0.1771 million (COPD; Table 6), USD 0.42 million (Asthma;
Table 6), and USD 0.8678 million (IHD; Table 6). The finding that medical charges (direct
costs) accounted for the majority of the overall cost suggests that PM2.5-induced health con-
sequences are burdensome chronic conditions that need extensive outpatient monitoring.
This pattern, which has been observed in other developed nations, might be considered
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an indirect indicator of a health consequence endpoint being adequately managed at the
outpatient level and not progressing to the emergency or hospitalization level [67]. The lost
productivity, premature deaths, and transportation and caregiver cost ranked second due
to subjective assumptions, such as children needing medical attention for PM2.5-induced
health effects, as other studies have established [68,69]. The heaviest economic burden
is for commuters aged above 60 because of their high mortality and morbidity and this
burden is mainly driven by the high proportion of hospitalization and inpatient treatment.
Nonetheless, to evaluate the true indirect costs, productivity loss in any form must be
considered [70–73]. As a result, the true socioeconomic burden in South Korea, including
the low productivity due to health effect endpoints, will be much higher than our estimates.
In addition, a previous study determined that workplace inactivity accounted for 50% of
total productivity losses; as this factor was considered based on the KOSIS statistics, we
have not considered actual productivity loss at the workplace in our study, and the real
socioeconomic costs of each health endpoint may be more substantial than those reported
in this study. Our findings indicated that the health burden and economic losses associated
with short-term air pollution exposure are significant [74]. To date, only a few studies on the
health burden caused by short-term exposure to air pollutants have been conducted in China,
Korea, and other countries. The exposure-response coefficients of short-term exposure to air
pollutants are likely to be much lower than those of long-term exposure [4,75,76].

Table 6. Economic loss due to COPD, asthma, and IHD.

Category Costs (Million USD; per 1000 Persons)

COPD Contribution (%) Asthma Contribution (%) IHD Contribution (%)

Direct

Medical

Formal
(Treatment) 0.029 16.6 0.2 54.8 0.302 34.76

Informal
(Medical

Equipment)
0.00631 3.5 0.02 7.4 0.16 18.41

Non-Medical

Transportation 0.0006 0.3 0.08 2.4 0.07 8.066

Nursing 0.070 39 0.05 14.1 0.04278 4.92

Indirect 3.33

Loss of Work 0.0588 32.7 0.04 12.4 0.029 30.5

Premature
deaths 0.013 7.7 0.03 9 0.265 100

Total 0.17771 100 0.42 100 0.86878

In recent years, PM2.5 has been widely regarded as the primary air pollutant with
the greatest health impact. Several studies have reported that the concentrations of PM2.5
inside trains are generally lower than in subway stations, which suggests that time spent on
the platform and in the waiting room can be a better predictor of personal exposure [76,77].
However, commuters who travel every day are repeatedly exposed, which can lead to
chronic health effects. Nonetheless, even short periods spent in underground environments
can exacerbate health risks for vulnerable groups such as children, the elderly, and individ-
uals with pre-existing health conditions. Train operators and other employees who spend
many hours in the subway each day are more likely to be exposed to PM2.5 levels than the
public and are thus at a potentially greater health risk.

A number of studies have revealed that high traffic counts are connected with an in-
creased incidence of respiratory disease [78]. One large British assessment on traffic-related
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pollution discovered a risk gradient that rose significantly with day-to-day exposure [79].
A large study in southern California found an increased incidence of asthma and wheezing
among children who commute on a daily basis [80]. Another study, conducted by Jerrett
et al. using data from the same southern California cohort, found a connection between the
incidence of asthma and other illnesses and exposure to traffic-related pollution [81]. Much
remains unknown about which contaminants cause the majority of respiratory impacts and
which signaling pathways are important for exacerbating chronic respiratory disorders.
The processes underlying the induction of respiratory aggravation and ischemic heart
disease by subway particles require further exploration, as do the interactions of coarse
subway particles with major pollutants in provoking oncogenesis.

5. Limitations and Conclusions

The limitation of our approach to study was that work engagement was not taken into
account when evaluating indirect costs, and because we utilized GDP per capita, the loss of
work engagement cannot be depended upon. Cost-of-illness studies, including this one, fail
to account for job involvement because existing report sets do not gather this information
on a regular basis; instead, such information is often collected through self-reporting [82].
Implied speculations regarding lost production, productive time, and caretaker qualities
may compromise the accuracy of projected indirect costs. The methodology for evaluating
indirect costs in cost-of-illness research studies is organically based on various assump-
tions about human and productivity values; it is crucial to compare research with similar
assumptions and methodologies [83]. The findings of this study come from a relatively
small proportion of the population (1000); this may have led to an underestimation of
outcomes. Another limitation of this study is that there is disagreement over the validity of
NHIS claims data in terms of diagnostic accuracy. According to one research, only 70% of
discharged diagnoses in NHIS claims data were concordant with medical records [84,85].
By using the direct costs of inpatient and outpatient care and indirect costs composed of
morbidity and mortality costs based on NHIS claims and KOSIS, the outcomes may vary
from those of other similar studies [86,87].

Furthermore, the results provided here are based on PM2.5, but no correlation is made
between more toxic particles, such as those with high levels of sorbed toxic components.
The study ignores the effects of exposure to ultrafine particles, which are implicated in
numerous diseases, but for which measurements are lacking.

Altogether, the study found that the economic burden of COPD, Asthma, and IHD
caused by commuter subway exposure to PM2.5 is large, with significant shares of overall
expenditures ascribed to direct and indirect expenses. Given that the burden would increase
in tandem with increases in these illnesses, effective preventive and management measures
targeting the right population are necessary.
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Abstract: Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter
(UFPM) are associated with overlapping Alzheimer’s, Parkinson’s and TAR DNA-binding protein
43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites.
We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children
aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and
26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult
controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43
neuropathology and cisternal CSF data from 20 subjects—15 MMC (41.1 ± 18.9 y) and 5 low pollution
controls (46 ± 16.01 y)—were included. CSF TDP-43 exponentially increased with age (p < 0.0001)
and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC
autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and
motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43
pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD
and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early,
sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM
emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention
of deadly neurologic diseases associated with air pollution ought to be a public health priority and
preventive medicine is key.

Keywords: ALS; air pollution; Alzheimer’s; Aβ1–42; α synuclein; children; cerebrospinal fluid;
cisternal CSF; fronto-temporal dementia; Metropolitan Mexico City; nanoparticles; olfactory bulb
granule cells; PM2.5; Parkinson’s; hyperphosphorylated tau; TDP-43

1. Introduction

Neurodegenerative disorders with complex environmental and genetic pathogenesis
start decades before clinical symptomatology is present [1–3]. Quadruple aberrant neural
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pathology starting in childhood and environmental damage to fetal brains in utero likely
have short- and long-term neuropsychiatric and neuropathological outcomes [2–4]. Air
pollution has been associated with neuroinflammation and oxidative stress, and fine partic-
ulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) are strongly associated with
higher risks of several types of dementia and Parkinson’s disease (PD) [5–11]. Psychiatric
outcomes, including depression and suicide, are reported in association with air pollution
exposures [12–15]. The pediatric impact of traffic pollution includes cognitive deficits,
altered neurobehavioral performance, structural brain changes and increased risk of at-
tention deficit/hyperactivity and autistic spectrum disorders, and maternal exposures to
traffic air pollution during late pregnancy contribute to oxidative stress and inflammation
in newborn children [16–23]. A key component of PM2.5 is the ≤100 nm fraction: ultrafine
PM (UFPM) and nanoparticles (NPs). Anthropogenic UFPM are primarily generated via
combustion (e.g., vehicular sources) and subsequent processes of particle nucleation, co-
agulation and vapor condensation, while NPs are frequently referred to as engineered or
manufactured because they are designed and generated for a particular purpose; e.g., med-
ical [24]. Anthropogenic UFPM and industrial NPs are ubiquitous and have detrimental
neural impacts [25–29].

We have previously shown that cerebrospinal fluid (CSF) concentrations of cytokines
and chemokines, cellular prion protein (PrPc), total tau (T-tau), tau phosphorylated at
threonine 181 (P-Tau), amyloid Aβ1–42, α-synuclein (t-α-syn and d-α-synuclein), brain-
derived neurotrophic factor (BDNF), insulin and leptin can be used to distinguish MMC
children from low pollution controls [30–33]. Moreover, CSF myelin basic protein autoanti-
bodies and nickel concentrations, as well as Mn, Ni and Cr concentrations in frontal tissues,
are higher in MMC cases vs. low pollution controls [34,35]. Of particular relevance to
this work are the significantly lower amyloid Aβ1-42 and BDNF concentrations in MMC
children versus low pollution controls (p = 0.005 and 0.02, respectively) and the fact that
non-P-Tau cases showed significantly faster increases in MMC residents versus controls
(p = 0.005) [31–33].

The overlap of several aberrant CSF proteins in children and young MMC adults,
including hyperphosphorylated tau, beta amyloid, alpha synuclein and TDP 43 [1,2,4],
drove our current investigation of MMC children and adults with TDP-43 in CSF and brain
tissues versus low pollution controls, and we selected hospital-diagnosed amyotrophic
lateral sclerosis (ALS) as an example of patients with a clinical syndrome with complex
biological determinants characterized by TDP-43 pathology and high TDP-43 lumbar CSF
concentrations. Moreover, our 203 forensic autopsy MMC data cases for residents ≤ 40 y,
with 18% showing TDP-43 pathology, drove our interest in the relationship between cisterna
magna TDP-43 concentrations and brain pathology.

Two research groups were critical in defining the relationship and the interpretation
of protein concentrations in cisternal versus lumbar CSF; the work by Reiber [36,37] and
by Peyron et al. [38]. More specifically, Reiber states that “nonlinearly increasing protein
concentrations between ventricular and lumbar CSF are fitting to a Gaussian error function, the
differential of the nonlinear concentration distribution function between blood and CSF” [36] and
that the relationship between blood-CSF and blood–brain barrier (BBB) dysfunction is an
expression of reduced CSF, or CSF flow rate, and CSF protein gradients [37]. These conclu-
sions support the positive relationship between cisterna magna TDP-43 concentrations and
our 3 ± 1.2 h after death autopsy findings [38].

TDP-43 nuclear depletion and aggregation are hallmarks of ALS and frontotemporal
dementia (FTD) [39–42]. TDP-43 immunocytochemical profiles in children and young
MMC adults have shown loss of nuclear expression and powdery cytoplasmic particles
in the substantia nigrae pars compacta and non-motor neurons, as well as significant
involvement of mesencephalic, pontine and medullary reticular formation [2,41–44]. Of
particular concern, we have reported sleep disorders in MMC residents [45] along key
brainstem sleep and arousal hubs, showing solid UFPM from anthropogenic combustion,
mainly diesel exhaust, as well as non-exhaust sources coming from tire and brake wearing
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and from engineered NPs [46–48]. Although FTD and ALS epidemiological data are not
extensively studied in Mexico [49,50], the presence of overlapping quadruple pathologies
in MMC children and young adults [2,45,46] raises the question of why such diagnoses are
missing in our populations. Providing an early ALS diagnosis is clinically difficult [51],
and development of research criteria for the diagnosis of prodromal behavioral variant
frontotemporal dementia (bvFTD) is ongoing [52]. Given the current challenges in defining
mechanisms underlying the development of TDP-43 pathology and the early identification
of individuals at risk for FTD and ALS, we hypothesized that CSF TDP-43 quantification
from air pollution-exposed residents is highly relevant. Our rationale is summarized as
follows: (i) even at the earliest age examined, CSF TDP-43 shows significant differences
from contrasting polluted environments; (ii) the measurement of cisterna magna CSF TDP-
43 and its correlative relationship with TDP43 pathology in the brain tissue of children and
young adults is crucial; and (iii) The contribution of UFPM and NP exposures to changes
in CSF TDP-43 levels in highly exposed residents versus clean air controls supports the
hypothesis that UFPM fractions [53–55] are highly neurotoxic and lead to TDP-43 pathology.

In sum, the purpose of the present study was to assess, in MMC versus lower pollution
age-matched subjects, the impact of lifetime exposures to highly polluted environments
on CSF TDP-43 burden. Our results identify lumbar CSF TDP-43 increasing exponentially
with age in young urbanites with high exposures to PM pollution and TDP-43 cisternal
CSF levels of 572 ± 208 pg/mL forecasting TDP-43 pathology in young MMC residents.

There is a strong association between TAR DNA-binding protein 43, frontotemporal
lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) [39–44,51,52]; thus, our
findings in young, highly PM-exposed megacity residents are highly relevant for the global
medical community, from both the neuropathology and clinical viewpoints.

2. Materials and Methods
2.1. Study Cities and Air Quality

MMC residents have been chronically exposed to significant concentrations of fine
particulate matter (PM2.5) and O3 for the last three decades [56–59]. Figure 1 shows the
time series trend of annual mean 24 h PM2.5 concentrations, averaged over 3 years, for
representative MMC monitoring stations in the period between 1990 to April 2020 and their
comparison with PM2.5 from the US EPA NAAQS.
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Figure 1. Time series trends showing annual mean 24 h PM2.5 concentrations, averaged over 3 years,
for five representative MMC monitoring stations from 1990 to April 2020 and their comparison with
the respective annual US EPA NAAQS. Annual means from the years before 2004 were estimated from
available information of PM10 since 1990 and the mean slope of the correlation PM10 vs. PM2.5 between
2004 and 2007. Data from: http://www.aire.cdmx.gob.mx/default.php# (accessed on 4 June 2022).
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UFPM and NPs have a very low mass compared with larger diameter particles; therefore,
the PM fraction <100 nm in MMC was evaluated through measurements of particle number
concentration (PNC) [60–63]. The expected PNC trend in MMC was estimated using CO
and PM2.5 measurements integrated in a nonlinear regression by our laboratory (CO and
PM2.5 are tracers of vehicular emissions) [46]. The estimated PNC for the 1990s was around
300,000 cm−3. Given that catalytic converters in cars and unleaded gasoline were not enforced
in Mexico until the year 2000, MMC CO and PM2.5 levels before 2000 were among the highest
levels of criteria pollutants registered in North America [57]. MMC residents born before 2002
were exposed to PNCs in the range of 300,000 cm−3 and, given that the PNC trend decreased
to the overall average of 44,000 cm−3 after 2003, exposures of MMC residents reached the
average PNC for 40 urban areas across Asia, North America, Europe and Australia precisely
after 2003 [63]. Figure 2 shows the annual PNC trends calculated for MMC from 1989 to 2019.
The symbols in the figure correspond to the median PNCs and the dates of measurement
reported by Dunn et al. [60]—commercial with median industry and heavy traffic site, size of
measured UFPMs between 3–15 nm; Caudillo et al. [53]—residential with low traffic site, size
of measured UFPMs between 20–100 nm; Velasco et al. [54]—commercial with moderate to
heavy traffic, size of measured UFPMs < 50 nm; Kleinman et al. [61]—PNC urban background
estimated from the extrapolation down to surface of the average UFPMs with sizes < 100 nm
measured by aircraft across the MMC at an average altitude level of 350 m above surface.
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MMC is an example of uncontrolled urban growth and environmental pollution [53–64];
the area of MMC is over 2000 km2, and it lies in an elevated basin 7400 feet above sea level.
MMC has nearly 22 million inhabitants, over 50,000 industries and over 5 million vehicles
consuming more than 50 million liters of petroleum fuels per day. In this megacity, MMC
motor vehicles release abundant amounts of primary PM2.5, elemental carbon, particle-bound
polycyclic aromatic hydrocarbons, carbon monoxide, nitrogen oxides and a wide range of
air toxins and other toxics, including formaldehyde, acetaldehyde, benzene, toluene and
xylenes [55,57–59,64]. The high altitude and tropical climate facilitate ozone production all
year [59] and contribute to the formation of secondary particulate matter. A review of several
MMC short-term pilot studies showed that the existing heavy-duty diesel fleet emits high
amounts of UFPM [65]. In addition, measurements of UFPM emissions from light gasoline
vehicles at smoke checking workshops have also shown that old vehicles are high PM0.1
emitters [65].

In this study, children and adult cohorts included residents in MMC, while subjects
from small control cities represented the typical provincial areas where air pollution emis-
sions are minimal. MMC northern industrialized and southern residential zones were
represented in our samples. Southern MMC children are exposed to significant concentra-
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tions of ozone, secondary tracers (NO3
−) and particles with lipopolysaccharides (PM-LPS),

while northern children are exposed to higher concentrations of volatile organic compounds
(VOCs) and PM2.5 and its constituents: organic and elemental carbon, including polycyclic
aromatic hydrocarbons, secondary inorganic aerosols (SO4

2−, NO3
−, NH4

+) and metals
(zinc, copper, lead, titanium, manganese, chromium and vanadium) [55,56,62,64]. Across
MMC, residents are exposed to volatile organic compounds (VOCs) and polycyclic aro-
matic hydrocarbons (PAHs) complex mixtures containing over 100 compounds associated
with fine particle-bound PAHs [58,64]. These PAHs are abundant in indoor and outdoor
air and busy roadways and are associated with frying oils and snacks and a wide range
of occupational exposures [64]. MMC residents are also exposed on daily bases to high
outdoor concentrations of Hg in PM2.5 [62].

2.2. CSF and Brain Samples

This prospective study was approved by the review boards and ethics committees
at the Universidad del Valle de Mexico, on the 18 November 2020, and the University of
Montana, IRB-206R-09, on the 8 December 2016, and IRB 185-20, on the 23 November 2020.

Normal CSF samples were selected from two cohorts admitted for investigation of
neurological involvement in the context of a hematological, neoplastic or infectious brain
processes: (i) children admitted to the hospital from a clean air city or MMC, with a work-up
diagnosis of acute lymphoblastic leukemia (ALL) entering a clinical protocol that included
a spinal tap, and (ii) young and older adults admitted to the hospital for a work-up that
required a spinal tap with varied diagnoses, including potential neoplastic and infectious
CNS involvement. The cohort of young and older adults also included permanent residents
in clean environments and lifetime residents in highly polluted MMC. The normal CSF
samples studied were destined to be destroyed after the diagnosis of normal CSF in the
laboratory. We also examined 19 CSF ALS cases from Dartmouth-Hitchcock Medical Center
Cerebral Spinal Fluid Bank for research IRB #29104 and 5 Mexican ALS cases under the
Universidad del Valle de Mexico 18 November 2020 IRB.

The autopsy cases with cerebello-medullary cisternal tap included 15 MMC subjects
and 5 low pollution control cases; all had complete forensic autopsies, including full
neuropathological examination. These autopsies were performed between 2004 and 2008
under a Consejo de la Judicatura del Distrito Federal permit (14571/2003).

2.2.1. CSF Spinal Taps

Spinal tap was performed on the left lateral decubitus from the intervertebral spaces
L3-S1 using a standard 22 spinal needle. Spinal taps were performed between 8 and 10 am.
CSF was collected dripping in free air in 1 mL aliquot into Nalge Nunc polypropylene Cry-
oTubes. Lumbar puncture samples were collected during non-traumatic, non-complicated
procedures. CSF samples were examined immediately to determine haematological, on-
cological or infectious involvement and then stored at −80 ◦C and kept frozen until the
current analysis. CSF pleocytosis was defined as CSF white blood cell (WBC) counts of
≥7 cells per mm3. All CSF samples in this study were read as normal. We performed the
hTDP43 total ELISA (Cat. No. 847-0108000107, Roboscreen GmbH, Leipzig, Germany)
according to the instructions for use. This ELISA uses two monoclonal antibodies directed
at amino acids 79–91 and 259–271.

2.2.2. Pediatric Cohort for the Measurement of TDP-43 in CSF

This work includes CSF data from a pediatric cohort: 92 children from MMC (33F/59M,
mean age = 10.27 years, SD = 4.73) and 26 low pollution control children (11F/15M, mean
age = 11.5 years, SD = 4.4). The selected children had no previous oncologic and/or
hematologic CNS or systemic treatments and their CSF samples were read as normal, with
CNS involvement being ruled out at the time of their hospitalization. Children’s clinical
inclusion criteria were negative known smoking history and environmental tobacco expo-
sure, lifelong residency in MMC or the control city, residency within a radius of 2.5 miles
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of one of the representative city monitoring stations, full-term birth and unremarkable
clinical histories prior to their admission to the hospital. We specifically excluded children
with a history of active participation in team sports with high incidences of head trauma,
including soccer. Mothers had unremarkable, full-term pregnancies with uncomplicated
vaginal deliveries and took no illicit drugs, including alcohol and tobacco. These children
had a history of breast feeding for a minimum of 6 months and were introduced to solid
foods after the age of 4 months. Participants were from middle class families, living in
single-family homes with no indoor pets, used LP gas for cooking and kitchens were
separated from the living and sleeping areas. Low and high pollution-exposed children
were matched by age, gender and socioeconomic status.

2.2.3. Adult Cohort for the Measurement of TDP-43 in CSF

We had 19 ALS cases (9F/10M, average age 52.4 ± 14.1 y), of which 14 were from NH
and 5 from MMC; 43 normal MMC CSF samples (27M/16F, average age 43.2 ± 15.9 y); and
14 samples from residents in low pollution cities (9M/5F average age 33.1 ± 12.0 y).

2.2.4. Children and Adult Forensic Autopsies for the Measurement of Cisternal CSF
TDP-43 and Complete Brain Examination Including Immunohistochemistry for TDP-43

This work included forensic cases from MMC and low pollution controls. A total of
20 subjects (1F, 19M) (mean age 42.3 years, SD = 17.9, age range 16 to 83 y) were examined:
15 MMC male residents, average age 41.13 ± 18.9 y, and 5 controls (1F/4M, 46 ± 16 y).
The inclusion criteria for this cohort included lifelong residency in MMC or the control
cities and a cause of death—i.e., accidents, homicides and suicides—that did not involve
the brain directly. Immunohistochemistry was performed using the TDP-43 mab2G10
(847-0102007401, Cat. No. Roboscreen GmbH, Leipzig, Germany, 1:1000). This antibody is
a recombinant human TDP-43 directed to the amino acids MTEDELREFFSQYGDVM of the
TDP43 protein and able to identify prominent physiological nuclear immunostaining and
neuronal pathological cytoplasmic immunoreactivity in neurons and glial cells in TDP-43
proteinopathy cases.

2.2.5. Data Analysis

We first calculated summary statistics of the TDP-43 concentrations, age and gender
for the following cohorts: control children, MMC children, ALS patients, MMC adults and
control adults. We then compared the means of TDP-43 concentration between the ALS
cohort and controls and between the ALS and the MMC group. We performed two-sample
t-tests for this purpose. Next, we investigated the role of age, gender and residency on TDP-
43 concentrations in all subjects. For this purpose, we considered linear regression analysis.
Since the TDP-43 values varied widely, an appropriate mathematical transformation was
necessary so that linear regression analysis could be applied and interpreted reasonably.
Logarithm transformation was a natural choice. We performed linear regression of the
logarithm of TDP-43 concentration for age, gender and residency. Thereafter, we performed
linear regression analysis of the logarithm of TDP-43 concentrations for age and gender.
The statistical analyses were performed using the statistical software R.

3. Results
3.1. CSF TDP-43

CSF samples were colorless, with normal opening pressure. Table 1 shows the
mean ± SD and 25th, median and 75th percentile results for ALS cases, MMC and lower
pollution control children and adult samples.
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Table 1. CSF TDP-43 ELISA results in pg/mL for control and MMC children, ALS patients and adult
MMC and low pollution controls. In each cell, the first row shows the mean ± SD and the second
row the 25th percentile, median and 75th percentile.

CSF Samples Age and Gender TDP-43 pg/mL

Control children
n: 26

11.5 ± 4.4 y
(8.25, 12.50, 15.00) y

11F/15M

102 ± 59
(58.14, 88.65, 129.77)

MMC children
n: 92

10.27 ± 4.7 y
(7.00, 11.00, 15.00) y

33F/59M

239 ± 152
(130.28, 229.39, 299.47)

ALS patients
n: 19

52.4 ± 14.1 y
(56.50, 61.00, 64.00) y

9F/10M

902 ± 269
(683.30, 906.07, 1085.79)

MMC adults
n: 43

43.2 ± 15.9 y
(28.50, 45.00, 54.00) y

16F/27M

373 ± 358
(159.86, 275.10, 473.55)

Control adults
n: 14

33.14 ± 12.0 y
(27.50, 32.00, 33.75) y

5F/9M

108 ± 67
(56.49, 81.75, 150.75)

Mean CSF TDP-43 concentration was significantly higher in ALS versus MMC and
non-MMC controls (p < 0.0001). The logarithm of TDP-43 increased significantly with age
(p < 0.0001) and it was higher for MMC residents (p < 0.0001). Excluding ALS cases, a
log-transformed linear regression of TDP-43 concentration relative to age and residency
showed that CSF TDP-43 increases significantly with age (p = 0.0032) (Figure 3).
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Figure 3. Linear regression of logarithm of TDP-43 CSF concentrations for age and residency (controls
and MMC residents). Logarithm of TDP-43 increased significantly with age (p = 0.0032). Black circles
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3.2. Cisternal CSF TDP-43 and Brain Pathology

The average age of the MMC adult cases was 41.1 ± 18.9 years and that of the
controls was 46 ± 16 y. A 16-year-old MMC boy was also studied. Table 2 shows the
neuropathological markers in each case and the concentrations of cisternal CSF TDP-43.
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There was a significant difference between the CSF TDP-43 concentrations in controls
without brain pathology versus the six MMC cases showing TDP-43 brain pathology:
controls—265.2 ± 132 vs. MMC—572.5 ± 228.5 pg/mL. The mean MMC TDP-43 cisternal
concentration was 350.8 ± 247 pg/mL.

Table 2. Autopsy cases with cisternal CSF TDP-43 and complete neuropathological examination
using H&E, PHF-tau8 phosphorylated at Ser199-202-Thr205 and α-synuclein phosphorylated at
Ser-129, LB509 and TDP-43 mab2G10.

ID Age Gender APOE AD pτ * AD Aβ ** SN pτ § SN αS
§§

TDP-43
Brain ‡

TDP-43
Cisternal

pg/mL

1 16 1 0 2 2 1 0 1 1013

2 21 1 0 5 3 0 0 0 392

3 24 1 0 2 2 1 1 1 375

4 25 1 0 1 2 0 0 1 565

5 27 1 0 2 2 1 1 0 218

6 37 0 0 5 4 1 1 0 42

7 38 1 0 4 3 1 0 0 306

8 39 1 0 3 2 1 1 0 167

9 40 1 0 4 3 1 1 1 562

10 42 1 0 3 2 1 0 1 496

11 47 1 0 3 2 0 0 0 194

12 48 1 0 4 3 1 1 0 293

13 55 1 0 5 3 0 1 0 150

14 75 0 0 4 3 1 1 1 424

15 83 0 0 4 3 1 0 0 66

1 CTL 29 0 0 0 0 0 0 0 364

2 CTL 34 1 0 0 0 0 0 0 191

3CTL 43 1 0 0 0 0 0 0 435

4 CTL 56 1 0 0 0 0 0 0 226

5 CTL 68 1 0 0 0 0 0 0 110

* AD staging—pτ stage: 0 = absent; 1 = pre-tangle stages a–c; 2 = pre-tangle stages 1a and 1b; 3 = NFT stages I and
II; 4 = NFT stages III and IV; 5 = NFT stages V and VI. ** AD staging—Aβ phase: 0 = absent; 1 = basal temporal
neocortex; 2 = all cerebral cortex; 3 = subcortical portions—forebrain; 4 = mesencephalic components; 5 = reticular
formation and cerebellum. § Substantia nigrae pτ was evaluated as pre-tangles, positive neurites and tangles using
the PHF-tau8 phosphorylated at Ser199-202-Thr205 (Innogenetics, Belgium, AT-8 1:1000). §§ Substantia nigrae α-S
was evaluated as neuronal immunoreactive (IR) aggregates in the somato-dendritic compartment, cytoplasmic
inclusions, core-halo Lewy bodies and dystrophic neurites (Lewy neurites) using α-synuclein phosphorylated
at Ser-129, LB509 (In Vitrogen, Carlsbad, CA 1:1000). ‡ Brain TDP-43 was evaluated as dash-like IR particles in
the vicinity of the cell nucleus, with or without complete loss of nuclear TDP-43 expression and somatic skein
inclusions and glial pathology using mab2G10 (Roboscreen GmbH, Leipzig, Germany 1:1000).

Remarkably, concentrations of TDP-43 in cisternal CSF with an average of
572 ± 208 pg/mL forecasted cortical and subcortical TDP-43 pathology, while averages of
232 ± 130 pg/mL were associated with negative TDP-43 brain pathology in MMC residents
and controls.

Table 3 shows the TDP-43 immunoreactivity in the 6 MMC cases with TDP-43-related
brain pathology and targeted anatomical locations. A total of 25 cortical and subcorti-
cal regions were immunoassayed with a TDP-43 antibody and/or counter-stained with
hematoxylin. Regions were evaluated for: (1) complete loss of nuclear TDP-43 expression;
(2) dash immunoreactive (IR) particles in the vicinity of neuronal nuclei; (3) skein-like
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tangles in neurons; (4) glial pathology, including oligodendroglia coil tangles. We sectioned
the entire brainstem up to cervical levels C1–C2 and included the olfactory bulb; frontal,
temporal and parietal cortices; hippocampus, caudate and putamen; substantia nigrae;
locus coeruleus; cranial nerve nuclei; trigeminal ganglia; and cervical sections C1 and C2 in
our immunohistochemistry studies.

Table 3. Neuropathology findings in the six MMC males with cisternal CSF TDP-43 data and TDP-43
neuropathology. Numbers represent: (1) complete loss of nuclear TDP-43 expression; (2) dash-like
immunoreactive (IR) particles in the vicinity of neuronal nuclei; (3) skein-like tangles in neurons;
(4) glial pathology, including oligodendroglia coil tangles. * Cranial nerve nuclei.

Anatomical Areas 16
1013 pg/mL

24
375 pg/mL

25
565 pg/mL

40
562 pg/mL

42
496 pg/mL

75
424 pg/mL

Frontal motor 1 1 1 1 1, 2 1, 2

Frontal non-motor 1 1 1 1 1 1

Parietal 1 0 0 1 1 1

Temporal 1 1 0 1 1, 2 1

Hippocampus 1 1 1, 2, 4 1, 2 1, 2 1, 2, 4

Caudate 1 0 1 0 0 0

Putamen 0 0 1 0 0 1

Globus pallidus 0 0 1 0 1 0

XII * 1, 2 1, 2 1 1 1,2 1

X * 1 1, 2 1 1 1 1

IX * 0 0 1 1 0 0

VIII * 1 1 1 0 0 1

VII * 1 0 1, 2 1,2 1 1

VI * 0 1 1 0 0 0

V * 1, 2 1 1, 2 1 1 1

IV * 1 1 1 0 1 1

III * 1 1 1, 2 1 1 1

II * 0 0 0 0 0 0

I * 1 1 1, 2, 3, 4 1 1, 2 1

Substantia nigrae
pc 1, 2 1, 2 1 1, 2 1, 2 0

Locus coeruleus 1, 2 1 1 1, 2 1, 2 1, 2

Pons neurons 1, 2, 4 1, 2, 4 1, 2 1, 2 1, 2 1, 2

Mesencephalic
reticular

formation
1, 2 1 1, 2 1, 2 1, 2 1

Area postrema 1 1 1, 2 1, 2 1 1

Trigeminal ganglia 0 1 1 1, 2 1, 2 1, 2

Inferior olivary
complex 1 1 1 1 1 1

Cervical, anterior
horn 1 1, 2 1, 2 1 1 1

Representative immunohistochemistry photographs are shown in Figures 4–6. Positive
TDP-43 pathology in the six MMC autopsy cases was characterized by complete loss of
nuclear TDP-43 expression and/or dash-like IR in the vicinity of neuronal nuclei (Figure 4).
We documented olfactory bulb granule cell short tangles in young adults (Figure 4A).
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Figure 4. Olfactory bulb, trigeminal ganglia and brainstem motor nuclei immunohistochemistry for 
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male showing complete loss of nuclear TDP-43 IR (arrowhead) alternating with nuclear TDP-43 
(short arrow), the presence of short tangles and loss of nuclear expression (square and insert, the 
arrow points to a short TDP-43 positive tangle in a granule neuron). TDP-43 and DAB (brown stain-
ing). (B) Oculomotor nucleus (III cranial nerve) in the 16 y old showing a neuron (arrowhead) with 
complete loss of nuclear IR surrounded by three neurons with strongly stained red nuclei (short 
arrows). (C) 40 y old male trigeminal spinal neurons with negative nuclei and cytoplasmic dash-like 
IR, mostly in the axonal region (short arrows). (D) 45 y old male trigeminal ganglia neurons with 
negative nuclei and cytoplasmic positivity (long arrow), alternating with negative nuclear IR (short 
arrow) and strong nuclear TDP-43 IR (arrowhead). (E) 16 y male vagal neurons with negative nuclei 
(arrowhead), neurons with weak nuclear IR (long arrow) and neurons with intense cytoplasmic in-
clusions (three short arrows). DAB, brown product. Insert: Vagal neuron with a negative nucleus 
(n) and positive cytoplasmic IR (short arrow). (F) 16 y old male hypoglossal neurons with negative 
IR nuclei (arrowhead) alongside a neuron with intense cytoplasmic IR (arrow). Insert. hypoglossal 
neuron with intense IR granular material. DAB, brown product. 

The pathology was mostly seen in brainstem levels, including the medulla and pons, 
substantia nigrae and locus coeruleus, and in relation to the mesencephalic reticular for-
mation, ventral tegmental area-parabrachial pigmented nucleus complex and caudal-ros-
tral linear nucleus of the raphe (Figure 5). 

Figure 4. Olfactory bulb, trigeminal ganglia and brainstem motor nuclei immunohistochemistry
for TDP-43 in young Metropolitan Mexico City residents. (A) Olfactory bulb granule cells in a 25 y
old male showing complete loss of nuclear TDP-43 IR (arrowhead) alternating with nuclear TDP-43
(short arrow), the presence of short tangles and loss of nuclear expression (square and insert, the
arrow points to a short TDP-43 positive tangle in a granule neuron). TDP-43 and DAB (brown
staining). (B) Oculomotor nucleus (III cranial nerve) in the 16 y old showing a neuron (arrowhead)
with complete loss of nuclear IR surrounded by three neurons with strongly stained red nuclei (short
arrows). (C) 40 y old male trigeminal spinal neurons with negative nuclei and cytoplasmic dash-like
IR, mostly in the axonal region (short arrows). (D) 45 y old male trigeminal ganglia neurons with
negative nuclei and cytoplasmic positivity (long arrow), alternating with negative nuclear IR (short
arrow) and strong nuclear TDP-43 IR (arrowhead). (E) 16 y male vagal neurons with negative nuclei
(arrowhead), neurons with weak nuclear IR (long arrow) and neurons with intense cytoplasmic
inclusions (three short arrows). DAB, brown product. Insert: Vagal neuron with a negative nucleus
(n) and positive cytoplasmic IR (short arrow). (F) 16 y old male hypoglossal neurons with negative
IR nuclei (arrowhead) alongside a neuron with intense cytoplasmic IR (arrow). Insert. hypoglossal
neuron with intense IR granular material. DAB, brown product.

The pathology was mostly seen in brainstem levels, including the medulla and pons,
substantia nigrae and locus coeruleus, and in relation to the mesencephalic reticular forma-
tion, ventral tegmental area-parabrachial pigmented nucleus complex and caudal-rostral
linear nucleus of the raphe (Figure 5).

The cortical and hippocampal pathology was characterized by loss of nuclear TDP-43
expression and/or dash-like IR cytoplasmic neurons. The 24 and 25 y old subjects showed
negative IR nuclei in frontal and temporal neurons, cytoplasmic IR and oligodendroglia
tangles (Figure 6A,B), while the 16 y old boy exhibited cervical motor neurons with IR
negativity and cytoplasmic IR (Figure 6F).
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SN neuron with IR negative nucleus (n) contrasting with IR-positive nuclei (arrowheads) with a few 
melanin granules and a neuron with abundant neuromelanin and IR-positive nucleus (arrow). Red 
product. (D) Cluster of pontine neurons in a 42 y old with IR-negative nuclei (n), fine granular cy-
toplasmic IR (arrow) and paranuclear strong IR (three arrows). DAB, brown product. (E) 42 y old 
male inferior olivary complex with unremarkable neurons (short arrow), nuclear IR negativity (n) 
and strong granular paranuclear IR (two short arrows). One neuron with a short tangle and a neg-
ative IR nucleus (long horizontal arrow) is also identified. (F) Seventy-five y old male area postrema 
with large neuron with strong nuclear IR (arrow). (G) Same subject as F with area postrema showing 
a large neuron (arrow) with nuclear (n) IR negativity. (H) Forty y old male medullary reticular neu-
ron (long arrow) with nuclear IR negativity and extensive granular IR along axonal and dendritic 
tree (short arrows). 

The cortical and hippocampal pathology was characterized by loss of nuclear TDP-
43 expression and/or dash-like IR cytoplasmic neurons. The 24 and 25 y old subjects 
showed negative IR nuclei in frontal and temporal neurons, cytoplasmic IR and oligoden-
droglia tangles (Figure 6A,B), while the 16 y old boy exhibited cervical motor neurons 
with IR negativity and cytoplasmic IR (Figure 6F). 

Figure 5. TDP-43 immunohistochemistry in locus coeruleus (LC), substantia nigrae (SN), pons and
medulla. (A) Locus coeruleus in a 24 y old showing the spectrum of TDP-43 nuclear pathology from
positive nuclear staining (short arrows) to negative nuclear IR (arrowhead). (B) Sixteen y old male
with LC neurons showing negative nuclei and scanty dash-like IR (arrowhead), along with negative
nuclear IR and prominent granular cytoplasmic IR (arrow). DAB, brown product. (C) 42 y old male
SN neuron with IR negative nucleus (n) contrasting with IR-positive nuclei (arrowheads) with a
few melanin granules and a neuron with abundant neuromelanin and IR-positive nucleus (arrow).
Red product. (D) Cluster of pontine neurons in a 42 y old with IR-negative nuclei (n), fine granular
cytoplasmic IR (arrow) and paranuclear strong IR (three arrows). DAB, brown product. (E) 42 y old
male inferior olivary complex with unremarkable neurons (short arrow), nuclear IR negativity (n) and
strong granular paranuclear IR (two short arrows). One neuron with a short tangle and a negative IR
nucleus (long horizontal arrow) is also identified. (F) Seventy-five y old male area postrema with
large neuron with strong nuclear IR (arrow). (G) Same subject as F with area postrema showing a
large neuron (arrow) with nuclear (n) IR negativity. (H) Forty y old male medullary reticular neuron
(long arrow) with nuclear IR negativity and extensive granular IR along axonal and dendritic tree
(short arrows).
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were associated with no TDP-43 brain pathology in any of the study subjects. Our neuro-
pathology findings in the six MMC individuals included loss of normal nuclear TDP-43 
expression and development of cytoplasmic aggregations in non-motor and motor neu-
ronal groups and involved the olfactory bulb, brainstem and cervical motor neurons. Our 
previously published MMC cases [2] with TDP-43 pathology involved non-motor nuclei, 
as described in the work by Pandya [67]. Pandya et al. investigated 79 ALS cases using a 

Figure 6. TDP-43 Immunohistochemistry in frontal and temporal cortex, hippocampus and cervical
motor neurons. (A) Twenty-four y old male showing a frontal pyramidal neuron with negative nuclear
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IR and dash-like cytoplasmic positive IR (long arrow), a pyramidal neuron with cytoplasmic IR and
negative IR nucleus (arrowhead) and a glial cell with strong nuclear IR (short arrow). Insert shows
a coil tangle in an oligodendroglia cell close to a frontal motor neuron with negative IR nucleus
and a cytoplasmic IR. DAB counterstained with hematoxylin. (B) Twenty-five y old male temporal
cortex showing unremarkable neurons with strong nuclear IR (long vertical arrow) contrasting with
nuclear negative IR (arrowheads) and one neuron with negative nuclear IR and a small cluster of IR
positive granules (horizontal arrow). (C) Forty-two y old male temporal cortex with normal neurons
with strong nuclear IR (long arrow), neuronal negative nuclear IR (arrowhead) and coil tangle in an
oligodendroglia (short arrow). (D) Seventy-five y old hippocampus CA2 neurons with nuclear IR
(short arrows) and negative nuclear IR (arrowhead). (E) Same case as (D), dentate hippocampal gyrus
neurons with strong nuclear IR (arrows) contrasting with nuclear negative IR (arrowheads). Insert is
a hippocampal neuron in CA3 in the same subject showing a negative nuclear IR and a few positive
cytoplasmic granules. (F) Sixteen y old male cervical (C2) anterior horn motor neuron with negative
nuclei (arrowhead) and one neuron with cytoplasmic IR (long arrow). Insert: This cervical motor
neuron in the same child exhibits a negative IR nucleus and a few positive IR cytoplasmic granules.

4. Discussion

Intracellular accumulation of abnormal misfolded proteins is the critical neuropatho-
logical feature of ALS, FTD, Alzheimer’s and Parkinson’s diseases and exposure to particu-
late matter air pollution has been described as a strong risk factor for Metropolitan Mexico
City (MMC) young residents [1–4]. Mexican urbanites exposed to complex mixtures of air
pollutants, including PM2.5 above current EPA US standards and highly toxic UFPM have
CSF TDP-43 concentrations exponentially increasing with age. TDP-43 is the target pro-
tein associated with ALS and fronto-temporal dementia (FTD) [39–44,66–68]. Remarkably,
concentrations of TDP-43 in cisternal CSF with averages of 572 ± 208 pg/mL forecasted
cortical and subcortical TDP-43 pathology, while averages of 232 ± 130 pg/mL were associ-
ated with no TDP-43 brain pathology in any of the study subjects. Our neuropathology
findings in the six MMC individuals included loss of normal nuclear TDP-43 expression
and development of cytoplasmic aggregations in non-motor and motor neuronal groups
and involved the olfactory bulb, brainstem and cervical motor neurons. Our previously
published MMC cases [2] with TDP-43 pathology involved non-motor nuclei, as described
in the work by Pandya [67]. Pandya et al. investigated 79 ALS cases using a network
diffusion model (NDM) to define whether a process of focal pathological ”seeding”, fol-
lowed by structural network-based spread, recapitulated postmortem histopathological
staging, and if there was any correlation with the pattern of expression of a panel of genes
implicated in ALS across the healthy brain. Remarkably, the critical seed regions for spread
within the model were the thalamus, insula, pallidum, putamen and caudate [67]. This
information is very relevant to our Mexico City studies, since we have a significant overlap
of abnormal neural proteins [1,2], and non-primary motor regions are among the earliest
sites of cerebral TDP-43 pathology. Moreover, the involvement of the frontal and temporal
cortex and cerebellum in frontotemporal lobe dementia FTLD-TDP patients should be
noted, as described in the work of Hasan et al. [68]. Equally relevant to our previous
MRI and magnetic NPs quantification in MMC residents’ cerebellum [2,47,69], Hasan et al.
identified strong cerebellar involvement [68], which most certainly can be used as early
evidence of neurodegeneration in MMC residents [2,4,46,69].

The global connectome architecture of FTD subjects is a relevant issue in early TDP-43
pathology, as it allowed researchers such as Shafiei et al. [70] to identify regional early
atrophy; i.e., insula—which was identified as the predominant group epicenter of brain
atrophy using data-driven and simulation-based methods—with secondary regions in
frontal ventromedial and antero-medial temporal areas [70]. These critical observations [70]
associating atrophy patterns in sporadic and genetic bvFTD with global connectome archi-
tecture and local transcriptomic vulnerability provide an explanation as to how quadruple
pathology could account for overlapping clinical pictures [2,4,45,46,71]. Scarioni and col-
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leagues [72] were able to dissect 20 standard neuropathology regions associated with
FTLD-TDP, FTLD-tau and FTLD-fused-in-sarcoma (FTLD-FUS) and stained them for phos-
phorylated TDP-43, phosphorylated tau, FUS, amyloid-beta and alpha-synuclein. Their
results showed TDP-43 pathology in the hippocampal granular layer correlates with hallu-
cinations, CA1 with mania, CA3 with depression and parahippocampal tau with delusions.
In the brainstem, the presence of alpha-synuclein co-pathology in the substantia nigra (SN)
correlated with disinhibition, tau pathology in the SN with depression and tau pathology in
the locus coeruleus with both depression and perseverative/compulsive behavior. The re-
sults of Scarioni et al. [72] strongly support that a subcortical TDP-43 burden contributes to
configuring the clinical phenotype of FTLD. Recent important publications have described
end-stage FTLD with tau or TDP-43 pathology [73,74], emphasizing laminar distributions
of lower laminar tau, higher TDP pathology and Fe-rich cortical inflammation in tau vs.
TDP cases. We were unable to corroborate such distributions in our cases. Our MMC
cases demonstrated significant concentrations of highly reactive, magnetic Fe nanoparticles
distributed throughout cortical, olfactory, brainstem and cerebellum regions [2,24,25,46].

Our TDP-43 CSF findings and the previously documented quadruple brain pathol-
ogy [1–4] are in keeping with the presence of several abnormal CSF proteins in the seem-
ingly CNS-uncompromised MMC versus low pollution control children [30–34] with low
amyloid-β1-42 and BDNF [32,33] and elevated MIF, IL6, IL1ra, IL2 and PrP(C) levels [30].

The abnormal CSF proteins found in MMC children and young adults are very con-
cerning because they are involved in several pathophysiological mechanisms of early
neural damage with eventual impacts on cognitive, neurological and psychiatric out-
comes [71,75,76].

At the core of our results, we report accumulation of TDP-43 starting at an early age in
individuals highly exposed to complex environmental emissions, including UFPM [1–4].
The TDP-43 pathology observed in young MMC children [2] and the correlation between
cisternal TDP-43 levels and the distribution of pathology in children and young adults
cannot be dismissed.

Non-fibrillary TDP-43 accumulates in the rough endoplasmic reticulum (RER), as
described by Kon and colleagues [77], and the ER is one of the targets of UFPM/NPs in
MMC young residents [1,2,24]. To this end, the work of Scarioni and colleagues is key [72].
Their robust data established associations between clinical symptoms and TDP-43 pathol-
ogy. Strikingly, MMC residents have cellular, subcellular and immunoreactive pathology
in precisely the same regions [2,46,69]. Moreover, Andrew and colleagues [78] identified
contaminants found to have a strong association with ALS risk in the US, including air-
borne lead (false discovery rate (FDR) = 0.00077), primarily produced by small aircraft, and
polychlorinated biphenyls (PCBs), such as heptachlorobiphenyl (FDR = 3.60E-05) emitted
by power plants burning biomass and industrial boilers. This analysis supports neurotoxic
airborne metals and PCBs as risk factors for ALS.

Neuropathological information in conjunction with the social brain hypothesis [79]
and the application of targeted cognitive behavioral function tests [80] for highly exposed
cohorts is a path we could explore, knowing social and criminal transgressions are recorded
in bvFTD patients [81]. Mendez discussed precisely this impairment in an innate sense
of morality and the predominantly right-hemisphere pathology in frontal (ventromedial,
orbitofrontal, inferolateral frontal), anterior temporal (amygdala, temporal pole), limbic
(anterior cingulate, amygdala) and insular regions in bvFTD patients [81]. MMC subjects
show involvement of these key areas, as explored by brain MRI [69], and social violence
in MMC is significant [82]. According to a 2020 report by the Mexico City-based Citizen
Council for Public Safety and Criminal Justice, seven out of the ten “most violent” cities
in the world were located in Mexico [83]. For the country as a whole, 2019 and 2020 were
the most violent on record, with more than 34,000 intentional homicides each year, and
the Mexico state—a very polluted particulate matter region—has the highest incidence of
violence [83].
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The involvement of TDP-43 in the complex reticular formation in MMC residents
must be pursued further, given the complexity of the brainstem reticular nuclei and their
connections with supra- and infra-cortical structures involving major integration and
relay centers coordinating survival functions and key connections between the cerebral
cortex, the cerebellum and the spinal cord [84–96]. We are particularly concerned about the
associations between reticular brainstem-impaired connectivity and isolated sleep behavior
disorder (iRBD) [88], one of the earliest manifestations of α synucleinopathies, which is
present in MMC young adults [46], as well as the higher risk of falls [90,94] in young MMC
adults [69,97].

Research regarding TDP-43, including novel nuclear pore articles, muscle TDP-43
involvement and the anatomical targets [39–45,98–111], must be revisited in the context of
potential early involvement in pollution-exposed populations. For example, it could be
particularly intriguing to look for nuclear NPs in motor neurons of highly exposed city
dwellers [107] and hypothalamic TDP-43 lesions [111].

There is an urgent need for noninvasive, reliable fluid biomarkers to diagnose early
TDP-43 pathology to improve the differential diagnosis with overlapping neurodegener-
ative diseases that undoubtedly exhibit an extreme variability in clinical phenotypes, as
described by Virgilio et al., for tau [112]. Since TDP-43 pathology increases linearly with
age in older adults with and without dementia [113], the issue of prevention at early ages
is certainly crucial. Identifying the individuals at highest risk of MMC TDP-43 pathology is
one of our goals, and to the exploration of cognitive behavioral function tests we could add
lipid metabolic traits and body complexions causally associated with the risk of FTD, as in
the work of Esteban-García et al. [114]. Increased trunk-predicted mass and fat-free mass,
as well as higher circulating triglyceride levels, impact differentially on the risk of FTD and
ALS [114].

The work of researchers exploring correlations between fluid biomarkers is highly
relevant [115–122]. In particular, our interest is focused on plasma biomarkers to help dis-
tinguish between MCI + AD and controls and between FTD and progressive supranuclear
palsy (PSP); i.e., P-tau181 [122]—the positive correlation between CSF and plasma values
for NfL (p < 0.0001), with NfL values higher for all phenotypes of symptomatic FTD-ALS
spectrum (FAS) patients compared to primary psychiatric disorders (PPD) [121].

Since, our MMC cases have AD hallmarks, and given that cognition, gait and bal-
ance; auditory-evoked brainstem potentials; and brain MRI changes are striking in the
young MMC residents [1,2,16,46,69,97,123–125]—we are obligated to include AD biomark-
ers [118,126,127]. Since CSF samples continue to be the gold standard of neurodegenera-
tive biomarkers, exploration of normal CSF samples in the hospital setting will continue
to be an excellent source of samples. Thus, multi-marker synaptic proteins [128], CSF
phosphorylated-tau levels (associated with cerebral tau burden in FTLD) and TDP-43
may help to define, in autopsy materials, the burden of TDP-43 pathology and identify
risk factors [129,130]. Forensic autopsy-confirmed neurodegenerative biomarkers and
neuropathology hallmarks are crucial to define the pathology burden in a population
at large.

There were advantages and limitations to this study. A major advantage was the
multidisciplinary collaborators and the efforts made to exchange viewpoints regarding the
importance of early clinical detection of young individuals at risk, key in understanding
the impact of our findings in future multidisciplinary studies. The current particle number
concentration (PNC) in MMC is crucial environmental information for the responsible
authorities. Residents continue to be exposed to an average of 44,000 particles per cm−3 [63],
with all the health-associated risks. There is a need to define the presence of the major ALS
mutations, including the C9orf72 expansion mutations, SOD1 and TARDBP gene mutations,
in MMC residents, and this study further highlights the need to consider early TDP-43
pathological changes as an opportunity to explore pathomechanistic avenues where we
could intervene to halt neurodegenerative processes.
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5. Concluding Remarks

1. Particulate matter exposures—specifically, UFPM/NP sustained exposures from
utero—are likely key in aberrant neural protein pathology. The CSF TDP-43 results
identify logarithmic increases related to age across young megacity urbanites, crucial
information in view of the 18% TDP-43 pathology reported in 202 forensic MMC
autopsies aged 27.29 ± 11.8 y and the overlap of aberrant hyperphosphorylated tau,
beta amyloid, α synuclein and TDP-43. These data are striking in view of the work
of Karanth et al. [71] and Carlos et al. [113]. Karanth and coworkers pointed out that
quadruple misfolded proteins, including tau neurofibrillary tangles, amyloid-β [Aβ],
α-synuclein and TDP-43, in the same brain are relatively common in aging. Moreover,
dementia frequency was highest among those with quadruple misfolded proteins [71].
Carlos et al. [113] made a calculation of the frequency and distribution of TDP-43
pathology in 1072 cases, average age 87 years, with AD and TDP-43 pathology and
antemortem cognitive studies, including 58% with dementia, 15% with mild cognitive
impairment and 27% who were cognitively intact. Carlos and colleagues showed a
linear increase in TDP-43 pathology with age: 30% of subjects aged 70 had TDP-43
pathology, 42% by age 80 y and 49% by age 90. Strikingly, these cases were white
residents in a low-polluted area, reflecting that elderly TDP-43 increases linearly,
notwithstanding the low cumulative exposures to environmental air pollutants, in
sharp contrast with our logarithmic increases in pediatric and young adults with high
UFPM/NP exposures already exhibiting quadruple misfolded protein pathology.

2. We identified a significant relationship between cisternal CSF TDP-43, an average of
572 ± 208 pg/mL, and TDP-43 brain pathology. This is particularly serious for highly
exposed children, as with the 16 y old boy (1013 pg/mL) who had extensive nonmotor
and motor TDP43 pathology. As toxicologists working with forensic colleagues, we
suggest that forensic cases are very helpful to explore the extent of brain pathology in
a population at large, and taking a cisternal sample is simple and quick.

3. Defining early markers of the quadruple aberrant neurodegenerative diseases, in-
cluding TDP-43 pathology, ought to be the core of our future efforts. MMC residents
are showing early clinical symptomatology—including gait and balance alterations,
cognitive deficits and MRI volumetric cortical and subcortical abnormalities, all of
which may help identify young subjects at higher risk.

4. Exposed children and young adults in highly polluted areas need early neuroprotection
and multidisciplinary prevention efforts. Control of combustion and friction UFPM
sources and engineered NPs (food products, cosmetics, toothpaste, sun protectors,
surface disinfectants, paints, e-waste) is becoming increasingly important and urgent to
diminish the human and economic costs of a global neurodegenerative epidemic.

5. UFPM/NP exposure should be included in any assessment of the neurodegenerative
risk profile of exposed individuals. No matter the portal of entry, chronic delivery of
exogenous particles to the brain induces oxidative stress and neuroinflammation.

6. We have described the overlap of multiple neurodegenerative pathologies; the pres-
ence of anthropogenic UFPM in fetal brains; and the early development of AD, PD
and TDP-43 pathology, along with their progression and their neuropsychiatric conse-
quences: this body of knowledge resulting from multidisciplinary studies cannot be
disregarded by those concerned with public health.

7. We urgently need to practice preventive medicine and develop tools to identify chil-
dren at risk in order to implement neuroprotective strategies. As neurotoxicologists,
we ought to define the mechanistic pathways involving complex NPs containing
metalloids, metals, organic compounds, plastics, etc., that can cause extensive brain
pathology. As physicians, our focus should be protecting the brains of our future
citizens and our younger generations, identifying neurotoxic emission sources and
being active players in multidisciplinary teams to prevent, ameliorate or halt neurode-
generative diseases.

53



Toxics 2022, 10, 559

Author Contributions: L.C.-G. and R.D.-C.: Conceptualization, Data curation, Formal analysis,
Methodology, Investigation, Original draft preparation, Writing—reviewing and editing, Visualiza-
tion, Supervision. P.S.M.: Formal analysis, Visualization, Investigation, Statistics, Writing—reviewing
and editing. R.T.-J.: Air pollution analysis, Data curation, Formal analysis, Writing—reviewing and
editing. A.G.-M.: Data curation, Imaging. E.W.S., I.L., K.W., C.-K.C. and E.G.-R.: Data curation,
Investigation, Writing—reviewing and editing, Visualization. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the review boards and ethics committees at the Universidad del Valle
de Mexico, 18 November 2020, and the University of Montana, IRB-206R-09 and IRB 185-20.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All data necessary to understand and assess the conclusions of this
study are available in the main text.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Calderón-Garcidueñas, L.; Gónzalez-Maciel, A.; Reynoso-Robles, R.; Delgado-Chávez, R.; Mukherjee, P.S.; Kulesza, R.J.; Torres-

Jardón, R.; Ávila-Ramírez, J.; Villarreal-Ríos, R. Hallmarks of Alzheimer disease are evolving relentlessly in Metropolitan Mexico
City infants, children and young adults. APOE4 carriers have higher suicide risk and higher odds of reaching NFT stage V at
≤40 years of age. Environ. Res. 2018, 164, 475–487. [CrossRef] [PubMed]

2. Calderón-Garcidueñas, L.; González-Maciel, A.; Reynoso-Robles, R.; Hammond, J.; Kulesza, R.; Lachmann, I.; Torres-Jardón, R.;
Mukherjee, P.S.; Maher, B.A. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic
nanoparticles (and engineered Tirich nanorods). The substantia nigrae is a very early target in young urbanites and the
gastrointestinal tract a key brainstem portal. Environ. Res. 2020, 191, 110139. [CrossRef] [PubMed]

3. Calderón-Garcidueñas, L.; Pérez-Calatayud, A.; González-Maciel, A.; Reynoso-Robles, R.; Silva-Pereyra, H.G.; Ramos-Morales, A.;
Torres-Jardón, R.; Soberanes-Cerino, C.D.J.; Carrillo-Esper, R.; Briones-Garduño, J.C.; et al. Environmental Nanoparticles Reach
Human Fetal Brains. Biomedicines 2022, 10, 410. [CrossRef] [PubMed]

4. Calderón-Garcidueñas, L.; Ayala, A. Air Pollution, Ultrafine Particles, and Your Brain: Are Combustion Nanoparticle Emissions
and Engineered Nanoparticles Causing Preventable Fatal Neurodegenerative Diseases and Common Neuropsychiatric Outcomes?
Environ. Sci. Technol. 2022, 56, 6847–6856. [CrossRef]

5. Ehsanifar, M.; Yavari, Z.; Rafati, M. Exposure to urban air pollution particulate matter: Neurobehavioral alteration and hippocam-
pal inflammation. Environ. Sci. Pollut. Res. 2022, 29, 50856–50866. [CrossRef]

6. Jung, C.R.; Lin, Y.T.; Hwang, B. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort
study in Taiwan. J. Alzheimers Dis. 2015, 44, 573–584. [CrossRef]

7. Lee, P.-C.; Liu, L.-L.; Sun, Y.; Chen, Y.-A.; Liu, C.-C.; Li, C.-Y.; Yu, H.-L.; Ritz, B. Traffic-related air pollution increased the risk of
Parkinson’s disease in Taiwan: A nationwide study. Environ. Int. 2016, 96, 75–81. [CrossRef]

8. Chen, H.; Kwong, J.C.; Copes, R.; Tu, K.; Villeneuve, P.J.; van Donkelaar, A.; Hystad, P.; Martin, R.V.; Murray, B.J.; Jessiman, B.; et al.
Living near major roads and the incidence of dementia, Parkinson’s disease, and multiple sclerosis: A population-based cohort
study. Lancet 2017, 389, 718–726. [CrossRef]

9. Shi, L.; Steenland, K.; Li, H.; Liu, P.; Zhang, Y.; Lyles, R.H.; Requia, W.J.; Ilango, S.D.; Chang, H.H.; Wingo, T.; et al. A national
cohort study (2000–2018) of long-term air pollution exposure and incident dementia in older adults in the United States. Nat.
Commun. 2021, 12, 6754. [CrossRef]

10. Mortamais, M.; Gutierrez, L.-A.; de Hoogh, K.; Chen, J.; Vienneau, D.; Carrière, I.; Letellier, N.; Helmer, C.; Gabelle, A.;
Mura, T.; et al. Long-term exposure to ambient air pollution and risk of dementia: Results of the prospective Three-City Study.
Environ. Int. 2021, 148, 106376. [CrossRef]

11. Russ, T.C.; Cherrie, M.P.; Dibben, C.; Tomlinson, S.; Reis, S.; Dragosits, U.; Vieno, M.; Beck, R.; Carnell, E.; Shortt, N.K.; et al. Life
Course Air Pollution Exposure and Cognitive Decline: Modelled Historical Air Pollution Data and the Lothian Birth Cohort 1936.
J. Alzheimer’s Dis. 2021, 79, 1063–1074. [CrossRef] [PubMed]
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Abstract: A wide range of volatile organic solvents, including aliphatic and aromatic hydrocarbons,
alcohols, and ketones, are used in the production of paints, and they comprise more than 30% of
the ingredients of paints. The present study was designed to evaluate the occupational exposure to
15 volatile organic compounds (VOCs, including benzene, toluene, ethylbenzene, xylene, styrene,
n-hexane, n-heptane, n-nonane, trichloroethylene, tetrachloroethylene, n-butyl acetate, n-octane,
n-decane, dichlorofluoromethane, and acetone) in Iranian paint production factories and subse-
quently, the associated health risks. The samples were collected from the respiratory zone of workers
using the NIOSH 1501 method, and their qualitative and quantitative characterization was per-
formed using gas chromatography-mass spectrometry and gas chromatography-flame ionization
detector, respectively. The individual concentrations of VOCs ranged from 23.76 ± 0.57 µg m−3

(acetone) to 92489.91 ± 0.65 µg m−3 (m,p-xylene). The predominant compounds were m,p-xylene
(up to 92489.91 ± 0.65 µg m−3), ethylbenzene (up to 91188.95 ± 0.34 µg m−3), and toluene (up to
46088.84 ± 0.14 µg m−3). The non-cancer risks of benzene, n-nonane, trichloroethylene, tetrachloroethy-
lene, xylene, and ethylbenzene surpassed the reference value in most of the sectors. In addition, total
lifetime risks of cancer were in the range of 1.8 × 10−5–3.85 × 10−3, suggesting that there was a
risk of carcinogenesis in all studied sections, mainly due to ethylbenzene and benzene. Considering
their high exposure concentrations and their associated non-carcinogenic and carcinogenic risks,
biological monitoring of workers and the use of technical and modern engineering control measures
are recommended.

Keywords: paint production plant; volatile organic compounds (VOCs); inhalation exposure; cancer
risk; non-cancer risk

1. Introduction

Volatile organic compounds (VOCs) are a wide variety of chemical substances that are
derived from natural processes and human activities [1]. In the occupational context, these
compounds are widely used in industrial processes, such as rubber manufacturing, plastic
manufacturing, paint production, and automobile manufacturing [2–4]. Benzene, toluene,
ethylbenzene, and xylene, which are among the most common VOCs, are known to pose
risks to human health [5,6]. In addition to hydrocarbons, halocarbons and oxygenated
hydrocarbons, such as styrene (vinyl benzene), are also classified as harmful compounds
to human health. Styrene is an economically industrial chemical that is utilized in the
synthesis and manufacturing of polystyrene and hundreds of different copolymers, as
well as in many other industrial resins. Short-term exposure to high concentrations of
VOCs may irritate the eyes, nose, throat, and lungs, as well as damage the liver, kidneys,
and central nervous system. Additionally, long-term exposure to low concentrations
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of pollutants can lead to asthma, reduced lung function, cardiovascular disease, and
cancer [7]. The International Agency for Research on Cancer (IARC) and the United States
Environmental Protection Agency (USEPA) have classified benzene as a known human
carcinogen (Group A), ethylbenzene and styrene as possibly carcinogenic to humans (Group
2B), and tetrachloroethylene and trichloroethylene as probable carcinogens to humans
(Group 2A) [8]. Many studies have shown that inhalation is the main route of exposure
to VOCs [9,10], and that significant risks for workers of different industries (gas station
workers, tire-manufacturing factories, and dyeing industrial complex, among others) may
exist [6,11–13]. Considering the potential toxic effects of VOCs on people’s health in work
environments, monitoring these compounds and assessing their health risks is the first
way to adopt control measures for occupational exposure and regulatory purposes at the
national and international level [14]. There are different methods to determine exposure to
chemicals in work environments, and the direct measurement of pollutant concentration
in a person’s respiratory area is considered the most reliable method. By combining
data related to exposure and the dose-response of the chemicals, risks from exposure to
chemicals can be calculated [15]. Hu et al. found that the lifetime cancer risks of benzene,
tetrachloromethane, trichloromethane, and trichloroethylene in different functional zones
(traffic, industrial, development, resident, and ground zone) of a typical developing city
in China were above the acceptable risk level (1.0 × 10−6) set by USEPA [16]. Shuai et al.
reported that the prevalence of respiratory, allergic, and cardiovascular diseases near the
dyeing industrial complex in South Korea was significantly higher than in the control
area [12]. The results of Tunsaringkarn et al. showed that occupational exposure to BTEX
increased the risk of cancer in gas station workers [6]. Hosseini et al. reported unacceptable
occupational cancer risks due to benzene exposure in two tire-manufacturing factories [11].
Other similar studies indicated significant risks of VOC exposure in different occupational
and non-occupational environments [17–20]. Because organic solvents are still one of the
main constituents of paints, workers from the paint and painting industries are regularly
and occupationally exposed to them [21]. Golbabai et al. showed that the carcinogenic risks
for benzene and ethylbenzene and the non-cancer risks for benzene and xylene in the paint
section of an automotive industry were higher than the recommended level [13]. On the
other hand, the market has been moving towards industrial paint applications in industries
such as construction, automotive, general, coils, wood, aerospace, fences, and packaging
coatings, which leads to the growth of demand [22]. Considering that the workforce is
considered the capital of every society, providing, maintaining, and improving their health
is one of the most important goals of every society [23]. Thus, in this study, and due to the
limited information on the subject, the USEPA model [24,25] was used to assess the health
risks of VOC exposure (to 15 compounds, including benzene, toluene, ethylbenzene, m/p-
xylene, styrene, n-hexane, n-heptane, n-nonane, trichloroethylene, tetrachloroethylene,
n-butyl acetate, n-octane, n-decane, dichlorofluoromethane, and acetone) in paint factories
of Iran during 2022.

2. Materials and Methods
2.1. Site Description

This cross-sectional study was conducted on workers (all male) from two paint plants
in the Semnan province of Iran in 2022. The characterized production processes were those
conventionally used in Iran and took place on two closed floors of the plant. The workers
of the production line were classified according to job operations. These people worked
in units called raw materials, mixing and dispersion, and filling lines. Workers in the raw
materials line began the process by emptying the paint materials into tanks connected to
buckets in the mixing and dispersing department by pipes. In the second part, colored
liquors were mixed with porcelain clays. The paint then went to the filling line and was
emptied into cans for sealing and shipping. The manufacturing process was maintained,
and air from the respiratory zone of the workers was collected for 8 h during the working
shift. A temperature of 80 ◦C produced significant paint fumes in the work area. The paint
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production unit of the studied industry had 8 sections, including 3 different paint produc-
tion salons [Plastic Color production (PC), Cathodic Electrodeposition production (CED),
and Original Equipment Manufacturer Color production (OEM)], 2 paint warehouses (dis-
patch and topcoat), a washing salon (washing PC salon), and 2 paint laboratories (lab OEM
and PC lab).

2.2. Sampling Method

The NIOSH-1501 method was used to assess the occupational exposure. None of the
workers used personal protective equipment (PPE), including facemasks and protective
clothing. VOC samples were collected in each factory section using tubes containing solid
adsorbents of activated carbon (SKC Inc., Pittsburgh, PA, USA) and an individual sampling
pump, calibrated at a flow rate of 200 mL min−1 (SKC Inc., Pittsburgh, PA, USA). Sampler
specifications included a glass tube with a length of 7 cm, an inner diameter of 6 mm OD,
and an outer diameter of 4 mm ID and flamed sealed ends with plastic caps containing
two sections of 20/40 mesh-activated (600 ◦C) coconut shell charcoal (front = 100 mg,
back = 50 mg) separated by a 2 mm urethane foam plug. A total of 75 individual samples
of air were collected during sampling, and the environmental factors, such as temperature,
humidity, air pressure, airflow speed, and the condition of the existing ventilation system
on the concentration of pollutants in the workplace air were recorded.

2.3. Sample Preparation and Analysis

After collection, the samples were transported to the laboratory. Both the front and
back sections of the activated carbon tube were transferred to different 2 mL vials. Samples
were extracted, with 1 mL carbon disulfide (99.5%) (Merck Inc., Darmstadt, Germany)
as eluent under ultrasonic waves for at least 30 min to complete extraction. Qualitative
information about the predominant VOCs was obtained by gas chromatography-mass
spectrometry (6890N/5973; Agilent, Palo Alto, Santa Clara, CA, USA). Analysis was
performed using gas chromatography (GC 7890 Agilent, Santa Clara, CA, USA) equipped
with a flame ionization detector (FID) using a capillary column (length = 30 m, internal
diameter = 0.25 mm). Helium gas was used as a carrier gas, with a flow rate of 2 mL min−1.
The injection volume was 1 µL, and a split ratio of 5/1 was applied. The initial temperature
of the column was 50 ◦C, which increased to 100 ◦C after 5 min. The injector was set at
a temperature of 250 ◦C. Standard solutions of benzene, ethylbenzene, xylene, toluene,
styrene, n-hexane, n-heptane, n-nonane, trichloroethylene, tetrachloroethylene, n-butyl
acetate, n-octane, n-decane, dichlorofluoromethane, and acetone (Merck Inc., Darmstadt,
Germany) were used to obtain the calibration curves.

2.4. Quality Control (QC)/Quality Assurance (QA)

In this study, the concentration of BTEX compounds was read according to the ISO/IEC
17025 standard method using the carbon disulfide extraction method and a gas chromato-
graph (GC) coupled with an FID in the laboratory. In this method, the detection limits for
VOCs were in the range of 0.04 and 30 µg m−3 (for a sample preconcentration of 1 m3) [26].
Additionally, control samples and duplicate samples (obtained from all study sites) were
used. The relative deviation of all VOCs in duplicate samples was less than 11%. Five
blank samples were taken to check the presence of any possible contamination during the
sampling, transportation, and storage of air samples. In this study, the total concentration of
VOCs in each blank sample was found to be <0.5 ppbv. Spiked samples were used to assess
the recovery rate and accuracy. Accuracy and precision were determined by analyzing
15 replicates of QC samples on three different days. The results showed that the analyte
recovery percentage was >95% for most compounds.

2.5. Health Risk Assessment

The cancer risk assessment for benzene, ethylbenzene, styrene, trichloroethylene, and
tetrachloroethylene and the non-carcinogenic health risk assessment for all VOCs were
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performed using the EPA method [24,25]. After determining the concentration of pollutants,
the adjusted air exposure concentration (EC, mg m−3) was calculated in order to represent
the duration of exposure through Equation (1), based on USEPA recommendations [25].

EC (mg m−3) = (C × ET × EF × ED/AT) (1)

where C (mg m−3) is the concentration of the considered compound in the collected
personal air sample; ET (h day−1) is the exposure time per day; EF (days year−1) is the
exposure frequency per year; ED (years) is the exposure duration; and AT (hours) is the
average lifetime (Table 1).

The hazard quotient (HQ) index was calculated to estimate the potential risk posed by
the non-carcinogenic effects of the chemical compounds (Equation (2)). The total hazard
quotient (THQ) is the sum of the individual HQs.

Hazard Quotient (HQ) = EC (mg m−3)/RFC (mg m−3) (2)

where RFC is the reference concentration for inhalation exposure (Table 2).
The chronic daily intake (CDI) was calculated by:

CDI (mg kg−1 day−1) = (C × IR × EF × ED/LT × BW) (3)

where BW is the body weight (kg), IR is the inhalation rate (m3 day−1), and LT is the
lifetime (day) (Table 1).

If the lifetime risk of cancer (LTCR; Equation (4)) was less than or equal to one in
a million (1 × 10−6), it had no significant effects on human health, so cancer risk was
negligible. A LTCR more than 1 × 10−4 was established as “definite risk,” between
1 × 10−4 and 1 × 10−6 as “probable risk,” between 1 × 10−5 and 1 × 10−6 as “possible
risk,” and less than 1 × 10−6 as “negligible risk” for human health [27]. The cancer slop
factor (CSF) for benzene, ethylbenzene, styrene, trichloroethylene, and tetrachloroethylene
are shown in Table 2 [10].

LTCR = CDI (mg kg−1 day−1) × CSF [(mg kg−1 day−1)]−1 (4)

Table 1. Information for risk assessment.

Parameter Values Data Collection

Exposure time to VOCs
(hours/days)—ET 8 Questionnaire

Exposure frequency (day/year)—EF 300 Questionnaire
Exposure duration(years)—ED 30 USEPA, 2002 [25]

Lifetime (day)—LT 25,600 USEPA, 2011 [28]
Inhalation rate (m3 day−1)—IR 16 USEPA, 2011 [25]

Body weight (kg)—BW 72 ± 9.42 Questionnaire
Average lifetime (hours)—AT 33,650 USEPA, 2011 [28]

Table 2. Inhalation dose reference exposure (RFC) and cancer inhalation unit risk for the characterized VOCs.

Agent RFC (mg m−3) Cancer Slop Factor
(mg kg−1 day−1) USEPA/IARC Class Reference

Benzene 0.03 0.029 A IRIS a

Toluene 5 . . . IRIS
Ethylbenzene 1 0.0087 2B IRIS
m,p-Xylene 0.1 . . . IRIS

Styrene 1 5.7 × 10−4 2B CEP b

n-Hexane 0.7 . . . IRIS
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Table 2. Cont.

Agent RFC (mg m−3) Cancer Slop Factor
(mg kg−1 day−1) USEPA/IARC Class Reference

n-Heptane 0.4 . . . IRIS
n-Nonane 0.02 . . . IRIS

Trichloroethylene 0.002 1.1 × 10−2 2A IRIS
Tetrachloroethylene 0.04 2.07 × 10−2 2A IRIS

n-Butyl acetate 1.429 . . . WHO c

n-Octane 1.111 . . . MHLW d

n-Decane 0.836 . . . Sagunski and
Mangelsdorf [29]

Dichlorofluoromethane 0.330 . . . IRIS
Acetone 56 . . . OECD e

a IRIS: Integrated Risk Information System from USEPA. b CEP: Cumulative Exposure Project from USEPA.
c WHO: World Health Organization. d MHLW: Ministry of Health, Labor, and Welfare. e OECD: Organization for
Economic Co-operation and Development.

3. Statistical Analysis

The analysis results of VOCs were expressed as mean ± standard deviation using
SPSS 22 (Chicago, IL, USA). One-way analysis of variance (ANOVA) was used to determine
the difference between the average exposure to VOCs in different units. The relationship
between the data was checked at a significance level of 0.05.

4. Result and Discussion
4.1. Levels of the VOCs in the Personal Air in the Paint Factories

Based on the results of the qualitative analysis of the gas chromatography-mass spec-
trometric detection, 15 compounds were identified and quantified by GC-FID (Table 3). The
concentrations of VOCs ranged from 23.76 ± 0.57 (dispatch) to 92,489.91 ± 0.65 µg m−3

(production). The analysis of VOCs showed that the decreasing order of the total concentra-
tions of VOCs detected was the washing salon-pc � PC production > CED production, the
three of them being identified as the most polluted areas. The most abundant compounds,
in order, were xylene (5.95% to 69.03%) > toluene (2.98% to 50.26%) > ethylbenzene (5.94%
to 43.14%) (Figure 1). The maximum values detected for xylene (92,489.91 ± 0.65 µg m−3

and 81,200.06 ± 0.45µg m−3 in the PC production and washing salons, respectively) and
ethylbenzene (91,188.95 µg m−3, 21.07 ppm in the paint-washing PC salon) exceeded the
occupational exposure limit of 20 ppm provided by the Environmental and Occupational
Health Center of Iran (EOHCI). The results obtained in this study are in line with those
reported for other countries. Mo et al. [10] conducted a study to assess the human health
risk of VOCs in the paint and coatings industry in the Yangtze River Delta, China. They
found that toluene, m/p-xylene, and ethylbenzene were the prevalent compounds in the
container coating sector (22.01%, 23.11%, and 17.73%, respectively), ship coating sector
(28.73%, 22.76%, and 25.78%, respectively), and furniture coating sector (13.40%, 27.5%,
and 27.16%, respectively) [10]. Omidi et al. reported that benzene concentrations in the
energy, biochemical, and benzol refining sectors from Iran were higher than the set national
occupational exposure limit, opposite to the levels of toluene, ethylbenzene, and xylene in
other studied sectors (muffle furnace, battery, and material recycling) [30]. Additionally, De-
hghani et al. reported benzene concentrations up to 3.035 mg m−3 (equivalent to 0.95 ppm)
in the paint cabin section, which surpassed the occupational exposure limit (0.5 ppm)
provided by the Environment and Labor Health Center of the Ministry of Health [31].
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Table 3. Mean concentrations of the VOCs detected in several sections of the characterized
paint factories.

a VOCs

b TLV-
TWA
(ppm)

Mean ± SD (µg m−3) (%)
c OEM

Production
d

Production

e CED
Production

Washing
Salon-PC

f OEM Lab g PC Lab Dispatch
h CED

Topcoat

Benzene
i (LOD = 0.5) 0.5 63.89 ± 0.27

(0.09%)
447.25 ± 0.21

(0.33%)

479.20 ±
0.23

(0.52%)

1277.87 ±
0.32 (0.51%)

31.94 ± 0.08
(0.24%)

63.89 ± 0.65
(8.75%)

63.89 ± 0.17
(0.37%)

543.09 ±
0.73 (1.25%)

Toluene
(LOD = 0.7) 20 2110.36 ±

0.53 (2.98%)
14,056.53 ±

0.56 (10.49%)
46,088.84 ±

0.14 (50.26%)
37,873.49 ±

0.13 (16.87%)
527.59 ±

0.34 (4.04%)
37.68 ± 0.43

(5.16%)
452.22 ±

0.56 (2.63%)
19,219.3 ±

0.41 (44.41%)

Ethylbenzene
(LOD = 0.5) 20 30,526.58 ±

0.18 (43.14%)
22,232.73 ±

0.32 (16.59%)
8337.27 ±

0.57 (9.09%)
91,188.95 ±

0.34 (39.95%)
2127.74 ±

0.45 (16.31%)
43.42 ± 0.75

(5.94%)
5992.41 ±

0.17 (34.85%)
4081.79 ±

0.37 (9.43%)

m,p-Xylene
(LOD = 0.7) 20 37,473.61 ±

0.38 (52.95%)
92,489.91 ±

0.65 (69.03%)

35,997.24 ±
0.45

(39.260%)

81,200.06 ±
0.45 (39.95%)

8814.76 ±
0.76 (67.57%)

43.42 ± 0.33
(5.95%)

5688.34 ±
0.63 (33.09%)

18,411.1 ±
0.18 (42.55%)

Styrene
(LOD = 0.4) 10 42.59 ± 0.42

(0.06%)
42.59 ± 0.12

(0.03%)
42.59 ± 0.24

(0.05%)
85.19 ± 0.26

(0.03%)
38.33 ± 0.18

(0.29%)
42.59 ± 0.34

(5.84%)
38.33 ± 0.69

(0.22%)
85.19 ± 0.58

(0.22%)

n-Hexane
(LOD = 0.4) 50 35.24 ± 0.17

(0.05%)
35.24 ± 0.68

(0.03%)
70.49 ± 0.27

(0.08%)
105.74 ±

0.18 (0.04%)
35.24 ± 0.38

(0.27%)
35.24 ± 0.19

(4.83%)
35.24 ± 0.13

(0.21%)
105.74 ±

0.65 (0.24%)

n-Heptane
(LOD = 0.06) 400 40.98 ± 0.14

(0.06%)
40.98 ± 0.23

(0.03%)
40.98 ± 0.18

(0.04%)
81.97 ± 0.61

(0.03%)
40.98 ± 0.37

(0.31%)
40.98 ± 0.23

(5.61%)
36.88 ± 0.25

(0.21%)
81.97 ± 0.23

(0.19%)

n-Nonane
(LOD = 0.04) 200 52.43 ± 0.23

(0.07%)
52.43 ± 0.13

(0.04%)
52.43 ± 0.11

(0.06%)
104.86 ±

0.76 (0.04%)
314.6 ± 0.78

(2.41%)
52.43 ± 0.12

(7.18%)
41.94 ± 0.27

(0.24%)
104.86 ±

0.28 (0.24%)

Trichloroethylene
(LOD = 0.6) 10 53.73 ± 0.23

(0.08%)
53.73 ± 0.16

(0.04%)
53.73 ± 0.23

(0.06%)
53.73 ± 0.43

(0.04%)
53.73 ± 0.17

(0.21%)
53.73 ± 0.52

(7.36%)
53.73 ± 0.48

(0.31%)
107.47 ±

0.56 (0.25%)

Tetrachloroethylene
(LOD = 2) 25 67.82 ± 0.47

(0.10%)
67.82 ± 0.73

(0.05%)
47.47 ± 0.24

(0.05%)
67.82 ± 0.23

(0.03%)
67.828 ±

0.27 (0.36%)
67.82 ± 0.33

(9.29%)
67.828 ±

0.27 (0.39%)
33.91 ± 0.15

(0.08%)

n-Butyl acetate
(LOD = 0.9) 150 47.51 ± 0.29

(0.07%)
47.51 ± 0.39

(0.04%)
47.51 ± 0.19

(0.05%)
47.51 ± 0.21

(0.02%)
28.51 ± 0.21

(0.22%)
47.51 ± 0.19

(6.51%)
28.51 ± 0.2

(0.17%)
47.51 ± 0.24

(0.11%)

n-Octane
(LOD = 0.3) 300 46.72 ± 0.76

(0.07%)
46.72 ± 0.21

(0.03%)
46.72 ± 0.28

(0.05%)
93.44 ± 0.81

(0.04%)
280.32 ±

0.38 (2.15)
46.72 ± 0.52

(6.40%)
37.38 ± 0.84

(0.22%)
93.44 ± 0.19

(0.22%)

n-Decane
(LOD = 0.06) 45 58.20 ± 0.65

(0.08%)
58.20 ± 0.13

(0.04%)
58.20 ± 0.72

(0.06%)
116.39 ±

0.33 (0.05%)
40.74 ± 0.73

(0.31%)
58.20 ± 0.84

(7.97%)
400.29± 0.12

(0.24%)
116.39 ±

0.14 (0.27%)

Dichlorofluoromethane
(LOD = 30) 1000 97.65 ± 0.82

(0.14%)
97.65 ± 0.95

(0.07%)
97.65 ± 0.27

(0.11%)
146.48 ±

0.38 (0.06%)
48.83 ± 0.17

(0.37%)
48.83 ± 0.79

(6.69%)
4589.66 ±

0.29 (26.70%)
146.48 ±

0.48 (0.34%)

Acetone
(LOD = 20) 500 47.52 ± 0.21

(0.07%)
4205.29 ±

0.64 (3.14%)
237.59 ±

0.84 (0.26%)
5702.09 ±

0.46 (2.31%)
641.48 ±

0.33 (4.92%)
47.52 ± 0.25

(6.51%)
23.76 ± 0.57

(0.14%)
95.03 ± 0.52

(0.22%)

a VOCs: volatile organic compounds. b TLV-TWA (ppm): threshold limit value–Time-Weighted Average. c OEM
production: original equipment manufacturer color production. d PC production: plastic color production.
e CED production: cathodic electro deposition production. f OEM lab: original equipment manufacturer color
laboratory. g PC lab: plastic color laboratory. h CED topcoat: cathodic electro deposition topcoat. i Limit of
detection (µg m−3).

4.2. Health Risk Assessment

The data of EC, HQ, and CDI of the characterized VOCs in different parts of the factory
are displayed in Table 4 and Figure 2 [32].

HQ ≤ 1 indicates that adverse health effects are unlikely to occur, whereas HQ > 1
means that there may be risks to sensitive individuals as a result of exposure. Sectors with
relatively high non-cancer risk values and their exposed workers were identified. The non-
cancer risk values of benzene, n-nonane, trichloroethylene, and tetrachloroethylene in all
parts of the factory exceeded the safe level of one. Additionally, the non-cancer risk values
of xylene, ethylbenzene, and toluene surpassed the reference value in most of the sectors,
with the PC lab being the common safer site (HQ < 1). The non-cancer risks were higher
in washing salon-PC, followed by production salon-PC, OEM salon, CED production,
CED topcoat, OEM lab, dispatch, and PC lab. On the contrary, all the other compounds,
i.e., styrene, dichlorofluoromethane, acetone, n-Hexane, n-heptane, n-octane, n-decane, and
n-butylacetate within several sectors exhibited acceptable non-carcinogenic risks (HQ < 1).
However, exposure to multiple hazardous pollutants may promote combined and/or
synergistic effects. Possible associations were suggested between exposure to chlorinated
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solvents (such as tetrachloroethane, trichloroethylene, and tetrachloroethylene), benzene,
lead, and asbestos and the risk of breast cancer in women (exposed workers) [33].
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Figure 1. Comparison of (a) concentrations and (b) percentages of the characterized VOCs in different
sectors of the paint factories.

Table 4. The exposure concentrations, hazard quotients (HQ), and chronic daily intakes of VOCs
through inhalation in the characterized production zones.

Pollutant OEM Salon Production
Salon-PC

CED
Production

Washing
Salon-PC OEM Lab PC Lab Dispatch CED Topcoat

Exposure concentration (mg m−3)

Benzene 0.137 0.957 1.025 2.734 0.068 0.137 0.137 1.162
Toluene 4.515 30.076 98.615 89.100 1.129 0.081 0.968 41.123

Ethylbenzene 65.317 47.571 17.839 210.910 4.553 0.093 12.822 8.734
Xylene 80.181 197.898 77.022 210.906 18.861 0.093 12.171 39.394
Styrene 0.091 0.091 0.091 0.182 0.082 0.091 0.082 0.182

Dichlorofluoromethane 0.209 0.209 0.209 0.313 0.104 0.104 9.820 0.313
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Table 4. Cont.

Pollutant OEM Salon Production
Salon-PC

CED
Production

Washing
Salon-PC OEM Lab PC Lab Dispatch CED Topcoat

Acetone 0.102 8.998 0.508 12.201 1.373 0.102 0.051 0.203
n-Hexane 0.075 0.075 0.151 0.226 0.075 0.075 0.075 0.226
n-Heptane 0.088 0.088 0.088 0.175 0.088 0.088 0.079 0.175
n-Octane 0.100 0.100 0.100 0.200 0.600 0.100 0.080 0.200
n-Nonane 0.112 0.112 0.112 0.224 0.673 0.112 0.090 0.224
n-Decane 0.125 0.125 0.125 0.249 0.087 0.125 0.087 0.249

n-Butylacetate 0.102 0.102 0.102 0.102 0.061 0.102 0.061 0.102
Trichloroethylene 0.115 0.115 0.115 0.230 0.057 0.115 0.115 0.230

Tetrachloroethylene 0.145 0.145 0.102 0.145 0.102 0.145 0.145 0.073

Hazard quotient

Benzene 4.56 31.90 34.18 91.14 2.28 4.56 4.56 38.73
Toluene 0.90 6.02 19.72 17.82 0.23 0.02 0.19 8.22

Ethylbenzene 65.32 47.57 17.84 210.91 4.55 0.09 12.82 8.73
Xylene 801.81 1978.98 770.22 2109.06 188.61 0.93 121.71 393.94
Styrene 0.09 0.09 0.09 0.18 0.08 0.09 0.08 0.18

Dichlorofluoromethane 0.63 0.63 0.63 0.95 0.32 0.32 29.76 0.95
Acetone 0.00 0.16 0.01 0.22 0.02 0.00 0.00 0.00

n-Hexane 0.11 0.11 0.22 0.32 0.11 0.11 0.11 0.32
n-Heptane 0.22 0.22 0.22 0.44 0.22 0.22 0.20 0.44
n-Octane 0.12 0.12 0.12 0.24 0.72 0.12 0.10 0.24
n-Nonane 5.61 5.61 5.61 11.22 33.66 5.61 4.49 11.22
n-Decane 0.15 0.15 0.15 0.30 0.10 0.15 0.10 0.30

n-Butylacetate 0.07 0.07 0.07 0.07 0.04 0.07 0.04 0.07
Trichloroethylene 57.49 57.49 57.49 114.98 28.75 57.49 57.49 114.98

Tetrachloroethylene 3.63 3.63 2.54 3.63 2.54 3.63 3.63 1.81

Chronic daily intake (µg kg−1 day−1)

Benzene 0.001 0.010 0.010 0.027 0.001 0.001 0.001 0.012
Toluene 0.045 0.301 0.988 0.892 0.011 0.001 0.010 0.412

Ethylbenzene 0.654 0.476 0.179 2.112 0.046 0.001 0.128 0.087
Xylene 0.803 1.982 0.771 2.112 0.189 0.001 0.122 0.395
Styrene 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002

Dichlorofluoromethane 0.002 0.002 0.002 0.003 0.001 0.001 0.098 0.003
Acetone 0.001 0.090 0.005 0.122 0.014 0.001 0.001 0.002

n-Hexane 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.002
n-Heptane 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002
n-Octane 0.001 0.001 0.001 0.002 0.006 0.001 0.001 0.002
n-Nonane 0.001 0.001 0.001 0.002 0.007 0.001 0.001 0.002
n-Decane 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002

n-Butylacetate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Trichloroethylene 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.002

Tetrachloroethylene 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table 5 presents the total and individual carcinogenic risks of the VOCs in the selected
paint factories. USEPA considers the acceptable risk level to be in the range of 1 × 10−6 to
1 × 10−4. For carcinogens, USEPA considers excess cancer risks that are below 1 chance
in 1,000,000 (1 × 10−6) to be so small as to be negligible. However, for a residual cancer
risk of less than 10−4, it is recommended to ensure that there is no cumulative cancer
risk of potentially carcinogenic compounds. According to the results of Table 5, total
LTCR values were in the range of 1.8 × 10−5–3.85 × 10−3, suggesting that there was a
risk of carcinogenesis in all studied sections. The cancer risk of ethylbenzene was higher
than 1 × 10−4 in all sectors of the factories except in PC lab, while the cancer risks of
tetrachloroethane and trichloroethylene were lower than 1 × 10−5 in all sectors of the
factories. The cancer risk of styrene was higher than 1 × 10−6 only in the CED topcoat sector.
The exposure to benzene presented cancer risks in the range of 1.99 × 10−5 to 7.94 × 10−4.
Thus, ethylbenzene was the predominant contributor to the determined increased risk
of cancer. The washing salon-PC, CED production, dispatch, OEM production salon, PC
production salon, CED topcoat, and OEM lab were the most polluted environments, with
the highest risk of cancer being for ethylbenzene (5.28 × 10−2, 4.47 × 10−3, 3.21 × 103,
1.64 × 10−3, 1.19 × 10−3, 2.19 × 10−4, and 1.14 × 10−4, respectively). This means that
workers in these sectors may suffer from a cancer risk 45–530 times higher than 1 additional
case per 10,000 employees exposed (1 × 10−4), i.e., the upper limit of acceptable cancer
risk (1 × 10−4) established by USEPA recommendations. These findings emphasize the
role of ethylbenzene compounds in the occupational exposure in the paint industry in
Iran. One of the reasons for the high level of ethylbenzene in this section is the presence of
ethylbenzene impurity in the solvents and the excessive use of thinner in cleaning surfaces,
despite the elimination/reduction in many raw materials. These data are consistent with
the results reported by Golbabaei et al. [13]. It was also found that ethylbenzene in spray
paints (9.71 × 10−4), wooden furniture manufacturing (1.75 × 10−5), municipal solid waste
(1.71 × 10−6), electronic waste dismantling processes (6.2 × 10−3), the rubber footwear
industry (>1 × 10−4), and the oil refinery (6.09 × 10−3) originates high cancer risks [10].
In addition, considering the other determined VOCs, the only exceedance was detected
for the LTCR of benzene in washing salon-PC (1.64 × 10−4), which was in agreement with
the reported information from Zhang et al. and Chen et al., who found average LTCR
values of 3.4 × 10−4 and 4.1 × 10−5, respectively, in the ambient air of Beijing, China
and the petrochemical industrial complexes [34,35]. Benzene contributes significantly to
the risk of cancer in petrochemical industries, rubber shoes, asphalt paving, and coking
wastewater treatment industries [36,37], supporting its selection in this study. Exposure to
benzene may cause a potential risk of adverse health effects during a thirty-year exposure
period. Lan et al. [38] conducted a study to assess the risk of benzene in three clothes-
manufacturing factories in the same region near Tianjin. Despite benzene levels being
lower than the permissible limits, the relative risk of leukemia for employees was reported
to be 1.1 times higher than in the non-exposed group.

Table 5. Lifetime risk of cancer (LTCR) of the characterized VOCs.

ELCR OEM Salon Production
Salon-PC

CED
Production

Washing
Salon-PC OEM Lab PC Lab Dispatch CED Topcoat

Benzene 3.97 × 10−5 2.78 × 10−4 2.98 × 10−4 7.94 × 10−4 1.99 × 10−5 3.97 × 10−5 3.97 × 10−5 3.37 × 10−4

Ethylbenzene 1.64 × 10−3 1.19 × 10−3 4.47 × 10−3 5.28 × 10−2 1.14 × 10−4 2.33 × 10−6 3.21 × 10−3 2.19 × 10−4

Trichloroethylene 1.27 × 10−5 1.27 × 10−5 1.27 × 10−5 2.53 × 10−5 6.33 × 10−6 1.27 × 10−5 1.27 × 10−5 2.53 × 10−5

Tetrachloroethylene 2.91 × 10−5 2.91 × 10−5 2.03 × 10−5 2.91 × 10−5 2.03 × 10−5 2.91 × 10−5 2.91 × 10−5 1.45 × 10−5

Styrene 5.2 × 10−7 5.2 × 10−7 5.2 × 10−7 1.04 × 10−6 4.68 × 10−7 5.2 × 10−7 4.68 × 10−7 1.04 × 10−6

Total LTCR 1.15 × 10−3 8.93 × 10−4 3.77 × 10−4 3.85 × 10−3 8.87 × 10−5 1.8 × 10−5 2.4 × 10−4 2.28 × 10−4

During working hours, workers are exposed to various hazards, including contact
with chemicals, biological and physical factors, and unfavorable ergonomic conditions,
which are responsible for a variety of health outcomes [39]. Firoozeh et al. [40] found
that chronic occupational exposure to excess amounts of mixed organic solvents can cause
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decreased motivation and mental fatigue in exposed individuals. The results of a study at
a petrochemical plant in China showed that xylene, benzene, and toluene are potentially in-
volved in causing lung dysfunction. Physiologically based pharmacokinetic results showed
that the metabolism of ethylbenzene was strongly reduced by simultaneous exposure to
high concentrations of xylene, leading to non-linear behavior [41]. Additionally, in recent
years, various studies have been conducted to assess the health risk of exposure to organic
solvents in paint factories. A cross-sectional study involving 97 workers from a paint
plant in Mexico showed a significant association between macrocytosis and exposure to
high doses of BTX mixtures (OR: 3.6, 95% CI: 1.08 to 13.9, p = 0.02) [42]. Hassan et al.
found that neuropsychological symptoms were 63.04% in paint manufacturing workers,
while it was only 2.1% in the control group. Additionally, the risk of neurological symp-
toms was higher in the production group than in the packaging group (OR = 13.94) [43].
Ikegwuonu et al. [44] showed that the serum levels of aspartate transaminase, alkaline
phosphatase, sodium, and chloride in workers working in paint plants were significantly
higher than in workers working in non-paint factories. Exposure to VOCs and heavy metals
in the paint plant makes workers prone to liver and kidney disorders [45].

5. Conclusions and Implications

This study collected VOC samples in the respiratory zone of workers in paint facto-
ries under normal occupational conditions. Xylene, toluene, and ethylbenzene were the
most abundant compounds in the production processes, which was generally consistent
with previous, related studies. A total of 15 VOCs were selected to evaluate their non-
carcinogenic and carcinogenic risks to workers from different sectors in paint factories.
The highest concentration of total VOCs was observed in the washing salon-PC sector.
Non-carcinogenic risks promoted by exposure to benzene, n-nonane, trichloroethylene,
tetrachloroethylene, xylene, and ethylbenzene were found almost in all of the sectors of
the factories. For carcinogens, the LTCR values significantly exceeded the value of the
negligible risks, which was 1.0 × 10−6. Ethylbenzene and benzene were the most critical
pollutants that contributed to the high risk of cancer in these factories. Considering the
high exposure concentrations and the high non-carcinogenic and carcinogenic risks of these
compounds, the use of PPE, biological monitoring of workers, and the use of technical and
modern engineering control measures are highly recommended. Additionally, in order
to reduce VOC emissions directly at the source, paints with low VOC content or without
VOCs (new environmentally friendly paints) are urgently needed.
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Abstract: The exposure to air pollutants causes significant damage to health, and inefficient cooking
and heating practices produce high levels of household air pollution, including a wide range of
health-damaging pollutants such as fine particles, carbon monoxide and PAHs. The exposure to
PAHs has been associated with the development of neoplastic processes, asthma, genotoxicity, altered
neurodevelopment and inflammation. The effects on the induction of proinflammatory cytokines
are attributed to the activation of AhR. However, the molecular mechanisms by which the PAHs
produce proinflammatory effects are unknown. This study was performed on a group of 41 Mexican
women from two rural communities who had stoves inside their houses, used wood as biomass
fuel, and, thus, were vulnerable. According to the urinary 1-OHP concentration, the samples were
stratified into two groups for determination of the levels of TNF-α, AhR, CYP1B1, miR-125b and
miR-155 expression. Our results showed that the CYP1B1, TNF-α, miR-125b and miR-155 expression
levels were not statistically different between women with the lowest and highest levels of 1-OHP.
Interestingly, high levels of PAHs promoted augmented expression of AhR, which is a protein
involved in the modulation of inflammatory pathways in vivo, suggesting that cell signaling of AhR
may be implicated in several pathogenesis processes.

Keywords: pollutants; women exposure; microRNAs; PAHs

1. Introduction

Environmental pollutants are generated as a result of human activity; around 3 billion
people still cook and heat their homes using solid fuels (i.e., wood, crop wastes, charcoal,
coal and dung) in open fires and leaky stoves, and 4.3 million people a year die prematurely
from illnesses attributable to household air pollution caused by the inefficient use of
solid fuels [1,2]. Some compounds such as polycyclic aromatic hydrocarbons (PAHs)
are generated by the incomplete combustion of organic matter and can travel together
with coarse (10 PM), fine (2.5 PM) and ultrafine particles (0.1 PM) across long distances,
being deposited and accumulating in various environmental matrices and entering into
living organisms, bioaccumulating and becoming bioavailable to higher organisms such as
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humans. Additionally, contact with PAHs causes a biomagnification as they enter the food
chain [1–4].

Benzo [a] pyreno (BaP) is one of the PAHs most widely studied for its effects on
health, including inflammatory diseases and cancer. The majority of its effects have been
associated with the activation of AhR, which is a factor with bHLH domains (basic helix–
loop–helix) [5]. AhR is a ligand-dependent transcription factor that is stripped from Hsp90,
p23 and KAP2 proteins when activated and dimerizes with AhR nuclear translocator
(ARNT)-recognizing DNA regulatory elements called XREs or DREs (xenobiotic response
elements or dioxin response elements) of target genes, thereby increasing their transcription.
The isoforms of Cytochromes p450 (CYP1A1, CYP1A2, CYP1B1) are targets of AhR that
participate in PAH metabolism. CYP1A1 and CYP1B1 promote the transformation of B[a]P
to B[a]P-7,8-oxide through a hydration reaction by the enzyme epoxide hydrolase B[a]P-7,8-
oxide, and it is subsequently metabolized to B[a]P-trans-7,8-dihydrodiol (B [a] P-7,8-DHD).
B [a] P-7,8-DHD is a substrate of CYPB in a second oxidation reaction generating the final
carcinogenic metabolite [a] P-7,8-dihydroxy-9,10-epoxide (BPDE). BPDE joins the DNA
chain, principally generating deoxyguanosine adducts [6,7].

Currently, most of the effects of BaP are attributed to the activation of AhR, which
regulates the transcription of genes controlled by DRE sequences that have been found in
promoter regions of different cytokines in murine models, including IL-2, IL-5, IL-10, TGF-
β1 and IFN
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[8]. However, it has been found that the expression of proinflammatory genes
without DRE sequences in their promoters is upregulated with exposure to BaP, suggesting
that there is another type of independent regulation of AhR through the regulation of
protein and non-coding RNAs.

Epigenetic modification is one of the mechanisms by which gene expression is regu-
lated, and it is characterized by the presence of changes in the composition and structure
of chromatin, which can potentially be inherited [9]. Three of the most significant epi-
genetic modifications are DNA methylation, acetylation and expression of microRNA
(miRNA). miRNAs are 18 to 22 nucleotides in length and regulate gene expression at the
protein-translation and messenger RNA (mRNA)-level in P bodies by mRNA sequestra-
tion that results in a negative correlation between miRNA and mRNA. miRNA–mRNA
interactions can explain the increase or decrease in protein levels [10]. Currently, in vitro
models have demonstrated the involvement of microRNAs in the biological responses
induced by toxic compounds such as BaP; therefore, altered expression of miRNAs is
considered a biomarker [11]. In the present work, we analyzed the induction of the proin-
flammatory cytokine TNF-α attributed to the activation of AhR and CYP1B1 as metabolic
processors of PAH, and miR-125b and miR-155 expression related to these processes. We
found that AhR expression is related to PAH exposure, which may be implicated in several
pathogenesis processes.

2. Materials and Methods
2.1. Population

Forty-one samples were analyzed from healthy women with an age range of 18–45 years
old, and all were residents of two rural communities (with little vehicular traffic) in the
state of San Luis Potosi, Mexico (The Cañon, in the municipality of Xilitla, and Comoca
Ahuacatitla, in the municipality of Axtla Terrazas). The women who participated in the
study used wood as their only source of fuel for cooking, lived in traditional houses (usu-
ally wood) and usually spent most of the day inside their homes and an average of 6.5 h
cooking. All the women who participated in the study had lived in their community since
they were born. Therefore, their main source of exposure to PAHs was the combustion
of biomass. After informed consent was obtained, a questionnaire was completed and
urine samples were taken. The questionnaire included characteristics such as age, weight,
height and exposure to snuff smoke. In addition, sociodemographic characteristics were
described. The study was approved by the ethics committee of the Faculty of Medicine at
the Autonomous University of San Luis Potosi.
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2.2. Urine Collection

The first morning urine of each woman (at approximately 7:00 am) was collected.
The urine was collected in airtight plastic bottles and stored in a freezer at −20 ◦C until
analyzed. Before analysis, samples were thawed at room temperature, homogenized, and
10 ml of urine was transferred to a test tube (Corning®, New York, NY, USA).

2.3. Determination of Urinary 1-OHP

1-OHP (half-life ranged from 6 to 30 h) was taken as a representative biomarker of
exposure to PAH mixtures [12,13]; it was taken into account that this compound is a pyrene
metabolite, and, in turn, pyrene is often present in PAH mixtures. 1-OHP was quantified
following the method described previously [13,14]. The analyses were performed using
HPLC (HP1100, Agilent Technologies; Santa Clara, CA, USA) and a fluorescence detector
(G1321A). A Zorbax SB-C18 pre-column (Agilent Technologies; Santa Clara, CA, USA) and
a Zorbax Eclipse XDB-C18 column (Agilent Technologies; Santa Clara, CA, USA) were
used. The analysis temperature was set at 40 ◦C, the flow was adjusted to 1 mL/min
and the injection volume was 20 µL. 1-OHP was eluted with 88:12 methanol:water and
1% ascorbic acid. Data were collected and processed using HP ChemStation software
(Dayton, OH). Urinary 1-OHP concentrations were adjusted to urinary creatinine, which
was determined using the Jaffe colorimetric method [15]. Under our conditions, the
detection and quantification limits were 1.0 nmol/L and 3.0 nmol/L, respectively. Quality
control was certified using the standards IRIS Clin Cal Recipe (Munich, Germany) 50013,
8867 and 50014 (9.1, 15.6 and 32.5 nmol/L 1-OHP, respectively), and there was a recovery
rate of 99%.

2.4. Peripheral Blood Mononuclear Cells (PBMCs) Isolation

Venous blood was collected by venipuncture from the antecubital area of the arm
into tubes (Becton Dickinson Vacutainer®Mexico) containing EDTA. Peripheral blood
mononuclear cells (PBMCs ) were separated by density gradient centrifugation using Ficoll-
Hypaque (Sigma-Aldrich by Merck, Darmstadt, Germany), and washed with phosphate-
buffered saline (PBS) solution (Sigma-Aldrich by Merck, Darmstadt, Germany).

2.5. RNA Isolation and RT-qPCR

The PBMCs were collected and washed with PBS for total RNA and miRNA isolation
using Trizol (Invitrogen by Thermo Fisher Scientific, Waltham, MA, USA) method; the
concentration and quality was determined by spectrophotometric analysis in a Synergy HT
Multi-Mode Microplate Reader, using Gen5™ Data Analysis Software (BioTek Instruments,
Inc., a part of Agilent, Santa Clara, CA, USA), and the samples were stored at −80 ◦C
until use. Complementary cDNA was synthesized with 1 µg total RNA using reverse
transcriptase superscript II and reverse transcription reagents of Invitrogen (Thermo Fisher
Scientific, Waltham, MA, USA) under the following conditions: 25 ◦C 10 min, 35 ◦C 90 min,
94 ◦C 5 min and 4 ◦C 5 min. The qPCR was performed by mixing 1 µL of cDNA (100 ng/µL),
0.1 µL sense and antisense primers (20 pM) (Invitrogen Thermo Fisher Scientific, Waltham,
NA, USA) and 1X SYBR®Green PCR Master Mix (Applied Biosystems by Life Technologies
Waltham, MA, USA) in a total volume of 10 µL. Primers were designed and checked
for specificity by BLAST search, and the purity of the PCR products and specificity of
the reaction were checked by agarose gel electrophoresis analysis. The expression of
target genes was determined using the CFX96 BioRad thermocycler (Bio-Rad Laboratories
Hercules, CA, USA). The cycling conditions were as follows: 10 min denaturing at 95 ◦C,
followed by 40 cycles of denaturing at 95 ◦C for 15 s, 45 s primer annealing, and elongation
at 60 ◦C for 18 s; specifically, the annealing temperatures were 67.5 ◦C for TNFα and AhR
and 66.5 ◦C for CYP1B1. The melting curve was analyzed with CFX Manager™ software
(Bio-Rad Laboratories Hercules, CA, USA). Transcript expressions were normalized to 18S
rRNA housekeeping gene and data were quantified by the method of 2−∆∆Ct. The primers
used were as follows:
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Genes Forward sequence (5′-3′) Reverse sequence (5′-3′)
Weight of the

amplicon
Tm ◦C

Number of
Cycles

18s CGGCTACCACATCCAAGGAA GCTGGAATTACCGCGGCT 189 pb 60 40
TNFα CCCACGGCTCCACCCTCTCT TCTGGGGGCCGATCACTCCA 215 pb 67.5 40
AhR TCATTTGCTGGAGGTCACCC GCCAAGGACTGTTGCTGTTG 254 pb 60 40

CyP1B1 TAGTGGTGCTGAATGGCGAG CTCCGAGTAGTGGCCGAAAG 137 pb 66.5 40

2.6. miRNA Expression

For microRNA analysis, reverse transcription (RT) and real-time quantitative poly-
merase chain reaction (qRT-PCR) were performed using a TaqMan®MicroRNA Assay (Ap-
plied Biosystems by Life Technologies, Waltham, MA, USA; miR-155: 002623, miR125b:000449)
according to the instructions supplied by the manufacturer. Small nuclear RNA U6 was
used for normalization.

2.7. Statistical Analysis

Data are presented as mean ± SEM values. An unpaired t-test was performed to
identify changes in the gene expression of AhR, CYP1A1, TNF-α, hsamiR-125 and hsamiR-
155, and a Pearson coefficient test was applied to determine gene expression correlations.
All statistical analysis was performed with the Graph Pad Prism version 8.0 for Windows
(Prism Software, La Jolla, CA, USA, www.graphpad.com). A p value less than 0.05 was
considered significant.

3. Results
3.1. 1-OHP Determination in Urine Samples

PAHs are generated during the incomplete combustion of organic matter. To deter-
mine the level of exposure to PAHs, we evaluated the concentration of urinary 1-OHP as
a biomarker of exposure to the hydrocarbon mixture, as previously shown [16,17]. We as-
sessed 41 urine samples of healthy women who had a traditional stove inside their house
and used wood as a biomass fuel for cooking. Normalized data and non-normalized data
with urine creatinine concentration (geometric mean ± SD 1.46 ± 2.11 µg/g creatinine;
1.09 ± 1.68 µg/L) and percentiles are shown in Table 1. Interestingly, in PC25, a value
of 0.84 µg 1-OHP/g creatinine was found, despite limit values of 0.463 µg 1-OHP/g
creatinine for occupationally unexposed non-smoking individuals and 1.46 µg 1-OHP/g
creatinine for the occupationally unexposed smoking population having been previously
established [13]. Considering that the women included in our study were occupationally
unexposed but were in contact with a source of pollutants due to incomplete combustion,
we stratified the population into two groups: group A, including individuals with less
exposure to PAHs (levels below 1.46 µg 1-OHP/g creatinine), and group B, including
individuals with greater exposure (levels above 1.46 µg 1-OHP/g creatinine) (Figure 1).
The collected biochemical and anthropometric data from the studied population showed
statistical difference solely for 1-OHP by the multiple t-tests, as seen in Table 2. Other
features of the population, such as age, glucose level, cholesterol, height, weight, etc.,
were not statistically significant, reaffirming that 1-OHP could be used to stratify people
exposed to PAHs.

Table 1. The 1-hydroxypyren urinary concentration of exposed women. The limit of detection (LOD)
was 1 nmol/L (0.21825 µg/L).

Units Mean SD PC25 PC50 PC75 PC95 Min Max

µg/g creatinine 1.46 2.11 0.84 1.47 2.76 7.10 <LOD 10.87
µg/L of urine 1.09 1.68 0.61 0.96 2.10 6.08 <LOD 9.19
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Figure 1. Determination of 1 -OHP in μg/g creatinine in urine samples exposed to PAHs. Samples 
with urine concentration of 1-OHP ≤ 1.46 μg/g creatinine (n = 18) A. Samples with concentration of 
1-OHP > 1.46 μg/g creatinine (n = 23), (p = 0.0001) B. 
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μg/L of urine 1.09 1.68 0.61 0.96 2.10 6.08 ˂LOD 9.19 
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Waist diameter 0.324131 85.4565 88.4571 
Hip diameter 0.281592 97.9565 101.814 
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BMI 0.508237 25.9577 26.7646 
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pression in both groups, p = 0.3570 (Figure 2B), and TNF-α expression showed even more 
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Figure 1. Determination of 1 -OHP in µg/g creatinine in urine samples exposed to PAHs. Samples
with urine concentration of 1-OHP ≤ 1.46 µg/g creatinine (n = 18) A. Samples with concentration of
1-OHP > 1.46 µg/g creatinine (n = 23), (p = 0.0001) B.

Table 2. Biochemical and anthropometric features analyzed by multiple t-tests of two-way ANOVA
of urine samples exposed to PAHs.

p Value Mean of Group A Mean of Group B

Age 0.109067 38.8261 46.3529
1-OHP 0.001267 0.848821 4.53468
Glucose 0.121731 92.8827 120.720

Total cholesterol 0.197449 165.233 181.997
HDL cholesterol 0.651043 46.2526 48.3669
LDL cholesterol 0.409356 94.2199 102.562

VLDL cholesterol 0.182865 25.3966 31.0680
Triglycerides 0.211349 126.983 153.343

Height 0.432416 1.46174 1.47686
Waist diameter 0.324131 85.4565 88.4571
Hip diameter 0.281592 97.9565 101.814

Weight 0.324085 55.5478 58.6314
BMI 0.508237 25.9577 26.7646

3.2. Determination and Correlation of AhR, CYP1B1 and TNF-α Expression by RT-qPCR

Once the 1-OHP concentration was determined and groups A and B were assigned as
low and high 1-OHP concentration, respectively, we used the lower exposure group (“A”)
as a calibrator for the group with the highest exposure (“B”). We analyzed the expression
levels of TNF-α, AhR and CYP1B1 mRNAs in groups A and B. The difference in AhR
expression between groups A and B was statistically significant, p = 0.0412; in group B, an
increase was observed (Figure 2A). The expression of CYP1B1 recorded similar expression
in both groups, p = 0.3570 (Figure 2B), and TNF-α expression showed even more similarity
between groups than CYP1B1 (Figure 2C), p = 0.2476. Exposure to PAHs augmented AhR
expression, suggesting a common gene regulation in response to contact with PAHs.

3.3. Evaluation of miR-125b and miR-155 Relative Expression in a Population Exposed to PAHs

It is well known that the regulation of gene expression is complex; currently, epigenetic
regulators may explain part of the control. In this context, we evaluated the expression
of miR-125b, an important master regulator of the methylation process, and miR-155,
considered a pro-inflammatory regulator that is implicated in several pathologies. We
did not find statistically significant differences in the expression of miR-125b and miR-155
between study groups (Figure 3A,B).
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icantly higher than what is reported here. Exposure to a mixture of PAHs could be an 
important human health risk factor, and this exposure has been associated with several 
adverse health effects [22]. The molecular mechanisms related to the health effects include 
DNA adducts, increased apoptosis, oxidative damage and pro-inflammatory responses 
[24–27]. In this regard, we evaluated mRNA levels of TNF-α as a pro-inflammatory bi-
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4. Discussion

Women who use biomass as the main source of energy for cooking their food and
heating their homes present different biomarkers of pollutants in their bodies such as
1-OHP. They are directly and chronically exposed to pollutants generated during their daily
activities and spend a significant amount of time inside their kitchens every day. In this
work, all of the samples tested presented values of 1-OHP higher than 0.463 µg/g creatinine,
a limit value proposed for a non-occupationally exposed, non-smoking population [13]. We
obtained levels almost three times higher (1.09 ± 1.68 µg/L) than Polanska et al., 2014, who
reported 0.43 µg 1-OHP/g creatinine [18]. Furthermore, in 2016, Pruneda-Álvarez et al.
reported a value of 0.92 ± 0.92 in a study performed in Mexican indigenous and rural
communities [19]. Interestingly, in another study in the rural community El Leoncito, San
Luis Potosí, the mean value of 1-OHP was 0.56 µg/L for 40 women who cooked on rustic
stoves in their homes [20]; the value was similar to the 0.5 µg/L that was established
in a German environmental survey for a general population without risk [21]. In both
studies, Pruneda and Ruiz included indigenous Mexican women; however, the values were
half of those found in the current study. The National Health and Nutrition Examination
Survey IV (NHANES IV) reported a geometric mean of 0.074 µg/L for 1-OHP in people
aged 20 years and older (n = 1301), a value ten times lower than our results; however,
whether they are non-smokers and whether or not they are exposed to either source of PAHs
were not specified [22]. Additionally, it should be considered that location, type of house,
gender, age and genetic differences could all contribute to 1-OHP concentrations. Pruneda-
Álvarez et al., 2012, showed that the levels of 1-OHP in indigenous women exposed
either outdoors or indoors were 0.73 ± 0.45 µg/L and 4.81 ± 9.6 µg/L, respectively; the
highest levels were in women who had a traditional stove inside their home and spent
around 8 h cooking daily [23]. The exposure scenario is similar to our study; however,
the mean for 1-OHP µg/L in the Pruneda-Álvarez 2012 report was significantly higher
than what is reported here. Exposure to a mixture of PAHs could be an important human
health risk factor, and this exposure has been associated with several adverse health
effects [22]. The molecular mechanisms related to the health effects include DNA adducts,
increased apoptosis, oxidative damage and pro-inflammatory responses [24–27]. In this
regard, we evaluated mRNA levels of TNF-α as a pro-inflammatory biomarker in the
women’s samples and our results indicated slight upregulation of mRNA in the high-
exposure group, suggesting a probable pro-inflammatory response to PAH exposure. In
a recent study performed on 39 taxi drivers potentially exposed to emissions, a positive
linear correlation between 1-OHP levels and pro-inflammatory cytokines (IL 1β (r = 0.37,
p = 0.007), IL-6 (r = 0.32, p = 0.02) and TNFα (r = 0.33, p = 0.02)) was reported [28], suggesting
a weak correlation between PAH exposure and TNFα mRNA and protein expression.
The PAHs regulated gene expression at several levels, cell systems and cell-signaling
pathways. It was shown that p,p′-Dichlorodiphenyldichloroethylene (DDE) and coplanar
3,3′,4,4′,5-pentachlorobiphenyl (PCBs) compounds were able to enhance AhR transcript
expression [24,25]. Recently, enhanced AhR expression has been related to an inflammatory
state as a consequence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), PCBs, DDE and
metabolites exposure [6,26,29,30]. Here, we found an augmented expression of AhR in the
high-exposure group, suggesting that PAHs promote responses through AhR activation. It
has been shown that an increase in TNF-α expression contributes to keeping the activation
of the AhR pathway and the chronic inflammatory state producing a positive feedback. AhR
is a key regulatory element for some xenobiotic degradation enzymes, notably cytochromes
P450 belonging to the CYP1 family. Cytochrome activation is induced by several ligands
of AhR, such as TCDD or PAHs such as BaP, as potent inductors of CYP1B1 that could be
considered as a biomarker for the activation of AhR [27]. AhR is mainly expressed in liver
cells, but it is also present in different types of cells, such as blood cells [29–31], suggesting
that it could be used as a biomarker for PAH exposure.

Recently, epigenetic mechanisms have emerged as an important response to pollutants.
PAH exposure can alter epigenetic mechanisms, including miRNAs [32]. miR-125b is a

79



Toxics 2023, 11, 28

methylation modulator upregulated in cell cultures exposed to BaP and having inflam-
matory regulation functions [10]. Overexpression of miR-125b induces the expression of
TNF-α, IL-6 and IL-1β in plasma from rheumatoid arthritis patients, showing a strong
positive correlation between miR-125b and TNF-α [33]. Here, we showed that TNF-α and
miR-125b expression were not increased in women from the high PAH exposure group.
The difference between the work of Zhang et al. and our results could be attributable to
other mechanisms that modulate the expression of TNF-α, including other miRNAs or
another epigenetic mechanism, lower sample numbers, a different population and environ-
ment, as well as feedback mechanisms activated during inflammatory chronic process. In
addition, we analyzed the expression of miR-155, which is a multifunctional microRNA.
Recent data indicated that miR-155 has different expression profiles and plays a crucial
role in various physiological and pathological processes such as hematopoietic lineage
differentiation, immunity, inflammation, cancer and cardiovascular diseases [34]. It has
been reported that in human alveolar macrophages, co-culture with miR-155 inhibitors
increases TNF-α expression [35], showing similarity to our work, despite the expression of
TNF-α and miR-155 not being statistically significant.

AhR ligands such as PAHs induce biological effects, including the induction of cy-
tochrome P450 (CYP1B1) and other AhR-regulated genes. Interestingly, it has been reported
that other endogenous molecules such as TNF-α have a modulator effect in both cytochrome
and AhR expression [26]. In previous studies, it has been shown that AhR ligands induce
CYP1B production in cell cultures, and when TNF-α was added, the expression of CYP1B1
was induced. Interestingly, cells co-stimulated with both BaP and TNF-α showed syn-
ergized effect, significantly increasing CYP1B1 expression [36,37]. In our results, this
association was not found. Interestingly, the AhR expression recorded in response to PAHs
is similar in several works; therefore, AhR is an important biomarker for PAH exposure.

5. Conclusions

This study primarily describes women’s exposure to PAHs in terms of urinary 1-
OHP concentration, which was confirmed as a marker that can be used to classify PAH
exposure. In fact, a stratification into two exposure groups has been proposed for the
experimented levels of exposure, one at low levels of the 1-OHP indicator and one at
high levels of 1-OHP. Even if these different levels were not explained by the type or
intensity of the domestic source, the stratification was very useful to demonstrate that high
levels of PAHs promote the expression of AhR, which is probably involved in pathway
modulation in vivo, suggesting that cell signaling triggered by AhR may be implicated in
several pathogenesis processes.
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Abstract: The particulate matter present in air pollution is a complex mixture of solid and liquid par-
ticles that vary in size, origin, and composition, among which are polycyclic aromatic hydrocarbons
(PAHs). Although exposure to PAHs has become an important risk factor for cardiovascular disease,
the mechanisms by which these compounds contribute to increased cardiovascular risk have not
been fully explored. The aim of the present study was to evaluate the effects of PAH exposure on
systemic pro-inflammatory cytokines and markers of endothelial dysfunction. An intervention was
designed using a murine model composed of twenty BALB/c male mice separated into controls and
three groups exposed to a mixture of phenanthrene, fluoranthene, and pyrene using three different
concentrations. The serum levels of the inflammatory cytokines and gene expression of adhesion
molecules located on endothelial cells along with inflammatory markers related to PAH exposure in
aortic tissue were determined. Furthermore, the expression of the ICAM-1 and VCAM-1 proteins was
evaluated. The data showed significant differences in IL-6 and IFN-γ in the serum. In the gene expres-
sion, significant differences for ICAM-1, VCAM-1, and E-Selectin were observed. The results suggest
that phenanthrene, fluoranthene, and pyrene, present in air pollution, stimulate the increase in serum
inflammatory cytokines and the expression of markers of endothelial dysfunction in the murine
model studied, both relevant characteristics associated with the onset of disease atherosclerosis and
cardiovascular disease.

Keywords: air pollution; endothelium; inflammation; cardiovascular disease

1. Introduction

Air pollution is a serious global public health problem. According to the Ambient Air
Quality Guide of the World Health Organization (WHO), 95% of the world population lives
in areas exceeding the recommended values [1]. The most recent estimates revealed that
4.2 million deaths (7.6% of total global mortality and 700,000 more deaths in 2015 compared
with 1990) are attributable to ambient particulate matter2.5 (PM2.5) [2]. PM is a widespread
complex mixture of solid and liquid particles suspended in air that vary in size, shape,
origin, and composition. PM is an air pollutant known as a human carcinogen (group I,
IARC, 2013). The composition of PM can substantially vary between geographical regions,
sources of emissions, and even weather or seasons [3]. Its chemical composition comprises
inorganic ions (e.g., sulfates, nitrates, ammonium, and soluble metals), insoluble metals,
elemental carbon, and organic compounds including PAHs, polychlorinated biphenyls,
biological components (allergens), microbial agents, and water. The carbonaceous part
of air pollution is regarded as more involved in adverse health effects, and some PAHs
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are considered as particularly important [4]. Thus, PM and PAH are among the most
health-relevant air pollutants [5,6].

The three main ways in which air pollution causes damage to the cardiovascular
system have been proposed: (a) secretion of pro-inflammatory mediators or oxidative stress
in the circulatory system; (b) imbalance of the autonomic nervous system; and (c) direct
penetration of particles or components in the circulatory system, which affect numerous
tissues within the cardiovascular system [7]. Reports indicate that the smallest particles
increase the risk of cardiovascular events, with PM2.5 being specifically associated with
an increased risk of myocardial infarction, stroke, arrhythmia, and exacerbation of heart
failure symptoms in susceptible patients [8].

PM accumulation, especially redox active components (e.g., metals and PAHs), can
cause oxidative stress and inflammation in lung tissue [9]. The inflammatory response to
exposure to PM is characterized by the increased expression of pro-inflammatory cytokines
such as tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), which are secreted
by cells of the innate immune system [10]. In addition, the adaptive immune system
releases interleukin-1β (IL-1β), interleukin-4 (IL-4), and IL-6 [11]. These cytokines are
released into the circulatory system, increasing the liver production of C-reactive protein
(CPR) and fibrinogen, IL-6, IL-1β, interferon-gamma (IFN-γ), interleukin-8 (IL-8), and
TNF-α [8]. This increase in cytokines associated with exposure to PM has been described in
various studies [12–15].

Pathological stimuli in the endothelium trigger a phenotype-modifying adaptive
response, a process known as endothelial activation, characterized by increased expression
of adhesion molecules Selectin-P (P-Selectin), Selectin-E (E-Selectin), intercellular adhesion
molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) [16,17]. This
process compromises the barrier function of the endothelium, which promotes leukocyte
diapedesis, increases vascular tone by decreasing nitric oxide production, and reduces
resistance to thrombosis [18,19].

Among the toxic components found in PM2.5 are PAHs, whose main emission sources
are the domestic burning of coal and wood, power plants that burn fossil fuels and biomass,
industrial processes, and vehicular traffic [20]. Concentrations of these compounds vary
depending on multiple factors such as the season of the year, geographic location, and
demographics, among others. Thus, for Temuco, Chile, it was determined that the dominant
individual PAHs were phenanthrene (35–45%), fluoranthene (11–15%), and pyrene (9–12%),
with the phenanthrene domain reflecting a typical characteristic of emissions from biomass
combustion, especially burning wood for heating or cooking [21].

Most of these studies focused their interest on the PM relationship with cardiovascular
disease development; however, the mechanisms by which PAH presents in PM contribute to
the increased cardiovascular risk have not been explored in depth. Therefore, the objective
was to evaluate the effects of PAH exposure on markers of inflammation and endothelial
dysfunction in a murine model of BALB/c mice.

2. Materials and Methods
2.1. Animals

Twenty male BALB/c mice were randomly assigned to four equal groups of five
animals each including a control group (C = no exposure) and three groups exposed to
10 µg, 30 µg, and 50 µg of a PAH mixture, composed of 55% phenanthrene (Sigma-Aldrich,
St. Louis, MO, USA), 25% fluoranthene (Sigma-Aldrich, St. Louis, MO, USA), and 20%
pyrene (Sigma-Aldrich, St. Louis, MO, USA), proportionally to the most representative
distribution of the PAHs previously described [21]. Dimethylsulfoxide (DMSO, Sigma-
Aldrich, St. Louis, MO, USA) was used as a solvent. The animals were kept in the Bioterio
of the University of La Frontera, receiving a standard diet and ad libitum water.
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2.2. Experimental Protocol

The animals received a 2-week acclimatization treatment according to the instillation
protocol described above [22]. The intervention groups underwent nasal instillation of a
volume of 10 µL using a micropipette. The intranasal instillation induced an apnea reflex
followed by a deep inspiration. In addition, the control group was instilled with the vehicle
solution (DMSO) using the same volume. The intervention protocol consisted of instillation
for 5 days a week for 5 weeks. We recorded the weight of the animals once a week. To
assess the animals’ level of stress and spontaneous activity, the cylinder test was applied
every two weeks, where the upright exploration attempts in a transparent cylinder were
quantified [23]. Thus, low attempts or immobility indicated the level of activity of the
animal. To assess the general condition of the animals, the Morton and Griffiths ‘Animal
Supervision Protocol’ was applied once a week [24]. The Scientific Ethics Committee of the
Universidad de La Frontera (No 105_18) approved the experimental protocol.

2.3. Sampling Extraction

Euthanasia was performed with a mixture of ketamine/xylazine using a lethal in-
traperitoneal dose of 200 mg/kg of ketamine-16 mg/kg of xylazine. Whole blood sampling
was performed by cardiac puncture and centrifuged at 2000 rpm for 15 min. Once the
serum was separated from the blood clot, the samples were stored at −80 ◦C for later
analysis. The thoracic aorta was removed and stored at −80 ◦C in a sterile tube with 1 mL
of RNAlaterTM stabilizer solution (Ambion Inc., Austin, TX, USA).

2.4. Cytokine Analysis

We analyzed the serum levels of IL-6, IL-10, IL-17A, INF-γ, and TNF-α with the 6-Plex
Kit of the Bio-Plex Pro TM Mouse Cytokine Th17 Panel A (BioRad, Hercules, CA, USA)
following the manufacturer’s instructions, with the MAGPIX® system (Luminex, Austin,
TX, USA). Twenty samples were tested in duplicate in a 96-well plate including an 8-point
standard curve in duplicate and two wells as the negative control. Data collection was
performed with xPONENT 4.2® software (Luminex, Austin, TX, USA). We adjusted the
cytokine values according to the weight of each animal.

2.5. Gene Expression by RT-qPCR

Gene expression was analyzed by quantitative real-time polymerase chain reaction
(RT-qPCR). Specific primers were used for ICAM-1, VCAM-1, E-Selectin, P-Selectin, platelet
endothelial cell adhesion molecule (Pecam-1), endothelial nitric oxide synthase (eNOS),
aryl hydrocarbon receptor (Ahr), Kelch-type ECH-associated protein 1 (Keap 1), transcrip-
tion factor p65 (RelA), inhibitor of nuclear factor kappa-B kinase subunit beta (IKK-β),
IL-6, and TNF-α, together with the reference genes for ribosomal protein L32 (RPL32)
and beta2-microglobulin (B2M) (Table 1). Frozen aortic tissue samples were lysed using
2 mL prefilled tubes with ceramic beads (MP biomedical, Solon, OH, USA) in a benchtop
BeadBugTM homogenizer (Benchmark Scientific, Sayreville, NJ, USA) for 60 s at 3500 rpm,
adding 1 mL of TRIzol® reagent (Invitrogen, Waltham, MA, USA). Once the tissue was
completely homogenized, the TRIzol® reagent protocol recommended by the manufacturer
was followed to extract the total RNA, and subsequent evaluation by spectrophotome-
try (NanoQuant Infinite® 200 PRO, Tecan®, Männedorf, Switzerland) and fluorometry
(Quantus™ Fluorometer, Promega, Madison, WI, USA) to determine the purity (260/280
nm ratio) and the amount of RNA extracted, respectively. A ratio between 1.8 and 2.0
was considered as acceptable. The total RNA samples were diluted to ensure a final
concentration of 30 ng/µL. The synthesis of cDNA was carried out through reverse tran-
scription using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems,
Foster City, CA, USA). A qPCR was performed to quantify the expression of each of the se-
lected genes and housekeeping gene using the Fast SYBR® Green Master Mix Kit (Applied
Biosystems, Foster City, CA, USA) following the manufacturer’s protocols. For qPCR anal-
ysis, LinRegPCR® software was used, which established a linearity window and calculated
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the PCR efficiencies per sample. With the average PCR efficiency per sample, Ct value,
and fluorescence threshold established, the initial concentration per sample expressed in
arbitrary fluorescence units was calculated [25]. To analyze the specificity of the primers,
the melting curve was evaluated.

Table 1. The primer sequences used for the PCR analysis.

Gene Sequence Forward Sequence Reverse

ICAM-1 TTCTCATGCCGCACAGAACT TCCTGGCCTCGGAGACATTA
VCAM-1 CTGGGAAGCTGGAACGAAGT GCCAAACACTTGACCGTGAC
E-Selectin AGCCTGCCATGTGGTTGAAT CTTTGCATGATGGCGTCTCG
P-Selectin GAAGTGTGACGCTGTGCAAT CAGCTGGAGTCGTAGGCAAA
PECAM-1 GGAAGTGTCCTCCCTTGAGC GGAGCCTTCCGTTCTTAGGG

eNOS GCTCCCAACTGGACCATCTC TCTTGCACGTAGGTCTTGGG
Ahr TAAAGTCCACCCCTGCTGAC CATTCAGCGCCTGTAACAAGA

Keap1 GGCAGGACCAGTTGAACAGT CATAGCCTCCGAGGACGTAG
RelA CCTGGAGCAAGCCATTAGC CGCACTGCATTCAAGTCATAG

IKK-β GTGCCTGTGACAGCTTACCT CTCCAGTCTAGAGTCGTGAAGC
IL-6 CCCCAATTTCCAATGCTCTCC CGCACTAGGTTTGCCGAGTA

TNF-α ATGGCCTCCCTCTCATCAGT TTTGCTACGACGTGGGCTAC
RPL32 TAAGCGAAACTGGCGGAAAC CATCAGGATCTGGCCCTTGA
B2M ACTGACCGGCCTGTATGCTA CAATGTGAGGCGGGTGGAA

ICAM-1—Intercellular adhesion molecule 1; VCAM-1—Vascular cell adhesion molecule 1; E-Selectin—Selectin,
endothelial cell; P-Selectin—Selectin platelet; PECAM-1—Platelet/endothelial cell adhesion molecule 1; eNOS—
Nitric oxide synthase endothelial cell; Ahr—Aryl-hydrocarbon receptor; Keap1—Kelch-like ECH-associated
protein 1; RelA—Transcription factor p65; IKK-β—Inhibitor of nuclear factor kappa-B kinase subunit beta; IL-6—
Interleukin 6; TNF-α—Tumor necrosis factor α; RPL32—Ribosomal protein L32; B2M—Beta-2 microglobulin.

2.6. Western Blotting

Protein levels of ICAM-1 and VCAM-1 were quantified using α/β-tubulin as a loading
control. We performed total protein extraction from aortic tissue using the TRIzol® reagent
protocol. Total proteins were quantified using the Pierce BCA Colorimetric Assay Kit
(Thermo Scientific ™, Rockford, IL, USA) in a 96-well multiplate, in triplicate. The protein
extract was diluted 3:1 in 4× Laemmli sample buffer (Bio-Rad, Hercules, CA, USA) before
adding β-mercaptoethanol in a 1:9 ratio (Bio-Rad). The final protein concentration used
for the immunodetection of each sample was 40 µg. The samples were denatured at 95
◦C for 5 min, and then loaded onto a 4–20% Mini-PROTEAN® TGX ™ electrophoresis
gel (Bio-Rad). Afterward, electrophoresis was applied at 100 V for 15 min and then 200 V
for 30 min. To differentiate the molecular mass of the bands, the Precision Plus Protein ™
Kaleidoscope standard (Bio-Rad) with a volume of 10 µL was used. The proteins were then
transferred to the PVDF immunoblot membrane (Bio-Rad) for 1.5 h at 350 mAmp. Once the
transfer was complete, the membrane was stained with Ponceau Red Solution S (Biotium,
Fremont, CA, USA) to verify the transfer. Subsequently, the membrane was blocked with
5% NFDM/TBS-Tween for 1 h and then incubated with the primary antibodies at 4 ◦C
overnight according to the manufacturer’s instructions. VCAM-1 (1:1000, 5% BSA, 1X TBS,
0.1% Tween®20; Cell Signaling 32653, Danvers, MA, USA), ICAM-1 (1:1000, 5% NFDM, 1X
TBS, 0.1% Tween®20; Abcam, ab179707), and as the loading control α/β-tubulin (1:1000,
5% BSA, 1X TBS, 0.1% Tween®20; Cell Signaling 2148, Danvers, MA, USA). Subsequently,
the membrane was washed with TBS-Tween and incubated with the HRP-conjugated
secondary antibody (1:3000, 5% NFDM 1X TBS, 0.1% Tween®20, goat anti-rabbit IgG;
Cell Signaling 7074, Danvers, MA, USA) for 1 h at room temperature. Antigen-antibody
binding bands were detected using G: BOX Chemi XRQ (SYNGENE, Frederick, MD, USA)
chemiluminescence equipment using the SuperSignal ™ West Femto Maximum Sensitivity
Substrate Kit (Thermo Scientific ™, Rockford, IL, USA), following the manufacturer’s
recommendations. The densitometric analysis of the bands was performed using the
ImageJ 1.51j8 open-source software (https://imagej.nih.gov/ij/index.html (accessed on 22
August 2022), National Institutes of Health, Bethesda, MD, USA)
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2.7. Statistical Analysis

Data were analyzed using Prism 8.0.2 software (GraphPad, San Diego, CA, USA).
The results are ex-pressed as the means ± standard error of the mean. To evaluate the
distribution of the values obtained, the Shapiro–Wilk normality test was performed. For
the comparison of the groups, Welch’s ANOVA with the Dunnett’s multiple comparisons
test or its non-parametric simile Kruskal–Wallis and a multiple comparison analysis were
used through Dunn’s test. A two-way ANOVA was used for group comparison analyses
with two variables. A p-value < 0.05 was established for statistical significance.

3. Results
3.1. Animals

The initial weight per group of animals did not show significant differences (p = 0.091).
The mean weight was as follows: control = 24.20 ± 1.07 g; group 10 µg = 21.40 ± 0.40 g;
group 30 µg = 21.80 ± 0.74 g; group 50 µg = 20.80 ± 0.37 g. The weekly weight of each
animal was recorded, which did not show significant differences between the groups
(p = 0.058). No differences were found in the spontaneous activity of the animals evaluated
with the cylinder test (p = 0.919; Figure 1).
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Figure 1. Monitoring of the general condition of the animals. (A) Evolution of weight per week
by group (p = 0.058). (B) Comparison of the exploration attempts per group in the cylinder test
(p = 0.919). Two-way ANOVA. (n = 5 per group).

3.2. Serum Cytokines

We observed significant differences between the intervention and the control groups
for the IL-6 levels (p = 0.026) [Control v/s 10 µg, p = 0.025; Control v/s 30 µg, p = 0.024;
Control v/s 50 µg, p = 0.256] and IFN-γ (p = 0.039) [Control v/s 10 µg, p = 0.039; Control
v/s 30 µg, p = 0.050; Control v/s 50 µg, p = 0.195]. In contrast, TNF-α (p = 0.145), IL-10
(p = 0.576), and IL-17A (p = 0.296) did not show differences between the groups (Figure 2).

3.3. Gene Expression

We observed significant differences for the gene expression of ICAM-1 (p = 0.047)
[Control v/s 10 µg, p = 0,944]; [Control v/s 30 µg, p = 0.655]; [Control v/s 50 µg, p = 0.041],
VCAM-1 (p = 0.023) [Control v/s 10 µg, p = 0.981]; [Control v/s 30 µg, p = 0.910]; [Control
v/s 50 µg, p = 0.023]; and E-Selectin (p = 0.048) [Control v/s 10 µg, p > 0.9999]; [Control v/s
30 µg, p > 0.999]; [Control v/s 50 µg, p = 0.033]. No differences were found for P-Selectin
(p = 0.986), Pecam-1 (p = 0.705), and eNOS (p = 0.396) (Figure 3). Regarding markers
related to PAH exposure and inflammatory indicators, no differences were identified in Ahr
(p = 0.789); Keap1 (p = 0.507); RelA (p = 0.679); IKK-β (p = 0.450); IL-6 (p = 0.878); TNF-α
(p = 0.760) (Figure 4).
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Figure 2. The quantification of weight-adjusted serum inflammatory cytokines in animals exposed to
the PAHs and controls. (A) IL-6 (p = 0.026) [Control v/s 10 µg p = 0.025; Control v/s 30 µg p = 0.024;
Control v/s 50 µg p = 0.256]. (B) IFN-γ (p = 0.039 [Control v/s 10 µg p = 0.039; Control v/s 30 µg
p = 0.050; Control v/s 50 µg p = 0.195]). (C) TNF-α (p = 0.145). (D) IL-10 (p = 0.576). (E) IL-17A
(p = 0.296). Data are presented as the mean ± SEM. The dashed line represents the mean value of
the control group. Welch’s ANOVA with Dunnett’s multiple comparisons test (Control, n = 4; 10 µg,
n = 5; 30 µg, n = 4; 50 µg, n = 5).
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Figure 3. The relative gene expression of endothelial dysfunction markers in the aortic tissue of
animals exposed to PAHs and controls. (A) ICAM-1 (p = 0.047) † [Control v/s 10 µg, p = 0.944];
[Control v/s 30 µg, p = 0.655]; [Control v/s 50 µg, p = 0.041]. (B) VCAM-1 (p = 0.023) † [Control
v/s 10 µg, p = 0.981]; [Control v/s 30 µg, p = 0.910]; [Control v/s 50 µg, p = 0.023]. (C) E-Selectin
(p = 0.048) ‡ [Control v/s 10 µg, p > 0.9999]; [Control v/s 30 µg, p > 0.999]; [Control v/s 50 µg,
p = 0.033]. (D) P-Selectin (p = 0.986) ‡. (E) Pecam-1 (p = 0.705) ‡. (F) eNOS (p = 0.396) †. Relative
quantification was calculated using the reference genes RPL32 and B2M. Data are presented as the
means ± SEM. † Welch’s ANOVA with Dunnett’s multiple comparisons test. ‡ Kruskal–Wallis with
Dunn’s post hoc analysis (Control, n = 4; 10 µg, n = 4; 30 µg, n = 4; 50 µg, n = 4).* p < 0.05.
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Figure 4. The relative gene expression of exposure-related PAHs and inflammatory markers in aortic
tissue from PAH exposed animals and the controls. (A) Ahr (p = 0.789) ‡. (B) Keap1 (p = 0.507) ‡.
(C) RelA (p = 0.679) ‡. (D) IKK-β (p = 0.450) †. (E) IL-6 (p = 0.878) ‡. (F) TNF-α (p = 0.760) †. Gene
expression was normalized using the RPL32 and ACTB as reference genes. Data are presented as
mean ± SEM. † Welch’s ANOVA test. ‡ Kruskal–Wallis test (Control, n = 4; 10 µg, n = 4; 30 µg, n = 4;
50 µg, n = 4).

3.4. Protein Expression

The protein expression of ICAM-1 (p = 0.117) and VCAM-1 (p = 0.210) did not show
significant differences in the aortic tissue, although we observed an elevated expression in
the intervention groups compared to the control group (Figure 5).
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high stability since the half-life of IL-6 is longer than that of other pro-inflammatory 
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Figure 5. The effect of exposure to PAHs on the protein expression of adhesion molecules in aortic
tissue. (A) Relative protein expression of ICAM-1 (p = 0.117). (B) Relative protein expression of
VCAM-1 (p = 0.210). (C) Representative Western blots are shown for ICAM-1, VCAM-1, and α/β-
tubulin. Data are presented as the mean ± SEM. Welch’s ANOVA test. (Control, n = 4; 10 µg, n = 4;
30 µg, n = 4; 50 µg, n = 4).

4. Discussion

The concentrations and doses of PAHs used for this protocol were established accord-
ing to previous studies using PM [26] and pollution generated by diesel combustion [27]
as we did not find studies using PAH nasal instillation. Some studies have reported that
exposure to PAH increases circulating pro-inflammatory cytokines, IL-6, IL-8, and TNF-α
being the most studied markers [28,29]. In this study, a significant increase in serum IL-6
and IFN-γ was identified. Another report carried out on workers at a coal plant showed an
increased concentration of IL-6 in plasma, demonstrating a dose-dependent relationship
with PAH metabolites in urine [28]. IL-6 represents a good indicator of cytokine cascade
activation, accurately reflecting the inflammatory state, in addition to its high stability since
the half-life of IL-6 is longer than that of other pro-inflammatory cytokines [30]. On the other
hand, IFN-γ induces the overexpression of additional pro-inflammatory cytokines such
as IL-12, IL-15, TNF-α, IFN-γ-inducible protein-10 (IP-10), inducible nitric oxide synthase
(iNOS), among others, inducing the activation of pro-inflammatory transcription factors
such as the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) [31].
However, in a study carried out on asthmatic and non-asthmatic children exposed to air
pollution from traffic and followed for 6 years, there were no differences in circulating IFN-
γ concentrations [32]. However, a study evaluating three different areas of environmental
pollution according to their volatile components identified increased IFN-γ and TNF-α
concentrations in industrialized and high-traffic areas compared to low-traffic areas [33].
Furthermore, a study evaluating different sources of pollutants derived from wood com-
bustion identified a significant increase in blood TNF-α [34], showing that exposure to
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particles derived from wood combustion containing PAH can upregulate pro-inflammatory
cytokines including IL-6 and TNF-α.

IL-10 has pleiotropic effects on immunoregulation and inflammation, downregu-
lating the expression of Th1 cytokines, class II MHC, and co-stimulatory molecules in
macrophages. IL-10 also improves B cell survival, proliferation, and antibody produc-
tion [35]. This cytokine can block the activity of NF-kB, participating in the regulation
of the JAK-STAT signaling pathway. By comparing different pro-inflammatory and anti-
inflammatory cytokines associated with different levels of environmental pollution, Do-
breva et al. showed that air pollutants, mostly PM2.5, modulated cytokine production by
altering the TNF-α (pro-inflammatory) and IL-10 (anti-inflammatory) [36].

An increase in the pro-inflammatory cytokines affects the regulation of vascular tone,
cell adhesion, inflammation, proliferation, and the phenotype of smooth muscle cells as
well as the formation of atheroma plaques [16]. Endothelial activation is characterized by an
increase in the expression of adhesion molecules, leukocyte diapedesis, increased vascular
tone due to decreased nitric oxide production, and reduced resistance to thrombosis [18].
The process of endothelial activation has been described as the factor initiating atheroma
plaques in the vascular tissue. Thus, TNF-α enhances the expression of adhesion molecules
in vascular endothelial cells. An in vitro study determined that stimulation of human
coronary artery endothelial cells exposed to TNF-α increased ICAM-1 expression [37]. Our
data indicate increased expression of the ICAM-1, VCAM-1 and E-Selectin genes, showing
significant differences in the group exposed to 50 µg PAHs. Additionally, ICAM-1 and
VCAM-1 protein expression was elevated in the PAH-exposed groups, although it did not
reach statistical significance, being able to explain this by post-transcriptional regulations
that should be studied in more depth.

We also observed a nonsignificant increase in IL-6 and TNF-α. Endothelial activation
by TNF-α is carried out by two main mechanisms: activation of NF-κB and MAPK. The
activation of NF-kB plays a central role in the regulation of multiple cellular processes such
as inflammation, immune response, differentiation, proliferation, apoptosis, and cancer,
thus it is considered as a master regulator of inflammatory responses [38]. Furthermore,
TNF-α, IL-1β, IL-6, and IFN-γ expression are elevated within the great elastic arteries
of old mice and humans [39]. This pro-inflammatory arterial phenotype is associated
with increased NF-κB activity. When translocated to the nucleus, NF-κB activates the
transcription of genes involved in the production of pro-inflammatory cytokines [40]. As
we did not observe an increase in the gene expression of RelA and IKK-β, it becomes
necessary to identify the mechanisms by which exposure to PAHs stimulates the increased
expression of adhesion molecules in vascular tissue.

Based on the findings of this study, it is necessary to expand the studies that can
investigate the mechanisms by which PAHs can generate deleterious effects on the car-
diovascular system, being able to speculate that these compounds, due to their nature,
manage to enter the cardiovascular system directly via bloodstream, affecting the vascular
endothelium manage to enter the cardiovascular system directly via bloodstream, affecting
the vascular endothelium. Thus, evidence shows that the passage of small molecules
(PM0.1) into the blood directly affects the vascular system. Within this group of particles,
we can find particles derived from fossil fuels and wood combustion [7,41–43]. In this sense,
reports have determined that PAHs bind to AhR, leading to the release of the latter from the
multiprotein complex and its consequent translocation to the nucleus, where it dimerizes
with the nuclear translocator AhR (ARNT), leading to binding to the xenobiotic response
element (XRE) in the promoter region of target genes to stimulate transcription [44]. Fur-
thermore, it has been proposed that AhR-mediated pathways are linked to responses to
oxidative stress through the dissociation of the nuclear factor erythroid 2-related factor 2
(Nrf2) and the inhibitory protein keap1 [45].

Regarding the behavior of the variables studied, it was originally expected that there
would be a dose–response relationship, a situation that was not observed in this inves-
tigation. In this regard, it is important to point out that the responses to the different
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pollutants did not always maintain this behavior, finding little evidence indicating that
exposure to increasing doses of PM leads to vasomotor dysfunction and the progression of
atherosclerotic plaque [46]. Furthermore, it has been suggested that systemic or pulmonary
inflammation is not a prerequisite for dysfunction in the vasomotor response and accel-
erated the progression of atherosclerosis in animals exposed to PM [46]. Therefore, in the
investigation, we wanted to review both the markers of systemic inflammation and the
specific effect on tissue, particularly aortic tissue, evaluating markers of endothelial dys-
function that are recognized as potent factors for vasomotor dysfunction and atherosclerotic
plaque formation. However, it has been documented that different types of PAH generate
effects through different pathways in the tissues. An example of this is benzo[a]pyrene
(B[a]P), which is considered to have a low affinity for AhR, but with potent effects on Ca2+

induction, a mechanism related to endothelial dysfunction. In contrast, pyrene, which
seems to have an even greater effect on Ca2+ induction, but a non-nuclear Ahr stimulation
pathway [47], showed differences in the effects of various PAHs in their pathophysiological
mechanism of action. This is relevant to exemplify that the effect observed in tissue may be
influenced by several metabolic pathways, which requires further investigation.

The PAH doses used in this research are within the ranges published in various
studies and are adequately summarized in the review by Møller et al. [46]. However,
it is important to point out that there is a great variation in the representation of PAHs
in the particulate matter in the air, which depends on the concentrations of its different
types, emission sources, time of year, place of measurement, and PM level, among others.
These factors make direct extrapolation somewhat complex to perform. Thus, for example,
residents living in rural areas generally inhale higher concentrations of PM-bound PAHs
(4.2–655 ng/m3) [48] than residents living in urban areas (0.4–11, 9 ng/m3) [49]. In this
study, a mixture of phenanthrene, fluoranthene, and pyrene was obtained, which are
characteristic of the winter season associated with the combustion of wood for heating
and cooking.

Although we have reported interesting findings regarding the role of exposure to PAHs
in pro-inflammatory states and cardiovascular health, this study had limitations of a small
number of animals per group, considering that no previous data were found regarding the
model used for PAH management. In addition, the intervention contemplated 5 weeks of
exposure, which could be a bit limited considering the long-term deleterious effects that
people exposed to high levels of air pollution have been shown to manifest.

5. Conclusions

Our results suggest that PAHs of phenanthrene, fluoranthene, and pyrene, present
in PM, partially stimulate the production of serum inflammatory cytokines, which have
been associated with the development of various diseases related to high exposure to
air pollution, in addition to being a relevant factor for the development of endothelial
dysfunction and atherosclerotic disease. Furthermore, an increase in the expression of
adhesion molecules related to endothelial dysfunction was found, an initial mechanism in
the atherogenesis process that contributes to the formation, progression, and complications
of the atherosclerotic plaque, alterations that are usually subclinical and poorly diagnosed.
In this studied murine model, we showed that both mechanisms associated with the
development of cardiovascular disease were manifested and may represent a model that
allows for investigating the cellular and molecular mechanisms associated with exposure
to PAHs present in PM.
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Abstract: The aims of this study were to characterize the exposure of pregnant women living in
Portugal to 3-phenoxybenzoic acid (3-PBA) and to evaluate the association of this exposure with
maternal outcomes and newborn anthropometric measures. We also aimed to compare exposure
in summer with exposure in winter. Pregnant women attending ultrasound scans from April 2018
to April 2019 at a central hospital in Porto, Portugal, were invited to participate. Inclusion criteria
were: gestational week between 10 and 13, confirmed fetal vitality, and a signature of informed
consent. 3-PBA was measured in spot urine samples by gas chromatography with mass spectrometry
(GC-MS). The median 3-PBA concentration was 0.263 (0.167; 0.458) µg/g creatinine (n = 145). 3-PBA
excretion was negatively associated with maternal pre-pregnancy body mass index (BMI) (p = 0.049),
and it was higher during the summer when compared to winter (p < 0.001). The frequency of fish or
yogurt consumption was associated positively with 3-PBA excretion, particularly during the winter
(p = 0.002 and p = 0.015, respectively), when environmental exposure is low. Moreover, 3-PBA was
associated with levothyroxine use (p = 0.01), a proxy for hypothyroidism, which could be due to a
putative 3-PBA—thyroid hormone antagonistic effect. 3-PBA levels were not associated with the
anthropometric measures of the newborn. In conclusion, pregnant women living in Portugal are
exposed to 3-PBA, particularly during summer, and this exposure may be associated with maternal
clinical features.

Keywords: 3-PBA; pyrethroid pesticides; pregnancy; newborn; anthropometry
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1. Introduction

Pesticides belong to a large family of compounds used to control insect (insecticides,
insect repellents), weeds (herbicides), microbe (fungicides, disinfectants), or mouse and rat
(rodenticides) pests [1].

Synthetic pyrethroids (SPs) belong to the class of insecticides and are commonly
used. These insecticides derive from natural compounds produced by some species of
chrysanthemum flowers, the so-called pyrethrins, and they are used to manage pests both
in agriculture and in residences and to reduce the transmission of diseases acquired by
insects [2,3].

3-phenoxybenzoic acid (3-PBA) is a general metabolite of several SPs, which is used
as a biomarker of SP exposure [4].

In northern Portugal, three studies were carried out to characterize agricultural soil
sample contamination with 3-PBA. Those studies showed that 3-PBA was detectable at
the range of ng per g of soil, in samples of the north of Portugal [2,5,6]. One other study
showed that pyrethroids interfere with the germination and development of plants since
their phototoxicity can alter the levels of chlorophyll and carotenoids [4]. The presence of
pyrethroids in agricultural soils indicates the relevance of extending monitoring programs
for the analysis of these compounds in soils and soil-borne foods [2,5,6].

For example, 75% of fruits and vegetable samples labelled as ‘organic’ (including
tomatoes, oranges, grapes, apples, bananas, onions, lettuce, green peppers, carrots, and
broccoli) collected from grocery stores in North Carolina, USA, had measurable levels of at
least one pyrethroid [7].

The 2018 European Union (EU) report on pesticide residues in food showed that Por-
tugal was one of the countries with the highest maximum residue levels (MRLs) exceeding
rates, but none of the residues detected to exceed MRLs were pyrethroids [8].The overall
results of this report suggest that the levels of pesticides assessed in the food products
analyzed are unlikely to pose a concern for the health of the consumer [8].

Besides food, pyrethroids are also found in pet shampoos, medication used for treating
scabies, and topical louse treatments [9].

Exposure to pesticides in the population is widespread, especially via dermal, inges-
tion, and inhalation routes, and consequently, SPs may enter the food chain, affecting the
environment and human health [10].

3-PBA found in the human body may result from absorption of 3-PBA resulting
from environmental degradation of several SPs [2], or it may result from the endogenous
hydrolysis of SPs by mammalian carboxylesterases (CEs) [11].

Once in the human body, pyrethroid compounds, including 3-PBA, are known to be
transported by the placenta, since detectable levels of permethrin were found in cord blood
samples collected upon delivery [12].

The developing nervous system is highly susceptible to the neurotoxicity of pesticides,
as well as to many types of environmental toxicants. This heightened sensitivity occurs
not only during prenatal but also postnatal development, extending into adolescence [13].
Impacts on the developing nervous system can have deleterious effects that last a lifetime,
long after exposure has ended, as the toxicant causes alterations of development of the
nervous system [14].

Like many other insecticide compounds, pyrethroids are known to be neurotoxic [15].
In fact, intraperitoneal injection of 3-PBA in mice daily for 2 months has shown to induce
synuclein aggregation in dopaminergic neurons, which may contribute to dopaminergic
neurodegeneration [11]. Given its high lipophilicity, 3-PBA can cross the blood-brain
barrier (BBB) and bioaccumulate in the brain, which is rich in lipids [11]. This increases the
plausibility of its neurotoxic effects.

Additionally, a recent review provides relevant evidence which confirms that pyrethroids
exposure during pregnancy may impact neurodevelopment for example by interference
with thyroid hormone (TH) function [15].
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Adverse effects on thyroid function warrant caution because THs play an impor-
tant role in many aspects of human physiology including growth, development, en-
ergy metabolism, and reproduction [16,17]. Across vertebrates, particularly during preg-
nancy and the neonatal period, THs orchestrate metamorphosis, brain development, and
metabolism. SPs and their metabolites have structural similarities with THs [18]. These
similarities are believed to underlie SPs and 3-PBA interference with nuclear receptors of
TH. In fact these compounds have been shown to inhibit TR-mediated gene expression [19].
A study evaluating environmental exposure to pyrethroids and thyroid hormones of preg-
nant women in Shandong, China, indicated that exposure to pyrethroids was widespread
and negatively associated with serum concentrations of free triiodothyronine (FT3) [20].
Nevertheless, Zang et al., in a cohort of women in the first trimester of pregnancy, could not
show an association between chemical exposure to pyrethroid pesticides during the early
gestation period and maternal thyroid function [21]. There is a need to further explore the
effects of pyrethroid exposure on thyroid function in pregnant women.

Some studies have evaluated urinary pyrethroid levels among pregnant women in
different regions of the globe. In a randomized trial carried out in Idaho, USA, levels of
3-PBA were measured in 1st trimester pregnant women who received either organic or con-
ventional fruits and vegetables for consumption for 24 weeks. 3-PBA concentrations were
significantly higher in urine samples collected from women in the conventional produce
group compared to the organic produce group (0.95 vs 0.27 µg/L, p = 0.03) [22]. A study
carried out in French pregnant women showed that among 5 pyrethroid metabolites, the
urinary concentrations of 3-PBA were the highest with a mean concentration of 0.36 µg/L
(0.50 µg/g creatinine) [23]. In China, a study carried out in pregnant women living in a
rural area of the Jiangsu Province showed that median urinary 3-PBA concentration was
1.01 g/L (1.55 µg/g creatinine) [24].

A biomonitoring study conducted in the US has indicated that in recent decades,
there has been an increase in pyrethroid insecticides home usage and a decrease in the
use of organophosphorus pesticides (OP), resulting in detectable amounts of pyrethroid
metabolites in population samples [25].

Human fertility rates are known to be decreasing both in developed and developing
countries [26]. This reduction has been associated with socioeconomic changes and adverse
lifestyle factors [27]. However, pesticide environmental contaminants have attracted inter-
national attention and recently came to be considered as possible contributors to human
infertility [28].

Environmental exposure to pyrethroids can also adversely impact on pregnancy out-
comes and offspring health, including newborn anthropometry, neurodevelopment, and
behavioral problems [18]. A study of exposure to pyrethroid sprays during pregnancy
has shown associations of this exposure with autism spectrum disorders (ASD) and devel-
opmental delay [29]. Cross-sectional studies also implicate pyrethroids in ASD [30] and
Attention Deficit Hyperactivity Disorder (ADHD) [31].

Several previous studies of pyrethroid biomarkers and behavior have reported associ-
ations between pyrethroid levels and adverse behavioral problems in children. Although
detection frequencies of pyrethroid metabolites were low, suggestive evidence that prenatal
exposure to 3-PBA may be associated with a variety of behavioral and executive functioning
deficits was found [32].

However, to date, there have been no studies evaluating the levels of exposure of
Portuguese pregnant women to this pesticide neither its impact on maternal nor neonatal
outcomes. So, the aims of this study were to characterize the exposure of pregnant women
living in Portugal to 3-PBA and to evaluate the association of this exposure with maternal
outcomes and newborn anthropometric measures. Additionally, considering that the
exposure of the global population to 3-PBA is expected to vary with the seasons [24,33–35],
with the maximum likelihood of exposure in summer [36], we decided to compare samples
collected in summer with those collected in winter.
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2. Materials and Methods
2.1. Ethical Approval

This study was performed according to the protocol approved by the Ethics Committee
of São João University Hospital Center (CHUSJoão)/Faculty of Medicine of the University
of Porto. Informed written consent was obtained from all study participants.

2.2. Study Design and Participants

A prospective observational study was carried out from the IoMum cohort (Monitoring
iodine status in Portuguese pregnant women and the impact of supplementation—trial
registration number NCT04010708) according to the guidelines laid down in the Declaration
of Helsinki. Pregnant women attending their first trimester routine ultrasound scan at
Centro Hospitalar Universitário de São João (CHUSJ), Porto, between April 2018 and April
2019 were invited to participate as described previously [37–39]. All women who had a
routine ultrasound scan between 10 and 13 weeks of gestation with confirmed fetal vitality,
who signed the informed consent form, and who provided a urine sample at recruitment in
summer or in the winter were included in the study. Exclusion criteria were twin pregnancy,
declaration of informed consent for use of the data of the newborn not being signed by the
mother, and urine sample collection in spring or autumn (Figure 1).
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Figure 1. Recruitment and inclusion flowchart of the study.

Gestational age was determined from the measurement of the fetal crown-rump length.
At the time of enrollment between 10 and 13 weeks plus 6 days (timepoint 1, T1) and

after informed consent, information was collected on various demographic and lifestyle
factors, including age, area of residence, education, weight, and height of the pregnant,
gestational age, smoking habits, and use of medicines. In the lifestyle questionnaire, food
frequency information was obtained from a semi-quantitative food intake assessment
questionnaire, where we verified the frequency of consumption of cow’s milk, yogurt,
cheese, eggs, and fish.

At this time point (T1), a spot urine sample was also collected, and women were
invited to a second contact with the IoMum team from 35 weeks until the end of gestation
(time point 2, T2) for additional demographic and lifestyle information collection, spot
urine collection and a finger prick blood spot. The urine samples were refrigerated upon
collection and transported to the laboratory within the following 24 h for aliquot creation
and freezing at −80 ◦C for future analysis.

Information collected at T2 falls outside the scope of this work, and so, it will not be
further detailed. Information regarding both maternal and the newborn’s clinical details
were obtained from the clinical records, including pregnancy outcomes and complications,
mode of delivery, gestational age at delivery, and newborn’s anthropometric and vitality
parameters.
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2.3. Biochemical Analysis
2.3.1. Chemical Elements Quantification

The analysis of 3-PBA was performed by gas chromatography with mass spectrometry
(GC/MS), as described [2] 1 µL of sample was injected onto a Thermo Trace-Ultra gas
chromatography, coupled to an ion trap mass detector Thermo Polaris, operated in the
electron impact ionization at 70 eV. The ion source and the MS transfer temperature were
set at 250 ◦C. Operating in the splitless mode (0.5 min), the helium was used as carrier gas
at a constant flow rate of 1.3 mL min−1. The temperature of the injector was 240 ◦C. The
column was a 30 m ZB-5MSi (0.25 mm i.d., 0.25 µm film thickness Zebron-Phenomenex),
and oven temperature was programmed as described [2]. The analysis was developed in
the SIM mode, based on the detection of selected ions for 3-PBA (141, 196, and 364).

Sample preparation was performed by solid-phase extraction (SPE). Briefly, the urine
samples were thawed at room temperature. Then, a solution of urine in 1.5 mL of deionized
water (H2O), 150 µL of sodium hydroxide (NaOH) (Merck), and 100 µL of the internal
standard 2-phenoxy benzoic acid (2-PBA) (Sigma Aldrich) (1.5 mL + 1.5 mL + 150 µL +
100 µL, respectively) of were incubated at 37 ◦C for 15 min. After chemical deconjugation,
the samples were transferred to the preconditioned SPE columns (Strata-X) (Phenomenex)
with 5 mL methanol (MeOH) (Riedel de Haen) and 5 mL ammonium acetate (Merck).
The columns were then immediately washed with 5 mL (MeOH): (H2O) (30/70 V/V).
Following a short vacuum pulse to remove excess wash solution, the columns were dried
under vacuum for 40 min using the SPE vacuum manifold. Elution was carried out
with 5 mL of acidified MeOH (2% formic acid) (Carlo Erba), directly into a glass vial.
Subsequently, the eluates were concentrated to 50 µL under a gentle stream of nitrogen.

3-PBA derivatization procedure was necessary prior to GC/MS analysis. The derivati-
zation was performed by addition of 30 µL hexafluoro-2-propanol (HFIP) (Sigma Aldrich
Darmstadt, Germany), 20 µL (N, N′-Diisopropylcarbodiimide (DIC) (Sigma Aldrich Darm-
stadt, Germany) and 400 µL of n-hexane (Merck, Darmstadt, Germany) to the 50 µL of the
eluate obtained from the SPE extraction and vortex at room temperature during 10 min. In
the final step, liquid-liquid extraction was performed with 1 mL of a 5% aqueous potassium
carbonate solution (Panreac, Darmstadt, Germany) (to neutralize the excess derivatizing
agent), shaken 5 min in the vortex, and finally, the supernatant was removed and placed in
a vial with insert for injecting into GC/MS. The calibration curves and linear ranges of the
detector response for 3-PBA were evaluated by analyzing the working standard solutions
(15–200 µg L−1, 8 concentrations) in triplicate. In this study, the linearity, selectivity, the
limit of detection (LOD) and limit of quantification (LOQ) were evaluated and the determi-
nations that were below the LOD have been replaced by the constant LOD/2, according
to Richardson, and Ciampi and Schisterman et al. [40–42]. LOD (0.364 µg/L) and LOQ
(1.212 µg/L) were calculated as the minimum amount of analyte detectable with a signal-
to-noise ratio (S/N) of 3 and 10, respectively; the linearity of the method was established
by setting calibration curves using linear regression analysis over the concentration range.
Selectivity was verified by comparing the chromatograms of the standards dissolved in
n-hexane, the standards extracted from the spiked urine and the matrix blanks.

2.3.2. Creatinine Quantification

Urine-based biomarkers are useful for assessing individuals’ exposure to environ-
mental factors. However, inter-individual variations in urine concentration (which can
be assessed by urinary creatinine) can directly affect urinary levels of contaminants. So,
urinary creatinine was used to adjust 3-PBA urinary levels to urine concentration [43].

Measurements were performed using an ADVIA 1800 instrument according to the
manufacturer’s instructions, based on the enzymatic reaction described by Fossati, Prencipe,
and Berti [44].

Briefly, urinary creatinine was quantified by enzymatic conversion (creatininase) to
creatine, which was then hydrolyzed by creatinase to produce sarcosine, and this decom-
posed by the sarcosine oxidase to form glycine, formaldehyde and hydrogen peroxide. The
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hydrogen peroxide formed produces a blue pigment through the action of peroxidase and
by quantitative oxidative condensation with N-(3-sulfopropyl)-3-methoxy-5-methylaniline
(HMMPS) and 4-aminoantipyrine. The creatinine concentration was obtained by measuring
the absorbance of the blue color at 596/694 nm.

2.4. Maternal Outcomes and Newborn Anthropometric Measures

Maternal outcomes considered for association analyses with levels of 3-PBA were:
medication for thyroid disease (as a proxy for hypothyroidism), glycemia in the first
trimester, and type of delivery (women who had cesarean delivery, women who had a
vaginal delivery).

For the categorization of variables of weight, head circumference and length of the
newborn, percentile classification was used [45]. As a result, the newborns were classified
into 3 categories regarding weight, head circumference, and length at birth:

• SGA: small for gestational age (below 10th percentile)
• AGA: appropriate for gestational age (between 10th percentile and 90th percentile)
• LGA: large for gestational age (above the 90th percentile)

2.5. Statistical Analysis

Descriptive statistics are presented as absolute and relative frequencies for categorical
variables, mean and standard deviation (SD), or median and interquartile range (25th
percentile (P25); 75th percentile (P75)) for continuous variables, depending on the symmetry
of their distribution.

When testing hypotheses about continuous variables we used non-parametric tests
(Mann-Whitney and Kruskal-Wallis tests) considering the hypotheses of non-normality
and number of groups. When testing hypotheses on categorical variables, the chi-square
test and the Fisher’s exact test were used, as appropriate.

The level of statistical significance was set at 5%, so the differences were considered
statistically significant whenever p < 0.05. Statistical analyses were performed using SPSS®

v.28.0 (Statistical Package for the Social Sciences: Armonk, NY, USA).

3. Results
3.1. Sociodemographic Data

The sociodemographic characteristics of the study population are presented in Table 1.
Most of the population resides in the municipalities corresponding to the coverage areas
of CHUSJ (Maia (30%), Valongo (26%), and Porto (18%)), and a minority resides in other
municipalities of the North of Portugal, including Matosinhos (n = 5 (4%), Vila Nova de
Gaia (n = 4 (3%), and Vila do Conde (n = 3 (2%)). Forty five percent of the population has a
low level of education (≤12 years), while around 19% of the population has higher degrees
of education equivalent to a Master or PhD degree. The median age of the participants
was 31.7 years old, with the youngest and the oldest participants being 19 and 40 years old,
respectively. The median pre-pregnancy body mass index (BMI) was 23.6 kg/m2, and 65%
of women were within the normal weight range (18.5–24.9 kg/m2). Calculation of BMI was
based on the self-reported weights and heights of pregnant women 6 months before the day
of recruitment. Regarding the number of pregnancies, 52% of women were primiparous.
Only 7% of the pregnancies resulted in preterm births, and in total, this sample gave birth
to 68 boys and 73 girls.

The mean (SD) weight at birth was 3152 (478) g, and 86% of newborns had adequate
weights for their gestational ages. The median (P25; P75) urinary 3-PBA concentration
was 0.182 (0.182; 0.372) µg/L, which is above the detection limit (LOD, 0.364 µg/L). To
account for the urine concentration, we adjusted 3-PBA urinary excretion for creatinine
concentration (median (P25; P72) of 0.263 (0.167; 0.458) µg/g and used this variable in all
the remaining analyses.
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Table 1. General characteristics of the study sample (n = 145).

Residence Area, n (%)
Maia 41 (30)
Porto 25 (18)

Valongo 35 (26)
Outros 35 (26)

Maternal education level, n (%)
Low (≤12 years) 62 (45)

Medium (13–15 years) 50 (36)
High (≥16 years) 26 (19)

Age (years), n 145
Mean 32

SD 5.2
Pre-pregnancy BMI (kg/m2), n 142

Median 24
P25; P75 21; 26

Minimum 16
Maximum 36

Pre-pregnancy BMI categories, n (%)
Low weight 11 (8)

Normal weight 92 (65)
Overweight 24 (17)

Obesity 15 (10)
Gestational age at recruitment (weeks), n 145

Median 12
P25; P75 12; 13

Primiparous, n (%)
No 70 (48)
Yes 75 (52)

Preterm (37 weeks), n (%)
No 131 (93)
Yes 10 (7)

Newborn sex, n (%)
Male 68 (48)

Female 73 (52)
Birth weight (grams), n 141

Mean 3152
SD 477

Birth weight classification, n (%)
SGA 12 (9)

AGA 122 (86)
LGA 7 (5)

3-PBA (µg/L), n 145
Median 0.182

P25; P75 0.182; 0.372
<LOD, n (%) 103 (71)
≥LOD, n (%) 42 (29)

3-PBA (µg/g), n 145
Median 0.263

P25; P75 0.167; 0.458
SGA, small for gestational age; AGA, appropriate for gestational age; LGA, large for gestational age. LOD, limit
of detection. Missing’s: between 2 and 6%.

Table 2 explores the association between urinary concentration of the pyrethroid
metabolite 3-PBA with sociodemographic characteristics. The median concentration was
the lowest in Porto, although the differences observed were not statistically significant.
Maternal education level or smoking habits did not appear to be consistently associated
with 3-PBA status. Regarding the BMI categories, a statistically significant difference was
observed (p = 0.049), where the lowest medians were found in mothers with obesity.
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Table 2. Urinary levels of 3-PBA (µg/g) by participant characteristics.

n (%) P25 Median P75 p

Residence Area
Maia 41 (30) 0.174 0.274 0.450

0.056 aPorto 25 (18) 0.131 0.174 0.294
Valongo 35 (26) 0.172 0.278 0.368

Other 35 (26) 0.172 0.333 0.507
Maternal education
level

Low (≤12 years) 62 (45) 0.166 0.278 0.525
0.242 aMedium (13–15 years) 50 (36) 0.172 0.310 0.410

High (≥16 years) 26 (19) 0.139 0.189 0.368
Smoking habits

Non-Smoker 94 (66) 0.172 0.276 0.497
0.185 aSmoker 23 (16) 0.169 0.254 0.309

Former smoker 26 (18) 0.142 0.206 0.334
Pre-pregnancy BMI
categories

Underweight 11 (8) 0.152 0.291 0.328

0.049 aNormal weight 92 (65) 0.188 0.293 0.507
Overweight 24 (17) 0.165 0.241 0.340

Obesity 15 (11) 0.103 0.155 0.346
Classification of the residence Area based on Instituto Nacional de Estatística de Portugal I.P., 2014. a Kruskal-
Wallis. Missing’s: between 2 and 6%.

3.2. 3-PBA Exposure by Seasons

Table 3 presents the distribution of the population by season of urine collection and
the corresponding 3-PBA urinary excretion, illustrated in Figure 2. 3-PBA with or without
the adjustment for creatinine levels was higher in summer-collected urine (p < 0.001).
In addition, we observed that 3-PBA detection rate was much higher in summer when
compared with winter samples (53% (n = 39) versus 4% (n = 3); p < 0.001).

Table 3. Levels of creatinine and 3-PBA with and without adjustment of creatinine in winter and
summer samples.

Creatinine (mg/dL) 3-PBA (µg/L) 3-PBA (µg/g)

Seasons n (%) P25 Median P75 p P25 Median P75 (Min;
Max) p P25 Median P75 (Min;

Max) p

Summer 74 51 46.06 79.61 121.81
0.397 a 0.182 0.371 0.394 (0.182;

0.553) <0.001 a 0.209 0.331 0.556 (0.082;
2.166) <0.001 a

Winter 71 49 58.47 85.35 133.75 0.182 0.182 0.182 (0.182;
0.390) 0.139 0.218 0.311 (0.780;

1.064)

a Mann-Whitney.
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3.3. 3-PBA Exposure in Association with Food Intake

Table 4 shows the variation of urinary levels of 3-PBA, separated by seasons (summer
and winter) with consumption of fish or yogurt. 3-PBA levels were found to be positively
associated with the frequency of consumption of these foods in winter but not in summer.
The frequency of consumption of other foods, such as cow’s milk, eggs, and cheese was not
associated with 3-PBA levels (data not shown).

Table 4. 3-PBA levels in association with food intake.

Food Intake
3-PBA Summer (µg/g) 3-PBA Winter (µg/g)

n (%) Median (P25; P75) p n (%) Median (P25; P75) p

Fish
≤3 times a week 41 (32) 0.318 (0.228; 0.608)

0.533 a 67 (52) 0.213 (0.139; 0.301)
0.002 a

>3 times a week 17 (13) 0.325 (0.155; 0.650) 3 (2) 0.976 (0.343; 1.064)
Yogurt
≤6 times a week 40 (28) 0.350 (0.236; 0.521)

0.938 a 40 (28) 0.180 (0.133; 0.270)
0.015 a

≥1 time a day 33 (23) 0.328 (0.174; 0.618) 30 (21) 0.269 (0.170; 0.462)
a Mann-Whitney. Missing’s: between 1 and 23%.

3.4. 3-PBA Levels and Maternal Outcomes

The association between 3-PBA levels and maternal and pregnancy clinical character-
istics was studied.

Considering the structural similarities found between pyrethroids and THs and the
consequent suspicion that they could antagonize thyroid hormone activities [19,21,46],
levels of 3-PBA in our sample were analyzed according to medication for thyroid disease
(as a proxy for hypothyroidism). We found that women who reported taking levothyroxine
had higher median (P25; P75) urinary 3-PBA levels when compared to women who reported
not having thyroid disease (0.534 (0.333; 0.976) µg/g, n = 9, and 0.266 (0.168; 0.430) µg/g,
n = 124, respectively, p = 0.010).

Additionally, 1st trimester 3-PBA levels had a weak positive correlation with maternal
fasting glycemia in the first trimester (r = 0.256; p = 0.011, Spearmen correlation), and
women who had cesarean delivery had higher median (P25; P75) first trimester 3-PBA
levels when compared with women who had vaginal delivery (0.302 (0.206; 0.528) µg/g
versus 0.255 (0.153; 0.410) µg/g, respectively, p = 0.041).

3.5. Neonatal Outcomes

Median 3-PBA concentrations were very similar between male and female offspring
(Table 5).

Table 5. 3-PBA levels and newborn sex.

Newborn Sex n (%) P25 Median P75 (Min; Max) µg/g p

Male 68 (48) 0.161 0.271 0.401 (0.078; 1.428)
0.463 a

Female 73 (52) 0.170 0.270 0.507 (0.780; 2.166)
a Mann-Whitney. Missing’s: 3%.

Table 6 shows the variation of urinary 3-PBA levels with neonatal outcomes; the de-
scribed pyrethroid pesticide metabolite was not associated with anthropometric categories
at birth.
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Table 6. Maternal first trimester urinary 3-PBA levels and newborn outcomes.

Birth Size Categories n (%) P25 Median P75 p

Birth weight
SGA 12 (8) 0.196 0.303 0.356

AGA 122 (87) 0.167 0.261 0.462 0.786 a

LGA 7 (5) 0.174 0.301 0.497
Birth head
circumference

SGA 13 (10) 0.203 0.278 0.333
0.973 aAGA 112 (83) 0.166 0.263 0.463

LGA 10 (7) 0.168 0.257 0.456
Birth length

SGA 9 (6) 0.221 0.263 0.291
0.171 aAGA 131 (93) 0.168 0.274 0.476

LGA 1 (1) 0.101 0.101 0.101
SGA, small for gestational age; AGA, adequate for gestational age; LGA, large for gestational age. a Kruskal-Wallis.
Missing’s: between 3 and 7%.

4. Discussion

Analysis of results for 3-PBA urinary excretion in pregnant women showed concentra-
tions above LOD in 29% of the sample population.

3-PBA urinary excretion tended to associate with residence area, being lower in Porto,
when compared to other municipalities. The fact that Porto is a predominantly urban
city when compared with Valongo [47], for example, which has a great amount of rural
territory, could account for this trend. In line with this rationale, Wielgomas et al. found
that the detection of metabolites of SPs in preschool and school children and their parents
was more frequent and with higher urinary excretion in rural when compared with urban
areas in Poland [48]. In that study, 3-PBA was detected in 77% and 94% of samples
from urban and rural areas, respectively, and curiously, 3-PBA urinary levels found in
rural and urban areas were very similar to those found in our study (0.272 vs 0.155 µg/g
for rural vs urban areas in Poland [48], respectively; 0.278 vs 0.174 µg/g for Porto vs
Valongo in Portugal, respectively). Concerning frequency of exposure to 3-PBA, our study
revealed a low detection rate (29%) when compared, for example, with reports for Polish,
American, French, or Chinese population samples [22–24,48]. On the other hand, the 3-PBA
detection rate herein described is comparable or higher than those obtained in studies
from Germany [49–51], Spain [52,53], or France [54,55]. The variation in concentration
3-PBA medians, LOD/LOQ values or rates of detection across studies can be attributable
to local exposure characteristics but, importantly, to heterogeneity in urine sampling,
sample preparation, quantification methods, and reporting [56]. Altogether, these findings
corroborate the claim recently published by Andersen et al. [56] for the need for guidelines
to harmonize quantification methods and reporting in human biomonitoring studies.

Regarding pre-gestational BMI categories, 3-PBA levels were the lowest in mothers
with obesity. Being highly lipophilic, 3-PBA conjugates with lipids such as cholesterol, bile
acids, and triglycerides, which results in 3-PBA retention in organs particularly rich in lipid
content [57] such as adipose tissue. This retention could result in the observed decrease in
3-PBA urinary excretion with increasing BMI (and fat mass).

Yoo M et al. also reported a negative association between 3-PBA levels and BMI for
high levels of exposure in Korean adults [58]. Despite this, other studies have shown
either a positive or no association between 3-PBA urinary excretion and BMI in pregnant
women [59] or in the elder, respectively. We cannot currently explain the disparity of these
results when compared to ours.

Importantly, 3-PBA exposure was found to be higher in the summer, when compared
to winter-collected urine samples. Several studies have shown that urinary pyrethroid
metabolite levels of pregnant women follow trends of seasonal insecticide use related to
pest management practice [24,33–36]. A study carried out in China also observed a trend
of seasonal variation, with levels of urinary metabolites in the summer significantly higher
than those in the winter. These data indicate the need to assess the potential adverse effects
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of exposure to pyrethroid pesticides on fetuses and infants, in order to take appropriate
measures to protect pregnant women from higher exposure to pesticides in more susceptible
seasons [24]. Despite this, we cannot exclude that seasonal variations in 3-PBA levels could
also be due to seasonal variations in fruits or vegetables consumption. In fact, a systematic
review with metanalysis has shown that fruit consumption across the world tends to be
higher in autumn and winter, but vegetable consumption tends to be higher in spring and
summer [60]. This may, in all probability, result in differential SPs exposure according to
seasons.

In relation to food consumption, 3-PBA levels were associated with a higher consump-
tion of fish and yogurt in winter-collected samples; the lack of association between food
consumption and 3-PBA urinary levels in summer-collected samples could be due to a
greater exposure to environmental 3-PBA in the summer, which could mask the foodborne
exposure.

Although the available evidence regarding associations between dairy or fish con-
sumption and 3-PBA urinary levels is currently weak, 3-PBA-parent pesticides, such as
cypermethrin, bifenthrin, and cyhalothrin have been detected both in fish and in dairy
samples [61,62] and our data show that these foods could act as vehicles for 3-PBA exposure.
In fact, 3-PBA levels were 4.5 times higher in the group of people consuming fish more than
3 times a week and 1.5 times higher in the group of people consuming at least one yogurt a
day. Despite the magnitude of the difference and the statistical significance, association
of 3-PBA levels with fish consumption should be interpreted with caution, because of the
small sample size in the category of fish consumption >3 times/week.

In addition, we cannot explain the reason why yogurt was the only dairy food which
consumption associated with 3-PBA levels. Despite this, our data suggest that fish and
yogurt may represent a form of pyrethroid bioaccumulation.

With respect to the association of 3-PBA with maternal clinical characteristics, we
observed higher levels of 3-PBA in women medicated for hypothyroidism, which corrob-
orates the idea that pyrethroids, whose structure is similar to THs, could associate with
thyroid dysfunction, as suggested by others [19,46]. However, in our study, only 9 women
are included in the hypothyroidism medicated group, and so, these results should be read
with caution.

It is estimated that at least 10% of approved pesticides in the European Union (EU) pos-
sess endocrine disruption (ED) properties [63,64]. Experimental studies have reported that
many currently used pesticides (or their metabolites) may interfere with the hypothalamic-
pituitary-gonadal and hypothalamic-pituitary-thyroid axes [46,65]. Especially among
vulnerable human populations, such as developing fetuses and infants, changes in THs
beyond the reference range may cause a significant adverse impact on health, including
the development of neurodevelopmental problems [16,66]. However, the effects of cur-
rent human pyrethroid exposure levels on reproductive and thyroid function are poorly
understood.

Still, with regard to maternal clinical characteristics, there was a weak but statistically
significant correlation between 3-PBA levels and maternal fasting glycemia in the first
trimester. This result is in line with a study conducted in China that studied the association
between serum levels of pyrethroid insecticides and risk of type 2 diabetes which found
that high concentrations of serum pyrethroid insecticides were significantly associated with
an increased risk of type 2 diabetes [67]. A US study suggests that exposure to pyrethroids,
as estimated by urinary 3-PBA concentrations, was associated with an increased risk of
diabetes in the general adult population [68]. Hansen et al. found a severely increased
prevalence of prediabetes among Bolivian pesticide sprayers compared with a control group.
Within the sprayer group, an association between cumulative exposure to pyrethroids and
abnormal glucose regulation was seen [69].

Finally, in our study, we found no associations between pyrethroid pesticide metabo-
lite levels and the anthropometric profile of newborns at birth. Like us, Berkowitz et al.,
found no significant association between newborn anthropometric measures (birth weight,
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length, and head circumference) and maternal 3-PBA urinary in early pregnancy [70]. In
a prospective birth cohort in rural northern China between September 2010 and 2012, no
associations were found between 3-PBA levels and birth length, head circumference, or ges-
tational duration [18]. Contrarily, a study conducted in New York City aimed to investigate
the association between delivery outcomes and urinary biomarkers of pyrethroids among
healthy pregnant women and found that 3-PBA concentrations were positively associated
with head circumference in boys (p = 0.53, 95% CI: 0.03, 1.04) [3]. Also, in a study carried
out in northern China, aimed at linking pesticides and other environmental exposures with
the health of pregnant women and their children, it was observed that the total levels of
pyrethroid metabolites in the mother’s urine maternal urine were positively associated
with birth weight and head circumference [71].

One main limitation of this study was the small sample size, which resulted from
the selection of samples collected during the summer and winter and exclusion of spring-
or autumn-collected samples. In addition, the initial questionnaire did not ask pregnant
women about the frequency of consumption of other foods, such as fruits and vegetables,
and exposure to additional agents that may contain environmental pollutants.

Another limitation was that we could not analyze occupational exposure to 3-PBA
due to lack of detailed information regarding the profession of the participants. In fact,
information regarding professional occupations was extracted from clinical registries with
no possible association with the likelihood of exposure.

A strong point of our study was that, although the recruitment was carried out at
central hospital, we could invite pregnant women undergoing routine prenatal surveillance,
not being restricted to pregnant women in hospital consultation, and therefore, we included
women with and without pathology.

5. Conclusions

In conclusion, the present study characterized 3-PBA status in a sample of pregnant
women living in the Porto metropolitan area. Nonetheless, 3-PBA excretion associated neg-
atively with maternal pre-pregnancy BMI, suggesting 3-PBA adipose tissue retention. Our
data also suggest that 3-PBA exposure is higher during the summer, and food such as fish
and yogurt may be a source of 3-PBA dietary exposure, particularly when environmental
exposure is low.

As to clinical features, our data suggest that 3-PBA may be associated with thyroid
dysfunction, which could be due to a thyroid hormone antagonistic effect, as previously
described by other authors. This conclusion should be considered cautiously given the
small sample size of the hypothyroidism medicated group in our study.

In fact, this data, together with the association herein found between 3-PBA and fasting
glycemia, deserve future attention.

Finally, in this work, we did not find an association between 3-PBA maternal urinary
excretion in the first trimester and anthropometric measures of the newborn.

This study highlights that pregnant women living in Portugal may be exposed to
3-PBA and that this exposure may associate with maternal clinical features during preg-
nancy. More studies are needed to confirm data regarding association of 3-PBA exposure
and newborn outcomes and to analyze the impact of these exposures on long-term maternal
or childhood outcomes.
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Abstract: Rheumatoid arthritis (RA) is a disease that affects people all over the world and can be
caused by a variety of factors. Exposure to pesticides is one of the risk factors for the development
of RA. However, the evidence of exposure to pesticides linked with the development of RA is still
controversial. This study aimed to investigate the association between exposure to pesticides and
RA by a systematic review of relevant literature and a meta-analysis. Full-text articles published in
PubMed, Web of Science, Scopus, and Google Scholar between 1956 and 2021 were reviewed and
evaluated. A total of eight studies were eligible for inclusion (two cohort studies, four case-control
studies, and two cross-sectional studies). The adjusted odds ratio for pesticide exposure on RA
was 1.20 for insecticides (95% CI = 1.12–1.28), 0.98 for herbicides (95% CI = 0.89–1.08), 1.04 for
fungicides (95% CI = 0.86–1.27), and 1.15 in for non-specific pesticides (95% CI = 1.09–1.21). There is
some evidence to suggest that exposure to insecticides (especially fonofos, carbaryl, and guanidines)
contributes to an increased risk of RA. However, the evidence is limited because of a small number of
studies. Therefore, further epidemiological studies are needed to substantiate this conclusion.

Keywords: pesticide; insecticide; herbicide; fungicide; rheumatoid arthritis; autoimmune disease

1. Introduction

Rheumatoid arthritis (RA), an autoimmune disease that causes joint inflammation,
is a serious public health issue. Between 1980 and 2018, the global prevalence of RA was
460 per 100,000 people [1–4]. Genetics, smoking, infections, dietary behavior, chemical
pollution, and autoimmune illnesses are risk factors for RA [3,5,6]. It has been reported
that exposure to pesticides causes inflammation within the immune system that is directly
toxic to that system, leading to chronic disease including RA [7]. It has also been found that
RA affects not only the physical but also the socio-economic effects of the patient, including
medical costs and the loss of disability income in work [8,9]. The focus of this study is to
clearly identify the modifiable factors that cause RA, facilitating early intervention in those
at risk of RA.

Despite increased awareness of the dangers associated with pesticide poisoning, it
is still a major worldwide public health issue [10]. Pesticides are chemicals used in agri-
culture, gardening operations, and some house-cleaning products. Pesticides are usually
classified by their pest target, for example, insecticides, herbicides, and fungicides [11].
Pesticides can enter the body by contact with skin, ingestion, and inhalation [12]. Doses
and duration of exposure to pesticides are crucial factors in both acute and chronic health
effects. Acute poisoning is caused by a single exposure to a high dosage of a pesticide,
while chronic conditions are adverse health effects resulting from long-term exposure to
pesticides [12,13]. Long term exposure to pesticides can disrupt organ functions such as
those in the nervous system, endocrine system, respiratory system, reproductive system,
kidney system, cardiovascular system, and immune system, resulting in conditions such
as cancer, Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, diabetes, coronary
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heart disease, chronic kidney disease, respiratory diseases, autoimmune diseases, and
systemic lupus erythematosus [6,14–16]. RA is a major immune system disease, according
to early studies suggesting that pesticides damage humans’ immune system. Moreover,
some studies have shown that occupational exposure to pesticides was linked with the
development of RA [6], whereas other studies failed to confirm such an association [17,18].
As a consequence, the evidence available with regard to the link between pesticides and
RA was inconsistent. As this is a contentious, rapidly changing field, the evidence needs
to be continuously, systematically reviewed to update the state of knowledge. The aim of
this study is to carry out a systematic review and meta-analysis of the existing literature
specifically on the effects of pesticides on RA.

2. Materials and Methods

This review was performed in accordance with the PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines, and we have registered
PROSPERO, registration number 4202299598.

2.1. Searching Strategy

This study aimed to review scientific evidence and carry out a meta-analysis of expo-
sure to pesticides contributing to RA. The study was carried out in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). PubMed,
Web of Science, Scopus, and Google Scholar were searched for full-text articles using the fol-
lowing keywords: “rheumatoid arthritis” OR “autoimmune disease” plus “pesticide” OR
“herbicide” OR “insecticide” OR “fungicide”. The study was registered under PROSPERO
(registration number: CRD42022299598, 20 January 2022). The final search was completed
on 14 February 2022. The search process was performed by all authors.

2.2. Inclusion Criteria

The inclusion criteria were as follows: (1) original article; (2) full-text article; (3) published
between 1956 and 2021; (4) written in the English language; (5) assessed RA by a diagnosis
of physicians or self-reported; (6) assessed the association between pesticide exposure and
rheumatoid arthritis; and (7) data analysis was by regression analysis, or discriminant
analysis for adjustment of confounding variables. The studies that were review articles, had
irrelevant information, or were without variables of interest were excluded from the study.

The study selection process resulted in the following: 642 records identified through
the databases; 274 records remained after duplicate removal; 36 articles remained after
screening for full-text articles; finally resulting in 8 eligible articles for inclusion in the
quantitative synthesis. A total of 28 articles were excluded because of being animal studies
(n = 2), review articles (n = 6), biochemical studies (n = 2), and without variables of interest
(n = 18) (Figure 1).

2.3. Data Extraction and Quality Assessment

The data from eligible articles were independently extracted by two investigators. The
extracted data were as follows: the name of the first author, publication year, country, study
design, number of the population, age, gender, name of the chemical, adjusted odds ratio
(aOR), 95% confidence intervals (95% CI), and confounding variables.

The quality of the eligible articles was assessed using National Heart, Lung, and
Blood Institute (NHLBI) Guidelines for reporting observational cohort, cross-sectional,
and case-control studies [19]. The NHBLI checklist consisted of 14 items for reporting
observational cohort and cross-sectional studies and 12 items for reporting case-control
studies. The quality of the eligible articles was independently assessed by three reviewers
(Tables S1 and S2).
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2.4. Data Analysis

The eight studies selected were divided into four groups on the basis of the different
types of pesticides, insecticides, herbicides, fungicides, and non-specific pesticides. A
fixed-effect model with the Mantel–Haenszel method was used for analysis. The random-
effect model of the DerSiomonian and Laird method was also used. The heterogeneity
of selected studies was confirmed using the Cochran Q and I2 tests. The heterogeneity
was categorized into three criteria: low heterogeneity (I2 < 25%); moderate heterogeneity
(I2 25–50%); substantial heterogeneity (I2 > 50%). Funnel plots were tested to identify the
publication bias of the selected studies. OR was plotted in the horizontal axis of the funnel
plot, and standard error on the vertical axis. Two-tailed statistical tests at p-value < 0.05
were used. The data were analyzed using the STATA software package (Stata Corp. 2019.
Stata Statistical Software: Release 16. College Station, TX, USA: Stata Corp LLC.).

3. Results
3.1. Association between Exposure to Insecticides and RA Development

Five studies were eligible for inclusion in the quantitative synthesis [6,17,18,20,21]:
one study was a cohort study, two were case-control studies, and two were cross-sectional
studies. Three studies were conducted in the USA (n = 3), with the others being conducted
in Norway (n = 1) and Greece (n = 1). Of the five studies, two studies found an association
between exposure to insecticides and RA, but three studies found no association. The
study by Meyer et al. [6] found an association of increased risk of RA with exposure to
fonofos (aOR = 1.7, 95% CI = 1.22–2.37) and carbaryl (aOR = 1.51, 95% CI = 1.03–2.23). The
study by Koureas et al. [21] also found an association of increased risk of RA with exposure
to organophosphates (aOR = 6.47, 95% CI = 1.00–45.43) and guanidines (aOR = 16.18,
95% CI = 1.58–165.97) (Table 1).

A total of 52,896 participants were included in the meta-analysis, and exposure to in-
secticides was found to be significantly associated with an increased risk of RA (aOR = 1.20,
95% CI = 1.12–1.28, p-value = 0.905 for heterogeneity I2 = 0%) (Figure 2).
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Table 1. The association between exposure to insecticides and RA development.

Authors
(Years)/Country

Study
Design Gender Sample

Size
Name of
Chemicals aOR (95% CI) Confounding

Variables

De Roos et al.
(2005)/USA
[17]

case-control Female 810

Insecticides
Carbamates
Organochlorines
Organophosphates
Carbaryl
Chlordane
Chlorpyrifos
Coumaphos
DDT
DDVP
Diazinon
Lindane
Malathion
Permethrin
Phorate
Terbufos
Toxaphene

1.2 (0.8–1.7)
1.2 (0.8–1.7)
1.1 (0.6–2.0)
1.2 (0.8–1.8)
1.2 (0.8–1.8)
0.5 (0.1–1.6)
0.8 (0.4–2.1)
0.8 (0.2–3.4)
1.0 (0.4–2.2)
1.4 (0.5–3.9)
0.9 (0.5–1.7)
1.8 (0.6–5.0)
1.3 (0.8–2.0)
1.0 (0.4–2.3)
0.9 (0.2–4.3)
1.0 (0.3–3.4)
2.3 (0.4–12.9)

Birth date, and state

Lee et al.
(2007)/
Norway
[18]

Cross-
sectional

Both
genders 1721 Organochlorines 3.5 (0.9–14.0)

Age, race, income
status, BMI, and
cigarette smoking

Parks et al.
(2016)/USA
[20]

Cohort Female 23,841

Carbaryl
Chlordane
DDT
Diazinon
Malathion
Permethrin
Dichlorvos

1.1 (0.85–1.4)
0.99 (0.57–1.7)
1.5 (0.89–2.4)
1.2 (0.83–1.7)
1.1 (0.80–1.4)
1.5 (0.83–2.7)
1.1 (0.56–2.4)

Age, state, and
smoking pack-years

Meyer et al.
(2017)/USA
[6]

case-control Male 26,354

Aldrin
Chlordane
DDT
Dieldrin
Heptachlor
Lindane
Toxaphene
Chlorpyrifos
Coumaphos
Diazinon
Dichlorvos
Fonofos
Malathion
Parathion
Phorate
Terbufos
Aldicarb
Carbaryl
Carbofuran
Permethrin a

Permethrin b

1.30 (0.82–2.05)
1.32 (0.88–1.98)
115 (0.75–1.75)
1.63 (0.77–3.43)
0.88 (0.49–1.55)
0.96 (0.58–1.59)
1.44 (0.90–2.29)
1.30 (0.99–1.70)
0.70 (0.40–1.23)
1.16 (0.77–1.75)
1.40 (0.91–2.14)
1.70 (1.22–2.37)
1.05 (0.73–1.53)
0.85 (0.45–1.60)
1.14 (0.76–1.70)
1.24 (0.93–1.66)
1.08 (0.58–2.01)
1.51 (1.03–2.23)
1.08 (0.80–1.46)
1.17 (0.79–1.73)
1.05 (0.68–1.62)

Age, state of
enrollment, pack-years
smoking, and
education level

Koureas et al.
(2017)/Greece
[21]

Cross-
sectional Male 170

Insecticides
Organophosphates
Pyrethroids
Guanidines

2.82 (0.41–19.54)
6.47 (1.00–45.43)
5.65 (0.39–81.82)
16.18 (1.58–165.97)

Age, smoker, alcohol
consumption, and use
of a tractor on a farm

a Used on crops; b used on poultry and livestock; aOR, adjusted odds ratio; 95% CI, 95% confidence interval; DDT,
dichlorodiphenyltrichloroethane; DDVP, 2,2-dichlorovinyl dimethyl phosphate.
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3.2. Association between Exposure to Herbicides and RA Development

Four studies were eligible for inclusion in the quantitative synthesis [6,17,20,21]: one
study was a cohort study, two were case-control studies, and one was a cross-sectional study.
Three studies were conducted in the USA (n = 3), and one was conducted in Greece (n = 1).
Of the four studies, only one study found an association between exposure to herbicides
and RA, but three studies found no association. The study by Meyer et al. [6] found
an association of increased risk of RA with exposure to chlorimuron ethyl (aOR = 1.45,
95% CI = 1.01–2.07) and EPTC (aOR = 0.62, 95% CI = 0.4–0.96). However, the study by De
Roos et al. [17] found a negative association between RA and exposure to phenoxyacetic
acids (aOR = 0.5, 95% CI = 0.3–0.9) and 2,4-D (aOR = 0.5, 95% CI = 0.3–0.9) (Table 2).

A total of 51,175 participants were included in the meta-analysis, and the results found
that exposure to herbicides was not significantly associated with an increased risk of RA
(aOR = 0.98, 95% CI = 0.89–1.08, p-value = 0.027 for heterogeneity I2 = 34.1%) (Figure 3).

3.3. Association between Exposure to Fungicides and RA Development

Four studies were eligible for inclusion in the quantitative synthesis [6,17,20,21]: one
study was a cohort study, two were case-control studies, and one was a cross-sectional
study. Three studies were conducted in the USA (n = 3), and one was conducted in Greece
(n = 1). Of the four studies, only one study found an association between exposure to
fungicides and RA, but three studies found no association. The study by Parks et al. [20]
found an association of increased risk of RA with exposure to maneb/mancozeb (aOR = 2.0,
95% CI = 1.1–3.9) (Table 3).
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Table 2. The association between exposure to herbicides and RA development.

Authors
(Years)/Country Study Design Gender Sample

Size
Name of
Chemicals aOR (95% CI) Confounding

Variables

De Roos et al.
(2005)/USA
[17]

case-control Female 810

Herbicides
Phenoxyacetic
acids
Triazines
2,4-D
Alachlor
Atrazine
Cyanazine
Glyphosate
Imazethapyr
Metolachlor

1.1 (0.8–1.6)
0.5 (0.3–0.9)
0.5 (0.2–1.3)
0.5 (0.3–0.9)
0.5 (0.1–1.6)
0.5 (0.2–1.6)
0.8 (0.2–3.4)
1.2 (0.8–1.8)
1.5 (0.5–4.1)
0.4 (0.1–1.7)

Birth date and state

Parks et al.
(2016)/USA
[20]

Cohort Female 23,841

2,4-D
Atrazine
Glyphosate
Imazethapyr
Trifluralin
Dicamba

0.75 (0.51–1.1)
0.65 (0.32–1.3)
1.2 (0.95–1.6)
1.1 (0.55–2.3)
0.57 (0.28–1.1)
0.68 (0.32–1.5)

Age, state, and
pack-years smoking

Meyer et al.
(2017)/USA
[6]

case-control Male 26,354

2,4-D
2,4,5-T
2,4,5-TP
Alachlor
Atrazine
Butylate
Chlorimuron
ethyl
Cyanazine
Dicamba
EPTC
Glyphosate
Imazethapyr
Metolachlor
Metribuzin
Paraquat
Pendimethalin
Trifluralin

1.16 (0.83–1.64)
1.11 (0.72–1.71)
1.00 (0.46–2.15)
1.26 (0.95–1.68)
1.29 (0.94–1.79)
1.04 (0.70–1.54)
1.45 (1.01–2.07)
0.96 (0.69–1.31)
0.90 (0.65–1.25)
0.62 (0.40–0.96)
0.90 (0.65–1.24)
1.32 (0.94–1.86)
0.90 (0.67–1.20)
1.08 (0.73–1.59)
0.92 (0.57–1.49)
0.98 (0.69–1.40)
1.23 (0.92–1.66)

Age, state of
enrollment, pack-years
smoking, and
education level

Koureas et al.
(2017)/Greece
[21]

Cross-
sectional Male 170 Herbicides

Paraquat
3.51 (0.45–27.20)
0.69 (0.09–5.03)

Age, smoker, alcohol
consumption, and use
of a tractor on a farm

aOR, adjusted odds ratio; 95% CI, 95% confidence interval; 2,4-D, 2,4-dichlorophenoxyacetic acid; 2,4,5-T,
2,4,5-trichlorophenoxyacetic acid; 2,4,5-TP, 2,4,5-trichlorophenoxy propionic acid; EPTC, S-ethyl-N, N-
dipropylthiocarbamate.

A total of 51,175 participants were included in the analysis, and the results found
that exposure to fungicides was not significantly associated with an increased risk of RA
(aOR = 1.04, 95% CI = 0.86–1.27, p-value = 0.130 for heterogeneity I2 = 33.5%) (Figure 4).

3.4. Association between Exposure to Non-Specific Pesticides and RA Development

Four studies were eligible for inclusion in the quantitative synthesis [20,22–24]: two
studies were cohort studies, and two were case-control studies. Three studies were con-
ducted in the USA (n = 3), and one was conducted in Sweden (n = 1).

Out of the four articles, two studies found an association between exposure to non-specific
pesticides and RA, but two studies found no association. The study by Parks et al. [24] found
an association with non-specific pesticides (aOR = 1.8, 95% CI = 1.1–2.9). Similarly, the

118



Toxics 2022, 10, 207

study by Gold et al. [23] also found an association with non-specific pesticides (aOR = 1.14,
95% CI = 1.08–1.2) (Table 4).
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Table 3. The association between exposure to fungicides and RA development.

Authors
(Years)/Country Study Design Gender Sample

Size
Name of
Chemicals aOR (95% CI) Confounding

Variables

De Roos et al.
(2005)/USA
[17]

case-control Female 810
Fungicides
Maneb
Thiocarbamates

0.5 (0.2–1.6)
0.8 (0.2–3.0)
0.4 (0.1–1.4)

Birth date and state

Parks et al.
(2016)/USA
[20]

Cohort Female 23,841 Captan
Maneb/Mancozeb

0.75 (0.31–1.8)
2.0 (1.1–3.9)

Age, state, and
pack-years
smoking

Meyer et al.
(2017)/USA
[6]

case-control Male 26,354

Benomyl
Captan
Chlorothalonil
Maneb
Metalaxyl

0.64 (0.32–1.31)
0.90 (0.57–1.43)
1.27 (0.81–2.01)
0.97 (0.53–1.78)
1.20 (0.77–1.88)

Age, state of
enrollment,
pack-years
smoking, and
education level

Koureas et al.
(2017)/Greece
[21]

Cross-sectional Male 170 Fungicides 5.85
(0.82–42.04)

Age, smoker,
alcohol
consumption, and
use of a tractor on a
farm

aOR, adjusted odds ratio; 95% CI, 95% confidence interval.
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Table 4. The association between exposure to non-specific pesticides and RA development.

Authors (Years)/
Country Study Design Gender Sample Size Adjusted OR (95%

CI) Confounding Variables

Parks et al.
(2016)/USA [20] Cohort Female 23,841 1.3 (0.9–2.0) Age, state, and pack-years

smoking

Olsson et al.
(2000)/Sweden
[22]

case-control Male 350 1.2 (0.4–4.1) Age, smoking, and occupation

Gold et al.
(2007)/USA [23] case-control Both genders 296,362 1.14 (1.08–1.20) Age, sex, race, region, and

socioeconomic status

Parks et al.
(2017)/USA [24] Cohort Female 49,343 1.8 (1.1–2.9)

Age, race, education level,
packyears of smoking, and
childhood socioeconomic status

aOR, adjusted odds ratio; 95% CI, 95% confidence interval.

A total of 369,896 participants were included in the meta-analysis, and the results
showed that exposure to non-specific pesticides was significantly associated with an in-
creased risk of RA (aOR = 1.15, 95% CI = 1.09–1.21, p-value = 0.289 for heterogeneity
I2 = 20.1%) (Figure 5).
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3.5. Funnel Plots

Figure 6 presents the funnel plots of the subgroups of the studies, including insec-
ticides, herbicides, fungicides, and non-specific pesticides. The results indicate that all
funnel plots are asymmetrical, which may be a result of several factors, for example, the
magnitude of the effect may vary with the study size and location bias.
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4. Discussion

The studies currently available provided evidence that exposure to insecticides con-
tributed to increased risk of RA (aOR = 1.20, 95% CI = 1.12–1.28). In addition, the specific
insecticides that found a significant association were fonofos, cabaryl, and guanidines.
Fonophos belongs to the organophosphate group, carbaryl is a carbamate, and guanidine a
neonicotinoid. Importantly, the studies that found the association of exposure to insecti-
cides with an increased risk of RA was found in insecticide applicators [6,21]. Therefore,
this evidence provides considerable information that occupational exposure to insecticides
is a possible risk factor for the development of RA.

RA is an illness of the immune system that causes joint inflammation [25]. Genetics
and environmental factors are the two main divisions of risk factors for RA. Environmental
risk factors are intriguing because they have the potential to affect a variety of physiological
systems, including the immune system [26]. Pesticides have been found to be a major
environmental risk factor. Several studies have revealed that pesticide exposure can harm
the immune system and contribute to the onset of RA [6,20,21,23,26].

Direct immunotoxicity is the main mechanism associated with the impact of pes-
ticide poisoning on the immune system [27]. Inhibition of acetylcholinesterase (AChE)
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by organophosphates and carbamates can result in inhibition of cholinergic signaling in
lymphocytes. Exposure to high levels of insecticides can lead to accumulation of the
neurotransmitter acetylcholine and overstimulation of cholinergic receptors. As a result,
interleukin-2 (IL-2) is produced by T cells and B cells, resulting in stimulation of the inflam-
matory response in macrophages, which increases the risk of inflammatory disease [7,27,28].
However, exposure to low levels of insecticides for long periods may lead to a reduction in
cholinergic receptors, which could lead to chronic disease or cancer [27].

T cells are lymphocytes that play an important role in immunity. Previously available
studies have shown that insecticides had a negative effect on the viability and function of
T cells by inducing apoptosis in different ways [29]. A previous study found that exposure
to carbamates can induce apoptosis in human Jurkat T cells [29]. An investigation in an
animal model also suggested that the intrinsic apoptotic pathway was stimulated due to the
increase in the levels of caspase 3 and cytochrome C released from the mitochondria [30].
Carbamates also affect lymphocyte-specific kinases, resulting in an inhibitory effect on
T cell and IL-2 production [29,31]. Several studies also suggested that chlorpyrifos and
dimethyl 2,2-dichlorovinyl phosphate can inhibit cytotoxic T lymphocyte activity and
decrease the T cell population [29,32,33]. With regard to B cells, pesticides can also inhibit
B cell proliferation, leading to lower levels of B cells and reduced antibody production [29].
Some environmental chemicals can trigger an immunological response specific to antigens,
which can cause polyclonal B cells to produce antibodies against themselves in some
individuals, an autoimmune response [34]. Insecticides can also inhibit the development of
M1 macrophages and increase M2 macrophage polarization, which leads to immunotoxicity
in humans [27–29,35]. In addition, inhibition of the transcription levels of pro-inflammatory
cytokines, which are related to oxidative stress, might be caused by insecticides. This results
in increasing ROS and DNA damage, as well as the induction of apoptosis [36,37].

Although the studies currently available provided evidence that exposure to insec-
ticides contributes to an increased risk of RA, there were some limitations in the study
reviews. Firstly, some studies assessed the association between exposure to pesticides and
RA by using cross-sectional studies; therefore, these studies were unable to describe the
relationships between cause and effect. Secondly, most studies were conducted in the USA;
therefore, the evidence cannot be directly generalized to other populations. Thirdly, the
number of eligible studies was rather small; therefore, the interpretation of the evidence
should be more careful. Fourthly, the eligible studies included for meta-analysis were both
occupational and environmental exposure; therefore, the interpretation of the evidence
should be concerned. Fifthly, most studies assessed the exposure to pesticides by using
interviews or self-reporting procedures that may not quantitatively indicate the level of
exposure and therefore may not be able to be directly correlated with the development of
RA. Sixthly, exposure to multiple pesticides might result in the development of RA. Previ-
ous studies stated that co-exposure to pesticides affects toxicity in humans and may lead to
chronic illness [38,39]. Therefore, further studies should be concerned on this point. Finally,
there were several confounding factors contributing to RA. Therefore, in future studies, the
confounding factors need to be considered, including age, race, genetics, income status,
body mass index, resident area, occupation, education level, cigarette smoking and alcohol
consumption, and exposure to other environmental chemicals.

5. Conclusions

There is some evidence to suggest that exposure to insecticides (especially fonofos, car-
baryl, and guanidines) contributes to an increased risk of RA, while exposure to herbicides
and fungicides has no impact on the development of RA. However, the evidence is limited
because of a small number of studies. Therefore, further studies regarding the effect of
pesticides on the development of RA need to be warranted. A continuous approach needs
to be adopted to systematic review and meta-analysis of the evidence to ensure current
updating of the knowledge pertinent to the effects of pesticides on RA development.
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Abstract: Cadmium (Cd) is a highly toxic metal pollutant present in virtually all food types. Health
guidance values were established to safeguard against excessive dietary Cd exposure. The derivation
of such health guidance figures has been shifted from the no-observed-adverse-effect level (NOAEL)
to the lower 95% confidence bound of the benchmark dose (BMD), termed BMDL. Here, we used the
PROAST software to calculate the BMDL figures for Cd excretion (ECd) associated with a reduction
in the estimated glomerular filtration rate (eGFR), and an increased prevalence of chronic kidney
disease (CKD), defined as eGFR ≤ 60 mL/min/1.73 m2. Data were from 1189 Thai subjects (493 males
and 696 females) mean age of 43.2 years. The overall percentages of smokers, hypertension and
CKD were 33.6%, 29.4% and 6.2%, respectively. The overall mean ECd normalized to the excretion
of creatinine (Ecr) as ECd/Ecr was 0.64 µg/g creatinine. ECd/Ecr, age and body mass index (BMI)
were independently associated with increased prevalence odds ratios (POR) for CKD. BMI figures
≥24 kg/m2 were associated with an increase in POR for CKD by 2.81-fold (p = 0.028). ECd/Ecr

values of 0.38–2.49 µg/g creatinine were associated with an increase in POR for CKD risk by 6.2-fold
(p = 0.001). The NOAEL equivalent figures of ECd/Ecr based on eGFR reduction in males, females
and all subjects were 0.839, 0.849 and 0.828 µg/g creatinine, respectively. The BMDL/BMDU values
of ECd/Ecr associated with a 10% increase in CKD prevalence were 2.77/5.06 µg/g creatinine. These
data indicate that Cd-induced eGFR reduction occurs at relatively low body burdens and that the
population health risk associated with ECd/Ecr of 2.77–5.06 µg/g creatinine was not negligible.

Keywords: benchmark dose; BMDL; BMDU; cadmium; creatinine clearance; chronic kidney disease;
eGFR; NOAEL; urine cadmium

1. Introduction

Environmental exposure to cadmium (Cd) is inevitable for most people because the
metal is present in almost all food types [1–3]. The realization in the 1940s that the condition
referred to as “itai-itai” disease was due to the consumption of rice heavily contaminated
with Cd brought into focus the real threat to health posed by this metal [4,5]. Itai-itai
disease is the most severe form of human Cd poisoning, characterized by severe damage
to the kidneys and bones, resulting in multiple bone fractures due to osteoporosis and
osteomalacia [4,5]. The pathologic symptoms of the itai-itai disease have been replicated in
Cd-treated cynomolgus monkeys [6].
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To safeguard against excessive dietary Cd exposure, health guidance such as a tolerable
intake level of Cd was established [7]. The Joint FAO/WHO Expert Committee on Food
Additives and Contaminants (JECFA) considered the kidney to be the critical target of Cd
toxicity [8]. By definition, the provisional tolerable weekly intake (PTWI) for a chemical
with no known biological function is an estimate of the amount that can be ingested
weekly over a lifetime without appreciable health risk. Subsequently, the PTWI for Cd
was amended to a tolerable monthly intake (TMI) of 25 µg per kg body weight per month,
equivalent to 0.83 µg per kg body weight per day [8]. This tolerable intake level for Cd
was derived from a risk assessment model that assumed an increase in excretion of β2-
microglobulin (β2M) (Eβ2M) above 300 µg/g creatinine as the point of departure (POD) [8].
However, we have shown that such an increase in Eβ2M reflected tubular dysfunction and
nephron loss, evident from a reduction in estimated glomerular filtration rate (eGFR) to
60 mL/min/1.73 m2 or below [9,10]. In effect, a tolerable intake level of Cd derived from
the Eβ2M-based POD is not sufficiently low to be without an impact on human health.

Current evidence suggests that sufficient tubular injury disables glomerular filtration
and leads to nephron atrophy and a decrease in GFR [11–13]. Accordingly, we argue that a
reduction in eGFR due to Cd nephropathy could serve as the POD from which health guid-
ance values should be derived. Owing to some shortcomings of the no-observed-adverse-
effect level (NOAEL), the benchmark dose (BMD) has been used as the POD [7,14–16]. The
BMD is a dose level, derived from an estimated dose–response curve, associated with a
specified change in response, termed benchmark response (BMR) which can be set at 1%,
5%, or 10% as required [14–16].

The present study had two major aims. The first aim was to characterize a reduction
in eGFR and risk factors of chronic kidney disease (CKD) in a sufficiently large group
of people with a wide range of environmental Cd exposure. The risk factors considered
included age, body mass index (BMI), smoking, hypertension, and Cd exposure measured
as excretion of Cd (ECd). The second aim was to compute the lower 95% confidence bound
of BMD (BMDL) and the BMD upper confidence limit (BMDU) of ECd associated with
eGFR reduction and an increase in the prevalence of CKD.

2. Materials and Methods
2.1. Participants

To represent a large group of subjects with a wide range of environmental Cd exposure
levels suitable for the dose–response analysis and health risk calculation, we assembled
archived data from 1189 persons who participated in large population-based studies un-
dertaken in a Cd contamination area in the Mae Sot District, Tak Province (n = 537), and
low exposure locations in Bangkok and Nakhon–Si–Thammarat Province (n = 652). The
Institutional Ethical Committees of Chulalongkorn University, Chiang Mai University and
the Mae Sot Hospital approved the study protocol for the Mae Sot and Bangkok groups.
The Office of the Human Research Ethics Committee of Walailak University in Thailand
approved the study protocol for the Nakhon Si Thammarat group [17,18].

All participants gave informed consent prior to participation. They had lived at their
current addresses for at least 30 years. Exclusion criteria were pregnancy, breastfeeding, a
history of metalwork, and a hospital record or physician’s diagnosis of advanced chronic
disease. Because occupational exposure was an exclusion criterion, we presumed that all
participants had acquired Cd from the environment. Diabetes was defined as fasting plasma
glucose levels ≥ 126 mg/dL or a physician’s prescription of anti-diabetic medications.
Hypertension was defined as systolic blood pressure ≥ 140 mmHg, diastolic blood pressure
≥ 90 mmHg, a physician’s diagnosis, or prescription of anti-hypertensive medications.

2.2. Collection and Analysis of Biological Specimens

Simultaneous blood and urine sampling are required to normalize ECd, to Ccr. Ac-
cordingly, second-morning urine samples were collected after an overnight fast, and whole
blood samples were obtained within 3 hours after the urine sampling. Aliquots of urine,
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whole blood and plasma were stored at −20 ◦C or −80 ◦C for later analysis. The assay
for urine and plasma concentrations of creatinine ([cr]u and [cr]p) was based on the Jaffe
reaction.

For the Bangkok group, urine concentration of Cd ([Cd]u) was determined by inductively-
coupled plasma mass spectrometry (ICP/MS, Agilent 7500, Agilent Technologies, Santa
Clara, CA, USA). Multi-element standards (EM Science, EM Industries, Inc., Newark,
NJ, USA) were used to calibrate the Cd analyses. Quality assurance and control were
conducted with simultaneous analyses of samples of the reference urine Lyphochek® (Bio-
Rad, Gladesville, New South Wales, Australia), which contained low- and high-range Cd
levels. A coefficient of variation value of 2.5% was obtained for Cd in the reference urine.
The low limit of detection (LOD) of urine Cd was 0.05 µg/L. The urine samples containing
Cd below the LOD were assigned as the LOD divided by the square root of 2 [19].

For the Nakhon–Si–Thammarat group, [Cd]u was determined with the GBC System
5000 Graphite Furnace Atomic Absorption Spectrophotometer (AAS) (GBC Scientific Equip-
ment, Hampshire, IL, USA). Instrumental metal analysis was calibrated with multi-element
standards (Merck KGaA, Darmstadt, Germany). Reference urine metal control levels 1, 2,
and 3 (Lyphocheck, Bio-Rad, Hercules, CA, USA) were used for quality control, analytical
accuracy, and precision assurance. The analytical accuracy of metal detection was checked
by an external quality assessment every 3 years. The LOD of urine Cd was 0.1 µg/L. When
[Cd]u was below its detection limit, the Cd concentration assigned was the detection limit
divided by the square root of 2 [19].

For the Mae Sot group, [Cd]u was determined with AAS (Shimadzu Model AA-6300,
Kyoto, Japan). Urine standard reference material No. 2670 (National Institute of Standards,
Washington, DC, USA) was used for quality assurance and control purposes. The LOD
of Cd quantitation, defined as 3 times the standard deviation of blank measurements was
0.06 µg/L. None of the urine samples from this group contained [Cd]u below the detection
limit.

2.3. Estimated Glomerular Filtration Rates (eGFR)

The GFR is the product of nephron number and mean single nephron GFR, and in
theory, the GFR is indicative of nephron function [20–22]. In practice, the GFR is estimated
from established chronic kidney disease-epidemiology collaboration (CKD-EPI) equations
and is reported as eGFR [21].

Male eGFR = 141 × [plasma creatinine/0.9]Y × 0.993age, where Y = −0.411 if [cr]p ≤
0.9 mg/dL, Y = −1.209 if [cr]p > 0.9 mg/dL. Female eGFR = 144 × [plasma creatinine/0.7]Y

× 0.993age, where Y = −0.329 if [cr]p ≤ 0.7 mg/dL, Y = −1.209 if [cr]p > 0.7 mg/dL. For
dichotomous comparisons, CKD was defined as eGFR ≤ 60 mL/min/1.73 m2. CKD stages
1, 2, 3a, 3b, 4, and 5 corresponded to eGFR of 90–119, 60–89, 45–59, 30–44, 15–29, and
<15 mL/min/1.73 m2, respectively.

2.4. Normalization of ECd to Ecr and Ccr

Ex was normalized to Ecr as [x]u/[cr]u, where x = Cd; [x]u = urine concentration of x
(mass/volume); and [cr]u = urine creatinine concentration (mg/dL). The ratio [x]u/[cr]u
was expressed in µg/g of creatinine.

Ex was normalized to Ccr as Ex/Ccr = [x]u[cr]p/[cr]u, where x = Cd; [x]u = urine
concentration of x (mass/volume); [cr]p = plasma creatinine concentration (mg/dL); and
[cr]u = urine creatinine concentration (mg/dL). Ex/Ccr was expressed as the excretion of x
per volume of filtrate [23].

2.5. Benchmark Dose Computation and Benchmark Dose–Response (BMR) Setting

We used the web-based PROAST software version 70.1 (https://proastweb.rivm.
nl accessed on 13 October 2022) to compute the BMD figures for ECd/Ecr and ECd/Ccr
associated with glomerular dysfunction. A specific effect size termed the benchmark
response (BMR) was set at 5% for a continuous eGFR reduction endpoint and at 10%
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for a quantal endpoint where eGFR ≤ 60 mL/min/1.73 m2. For a continuous endpoint,
BMD values were computed from fitting datasets to four dose–response models, including
inverse exponential, natural logarithmic, exponential, and Hill models. For a quantal
endpoint, BMD values were calculated from fitting datasets to seven dose–response models
that included two-stage, logarithmic logistic, Weibull, logarithmic probability, gamma,
exponential and Hill models. The BMD 95% confidence intervals of ECd/Ecr and ECd/Ccr
were from model averaging using bootstrap with 200 repeats.

The BMDL and BMDU corresponded to the lower bound and upper bound of the
95% confidence interval (CI) of BMD. The wider the BMDL-BMDU difference, the higher
the statistical uncertainty in the dataset [23–26]. BMDL/BMDU figures of ECd for the
glomerular endpoint were calculated for males, females and all subjects.

2.6. Statistical Analysis

Data were analyzed with IBM SPSS Statistics 21 (IBM Inc., New York, NY, USA). The
one-sample Kolmogorov–Smirnov test was used to identify departures of continuous vari-
ables from a normal distribution, and a logarithmic transformation was applied to variables
that showed rightward skewing before they were subjected to parametric statistical analysis.
The Mann–Whitney U-test was used to compare mean differences between the two groups.
The Chi-square test was used to determine differences in percentage and prevalence data.
The multivariable logistic regression analysis was used to determine the Prevalence Odds
Ratio (POR) for CKD in relation to six independent variables; age, BMI, gender, smoking,
hypertension and Cd exposure measures as ECd. We employed two models in each logistic
regression analysis: model 1 incorporated log2(ECd/Ecr) or three ECd/Ecr groups; model
2 incorporated log2(ECd/Ccr) or three ECd/Ccr groups. All other independent variables
in models 1 and 2 were identical. For all tests, p-values ≤ 0.05 for two-tailed tests were
assumed to indicate statistical significance.

3. Results
3.1. Characterization of Cadmium Exposure by Sex and Smoking

Table 1 provides demographic data of participants (493 males and 696 females) strati-
fied by sex and smoking status.

The overall mean age of participants was 43.2 years, and the overall percentages of
current smokers plus those who had stopped smoking for less than 10 years, hypertension
and low eGFR were 33.6%, 29.4% and 6.2%, respectively. The overall mean [Cd]u and mean
ECd/Ecr were 0.94 µg/L and 0.64 µg/g creatinine, while the overall mean ECd/Ccr × 100
was 1.02 µg/L filtrate.

Smoking was higher among males (57.4%) than females (16.4%). In both sexes, % of
smokers and non-smokers with hypertension did not differ. However, % of low eGFR
among smokers was 3.7- and 3.8-fold higher than non-smokers in female and male groups,
respectively. For the female group only, the mean BMI was 6 % lower in smokers than
non-smokers (p = 0.004).

For the male group, the mean [Cd]u in smokers was 5.4-fold higher than nonsmokers
(1.73 vs. 0.32 µg/L, p < 0.001). Mean ECd/Ecr and mean ECd/Ccr in smokers were 2.9- and
4.1-fold higher than in nonsmokers, respectively.

For the female group, the mean [Cd]u in smokers was 6.4-fold higher than nonsmokers
(4.84 vs. 0.75 µg/L, p < 0.001). Mean ECd/Ecr and mean ECd/Ccr in smokers were 3.2-and
6-fold higher than in nonsmokers, respectively.
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Table 1. Characteristics of participants stratified by sex and smoking status.

Parameters
All subjects
n 1189 (33.6%

Smokers)

Males, n 493 (57.4% Smokers) Females, n 696 (16.8% Smokers)

Nonsmokers
n 210

Smokers
n 283

Nonsmokers
n 579

Smokers
n 117

Age, years 43.2 ± 14.0 35.9 ± 13.0 45.0 ± 14.8 *** 42.6 ± 12.9 54.2 ± 10.1 ###

Hypertension (%) 29.4 26.5 27.2 30.8 33.3
BMI, kg/m2 23.0 ± 3.9 22.4 ± 3.0 22.3 ± 3.4 23.8 ± 4.0 22.4 ± 4.6 #

BMI groups (%)
12–18 10.5 9.2 12.2 * 7.4 21.4
19–23 47.1 56.9 57.2 ** 41.6 36.8 ###

≥24 42.4 34.0 30.6 51.0 41.9 ###

eGFR a,
mL/min/1.73 m2 93.7 ± 20 96.6 ± 17.6 91.9 ± 22.1 95.9 ± 19.3 81.8 ± 22.0 ###

eGFR ≤ 60
mL/min/1.73 m2

(%)
6.2 2.4 8.8 ** 4.3 16.2 ###

eGFR,
mL/min/1.73 m2

(%) b

>120 7.8 9.0 5.7 9.7 1.7 ###

90–120 53.8 61.0 56.5 54.1 33.3 ###

60–89 32.8 27.6 29.7 * 32.8 49.6 ###

30–59 5.0 1.9 7.1 ** 3.3 13.7
15–29 0.6 0.5 1.1 0.2 1.7

Plasma creatinine,
mg/dL 0.88 ± 0.24 1.00 ± 0.21 1.00 ± 0.27 0.76 ± 0.16 0.82 ± 0.27 ##

Urine creatinine,
mg/dL 104.4 ± 73.5 81.1 ± 78 107.0 ± 75.6 *** 67.9 ± 68.9 79.8 ± 64.8

Urine Cd, µg/L 0.94 ± 9.69 0.32 ± 5.96 1.73 ± 15.9 *** 0.75 ± 6.46 4.84 ± 6.38 ###

Normalized to Ecr
as Ex/Ecr

c

ECd/Ecr, µg/g
creatinine 0.64 ± 6.12 0.32 ± 3.29 0.94 ± 8.85 *** 0.57 ± 4.62 1.83 ± 7.27 ###

Normalized to Ccr
as Ex/Ccr

d

ECd/Ccr × 100,
µg/L filtrate 1.02 ± 8.19 0.39 ± 4.75 1.61 ± 12.61 *** 0.83 ± 5.27 5.00 ± 9.36 ###

n, number of subjects; BMI, body mass index; eGFR, estimated glomerular filtration rate; Ex, excretion of x;
cr, creatinine; Ccr, clearance of creatinine. a eGFR determined with Chronic Kidney Disease Epidemiology
Collaboration (CKD–EPI) equations [20]; b eGFR of 90–119, 60–89, 45–59, 30–44, 15–29, and <15 mL/min/1.73 m2

corresponded to CKD stages 1, 2, 3a, 3b, 4, and 5, respectively. c Ex/Ecr = [x]u/[cr]u; d Ex/Ccr = [x]u[cr]p/[cr]u,
where x = Cd [23]. Data for age, eGFR and BMI are arithmetic means ± standard deviation (SD). Data for all other
continuous variables are geometric means ± SD. Data for BMI are from 951 subjects; data for hypertension are
from 917 subjects; data for all other variables are from 1189 subjects. For each test, p ≤ 0.05 identifies statistical
significance, determined by Chi-Square test and Mann–Whitney U test for % differences and mean differences,
respectively. Compared with non-smoking males * p = 0.029–0.042, ** p = 0.001–0.006, *** p ≤ 0.001. Compared
with non-smoking females, # p = 0.004, ## p = 0.001, ### p ≤ 0.001.

3.2. Characterization of CKD Risk factors

Table 2 provides the results of a logistic regression analysis where ECd/Ecr and ECd/Ccr
were continuous variables, while age and BMI were categorical variables.

An independent effect on the POR for CKD was observed for ECd/Ecr, BMI and
age (Table 2). Sex, smoking and hypertension were not associated with the POR for
CKD. Doubling of ECd/Ecr was associated with an increase in POR for CKD by 1.47-fold
(p < 0.001). BMI figures ≥ 24 kg/m2 were associated with 2.81-fold increase in POR for
CKD (p = 0.028). Compared with those aged 16–45 years, the POR values for CKD were 14-,
28- and 141-fold higher in those aged 46–55, 56–65, and 66–87 years, respectively.

In an equivalent analysis of the Ccr-normalized datasets, ECd/Ccr, BMI and age were
independently associated with increased POR for CKD. Sex, smoking and hypertension

129



Toxics 2022, 10, 614

were not associated with the POR for CKD. Doubling of ECd/Ccr was associated with
an increase in POR for CKD by 1.96-fold (p < 0.001). BMI figures ≥ 24 kg/m2 were
associated with a 3.12-fold increase in POR for CKD (p = 0.022). Compared with those aged
16–45 years, the POR values for CKD were 10-, 35- and 199-fold higher in those aged 46–55,
56–65, and 66–87 years, respectively.

Table 2. Increment in risk of chronic kidney disease in relation to age, BMI and cadmium exposure.

Independent
Variables/

Factors

Number of
Subjects

a CKD

β Coefficients POR 95% CI
p

(SE) Lower Upper

Model 1
Log2[(ECd/Ecr) ×

103], µg/g
creatinine

917 0.385 (0.072) 1.470 1.276 1.692 <0.001

Hypertension 276 0.490 (0.312) 1.632 0.885 3.008 0.117
Gender (female) 562 0.028 (0.340) 1.029 0.528 2.002 0.934

Smoking 335 0.209 (0.337) 1.232 0.637 2.383 0.536
BMI, kg/m2

12–18 99 Referent
19–23 431 0.057 (0.426) 1.058 0.459 2.439 0.894
≥24 387 1.033 (0/470) 2.810 1.118 7.064 0.028

Age, years
16–45 392 Referent
46–55 348 2.655 (1.036) 14.23 1.867 108.4 0.010
56–65 100 3.340 (1.059) 28.21 3.538 224.9 0.002
66–87 77 4.950 (1.055) 141.2 17.87 1116 <0.001

Model 2
Log2[(ECd/Ccr) ×
105], µg/L filtrate 917 0.674 (0.107) 1.962 1.589 2.422 <0.001

Hypertension 276 0.551 (0.326) 1.735 0.916 3.287 0.091
Gender (female) 562 −0.174 (0.366) 0.840 0.410 1.719 0.633

Smoking 335 −0.058 (0.351) 0.944 0.474 1.879 0.869
BMI, kg/m2

12–18 99 Referent
19–23 431 0.103 (0.457) 1.109 0.452 2.717 0.822
≥24 387 1.147 (0.500) 3.150 1.181 8.400 0.022

Age, years
16–45 392 Referent
46–55 348 2.298 (1.036) 9.951 1.305 75.88 0.027
56–65 100 3.543 (1.062) 34.57 4.312 277.2 0.001
66–87 77 5.292 (1.066) 198.6 24.59 1605 <0.001

POR, Prevalence Odds Ratio; S.E., standard error of mean; CI, confidence interval. a CKD was defined as
estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2. Coding; female = 1, male = 2, hypertensive = 1,
normotensive = 2, smoker = 1, non-smoker = 2. Data were generated from logistic regression analyses relating
POR for CKD to six independent variables, listed in the first column. For all tests, p-values < 0.05 indicate statistical
significance. Log2[(ECd/Ecr) × 103] was incorporated into model 1; log2[(ECd/Ccr) × 105] was incorporated into
model 2. Other independent variables in models 1 and 2 were identical. β coefficients indicate an effect size of
each independent variable on POR for CKD.

3.3. Cadmium Excretion in Relation to the Risk of CKD

Table 3 provides the results of a logistic regression analysis where age and BMI were
continuous variables, while ECd/Ecr was a categorical variable in model 1, and ECd/Ccr
was categorical in model 2.
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Table 3. Dose–response relationship between cadmium excretion and the risk of chronic kidney
disease.

Independent
Variables/

Factors

Number of
Subjects

a CKD

β Coefficients POR 95% CI
p(SE) Lower Upper

Model 1
Age, years 917 0.126 (0.016) 1.135 1.100 1.170 <0.001

BMI, kg/m2 917 0.082 (0.038) 1.086 1.009 1.169 0.028
Gender
(female) 562 0.124 (0.337) 1.132 0.585 2.190 0.713

Hypertension 276 0.304 (0.310) 1.355 0.738 2.486 0.327
Smoking 335 0.173 (0.345) 1.189 0.605 2.338 0.615

ECd/Ecr, µg/g
creatinine
≤0.37 358 Referent

0.38–2.49 333 1.819 (0.565) 6.164 2.035 18.67 0.001
≥2.5 226 2.362 (0.557) 10.61 3.562 31.60 <0.001

Model 2
Age, years 917 0.141 (0.016) 1.152 1.116 1.189 <0.001

BMI, kg/m2 917 0.099 (0.039) 1.104 1.023 1.191 0.011
Gender
(female) 562 0.191 (0.356) 1.211 .602 2.434 0.591

Hypertension 276 0.240 (0.314) 1.271 0.687 2.353 0.445
Smoking 335 −0.033 (0.359) 0.968 0.479 1.956 0.927

ECd/Ccr, ng/L
filtrate
≤9.9 346 Referent

10–49.9 326 1.470 (0.642) 4.350 1.237 15.30 0.022
≥50 245 3.036 (0.637) 20.82 5.979 72.52 <0.001

POR, Prevalence Odds Ratio; S.E., standard error of mean; CI, confidence interval. a CKD was defined as
estimated glomerular filtration rate (eGFR) ≤ 60 mL/min/1.73 m2. Coding; female = 1, male = 2, hypertensive = 1,
normotensive = 2, smoker = 1, non-smoker = 2. Data were generated from logistic regression analyses relating
POR for CKD to six independent variables listed in the first column. For all tests, p-values < 0.05 indicate statistical
significance. Three ECd/Ecr categories were incorporated into model 1; three ECd/Ccr × 100 categories were
incorporated into model 2. Other independent variables in models 1 and 2 were identical. β coefficients indicate
an effect size of each independent variable on POR for CKD.

Age and BMI were independently associated with increased POR for CKD in both
models 1 and 2. Compared with ECd/Ecr ≤ 0.37 µg/g creatinine (model 1), the POR for
CKD was increased by 6.2- and 10.6-fold in those with ECd/Ecr values of 0.38–2.49 and
≥2.5 µg/g creatinine, respectively. Compared with ECd/Ccr ≤ 9.9 ng/L filtrates (model
2), the POR for CKD was increased by 4.4- and 20.8-fold in those with ECd/Ccr values of
10–49.9 and ≥50 ng/L filtrate, respectively.

3.4. BMDL/BMDU Figures of ECd Associated with Reduced Glomerular Function
3.4.1. Ecr-Normalized Dataset

As data in Figures 1 and 2 indicate, the differences between BMDL and BMDU figures
of ECd/Ecr were small for both continuous and quantal endpoints. The BMDL-BMDU
figures of ECd/Ecr calculated from Cd-dose and eGFR response models were higher in
females than males.
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Figure 1. BMD estimates of ECd/Ecr from eGFR reduction endpoint with BMR at 5%. ECd/Ecr and eGFR 264 
data were fitted to an inverse exponential model (a), a natural logarithmic model (b), an exponential 265 
model (c), and Hill model (d). Bootstrap curves were based on model averaging of ECd/Ecr BMD 266 
estimates for all subjects (e). Outputs of all fitted models as BMDL and BMDU estimates of ECd/Ecr 267 
associated with a 5 % reduction in eGFR (f). 268 

5% eGFR reduction 95% CI of BMD a  U/L ratio Lower Upper 
Men 0.839 1.81 2.157 

Women 0.849 1.74 2.049 
All 0.828 1.71 2.065 

a BMD value of ECd/Ecr was as µg/g creatinine. CI, confidence interval; 
U/L, BMDU/BMDL.  
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Figure 1. BMD estimates of ECd/Ecr from eGFR reduction endpoint with BMR at 5%. ECd/Ecr

and eGFR data were fitted to an inverse exponential model (a), a natural logarithmic model (b),
an exponential model (c), and Hill model (d). Bootstrap curves were based on model averaging
of ECd/Ecr BMD estimates for all subjects (e). Outputs of all fitted models as BMDL and BMDU
estimates of ECd/Ecr associated with a 5 % reduction in eGFR (f).

132



Toxics 2022, 10, 614Toxics 2022, 10, x FOR PEER REVIEW 9 of 16 
 

 

 

 

Figure 2. BMD estimates of ECd/Ecr from quantal eGFR endpoint with BMR at 10%. Bootstrap curves 269 
were based on model averaging 95% confidence intervals of BMD of ECd/Ecr in males and females 270 
(a) and in all subjects (b). Outputs of all fitted models as BMDL and BMDU estimates of ECd/Ecr 271 
associated with a 10% increase in prevalence of CKD (c). 272 

3.4.2. Ccr-Normalized Dataset  273 
As data in Figures 3 and 4 indicate, the differences between BMDL and BMDU fig- 274 

ures of ECd/Ccr were small for both continuous and quantal endpoints. The BMDL-BMDU 275 
figures of ECd/Ecr calculated by Cd-dose and eGFR response models in males and females 276 
were nearly identical.  277 

For all subjects, the BMDL/BMDU of ECd /Ccr for continuous and quantal endpoints 278 
were 10.4/24 and 56.1/83.1 ng/L filtrate, respectively. 279 

10% CKD prevalence  95% CI of BMD a U/L ratio Lower Upper 
Males 2.47 5.92 2.397 

Females 2.75 6.05 2.200 
All 2.77 5.06 1.827 

a BMD value of ECd/Ecr in µg/g creatinine.  
CI, confidence interval; U/L, BMDU/BMDL.  
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Figure 2. BMD estimates of ECd/Ecr from quantal eGFR endpoint with BMR at 10%. Bootstrap curves
were based on model averaging 95% confidence intervals of BMD of ECd/Ecr in males and females
(a) and in all subjects (b). Outputs of all fitted models as BMDL and BMDU estimates of ECd/Ecr

associated with a 10% increase in prevalence of CKD (c).

For all subjects, the BMDL/BMDU of ECd /Ecr for continuous and quantal endpoints
were 0.828/1.71 and 2.77/5.06 µg/g creatinine, respectively.

3.4.2. Ccr-Normalized Dataset

As data in Figures 3 and 4 indicate, the differences between BMDL and BMDU figures
of ECd/Ccr were small for both continuous and quantal endpoints. The BMDL-BMDU
figures of ECd/Ecr calculated by Cd-dose and eGFR response models in males and females
were nearly identical.

For all subjects, the BMDL/BMDU of ECd /Ccr for continuous and quantal endpoints
were 10.4/24 and 56.1/83.1 ng/L filtrate, respectively.
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Figure 3. BMD estimates of ECd/Ccr from eGFR reduction endpoint with BMR at 5%. ECd/Ccr

and eGFR data were fitted to an inverse exponential model (a), a natural logarithmic model (b),
an exponential model (c), and Hill model (d). Bootstrap curves were based on model averaging
of ECd/Ccr BMD estimates for all subjects (e). Outputs of all fitted models as BMDL and BMDU
estimates of ECd/Ccr associated with a 5% reduction in eGFR (f).
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Figure 4. BMD estimates of ECd/Ccr from quantal eGFR endpoint with BMR at 10%. Bootstrap
curves were based on model averaging 95% confidence intervals of BMD of ECd/Ccr in males and
females (a) and in all subjects (b). Outputs of all fitted models as BMDL and BMDU estimates of
ECd/Ecr associated with a 10% increase in the prevalence of CKD (c).

4. Discussion

In a dose–response analysis of a large dataset from apparently healthy participants
(mean age 48.3 years), older age and higher BMI were independently associated with higher
risks of CKD, based on the low eGFR criterion (Table 2). These findings are consistent with
the literature reports of age, overweight and obesity as common CKD risk factors [27–30].
In addition to these two risk factors, we have found the measure of long-term exposure
to Cd (ECd/Ecr) to be another independent risk factor of CKD (Table 3). An association
between low environmental Cd exposure and a decrease in eGFR to levels commensurate
with CKD has been observed in population-based studies in the U.S. [31–34], Taiwan [35]
and Korea [36–38].

In this study, the risk of CKD was increased by 6.2- and 10.6-fold, when ECd/Ecr ≤ 0.37 µg/g
creatinine rose to 0.38–2.49 and ≥ 2.5 µg/g creatinine, respectively. These Cd-dose de-
pendent increases in the risk of CKD were strengthened by the results obtained from
the Ccr-normalized dataset where the risk of CKD was increased by 4.4- and 20.8-fold,
comparing ECd/Ccr ≤ 9.9 ng/L filtrates with ECd/Ccr of 10–49.9 and ≥50 ng/L filtrate,
respectively. This confirmation is noteworthy because normalizing ECd to Ecr can cause
a wide dispersion of dataset due to the interindividual differences in Ecr such as muscle
mass which is unrelated to neither Cd exposure nor nephron function [11,12].

Because of such increased variance in datasets introduced by Ecr-normalization, the
effect of chronic exposure to low-dose Cd on eGFR was not realized. For example, a
systematic review and meta-analysis of pooled data from 28 studies reported that the risk
of proteinuria was increased by 1.35-fold when comparing the highest vs. lowest category
of Cd dose metrics, but an increase in the risk of low eGFR was statistically insignificant
(p = 0.10) [39]. An erroneous conclusion that chronic Cd exposure was not associated with
a progressive eGFR reduction was also made in another systematic review [40].
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A significant relationship was seen between ECd and a decrease in eGFR with adjust-
ment for covariates (Table 3). We subsequently applied the BMD method to our Ecr- and
Ccr-normalized datasets to identify ECd/Ecr and ECd/Ccr values below which an adverse ef-
fect of Cd on eGFR can be discerned. The BMDL/BMDU figures of ECd/Ecr, estimated from
the eGFR reduction endpoint were 0.839/1.81, 0.849/1.74 and 0.828/1.71 µg/g creatinine in
males, females and all subjects, respectively (Figure 1). The corresponding BMDL/BMDU
figures of ECd/Ccr were 11.3/24.3, 11.3/24.1 and 10.4/24 ng/L filtrate in males, females
and all subjects, respectively (Figure 3).

The BMD values of Cd exposure levels calculated from toxic tubular cell injury and
reduced tubular reabsorption of the filtered protein β2M can be found in numerous stud-
ies [41,42]. In contrast, a report of BMDL/BMDU of Cd exposure levels associated with
eGFR reduction could only be found in a study of 790 Swedish women, aged 53–64 years,
where the reported BMDL values for the glomerular endpoint were 0.7–1.2 µg/g creati-
nine [43]. These BMD values were slightly lower than those calculated for females in the
present study (0.849/1.74 µg/g creatinine). The differences may be attributable to lower
Ecr in Thai women than in Swedish women. Nevertheless, all these BMD values were
lower than ECd/Ecr of 5.24 µg/g creatinine, which suggested to be a threshold level for the
nephrotoxicity of Cd when Eβ2M/Ecr > 300 was used as the POD [8].

In our quantal eGFR endpoint analysis (Figure 2), the BMDL/BMDU values of
ECd associated with a 10% increase in CKD prevalence were 2.77/5.06 µg/g creatinine
(56.1/83.1 ng/L filtrate). These data suggested that population CKD prevalence was likely
to be smaller than 10% at ECd/Ecr < 2.77 µg/g creatinine (<56.1 ng/L filtrates). Thus,
the population health risk associated with ECd/Ecr < 2.77 µg/g creatinine could not be
discerned. The impact of Cd exposure on GFR has long been underestimated due to the
common practice of normalizing ECd to Ecr. The comparability of guidelines between
populations could be improved by the universal acceptance of a consistent normalization of
ECd to Ccr that eliminates the effect of muscle mass on Ecr, thereby giving a more accurate
assessment of the severity of Cd nephropathy [10].

A tolerable intake level of 0.28 µg/kg body weight per day was derived in a risk
calculation using pooled data from Chinese population studies [44]. This consumption
level, equivalent to 16.8 µg/day for a 60 kg person, was derived from an Eβ2M/Ecr endpoint
where the BMDL value of ECd/Ecr for such an endpoint was 3.07 µg/g creatinine. This
BMDL estimate was 3.7-fold higher than the BMDL of 0.828 µg/g creatinine derived in
the present study. In another Chinese population study, dietary Cd intake estimates at
23.2, 29.6, and 36.9 µg/d were associated with 1.73-, 2.93- and 4.05-fold increments in the
prevalence of CKD, compared with the 16.7 µg/d intake level [45]. A diet high in rice, pork,
and vegetables was associated with a 4.56-fold increase in the prevalence of CKD [45].

The European Food Safety Authority (EFSA) also used the β2M endpoint. However,
the EFSA included an uncertainty factor (safety margin), and an intake of 0.36 µg/kg
body weight per day for 50 years as an acceptable Cd ingestion level or a reference dose
(RfD) [46]. The EFSA designated ECd/Ecr of 1 µg/g creatinine as the toxicity threshold
level for an adverse effect on kidneys. This Cd excretion of 1 µg/g creatinine is 17 % higher
than our NOAEL equivalent of Cd excretion of 0.828 µg/g creatinine.

The Cd toxicity threshold level, RfD and an acceptable consumption level derived
from the β2M excretion above ≥300 µg/ g creatinine do not appear to be without an
appreciable health risk. In theory, health-risk assessment should be based on the most
sensitive endpoint with consideration given to subpopulations with increased susceptibility
to Cd toxicity such as children.

In the present study, the body burden of Cd, measured as ECd/Ecr, was increased by
3-fold in men and women who smoked cigarettes (Table 1). These results are expected,
given that the tobacco plant accumulates high levels of Cd in its leaves, and the volatile
metallic Cd and oxide (CdO) generated from cigarette burning are more bioavailable than
Cd that enters the body through the gut [47,48].
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The diet is the main Cd exposure source for non-smoking and non-occupationally-
exposed populations. In a temporal trend analysis of environmental Cd exposure in the
U.S., the mean urinary Cd fell by 29% in men (0.58 vs. 0.41 µg/g creatinine, p < 0.001)
over 18 years (NHANES 1988–2006), but not in women (0.71 vs. 0.63 µg/g creatinine,
p = 0.66) [49]. Such a reduction in Cd exposure among men was attributable to a decrease
in smoking prevalence [50]. In contrast, total diet studies in Australia [51], France [52],
Spain [53] and the Netherlands [2] reported that dietary Cd exposure levels among young
children exceeded the current health guidance values. These data are concerning for the
reasons below.

CKD is a progressive syndrome with high morbidity and mortality and affects 8% to
16% of the world’s population [27–30]. An upward trend of its incidence continues, while
an adverse effect of Cd on eGFR and the risk of CKD have increasingly been reported.
Higher Cd excretion was associated with lower eGFR in studies from Guatemala [54] and
Myanmar [55]. The effect of Cd exposure on eGFR observed in children is particularly
concerning. In a prospective cohort study of Bangladeshi preschool children, an inverse
relationship between urinary Cd excretion and kidney volume was seen in children at
5 years of age. This was in addition to a decrease in eGFR [56]. Urinary Cd levels were
inversely associated with eGFR, especially in girls. In another prospective cohort study of
Mexican children, the reported mean for Cd intake at the baseline was 4.4 µg/d, which
rose to 8.1 µg/d after nine years, when such Cd intake levels showed a marginally inverse
association with eGFR [57].

5. Conclusions

Environmental exposure to Cd, old age, and elevated BMI are independent risk factors
for reduced eGFR. For the first time, the BMDL/BMDU figures of Cd excretion levels
associated with a decrease in eGFR have been computed for men and women. The narrow
BMDL-BMDU differences indicate the high degree of statistical certainty in these derived
NOAEL equivalent figures. The BMDL/BMDU estimates of the Cd excretion associated
with a decrease in eGFR in all subjects are 0.828/1.71 µg/g creatinine. The BMDL/BMDU
estimates of Cd excretion associated with a 10% increase in the prevalence of CKD are
2.77/5.06 µg/g creatinine. These NOAEL equivalents indicate a decrease in eGFR due to
Cd nephropathy occurs at the body burdens lower than those associated with Cd excretion
of 5.24 µg/g creatinine and an increase in β2M excretion above 300 µg/g creatinine. The
established nephrotoxicity threshold level for Cd is outdated and is not protective of human
health. Human health risk assessment should be based on current scientific research data.
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Abstract: Cadmium is a major health risk globally and is usually associated with pollution and
anthropogenic activity. The presence of cadmium in food is monitored to ensure that the health and
safety of consumers are maintained. Cadmium is ubiquitous in the Asian and Western diets, with the
highest levels present in grains, leafy greens, and shellfish. As part of their natural lifecycle of moult-
ing and shell renewal, all crustaceans—including the brown crab (Cancer pagurus)—bioaccumulate
cadmium from their environment in their hepatopancreas. The brown crab is an important species to
the crab-fishing industries of many European countries, including Ireland. However, the industry
has come under scrutiny in Europe due to the presence of cadmium in the brown crab meat intended
for live export to Asia. This review explores evidence regarding the effects of cadmium consumption
on human health, with a focus on the brown crab. Differences in cadmium surveillance have given
rise to issues in the crab industry, with economic consequences for multiple countries. Currently,
evidence suggests that brown crab consumption is safe for humans in moderation, but individuals
who consume diets characterised by high levels of cadmium from multiple food groups should be
mindful of their dietary choices.

Keywords: cadmium; crab; crustaceans; heavy metal toxicity; nutrition; pollution; biomagnifica-
tion; biomonitoring

1. Introduction

Cadmium is a major health risk globally and is associated with pollution and anthro-
pogenic activity. Consequently, cadmium levels in foods are monitored to ensure the health
and safety of consumers [1]. Some foods are more likely to contain cadmium than others.
These foods include rice, potatoes, leafy greens such as spinach, and various seafoods such
as crustaceans (e.g., lobster, prawns, and crab) [2,3]. Crab fishing is an important industry
around the world, including in Ireland and Northern Europe, where the brown crab (Cancer
pagurus) (Figure 1) is the main species traded. The brown crab is of considerable value to the
European economy, contributing to the income of the communities around the coastlines of
trading nations such as Ireland [4,5]. The brown crab is caught off the Irish, Atlantic, and
Mediterranean shores and occasionally found inshore in countries such as Norway using
baited traps called pots or creels, which can be set individually or in strings [6].

The crab-fishing industry in general has come under scrutiny for cadmium levels
present in the meat of frozen products and live exports to Asia [7–9]. Cadmium and other
heavy metals bioaccumulate in the hepatopancreas of crustaceans, including the brown
crab, due to this organ’s detoxifying function [10–14]. Cadmium may also be present
transiently in low concentrations in the haemolymph [15].

Strict regulations exist in some Asian countries, such as the People’s Republic of
China (PRC) and Hong Kong, where regulatory authorities require testing of cadmium
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levels of the combined white and brown meat of all crabs imported from abroad [16].
Ensuring the health of consumers is of critical importance; hence, the strict regulation of
food products. However, the methods employed to sample and monitor cadmium levels in
the crab industry generally appear to vary [17], as discussed in this review. In the European
Union, cadmium limits are prescribed for the white crab meat intended for consumption
(0.5 mg/kg) [18–20], whereas the same limits are applied to the total of the white and
brown crab meat in the PRC and Hong Kong (0.5 mg/kg) [9,17,21]. These discrepancies
have caused considerable tension between these trading nations [7]. However, cadmium
is an issue for all crab-producing nations, but not all nations have the same issues with
exports to Asian countries; therefore, it is possible that the “political climate between
trading countries” may play a role [9], with preferences evident for some countries over
others [22].
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Chronic consumption of cadmium due to a cumulative dietary intake from cadmium-
exposed foods is dangerous and carries a serious risk of toxicity [24]. Although cadmium
toxicity is extremely rare in modern times [25], monitoring cadmium levels in various foods
is nevertheless a critical safety net to maintain health.

Brown crab is mostly treated as a delicacy and, thus, is consumed in low amounts
in most countries. However, there are countries that are exceptions, including South
Korea [26], Portugal [27], and Norway [28], where regular consumption is common among
some of their populations. For the consumption of any species of crab, factors such as the
age of the crab, the part of the crab consumed, and the origin of the crab may contribute to
the ingestion of cadmium over time [29–31]. Consuming the white meat of the crab from
the appendages, claws, and legs, and avoiding the cephalothorax that contains the gonadal
tissue and hepatopancreas (known as the brown meat or tomalley), can be considered low-
risk, as cadmium is mostly concentrated in the latter tissues [27]. While the brown meat is
edible and enjoyed around the world due to its distinctive flavour, as a precaution, some
health authorities and those in the scientific domain advise against its regular consumption
from crab [9,32,33] and other crustaceans [34]. In 2009, a scientific opinion was published
followed by an information note in 2011 by the European Commission, who recommended
that member states should advise consumers about the consumption of brown crab meat
due to the higher levels of cadmium in the cephalothorax [35]. However, as discussed in
this review, a person’s diet as a whole must be taken into consideration when attempting to
determine their intake of cadmium. Thus, we consider the consumption of crab in relation
to various dietary patterns, the monitoring of cadmium in crabs, and human studies of
brown crab consumption.
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2. Brown Crab (Cancer pagurus)

The brown crab is a long-lived, benthic, carnivorous, nocturnal predator species that
resides on the seafloor, commonly found at depths of 6–100 m, but they are generally found
between 6 and 40 m, where smaller crabs can be seen closer to the intertidal zone. The male
brown crab is easily identified by its large, black-tipped claws and its “pie-crust” edged
carapace (Figure 1), while the female brown crab has a domed and rounded carapace,
which offers greater meat yield. However, the most reliable and common method used for
sex determination is to inspect the shape of their tail, where the male abdomen is relatively
narrow, while that of the females is wider [36–38]. Brown crabs largely consume molluscs
and other decapod species. They achieve a carapace width of up to 270 mm in males and
250 mm in females, although there is regional variation and there have been reports of
larger males reaching 300 mm. They are 5 years old when they reach minimum landing
size, but they can live to 25–30 years, with some living to almost 100 years old. Brown
crab can moult (the process of ecdysis) several times per year when young but less often
as they become larger in size, even up to once every 4 years [4,31,37,39,40]. This can make
it difficult to determine the age of a crab. After moulting, mating occurs generally from
July to September when the female carapace is soft. The male transfers spermatozoa to the
female, who stores the spermatozoa in a specialised organ (the spermatheca) by forming a
plug, pending internal fertilisation, which usually occurs 1–14 months post-mating. The
female spawns the fertilised eggs onto the pleopods and carries them over winter into the
hatching season from spring to summer. During this time, the (berried) females generally
remain in pits dug into the sediment or under rocks, where they mostly refrain from
movement or feeding. Notably, females can spawn and inseminate the eggs without any
need for mating up to several times, due to the presence of sperm plugs that can keep
the spermatozoa viable for up to 3 years. Hatching can occur at any time in this period
depending on numerous environmental conditions, including water temperatures and
latitude. As many as 1–4 million eggs may hatch from one female brown crab, indicating
their high fecundity. Because crabs are known to be migratory due to mating patterns, the
hatchlings may be found over a vast distance [4,37,39,41–43], although the distribution
and density of brown crabs are affected by many factors—not only fecundity or migration.
For example, water temperature and access to food are additional important factors, and
there tends to be greater population density inshore [37]. The biology of brown crabs is
important to consider in order to understand their distribution and their availability for
human consumption. The geographic distribution of brown crabs in Europe is presented
in Figure 2.
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3. The Importance of the Brown Crab Fishing Industry and the Challenge of
Cadmium: Ireland as an Example of a Crab-Trading Nation

The seafood industry is significant to the Irish economy and contributes to a vibrant
export trade with European and Asian countries, especially the PRC. The brown crab, or
“portán dearg”, is the heaviest Irish crab and is landed by most major and some minor
fishing ports in the country. The brown crab is a non-quota species and can be legally caught
by vessels operating with a polyvalent or potting license [44]. Globally, the brown crab is
a seafood species with increasing value, totalling a catch greater than 50,000 tonnes per
year [45]. Exports of crustaceans and molluscs to the PRC from Ireland in 2018 increased
by 68%, accounting for a total of 12,700 tonnes of seafood and growing the market to
almost EUR 46 million [46]. Ireland has become one of the top three producers of brown
crab products in Europe [47]. In 2018, landings of Irish brown crab reached 5500 tonnes,
representing EUR 1 million in domestic sales and EUR 60 million in exports. Additionally,
the price of Irish brown crab that year increased by 58% due to considerable demand from
the Asian market, making brown crab the third most valuable export species that year.
This increase in exports and price is of particular value to small-scale inshore fishermen in
coastal communities around Ireland [48], although it should be noted that the Irish market
was affected by the coronavirus disease 2019 (COVID-19) pandemic, with lower exports
reported in 2020. The Irish brown crab exports reached a total of 2878 tonnes in 2020,
representing a decrease of 47% compared with 2019, recording an exports value decrease of
27% for the same period [9].

Chinese food import authorities have always been concerned regarding the levels of
cadmium in all crustacean species originating from multiple countries, as they may exceed
their limits of 0.5 mg/kg [9,49,50]. Ireland is not the only nation affected, as there are
also reports of similar issues in Britain, Spain, France, Norway, Portugal, the Netherlands
(mitten crab), the United States (Dungeness crab), and even Taiwan for various crab species
exported to the PRC [8,9,49,51–53]. The main European countries exporting brown crab to
the PRC have traditionally been the United Kingdom, Ireland, and France [6]. Initially, those
countries used the basic health certificates (HCs) approved by their individual regulatory
bodies, which were relatively non-specific regarding heavy metal testing but guaranteed
that seafood was not contaminated by pollutants [9,54].

Over the past decade, the supply of brown crab from the main European exporting
countries has been rejected due to cadmium for a period one or more years, and with
high-level negotiations ongoing including delegations from the PRC visiting the exporting
countries [55–57]. In all cases, more specific testing and health certificate (HC) formats
have been agreed, which has restored some level of export of brown crab to the PRC. In
Ireland, the Sea Fisheries Protection Authority (SFPA) is responsible for the issuance of
Irish HCs and operates a monitoring plan whereby samples are collected and tested in a
state laboratory [9,58]; however, difficulties still persist, particularly around the export of
live crabs under these systems.

Questions have been raised in relation to whether the strict limits of cadmium intake in
seafood might be misguided. Indeed, in the PRC there has been public consultation to raise
the permitted level of cadmium in brown crab from 0.5 mg/kg to 3.0 mg/kg, but an update
on this consultation has not been released yet. It is undeniable that cadmium does indeed
accumulate in humans due to dietary exposure and that this does have deleterious effects
on health, as discussed later in the review. However, one must consider the entirety of
the dietary intake of cadmium from various sources before limits of cadmium in a specific
food are imposed for specific populations. Equally, the frequency of consumption of a
particular food product that is naturally high in cadmium must also be considered when
determining dietary guidance on cadmium-containing products. This concept is discussed
further in Section 5.
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4. Cadmium Accumulation and Monitoring in Crabs and Crustaceans

The Industrial Revolution over the last two centuries has led to anthropogenic-derived
pollution that ultimately has negatively affected various global biomes and ecosystems.
While cadmium is ubiquitous in the environment at very low levels, industrial and techno-
logical advancement has occurred at the expense of the environment, with an increased
release of cadmium (Cd2+) into the environment. Cadmium is an element that can accumu-
late in the food chain, with potential human and ecosystem risks [59,60]. Cadmium can
bioaccumulate in various marine organisms, but most prominently within crustaceans such
as lobsters, crabs, crayfish, and prawns. The elemental composition of crabs has mainly
been studied in crabs from the Norwegian and Scottish coasts and the English Channel [31].
See Table 1 for an overview of cadmium measurements in brown crabs. As mentioned
above, crabs and other crustaceans accumulate metals mostly via diet, with some negligible
amounts coming from their environment [61–63].

Table 1. An overview of cadmium concentrations in brown crab (Cancer pagurus) expressed as mg/kg ww.

Crab Meat Type (State) Location Estimated Cadmium Levels (mg/kg) Detection Method Reference

Mean ± SD
Spring Caught Summer Caught

White meat (raw) Portugal 0.07 ± 0.06 0.01 ± 0.01 FAAS [14]
White meat (steamed) Portugal 0.24 ± 0.38 0.10 ± 0.14
White meat (boiled) Portugal 0.05 ± 0.05 0.10 ± 0.16
Brown meat (raw) Portugal 8.4 ± 8.3 8.1 ± 14.2

Brown meat (steamed) Portugal 7.6 ± 5.2 11 ± 13
Brown meat (boiled) Portugal 5.6 ± 5.6 5.0 ± 8.2

Mean ± SD
White claw meat (raw) Northern Norway 0.024 ± 0.012 ICP-MS [30]
White claw meat (raw) Southern Norway 0.007 ± 0.005

Brown meat (raw) Northern Norway 1.15 ± 0.76
Brown meat (raw) Southern Norway 0.21 ± 0.14

White claw meat (boiled) Northern Norway 0.30 ± 0.29
White claw meat (boiled) Southern Norway 0.065 ± 0.075

Brown meat (boiled) Northern Norway 0.45 ± 0.26
Brown meat (boiled) Southern Norway 0.16 ± 0.12

Yearly median concentration range
between 2016 and 2017

Brown meat (raw) Mausund, Norway 2.11–4.37 ICP-MS [33]
Estimated mean

White meat (raw) English Channel 0.10 FAAS [13]
Brown meat (raw) English Channel 15–18
White meat (raw) Scottish coast 0.10
Brown meat (raw) Scottish coast 20–30

Mean/range
White meat (raw) Birsay, Scotland -/0.08–0.27 FAAS [64]
Brown meat (raw) Birsay, Scotland 7.30/1.12–49.4
White meat (raw) Norwegian coast 0.62/0.002–4.5 ICP-MS [33,65]
Brown meat (raw) Norwegian coast 8.7/0.24–43.0
White meat (raw) Senja, Norway 0.53/0.03–3.2 ICP-MS [33,66]
Brown meat (raw) Senja, Norway 9.3/1.6–29.0
White meat (raw) Kvaløya, Norway 0.25/0.06–0.74
Brown meat (raw) Kvaløya, Norway 30.0/7.3–58.0
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Several methods have been employed over the years to detect cadmium in biological
samples. The most effective method to date that is commonly used is inductively coupled
plasma mass spectrometry (ICP-MS), where cadmium can be detected at levels as low as
0.003 µg/L [67,68]. Indeed, most food and environment surveillance agencies use ICP-MS
or similar methods to monitor cadmium in crabs [17,69]. However, alternative methods
are available and have been used to measure cadmium in crabs, as shown in Table 1. For
example, atomic absorption spectroscopy (AAS) is another effective analytical tool used
to measure cadmium in biological materials [68]. Graphite furnace atomic absorption
spectroscopy (GFAAS) was previously a common method used for the detection of cad-
mium in foods, with a sample detection limit of 0.4 µg/L [70]. However, other methods
of cadmium detection exist that are not commonly used today for seafood analysis. For
instance, radiochemical neutron activation analysis (RNAA) is a method that has been used
to detect cadmium burden in humans, but its detection limits are not preferential [68]. Other
methods include differential pulse ASV [71] and the calorimetric dithizone method [68].

Various factors affect cadmium accumulation in crab species. In Carcinus maenas (shore
crab), factors such as ovarian maturation, moulting stage, condition (e.g., water content of
the crab), tissue hydration, sex, and size all affect cadmium bioaccumulation [62,63,72–74].
In brown crabs specifically, there is evidence that cadmium levels differ due to location
and cooking (which increases cadmium in claw meat while reducing the concentration
in the inner meat), and there is a correlation between crab size and levels of cadmium
in the hepatopancreas [30,75], which implies that cadmium accumulates as the crab ages.
However, season, moulting, and gonad maturation have limited effects on cadmium
concentrations in brown crabs [31]. Although no account has been provided regarding the
age of the crabs sampled and the correlation between age and cadmium levels, this is likely
because crustaceans are very difficult to age due to the process of moulting their exoskeleton
throughout their life and their indeterminate growth [76]. Processing conditions are also
an important consideration. Frozen crab that has been defrosted may leech cadmium
with the haemolymph, which may be lost during the cooking process. Indeed, claws
taken from frozen crab before thawing had lower cadmium levels than claws taken from
the carapace after thawing, indicating that there can be redistribution of cadmium in the
crab. This may indicate biases when assessing cadmium levels in crabs that have been
processed [30]. Studies have also linked cadmium levels to seasons, where lower levels
have been detected in the summer months [63,72], potentially due to the shorter biological
half-life of cadmium as the temperature increases during summer [63]. However, the effect
of season was inconclusive in another study [31].

The tissue hydration and water content of the crab have significant effects on the
levels of cadmium measured in the crab—particularly when considering that a lot of trade
involves live transport of crabs. This has significant implications for obtaining accurate
measurements of cadmium in crabs, as once taken from its environment the animal will
begin to lose water content. For live export, it is important that the crabs are in a suitable
environment as they are osmoconformers and, therefore, are reliant on their external
environment to maintain body fluid osmolarity [77]. The longer the crab is out of the water
before testing and consumption, the more likely the cadmium is to concentrate. However,
it should be noted that only some water loss in the interior organs can be tolerated before
the crab dies and is no longer suitable for human consumption. Indeed, feeding is also
an important consideration for export, as the hepatopancreas and the reproductive tissue
may fill the crab’s entire body or may dwindle during periods of poor feeding [78]. These
changes in biological condition can, in turn, affect the overall relative levels of cadmium
in laboratory samples during testing. Therefore, there are potentially discrepancies in
testing for cadmium, as various laboratories will have different schedules for testing and
follow different butchering, sample preparation, and testing protocols, and crab samples
may be in storage for a considerable amount of time prior to testing. This is an important
consideration for the transport of live crabs that are often traded from European countries
such as Ireland and Scotland to Asian regions such as the PRC and Hong Kong, where
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crabs may have to wait at ports to be tested [17,21]. However, it should be noted that Wiech,
Frantzen, Duinker, Rasinger, and Maage [31] did not note an association between condition
and cadmium levels.

The rates of uptake of cadmium in crustaceans appear to increase according to metal
concentration, but are also determined by various other factors, including the uptake rates
of other metals, such as zinc [79]. Indeed, it seems that even acute exposure to cadmium can
result in an increase in its accumulation [80]. This implies that even a localised increase in
cadmium levels in an area supporting the habitat of crabs could affect the levels of cadmium
in the crabs, even over a short period of time. This is particularly concerning considering
the long biological half-life of cadmium in the kidneys (10–30 years) [81]. Heavy industry
can contribute to the geospatial occurrence of cadmium in fishing grounds, particularly
around the mouths of some large European rivers [82]. Certainly, there is evidence of
geospatial cadmium accumulation in crabs, as demonstrated by the higher cadmium levels
in brown crabs in the north of Norway versus the south [31].

It is important to note that the crabs themselves may not always be unscathed by
acute exposure. A study by Zhu et al. [83] determined that cadmium exposure induced the
expression of stress-related genes and histological alterations in the gills and hepatopan-
creas of mud crabs (Scylla paramamosain). However, this was a laboratory experiment with
cadmium levels ranging from 0 to 60 mg/L. Therefore, it is important to determine how
relevant these experiments are to real-world situations. For instance, the study neglected
to include another arm to examine the length of time required for the crab tissues to heal
or return to homeostasis and to measure the internal cadmium uptake in relation to the
pathology observed; however, in any case, their findings are a cause for concern. Another
study found that 24 h of acute exposure to cadmium in Chinese mitten crabs (Eriocheir
japonica sinensis) led to transcriptomic differences in the expression of genes relating to the
immune and antioxidant defence functions of the crab [84]. These are not the only studies
to investigate cadmium toxicity in crabs, as there is concern that cadmium may affect their
reproductive capacity [85]. Likewise, a study in other crustaceans—crayfish (Procambarus
clarkii)—indicated that cadmium may alter their gut histology and the function of their
gut microbiota [86,87]. However, some species of crab may adopt mechanisms to mitigate
cadmium toxicity. One study showed that the hepatopancreas of freshwater crabs (Sinopota-
mon henanense) altered the expression of a considerable amount of miRNAs in response to
acute and subchronic cadmium exposure, which is thought to be an adaptive mechanism
to prevent oxidative stress [88].

Considering that there may be histological and transcriptomic changes specific to
cadmium exposure, there is the potential to develop rapid diagnostics to determine whether
crabs have been exposed to cadmium. Although speculative, lateral flow tests akin to
pregnancy tests in their operation could be designed for the detection of stress proteins
related to cadmium exposure using haemolymph or another biological fluid. Such a test
could be conducted on live crabs at sea, allowing for the release of the crab should an issue
be detected. Further research is required to determine whether there are unique signatures
in brown crabs that correlate with exposure to cadmium and could be leveraged to improve
the industry. An alternative approach to mitigate cadmium levels in crabs is to alter the
cooking process. One study has suggested that temperature and ultrasound could be
used to reduce cadmium levels in crabs during the cooking process [89]. Such technology
could be optimised to reduce cadmium levels in pre-packaged products such as cooked
canned crab. Indeed, developing novel testing capacities or processing steps to reduce
cadmium levels in crab products is necessary to save time and money and protect consumer
health. Another potential way to reduce the risk of capturing cadmium-laden crabs is
to carry out biomonitoring of other crabs or, indeed, other flora and fauna for cadmium
bioaccumulation or related effects. For example, one could monitor the spermatozoa of
Mytilus galloprovincialis for conformational alterations of protamine-like proteins, which
have been shown to change as a result of cadmium exposure, potentially acting as early
sentinels for the health of the environment [90]. However, this approach may be limited
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to crabs that are present close to the intertidal zone and may not be relevant to crabs that
migrate far from the habitats of Mytilus galloprovincialis.

In summary, the sampling and analysis of cadmium in crabs is important, and there
can be significant health and economic consequences if not properly conducted; hence, the
necessity for standardised sampling, butchery, and analysis of cadmium in brown crabs.
However, standardisation of protocols and even limits of cadmium in crabs is not consistent
or uniform worldwide, even between trading nations.

5. Cadmium and Human Health
5.1. Cadmium Exposure in Humans

Understanding all possible routes of human cadmium exposure is important to con-
sider when assessing one’s risk of excessive exposure. Cadmium exposure occurs through
three possible routes: dermal, gastrointestinal, or pulmonary. Inhalation of cadmium by
industrial workers or smokers is a significant exposure risk, but for the general population
of non-smokers, exposure most commonly occurs via ingestion of contaminated foods or
water [91]. Previously, it was suggested that atmospheric changes in cadmium levels due
to increased pollution may affect blood cadmium levels. However, a recent study found
that ingestion of dietary cadmium has a stronger impact on blood cadmium levels [92],
likely due to the biomagnification of cadmium in dietary sources versus occasional acute
exposure from atmospheric pollution. Therefore, it is important to consider dietary sources
of cadmium, which may contain excessive cadmium, so that people and public health au-
thorities can decide whether to mitigate excessive cadmium exposure risk by eliminating or
reducing these food sources in the diet. Notably, cadmium is found ubiquitously in nature,
and not all anthropogenic sources are the result of industrial emissions. For example, it has
been documented that metal pollution can occur due to mining, aquaculture, wastewater
treatment, crop farming, and animal breeding [93,94].

Diet is the most prevalent source of cadmium exposure in the general population,
and it is also a source that can be mitigated to reduce cadmium exposure. It is estimated
that daily dietary cadmium intake in unpolluted European areas can vary from 0.1 to
0.45 µg/kg bodyweight. However, in polluted areas, the total intake may be significantly
more than the tolerable daily cadmium intake and reach several hundred µg/day [95,
96]. This has major implications when considering the overall intake of cadmium from
various foods, which tends to govern what limits are applied to the cadmium content of
foods intended for human consumption. Lifestyle choices are certainly one of the biggest
determinants of cadmium exposure. Smoking is a significant modifiable risk factor for
cadmium exposure, as the tobacco plant accumulates cadmium from the soil into its leaves
with great efficiency [97]. The United States national geometric mean blood cadmium level
for non-smoking adults is 0.47 µg/L, whereas the mean of smokers is approximately thrice
as high at 1.58 µg/L [98]. Smoking is estimated to at least double the body burden of
cadmium exposure in one’s lifetime. Cadmium oxide (CdO) is a highly bioavailable form
of cadmium that is responsible for the high concentrations of cadmium in the blood, urine,
and tissues of smokers compared with non-smokers [99,100].

Whether there are specific foods that one should avoid, or dietary alterations required
to reduce a person’s exposure to dietary cadmium is a topic of interest. The European
Food Safety Authority (EFSA) noted that it is not the foods with the highest cadmium
levels but, rather, the foods that are consumed in larger quantities most often that have
the largest impact on dietary exposure to cadmium [1]. EFSA, using the food description
and classification system FoodEx, determined that dietary cadmium exposure in European
populations mainly originated from grains and grain-derived products (26.9%), vegetables
and vegetable products (16.0%), and starchy roots and tubers (13.2%). In more detail, the
following food categories contributed the most to dietary cadmium exposure across all
age groups: potatoes (13.2%), bread and rolls (11.7%), fine bakery goods (5.1%), chocolate
products (4.3%), leafy vegetables (3.9%), and molluscs (3.2%). However, it was noted that
crustaceans were among a group of foods that exceeded 100 µg/kg, along with algal formu-
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lations, cocoa powder, offal, some seafood, mushrooms, and water molluscs [20]. Lifetime
cadmium dietary exposure for Europeans is estimated to be approximately 2 µg/kg body-
weight/week (averaged for all age groups)—within the EFSA’s tolerable weekly intake
(TWI) of 2.5 µg/kg bodyweight/week.

In Ireland, weekly adult intake of cadmium has been estimated to be between 1.1
and 2.5 µg/kg bodyweight/week, which is between 44 and 62% of the EFSA’s TWI [101].
These findings indicate that the majority of Irish people are not exposed to excess dietary
cadmium levels. These findings are supported by the National Adult Nutrition Survey,
which examined urinary cadmium excretion in the general population They and that 95%
of participants had urinary cadmium levels below the 1 µg cadmium/g creatinine that the
EFSA has deemed safe [102]. The main cadmium-contributing foods in the Irish diet were
cereals (39%), vegetables (36%), and dairy (12%), where fish and shellfish only accounted for
approximately 1% [101], likely due to the low consumption of fish and shellfish in Ireland.

In the United States, a recent study was conducted to determine the intake and sources
of cadmium [103]. The average intake of dietary cadmium in the general population was
4.6 µg/day, or 0.54 µg/kg body weight/week—that is, approximately 22% of the tolerable
weekly intake (TWI), which is considered to be 2.5 µg/kg body weight/week. However,
certain demographics—such as elderly men, those who were well-educated and had a high
income, and those with high adiposity—had higher levels of cadmium intake [103]. The
food groups that contributed the most to the majority of the cadmium intake in the United
States were cereals and bread (34%), leafy vegetables (20%), potatoes (11%), legumes and
nuts (7%), and root vegetables (6%). Notably, the individual foods that contributed the
most to the overall cadmium intake included lettuce (14%), spaghetti (8%), bread (7%), and
potatoes (6%) (Figure 3A).
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Interestingly, but unsurprisingly, due to the many cultures that coexist in the United
States, there were ethnic and cultural differences in cadmium intake due to differences
in dietary preferences. Lettuce was a major cadmium source for Caucasian and Black
populations, whereas tortillas were the main source for Hispanics, and rice was the top
contributor to the Asian population. Notably, the trends of cadmium intake in the United
States seem to be very similar overall to those in the European Union. This is also unsur-
prising because despite there being many culinary differences in the foods and cultures of
the US and Europe, the prevailing dietary pattern in both regions is the so-called “Western
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Diet” characterised by highly processed foods [104]. Amongst the Asian populations of the
United States, smoking was the main exposure route for cadmium, followed by dietary ex-
posure [105], which increases one’s risk for many non-communicable diseases—including
cardiovascular, renal, and pulmonary diseases [104,106]. It is notable that fish and shellfish
comprise a low contribution of cadmium to the American diet, but fish consumption is
traditionally low in the United States [107].

Looking further afield, there are similarities between the so-called Western countries
and Asian countries such as the PRC and South Korea. The average total daily cadmium
intake in healthy Koreans is estimated to be 20.8 µg/day [26]. Figure 3B shows the food
groups that contribute the most cadmium to the diet in South Korea. Notably, the food
groups recorded are starkly different to the food groups associated with higher cadmium
exposure in Europe or the United States. In particular, they seem to be culturally relevant.
For example, there are much higher levels of rice (40.3%), as was noted in Asian groups from
the United States cohort [103], but also higher intake of seafood and specific foods associated
with Korean cuisine, such as kimchi and seaweed. Indeed, crab in this case was shown to
contribute 8.6% of the cumulative cadmium intake in this South Korean population.

Many parts of the PRC share similar food consumption patterns to South Korea
and, thus, similar cadmium exposure [108]. In one study [108], freshwater crab and sea-
caught crab samples obtained contained 0.101 ± 0.323 and 0.544 ± 1.203 mg/kg (mean
± standard deviation) cadmium, respectively, which were estimated to be consumed at
0.7 ± 7.3 and 0.8 ± 8.9 g/day by the general population. This contrasts with rice and wheat,
which contain 0.062 ± 0.128 and 0.021 ± 0.026 mg/kg of cadmium and are consumed at
218 ± 174.5 and 145.4 ± 168 g/day (mean ± standard deviation), respectively. These
data show that while it is true that crab contains higher concentrations of cadmium in
mg/kg weight, its consumption levels are markedly different. A further examination of the
specific food groups contributing dietary cadmium to the Chinese population is presented
in Table 2. The interesting point of this research is that for the high-exposure subpopulation
with cadmium exposure higher than the 95th percentile, rice was the largest contributor
(58.6%), followed by shellfish (13.2%), and leafy vegetables (9.2%). This is a very small sub-
fraction of the population that are exposed to such high levels of cadmium because of their
dietary choices; it would be interesting to break down the subcategory of shellfish further
to determine the impact that crab may have on the consumption of cadmium in this cohort.
The study determined that the mean dietary cadmium exposure of the general Chinese
population was 15.3 µg/kg body weight/month (30.6 µg/day for a 60 kg average body
weight of adults). A similar study in Shanghai found that the average exposure to dietary
and environmental cadmium was 167 µg/day (34% of the PTDI). Similarly, vegetables and
rice were the main sources of dietary cadmium, and tobacco accounted for 25% of the total
cadmium exposure from non-occupational sources [109]. Considering that almost 20%
of agricultural soil in the PRC is contaminated with cadmium [110], it is likely that their
dietary exposure to cadmium will only increase with their growing economy. Furthermore,
the daily exposure to dietary cadmium in the Chinese population is significantly higher
than that in either Europe or the United States.

The total diet study (TDS) is a food safety monitoring program that is conducted by
various food agencies, including the United States Food and Drug Administration (FDA),
the Food Standards of Australia and New Zealand (FSANZ), and the European Food Safety
Agency (EFSA) [111]. These are “market basket surveys” that collection of various food
samples from groceries and retailers for the quantitation of food additives, pesticide residues,
contaminants, nutrients and, of course, heavy metals [112,113]. The TDS provides a realistic
approach to gauge the relative contribution of each food group and specific item to estimate
the total intake of cadmium in the diet. Foods that were consumed in large quantities at
high frequency contributed the most to cadmium intake [111]. Currently, TDS data are
available for a limited number of countries, including Australia, the United States, France,
Spain, Sweden, Chile, Denmark, and Serbia [100]. Overall, data from TDS show that these
countries’ cadmium intake varies between 8 and 25 µg/day for the average consumer with

150



Toxics 2022, 10, 591

staple foods (e.g., rice, wheat, and potatoes), which accounted for 40–60% of total dietary
cadmium ingestion. Shellfish, crustaceans, molluscs, offal, and spinach were considered
to be additional cadmium sources [100,111]. These types of studies are often thought to
underestimate dietary cadmium, as they fail to demonstrate an association between estimated
cadmium intake and the incidence of cancer and bone diseases [114–117].

Table 2. Data depicting the main contributors to dietary cadmium intake in (A) the general Chinese
population and (B) the highly exposed Chinese population. Data adapted with permission from [108].

General Population (A) High-Exposure Population (B) *

Food Group Percentage (%) Contribution of
Dietary Cadmium Intake Food Group Percentage (%) Contribution of

Dietary Cadmium Intake

Rice 55.8 Rice 58.6
Leafy vegetables 10.5 Leafy vegetables 9.2

Wheat flour 11.8 Wheat flour 2
Shellfish 4.8 Shellfish 13.2

Meat 2.6 Meat 2
Seaweed 2.4 Seaweed 6.4

Other vegetables 2.4 Other vegetables 1.4
Other cereals 2.1 Other cereals 0.9

Root and stalk vegetables 2.0 Root and stalk vegetables 1.7
Mushrooms 1.1 Mushrooms 1.5

Fish 1.1 Fish 1
Legumes 0.9 Legumes 0.6

Fruits 0.6 Fruits 0.4
Eggs 0.6 Eggs 0.2
Nuts 0.4 Nuts 0.4
Offal 0.4 Offal 0.2
Other 0.5 Other 0.3

* The highly exposed population was determined to be those within the 95th percentile of the mean dietary
cadmium exposure of the general Chinese population.

Overall, these epidemiological and dietary studies demonstrate that dietary cadmium
exposure is affected by many factors and that the main contributor of dietary cadmium in
all instances around the world mostly originates from staple foods such as rice, wheat, and
other grains. In Asian diets, seafood and shellfish were contributors to dietary cadmium
intake, but this is not necessarily the main source in countries that consume Western diets.
Overall, it seems that it is important to strike a balance and be cautious of foods that are
potentially significant contributors of cadmium to the diet. Indeed, moderate consumption
of shellfish should not significantly affect one’s risk of illness from cadmium ingestion, but
further research specific to crab consumption is required.

5.2. Cadmium Ingestion and Accumulation in Humans

Depending on the exact dose and nutritional composition of a food, the human
gastrointestinal tract can take up 3–5% of ingested cadmium [20,118]. Various factors
can affect cadmium uptake in humans, such as low intakes of calcium, vitamin D, zinc,
and copper [91]. One possible mechanism of high cadmium resorption is related to the
assumption that cadmium shares molecular homology with zinc and calcium; as a result,
low levels of these minerals are compensated by higher cadmium resorption [119]. This
observation was closely replicated in competitive resorption studies in rats against other
polyvalent cations such as Cr3+, Mg, Ni, Pb, and Sr [120]. Notably, a low zinc/iron status
in individuals who subsist on diets characterised by high rice intake may cause high
absorption of cadmium in contrast to other staple diets [121]. Other factors that affect
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cadmium uptake include gender, nutritional status, diet, and smoking status can also affect
the bioavailability of cadmium in humans [68].

Indeed, various human studies show that cadmium intake can be increased by dietary
fibre intake [96]. Animal experiments have shown that diets with high concentrations of
protein and lipids can also increase net intestinal uptake of cadmium and that diets high
in wheat bran may reduce cadmium intake [95]. The exact mechanisms of these effects on
cadmium intake are yet to be fully elucidated. On the other hand, cadmium can bind to
low-molecular-weight proteins rich in cysteine such as metallothionein, which may increase
its bioavailability [122]. This has been demonstrated naturally in various marine organisms
where cadmium seems to be bound to small, soluble cytoplasmic proteins, including in
oysters, mussels, scallops [122], and green crab (Carcinus maenas) [62,63,123]. In rat studies,
cadmium binds to amino acids and peptides in the intestinal tract [124], which undoubtedly
has implications for its bioavailability. What these studies suggest is that these effects may
be the result of a food matrix effect in a similar way to dairy products, where nutrients are
more or less bioavailable depending on the food’s structure and composition [125]. This
implies that the foods or ingredients that we mix with foods containing high cadmium
levels may affect the overall bioavailability of cadmium. Therefore, it may be possible to
mitigate cadmium’s bioavailability when preparing foods that may have higher levels of
cadmium by altering the food matrix. However, research is very limited in this area, and
further studies are required to confirm such associations.

Evidence from animal studies shows that marginal deficiencies in zinc, iron, and
calcium can enhance the absorption, organ accumulation, and retention of dietary cad-
mium [121]. Moreover, marginal deficiencies can enhance cadmium absorption as much
as 10-fold in diets containing low cadmium concentrations similar to those consumed
by some human populations, indicating that people who are nutritionally marginal with
respect to zinc, iron, and calcium are at higher risk of cadmium-related diseases than
those who are nutritionally adequate [126–128]. Indeed, similar studies in humans show
that an individual’s iron levels may be a metabolic factor of concern in the resorption of
cadmium. It has been demonstrated that a lack of iron leads to a 6% higher uptake of
cadmium in individuals with normal iron levels [129]. A study of iron-deficient children
in the United States found elevated blood cadmium levels [130]. This accounts for higher
cadmium absorption in individuals with a habitual iron deficit (e.g., children or menstruat-
ing women) or people with anaemia [91]. It seems that these observations are the result
of the expression of DCT-1 and MTP1—metal ion transporters in the gastrointestinal tract
that act as a gate for cadmium resorption when low iron levels occur [131,132]. Overall, the
evidence presented supports the notion that dietary components and trace element status
can affect the fractional intestinal uptake of cadmium, as reviewed by Andersen et al. [95].

These findings hint at the possibility of ensuring that individuals who may be at high
risk of exposure to cadmium have a healthy nutritional status. Those who may be deficient
in some minerals may consider dietary alterations or dietary supplements to ameliorate
mineral deficiencies.

5.3. Cadmium’s Transport, Bioavailability, and Excretion in Humans

Cadmium is well-known for its toxicity to humans, as evidenced by decades of
observational studies and research. Like many heavy metals, bioaccumulation of cadmium
in mammals can differentially affect certain tissues, including bone, the liver, muscle, and
the kidneys. Indeed, Cd2+ is dangerous in that it can substitute for Zn in enzyme structures.
Likewise, calcium and cadmium have similar ionic radii (109 pm and 114 pm, respectively),
meaning that cadmium can accumulate in the bone along with calcium [133].

Once taken up by the gastrointestinal tract and deposited into the bloodstream, cad-
mium binds to proteins such as albumin and metallothionein. From there, it is transported
to the liver, where cadmium can induce the production of metallothionein. Following the
necrosis and apoptosis of hepatocytes, cadmium–metallothionein (Cd–M) complexes form,
which are washed from sinusoidal blood. Some cadmium then enters the enterohepatic
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cycle via secretion into the biliary tract in the form of cadmium–glutathione conjugates.
Cadmium can then be enzymatically degraded to cadmium–cysteine complexes in the
biliary tree, where it can re-enter the small intestine [91,134]. Cadmium accumulates in
the renal tubular cells in the cortex of the kidneys via the transport of metallothionein. It
resides there, where it can have a half-life of 10–30 years [135]. Lifelong exposure to and
consumption of foods containing cadmium can lead to the accumulation of cadmium, and
as it is very slowly excreted from the body, it causes irreversible tubular cell necrosis in the
kidneys [91]. Unfortunately, the kidneys are the organs most susceptible to damage from
cadmium accumulation [136], although chronic and prolonged exposure to cadmium can
have devastating effects on various tissues of the human body and can even cause bone
demineralisation [137]. When cadmium arrives at the kidneys in the form of Cd–M, it is
filtered in the glomerulus and reabsorbed in the proximal convoluted tubules, where it
tends to remain [91].

Cadmium concentrations can be measured in urine, hair, blood, nail, and saliva
samples. Cadmium-induced kidney damage correlates with urinary cadmium excretion.
Indeed, proteinuria characterised by the excretion of low-molecular-weight proteins such
as retinol-binding protein or ß2-microglobulin [138] is likely to occur with a 10% response
rate when the concentration of cadmium in the cortex exceeds approximately 200 µg/g
wet weight (200 ppm) [135]. Moreover, urinary cadmium has been used as a non-invasive
detection method of the accumulation of cadmium in the kidneys, and as a marker of
tubular dysfunction in industrial workers and those who have had low environmental
exposure. This is due to the curvilinear relationship between urinary cadmium and cad-
mium accumulation in the kidneys [118,139]. This allows for the urinary cadmium value
corresponding to the critical kidney cadmium level of 200 ppm to be estimated at 10 µg/g
creatinine, which is estimated in concordance with the relationship between urinary cad-
mium and proteinuria [138,140,141]. These measurements are now well-established and,
in populations with excessive exposure to cadmium, urinary cadmium is correlated with
the renal cadmium levels or body burden. Worryingly, these levels remain elevated many
years after cessation of exposure [142].

While measuring ß2-microglobulin was previously thought to be the most reliable and
accepted method of measuring cadmium burden and levels in humans, there are several
other urinary biomarkers for the assessment of the renal effects of cadmium. A significant
debate about the utility of these various biomarkers is ongoing [111]. These markers are
outlined in Table 3 as per the publication of Satarug [111]. The associated renal biological
effects are also enclosed in Table 3. These biomarkers are currently being used to assess the
impacts of seafood and crab consumption on human health [143,144].

Table 3. Urinary biomarkers for the assessment of cadmium burden on the kidneys. Adapted from
Satarug [111].

Biomarkers Abnormal Values Interpretations and Associations

NAG >4 U/g creatinine Tubular injury, mortality
Lysozyme >4 mg/g creatinine Tubular injury

Total protein >100 mg/g creatinine Glomerular dysfunction, CKD
Albumin >30 mg/g creatinine Glomerular dysfunction, CKD

ß2MG ≥1000 µg/g creatinine Irreversible tubular dysfunction
ß2-MG ≥300 µg/g creatinine Mild tubular dysfunction, rapid GFR decline
ß2-MG ≥145 µg/g creatinine Increased hypertension risk
α1-MG ≥400 µg/g creatinine Mild tubular dysfunction
α1-MG ≥1500 µg/g creatinine Irreversible tubular dysfunction

KIM-1 ≥1.6 mg/g creatinine in men
≥2.4 mg/g creatinine in women Kidney injury, urinary KIM-1 levels correlated with blood cadmium levels

Abbreviations: NAG = N-acetyl-β-D-glucosaminidinase; ß2-MG = beta-2 microglobulin; α1-MG = α1-microglobulin;
KIM-1 = kidney injury molecule-1; CKD = chronic kidney disease; GFR = glomerular filtration rate.
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An interesting in vivo study assessed the bioavailability of cadmium from boiled crab
hepatopancreas, inorganic cadmium, or dried wild mushroom fed to mice [145]. The study
design included a control group of mice that received low levels of cadmium (<0.007 ppm)
in their feed, which did not lead to detectable levels of cadmium over a 9-week exposure
period. The authors used cadmium accumulation in the kidneys and liver as a measure of
absorption. Notably, the bioavailability of cadmium from boiled crab hepatopancreas was
lower than that of cadmium from mushroom or even inorganic cadmium. Cadmium in
the crab hepatopancreas is mainly associated with denatured proteins with low solubility,
whereas a large proportion of cadmium in dried mushroom is associated with soluble
ligands. Therefore, there was an indication that the difference in cadmium speciation
might account for the lower bioavailability of cadmium from crab than from mushroom.
However, the authors commented that the difference in bioavailability was low, and that
restricting intake was recommended if the products were high in cadmium. This may be
evidence of cadmium speciation or, indeed, a food matrix effect. A similar study in which
rats consumed a diet consisting of high crab intake (4 mg/kg organic-bound cadmium),
a low-crab diet (0.2 mg/kg organic-bound cadmium), or a casein-based cadmium diet
(4 mg/kg as cadmium chloride) for 6 months showed that cadmium intake from the high-
crab diet was only half that of the diet consisting of cadmium chloride [146]. These findings
also appear to indicate that there may be a food matrix effect at play. Other studies in
humans have shown that cadmium is more bioaccessible from fish (84%) than from shellfish
(73%) [147]. Worryingly, individuals who smoke cigarettes and have a high consumption
of seafood can experience exacerbated adverse effects of cadmium exposure [147]. This
is particularly dangerous for populations such as the PRC, where many of the people
smoke frequently. There are still many questions regarding cadmium’s bioavailability that
require further investigation, particularly regarding the food matrix effect and how it may
be leveraged to mitigate dietary cadmium intake.

Another point to note is that current health risk assessments relating to cadmium
exposure in humans rely heavily on the evaluation of the toxicity to the kidneys alone. In
2010, the Joint Food and Agriculture Organisation (FAO) and World Health Organisation
(WHO) Expert Committee on Food Additives and Contaminants (JECFA) deemed the
kidneys to be a suitable target for evaluating cadmium toxicity, as measurements of ß2-
microglobulin could be used as a surrogate biomarker for the effects of dietary cadmium
intake [148]. The JECFA established a tolerable monthly intake of 25 µg/kg/bodyweight
per month, with a urinary cadmium excretion rate of 5.24 µg/g creatinine or 0.8 µg/kg/day
as a nephrotoxicity threshold [148–150]. While the EFSA and JECFA share the same critical
ß2-microglobulin endpoint of 300 µg/g creatinine, the EFSA adopted a different cadmium
excretion rate of 1 µg/g creatinine as the nephrotoxicity threshold, along with an uncertainty
factor of 0.36 µg/kg bodyweight per day for 50 years as a benchmark dose [151]. While
these values are important references to monitor to stay within safe levels of cadmium
exposure, relying on one biomarker (ß2-microglobulin) is insufficient. In 2019, Satarug
et al. [152] showed that ß2-microglobulin excretion levels as low as 100–299 µg/g creatinine
were associated with a 4.7-fold increase in eGFR to ≤60 mL/min/1.73 m2—a measurement
consistent with chronic kidney disease. Therefore, a ß2-microglobulin endpoint of 300 µg/g
creatinine may not be a low enough threshold to detect early nephrotoxicity [149].

Considering the emerging evidence that many organ systems are affected by cadmium
exposure, other toxicity endpoints may be informative for risk assessment. As reviewed
by Satarug et al. [149], other biomarkers of chronic low-dose cadmium exposure may
contribute to risk assessments. For example, reductions in estimated glomerular filtration
rate (eGFR) and lower fecundity have been observed at cadmium excretion levels as low as
0.5 µg/g creatinine, with worsening outcomes noted in a dose-dependent manner [149].
In men, sperm cadmium levels are inversely associated with sperm motility [153,154]
and appear to be associated with other measures of sperm quality, viability, and acro-
some reactions [149]. In females, high blood cadmium levels have been associated with
infertility [155]. High urinary cadmium levels (~0.70 µg/L) have been associated with
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ovarian reserve depletion and ovarian insufficiency, with serum follicle-stimulating hor-
mone (FSH) levels ≥ 10 IU/L [156] and ≥25 IU/L [157], respectively. However, sampling
and monitoring of reproductive health is intrusive and inconvenient; therefore, surrogate
markers such as serum FSH or anti-Mullerian hormone (AMH) in females may be useful.
Blood biomarkers are preferred because of the convenience of analysing a blood sample.
Therefore, alternative approaches have been sought, including monitoring of epigenetic
factors [158]. Preliminary research indicates that cadmium exposure induces epigenetic
changes in micro ribonucleic acids (miRNAs) that may lead to the development of novel
blood-borne biomarkers [159,160]. Collectively, these findings indicate that additional
novel biomarkers of human cadmium exposure are necessary to determine one’s risk of
toxicity and disease, as opposed to the reliance on monitoring kidney function alone.

5.4. Cadmium Toxicity in Humans

Cadmium can affect important cellular functions such as cell differentiation, prolif-
eration, and apoptosis, which is of concern considering that these processes overlap with
the important processes of the generation of reactive oxygen species (ROS) and DNA
repair mechanisms [81]. Cadmium at low concentrations even has the capacity to bind
to mitochondria and can inhibit cellular oxidative phosphorylation and cellular respira-
tion [161]. Cadmium exposure results in chromosomal aberrations, DNA strand breaks,
sister chromatid exchange, and DNA–protein crosslinks. Cadmium can potentially cause
mutations and chromosomal deletions [162]. Cadmium toxicity encompasses the depletion
of reduced glutathione (GSH), binds sulfhydryl groups with proteins, and causes the en-
hanced production of ROS, resulting in oxidative stress, which may promote organ toxicity,
apoptotic cell death, and carcinogenicity [81]. Cadmium can also inhibit the capacity of
the natural antioxidant enzymes, such as catalase, manganese superoxide dismutase, and
copper/zinc-dismutase [163]. Metallothionein is also involved in these processes and can
act as a free-radical scavenger of hydroxyl and superoxide radicals [164]. Largely, the cells
that contain metallothioneins are resilient to the effects of cadmium toxicity. However,
it has been observed that cells that do not synthesise metallothioneins are sensitive to
cadmium [81].

Cadmium has also been shown to be an endocrine disruptor. Cadmium may affect
thyroid function, as demonstrated in both animal and human studies [165], where tissue
damage in the thyroid led to hyperplasia and hypertrophy [166–168]. Moreover, cadmium
has been linked with changes in hormone function [169,170], and there is suspicion that
chronic cadmium exposure may lead to thyroid cancer, but further research is required [171].
Cadmium may also act as a metalloestrogen, as it can bind to the oestrogen receptor [172],
which has led to a concern that chronic cadmium exposure may be associated with breast
cancer [173–175]. There have also been links drawn between cadmium and the inhibition
of progesterone synthesis, ovarian and reproductive tract morphological alterations, dis-
ruption to menstrual cycles, and issues with pregnancy and birth [176]. Likewise, cadmium
may mimic some of the effects of androgens and may play a role in prostate cancer [177,178]
and reduce male fertility by affecting spermatogenesis and motility [179].

The vast and various effects of cadmium exposure on the human body that have been
explored in the previous sections lead to various clinical manifestations. As such, it is
known that different forms of cadmium compounds lead to different clinical manifestations.
However, the details of this require further investigation. While cadmium poisoning is very
rare, it can happen. Itai-itai disease is the most severe form of chronic cadmium toxicity
in humans, caused by the prolonged ingestion of cadmium. Areas severely polluted by
cadmium, such as the Jinzu River Basin in Toyama, Japan, have high incidences of cadmium-
related pathologies. In that example, the river was polluted with slag from a mine upstream.
The cadmium-polluted water was subsequently used to irrigate crops and rice between
the 1910s and 1960s. The water from this river was used as potable water and for cooking,
bathing, etc. [25]. This was significant, as cadmium is a food-chain contaminant that has
high rates of soil-to-plant transference [111] and, thus, a high risk of ingestion. Itai-itai
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disease is characterised by renal tubular disorder and renal osteomalacia [180]. Even if
people did not get itai-itai disease in the Jinzu Basin, they were at serious risk of cancer [181].
Some of the main effects of cadmium on the human body are presented in Figure 4.
Patients with cadmium toxicity require significant treatment, including gastrointestinal
tract irrigation, supportive care, and chemical decontamination via traditional chelation
therapy with novel chelating agents and nanoparticle-based antidotes [81].
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6. Crab Consumption, Cadmium, and Human Health

There are limited studies that have investigated the effects of crab consumption
on cadmium ingestion and human health. A recent study examined whether regular
crab meat consumers exhibited increased levels of ß2-microglobulin or cadmium in their
urine compared to those who did not eat crab meat [143]. They determined that whole
blood cadmium levels can be both a short- and long-term marker of cadmium intake.
However, while it was expected that cadmium levels would be elevated in the crab meat
consumers, the study showed that crab meat consumers did not show increased levels
of urinary cadmium and, consistent with this, showed no changes in cadmium-induced
kidney toxicity markers. Consequently, the authors concluded that compared to consumers
who reported very little crab meat consumption, healthy middle-aged consumers who
regularly consumed brown crab meat products (an average of 447 g/week) for an average
of 16 years showed no changes in long-term cadmium exposure or kidney toxicity. A study
of French seafood consumers demonstrated that the mean dietary ingestion of cadmium
was 2.4 ± 3.3 mg/kg bodyweight/week. The authors also determined that the mean
urinary cadmium level was 0.65 ± 0.45 mg/g creatinine, and was significantly higher in
women than in men. This is particularly interesting, as sexual dimorphism was observed
in populations of Japan who suffered itai-itai disease, where women generally had a more
severe prognosis [100].

In the United States, the Long Island Study of Seafood Consumption, conducted in
New York, examined the relationship between seafood intake and blood cadmium levels in
252 people who were avid seafood consumers [182]. After the researchers adjusted for age,
BMI, sex, smoking status, and other factors, a linear regression model was employed. They
determined that there was no association with regular seafood intake (β = −0.01; p = 0.11)
but did identify an association between salmon intake in cups/week (ln transformed)
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(β = 0.20; p = 0.001) and blood cadmium levels. The study determined that only salmon
was meaningfully associated with blood cadmium levels and that seafood was most likely
not a significant source of cadmium exposure. They suggested that as the cadmium levels
in salmon are not higher than those in many other seafood species, the association with
salmon intake was likely due to higher consumption of salmon within this cohort. A
similar study—the Norwegian Fish and Game study—assessed cadmium concentrations in
spot urine and blood samples and conducted a food frequency questionnaire (FFQ) with
179 volunteers. The median urinary cadmium level was 0.16 µg/L when corrected for
creatinine, and the median (5th to 95th percentile) blood cadmium level was 0.45 µg/L.
According to the FFQ, 24% of individuals designated as high cadmium consumers and
8% of the controls (i.e., those with lower levels of cadmium in the diet) had intakes above
the TWI. Notably, there was an association between high cadmium levels and seafood
consumption, which was thought to be partially driven by crab consumption [183]. This
may be unsurprising, as both white and brown crab meat is consumed in Norway and is a
contributor of cadmium to the diets of Norwegian seafood consumers [28].

Considering these collective findings and some of the mechanisms of cadmium’s
bioavailability discussed in this review, it is likely that while it is necessary to monitor
cadmium levels in foods, these levels may not directly translate to 1:1 absorption from the
bioavailable cadmium pool. It is likely that the food matrix also plays a considerable role in
cadmium’s bioavailability. As discussed previously, the preparation of crab may also play
a significant role in the cadmium levels of crab for consumption [30]. Finally, it is likely
that the health and nutritional status of the individual consuming the product, along with
various other factors, contribute to whether a person is at risk of cadmium bioaccumulation
and associated negative health effects.

7. Conclusions

Trace cadmium is naturally present in the food chain due to its ubiquitous presence
in nature. Some food sources, including crustaceans such as the brown crab, naturally
bioaccumulate cadmium and, therefore, are thought to pose a health risk. However,
cadmium exposure from dietary sources may be mitigated by individuals and public health
authorities by limiting exposure. As discussed in this review, evidence supports the notion
that moderate consumption of brown crab is unlikely to pose a significant health risk
when one’s lifestyle and dietary choices offer little risk of excessive cadmium exposure.
In particular, evidence supports the safe consumption of white crab meat due to its low
cadmium levels and other beneficial health benefits, including its role as a source of protein
and omega-3 fatty acids. On the other hand, the brown meat containing the hepatopancreas
does have high levels of cadmium, but this is unlikely to pose a significant health threat if
the brown meat is consumed in low amounts. However, regular consumption of the brown
meat is not recommended until further dietary research deems frequent consumption
safe. Finally, as discussed, there are discrepancies and various interpretations of adequate
testing for cadmium in crab products in the industry. Furthermore, the sampling, butchery,
and analysis of brown crab would appear to vary from region to region. Differences in
legislation and interpretation of cadmium’s risks have led to rifts in the export trade of live
crabs between Europe and Asia, which have caused significant issues to trade for exporters
such as Ireland and the United Kingdom. This review also raises questions regarding how
legislation is put forward and what are the most reasonable assessments to make when
considering individual and public health risks. Collective agreement on how to determine
cadmium risk factors and the standardisation of crab monitoring are required to ensure a
safe and equitable crab market internationally.
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Abstract: The extensive use of antibiotics in livestock farming poses increased concerns for human
health as residues of these substances are present in edible tissues. The aim of this study was the
determination of the levels of four groups of antibiotics (sulfonamides—SAs, tetracyclines—TCs,
streptomycines—STr and quinolones—QNLs) in meat samples (muscles, livers and kidneys from beef,
chicken and pork) and the estimation of the dietary exposure to antibiotics from meat consumption
and the potential hazard for human health. Fifty-four samples of raw meat were randomly collected
in 2018 from the Cretan market, Greece and analyzed both with an enzyme-linked immunosorbent
assay (ELISA) and liquid chromatography–mass spectrometry (LC–MS). According to the results
derived from the ELISA method, only 2% of the meat samples were free from antibiotics, 2% were
detected with 4 antibiotics and the great majority of the samples (87%) were detected with 2 to 3
antibiotics. SAs presented the highest detection frequencies for all samples whereas TCs were not
detected in any bovine sample. The highest median concentration was detected for STr in bovine
muscles (182.10 µg/kg) followed by QNLs (93.36 µg/kg) in pork kidneys whereas the chicken
samples had higher burdens of QNLs compared to the other meat samples. LC–MS analysis showed
that oxytetracycline (OTC) was the most common antibiotic in all samples. The highest median
concentration of all antibiotics was detected for doxycycline (DOX) (181.73 µg/kg in pork kidney)
followed by OTC in bovine liver (74.46 µg/kg). Risk characterization was applied for each of the two
methods; The hazard quotients (HQ) did not exceed 0.059 for the ELISA method and 0.113 for the
LC–MS method for any group of antibiotics, whereas the total hazard indexes (HI) were 0.078 and
0.021, respectively. The results showed the presence of different groups of antibiotics in meat from
the Cretan market and that the health risk to antibiotics is low. A risk assessment analysis conducted
for meat consumption and corrected for the aggregated exposure revealed no risk for the consumers.

Keywords: tetracyclines; sulfonamides; quinolones; streptomycines; meat; antibiotics; risk assessment

1. Introduction

The aim of antibiotics is to destroy bacteria and they are used in livestock and poultry
production for therapeutic purposes to prevent, control and treat infectious diseases in ani-
mals, although some producers use antibiotics to improve meat production by increasing
the rate of animal growth [1]. Antibiotics as growth promoters are no longer used in Euro-
pean Union countries as there has been a legal ban from January 2006 [2]. The widespread
and prolonged use of antibiotics has contributed negatively to their effectiveness and thus
the doses have been increased, alternative more powerful antibiotics have to be used and
the times of administration have to be extended [3]. In cases where antibiotics are misused
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and legal withdrawal periods (the time span from drug administration to animal slaughter
and use of meat for human consumption) are not respected, the residues in edible tissues
pose an increased risk for consumers [4].

The parent substance of the antibiotics poses the highest toxicity; however, in the
human it is metabolized and converted into an inactive and more easily excreted form [5,6].
Allergic reactions and other toxic effects have been observed and the risk is greater for
hypersensitive individuals. The most common health effects of quinolones (QNLs) include
effects on the central nervous system (CNS), such as anxiety, worry, nervousness and dizzi-
ness [7]. In addition to seizures, other serious CNS reactions include delirium, delusions,
psychosis, mania, encephalopathy and dysarthria [8]. Recently, pharmacovigilance studies
found a possible association between QNLs and peripheral nervous system toxicity [9],
including Guillain–Barré syndrome (GBS), a potentially severe form of acute peripheral
polyneuropathy [10]. In 2012, a study by a Canadian research team showed an increased
risk of retinal detachment associated with the oral administration of QNLs [11]. Gastroin-
testinal symptoms such as indigestion, nausea, vomiting and diarrhea are common side
effects associated with QNL consumption [12].

Allergic reactions associated with sulfonamides (SAs) include the full range of Gell–
Coombs hypersensitivity reactions. In addition, there are reactions associated with im-
munoglobulin E (IgE), such as urticaria, angioedema and anaphylaxis [13]. SAs have been
correlated with hepatotoxicity and systemic hypersensitivity reactions [14,15].

Tetracyclines (TCs) can modify the normal intestinal flora, allowing the overproduction
of Pseudomonas and Clostridium [16], and cause nausea, diarrhea and even mortality.
They are also found in the structure of newly formed teeth, if consumed during certain
periods of pregnancy, such as the embryonic period (from the third through the eighth week
after conception) [17]. Hepatotoxicity occurs in patients with hepatic impairment or after
intravenous administration of TCs and nephrotoxicity when administered concomitantly
with diuretics [18].

Streptomycines (STr) belong to the aminoglycosides (AGs) category of antibiotics.
Patients receiving AGs may have reversible nephrotoxicity [19] because AGs can enter the
proximal tubule through megaline, a multiligand binding receptor. AG excretion from
this intracellular compartment occurs very slowly and can take several days [20]. Side
effects include cochlear damage of the auditory nerve [21], optic nerve dysfunction [22],
peripheral neuropathy [23], arachnoiditis [24] and encephalopathy [25].

Meat and dairy products constitute an important part of the diet. In 2013, global poul-
try meat production exceeded 109 million tons and global egg production was estimated at
over 73 million tons. In 2014, global production of beef and pork was estimated at about
170 million tons [26]. A major review by the Food and Agriculture Organization (FAO) of
the United Nations, which makes extensive use of expert judgement, reported an increase
of 76% in the total quantity of meat consumed by the mid-century. This includes a doubling
in the consumption of poultry, a 69% increase in beef and a 42% increase in pork [27]. In
Europe, cheese and pig meat are the preferred animal-based protein sources, followed by
poultry, milk and bovine meat. The EU citizen consumed an average of 2.2 kg less bovine
meat in 2013 than in 2000 (decreased by 13%), but 3.0 kg more poultry (increased by 15%).
Pork consumption remained nearly fixed throughout this period. According to FAOSTAT
(Food and Agriculture Organization of the United Nations) [28], in Greece the mean con-
sumption of bovine meat in 2019 was 14.1 kg/capita/year, for pork 28.9 kg/capita/year
and for poultry 25.6 kg/capita/year.

As noted by Arsène et al., antibiotic residues in food, such as meat, are likely to
induce antibiotic resistance in bacteria and cause allergies and other more severe effects
in humans [29]. This fact, combined with the high positivity in food samples, leads to the
assumption that increased meat consumption may be associated with a risk of antibiotic
contamination. In addition, as the European Medicines Agency (EMA) describes, when
the withdrawal period (“The time that must elapse between the last administration of a
veterinary medicine and the slaughter or production of food from that animal”) is not
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respected then the antibiotic residues in meat can exceed the maximum residue levels
(MRLs) [30].

This study aims at screening the antibiotic residues in bovine, pork and chicken
samples (muscle, liver and kidney) from the local Cretan market, assessing the exposure
of the Cretan population to certain compounds due to meat consumption and ultimately
estimating the risk for human health resulting from the dietary intake of multiple antibiotics
through meat consumption, corrected for the aggregated dietary exposure.

2. Materials and Methods
2.1. Reagents

Methanol (99.9%), formic acid (≥95%) and acetonitrile (≥99.9%) were purchased
from Honeywell. Ethyl acetate (99.8%), NaCl (99.9%), n-hexane (99%) and phosphate
buffer saline (PBS) tablets were from Sigma Aldrich (Saint Louis, MO, USA). Ultrapure
water (Direct-Q 3UV), Na2HPO4 × 2H2O (99.5%) and NaOH (99%) were purchased from
Merck (Darmstadt, Germany). ELISA kits (R3505 RIDASCREEN® Tetracyclin, R3004
RIDASCREEN® Sulfonamide, R3104 RIDASCREEN® Streptomycin, R3113 RIDASCREEN®

Quinolones) were purchased from R-Biopharm (Darmstadt, Germany).

2.2. Sampling

A total of 54 samples of raw meat were randomly collected on November 2018 from
butcheries in Crete, Greece. The samples were collected from the area of Crete but the
animals originated from all over the country. Data concerning the age of the animals and
the country of origin were collected. The collected samples were 16 (29.6%) bovine samples,
20 (37.0%) chicken and 18 (33.3%) pork. The collected samples consisted of 29 muscles
(53.7%), 17 livers (31.5%) and 8 kidneys (14.8%). Out of the 29 samples there were 10 beef
muscles, 6 beef livers, 10 pork muscles, 2 pork livers, 6 pork kidneys, 9 chicken muscles,
9 chicken livers and 2 chicken kidneys. Beef kidneys were not found in any Cretan butcher
shop. The majority of the samples (81.5 %) came from animals of Greek origin. The average
age of cattle was 15.5 ± 3.3, for pork 4.9 ± 2.0 and for chicken 2.3 ± 0.8 months. All samples
were weighted and packed in properly labeled conical centrifuge tubes, sealed and kept at
−20 ◦C, until the analysis.

2.3. Sample Preparation

Total SAs, TCs, STr and QNLs residues were detected using an ELISA test kit. The
samples were cut into small pieces and then homogenized with a homogenizer of Janke &
Kunkel, Ultraturrax T25 (Staufen, Germany). Then, they were placed in 50 mL Falcon tubes
and stored in the freezer (−20 ◦C) until use. The sample preparation and analysis protocols
were instructed from the manufacturer. Briefly, for SAs determination, the homogenized
samples were weighed (1 g pork/bovine, 2 g chicken) and vortexed with organic solvent
(2 mL methanol for pork/bovine, 6 mL acetonitrile/water 84:16 v/v for chicken). The
mixture was centrifuged at 4000 rpm for 10 min and an aliquot of 1.5 mL of supernatant
was evaporated to dryness. The dry residue was reconstituted in 0.5 mL buffer (provided
by the kit) and 1 mL n-hexane was added. An aliquot of 50 µL of the lower phase was used
for analysis. For chicken samples, 4 mL of the supernatant were transferred into a new
centrifuge vial, 2 mL 2 M NaCl and 7 mL ethyl acetate were added and the mixture was
shaken for 10 min. The mixture was centrifuged for 10 min at 3000 rpm (15 ◦C). The whole
supernatant was evaporated to dryness and reconstituted in 1 mL sample buffer and 1 mL
n-hexane. An aliquot of 50 µL of the lower phase was used for analysis.

For STr, 5 g of homogenized sample were mixed with 20 mL of wash buffer, vortexed
for 10 s and shaken for 30 min. The mixture was centrifuged (10 min, 4000 rpm, 25 ◦C), the
supernatant was diluted with wash buffer (1:10) and 50 µL were used for analysis.

For TCs, 1 g of homogenized sample and 9 mL 20 mM PBS buffer pH 7.4 were
transferred into a centrifuge vial and shaken 10 min for extraction. Then, the mixture was
centrifuged (10 min, 4000 rpm, 25 ◦C) and 1 mL of supernatant was transferred and mixed
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with 2 mL of n-hexane. An aliquot of 50 µL of the lower aqueous phase was used per well
in the assay.

For QNLs, 1 g of homogenized sample and 4 mL methanol/water (70/30, v/v) were
mixed vigorously for 10 min and centrifuged (10 min, 4000 rpm, 25 ◦C). The supernatant
was diluted with washing buffer (1:2) and 50 µL were used for analysis.

After samples/standards were loaded, 50 µL of antibody solution were added in each
well and plates were incubated for 1 h at room temperature. The wells were washed with
250 µL buffer three times, 100 µL of substrate/chromogen was added and incubated for
15 min at room temperature in the dark. Finally, 100 µL of the stop solution were added to
each well and the absorbance was measured at 450 nm.

The LC–MS-based methodology for the detection of antibiotics residues was carried
out according to a previously published method [31]. Briefly, 500 µL of EDTA 150 mM were
added in 5 g of homogenized meat and vortexed for 10 minutes. Extraction was carried out
with 5 mL acidified acetonitrile (0.1% formic acid) for 10 minutes and then the mixtures
were placed in the freezer (−20 ◦C) for 30 minutes. Then extracts were centrifuged (10 min,
4000 rpm), the supernatant was collected and the extraction was repeated. The combined
supernatants were evaporated to dryness and the dry residue was reconstituted in 500 µL
of the mobile phase.

2.4. Instrumental Analysis

A Shimadzu LC-MS-2010EV (Kyoto, Japan) was used for the detection and quantifica-
tion of the analytes after the separation of the analytes on a Supelco Discovery C18 column
(25 cm × 4.6 mm, 5 µm) (Sigma-Aldrich, Saint Louis, MO, USA). The oven was set at 30 ◦C
and the flow rate was 0.6 mL/min. The mobile phase was water with 0.1% formic acid
(Solvent A) and acetonitrile with 0.1% formic acid (Solvent B). The mass spectrometer was
coupled with an ESI (electrospray ionization) ion source and the detection was achieved in
selected ion monitoring (SIM) in positive mode. The retention times and m/z ions were for
MBX: 8.66 min and m/z 362.1, for OTC: 8.90 min and m/z 461.15, for ENR: 9.21 min and
m/z 360.1, for DOX: 10.48 min and m/z 445.05, for SDZ: 8.01 min and m/z 251.0/272.9 and
for SMX: 11.11 min and m/z 254.0/275.9, respectively

2.5. Exposure Assessment

Exposure of the general population was assessed for each one of the four antibiotic
groups (SAs, TCs, QNLs and STr). The daily dietary intake of antibiotics derives from the
antibiotic concentration in food consumed and the daily food consumption.

Consumption data for the Greek population for all food items were retrieved from
the FAOSTAT database [28] and 2019 data are represented (Table 1). The estimated daily
intake of antibiotics from meat, and specifically bovine meat, pig meat and poultry meat
(EDImeat) (µg/kg body weight/day), was calculated using the following equation:

EDImeat = Cantibiotic × Wfood/BW (1)

where cantibiotic is the concentration of antibiotics in meat tissue determined in this
study (bovine meat, pig meat and poultry meat), expressed as the median concentration
(µg/kg meat, on fresh weight basis), Wmeat (g meat/capita) represents the daily average
consumption of meat (bovine meat, pig meat and poultry meat) per person and BW is the
mean body weight for an adult consumer (70 kg).
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2.6. Risk Characterization

Risk characterization was conducted following the approach of the source-related haz-
ard quotient (HQ) and hazard index (HI) initially proposed in Goumenou and Tsatsakis [32],
and application of the methodology is presented in details in relevant case studies [33–37].
Using this approach, the source-related hazard quotient (HQ) is assessed, after accounting
for the correction factor for meat (CFm). The CFm expresses the contribution of meat to the
total antibiotic dietary daily intake and it is equal with the ratio of the maximum permitted
daily intake through meat consumption MPDIm (meat consumption × maximum residue
level (MRL) in meat) to the maximum permitted daily intake through the whole diet,
MPDIA (SUM of MPDIi = SUM (foodi consumption × MRL in the foodi), where foodi
represents each food item with considerable contribution in the overall exposure).

MPDIA = ΣMPDIi (2)

CFm = MPDIm/MPDIA (3)

More specifically, CFm = (consumption data for the meat × MRL for meat)/SUM
(consumption data for relevant foodi × MRL in relevant foodi).

The corrected EDImeat is calculated with the formula:

cEDImeat = EDImeat/CFm (4)

ADI and MRL values in relevant food items were extracted from official databases,
such as the European Commission [38] and FAO/WHO [39]. According to FAO/WHO, the
ADI for SAs and STr is 50 µg/kg bw/day whereas the corresponding value for tetracyclines
is 30 µg/kg bw/day. The ADI for quinolones is referred to as 6.2 µg/kg bw/day and
specifically for enrofloxacin, selected as the most conservative value [40]. MRLs for TCs,
SAs and QNLs were set to be 100 µg/kg, whereas for STr the MRL is 600 µg/kg. The
food groups contributing the most to the dietary antibiotic intake we considered from
the FAOSTAT database [28] were: honey, bovine meat, mutton and goat meat, pig meat,
poultry meat, meat, other, offals, edible butter, ghee, cream, eggs, milk—excluding butter,
freshwater fish, demersal fish, pelagic fish, marine fish, other.

Finally, the source-related hazard quotients (HQs) for each antibiotic group (SAs, TCs,
QNLs and STr) were calculated with the following formula

HQ = cEDImeat/ADI (5)

and the HI was calculated as the sum of all HQs.
For considering no risk it should be: CFmi > Hqi, where i is the respective antibiotic

group/antibiotic.

3. Results
3.1. Method Performance

For LC–MS analysis, standard solutions of SMX, SDZ, OTC, DOX, MBX and ENR
were prepared at concentrations of 0, 50, 100, 250 and 500 ng/mL. Samples of blank raw
meat were used for the preparation of spiked samples at concentrations of 0, 10, 25, 50 and
100 µg/kg. The calibration curves were created by the spiked samples and the coefficient of
determination (r2) showed good method linearity for all compounds. The mean accuracy
ranged from 92.2% (SMX) to 108.9% (OTC). Limits of detection (LODs) were calculated
from the signal-to-noise ratio (S/N) which was S/N > 3 and the achieved values ranged
from 0.04 µg/kg (ENR) to 2.54 µg/kg (SDZ) depending on the tissue. Likewise, limits of
quantification (LOQs) were calculated as S/N > 10 and the values ranged from 0.13 µg/kg
(ENR) to 8.38 µg/kg (SDZ) (Table 2).
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Table 2. Analytical parameters for the applied LC–MS protocol.

Linearity (r2) LOD (µg/kg) LOQ (µg/kg) % Accuracy

MBX 0.999 0.06–0.32 * 0.20–1.06 * 101.4
OTC 0.967 0.67–1.43 * 2.21–4.72 * 108.9
ENR 0.999 0.04–0.14 * 0.13–0.46 * 98.5
DOX 0.996 1.02–2.16 * 3.37–7.13 * 94.8
SDZ 0.998 2.54 8.38 96.5
SMX 0.994 1.15 3.80 92.2

* Depends on the tissue.

3.2. Antibiotic Concentrations Determined with LC–MS

The concentrations of antibiotics that were detected in meat samples by LC–MS
are presented in Table 3. The highest median concentrations were detected for DOX at
pork kidney (181.73 µg/kg), and OTC at bovine liver (74.46 µg/kg) and chicken liver
(64.74 µg/kg). SMX, DOX and MBX were not detected in any bovine liver sample although
they were detected in bovine muscle samples. ENR was the one and only antibiotic that
was detected in kidneys from chicken at a median concentration of 2.10 µg/kg and it was
positive in 100% of the samples. The use of ENR in poultry has been banned by the FDA
since 2005 [31], the EU MRL is 100 µg/kg and the detected levels in the present study
are lower. According to the results obtained using the ELISA method, only 2% of the
meat samples were free from antibiotics, 2% were detected with 4 antibiotics and the great
majority of the samples (87%) were detected with 2 to 3 antibiotics (Figure 1).

Table 3. Monitoring results (µg/kg) of antibiotics in all meat samples by LC–MS analysis.

Bovine Pork Chicken

Compounds µg/kg Muscle Liver Muscle Liver Kidney Muscle Liver Kidney

SMX

% Positive 40 0 60 50 33 89 22 0
Mean ± SD 22.42 ± 29.78 ND 12.73 ± 5.44 4.49 7.93 ± 4.34 8.23 ± 6.31 4.75 ± 1.12 ND

Median 9.16 ND 12.39 4.49 7.93 5.58 4.75 ND
Range 4.40–66.95 ND 7.23–21.68 ND 4.86–11.00 4.51–22.60 3.96–5.54 ND

OTC

% Positive 30 83 60 100 100 22 100 0
Mean ± SD 10.1 ± 6.53 77.47 ± 14.37 4.75 ± 2.35 34.80 ± 15.13 10.38 ± 5.13 6.39 ± 1.68 68.57 ± 20.55 ND

Median 8.83 74.46 4.56 34.80 9.08 6.39 64.74 ND
Range 4.31–17.17 66.60–102.06 2.32–8.54 24.10–45.50 5.46–16.69 5.20–7.57 50.16–94.64 ND

DOX

% Positive 20 0 30 50 50 11 11 0
Mean ± SD 13.28 ± 11.50 ND 53.14 ± 45.51 26.98 99.91 ± 84.81 12.17 31.72 ND

Median 13.28 ND 44.10 26.98 181.73 ND ND ND
Range 5.15–21.41 ND 12.84–102.50 ND 12.39–181.73 ND ND ND

ENR

% Positive 20 83 30 50 50 44 33 100
Mean ± SD 3.41 ± 4.24 2.66 ± 1.56 0.56 ± 0.26 1.89 15.63 ± 12.68 3.38 ± 4.20 7.82 ± 1.59 2.10 ± 0.95

Median 3.41 2.66 0.56 ND 21.13 1.88 7.60 2.10
Range 0.41–6.41 0.86–4.69 0.37–0.74 ND 1.12–24.63 0.42–9.34 6.35–9.50 1.43–2.77

MBX

% Positive 20 0 20 0 100 33 22 0
Mean ± SD 14.71 ± 20.42 ND 0.36 ND 0.86 ± 0.23 1.29 9.12 ND

Median 14.71 ND ND ND 0.78 1.29 9.12 ND
Range 0.27–29.15 ND ND ND 0.72–1.33 ND ND ND
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Figure 1. Percentage detection of the investigated antibiotics in all meat samples.

3.3. Antibiotic Concentrations Determined with ELISA

The concentrations of antibiotics that were detected in all meat samples with the ELISA
protocol are presented in Table 4 and Figure 2. SAs were the most frequently detected
antibiotics in all meat samples, as percentage detection frequency ranged from 83% to 100%.
The highest median concentrations were detected in bovine muscles for STr and QNLs
at 182.10 µg/kg and 50.78 µg/kg, respectively, and QNLs in pork kidney at 93.36 µg/kg.
STr were not detected in any muscle and liver sample from pork and chicken, but it was
detected in pork and chicken kidneys. TCs were detected only in pork kidney samples
(50%) at a median concentration of 6.89 µg/kg and muscle and liver from chicken at low
frequencies (11%).

Table 4. Monitoring results (in µg/kg) of antibiotics in all meat samples by ELISA analysis.

Bovine Pork Chicken

Compounds µg/kg Muscle Liver Muscle Liver Kidney Muscle Liver Kidney

SAs

% Positive 90 100 100 100 83 89 100 100
Mean ± SD 7.38 ± 8.68 23.78 ± 30.11 6.31 ± 4.72 47.22 ± 54.88 14.00 ± 15.19 5.17 ± 4.63 4.82 ± 1.55 4.97 ± 0.89

Median 4.20 9.76 4.40 47.22 3.17 3.60 4.36 4.97
Range 2.52–30.04 2.10–77.51 2.84–18.9 8.41–86.03 2.51–31.89 1.78–15.70 2.54–7.18 4.35–5.60

STr

% Positive 30 17 0 0 17 0 0 50
Mean ± SD 169.76 ± 29.94 92.47 ND ND 151.71 ND ND 53.44

Median 182.10 ND ND ND ND ND ND ND
Range 135.62–191.55 ND ND ND ND ND ND ND

TCs

% Positive 0 0 0 0 50 11 11 0
Mean ± SD ND ND ND ND 5.92 ± 1.77 1.97 4.05 ND

Median ND ND ND ND 6.89 ND ND ND
Range ND ND ND ND 3.88–6.99 ND ND ND

QNLs

% Positive 20 0 0 0 50 44 33 100
Mean ± SD 50.78 ± 40.19 ND ND ND 146.82 ± 94.00 52.92 ± 46.54 20.82 ± 10.39 13.44 ± 2.09

Median 50.78 ND ND ND 93.36 45.56 20.84 13.44
Range 22.36–79.20 ND ND ND 91.74–255.35 12.76–107.80 10.42–31.20 11.96–14.92
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3.4. Exposure Assessment and Risk Characterization

For exposure assessment, we calculated the EDI based on the levels of antibiotics
(SAs, TCs, QNLs and STr) in meat samples of three different kinds (pork, bovine and
chicken). The daily consumptions per person for Greeks are 41.0 g for bovine, 79.1 g for
pork and 70.2 g for poultry meat, according to FAOSTAT. The body weight was considered
to be 70 kg [41]. Our results were presented for both methods of analysis used. The EDI
through meat consumption (EDIm) of SAs, TCs, QNLs and STr for the Greek population
are presented in Table 5 for ELISA values and Table 6 for LC–MS values determined in each
kind of meat and total. EDIm did not exceed ADI values either by the type of antibiotic.

Table 5. Estimation of the corrected exposure (cEDI) and hazard quotients (HQs) by ELISA detected
levels, ADIs and calculated CFs *.

Quinolones (QNLs) Sulfonamides (SAs) Streptomycines (STr)

EDI cEDI HQ EDI cEDI HQ EDI cEDI HQ

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

Bovine Meat 0.0298 0.1444 0.0233 0.0025 0.0119 0.0002 0.1067 0.2374 0.0047
Pig Meat 0 0 0 0.0533 0.2589 0.0052 0 0 0

Poultry Meat 0.0457 0.2216 0.0357 0.0036 0.0175 0.0004 0 0 0

cEDIm 0.3659 0.2883 0.2374

HI 0.0590 0.0058 0.0047

HI total 0.078

* CFQNLs = 0.2061, CFSAs = 0.2061, CFStr = 0.4494, ADIQNLs = 6.2, ADISAs = 50, ADITCs = 30, ADIStr = 50 µg/kg bw.
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Table 6. Estimation of the corrected exposure(cEDI) and hazard quotients (HQs) by LC-MS detected
levels (DL), ADIs and calculated CFs *.

Quinolones (QNLs) Sulfonamides (SAs) Tetracyclines (TCs)

ENR MBX SMX OTC DOX
EDI cEDI HQ EDI cEDI HQ EDI cEDI HQ EDI cEDI HQ EDI cEDI HQ

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

µg/kg
bw/day

Bovine Meat 0.0020 0.0097 0.0016 0.0086 0.0418 0.0067 0.0054 0.0260 0.0005 0.0051 0.0162 0.0005 0.0078 0.0243 0.0008
Pig meat 0.0006 0.0031 0.0005 0 0 0 0.0140 0.0679 0.0014 0.0052 0.0161 0.0005 0.0498 0.1559 0.0052

Poultry Meat 0.0019 0.0091 0.0015 0.0013 0.0063 0.0010 0.0056 0.0271 0.0005 0.0064 0.0200 0.0007 0 0 0

HI 0.0113 0.0024 0.0078

HI total 0.021

* CFQNLs = 0.2061, CFSAs = 0.2061, CFTCs = 0.3196, CFStr = 0.4494, ADIQNLs = 6.2, ADISAs = 50, ADITCs = 30,
ADIStr = 50 µg/kg bw.

Risk characterization methodology, as described by Goumenou and Tsatsakis [31],
was applied, in order to assess the risk of exposure to antibiotics (Table 1). Official data
were used for the needed calculations. For the risk assessment, we calculated the HQ for
each kind of meat and antibiotic (Tables 5 and 6).

For the ELISA method, the HI was calculated to be 0.059 for QNLs, 0.006 for SAs and
0.005 for STr, lower than the corresponding ADI. We had no detected levels for TCs in
the ELISA method. LC–MS results led to the calculation of the HI as 0.011 for ENR and
MBX, 0.002 for SMX and 0.0078 for OTC and DOX, still far lower than the corresponding
ADIs. Admittedly, there is a big difference between the HI of the two methods applied,
proportional to the difference in levels and EDIs.

Risk characterization parameters presented in Tables 7 and 8 for both methods, reveal
that the ratios of cEDIm to ADI are well below the respective CFs for each antibiotic
group indicating no risk for the Greek population, with higher values determined for
quinolones by ELISA (Table 7). More specifically, normalized results with CF equal to 1,
reach a cEDIm/ADI ratio of 0.2863 corresponding to 28.63% risk, expressing the HQ as a
percentage of CF.

Table 7. Hazard characterization parameters (by ELISA analysis).

Sulfonamides
(SAs)

Tetracyclines
(TCs)

Quinolones
(QNLs)

Streptomycines
(STr)

cEDIm (µg/kg bw/day) 0.288 0.250 0.366 0.237
ADI (µg/kg bw/day) 50.000 30.000 6.200 50.000
HQ (=cEDIm/ADI) 0.006 0.008 0.059 0.005

MPDIm (µg/kg bw/day) 0.272 0.544 0.272 1.631
MPDIA (µg/kg bw/day) 1.319 1.701 1.319 3.629

CF 0.206 0.320 0.206 0.449

Risk % 2.798 2.605 28.637 1.111

Table 8. Hazard characterization parameters (by LC–MS analysis).

Quinolones (QNLs) Tetracyclines (TCs) Sulfonamides
(SAs)

ENR MBX OTC DOX SMX

cEDIm (µg/kg bw/day) 0.022 0.048 0.052 0.180 0.121
ADI (µg/kg bw/day) 6.200 6.200 30.000 30.000 50.000
HQs (=cEDIm/ADI) 0.004 0.008 0.002 0.006 0.002

HQ 0.011 0.008 0.002

MPDIm (µg/kg bw/day) 0.272 0.544 0.272
MPDIA (µg/kg bw/day) 1.319 1.701 1.319

CF 0.206 0.320 0.206

Risk % 5.478 2.426 0.970
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4. Discussion

The results of the present study are compared with similar data in literature in Table 9. A
study conducted in southern Italy determined OTC levels in beef muscle and liver samples,
using LC–MS [42]. Although the number of samples was greater than the present study, very
low frequencies were reported (3% in muscle, 7% in liver). The more positive liver samples
compared to muscle and the higher liver concentrations of 31.5 µg/kg (23.9–40.2 µg/kg)
compared to muscle concentrations of 15.9 µg/kg (15.0–28.6 µg/kg), show a similar trend that
was observed in the present study (83% positive bovine liver samples, range: 66.60–102.1µg/kg
and 30% bovine muscle samples, range: 4.31–17.17 µg/kg).

Higher frequencies as well as higher concentrations may be due to inappropriate
use of antibiotics and may depend on the rate of drug administration and amounts used.
Oxytetracycline is used for pneumonia and some mouth infections. It has been reported that
disease burden can vary between seasons depending on humidity [43]. Furthermore, the
rate of metabolism of drugs from the body depends on weather and seasonal variations [44].
It should be noted that the seasons when the samples were collected for the present study
were autumn and winter.

Panzenhagen et al. screened ENR in muscles, livers and kidneys from chickens with
liquid chromatography [45]. Based on their results, 23% of the muscle samples (mean:
12.3 µg/kg), 17% of liver samples (mean: 45.4 µg/kg) and 17% of kidney samples (mean:
17.4 µg/kg) were positive for ENR. Although higher frequencies of detection (44% in
muscle, 33% in liver and 100 in kidney samples) were depicted in the current study, the
detected mean values of all type of samples were much lower than those reported in the
above study.

In South Africa, Ramatla et al. measured sulfonamide residues in pork samples
(muscle, liver and kidney) using the ELISA [46]. No sulfonamides were detected in the
pork muscle samples, whereas 9% of pork liver samples and 36% of pork kidney samples
were positive. The mean concentrations were 58.5 µg/kg (48.2–69.9 µg/kg) and 72.7 µg/kg
(52.8–92.8 µg/kg), respectively. The results of the present study are in agreement with
Ramatla et al., as higher concentrations of SAs in pork liver/kidney were found compared
to pork muscle. In contrast with the literature, higher detection frequencies were found in
the present study and particularly all samples of pork muscle were positive.

Table 9. Comparison between current results and data from other monitoring studies in literature.

Reference Country Method N Samples Compounds Mean
(µg/kg) Range % Positive

Samples

Present study Greece LC–MS 16 beef Muscle OTC 10.1 4.3–17.2 30
Liver 77.5 66.6–102.1 83

Cammilleri et al., 2019 [42] Italy LC–MS 369 beef Muscle OTC 15.9 15.0–28.6 3
Liver 31.5 23.9–40.2 7

Present study Greece ELISA 18 pork Muscle SAs 6.3 2.8–18.9 100
Liver 47.2 8.4–86.0 100

Kidney 14.0 2.5–31.9 83
20 chicken Muscle 22.9 1.8–157.3 89

Liver 4.8 2.5–7.2 100
16 beef Muscle 7.4 2.5–30.0 90

Liver 23.8 2.1–77.5 100
Ramatla et al., 2017 [46] Africa ELISA 50 pork Muscle SAs 0 - 0

Liver 58.5 48.2–69.9 9
Kidney 72.7 52.8–92.8 36

50 chicken Muscle 47.5 32.5–65.9 12
Liver 73.4 45.8–81.6 28

32 beef Muscle 65.3 - 7
Liver 51.6 19.8–87.9 29

Present study Greece LC–MS 20 chicken Muscle ENR 3.4 0.4–9.3 44
Liver 7.8 6.4–9.5 33

Kidney 2.1 1.4–2.8 100
Panzenhagen et al., 2016 [45] Brazil LC–MS 72 chicken Muscle ENR 12.3 0.96–35.8 23

Liver 45.4 - 17
Kidney 17.4 - 17

Present study Greece ELISA 16 Beef Muscle STr 169.8 135.6–191.5 30
Abdullah et al., 2012 [47] Iraq ELISA 23 Beef Muscle STr 59.6 26.0–282.2 61
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In a study in Iraq, STr levels in 23 beef muscle samples were determined by ELISA [47].
A total of 61% of the samples were positive with a mean concentration of 59.60 µg/kg
(26.0–282.2 µg/kg). However, in our study the results differ significantly as 30% of the
samples were positive with a mean concentration of 169.76 µg/kg (135.62–191.5 µg/kg).

The observed differences between the results of the present study and others in
literature [46,47] may be due to the way that antibiotics were administered, for example
intramuscularly, intravenously or administration via food and drinking water. Furthermore,
the long-term use of antibiotics before sampling and the short time between last antibiotic
administration and slaughter may be significant parameters for the detection rate of the
compounds. According to Yamaguchi et al. [48], the sampling period affected significantly
the detected concentrations of antibiotics in chicken samples. Higher or lesser amounts
were detected during five separate occasions.

Exposure and risk assessment analysis in the present study showed that the antibiotics
levels in chicken, pork and beef from the Cretan market pose no actual risk for human health.
To the best of our knowledge, this is the first study for antibiotics in meat from the Greek
market although there are others similar in literature. A recent work by Oyedeji et al. [49]
presented the concentrations of nineteen antibiotic residues in imported poultry products
(turkey muscle and gizzard and chicken muscle) in Nigeria. The risk assessment analysis
with the conventional method showed that the dietary exposure to antibiotics per meat
type was within safe levels for adults and children. Vragovic et al. examined streptomycin
and tetracyclines presence in meat samples of the Croatian market [50]. Similar to the
present study, EDI was significantly higher for streptomycin (5.56 µg/person/day or
0.080 µg/kg bw/day) than TCs (0.21 µg/person/day or 0.003 µg/kg bw/day). The same
trend was observed in our results too, as performing the LC–MS method for TCs led to EDI
approximately two orders of magnitude lower than STr.

In 2017, Wang et al. investigated livestock and poultry meat samples from Shanghai
for TCs, QNLs and SAs presence [51]. Estimated daily exposure dose was below 1 µg/kg
bw/day, whereas according to the authors aquatic products were a more importance
source of these antibiotics than meat or milk. Kyriakides et al. examined the differences in
exposure to antibiotics between children and adolescents in Cyprus from the consumption
of pork meat for the years from 2012 to 2017 [52]. EDI values were far below ADI and
notably higher in children aged 6–9 years old compared to adolescents aged 10–17 years
old. All HI values were below 0.056 and indicated low risk exposure for all participants.

A different approach was followed by Zhang et al. [53], who calculated EDI from
the urinary levels of the excreted antibiotics to estimate initial exposure of the Chinese.
They found that 14.7% of the children had HI greater than 1 as well as 23.6% of the parents
and 11.8% of the grandparents, with ciprofloxacin being the major contributor to exposure
among all participants. Lately, researchers aimed to describe the antibiotic exposure in
Shanghai primary school students [54]. Fluoroquinolones, lincosamides, sulfonamides
and tetracyclines were examined and the totally daily exposure dose was found to be
below 1 µg/kg bw/day. Finally, the study concluded that intake frequency of white meat
(poultry meat) is positively associated with TCS and intake frequency of dairy products
with enrofloxacin (QNLs).

5. Conclusions

To the best of our knowledge, this is the first study that screened antibiotic residues
in bovine, pork and chicken samples (muscle, liver and kidney) from the Greek Cretan
market. Only 2% of the samples were free from antibiotics, 2% were detected with 4 an-
tibiotics and the great majority of the samples (87%) were detected with 2 to 3 antibiotics.
The risk assessment analysis indicated that there is no risk from beef, pork and chicken
consumption corrected for the aggregated exposure. Although intake was estimated to be
low and exposure can be considered safe, the dietary habits among consumers vary and
increased consumption of several foods that are burdened with antibiotics can raise the
risk. Furthermore, low and long-term exposure can have severe effects for gut microbiota
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which in turn is related with severe consequences for health and diseases that sometimes
are not directly correlated with antibiotics exposure.

6. Limitations

In the current study, we aimed to determine the levels of four groups of antibiotics in
meat samples and to estimate the dietary exposure to antibiotics from meat consumption
as well as the potential hazard for human health. Although we tried to address the
issue of aggregated exposure through the applied methods, we still have not approached
the cumulative exposure issue. Additionally, the local market sampling as well as the
consumption data, which were derived from one specific database, limited the scope of
objectivity. Finally, each of the two applied methods had its own limitations; the ELISA
method provided us with concentration data for a whole group of compounds. In contrast,
the LC—MS method offered results for specific compounds, but it was not possible to
detect all the compounds of each group.
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Abstract: Bisphenol S (BPS) affects terminal folliculogenesis by impairing steroidogenesis in granu-
losa cells from different species. Nevertheless, limited data are available on its effects during basal
folliculogenesis. In this study, we evaluate in vitro the effects of a long-term BPS exposure on a
model of basal follicular development in a mono-ovulatory species. We cultured ovine preantral
follicles (180–240 µm, n = 168) with BPS (0.1 µM (possible human exposure dose) or 10 µM (high
dose)) and monitored antrum appearance and follicular survival and growth for 15 days. We mea-
sured hormonal secretions (oestradiol (at day 13 [D13]), progesterone and anti-Müllerian hormone
[D15]) and expression of key follicular development and redox status genes (D15) in medium and
whole follicles, respectively. BPS (0.1 µM) decreased oestradiol secretion compared with the control
(−48.8%, p < 0.001), without significantly impairing antrum appearance, follicular survival and
growth, anti-Müllerian hormone and progesterone secretion and target gene expression. Thus, BPS
could also impair oestradiol secretion during basal folliculogenesis as it is the case during terminal
folliculogenesis. It questions the use of BPS as a safe BPA substitute in the human environment.
More studies are required to elucidate mechanisms of action of BPS and its effects throughout basal
follicular development.

Keywords: ovary; endocrine disruptors; follicular growth; hormonal secretions; gene expression;
bisphenols; plasticiser; ewe

1. Introduction

Folliculogenesis is a long and discontinuous developmental process that leads to the
ovarian follicle growth and that requires constant tight communications between oocyte
and somatic follicle cells (granulosa, cumulus and theca cells) [1,2]. From a functional
perspective, follicular development is divided into two successive phases: basal follicu-
logenesis corresponds to the initial development of primordial follicles released from the
ovarian reserve to an antral follicle. It is a gonadotrophin hormone independent phase
during which granulosa cells have an intense mitotic activity and the ability to produce
Anti-Müllerian Hormone (AMH) and some steroid hormones. In contrast, terminal follicu-
logenesis, which leads to ovulation of a mature and competent oocyte, is strictly dependent
on Follicle-Stimulating Hormone (FSH) and Luteinising Hormone (LH) presence. During
this phase, granulosa cell proliferation and AMH production decrease, whereas steroidoge-
nesis activity drastically increases. Folliculogenesis is regulated by endogenous growth
factors, cytokines, gonadotropins and steroid hormones as well as exogenous factors, such
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as nutrients and environmental factors [3]. Thus, several environmental pollutants (e.g., the
pesticide dichlorodiphenyltrichloroethane (DDT), the fungicide vinclozolin, the synthetic
oestrogen Diethylstilbestrol (DES), the plasticiser bisphenol A (BPA), etc.) that present
endocrine-disrupting properties can indeed affect female fertility by altering ovarian devel-
opment and functions [4].

Over the last 20 years, BPA has become one of the most studied endocrine disrup-
tors due to its massive worldwide use in many everyday plastic materials, mainly in
polycarbonate plastics (for food containers, cosmetics, electronics, etc.) and epoxy resins
(as a protective coating for food cans, pipes, floors and as composite in paints, etc.) [5].
Therefore, BPA human exposure occurs mainly through contaminated diet [6,7] but also
through inhalation of plastic dust [8,9] and percutaneous absorption [10,11]. Based on
its endocrine-disrupting properties and its possible involvements in the development of
human pathologies (metabolic and reproductive disorders and cardiovascular diseases,
among others) [12–16], BPA use has been regulated in some countries from the European
Union and in Canada [17,18]. Consequently, BPA has been replaced with several structural
analogues, with bisphenol S (BPS) being the most used [19,20].

Similar to BPA, BPS is nowadays detected in the environment [9,19] and in several
human body fluids and tissue, including urine [21–23], plasma or serum, [24,25], hair [26]
and in follicular fluid [27]. Thus, BPS can be in contact with ovarian follicular cells and can
induce female mammalian reproductive dysfunctions [28,29]. Indeed, BPS altered oocyte
quality and/or embryo development in sows [30], cows [31,32], mice [33–35] and ewes [36].
Furthermore, BPS impaired ovarian steroidogenesis in vivo or in vitro from granulosa
cells of both mono-ovulatory species (bovine [31], ovine [37] and human [27]) and poly-
ovulatory species (swine [38,39] and rodents [40,41]). Most of these studies have focussed
on terminal folliculogenesis and have highlighted differences in BPS effects depending
on species, BPS doses and exposure time. There are few studies on the effects of BPS on
basal folliculogenesis. These studies have been conducted in rodent models after in vivo
BPS exposure; one of them has shown an increased number of primordial follicles [35] and
others have reported a decreased number of preantral and/or antral follicles [33,35,42,43].
These data suggest a potential action of BPS on primordial follicle and antrum formation in
rodents, but no data are available in other species or in mono-ovulatory species in particular.

The mechanisms of action of bisphenols are not yet fully understood in the gonads.
Studies have shown that bisphenols could interact with several receptor-mediated signalling
pathways in different cell types—for example, nuclear Estrogen Receptors (ERα and ERβ),
Estrogen-Related Receptors (ERRγ) and Aryl hydrocarbon Receptor (AhR) [44–47].
They could also act by altering DNA methylation in different cells [48–51]. Finally, bisphe-
nols could also enhance oxidative stress in different cells [52–54], including granulosa
cells [38,55]. However, to date there is scarce information regarding the potential mecha-
nisms of action of BPS during basal folliculogenesis.

We hypothesized that BPS could impair basal follicular growth and antrum appearance
in a mono-ovulatory species. We aimed then to study BPS effects on follicular development
and hormonal secretions during basal folliculogenesis (especially in the antrum-appearance
phase), as it has already been described for terminal folliculogenesis. We chose the ewe
as a study model because its ovarian development and folliculogenesis duration present
similarities with those of the human species [2,56,57]. Thus, we studied the effects of two
concentrations of BPS on ewe basal follicular development in vitro, especially on follicular
growth and survival, antral cavity appearance, follicle hormonal secretions (oestradiol,
progesterone and Anti-Müllerian Hormone (AMH)) and the expression of key genes in
follicular development and redox status.
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2. Materials and Methods

Unless stated otherwise, all culture media and chemicals used in the present study
were purchased from Merck Sigma-Aldrich (Saint-Quentin-Fallavier, France).

2.1. Collection of Ovaries and Isolation and In Vitro Culture of Preantral Follicles

Over 300 ovaries were recovered from peri-pubertal ewes (over 150 animals) at a local
commercial slaughterhouse to collect all 168 healthy follicles used in the seven independent
experiments of this study. Ovaries were washed with sterile 0.9% NaCl supplemented with
52.35 µM gentamicin, and then transported to the laboratory within 2 h after collection
in tubes containing HEPES-buffered tissue culture medium 199 supplemented with 6 µM
bovine serum albumin (BSA) and 52.35 µM gentamicin (TCM199+). The ovaries were
cut into thin slices using a sterile surgical blade. These slices were incubated at 37 ◦C for
1 h in a cell dissociation phosphate-buffered saline (PBS)-based solution containing 0.1%
collagenase IA (m/v) and 0.01% DNase I (m/v), and then in a stop solution of PBS containing
0.3 mM BSA. After rinsing in warm TCM199+ medium, follicles were mechanically isolated
from the cortical ovary slices by micro-dissection under a stereomicroscope using two
30-gauge needles fitted to 1 mL syringe barrels. Subsequently, the follicles were stored
in Petri dishes containing TCM199+ medium. On this day 0 (D0), the initial diameter of
all follicles was measured on the perpendicular axes with a stereomicroscope equipped
with a calibrated ocular micrometer. Only healthy preantral follicles between 180 µm and
240 µm in diameter, with no apparent damage to the basal membrane, no visible signs of
degeneration (darkness of the oocyte and follicular cells) and no antral cavity were selected
for culture.

The follicle culture was adapted from a previously described protocol [58]. The culture
medium (MEM+) was prepared the day prior to the culture (or medium renewal) with
sodium-bicarbonate-buffered Minimum Essential Medium Eagle (MEM; alpha modifica-
tion) supplemented with 2 mM glutamine, 2 mM hypoxanthine, 0.28 mM ascorbic acid
and ITS+ Universal Culture Supplement Pre-mix (1.08 µM insulin, 81.1 nM transferrin,
48.5 nM selenium, 18.8 µM BSA and 19.1 µM linoleic acid; Corning, D. Dutscher, Issy-les-
Moulineaux, France) and with different concentrations of BPS (0, 0.1 or 10 µM). The 0.1 µM
dose was chosen, because such concentrations were reported in human biological fluids
(urine and plasma) for some people in several studies [19,25,59]. Thus, we decided to name
this concentration a possible human exposure dose. The 10 µM dose, defined as a high
dose, was tested as a reference to the concentration used in several in vitro studies that
observed BPS effects with it for acute exposure in ovarian follicular cells [27,37]. On the
other hand, all conditions in our study (including the control condition) contained the same
ethanol concentration (1/10,000 = 0.01%). For each culture, Petri dishes containing droplets
of 100 µL of culture medium covered with mineral oil were pre-equilibrated overnight at
38.5 ◦C in 5% CO2 in air under 95% relative humidity. Isolated measured healthy follicles
were washed twice in TCM199+ and then randomly allocated into the three treatment
groups. Follicles were individually placed into each 100 µL droplet and incubated for
up to 15 days. At days D6 and D13, 50% of the culture medium in each droplet was
replaced with fresh pre-incubated medium, and the medium removed from each droplet
was individually frozen at −20 ◦C for the hormone assays, as described below. The 15-day
culture period was optimal for studying in vitro basal follicular growth of early antral
follicles and the antrum appearance in this in vitro model [58]. Indeed, in this model, the
antral cavity appears in follicles with a diameter ≥320 µm, a size obtained after 6 days of
culture. Furthermore, at D15 the follicles reach a size of about 550 µm and about 80% of
these follicles have an antrum.
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2.2. Morphological Evaluation of Follicles

Morphological evaluation occurred at D6, D13 and D15, while manipulating follicles
on a heating plate (38 ◦C) for the least amount of time. Follicle morphology was assessed
on seven independent experiments (each with eight follicles per condition) using three
criteria: (1) follicular survival, (2) follicular growth determined by their diameter and (3) the
formation of an antral cavity, defined as a visible, translucent area within the follicular cell
mass. These parameters were measured only in healthy follicles: a follicle was considered
healthy when it was an intact follicle (no breakdown of the basal lamina and extrusion of
the oocyte) with a light oocyte and a measurable growth within one week.

2.3. In Vitro Follicular Hormonal Secretion Assays

For hormonal quantification, 50 µL and 70 µL of culture medium on the 100 µL of
each droplet (in which individual follicle was cultured) was recovered at D13 and D15
respectively from each alive follicle, meaning it had maintained structural integrity and
growth. The concentrations of AMH, oestradiol and progesterone in the culture medium
were determined for 32–37 individual follicles per treatment at either D13 or D15 (as
described below).

2.3.1. Anti-Müllerian Hormone

The AMH concentration in the culture media at D15 was determined in 50 µL of
culture medium diluted to 1/15 (in MEM+) using the AMH Gen II ELISA kit (Beckman
Coulter, Villepinte, France), which had previously been validated for the analysis of ovine
samples [60]. In our working conditions, the limit of detection of the assay was 78 pg/mL
and the intra-assay coefficients of variation (CV) were 11.1% for an AMH concentration of
78 pg/mL and <5% for AMH concentrations >1250 pg/mL.

2.3.2. Oestradiol

The oestradiol concentration in the culture media at D13 was determined using the
E2-EASIA immunoassay kit (DIAsource, Louvain-la- Neuve, Belgium) from the 50-µL
aliquots of culture medium, diluted to 1/5 or to 1/10, as described previously [58]. For the
present assay, the limit of detection was 3 pg/mL and the intra-assay CVs were <3.5% for
oestradiol concentrations ranging from 3 to 100 pg/mL.

2.3.3. Progesterone

The progesterone concentration was determined in 50 µL of undiluted culture medium
at D15 using a previously described ELISA protocol [61]. The limit of detection of the assay
was 0.25 ng/mL for a 10 µL deposit volume and the intra-assay CVs averaged 7.1% for
progesterone concentrations ranging from 0.25 to 32 ng/mL.

2.4. Gene Expression Analysis
2.4.1. RNA Extraction and Reverse Transcription

A total of 64 alive follicles at D15 (from four independent experiments, 18–24 follicles
per conditions) were used for the evaluation of gene expression and individually stored in
20 µL lysis buffer for RNA extraction at −80 ◦C until use. The diameter of these follicles
was 300–870 µm; 46 presented an antrum and 18 did not.

Total RNA was extracted using the Nucleospin RNA XS kit (Macherey Nagel, Hoerdt,
France), according to the manufacturer’s instructions, including on-column DNase treat-
ment. Total RNA was quantified using a NanoDrop ND-1000 spectrophotometer (Nyxor
Biotech, Paris, France). Reverse transcription was performed with 50 ng of total extracted
follicle RNA using the Maxima First Strand cDNA Synthesis Kit (Thermo-Fisher Scientific,
Illkirch-Graffenstaden, France), according to the manufacturer’s recommendations.

186



Toxics 2022, 10, 437

2.4.2. Quantitative PCR Amplification

Real time polymerase chain reaction (qPCR) was performed on 2 ng of cDNA, as de-
scribed previously [62]. The expression of 19 genes (Table 1) was assessed; they are involved
in follicle functionality (Cytochrome P450 Family 19 Subfamily A Member 1 (CYP19A1),
Estrogen Receptor 1 (ESR1), Estrogen Receptor 2 (ESR2), Follicle-Stimulating Hormone Re-
ceptor (FSHR), Hydroxy-Delta-5-Steroid Dehydrogenase (HSD3B1), Bone Morphogenetic
Protein 15 (BMP15) and Aryl Hydrocarbon Receptor (AHR), or involved in redox status
(Catalase (CAT), Cytochrome C Oxidase Subunit 4I1 (COX4I1), Cytochrome C Oxidase
Subunit 5B (COX5B), Glutathione Peroxidase 3 (GPX3), Glutathione Peroxidase 8 (GPX8),
NADH Dehydrogenase Ubiquinone 1 Beta Subcomplex Subunit 4 (NDUFB4), NADH De-
hydrogenase Ubiquinone 1 Beta Subcomplex Subunit 5 (NDUFB5), NADH Ubiquinone
Oxidoreductase Core Subunit V2 (NDUFV2), NADH Ubiquinone Oxidoreductase Complex
Assembly Factor 2 (NDUFAF2), Succinate Dehydrogenase Complex Flavoprotein Subunit
A (SDHA), Superoxide Dismutase 1 (SOD1) and Superoxide Dismutase 2 (SOD2)). The effi-
ciency of the primers (Table 1) and the standard curve was determined for each gene. The
expression level of each candidate gene was normalized using the geometric mean of two
housekeeping genes (ribosomal protein L19 (RPL19) and beta-actin (ACTB)). The relative
amounts of gene transcripts (R) were calculated according to the following equation:

R =
(E−Ct gene

gene )(
geometric mean (E−Ct RPL19

RPL19 ; E−Ct ACTB
ACTB )

) (1)

where E is the primer efficiency of each primer pair and Ct is the cycle threshold.
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2.5. Statistical Analysis

GraphPad Prism 9 (Version 9.3.1, GraphPad Software, Ritme, Paris, France) was
used to carry out statistical analyses. Except for the results for the follicular survival
and antrum appearance data that are presented as percentages, all results are expressed
as mean +/− standard error of the mean (SEM). The data were tested for normality
and the homogeneity of variances with the D’Agostino and Pearson test and the Brown–
Forsythe test, respectively. Based on these tests, the effects of treatments on oestradiol,
progesterone and AMH secretions were analysed with the non-parametric Kruskal–Wallis
test followed by a Dunn’s multiple comparison post hoc test when a significant global
difference was observed. The effects of treatment on follicular diameter growth and
gene expressions were analysed with the parametric Brown–Forsythe ANOVA test, and
when a significant global difference was observed, Dunnett’s T3 multiple comparison test
was executed. Nonparametric Spearman correlation coefficients were used to assess the
correlation between gene expressions, follicle diameter at D15, antrum presence at D15,
oestradiol secretion at D13 and progesterone and AMH secretions at D15. Correlations
were considered significant when |r| ≥ 0.70 and p < 0.0001. Lastly, the differences in the
percentage of follicles that presented an antrum were compared between experimental
groups at D6, D13 and D15 using a multiple logistic regression analysis. The Kaplan–
Meier survival curves were drawn for the three conditions throughout the experiment and
compared using the log-rank (Mantel–Cox) test. Differences were considered significant
when p < 0.05.

3. Results
3.1. BPS Effects on Ovine Follicular Survival, Follicular Growth and Antrum Appearance

The percentage of control alive follicles decreased from 85.7% at D6, to 71.4% at D13
and to 67.9% at D15 (Figure 1). The Kaplan–Meier survival analysis showed that the BPS 0.1
and 10 µM survival curves were not significantly different from the control one (Figure 1).
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Figure 1. In vitro effects of bisphenol S (BPS) on ovine follicular survival. The survival of each follicle
was assessed after 6, 13 and 15 days of treatment with or without BPS 0.1 µM or BPS 10 µM. A follicle
was considered alive when there was no breakdown of the basal lamina and no extrusion of the
oocyte. The oocyte had to be clear, and the follicular growth had to be measurable within 1 week.
The results are representative of seven independent cultures with eight replicates per condition
(n = 56 per condition). The results are expressed as percentage of alive follicles and the Kaplan–Meier
survival curves obtained for the three conditions were compared using the Log-rank (Mantel–Cox)
test. Differences were considered significant when p < 0.05.

189



Toxics 2022, 10, 437

At the beginning of the culture (D0), the diameter of the follicles (Figure 2A) was
similar in the three experimental groups (216.1 +/− 2.7 µm for control, 214.6 +/− 2.6 µm
for BPS 0.1 µM and 216.3 +/− 2.3 µm for BPS 10 µM, p = 0.88) and they presented no antral
cavity (Figure 2B). After 6, 13 and 15 days of culture, the control follicles were 310 +/−
8.0 µm, 473.5 +/− 16.0 µm and 532.4 +/− 20.2 µm in diameter, respectively. There was
no significant difference in the follicular diameter growth between conditions at any time
point (Figure 2A).

The percentage of control alive follicles with an antral cavity increased from 4.2% at
D6, to 72.5% at D13 and to 81.6% at D15 (Figure 2B). Neither BPS treatment affected the
percentage of follicles presenting an antrum for each measurement day.
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Figure 2. In vitro effects of bisphenol S (BPS) on ovine follicular growth and antrum appearance.
The diameter evolution (A) and the antral cavity appearance (B) for each alive follicle were assessed
after 6, 13 and 15 days of treatment with or without BPS 0.1 µM or BPS 10 µM. The results are
representative of seven independent cultures with eight replicates per condition (n = 56 per condition
at day 0, n = 48–53 according to the conditions at day 6, n = 40–42 according to the conditions at day
13 and n = 38–39 according to the conditions at day 15). For the diameter evolution, the results are
expressed as mean +/− SEM and were analysed with a Brown–Forsythe ANOVA test at each day of
measure (A). For the antrum appearance, the results are expressed as the percentage of alive follicles
with an antrum and were analysed with a logistic regression at each day of measure (B). Differences
were considered significant when p < 0.05.
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3.2. BPS Effects on Ovine Follicular Hormonal Secretions: Oestradiol, Progesterone and AMH

Hormonal secretions were measured in spent culture media of alive follicles with BPS
(0, 0.1 and 10 µM) for oestradiol after 13 days (Figure 3A) and for progesterone and AMH
after 15 days (Figure 3B,C).

After 13 days of culture, the oestradiol concentration in the control culture medium was
108.3 +/− 11.8 pg/mL (Figure 3A). BPS 10 µM had no effect on the oestradiol concentration,
but BPS 0.1 µM decreased its secretion by 48.8% compared with the control group (p = 0.0004,
Figure 3A).

After 15 days of treatment, the progesterone and AMH concentrations in the control
culture media of control group were 177.6 +/− 0.007 pg/mL (Figure 3B) and 13,943 +/−
1854 pg/mL (Figure 3C), respectively. There were no differences in these hormone levels
among the three experimental groups (Figure 3B,C).
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alive follicles that were analysed for gene expression, the follicular diameter at D15 was 
similar for all groups: 509.4 +/− 29.0 μm, 514.1 +/− 26.9 μm and 479.6 +/− 29.4 μm for the 

Figure 3. In vitro effects of bisphenol S (BPS) on ovine follicular hormonal secretions. Ovine follicles
were cultured for 15 days with or without BPS (0.1 or 10 µM). Hormonal secretions were measured
by ELISA in spent culture media of alive follicles after 13 days (D13) of treatment for oestradiol
(A) and after 15 days (D15) for progesterone (B) and AMH (C). The results are representative of
six independent cultures with eight replicates per condition at the beginning of the experiment for
oestradiol (A), n = 34–37 alive follicles according to the conditions at day 13 and n = 32–33 according
to conditions for progesterone (B) and AMH (C) at day 15. The data are expressed as mean +/−
SEM relative to controls and were analysed with a Kruskal–Wallis test followed by a Dunn’s multiple
comparison post hoc test. Bars without at least one common letter (a,b) are significantly different
(p < 0.05).

3.3. BPS Effects on Ovine Basal Stage Gene Expressions after 15 Days Treatment

The expression of seven genes involved in follicular development (CYP19A1, ESR1,
ESR2, FSHR, HSD3B1, BMP15 and AHR) and 12 genes involved in redox status (CAT,
COX4I1, COX5B, GPX3, GPX8, NDUFB4, NDUFB5, NDUFV2, NDUFAF2, SDHA, SOD1
and SOD2) was analysed in ovine follicles after 15 days of treatment with or without BPS
(0.1 or 10 µM) (Figure 4 and Table 2). No significant differences were observed for any
of the analysed genes between control and BPS conditions in this study. For the total of
64 alive follicles that were analysed for gene expression, the follicular diameter at D15 was
similar for all groups: 509.4 +/− 29.0 µm, 514.1 +/− 26.9 µm and 479.6 +/− 29.4 µm for the
control, BPS 0.1 µM and 10 µM groups, respectively (p = 0.63). In addition, the percentage
of follicles with an antrum at D15 was similar among the groups: 77.8% for control, 72.7%
for BPS 0.1 µM (p = 0.71) and 66.7% for BPS 10 µM group (p = 0.43).
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Specific genes of redox status     

CAT 0.672 +/− 0.064 0.775 +/− 0.066 0.609 +/− 0.056 0.152 
COX4I1 0.619 +/− 0.042 0.614 +/− 0.056 0.602 +/− 0.049 0.970 
COX5B 1.291 +/− 0.151 1.288 +/− 0.124 1.284 +/− 0.160 0.999 
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NDUFB4 7.039 +/− 0.754 6.002 +/− 0.472 7.056 +/− 0.635 0.393 
NDUFB5 5.380 +/− 1.034 4.464 +/− 0.710 6.608 +/− 1.392 0.353 
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SDHA 1.038 +/− 0.066 0.991 +/− 0.088 1.139 +/− 0.116 0.502 
SOD1 3.517 +/− 0.362 3.387 +/− 0.234 3.853 +/− 0.316 0.518 
SOD2 0.753 +/− 0.098 0.701 +/− 0.059 0.708 +/− 0.073 0.885 

Figure 4. In vitro effects of bisphenol S (BPS) on ovine basal stage follicular gene expression. Ovine
follicles were cultured for 15 days with or without BPS (0.1 or 10 µM). At day 15, the culture was
stopped, and 64 alive follicles were used to assess the expression of 19 gene; they were preserved in a
lysis buffer for RNA extraction and stored at −80 ◦C until use. The results are representative of four
independent cultures, with n = 18 for control, n = 22 for BPS 0.1 µM and n = 24 for BPS 10 µM. The
geometric mean of two housekeeping genes (beta-actin (ACTB) and ribosomal protein L19 (RPL19))
was used to normalise gene expression. The data are expressed as mean +/− SEM and were analysed
with the Brown–Forsythe ANOVA test followed by Dunnett’s T3 multiple comparison post-hoc test.
In this figure, the results are presented for the 3 genes for which a p value ≤ 0.10 was obtained
with the Brown–Forsythe ANOVA: one gene involved in follicular development, Cytochrome P450
Family 19 Subfamily A Member 1 (CYP19A1, p = 0.064, (A) and two genes involved in redox status,
Glutathione Peroxidase 8 (GPX8, p = 0.068, (B) and NADH Ubiquinone Oxidoreductase Complex
Assembly Factor (NDUFAF2, p = 0.097, (C). The p values ≤ 0.10 obtained with the Dunnett’s T3
multiple comparison post-hoc test are drawn between conditions on each graph.

Table 2. In vitro effects of bisphenol S (BPS) on ovine basal stage follicular gene expressions.

Gene Name Abbreviation
Gene Expression (Mean +/− SEM)

p
Control BPS 0.1 µM BPS 10 µM

Specific genes of follicle functionality

AHR 0.986 +/− 0.282 0.808 +/− 0.194 1.260 +/− 0.232 0.367
BMP15 3.806 +/− 0.629 3.938 +/− 0.721 5.757 +/− 1.067 0.180
ESR1 0.533 +/− 0.074 0.547 +/− 0.056 0.621 +/− 0.080 0.631
ESR2 4.487 +/− 0.666 3.784 +/− 0.468 4.745 +/− 0.691 0.505
FSHR 2.461 +/− 0.400 2.552 +/− 0.473 2.245 +/− 0.466 0.876

HSD3B1 0.039 +/− 0.011 0.034 +/− 0.009 0.047 +/− 0.012 0.691

Specific genes of redox status

CAT 0.672 +/− 0.064 0.775 +/− 0.066 0.609 +/− 0.056 0.152
COX4I1 0.619 +/− 0.042 0.614 +/− 0.056 0.602 +/− 0.049 0.970
COX5B 1.291 +/− 0.151 1.288 +/− 0.124 1.284 +/− 0.160 0.999
GPX3 0.212 +/− 0.035 0.166 +/− 0.028 0.152 +/− 0.028 0.363

NDUFB4 7.039 +/− 0.754 6.002 +/− 0.472 7.056 +/− 0.635 0.393
NDUFB5 5.380 +/− 1.034 4.464 +/− 0.710 6.608 +/− 1.392 0.353
NDUFV2 2.205 +/− 0.264 2.085 +/− 0.248 2.118 +/− 0.233 0.944

SDHA 1.038 +/− 0.066 0.991 +/− 0.088 1.139 +/− 0.116 0.502
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Table 2. Cont.

Gene Name Abbreviation
Gene Expression (Mean +/− SEM)

p
Control BPS 0.1 µM BPS 10 µM

SOD1 3.517 +/− 0.362 3.387 +/− 0.234 3.853 +/− 0.316 0.518
SOD2 0.753 +/− 0.098 0.701 +/− 0.059 0.708 +/− 0.073 0.885

Ovine follicles were cultured for 15 days with different concentrations of BPS (0, 0.1 or 10 µM). At day 15, the
culture was stopped and 64 alive follicles were used to assess the expression of 19 genes; they were preserved in
lysis buffer for RNA extraction and stored at −80 ◦C until use. The results are presented for six genes involved in
follicular development (Aryl Hydrocarbon Receptor (AHR)), Bone morphogenetic protein 15 (BMP15), Estrogen
receptor 1 (ESR1), Estrogen receptor 2 (ESR2), Follicle-stimulating hormone receptor (FSHR) and Hydroxy-Delta-5-
Steroid Dehydrogenase (HSD3B1)) and 10 genes involved in redox status, (Catalase (CAT), Cytochrome C Oxidase
Subunit 4I1 (COX4I1), Cytochrome C Oxidase Subunit 5B (COX5B), Glutathione Peroxidase 3 (GPX3), NADH
Dehydrogenase Ubiquinone 1 Beta Subcomplex Subunit 4 (NDUFB4), NADH Dehydrogenase Ubiquinone 1 Beta
Subcomplex Subunit 5 (NDUFB5), NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2), Succinate
Dehydrogenase Complex Flavoprotein Subunit A (SDHA), Superoxide Dismutase 1 (SOD1) and Superoxide
Dismutase 2 (SOD2)). The results are representative of four independent cultures, with n = 18 for control, n = 22
for BPS 0.1 µM and n = 24 for BPS 10 µM. The geometric mean of two housekeeping genes (beta-actin (ACTB) and
ribosomal protein L19 (RPL19)) was used to normalise gene expression. The data are expressed as mean +/−
SEM and were analysed with the Brown–Forsythe ANOVA test followed by Dunnett’s T3 multiple comparison
post hoc test. A difference was considered significant for p < 0.05.

We evaluated correlations between gene expressions, D15 follicular diameter, antrum
presence at D15, oestradiol secretion at D13 and progesterone and AMH secretions at D15
were studied for these 64 alive follicles (Supplementary Excel File 1, tab ‘Spearman r’ for the
Spearman correlation coefficients and Supplementary Excel File 1, tab ‘p values’ for the asso-
ciated p values). The results revealed several positive correlations (p < 0.0001) between D15
AMH secretion and D15 follicular diameter (r = 0.84), between FSHR expression and D15
follicular diameter (r = 0.70), between FSHR expression and D15 AMH secretion (r = 0.72),
between AHR expression and SOD2 expression (r = 0.74) and between the expressions
of several genes involved in redox status (NDUFB4–NDUFB5, r = 0.91; GPX8–NDUFB4,
r = 0.82; GPX8–NDUFB5, r = 0.78; NDUFB5–SOD1, r = 0.78; NDUFB4–SOD1, r = 0.74;
GPX8–SOD1, r = 0.70). There was only one negative correlation, namely between AHR
expression and D15 follicular diameter (r = −0.70). There were no significant correlations
between the presence of an antrum at D15 and the expression of the 19 genes.

4. Discussion

We aimed to evaluate the effects of BPS, currently the main substitute of BPA, on ovine
follicular development and hormonal secretions during in vitro basal folliculogenesis.
We have reported for the first time in a mono-ovulatory species model that a long-term
exposure to a possible human exposure dose of BPS decreases oestradiol secretion by basal
follicles without affecting their viability, growth and antral formation.

4.1. BPS Disrupted Oestradiol Secretion without Impairing Progesterone Secretion

We found that 0.1 µM BPS strongly decreased ovine oestradiol secretion (almost two-
fold) after 13 days of treatment compared with the control. In sheep and humans, in vitro
studies on the BPS effects on steroid secretions by ovarian somatic follicular cells has been
conducted, but only on primary-cultured granulosa cells from antral follicles (2–6 mm)
and preovulatory follicles, respectively [27,37]. At the concentration of 0.1 µM, the authors
observed no effect of BPS on oestradiol secretion after 48-h exposure, but they found
alteration of estradiol secretion from 10 µM BPS in ewes (an increase [37]) and for 50 µM
BPS in humans (a decrease, [27]). In another mono-ovulatory species, the cow, oestradiol
secretion from granulosa cells from antral follicles (3–7 mm) was also not affected after 6-day
treatment with 0.1 µM BPS, whereas it was increased with 100 µM BPS [31]. These results,
along with our data suggest that follicular cells could be more sensitive in vitro to a longer
duration of BPS treatment regardless of the folliculogenesis phase, or they could be more
sensitive to a possible human exposure BPS concentration (0.1 µM) for oestradiol secretion
during basal folliculogenesis rather than during terminal folliculogenesis. They also show
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different responses of granulosa cells for oestradiol secretion according to species or the
folliculogenesis phase. Furthermore, our results are consistent with a previous in vivo
study from our team, which revealed a decreased oestradiol plasma level in ewes with
food-restricted intakes and exposed to BPS (50 µg/kg body weight (bw)/day through diet,
for at least 3 months; [63]). This decline in the oestradiol concentration was not observed
in well-fed ewes [63]. In the present work, the metabolic status of the peri-pubertal ewes
was not known, because they came from a slaughterhouse. Moreover, our data are also
in agreement with a previous in vivo study conducted in female rodents with a long BPS
exposure [43]. Indeed, Ijaz et al. [43] observed a decreased plasma oestradiol concentration
in pre-pubertal rats treated with BPS (5 or 50 mg/kg bw; intraperitoneal administrations)
for 28 days. However, these results are not in concordance with a previous study, which
revealed an increased serum oestradiol level in mice after post-natal subcutaneous BPS
treatment (50 µg/kg bw and 10 mg/kg bw) for 60 days [40]. These data indicate that the
BPS administration route, dose, exposure period and treatment duration can influence
the results on oestradiol level in females. Finally, our oestradiol secretion results are also
consistent with those of Hu et al. [64], who examined human samples. They found a
negative association between the urine BPS concentration and the serum oestradiol level
in children (6–11 years) and adolescents (12–19 years) of both sexes (n = 1179) in the
US NHANES study from 2013 to 2016. Their results were more pronounced in pubertal
children. In contrast, Gao et al. [65] did not report a correlation between serum BPS and
oestradiol concentrations in a population of 328 adult men and women (21–76 years)
in a dense industrial area in China in 2017. These discrepancies between the studies
could be linked to the age of the subjects (children versus adults) or to the level of BPS
exposure, which was lower in the Chinese study (0.072 ng/mL) than in the US NHANES
study (2.02 ng/mL), even if the type of biological fluid should be taken into account. An
interesting point in connection with the study by Hu et al. [64] is that biological material for
our experimental model of follicular development comes from peri-pubertal sheep ovaries.
It could raise the question of whether there is greater BPS sensitivity of ovarian somatic
follicular cells during the peri-pubertal period.

Unlike the 0.1 µM dose, 10 µM BPS (a high concentration) had no effect on oestradiol
secretion after 13 days of exposure, whereas it increased 48-h oestradiol secretion from
ewe granulosa cells [37] and had no effect in human granulosa cells [27], both from large
antral follicles. Although these discrepancies could be partially explained by several factors
(species, cellular models and exposure durations), our results highlight a non-monotonic
response of BPS, as it has been described for BPA [66]. Therefore, additional experiments
are required to investigate the effects of more BPS doses, including lower exposure doses
on oestradiol secretion during basal folliculogenesis and whether the same observations
could be made with ovaries from adult ewes.

Regarding progesterone secretion, we have shown here no effect of the two BPS
concentrations during basal folliculogenesis after 15 days of exposure. In contrast, the
plasma progesterone level was decreased in female rats treated with BPS during the
neonatal period (50 mg/kg bw; [42]) or the adult stage (0.5, 5 or 50 mg/kg bw; [43]). In
studies on cultured granulosa cells punctured from large antral follicles, there was no
effect of 0.1 µM BPS in several mono-ovulatory species, namely ovine [37], bovine [31]
and human [27], findings consistent with our results. However, 10 µM BPS decreased
progesterone secretion in ewe [37] and human female [27] granulosa cells, whereas it had
no effect on cow granulosa cells [31], as in our study. These data highlight differences
related to species, study models or to exposure durations, while also suggesting that
somatic follicular cells during basal folliculogenesis could be less sensitive to BPS for
progesterone secretion than during terminal folliculogenesis or pregnancy. This could be
explained at least in part by the fact that progesterone production is even lower during
basal folliculogenesis compared with terminal folliculogenesis or pregnancy.

Our steroid hormone secretion data support that BPS at a possible human exposure
dose may disrupt oestradiol secretion during basal folliculogenesis. Oestradiol is well
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known to be involved in feedback regulation of gonadotrophin secretions (LH and FSH).
However, it also participates directly or indirectly in enhancing folliculogenesis through
autocrine-paracrine modes on granulosa cells: it increases proliferation, differentiation,
the expression of growth factors and receptors (Insulin-like Growth Factor-1 (IGF-1)) go-
nadotrophin receptors) and the number of gap-junctions, and it attenuates apoptosis [67,68].
Therefore, our results suggest that BPS could ultimately affect antral follicular develop-
ment through oestradiol regulation, but a longer follow-up of our model of follicular
development is required to investigate this eventuality.

4.2. BPS Did Not Impair Anti-Müllerian Hormone (AMH) Secretion

In the present study, at D15 control follicles reached the early antral follicle stage
(diameter of 532.4 +/− 20.2 µm). Moreover, we found a strong positive correlation (r = 0.84)
between AMH secretion and follicular diameter at D15, as expected for small antral follicles
and in this in vitro model of basal follicular growth [58]. In humans as in sheep, AMH
is expressed in granulosa cells from growing follicles after activation of the primordial
follicle and transition to the primary follicle stage [69,70]. AMH expression being maximal
in pre-antral and early antral follicles, it is considered as a marker of the small antral follicle
population and plays a key role in controlling ovarian reserve [1,71].

We observed no significant changes in AMH secretion after 15 days of BPS exposure
in our model of in vitro basal folliculogenesis. Such absence of effect of BPS on plasma
AMH level after a 3-month exposure of BPS in diet (4 and 50 µg/kg bw/day) has already
been reported in ewes [36]. Moreover, a 24-h BPS treatment during oocyte maturation
(0.05 mg/mL [around 200 µM]) in bovine cumulus cells and cumulus oocyte complexes
(COC) had no effect on AMH mRNA and protein expressions [72]. On the contrary, BPA
decreased AMH mRNA level in COC and AMH protein expression in these bovine cumulus
cells [72]. BPA exposure (5 and 500 µg/kg bw/day) also decreased the serum AMH
concentration in sexually mature mice [73] and BPA concentration in urine or follicular
fluid was negatively correlated with the serum AMH level in women [70,71]. However, an
absence of correlation was also reported in infertile women [74]. These initial data on BPS
suggest that BPS and BPA could act differently on AMH production and BPS would thus
affect early follicle development, independently from AMH. Additional investigation is
required to confirm this possibility.

4.3. BPS Did Not Impair Follicular Survival, Follicular Growth and Antral Formation

In our in vitro model of basal follicular development, neither follicular survival, nor
follicular growth (diameter size) nor antrum appearance were significantly affected by both
doses of BPS after 6, 13 and 15 days of exposure. In our in vitro model of basal follicular
development up to small antral follicles (<600 µm), follicular growth is essentially due to
proliferation of granulosa cells as it is the case in vivo [1].

In agreement with our results, several in vitro studies in mono-ovulatory species have
shown no effect of BPS (including 0.1 or 10 µM) on the viability and/or proliferation of
granulosa cells (from large antral follicles) after 48-h exposure in ewes [37] and women [27]
and after 6-day treatment in cows [31]. However, regarding viability, some in vivo studies
in rodents have revealed that BPS decreased the number of antral follicles (early/small and
late/large) and increased the number of atretic follicles after a 28-day treatment (5 and/or
50 mg/kg body weight/day [43]) or a 10-day neonatal exposure (5 and 50 mg/kg body
weight/day; [42]). We only investigated the transition between the pre-antral and early
antral stages, and we did not have information about the antral-follicle stage (>550 µm).
As our model enables a 21D culture of follicles that could reach up to 1 mm [58], it could be
interesting to further study follicle survival in bigger antral follicles.

Finally, some studies in rodents have reported an increased number of primordial
follicles after BPS exposure [35,75]. In parallel, fewer primary [41] or secondary follicles [35]
have been observed. These data emphasise that it would be necessary to investigate BPS ef-
fects on earlier basal folliculogenesis (before the pre-antral stage) in mono-ovulatory species.
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4.4. BPS Did Not Impair mRNA Expression of Key Markers of Follicular Development

As we observed a decreased oestradiol secretion after 0.1 µM BPS treatment, we anal-
ysed the mRNA expression of the steroidogenic enzymes, HSD3B1 and CYP19A1. HSD3B1
protein is involved in synthesis of progesterone and androgens in converting pregnenolone
into progesterone and androstenediol into testosterone, respectively. CYP19A1 protein is
essential for estrogen production; it allows the conversion of testosterone into oestradiol
and androstenedione into estrone. In our study, BPS at 0.1 and 10 µM did not significantly
affect the mRNA expression of HSD3B1 and CYP19A1. These results for HSD3B1 expres-
sion are consistent with the absence of BPS effect on progesterone secretion in our model.
One study found a decreased expression of CYP19A1 in swine cumulus cells after a 48-h
exposure with BPS at 30 µM [30], whereas other studies have shown no correlation between
the oestradiol concentration in biological fluids or in cell culture medium and mRNA
and/or protein expression of steroidogenic enzymes [37,40]. Thus, it could be interesting
to measure the activities of steroidogenic enzymes, as a change in their activities could lead
to hormonal imbalance. Moreover, because progesterone secretion was not affected by BPS
treatment in our model, it might still be important to control the expression and activities
of CYP17A1 and HSD17B, which are involved in androgen production independently of
progesterone synthesis.

Here, we showed no modulation of mRNA expression of BMP15 (a specific gene of
oocyte activity [1,2]), FSHR (a marker of follicle maturation [1,2]) and AHR (a possible
modulator of follicular growth and steroidogenesis [76]) in the presence of BPS. Consistently,
BPS (10 nM, 1 µM) had no effect on FSHR expression in ewe cumulus cells from COC after
6-h in vitro maturation [77]. To our knowledge, no other studies are available on the effects
of BPS on the BMP15 and AHR expression. In view of the few studies available on all the
expression of these genes, further investigation is required to conclude definitively on the
effects of BPS on the expression of development markers of oocyte and somatic follicular
cells in mono-ovulatory species.

Finally, the two tested BPS concentrations had no effect on ESR1 and ESR2 expression
in our model of basal folliculogenesis. In agreement with our results, two studies using BPS
concentrations close to those tested here found no modulation of ESR1 and ESR2 expression
in ewe cumulus cells after 6 h of in vitro maturation [77] and in human granulosa cells from
pre-ovulatory follicles after 48 h of exposure [27]. In contrast, ESR1 and ESR2 expression
was increased in ovine granulosa cells from antral follicles after 48-h treatment but only for
very high doses (50 and/or 100 µM; [37]). Oestrogen receptors play an important role in
ovarian follicles in supporting granulosa cell differentiation, follicular growth and oocyte
maturation [78,79]. Thus, our data suggest that BPS could not affect the possibility of
follicular cells to respond to oestrogens during basal folliculogenesis. Nevertheless, we
have to keep in mind that BPS can activate nuclear oestrogen receptors [80,81], leading
to potential modulations of estrogen signalling pathways in addition to its alteration of
estradiol secretion observed in this study.

4.5. BPS Did Not Impair mRNA Expression of Key Players of Redox Status

Several studies have focussed on oxidative stress as a potential mechanism of action
of bisphenols in different cell types [54,82,83]. Thus, we measured mRNA expression of
some actors in redox-status regulation, as enzymes involved in defence against free radicals
(SOD1, SOD2, CAT, GPX3 and GPX8 [84]), and several enzymes of the mitochondrial
respiratory chain complexes (the NADH ubiquinone oxidoreductase for complex I, namely
NDUFB4, NDUFB5, NDUFV2 and NDUFAF2 [85]), succinate dehydrogenase for complex
II (SDHA [86]) and cytochrome c oxidase for complex IV (COX4I1, COX5B [87]). BPS
exposure at the two tested concentrations did not significantly modulate the expression
of these genes in our model of basal follicular development. Few studies are available in
the literature regarding the role of BPS in oxidative stress in ovarian cells. In agreement
with our results, BPS (from 10−9 to 10−4 M) had no effect on 4-h reactive oxygen species
(ROS) production and 24–48-h SOD1 and SOD2 mRNA expression in a human granulosa
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cell line (COV434; [88]). However, the other studies have shown that BPS increased ROS
production and/or decreased activities of SOD and/or CAT in ovarian cells in vivo [43]
or in vitro [38,55] but mainly for high doses. Thus, it could be interesting to test other BPS
doses and to measure the ROS level and the activities of these enzymes of redox-status
regulation in our model, to determine whether oxidative stress is really a key mechanism
of action of BPS at possible human exposure doses during follicular development.

On the other hand, we did not investigate the potential effects of BPS on DNA methy-
lation in our in vitro model of basal follicular development. However, it could be very
interesting to further investigate this mechanism of action, as it was well described for
BPA [49–51].

4.6. Limitations and Strengths of the Study

Some limitations occurred in this study, related to the use of this ovine model of basal
follicular growth. As mentioned above, sheep ovaries came from a local abattoir and the
metabolic and health status of animals was not known. However, this status may influence
BPS effects on steroid secretion [63].

Nevertheless, we chose the ewe as a translational experimental model to study ovar-
ian human basal folliculogenesis for several reasons. Unlike rodents, the appearance of
primordial follicles starts at a similar time during the gestation period in both humans
and ovines [56]. Furthermore, the duration of folliculogenesis, from primordial follicle to
preovulatory follicular development, is similar between the two species: nearly 170 days in
ewes and 200 days in women [57] versus approximatively 20 days in rodents [3,89]. More
precisely, the period of antral development is about 50 days in women and 45 days in
ewes [1,57,89].

On the other hand, our study model of ovarian basal folliculogenesis is somewhat far
from the physiological situation in the ovary, because follicles are cultured individually
without the influence of the other follicles usually present in the ovary. However, it provides
a good model to study the antrum appearance [58], which is not possible to study in vivo
with the same monitoring parameters as in the present study. These cultured follicles
present the main features of in vivo follicles of the same size. They are able to produce
steroid hormones and AMH and to express mRNA of relevant genes (BMP15, GDF9, Zona
pellucida sperm-binding protein 3 [ZP3], FSHR, ESR1 and ESR2) [58]. Furthermore, we
observed positive correlations between D15 follicular diameter and FSHR expression and
AMH secretion that demonstrates a consistent model of early antral follicular development
for human species.

Finally, we tested in our work a long-term exposure to 0.1 µM and 10 µM concentra-
tions of native BPS, concentrations that we have termed as a possible human exposure dose
and high dose of BPS, respectively. Indeed, in human biological fluids (urine, plasma and
follicular fluid), the mean BPS concentration is 10 nM, which is 10-fold lower than our lower
dose. However, this dose of 0.1 µM seems to be relevant, because several studies reported
BPS concentrations close to or above 100 nM for some people [19,25,59]. However, we have
to keep in mind that for these people, we do not know whether their BPS exposure time
is equivalent to that in our study. Furthermore, BPS is metabolised in glucuronide form
in humans, which cannot be achieved in our in vitro model. Thus, human tissues could
be exposed to native BPS for a shorter time than in our in vitro model. Finally, the second
dose tested in our study has allowed us to compare our results with previous data—for
example, studies that used the same dose for acute exposure.

5. Conclusions

In the present study, we showed for the first time in a mono-ovulatory species (ovine)
that a long-term BPS exposure at a possible human exposure concentration drastically
decreased oestradiol secretion during basal folliculogenesis in vitro. Antral formation,
follicular survival and growth and AMH and progesterone secretions were not affected
by BPS. The results suggest that BPS could impair oestradiol secretion early in ovarian
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follicular development in vivo. It may therefore affect the quality of the follicle in the long
term. This work may contribute to raising the question of categorising BPS as an endocrine
disruptor and of substituting BPA with BPS. It also underlines the necessity to assess the
risk of BPS exposure for reproduction of mono-ovulatory mammals. Further investigation
is required to confirm potential BPS effects during in vivo basal folliculogenesis and study
the BPS effects on primordial follicle activation and on antral stage preceding terminal
folliculogenesis and to elucidate its mechanisms of action in mono-ovulatory species.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/toxics10080437/s1, Table S1: Correlations between gene expression, follicular diameter,
antrum presence and hormonal secretions in cultured ewe basal follicles. Ovine follicles were cultured
in Petri dishes for 15 days with different concentrations of BPS (0, 0.1 or 10 µM). At day 15, the
culture was stopped and 64 alive follicles were used to assess the expression of 19 genes: seven genes
involved in follicular development (aryl hydrocarbon receptor [AHR], bone morphogenetic protein 15
[BMP15], cytochrome P450 family 19 subfamily a member 1 [CYP19A1], oestrogen receptor 1 [ESR1],
(oestrogen receptor 2 [ESR2], follicle-stimulating hormone receptor [FSHR] and hydroxy-delta-5-
steroid dehydrogenase [HSD3B1]) and 12 genes involved in redox status, (catalase [CAT], cytochrome
c oxidase subunit 4I1 [COX4I1], cytochrome c oxidase subunit 5B [COX5B], glutathione peroxidase
3 [GPX3], glutathione peroxidase 8 [GPX8], NADH dehydrogenase ubiquinone 1 beta subcomplex
subunit 4 [NDUFB4], NADH dehydrogenase ubiquinone 1 beta subcomplex subunit 5 [NDUFB5],
NADH ubiquinone oxidoreductase core subunit V2 [NDUFV2], NADH ubiquinone oxidoreductase
complex assembly factor 2 [NDUFAF2], succinate dehydrogenase complex flavoprotein subunit A
[SDHA], superoxide dismutase 1 [SOD1] and superoxide dismutase 2 [SOD2]). This file includes
nonparametric Spearman correlation coefficients (tab ‘Spearman r’) and the associated p values (tab
‘p values’) that were assessed between gene expression, follicular diameter at day 15 (D15), antrum
presence at D15, oestradiol secretion at D13 and progesterone and anti-Müllerian hormone (AMH)
secretion at D15. Correlations were considered significant when |r| ≥ 0.70 and p < 0.0001.
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