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Preface to ”Advances in Metabolic Profiling of
Biological Samples”

Metabolomics has been a powerful approach for studying low-molecular-weight metabolites

and their interactions within a biological system in a wide range of research fields (e.g., clinical and

biomedical research, toxicology, microbiology, nutritional, environmental). The biological samples

analysed include blood serum/plasma, urine, tissues, cells, saliva, cerebrospinal fluid, and faeces.

Due to the chemical diversity and concentration range of all metabolites present in biological samples,

there are still several challenges from sample collection to metabolite annotation that need to be

addressed. This Special Issue is dedicated to reviews and original articles covering the current

methodological and technological advancements in the pre-analytical handling of biological samples,

sample preparation protocols, analytical approaches for untargeted and targeted metabolic profiling,

and metabolite annotation tools. As guest editor, I would like to thank all the authors for their

remarkable studies, the peer reviewers, and the Metabolites Editorial Office for their support and

contributions.

Joana Pinto

Editor
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Advances in Metabolic Profiling of Biological Samples
Joana Pinto 1,2

1 Associate Laboratory i4HB, Institute for Health and Bioeconomy, Department of Biological Sciences,
Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; jipinto@ff.up.pt

2 UCIBIO–REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy,
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Metabolomics constitutes a promising approach to clinical diagnostics, but its practical
implementation in clinical settings is hindered by the requirement for rapid and efficient
analytical methods. This Special Issue provides valuable insights into the development of
novel sample preparation protocols and analytical methods for rapid metabolite analysis
in biofluids and tissues. Specifically, a range of articles is presented [1–3], each addressing
different aspects of this challenge. Campanella et al. [2] proposed a fast and straightfor-
ward method for the analysis of saliva by attenuated total reflectance Fourier-transformed
infrared spectroscopy (ATR–FTIR) and Raman spectroscopy for large-scale preclinical
studies. The effects of saliva collection and processing were investigated by vibrational
spectroscopy and liquid chromatography (LC). This study proposed a novel method for
saliva collection via the deposition of multiple spots onto low-cost polypropylene sheets,
revealing reliable and reproducible ATR–FTIR spectra. Bordanaba-Florit et al. [1] devel-
oped a rapid (6 min runtime per sample) and sensitive method for the quantification of
steroid hormone compounds (androgens, estrogens, progestogens, and corticoids) by liq-
uid chromatography–high-resolution mass spectrometry (LC–HRMS). The performance of
this methodology was tested in several rat tissues (adrenal glands, testis, prostate, liver,
and brain), human urine, and urinary extracellular vesicles. Riccio et al. [3] developed a
rapid (10 min) analytical method for the analysis of volatile organic compounds (VOCs) in
the urine headspace using gas chromatography coupled with ion mobility spectrometry
(GC–IMS). The method provided high sensitivity, yielded linearity at the ppb levels, and
enabled the identification of 23 molecules (e.g., ketones, aldehydes, alcohols, and sulfur
compounds) in a cohort of 115 urine samples. VOCs are molecules released as products of
metabolic pathways in the human body, and alterations in their levels have been related to
cancer [4,5].

Some authors have explored the ability to extract meaningful information from small
sample volumes, which is especially important in clinical settings where sample availability
can be limited. He et al. [6] developed a sample preparation method for simultaneously
extracting non-polar and polar metabolites from limited amounts of mouse muscle tissues
(5–50 mg dry weight). Overall, 109 lipids (e.g., oxylipins, fatty acids, and lysophospho-
lipids) and 62 polar targeted metabolites (e.g., amino acids, sugars, and nucleotides) were
successfully detected via ultra-performance liquid chromatography–tandem mass spec-
trometry (UPLC–MS/MS) and capillary electrophoresis–mass spectrometry (CE–MS). The
influence of the sample isolation speed on metabolite stability revealed that rapid (<15 min)
muscle tissue collection is crucial, particularly for more oxidative muscles. These findings
will be critical for metabolomic mechanistic studies of sarcopenia (the age-related loss of
muscle mass and function).

In addition to rapid analysis, the comprehensive characterization of biological samples
is also essential. To this end, Bekhti et al. [7] propose superior analytical methods for
the more holistic characterization of meconium, including the integration of two com-
plementary LC–HRMS platforms. Overall, up to 229 polar and non-polar metabolites
were successfully identified in human meconium at a high confidence level, belonging to
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amino acids, carbohydrates, nucleosides, and nucleotides, among other chemical classes.
This methodology was applied to investigate the progressive evolution of the meconium
metabolic profile in healthy newborns during the first three days of life.

Other articles have focused on the detection of specific metabolite classes [8–11], such
as bile acids, sphingoid bases, fatty acids, and advanced glycation end products (AGEs),
which have been implicated in many diseases. Zhang et al. [8] developed and validated a
high-throughput method for the comprehensive analysis of bile acids in human and rodent
fecal samples. Overall, 58 bile acids were quantified by ultra-high-performance liquid
chromatography coupled with mass spectrometry (UPLC–MS). This analytical method
was applied to identify and quantify BAs in end-stage renal disease patients. The pro-
filing of bile acids is particularly important for gut-microbiome-related health studies
since a complex interplay between bile acids and gut microbiota has been reported [12].
Morano et al. [9] compared different pre-analytical procedures, derivatization protocols,
and chromatographic conditions for the quantification of sphingolipids in human plasma
via liquid chromatography–tandem mass spectrometry (LC–MS/MS). The authors iden-
tified several critical steps for obtaining accurate results, such as single-phase extraction
followed by an alkaline methanolysis, the choice of appropriate columns in order to ef-
ficiently separate complex sphingolipids and sphingoid bases, and the effectiveness of
the derivatization procedure for solely non-phosphorylated species. Comprehensive two-
dimensional gas chromatography coupled with mass spectrometry (GC × GC − MS) can
be a powerful tool to investigate saturated and unsaturated fatty acids in lipidomics studies,
as shown by Bhatt et al. [10]. The authors optimized the derivatization and extraction
of multiple classes of fatty acid methyl esters (saturated, monounsaturated, and polyun-
saturated) in plasma without requiring in-depth MS/MS investigations. This method
successfully distinguished boar-tainted and untainted pigs based on their serum fatty acid
compositions. In another study, Yan et al. [11] established an untargeted HILIC–MS method
for the comprehensive analysis of AGEs in biological samples (plasma, feces, and urine).
The authors tested different columns and mobile phases in Maillard model systems. The
proposed method revealed good reproducibility and AGE coverage in the presence of
other endogenous metabolites from biological matrices. Elevated levels of AGEs have been
associated with several pathologies, including cardiovascular disease, diabetes mellitus,
cancer, and Alzheimer’s disease [13].

The metabolite annotation process is a pivotal step in metabolomics and frequently rep-
resents a bottleneck in the discovery of biologically relevant metabolites (e.g., biomarkers).
In this context, Renai et al. [14] undertook a novel investigation of the pertinence of Feature-
Based Molecular Networking (FBMN) in combination with two novel, nutritionally relevant
mass spectral libraries (~300 reference molecules) to increase the accuracy of metabolite
annotation and explore the postprandial kinetics of the metabolites present in biological
samples. This approach enabled the annotation of 67 berry-related and human-endogenous
metabolites in the urine from individuals taking Vaccinium supplements, revealing similar
or higher performance when compared with other annotation workflows. In addition, this
tool linked several metabolite classes with phase II (early postprandial) and phase I (late
postprandial) metabolism.

Finally, Viegas et al. [15] integrated measurements of glucose 6-phosphate, pentose
phosphate pathway, and de novo lipogenesis fluxes in mice to provide a holistic assessment
of hepatic glucose and fructose metabolism. The authors showed that a combination
of deuterated water and [U-13C]hexose sugar can quantify these fluxes in mice under
natural feeding conditions through the 2H- and 13C-based nuclear magnetic resonance
(NMR) analysis of liver glycogen and triglyceride. The results demonstrated that glucose 6-
phosphate accounted for 40–60% of lipogenic acetyl-CoA and that 10–12% was oxidized by
the pentose phosphate pathway. The NADPH produced from flux in the pentose phosphate
pathway accounted for a minority (~30%) of the total de novo lipogenesis requirements.
This study provides critical information for understanding hepatic sugar metabolism under
pathological conditions.
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Overall, this Special Issue provides pivotal methodological and technological advance-
ments for the rapid and comprehensive analysis of metabolites in clinical settings. These
advances are crucial for the translation of metabolomics into routine clinical practice and
have the potential to revolutionize disease diagnosis and personalized medicine. As a
Guest Editor, I would like to thank all the authors for their remarkable studies, the peer
reviewers, and the Metabolites Editorial Office for their support and contributions.

Conflicts of Interest: The author declares no conflict of interest.
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The Role of the Preanalytical Step for Human Saliva Analysis
via Vibrational Spectroscopy
Beatrice Campanella 1, Stefano Legnaioli 1, Massimo Onor 1 , Edoardo Benedetti 2 and Emilia Bramanti 1,*

1 Institute of Chemistry of Organometallic Compounds (ICCOM), Consiglio Nazionale delle Ricerche(CNR),
56124 Pisa, Italy

2 Hematology Unit of Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
* Correspondence: bramanti@pi.iccom.cnr.it; Tel.: +39-050-315-2293

Abstract: Saliva is an easily sampled matrix containing a variety of biochemical information, which
can be correlated with the individual health status. The fast, straightforward analysis of saliva
by vibrational (ATR-FTIR and Raman) spectroscopy is a good premise for large-scale preclinical
studies to aid translation into clinics. In this work, the effects of saliva collection (spitting/swab)
and processing (two different deproteinization procedures) were explored by principal component
analysis (PCA) of ATR-FTIR and Raman data and by investigating the effects on the main saliva
metabolites by reversed-phase chromatography (RPC-HPLC-DAD). Our results show that, depending
on the bioanalytical information needed, special care must be taken when saliva is collected with
swabs because the polymeric material significantly interacts with some saliva components. Moreover,
the analysis of saliva before and after deproteinization by FTIR and Raman spectroscopy allows to
obtain complementary biological information.

Keywords: saliva; ATR-FTIR; sample processing; Raman

1. Introduction

Saliva is a matrix rich of biochemical information. The term “salivaomics” was in-
troduced in 2008 to indicate the complexity and the importance of knowing the various
“omic” constituents of saliva (https://iadr.abstractarchives.com/abstract/2008Dallas-10
0600/salivaomics-knowledge-base-skb, accessed on 27 February 2023). It is quite clear
that whole-mouth saliva contains a variety of high- (proteins and nucleic acids) or low-
molecular-weight compounds (salts, organic and inorganic acids, sugars, and nitrogenous
bases.) and that its analysis might disclose clinically relevant information regarding the oral
and systemic health status [1,2] (and references therein). Saliva collection is noninvasive
and straightforward; it has high patient compliance, and it can be easily repeated [3,4]. For
this reason, many biological and bioanalytical techniques (chromatographic and spectro-
scopic) have been developed in the last 15 years to investigate salivaomics through targeted
and untargeted methods [5,6].

Attenuated total reflectance-Fourier transformed infrared spectroscopy (ATR-FTIR)
is a nondestructive/microdestructive, fast, and cost-effective spectroscopic approach that
requires in principle minimal sample handling to collect information from biological
samples, tissues, cells, or biofluids

Several reviews report on the application of mid-infrared (IR) as a promising tool in hu-
man saliva [2,7–13]. The analysis of saliva as a diagnostic specimen by ATR-FTIR in tandem
with chemometric analysis has experienced a rapid growth over the last decade, and even
more in the last 2–3 years. In 1996, a new quantitative method based on transmittance FTIR
was developed to evaluate thiocyanate concentrations in 5 µL of dried human saliva [14]
using the band at 2058 cm−1. More than 10 years later, Khaustova et al. developed an
ATR-FTIR method to rapidly assess the biochemical properties of the saliva (total protein

5



Metabolites 2023, 13, 393

concentration, glucose, secretory immunoglobulin A, urea, amylase, cortisol, and inorganic
phosphate) [15].

Recently, FTIR has been applied to study saliva from diabetic patients [16–21] and
patients with oral pathologies [22,23] and to identify cancer biomarkers [4,24,25] and
COVID-19-related biomarkers [26–29]. Recently, ATR-FTIR spectra in tandem with chemo-
metric have been employed to analyze the spectral changes in semen, saliva, and urine in
violent crimes during dry out, allowing to estimate their time since deposition [30].

Raman spectroscopy can yield complementary information to IR spectroscopy as
the two techniques rely on different processes and selection rules. The inherently weak
Raman signals of biological molecules, often overwhelmed by sample fluorescence, are
counterbalanced by the fact that Raman spectra are mostly unaffected by water bands and
exhibit sharper signals compared to IR. The application of Raman to saliva analysis was
recently reviewed by Hardy et al. [31].

Although sample preparation in vibrational spectroscopy is minimal, several method-
ological features are critical to obtain reproducible, comparable spectra of saliva [8,13,32].
Thus, it is crucial to standardize the preanalytical step, including both saliva sampling [2,33]
and sample preparation, to obtain time- and cost-effective procedures and to minimize
sample handling and possible contaminations.

Saliva composition depends on the collection method, as well as on the nature and
duration of salivation stimulation, subject hydration status, collection timing, etc. [2,33]. In
many studies, vibrational spectra are acquired on dried samples, adopting a drying time
variable between 3 min (directly drying the saliva sample onto the plate of the ATR device)
and 24 h (after drying onto various supports for ATR and scattering analysis).

Table 1 summarizes the main works published in which FTIR spectroscopy was em-
ployed for the analysis of saliva, focusing on the brief descriptions of the preanalytical steps.

Table 1. Sample preparation for FTIR analysis.

Application Preanalytical Step Ref.

COVID-19
Positive patients vs. controls

3 µL saliva (sampling not specified) on the ATR crystal and
dried at RT for 15 min. [28]

Screening Test for COVID-19 WS (sampling not specified) deposited onto a transflection
substrate, dried (10 min), and analyzed by ATR. [34]

COVID-19
Positive patients vs. controls

5 µL saliva (sampling not specified) on aluminum foil and
air-dried at RT overnight. [27]

Diabetic patients vs. controls 50 µL of unstimulated WS by expectoration dried under
vacuum on BaF2 windows. [35]

Diabetic patients vs. controls 3 µL saliva by spitting and dried at RT for 15 min on the
ATR crystal. [16,21,28]

Correlation FTIR spectra/surface tension;
FTIR spectra/age and gender

50 µL WS (collected by spitting) on zinc selenide, dried at 37 ◦C
for 60 min, and analyzed by ATR. [36,37]

Burning mouth syndrome (BMS)
vs. controls

30 µL WS (collected by spitting) on platinum, dried at 40 ◦C,
and analyzed in diffuse reflectance mode. [23]

Salivary gland tumor vs. controls 20 µL WS (collected by spitting) on zinc selenide, dried at RT,
and analyzed by ATR. [25]

Correlation FTIR
spectra/biochemical composition

50 µL WS (collected by spitting) on zinc selenide, dried at 37 ◦C
for 60 min, and analyzed by ATR. [38]

Effects of saliva sample preparation
10 µL WS or saliva collected by spitting methods or cotton
swab, dried as is or after centrifugation on germanium crystal
or saliva concentrate after 4 h at 60 ◦C; analyzed by ATR.

[4]

Periodontitis vs. controls 50 µL WS collected by spitting, dried onto BaF2, and analyzed
by transmittance FTIR. [39]

Diabetes and periodontitis vs. controls WS collected by spitting, dried, and analyzed onto ATR crystal. [20]

Salivary profile of athletes WS collected by spitting; 1.5 mg of dried saliva analyzed onto
FTIR-ATR crystal. [40]
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Table 1. Cont.

Application Preanalytical Step Ref.

Psoriasis status
30 µL WS collected by spitting deposited on a circular
aluminum reflective surface, dried in hot air flow, and analyzed
by transflectance FTIR.

[41]

Maximal Progressive Test in Athletes 100 µL WS collected by spitting, dried, and analyzed by ATR. [42]
Folic Acid Deficient Pregnant Women

vs. controls
WS collected by spitting deposited on TlBr crystal, dried, and
analyzed by transmittance FTIR. [43]

Physiological stress vs. controls 2 µL saliva (sampled by Salivette, Sarstedt) deposited on the
ATR crystal, and dried at RT for 15 min. [44]

Breast cancer patients vs. controls Lyophilized saliva (sampled by Salivette, Sarstedt), dried, and
analyzed by ATR crystal. [24]

Oral Submucous Fibrosis (OSMF)
vs. controls

3–5 µL saliva collected by Salivette, Sarstedt, dried, and
analyzed by ATR. [22]

Detection of SARS-CoV-2 Infection WS collected by pharyngeal cotton swabs directly analyzed
onto ATR crystal. [26]

RT = room temperature; WS = whole saliva.

Basically, in all the works, the spectra were recorded on dried samples, i.e., after the
removal of water. Water bands may indeed affect the sensitivity and reproducibility in the
detection of several sample components, especially for IR.

In the last few years, our research group has extensively studied the salivary metabo-
lites by liquid and gas chromatography approaches [45–50]. The analysis of saliva by
ATR-FTIR and Raman provides complementary, fast, and holistic information on the
sample, which includes low-molecular-weight (MW) metabolites and (macromolecules
proteins, carbohydrates, and lipids), both having a high diagnostic value for local and
systemic disorders.

The aim of this work is to investigate the effect of saliva sampling (spitting method
or sampling with commercial polymeric swab) on the vibrational spectra (ATR-FTIR and
Raman) acquired before and after deproteinization with two methods (protein precipita-
tion with ethanol or using 3 kDa cut-off centrifugation units). The spitting method may
indeed simplify the sampling, meeting patient compliance (especially for children) and
reducing costs and risks. Saliva contains about 0.1–1.5 mg/mL protein [51], and the saliva
deproteinization may simplify the spectral information, allowing the analyst to focus on the
analytical window of interest. In all cases, information remains complex, and the coupling
with chemometrics is crucial to extract information from the vibrational spectra. An easy
“printing” of sample dried spots (SDSs) prepared on polypropylene (PP) sheets onto ATR
crystal is described for the fast, interference-free acquisition of FTIR spectra.

Our work implements the information recently reported by Paschotto et al. [4], who
investigated ATR-FTIR absorption of saliva sampled with different collection methods (spit-
ting method vs. soaking) and processing protocols (dried unprocessed, dried supernatant
after centrifugation, and dried concentrate), confirming the need of standardized collection–
processing protocols based on the biochemical component analysis. Paschotto et al. in-
vestigated the effects of sampling using cotton swabs, and they applied centrifugation
conditions at low g values, probably removing cells and bacteria. They did not investigate
the deproteinization effect, nor were both FTIR and Raman spectroscopy used. In our work,
the concentrations of the main metabolites in saliva after the various sample handling
procedures were also determined by RP-HPLC-DAD [49] to focus on the possible artefacts
of saliva sampling and sample handling.

2. Experimental Design
2.1. Chemicals

Sulfuric acid for HPLC analysis was employed (V800287 VETEC ≥ 85% Sigma-Aldrich,
Milan, Italy). Methanol for RP-HPLC was purchased from Carlo Erba (Rodano, Italy).
Preparation and dilution of samples and solutions were performed gravimetrically using

7



Metabolites 2023, 13, 393

ultrapure MilliQ water (18.2 MΩ cm−1 at 25 ◦C, Millipore, Bedford, MA, USA). Standard
solutions for HPLC (TraceCERT®, 1000 mg/L in water) were purchased from Sigma-
Aldrich, Milan, Italy. Analyte stock and working solutions were prepared as previously
reported [49].

2.2. Experimental Design: Saliva Sample Collection and Processing

Whole, nonstimulated saliva samples were collected from 10 nominally healthy volun-
teers. The study was performed in accordance with the Declaration of Helsinki. Written
informed consent was obtained from all volunteers who agreed to provide saliva samples.
A fasting period of at least 8 h was required, and volunteers did not brush or rinse the
oral cavity with mouthwash before sampling. Exclusion criteria included the existence
of any oral disease or a systemic pathology, alcohol consumption, smokers, or systemic
medication usage. The pattern of samples analyzed was the following: The volunteers were
asked to spit into sterile polypropylene tubes (about 2 mL for each subject). Saliva samples
were pooled, homogenized in vortex, and stored in a freezer at −20 ◦C. For the analysis,
pooled saliva was thawed at room temperature and subdivided into two processing groups:
one half (“salivette” in this work) was loaded onto Salivette® swabs (2 mL/swab) for 5 min
as physiological time for the adsorption of the whole saliva, centrifuged at 4500× g for
10 min at 4 ◦C (Eppendorf™ 5804R Centrifuge), and pooled again. Second half was used
as is (unprocessed saliva, “saliva” in this work). This procedure was chosen to perform
the methodological comparison exactly on the same sample, avoiding changes in saliva
composition due to presence of the swab.

Both saliva and salivette samples were fractionated in three parts: (i) a part was ana-
lyzed as is (named saliva and salivette); (ii) a part was deproteinized by ultracentrifugation
(30 min) using Microcon® Centrifugal Filters with cut-off 3 kDa (Merk, Milan, Italy) (named
saliva_CO and salivette_CO); (iii) a total of 100 µL of saliva or salivette was mixed with
900 µL ethanol (EtOH) (10-fold dilution), cooled at −20 ◦C for 2 h, and centrifuged at
14,000 rpm (10,000× g) for 30 min in a refrigerated centrifuge (named saliva_EtOH and
salivette_EtOH). The solution remaining in the upper part of 3 kDa cut-off filtering units
was also analyzed by ATR-FTIR to characterize the HMW compounds (“HMWsaliva_CO”
and “HMWsalivette_CO”).

2.3. ATR-FTIR Analysis

Five drops (50 µL each) of sample were deposited onto a polypropylene (PP) sheet by
a micropipette (Eppendorf Research Plus pipette, Eppendorf AG) and air-dried at room
temperature overnight. Spectra were recorded in ATR mode on sample dried spots (SDSs)
using a Frontiers FTIR spectrometer (Perkin Elmer, Milan, Italy), equipped with a diamond-
attenuated total reflectance (ATR) sampling accessory. The flat sample press tip (2 mm
diameter) was employed to “stamp” the sample from the SDSs (Figure 1). After this, the PP
sheet was removed. The microamount “printed” on the ATR diamond window was enough
to obtain reliable and reproducible spectra. Using this method, at least 3 spectra can be
recorded from 3 different areas of one single SDS. Spectra were recorded in 4000–600 cm−1

spectral range with a 4 cm−1 resolution, with 32 scans for the background and the sample.
For each analysis, the diamond sampling window and the sample press tip were cleaned
with 70% ethanol v/v. Mid-infrared (MIR) spectra were acquired on 3–5 different SDSs.
Saliva_EtOH and salivette_EtOH sample spectra were acquired after the deposition of
3 µL of the samples directly onto the ATR crystal as ethanol evaporates in less than 15 s.
HMWsaliva_CO and HMWsalivette_CO samples were analyzed by wiping (w) the tip
wetted with the sample onto ATR crystal (samples dried in less than 15 s) or by “printing”
(p) from SDSs.
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Figure 1. Saliva sample dried spot (SDS) from 50 µL deposition onto PP sheet and “printing” on
ATR-FTIR crystal.

2.4. Raman Analysis

Five drops (10 µL each) of sample were deposited onto a glass slide covered with
an aluminum foil and air-dried at room temperature overnight. Spectra were recorded
with a Renishaw inVia confocal micro-Raman system, coupled with an optical Leica DLML
microscope equipped with an NPLAN objective 50×. The laser sources were a diode
laser with a wavelength of 785 nm and an He–Ne laser with a wavelength of 633 nm.
The spectrometer consisted of a single-grating monochromator (1200 or 1800 lines mm−1

according to the selected laser wavelength), coupled with a CCD detector, a RenCam
578 × 400 pixels (22 µm × 22 µm) cooled by a Peltier element. The spectral calibration of
the instrument was performed on the 520.5 cm−1 band of a pure silicon crystal. Spectra
were acquired with 633 nm laser source at 5.5 mW and with 785 nm laser source at 40 mW,
5 accumulations of 10 s each.

2.5. RP-HPLC-DAD Analysis

Saliva, salivette, saliva_CO, and salivette_CO samples were 5-fold diluted in 5 mM
sulfuric acid, filtered using a 0.20 µm RC Mini-Uniprep (Agilent Technologies, Milan, Italy)
filter, injected in the HPLC system (Vinj = 5 µL), and analyzed as previously reported [49].
Saliva_EtOH and salivette_EtOH were directly injected in the HPLC system (Vinj = 5 µL).

2.6. Data Processing

Principal component analysis (PCA) was carried out on the mean-centered column-
wise spectra to investigate possible clustering of samples. ATR spectra were standardized
by using standard normal variate (SNV) to minimize unwanted contributions (e.g., global
intensity effects or baseline shifts). Raman spectra were treated to remove cosmic rays, and
then Savitzky–Golay (zero-order derivative, third-degree polynomial order, and a window
size equal to 9 data points) and Asymmetric Least Squares algorithms were applied for
smoothing and baseline correction, respectively.

The analysis was performed with the open-source Chemometric Agile Tool (CAT)
program (http://www.gruppochemiometria.it/index.php/software/19-download-the-r-
based-chemometric-software, accessed on 27 February 2023) and by a tailored in-house
R-script (R version 3.6.3 (R Development Core Team 2012) and R-Studio, Version 1.1.463)
using the R-package mdatool.

3. Results and Discussion
3.1. ATR-FTR Analysis of Saliva/Salivette Dried Spots: Effect of Deproteinization Method

ATR-FTIR spectra were recorded on microspots “printed” from the dried spots on
the ATR diamond window. The flat sample press tip (2 mm diameter) was employed
to “stamp” the sample from the dried spots. After this, the PP sheet was removed. This
procedure, not previously reported, allows in principle to prepare samples quickly onto a
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low-cost support and to obtain reliable and reproducible spectra using a microamount of
sample. Using this method, at least three spectra can be recorded from three different areas
of one single dried spot obtained from 50 µL.

Figure 2 shows a representative ATR-FTIR spectrum of a saliva dried spot. Figure 3
shows the spectra of all the analyzed samples before and after SNV normalization. The
absorption bands of lipids, proteins, carbohydrates, and nucleic acids are evidenced. The IR
spectrum of saliva is in fact a superposition of the absorption spectra of all these components
in proportion to their concentration, following the Lambert–Beer law.
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Figure 2. Representative ATR-FTIR spectra of saliva analyzed as is in 4000–2000 cm−1 (a) and
1800–600 cm−1 regions (b).
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Figure 3. ATR-FTIR spectra of all representative saliva samples analyzed before and after depro-
teinization with ethanol (EtOH) and ultrafiltration with 3000 Da cut-off (CO) in 4000–2000 cm−1

(a) and 1800–600 cm−1 regions (b). (c) ATR-FTIR of N = 5 replicates of saliva sample after ultra-
filtration with 3000 Da cut-off as example of reproducibility of the spectra. HMWsaliva_CO and
HMWsalivette_CO refer to high-molecular-weight (HMW) compounds remaining in the upper part
of 3 kDa cut-off filtering units (w = wiping, p = printing) as explained in the experimental part.
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The sampling and the deproteinization method employed evidenced major changes
in the FTIR spectra of dried spots in the 1750–600 cm−1 fingerprint region and in the N–H
and OH stretching regions (3800–1600 cm−1) and overlaid the latter in the region of C–H
stretching in CH2 and CH3 (3000–2850 cm−1).

The FTIR spectrum of almost all samples examined showed the characteristic FTIR
features of biological samples: the peaks of proteins at 1656–1642 cm−1 (Amide I, C=O
stretching), 1542 cm−1 (Amide II, N–H bending), and 1237 cm−1 (Amide III); nucleic
acids (1100–850 cm−1); P=O asymmetrical and symmetrical stretching vibrations of PO2
phosphodiester groups from phosphorylated molecules (1125 cm−1 and 1076 cm−1); and
C–O stretching vibration coupled with C–O bending of the C–OH groups of carbohydrates
(including glucose, fructose, and glycogen) at 1035 cm−1. The absorptions typical of
proteins (Amide I, II, and III) were not observed in the saliva_CO and salivette_CO samples,
i.e., after deproteinization by 3 kDa cut-off filtering. The spectral region 1080–950 cm−1

also includes the sugar moieties of glycosylated proteins, (e.g., salivary amylase and
mucins). Several authors report the assignment of specific bands in the fingerprint region to
immunoglobins (1560–1464 cm−1 associated to IgG, 1420–1289 cm−1 and 1160–1028 cm−1

related to IgM, and 1285–1237 cm−1 designed to IgA) [28]. However, the salivary proteome
is a complex protein mixture resulting from the activity of salivary glands and serum, from
mucosal and/or immune cells, or from micro-organisms containing amylase (representing
about 20% of total proteins), mucins (about 20%), 6% human serum albumin, 10% lysozyme,
10% IgA and IgG, lactoferrin, proline-rich proteins, histatins, cathelicidins, defensins,
glycoproteins, lipoproteins, statherin, and matrix metalloproteases [2,52,53]. Human saliva
contains also inorganic compounds (sodium, potassium, calcium, magnesium, chloride,
and phosphate) and organic nonprotein components, such as bilirubin, creatinine, glucose,
lactic and uric acids [2], and references therein.

The differences among the various sample groups, corresponding to different saliva
preparation modes, were better evidenced, and the information from the spectra were
extracted using principal component analysis (PCA). The results derived from the PCA
on the FTIR spectra are shown in the PC1–PC2 score plots (Figure 4a), explaining 87.8% of
the total variance. PC1 is responsible for the separation of samples deproteinized using
3 kDa cut-off, which show positive values of PC1 (Figure 4b, blue line) with respect to
the other samples on the left side of the plot. Interestingly, the HMWsaliva_CO and
HMWsalivette_CO samples (MW > 3 kDa) cluster between unprocessed samples and
saliva_CO/salivette_CO samples, without significant differences if analyzed by wiping the
tip onto ATR crystal (w) or by “printing” from dried spots (p). PC2 (Figure 4b, red line)
separates all samples treated with EtOH that show positive values of PC2 with respect to
all the others. Figures S1 and S2 show the PC1–PC3 and PC2–PC3 scores (a) and loading
plots (b), explaining 67.2% and 30.9% of the total variance, respectively.

The PC1 loading plot (Figure 4b, blue line) clearly shows positive values of 4000–3100 cm−1

absorptions related to OH and NH stretching vibrations, negative values of Amide I and
Amide II bands typical of proteins due to C=O and C–N stretching vibrations, respectively,
of the bands assigned to unsaturated C=CH stretching of lipids (at 3000 cm−1), symmetric
-CH3 stretching at 2922 cm−1 due primarily to proteins, and symmetric -CH2 stretching
at 2854 cm−1 due to lipids and proteins, and bending (at 1450 and 1378 cm−1) of the CH2
and CH3 groups. In the region of 3600–2900 cm−1, the absorption bands of the primary
and secondary amines (-NH2 and -NHR) are observed; the peaks at 3300–3200 cm−1 are as-
signed to O–H vibrations; N–H stretching is typically around 3364–3517 cm−1 and usually
show a medium, somewhat broad signal (usually considerably less broad than a typical
OH stretching). The positive values of PC1 at 3200–3300 cm−1 reflect the higher contents of
water in all saliva and salivette samples after deproteinization with 3 kDa units. Another
important region of the FTIR spectrum is the spectral range 1180–800 cm−1 that originates
from various C–C/C–O stretching vibrations in sugar moieties, P–O stretching of phos-
phate groups in phosphorylated proteins, and nucleic acids and low-MW compounds. The
1032 cm−1 band is usually attributed to the C–O stretching vibration in glycogen, while
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lactic acid has peaks at 1032 and 916 cm−1. Thus, the absorptions of low-MW metabolites
in saliva/salivette spectra after 3 kDa cut-off ultrafiltration characterize PC1 components.
The negative value in PC1, for these samples, of Amide I (1666–1622 cm−1) and Amide II
bands (1556 cm−1), typical of proteins, also indicates that ultracentrifugation using 3 kDa
cut-off is the only effective method for saliva deproteinization. The negative bands at 1137,
1078, 950, and 830 cm−1 of PC1 could be due to the removal of high-MW carbohydrates
and nucleic acids from the saliva and salivette samples after cut off or the removal of
phosphorylated molecules. The typical absorptions of high-MW compounds that character-
ize saliva and salivette samples are better evidenced in the negative components of PC3
(Figures S1 and S2, green line).

The PC2 loading plot shows remarkable positive values peaking at 3736, 3461, 3397 cm−1,
3022sh, 2962, 2926, 2878sh, and 2857 cm−1, characteristic of lipids. Positive values are also
observed at 1750, 1719, and 1687 cm−1 and assigned to the C=O ester groups of lipids
and cortisols and C=C stretching of cholesterol. These components are responsible for
the clustering of the saliva_EtOH and salivette_EtOH samples. Among low-MW saliva
components detected by FTIR, cortisol, phosphates, lactic acid, and urea are of interest from
a medical point of view because their concentrations vary during physiological stress [44].
Our results suggest that the deproteinization in ethanol is not effective, in agreement with
Araki, who reported that ethanol mostly precipitates non-protein nitrogen [54]. Table 2
shows with more detail the principal assignment of saliva MIR absorptions [7,10].

Negative values of the PC2 loading plot are observed at 1553, 1450, 1403, and 1321 cm−1.
The differences between the saliva and salivette samples mainly rely on marked negative
peaks of PC2 (Figure 4b), i.e., the absorptions at 1553 cm−1 (amide II), 1042 with shoulders
at 1137 and 1018 cm−1, and 849 cm−1. These absorptions, typical of C–O–C symmetric and
asymmetric vibrations of sugar moieties of heavily glycosylated proteins (e.g., mucins [31])
(Table 2), let us hypothesize that the polymeric swab (Salivette®) may adsorb proteins
characterized by HMW and/or high degrees of glycosylation.

Table 2. Principal Mid-Infrared (MIR) Bands of the Dataset and Chemical Assignments [7,10].

MIR Frequency Band Tentative Assignment

∼3736 cm−1 stretching O–H

∼3346 cm−1 stretching N–H

∼3275 cm−1 stretching O–H symmetric

∼3200−3550 cm−1 symmetric and asymmetric vibrations attributed to water

∼2968 cm−1 CH3 stretching

∼2930 cm−1 stretching C–H

∼2800−3000 cm−1 C–H lipid region

∼2100 cm−1 combination of hindered rotation and O–H bending (water)

∼1750 cm−1 lipids: ν(C=C)

∼1650 cm−1 amide I: ν(C=O)

∼1637 cm−1 H–O–H scissoring

∼1550 cm−1 amide II: δ(N–H) coupled to ν(C–N)

∼1450 cm−1 methyl groups of proteins: δ CH2 and CH3 asymmetric

∼1400 cm−1 methyl groups of proteins: δ CH2 and CH3 symmetric

∼1392–1396 cm−1 fatty acids and polysaccharides

∼1250−1260 cm−1 amide III: ν(C–N)

∼1155 cm−1 carbohydrates: ν(C–O)

∼1225 cm−1 DNA and RNA: νas(PO2−)
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Table 2. Cont.

MIR Frequency Band Tentative Assignment

∼1080 cm−1 DNA and RNA: νs(PO2−)

∼1030 cm−1 glycogen vibration: νs(C−O)

∼992–986 cm−1 ribose phosphate main chain and stretching vibration C–C of DNA
backbone

∼971 cm−1 nucleic acids and proteins: n(PO4)

∼960−966 cm−1 C–O, C–C, deoxyribose νs = symmetric stretching; νas = asymmetric
stretching; and δ = bending.
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Figure 4. PCA results of SNV-normalized and centered ATR-FTIR spectra of saliva samples. (a) Score
plot (87.7% of total variance); (b) loading plot of PC1 (blue line) and PC2 (red line). HMWsaliva_CO
and HMWsalivette_CO refer to high-molecular-weight compounds (HMWCs) remaining in the upper
part of 3 kDa cut-off filtering units (w = wiping, p = printing) as explained in the experimental part.
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3.2. Choice of PP Support and Effect of Dried Spot Volume

Fifty µL was the optimized volume for the analysis of dried spots by FTIR that allowed
to obtain “printed mini-spots” of suitable thickness to record high-quality FTIR spectra. If a
smaller amount of sample is available for the analysis, e.g., 10 µL, the sample can be dried
on PP and eventually gently scratched and microamounts analyzed by ATR-FTIR without
significant changes in the spectra. The same experimental design performed on dried spots
drop-casted onto aluminum foil did not gave satisfying, reproducible results likely because
of the irregular thickness of the saliva dried spots or the rigidity of the aluminum foil. The
good reproducibility of the saliva dried spots obtained on PP support may be also due to
the hydrophobicity of the PP sheet itself. The ATR-FTIR measurements directly performed
on the dried spots onto PP or aluminum foil have interference bands (data not shown for
brevity) of the support employed unless higher volumes (≥50 µL) were used to obtain
films of suitable thickness.

3.3. HPLC Analysis of Main Metabolites in Saliva/Salivette Samples

The concentrations of the main metabolites in saliva after the various sample handling
procedures were determined by RP-HPLC-DAD [49]. Figure 5 shows the comparison of the
concentration (mean and SD) of seven main metabolites determined in the saliva/salivette
samples before and after deproteinization with 3 kDa cut-off filtration. The injection of the
saliva_EtOH and salivette_EtOH samples did not give meaningful results likely because
the precipitation in ethanol favors reaction/degradation of LMW metabolites (e.g., the
decrease in the peak of uric acid and the increase in an unassigned peak at tR = 4.348 min)
and the disappearance of the peaks of pyruvic acid, valine (VAL), lactic acid, and propionic
acid (Figure S3a,b). Figure S3c shows, as an example, UV/visible spectra of the peak
at tR = 5269 min (orange line) of the saliva_CO sample, which is due to uric acid, and
UV/visible spectra of the peaks at tR = 5.2599 (purple line) and 4.35 min (blue line) of the
saliva_EtOH sample. Both these peaks have the absorption characteristics of uric acid, but
only the peak at 5.2599 has the same retention time of uric acid standard solution.

The results show that for most of the metabolites the sampling by spitting or by
swab does not affect their quantitation (lactic, propionic, uric acids, and valine). For other
metabolites (creatinine and pyruvic acid), the salivette swab seems to partially adsorb the
analyte. The filtering with cut-off filtration units instead does not affect their quantitation.

3.4. Raman Analysis on Saliva Dried Spots

Raman spectra were acquired from saliva dried spots on PP, glass, and aluminum
foil-covered glass. The signals of PP strongly interfere with the analysis, while the spectra
collected from samples onto glass were characterized by a poor S/N ratio. The deposition
onto aluminum, as verified also by Bedoni and coworkers [55], is rather correlated with
well-defined Raman bands, which are easily associable to the vibrational signatures of
several biomolecules. Figure 6 shows the comparison of Raman spectra acquired at 785 nm
of saliva before (Figure 6a) and after (Figure 6b) filtering with 3 kDa filters.

The characteristic features of proteins are clearly recognizable in the spectra of both
saliva and salivette, dominating the investigated spectral region. In the spectra obtained
after the cut-off at 3 kDa, the only signals related to proteins are the out-of-ring breathing of
tyrosine (824 cm−1), the C–C stretching of the proline ring (926 cm−1), the C–C stretching
of the protein β-sheet (978 cm−1), and the band of Amide III (centered at 1255 cm−1).
Saliva treatment with filters to remove large biomolecules is thus necessary in Raman
spectroscopy to obtain information from smaller metabolites. Protein precipitation with
EtOH, instead, gives Raman spectra with high noise and low-intensity signals, and no
reliable information could be deduced from them.

The PCA was applied to the preprocessed dataset acquired at 785 nm, obtaining a 95.6%
of variance explained by the first two PCs (Figures S4 and S5). Saliva and salivette spectra
cluster together and are clearly separated from the other samples along PC2. It appears,
thus, that the Salivette® swab does not retain/release any compound at a significant
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concentration for Raman. The spectra of saliva_CO and salivette_CO are separated along
PC1, while they appear indistinguishable along PC2, and a detailed analysis of the spectra
revealed that salivette_CO samples show Raman signals at a lower intensity with respect
to those of saliva_CO. As would be expected, the samples treated with EtOH form a
close-packed cluster separated from the other groups.
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Figure 6. Comparison of Raman spectra at 785 nm of saliva before (a) and after (b) filtering with
3 kDa filters.

Spectra acquisition with a laser in the visible range is further complicated by molecular
fluorescence. Specifically, we could not register any Raman working at 532 nm regardless of
the processing protocol, while at 633 nm, protein removal with 3 kDa filters was necessary.
In this case, the spectra of saliva_CO and salivette_CO mostly resemble those acquired at
785 nm, though the spectral bands are broader and less defined.

4. Conclusions

Vibrational spectroscopy (ATR-FTIR and Raman) of saliva in tandem with chemomet-
rics is potentially a straightforward technique for pathology biomarker research and for
personalized medicine screening to facilitate the diagnosis and follow up of patients during
pharmacological therapies once biomarkers have been identified.

Multivariate analysis suggests that both Raman and FTIR spectral patterns are not
affected by the saliva collection method (spitting or swab). The deproteinization method,
instead, may affect the results of saliva-based vibrational spectroscopy, most of all because
saliva contains nonprotein nitrogen that precipitates in ethanol [54]. Thus, the collection–
processing protocol should be based on the biochemical component suitable to obtain
differential diagnoses or to extract information on specific biomarkers [4]. As for the
other spectrochemical approaches, FTIR is in fact advantageous for providing holistic
information, but the extraction of information from the spectra is a key point to make this
information useful for clinical purposes.

Although saliva collection by cotton swabs is not invasive, the spitting/drooling
method is even easier and minimizes patient hassle, and it is cost-effective in repeated
“personal monitoring” when the dynamics of salivary metabolites would be required.
Raman analysis before and after protein removal with cut-off filters allows to obtain
complementary information. It is not trivial or negligible to highlight that the development
of methods based on vibrational spectroscopies, coupled with easy preanalytical steps
(sampling/processing) and portable infrared and Raman spectrophotometers would in
principle favor bedside applications. Lastly, the saliva deposition of multiple spots onto low-
cost PP sheets and the acquisition of spectra on “printed” microamounts of SDSs transferred
onto ATR diamond window is fast and novel, and the samples dry simultaneously, and it
allows to obtain reproducible conditions and spectra, even when small amounts of sample
are available.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/metabo13030393/s1, Figure S1. PCA results of SNV-
normalized and centered (no scaling) ATR-FTIR spectra of saliva samples. (a) Score plot (69.6%
of total variance); (b) loading plot PC1 (black line) and PC3 (green line). HMWsaliva_CO and
HMWsalivette_CO refer to high-molecular-weight compounds (HMWCs) remaining in the upper
part of 3 kDa cut-off filtering units (w = wiping, p = printing) as explained in the experimental
part. Figure S2. PCA results of SNV-normalized and centered (no scaling) ATR-FTIR spectra of
saliva samples. (a) Score plot (28.0% of total variance); (b) loading plot PC2 (red line) and PC3
(green line). HMWsaliva_CO and HMWsalivette_CO refer to high-molecular-weight compounds
(HMWCs) remaining in the upper part of 3 kDa cut-off filtering units (w = wiping, p = printing)
as explained in the experimental part. Figure S3. Absorbance HPLC chromatograms at 220 nm of
saliva (a panel) and salivette (b panel) samples before and after deproteinization with 3 kDa cut-off
filtration and precipitation in ethanol. (c) UV/visible spectra of the peak at tR = 5.2599 (purple
line) and 4.35 min (blue line) of saliva_EtOH sample and tR = 5269 min (orange line) of saliva_CO
sample. Figure S4. PC1 vs. PC2 score plots of Raman spectra acquired at 785 nm and preprocessed
as described in Section 3.4. Legend: 1 (blue)—saliva; 2 (light blue)—salivette; 3 (green)—saliva_CO;
4 (yellow)—salivette_CO; 5 (orange)—saliva_EtOH; and 6 (red)—salivette_EtOH. Figure S5. PC1
(blue line) vs. PC2 (red line) loading plot of Raman spectra acquired at 785 nm and preprocessed as
described in Section 3.4.
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Abstract: Steroid hormones play a vital role in the regulation of cellular processes, and dysregulation
of these metabolites can provoke or aggravate pathological issues, such as autoimmune diseases
and cancer. Regulation of steroid hormones involves different organs and biological compartments.
Therefore, it is important to accurately determine their levels in tissues and biofluids to monitor
changes after challenge or during disease. In this work, we have developed and optimized the
extraction and quantification of 11 key members of the different steroid classes, including androgens,
estrogens, progestogens and corticoids. The assay consists of a liquid/liquid extraction step and
subsequent quantification by high-resolution liquid chromatography coupled time-of-flight mass
spectrometry. The recoveries range between 74.2 to 126.9% and 54.9 to 110.7%, using a cell culture or
urine as matrix, respectively. In general, the signal intensity loss due to matrix effect is no more than
30%. The method has been tested in relevant steroidogenic tissues in rat models and it has also been
tested in human urine samples. Overall, this assay measures 11 analytes simultaneously in 6 min
runtime and it has been applied in adrenal gland, testis, prostate, brain and serum from rats, and
urine and extracellular vesicles from humans.

Keywords: liquid chromatography–mass spectrometry; time-of-flight; steroid hormones; androgens;
urinary extracellular vesicles; hormone-dependent disease; metabolomics

1. Introduction

Steroid hormones are involved in a wide range of physiological processes and their
production and delivery is regulated via the hypothalamus–pituitary–adrenal gland and
–gonadal axes (Figure 1) [1]. Regulation is, amongst other things, subject to circadian
rhythm, stress and sex. There are five classes of steroid hormones, namely glucocorticoids,
mineralocorticoids, progestogens, androgens and estrogens. These different classes have
distinct biological functions. The glucocorticoids are involved in the stress and immune
response, while the mineralocorticoids are more related the maintenance of cell homeosta-
sis [1,2]. In addition, the androgens and estrogens highly regulate cellular proliferation,
development and differentiation. Hence, dysregulation of the steroid signal cascades of-
ten results in hormone-dependent pathologies. For instance, the carcinogenesis of breast
and prostate cancer (PCa) are strongly influenced by the systemic presence of active es-
trogens [3] and androgens [4,5], respectively. Specifically, in PCa, the androgen receptor
triggers the tumorigenic growth at a molecular level. The active steroid hormones, such as
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5-α dihydrotestosterone (DHT), are the major ligands in this molecular pathway and cause
the progression of PCa at early stages [4,6].

Figure 1. Schematic representation of the steroid hormone biosynthesis pathway in relevant organs
and its regulation. CRH stimulates the release of ACTH from the pituitary gland. ACTH stimulates
the production of cortisol (exerts negative feedback on CRH and ACTH) and DHEAS in adrenal
glands. Pulses of GnRH from hypothalamic neurons stimulate pulses of LH as well as FSH. LH stim-
ulates testosterone production in testis. Liver maintains pathway’s homeostasis and several processes
may happen: sulf desulfation makes metabolites available to feed the pathway while processes indi-
cated with a flat end arrow inactivate metabolites that are in circulation. Bold arrows indicate a higher
activity of the specific reaction. In bold, the metabolites that are majorly produced in each specific or-
gan are represented. ACTH: adrenocorticotropin; CRH: corticotropin-releasing hormone; FSH: follicle
stimulating hormone; GnRH: gonadotropin-releasing hormone; LH: luteinizing hormone; CYP17A1:
Steroid 17-alpha-monooxygenase; CYP19A1: aromatase; SULT: hydroxysteroid sulfotransferase;
STS: steroid sulfatase; 3β-HSD: 3β-Hydroxysteroid dehydrogenase; 17β-HSD: 17β-Hydroxysteroid
dehydrogenase; DHEA: dehydroepiandrosterone; DHEAS: DHEA sulfate.
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In mammals, the precursor of sterol biosynthesis is cholesterol, which is further utilized
in the adrenal glands, gonads and sexual-derived tissues to produce steroid hormones.
There are 99 metabolites involved in the steroid hormone biosynthesis pathway and over
100 reactions are catalyzed by 61 different enzymes [7,8]. All of the steroid compounds share
a sterane backbone structure. The physiological role of each individual steroid hormone is
primarily defined by the layout of double bonds, hydroxyl and keto groups around this
basic sterane backbone structure [1]. The main structural difference between the classes
is the carbon atom arrangement i.e., the androgens are C-19, the estrogens are C-18, the
progestogens are C-20 and the corticoids are C-21.

In the first step of the steroid hormone biosynthesis, cholesterol is internalized into the
mitochondria where it is fed as a substrate to produce pregnenolone (Figure S1, Supplemen-
tary Materials). This is the main precursor for steroid hormones produced de novo [4] inside
the mitochondria. Pregnenolone can be converted to progesterone or dehydroepiandros-
terone (DHEA), which can be further metabolized to glucocorticoids and mineralocorticoids
(C-21) or to androgens (C-19), such as testosterone, DHT or androsterone and estrogens
(C-18), respectively (Figure S1, Supplementary Materials). Interestingly, this metabolic
network is tissue-dependent. Different organs are specialized on particular modules of
the pathway that are physiologically relevant to perform their function. For instance, the
adrenal glands are the producers of C-21 hormones, while prostate shows a high SRD5A
activity, which catalyzes the conversion of testosterone to DHT (Figure 1).

Indeed, this is an intricate network of metabolites. Many of these metabolites par-
ticipate as ligands in a wide span of signaling cascades and biological processes, and
their levels vary strongly between different biological compartments. While cholesterol
is the unique de novo precursor in steroid hormone biosynthesis, there exists an inter-
change between cells and tissues that anaplerotically feeds the pathway at the intermediate
steps [9]. This means that the compounds upstream of the pathway can be provided by
the cell environment. In this line, sulfated steroids are of interest since they are, unlike
their unsulfated counterparts, readily soluble in the cytoplasm and in biofluids, such as
blood or urine. Notably, the sulfates of steroids are considered endogenous and active
neurosteroids [9,10]. Over the past few decades, it has been established that sulfonation
is not only a process to inactivate and excrete steroid hormones; it also acts as a systemic
reservoir for peripheral or local steroidogenesis in non-steroidogenic tissues, i.e., the brain
or prostate [9,11]. In addition, it has been reported that the secreted vesicles, also known
as extracellular vesicles (EVs), participate in many of the physiological processes [12,13]
and they can contain a wide variety of cargos, such as lipids, proteins, metabolites, sugars
and even DNA [12–15]. The hormone steroids and related cargos are transported by the
blood and other body fluids as sulfated species, but they could also be transported by EVs
to reach the target tissues.

The steroid hormone metabolism and the consequences of dysregulation have gained
interest within the biomedical community to understand and diagnose hormone-dependent
diseases, rather than the historic usage of steroid hormones in therapeutics. Indeed, a num-
ber of methods to detect and quantify steroid hormones have been reported during the last
two decades. Many of the studies describe methodologies to detect steroids from several bio-
logical sources: cell cultures [3,16,17]; urine samples [18–20]; animal tissues [21–23]; human
serum [24–26]; human hair [27] and waste water [28,29]. In general, steroid metabolomics
methodologies focus on profiling a specific set of metabolites of interest in targeted tissues
(or in circulation) rather than analyzing steroidogenesis status in a system of organs and
related fluids. The methods are usually developed for similar non-sulfated steroids that
efficiently ionize in the same mode, avoiding the exploration of the detection and quan-
tification of many different steroids simultaneously [16,23,25,26]. Methodologically, these
studies describe a variety of extraction, separation and detection methods. In particular, the
solid phase extraction (SPE) and reversed phase liquid chromatographic-based methods
are deployed in the isolation and separation of these compounds. The detection is mostly
performed with triple quadrupole instruments. In addition, gas chromatography-coupled
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MS methods was also utilized in a few of the studies. All of these methods have their
advantages and disadvantages.

We describe a method for the detection of endogenous steroid hormones and their
intermediates, using liquid/liquid extraction and ultra-performance liquid chromatogra-
phy (UPLC), coupled with high resolution time-of-flight mass spectrometry (hrLCMS).
UPLC provides fast cycling times and a high chromatographic resolution. The high mass
resolution obtained with time-of-flight mass spectrometry results in high specificity, while
the sensitivities are on par with triple quadrupole methods. This method was applied to
metabolically profile several animal tissues and urinary EVs (uEVs). Different biological
matrices, including prostate, adrenal gland, testicles, brain and liver of Wistar male rats
but also human urinary samples, were tested in this assay. To our knowledge, the present
work presents for the first time a reliable and optimized hrLCMS assay to analyze the key
endogenous steroid hormones in endocrine tissue, bioliquids and EVs.

2. Materials and Methods
2.1. Tissue and Biofluid Samples

The tissues and serum were obtained from three wild-type (Wistar, RjHan:WI) rats
obtained from Janvier Labs, Le Genest-Saint-Isle, France. All of the urine samples were
obtained from a healthy male on either the morning or the afternoon. uEVs were obtained
by ultracentrifuging urine samples as described elsewhere [5]. Urine samples and uEVs
were characterized in several physicochemical parameters and protein markers, respectively.
For a more detailed information on sample collection, preparation and characterization
refer to Figure S1 (Supplementary Materials).

2.2. Chemicals and Standards

The DHEA, DHT, cortisol (in methanol solution) and the sodium salt of androsterone
sulfate were obtained from Cerilliant Corporation (Round Rock, TX, USA). Supelco (Belle-
fonte, PA, USA) procured androstenedione. The sodium salts of DHEAS and pregnenolone
were obtained from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). The testosterone,
aldosterone, corticosterone, estrone, pregnenolone 3-sulfate (sodium salt form), leucine-
enkephalin (Leu-Enk), chloroform (>99.8% pure; of chromatography grade) and ammonia
solution were purchased from Sigma-Aldrich (St. Louis, MO, USA). The LC-MS grade
water, acetonitrile, formic acid and methanol were purchased from Fisher Chemical (Fair
Lawn, NJ, USA).

2.3. LCMS Sample Preparation

The steroid metabolites were extracted by liquid–liquid extraction using a methanol/
water mixture and chloroform as extraction liquids. The EV fractions were sonicated
for 15 min in a total volume of 400 µL 50% v/v methanol/water mixture containing
1 mM ammonia to lysate EVs. The cell culture (DU145 cell line), fixed on culture well
plates, was scrapped after 5 min incubation with 500 µL 50% v/v methanol/water mixture
containing 1 mM ammonia. Tissue aliquots—approximately 50 mg—were lysed, using
1.4 mm zirconium oxide beads into standard 2 mL homogenizer tubes (Precellys, Montigny,
France). Each sample was homogenized in 500 µL 50% v/v methanol/water mixture
containing 1 mM ammonia by performing two cycles of 40 s at 6000 rpm in a FastPrep-
24TM 5G bead beating grinder (MP Biomedicals, Solon, OH, USA). After lysis, 400 µL of
the homogenate—either tissue, EV fraction or DU145 cell culture—was transferred to a
clean Eppendorf® tube. Subsequently, 400 µL of LCMS grade chloroform was added on
top of the 400 µL of any lysated sample and shaken for 60 min at 1400 rpm at 4 ◦C. Then,
the samples were centrifuged for 30 min at 14,000 rpm at 4 ◦C in order to precipitate the
proteins and to separate the organic from the aqueous phases.

The aqueous (top) and organic (bottom) phases were separated. The protein fraction
was precipitated on the meniscus between these two immiscible phases. Then, 250 µL
of each fraction was transferred to the clean Eppendorf® tubes and evaporated using a
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centrifugal vacuum concentrator. The pellets from the organic fraction were dissolved in
100 µL pure methanol and the pellets from the aqueous fractions were dissolved in 50% v/v
methanol/water. All of the resuspended pellets were centrifuged for 30 min at 13,000 rpm
and 4 ◦C. Finally, 80 µL of the resuspended pellets were transferred to deactivated glass
vials or 96-well plates for injection into the hrLCMS system.

2.4. Ultra-High Performance Liquid Chromatography (UPLC)

The chromatographic separation of the analytes was performed with an ACQUITY
UPLC I-Class PLUS System (Waters Inc., Milford, MA, USA). This system was equipped
with a cooled (10 ◦C) Process Sample Manager with a sample loop of 10 µL and a Sample
Organizer, a Binary Solvent Manager and a High Temperature Column Heater. A reversed-
phased 1.0 mm × 100 mm BEH C18 column (Waters Inc., Milford, MA, USA), thermostated
at 40 ◦C, was used for separating the analytes. The samples were injected from either 2 mL
deactivated glass vials or 700 µL round 96-well polypropylene plates.

The chromatographic behavior was optimized with respect to the peak intensity
and an adequate separation of the 11 analytes along the run. The gradient elution was
accomplished with an aqueous mobile phase (eluent A) consisting of 99.9% water with
0.1% formic acid and an organic mobile phase (eluent B) consisting of 99.9% acetonitrile
with 0.1% formic acid. The flow rate was 140 µL per min. Several gradients were tested
during the optimization process (Table S1, Supplementary Materials) in order to avoid
break-through (elution of analyte in the injection peak) and to obtain a good peak separation.
The optimal gradient was as follows: start at 30% B; a linear increase to 80% B in 3.8 min.; a
step increase from 80% to 99%; constant at 99% for 1.0 min and back to 30% B in 0.2 min.
The total cycle time from injection to injection was 6 min. The injection volume for all of
the samples was 2 µL.

2.5. Mass Spectrometry

A time-of-flight mass spectrometer SYNAPT G2-S (Waters Inc.) was utilized for the
detection of the analytes. The instrument was operated in either positive (ESI+) or negative
(ESI-) electrospray ionization mode and in full-scan mode with a scan range between 50 Da
and 1200 Da and scan time of 0.2 s.

The z-spray source parameters: temperatures; gas flows; capillary position and volt-
ages were tuned, as detailed elsewhere [30]. The optimal source parameters for this assay
in either ESI+ or ESI− are summarized in Table S2 (Supplementary Materials). The ion
optics were fine-tuned by spraying Leu-Enk (100 ppb), at a rate of 10 µL per min, to a
resolution over 20,000 (FWHM) for m/z 556.2771. The same Leu-Enk solution was sprayed
as a lock mass to correct for m/z fluctuations along the assay. The lock mass solution was
introduced into the source every 90 s using a second ESI probe and it was recorded for
0.5 s. Mass spectrometer spectra was corrected according to fluctuations detected in the
lock mass.

2.6. Statistical Analysis
2.6.1. Analyte Recovery Study

The extraction step efficiency was assessed by performing a recovery assay with vari-
ous mixtures of organic solvents and water. Five different extraction buffers were tested in
this assay: 25/75% v/v and 50/50% v/v of methanol/water mixture; 25/74.9/0.1% v/v/v
and 50/49.9/0.1% v/v/v of methanol/water/formic acid mixture and 50/50% v/v of
methanol/water mixture with 1mM ammonia. To compare and calculate the recover-
ies of 10 different analytes, a culture of a prostate cancer cell line-DU145-was spiked with
the analyte standards. Each well containing 5·× 105 cells was spiked with a mix of stan-
dards at 2 µM before lysis (pre-spiked) and at the resuspension stage (post-spiked) with a
standard mix at 10 µM. Thus, the pre-spikes contained 1 nmol in 500 µL and post-spikes
(aqueous and organic fractions) contained the same total amount in 100 µL, which would
be the theoretical maximum absolute if there was no loss during the extraction. In ad-
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dition, for each extraction solution, the non-spiked samples were prepared in order to
correct for endogenous metabolites in the matrix. The samples for the pre-spiked, post-
spiked and non-spiked conditions and the five different extraction buffers were prepared
in biological triplicates.

Only the absolute peak areas were taken into consideration to establish the recovery
efficiency in the extraction step. The average peak areas were obtained by mean smoothing
the raw signals of triplicates. The recovery (R) was determined by dividing the corrected
pre-spike average by the corrected post-spike average and represented as a percentage
(Equation (1)). Both the pre-spiked and post-spiked raw signals ought to be corrected by
subtracting the endogenous analytes signal in the DU145 culture matrix (Snon-spike). How-
ever, as the Snon-spike of DU145 culture matrix was less than 0.05% of the signal, endogenous
correction was neglected during the calculation. Importantly, the pre-spikes were corrected
with respect to analyte loss (α) during the extraction procedure. Moreover, the raw signals
of each sample did not have to be corrected by the amount of initial samples, because every
well contained the same amount of cells.

R (%) =
α
(

Spre−spike − Snon−spike

)

Spost−spike − Snon−spike
× 100 (1)

2.6.2. Study of Matrix Effect in Analyte Quantification

In order to assess the matrix effect (ME) in the quantification of the analytes, the
post-spiked raw signal was compared to an equivalent raw signal of a mixture of analytes
(10 µM) in solution. The post-spiked raw signals were corrected by subtracting the endoge-
nous analytes detected in the non-spiked DU145 culture samples. Then, the numerator
was divided by the average peak areas of the standards and expressed as a percentage
(Equation (2)):

ME (%) =
Spost−spike − Snon−spike

Sstandards
× 100 (2)

2.6.3. Analyte Semi-Quantification

In this work, a calibration curve was prepared in solution with 50% v/v methanol/water
for the semi-quantification of the analytes. This calibration curve consisted of a serially
diluted mixture containing all of the analytes, starting at a concentration of 10 µM. The
initial concentration was diluted to half concentration twice, resulting in 5 µM and 2.5 µM
concentration in the curve. Then, this set of triplets was diluted in five decades; it resulted
in the following 15 different concentrations per analyte: 10; 5; 2.5; 1; 0.5; 0.25; 0.1; 0.05; 0.025;
0.01; 0.005; 0.0025; 0.001; 0.0005 and 0.00025 µM. The calibration samples were injected at
the beginning and at the end of each experiment; the average of these two points was used
to semi-quantify the metabolites in the tissues.

The limit of detection (LOD) for each analyte was set to be the lowest concentration at
which the signal-to-noise (S/N) ratio was above three. The LOQ was defined as the lowest
concentration at which the S/N ratio was above 10. The highest quantifiable concentration
was the highest concentration per analyte that fits the calibration curve with an acceptable
accuracy and precision (CV ≤ 15%) [16].

In general, the data of a calibration curve range over several orders of magnitude,
the data are not linear and tend to be heteroscedastic [31]. For this reason, the relation
between the peak area and the sample concentration was determined by power-fitting [30].
The power fitting resulted in a calibration curve (Equation (3)) with α and b as the fitted
parameters. Once the sample concentrations were calculated using a calibration method in
solution, the amount (in nanomole) per gram of tissue weight was estimated:

Peak area = α[concentration]b (3)
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3. Results
3.1. Liquid Chromatography and Mass Spectrometry Method

We compared six different chromatographic methodologies (Table S1, Supplementary
Materials) to satisfactorily separate the analytes. The gradient 6 (30% B to 80% B in 3.8 min;
detailed steps in Table S2, Supplementary Materials) showed the best peak separation along
this run time compared to other tested gradients (data available in [32]). Due to the nature
of the stationary phase, analytes elute in order of increasing hydrophobicity. The resulting
extracted ion current (XIC) chromatograms of a standard mixture at 10 µM are depicted in
Figure S2 (Supplementary Materials). In brief, aldosterone (m/z 361.2015; ESI+) elutes at
0.99 min, cortisol (m/z 363.2171; ESI+) at 1.20 min, DHEAS (m/z 367.1579; ESI−) at 1.60 min,
corticosterone (m/z 347.2222; ESI+) at 1.68 min, androsterone sulfate (m/z 369.1736; ESI−)
at 1.85 min, pregnenolone sulfate (m/z 395.1892; ESI−) at 2.23 min, estrone (m/z 271.1698;
ESI+) at 2.39 min, androstenedione (m/z 287.2011; ESI+) and DHEA (m/z 289.2168; ESI+)
co-elute at 2.40 min, DHT (m/z 291.2324; ESI+) at 2.65 min, pregnenolone (m/z 317.2481;
ESI+) at 3.25 min.

Regarding the mass spectrometry method, the Leu-Enk signal (m/z 556.2771) was
aimed at a resolution of over 20,000 (FWHM) and provided the necessary mass accuracy
to evaluate assay analytes. Isotope pattern matching and the use of chemical standards
confirming elution times further ensured the specificity. In general, the mass accuracies for
the analytes in solution were between −1 to 1 mDa. It is noteworthy that several analytes
were not adequately separated during the chromatographic elution. The corticosterone
and DHEAS elute at similar retention times—1.60 min and 1.68 min-, however, the MS
could properly distinguish them by their m/z difference and their fragmentation pattern.
Moreover, the DHEAS was not detected with a high intensity signal in ESI+ mode. For
this reason, the corticosterone was measured in ESI+ and the DHEAS in ESI− mode.
Likewise, estrone, DHEA and androstenedione eluted in approximately 2.40 min. In this
case, one could only rely on the MS sensitivity (estrone m/z 271.1698, DHEA m/z 289.2168,
androstenedione m/z 287.2011) and on a fragmentation pattern that was sensitive enough
to distinguish and quantify them separately.

3.2. Analyte Recovery Optimization

Afterwards, we evaluated the recovery of 11 analytes using a biphasic liquid–liquid
method and analyzed them with the optimized hrLCMS method. The extraction was
performed, using the DU145 cell line as a matrix. Five different mixtures of organic
solvents and water, containing either formic acid or ammonia to modify the pH of the
extraction buffer or no pH modifier, were assessed (Table S3, Supplementary Materials).
The addition of formic acid strived for lowering the pH approximately to three, while
1mM ammonia modified the extraction buffer to pH 8–9 in order to chemically neutralize
the functional groups of the steroid compounds. From the previous experiments in our
metabolomics platform, we observed that in liquid–liquid extraction requires at least 25%
organic solvent during the extraction step to precipitate the proteins. This is important
to avoid clogging the chromatographic system [30]. Moreover, the effectivity of tissue
homogenization using beads has been reported as high and does not differ much from
the homogenization of other matrices, such as urine or cell cultures [30,33]. Therefore, the
calculated recoveries are ultimately dependent on the extraction buffer utilized, regardless
of the homogenization methodology.

During the optimization process, it was determined that the steroid sulfate compounds
were recovered completely in the aqueous fraction, whilst steroids without sulfate group
were found in the organic fraction. Notably, only cortisol was detected systematically
in both of the fractions (Figure S3, Supplementary Materials); however, it was majorly
recovered in the organic (80% or higher) rather than in the aqueous (approximately 20%)
fraction. Moreover, the addition of formic acid to the extraction buffer led to a dramatic
decrease in the recoveries of the sulfate compounds and a slight decrease in the rest
of the steroid analytes (Figure S3, Supplementary Materials). One can infer that the
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presence of protons in the buffer do not stabilize steroid charges and severely hampers
the extraction of sulfate steroids in a polar environment. The supplementation of 1mM
ammonia outperformed the extraction in terms of recovery and robustness, compared to
the other extraction liquids. Notably, the recovery values using different percentages of
methanol in the extraction buffer do not differ much. However, the extraction efficiency of
the sulfate compounds using 25% v/v methanol underperforms 50% v/v methanol, with a
recovery loss of 40 to 50%.

In Table 1, the recoveries of the 11 selected analytes, using a mixture of 50/50% v/v
methanol/water with 1mM ammonia as the extraction buffer, are reported. In general, the
present methodology is able to recover and detect over 90% of the initially spiked analyte.
Only DHT was detected in a lower percentage; approximately 80% of the initially spiked
DHT was recovered. As expected in a biphasic extraction, the hormone steroids were
retrieved in an apolar environment and the sulfated steroids in a polar solvent. Besides
cortisol, pregnenolone sulfate was also reported in both of the fractions; it was mainly
recovered in the more polar solvent and a derisory amount in the organic fraction. Using
this methodology, the recoveries for 10 µM of analyte ranged from 74.2% to 126.9%. These
values are acceptable for routine muti-analyte hrLCMS analysis since all of the results are
reproducible [34]. Thus, extraction using 50/50% v/v of methanol/water mixture with
1 mM ammonia was selected for further experiments in different biological matrices.

Table 1. Summary of the optimized method characteristics. The recoveries (±standard deviation)
and matrix effect as signal loss (±standard deviation) of the extraction procedure in two different
biological matrices (n = 6; biological matrix: DU145 cell) are reported. In addition, LOD and LOQ
values of the analytes in the adequate fraction are compiled. LOD: Limit of detection; LOQ: Limit
of quantification.

Analyte Fraction Recovery (%) Matrix Effect (%) LOD (nM) LOQ (nM)

Pregnenolone Organic 97.2 (±1.9) 25.2 (±3.1) 2.5 nM 10 nM
Aqueous - 24.0 (±2.8)

DHEA Organic 122.7 (±2.9) 37.7 (±5.7) 5.0 nM 50 nM
Aqueous - 28.0 (±6.2) - -

Androstenedione Organic 102.2 (±3.2) 30.8 (±4.6) 0.25 nM 0.5 nM
Aqueous - 23.2 (±4.5)

Estrone Organic 103.7 (±3.8) 25.5 (±4.8) 5.0 nM 10 nM
Aqueous - 25.7 (±4.0)

DHT Organic 74.2 (±3.4) 23.1 (±3.9) 0.25 nM 1.0 nM
Aqueous - 23.4 (±2.9)

Cortisol Organic 114.3 (±3.8) 25.9 (±4.2) 0.5 nM 1.0 nM
Aqueous 22.28 (±4.5) 17.6 (±4.7)

Aldosterone Organic 99.8 (±1.77) 18.7 (±4.3) 0.5 nM 2.5 nM
Aqueous - 17.7 (±5.1)

Corticosterone Organic 109.4 (±3.1) 25.1 (±3.6) 0.25 nM 1.0 nM
Aqueous - 20.2 (±3.2)

Testosterone Organic 126.9 (±1.7) 14.3 (±1.9) 0.25 nM 0.25 nM
Aqueous - 8.0 (±2.1)

Pregnenolone sulfate Organic 6.9 (±2.7) 25.2 (±3.1) 0.25 nM 1.0 nM
Aqueous 94.8 (±1.9) 24.0 (±2.8)

DHEAS Organic - 42.6 (±1.1) 0.25 nM 0.5 nM
Aqueous 108.0 (±1.4) 42.5 (±0.1)

Furthermore, the performance of the optimized methodology was tested, using urine
as the matrix since it has a high interest for clinical applications. Six samples of urine from
a male individual were pooled and aliquoted in different two volumes to assess the matrix
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effect on the recovery efficiency. In Table 2, the recoveries of the 10 analytes are reported;
DHEA recovery has not been retrieved, because its peak was masked by testosterone’s
signal. In general, over 85% of the initially spiked analyte is recovered and detected in
50 µL urine matrix. Importantly, the sulfated steroids are not recovered with the same
efficiency; DHEAS and pregnenolone sulfate report a recovery efficiency of 75.7% and
54.9%, respectively. The recoveries of the analytes using 250 µL urine as matrix describes a
slight decrease in the non-sulfated steroids while the efficiency decay is dramatic in the
sulfated species.

Table 2. Summary of the recoveries using the optimized methodology in urine matrix. The recoveries
(±standard deviation) of two different volumes (50 µL and 250 µL) of pre-pooled urine are reported
(n = 3).

Analyte Urine Volume Recovery (%)

Pregnenolone 50 µL 92.4 (±3.6)
250 µL 99.3 (±4.8)

Androstenedione 50 µL 93.0 (±3.9)
250 µL 79.3 (±3.8)

Estrone 50 µL 94.2 (±3.3)
250 µL 84.8 (±4.8)

DHT 50 µL 76.3 (±4.1)
250 µL 71.2 (±3.76)

Cortisol 50 µL 87.0 (±3.0)
250 µL 72.4 (±3.6)

Aldosterone 50 µL 110.7 (±2.9)
250 µL 103.1 (±3.2)

Corticosterone 50 µL 96.2 (±2.8)
250 µL 84.3 (±3.6)

Testosterone 50 µL 104.1 (±2.1)
250 µL 96.3 (±5.1)

Pregnenolone sulfate 50 µL 54.9 (±1.5)
250 µL 25.5 (±1.2)

DHEAS 50 µL 75.7 (±2.5)
250 µL 44.0 (±4.2)

3.3. Matrix Effect

It is well known that the phospholipids and other lipids, typically enriched in biologi-
cal matrices, such as tissues, body fluids or cell cultures, can cause ion suppression in mass
spectrometry, thereby hampering the analyte signal [35,36]. This phenomenon negatively
influences the detection of the analytes and may underestimate their quantification. For a
specific matrix, the higher the ion suppression effect is, the higher the signal loss. Therefore,
the conclusions drawn by detecting and quantifying the analytes under these conditions
could be misleading.

The matrix effect of each analyte was defined as the signal loss measured at the resus-
pension step (sample spiked with 10 µM analyte mix) compared to 10 µM of each analyte in
solution. The signal loss was calculated in five different extraction procedures, because they
can influence ion suppression. The matrix effect reported in this work was estimated for a
prostate cancer cell line (DU145) culture and urine samples. To note, signal loss is specific
for each matrix and each independent experiment. In further experiments, in which quan-
tification is required, the matrix effect should be calculated in every particular assay. From
our optimization experiments, one can infer that the matrix effect is fraction-dependent,
because there is a significant difference between signal loss comparing organic and aqueous
fractions (Figure S4, Supplementary Materials). This phenomenon is likely observed due
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to a differential extraction of the phosphatidylcholine (or other lipid) compounds [30,35].
Strikingly, this fraction dependency was not observed upon the addition of ammonia to
the extraction liquid. Moreover, the presence of ammonia resulted in a signal loss of up to
half-fold compared to extraction liquids with acidic modifier or no pH modifier addition.
This suggests that the ammonia impairs the extraction of the lipidic compounds from the
biological matrix, hence, decreasing the ion suppression phenomenon in mass spectrometry.

In Table 1, the matrix effect (expressed as signal loss (%)) of a DU145 culture of
11 selected analytes, using a 50/50% v/v of methanol/water mixture with 1mM ammonia
for extraction, is reported. In general, the present methodology loses approximately 15
to 40% of the signal of non-sulfated analytes but it mainly lays between 20 to 30% loss.
On the other hand, the sulfated steroids display a 40 to 50% loss of signal, regardless of
the extraction fraction. The signal loss of the 10 µM analytes spiked in DU145 cell line
were: 25.2% for pregnenolone, 37.7% for DHEA, 30.8% for androstenedione, 25.5% for
estrone, 23.1% for DHT, 25.9% and 20.2 % for cortisol in the organic and aqueous fraction,
respectively, 18.6% for aldosterone, 25.0% for corticosterone, 46.1% for pregnenolone sulfate
and 42.5% for DHEAS. All of the analytes are majorly recovered back in a particular fraction
of the extraction procedure, which is the one selected to report the matrix effect. Signal loss
of sulfate compounds refer to aqueous fraction measurement and the other steroids refer to
signal loss in organic fraction.

3.4. Semi-Quantitation of Steroids in Animal Tissues

The hrLCMS method was most sensitive in detecting androstenedione, DHT, corticos-
terone, pregnenolone sulfate and DHEAS with a LOD (S/N > 3) of 250 pM in a 50/50% v/v
methanol/water solution. The detection limit for cortisol and aldosterone was 0.5 nM,
and a LOD of 2.5 nM was determined for pregnenolone. The least responsive ions were
those for DHEA and estrone with a LOD of 5.0 nM. With regards to the quantification
limits, androstenedione and DHEAS were the most sensitive compounds, with a LOQ
(S/N > 10) of 0.5 nM in solution. The cortisol, corticosterone, pregnenolone sulfate and
DHT were in the second group of the most quantifiable ions showing a LOQ of 1.0 nM. The
quantitation limit for aldosterone was 2.5 nM, while a LOQ of 0.01 µM was estimated for
pregnenolone and estrone. The DHEA was the compound with the highest quantitation
threshold (0.05 µM).

We found that the concentration range of the steroid hormones is typically low in
tissues, ranging from pico- to nanomole per gram of tissue, and cannot be detected in some
tissues (Table 3). Only pregnenolone, androstenedione, DHT, corticosterone, cortisol and
testosterone were detected in the tissues or serum of Wistar rats. Pregnenolone and cortisol
are only quantified in the adrenal gland tissue, however, pregnenolone is also detected
in the brain and testicles. Adrenal gland and testicles reported picomole amounts of
androstenedione per gram of tissue. Moreover, DHT was quantified in the prostate, adrenal
gland and testicles. In prostate, the amount of DHT was two-fold the quantitation in the
other tissues. The testosterone and corticosterone were quantified in all of the measured
rat samples. In general, they were reported in the picomole per gram range in tissues. In
serum, they were quantified in the nM range. Interestingly, the adrenal gland described
nanomole per gram concentrations of corticosterone. Furthermore, testosterone was found
in a one order of magnitude higher amount in the adrenal gland and testicles compared to
prostate and brain.
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Table 3. Quantitation of three independent Wistar rat tissues: adrenal gland, prostate and brain.
Adrenal glands of the same animal were titered independently, also, the prostate lobes of each rat.
The averages in nmol per gram of tissue, standard deviations and coefficients of variation (%) of the
three groups of samples are reported.

Analyte Quantification
(nmol/g Tissue) Adrenal Gland Prostate Brain Testicle Serum (nM)

Pregnenolone Amount 7.04 - Detected Detected -
St. dev. 3.74

%cv 53

Androstenedione Amount 5.97 × 10−3 - Detected 1.45 × 10−3 Detected
St. dev. 3.35 × 10−3 1.38 × 10−3

%cv 56 95

DHT Amount 3.47 × 10−3 7.57 × 10−3 Detected 2.70 × 10−3 Detected
St. dev. 1.02 × 10−3 2.40 × 10−3 7.92 × 10−4

%cv 29 31 29

Corticosterone Amount 18.89 4.01 × 10−3 2.42 × 10−2 1.25 × 10−3 28.01
St. dev. 10.05 5.15 × 10−3 7.04 × 10−3 7.98 × 10−4 3.31

%cv 53 128 29 63 12

Cortisol Amount 0.45 - - - -
St. dev. 0.19

%cv 43

Testosterone Amount 4.53 × 10−3 6.92 × 10−4 7.02 × 10−4 9.18 × 10−3 0.20
St. dev. 1.47 × 10−3 2.36 × 10−4 4.29 × 10−4 4.53 × 10−3 0.02

%cv 32 34 60 49

The standard deviations and coefficients of the variation are rather large, indicating an
important variability among the samples obtained from the same strain but independent
animals. One could expect this biological variation and it suggests that treatments, stress or any
procedure applied to animals can potentially influence the outcome in further experiments.

3.5. Quantitation of Steroid Hormones in Human Urinary Samples

Six different urine samples were characterized in several physicochemical parameters
(Table S4, Supplementary Materials) to examine whether the sample collection resulted in
homogenous sample groups, regardless of the metabolomics’ analysis. No blood, ketone
bodies or glucose were detected in the urine sample, and the pH value and density of the
urine were similar in all of the samples. The urine samples were centrifuged in two serial
steps at 10,000× g for 30 min to isolate the so-called P10K fraction—typically containing
vesicles of 150 to 200 nm diameter and above—followed by a 100,000× g centrifugation
for 90 min to isolate the so-called P100K—typically containing vesicles of 100 to 150 nm
diameter and below (up to 50 nm) [37]. The supernatant of the second centrifugation was
also analyzed and referred to as SN100K.

In this set of urine samples, the current methodology is able to detect and quantify
androstenedione, cortisol and DHEAS (Table 4). The other steroids of the panel were below
the LOQ and, in general, also below the LOD. The androstenedione and cortisol were
detected only in the urine and SN100K. It was not possible to detect them associated with
the EVs, and they are majorly solubilized in the urine. The androstenedione was found
in lower concentrations compared to cortisol and the variability between the collection
days was high (40 to 60%) regardless of the collection time. Concerning cortisol, the
variability was extremely high between the morning collection days (approximately 50 to
85%) whilst the concentration of the afternoon collected samples was stable (approximately
2% variation). DHEAS was the compound detected in the highest concentration (µM
range) soluble in urine, compared to androstenedione and cortisol (nM range). Similar
to androstenedione, the DHEAS showed a high variability over independent collection
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days at both the morning and afternoon collection times. To note, DHEAS was the only
metabolite detectable in the EV fraction. In Table 4, the absolute amount (µmol) in 50 mL of
urine is reported but also the relative amount (in ppm) of the total detected metabolite that
is associated with the EVs. Importantly, DHEAS was not quantifiable (S/N < 10) in all of
the samples collected at morning time, but it was detectable in all of the cases (S/N > 3).
According to our analysis, a range of 0.5 to 3.0 ppm of DHEAS was associated with the EVs
in the urine samples (Table 4; detailed calculations available in [32]).

Table 4. Quantitation of urine human samples (n = 6, U001 to U006, Table S4, Supplementary Materials).
The isolated EV fraction are also included in the table. In the table, the three analytes detected in the
urine-derived samples.

Sample Collection Time
Androstenedione

(nM) Cortisol (nM)

DHEAS

Conc. (µM) EV-Associated
DHEAS (µM)

EV-Associated
DHEAS in

Urine (ppm)

Urine Morning 2.25 (±0.92) 40.1 (±33.5) 0.36 (±0.16) - -
Urine Afternoon 1.95 (±0.78) 35.7 (±0.7) 1.27 (±0.87) - -

SN100K Morning 2.31 (±1.53) 29.9 (±14.7) 1.33 (±0.94) - -
SN100K Afternoon 1.82 (±0.64) 31.4 (±0.7) 0.87 (±0.92) - -

P10K Morning - - - 1.75 0.90
P10K Afternoon - - - 0.76 (±0.08) 0.79 (±0.41)

P100K Morning - - - 6.17 3.19
P100K Afternoon - - - 0.74 (±0.01)

Concentration (±standard deviation) of the analytes in urine and supernatant fraction of both morning and
afternoon collected urine is shown. Absolute amount and relative amount (±standard deviation) of DHEAS is
calculated in 50 mL of initial sample of both morning and afternoon collected urine.

The isolation of the EVs in the pellet fractions was confirmed with the presence of
typical EV markers by Western blotting (Figure S5, Supplementary Materials). Typical
urine exosome markers, such as CD9, CD63 and AQP2, were intensified in P100K fractions,
confirming that this fraction is enriched in EVs. However, they are sample-dependent and
were detected in various amounts. In addition, LAMP2A and CD10 were detected only in
the P100K fraction of U003-derived EVs preparation. Annexin V and AQP2 were found in
both P100K and P10K, but also in different amounts among urine samples.

4. Discussion

This work describes a fast and simple hrLCMS methodology, able to detect and quan-
tify 11 key metabolites of the steroid hormones biosynthesis in several biological matrices.
Their importance in diseases, such as PCa and other steroid-dependent diseases, spotlights
this assay as a powerful tool to study the role of steroid hormones in the development and
progression of hormone-dependent diseases and to assess the metabolic status of patients
via liquid biopsy analysis. In brief, this method identifies and quantifies 11 steroids, includ-
ing corticoids, androgens and metabolic intermediates, in a high-throughput method of
6 min. Although testosterone and androsterone sulfate were not included in the recovery
experiment, the methodology is able to separate, identify and quantify them.

All of the steroid hormones are primarily derived from cholesterol, which provides
the sterane ring structure shared by all of these compounds (Figure S1, Supplementary
Materials). Subtle chemical differences, unique to each steroid hormone, significantly
complicate the separation of such structurally similar molecules. Furthermore, the structure
of the steroids and position of the functional groups determine their preferred ioniza-
tion mode and efficiency [18,24]. For instance, testosterone and DHEA—with the same
molecular formula—display different ionization efficiencies. DHT or androstenedione are
readily ionized in positive mode, in contrast to DHEA or pregnenolone, which are not
strongly ionized due to the presence of keto groups in the ionizable region (Figure S1,
Supplementary Materials). In order to increase the signal intensity, the MS could be oper-
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ated in enhanced duty-cycle (EDC) mode; this is a more appropriate approach in targeted
analyses, where the analyte empirical formulas are known. In this strategy, the MS signals
of a given retention time are measured in separate scan functions to enhance the m/z of the
selected analyte. Measuring in EDC instead of full-scan mode may increase by several fold
the S/N ratio of a given metabolite [30,38,39]. Therefore, the EDC mode is an option to
consider for those samples in which the analytes S/N ratio falls above the LOD, but are not
always quantifiable.

An LCMS method is usually evaluated in terms of efficiency, accuracy and sensitivity
of the measurement. The process efficiency is a combination of recovery efficiency and
matrix effect of each metabolite [40], and the sensitivity is evaluated with the LOD and
LOQ of each metabolite. Different studies identifying and quantifying steroid compounds
in biological matrices report a wide range of efficiency recoveries. For example, in PCa cell
cultures, a recovery range of 54.7% to 78.1% was reported [16] while in breast cancer cell
cultures, recoveries ranging 95.7 to 102.0% were reported [16]. Our data, with recoveries
ranging from approximately 75% to 125%, suggest that a cell culture as matrix does not
impair the extraction of the steroid metabolites. The urine matrix does not impair the
extraction of the non-sulfated steroids but the sulfated species suffer a recovery efficiency
decay. To note, the studies measuring steroids in urine and tissues, as biological matrices
report recovery efficiencies of over 100% in some of the cases [17–19]. An explanation for
this phenomenon might be that the metabolites can be either free in solution or tethered to
other molecules, such as membranal lipids during the extraction process. For this reason,
the organic and aqueous phase recoveries are not adding up to 100% in this assay. In case
of detecting a metabolite in two fractions, the addition of both of the signals is perhaps a
better approach to quantify that specific metabolite. However, our assay is very convenient,
since all of the metabolites (except cortisol) are recovered in only one fraction. This permits
a faster measurement of the steroid hormones in different biological matrices.

The existing quantitation methods for steroid hormone compounds have a wide
span of LOQ, ranging from 0.002 to 10 ng per mL. However, it is highly dependent on the
analyzed matrix, i.e., a urine matrix shows a range from 0.002 to 0.2 ng per mL [18,19], whilst
the cell matrices display a higher LOQ up to 10 ng per mL [16]. This suggests that the matrix
effect also depends on the specific matrix where the metabolites are contained. Comparing
these studies, the cell matrices report a lower sensitivity compared to urine; this is important
when applying this method in future experiments or assays. In fact, this observation
spotlights the major limitation of this study: the quantitation has been performed semi-
quantitively. Ion suppression in mass spectrometry negatively affects the analyte signal, and
subsequently underestimates its quantitation, or it simply hampers its detection. Moreover,
ion suppression may be limiting the detection of certain steroid compounds in several
matrices, i.e., EV preparations. In consequence, this method should be utilized in matrices
that facilitate the detection of the steroids. A matrix-spiked calibration is usually the
appropriate method to quantify the absolute amounts of analytes in samples [30]. In this
work, a calibration curve of the analyte standards was prepared in solution with 50% v/v
methanol/water as a solvent. Such an approach cannot compute the absolute amounts of
the analytes in tissue, since the matrix effect is not considered, however, a semi-quantitative
approximation of the metabolites in tissues can be calculated. In this assay, the reported
LOQ range lies between 0.50 and 50 nM (equivalent to 0.14 and 14.42 ng per mL) in solution,
similar to previous studies. However, it is advised to use matrix-spiked curves in further
experiments using this assay.

The time required to perform the chromatographic separation is typically long in the
literature; they report runtimes from over 10 min up to 45 min [3,5,18–22,27]. Only the
work of Quanson et al. [16] and Indapurkar et al. [17] described a methodology with a
short runtime (4 to 5 min); however, they tested and applied the method solely in cell
matrices: PCa and induced pluripotent stem cell lines, respectively. Indapurkar et al. [17]
developed a methodology specific for estradiol-related metabolites and Quanson et al. [16]
measured androgenic steroids using an ultra-performance convergence chromatography.
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In 2012, Maeda et al. accomplished the separation, detection and quantification of a panel
of steroids in rat organs except in the liver, but using an HPLC system. For this reason,
their sample preparation strategy demanded high volumes of extraction buffer—15 mL of
acetonitrile per sample—and required a total run time of 11 min. In this work, the volumes
are lower than 1 mL and the run time for different types of samples is lower than 10 min.

In order to test the performance of our methodology, we have measured steroid
hormone analytes from several rat tissues: adrenal glands; testis; prostate; liver and brain.
The data shown in Table 3 are in accordance with the fact that the pathway is tissue-
dependent in regular physiological conditions. Two metabolites upstream of the pathway,
pregnenolone and androstenedione, were quantified in the adrenal glands, but could not
be quantified in prostate or brain. This hints that the adrenal glands are in charge of the
conversion of cholesterol into the steroid compounds in complex organisms, such as rats;
this is in line with previous findings in the literature [41–43]. Likewise, the adrenal glands
are known to produce corticoid hormones. Our data confirms this, since corticosterone
is quantified in a higher amount—three to four orders of magnitude—when compared to
the prostate, brain and testicles. The adrenal glands also seem to accumulate androgens
(Table 3); however, the presence of active androgens (DHT) is two-fold higher in the
prostate compared to other tissues. Importantly, the ratio DHT/testosterone, which are
the active and non-active paired androgens, was approximately 11 in prostate, while the
adrenal gland and testis were below 1. Because the presence of the active androgen plays a
physiological role in prostate, the ratio of DHT/testosterone was also higher in this tissue.

Since the first urinary metabolomics attempts to analyze urinary samples and other
biofluids, several methodologies have been developed during the last few years [18–20].
Nevertheless, none of the reported methodologies was optimal to assess the steroids in
the EV sample preparations, tissues or body fluids in a fast and simple manner. Up to
date, many of the studies have shown metabolomics in EVs [5,20,44], but none of them has
reported the detection of steroid hormones in a targeted approach. A plausible explanation
is that the identification and detection of compounds similar in molecular mass—even the
same one in some cases—hampers the allocation of mass signals with the corresponding
chromatographic peak. For those steroids, i.e., DHEA and testosterone, which share an
empirical formula, the identification of each specific compound remains challenging using
MS and the identification relies on chromatographic separation.

Importantly, we have been able to quantify the steroid hormones in urine samples
and derived uEV in a fast and simple manner. However, only one DHEAS was detected in
the uEVS and cortisol, androstenedione and DHEAS were detected in the urine samples.
These EVs were isolated by ultracentrifugation, including a washing step to avoid any
contamination from the soluble fraction. The urine samples from a healthy man were
collected on different days and different time of collection (morning and afternoon). The
time collection was a parameter to be assessed from a metabolomics perspective, but we
found out that inter-day variability also had a high impact on the analysis. Morning
samples are considered to contain a higher concentration of steroid analytes coming from
the prostate, possibly due to accumulation and leakage towards the urinary tract during
the night. However, this trend was not described in our morning samples. The reason
may be that urine sample U003 (Table S4, Supplementary Materials) was not available for
metabolomics analysis; the analysis of the soluble fractions of urine (after uEV isolation),
which includes U003, in the morning samples had a higher concentration of DHEAS.
This highlights the importance of analyzing a larger cohort to obtain significant results
non-dependent on a unique highly concentrated sample.

In the end, this is a fast and sensitive method that was successfully applied for the
detection and quantification of a panel of steroid hormone compounds in biological samples
in 6 min runtime per sample. The sensitivity of this method makes it ideally suited for
multiple in vivo applications. In this manuscript, we explored the analysis of steroids in
several rat tissues and also in human urine and uEV samples. This has evident applications
in profiling the metabolic status of patients suffering any hormone-dependent disease. It

34



Metabolites 2022, 12, 714

should be noted that the assay requires a longer cleanse step to wash the column out of
the lipids and peptides when running a long experiment with many tissue samples. To
our knowledge, this is the first hrLCMS-based method able to detect and quantify steroid
hormones associated with EVs isolated from body fluids in a targeted approach.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12080714/s1, Supporting Information S1: Additional
experimental details related to sample collection and characterization; Supporting Information S2:
Table S1–S4 Supplementary tables with method optimization data and urine characterization; Sup-
porting Information S3: Figure S1–S5 Supplementary figures including metabolomics network,
method optimization results and urine characterization.
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Abstract: Volatile organic compounds (VOCs) are a differentiated class of molecules, continuously
generated in the human body and released as products of metabolic pathways. Their concentrations
vary depending on pathophysiological conditions. They are detectable in a wide variety of biological
samples, such as exhaled breath, faeces, and urine. In particular, urine represents an easily accessible
specimen widely used in clinics. The most used techniques for VOCs detections are expensive
and time-consuming, thus not allowing for rapid clinical analysis. In this perspective, the aim of
this study is a comprehensive characterisation of the urine volatilome by the development of an
alternative rapid analytical method. Briefly, 115 urine samples are collected; sample treatment is
not needed. VOCs are detected in the urine headspace using gas chromatography coupled to ion
mobility spectrometry (GC–IMS) by an extremely fast analysis (10 min). The method is analytically
validated; the analysis is sensitive and robust with results comparable to those reported with other
techniques. Twenty-three molecules are identified, including ketones, aldehydes, alcohols, and
sulphur compounds, whose concentration is altered in several pathological states such as cancer and
metabolic disorders. Therefore, it opens new perspectives for fast diagnosis and screening, showing
great potential for clinical applications.

Keywords: GC–IMS; metabolomics; urine; volatile organic compounds; volatilomics

1. Introduction

Volatilomics is a recent and promising branch of metabolomics that focuses on the
study of small molecules and volatile organic compounds (VOCs) with significant potential
for biomarker discovery and screening [1].

Specifically, VOCs are a large and highly differentiated class of molecules, continuously
produced in the human body and released as intermediates or products of cellular metabolic
pathways. They include ketones, aldehydes, alcohols, sulphur compounds, esters, aromatic
hydrocarbons, and terpenes, whose concentrations vary depending on pathophysiological
conditions, and are detectable in a wide variety of biological samples (exhaled breath, urine,
blood, faeces, and skin).

In recent years, the diagnostic potential of VOCs has been strongly recognised. There
is an increasingly evident correlation between the profile of VOCs and various diseases,
including diabetes [2], irritable bowel syndrome, asthma [3], and, above all, cancer [4].

Compared to other types of metabolites, which have to be extracted from tissues or
body fluids prior to analysis, VOCs are directly accessible in the gas phase (headspace), thus
requiring minimal sample preparation and enabling noninvasive, real-time monitoring.

Consequently, headspace analyses may find easy applicability in the clinical setting.
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As for the biological matrix, in addition to breath, urine is the most used fluid for the
detection of VOCs. It is a biological fluid easy to collect with a noninvasive sampling, less
complex than other fluids [5], and available in large volumes so VOCs can be detected even
in high concentrations.

Therefore, it represents a well-suited source for VOCs metabolomics investigation.
Moreover, urinary VOCs can vary both in concentration and in the types of molecules

depending on several variables such as diet, therapies, genetic factors, and smoking habits,
which must be taken into account during analysis [6].

Gas chromatography coupled to mass spectrometry (GC–MS) is the gold standard
technique used to detect urinary VOCs. GC–MS is an extremely useful tool; however, it is
also extremely expensive and time-consuming, and it requires highly skilled personnel and
is not portable. Therefore, it is not a suitable technique to be implemented in the clinical
setting [1,6,7].

As a result, there is an urgent need for fast and non-invasive innovative methodologies
for VOCs analysis that can be implemented in clinical early diagnosis applications.

In this context, the aim of this study is to develop an alternative analytical method us-
ing a high-sensitivity gas chromatographic system coupled to an ion mobility spectrometer
(GC–IMS) for the rapid detection of urinary VOCs.

To the best of our knowledge, GC–IMS has already been applied to detect different
VOCs profiles in breath samples and to distinguish between diagnostic groups related to
inflammatory bowel disease (IBD) [8]. Furthermore, IMS is finding great application in
the analysis of exhaled breath samples of lung cancer patients [9]. Recently, the potential
of VOCs profiling in the urine of lung cancer patients to differentiate them from healthy
subjects is also being evaluated with GC–IMS and an electronic nose (e-nose) [10]. The main
advantages of this technology were highlighted, including non-invasiveness, portability,
ease of use, and cost-effectiveness.

The implementation of this method could open up new perspectives for extremely
rapid diagnosis and screening, showing great potential for clinical applications.

2. Materials and Methods
2.1. Chemicals and Materials

The ketone mix was composed of six ketones (2-butanone, 2-pentanone, 2-hexanone,
2-heptanone, 2-octanone, and 2-nonanone) (S.C.A.T. Europe GmbH, Walldorf, Germany).
Chemical standards, such as 4-heptanone, were of analytical grade (Thermo Fisher Scientific,
Waltham, MA, USA). In addition, 20 mL headspace vials (screw top, rounded bottom, clear
glass vial (vial size: 22.5 × 75.5 mm)) and caps (screw cap 18 mm, argent magnetic,
PTFE/silicone septum, septum thickness 1.5 mm) were sterile (Thermo Fisher Scientific,
Waltham, MA, USA). Needles (calibre 21 G, colour green, size: 0.8 × 50 mm) were purchased
from Agani Needle (Terumo Europe N. V., Leuven, Belgium) and a 5 mL Luer Lock Solo
syringe was purchased from Injekt B. Braun (B. Braun, Melsungen, Germany). MilliQ water
was prepared using the Elix® 70 water purification system (Merk, Dramstadt, Germany).

2.2. Analytical Method Validation

For column normalisation and internal calibration, a standard mixture of six ketones
(S0 as defined in Table 1) was analysed. It included 2-butanone, 2-pentanone, 2-hexanone,
2-heptanone, 2-octanone, and 2-nonanone (mixed volume ratio 1:1:1:1:1:1). Seven different
solutions (M1, M2, M3, M4, M5, M6, and M7) were prepared at the concentrations outlined
in Table 1. An amount of 2 mL of each solution was put in a screw vial and left to settle
for 10 min to allow the transition of VOCs to the gas phase in the headspace. Then, 3 mL
of vial headspace was withdrawn and injected in the instrument. Each measurement was
performed in triplicate after the blank in the experimental condition.
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Table 1. Concentration values of ketone mixture standard solutions used for column normalisation
and for calibration.

Compound S0 ppm
(g/mL)

M1 ppb
(µg/L)

M2 ppb
(µg/L)

M3 ppb
(µg/L)

M4 ppb
(µg/L)

M5 ppb
(µg/L)

M6 ppb
(µg/L)

M7 ppb
(µg/L)

2-Butanone 0.135 216 162 108 70.2 54 27 10.8
2-Pentanone 0.135 216 162 108 70.2 54 27 10.8
2-Hexanone 0.135 216 162 108 70.2 54 27 10.8
2-Heptanone 0.137 218.4 163.8 109.2 71 54 27.3 10.9
2-Octanone 0.137 218.4 163.8 109.2 71 54 27.3 10.9
2-Nonanone 0.137 218.4 163.8 109.2 71 54 27.3 10.9

Linearity was calculated with standard solutions of 4-heptanone in the range of concentrations of 0–160 ppb,
plotting IMS peaks intensity (y-axis) against the 4-heptanone concentration (x-axis). Slope regression was
calculated with a linear regression analysis. The minimum concentration value for which an IMS signal is
measured, corresponding to the detection limit (limit of detection, LOD), was calculated from the slope regression
in order to evaluate the sensitivity of the method.

2.3. Sample Collection

Urine samples were collected at Clinical Chemistry, Biochemistry, and Molecular
Biology Operations Unit (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS
(Rome, Italy). All the investigations were performed on the residual sample aliquots after
the conclusions of all clinical procedures. Samples were stored at room temperature for no
more than six hours in order to avoid the degradation. The pH of urine samples was in the
range of 5.0–7.5.

2.4. Sample Preparation

An amount of 2 mL of urine sample was withdrawn from the residual urine and
immediately put in 20 mL glass screw vials. Vials were closed with the appropriate screw
cap equipped by a Silicon/PTFE septum to allow for picking the gas phase from the
headspace. Samples were incubated at 37 ◦C for 10 min before the analysis, facilitating the
transition and the stabilisation of VOCs between the liquid phase and vial headspace. An
amount of 3 mL of headspace air was withdrawn with a sterile syringe from the vial and
injected through a Luer adapter into the system. Samples were directly injected without
any pre-concentration or extraction.

2.5. GC–IMS Analysis

Samples were analysed by a GC–IMS system (G.A.S., Dortmund, Germany), a combi-
nation of a gas chromatograph and an ion mobility mass spectrometer. Volatile chemical
compounds, which are contained in the vial headspace, are physically pre-separated by
GC and detected by IMS after a second separation in a drift tube, allowing for analysis of
complex mixtures with the concentration at the parts per billion level (ppb/µg/L). Techni-
cal features are shown in Table 2. Briefly, GC–IMS is equipped with a gas recycling flow
unit (CGFU) to purify ambient air, used as a carrier gas at 40 ◦C in GC and as a drift gas at
45 ◦C in IMS. The flow rate of carrier gas is set at 5 mL for the first 30 s and increased to
30 mL/min within 10 min, while the drift gas flow rate is set at 150 mL/min. A capillary
DB wax column, thermostated at 40 ◦C, is used. VOCs ionise through a β-radiation tritium
(3H) source with 300 MBq of activity in positive ion mode. After a soft chemical-ionisation,
ions move to a 10 cm drift tube driven by a ±5000 V electric field. Drift gas molecules enter
in the drift tube and collide with analytes accelerated by the electric field, whose separation
depends on the molecular weight, charge, and spatial structure. They reach a Faraday
plate where the ion current is measured as a function of time. The overall time of analysis
is 10 min.
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Table 2. Experimental conditions of GC–IMS device. Technical parameters have been schematised
both for chromatographic elution (column, carrier gas, flow control, injection volume, and sampling)
and ion mobility mass spectrometry (ionisation, model, drift gas, and detector).

GC-IMS Technical Parameters

Gas Chromatograph

Column Capillary, DB wax

Carrier Gas Air, CGFU Circular Gas Flow Unit

Flow Control Electronic pressure controller

Injection Volume 3 mL

Sampling Heated 6-port-valve incl. sample pump

Ion Mobility Spectrometer

Ionisation API, 3H-Tritium Source (<380 MBq)

Model Time-of-flight/10 cm tube, ±5000 V

Drift Gas Air, CGFU Circular Gas Flow Unit

Detection Faraday Plate

2.6. Data Analysis

Spectrum visualisation, organisation of data measurement, and setting of experimental
conditions were enabled by VOCal software (v0.1.3, G.A.S., Dortmund, Germany). Column
normalisation was carried out by analysing the standard mixture of six ketones with
increasing molecular weight and retention indexes (Ri), or Kovats indexes were calculated
by an algorithm of libraries of the software VOCal based on the formula:

I = 100 ×
[

n + (N − n)
log(Rtunknown)− log(Rtn)

log(RtN)− log(Rtn)

]

where the variables are as follows:

I, the Kovats retention index of the peak;
n, the carbon number of the shorter alkane;
N, the carbon number of the longer alkane;
Rt, the retention time registered.

The retention time, Rt, and the drift time, Dt, are the two main values recognised by
the device. In particular, Rt is defined as the time in seconds that a compound spends in the
column after being injected. Dt is the time an ionised compound takes to reach the detector
during an acceleration due to an electric field in a drift tube. The spectra obtained are a
three-dimensional pseudo-colour representation reporting the Rt on the y-axis and Dt on
the x-axis.

After all acquisitions, the areas of the most relevant peaks are highlighted and selected
using the VOCal software. The identification of VOC species is based on the Ri and Dt of
each peak calculated from those of standard ketones using the IMS database of GC/IMS
Library Search tool software (NIST2014 db wax).

Calibration was performed by analysing the ketone mix at seven different concentra-
tions. Afterwards, the quantification was carried out for the ketone mix compounds as well
as for urine samples.

3. Results
3.1. Analytical Method Validation

Before the analysis of biological samples, an analytical validation of instrumental
parameters is carried out. First, in order to identify VOCs, column normalisation is carried
out by analysing a mixture of ketones including compounds with different molecular
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weights (2-butanone, 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, and 2-nonanone).
Their Rt and Dt cover a range of our interest, in which most of the common volatile
compounds contained in the human biological samples are included and detectable with
this device. A typical spectrum of the ketone mix at the concentration of 108 ppb is shown
in Figure 1 (Figure 1a).
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Figure 1. (a) Example of GC–IMS output of the ketone mix profile at the concentration of 108 ppb. The
detected compounds have been highlighted. Each compound’s Dt has been normalised by means of
the software application to the signal of the reaction ion peak (RIP). It represents the total number of
ions available for ionisation, and therefore, it is used as the reference signal. The colour representation
corresponds to a three-dimensional spectrum. An increasing concentration of VOCs is outlined by the
colour change from blue to red. (b) Calibration curve obtained with the VOCal software by measuring
the ketones mixture at seven different concentrations in the range of 218.4–10.8 ppb. Each colour
corresponds to a detected compound in the ketone mix (blue = 2-butanone; green = 2-pentanone,
red = 2-hexanone; light blue = 2-heptanone; black = 2-octanone). Dots represent the signal intensity
for the concentrations analysed (expressed as arbitrary unit, a.u.); lines show the fit of the calibration
curve. (c) Linearity range for 4-heptanone analysed by means of GC–IMS. The linearity curve and the
regression line are reported for the concentration range of 0–128 ppb. (d) Calibration curve obtained
with the VOCal software by measuring 4-heptanone at five different concentrations in the range of
0–160 ppb.

As reported in the method section (Table 1), seven solutions of the ketones mixture
at different concentrations are analysed in triplicate to obtain a calibration curve. The
2-nonanone signal is extremely low; thus, it is not shown (Figure 1b).

In particular, 4-heptanone is selected to assess the linearity range. The standard
solutions of this VOC at different concentrations (8, 16, 48, 80, 112, and 160 ppb) are
analysed. Specifically, the curve for 4-heptanone is linear and statistically acceptable
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(R2 ≥ 0.9901) in the concentration range of 0–128 ppb, while for higher concentrations
(>128 ppb), the linearity is slightly lower (R2 ≥ 0.9802) (Figure 1c).

To assess the sensitivity of the method, LOD is calculated from the regression slope.
The value found from the regression slope is 4.66 ppb, which is close to the experimentally
detectable LOD value by analysing 4-heptanone solutions at low concentration in the range
of 1–5.5 ppb as reported by the instrumental features (Figure 1d).

3.2. VOCs Analysis in Urine Samples

In order to obtain a comprehensive urinary VOCs profiling, 115 urine samples are
analysed by the GC–IMS device as described in the methods section. Our test does not
require any sample treatment, thus greatly reducing the analysis time. Samples are directly
injected and analysed by GC–IMS.

For each sample, a three-dimensional GC–IMS spectrum is obtained (Figure 2). Seven
main classes of volatile compounds are identified as reported in Table 3. These include ke-
tones, sulphur compounds, esters, aldehydes, alcohols, and aromatic hydrocarbons, terpenes.
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Table 3. Summary of VOCs detected across the population in urine samples. (a) class of molecule to
which the VOC belongs; (b) list of detected VOCs; (c) retention time (Rt) to which the VOC was eluted;
(d) retention index (Ri) of VOC calculated by the VOCal software; (e) percentage of the population in
which VOCs were detected.

Class (a) VOCs (b) Rt [s] (c) Ri (d) % (e)

Ketones

Acetone 119 812 100
2-butanone 141 897 100

2-pentanone 177 979 97
4-heptanone 334 1125 16
2-hexanone 256 1070 0.87

Aldehydes Propanal 112 763 87
Pentanal 176 977 44
Hexanal 255 1070 28

3-methylbutanal 159 945 13
Heptanal 385 1152 11

Sulphur compounds Dimethyl sulphide 107 718 21
Diallyl sulphide 405 1161 0.87

Alcohols Ethanol 154 934 100
Propanol 217 1033 16
Pentanol 574 1226 13

2-methyl-1-
propanol 271 1083 13

2-methyl-1-butanol 527 1209 1.74
2-hexanol 528 1210 0.87

Esters Butyl acetate 281 1091 72
Pentyl acetate 338 1153 51
Ethyl acetate 141 901 16

Aromatic Hydrocarbons Toluene 228 1045 13

Terpen α-pinene 175 974 16

The molecules identified occur heterogeneously within the population (Figure 3).
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In particular, ketones represent the main compounds. Among these, acetone and
2-butanone are detected in the entire sample population. Then, 2-pentanone is found
in 97% of the population, 4-heptanone is detected in 16% of the population, and finally
2-hexanone is found in only one sample (0.87%).

Among the aldehydes class, propanal is found in 87% of the population, pentanal is
found in 44%, hexanal in 28%, 3-methyl butanal in 13%, and heptanal in 11%.

Sulphur compounds, such as dimethyl sulphide and diallyl sulphide, are found in 21
and 0.87%, respectively.

The class of alcohols is the most abundant in number of detected compounds: ethanol
is present in the entire population, propanol in 16% of the population, pentanol in 13%,
2-methyl-1-propanol in 13%, 2-methyl-1-butanol in 1.74%, and 2-hexanol in 0.87%.

Regarding the class of esters, butyl acetate is the most abundant and is found in 72%
of the population, pentyl acetate is found in 51%, and ethyl acetate in 16%.

Among the aromatic hydrocarbons, toluene is found in 13% of the population and,
among the terpenes, α-pinene is found in 16%.

3.3. VOCs Identification in a Sub-Population of Urine Samples

The presence of some exclusive VOCs is related to a specific subpopulation of urinary
samples. This group includes 15 samples characterised by a value of ketone bodies higher
than 60 mg/dL. We dwell on their analysis.

Specifically, six classes of VOCs are identified. Among these, most overlap those
identified in all other samples. However, some specifically distinguish these samples,
including 2-hexanone, 3-methylbutanal, pentanol, 2-methyl-1-propanol, and 2-hexanol. In
particular, 3-methylbutanal (aldehydes class), pentanol, and 2-methyl-1-propanol (alcohol
group) are detected in all the subpopulation. Some details on the possible origin of the
detected VOCs are reported in Table 4 [11].

Table 4. Summary of VOCs detected in urine with excess of ketone bodies. (a) class of molecule to
which the VOC belongs; (b) list of detected VOCs; (c) number of samples that contain the VOC; (d)

putative origin of the detected VOCs (Endo = VOC endogenously produced; Exo = VOC resulting
from exogenous sources (food, environment, an medication); M = VOC from microbial metabolism;
D = VOC from drug metabolism, as reported by Porto-Figueira et al. [11]).

Class (a) VOCs (b) Number of Samples (c) Origin (d) [11]

Ketones

Acetone 15 Endo, M
2-pentanone 14 Exo (Food)
2-butanone 12 Endo

4-Heptanone 7 Endo
2-hexanone 1 Endo

Aldehydes 3-methylbutanal 15 Unknown

Sulphur compounds Dimethyl sulphide 15 Endo/Exo (D, M)

Alcohols Ethanol 15 Unknown
Propanol 15 Unknown
Pentanol 15 Unknown

2-methyl-1-propanol 15 Unknown
2-hexanol 1 Unknown

Esters Butyl acetate 2 Unknown

Terpenes α-pinene 3 Endo/Exo (Food)

4. Discussion

To the best of our knowledge, to date, the most commonly used sampling procedures
for VOCs analysis are Solid-Phase Micro Extraction (SPME) for the headspace and Stir Bar
Sorptive Extraction (SBSE), N,O-Bis (trimethylsilyl)trifluoroacetamide (BSTFA) derivatisa-
tion, or centrifugation for the liquid phase [12,13]. These are followed by metabolomics
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analysis based on GC–MS, High-Performance Liquid Chromatography with an Electro-
spray Ionisation source and a Time-of-Flight Mass Spectrometry detector (HPLC–ESI–TOF),
Selected-Ion Flow-Tube Mass Spectrometry (SIFT-MS), and sensors (e.g., Electronic Nose,
e-Nose) [14,15]. Although these are considered the gold-standard techniques for urinary
VOCs detection, they are extremely expensive and time-consuming and are, thus, not suit-
able for fast clinical applications. In this perspective, we develop and validate an innovative
analytical method to overcome some of the limits reported so far. The main strengths of
our method are its ease of use and rapid results. In particular, our analysis is performed
on a GC–IMS. Both the dual-physical separation of VOCs and the high sensitivity of the
IMS allow identification of compounds at the ppb level. In parallel, we use a simple device,
which allows for the direct introduction of the sample in the equipment, avoiding the
alteration of the analytes concentration due to extraction or pre-concentration methods.
This method provides results in 10 min. The extremely low time and cost of analysis make
it a particularly useful technique for fast initial screening.

Based on our results, a good level of sensitivity is achieved and a linearity range is
supplied at the concentration of interest (from 5 to 130 ppb).

In order to obtain a comprehensive and fast mapping of urine volatilome, this method
is applied to a first cohort of 115 urine samples from a heterogeneous population of patients
without a specific preselection. Twenty-three VOCs related to seven different classes
of molecules are detected. As shown in Table 3, their origin can be diverse, including
endogenous synthesis and/or production resulting from microbial metabolism and external
sources [11]. Ketones are one of the major classes of molecules detected in urine samples. As
reported [16], they are common in urine of both healthy and ill subjects. In addition, acetone,
2-butanone, 2-pentanone, and 4-heptanone are the major ketones detected in our samples.
Acetone is present in all samples, and it is the most abundant VOCs. This endogenous
compound can derive from two different metabolic pathways: from the glucose metabolism
through the β-oxidation of acetoacetic acid or from the hydrogenation of isopropanol [17].
At physiological concentrations (133 ppb–6 ppm) [18], acetone is related to the energy
metabolism. Conversely, at higher concentration, acetone is considered as a biomarker
for diabetes mellitus and type I diabetes [19]. 2-butanone and 2-pentanone are possible
biomarkers for lung [11,20] and bladder [21] cancer. In these above-mentioned studies,
VOCs (acetone, 2-butanone, and 2-pentanone) are detected using GC–MS analysis after a
solid-phase micro-extraction (SPME) [21,22]. With our method, we are able to identify these
molecules by reducing the analysis time, which emphasises its potential for clinical studies.

4-heptanone is a common volatile constituent of human urine; it is of unknown origin
and it may arise from in vivo decarboxylation of an oxoacid (3-oxo-2-ethylhexanoic acid)
from plasticisers with a similar process to acetone from acetoacetic acid [23]. Different
research studies, based on headspace solid-phase micro-extraction (HS-SPME) coupled
with the GC–MS technique, report 4-heptanone as a possible biomarker for bladder [21],
breast [24], lung [11], and renal cell [22] carcinoma.

Among the volatile sulphur compounds, dimethyl sulphide is highly present in urine
and is a major contributor to their odour [1]. This VOC is considered as a biomarker for
the lung and colorectal cancer [11,25]. To the best of our knowledge, no data have been
collected on diallyl sulphide.

Esters are not common urinary VOCs. Among them, only ethyl acetate is shown
as a putative biomarker for lung cancer. It has been detected in urine by a headspace
GC equipped with a programmed temperature vaporiser and mass spectrometry detec-
tor (HS–PTV–GC–MS) [26]. Aldehydes can be produced from the oxygen free-radical-
mediated lipid peroxidation of fatty acids. Hexanal is one of the most common aldehy-
des found in urine [27]. It has been detected with SPME–GC–MS [20,21], Needle Trap
Micro-Extraction (NTME) GC–MS [11], and HS–GC–MS [26] and is considered a potential
biomarker for many types of cancer such as bladder [21], colorectal [25], leukaemia [16],
prostate [28], and especially for lung cancer [29]. Heptanal is the second most found alde-
hyde in urine samples. In particular, a decrease in its concentration is related to lung [29],
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colorectal, leukaemia, and lymphoma cancer [16], while an increase in its levels is related
to head and neck cancer [30].

The most widely used technique for detecting aldehydes is SPME–GC–MS. A study
performed by Khalid et al. identified pentanal as a biomarker for prostate cancer [31].
Propanal is also detected in all our samples, but no other evidence has been collected so far.

Alcohols can have different origins such as the reduction of fatty acids in the gastroin-
testinal tract [32]. To the best of our knowledge, ethanol, n-propanol, and n-butanol are the
most common alcohols in urine and their concentration increases for diabetic patients [33].
Many of the other compounds could be produced by exogenous sources such as food.

Taking into account all the results, although the number of VOCs detectable by other
techniques are higher than ours, our method is able to overlap the detection of many
compounds. As an example, in the recent study of Taunk et al. [34], the authors showed
a volatilomic urinary profile for patients with lung cancer compared to healthy controls
using the headspace solid-phase microextraction technique combined with the GC–MS
methodology. Interestingly, many VOCs related to clinical differences, such as acetone,
2-butanone, 2-pentanone, 4-heptanone, and toluene, are also detected by our approach.

In parallel, propanal, hexanal, 3-methylbutanal, 2-butanone, and 4-heptanone are
widely related to different types of cancer, as reported by Pinto et al.’s study [35]. In
addition, Silva et al. [24] described the urinary volatilomic composition of patients with
breast cancer and healthy individuals to detect possible VOCs biomarkers. These include
some VOCs detectable by our approach, including acetone, 2-butanone, 2-pentanone,
hexanal, ethyl acetate, and toluene.

Finally, we focus our attention on a specific class of urine samples characterised
by an excess of ketone bodies (>60 mg/dL). Compared to the larger population, more
alcohols are found in the 15 samples, many of which are present in all of them (Table 4).
Among the detected aldehydes, the compounds differ from the rest of the population. With
regard to ketones, 2-hexanone is found in addition to the others previously detected and
mentioned. Volatile compounds such as acetone, dimethyl sulphide, 3-methylbutanal,
propanol, pentanol, and ethanol are found in all our samples as shown in the gallery plot
of the main peak areas (Figure 4).

In conclusion, this study aimed to comprehensively profile urinary VOCs by rapid
GC–IMS analysis. Based on our results, this methodological approach promises to discrim-
inate VOCs in clinically well-classified patient groups.

We are aware that our study shows some limitations. First, this approach does not
allow the quantification of identified VOCs. This would require the development of a
more accurate analytical protocol, with the use of specific internal standards, and further
investigation of analytical parameters such as precision (repeatability and intermediate
precision), limit of quantitation (LOQ), robustness, and recovery [36].

Furthermore, this preliminary study does not take into account contributory factors
that may influence both the synthesis and the concentration of VOCs themselves. The latter
factors include the clinical features of the population analysed, such as demographic char-
acteristics, diet, alcohol consumption, smoking, and various environmental factors [7,37].

As is well known, the assessment of both pre-analytical and analytical factors is a
critical point for the research of biomarkers in biological fluids [38–40].

All these important issues, which will be explored in subsequent studies, are beyond
the objective of the present manuscript, which, as mentioned, is to obtain a qualitative
mapping of the urinary VOCs profile with a rapid screening method.

The overlap of our results with those of other studies mentioned above strengthens the
reliability of our proposed method. In this context, GC–IMS stands as a powerful, robust,
and easy-to-use technique for separating and detecting VOCs for a rapid, nontargeted
screening approach.
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Figure 4. Gallery plot of GC–IMS signals of 14 VOCs species detected in 15 urine samples with ketone
bodies value over 60 mg/dL.

5. Conclusions

Although GC–MS remains the gold-standard technique for detecting urinary VOCs, it
is also extremely time-consuming and expensive. Therefore, it is not a suitable technique to
be implemented in the context of fast clinical screening.

With this in mind, we propose an analytically validated alternative method based on
the use of GC–IMS for the rapid detection of VOCs in urine, biological fluid widely used in
the clinic. This method is not intended to replace more sensitive techniques and must be
coupled to analysis for VOCs quantification. However, based on our results, it can represent
a first step for rapidly obtaining a profile of urinary VOCs useful for clinical applications.
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Abstract: The metabolic profiling of a wide range of chemical classes relevant to understanding
sarcopenia under conditions in which sample availability is limited, e.g., from mouse models, small
muscles, or muscle biopsies, is desired. Several existing metabolomics platforms that include diverse
classes of signaling lipids, energy metabolites, and amino acids and amines would be informative for
suspected biochemical pathways involved in sarcopenia. The sample limitation requires an optimized
sample preparation method with minimal losses during isolation and handling and maximal accuracy
and reproducibility. Here, two developed sample preparation methods, BuOH-MTBE-Water (BMW)
and BuOH-MTBE-More-Water (BMMW), were evaluated and compared with previously reported
methods, Bligh-Dyer (BD) and BuOH-MTBE-Citrate (BMC), for their suitability for these classes. The
most optimal extraction was found to be the BMMW method, with the highest extraction recovery of
63% for the signaling lipids and 81% for polar metabolites, and an acceptable matrix effect (close to
1.0) for all metabolites of interest. The BMMW method was applied on muscle tissues as small as
5 mg (dry weight) from the well-characterized, prematurely aging, DNA repair-deficient Ercc1∆/−

mouse mutant exhibiting multiple–morbidities, including sarcopenia. We successfully detected
109 lipids and 62 polar targeted metabolites. We further investigated whether fast muscle tissue
isolation is necessary for mouse sarcopenia studies. A muscle isolation procedure involving 15 min
at room temperature revealed a subset of metabolites to be unstable; hence, fast sample isolation is
critical, especially for more oxidative muscles. Therefore, BMMW and fast muscle tissue isolation are
recommended for future sarcopenia studies. This research provides a sensitive sample preparation
method for the simultaneous extraction of non-polar and polar metabolites from limited amounts
of muscle tissue, supplies a stable mouse muscle tissue collection method, and methodologically
supports future metabolomic mechanistic studies of sarcopenia.

Keywords: metabolomics extraction; signaling lipids; polar metabolites; muscle tissue; muscle ageing
and sarcopenia

1. Introduction

Sarcopenia is characterized by the age-related loss of muscle mass and function, con-
stitutes a major health problem, and is associated with a high loss of quality of life [1,2].
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Globally, 11–50% of those aged 80 or above suffer from sarcopenia [3], and this number is
increasing with the rapid growth of the ageing population, thereby creating an enormous
socioeconomic and health care burden. The molecular mechanisms underlying sarcope-
nia are still not well understood and effective medication is lacking [4]. Metabolomics
is a powerful approach for obtaining molecular insight into complex diseases and for
the discovery of disease biomarkers [5]. Previous muscle function metabolomics studies
revealed that dysregulation of signaling lipids (i.e., oxylipins, free fatty acids, oxidative
stress markers) [6–8], energy metabolites (i.e., ATP, citrate, pyruvate) [9–11], and amino
acids and amines [10,12,13] were highly associated with weak muscle contractile function.
Therefore, a systematic metabolomics mechanistic study of these non-polar (signaling
lipids) and polar (energy metabolites, amino acids and amines) metabolites is needed for
understanding the biochemistry behind sarcopenia and for the identification of biomarkers
for the diagnosis, prevention, and treatment of sarcopenia. Mice deficient in the DNA
excision-repair gene, Ercc1 (Ercc1∆/−), show numerous age-related pathologies and acceler-
ated ageing features [14–16], and are widely used in the studies of ageing and age-related
diseases, including muscle wasting and sarcopenia [17–20]. Moreover, this mouse mutant
is an excellent model for several rare, but very severe progeroid human DNA repair syn-
dromes, including Cockayne syndrome, xeroderma pigmentosum, Fanconi anemia, and
XFE1 syndrome [21–23]. As the Ercc1∆/− mice exhibit early cessation of growth, only small
amounts (i.e., 5–50 mg dry weight) of (skeletal) muscle can be collected, necessitating the
development of a single sensitive, reproducible sample preparation method suitable for
analysis by multiple metabolomics platforms, thereby allowing for the analysis of non-polar
and polar metabolites.

The Bligh and Dyer (BD) method is a traditional sample preparation method for the
extraction of non-polar and polar components, which is able to non-selectively extract a
wide range of metabolites [24,25]. Medina et al. evaluated sample extraction methods
with isopropanol and 1-butanol:methanol for simultaneous extraction of 584 non-polar
and 116 polar metabolites; however, the method mainly focused on the metabolome
analysis of human plasma samples and some of our targeted signaling lipids—oxylipins
and bile acids were not covered [26]. Löfgren developed an automated butanol:methanol
extraction method for lipids, however, the method mainly focused on the plasma lipid
classes, i.e., cholesterol, triacylglycerol, phosphatidylcholine, sphingomyelin, and lyso-
phospholipids [27]. BuOH-MTBE-Citrate (BMC) is a sensitive sample preparation method
for sample limited applications; Di Zazzo et al. applied this method for the analysis of
oxylipins, oxidative stress markers, endocannabinoids, and bile acids for ocular surface
cicatrizing conjunctivitis, and identified 9S-hydroxy octadecatrienoic acid (9S-HOTrE) and
5-hydroxy eicosapentaenoic acid (5-HEPE) as potential diagnostic biomarker candidates.
However, the performance of BMC on a small amount of muscle tissues still remains
unknown, and because of the addition of a non-volatile (citric acid/phosphate) buffer, the
extracted aqueous phase was not compatible with mass spectrometric detection [28].

In this work, we report the development of a sample preparation method that allows
for the simultaneous extraction of targeted non-polar and polar metabolites from biomass-
limited mouse muscle tissues (i.e., 5–50 mg dry weight). With this approach, we would like
to obtain more insight into the etiology of sarcopenia using a metabolomics approach. For
this purpose, two extraction methods based on BMC [28] were developed and compared
with Di Zazzo et al.’s BMC [28] and BD methods [29]. The optimal method with the highest
extraction recovery and acceptable matrix effect was applied to muscle tissues of Ercc1∆/−

mice to study the effect of the muscle tissue isolation speed on metabolite stability. Overall,
this work yielded a sensitive sample preparation method for the simultaneous extraction
of non-polar and polar metabolites from limited amounts of muscle tissues, supplied a
reference method for an existing sarcopenia samples collection, and methodologically
supports the metabolomic analysis of sarcopenia.
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2. Materials and Methods
2.1. Chemicals

Methanol and chloroform were purchased from Biosolve Chimime SARL (Dieuze,
France). The 1-butanol was purchased from Acros Organics (Geel, Belgium). Butylated
hydroxytoluene (BHT) and methyl tert-butyl ether (MTBE), and citric acid and sodium
dihydrogen phosphate dehydrate were obtained from Sigma-Aldrich (Steinheim, Germany).
MilliQ water was obtained from a Millipore high-purity water dispenser (Billerica, MA,
USA). All solvents were HPLC grade or higher.

For internal standards (ISTDs), deuterium-, carbon-, and/or nitrogen-labelled metabo-
lites were used. Labelled oxylipins, fatty acids, and endocannabinoids ISTDs were acquired
from Cayman Chemicals (Ann Arbor, MI, USA). Labelled lysophospholipids, sphingolipids,
and bile acid and steroid ISTDs were ordered from Avanti Polar Lipids (Alabaster, AL,
USA). Labelled amino acids and amine ISTDs were ordered from Cambridge Isotope Lab-
oratories (Andover, MA, USA), and labelled ATP, AMP, and UTP were purchased from
Sigma-Aldrich (Steinheim, Germany).

2.2. ISTDs Preparation

For lipid ISTDs, the stock solution was prepared in MeOH in a stated concentration
(Table S1) containing 0.4 mg/mL BHT. This includes the classes of oxylipins, fatty acids,
endocannabinoids, bile acids and steroids, lysophospholipids, and sphingolipids. For the
stock solution of amino acids and amine ISTDs, 9 kinds of ISTDs (Table S2) were prepared in
MilliQ water with a concentration of 0.5 mg/mL. Stock solutions of ATP (13C10,15N5), AMP
(13C10,15N5), and UTP (13C9,15N2) were prepared in MilliQ water at 10 mg/mL (Table S3).

2.3. Muscle Samples

The development and evaluation of extraction methods were performed on pig muscle
tissues that serve as a uniform source for multiple experiments and as a surrogate for mouse
tissue, which was only available in scarce quantities. The pig muscle tissue was stored at
−80 ◦C before extraction. Muscle tissue from mice deficient in the DNA excision-repair
gene Ercc1 (Ercc1∆/−) was utilized for the study of effect of sample isolation speed on
metabolite stability for sarcopenia. The generation and characterization of Ercc1∆/− mice is
described in [15,16,20]. Three kinds of muscle types, gastrocnemius + soleus (Gas + Sol),
quadriceps (Quadr), and extensor digitorum longus + tibialis anterior (EDL + TA), were
collected at the animal facility of the Erasmus Medical Center, Rotterdam, Netherlands.
All above experiments were performed in accordance with the Principles of Laboratory
Animal Care and with the guidelines approved by the Dutch Ethical Committee (permit
Nos. 139-12-13 and 139-12-18) in full accordance with European legislation.

Fast and delayed (15-min delayed) muscle tissue collection procedures were applied
to study the effects of sample isolation speed on metabolite stability. Briefly, mice were
anaesthetized using CO2. For fast sample isolation, a large piece of Quadr tissue was
dissected immediately and rapidly frozen in liquid nitrogen, and EDL + TA and Gas + Sol
tissue were carefully isolated as described in [30]. Following dissection, the muscles were
immediately frozen in liquid-nitrogen-cooled isopentane and stored at −80 ◦C [19]. For
delayed sample isolation, the Quadr, EDL + TA, and Gas + Sol tissues from the other
hind leg of the same mouse were kept for 15 min at room temperature, then were isolated
and frozen as described above for the fast isolation. All samples were stored at −80 ◦C
until analysis.

2.4. Extraction Methods

For the development of an extraction method yielding high extraction efficiency for
both polar metabolites and signaling lipids, four extraction methods were compared and
evaluated using pig muscle tissues, i.e., the Bligh-Dyer (BD), BuOH-MTBE-Citrate (BMC),
BuOH-MTBE-Water (BMW), and BuOH-MTBE-more-Water (BMMW) extraction methods.
Thirty mg (±20%) of frozen wet pig muscle tissue was lyophilized in a VaCo I freeze-
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dryer (Zirbus, Bad Grund, Germany; connected to a E2M12 high vacuum pump, Edwards,
Crawley, England) for 24 h and weighed. To homogenize muscle tissues thoroughly, a
dry-homogenization method was used by adding 100 mg (±10%) of zirconium oxide beads
(0.5 mm; Next Advance, Averill Park, NY, USA) to the freeze-dried tissue, and homogenized
in a Bullet Blender (BBX24; Next Advance, Averill Park, NY, USA) for 15 min at speed 9 [29].
Labelled ISTDs (10 µL amino acids & amines, 10 µL ATP & AMP & UTP, 10 µL lipids stock
solution) were spiked in the muscle samples before and after extraction for the evaluation
of the four extraction methods.

2.4.1. Bligh-Dyer Extraction (BD)

A previously reported Bligh-Dyer extraction was utilized for the polar and non-polar
analyte extraction [29]. Briefly, 400 µL of cold MeOH and 125 µL of cold MilliQ water were
added to the muscle tissues and homogenized by using the Bullet Blender for 15 min at
speed 9. Then, 450 µL of homogenate was transferred to a new tube after centrifugation
(500× g, 5 min, 4 ◦C), and vortexed with cold chloroform (450 µL), water (250 µL), and
MeOH (50 µL) for 2 min. The samples were next left on ice for 10 min to partition, and
centrifuged (2000× g, 10 min, 4 ◦C) to obtain a clear biphasic mixture. The 500 µL of
upper aqueous/polar phase and 400 µL of lower organic/non-polar phase were collected
separately by using positive-displacement Microman pipettes (Gilson, Middleton, WI,
USA) without disturbing the layer between both phases. These were then evaporated
in a SpeedVac Vacuum concentrator (Thermo Savant SC210A, Waltham, MA, USA) and
reconstituted in 50 µL of MeOH for the organic phase and 100 µL of 50%-MeOH–50%-
MilliQ water for the aqueous phase.

2.4.2. BuOH-MTBE-Citrate Extraction (BMC)

A reported lipid extraction method [28], BuOH-MTBE-Citrate extraction (BMC), was
tested for the muscle samples. In this method, 5 µL of antioxidant solution (0.4 mg/mL
BHT:EDTA = 1:1), 150 µL of 0.2 M citric acid-0.4 M disodium hydrogen phosphate buffer at
pH 4.5, and 1 mL of extraction solution (BuOH: MTBE = 1:1, v/v) were added to all samples
and allowed to settle on ice for 20 min before homogenization in the Bullet Blender for
15 min at speed 9. Then, the homogenized samples were centrifuged (2000× g, 4 ◦C) for
10 min, and 900 µL of the upper organic phase was collected, evaporated, and reconstituted
using the same method described in 3.4.1 BD method.

2.4.3. BuOH-MTBE-Water Extraction (BMW)

The extraction procedure for the BMW method is similar to the BMC method, but the
150 µL of citric acid/phosphate buffer was replaced with 150 µL of cold MilliQ water. After
collection of the upper organic phase, 500 µL more of ice-cold MilliQ water was added to
more easily collect the lower aqueous phase. After vortexing and centrifugation at 2000× g
at 4 ◦C for 10 min, 350 µL of the lower aqueous phase was then collected.

2.4.4. BuOH-MTBE-More-Water Extraction (BMMW)

A larger aqueous phase volume (400 µL of cold MilliQ water) was utilized in the
BMMW method instead of the 150 µL of cold MilliQ water used in the BMW method.
Two-hundred µL of the lower aqueous phase was directly collected after collection of the
upper organic phase.

2.5. LC/CE-MS Quality Control

Some extra extracted pig muscle tissues were pooled together as quality control (QC)
samples. A QC sample was injected once each 6–8 samples to evaluate and correct for
changes in the sensitivity of the instruments. The metabolites with a relative standard devi-
ation (RSD) of quality control (QC) samples less than 30% were used for statistical analysis.
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2.5.1. Lipid Metabolite Analysis

The signaling lipid metabolites were measured according to a validated ultra-performance
liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method in our lab [28].
Briefly, each sample was measured with two complementary reverse phase methods using
mobile phases with a different pH.

The low-pH run utilized an Acquity BEH C18 column (50 × 2.1 mm, 1.7 µm; Waters,
Milford, USA) on a Shimadzu LC-30AD (Kyoto, Japan) hyphenated to a SCIEX Q-Trap
6500+ (Framingham, MA, USA). Separations were performed using three mobile phases:
(A) water with 0.1% acetic acid; (B) ACN: MeOH (9:1, v/v) with 0.1% acetic acid; (C) Iso-
propanol with 0.1% acetic acid at 40 ◦C at a flow rate of 0.7 mL/min. The 16-min run
used the following gradient: start with 20% B and 1% C; B was increased to 85% between
0.75 and 14 min and C was increased to 15% between 11 and 14 min; and the condition held
for 0.5 min prior to column re-equilibration at the starting conditions from 14.8 to 16 min.
Data were acquired using Sciex Analyst software (Version 1.7, Framingham, MA, USA) and
peak integration used Sciex OS (Version 1.4.0, Framingham, MA, USA).

The high-pH run used a Kinetex® Core-Shell EVO 100 Å C18 column (50 × 2.1 mm,
1.8 µm; Phemomenex, Torrance, CA, USA) on a Shimadzu LCMS-8060 system (Shimadzu,
Kyoto, Japan). Separations used mobile phases: (A) 5% ACN with 2 mM ammonium
acetate and 0.1% ammonium hydroxide and (B) 95% ACN with 2 mM ammonium acetate
and 0.1% ammonium hydroxide at 40 ◦C at a flow rate of 0.6 mL/min. The gradient started
with 1% B; B was increased to 100% from 0.7 to 7.7 min; and 100% B held for 0.75 min
prior to re-equilibration at the starting conditions between 8.75 and 11 min. Multiple
reaction monitoring (MRM) was utilized in MS/MS acquisition in both the positive and
negative electrospray ionization mode with polarity switching. Data were acquired and
peaks integrated using LabSolutions (Version 5.97 SP1, Shimadzu, Kyoto, Japan).

2.5.2. Energy Metabolites Analysis

The energy metabolites were analyzed using a hydrophilic interaction liquid chro-
matography (HILIC) mass spectrometry platform [31]. Briefly, a SeQuant ZIC-cHILIC
column (PEEK 100 × 2.1 mm, 3.0 µm particle size; Merck KGaA, Darmstadt, Germany)
was used on a Waters UPLC (AcquityTM, Milford, MA, USA) coupled with a Sciex MS
(Triple-TOF 5600+, Framingham, MA, USA). The separation method used mobile phases:
(A) 90% ACN with 5 mM ammonium acetate at pH 6.8 and (B) 10% ACN with 5 mM
ammonium acetate at pH 6.8, at a flow rate of 0.25 mL/min at 30 ◦C. The gradient method
was: 100% A for 2 min; ramping 3–20 min to 60% A; ramping 20–20.1 to 100% A; and
re-equilibrated to 35 min with 100% A. The MS data were acquired at a full scan range of
50–900 m/z in the negative ionization mode with curtain gas measured at 39.3 psi, source
temperature at 400 ◦C, and ion source voltage at 4.64 kV by Sciex Analyst (Version 1.7,
Framingham, MA, USA), and the peaks were integrated using MultiQuant (Version 3.0.1,
Sciex, Framingham, MA, USA).

2.5.3. Amino Acids and Amines Analysis

The amino acids and amines were analyzed by a sheath-liquid Agilent 7100 capillary
electrophoresis (CE) system, coupled to an Agilent mass spectrometer (TOF 6230, Wald-
bronn, Germany), and acquired by MassHunter Data Acquisition (Version B.05.01, Agilent,
Santa Clara, CA, USA). Fused-silica capillaries (BGB Analytik, Harderwijk, Netherlands)
with a total length of 70 cm and an internal diameter of 50 µm were utilized. The CE
separation voltage was 30 kV, and 10% acetic acid in water was used as a background
electrolyte (BGE) solution. The sheath-liquid, a mixture of water and isopropanol (50:50,
v/v) containing 0.03% acetic acid, was delivered at a flow rate of 3 µL/min by an Agilent
1260 Infinity Isocratic Pump (Waldbronn, Germany). The nebulizer gas was set to 0 psi,
the sheath gas flow rate was set at 11 L/min, and the sheath gas temperature was set at
100 ◦C. The ESI capillary voltage was set at 5500 V. The fragmentor and skimmer voltages
were 150 V and 50 V, respectively. MS data were acquired in the positive ion mode between
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50 and 1000 m/z with an acquisition rate of 1.5 spectra/s [32]. The amino acids and amines
peaks were integrated using MassHunter Quantitative Analysis (Version 05.02, Agilent,
Santa Clara, CA, USA).

2.6. Data Analysis

For metabolites for which QC samples had an RSD less than 30%, the response ratios
were corrected by QC response ratio and further normalized by the muscle tissue dry weight.
For metabolites that can be measured by multiple platforms, i.e., amino acids/amines (which
can be measured by the HILIC and CE methods in Sections 2.5.2 and 2.5.3, respectively)
and some fatty acids (which can be measured by both low- and high-pH lipid platforms),
the method with the smaller QC RSD was utilized (Tables S4 and S5).

For the comparison and evaluation of the developed extraction methods, the extraction
recovery and matrix effect were utilized. Extraction recovery was calculated as the ratio
of the ISTDs spiked at the start of the extraction procedure and the ISTDs spiked to the
injection solvent prior to MS measurement. This value does not reflect the extraction
recovery of metabolites from muscle tissue, but the loss of targeted metabolites during
the liquid–liquid extraction process. The matrix effect was calculated by Equation (1),
where the ratio of ISTDs is extracted from a muscle sample and a blank sample with only
extraction solvents:

Matrix effect = ITSDs extracted form muscle samples ÷ ISTDs extracted from blank samples (1)

For selection of the optimal extraction method, the percentage of the highest extraction
recovery for ISTDs for each extraction method was used and calculated by Equation (2):

Percentage (%) = The number of highest recovery in ISTDs ÷ The number of total ISTDs × 100% (2)

For metabolite stability evaluation in mouse muscle tissue, the response ratio was
used and obtained by Equation (3):

Response ratio = peak area of the target metabolite ÷ peak area of the assigned ISTD (3)

RStudio (Version 1.4.1106) and R (Version 4.0.5) were used for the statistical analysis
of the data statistical—all the figures were made by Graphpad Prism (Version 8.1.1, San
Diego, CA, USA).

3. Results and Discussion
3.1. Development and Evaluation of the Sample Preparation Methods

Four sample preparation methods, i.e., BD, BMC, BMW, BMMW, were systematically
compared and evaluated with respect to extraction recovery and matrix effect for a range
of metabolite classes by spiking carbon- or deuterium-labelled metabolites (ISTDs) using
pig muscle tissue as a surrogate for mouse muscle during method development.

3.1.1. Extraction of Signaling Lipids

Five classes of lipid metabolites, i.e., oxylipins, lysophospholipids and sphingolipids,
free fatty acids, bile acids and steroids, and endocannabinoids, were analyzed in the organic
phase for evaluation of the four extraction methods. Figure 1A showed that the extraction
recovery of these lipids using BMC (orange), BMW (brown), and BMMW (yellow) were
significantly higher than when using the BD (blue) method. This may be due to the
utilization of the more non-polar solvents, MTBE and BuOH (relative polarity is 0.124 and
0.586, respectively [33]), for signaling lipids extraction in BMC, BMW, and BMMW than the
two less non-polar solvents, i.e., chloroform and MeOH (relative polarity is 0.259 and 0.762,
respectively [33]), in BD. The higher non-polar property contributed to a higher partitioning
of all signaling lipids in the organic phase in BMC, BMW, and BMMW. Similar results were
also reported in [34], which indicated that lipids in a hydrophobically-associated form
can more easily be extracted by relatively non-polar solvents, and the polar solvents, i.e.,
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ethanol and methanol, can disrupt the hydrogen bonding or electrostatic forces between
membrane-associated lipids and protein.
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Figure 1. The (A) extraction recovery (%) and (B) matrix effect of lipids ISTDs by using the four
extraction methods: BD, BMC, BMW, and BMMW. Lower recovery values of lysophospholipids
and sphingolipids (<91%), and some bile acids, i.e., GCA-d4 (2–71%) and DCA-d4 (70–83%), were
observed in all four extraction methods compared to other lipid metabolites. The reason for the
lower yield might be because of the less non-polar properties of lysophospholipids and sphingolipids
(logP = 2.6–5.4), GCA (logP = 1.4) and DCA (logP = 3.3) than the other classes of lipid metabolites,
i.e., fatty acids (logP = 6.0–6.8), endocannabinoids (logP = 5.7–6.7), and oxylipins (logP = 3.1–5.9).
The higher recovery of oxylipins reported using the BD method (around 100%) in Alves et al.’s study
compared with our BMMW method (>73%) results from the combination of both the organic and
aqueous phases for the measurement of these polar lipids [29]. Here, we compared just the organic
phase extraction performance for lipid metabolites in the four sample preparation methods.

To determine the matrix effects of the four extraction methods on the targeted lipid
measurements, signals of spiked internal standards in samples with and without muscle
tissue were investigated (Equation (1)). For most of the signaling lipids, matrix effect
values (Figure 1B) ranged between 0.7–1.4, indicating that there is acceptable impact on MS
measurements from the muscle tissue matrix for all four extraction methods.

3.1.2. Extraction of Polar Metabolites

As a non-volatile (citric acid/phosphate) buffer was utilized in the published BMC
method, the aqueous phase was rendered unsuitable for the intended LC-MS analysis
methods. In addition, the exogenous citric acid affected the analysis of one of our target
metabolites, citric acid. Therefore, the aqueous phase of the BMC method was not consid-
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ered for the polar metabolite analysis. Two separation methods for polar metabolites, i.e.,
HILIC for central energy metabolites, and CE for amino acids and amines, were used to
evaluate the extraction of polar metabolites into the aqueous phase for the three extraction
methods (BD, BMW, and BMMW). For amino acids and amines, the extraction recoveries in
BMW (brown) and BMMW (yellow) were significantly higher than in BD (blue) (Figure 2A).
For energy metabolites, the recovery of ATP and UTP in BMW and BMMW was notably
better than in BD; however, the recovery of AMP was dramatically lower compared to BD
(Figure 2A). This might be the result of one extra 2-min vortex step with chloroform, water,
and MeOH at room temperature in BD, which accelerated the hydrolysis of ATP (or ADP)
to AMP. Similar results showing ATP hydrolysis at room temperature were also observed
in Becker et al.’s study [35]. Bruno et al. preferred the BD method for polar metabolites
in mouse muscle over the MeOH/water extraction method but did not evaluate other
methods [36]. Given the stability issues, we concluded that the BD method was not the
optimal extraction method for the HILIC measurements of energy metabolites from muscle
tissues for our study.
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methods: BD, BMW, and BMMW.

When evaluating the performance of the extraction methods for the CE measurements
of amino acids and amines, we note the relatively low recovery obtained for tryptophan
(28–50%) as compared to other amino acids and amines. This may be due to its high
susceptibility to oxidative degradation [37]—its weakest polar property (logP = −1.1)—and
water solubility (1.36 mg/mL) among this class of metabolites (logP ranges from −2.0 to
−5.4, water solubility ranges from 80.6 to 210 mg/mL), which contributed to the less
passive distribution of tryptophan in the aqueous phase. The weak polar property of UTP
(logP = −3.4) may have also contributed to its lower distribution in the aqueous phase
compared to ATP (logP = −5.1). The lower extraction recovery of UTP than weakly polar
amino acids and amines, i.e., valine (logP = −2.0), may be due to the much higher water
solubility of valine (210 mg/mL) than UTP (8.37 mg/mL). Matrix effect values (Figure 2B)
were close to one for most of the polar metabolites, demonstrating small impacts from
the extraction methods and muscle tissue matrix on MS measurement for the targeted
polar metabolites.

3.1.3. Assessment of Sample Preparation Method Yielding Optimal Recovery for Signaling
Lipids and Polar Metabolites

The performance of four extraction methods (BD, BMC, BMW, and BMMW) for
signaling lipids and three extraction methods (BD, BMW, and BMMW) for polar metabolites
were evaluated and compared by calculating the percentage of the highest extraction
recovery for each extraction method for different internal controls for each of the two
chemical categories (Equation (2)). The BMMW method turned out to give the best recovery,
as deduced from reaching the highest percentage of spiked internal standards for both non-
polar (63%) and polar (81%) metabolites (Figure 3), thereby demonstrating that this method
resulted in the smallest loss of metabolites during the sample preparation procedure in
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BMMW for all classes of metabolites of interest. BD was not preferred for mouse muscle
extraction not only because of the lower recovery and percentage values, but also due to
the rapid hydrolysis observed for ATP (or ADP) to AMP, and the labour required for the
reproducible separation of the organic and aqueous phase [24]. Therefore, BMMW was
chosen as the extraction method of choice for the targeted non-polar and polar metabolites
from small quantities of mouse muscles.
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3.2. Performance of the Optimal Sample Preparation Method in Mouse Muscle Samples

For the metabolic profiling of mouse muscle, the reported LC-MS and CE-MS detection
methods for lipid metabolites [38], energy metabolites [31], and amino acids and amines [32]
were utilized. One-hundred-and-nine non-polar and 62 polar targeted metabolites were
clearly observed (with a signal to noise ratio > 10) using the LC-MS and CE-MS detection
platforms to analyze Ercc1∆/− mouse muscle tissues (Figure 4). Detailed information of
these non-polar (lipid) and polar metabolites for LC-MS and CE-MS analysis is provided
in Tables S4 and S5, respectively—in the Supporting Information section. As the sample
collection procedure can also influence metabolite stability, the effect of muscle isolation
speed on metabolite stability for these targeted metabolites was further investigated.
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3.3. The Effects of Sample Isolation Speed on Metabolite Stability

For future metabolomics mechanistic studies of sarcopenia, we must utilize a sensitive
sample preparation method and a muscle tissue isolation method that preserves metabolite
stability. To deduce the effect of sample collection speed on metabolite stability, the re-
sponse ratios (Equation (3)) of metabolites in fast and delayed muscle tissue isolation were
investigated in three muscle specimens, namely the lower hindlimb muscles gastrocnemius
and soleus (Gas + Sol), the extensor digitorum longus + tibialis anterior (EDL + TA), and
the upper hindlimb muscle quadriceps (Quadr), which are the most commonly used mouse
muscles for molecular analyses. In Gas + Sol, significantly higher unsaturated fatty acids
(FA18.1-ω9, FA20.3-ω6, FA20.4-ω6, FA20.5-ω3, FA22.4-ω6) and oxylipins (19-20-DiHDPA,
8-9-DiHETrE) were observed in delayed isolation samples compared to the fast isolation
(Table 1). These fatty acids and oxylipins are in the arachidonic acid and eicosapentaenoic
acid pathways, which are associated with inflammation and age-related diseases [39], and
are oxidation sensitive [40,41]. Fifteen-min at room temperature led to longer oxygen expo-
sure and maybe changed the enzymatic activity in these muscle tissues, which contributed
to the oxidation and instability of the unsaturated fatty acids, as well as the generation
of their downstream metabolites, i.e., oxylipins [42,43]. The higher lysophospholipids
(Table 1), i.e., LPE14.0, LPE16.1, LPE20.4, LPE22.4, LPG16.1, LPI20.4, LPI22.4, and LPI22.6,
in 15-min delayed isolation muscle tissues might be due to the hydrolysis of the cellular
membrane induced by the longer time of oxidation exposure and oxidative damage [44,45],
and/or tissue degeneration. The significantly increased pyruvate in Gas + Sol with delayed
isolation (Table 2) may be due to the oxidation of lactate [46]. Creatine phosphate is con-
sidered to be the “energy pool” in muscle cells and will be preferentially consumed under
the condition of insufficient energy and generate its downstream metabolite, creatine [47].
A higher creatine content in Gas + Sol with the 15-min delayed isolation (Table 2) may
be explained by the insufficient energy supply in muscle tissues post-dissection and the
consumption of creatine phosphate in the muscle cells before the muscle tissue is isolated
and snap frozen [47,48]. The Quadr muscle was much more stable than Gas + Sol with
15-min delayed isolation, as only 3 metabolites, i.e., 7-HDoHE, creatine, and PEA, were
significantly affected. More altered metabolites were observed in EDL + TA with 15-min
delayed isolation compared to both Gas + Sol and Quadr.

The increase in the number of significantly altered metabolites after delayed isolation
in the Gas + Sol muscle, compared to Quadr muscle, may be due to the type-I oxidative mus-
cle (soleus) included in Gas + Sol, as well as the type-II glycolytic muscle of Quadr [49–51].
The oxidative fibers mainly use aerobic respiration to provide ATP, and glycolytic fibers
primarily use anaerobic glycolysis as their energy supply [52], which induced more oxi-
dation in Gas + Sol than Quadr. The largest number of significantly altered metabolites
was observed in EDL + TA, which may be due to the varied and unsystematic muscle
type composition and fiber density in TA [53–55]. Kammoun et. al. found that 57% of
type IIB, 3% of hybrid IIAX fibers, and no hybrid IIX/IIB fibers were observed in TA [53].
However, Bloemberg et. al. found mouse white tibialis anterior contained 12.1% hybrid
fibers [54]. Lexell et. al. revealed that in TA, the proportion of type-I fibers and fiber
density varied significantly but not systematically, and also differed significantly between
individuals [55]. Similarly, the fiber types of EDL muscle in Ercc1∆/− mice are altered in
composition compared to normal wild-type controls, having reduced type IIA/IIX and
increased type IIB [19]. These variations in TA tissue and/or in mice may have contributed
to the observed metabolite alterations in EDL + TA with 15-min delayed isolation at room
temperature. The different muscle type proportion may be responsible for the observed
differences in the stability of metabolites in the three different kinds of muscle. Given the
observed instability of metabolites in muscle tissues with 15-min delayed isolation, fast
muscle tissue collection will be preferred for our future sarcopenia study.
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Table 1. The effect of sample collection speed on lipid metabolites stability in different muscle types
(n = 3).

Analytes Gas + Sol Quadr EDL + TA Analytes Gas + Sol Quadr EDL + TA
FA16.0 ns ns * LEA * ns *
FA18.0 ns ns ns SEA ns ns ns
FA18.1-ω9 * ns * 1-AG & 2-AG * ns ns
FA18.3-ω3 ns ns ns CDCA ns ns ns
FA20.3-ω6 * ns ns GCA ns ns ns
FA20.3-ω9 ns ns ns GCDCA ns ns ns
FA20.4-ω6 * ns ns GDCA ns ns ns
FA20.5-ω3 ** ns ns GUDCA ns ns ns
FA22.4-ω6 * ns * cLPA16.1 ns ns ns
FA22.5-ω3 ns ns ns cLPA18.0 ns ns ns
FA22.5-ω6 ns ns ns cLPA18.1 ns ns ns
FA22.6-ω3 ns ns * cLPA18.2 ns ns ns
10-HDoHE ns ns ns LPA14.0 ns ns ns
11-HDoHE ns ns ns LPA16.1 ns ns ns
11-HETE ns ns ns LPA18.0 ns ns ns
12-13-DiHOME ns ns ns LPA18.1 ns ns ns
12-HEPE ns ns *** LPA18.2 ns ns ns
13-14dihydro-15k-PGD2 ns ns ns LPA20.4 ns ns *
13-14dihydro-15k-PGE2 ns ns * LPA22.4 ns ns ns
13-14dihydro-PGF2α ns ns ns LPE14.0 * ns ns
13-HODE ns ns ns LPE16.0 ns ns ns
14-15-DiHETrE ns ns * LPE16.1 * ns *
14-HDoHE ns ns ns LPE18.0 ns ns ns
8iso-PGE1 ns ns * LPE18.1 ns ns *
8iso-PGF1α ns ns ns LPE18.2 ns ns *
15S-HETrE ns ns ns LPE18.3 ns ns *
17-HDoHE ns ns ns LPE20.3 ns ns **
18-HEPE ns ns *** LPE20.4 * ns *
19-20-DiHDPA * ns ** LPE20.5 ns ns ns
1a-1b-dihomo-PGF2α ns ns ns LPE22.4 * ns *
20-HETE ns ns * LPE22.5 ns ns ns
5-HETE ns ns ns LPE22.6 ns ns *
5-iPF2α-VI ns ns ns LPG14.0 ns ns *
7-HDoHE ns * ns LPG16.0 ns ns ns
8-12-iso-iPF2α-VI ns ns ns LPG16.1 * ns ns
8-9-DiHETrE * ns * LPG18.0 ns ns ns
8-HDoHE ns ns ns LPG18.1 ns ns ns
8-HETE ns ns ns LPG18.2 ns ns ns
8iso-15R-PGF2α ns ns ns LPG20.3 ns ns *
8iso-PGE2 ns ns ns LPG20.4 ns ns ns
8iso-PGF2α ns ns ns LPG22.4 ns ns ns
8S-HETrE ns ns ns LPI16.1 ns ns *
9-10-13-TriHOME ns ns ns LPI18.0 ns ns ns
9-10-DiHOME ns ns ns LPI18.1 ns ns ns
9-HEPE ns ns * LPI18.2 ns ns *
9-HETE ns ns ns LPI20.4 * ns *
9-HODE ns ns ns LPI22.4 * ns *
iPF2α-IV ns ns ns LPI22.6 * ns ns
PGD2 ns ns ns LPS18.1 ns ns **
PGD3 ns ns ns LPS18.2 ns ns **
PGE2 ns ns ns LPS20.4 ns ns ***
PGF2α ns ns * LPS22.4 ns ns **
TXB2 ns ns ns LPS22.6 * ns *
AEA * ns * OEA ns ns ns
PEA ns * ns

Note: ns means no significant difference, * means p < 0.05, ** means p < 0.01, *** means p < 0.001. Orange
background color means significantly increased; Blue background color means significantly decreased.
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Table 2. The effect of sample collection speed on stability of energy metabolites, amino acids, and
amines in different muscle types (n = 3).

Energy Metabolites

Analytes Gas + Sol Quadr EDL + TA Analytes Gas + Sol Quadr EDL + TA
Acetyl-CoA ns ns ** IMP ns ns ns
Adenosine ** ns *** Creatine * * ns
ADP ns ns * Inosine ns ns ns
AMP ns ns ns α-Ketoglutarate * ns ns
Ascorbic-acid ns ns ns 6-phosphogluconic-acid ns ns *
ATP ns ns ** Malate ns ns ns
cAMP ns ns * GTP ns ns **
CDP ns ns ns Guanosine ns ns ns
cis-Aconitate ns ns ns Oxiglutathione ns ns ns
CMP ns ns ns Phosphoenolpyruvate ns ns ns
CTP ns ns ns Pyruvate ** ns *
Cytidine ns ns ns Succinate ns ns *
Dihydroxyacetone-P ns ns * UDP ns ns
Fructose-6-P ns ns ns UMP ns ns *
GABA * ns ns Uridine ns ns **
GDP ns ns ns UTP ns ns *
Glucose ns ns ns Xanthine * ns **
Glucose-1-P ns ns ns Glycerate-3-P ns ns
Glucose-6-P ns ns ns GMP ns ns **
Glyceraldehyde-3-P ns ns ns Hypoxanthine * ns ns
Amino acids and amines
Alanine ns ns ns Methionine ns ns *
Arginine ns ns ns Phenylalanine * ns ns
Asparagine ns ns ns Proline ns ns ns
Aspartic-acid ns ns * Serine ns ns ns
Lysine ns ns ns Spermidine ns ns ns
Creatinine ns ns ns Tyrosine ns ns ns
Glutamic-acid ns ns ns Valine ns ns ns
Glutamine ns ns ns Threonine ns ns ns
Glycine ns ns * Ornithine ns ns ns
Histidine ns ns ns 4-Hydroxyproline * ns ns
Leucine ns ns ns Tryptophan ns ns ns

Note: ns means no significant difference, * means p < 0.05, ** means p < 0.01, *** means p < 0.001. Orange
background color means significantly increased; Blue background color means significantly decreased.

4. Conclusions

Four extraction methods (BD, BMC, BMW, and BMMW) were compared and eval-
uated to find the optimal sample preparation method for the simultaneous extraction of
targeted non-polar and polar metabolites from a limited amount of muscle tissues. The
optimal method, BMMW, had an acceptable matrix effect (close to 1.0) for all metabolites
and showed the highest extraction recovery for all types of metabolites, with the best
performance of all methods studied for 63% of the signaling lipids and 81% of the polar
metabolites. BMMW was used for profiling mouse muscle tissues with quantities as small
as 5 mg (dry weight). Our study of sample collection protocols found that fast (<15 min)
muscle tissue collection is crucial for metabolite stability. The developed sensitive sample
preparation method and fast muscle tissue isolation method will be utilized for future
metabolomics mechanistic studies of sarcopenia and animal model studies to evaluate
treatments to prevent this syndrome.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12080742/s1, Table S1: The information of lipid ISTDs;
Table S2: The information of amino acids and amines ISTDs; Table S3: The information of energy
metabolites ISTDs; Table S4: Detected lipid metabolites in mouse muscle samples; Table S5: Detected
polar metabolites in mouse muscle samples.
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Abstract: Meconium represents the first newborn stools, formed from the second month of gestation
and excreted in the first days after birth. As an accumulative and inert matrix, it accumulates most
of the molecules transferred through the placenta from the mother to the fetus during the last 6
months of pregnancy, and those resulting from the metabolic activities of the fetus. To date, only
few studies dealing with meconium metabolomics have been published. In this study, we aimed to
provide a comprehensive view of the meconium metabolic composition using 33 samples collected
longitudinally from 11 healthy newborns and to analyze its evolution during the first 3 days of life.
First, a robust and efficient methodology for metabolite extraction was implemented. Data acquisition
was performed using liquid chromatography coupled to high-resolution mass spectrometry (LC-
HRMS), using two complementary LC-HRMS conditions. Data preprocessing and treatment were
performed using the Workflow4Metabolomics platform and the metabolite annotation was performed
using our in-house database by matching accurate masses, retention times, and MS/MS spectra
to those of pure standards. We successfully identified up to 229 metabolites at a high confidence
level in human meconium, belonging to diverse chemical classes and from different origins. A
progressive evolution of the metabolic profile was statistically evidenced, with sugars, amino acids,
and some bacteria-derived metabolites being among the most impacted identified compounds. Our
implemented analytical workflow allows a unique and comprehensive description of the meconium
metabolome, which is related to factors, such as maternal diet and environment.

Keywords: meconium metabolome; untargeted metabolomics; LC-HRMS; day-to-day variations

1. Introduction

Meconium, i.e., the first stools of the neonate, starts accumulating in the fetal intestine
from the 12th week of gestation and is excreted within the first 24–79 h post-partum [1,2].
Meconium represents an accumulative matrix with a low metabolic activity. It thus provides
the longest historical record of fetal exposure but also contains the essential nutrients to
shape the future primordial microbiota. Meconium is composed of ~80% water, and,
in a decreasing order of abundance, lipids, proteins, and metabolites; it also contains
intestinal epithelial cells, neonatal hairs, and minerals [3]. The different substances found in
meconium are either produced by the fetus itself or result from trans-placental transfer. The
latter substances notably include metabolites derived from the mother’s endogenous and
microbiota metabolisms, and from various maternal exogenous factors (diet, medication,
and environmental contaminants).

Targeted analyses of meconium have largely been performed to evidence fetal expo-
sure to specific xenobiotics [4,5]. As a representative example, Ostrea et al. compared the
pesticide content detected in hair, umbilical cord blood, and meconium collected from
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598 infants, and evidenced higher levels of some xenobiotics in meconium due to its accu-
mulative nature [6]. Other mass spectrometry (MS)-based targeted analyses of meconium
evidenced signatures of fetal exposure to alcohol [7], tobacco [8], and drugs [9]. Targeted
analyses using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS)
and subsequent quantification of 33 bile acids also showed an association between primary
and secondary bile acid concentrations in meconium and gestational age [10].

Few studies have dealt with untargeted metabolomics analyses of meconium, and
essentially provided lists of metabolites that discriminate different mother/child health
outcomes. For instance, using nuclear magnetic resonance (NMR) analysis, Peng et al. iden-
tified nine meconium metabolites allowing the diagnosis of gestational diabetes mellitus
(GDM) [11]. Thanks to a set of 113 metabolites detected by LC coupled to high-resolution
MS (LC-HRMS) in meconium samples, Chen et al. then described associations between
GDM and alterations in taurine, pyrimidine, and bile acid metabolic pathways [12]. On the
other side, NMR-based metabolomics described 16 water-soluble metabolites (e.g., amino
acids, organic acids, and ketone bodies) while sterols (e.g., cholesterol, squalene) and fatty
acids were the major lipid classes detected in the organic fraction. Both the concentra-
tions of nine water-soluble metabolites, on the one hand, and the fatty acid concentrations
and their unsaturation index, on the other hand, significantly increased with postpartum
time [13], reflecting breastfeeding initiation [14]. An analysis of 70 fecal samples from
21 newborns, collected between day 1 and day 30 after birth, allowed identification and/or
quantification of 33 metabolites, the concentrations of which changed during the first
days of life and which correlated with intestinal bacterial species appearance [15]. In a
recent study, Bittinger et al. performed a multi-omics analysis of meconium/fecal samples
collected between day 1 and day 7 after birth. Metabolomic analysis was performed by
LC-HRMS using a single liquid chromatography condition. In total, 45 metabolites were
identified to show different profiles in samples collected after 16 h post-partum, where
more bacteria were detected [16]. Wandro et al. performed a non-targeted gas chromatog-
raphy (GC)-MS analysis of samples collected from day 7 after birth and annotated a total of
224 endogenous metabolites, including amino acids, bile acids, fatty acids, nucleotides, and
sugars [17]. The largest mapping of early feces metabolome was very recently provided
by Petersen et al. Within this study, a non-targeted LC-HRMS analysis of 100 meconium
samples was performed by Metabolon, Inc (Morrisville, NC, USA), which reported the
detection of 714 compounds belonging to different metabolic pathways, including predom-
inately complex lipid species (e.g., lysophospholipids, sphingomyelins), fatty acids, amino
acids, xenobiotics, vitamins, and cofactors [18].

In the present study, we aimed to provide a comprehensive description of the meco-
nium metabolome, and provide a list of metabolites identified at a high confidence level.
We thus implemented an MS-based metabolomics workflow involving two untargeted
distinct and complementary LC-HRMS platforms combined with annotation based on an
in-house chemical database comprising more than 1200 pure authentic standards analyzed
under identical conditions [19–21] and confirmed by MS2 analysis. Under these condi-
tions, 229 metabolites were confidently annotated. We then analyzed global and annotated
metabolome evolution during the first three days of life.

2. Results
2.1. Optimization of the Workflow for Metabolome Analysis of Meconium

To obtain the most precise view of the human meconium metabolome, we devised
an original sample preparation protocol for obtaining robust metabolic fingerprints. Thus,
we first performed preliminary experiments to optimize the different steps of the sample
preparation thanks to a pool of meconium samples. The steps considered and the optimized
final conditions are provided in Figure 1. As a first step, manual homogenization of freshly
collected samples was performed prior to aliquoting to avoid any topographical position
bias [22]. Then, freeze-drying was performed prior to metabolic extraction to allow future
standardization from the dry weight while avoiding potential biases linked to sample-to-
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sample variation in the water content. We observed that 74 to 78% of the initial meconium
weight was lost upon freeze-drying, which is consistent with the reported median value
of water content in human feces (~75%) [23]. In line with previous observations [16],
methanol proved to be the most efficient solvent for metabolites extraction. Thus, 10 mg of
freeze-dried meconium were suspended in 750 µL of methanol/water mixture (4:1, v/v).
Meconium dissociation and homogenization were performed using a Precellys apparatus
(Bertin Technologies, Montigny-le-Bretonneux, France) and tubes preloaded with ceramic
beads, which was the most efficient and reproducible dissociation method of those we
tested (e.g., compared to a sonication bath or probe). Metabolomic analyses of the resulting
extracts were performed using two complementary LC-HRMS platforms involving either a
reversed-phase column with MS detection in the positive ionization mode (C18-ESI+) or
a hydrophilic interaction liquid chromatography column with detection in the negative
ionization mode (HILIC-ESI−), allowing the analysis of hydrophobic and polar metabolites,
respectively. It is important to mention that we have recently demonstrated the efficiency
and robustness of such a protocol to analyze the metabolic profiles of adults feces [24]. The
reproducibility of the sample preparation was assessed by analyzing 5 analytical replicates
that showed an average coefficient of variation (CV) below 15% for all the metabolite
features (see below). Of note, this study focused on the analysis of small-molecular-weight
metabolites, the detection of complex lipids (such as lysophospholipids or sphingomyelins)
or long-chain fatty acids would imply the use of a dedicated lipidomics platform.
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Figure 1. Optimized protocol for meconium preparation prior to LC-HRMS analysis. Four major
steps were considered, and the corresponding optimized conditions are provided: (a) freeze-drying
parameters, (b) metabolites extraction method, (c) recovery of the pellet containing the metabolites,
and (d) LC-HRMS analytical conditions.

2.2. Characterization of the Human Meconium Metabolome
2.2.1. Comprehensive View of the Meconium Metabolome

The LC-HRMS-based metabolomic methods and their associated data processing
workflow (see Material and Methods) were applied to analyze 33 meconium samples
collected at different time points from 11 newborns (Table S1). The number and time of
excretion varied greatly from one newborn to another, with the collection time ranging
from 1 to 79 h after birth. From the analyzed samples, we extracted 9274 and 12,397 features
in the HILIC-ESI− and C18-ESI+ analytical conditions, respectively. Of these, 6843 and
8555 features were found to be analytically relevant, i.e., satisfying our 3 quality evaluation
criteria (biological to blank samples intensity ratio, CV between QCs, and correlation
within the diluted QC series; see the details in the Material and Methods section). A
given metabolite is commonly detected under ESI conditions as a multiplicity of molecular
species (i.e., monoisotopic peak, adducts, dimers, and/or fragments), resulting in an
overestimation of the real number of unique metabolites in the meconium samples [25].
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Overall, 224 metabolic features from the C18-ESI+ conditions and 149 from the HILIC-
ESI− conditions matched with accurate RT and m/z values of a pure standard included
in our chemical reference database. Additional MS/MS (MS2) analyses were performed
to confirm these putative annotations, and we finally identified 197 and 89 metabolites
for the HILIC-ESI− and C18-ESI+ conditions, respectively. Only 57 metabolites were
identified by both methods, further demonstrating the complementarity of the 2 LC-HRMS
platforms. When excluding the overlapping metabolites, 229 unique metabolites were
finally identified in meconium with at least 2 orthogonal parameters (retention time, m/z
or/and MS/MS spectra) as proposed by the Metabolomics Standards Initiative (MSI) [26].
The corresponding list of metabolites is provided in Table S2.

2.2.2. A Map of the Human Meconium Metabolome

The chemical families of the 229 identified metabolites were assigned using the human
metabolome database (HMDB) [27]. The meconium showed a rich metabolic composition
covering several molecular families, as summarized in Figure 2a. We observed a major
representation of amino acids, peptides, and analogues (32%); carbohydrates and carbo-
hydrate conjugates (15%); and nucleosides, nucleotides, and analogues (13%), with these
3 families covering 60% of the whole meconium metabolome. Within the remaining 40%,
we detected mainly organic acids and derivatives (11%) and fatty acids conjugates (7%).
The high representation of amino acid, peptide, and analogue families is consistent with
previous studies [15,16], and this may also be linked to the high representation of amino
acids and derivatives in our chemical library.
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Figure 2. (a) Main chemical families represented in meconium and their numbers and percentages
(number; name of the chemical family; percentage). (b) Enriched metabolic pathways identified
through interrogation of the KEGG human metabolic pathways using Metaboanalyst 5.0 tools [28].
The enrichment ratio on the x-axis represents the number of metabolites assigned per metabolic
pathway out of the total number of metabolites belonging to the pathway studied.

Within our meconium samples, some microbial metabolites were identified, such as
muramic acid, 2-isopropylmalic acid, secondary bile acids (e.g., lithocholic acid (LCA)),
and short-chain fatty acids (SCFAs, e.g., isobutyric acid). Other compounds that may
result from tryptophan metabolization by bacteria were also detected, particularly indole
derivatives (e.g., indoleacetic acid, indoleacrylic acid, indolelactic acid, indole-3-carboxylic
acid, and indoxyl sulfate) [29].

The 229 identified metabolites were then repositioned into metabolic pathways [28]. A
total of 52 enriched metabolic pathways were identified, and the most enriched ones are
shown in Figure 2b. They include biosynthesis and degradation of amino acids pathways
(arginine, glutamine, histidine, valine, leucine, phenylalanine, tryptophan, . . . ; amino-acyl-
tRNA biosynthesis), and pathways related to the metabolism of caffeine (paraxanthine,
theobromine, . . . ) or antibiotics (neomycin, kanamycin, . . . ).

2.3. Analysis of the Whole Dataset Evidenced Rapid Evolution of the Meconium Metabolome
during the First Days of Life
2.3.1. Preliminary Analysis of the Whole Dataset through Non-Supervised PCA and
Hierarchical Clustering

A first global analysis of all the analytically relevant features obtained under the
C18-ESI+ (8555 features) and the HILIC-ESI− (6843 features) analytical conditions was
performed using a non-supervised multivariate analysis (principal component analysis,
PCA) to obtain a first rough picture of the samples and the data distribution. The first 2
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PCA components explained 42% (C18-ESI+, Figure 3A) and 45% (HILIC-ESI−, Figure 3B)
of the total variance. Almost the same outliers were identified in both conditions, in
particular the NB08.270 and NB06.2520 samples. These two samples were not excreted
by the same neonate and the other samples collected from the same neonates were not
identified as outliers. They do not correspond to a specific gender, and do not reflect a
particular excretion time (270 and 2520 min). Moreover, these samples were not close in the
analytical sequence, excluding a possible analytical bias during the data acquisition. Thus,
there is no obvious reason for explaining the particular behavior of these two samples. They
may either have a true but unexplained different metabolic composition or were partially
contaminated during their collection from the diaper. As only a few samples were available
for this study, we decided to keep all the samples.

Metabolites 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

of the total variance. Almost the same outliers were identified in both conditions, in par-

ticular the NB08.270 and NB06.2520 samples. These two samples were not excreted by the 

same neonate and the other samples collected from the same neonates were not identified 

as outliers. They do not correspond to a specific gender, and do not reflect a particular 

excretion time (270 and 2520 min). Moreover, these samples were not close in the analyti-

cal sequence, excluding a possible analytical bias during the data acquisition. Thus, there 

is no obvious reason for explaining the particular behavior of these two samples. They 

may either have a true but unexplained different metabolic composition or were partially 

contaminated during their collection from the diaper. As only a few samples were availa-

ble for this study, we decided to keep all the samples.  

 

Figure 3. PCA scores plot (PC1 vs. PC2) built using all relevant features obtained in C18-ESI+ ((A) 

8555 features) and HILIC-ESI- ((B) 6843 features) MS detection conditions. The colors used represent 

the different newborns (NB01 to NB11) the meconium samples were collected from. The size of each 

point traduces the collection time-points, expressed in hours (h). Data were log10-transformed and 

mean-centered before PCA. Ellipses represent the confidence intervals of the scores projected on 

factorial plans at a probability p = 0.975. 

Unsupervised PCA highlighted similar structuration of the whole dataset in both an-

alytical conditions (Figure 3). A time-dependent distribution of samples was evidenced, 

with a non-linear and progressive change in the overall metabolome composition of the 

meconium (Figure 3). The proximity of samples with close sampling times, and, to a lesser 

extent, excreted by the same newborn were highlighted using non-supervised hierarchical 

clustering (not shown). We observed a group of features with a low intensity in the early 

collection times that increased over time while another group of features showed an op-

posite trend. 

2.3.2. Canonical and Regression Analyses Confirmed a Major Impact of Time on the Me-

conium Metabolome 

To more deeply characterize the inter and intra metabolic variability within the new-

borns, canonical analyses were performed between the C18-ESI+ and HILIC-ESI- whole 

datasets, on the one hand, and the dummy matrix built from repeatedly collected new-

borns combined with the true time scale at which feces were sampled, on the other hand. 

Both canonical analyses showed that the first principal components (PC1) represented 

38.4% and 38.8% of the total variance and revealed nearly continuous variation in the 

metabolome for both datasets with rather limited intra-newborn variance (Figure 4). In-

terestingly, PC2s, which represent 17.2% and 24.0% of the total variance, respectively, dis-

played a particular behavior for 4 newborns (NB10 for the C18-ESI+ dataset, and NB08, 

NB09, and NB11 newborns for the HILIC-ESI- dataset). 

Figure 3. PCA scores plot (PC1 vs. PC2) built using all relevant features obtained in C18-ESI+

((A) 8555 features) and HILIC-ESI− ((B) 6843 features) MS detection conditions. The colors used
represent the different newborns (NB01 to NB11) the meconium samples were collected from. The size
of each point traduces the collection time-points, expressed in hours (h). Data were log10-transformed
and mean-centered before PCA. Ellipses represent the confidence intervals of the scores projected on
factorial plans at a probability p = 0.975.

Unsupervised PCA highlighted similar structuration of the whole dataset in both
analytical conditions (Figure 3). A time-dependent distribution of samples was evidenced,
with a non-linear and progressive change in the overall metabolome composition of the
meconium (Figure 3). The proximity of samples with close sampling times, and, to a lesser
extent, excreted by the same newborn were highlighted using non-supervised hierarchical
clustering (not shown). We observed a group of features with a low intensity in the
early collection times that increased over time while another group of features showed an
opposite trend.

2.3.2. Canonical and Regression Analyses Confirmed a Major Impact of Time on the
Meconium Metabolome

To more deeply characterize the inter and intra metabolic variability within the new-
borns, canonical analyses were performed between the C18-ESI+ and HILIC-ESI− whole
datasets, on the one hand, and the dummy matrix built from repeatedly collected newborns
combined with the true time scale at which feces were sampled, on the other hand. Both
canonical analyses showed that the first principal components (PC1) represented 38.4% and
38.8% of the total variance and revealed nearly continuous variation in the metabolome for
both datasets with rather limited intra-newborn variance (Figure 4). Interestingly, PC2s,
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which represent 17.2% and 24.0% of the total variance, respectively, displayed a particular
behavior for 4 newborns (NB10 for the C18-ESI+ dataset, and NB08, NB09, and NB11
newborns for the HILIC-ESI− dataset).
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Figure 4. Canonical analyses between all relevant features obtained in C18-ESI+ ((A) 8555 features)
and HILIC-ESI− ((B) 6843 features) LC-HRMS conditions, and a dummy matrix summarizing feces
samples collected for the different newborns (NBs) completed with the time date (expressed in hours,
h) of sample collection.

The statistical models used here, which considered the meconium sampling time,
highlighted a significant correlation between PC1 scores and time for both analytical
conditions (regressions not shown). Accordingly, sparse PLS (sPLS) regressions were
significantly established between the 500 most informative features selected from either the
C18-ESI+ or HILIC-ESI− datasets, on the one side, and the time variable, on the other side.

Among the 500 features retained for sPLS regression analysis from either the C18-ESI+

or HILIC-ESI− dataset, the 20 variables that correlated most with the collection time were
sorted according to the absolute value of the correlation with the Comp[1] variable in the
sPLS regression. In parallel, thanks to the sPLS regression model used, VIP values were
also calculated (Table S3). Whatever the dataset considered, the absolute values of the
correlation of the first 20 features explaining the regressions were above 0.862 when their
VIP values were higher than 6.50 for the C18-ESI+ dataset and 2.50 for the HILIC-ESI−

dataset. Unfortunately, among these 20 features, none was assigned to metabolites present
in our in-house database. Among the 500 features selected, only 2 annotated metabolites
were found for the C18-ESI+ dataset (glycyl-leucine, xylulose), whereas 9 were found for
the HILIC-ESI− dataset (ribose phosphate, N-acetylglycine, etc.) (Table S3); however, all
were sorted in the less correlated feature sets with a rank above 112.

These global regressions analyzed by sPLS were then reinforced by a mixed model
analysis between the Comp[1] scores and the time variable considering the newborn factor
as a random factor. For both datasets, every newborn-specific linear regression displayed
a positive slope (Figure 5A,C), except for NB05 in the HILIC-ESI− dataset (Figure 5C).
Moreover, the quality of the statistical models was estimated by a quantile-quantile diagram
(or QQ plot) of the estimated residues (Figure 5B,D). All samples, except those collected for
NB09, were predicted very well by such modeling.
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Figure 5. Modeling of the variation in the Comp[1] scores with time (h) for the C18-ESI+ (A) or
HILIC-ESI− (C) analytical conditions. Comp[1] scores were calculated according to a sPLS regression
between the metabolomic datasets and the time at which fecal matrices were collected. The global
regressions were drawn according to the thick continuous black line. For every newborn, a mixed
model linear regression was applied to model the regression between Comp[1] scores and time and
individual regressions are plotted as dashed lines. The distributions of residues calculated after
regression were compared to the theoretical one for metabolites detected under the C18-ESI+ (B)
or HILIC-ESI− (D) analytical conditions. The Comp[1] scores were weakly predicted by the mixed
model linear regression only for 1 or 2 samples from NB09, both collected after 40 h, in the C18-ESI+

(B) or HILIC-ESI− (D) analytical conditions, respectively.

2.3.3. Modeling of the Whole Datasets and Metabolic Changes Associated with
Time-Dependent Variation

Global PLS regression thus illustrated the association between the metabolomic
datasets and collection time. Better modeling of the link between these two variables,
i.e., Comp[1] and time, was examined considering a log-transformation of the time variable
and curvilinear modeling based on polynomials expressed in log(time) with degrees 4 and
3 for the C18-ESI+ and HILIC-ESI− datasets, respectively (Figure 6 and Table S4). For both
datasets, the model prediction was superimposed on the loess modeling of the data well
(Figure 6). In addition, the statistical parameters summarizing this curvilinear modeling
were conveniently optimized, as shown by the high significance of the coefficients assigned
to polynomials equal to or above degree 2 (Table S4). These 2 curves were adjusted with
strongly significant alpha risks of 5.2 × 10−15 and 2.2 × 10−16, respectively. Interestingly,
if we analyze the parallel variations of these 2 curves by discarding the simultaneous
variation of log(time) and keeping the higher degree of polynomials, that is, 4 and 3, re-
spectively, we can roughly estimate the allometric variation between C18-ESI+ Comp[1]
and HILIC-ESI− Comp[1] with an exponentiation coefficient equal to 0.75. When we more
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precisely considered the log-transformation of C18-ESI+ and HILIC-ESI− data predicted
using polynomials, as indicated in Figure 6, we obtained the following allometric equation:

Predicted-C18 ESI+ = (Predicted-HILIC-ESI−)0.7285 − 0.1034 (1)

with adjusted R2 = 0.9668, F1,29 = 874, and p-value < 2 × 10−16 (Supplementary Figure S1),
that is, with an exponentiation coefficient of 0.7285, which is very close to 0.75, the roughly
estimated exponent indicated above.
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Figure 6. Curvilinear regressions modeled with polynomials of degrees 4 and 3 for the prediction
of Comp[1] scores upon log(time) for metabolites analyzed under C18-ESI+ (A) and HILIC-ESI−

(B) conditions, respectively. As dashed black lines, the loess-supported regressions are shown with
a confidence interval of 5% shown in dark grey, and the dotted blue lines display the polynomial
regressions.

2.4. Identification of Metabolites Showing Time-Dependent Variations: Complementarity of
Non-Supervised and Supervised Analyses

Based on all these results, and to interpret more deeply and directly the observed
differences and/or similarities between the samples, we finally performed non-supervised
and supervised analyses solely using the 229 annotated metabolites and considering the
33 samples independently of their origin (i.e., not taking into account the fact that stool
samples were repeatedly collected for some newborns). We first performed PCA, which
globally reproduced the same structuring observed for the whole dataset (Supplementary
Figure S2A vs. Figure 3). This suggests that the set of annotated metabolites is quite repre-
sentative of the whole datasets. Non-supervised hierarchical clustering of the 33 samples
based on the 229 annotated metabolites identified 2 clusters of samples (clusters 1 and 2)
(Figure S2B). The first cluster of samples is composed of 23 meconium samples, of which 20
were excreted before 24 h, while the second cluster is composed of 10 samples, 8 of which
were excreted after 24 h. This spontaneous classification suggests a 24-h cutoff regarding
the global metabolic composition in our cohort of meconium samples. The intensities of
some metabolites increased (mainly enriched in the cluster > 24 h) while others decreased
(mainly enriched in the cluster < 24 h) over time (see below). As shown by non-supervised
analysis of the whole dataset, evolution of the meconium composition is thus mainly
driven by the time post-partum, independently of the newborn. The distinction between
samples excreted in the first 24 h from others was already detectable in the PCA score plot
(Figure S2A).

According to these results, we finally performed univariate and multivariate super-
vised analyses on the 229 annotated features, with samples classified into 2 groups, i.e.,
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excreted before or after 24 h. First, we performed univariate Wilcoxon testing, using a
false discovery rate (FDR) correction for multiple comparisons. Around 70% of the anno-
tated metabolites showed comparable intensities before and after 24 h, whereas 67 out the
229‘features (29%) showed significantly different intensities between the 2 groups (adjusted
p-values < 0.05). Among these metabolites, 50 showed significantly higher intensities in late
samples (Table S2, red color), including N-acetylglycine, L-threonic acid, or methylguanine,
but also some potential microbiota-derived metabolites (e.g., indole derivatives, isobutyric
acid). The 17 remaining metabolites displayed significantly more intense signals in samples
collected before 24 h (Table S2, blue colors), such as glycerol phosphate, xanthopterin,
and N-acetylneuraminic acid. Metabolite up- or downregulation were in agreement with
the correlation (negative or positive) calculated in sPLS regression (Table S3). We finally
performed supervised multivariate analysis on the 229 annotated features, (i.e., PLS-DA
modeling), considering 2 groups of samples (before or after 24 h). A model was successfully
built, with a good predictive value (pR2Y < 0.05, pQ2 < 0.05). We then identified 36 metabo-
lites with variable importance in projection (VIP) values above 1.5, i.e., the metabolites
that participate most in the model building and then discriminate the most between the
2 groups of samples (Table S2, yellow color). Within these discriminant metabolites, some
with the highest VIP values were already contributing highly in the t1-component of the
non-supervised PCA (Figure S2C; e.g., glyceric acid, N-acetyl- glutamine, N-acetyl- aspartic
acid, threitol, methyl-succinic acid), and all these metabolites were identified as being
impacted by the collection time in the univariate analyses.

3. Discussion

The goal of this study was to provide the most precise view of the meconium metabolic
composition, with an emphasis on small-molecular-weight metabolites and excluding com-
plex lipids (such as lysophospholipids or sphingomyelins) or other long-chain fatty acids
whose detection would imply the use of a dedicated lipidomics platform. In that context,
we first implemented a sample preparation approach to robustly extract metabolites from
meconium. This protocol was then applied to 33 samples collected from 11 healthy new-
borns during their first 3 days of life. Metabolite profiling was then performed using two
complementary untargeted LC-HRMS approaches, i.e., reversed phase and HILIC chro-
matography coupled to a Q-Exactive mass spectrometer. Over 17,000 metabolite features
comprising redundancy were identified in meconium samples. On the highest MSI level 1,
216 metabolites were identified thanks to our in-house database and using pure authentic
standards with an accurate mass, retention time, and MS/MS matching. An additional
set of 13 metabolites were annotated with the same procedure but at level 2 since some
isomers could not be distinguished. Overall, 229 metabolites were annotated in meconium,
which compares favorably with the 222 unique metabolites counted by Aristizabal-Henao
et al. using 3 distinct MS-based platforms (2 LC-HRMS and 1 GC-MS) [30]. Using the same
analytical approach and database, we identified more than 400 unique metabolites in adult
stools [31], highlighting the comparatively lower metabolite richness of meconium. Of note,
only 74 metabolites from our dataset were also described by Petersen et al. within their list
of 714 detected metabolites and complex lipids (level of confidence not provided) [18].

Non-supervised analysis and modeling of the whole datasets evidenced that time
post-partum drastically affected the meconium composition, which evolves rapidly inde-
pendently of the newborn. Within 79 h post-partum, quantitative and qualitative changes
in the metabolome core found in the HILIC-ESI− dataset were more pronounced than in
the C18-ESI+ dataset, although these changes appeared highly dynamically coordinated.
Interestingly, most of the metabolites highly impacted by time were not annotated, i.e., not
present in our in-house database. This probably reflects that they mostly correspond to
metabolites derived from microbiota metabolism.

Non-supervised analysis, i.e., PCA and hierarchical clustering, of the 229 annotated
metabolites further suggested a 24-h cutoff for the metabolic composition of our samples.
Supervised univariate statistical analysis, performed on samples collected before or after
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24 h, revealed that 67 metabolites were impacted by the collection time (29% of the an-
notated metabolites). In total, 36 metabolites of those 67 also had a PLS-DA-derived VIP
score > 1.5 (Table S2). These 67 compounds represented different chemical families, i.e.,
amino acids, carbohydrates, and organic acids. The corresponding enriched pathways
included the pentose phosphate pathway, and glycerolipid, taurine and hypotaurine, and
ascorbate and aldarate metabolism. Interestingly, 50 metabolites were accumulated in
late samples (Table S2, red color), in line with different studies [13,15,16]. These increased
metabolites included N-acetylglycine, threonic acid, and methylguanine, but also taurine
and phenylalanine as already described by an NMR analysis of meconium collected be-
tween days 1 and 3 by Righetti et al. [2]. Interestingly, some potential microbiota-derived
metabolites were also found within this group of accumulating metabolites (indole deriva-
tives, isobutyric acid), in line with progressive microbiota establishment and activity. On
the other hand, an additional set of 17 metabolites displayed significantly decreased sig-
nals in samples collected after 24 h (Table S2, blue colors), such as glycerol phosphate,
xanthopterin, and N-acetylneuraminic acid.

Different studies have reported similar trends to those we observed, which were asso-
ciated with multiple processes starting after birth: the establishment of the child’s intestinal
microbiota and its associated metabolic functions [15,32], which lead to the consumption of
in utero accumulated metabolites to benefit new bacteria-derived metabolites, the initiation
of breastfeeding or infant formula intake [13], and also the intensification of the neonate
endogenous digestive and metabolic functions.

Altogether, we implemented an analytical workflow and provided a unique and
comprehensive description of the meconium metabolome. We evidenced its rapid change
over the first days of life. Core metabolome accumulating in utero is related to factors, such
as the maternal diet and environment.

4. Material and Methods
4.1. Study Subjects

Meconium samples were collected in the maternity ward at Sainte-Thérèse Clinic
(Paris, France; February 2019). In total, 33 meconium samples were included in the study,
obtained within the first 79 h post-partum from 11 anonymized newborns, 2 of which were
girls. All babies were born at term by vaginal delivery.

Meconium was recovered by scraping stained diaper with a sterile disposable spatula,
taking care to not touch the nappy surface. The diapers were stored at +4 ◦C until sample
collection, which was performed within 12 h (median 4 h). Samples were then immediately
stored at −20 ◦C until transport to the laboratory where they were stored at −80 ◦C. The
meconium samples were collected until a change in color and/or texture was noticed,
reflecting the appearance of the first stools. To limit experimental bias related to contami-
nation by chemicals, we provided the same diapers to all participants. The newborn code
(NBx), gender, and time of sample collection in minutes postpartum (and the equivalent in
hours) are provided in Table S1.

4.2. Meconium Sample Preparation

Frozen meconium was further freeze-dried using a TriadTM Labconco (Missouri, USA)
freeze dryer with temperatures fixed at 4 ◦C for the tray and −83 ◦C for the trap; the
vacuum was fixed at 0.180 mbar. Freeze-dried samples were homogenized, aliquoted,
and stored at −80 ◦C until analysis. To precipitate proteins, 10 mg of freeze-dried meco-
nium were suspended in 750 µL of methanol/H2O (4:1, v/v). The samples were then
homogenized using a Precellys 24® (Bertin Technologies, Montigny-le-Bretonneux, France)
and CK14 ceramic beads (6500× g; 4 ◦C; 3 × 30 s), and then incubated on ice for 1.5 h.
After centrifugation (20,000× g; 4 ◦C; 15 min), supernatants (containing metabolites) were
recovered and dried under a stream of nitrogen at 30 ◦C using a TurboVap® concentration
workstation (Biotage, France). Samples were stored dried at −80 ◦C until further analysis.
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The pellets were resuspended in a volume of 800 µL of ammonium carbonate (10 mM
pH 10.5)/acetonitrile (ACN) (40:60, v/v) or H2O + 0.1% formic acid (FA)/ACN + 0.1% FA
(95:5, v/v) for chromatographic separation using HILIC and C18 columns, respectively.
Quality control samples (QC) were prepared by pooling equivalent volumes of all samples.
Dilution series of QC samples were prepared (1/2, 1/4 and 1/8) to allow data filtration. In
total, 100 µL of each biological, QC, and diluted QC samples were spiked with 5 µL of a
standard mixture (Table S5).

4.3. Metabolic Profiling

Metabolic profiling experiments were performed by LC-HRMS following optimized
protocols routinely used in our laboratory [20,21]. LC-HRMS was performed on an Ul-
timate 3000 chromatographic system coupled to a Q-Exactive mass spectrometer (both
from Thermo Fisher Scientific, Courtaboeuf, France) fitted with an electrospray (ESI) source
operating in the positive (ESI+) and negative (ESI−) ionization modes. LC was performed
using two types of columns to obtain a more comprehensive description of the metabolic
landscape: C18 (Hypersil GOLD C18 column, 1.9 µm, 2.1 × 150 mm, Thermo Fisher
Scientific; ESI+) and ZIC-pHILIC (Hydrophilic Interaction Liquid Chromatography; Se-
quant ZICpHILIC column, 5 µm, 2.1 × 150 mm, Merck, Darmstadt, Germany; ESI−).
Diluted QC samples were analyzed in triplicates at the beginning of the sequence while
non-diluted QC samples were introduced every 5 biological samples for data normaliza-
tion/standardization purposes.

Raw data (.raw files) were manually inspected using the Qual-browser module of
Xcalibur (version 4.1, Thermo Fisher Scientific) and then converted to .mzXML format
using MSconvert (ProteoWizard). Peak extraction, peak picking, alignment, and inte-
gration were performed using the Workflow4Metabolomics (W4M) platform [32]. Data
were filtered based on three criteria: (i) ratio of chromatographic peak areas obtained
for+ biological to blank samples > 3, (ii) coefficient of variation (CV) of metabolites in
the QC samples < 30%, and (iii) correlation between QC dilution factors and areas of
chromatographic peaks > 70%. The output files were used for metabolite annotation and
further statistical analyses. Metabolite annotation was performed thanks to an in-house
chemical database by matching accurate measured masses and chromatographic retention
times to those of more than 1200 pure authentic standards analyzed under identical con-
ditions [19–21]. Retention time (RT) tolerances accepted were ±15 and ±90 s for the C18
and ZIC-pHILIC columns, respectively. The mass to charge (m/z) tolerance was 10 ppm
for both the positive and negative ionization modes. Each annotated peak was manually
checked on the Qual-browser module of Xcalibur by considering the peak shape, isotope
pattern, and presence of the considered peak in at least 6 successive MS scans. To limit the
presence of irrelevant peaks, an intensity cut-off of 10,000 and 30,000 was applied for the
C18-ESI+ and HILIC-ESI− conditions, respectively.

MS/MS analysis was then conducted on the relevant signals to confirm their anno-
tation. In total, 4 normalized collision energies (NCEs) were used to obtain the optimal
MS/MS spectra (10, 20, 40, and 80%). Of note, some isomeric metabolites could not
be resolved using the LC-HRMS approach. Thus, some chromatographic peaks could
correspond to more than one metabolite (e.g., hexoses).

Statistical analysis of log-transformed data was conducted using the W4M platform
version 3.4.4 [32]. Univariate Wilcoxon tests were conducted to compare data, and adjusted
p-values were calculated taking into account multiple testing (false discovery rate, FDR).
Adjusted p-values < 0.05 were considered significant. Multivariate principal component
analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) were carried out
using log-transformed data. Hierarchical classification of the samples and features (cen-
tered and reduced data) was also carried out, and represented in the form of a “heatmap”.
Complementary statistical analyses, such as sparse partial least squares (sPLS) regression
and canonical correlation analysis, were performed on R 3.6.4 (R Core Team 2019 [33,34]).
Mixed model analysis was performed using the R package lme4 [35]. Metabolic path-
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ways enrichment analysis was conducted using the KEGG database and the “pathway
enrichment” tool of MetaboAnalyst 5.0 [28].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050414/s1, Figure S1: Linear variation of log(Predicted-
C18-ESI+) data according to log(Predicted-HILIC-ESI−) data established from the respective modelled
Comp[1]; Figure S2: A. PCA performed on the dataset built with the 229 metabolites identified in
meconium, B. Non-supervised clustering of samples (in columns, n = 33 samples) based on the
229 identified metabolites (in rows); C-D loadings on t1 and t2, respectively, of the 25 first features
from the 229 annotated metabolites; Table S1: Description of meconium samples collected; Table S2:
List of metabolites annotated in meconium samples; Table S3: Assigned and non-assigned features
most correlated to the sparse PLS regressions Comp[1] from C18-ESI+ or HILIC-ESI− datasets;
Table S4: Summary of statistical modeling of the time-dependence variation of the metabolome
distribution in C18-ESI+ and HILIC-ESI− datasets. Table S5: List of external standards used for
meconium analysis.
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Abstract: A simple, sensitive, and reliable quantification and identification method was developed
and validated for simultaneous analysis of 58 bile acids (BAs) in human and rodent (mouse and
rat) fecal samples. The method involves an extraction step with a 5% ammonium–ethanol aqueous
solution; the BAs were quantified by high-resolution mass spectrometry (ultra-high-performance
liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry, UPLC–Q-TOF).
The recoveries were 80.05–120.83%, with coefficient variations (CVs) of 0.01–9.82% for three biological
species. The limits of detection (LODs) were in the range of 0.01–0.24 µg/kg, and the limits of
quantification (LOQs) ranged from 0.03 to 0.81 µg/kg. In addition, the analytical method was
used to identify and quantify BAs in end-stage renal disease (ESRD) patients, C57BL/6 mice, and
Sprague-Dawley (SD) rats. The fecal BA profile and analysis of BA indices in these samples provide
valuable information for further BA metabolic disorder research.

Keywords: bile acids; UPLC–Q-TOF; wet feces; sulfation; isomerization; BA indices

1. Introduction

Bile acids (BAs) are biosynthesized in hepatocytes from cholesterol, which present an
important biological function in humans and animals, such as digestion and absorption
of lipids and other fat-soluble components [1]. BAs synthesized in the liver are called
primary BA (PBA). PBAs’ composition is quite different in different biological species. In
humans, cholic acid (CA) and chenodeoxycholic acid (CDCA) are major PBAs; in addition,
muricholic acid (MCA) is also a PBA in rodents PBAs are synthesized by the classical and
alternative pathways. The classical pathway is initiated via 7α-hydroxylation of cholesterol
under 7α-hydroxylase (CYP7A1) action and then 12-α hydroxylation of the intermediates
by sterol 12-α hydroxylase (CYP8B1), followed by side-chain oxidation by sterol 27 hydrox-
ylase (CYP27A1). The alternative pathway begins with the hydroxylation of the cholesterol
side chain by CYP27A1, followed by 7-α hydroxylation of the oxysterol intermediates by
oxysterol 7-α hydroxylase (CYP7B1). In rodents, most CDCA is immediately converted
into MCA [2]. Then PBAs are amidated with glycine and taurine in the liver rapidly,
then flow into the duodenum [1]. The conjugated BAs mainly incur deconjugation, 7α-
dehydroxylation, oxidation, and epimerization reactions in the colon by several bacteria
to produce secondary BAs (SBA) [3–5]. Other reactions also undergo liver and intestinal
metabolisms, such as sulfation, glycosyl esterification, and glycosylation [6,7]. Almost 95%
of the BAs are reabsorbed and recycled during the enterohepatic circulation, and only 5%
are excreted in the feces [8].

Fecal BAs act as important biomarkers and signaling molecules in several studies
because of the complex interplay between BAs and gut microbiota [9,10]. Gut microbiota
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could modify the BA pool composition and size, especially disordered gut microbiome
producing abundant of conjugated BAs and BA structurally similar metabolites, which
could indirectly indicate disease states [10–12]. In turn, some BAs might have antimicrobial
activities, such as changing the pH of the intestinal microenvironment or disrupting intesti-
nal microbial membranes [13]. Since BAs are regarded as a communication bridge between
the gut microbiome and the various organs, such as liver and brain (gut–liver–brain axis),
more and more studies focus on the fecal detection of BAs to find the relationship between
diseases and intestinal microorganism [10,14–17]. More than that, BAs have a correlation
with aging [12,18,19]. Sato et al. found some particular SBA, including iso-, 3-oxo-, allo-,
3-oxoallo-, and isoallo-lithocholic acid in centenarians’ feces, which generated by enriched
gut microbes [13]. Based on these, developing a robust, accurate, and high throughput
BA analysis method in feces is extremely important. However, the multiple variations
of BA structure and their similar chemical properties have presented challenges in their
separation and detection.

Different from the serum or plasma matrix, the fecal matrix is more complex because
of the presence of proteins, lipids, salts, and others. These impurities lead to difficulty in
fecal BAs detection. Moreover, the feces condition, wet or dry, also affects the extraction
efficiency. Recently, Shafaei et al. compared the extraction efficiency of 12 BAs from
wet and dry feces [8]. They found that the recoveries of all the target BAs were quite
lower in dried fecal samples than in wet samples. Especially, the glycine conjugated BA
recoveries were below 30%. Therefore, an appropriate BA preparation process is quite
necessary for accurate qualitative and quantitative analysis, especially when LC-MS is used
as the detector. The common preparation processes include BA extraction, purification,
and dilution for high BA concentration. A small amount of ammonium hydroxide or
sodium hydroxide was often added to the extraction solution to attenuate the binding of
proteins to BAs, thus improving fecal BAs extraction efficiency [6]. Solid-phase extraction
(SPE) and liquid–liquid extraction (LLE) are two optional purification and concentration
methods [6,20]. An efficient preparation procedure could decrease matrix effects and
improve sensitivity in BAs analysis. Therefore, for different experimental substrates, pre-
treatment methods still need to be optimized.

Many studies have reported BA detection technologies in the last few decades, includ-
ing thin-layer chromatography (TLC), high-performance liquid chromatography with
UV detection (HPLC-UV), gas chromatography with flame ionization (GC-FID), gas
chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrom-
etry (LC-MS), ultrahigh-performance liquid chromatography-tandem mass spectrometry
(UHPLC-MS/MS), enzyme-linked immunosorbent assay (ELISA), and nuclear magnetic
resonance spectroscopy (NMR) [20–22]. Recently, high-resolution mass spectrometers
(HRMS), such as Orbitrap or TOF, have been increasingly used for BA identification, char-
acterization, and quantifications. These HRMS offer high mass resolution (>100,000 fwhm)
and high mass accuracy (<5 ppm). They could improve the BA isomers’ separation, sen-
sitivity, and specificity [23,24]. Importantly, once full-scan mass spectra are obtained
during sample acquisition, valuable information about other BA metabolites, metabolite
modifications, or degradation products could be available for further data analysis.

Hence, our aim was to develop a simple, robust, and reliable bioanalytical method for
wide structural coverage of BA analytes (Mono-OH, Di-OH, Tri-OH, and oxo-, nor-, iso-)
measured quantitatively in feces from clinical and preclinical study samples (two rodents,
rats and mouse) with UPLC–Q-TOF. Our research group was studying the abnormal lipid
metabolism in end-stage renal disease patients (ESRD) who lost renal function. These
patients are always accompanied by lipid metabolic disturbance and intestinal microbiota
disorders. Thus, the feces of ESRD patients were chosen as the clinical sample to validate
our BA method. The feces of rodents (C57BL/6 mice and Sprague- Dawley rats) were
also used to validate the method. Finally, the BA indices were compared in these bio-
logical species, especially the SBA composition analysis, to provide basic data for future
gut/intestinal-X axis research.
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2. Result and Discussion

Along with the discovery of the important role of gut microbes in diseases and health,
more and more studies have focused on the composition and changes of microbial metabo-
lites, especially for BAs. The composition of microbes and the regulation of the micro-
environment on microbial metabolism would change the structure of BAs, causing them to
isomerize and form variable isomers, which play an important regulatory role in humans
and animals. Many studies have developed and profiled the BAs in plasma and urine of
multiple biological species, such as humans, monkeys, rabbits, rats, and mice [20,25–28].
However, it is crucial to profile various BAs in feces because the fecal BA could evaluate
intestinal microorganism status directly [6,29,30]. Therefore, our goal was to develop a
robust, high throughput method for comprehensive analysis of fecal BA in human and
preclinical animals (mouse and rat).

2.1. BA Extraction Methods Comparison

Shafaei et al. found poor BA recovery present in dried fecal material, while wet sam-
ples could provide better efficiency and repeatability [8]. Hence, our extraction approach
optimization was carried out on wet feces.

In order to develop a simple, time-saving, and high BA species coverage extraction
method for different fecal biological samples, three different procedures were compared,
including ethanol extraction (S1), reversed-phase SPE with high pH (S2), and high pH
ethanol (S3) extraction. The pooled sample was used to evaluate the above protocols. As
shown in Figure 1, S2 protocol NaOH-SPE gave the highest concentrations for unconjugated
BAs but a much lower content of conjugated and sulfated BAs than the other two protocols
(p < 0.05). In this protocol, one-hour preincubation for the sample before extraction may
be responsible for this low conjugated content, especially the taurine-conjugated BAs.
The dehydrogenase and desulfatase enzymes of the fecal microorganism may hydrolyze
conjugated and sulfated BAs during this preincubation period [31]. Ethanol extraction (S1)
also gave a lower yield for glycine and taurine conjugated BAs than the high pH ethanol
protocol (S3). The alkaline condition could benefit from breaking the bonds between
conjugated BA and fecal protein [32]. To summarize, the S3 protocol (5% ammonium–
ethanol) was chosen in further experiments as a routine extraction protocol for feces.
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2.2. Chromatography Separation Optimization

For high-resolution mass spectrometry, effective chromatography separation reduces
matrix effects and improves the accuracy of identification and quantification. Therefore, the
mobile phase constitution was optimized. Ammonium-based buffer and formic acid are
common additives in aqueous solvents (mobile phase A) for negative ionization mode [33].
Additionally, the acidic condition was beneficial for the separation of BA structural isomer.
For example, GUDCA, GHDCA, GCDCA, and GDCA have the same molecular formula,
C26H43NO5, but different in -OH position (shown in Figure 2). The separations of their
addition ion forms [M-H]− (m/z 448.3063) were significantly affected by ammonium
acetate and formic acid additive amount. GUDCA and GHDCA were not separated
under individual ammonium acetate conditions (Figure 2a). When 0.05% formic acid was
added in the mobile phase simultaneously, isobaric BAs can be differentiated (Figure 2b).
Furthermore, the analysis times of these analytes could save 1–2 min when formic acid
addiction volume was 0.01% instead of 0.05% (Figure 2c). Therefore, in terms of peak
shapes, analysis times, and solvent saving, the best mobile phase compromise was 2 mM
ammonium acetate and 0.01% formic acid in H2O. This is because weakly acidic mobile
phase conditions contribute to the deprotonation of the analytes [34]. Information about the
observed ions and retention times (RTs) of all analyzed compounds is given in Table 1. The
extracted ion chromatograms (EICs) of all the unconjugated, glycine-conjugated, taurine-
conjugated BAs, sulfated Bas, and deuterium-labeled BAs are shown in Figure 3.
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Figure 2. Mobile phase optimization for isobaric compounds chromatography separation. The
GUDCA, GHDCA, GCDCA, and GDCA have the same molecular formula, C26H43NO5 ([M-H]- m/z
448.3063), but different -OH positions. (a) 2 mM ammonium acetate in aqueous solvent; (b) 2mM
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Table 1. Bile acid analyte structural, quantitative, and qualitative information.

Compounds Formula RT 1 Transition Adduct Ion IS 2

Unconjugated
Nordeoxycholic acid (norDCA) C23H38O4 15.63 377.2697 [M − H]− CA-d4

Dehydrocholic acid (DHCA) C24H34O5 8.10 401.2333 [M − H]− CA-d4
7,12-Diketolithocholic acid (7,12-diketoLCA) C24H36O5 7.40 449.2545 [M + COOH]− CA-d4

6,7-Diketolithocholic acid (6,7-diketoLCA) C24H36O5 15.56 403.2490 [M − H]− CA-d4
3-Ketolithocholic acid (3-ketoLCA) C24H38O3 23.75 373.2748 [M − H]− CA-d4
7-Ketolithocholic acid (7-ketoLCA) C24H38O4 15.35 435.2752 [M + COOH]− CA-d4

12-Ketolithocholic acid (12-ketoLCA) C24H38O4 9.68 405.2646 [M − H]− CA-d4
7-Ketodeoxycholic acid (7-DHCA) C24H38O5 12.29 405.2646 [M − H]− CA-d4
3-Ketodeoxycholic acid (3-DHCA) C24H38O5 15.90 389.2679 [M + COOH]− CA-d4

Apocholic acid (apoCA) C24H38O4 15.75 435.2752 [M − H]− CA-d4
Isolithocholic acid (isoLCA) C24H40O3 21.23 375.2905 [M − H]− CA-d4

Allolithocholic acid (isoalloLCA) C24H40O3 21.00 375.2905 [M − H]− CA-d4
Allocholic acid (alloCA) C24H40O5 12.44 407.2803 [M − H]− CA-d4
Ursocholic acid (UCA) C24H40O5 6.92 407.2803 [M − H]− CA-d4
Lithocholic acid (LCA) C24H40O3 22.91 421.2959 [M + COOH]− LCA-d4

Ursodeoxycholic acid (UDCA) C24H40O4 13.41 437.2909 [M + COOH]− UDCA-d4
Chenodeoxycholic acid (CDCA) C24H40O4 17.58 437.2909 [M + COOH]− CDCA-d4

Isodeoxycholic acid (isoDCA) C24H40O4 21.25 391.2854 [M − H]− DCA-d4
murideoxycholic acid (MDCA) C24H40O4 11.85 437.2909 [M + COOH]− CA-d4

Deoxycholic acid (DCA) C24H40O4 18.10 391.2854 [M − H]− CA-d4
Hyodeoxycholic acid (HDCA) C24H40O4 13.78 437.2909 [M + COOH]− CA-d4
α-Muricholic acid (α-MCA) C24H40O5 9.39 453.2860 [M + COOH]− CA-d4
β-Muricholic acid (β-MCA) C24H40O5 10.04 453.2858 [M + COOH]− CA-d4
γ-Muricholic acid (γ-MCA) C24H40O5 11.41 453.2858 [M + COOH]− CA-d4
ω-muricholic acid (ω-MCA) C24H40O5 8.70 453.2858 [M + COOH]− CA-d4

Cholic acid (CA) C24H40O5 12.83 407.2803 [M − H]− CA-d4

Glycine-conjugated
Glycodehydrocholic acid (GDHCA) C26H37NO6 3.34 458.2548 [M − H]− GCA-d4

Glycolithocholic acid (GLCA) C26H43NO4 16.81 432.3119 [M − H]− GLCA-d4
Glycodeoxycholic acid (GDCA) C26H43NO5 12.25 448.3063 [M − H]− GDCA-d4

Glycochenodeoxycholic acid (GCDCA) C26H43NO5 11.44 448.3063 [M − H]− GCDCA-d4
Glycoursodeoxycholic acid (GUDCA) C26H43NO5 7.09 448.3068 [M − H]− GUDCA-d4

Glycohyocholic acid (GHCA) C26H43NO6 5.78 464.3018 [M − H]− GCA-d4
Glycohyodeoxycholic acid (GHDCA) C26H43NO5 7.34 448.3068 [M − H]− GCA-d4

Glycocholic acid (GCA) C26H43NO6 7.36 464.3018 [M − H]− GCA-d4

Taurine-conjugated
Taurolithocholic acid (TLCA) C26H45NO5S 14.24 482.2946 [M − H]− TCA-d4

Taurochenodeoxycholic acid (TCDCA) C26H45NO6S 9.23 498.2895 [M − H]− TCDCA-d5
Taurodeoxycholic acid (TDCA) C26H45NO6S 10.05 498.2895 [M − H]− TCDCA-d5

Tauroursodeoxycholic acid (TUDCA) C26H45NO6S 5.48 498.2895 [M − H]− TCDCA-d5
Taurohyodeoxycholic acid (THDCA) C26H45NO6S 5.58 498.2895 [M − H]− TCDCA-d5
Tauro α-Muricholic acid (T-α-MCA) C26H45NO7S 3.19 514.2844 [M − H]− TCA-d4
Tauro β-Muricholic acid (T-β-MCA) C26H45NO7S 4.34 514.2844 [M − H]− TCA-d4

Taurohyocholic Acid (THCA) C26H45NO7S 5.92 514.2844 [M − H]− TCA-d4
Taurocholic acid (TCA) C26H45NO7S 3.04 514.2844 [M − H]− TCA-d4

Sulfo-
Lithocholic Acid-3-Sulfate (LCA-3S) C24H40O6S 15.27 455.2473 [M − H]− CDCA-3S-d4

Ursodeocycholic Acid-3-Sulfate (UDCA-3S) C24H40O7S 7.40 471.2422 [M − H]− CDCA-3S-d4
Chenodeoxycholic Acid-3-Sulfate (CDCA-3S) C24H40O7S 11.32 471.2422 [M − H]− CDCA-3S-d4

Deoxycholic Acid-3-Sulfate (DCA-3S) C24H40O7S 11.63 471.2422 [M − H]− CDCA-3S-d4
Cholic Acid-3-Sulfate (CA-3S) C24H40O8S 7.72 487.2371 [M − H]− CDCA-3S-d4

Glycine-Sulfo-
Glycolithocholic Acid-3-Sulfate (GLCA-3S) C26H43NO7S 9.98 512.2687 [M − H]− GDCA-3S-d4

Glycoursodeoxycholic Acid-3-Sulfate
(GUDCA-3S) C26H43NO8S 3.42 528.2637 [M − H]− GDCA-3S-d4
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Table 1. Cont.

Compounds Formula RT 1 Transition Adduct Ion IS 2

Glycochenodeoxychlolic Acid-3-Sulfate
(GCDCA-3S) C26H43NO8S 6.50 528.2637 [M − H]− GDCA-3S-d4

Glycodeoxycholic Acid-3-Sulfate (GDCA-3S) C26H43NO8S 6.90 528.2637 [M − H]− GDCA-3S-d4
Glycocholic Acid-3-Sulfate (GCA-3S) C26H43NO9S 3.91 544.2586 [M − H]− GDCA-3S-d4

Taurine-Sulfo-
Taurolithocholic Acid-3-Sulfate (TLCA-3S) C26H45NO8S2 6.98 562.2514 [M − H]− TUDCA-3S-d4

Tauroursodeoxycholic Acid-3-Sulfate (TUDCA-3S) C26H45NO9S2 2.06 578.2463 [M − H]− TUDCA-3S-d4
Taurochenodeoxycholic Acid-3-Sulfate

(TCDCA-3S) C26H45NO9S2 4.19 578.2463 [M − H]− TUDCA-3S-d4

Taurodeoxycholic Acid-3-Sulfate (TDCA-3S) C26H45NO9S2 4.57 578.2463 [M − H]− TUDCA-3S-d4
Taurocholic Acid-3-Sulfate (TCA-3S) C26H45NO10S2 2.46 594.2412 [M − H]− TUDCA-3S-d4

Internal standard
Cholic acid-d4 (CA-d4) C24H36D4O5 12.86 411.3054 [M − H]−

Lithocholic Acid-d4 (LCA-d4) C24H36D4O3 22.96 379.3156 [M − H]−
Ursodeoxycholic Acid-d4 (UDCA-d4) C24H36D4O4 13.45 395.3105 [M − H]−

Chenodeoxycholic Acid-d4 (CDCA-d4) C24H36D4O4 17.54 395.3105 [M − H]−
Deoxycholic Acid-d4 (DCA-d4) C24H36D4O4 18.13 395.3105 [M − H]−

Glycolithocholic Acid-d4 (GLCA-d4) C26H39D4NO4 16.86 436.3370 [M − H]−
Glycoursodeoxycholic Acid-d4 (GUDCA-d4) C26H39D4NO5 7.12 452.3320 [M − H]−

Glycodeoxycholic Acid-d4 (GDCA-d4) C26H39D4NO5 6.90 452.3320 [M − H]−
Glycochenodeoxycholic Acid-d4 (GCDCA-d4) C26H39D4NO5 12.26 452.3320 [M − H]−

Glycocholic Acid-d4 (GCA-d4) C26H39D4NO6 7.43 468.3269 [M − H]−
Taurocholic Acid-d4 (TCA-d4) C26H41D4NO7S 5.96 518.3095 [M − H]−

Taurochenodeoxycholic Acid-d5 (TCDCA-d5) C26H40D5NO6S 9.26 503.3209 [M − H]−
Chenodeoxycholic Acid-3-Suflate-d4

(CDCA-3S-d4) C24H36D4O7S 11.38 475.2673 [M − H]−
Glycodeoxycholic Acid-3-Sulfate-d4

(GDCA-3S-d4) C26H39D4NO8S 11.42 532.2888 [M − H]−
Tauroursodeoxycholic Acid-3-Sulfate-d4

(TUDCA-3S-d4) C26H41D4NO9S2 2.25 582.2714 [M − H]−

1 RT—retention time. 2 IS:—internal standard.

2.3. Method Validation

The method was then validated following the recommendations for bioanalytical
method validation [35] and confirmed to be selective and specific. For 58 BA analytes, the
LOD ranged from 0.01 to 0.24 µg/kg (corresponding 0.15–3.26 nM) and the LOQ from
0.03 to 0.81 µg/kg (corresponding 0.44–9.77 nM) (Table S1). Our quantification limits were
lower than previously reported values, 10–12.5 nM (methanol extraction in wet feces and
detection by LC-MS/MS) [8] and 12.6–73.2 nM (NaOH-SPE extraction in dried feces and
detection by LC-MS/MS) [32].

All calibration curves covered quantities from 0.5 to 1000 µg/L (corresponding
1–2000 nM) were linear, with squared correlation coefficients (r2) ranging from 0.995 to
0.999 without extra weighting analysis in the calibration curves algorithm. In other HRMS-
based methods, nonlinear correlations have been observed in the quantitative analysis [23].
The possible reason is the limited dynamic range of the detector. Therefore, different
regression algorithms (linear and quadratic with 1/x or 1/x2 weightings) were used in
calibration curves calculation.

The accuracy of 58 bile acids at low, medium, and high spiked concentrations were
92.39–115.55%, 89.14–111.04%, and 94.88–106.25%, respectively. The precisions of intra-day
and inter-day, expressed as variation coefficients %, were less than 10% (0.04–9.78% and
0.12–9.98%, respectively). Results are shown in Table S1.

The recovery percentages of three biological fecal matrices were evaluated at different
concentration levels. Table S2 presented the recovery of BA in each biological sample. All
the recovery values ranged from 80 to 120%.
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Figure 3. Extracted ion chromatograms of 26 unconjugated (a), 8 glycine-conjugated and 9 taurine-
conjugated BAs (b), 5 taurine-sulfated, 5 glycine-sulfated, and 5 sulfated BAs (c), and 15 deuterium
(D)-labeled BAs as Internal Standards (d). (1) UCA (2) 7,12-diketoLCA (3) DHCA (4) ω-MCA
(5) α-MCA (6) 7-DHCA (7) β-MCA (8) γ-MCA (9) MDCA (10) 3-DHCA (11) alloCA (12) CA
(13) UDCA (14) HDCA (15) 7-ketoLCA (16) 6,7-diketoLCA (17) norDCA (18) apoCA (19)12-ketoLCA
(20) CDCA (21) DCA (22) isoalloLCA (23) isoDCA (24) isoLCA (25) LCA (26) 3-ketoLCA (27) T-α-MCA
(28) T-β-MCA (29) GDHCA (30) THCA (31) TUDCA (32) THDCA (33) GHCA (34) TCA (35) GHDCA
(36) GCA (37) GUDCA (38) TCDCA (39) TDCA (40) GDCA (41) GCDCA (42) TLCA (43) GLCA
(44) TUDCA-3S (45) TCA-3S (46) GUDCA-3S (47) GCA-3S (48) TCDCA-3S (49) TDCA-3S (50) GCDCA-
3S (51) GDCA-3S (52) TLCA-3S (53) UDCA-3S (54) CA-3S (55) GLCA-3S (56) CDCA-3S (57) DCA-3S
(58) LCA-3S (IS1) TUDCA-3S-d4 (IS2) TCA-d4 (IS3) GDCA-3S-d4 (IS4) GUDCA-d4 (IS5) GCA-d4
(IS6) TCDCA-d5 (IS7) CDCA-3S-d4 (IS8) GDCA-d4 (IS9) GCDCA-d4 (IS10) CA-d4 (IS11) UDCA-d4
(IS12) GLCA-d4 (IS13) CDCA-d4 (IS14) DCA-d4 (IS15).
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The matrix effect percentages were evaluated at different concentration levels of
each biological sample; detailed results are listed in Table S3. Matrix effect values were
considered negligible, being in a range of 80–120% for all analytes in rat, mouse, and
human fecal matrix samples. An appropriate extraction method, high-resolution detection
instrument, and calibration of the internal standard could effectively reduce the matrix
effect [24]. Moreover, the usage of 15 deuterium-labeled standards (1 for each of the
15 analyzed BA species) also compensated for the matrix effects. All these results were
acceptable according to the FDA guidelines [35].

2.4. BA Profiling in Humans, Rats, and Mice

The composition of individual BAs and the concentration proration of each BA in all
their forms (unconjugated, amino acid conjugated (glycine or taurine), sulfo-conjugated,
and double conjugated) are shown in Figure 4.
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Unconjugated BAs were the most abundant BAs in humans, rats, and mice, all above
90%, with the corresponding BA indices of 93.28%, 96.52%, and 99.79%. Among the
conjugated BAs, the highest sulfation of BAs was observed in humans (5.67%), while
sulfation of BAs in mice and rats was 1.25% and 0.1%, respectively. Thakare et al. reported
humans present better sulfation capability than rats and mice [28]. The higher percent
sulfation capacity of humans is also consistent with plasma and urine matrix [25,36]. BA
sulfation could increase BA hydrophilicity and promotes excretion in feces and urine, so
it is an important mechanism for BA detoxification [30]. Glycine-conjugated BAs were
predominant in humans, but only a tiny amount in rodent species, while the BA indices
of taurine-conjugated were on the contrary. This tendency was consistent with previous
reports [28]. Double conjugated BAs were also detected, but at very low levels, only
0.18% in humans, 0.41% in mice, and 0.03% in rats. For these double conjugated BAs,
little data were reported in feces, which may be due to the limit of the extraction and the
detection methods.

The number of hydroxyl groups affects the hydrophobic of BAs. The hydrophobicity
was increased in the order of tri-OH BAs (CA, MCA, and HCA), di-OH BAs (CDCA and
DCA), and mono-OH BA (LCA). The mono-OH BA (LCA) indices were more dominant in
humans (28.11%) than in rodent species (mice 12.57% and rats 1.78%). The percentage of
di-OH BAs was highest in rats (51.68%), followed by humans (32.57%), and was lowest in
mice (21.36%). The percentage of tri-OH BAs was highest in mice (59.19%) and followed
by rats (43.02%), and was lowest in humans (4.68%). Compared with humans, rodents
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possess a bigger hydrophilic BA pool because of the abundant presence of MCAs. It is well
known that MCAs are scarcely reported in humans, but García-Cañaveras et al. and Li et al.
detected MCAs in healthy and ESRD human serum, respectively [27,37]. Interestingly, for
the first time, we detectedω-MCA and γ-MCA in ESRD patient fecal samples. The average
concentration of total MCA was 0.7 µg/kg, and the percentage of these two MCA form
BAs was 0.06%.

BAs have many derivatives, including iso-, oxo-, and nor- (OIND BAs). OIND BAs
were highest in humans (34.64%), followed by mice (3.53%) and rats (6.88%). This result
is opposite to the plasma, in which much higher OIND BAs were found in rats than in
humans [25]. This might be due to the fact that more OIND BAs were absorbed by rats
as compared to humans. Among these OIND BAs, the percentage of the form of iso- BAs
was higher than oxo among human and rodent species (human iso- 18.88%, oxo- 15.75%,
nor 0.01%; mouse iso- 2.76%, oxo- 0.76%, nor 0.01%; rat iso- 5.70%, oxo- 1.17%, nor 0.01%).
However, higher oxo-BAs in plasma were reported [25]. It indicated that oxo-BA was easier
to be reabsorbed into the blood, while iso-BA was excreted in feces.

2.5. BA Indices in Humans, Rats, and Mice

The BA composition ratios are called BA indices, which could comprehensively assess
the composition of BA pools, including primary to secondary BA ratio, CA/CDCA ratio,
12α-OH/non-12α-OH ratio, DCA/DCA+CA ratio, and LCA/LCA+CDCA ratio [28]. The
BA indices are able to describe the metabolic transformation and biological function of
BAs [25,28]. The BA indices vary among biological species, and the changes in BA indices
could be an early warning of disease [29]. Therefore, in order to provide reference data for
future research, the BA indices of human and rodent species (mice and rats) were present
(Figure 5).
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The ratio of primary to secondary BAs was calculated as the ratio of the sum of
the concentrations of CDCA, CA, MCA, and HCA to the sum of the concentrations of
DCA, LCA, UDCA, HDCA, and MDCA in all their forms [36]. This rate was lowest in
humans (0.14), followed by mice (0.79) and rats (1.46). Rhishikesh et al. found the values of
PBA/SBA in humans, rats, and mice were 1.1, 2.3, and 4.5 in plasma matrix while 0.8, 1.9,
and 16.5 in urine matrix [28]. These results indicated that human gut microbiota is able to
produce more abundant SBA than rodent species.

The ratio of total CA/total CDCA was quite lower in humans (0.20) than in rodents
(mice 5.14 and rats 1.97). This ratio reflects the BA synthesis pathway preference (classical
or alternative pathways) [36]. In the plasma and urine samples, this rate was also lower in
humans than in mice and rats [28]. Thus, it could be speculated that BA synthesis is the
preferred classical pathway in humans.
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The ratio of 12α-OH/non-12α-OH was calculated as the ratio of the sum of the
concentrations of DCA and CA to the sum of the concentrations of CDCA, HDCA, MDCA,
LCA, UDCA, HCA, and MCA in all their forms. This ratio was highest in rats (1.18),
followed by humans (0.72) and mice (0.27). This tendency was also in line with plasma and
urine matrix. The extent of 12α-OH/non-12α-OH BA ratio has been linked to the deficiency
of 12α-hydroxylase (CYP8B1) activity [38]. Moreover, several studies have reported that
this ratio could reflect host metabolic status [2].

The 7α-dehydroxylase converts CA in DCA and CDCA in LCA, so the ratio of
DCA/DCA+CA and the ratio of LCA/LCA+CDCA both reflected the 7α-dehydroxylase
activity [9]. These two ratios were quite similar in human and rodent species, ranging
from 0.74–0.99. Thus, it could be speculated that 7α-dehydroxylase activity was equal in
these species.

3. Materials and Methods
3.1. Materials & Methods

LC-MS grade acetonitrile, ammonium acetate, and formic acid were obtained from
Merck (Darmstadt, Germany). Water was obtained from the Merck Millipore Ultra-pure
water purification system at 18.2 MΩ/cm (Merck Millipore, Darmstadt, Germany). SPE C18
columns (30 mg/300 cc) were purchased from Waters (Milford, CT, USA). The authentic
compounds of 26 unconjugated, 8 glycine conjugated, 9 taurine conjugated, and 15 sulfo-
BAs were ordered from either Toronto Research Chemicals (Toronto, ON, Canada), BePure
(Bejing, China), or zzstandard® (Shanghai, China). Fifteen deuterium D4-labeled BAs
were purchased from BePure and were used as isotope-labeled internal standard (IS) for
quantitation. The details on these authentic compounds are provided in Table 1.

3.2. Standard Solutions and Calibration Curves

Stock solutions (1 mg/mL each) of individual BAs were prepared by dissolving the
respective compounds separately in methanol. These stock solutions were further diluted
with methanol to give final concentrations of 0.01–50 mg/L. These standard solutions were
used to determine the limits of detection (LODs) and the limits of quantitation (LOQs).
A mixed-standard solution containing 100 µg/L of each of the 15 D4-labeled BAs was
prepared in methanol and was used as the IS solution. For the preparation of the calibration
curves, each working standard solution was mixed with an equal volume of the IS solution.
The 58 standard stock solutions were then pooled together to obtain a 5 mg/L solution,
further diluted in methanol to obtain 10 levels in the calibration curve ranging from
0.5–1000 µg/L.

3.3. Sample Preparation

Wet feces were thoroughly homogenized after reception and then stored at −80 ◦C.
The fecal moisture content percentage of ESRD patients and rodent species were 70 ± 10%
and 50 ± 5%, respectively. The sample was treated according to 3 extraction protocols
(S1–S3).

3.3.1. S1 Extraction with Ethanol

Briefly, 15 mg fecal sample was homogenized with 1 mL cold ethanol (containing Mix
ISs) in 2 mL tubes filled with 3–4 mm glass beads. Homogenization was performed using
an automated Precellys 24 Tissue Homogenizer (Bertin Technologies, Bretonneux, France)
at middle speed for 30 s. The mixtures were centrifuged at 1350× g for 10 min at 4 ◦C.
Supernatant was collected and dried under a nitrogen stream at 24 ◦C. The residue was
dissolved in 150 µL initial mobile phase.

3.3.2. S2 Extraction with 0.1 mol/L NaOH Followed by SPE

First, 1 mL of NaOH (0.1 mol/L) was added to 15 mg feces, Vortex shaken 30 s, and
incubated for 1 h at 60 ◦C. Then, 2 mL water was added, homogenized 30 s, and centrifuged
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at 1350× g for 10 min at 4 ◦C. The supernatant was collected and purified with an SPE
cartridge. The 30 mg SPE cartridge was pre-conditioned with 5 mL methanol and 5 mL
water, then loaded with supernatant of extract solution and rinsed successively with 20 mL
water, 10 mL hexane, and other 20 mL water. The BAs were then eluted with 5 mL methanol.
The eluted fraction was collected and dried under a nitrogen stream at 24 ◦C. The residue
was dissolved in a 150 µL initial mobile phase.

3.3.3. S3 Extraction with 5% Ammonium-Ethanol

Briefly, 15 mg fecal sample was homogenized with 1 mL 5% Ammonium-Ethanol
(contain Mix ISs) in 2 mL tubes filled with 3–4 mm glass beads. Homogenization was
performed using an automated Precellys 24 Tissue Homogenizer (Bertin Technologies,
Bretonneux, France) at middle speed for 30 s. The mixtures were centrifuged at 1350× g
for 10 min at 4 ◦C. Another 1 mL extraction solution added, repeat the extraction process.
Supernatant from the two extraction steps were pooled and dried under a nitrogen stream
at 24 ◦C. The residue was dissolved in 150 µL initial mobile phase.

Reconstituted solution was diluted according to the endogenous BA content before
LC injection. The results obtained from the analysis, expressed as µg/L of extract, were
converted to µg/kg of dry feces by applying the following formula:

C = C0 × (V/m) × n × (1 − MF) (1)

where

C represents the concentration expressed as µg/kg;
C0 represents the concentration expressed as µg/L;
V represents the extraction volume (in L);
m represents the weight of wet feces (kg) subjected to extraction;
n represents the dilution ratio;
MF represents the fecal moisture content (%).

3.4. UPLC–Q-TOF Analysis

BAs analysis was performed by using an Agilent 1290 II UPLC system coupled with
a G6545 quadrupole-time-of-flight mass spectrometer (UPLC–Q-TOF) from Agilent Tech-
nologies (Santa Clara, CA, USA), equipped with an Agilent Jet Stream electrospray (AJS
ESI) source.

Separation of BAs was carried out using a using a BEH C18 (2.1 mm × 100 mm,
1.7 µm) UPLC column and a C18 guard column (2.1 × 10 mm, 1.7 µm), both from Waters
Inc. (Milford, CT, USA). The column was kept at 30 ◦C. The mobile phase was consisted
of 0.01% formic acid and 2 mM ammonium acetate in water (A) and acetonitrile (B). A
linear gradient elution program was applied as follows: 0 min 25% B, 12.0 min 60% B,
26.0 min 75% B, 28.0 min 100% B, and hold on 2.0 min for equilibration. The flow rate was
0.3 mL/min, and the injection volume was 5 µL.

An Agilent Jet Stream electrospray ionization (ESI) interface was used, and its param-
eters were set as follows: dry gas temperature, 325 ◦C; dry gas flow, 7 L/min; nebulizer
pressure, 35 psig; sheath gas temperature, 350 ◦C; and sheath gas flow 12 L/min, fragmen-
tor voltage of 140 V and a capillary voltage of 3000 V. The detector operated in a low mass
range (1700 m/z) and a 2 GHz extended dynamic range. In addition, the centroid mode was
used for data collection and storage. Mass accuracy during the analysis was ensured by
direct infusion into the source of a reference solution containing TFANH4 (112.9855 m/z)
and HP-921 (1033.9881 m/z). This instrument gave a resolution greater than 10,000 full
widths at half maximum (FWHM) at 112.985587 m/z and greater than 30,000 FWHM at
1633.949786 m/z. The analysis was carried out in the MS mode. The MS scan range was
100–1200 m/z, and the acquisition rate was two spectra per second. Data acquisition was
accomplished using Agilent MassHunter Workstation Data Acquisition Version B.10.01
software (Santa Clara, CA, USA).
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3.5. Standard Solutions and Calibration Curves
3.5.1. Linearity, LOD, and LOQ

Linearity was determined by analysis of calibration curves for all commercially avail-
able standards of BAs. The method was validated using a ten-point calibration curve of
0.5–1000 µg/L.

The LOQ was defined as the lowest concentration at which the peak response was ten
times that of the noise (10 S/N), and the LOD was the extrapolated concentration with a
signal-to-noise ratio of three (3 S/N).

3.5.2. Recovery and Matrix Effect

A relative blank matrix was used in method validation. In order to obtain the relative
blank matrix, the fecal sample was extracted by extract solution, certificated, and vaporized
solvent. The recovery and matrix effect were assessed at different spiked concentrations
with six replicates. The spiked concentration of low, medium, and high were 2.5, 25,
and 50 µg/kg, respectively. Moreover, according to the real endogenous BA content in
different biological species, some higher spiked concentrations for individual abundant
BA were also carried out, with detailed spiked concentrations shown in Table S1. The
recovery was evaluated by comparing the peak areas of the analytes before extraction to
the corresponding peak area in samples after extraction. The recovery rates must be within
100 ± 20%. The matrix effect was determined by comparing the peak area of post-extraction
spiked BA and the standard solution of the same concentration.

3.5.3. Precision and Accuracy

The precisions were evaluated as the intra- and inter-day coefficient of variation (CV,
%) for BA analyses with a low spiked concentration in the pooled sample. The intra- and
inter-day variations were determined using 5 replicates of spiked samples on the same
day and on 5 different days. The precision CV was calculated from the ratio of the relative
standard deviation to the mean of the measured analyte concentration. The accuracies
were evaluated using solutions with spiked samples with low, medium, and high three
certain concentrations, and the accuracy was calculated from the measured/theoretical
concentrations×100%. The acceptable range of precision and accuracy for the maximal
variation is within±20% according to the FDA guidelines [35].

3.5.4. Clinical and Preclinical Samples Collection

This methodology application in ESRD patients was an ancillary study to our ESRD
patient lipid metabolism trial. Therefore, twenty ESRD patients (10 males and 10 females,
aged from 35 to 69) were randomly selected from total of 284 original samples. These
patients underwent regular hemodialysis at the hemodialysis center in Beijing, China.
Fresh fecal samples of patients were collected from all bowel motions before hemodialysis
in hospital. Then individual samples were homogenized immediately and frozen at −80 ◦C.

Six C57BL/6 mice (male, 8 weeks of age) were purchased from the Experimental
Animal Center of the First Affiliated Hospital of Tianjin University of Traditional Chinese
Medicine. Six Sprague-Dawley (SD) rats (male, 8 weeks age) were purchased by Beijing
HFK Bioscience Co. Ltd. (Beijing, China). Mice and rats were housed at animal facility
with free access to a normal diet and water at 22 ± 2 ◦C, the relative humidity of 45 ± 15%,
and a 12 h light/dark cycle. All experiments were approved by the Animal Ethical and
Welfare Committee. The discharged feces of each rodent were collected into a centrifuge
tube and frozen at −80 ◦C.

3.5.5. Data Processing and Statistical Study

For LC-MS/MS data, MassHunter Quantitative Analysis vB.10.01 (Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) was used for quantification. If the analyte concentration
was below the LOQ, the value of LOQ/2 was used for statistical calculation. Tukey HSD
all-pairwise comparisons test was used for multiple comparisons of data. A difference
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of p < 0.05 was considered significant. Statistical analysis and graphs were performed in
GraphPad Prism v8.0.1 (GraphPad Software, San Diego, CA, USA). Sankey diagram was
used in this study to visualize the BA types distribution in each biological species under the
R Graph Gallery (https://www.data-to-viz.com/graph/sankey.html, accessed on 1 May
2022). Different BA types (classified by BA structure, detailed in Table 1) are represented
by rectangles. Their links are represented with arcs that have a width proportional to the
sub-category of the BA types.

4. Conclusions

In this study, we developed and validated a simple, effective and sensitive UPLC–Q-
TOF method that simultaneously performs quantitative and qualitative analysis of 58 BAs,
including unconjugated, amino acid conjugated (glycine or taurine), sulfo-conjugated,
and double conjugated, as well as iso-, nor-, and oxo- BA metabolites in feces. All the
methodology results were acceptable according to the FDA guidelines. This method could
be applied in the global profiling of BA in humans, rats, and mice. In general, a higher
proportion of sulfated BAs and mono-OH BA (LCA) was present in humans rather than in
rodents. OIND BAs were also abundant in humans, especially iso- and oxo- BA. In terms
of BA indices, PBA/SBA ratio and total CA/total CDCA ratio were fairly low in humans,
while the DCA/DCA + CA ratio and LCA/LCA + CDCA ratio were equal in humans
and rodents.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12070633/s1, Table S1: Sensitivity, linearity, accuracy, and
precision of bile acids by ultra-high-performance liquid chromatography coupled with quadrupole-
time-of-flight mass spectrometer analysis; Table S2: The recovery (%) of spiked concentration (µg/kg)
for bile acids in each biological sample; Table S3: The matrix effect (%) of spiked concentration
(µg/kg) for bile acids in each biological sample.
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Abstract: The main concerns in targeted “sphingolipidomics” are the extraction and proper handling
of biological samples to avoid interferences and achieve a quantitative yield well representing all
the sphingolipids in the matrix. Our work aimed to compare different pre-analytical procedures
and to evaluate a derivatization step for sphingoid bases quantification, to avoid interferences and
improve sensitivity. We tested four protocols for the extraction of sphingolipids from human plasma,
at different temperatures and durations, and two derivatization procedures for the conversion of sph-
ingoid bases into phenylthiourea derivatives. Different columns and LC-MS/MS chromatographic
conditions were also tested. The protocol that worked better for sphingolipids analysis involved a
single-phase extraction in methanol/chloroform mixture (2:1, v/v) for 1 h at 38 ◦C, followed by a 2 h
alkaline methanolysis at 38 ◦C, for the suppression of phospholipids signals. The derivatization of
sphingoid bases promotes the sensibility of non-phosphorylated species but we proved that it is not
superior to a careful choice of the appropriate column and a full-length elution gradient. Our proce-
dure was eventually validated by analyzing plasma and erythrocyte samples of 20 volunteers. While
both extraction and methanolysis are pivotal steps, our final consideration is to analyze sphingolipids
and sphingoid bases under different chromatographic conditions, minding the interferences.

Keywords: sphingolipids; sphingolipidomics; sphingoid bases; lipidomics; mass spectrometry

1. Introduction

Sphingolipids are a ubiquitous class of lipids, whose structure always comprises a
long-chain base, usually sphingosine (Sph) or sphinganine. Their name derives from the
mythological figure of the sphynx, because of their enigmatic nature [1]. Sphingolipids are
commonly divided into two major classes: ceramides (Cer) and complex sphingolipids. Cer
are “de novo” biologically synthesized by attaching a fatty acid to the amine group of dihy-
drosphingosine (dhSph) through an amidic bond, and are mostly found in the outer leaflet
of the plasma membrane. Cer are then catabolized to Sph and sphingosine-1P (S1P) which
will exit the pathway by degradation to palmitoyl aldehyde and phosphoethanolamine.
Complex sphingolipids, on the other hand, comprise many different subclasses, such as
sphingomyelins (SM), made up of a polar head such as choline or serine, and glycosphin-
golipids, which are, in turn, classified according to the number of sugar residues attached
to the carbon chain [2,3]. Other than their role in the formation and modulation of bi-
ological membranes, sphingolipids, especially Cer, the “central hub” of sphingolipids
metabolism, and S1P, are believed to be responsible for many different signaling functions
in the organism such as apoptosis, inflammation, cell proliferation, and differentiation.
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Due to the various roles that sphingolipids have, any alteration of their metabolism
could be part of pathological mechanisms or, sometimes, could be the reason for the dis-
eases themselves [4–8]. The analysis of the whole set of sphingolipids in a biological system
is referred to as “sphingolipidomics”, and is now standardly carried out through liquid
chromatography coupled to mass spectrometry to characterize and differentiate simultane-
ously the numerous species of sphingolipids belonging to the different subclasses [9,10].
However, due to the high variety of chemical structures, one of the main issues remains the
extraction and proper handling of samples to achieve a yield that could well represent the
actual concentrations of all sphingolipids in the system under analysis as already postulated
in untargeted lipidomics [11]. In fact, on one hand, Cer and complex sphingolipids can be
easily characterized using a solvent extraction followed by alkaline methanolysis [12,13],
which remains the method of choice for sample handling; on the other, free sphingoid bases
are hard to extract and their analysis can be quite challenging. Indeed, while there is a
growing general interest in achieving a common protocol for the analysis of free sphin-
goid bases such as Sph and S1P, as they appear to be, as mentioned, important biological
mediators, they are fairly difficult to be detected using LC-MS/MS. The reason for this is
double-fold: (1) short liquid chromatography does not allow one to properly separate free
sphingoid bases from any interferent in the system; and (2) their chemical nature makes it
difficult to obtain proper ionization of the compounds.

Our work aimed to compare different methods of sample handling and extraction for
sphingolipids. Furthermore, we evaluated whether a derivatization step by phenylisothio-
cyanate (PITC) could improve the detection and analysis of free sphingoid bases.

2. Results and Discussion
2.1. Set Up of the Extraction Procedure

We tested four different extraction protocols (Materials and Methods) to evaluate
whether different conditions could deeply affect the recovery of sphingolipids. As displayed
in Figure 1A, the more complex classes of sphingolipids do not seem to be impacted using
the four different procedures, except SM, which appears to be underestimated using the first
two protocols. Alkaline methanolysis is useful to disrupt the ester bond in phospholipids
while maintaining the amide linkage unaltered, which is characteristic of sphingolipids.
Especially using low-resolution triple quadrupole, the need for distinguishing or chromato-
graphically separating phosphatidylcholine (PC) and SM is factual since they can co-elute
and/or overlap in mass transition (e.g., SM 38:3 m/z 771.6115 > 184 and PC O-36:2 m/z
772.6209 > 184; SM 42:4 m/z 809.6494 > 184 and PC 38:4 m/z 810.6004 > 184) competing
irremediably in their quantification [14]. In every condition (Figure 1B) here reported,
incubation at 38 ◦C from 1 h to 12 h can effectively reduce the plasma physiological phos-
pholipids content of about 98.5% (estimated on dipalmitoylphosphatidylcholine, DPPC)
and more than 99.9% on added deuterated internal standard (phosphatidylcholine (15:0–
18:1) d7, PC d7). By contrast, a shorter time (inferior to 1 h) allows a lower reduction of
phospholipids, which can be estimated between 93 and 95% with respect to not-treated sam-
ples. The warm incubation overnight (48 ◦C) has been historically introduced to uniformly
level the lipid in the extracting solvent since different sphingolipids can have high phase
transition temperatures. However, we believe that this passage could be shortened since its
beneficial effect was not observed (see below) [12]. The traditional liquid–liquid extraction
protocols firstly proposed by Folch and Bligh-Dyer [15,16] and the monophasic extraction—
here and elsewhere described [13,17,18]—are essentially identical in extraction rate for
the content of Cer, dihydroceramides (dhCer), SM and glycosphingolipids (Figure 1C).
The prominent polarity of acidic glycosphingolipids—such as the simplest gangliosides
(GM3)—does not grant a standardized recovery in the bottom chloroform phase of Folch
(mean ± SD, 0.15 ± 0.07 vs. 3.8 ± 0.21 single-phase) and also in the more polar Bligh-Dyer
(1.12 ± 0.03 vs. 3.8 ± 0.21 single-phase) protocols. The use of Folch and Bligh-Dyer also
emphasizes the recovery of the sphingoid bases especially in their phosphate forms S1P and
dihydrosphingosine-1-phosphate (dhS1P). This effect was also noticeable on the internal
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standard used for this purpose (sphinganine d17:0) whose extraction fate is diminished in
Folch by 55% and in Bligh-Dyer by 26% with respect to monophasic extraction.
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Figure 1. (A) Quantification of sphingolipids in a plasma pool from healthy volunteers (n = 20)
as a function of different extraction protocols and comparison to the reference values found in the
scientific literature. On the left of the heatmap, the range of concentration (µM) of sphingolipids in
plasma EDTA from healthy volunteers found in the scientific literature [19–27]. For visualization,
data were scaled to reference values and reported as a fold-change logarithm. Those significantly
modulated were evaluated by performing repeated measures one-way ANOVA and the Dunnett post
hoc test. The different steps in each protocol are schematized under the heatmap and their occurrence
is marked with an “X”. (B) Estimation of plasma phospholipids content after alkaline hydrolysis
(KOH 73 mM) over time (0, 1, 2, 4, 6, 12 h) at 38 ◦C. Data were visualized as a percentage of DPPC
and PC d7 with respect to untreated samples. Each point represents the mean of n = 2 technical
replicates. (C) Comparison of the traditional liquid–liquid extraction for total lipid content (Folch
n = 3 and Bligh-Dyer n = 3) and the single-phase extraction (n = 3) for the recovery of sphingolipids
in a plasma pool from healthy volunteers (n = 20). Statistical differences were measured by one-way
ANOVA and the Dunnett post hoc test against monophasic extraction. p values are schematized as
follows: * < 0.05; *** < 0.001.

The effects of times (1/2/4/12 h) and temperatures (room temperature, rt/4/38/48 ◦C)
on the recovery of sphingolipids from plasma were also considered and the results are
graphed in Figure 2A. As already postulated above, the overnight extraction (12 h) seems
to be futile or even counterproductive, thus we believe that this passage could be shortened
between 1 and 2 h. The incubation at 48 ◦C is overall worthless and detrimental, especially
on complex sphingolipids (e.g., Cer, dhCer and hexosylceramides, HexCer). The only
species which strongly benefit from this long and hot period of extraction are phosphate
forms of sphingoid bases (+48% at 48◦; +25% at 38◦ vs. baseline condition 1 h at rt). We
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demonstrated that the recovery of either: (a) 1 h at 38 ◦C; (b) 2 h at rt; or (c) 2 h at 4 ◦C is
essentially superior and interchangeable between them since their mean recovery is +5%
(Figure 2B) in respect to baseline (1 h at rt). The extraction with a temperature between
38 and 48 ◦C and prolonged from 2 to 4 h revealed a slightly decrease in the recovery of
plasma sphingolipids. The results presented in this paragraph are summed up in a final
protocol proposed and outlined in Figure 2C.
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Figure 2. (A) Effects of time (1/2/4/12 h) and temperature (rt/4/38/48 ◦C) on the recovery of
sphingolipids from plasma using a single-phase extraction (n = 2 per each condition). Data were
scaled for visualization on the recovery obtained for 1 h at rt (22 ◦C). (B) The effects of times
(1/2/4/12 h) and temperatures (room temperature, rt/4/38/48 ◦C) on the recovery of sphingolipids
from plasma. Data were scaled for visualization on the recovery obtained for 1 h at rt (22 ◦C, baseline).
(C) Scheme of the final steps included in the protocol.

2.2. Choosing the Best Analytical Condition

One of the main issues in the analysis of Sph and other sphingoid bases is that their
levels in plasma and other biological matrices are not always high enough to allow a precise
quantitation. Bearing in mind that the concentrations of sphingoid bases in human plasma
range from 0.006 µM to 1.56 µM [19–27] (Supplementary Figure S1), it is critical to be aware
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of any possible interferents in the analysis. As particularly appraisable in Figure 3, choosing
the appropriate column and chromatography conditions can make a huge difference in
sphingoid bases analysis. In fact, many interfering signals of Sph are detected along with
the chromatogram. While a short chromatography (Figure 3A) may seem an optimal choice
for the analysis of sphingoid bases, the interferences over Sph are not even detected, and
lengthening the runtime (Figure 3B), on the other hand, does not allow a clear distinction
of Sph from its interfering signals. We resolved this issue by switching the column from an
Acquity BEH C18 to a Cortecs C18; in fact, while Sph-interfering signals are still detected,
they are completely separated from Sph (approximately three minutes apart), allowing
an as close to reality as possible quantitation. Moreover, the use of a relative long elution
program also enabled a sensible reduction of carry-over of phosphate derivatives, which
can be displayed in run times inferior than 10 min.
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Figure 3. Chromatograms of plasma-free sphingoid bases analyzed by (A) Acquity BEH C18 with a
short chromatography elution program, (B) Acquity BEH C18 with a long chromatography elution
program, (C) Cortecs C18 with a long chromatography elution program and (D) Acquity BEH C18
with a long chromatography elution program after chemical derivatization with phenylisothiocyanate.
In each panel * indicates the interferences on sphingosine transition. dhSph is not always appreciable
since its concentration is markedly lower than other sphingosine bases. See Materials and Methods
for the detailed LC-MS/MS conditions.

2.2.1. Sphingoid Bases Derivatization

In order to fix the issue of Sph-interfering signals, we evaluated whether a deriva-
tization of the extract could be determined. As displayed in Figure 3D, the interfering
signals of Sph completely disappeared and the chromatographic separation was excellent
for all analytes. The detection of derivatives of Sph and dhSph is increased by the mean
of 1.5–2.5-fold (Supplementary Table S1). On the other hand, though, the signal intensity
of S1P is reduced by approximately 50%, which interferes with the intent of detecting
sphingoid bases even in matrices and systems that may not be particularly enriched in
these species (Supplementary Table S1). However, their quantification in plasma—which
maintains a relatively high sphingoid bases concentration—can be achieved undeniably
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by either derivatizing their amine function or not, as displayed in Supplementary Figure
S2. In the analytes considered here, the derivatization indeed unveiled slightly higher
concentrations vs. the same samples not derivatized.

2.3. Performance in Human Plasma and Red Blood Cells

When we adopted the final extraction protocol (Materials and Methods, Section 3.4,
protocol 4), for both complex sphingolipids and sphingoid bases (long chromatography on
Cortecs C18), the concentration range of the analytes fell perfectly into those described in
the literature [19–27] and the reproducibility of the methods was validated (Tables 1 and 2).
In Figure 4, the attained ranges are shown. In Tables 3 and 4, furthermore, the results are
expressed in numerical form and the percentage of analyzed species. Red blood cells (RBCs)
sphingolipid concentrations [28–32] are introduced in Figure 5. The main sphingolipid
in RBCs remains SM (87.5%) and Cer (5.8%) but with respect to the glycosphingolipids,
lactosylceramides (LacCer) are prevalent (4% RBCs vs. 2.2% plasma), whereas in plasma
the mono HexCer are predominant (3.0% plasma vs. 0.4% RBCs). The low-abundant dhCer
are fairly detectable in plasma, accounting for less than 0.2% of total sphingolipids, but
contrarily, in RBCs, they are more abundant, estimated at 1.4%. In Supplementary Table S2,
the concentrations of sphingolipids in RBCs are reported in pmol/106 cells.

Table 1. Intra- (n = 5 independent extraction replicates) and inter-days (n = 10 independent extraction
replicates) precision for the analysis of the whole panel of plasma sphingolipids on a plasma pool
from healthy volunteers (n = 20). The analyses of the sphingolipids and sphingoid bases were
performed as described in Sections 3.3.1 and 3.3.2 (long chromatography), respectively.

Class CV% Intra-Day (n = 5) CV% Inter-Days (n = 10)

Cer 1.6 7.9
dhCer 3.8 7.6

SM 3.8 7.9
HexCer 7.2 6.0
LacCer 7.8 12.8
GM3 7.6 14.0
Sph 4.2 (4.8) 4.8 (13.1)
S1P 5.0 (2.1) 3.8 (12.4)

dhSph 10.1 (11.1) 11.2 (14.8)
dhS1P 8.1 (2.4) 6.8 (11.9)

Table 2. Intra- (n = 5 independent extraction replicates) and inter-days (n = 10 independent extraction
replicates) precision for the analysis of the whole panel of RBCs sphingolipids on an RBCs pool from
healthy volunteers (n = 20). The analyses of the sphingolipids and sphingoid bases were performed
as described in Sections 3.3.1 and 3.3.2 (long chromatography), respectively.

Class CV% Intra-Day (n = 5) CV% Inter-Days (n = 10)

Cer 7.4 10.5
dhCer 7.2 15.0

SM 8.4 9.3
HexCer 13.4 10.5
LacCer 12.4 9.8
GM3 11.2 11.3
Sph 9.6 13.9
S1P 9.4 8.3

dhSph 9.9 8.0
dhS1P 7.7 10.0

106



Metabolites 2022, 12, 450Metabolites 2022, 12, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 4. Plasma sphingolipids concentration in healthy volunteers (n = 20). (A) Concentrations of 

complex sphingolipids and free sphingoid bases (min–max, line at mean, dots represent the 10–90th 

percentile) as the sum of the species in each class and (B) divided according to their fatty acid com-

position (mean ± SD). 

Figure 4. Plasma sphingolipids concentration in healthy volunteers (n = 20). (A) Concentrations of
complex sphingolipids and free sphingoid bases (min–max, line at mean, dots represent the 10–90th
percentile) as the sum of the species in each class and (B) divided according to their fatty acid
composition (mean ± SD).
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Figure 5. RBCs sphingolipid concentration in healthy volunteers (n = 20). (A) Concentrations of
complex sphingolipids and free sphingoid bases (min–max, line at mean, dots represent the 10–90th
percentile) as the sum of the species in each class and (B) divided according to their fatty acid
composition (mean ± SD).
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Table 3. Plasma EDTA sphingolipids levels (µM) in healthy volunteers (n = 20) expressed as min–max,
mean ± SD and percentage over total sphingolipid content.

Conc (µM) Min Max Mean ± SD (n = 20) %

Cer 8.1 14.6 11.2 ± 2.0 4.5
dhCer 0.2 0.8 0.54 ± 0.20 0.2

SM 181.7 248.9 217.9 ± 19.3 87.2
HexCer 3.4 10.7 7.6 ± 1.9 3.0
LacCer 2.9 8.5 5.5 ± 1.4 2.2
GM3 2.6 5.7 4.7 ± 0.7 1.9
Sph 0.04 0.2 0.07 ± 0.034 0.03
S1P 0.9 3.3 2.0 ± 0.593 0.8

dhSph 0.003 0.03 0.01 ± 0.006 0.004
dhS1P 0.23 0.80 0.45 ± 0.177 0.2

Table 4. RBCs sphingolipid levels (µM) in healthy volunteers (n = 20) expressed as min–max, mean
± SD and percentage over total sphingolipid content.

Conc (µM) Min Max Mean ± SD (n = 20) %

Cer 59.9 148.5 92.8 ± 21.1 5.9
dhCer 9.6 39.3 22.7 ± 8.0 1.4

SM 854.6 2000 1387 ± 237.3 87.4
HexCer 3.3 8.5 6.7 ± 1.5 0.4
LacCer 21.6 115.9 64.2 ± 23.8 4.0
GM3 1.5 4.6 3.3 ± 0.9 0.2
Sph 1.7 4.0 2.5 ± 0.64 0.1
S1P 2.6 6.4 4.1 ± 1.041 0.3

dhSph 0.1 0.4 0.2 ± 0.112 0.01
dhS1P 1.5 3.7 2.2 ± 0.563 0.2

3. Materials and Methods
3.1. Biological Samples from Healthy Volunteers

All subjects, who voluntarily agreed to participate in the study, were informed and
authorization was obtained by signing a letter of consent. These participants were selected
from a wider clinical trial that was approved by the institutional local ethical committee
(Ospedale San Paolo, Milano, Italy). Blood from twenty volunteers was collected in the
fasting state using K2EDTA as an anticoagulant, and the resulting plasma was obtained
by centrifugation for 15 min at 1400× g. The recruited volunteers ranged in age from 18
to 85 and they were not diagnosed for cardiometabolic, liver or kidney diseases. Each
volunteer was tested for complete blood count and their results had to fall within the
medical laboratory’s physiological parameters in order to be included in the research. Prior
to the analysis, plasma and RBCs were stored at −80 ◦C. All the procedures adopted in the
present study were respectful of the ethical standards in the Helsinki Declaration. In order
to study the method performances (Table 2), the implementations of different extraction
protocols (Figure 1) and the effects of time and temperature on the recovery of sphingolipids
(Figure 2), a pool of all the plasma and RBCs gathered (n = 20) was made and stored or
processed as other samples. Otherwise, the use of individual samples was applied in the
study of the sphingolipids’ physiological range in the biological matrix (Figures 4 and 5,
Tables 3 and 4).

3.2. Chemicals and Reagents

The chemicals methanol, chloroform, formic acid, acetic acid, ammonium acetate,
ammonium formate, dibutylhydroxytoluene (BHT), phenylisothiocyanate (PITC) and 4-
nitrophenylisothiocyanate (NO2PITC) were all at analytical grade and were purchased
from Sigma-Aldrich (St. Louis, MO, USA). All aqueous solutions were prepared using
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purified water at a Milli-Q grade (Burlington, MA, USA). Lipid standards were purchased
from Avanti Polar (supplied by Sigma-Aldrich, St. Louis, MO, USA).

3.3. LC-MS/MS

The LC-MS/MS consisted of an LC Dionex 3000 UltiMate (ThermoFisher Scientific,
Waltham, MA, USA) coupled to a tandem mass spectrometer AB Sciex 3200 QTRAP
(AB Sciex, Concord, ON, Canada) equipped with electrospray ionization TurboIonSpray™
source operating in positive mode (ESI+).

3.3.1. Sphingolipids and Glycosphingolipids

The instrument parameters were: CUR 25, GS1 45, GS2 50, capillary voltage 5.5 kV
and source temperature 300 ◦C. Spectra were acquired by multiple reaction monitoring,
scanning for each analyte, the transitions reported in Supplementary Table S3. To chro-
matographically isolate the analytes, we used a reverse-phase Acquity BEH C8 column
1.7 µm, 2.1 × 100 mm (Waters, Milford, MA, USA) equipped with pre-column, using
as mobile phases (A) water + 0.2% formic acid + 2 mM ammonium formate and (B)
methanol + 0.2% formic acid + 1 mM ammonium formate. The flow rate was 0.3 mL/min
and the column temperature was set to 30 ◦C. The elution gradient (%B) was set as follows:
0–3 min (80–90%), 3.0–6.0 min (90%), 6.0–19.0 min (90–99%), 19.0–20.0 min (99–80%), held
until 24 min. Five microliters of clear supernatant were directly injected into LC-MS/MS.
Due to the lack of authentic standards for every fatty acid chain, those which are not
available were quantified as a reference of the closest sphingolipids subspecies.

3.3.2. Free Sphingoid Bases

The instrument parameters were: CUR 25, GS1 45, GS2 55, capillary voltage 5.5 kV
and source temperature 500 ◦C. Spectra were acquired by multiple reaction monitoring,
scanning for each analyte, the transitions reported in Supplementary Table S4. Two columns
were tested: reverse-phase Acquity BEH C18 column 1.7 µm, 2.1 × 100 mm (Waters, MA,
USA) and reverse-phase Cortecs C18 1.6 µm, 2.1 × 100 mm (Waters, MA, USA). Both
columns were equipped with pre-column and the mobile phase was (A) water + 0.2%
formic acid + 2 mM ammonium formate and (B) methanol + 0.2% formic acid + 1 mM
ammonium formate.

Short chromatography (BEH C18). The elution gradient (%B) was set as follows: 0–2 min
(20%), 2–4 min (20–99%), 4–7 min (99%), 7–7.5 min (99–20%), held until 10 min [33]. The
flow rate was 0.3 mL/min and the column temperature was set to 30 ◦C.

Long chromatography (BEH C18). The elution gradient (%B) was set as follows: 0–12 min
(70–85%), 12.0–12.2 min (85–99%), 12.2–15.0 min (99%), 15.0–15.2 min (99–70%), held until
20 min. Five microliters of clear aqueous supernatant were directly injected into LC-MS/MS.
The flow rate was 0.3 mL/min and the column temperature was set to 30 ◦C.

Long chromatography (Cortecs C18). The elution gradient (%B) was set as follows:
0–12 min (70–85%), 12.0–12.2 min (85–99%), 12.2–15.0 min (99%), 15.0–15.2 min (99–70%),
held until 20 min. Three microliters of clear aqueous supernatant were directly injected into
LC-MS/MS. The flow rate was 0.2 mL/min and the column temperature was set to 30 ◦C.

3.3.3. Sphingoid Bases as Phenylthiourea Derivatives

The instrument parameters were: CUR 25, GS1 45, GS2 55, capillary voltage 5.5 kV
and source temperature 500 ◦C. Spectra were acquired by multiple reaction monitoring,
scanning for each PITC or NO2PITC derivative using the transitions reported in Supple-
mentary Tables S5 and S6, respectively. To chromatographically isolate the analytes, we
used a reverse-phase Cortecs C18 1.6 µm, 2.1 × 100 mm (Waters, MA, USA) equipped
with pre-column using as mobile phase (A) water + 0.2% formic acid + 2 mM ammonium
formate and (B) methanol + 0.2% formic acid + 1 mM ammonium formate. The flow rate
was 0.3 mL/min and the column temperature was 40 ◦C. The elution gradient (%B) was
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set as below: 0–16.0 min (70–99%), 16.0–17.0 min (99%), 17.0–17.2 min (99–70%), held until
20 min. Three microliters of clear supernatant were directly injected into LC-MS/MS.

3.4. Extraction Procedures

Protocol 1. Plasma (25 µL) was diluted with water (75 µL) before being mixed with
a methanol/chloroform solution (850 µL, 2:1, v/v). The lipids were extracted by ice-
sonication and thermo-shaking (1 h, 1000 rpm, rt) of the plasma samples. The organic phase
was separated via centrifugation (15 min at 20,000× g) and evaporated under a stream of
nitrogen. The residues were dissolved in 100 µL of methanol + 0.1 mM BHT and withdrawn
in a glass vial.

Protocol 2. Plasma (25 µL) was diluted with water (75 µL) before being mixed with
a methanol/chloroform solution (850 µL, 2:1, v/v). The lipids were extracted by ice-
sonication and thermo-shaking (overnight, 1000 rpm, 48 ◦C) of the plasma samples. The
organic phase was separated via centrifugation (15 min at 20,000× g) and evaporated under
a stream of nitrogen. The residues were dissolved in 100 µL of methanol + 0.1 mM BHT
and withdrawn in a glass vial.

Protocol 3. Plasma (25 µL) was diluted with water (75 µL) before being mixed with a
methanol/chloroform solution (850 µL, 2:1, v/v). The lipids were extracted by ice-sonication
and thermo-shaking (1 h, 1000 rpm, rt) of the plasma samples. They went through alkaline
methanolysis (75 µL KOH 1M, 2 h at 38 ◦C) and were then neutralized by the addition of
glacial acetic acid (4 µL). The organic phase was separated via centrifugation (15 min at
20,000× g) and evaporated under a stream of nitrogen. The residues were dissolved in
100 µL of methanol + 0.1 mM BHT and were withdrawn in a glass vial.

Protocol 4. Plasma (25 µL) was diluted with water (75 µL) and added with a methanol/
chloroform mixture (850 µL, 2:1, v/v). The lipids were extracted by ice-sonication and
thermo-shaking (overnight, 1000 rpm, 48 ◦C) of the plasma samples. They went through
alkaline methanolysis (75 µL KOH 1M, 2 h at 38 ◦C) and were then neutralized by the
addition of glacial acetic acid (4 µL). The organic phase was separated via centrifugation
(15 min at 20,000× g) and evaporated under a stream of nitrogen. The residues were
dissolved in 100 µL of methanol + 0.1 mM BHT and were withdrawn in a glass vial.

3.5. Derivatization of Free Sphingoid Bases

The amine group reacted with PITC to mainly produce the phenylthiourea [34] deriva-
tives of sphingoid bases. An aliquot of the final extract (25 µL) was withdrawn into a new
glass vial and PITC derivatization was performed by adding a solution of PITC/pyridine
(25 µL, 100 mM PITC in methanol/pyridine 1:1, v/v). The vial was capped and heated at
80 ◦C for 1 h. Prior to analysis, pure formic acid (5 µL) was added. The best conditions
for derivatization were investigated as reported in Supplementary Table S7. NO2PITC
derivatives were obtained with the same protocol, adding to the final extract (25 µL) a
solution of NO2PITC/pyridine (25 µL, 100 mM NO2PITC in methanol/pyridine 1:1, v/v).
Supplementary Tables S5 and S6 report the mass spectrometry conditions for PITC and
NO2PITC derivatives.

3.6. Condition for Alkaline Methanolysis

The recovery of low abundant sphingolipids is commonly accomplished through al-
kaline methanolysis which causes the lysis of the ester linkage while retaining the intact
amide bond. The percentage of intact phospholipids was used to monitor the reaction over
time (1, 2, 6, 12 h). The instrument parameters were: CUR 25, GS1 40, GS2 45, capillary
voltage 5.5 kV and source temperature 400 ◦C. Spectra were acquired by multiple reaction
monitoring, scanning for DPPC (m/z 734.6 > 184.1) and the internal standard PC d7 (m/z
753.6 > 184.1). To chromatographically isolate the analytes, we used a reverse-phase Acquity
BEH C8 column 1.7 µm, 2.1 × 100 mm (Waters, MA, USA) equipped with pre-column,
using as mobile phases (A) water + 0.2% formic acid + 2 mM ammonium formate and (B)
methanol + 0.2% formic acid + 1 mM ammonium formate. The flow rate was 0.3 mL/min
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and the column temperature was 35 ◦C. The elution gradient (%B) was set as below: 0–14 min
(80–99%), 14–20 min (99%), 20–20.1 min (99–80%), held until 25 min. Five microliters of clear
supernatant were directly injected into LC-MS/MS.

3.7. Comparison between Traditional Biphasic and Monophasic Extractions

The performances of the operating protocol described in Section 3.6 were juxtaposed
with the micro-scaled versions of the classical liquid–liquid extraction protocols first pro-
posed by Folch and Bligh-Dyer [15,16]. The comparison between the three extraction
protocols (Folch, Bligh-Dyer and monophase extraction) was assessed in triplicate us-
ing the same plasma pool, obtained by combining a suitable amount of each individual
sample (n = 20).

3.8. Time and Temperature for Isolating Sphingolipids from a Biological Matrix

The same plasma pool, already mentioned above (25 µL), was diluted with water
(75 µL) before being mixed with a methanol/chloroform solution (850 µL, 2:1, v/v); it was
ice-sonicated and extracted by following this scheme: (1) ambient temperature extraction
(22 ◦C) for either 1/2/4 or 12 h; (2) cold extraction (4 ◦C) for either 1/2/4 or 12 h; (3) warm
extraction (38 ◦C) for either 1/2/4 or 12 h; (4) hot extraction (48 ◦C) for either 1/2/4 or
12 h. Then, the samples went through alkaline methanolysis (75 µL KOH 1M, 2 h at 38 ◦C)
and were then neutralized by the addition of glacial acetic acid (4 µL). The organic phase
was separated via centrifugation (15 min at 20,000× g) and evaporated under a stream of
nitrogen. The residues were dissolved in 100 µL of methanol + 0.1 mM BHT and withdrawn
in a glass vial.

3.9. Operating Protocol for Plasma Samples

Plasma (25 µL) was diluted with water (75 µL) before being mixed with a methanol/
chloroform solution (850 µL, 2:1, v/v). The lipids were extracted by ice-sonication and
thermo-shaking (1 h, 1000 rpm, 38 ◦C) of the plasma samples. They went through alkaline
methanolysis (75 µL KOH 1M, 2 h at 38 ◦C) and were then neutralized by the addition of
glacial acetic acid (4 µL). The organic phase was separated via centrifugation (15 min at
20,000× g) and evaporated under a stream of nitrogen. The residues were dissolved in
100 µL of methanol + 0.1 mM BHT and withdrawn in a glass vial.

3.10. Red Blood Cells Protocol

RBCs (10 µL) were lysed by hypotonic shock in double-distilled water (490 µL). An
aliquot of the lysed solution (25 µL, which on average corresponds to 2.5 × 106 cells or
0.5 µL of the initial sample) was diluted with water (75 µL) before being mixed with a
methanol/chloroform solution (850 µL, 2:1, v/v). The lipids were extracted by ice-sonication
and thermo-shaking (1 h, 1000 rpm, 38 ◦C). They went through alkaline methanolysis (75 µL
KOH 1M, 2 h at 38 ◦C) and were then neutralized by the addition of glacial acetic acid (4 µL).
The organic phase was separated via centrifugation (15 min at 20,000× g) and evaporated
under a stream of nitrogen. The residues were dissolved in 100 µL of methanol + 0.1 mM
BHT and withdrawn in a glass vial.

3.11. Methods Performances

The methods performances were tested using the same plasma pool obtained by
combining suitable amounts of each sample (n = 20). The precision of the methods was
calculated as the coefficient of variation (CV%) by extracting five times the same pool
sample in a day (intra-day) and another five times the day after (inter-day).

3.12. Statistical Analysis

The software used for the visualization of the results and the univariate statistical
analysis was GraphPad Prism 9.0 (GraphPad Software, Inc., La Jolla, California, USA).
For repeated measures comparison among different groups, repeated measured one-way
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ANOVA with Dunnett post hoc test was performed. In all tests, p < 0.05 was considered
statistically significant.

4. Conclusions

In this work, we assessed whether different extraction and analytical protocols could
affect the results attained from a targeted sphingolipidomics analysis. The single-phase
extraction followed by an alkaline methanolysis seems to be crucial for acquiring as accurate
as possible results, while its duration and temperature might not be as significant. Another
pivotal aspect in the analyses of sphingolipids is represented by the choice of appropriate
columns for distinctively analyzing complex sphingolipids and sphingoid bases. On the
other hand, derivatization of the sphingoid bases, while effective on paper, especially on
non-phosphorylated species, does not allow a consistent improvement for the analysis of
phosphorylated sphingoid bases. For this purpose, the use of a proper column, in this
case a Cortecs C18, coupled with a full-length chromatography, seems to be much more
convenient, in order to efficiently separate Sph from its interfering peaks and still appreciate
all other sphingoid bases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050450/s1. Figure S1: Sphingoid bases concentrations
in human plasma, according to scientific literature [18–26] (see paper for the references), Figure S2:
Comparison between the sphingoid bases concentrations evidenced with (D, n = 20) or without (ND,
n = 20) derivatization with phenylisothiocyanate, Table S1: Differences in signal intensities, expressed
as fold-change on underivatized analytes, between the same concentration of sphingoid bases (1 µM)
after derivatization, Table S2: RBCs sphingolipids levels (pmol/106 cells) in healthy volunteers (n = 20)
were expressed as min–max and mean ± SD, Table S3: Mass spectrometry parameters for the analysis
of complex sphingolipids. In bold are reported the internal standards (IS) used for each package of
lipids, Table S4: Mass spectrometry parameters for the analysis of free sphingoid bases, Table S5:
Mass spectrometry parameters for the analysis of sphingoid bases as phenylthiourea derivatives
after reaction with phenylisothiocyanate, Table S6: Mass spectrometry parameters for the analysis of
sphingoid bases as nitrophenylthiourea derivatives after reaction with 4-nitrophenylisothiocyanate,
Table S7: The yield of derivatization products after different times and temperatures of reaction. Each
experiment was conducted by adding the same amount of reagents, derivatizing agent (PITC) and
catalyzer (Pyridine).
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Abstract: Mass spectrometry (MS)-based techniques, including liquid chromatography coupling,
shotgun lipidomics, MS imaging, and ion mobility, are widely used to analyze lipids. However, with
enhanced separation capacity and an optimized chemical derivatization approach, comprehensive
two-dimensional gas chromatography (GC×GC) can be a powerful tool to investigate some groups
of small lipids in the framework of lipidomics. This study describes the optimization of a dedicated
two-stage derivatization and extraction process to analyze different saturated and unsaturated
fatty acids in plasma by two-dimensional gas chromatography–time-of-flight mass spectrometry
(GC×GC–TOFMS) using a full factorial design. The optimized condition has a composite desirability
of 0.9159. This optimized sample preparation and chromatographic condition were implemented to
differentiate between positive (BT) and negative (UT) boar-tainted pigs based on fatty acid profiling
in pig serum using GC×GC–TOFMS. A chemometric screening, including unsupervised (PCA, HCA)
and supervised analysis (PLS–DA), as well as univariate analysis (volcano plot), was performed. The
results suggested that the concentration of PUFAω-6 and cholesterol derivatives were significantly
increased in BT pigs, whereas SFA and PUFA ω-3 concentrations were increased in UT pigs. The
metabolic pathway and quantitative enrichment analysis suggest the significant involvement of
linolenic acid metabolism.

Keywords: lipidomics; fatty acids; boar taint; gas chromatography; GC×GC–TOFMS

1. Introduction

Lipidomics, or the comprehensive analysis of lipids, is rapidly expanding and pro-
viding critical information to the field of bioscience. Lipids have been studied using mass
spectrometry (MS) for decades, but lipidomics is one of the newest members of the “omics”
family introduced by Spener [1] and Han and Gross [2]. Although metabolomics mainly fo-
cuses on the hydrophilic classes, lipidomics has emerged as an independent omics owing to
its structural complexities and hydrophobic and amphiphilic nature, which provides a wide
range of biological functions [3,4]. When considering lipidomics, liquid chromatography
(LC)–mass spectrometry (MS)-based techniques are widely used. However, enhanced sepa-
ration capacities and lower limits of detection are challenging for these LC–MS(/MS)-based
approaches [4]. Aside from this, chemical derivatization has the potential to make some
families of lipids more “gas chromatography (GC)-amenable”, allowing more sensitive
GC–MS to also be considered.

The gold standard for lipid extraction techniques for biological matrices based on
chloroform and methanol was introduced by Folch [5] and Bligh and Dyer [6]. When
considering GC, chemical derivatization is essential for the conversion of the extracted
fatty acid components of lipids into more volatile and stable derivatives such as methyl
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esters to analyze saturated and unsaturated fatty acids. There are six frequently used
protocols for the derivatization of lipids in plasma using GC [7]. These are potassium
hydroxide (KOH) derivatization, trimethylsulfonium hydroxide (TMSH) derivatization,
TMSH direct injections, boron trifluoride (BF3) derivatization [8–12], chlorhydric acid
(HCl) derivatization, and sodium hydroxide (NaOH) + BF3 derivatization. The fatty
acid composition of plasma can be divided into four classes: saturated fatty acids (SFA),
monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA (ω-3)), (PUFA
(ω-6)), and derivatives. As mentioned, there are two main families of PUFAs: (PUFA (ω-3))
and (PUFA (ω-6)) because of the relevance of PUFAs to human health: polyunsaturated
fatty acids (PUFAs) may modulate inflammatory processes and regulate the antioxidant
signaling pathway. They impact liver lipid metabolism and physiological responses of
other organs, including the heart [13]. Each derivatization technique has pros and cons;
however, when selecting a sample preparation protocol, its efficiency over all four classes
of fatty acids becomes essential to consider. A systematic comparative study of different
derivatizations and extraction efficacies was conducted to determine lipid composition as
fatty acid methyl esters (FAMEs) in plasma by Ostermann (Figure 1) [7]. Both the HCl and
NaOH+BF3 derivatization protocols proved to be suited for the analysis of overall fatty acid
patterns without discriminating individual classes of FAMEs. However, as demonstrated
by Micalizzi et al. [14], NaOH + BF3 derivatization can be fully automated using a dual
head autosampler, providing an upper edge compared to HCl derivatization.
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Figure 1. Comparison of derivatization efficacy of different derivatization methods [7].

Untargeted lipid profiling can help to better understand the ongoing biological mech-
anisms that have an observable effect, such as the production of detectable smell in food
products. Boar taint is a pungent, unpleasant smell or taste found in the meat of some
uncastrated male pigs. This smell is caused by a complex mixture of molecules released
upon heating the meat [15]. The widely known molecules responsible for boar taint are
androstenone and skatole [16–18]. The surgical castration of male piglets is a traditional
practice to prevent boar taint in meat worldwide. However, it is performed without anesthe-
sia or analgesia, causing great pain to the piglets. Hence, due to increased animal welfare
concerns, European pork production stakeholders agreed to prohibit surgical castration of
male piglets from 2018. These objectives are yet to be fully achieved successfully [15,19].

This study uses pig serum as a biological sample instead of preferred backfat to
analyze boar taint. Currently, boar taint detection techniques used in slaughterhouses
are sensory evaluation by the human nose upon heating the fat [20] and spectrophoto-
metric detection at 580 nm. Modern analytical techniques investigated for boar taint
identification are UHPLC–HRMS [17], GC–MS [16,21,22], HPLC–FD [23], and Raman
spectroscopy [24]. These modern analytical techniques focus on quantification and/or vali-
dation of known boar taint compounds, e.g., indole, skatole, and androsterone in porcine
adipose tissue [16–24].
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In this study, we report the two-stage sample preparation protocol for extracting
lipids from 25 µL of plasma/serum for GC×GC–TOFMS. The optimized approach be-
comes valuable for analytes with low abundance, e.g., PUFAs (ω-3). The protocol has
been optimized using human plasma, confirmed with NIST plasma metabolites, and imple-
mented on animal serum, indicating its efficiency and usability. Widely available analytical
approaches for identifying boar taint in pork mainly focus on androstenone and skatole
molecules using the backfat of the pig. With this protocol, we investigated a new approach,
focusing on lipids by studying the fatty acid composition of pig serum responsible for
boar taint (boar-tainted) (BT) compared to that without boar taint (untainted) (UT). Ul-
timately, the lipid profiling of pig serum enables the use of a different type of biological
sample instead of backfat; thus, different molecules of fatty acids will provide us with new
biological information.

2. Materials and Methods
2.1. Samples and Chemicals

For derivatization, 0.5 M sodium methoxide (CH3ONa) and boron trifluoride (BF3) 20%
solution in methanolic solution were purchased from ACROS organics and Sigma-Aldrich,
respectively. A Supelco 37 FAMEs standard mixture was purchased from Sigma-Aldrich. A
10 ppm FAMEs solution was prepared in dichloromethane. The n-alkanes mixture (C7-30)
in hexane was purchased from Millipore Sigma and diluted to 10 ppm in hexane for the
calculation of linear retention indices (LRIs).

Pooled human plasma of six humans was purchased from TCS Biosciences (Bucking-
ham, UK). Biological reference standard SRM 1950 “Metabolites in frozen human plasma”
was purchased from NIST. To optimize extraction and derivatization conditions, pooled
human plasma was used and stored as sub-aliquots at −80 ◦C to avoid thawing effects. For
the identification of analytes, 37 FAMEs standard mixture, NIST SRM 1950, and n-alkane
standard were analyzed.

The pig blood samples (n = 40) (sex = male, age = 6 months ± 15 days) were collected
in 16 × 125 mm BD Vacutainer® SST™ plastic tubes (cat# 367985) to obtain serum. Serum
samples identified as boar-tainted (n = 20) and untainted (n = 20) by the human nose
at slaughterhouse were stored at −20 ◦C. The blood samples were collected after the
slaughtering of pigs as a part of a large study.

2.2. Instrumental Method

GC×GC–TOFMS analysis was performed with a Pegasus 4D (LECO Corporation,
St. Joseph, MI, USA) equipped with Agilent 7890 GC. The analysis was performed using
a normal column set configuration, Rxi-5Sil-MS (30 m × 0.25 mm ID × 1.0 µm df), and
VF-17ms (2 m × 0.25 mm ID × 0.5 µm df). A guard column of 2 m was installed.

The temperature program for the primary and secondary oven was the same, starting
at 50 ◦C and holding for 2 min, then increasing temperature to 160 ◦C at 30 ◦C/min,
followed by a ramp of 2 ◦C/min until it reached 280 ◦C. At last, the 300 ◦C temperature
was achieved with a ramp of 30 ◦C/min and held for 2 min. The total run time for the
GC method was 69.33 min. The secondary oven temperature offset was +5 ◦C, and the
modulator temperature offset was +15 ◦C. A mass range of 45 to 700 m/z was collected at
an acquisition rate of 150 spectra/s by positive mode electron ionization (EI) at 70 eV. Ion
source and transfer line temperatures were maintained at 230 ◦C and 250 ◦C, respectively.

2.3. Sample Preparation

As shown in Figure 2, 500 µL of CH3ONa was added to 25 µL of pooled human plasma
for the first stage of derivatization and heated for a specified time (Table 1). After cooling,
500 µL of methanolic BF3 solution was added and again heated (Table 1). In the end, 300 µL
of heptane was added for liquid–liquid extraction. The upper heptanoic solution was
collected and injected into the GC×GC–TOFMS system. Pig serum samples of 25 µL were
analyzed using optimized derivatization and extraction protocol.
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Table 1. Factors and levels tested for derivatization and extraction optimization using DoE. The
optimized conditions are in bold.

Factors −1 0 +1

T1 (◦C) 85 95 105
t1 (min) 5 15 25
T2 (◦C) 85 95 105
t2 (min) 5 15 25

2.4. Data Processing

The data processing for the optimization of the sample preparation conditions was
performed in ChromaTOF® (ver. 4.72, LECO Corp., St. Joseph, MI, USA). The putative
identification of analytes was conducted with a spectral similarity library search against the
NIST17 mass spectral library. Analytes were quantified at specific m/z: 74, 55, and 67 for
FAMEs with zero to two double bonds, respectively, while FAMEs with three to six double
bonds were quantified at 79 m/z. The composite desirability and response optimization
plot for the Design of Experiments (DoE) were analyzed on Minitab (Ver. 20.2.0). The
pig plasma data were processed using GC ImageTM (ver. 2021r). Data pre-processing of
normalization to sample median, square root transformation, and mean centering were
conducted prior to applying chemometric tools. The chemometric tests, unsupervised
screening (PCA, HCA), univariate analysis profile (volcano plot), multivariate supervised
analysis (PLS–DA), pathway analysis, and enrichment analysis were performed using
MetaboAnalyst 5.0 (Xia Lab, McGill University, Montréal, QC, Canada) [25]. The pathway
topology analysis is measured with relative betweenness centrality for the node importance
and globaltest for enrichment analysis.

3. Results
3.1. Optimization of Derivatization and Extraction Conditions via Experimental Design

To improve measurement efficiency and obtain clean chromatographic separation of
the lipids, a two-step sample extraction and derivatization approach was optimized using
the DoE. An amount of 25 µL of pooled human plasma was used for the optimization
process (Figure 2). In the first step, the addition of CH3OH helps in the derivatization of fatty
acids bound in sources such as cholesterol in plasma (base-catalyzed transesterification).
The second step, the addition of BF3, helps in the esterification of free fatty acids (acid-
catalyzed esterification). Liquid–liquid extraction was performed using heptane at the end
of the second derivatization. However, the optimization of temperature (T1, T2) and time
(t1, t2) for sample preparation can help us achieve overall maximum extraction efficiency.
A two-level full factorial design for 16 different conditions with an additional three center
points for a total of 19 runs was evaluated (Table 1).

The formation of a structured chromatographic separation gives an advantage over
the conventional GC approach. As shown in Figure 3b, the separation of FAMEs in the first
dimension occurs as the number of carbon atoms or volatility decreases, while in the second
dimension, as the polarity of FAMEs increases, the number of double bonds increases. The
elution pattern of FAMEs also depends on the position of double bonds. The parallel-
aligned ω compounds are separating at an obtuse angle, with higher-ω FAMEs eluting
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before lower ones. The increased film thickness of the 1D and 2D columns (1.0 µm, 0.5 µm)
enables structured chromatographic elution without a wrap-around effect by retaining the
compound on the 2D column longer. Thus, the structured chromatographic separation of
FAMEs can become a valuable tool for identifying unknown analytes.
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As per the certificate of analysis (CoA) of NIST SRM 1950 (Figure S1), due to the vastly
varying concentration range of fatty acids in blood plasma, a number of analytes—C16:0,
C18:1 n-9, C18:2 n-6—become oversaturated in the chromatogram. However, it remains
possible to achieve the separation of all FAMEs. Therefore, to avoid bias while optimizing
the DoE parameters, a representative of each class was selected instead of a summation of
the entire individual classes.

For the response optimization, five analytes were selected, covering the different
classes of FAMEs, including SFA, MUFA, omega-3, and omega-6 (Figure 3a) (Table 2).
The center points injected three times at a randomized interval had an overall %RSD of
8.47, indicating the reproducibility of the method. The optimal composite desirability is
0.9159 for the optimized sample preparation condition (Figure S2). Thus, the optimized
derivatization method is efficient in extracting all the classes of FAMEs without creating a
bias for a specific class.

Table 2. Selected representative of each class for response optimization.

SFA MUFA Omega-6 Omega-3 Omega-3

Analyte C12:0 C14:1 C18:3 n-6 C20:4 n-3 C22:6 n-3
1tR (min) 16.39 23.46 39.46 48.26 55.06
2tR (s) 4.07 5.08 6.36 6.986 7.39

3.2. Identification of Pigs Responsible for Boar Taint by Lipid Profiling of Serum Using Optimized
Derivatization and Separation Conditions

In total, 40 pig serum samples were analyzed using optimized sample preparation
and chromatographic conditions, out of which 20 were identified as boar-tainted and 20 as
untainted pigs at the slaughterhouse by the human nose. As previously observed in human
plasma (Figure 3), it was possible to observe SFA, MUFA, PUFA, and cholesterol derivatives
(Figure 4) in pig serum. For a better illustration, the contour plots were reconstructed
in Python.

121



Metabolites 2022, 12, 1111

Metabolites 2022, 12, x FOR PEER REVIEW 6 of 11 
 

 

Table 2. Selected representative of each class for response optimization. 
 SFA MUFA Omega-6 Omega-3 Omega-3 
Analyte C12:0 C14:1 C18:3 n-6 C20:4 n-3 C22:6 n-3 
1tR(min) 16.39 23.46 39.46 48.26 55.06 
2tR (sec) 4.07 5.08 6.36 6.986 7.39 

3.2. Identification of Pigs Responsible for Boar Taint by Lipid Profiling of Serum Using 
Optimized Derivatization and Separation Conditions 

In total, 40 pig serum samples were analyzed using optimized sample preparation 
and chromatographic conditions, out of which 20 were identified as boar-tainted and 20 
as untainted pigs at the slaughterhouse by the human nose. As previously observed in 
human plasma (Figure 3), it was possible to observe SFA, MUFA, PUFA, and cholesterol 
derivatives (Figure 4) in pig serum. For a better illustration, the contour plots were 
reconstructed in Python. 

  
(a) (b) 

Figure 4. (a) Reconstructed contour plot of pig serum. (b) Zoomed-in reconstructed contour plot for 
C18 to C22 region for pig serum. 

In pig serum samples, out of 39 features, 13 SFAs, 8 MUFAs, 7 PUFAs ω-3, 9 PUFAs 
ω-6, ω-9, and 2 cholesterol derivatives are present (Table S1). Unsupervised principal 
component analysis (PCA) was performed to visualize a potential clustering trend 
between the boar-tainted and untainted pig serum samples. As seen from the PCA scores 
plot (Figure 5a), PC 1 and PC 2 contributed 62.4% variance. There is one outlier outside 
the 95% confidence interval identified by a Grubbs test, possibly because of the less 
regulated sample collection conditions at a slaughterhouse. A significant clustering trend 
was observed between the two groups, which indicated that the fatty acid derivatives 
were able to differentiate the boar-tainted pigs from untainted pigs. 

Figure 4. (a) Reconstructed contour plot of pig serum. (b) Zoomed-in reconstructed contour plot for
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In pig serum samples, out of 39 features, 13 SFAs, 8 MUFAs, 7 PUFAsω-3, 9 PUFAsω-6,
ω-9, and 2 cholesterol derivatives are present (Table S1). Unsupervised principal component
analysis (PCA) was performed to visualize a potential clustering trend between the boar-
tainted and untainted pig serum samples. As seen from the PCA scores plot (Figure 5a),
PC 1 and PC 2 contributed 62.4% variance. There is one outlier outside the 95% confidence
interval identified by a Grubbs test, possibly because of the less regulated sample collection
conditions at a slaughterhouse. A significant clustering trend was observed between the
two groups, which indicated that the fatty acid derivatives were able to differentiate the
boar-tainted pigs from untainted pigs.
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Figure 5. (a) PCA score plot. (b) % Area contribution of fatty acids per class for boar–tainted (BT)
and untainted (UT) pig serum samples.

The hierarchical clustering result is shown as a heat map (Figure 6). Using Euclidean
distance measure and clustering algorithm Ward.D for the top 25 features, it is shown
that SFA and PUFA (ω-3) are present in higher concentrations in untainted pig serum.
In contrast, PUFA (ω-6), (ω-9), and cholesterol derivatives are in higher abundance in
boar-tainted pig serum.
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Figure 6. Heat map using top 25 features of boar–tainted (BT) and untainted (UT) pig serum.

The volcano plot combines a fold change (FC) analysis and a t-test. For this test, the
t-test threshold was set at 0.05, and the direction of comparison was boar-tainted pig serum
divided by untainted pig serum (BT/UT). The volcano plot (Figure 7a) has 11 important
features, of which two SFAs are downregulated in boar-tainted pigs, while six PUFAs
ω-6 and two cholesterol derivatives are upregulated in boar-tainted pigs. Moreover, the
partial least squares discriminant analysis (PLS–DA) had 8 features out of 39 features with
a threshold of variable importance in projection (VIP) score > 0.9.

Metabolites 2022, 12, x FOR PEER REVIEW 8 of 11 
 

 

important features, of which two SFAs are downregulated in boar-tainted pigs, while six 
PUFAs ω-6 and two cholesterol derivatives are upregulated in boar-tainted pigs. 
Moreover, the partial least squares discriminant analysis (PLS–DA) had 8 features out of 
39 features with a threshold of variable importance in projection (VIP) score > 0.9. 

 
 

(a) (b) 

Figure 7. (a) Volcano plot of differentially expressed features (BT/UT). (b) PLS–DA: VIP score 
graph. 

4. Discussion 
A comprehensive analytical method workflow for analyzing lipids in plasma/serum 

has been detailed herein. The method includes liquid–liquid extraction of lipids from 25 
µL plasma/serum optimized to maintain a wide selectivity towards multiple classes of 
FAMEs (SFA, MUFA, and PUFA (ω-3 and ω-6)). A micro-volume extraction optimized 
using pooled human plasma (Figure 3), tested on NIST plasma metabolites (Figure S3), 
and utilized on pig serum (Figure 4) illustrates that the optimized sample preparation 
protocol is efficient for both human plasma and animal serum for lipid extraction, opening 
the possibility to translate this analytical protocol to other plasma/serum-related studies. 

GC×GC–TOFMS is a powerful technique for lipidomics as it provides structured 
chromatographic separation, which adds value to identifying untargeted lipidomics. The 
optimized method presented here provides valuable insight on FAMEs identification 
without requiring in-depth MS/MS investigations. 

For the first time, lipid profiling of serum for boar-tainted and untainted pigs is 
analyzed, identifying distinguished FAMEs class composition. The results pertaining to 
the observed significant presence of PUFA ω-6 and cholesterol derivatives in boar-tainted 
pig serum are supported by multivariate analysis, while SFA and PUFA ω-3 are 
significant in untainted pig serum. These differences in the lipid composition are opening 
new investigation routes to better understand bore taint deviation. Moreover, 36 features 
were subjected to pathway and enrichment analysis (Figure 8). The linoleic acid 
metabolism pathway was the key metabolic pathway, with a pathway impact of 1 
supported by quantitative enrichment analysis (Figure 8). 

Figure 7. (a) Volcano plot of differentially expressed features (BT/UT). (b) PLS–DA: VIP score graph.

123



Metabolites 2022, 12, 1111

4. Discussion

A comprehensive analytical method workflow for analyzing lipids in plasma/serum
has been detailed herein. The method includes liquid–liquid extraction of lipids from
25 µL plasma/serum optimized to maintain a wide selectivity towards multiple classes
of FAMEs (SFA, MUFA, and PUFA (ω-3 andω-6)). A micro-volume extraction optimized
using pooled human plasma (Figure 3), tested on NIST plasma metabolites (Figure S3),
and utilized on pig serum (Figure 4) illustrates that the optimized sample preparation
protocol is efficient for both human plasma and animal serum for lipid extraction, opening
the possibility to translate this analytical protocol to other plasma/serum-related studies.

GC×GC–TOFMS is a powerful technique for lipidomics as it provides structured
chromatographic separation, which adds value to identifying untargeted lipidomics. The
optimized method presented here provides valuable insight on FAMEs identification
without requiring in-depth MS/MS investigations.

For the first time, lipid profiling of serum for boar-tainted and untainted pigs is
analyzed, identifying distinguished FAMEs class composition. The results pertaining
to the observed significant presence of PUFA ω-6 and cholesterol derivatives in boar-
tainted pig serum are supported by multivariate analysis, while SFA and PUFA ω-3
are significant in untainted pig serum. These differences in the lipid composition are
opening new investigation routes to better understand bore taint deviation. Moreover,
36 features were subjected to pathway and enrichment analysis (Figure 8). The linoleic
acid metabolism pathway was the key metabolic pathway, with a pathway impact of
1 supported by quantitative enrichment analysis (Figure 8).
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Figure 8. (a) Summary of pathway analysis: (i) Biosynthesis of unsaturated fatty acids; (ii) Linoleic
acid metabolism; (iii) Fatty acid biosynthesis; (iv) Arachidonic acid metabolism; (v) Fatty acid elonga-
tion; (vi) Fatty acid degradation; (vii) alpha-Linolenic acid metabolism. (b) Quantitative enrichment
analysis (QEA): Metabolite set enrichment overview. * Features 16, 38, and 39 (13-Octadecenoic acid,
methyl ester; Cholesta-3,5-diene; Cholesta-2,4-diene) were excluded due to lack of metabolite ID
(HMDB ID) conversion match.
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A ω-3-rich feed for pigs is recommended to maintain pork as a good nutritional
source ofω-3 fatty acids for humans [26]. Moreover, the outcome of lipid profiling of pig
serum gives rise to an intriguing possibility of the importance of PUFA (ω-3) not only as a
nutritional essential, but also in the involvement of reducing boar taint in pigs.
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Abstract: Glycation products produced by the non-enzymatic reaction between reducing carbohy-
drates and amino compounds have received increasing attention in both food- and health-related
research. Although liquid chromatography mass spectrometry (LC-MS) methods for analyzing
glycation products already exist, only a few common advanced glycation end products (AGEs) are
usually covered by quantitative methods. Untargeted methods for comprehensively analyzing glyca-
tion products are still lacking. The aim of this study was to establish a method for simultaneously
characterizing a wide range of free glycation products using the untargeted metabolomics approach.
In this study, Maillard model systems consisting of a multitude of heterogeneous free glycation
products were chosen for systematic method optimization, rather than using a limited number of
standard compounds. Three types of hydrophilic interaction liquid chromatography (HILIC) columns
(zwitterionic, bare silica, and amide) were tested due to their good retention for polar compounds.
The zwitterionic columns showed better performance than the other two types of columns in terms of
the detected feature numbers and detected free glycation products. Two zwitterionic columns were
selected for further mobile phase optimization. For both columns, the neutral mobile phase provided
better peak separation, whereas the acidic condition provided a higher quality of chromatographic
peak shapes. The ZIC-cHILIC column operating under acidic conditions offered the best potential to
discover glycation products in terms of providing good peak shapes and maintaining comparable
compound coverage. Finally, the optimized HILIC-MS method can detect 70% of free glycation
product features despite interference from the complex endogenous metabolites from biological
matrices, which showed great application potential for glycation research and can help discover new
biologically important glycation products.

Keywords: non-enzymatic glycation; Maillard reaction products; HILIC-MS; untargeted analysis;
advanced glycation end products

1. Introduction

Non-enzymatic glycation has received increasing attention over the past few decades
in both food chemistry and in vivo studies [1]. This type of reaction was initially discovered
by a French chemist, Louis C. Maillard, in 1912, referring to the reaction between reducing
carbohydrates and amino compounds. The spontaneous condensation reaction between
the amino group and carbonyls first forms unstable Schiff bases, which rearrange to more
stable Amadori products (ARPs). Consecutive degradation of ARPs produces highly
reactive dicarbonyls, such as deoxyosone, glyoxal, methylglyoxal, etc. Dicarbonyls react
with the amino group and yield advanced glycation end products (AGEs). For instance,
the reactions between glyoxal, and methylglyoxal with lysine form carboxymethyl-lysine
(CML), and carboxyethyl-lysine (CEL), respectively, which are often used as makers for the
Maillard reaction (MR). Eventually, a heterogeneous mixture of Maillard reaction products
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(MRPs) with diverse structures is produced from minor initial precursors through complex
consecutive reaction cascades [2,3].

MR not only contributes to the aroma, taste, and color for foods during thermal
processing, but also has close biological associations with aging and diseases, such as
chronic hyperglycemia, diabetes, etc. The accumulation of endogenous free glycation
products usually indicates metabolic disorders in vivo. Increased levels of free AGEs in
plasma were associated with increased levels of diabetes complications [4,5]. Phenylalanine-
glucose ARP was found as a biomarker for phenylketonuria, an inherited disorder causing
the build-up of phenylalanine in the body [6]. The accumulation of free glycerate-modified
amino acids, forming through the non-enzymatic reaction between amino acids and a
highly reactive glycolytic intermediate, was detected in the brain of Parkinson’s disease
protein PARK7 knockout mouse [7]. The above-mentioned points suggested the important
biological roles of endogenous AGEs and that a reliable method for analyzing these free
glycation products is a basis to reveal their functions.

Common methods for glycation product analysis involve enzyme-linked immunosor-
bent assay (ELISA) and analytical instruments, including LC-MS [8–10] and GC-MS [11].
Among these methods, LC-MS provides a sensitive, selective, and high-throughput anal-
ysis without the need for specific antibodies or derivatization. Based on the structural
prototypes, relevant in vivo AGEs can be classified into various categories depending
on the amino acids involved and if crosslinks between amino acid residues occur [12].
AGEs with lysine residues, arginine residues, and crosslinks between two residues are the
most investigated, such as CML, CEL, glyoxal-hydroimidazolone (G-H), methylglyoxal-
hydroimidazolone (MG-H), glyoxal-lysine dimer (GOLD), and pentosidine. Up to twenty
selected free glycation products, including ARPs and AGEs, could be quantified in targeted
approaches in biological matrices, such as plasma, saliva, and urine [13,14]. However,
AGEs have very diverse structures and biologically important glycation products are not
always these well-studied AGEs. Thus, there is a need to establish a reliable method for
comprehensively qualifying and quantifying free glycation products in biological samples,
including the many hitherto unknown AGEs. Commercially available glycation product
standards are very limited in number and structural diversity. Moreover, the synthesis
of AGE standards is very time-consuming and challenging. Maillard model systems are
valuable alternatives to limited standards for method development. They can reproducibly
produce a mixture of hundreds of different free glycation products from only a few initial
precursors with low-cost [15,16]. Although some reaction pathways for forming these
glycation products are different in vivo compared with model systems [1], most glycation
compounds can also be formed in model systems. Therefore, in current study, we used the
MR model system to optimize the method based on untargeted strategy rather than using
a limited number of commercially available reference standards.

Most free glycation products are highly polar and, therefore, have limited retention
on reverse phase (RP) columns which are the most commonly used stationary phase in
LC. To solve this issue, ion-pair reagents, such as heptafluorobutyric acid, nonafluoropen-
tanoic acid were often used in previous studies to provide enough retention and efficient
separation for free glycation products on RP columns [8,9,17]. However, ion-pair reagent
has several drawbacks, including ionization suppression for mass spectrometry (MS),
contamination of the instrument, and reduced column lifetime. Hydrophilic interaction
liquid chromatography (HILIC) is a promising option for analyzing polar compounds.
Until now, very limited studies used HILIC for the quantification of AGEs and they all
focused on the targeted quantification of specific AGEs in foods [18–20]. To the best of
our knowledge, systematic evaluation of HILIC columns and conditions for profiling free
glycation products in an untargeted way is still lacking.

This study aimed to establish a method for the simultaneous characterization of
diverse free glycation products using an untargeted metabolomics approach. Five different
HILIC columns were compared. The mobile phase composition was further investigated to
maximize performance and robustness of the analytical method. Methods were evaluated
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in terms of the number of detected features, distribution of detected features, precision,
number of detected known glycation products, and their peak shapes. The ability of the
optimized method was finally evaluated using biological matrices such as plasma, feces,
and urine.

2. Materials and Methods
2.1. Reagents and Materials

Twenty proteinogenic L-amino acids (>97%), L-cystine (≥98%), D-(+)-glucose (≥99.5%),
acetic acid (LC-MS grade), ammonium formate (10 M stock solution), and ammonium
acetate (5 M stock solution) were purchased from Sigma–Aldrich (Steinheim, North Rhine-
Westphalia, Germany). Acetonitrile (ACN, LC-MS grade) was purchased from Merck
(Darmstadt, Hesse, Germany). Formic acid (98%, for mass spectrometry) was ordered from
Honeywell Fluka (Charlotte, NC, USA). Purified water (18.2 MΩ) was obtained from a
Milli-Q integral water purification system (Billerica, MA, USA). ESI-L low-concentration
tuning mix was supplied by Agilent (Santa Clara, CA, USA). Lyophilized human plasma
(P9523) was purchased from Sigma-Aldrich (Saint Louis, MO, USA) and reconstituted with
double distilled water. One feces and urine sample was collected from a healthy male
volunteer. Plasma, feces, and urine samples were kept frozen at −80 ◦C until use.

2.2. Maillard Model Systems Preparation

Twenty-one amino acids were reacted with glucose, respectively, to obtain MRPs with
a wide range of physicochemical properties. Equal molar mixtures of glucose (0.1 M) and
each amino acid (0.1 M) were prepared in Milli-Q water and heated in closed glass vials
at 100 ◦C for seven hours to make Maillard model system samples. The same volume of
each model system was mixed together, referred to as the model systems mixture sample
(MSM1), and then diluted by 1:5 (v/v) with 90% acetonitrile for LC-MS/MS analysis. Model
system samples of lysine (Glc-Lys), arginine (Glc-Arg), and histidine (Glc-His) were diluted
1:10 (v/v) with 90% acetonitrile for analysis. All samples were analyzed in triplicate.

2.3. Biological Sample Preparation

Biological sample extracts were mixed with model systems to evaluate the optimized
HILIC-MS method. Plasma, urine, and feces samples were thawed on ice and vortexed for
60 s before sample preparation. 25 µL plasma was mixed with 500 µL ACN and vortexed
for 5 min. 50 µL urine was diluted using 1 mL ACN and stored on ice for 5 min. The feces
sample was first centrifuged at 14,000× g rpm at 4 ◦C for 10 min. Thereafter, approximately
50 mg of the pellet was homogenized with ACN at a fixed ratio of 1:20 (mg/mL) and
sonicated in an ice bath for 30 min. All samples were then centrifuged at 14,000× g rpm at
4 ◦C for 10 min. The supernatants were transferred to another tube and then mixed with
the model system solution later.

Equal volumes of Glc-Lys and Glc-Arg were mixed to get a model system mixture
(named as MSM2). Before being spiked with biological extracts, MSM2 was mixed with
water to obtain the low (1:25, v/v), medium (1:5, v/v), and high (undiluted) model system
solution. In total, 90 µL of each type of biological extract supernatant was mixed with
10 µL of MSM2 solution in three concentration levels separately for matrix effect evaluation.
The biological extracts without MSM2 (90 µL biological extracts mixed with 10 µL water)
and MSM2 without biological extracts (10 µL MSM2 mixed with 90 µL ACN) were used
as controls.

2.4. LC-MS/MS

Samples were analyzed using a Waters Acquity (Milford, MA, USA) UPLC system
coupled with a Bruker maXis Quadrupole time-of-flight (QTOF) MS (Bremen, Germany).
The injection volume was 5 µL for each sample. The MS analyses were performed in
positive electrospray mode with a mass range of 50–1500 m/z. The ion source settings
were: nebulizer gas pressure 2 bar, capillary voltage 4500 V, dry gas flow 10 L/min, and
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dry gas temperature 200 ◦C. Mass spectra were acquired with a scan rate of 5 Hz in data-
dependent mode, where the three highest MS1 ions of each precursor scan were chosen
for MS/MS with a collision energy of 30 eV. The TOF analyzer was calibrated using ESI-L
Low Concentration Tuning Mix (Agilent, Santa Clara, CA, USA). Additionally, the same
diluted Tuning Mix (1:4 (v/v) with 75% ACN) was injected from 0.1 to 0.3 min of every
measurement using a switching valve for internal recalibration.

2.5. Chromatographic Conditions Optimization

This study aimed to establish a method for analyzing free glycation products instead
of in-depth investigating the mechanisms of HILIC. Therefore, to find appropriate param-
eters in a straightforward and time-consuming manner, we chose a univariate method
optimization approach, rather than testing all factors at all levels.

Firstly, five different HILIC columns were tested: iHILIC-Fusion (100 × 2.1 mm,
1.8 µm, 100 Å, zwitterionic, HILICON AB, Umea, Sweden), ZIC-cHILIC (100 × 2.1 mm,
3 µm, 100 Å, zwitterionic, Merck, Darmstadt, Germany), ZIC-HILIC (100 × 2.1 mm,
3.5 µm, 100 Å, zwitterionic, Merck, Darmstadt, Germany), BEH-HILIC (150 × 2.1 mm,
1.7 µm, 130 Å, unbonded ethylene bridged hybrid (BEH) particle substrates, Waters,
Eschborn, Germany), BEH-Amide (100 × 2.1 mm, 1.7 µm, 130 Å, BEH amide, Waters,
Eschborn, Germany). All columns were compared using the same eluents and gradient
based on the recommendation of our previous study [21]. Eluent A consisted of 25 mM
ammonium acetate (AA) in 30% ACN (pH 4.6), and Eluent B consisted of 5 mM AA in
95% ACN (pH 4.6). The binary gradient was: 0 min, 99.9% B; 2 min, 99.9% B; 9.5 min,
0.1% B; 12 min, 0.1% B; 12.1 min, 99.9% B. Columns were equilibrated at 99.9% B for 3 min
after each run to reach the initial status. The flow rate was 0.5 mL/min with the column
temperature set at 40 ◦C.

After the selection of the optimum stationary phase for analyzing MRPs, the effect
of pH and mobile phase additives were further evaluated to choose the optimum mobile
phase composition. To avoid ion suppression caused by high salt concentration, 5 mM
ammonium formate (AF) or AA was used as the mobile phase modifier. Mobile phases A
consisted of 5 mM salt in 30% ACN (acidic: with 0.1% corresponding acid; neutral: without
corresponding acid) and mobile phases B consisted of 5 mM salt in 95% ACN (acidic: with
0.1% corresponding acid; neutral: without the corresponding acid) was tested. The detailed
information for mobile phase optimization is shown in Table S1. Finally, the gradient was
improved using the optimal mobile phase. The ultimate chromatographic condition was:
eluent A 5% ACN and eluent B 95% ACN, both with 5 mM AF and 0.1% formic acid (FAcid).
The gradient was: 0 min, 99.9% B; 2 min, 99.9% B; 13 min, 56% B; 14 min, 30% B; 14.1 min,
10% B; 16 min, 10% B; 16.1 min, 99.9% B.

2.6. Data Processing

Raw data were calibrated and converted to mzXML files by Bruker DataAnalysis 5.0
software (Bremen, Germany). The data preprocessing of the converted files, including peak
picking, peak alignment, peak correspondence, and MS2 spectra finding were done based
on the XCMS package (4.1.2) in R (version 4.1.0) [22]. The feature grouping, isotopes finding,
and adducts annotation were processed by the CAMERA package (version 4.1.1) [23]. The
detailed settings for XCMS and CAMERA are shown in Tables S2 and S3, respectively.
The in-source fragment (ISF)-finding algorithm was adapted from the ISFrag package
(version 0.1.0) [24]. Feature cleaning was carried out by in-house script in R. Principal
component analysis (PCA) was completed using the FactoMineR package (version 2.4) [25].

3. Results

In this study, several chromatographic conditions for the analysis of free glycation
products were evaluated through untargeted and targeted comparisons using typical MR
model systems. The capability of the optimized method was further assessed by analyzing
model systems spiked with biological matrices, including plasma, urine, and feces.
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3.1. Data Cleaning for Reliable Feature Lists

The main aim of this study is to establish a method for simultaneously characterizing
a wide range of free glycation products using the untargeted metabolomics approach. In
contrast to the common method development workflow, where the occurrence of fixed ref-
erence standard compounds was compared, complex MR systems were chosen for method
optimization. As reported by previous studies, the model system consisting of single amino
acids and sugar can produce a multitude of glycation products [15,16], which has better
coverage of potential glycation products compared to using the very limited commercially
available glycation standards. Using the untargeted approach to analyze the model system
is capable of generating an overall description of compounds in the MR mixture. Besides
MRPs, there are also amino acid, glucose, and minor degradation products of reactants in
the model system. The feature list created from the untargeted data processing algorithm
contains redundant peaks derived from one compound, including isotope peaks, ISFs, vari-
ous adducts, multimers, containments and artifacts, which makes the number of features
directly derived from peak detection not accurate for method comparison.

Hence, we further attributed feature relationships by an in-house R script following
the CAMERA annotation [23]. A typical output of MS feature annotations associated
with one compound was exemplified with lysine. As shown in Figure 1A,B, there were
30 co-eluted features with the same chromatographic peak shape (Pearson correlation
coefficient > 0.8, p < 0.001) in the correlation group containing the lysine [M + H]+ signal.
Detailed information and interpretations of each feature are shown in Table S4. By using
the current data processing workflow, the 30 features can be divided into 6 categories,
including 4 low intensity noise, 5 isotope peaks, 7 artifacts caused by the saturation of the
detector [26], 6 adducts, 6 ISFs, and 2 unidentified features. Among them, 22 features were
produced by lysine. The approximately 95% feature inflation during untargeted LC-MS
analysis was also reported in previous studies, 869 features were detected after the injection
of 51 standards [27], and 10,000–30,000 features were observed by analyzing 900 unique
metabolites [28].

Metabolites 2022, 12, 1179  6  of  16 
 

 

 

Figure 1. Feature filtering results of model systems. (A) Extracted ion chromatograms of lysine and 

its co‐eluted MS features grouped by CAMERA in a glucose and lysine model system analyzed by 

iHILIC‐Fusion. (B) Interpretation of the MS features grouped with lysine. Top right: Pie chart of the 

proportions of peaks  categorized by  the annotations.  (C) The number of  features  co‐eluted and 

grouped with amino acids in the model systems mixture of twenty‐one amino acids (MSM1) before 

and after filtering analyzed by iHILIC‐Fusion. (D) The total feature number detected in MSM1 be‐

fore (red) and after filtering (blue) analyzed by different HILIC columns. 

To remove such unreliable and redundant features, we filtered feature lists by fol‐

lowing steps: remove background ions, noise with low intensity, artifacts caused by satu‐

ration, isotope peaks, ISFs, redundant adducts. To evaluate the approach, we checked the 

features correlated with 21 amino acids in the MSM1 before and after filtering. As shown 

in Figure 1C, there were 356 features co‐eluted and grouped with amino acids with high 

peak shape similarity before data cleaning. The filtering caused a reduction of 84.5% fea‐

tures, only 55 features were kept. Among these, 17 features were confirmed as amino ac‐

ids. L‐cysteine and L‐aspartic acid were not detected because their intensities were below 

the limit of detection. L‐leucine and L‐isoleucine were not separated and identified as one 

compound. Only L‐proline was not identified because it was incorrectly annotated as a 

potassium adduct. This  indicates the current workflow can remove redundant features 

originated from same compounds and keep the real signal at the same time. The effect of 

the filtering process on whole datasets measured by different LC conditions was also com‐

pared and demonstrated using the MSM1 sample (Figure 1D). Around 22% to 26% of the 

total features were kept. The percentages of the overall removed feature detected in MSM1 

were lower compared to the features co‐eluted with amino acids. Because amino acids in 

the MSM1 produced more artifacts (~77% features caused by detector saturation related 

to amino acids) and redundant  features  (e.g.,  ISFs, multiple adducts) due  to  their high 

concentration. The feature inflation is less pronounced for most MRPs with relatively low 

concentration. Moreover, the data filtering did not cause significant alterations to the over‐

all trends, suggesting the comparison results from feature number were acceptable. 

3.2. Selection of HILIC Columns 

3.2.1. Non‐Targeted Evaluation of the Column Selection 

Three  types of HILIC columns,  including one bare silica  (BEH HILIC), one amide 

(BEH Amide),  and  three  zwitterionic  columns  (iHILIC‐Fusion,  ZIC‐cHILIC  and  ZIC‐

HILIC), were selected for testing the selectivity of different stationary phases. According 

to our previous study on the thorough evaluation of metabolites coverage under different 

Figure 1. Feature filtering results of model systems. (A) Extracted ion chromatograms of lysine and
its co-eluted MS features grouped by CAMERA in a glucose and lysine model system analyzed by
iHILIC-Fusion. (B) Interpretation of the MS features grouped with lysine. Top right: Pie chart of
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and after filtering analyzed by iHILIC-Fusion. (D) The total feature number detected in MSM1 before
(red) and after filtering (blue) analyzed by different HILIC columns.
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To remove such unreliable and redundant features, we filtered feature lists by follow-
ing steps: remove background ions, noise with low intensity, artifacts caused by saturation,
isotope peaks, ISFs, redundant adducts. To evaluate the approach, we checked the fea-
tures correlated with 21 amino acids in the MSM1 before and after filtering. As shown in
Figure 1C, there were 356 features co-eluted and grouped with amino acids with high peak
shape similarity before data cleaning. The filtering caused a reduction of 84.5% features,
only 55 features were kept. Among these, 17 features were confirmed as amino acids.
L-cysteine and L-aspartic acid were not detected because their intensities were below the
limit of detection. L-leucine and L-isoleucine were not separated and identified as one
compound. Only L-proline was not identified because it was incorrectly annotated as a
potassium adduct. This indicates the current workflow can remove redundant features
originated from same compounds and keep the real signal at the same time. The effect
of the filtering process on whole datasets measured by different LC conditions was also
compared and demonstrated using the MSM1 sample (Figure 1D). Around 22% to 26% of
the total features were kept. The percentages of the overall removed feature detected in
MSM1 were lower compared to the features co-eluted with amino acids. Because amino
acids in the MSM1 produced more artifacts (~77% features caused by detector saturation
related to amino acids) and redundant features (e.g., ISFs, multiple adducts) due to their
high concentration. The feature inflation is less pronounced for most MRPs with relatively
low concentration. Moreover, the data filtering did not cause significant alterations to the
overall trends, suggesting the comparison results from feature number were acceptable.

3.2. Selection of HILIC Columns
3.2.1. Non-Targeted Evaluation of the Column Selection

Three types of HILIC columns, including one bare silica (BEH HILIC), one amide (BEH
Amide), and three zwitterionic columns (iHILIC-Fusion, ZIC-cHILIC and ZIC-HILIC), were
selected for testing the selectivity of different stationary phases. According to our previous
study on the thorough evaluation of metabolites coverage under different mobile phases,
amino acids and their analogs preferred acidic conditions for both zwitterionic, and amide
HILIC columns [21]. So, we used 30% ACN with 25 mM AA and 95% ACN with 5 mM AA
at pH 4.6 as the starting mobile phase A and B to screen the columns.

We compared the performance of different columns by analyzing model systems. The
aim was to maximize the number of detected MRP features, which were characterized
by unique m/z and retention time with good reproducibility. The MSM1 was chosen
for evaluating the selectivity and coverage of columns for MRPs that derivate from all
proteinogenic amino acids, like the ARPs. In addition, lysine, arginine and histidine glucose
model systems were analyzed separately. Because of the higher reactivity for these amino
acids and N-containing side chains, most free AGEs reported in in vivo studies are derived
from them [14,29].

Results for features in each model system detected by the tested columns are summa-
rized in Figure 2. The features were classified into two types: features with and features
without MS2 spectra. Features with MS2 spectra promise both downstream statistical
analysis and the possibility of compound structural identification. The higher number
of MS2 spectra also suggests a better separation of LC when total feature numbers are
comparable. Among all tested columns, ZIC-cHILIC detected the highest overall number
of features using the same mobile phase (Figure 2A). Particularly for Glc-Lys, the feature
number detected by ZIC-cHILIC was more than 1.5-fold higher than for other columns
(except for ZIC-HILIC). Independent of the tested columns, more features were detected
in Glc-Lys and Glc-Arg compared with the Glc-His model system, suggesting the higher
reactivity towards Glc for Lys and Arg. However, features observed in MSM1 were lower
than expected, and less than those in Glc-Lys and Glc-Arg. This could be ascribed to the low
concentration of most MRPs in each model system and the high concentration of reactant
amino acids.
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Figure 2. Results of column selection. (A) Bar plots representing the number of features detected by
different columns in each model system. Features were categorized into two types: features with
MS2 (light blue) and features without MS2 but recognizable extracted ion chromatograms (dark blue).
MSM1: the model systems mixture of twenty-one amino acids. (B) Retention time distribution of
all detected features in model systems. (C) Relative standard derivation (RSD) distribution of all
feature intensities.

The retention time (RT) density plot (Figure 2B) shows the distribution of all features
detected in four model systems by different HILIC columns along the RT. For accurate
quantitation and simpler spectra complexity, it is preferable for fewer features to elute
during the void volume. All HILIC columns showed good retention for detected features,
resulting in a higher density between 3 min and 9.5 min compared with a RT of less than
2.5 min. Features were eluted ~0.35 min later for BEH-HILIC compared with other columns
because BEH-HILIC has a greater column length (150 mm) and, consequently, a larger
void volume. In general, ZIC-HILIC and iHILIC-Fusion columns showed more dispersed
separation for features across the RT and fewer features eluting between 0 and 2 min.
The precision was evaluated by calculating the relative standard derivation (RSD) of the
intensity of the three analytical replicates for all detected features. As shown in Figure 2C,
the RSD for more than 95% of features was less than 20%, showing good reproducibility for
all tested columns.

3.2.2. Selectivity of Columns for Analyzing Amino Acids and Glycation Products

Amino acids and known glycation products were then subjected to a detailed com-
parison (Figure 3). The ability of HILIC columns for analyzing amino acids in MSM1 was
evaluated based on the retention time, peak shape, and MS intensity. All amino acids can
be detected with good retention using ZIC-HILIC, ZIC-cHILIC, and BEH-Amide. Cystine,
which is the oxidized dimer of cysteine, can only be detected with good peak shape and
sensitivity by BEH-Amide. The peak width of amino acids analyzed by ZIC-HILIC and
iHILIC-Fusion was broader compared with the other three columns and tended to tail
especially for basic amino acids (Table S5). This is likely due to the stronger electrostatic
attraction between the net positive charge of basic amino acids and negatively charge at the
distal end of sulfobetaine in ZIC-HILIC [30], and the slightly negative net surface charge in
iHILIC-Fusion [31], respectively.
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Figure 3. Targeted evaluation of column performance. (A) The individual score of amino acids
analyzed by different HILIC columns. (B) Representative chromatograms of the putative advanced
glycation end products isomers, formyllysine (C7H14N2O3, [M + H]+ = 175.1077, blue) and acetylly-
sine (C8H16N2O3, [M + H]+ = 189.1234, red), separated by different columns. EICs were extracted
with ±0.005 Da.

The free glycation products, including AGEs and ARPs, that can be produced by the
model systems were collected from the literature to build a library (Table S6). The analytical
capability of the five tested HILIC columns was also benchmarked by the detectability
of these glycation products. We screened the feature table of each column for glycation
products using the theoretical m/z with an error < 10 ppm. Considering that the MR can
produce multiple isomers of glycated amino acids, including stereoisomers, regioisomers,
and anomers [32], all the isomers were summed to compare the number of matching
features per unique m/z (Table S7). The ARPs were barely detected in the MSM1 and were
not evaluated in the column selection section. This could be due to the ionic suppression
caused by the high concentration of salts in the aqueous mobile phase (25 mM AA) [31,33].
Three types of zwitterionic columns can detect higher glycation candidates than bare
HILIC and amide columns. ZIC-HILIC detected the highest number of potential AGEs
features (24 matched features of 15 unique m/z) in Glc-Lys and GLc-Arg, followed by
ZIC-cHILIC, 23 matched glycation product candidates and 12 unique m/z. In comparison,
only 12 matched candidates (9 unique m/z) were detected with BEH HILIC. Glyoxal-lysine
dimer (GOLD) and methylglyoxal-lysine dimer (MOLD) can be only detected by ZIC-HILIC.
Representative extracted ion chromatograms (EICs) of AGEs are shown in (Figure 3B) to
present the selectivity and performance of the column. The best separation of isomers of
formyllysine and acetyllysine was achieved by the ZIC-cHILIC column.
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Altogether, ZIC-HILIC and ZIC-cHILIC showed better fits for analyzing free glycation
products through the column selection. These two columns were compared in detail for
later optimization with a lower salt concentration in mobile phases.

3.3. Mobile Phase Optimization
3.3.1. Non-Targeted Evaluation of the Mobile Phase pH and Modifiers

We next compared the performance of ZIC-cHILIC and ZIC-HILIC columns under
neutral and acidic mobile phase conditions for two different modifiers (AF and AA), re-
spectively. Among the eight investigated conditions, the ZIC-cHILIC column provided
the highest feature number for all four samples using 5 mM AF as modifiers under the
neutral condition (Figure 4A). Interestingly, ZIC-cHILIC always detected more features
than ZIC-HILIC independent of the mobile phase condition and sample type. This could
be due to the smaller particle size of the ZIC-cHILIC column (3 µm) compared with the
ZIC-HILIC (3.5 µm) resulting in better separation performance [30]. Moreover, ZIC-cHILIC
was reported to have better selectivity for polar amino-containing compounds than ZIC-
HILIC, like aminoglycosides [34]. The feature count increased in all four model systems
using neutral rather than acidic mobile phases. Based on the retention time distribution
(Figure 4B,C), both ZIC-cHILIC and ZIC-HILIC showed improved separation under neutral
conditions compared to acidic conditions. The better separation also explained the higher
feature number at neutral mobile phases. Same results were also reported in previous
literature [30,35,36], which may be attributed to the decreased ion-exchange interaction for
both ZIC-HILIC and ZIC-cHILIC caused by the protonation of silanols with acidic mobile
phases [37]. For the effect of additives, independent of the existence of the corresponding
acid, a higher feature count was observed for AF compared with AA. The feature number
detected in Glc-Lys and Glc-Arg model systems was higher than Glc-His, which was con-
sistent with previous column selection results. Overall, the mobile phase composition had
a similar impact on the feature number detected in each of the four tested model systems.
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Figure 4. Effects of mobile phase composition on feature coverage and distribution. (A) Bar plots rep-
resenting the number of detected features analyzed by mobile phases consisted of 5 mM ammonium
formate (AF) or 5 mM ammonium acetate (AA) with and without its corresponding acid (0.1%, v/v).
(B) Density distribution of retention times across the chromatographic run for ZIC-cHILIC column
and (C) ZIC-HILIC column.
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The precision of the tested conditions is shown in Figure S1. All conditions showed
good precision with more than 95% features observed with an intensity RSD below 20%.
The highest percentage of features with RSD less than 20% was observed for the ZIC-
HILIC with 5 mM AF and 0.1% FAcid. For the features with less precision (RSD > 20%),
a slightly higher percentage was observed under the neutral condition compared to the
acidic condition.

3.3.2. Effect of Mobile Phase on Detections of Amino Acids and Glycation Products

The performance of all tested chromatographic conditions for analyzing amino acids is
summarized in Figure 5A and Table S8. ZIC-cHILIC and ZIC-HILIC operated with mobile
phase containing 5 mM AF and 0.1% FAcid can detect the highest number of amino acids
with good peak shape. Mobile-phase pH has a higher impact on the peak shape of amino
acids compared to column chemistry. Basic amino acids, including Lys, Arg, and His, have
broad peaks under neutral conditions. One reason is the electrostatic attraction between
the positively charged side chain of basic amino acid and the negatively charged silica
under the neutral condition [31]. For His, the pKa of its side-chain group is 5.97. Under the
neutral condition, the side chain of His is half deprotonated causing the broad peak shape.
Cys and Cys2 were detected with good peak shape only under acidic conditions as well.
The baseline separation of Ile and Leu was not achieved for all tested methods; however, a
better separation was obtained by ZIC-cHILIC compared with ZIC-HILIC, which merged
into one peak analyzed by ZIC-HILIC under most tested mobile phases.
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ZIC-cHILIC operated under mobile phase containing 5 mM AF showed the best
coverage for glycation products because 71 glycation product candidates could be matched
(Table S9). Generally, more matched glycation candidates were observed under neutral
conditions compared to acidic conditions, showing similar trends as revealed by the above
performed comparison of untargeted feature numbers. This could be explained by the
better separation of the column operated under neutral conditions and more isomers could

136



Metabolites 2022, 12, 1179

be resolved. However, when we checked the peak shape of detected glycation products, we
found most ARPs showed broad and split peaks under the neutral mobile phase (Figure 5B),
which may be due to the equilibrium between Amadori product anomers [38]. Particularly
for ARPs of basic amino acids, the EICs were extremely board analyzed by neutral mobile
phase. Poor peak shapes tend to interfere with the peak picking algorithm and lead to
unreliable peak detection results, but also more easily cause column carryover and interfere
with later analysis.

Considering both quantity and quality of detected features, the ZIC-cHILIC operated
under 5 mM AF and 0.1% FAcid provided the best results for amino acid glycation product
discovery in terms of peak shape and compound coverage. Finally, the gradient was
optimized based on the feature distribution along the chromatographic run. As most of the
compounds eluted from 4 min to 7.5 min (Figure 4B), in order to achieve a better separation,
a longer gradient was used to change mobile phase composition from 25% B to 75% B. The
final gradient program is listed in Section 2.

3.4. Evaluation of the Optimized HILIC-MS Method Using Biological Samples

Compared with model systems, biological samples contain complex endogenous
metabolites, large amounts of salts (urine), high diversity of lipids (plasma), and gut mi-
crobiota metabolites (feces). These metabolites and salts can affect both chromatographic
separation and electrospray ionization [39,40]. Therefore, we further evaluated the perfor-
mance of the optimized method on analyzing glycation products with complex biological
extracts. Free endogenous glycations are aggravated by hyperglycemia, oxidative stress,
and other metabolic diseases, whereas glycation products in the biological samples from
healthy individuals are subtle without considering the dietary intake of AGEs [1,9,14].
Thus, we used the mixtures of model systems and biological extracts to investigate the
effect of biological matrices on HILIC-MS analysis as proof of concept. To avoid detector
saturation caused by reactants (amino acids and glucose) and keep the glycation prod-
ucts with low intensity detectable, only the mixture of lysine and arginine model systems
(MSM2) was used as an additive to plasma, urine, and feces at three concentration lev-
els: low (25-fold diluted), medium (5-fold diluted) and high (not diluted). For method
evaluation, three types of samples were analyzed, including biological sample extractions,
MSM2, and MSM2-spiked biological sample extractions. The interference of endogenous
compounds on the detectability of glycation products was evaluated by comparing the
number of detected MRP features in MSM2 with and without biological extracts. The
reproducibility of the method was visualized by PCA score plots.

Based on PCA score plots (Figure 6A), three replicate injections of all sample types
clustered together indicating good reproducibility. The first component discriminated the
samples according to the concentration of spiked MRPs. For feces and plasma datasets,
the samples spread from left to right along with the x-axis as their concentration increased,
and the urine was the other way around. For all three PCA analyses, the first component
can explain more than 50% of the variance, showing the optimized HILIC-MS method
is capable of showing concentration differences of MRPs among samples. The second
component discriminated the MSM2 samples versus those without biological extracts.
The corresponding loading plots (Figure S2) indicate that most features were important
in explaining the variability among different samples as they were positioned close to
the correlation circle. In the loading plots, unique features detected in biological samples
are located in the same region as the biological samples in the score plots (Figure 6A).
Likewise, for MSM2 unique features in the loading plots were found in the same region as
the MSM2 samples in the score plots (Figure 6A). The position of MSM2-spiked biological
samples in score plots was in the middle position of biological samples-specific features
and MSM2-specific features in loading plots. This supports the separation of groups of
biological samples, MSM2 samples, and MSM2-spiked biological samples displayed in the
score plots (Figure 6A).

137



Metabolites 2022, 12, 1179

Metabolites 2022, 12, 1179  12  of  16 
 

 

healthy  individuals are subtle without considering  the dietary  intake of AGEs  [1,9,14]. 

Thus, we used the mixtures of model systems and biological extracts to  investigate the 

effect of biological matrices on HILIC‐MS analysis as proof of concept. To avoid detector 

saturation caused by reactants (amino acids and glucose) and keep the glycation products 

with  low  intensity detectable, only  the mixture of  lysine  and  arginine model  systems 

(MSM2) was used as an additive to plasma, urine, and feces at three concentration levels: 

low (25‐fold diluted), medium (5‐fold diluted) and high (not diluted). For method evalu‐

ation,  three  types  of  samples were  analyzed,  including  biological  sample  extractions, 

MSM2, and MSM2‐spiked biological sample extractions. The interference of endogenous 

compounds on the detectability of glycation products was evaluated by comparing the 

number of detected MRP features in MSM2 with and without biological extracts. The re‐

producibility of the method was visualized by PCA score plots. 

Based on PCA score plots (Figure 6A), three replicate injections of all sample types 

clustered together indicating good reproducibility. The first component discriminated the 

samples according to the concentration of spiked MRPs. For feces and plasma datasets, 

the samples spread from left to right along with the x‐axis as their concentration increased, 

and the urine was the other way around. For all three PCA analyses, the first component 

can explain more than 50% of the variance, showing the optimized HILIC‐MS method is 

capable of showing concentration differences of MRPs among samples. The second com‐

ponent discriminated  the MSM2  samples versus  those without biological extracts. The 

corresponding loading plots (Figure S2) indicate that most features were important in ex‐

plaining the variability among different samples as they were positioned close to the cor‐

relation circle. In the loading plots, unique features detected in biological samples are lo‐

cated in the same region as the biological samples in the score plots (Figure 6A). Likewise, 

for MSM2 unique features in the loading plots were found in the same region as the MSM2 

samples in the score plots (Figure 6A). The position of MSM2‐spiked biological samples 

in  score  plots was  in  the middle  position  of  biological  samples‐specific  features  and 

MSM2‐specific features in loading plots. This supports the separation of groups of biolog‐

ical samples, MSM2 samples, and MSM2‐spiked biological samples displayed in the score 

plots (Figure 6A). 

 

Figure 6. Detectability of glycation products  in  the biological matrices.  (A) Principal component 

analysis  (PCA)  score plots of biological  samples,  a model  system mixture  (lysine  and  arginine; 

MSM2), and model system‐spiked biological samples, in an order of urine, feces, and plasma. Prior 

Figure 6. Detectability of glycation products in the biological matrices. (A) Principal component
analysis (PCA) score plots of biological samples, a model system mixture (lysine and arginine;
MSM2), and model system-spiked biological samples, in an order of urine, feces, and plasma. Prior
to spiking, the model system mixture was either not diluted (high) or diluted 1:5 (medium) or
1:25 (low). Measurement was performed using the optimized HILIC method described in Section 2.
(B) Bar plots representing the number of detected MRP features depending on the dilution level and
biological extracts. (C) Representative base peak chromatograms of MSM2-Low and MSM2-spiked
biological samples.

Using human plasma, feces, and urine, we demonstrated that more than 70% of
MRP features can be detected even in complex biological matrices (Figure 6B). Among
these sample types, plasma has the least matrix effect compared with urine and feces:
~80% of MRP features can be detected for all three levels of mixture. The most suppression
was caused by urine samples, only 73% MRPs could be recovered for the mixture with
high concentration MSM2. This could be attributed to the more and higher concentration
of polar compounds in urine and feces samples compared to plasma, resulting in ion
suppression [41,42]. The chromatogram of plasma was relatively empty in contrast to
feces and urine in our dataset (as shown in Figure 6C). Most MRPs eluted between 6 and
12 min. Representative EICs of AGEs and amino acids showed that the peak shape and
isomer separation were not influenced by the in vivo metabolites (Figure S3). Interestingly,
there are several features could be detected in both biological extracts and MSM2. We
manually checked that some features were glucose, amino acids as well as their degradation
products. Importantly, feces and urine had a higher number of matching features compared
to plasma. This also explains the higher detection rate of MRP features in mixed samples
at low levels compared to high levels. This suggested that urine and feces are better
matrices for discovering glycation product candidates compared to plasma. Additionally,
levels of free AGEs in urine and feces are more prone to be affected by dietary AGEs
compared to plasma. More than 80% of dietary ARPs were not absorbed and degraded by
gut microflora [43]. A significant increase of 40% free urinary CML excretion versus 7%
higher plasma CML was detected in healthy people urine and plasma after the 2.5 times
higher AGEs diet [44]. That should be considered during the experiment design and data
interpretation of finding in vivo free glycation markers.
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4. Conclusions

In the present study, we systematically optimized HILIC-MS methods for untargeted
profiling of free glycation products using model systems. The performance of the methods
was evaluated from both targeted and untargeted aspects. For untargeted comparison, the
number of detected features, the distribution of features along the chromatographic window,
and precision were assessed. The number of detected amino acids and matched known
glycation products in model systems as well as their peak shapes were checked to further
confirm the analytical ability of the method. With regard to the number of detected MRP
features and matched AGEs, ZIC-HILIC and ZIC-cHILIC columns had better performance
than the other three HILIC columns. Further mobile phase optimization of the selected two
columns both showed neutral conditions can provide better peak separation and acidic
conditions supported higher quality of chromatographic peak shapes. Considering the
coverage and reproducibility, ZIC-cHILIC operated under an acidic condition with 5 mM
AF and 0.1% FAcid was chosen as the final method. The performance of the optimized
method with complex biological extracts proved that it still has good reproducibility and
coverage for glycation products in the presence of endogenous metabolites from plasma,
urine, and feces. Overall, the proposed method can be used to discover potential glycation
markers associated with health and disease.
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www.mdpi.com/article/10.3390/metabo12121179/s1, additional experimental details, data processing
parameters, peak shape scores, and detected free glycation products (Tables S1–S9); the precision of
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Abstract: Untargeted metabolomics approaches deal with complex data hindering structural informa-
tion for the comprehensive analysis of unknown metabolite features. We investigated the metabolite
discovery capacity and the possible extension of the annotation coverage of the Feature-Based
Molecular Networking (FBMN) approach by adding two novel nutritionally-relevant (contextual)
mass spectral libraries to the existing public ones, as compared to widely-used open-source anno-
tation protocols. Two contextual mass spectral libraries in positive and negative ionization mode
of ~300 reference molecules relevant for plant-based nutrikinetic studies were created and made
publicly available through the GNPS platform. The postprandial urinary metabolome analysis within
the intervention of Vaccinium supplements was selected as a case study. Following the FBMN ap-
proach in combination with the added contextual mass spectral libraries, 67 berry-related and human
endogenous metabolites were annotated, achieving a structural annotation coverage comparable to or
higher than existing non-commercial annotation workflows. To further exploit the quantitative data
obtained within the FBMN environment, the postprandial behavior of the annotated metabolites was
analyzed with Pearson product-moment correlation. This simple chemometric tool linked several
molecular families with phase II and phase I metabolism. The proposed approach is a powerful
strategy to employ in longitudinal studies since it reduces the unknown chemical space by boosting
the annotation power to characterize biochemically relevant metabolites in human biofluids.

Keywords: human urine; liquid chromatography; untargeted mass spectrometry; computational
metabolomics; chemometrics; bioinformatics

1. Introduction

Untargeted tandem mass spectrometry (MS/MS) is one of the most widely used
analytical techniques in metabolomics, allowing for the generation of information-rich
mass spectral datasets and the identification of metabolic biomarkers in biological complex
mixtures [1,2], also thanks to the coupling with separation techniques such as liquid chro-
matography (LC). Despite the wide application of hyphenated LC-MS/MS platforms, the
annotation of biologically relevant metabolites (i.e., biomarkers) is strongly hampered by
the complexity of the metabolome and metabolomics data processing and annotation [3].
The annotation process is a pivotal step in untargeted metabolomics that often represents
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a bottleneck in the process of obtaining biological information and discovering biomark-
ers. To streamline the metabolite annotation process, metabolomics guidelines have been
proposed for the accurate identification and assignment of a metabolite feature [4,5], i.e.,
through peak picking, mass spectral deconvolution, determination of molecular ions by
adduct detection, and fragmentation pattern (MS/MS) analysis [6]. Despite these efforts,
the risk of missing relevant information and drawing incorrect conclusions remains rela-
tively high, due to incorrect MS and MS/MS interpretations when matching experimental
spectra with available spectral libraries. To aid in structural interpretation, the identifica-
tion of MS/MS spectral similarities within a given dataset can support the discovery of
structurally related metabolites, which plausibly share the same metabolic pathway and/or
substructure [7], thus strengthening the biological meaning of the annotations.

In this context, molecular networking (MN) has gained large attention, thanks to the
efficient and rapid identification of several molecular families within complex mixtures,
providing a visual overview of all the precursor ions, grouped according to their struc-
tural relationships, as deduced by their mass fragmentation spectra during an MS/MS
experiment [8]. MN uses an unsupervised vector-based computational algorithm to or-
ganize molecular ions (i.e., clusters or nodes) into a network of molecular families that
share spectral similarities among their MS/MS spectra. At the same time, structural
annotation is performed through the Global Natural Products Social Molecular Network-
ing (GNPS) bioinformatics platform [8], which is linked to many mass spectral libraries
available as public repository of mass spectra and metadata (i.e., GNPS-MassIVE). Con-
sidering the recent growth of public mass spectral libraries, it is expected an increase of
the annotation capability (level II or level III) of biologically relevant molecules in com-
parison with traditional biomarker discovery workflows [9]. MN has been applied in
several untargeted LC-MS/MS studies, mainly focusing on phytochemical composition
analysis [8], and less frequently on drug metabolism [10], and nutrimetabolomics [11] in
human biofluids.

Recently, MN has been extended by its combination with standard feature detection
tools into the Feature-Based Molecular Networking (FBMN) workflow that is capable
to resolve isomers and incorporate quantitative information (e.g., spectral counts, chro-
matographic peak areas, etc.), increasing the link between peak picking algorithms and
in silico annotation tools [12]. Until now, FBMN has been successfully applied in various
fields of metabolomics, allowing level II/level III identification of transformation prod-
ucts of organic micropollutants in water samples [13], native plant constituents [14–16],
and endogenous urinary metabolites [17]. However, mass spectral library matching is
generally performed by the comparison with mass spectral libraries containing MS/MS
spectra acquired under a wide range of instrumental conditions (e.g., time-of-flight, orbi-
trap, hybrid ion traps, etc.) and collision energies used, with different curation protocols
providing different mass accuracy levels [13,16], thus suffering from limited reliability of
the annotation due to differences in observed mass fragments and their intensity ratios.
This issue can be managed by implementing better contextualized libraries containing
reference spectra of study-related compounds and acquired under experimental conditions
equal to or comparable to the experimental data being analyzed. Finally, FBMN has the
hitherto unexploited potential in biomarker research to provide quantitative data of the
structurally annotated (and unannotated) features, thus complementing the traditional
biomarker discovery procedure with a chemometric protocol that allows establishing their
biological significance.

This research investigates the discovery capacity and the extension of the annotation
coverage of the FBMN approach, in comparison with a commonly adopted manual an-
notation of selected significant m/z features [18]. To this end, the FBMN workflow was
applied to deconvoluted and aligned high-resolution LC-MS/MS files of postprandial
urine samples from a two-arms intervention study on the intake of Vaccinium myrtillus
(VM) and Vaccinium corymbosum (VC) berry supplements. As far as we are aware, this
represents the first nutrimetabolomics application of FBMN to the identification of post-
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prandial endogenous and exogenous metabolites. The MS/MS spectra that were acquired
in both negative ionization (NI) and positive ionization (PI) data dependent acquisition
modes were compared with the available GNPS libraries. An extensive comparative
analysis was done to compare various FBMN parameter settings to arrive at optimal set-
tings for structural annotation purposes in the nutrimetabolomics setting. Furthermore,
to support automated nutrimetabolomics annotation workflows, two novel NI and PI
contextualized “Nutri-Metabolomics” mass spectral libraries were constructed and made
available uniquely on GNPS, each containing MS/MS spectra of about three-hundred
food-related human metabolites, acquired under the same mass spectrometric conditions
as the study samples. These mass spectral libraries are a fruit of several years of investi-
gations on human responses to dietary interventions at the Edmund Mach Foundation
(Italy), and include phase I and phase II human metabolites, as well as food constituents.
Special attention was given to microbial metabolites resulting from mixed human and
microbiome interaction such as small phenolic acids, phenylacetic acids, phenylpropionic
acids, indoles, and carbolines, as well as bile acids. Other classes include sulfate and
glucuronides conjugates of common food constituents such as caffeic acid glucuronide,
dihydroferulic acid sulfate, isoferulic glucuronide, etc. Several aroma compounds were
included to facilitate substructure matching, as those were observed in biological fluids in
conjugated form (monoterpenoids, safranal, furfuran, fenchyl alcohol etc.). Finally, the spec-
tral library offers specific advanced glycation end-products including pyrraline, furosine
and more.

In the current study, the mass spectral library creation aimed at increasing (i) the
accuracy in the annotation thanks to a better match of instrumental metadata such as
detector and collision energy, (ii) nutrimetabolomics knowledge on postprandial analysis of
biological samples and plant-based food intake. Additionally, the quantitative data within
NI and PI FBMN networks were exploited to gain insights into (i) metabolites characterized
by different postprandial kinetics and (ii) the relative dietary contribution of VM and VC
interventions of the identified metabolites.

2. Materials and Methods
2.1. Chemicals and Reagents

Full purchase details of solvents and standards used are reported in Section S1 of the
Supplementary Materials. The complete list of the reference standard adopted to build the
“Nutri-Metabolomics” libraries, in both NI and PI modes, is shown in the List of Reference
Standards used to build the libraries.xlsx file in the Supplementary Materials.

2.2. Study Design, Sample Extraction, and LC-MS/MS Analysis

The datasets analyzed in this research are part of a more comprehensive clinical
intervention trial, based on the hematic and urine biomarker discovery on the intake of
VM and VC [18,19]. Urine samples of each volunteer (n = 10 for each intervention) were
collected at baseline and 30, 60, 120, 240, and 360 min after VM or VC supplement intake.
Pooled urine samples were also collected 24 h and 48 h after supplement intake. Details of
supplements characterization (Table S1), as well as study design are reported in Section S2
of the Supplementary Materials. Urine samples were extracted and analyzed as reported
elsewhere [19]. The entire procedures of extraction and LC-MS/MS analysis of urine
samples are reported in Sections S3 and S4 of the Supplementary Materials, respectively.
The entire sample set was acquired in full scan mode, collecting high quality data for an
appropriate statistical analysis, as well as in data dependent acquisition (DDA) mode, to
leverage large quantities of MS/MS data for structural investigation preserving the kinetic
heritage of the study design.
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2.3. Data Pre-Processing

The full scan files were processed and analyzed as previously reported [18]. Ad-
ditionally, the data-dependent spectra files (including blanks) were converted from the
.raw to .mzML MS convert by ProteoWizard (https://proteowizard.sourceforge.io) (ac-
cessed on 15 April 2021). Further data processing was performed with MZmine 2 soft-
ware [20], separately for NI and PI datasets. Data pre-processing included the following
steps: mass detection, chromatogram reconstruction and deconvolution, isotope group-
ing, alignment and gap filling. Subsequently, the aligned feature lists were exported
as MS/MS files (.mgf format) and quantification tables (.csv format of aligned features
and related chromatographic peak areas), according to GNPS documentation on FBMN
(https://ccms-ucsd.github.io/GNPSDocumentation/) (accessed on 21 April 2021).

2.4. Data Availability: MassIVE Repository, Metadata and GNPS Jobs

Data in .mzML format are available on-line on GNPS infrastructure (MSV000088336).
The metadata describing file/sample properties were entered manually for all samples
and organized in two different files according to the acquisition polarity of the uploaded
MassIVE datasets, following the GNPS guidelines (https://ccms-ucsd.github.io/GNPS
Documentation/metadata/) (accessed on 21 April 2021). In detail, metadata consisted
of three descriptive categories, (i) spectrum file name (the same of acquired raw data),
(ii) type of supplement (VM or VC), and (iii) related time point after intake. These elements
are required to get a correct grouping within FBMN for quantitative analysis (see the
Metadata and Library Information.xlsx file in the Supplementary Materials). For the
upload on GNPS, metadata files were converted to .tsv files. The FBMN analysis are
available at the following links:

• PI: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=a981ebd40809453ebe1524ff1
fc8e265 (accessed on 27 June 2021).

• NI: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=0a239e71bb2045c292c4c96
f4501249c (accessed on 27 June 2021).

2.5. “Nutri-Metabolomics” Library Building and Implementation

The analytical standards used to build the in-house libraries were acquired in the
same MS/MS conditions as study samples (replicated three times), which are reported in
Section S4 of the Supplementary Materials. GNPS provides a platform to build MS/MS
spectral libraries, requiring good quality MS/MS spectra and annotation spread sheets
containing key and machine-readable descriptors such as file name, compound name,
SMILES, InChiKey, PubMed. To build the library, only pure analytical standards were used,
thus no putative or un-known compounds are present in the files. Two annotation spread
sheets were built in NI and PI, containing 319 and 339 injected compounds, respectively
(see the Metadata and Library Information.xlsx file in the Supplementary Materials). Anal-
ysis of standards included their separation on the chromatographic column; however, a
retention time match is not supported in GNPS and therefore this information was used
manually when needed. The “Batch Validator Workflow” [21] step was run to evaluate
the correct match between spreadsheets (dropped as .csv files), and original spectra. The
completed libraries can be found in the public spectral library collection of GNPS named
as “Nutri-Metabolomics”.

2.6. Molecular Networking Analyses

Molecular networks were obtained following the online workflow on the GNPS web-
platform (https://gnps.ucsd.edu/) (accessed on 21 April 2021). FBMN was performed
adopting the most suitable basic and advanced networking options, selected through
the recommended network qualitative optimization by classical MN (see Section 3.1), for
NI and PI dataset exported from MZmine 2 software. The detailed investigation of MN
options is reported in Section S5 of the Supplementary Materials. The most appropriate
input parameters were set as follows: NI were analyzed using precursor ion mass tolerance
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(PIMT) and fragment ion mass tolerance (FIMT) equal to 0.1 Da and 0.01 Da, respectively.
The other parameters were set as follows: minimum matched fragment ions = 3, networking
cosine score > 0.6, library cosine score > 0.5, and minimum library shared peaks = 3. PI
dataset was processed adopting PIMT = 0.05, FIMT = 0.05, minimum matched fragment
ions = 3, networking cosine score > 0.5, library cosine score > 0.3, and minimum library
shared peaks = 3. Network analysis and quantitative results were investigated and exported
adopting Cytoscape environment [22]. Moreover, unknown nodes were annotated with
putative molecular structures by manual annotation based on: (i) mass difference between
identified and unknown node, (ii) precursor ion mass accuracy, and (iii) fragmentation
patterns in MS/MS spectra (see Section S6 of Supplementary Materials).

2.7. Analysis of Postprandial Kinetics

Reinjection of the entire dataset in DDA fashion enabled the exploitation of post-
prandial kinetics data. To extract the postprandial information from FBMN, the Pearson
product-moment correlation (PPMC) analysis was performed, using the “corrplot: A visu-
alization of a correlation matrix” package implemented in R (https://cran.r-project.org/)
(accessed on 28 July 2021), thus estimating the linear correlation between the mean chro-
matographic peak area of identified nodes and time points. The quantitative FBMN data
used for the correlation analysis were extracted from the “node table” of the Cytoscape
environment, built using the loaded metadata for both NI and PI datasets. Statistically
significant (p-value ≤ 0.05) PPMC coefficients (r) were used to discriminate early (1–2 h
postprandial) from late (approximately 4 h and more postprandial) occurring postprandial
metabolites, which are commonly considered as the result of phase II or phase I metabolism,
respectively [23]. Accordingly, positive and negative r-values indicated nodes associated to
phase I (late postprandial) and phase II (early postprandial) metabolism, respectively. A
limitation of using PPMC within FBMN was the absence of sample normalization as this
functionality is currently not available. Findings from this step were compared to those
obtained through the PPMC analysis of longitudinal variations of the chromatographic area
of aligned features (i.e., outside FBMN), as a control strategy. It should be highlighted that,
although the PPMC coefficients can be associated with the metabolism phase, its relation
to the specific food intake remains elusive without further biochemical interpretations.
Simultaneously, full scan data underwent the conventional data processing, as previously
described [17]. Briefly, biomarkers of food intake in postprandial responses were selected
by applying selected R packages to full scan data [24], according to the following two-step
procedure: (i) verification of increasing trend along time points and (ii) calculation of
AUC curves and intra-intervention discrimination. Statistically significant features were
annotated manually with use of on-line spectra databases such as mzCloud and HMDB.
Details of this procedure are reported in Section S5 of Supplementary Materials.

3. Results and Discussion

The NI and PI datasets were treated following the workflow illustrated in Figure 1,
which integrates the PPMC analysis of postprandial kinetics within the FBMN environment.
However, since FBMN extracts only the mean values of the chromatographic area as quan-
titative data for PPMC analysis, thereby losing knowledge of inter-individual variability,
the variance of metabolite feature abundance among volunteers was investigated at each
time point as a control, before applying the FBMN workflow. Accordingly, the coefficient
of variation (CV%) of chromatographic areas of each aligned feature within a same time
point was calculated, highlighting a strong variability (CV% approximately in the range
of 30–300% and median higher than 100% in most cases). These findings highlighted the
importance of evaluating the results of PPMC analysis at the population level.
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3.1. Optimization of the Input Parameters for Network Analysis

Before running FBMN, various networking basic and advanced options must be
investigated to find out the most suitable parameters to perform the MN analysis. To
properly evaluate the effect of input parameters, the total number of nodes (precursor
ions with identical fragmentation pattern, i.e., consensus spectrum), edges (i.e., node
connections related to structural similarities), identified compounds (IDs, i.e., annotated
through spectral library matching), and spectral families (i.e., the groups or clusters, also
referred as molecular families), were analyzed in both NI and PI datasets and the results
are reported in Figure S1 of the Supplementary Materials. In this regard, increasing PIMT
value, the number of nodes, edges, and spectral families decreased, whereas the number of
IDs showed a predominantly increasing trend, mainly due to the less strict conditions as
consensus spectra got merged (i.e., considering different isobaric compounds as one) at
increasing PIMT. Hence, to keep a reliable number of nodes and spectral families without
significantly affecting the number of IDs, PIMT was set at 0.1 Da and 0.05 Da for NI and
PI, respectively. FIMT exerted an effect on the output variables like that of PIMT, except
for the total number of edges, which increased by increasing values of FIMT. Due to the
loss of accuracy in node networking for high FIMT, values of 0.01 and 0.05 were chosen
for NI and PI datasets, respectively. The number of minimum matched fragment ions was
set at 3 for both NI and PI for two reasons: (i) Its increase exerts a significant reduction of
the number of nodes with an ID and their reliability, (ii) many food-derived metabolites
have only a few characteristic mass fragments. Cosine scores for networking and library
matching affected mainly the number of spectral families and of IDs, respectively. A
good compromise between these two outputs was obtained by setting the networking and
library matching cosine score thresholds at 0.6 for NI and 0.5 for PI. Finally, the number of
minimum library shared peaks was set at 3, because higher values of this parameter were
responsible for a drastic reduction of IDs, similarly to what was observed for the number of
matched fragments.
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3.2. FBMN Annotation of NI and PI Datasets

FBMN workflow applied to NI and PI datasets combined with aligned feature lists
and quantitative tables exported from data pre-processing, was able to remove the 57% and
27% of NI and PI redundant IDs (i.e., artefacts like duplicated features) found by classical
MN, respectively.

As first result, the effect of including context specific “Nutri-Metabolomics” mass
spectral libraries in the annotation workflow was evaluated by applying the FBMN protocol
in their presence and absence (i.e., GNPS libraries “only”). Indeed, substantial advantages
were observed upon using the dedicated mass spectral libraries, i.e., the increase of (i) 20%,
48%, in the number of IDs (Figure S2A) and (ii) 62.5%, 34%, in the number of IDs with a
mass error < 5 ppm (Figure S2B), for NI and PI datasets, respectively. Additionally, the use
of the “Nutri-Metabolomics” libraries solved two mis-annotations (i.e., incorrect annotation
of nodes) in the NI datasets. These results highlight the importance of applying the FBMN
annotation strategy in combination with contextual libraries, i.e., containing true reference
standards that are relevant for the application of interest and analyzed under the same
instrumental conditions adopted for the analysis of real samples.

The FBMN network of the NI dataset consisted of 545 nodes and 799 edges, with a
total number of connected components equal to 307, corresponding to 65 spectral families,
whereas molecular networking of the PI dataset resulted in 5079 nodes and 6904 edges,
with a total number of connected components equal to 3543 (i.e., 663 spectral families). The
ID lists obtained from the library matching in both NI and PI datasets contained 39 and
384 unique annotated compounds, respectively, which were checked for mass accuracy to
be around or lower than 5 ppm. Table S2 (see Section S5 of the Supplementary Materials)
reports the metabolites identified by library matching (based on cosine score similarity) of
nodes within and outside molecular families (the latter are typically called singletons) from
both NI (24 IDs) and PI (43 IDs) datasets, characterized by the lowest mass error (∆ ppm).

Even though the FBMN approach has specific methodological inputs and results that
differentiate it from commonly used workflows in untargeted nutrimetabolomics, it is
interesting to compare the discovery capacity and annotation coverage obtained with other
approaches. For this purpose, the FBMN was compared against two widely used annotation
protocols: (i) MZmine Library Search and (ii) statistical-based feature selection followed
by manual annotation (see Section S5 of the Supplementary Materials) [18]. It should
be emphasized that the compared workflows differ substantially as per their rationale.
MZmine Library Search workflow matches each row of the NI and PI feature lists (used also
for FBMN) against the imported spectral library. To make a consistent comparison with the
annotation performed with FBMN, the “ALL-GNPS” library was used. The conventional
protocol aims at selecting only statistically significant m/z features from full scan data,
followed by manual annotation using the MS/MS spectra often obtained in targeted mode.
In contrast with the presented approaches, FBMN explores all available MS/MS data from
the DDA metabolomics profiles (taking advantage of all structural annotations that can
be made), annotating them against mass spectral libraries. Only then, further statistical
analysis is performed to discover their potential postprandial relevance. Thus, the direct
comparison of these annotation and prioritization workflows is not and will never be
straightforward; yet, here we highlight some relevant aspects.

Table 1 shows the final number of IDs found adopting the three approaches. MZmine
Library Search workflow provided the metabolite annotation with 26 and 49 unique IDs
in NI and PI datasets, respectively, with cosine similarity scores (isotopic pattern at full
scan level) higher than 0.7. The number of IDs identified by this approach was comparable
with the results of the applied FBMN workflow, and several metabolite categories were
commonly annotated by the two procedures (data not shown), such as hippuric acids,
catechols, and derivatives of phenylacetic acid, coumaric acid, indoles, and hydroxyben-
zoic acid. However, due to the format of our data unsuitable for MS/MS-based mass
spectral matching within MzMine (i.e., incomplete mass lists for the MS/MS scans), the
MZmine-based approach relied on precursor m/z and isotope pattern matching, thus
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possibly resulting in a less reliable annotations due to the limited structural informa-
tion. The statistical-based/manual annotation method resulted in 50 and 106 statistically
significant m/z features in PI and NI datasets, respectively, corresponding to 24 metabo-
lite features after manual checking. Manual structure elucidation putatively identified
18 metabolites (12 in NI and 6 in PI datasets), while 6 metabolites remained unknown (see
Table S3). Using FBMN, a higher number of metabolites was putatively annotated, i.e.,
24 IDs in NI, and 43 IDs in PI, when compared to the statistical-based/manual annota-
tion approach. These differences were due to both (i) the automatic query (intrinsic of
FBMN) of all publicly available mass spectral libraries, including “Nutri-Metabolomics”
ones, and (ii) the different strategies to select the metabolite features to be annotated.
In fact, the conventional approach processes the NI and PI datasets to highlight physio-
logically relevant features, before their annotation is performed by unqueried matching
with analytical standards available in on-line spectral libraries. On the contrary, FBMN
automatically generates a list of IDs, which is then refined by applying, for example, a
mass accuracy threshold, in combination with the use of mass spectral similarity scoring
(i.e., modified cosine score), as presented in this study. Despite these methodological
differences, hydroxyhippuric acid and dihydrocaffeic acid glucuronide were identified
with both approaches. Moreover, the conventional postprandial analysis confirmed the
FBMN identification of structurally-related metabolites significantly altered upon berry
intake, belonging to furoic and abscisic acid derivatives, hydroxy and/or methoxy benzoic
acids. By contrast with FBMN, the conventional protocol for postprandial analysis iden-
tified the metabolite categories of valerolactone and valeric acid derivatives (see Section
S5 and Figure S3 of the Supplementary Materials), which are well-known colon-derived
catabolites of flavanols [25]. These metabolite features were found also inside the FBMN
molecular networks; however, they were not structurally characterized as such, due to their
absence in the “Nutri-Metabolomics” and other mass spectral libraries. These findings high-
lighted the importance of expanding the coverage of online spectral repositories to boost
metabolite annotations.

Table 1. Number of IDs annotated by Feature-Based Molecular Networking (FBMN) of NI and PI
datasets, including the developed “Nutri-Metabolomics” mass spectral libraries, in comparison with
the annotation performed with (i) MZmine Library Search using GNPS compatible mass spectral
libraries (ALL_GNPS, https://gnps-external.ucsd.edu/gnpslibrary) (accessed on 5 September 2022)
and with (ii) the statistical-based approach followed by manual annotation, reported in Section S5 of
the Supplementary materials.

Number of IDs NI PI

MZmine 1 26 49
Statistical-based approach & manual annotation 12 6

FBMN 24 43
1 Library search performed at full scan MS level using m/z and isotope pattern matching.

3.3. VM and VC Relative Contributions to the Postprandial Metabolome

Categorization of NI and PI metadata based on VM and VC interventions (see
Section 2.4 for details) allowed for the separate storage of spectral counts (i.e., the number
of mass spectra recorded for a node) of each ID precursor ion. This information was used
here for assessing the VM and VC relative contributions of each ID to the postprandial
metabolome, by the representation of a pie chart (see Figures 3 and 4 in Section 3.5). More-
over, a preliminary and descriptive contribution to the annotated urinary metabolome
of VM and VC interventions can be estimated. Interestingly, VM and VC interventions
exhibited an opposite feature occurrence in the two ionization datasets, highlighting the
importance of investigating both polarity modes. In detail, NI IDs resulted in a higher
postprandial occurrence after the intake of VC supplement (62 ± 6% vs. 38 ± 4% for VC and
VM), whereas for PI dataset, a slight predominance was found for VM (54 ± 2% vs. 46 ± 2%
for VM and VC).
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3.4. PPMC Analysis of Postprandial Kinetics

Longitudinal data analyzed by FBMN approach allows for additional data exploration
to highlight the specificity of food intake as well as the “background” metabolism, since
no feature selection is performed. Accordingly, the PPMC analysis was performed on
the mean values of chromatographic area of each ID as a function of time. Following
this analysis, 65.7% of the annotated metabolites (i.e., 44 IDs on a total of 67) showed
a statistically significant trend approximating an increasing or decreasing postprandial
response, thus highlighting the reliability of this approach. Among the significant correlated
metabolites, 35 IDs showed a positive coefficient (r-values) and were therefore associated
to phase I metabolism, whilst 9 IDs were characterized by negative r-values, suggesting a
phase II metabolism. Figure 2A,B illustrates two representative postprandial trends of IDs
corresponding to significant negative and positive r-values, respectively.
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The remaining 23 metabolites exhibited a non-linear and not significant trend, as
shown in the two representative examples of Figure 2C,D. The postprandial behavior of
these IDs cannot therefore be assigned through this approach and requires a qualitative
investigation (plots of chromatographic areas vs timepoints) and/or a dedicated treatment
outside the FBMN environment.

As stated above, these results were based on the correlation analysis of mean values of
chromatographic areas, i.e., without considering the dispersion of individual data around
the mean. To evaluate the impact of the extent of this dispersion on the statistical signifi-
cance of linear correlations, the data obtained for each volunteer and for each annotated
feature were submitted to PPMC analysis outside the FBMN environment (i.e., using the
data from MZmine feature lists). For 25 IDs out of the 44 IDs found to be significant based
on mean chromatographic areas, the statistical significance of the r-values was confirmed,
notwithstanding the high variability observed in the peak area datasets. These results
encourage the applicability of the postprandial analysis proposed here at least as a first
immediate screening of the postprandial behaviour of annotated metabolites, capturing
their metabolic trends over time. It is of note that this approach would produce more
accurate results when a lower dispersion of individual data around the average value is
observed; and to achieve this, increasing the sample size may be of help.

3.5. Nutrimetabolomics Outcomes from FBMN Molecular Networks

Figure S4 of the Supplementary Materials shows representative examples of the
structural modification involved in phase I and II metabolism of well-known VM and VC
native constituents [26], in association with the annotated metabolites and their significant
PPMC r-values.

Accordingly, potential metabolic modifications such as conjugations (e.g., glucuronida-
tion) and additions (e.g., methylation) should be expected to undergo in-source hydrolysis
and dissociation, leading to accurate annotations, but losing a relevant structural informa-
tion. To limit these drawbacks, a robust network inspection was performed to ensure a
reliable annotation.

Within NI dataset (24 IDs, see Table S2), four singletons were identified through
spectral matching with a good mass accuracy: azelaic acid, galacturonic acid, glutamine,
and ethoxy-oxobutenoic acid. The occurrence of galacturonic acid and glutamine can
be addressed to in-source dissociation of glycosidic and peptidic bonds of metabolite
conjugations. Figure 3 illustrates the molecular families in which at least one of the
remaining 20 metabolites was annotated. These metabolites were grouped according to
their postprandial kinetics, as assessed by statistically significant r-values. In Figure 3, the
structure of unknown nodes labelled with a gear was proposed as level III identification by
the analysis of their MS/MS spectra the hypothesized scheme of fragmentation (Figure S5
of the Supplementary Materials).

About the 50% of the identified structures was characterized by molecular scaffolds
related to cinnamic and dihydrocinnamic acids. Interestingly, among unknown nodes,
a relevant number of putative glucuronide derivatives was easily recognized by the oc-
currence in the MS/MS spectra of peaks at m/z 175.02 and 113.02, typical of glucuronic
acid (Figure S5).

Two nodes highlighted in one box in Figure 3 were recognized as a molecular family
related to abscisic acid glucuronide derivatives. The ID occurring in this family, was at
first addressed as dihydroxy-diphenylphenoxy-trihydroxyoxane-carboxylic acid, with
a mass error of about 128 ppm. However, the inspection of its MS/MS spectra (see
Figure S6 of the Supplementary Materials) led to a more accurate putative annotation of
this node as methoxyabscisic acid glucuronide (∆ = 2.6 ppm). In addition, the hypothesized
structure of the linked node was consistent with abscisic acid glucuronide (Figure S5),
which was already putatively identified in a previous study by a conventional annotation
workflow [18].
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Figure 3. Extracted molecular families of identified metabolites in negative ionization mode listed in
Table S2, belonging to the category of (poly)phenolic compounds, abscisic acid, and their glucuronide
or sulfate derivatives. Dashed boxes group the identified metabolites according to phase I and II
metabolism following PPMC analysis. The “gear” symbols refer to the putative structure identified
by manual investigation as reported in Section 2.6 of the main text. Statistically significant Pearson
correlation coefficients (r) are reported. Edge labels refer to the mass difference between two nodes.

Among the identified molecular families in the NI dataset, some of them exhibited
a mixed metabolic contribution (i.e., phase I–II). In detail, isoferulic acid glucuronide
showed a positive and significant PPMC correlation (r = 0.757), but was linked with a node
exhibiting an opposite postprandial behavior (peak area vs. time points, data not shown),
thus suggesting a phase I-II mixed contribution.

An analogous mixed metabolic contribution can be also proposed for the abscisic
acid spectral family since the methoxyabscisic acid glucuronide is most likely associated
to phase I due to the methylation of the hydroxyl group, whereas the node putatively
associated to the glucuronide derivative of abscisic acid, is related to phase II.

The molecular family containing hydroxyphenyl propionic and hydroxy-methoxy
cinnamic acids was characterized by peculiar structural relationships and depicted a hetero-
geneous metabolic contribution. In fact, the postprandial analysis of the identified nodes
evidenced a phase I expression (0.348 < r < 0.940) for most metabolites [19,27], with the
only exception of hydroxyphenyl propionic acid, for which a phase II metabolism can be
suggested, based on its r-value (−0.415). Even though this metabolic association to phase II
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metabolism is apparently questionable due the lack of a conjugated group, the analysis of
the full scan spectra evidenced an in-source fragmentation of the sulfate derivative of the
hydroxyphenyl propionic acid (m/z = 263.02 Da), thus confirming the phase II metabolic
attribution. A detailed analysis of this molecular family evidenced also that the compound
annotated as hydroxy-methoxycinnamic acid probably underwent in-source dissociation,
since in the same tR range, an ion at m/z 273 fragmented in m/z 229.02 and m/z 193.05,
corresponding to losses of 44 Da (neutral loss of CO2) and 80 Da (loss of SO3). These
findings suggested that the annotated compound was conjugated with sulfate. The other
spectral family associated with the phenylpropionic scaffold also included metabolites
associated with both phase I (i.e., enterolactone and hydroxyphenylpropionic acid) and
phase II (i.e., dihydrocaffeic acid glucuronide) [28]. A clearer postprandial kinetics was
highlighted for the molecular family of dihydroxyphenyl propanoic acid glucuronide,
being addressed as phase II (r = −0.302) metabolites [26]. Several sulfate metabolites
occurred in the same molecular family, belonging to the categories of dihydrocinnamic
and vanillic acids, phenolic derivatives, and indoles. Thanks to the analysis of postpran-
dial profiles and in agreement with literature findings [29,30], the molecular scaffolds of
the identified molecules are probably related to the activity of the gut microbiota. The
metabolites occurring in this spectral family can be addressed to the phase I metabolism
(0.526 < r < 0.700). Ultimately, it should be emphasized that some IDs belonging to the
abovementioned molecular families showed structural similarities with previously an-
notated compounds. For example, compounds 4 and 5 of the NI dataset (Table S2), are
characterized by retention time and MS2 fragments like those reported for the related
glucuronidated conjugates found in urine by Ancillotti and co-workers [19].

In the PI dataset, twenty-four singletons were identified. In detail, several metabolites,
annotated as (poly)phenolics and phenolics derivatives, were linked to phase I metabolism
(e.g., dihydroxy-trimethyl-isochromenone, trihydroxybutyrophenone, and dihydroresver-
atrol) and with mixed contribution of phase I-II (e.g., cinnamic acid and hesperetin) by
PPMC analysis. Other plant endogenous compounds, annotated with high accuracy, did
not show any significant PPMC. Among them, β-glucopyranosyl-tryptophan and furaneol,
as well as abscisic acid and nerol, which are well-known food-intake biomarker [31,32],
and plant constituents [33,34], respectively. Some human endogenous compounds were
also annotated (i.e., alpha-CEHC, ethylindole carboxylicacid, folinic acid, formylkynure-
nine, indole acetic acid, sebacic acid, ketodeoxycholic acid, keto-octadecadienoic acid,
and hydroxy-methoxybenzophenone), exhibiting different trends against time points
(−0.645 < r < 0.958), thus resulting in a complex metabolic output potentially associated
with the investigated interventions, or resulting from background diet. Finally, PI mode
exhibited three singletons that matched the NI annotations (i.e., azelaic acid, furoylglycine
and enterolactone) and postprandial behavior interpretation based on PPMC analysis, being
their longitudinal trend characterized by high and positive r-values (0.640 < r < 0.967).

The other annotated compounds occurred inside molecular families (Table S2), al-
lowing for identifying interesting metabolites. Figure 4 displays the molecular families
occurring in the PI dataset with the unknown nodes labelled by “gear” symbols for which
were provided hypothesized structures (Figure S7 of the Supplementary Materials). The
match with the PI “Nutri-Metabolomics” library identified two nodes as isomers of vanillic
acid at different retention times, whereas the remaining nodes were putatively addressed
as protocatechuic acid derivatives with high mass accuracy (from −3.26 to −0.06 ppm), by
structural elucidation (Figure S7). This molecular family resulted the only one with mixed
phase II-phase I contributions. In fact, vanillic acid was characterized by a statistically
significant negative r-value, suggesting its direct origin from the supplements intake [35],
whereas the two hypothesized protocatechuic acid derivatives exhibited an increasing
signal around 6–24 h when their signals were plotted manually, probably originating
from microbiota activity [30]. Most identified molecular families were related to phase I
metabolism (0.441 < r < 0.930) and, interestingly, several identified and hypothesized node
structures can be addressed as metabolite of the native polyphenols occurring in the bilberry
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and blueberry supplements [30]. Furthermore, derivatives of phloroglucinol carboxylic
acid (i.e., hydroxy-dimethoxyphenyl-ethanone), cinnamic acid (i.e., coumaric acid, methyl-
cinnamate, ferulic and isoferulic acid), and mandelic acid (i.e., methoxy-hydroxymandelate)
were recognized. A deeper network inspection revealed the occurrence of in-source frag-
mentations of the conjugation of cinnamic acid derivatives. In detail, at the same tR value
of the compound annotated as ferulic acid (tR = 5.14, m/z = 177.05), the feature at m/z
252.09 fragmented originating ions at m/z 177 (methoxycinnamic moiety) and at m/z 85
(H4SO3+H+ sulfate moiety), suggesting that the annotated compound is a sulfate conjugate.
Similarly, vanillic acid (tR = 3.65, m/z = 169.05) could be addressed as sulfate conjugated,
since a feature at tR = 3.7 and m/z = 261 was characterized by fragments at m/z = 99
(H3SO4

+) and at m/z=122 (probably benzoic acid). Finally, the compound annotated as
isoferulic acid (tR = 4.91, m/z = 177.05), coeluted with a feature at m/z = 263, which is prob-
ably a derivative of dihydrocaffeic acid sulfate (annotated in NI dataset), thus supporting
the sulfated conjugation of isoferulic acid. Three additional interesting spectral families
were identified as β-carboline derivatives (i.e., tetrahydroharmane carboxylic acid and
tetrahydro-β-carboline carboxylic acid), previously identified in serum samples from this
study [18], xanthine pathway metabolites (i.e., dimethyl-uric acid, caffeine), and terpene
derivatives (i.e., curcumenol). Regarding xanthine derivatives, even though the identifica-
tion of uric acid derivatives is in accordance with literature [36], the occurrence of caffeine
has never been reported in association with berries consumption and could be attributed
to the consumption of caffeine-rich foods before the fasting period foreseen in the study
design and/or within the period of pool samples collection [37]. Additionally, caffeine was
annotated with ∆ = 6.1 ppm by matching with the Massbank mass spectral library, which
includes 64 spectra for caffeine acquired in heterogenous instrumental conditions. Thus,
caution should be paid on this annotation. Curcumenol and its hypothesized sesquiter-
pene derivative were reported in this study as well as dihydroxy-trimethyl-isochromenone
and ligustilide isomers (however; they were hardly related to the intake of bilberry and
blueberry), as well as dihydroxy-trimethyl-isochromenone and ligustilide isomers. Finally,
Gamma-CEHC, an endogenous metabolite of vitamin E [38], occurred inside molecular
families, exhibiting a significant and positive r-value (0.441), representing a first report in
relation to berry consumption.
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4. Conclusions

This research investigated for the first time the applicability of the FBMN approach in
combination with mass spectral libraries relevant to nutrikinetic studies as well as PPMC
analysis to boost the structural annotation of postprandial urinary metabolites and to
explore their nutrikinetic behavior within a two-arm intervention study on the intake of
VM and VC supplements, as a relevant nutrimetabolomics application.

By using the FBMN approach, 24 and 43 metabolites were annotated with high mass
accuracy in NI and PI mode, respectively. The comparison with widely used annotation
protocols underlined the great potential of the FBMN workflow in providing the basis
for an automated exploratory data analysis workflow resulting in a comprehensive and
accurate annotation coverage. The proposed workflow offers a wider exploration of the
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urinary metabolome and allows for a prioritization strategy based on qualitative informa-
tion. Additionally, the reliability of the presented approach was confirmed by the annota-
tion of biochemically relevant metabolite categories across the three different annotation
protocols followed.

The quantitative information introduced by FBMN approach provided an estimation
of the impact of the two bilberry intakes on NI and PI datasets. Furthermore, the PPMC
analysis of the chromatographic areas of each identified mass feature in relation to the
postprandial timepoint proved to be a successful strategy to assess the kinetic shape
recognition related to phase I/phase II metabolism of IDs.

It can therefore be concluded that future integration of contextual mass spectral
libraries and PPMC analysis within the FBMN environment would be useful for nu-
trimetabolomics studies, as well as for other omics applications, where boosting annotation
rates and streamlining the metabolite selection procedure are key for the data interpretation.
Furthermore, it was demonstrated that the automated FBMN approach offers a versatile
and scalable alternative to existing approaches that handle untargeted metabolomics pro-
files of biofluids for biomarker discovery. Finally, our work clearly evidenced the need
for curated and contextualized mass spectral libraries that are fundamental for successful
metabolite identification and thus biochemical interpretation of metabolomics profiles.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12101005/s1, Supplementary Materials, List of Referece
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Abstract: Dietary glucose and fructose are both efficiently assimilated by the liver but a comprehen-
sive measurement of this process starting from their conversion to sugar phosphates, involvement
of the pentose phosphate pathway (PPP), and conversion to glycogen and lipid storage products,
remains incomplete. Mice were fed a chow diet supplemented with 35 g/100 mL drinking water of a
55/45 fructose/glucose mixture for 18 weeks. On the final night, the sugar mixture was enriched
with either [U-13C]glucose or [U-13C]fructose, and deuterated water (2H2O) was also administered.
13C-isotopomers representing newly synthesized hepatic glucose-6-phosphate (glucose-6-P), glycerol-
3-phosphate, and lipogenic acetyl-CoA were quantified by 2H and 13C NMR analysis of post-mortem
liver glycogen and triglyceride. These data were applied to a metabolic model covering glucose-6-P,
PPP, triose-P, and de novo lipogenesis (DNL) fluxes. The glucose supplement was converted to
glucose-6-P via the direct pathway, while the fructose supplement was metabolized by the liver
to gluconeogenic triose-P via fructokinase–aldolase–triokinase. Glucose-6-P from all carbohydrate
sources accounted for 40–60% of lipogenic acetyl-CoA and 10–12% was oxidized by the pentose
phosphate pathway (PPP). The yield of NADPH from PPP flux accounted for a minority (~30%) of
the total DNL requirement. In conclusion, this approach integrates measurements of glucose-6-P, PPP,
and DNL fluxes to provide a holistic and informative assessment of hepatic glucose and fructose
metabolism.

Keywords: pentose phosphate pathway; triose phosphates; acetyl-CoA; lipogenesis; 13C NMR

1. Introduction
1.1. Background

The liver is a key site for the metabolism of dietary sugar, with glucose and fructose
being the principal species absorbed into the portal vein blood outside of milk products.
In mammals and many other organisms, the fate of dietary sugar is heavily influenced in
real time by systemic glucose homeostasis, with the main priorities being maintenance of a
threshold level of blood glucose for the central nervous system and erythrocyte function,
while also minimizing large excursions of blood glucose levels. At the same time, sugar
is sensed as a precious and desirable nutrient to be sequestered as rapidly and efficiently
as possible [1]. This balance is achieved via a highly flexible and well-regulated hepatic
metabolic network. Not only can it rapidly switch between net hepatic glucose production
and uptake, but it can also direct temporary sugar surplus into short-term storage as
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glycogen or into longer-term storage as lipids. Since sugar in nature is typically composed
of approximately equimolar amounts of glucose and fructose, for omnivorous mammals,
including humans, the hepatic metabolic network has evolved to efficiently utilize both
hexoses. As can be seen in Figure 1, glucose-6-phosphate (glucose-6-P) is a key nexus in
hepatic sugar metabolism since it is a common product of glucose and fructose metabolized
via direct and indirect pathways, respectively. Glucose-6-P is also at the intersection of
glycogen synthesis and the pentose phosphate pathway (PPP).
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Figure 1. Metabolic model for the synthesis of glycogen and triglyceride from glucose or fructose
in the liver. The model includes glucose-6-phosphate oxidation by the pentose phosphate pathway
(PPP) to provide NADPH for conversion of acetyl-CoA to fatty acyl-CoA via de novo lipogenesis.
The 13C-enriched glucose and fructose precursors are highlighted in red and the sampled metabo-
lites, glycogen and triglyceride, are highlighted in blue. The metabolite pools whose 13C and 2H
enrichments are reported by the sampled metabolites, namely, glucose-6-P, triose-P (dihydroxy-
acetone phosphate and glyceraldehyde 3-phosphate) and lipogenic acetyl-CoA, are highlighted in
boxes. Glycogen synthesis from glucose via glucose-6-P from gluconeogenic precursors, including
pyruvate and triose-P sources, is also indicated (direct and indirect pathways, respectively). For
simplicity, some metabolic intermediates, as well as ATP/ADP and NAD/NADH interconversions,
are not shown. Abbreviations are as follows: DHAP—dihydroxyacetone phosphate; F-1-P—fructose-
1-phosphate; F-6-P—fructose 6-phosphate; F-1,6-P2—fructose-1,6-bisphosphate; G-6-P—glucose
6-phosphate; Gly—glyceraldehyde; Gly-3-P—glyceraldehyde 3-phosphate; OA—oxaloacetate; PEP—
phophoenolpyruvate; Ru-5-P: ribulose-5-P.

The conversion of glucose-6-P to lipids requires the generation of NADPH. The PPP
couples the oxidation of glucose-6-P to NADPH generation; hence, in principle, a portion
of sugar carbons can be sacrificially oxidized such that the remainder can be converted to
lipids. In the liver, NADPH can be derived from other sources [2] and, to the extent that
these contribute to de novo lipogenesis (DNL) reducing equivalents, then sugar carbons
are spared from PPP oxidation. The PPP is also a conduit for converting hexose sugars to
pentose phosphate precursors for nucleotide biosynthesis, which is a continual requirement
for hepatocyte growth and turnover.

13C-Isotopomers of newly synthesized glycogen derived from [U-13C]glucose and
[U-13C]fructose inform direct and indirect pathway fluxes [3], as well as the fraction of
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glucose-6-P that underwent PPP oxidation [4]. 13C-isotopomers of newly synthesized
triglyceride fatty acids and glycerol moieties inform the contributions of these sugars
to DNL and glyceroneogenesis [5]. The main objective of this study was to integrate
these measurements into a comprehensive description of hepatic glucose and fructose
metabolism, starting with their initial phosphorylation to sugar phosphate intermediates
and culminating with their conversion to triglycerides. Given the role of excessive sugar
consumption and elevated DNL activity in the pathogenesis of non-alcoholic fatty liver
disease (NAFLD) [6–8], such knowledge will improve our understanding of the role of
hepatic glucose and fructose metabolic fluxes in promoting this condition.

1.2. Metabolic Model

Figure 1 shows the metabolic model for lipogenesis from glucose and fructose. Fruc-
tose is assumed to be converted to triose phosphates via the canonical fructokinase–aldolase–
triokinase pathway, while glucose is converted to glucose-6-P via glucokinase. Glucose-6-P
can also be synthesized from triose phosphates by gluconeogenesis (GNG). Glucose-6-P is
disposed of by conversion to glycogen, by PPP oxidation, and by glycolysis. Glycerol-3-P
destined for triglyceride synthesis is mostly derived from the glycolytic triose phosphate
pool. The pyruvate product of glycolysis is oxidized to acetyl-CoA, which can be re-
cruited for fatty acid synthesis via DNL. One critical aspect in interpreting the formation of
glycogen and triglyceride 13C-isotopomers from the 13C-glucose or fructose precursors is
that turnover of the product pools may not be complete over the duration of the experi-
ment, resulting in artefactual dilutions of glycogen and lipid 13C-isotopomer enrichments.
To determine the fractions of glycogen and triglyceride that were synthesized while the
13C-sugar precursors were present, deuterated water (2H2O) was administered over the
same period. The 2H enrichment of glycogen and triglycerides relative to body water
informs these fractions [3,5,9] and, by sequential 2H and 13C NMR analysis, this informa-
tion can be determined without interfering with the quantification of the 13C-isotopomer
distributions [3,5,10].

Figure 2 shows the principal 13C-isotopomers of selected metabolite pools following
the metabolism of [U-13C]glucose. Under the experimental conditions, the 13C-isotopomer
distribution of newly synthesized glycogen is assumed to reflect that of glucose-6-P. The
direct pathway metabolism of [U-13C]glucose generates [U-13C]glucose-6-P and the [U-
13C]glycogen isotopomer. [U-13C]Glucose-6-P that undergoes PPP oxidation and recycling
generates [1,2-13C2]glucose-6-P and other partially labeled glucose-6-P isotopomers [4].
In addition, [U-13C]glucose that undergoes glycolytic–gluconeogenic recycling (either in-
trahepatic or via the Cori cycle) generates triose-P isotopomers, principally [1,2,3-13C3]-
and [2,3-13C2]triose-P [11]. These are incorporated into glucose-6-P and glycogen via
GNG, which is also historically referred to as the indirect pathway [12]. The fraction of
newly synthesized glycogen derived from the indirect pathway can be estimated from
the analysis of its 2H enrichment from 2H2O [3]. Hence, the 13C-isotopomer distribution
of the GNG precursor pool (GNG-triose-P) can be inferred from that of glycogen after
correction for the indirect pathway fraction. Glycerol-3-P for fatty acid esterification is
derived from the reduction of dihydroxyacetone phosphate; hence, its 13C-isotopomer
distribution, read from the analysis of newly synthesized triglyceride glycerol, provides
a readout of triose-P 13C-isotopomers. Acetyl-CoA isotopomers that are generated from
triose-P can be diluted by unlabeled non-triose substrates such as acetate before their
incorporation into fatty acids. When the 13C-label is provided as [U-13C]fructose (Sup-
plementary Figure S1), it generates the same set of hexose and triose-P 13C-isotopomers.
Note that the formation of [U-13C]glucose-6-P from [U-13C]fructose can occur via the
condensation of [U-13C]glyceraldehyde-3-P and [U-13C]dihydroxyacetone-P. The proba-
bility for [U-13C]glucose-6-P formation is related to the fractional enrichments of these
triose-P precursors.
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Figure 2. 13C-Isotopomers of selected metabolic intermediates generated from [U-13C]glucose
metabolism into lipogenic and glycogenic pathways. These include hepatic glucose-6-P—inferred
from the analysis of newly synthesized glycogen; triose-P recruited for gluconeogenesis (GNG-triose-
P)—inferred from the analysis of indirect pathway glycogen 13C-isotopomers; triose-P supplying
glycerol-3-P for fatty acid esterification and acetyl-CoA units for de novo lipogenesis—inferred from
the 13C-isotopomer analysis of newly synthesized triglyceride glycerol; and the acetyl-CoA pool
supplying lipogenesis—inferred from the 13C-isotopomer analysis of newly synthesized fatty acids.
For the metabolite carbon skeletons, the filled and unfilled circles represent 13C and 12C, respectively.
The shading highlights those 13C-isotopomers that inform the enrichment of the lipogenic acetyl-CoA
pool by [U-13C]acetyl CoA from both glycolytic precursor and fatty acid product perspectives, and
the colors indicate isotopic enrichment equivalence (same color) or non-equivalence (different colors).
For simplicity, in depicting the fatty acid labeling, only the 13C-isotopomers of the last two fatty
acid carbons (representing the first acetyl-CoA moiety to be incorporated into de novo lipogenesis)
are shown.

2. Methods
2.1. Materials

[U-13C]Fructose at 99% enrichment was obtained from Omicron Biochemicals Inc.,
South Bend, IN, USA, and [U-13C]glucose at 99% enrichment was manufactured by Cam-
bridge Isotopes Limited, Cambridge, MA, USA, and purchased through Tracertec, Madrid,
Spain. Deuterated water (2H2O) at 99.8% was purchased from CortecNet, Les Ulis, France.
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2.2. Animal Studies

Animal studies were approved by the University of Coimbra Ethics Committee on An-
imal Studies (ORBEA) and the Portuguese National Authority for Animal Health (DGAV),
approval code 0421/000/000/2013. A total of nine adult male C57BL/6J mice obtained
from Charles River Labs, Barcelona, Spain, were housed at the University of Coimbra
UC-Biotech Bioterium. They were maintained in a well-ventilated environment and a 12 h
light/12 h dark cycle. Upon delivery to the Bioterium, mice were provided a two-week
interval for acclimation, with free access to water and standard chow, comprising of 60%
mixed carbohydrates, 16% protein, and 3% lipids. Following this period, the chow was
supplemented with a 55/45 mixture of fructose and glucose present at a concentration
of 30% w/v in the drinking water for a period of 12 weeks. At the beginning of the final
evening, mice were administered with an intraperitoneal loading dose of 99% 2H2O con-
taining 0.9 mg/mL NaCl (4 mL/100 g body weight), and the drinking water was enriched
to 5% with 2H2O. The fructose/glucose mixture in their drinking water was replaced with
mixtures of identical composition, but with 20% enriched [U-13C]fructose for five mice and
20% enriched [U-13C]glucose for the remaining four mice. At the end of this dark cycle,
mice were deeply anesthetized with ketamine/xylazine and sacrificed by cardiac puncture.
Arterial blood was immediately centrifuged, and plasma was isolated and stored at −80 ◦C.
Livers were freeze-clamped and stored at −80 ◦C until further analysis.

2.3. Analysis of Glycogen and Triglyceride Isotopic Enrichments by NMR

Liver portions of ~500 mg were powdered under liquid nitrogen and extracted with
methyl tert-butyl ether, as previously described [5]. Glycogen from the insoluble pellet
was extracted, purified, and derivatized to monoacetone glucose (MAG), as previously
described [3]. Triglycerides from the organic fraction were separated from other lipids, as
previously described [13].

2.3.1. NMR Analysis of Glycogen 2H and 13C-Enrichments

Proton-decoupled 2H-NMR spectra of MAG samples at 50 ◦C were obtained with a
Bruker Avance III HD 500 spectrometer using a 2H-selective 5 mm probe incorporating a 19F-
lock channel. Samples were resuspended in 0.5 mL 90% acetonitrile/10% 2H-depleted water,
to which 50 µL of hexafluorobenzene were added. 2H-NMR spectra were obtained with a
90◦ pulse, 1.6 s of acquisition time, and a 0.1 s interpulse delay. The number of free-induction
decays (f.i.d.) collected ranged from 2000 to 10,000. Positional 2H enrichments were
determined using the MAG methyl signals as an intramolecular standard [14]. To quantify
plasma body water 2H enrichments, triplicate 10 µL samples of plasma were analyzed
at 25 ◦C by 2H NMR, as previously described [15], but with 50 µL of hexafluorobenzene
added to the NMR sample. Proton-decoupled 13C NMR spectra at 25 ◦C were obtained
with a Varian VNMRS 600 MHz NMR spectrometer equipped with a 3 mm broadband
probe. 13C NMR spectra were acquired at 25 ◦C using a 60◦ pulse, 30.5 kHz spectral width,
and 4.1 s of recycling time (4.0 s of acquisition time and 0.1 s pulse delay). The number
of acquisitions ranged from 2000 to 18,000. The summed f.i.d. was processed with 0.2 Hz
line-broadening and zero-filled to 512 K before Fourier transform.

2.3.2. NMR Analysis of Triglyceride 2H and 13C Enrichments

Purified triglycerides were dissolved in ~0.5 mL CHCl3. To these, 25 µL of a pyrazine
standard enriched to 1% with pyrazine-d4 and dissolved in CHCl3 (0.07 g pyrazine/g
CHCl3), and 50 µL C6F6 were added. 1H and 2H NMR spectra were acquired with an
11.7 T Bruker Avance III HD system using a dedicated 5 mm 2H probe with 19F lock and
1H-decoupling coil, as previously described. 1H spectra at 500.1 MHz were acquired with a
90◦ pulse, 10 kHz spectral width, 3 s acquisition time, and 5 s pulse delay. Overall, 16 f.i.d.
were collected for each spectrum. 2H NMR spectra at 76.7 MHz were obtained with a 90◦

pulse, a 1230 Hz sweep width, an acquisition time of 0.67 s, and interpulse delay of 8 s. For
13C isotopomer analysis by 13C NMR, dried triglyceride samples were dissolved in 0.2 mL
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99.96% enriched CDCl3 (Sigma-Aldrich) and acquired using the same parameters as for the
MAG samples. For each 13C spectrum, 2000–4000 f.i.d. were collected.

13C and 2H NMR spectra were analyzed with ACD/NMR Processor Academic Edition
software (ACD/Labs, Advanced Chemistry Development, Inc.).

2.4. Estimation of Substrate Contributions to Lipogenesis from Analysis of Newly Synthesized
Glycogen and Triglyceride 13C Isotopomers

As indicated in Figure 2, the 13C-isotopomer distributions of newly synthesized
glycogen informs that of glucose-6-P, while the 13C-isotopomer distributions of newly syn-
thesized triglyceride glyceryl and fatty acid moieties inform the precursor enrichments of
triose-P and lipogenic acetyl-CoA pools, respectively. For each of these reporter metabolites,
all 13C-isotopomers that are either metabolized to form lipogenic [U-13C]acetyl-CoA (i.e.,
glucose-6-P and triose-P) or are an immediate product (TG-fatty acid) were defined as
13CIUA. These 13CIUA correspond to the shaded 13C-isotopomers of glucose-6-P, triose-P,
and fatty acids shown in Figure 2 and provide the basis for quantifying the isotopic dilution
of the 13C-enriched carbons of glucose and fructose as they are metabolized to lipids.

For the glucose-6-P precursors, [U-13C]acetyl-CoA can be derived from glycolytic
metabolism of [U-13C]glucose-6-P, as well as from glucose-6-P isotopomers originating
from recycling and/or PPP metabolism of [U-13C]glucose. These include [1,2-13C2]-, [1,2,3-
13C3]-, [5,6-13C2]-, and [4,5,6-13C3]glucose-6-P. Thus, as shown by equation (1), the 13CIUA
for glucose-6-P can be estimated as the sum of [U-13C]-, [1,2-13C2]-, [1,2,3-13C3]-, [5,6-13C2]-,
and [4,5,6-13C3]glucose isotopomer enrichments of glycogen (Σglycogen isotopomers) multiplied
by 1/f glycogen. The fraction of newly synthesized glycogen (f glycogen) is estimated from the
2H enrichment of position 2 relative to that of body water [3], and these data are shown in
Supplementary Table S2.

Glucose-6-P 13CIUA = Σglycogen isotopomers × 1/f glycogen (1)

Glucose-6-P is derived from the phosphorylation of dietary glucose and from GNG.
For the [U-13C]glucose tracer, enrichment of [U-13C]glucose-6-P is assumed to be entirely
from the direct pathway metabolism of [U-13C]glucose. The direct pathway fraction (fdirect),
which also includes sources of unlabeled glucose present in the diet, -can be estimated
from the positional 2H enrichment distribution of glycogen [3] (Supplementary Table S2).
On this basis, 13CIUA enrichment of the dietary glucose precursor pool can be estimated
as follows:

Dietary glucose 13CIUA = [U-13C]Glucose-6-P 13CIUA × 1/fdirect (2)

Since the fraction of glucose-6-P synthesized by GNG is represented by the indirect
pathway fraction of newly synthesized glycogen (findirect), which can be estimated from the
glycogen 2H enrichment distributions (see Supplementary Table S2), then 13CIUA of the
GNG precursor pool can be calculated. For the [U-13C]glucose tracer, [U-13C]glucose-6-P
needs to be excluded from Σglycogen isotopomers since it is generated via the direct pathway.
The glucose-6-P isotopomers formed via gluconeogenesis that can generate [1,2-13C2]acetyl-
CoA are [1,2-13C2]-, [1,2,3-13C3]-, [5,6-13C2]-, and [4,5,6-13C3]glucose-6-P (13CIUA-GNG):

GNG 13CIUA = Glucose-6-P 13CIUA-GNG × 1/findirect (3a)

For [U-13C]fructose, all glycogen isotopomers are included since they are by definition
all derived via the indirect pathway:

GNG 13CIUA = Glucose-6-P 13CIUA × 1/findirect (3b)

The 13CIUA of triose-P and lipogenic acetyl-CoA are estimated by adjustment with the
newly synthesized triglyceride glyceryl fraction (f glyceryl) and fatty acid fractions (f fatty acid)
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estimated from the triglyceride 2H enrichment distribution [5] (Supplemental Table S2),
as follows:

Triose-P 13CIUA = Triglyceride glyceryl 13CIUA × 1/(f glyceryl) (4)

Acetyl-CoA 13CIUA = Triglyceride fatty acid 13CIUA × 1/(f fatty acid) (5)

where the measured glyceryl 13CIUA is the sum of triglyceride glyceryl isotopomers with
13C in both positions 2 and 3, and the fatty acid 13CIUA is the sum of fatty acid isotopomers
with 13C in both ultimate (ω) and penultimate positions. The fraction of lipogenic acetyl-
CoA derived from triose-P was estimated from the ratio of acetyl-CoA and triose-P 13CIUA
as follows:

Triose-P→ Acetyl-CoA = 100 × Acetyl-CoA 13CIUA/Triose-P 13CIUA (6)

The fraction of acetyl-CoA derived from non-triose-P metabolites, such as acetate, was
estimated as the difference:

Non-triose-P→ Acetyl-CoA = 100 − Triose-P fraction (7)

For the mice provided with [U-13C]glucose and unlabeled fructose, the fractional
contribution of dietary glucose to triose-P was estimated from the ratio of triose-P to
dietary glucose 13CIUA. This fraction was adjusted for total lipogenic acetyl-CoA flux by
multiplication with the fraction of Acetyl-CoA derived from triose-P (Equation (6)) and for
the loss of glucose-6-P carbon 1 as CO2 via the PPP.

Dietary glucose→ Triose-P = ([100 × Triose-P 13CIUA/dietary glucose 13CIUA] × Equation(6)) + 1/6 PPP (8)

The contribution of gluconeogenic precursors (GNG precursors) to triose-P was cal-
culated as the difference between total triose-P contribution (Equation (6)) and hepatic
glucose contribution (Equation (8)) and also accounted for the loss of carbon via the PPP:

GNG precursors→ Triose-P = (Equation (6) − Equation (8)) + 1/6 PPP (9)

For the mice provided with [U-13C]fructose and unlabeled glucose, the contribution
of triose-P to lipogenic acetyl-CoA was estimated using Equation (6). The contribution
of GNG precursors to triose-P was estimated from the ratio of triose-P to gluconeogenic
triose-P 13CIUA, with adjustment for total lipogenic acetyl-CoA flux by multiplication by
Equation (6) and the loss of glucose-6-P carbon 1 during PPP oxidation.

GNG precursors→ Triose-P = 100 × (Triose-P 13CIUA/GNG-Triose-P 13CIUA) × Equation (6) + 1/6 PPP (10)

The dietary glucose contribution to triose-P was calculated as the difference between
total triose-P (Equation (6)) and the GNG precursor contribution (Equation (10)) and
adjusted for the loss of glucose-6-P carbon 1 during PPP oxidation.

Dietary glucose→ Triose-P = Equation (6) − Equation (10) + 1/6 PPP (11)

Finally, the contributions of the 20% [U-13C]glucose supplement and other unlabeled
glucose sources to dietary glucose and the contribution of the 20% [U-13C]fructose supple-
ment and other unlabeled gluconeogenic precursors to GNG were calculated as follows:

[U-13C]Glucose→ dietary glucose = [100 × dietary glucose 13CIUA /20] × Equation (11) (12)

Other glucose sources→ dietary glucose = Equation (11) − Equation (12) (13)

[U-13C]Fructose→ GNG = [100 × GNG precursors 13CIUA/20] × Equation (10) (14)

Other GNG precursors→ GNG = Equation (10) − Equation (14) (15)
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2.5. Estimation of the Fraction of Glucose-6-P Metabolized by the PPP

The fraction of glucose-6-P oxidized by the PPP was estimated from the 13C-isotopomer
distributions of glycogen, as previously described [4]. The PPP fraction was normalized to
total lipogenic acetyl-CoA flux by multiplication with the product of Equation (6).

2.6. Statistical Analyses

All results are presented as means ± standard deviations. All datasets were submitted
to a Shapiro–Wilk normality test and homoscedasticity test (F test of equality of variances).
If both groups presented a normal distribution, then an unpaired Student’s t-test was
applied (Welch-corrected if variances were unequal). Otherwise, the Mann–Whitney U-test
was employed.

3. Results

3.1. Enrichment of Hepatic Metabolic Pools from [U-13C]Glucose and [U-13C]Fructose

The 13C-isotopomer distributions in the glucose-6-P and triose-P pools were almost
all accounted for by 13CIUA species (Supplementary Table S1). For the mice provided with
[U-13C]glucose, the glucose-6-P pool had the highest 13CIUA abundance, with the principal
isotopomer being [U-13C]glucose-6-P. From glucose-6-P to glycerol-3-P and acetyl-CoA,
there was a stepwise dilution in 13CIUA consistent with an inflow of unlabeled triose-P and
acetyl-CoA carbons, respectively (Table 1). The enrichment of the gluconeogenic triose-P
pool via indirect pathway metabolism or Cori cycling was relatively low, with the principal
contribution coming from PPP activity, as seen by the dominance of [1,2-13C2]glucose-6-P
over that of [5,6-13C2]glucose-6-P (Supplementary Table S1) [16]. Following its ingestion
and subsequent absorption, the [U-13C]glucose supplement was diluted almost four-fold
by other unlabeled glucose sources by the time it reached the liver (Table 1).

Table 1. Fractional enrichments (%) of 13C-isotopomers that generate or are associated with lipogenic
[U-13C]acetyl-CoA (13CIUA) for selected hepatic metabolite pools for a group of four mice provided
with 2H2O and [U-13C]glucose tracers, and a group of five mice provided with 2H2O and [U-
13C]fructose. Values are reported as means ± SE. N.D. not determined.

13CIUA (Equation)

Experiment
Hepatic
Glucose-6-P
(Equation (1))

Dietary Glucose
(Equation (2))

GNG precursors
(Equation (3a,b))

Triose-P
(Equation (4))

Acetyl-CoA
(Equation (5))

[U-13C]Glucose and
unlabeled fructose
(n = 4)

3.78 ± 0.74 5.47 ± 1.25 1.30 ± 0.15 2.50 ± 0.66 1.53 ± 0.43

Unlabeled glucose
and [U-13C]fructose
(n = 5)

5.06 ± 0.34 N.D. 14.99 ± 1.24 8.99 ± 1.05 4.32 ± 0.50

For mice provided with [U-13C]fructose, the highest 13CIUA abundances were found in
the GNG precursor and triose phosphate pools with dilution at both glucose-6-P and acetyl-
CoA pools (Table 1). This enrichment distribution indicates that, under our experimental
conditions, fructose was mostly metabolized to triose-P by the liver, followed by carbon
flows into both glycogenic and lipogenic pathways. Had the fructose been fully metabolized
to glucose in the intestine prior to reaching the liver [17], this would have resulted in a
13CIUA distribution resembling that observed with [U-13C]glucose, i.e., highest for glucose-
6-P, then progressive dilution at triose-P and acetyl-CoA pools. Finally, in contrast to [U-
13C]glucose, the dietary [U-13C]fructose supplement underwent relatively minor dilution
(~1.3-fold) from competing gluconeogenic precursors at its point of entry into the GNG pool.
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3.2. Sourcing of Lipogenic Acetyl-CoA Carbons Reported by [U-13C]Glucose and [U-13C]Fructose
and PPP Activity

A comparison of the contributions of different sources to lipogenic acetyl-CoA esti-
mated from [U-13C]glucose and [U-13C]fructose tracers is shown in Table 2. Both tracers
report a substantial contribution (40–50%) of non-sugar substrates such as acetate to the
lipogenic acetyl-CoA pool, even with chronic high-sugar feeding. Under our study condi-
tions, the bulk of triose-P destined for lipogenesis was derived from either dietary glucose
or fructose, with only minor contributions from other gluconeogenic precursors. For the
four common component fluxes reported by both tracers, the biggest divergence was found
for the triose-P and non-triose-P acetyl-CoA sources, while estimates for the contributions
of dietary glucose and GNG precursors to the lipogenic triose-P were in better agreement.
Figure 3 shows the values of these fluxes obtained by combining and averaging the data
derived from the [U-13C]glucose and [U-13C]fructose measurements. This includes the
overall PPP flux, which represents the sum of PPP fluxes attributed to glucose-6-P derived
from dietary glucose (i.e., direct pathway) and glucose-6-P derived from GNG sources
(indirect pathway) reported by [U-13C]glucose and [U-13C]fructose, respectively. Our data
indicate that about 11% of glucose-6-P had undergone PPP oxidation. While our previous
measurement of fractional PPP utilization of glucose-6-P in these livers showed modest
but significant differences between [U-13C]glucose and [U-13C]fructose tracers [4], the
significance was lost after the values were normalized to that of lipogenic acetyl-CoA flux
(Table 2).

Table 2. Estimates of substrate fluxes contributing to lipogenic acetyl-CoA expressed as a fraction
of total lipogenic acetyl-CoA flux into fatty acid synthase from 2H enrichment and 13C-isotopomer
analysis of a group of mice provided with 2H2O and [U-13C]glucose tracers (n = 4), and a group
provided with 2H2O and [U-13C]fructose (n = 5). The estimated pentose phosphate pathway (PPP)
fluxes involved in glucose-6-P oxidation and carbon recycling to regenerate glucose-6-P (Glucose-6-P
→ PPP→ Glucose-6-P) are also shown.

Pathway Component [U-13C]Glucose [U-13C]Fructose p Value

Acetyl-CoA→ Fatty acids 100 100 N.D.

Non-Triose-P→ Acetyl-CoA Equation (7) 40 ± 4 51 ± 8 0.08

Triose-P→ Acetyl-CoA Equation (6) 60 ± 4 49 ± 8 0.08

Dietary glucose→ Triose-P Equations (8) and (11) 28 ± 4 21 ± 9 0.32

[U-13C]glucose→ Dietary glucose Equation (12) 8 ± 4 N.D. N.D.

Other dietary glucose sources→ Dietary glucose Equation (13) 19 ± 4 N.D. N.D.

GNG precursors→ Triose-P Equations (9) and (10) 34 ± 8 29 ± 4 0.38

[U-13C]fructose→ GNG Equation (14) N.D. 22 ± 6 N.D.

Other precursors→ GNG Equation (15) N.D. 7 ± 4 N.D.

Glucose-6-P→ PPP→ Glucose-6-P 7 ± 1 5 ± 1 0.13

Values are reported as means ± SD. N.D. not determined.
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Figure 3. Fractional contributions of sugar and non-sugar sources to lipogenic acetyl-CoA estimated
by combining the data of both [U-13C]glucose (n = 4) and [U-13C]fructose (n = 5) analyses. Fractional
values were adjusted to that of acetyl-CoA conversion to fatty acids (arbitrarily set to 100) and the
standard deviations are shown alongside the means.

4. Discussion
4.1. General Overview

We developed a method for quantifying the major fluxes associated with hepatic
sugar metabolism that can be easily applied to mice and other small animal models.
We demonstrated that this approach can utilize 13C-isotopomer information from either
[U-13C]glucose or [U-13C]fructose. In principle, it could also function with other 13C-
sugar tracers that have been used as probes of hepatic carbohydrate metabolism such as
galactose [18,19] or glycerol [16,20,21]. Alongside the 2H2O tracer, these can be formulated
into the animal’s food or drinking water, allowing hepatic metabolic activity to be measured
in unperturbed ad libitum feeding conditions. Although dietary glucose is metabolized by
most, if not all, tissues, we can nevertheless identify that which is metabolized first-pass
by the liver as intact [U-13C]glucose. Paradoxically, although fructose metabolism is more
strongly associated with the liver compared to glucose, our metabolic analysis does not
provide direct information on hepatic [U-13C]fructose prior to it being metabolized to sugar
phosphates. This means that, unlike the first-pass hepatic metabolism of [U-13C]glucose,
we cannot be certain that the observed labeling of hepatic glucose-6-P and triose-P from
[U-13C]fructose was entirely the result of hepatic [U-13C]fructose metabolism.

4.2. Hepatic Versus Extrahepatic Fructose Metabolism

The liver was long believed to be the principal site for fructose metabolism, but this
has been recently challenged with evidence of other tissues, notably the intestine, with the
capacity of enterocytes for fructose phosphorylation and incorporation into glycolytic and
gluconeogenic fluxes [17]. Moreover, and perhaps not surprisingly, any fructose that is not
immediately absorbed can also be avidly metabolized by the intestinal microbiome [22,23],
with products such as acetate being subsequently absorbed and recruited as lipogenic
substrates by the liver [23]. As proposed by Jang et al., [17], the extent of intestinal versus
hepatic fructose metabolism may be related to the total amount of sugar ingested, with
low intakes being accommodated entirely by the intestine, and the liver metabolizing any
surplus above and beyond the intestinal capacity for fructose disposal. Our mice were
kept for 18 weeks on standard chow that was accompanied by drinking water containing
30 g/100 mL of a 55/45 fructose/glucose mixture. There was no other source of drinking
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water provided. Assuming a daily water intake of ~7 mL water per mouse [24], this would
require ingestion of ~10 mL of the mixture, resulting in about 2.5 g of ingested sugar (1.38 g
fructose and 1.12 g glucose). Given the average mouse mass of 35 grams, this translates to
39 g of fructose and 32 g of glucose per kg body mass over 24 h, or an average of ~1.6 g kg−1

fructose and ~1.3 g kg−1 of glucose per hour. If we compare these quantities to the criteria
of low and high-dose sugar intake established by Jang et al. based on single gavages of
0.5 g kg−1 and 2 g kg−1 of a 1:1 fructose/glucose mixture, respectively [17], then our mice
had a sugar intake that was well beyond the high dose defined by Jang et al. Under our
study conditions, much, if not most, of the fructose would be expected to be metabolized by
the liver, which is consistent with our observed hepatic metabolite 13C enrichment patterns
from [U-13C]fructose.

4.3. PPP Flux in Relation to De Novo Lipogenesis

The fraction of glucose-6-P that was oxidized by the PPP was estimated to be 11%.
The incorporation of n equivalents of acetyl-CoA into the fatty acid polymer requires
2n-2 equivalents of NADPH; hence, the synthesis of palmitate from 8 acetyl-CoA consumes
a total of 14 NADPH. Since two NADPH are generated for each glucose-6-P carbon oxidized
to CO2 via the PPP, a total of 1.17 glucose-6-P equivalents are required to generate the
necessary number of NADPH for the synthesis of each palmitate as follows:

4 Glucose-6-P→ 8 Acetyl-CoA→ 1 Palmitate

1.17 Glucose-6-P→ 14 NADPH→ 1 Palmitate

Therefore, if glucose-6-P is the sole contributor of lipogenic acetyl-CoA and if the PPP
is the sole source of NADPH, then the fraction of glucose-6-P that is utilized by the PPP
relative to the total used for lipogenesis (i.e., PPP oxidation plus acetyl-CoA generation) is
1.17/(4 + 1.17) = 23% (this relationship also approximates for C18 fatty acids: 22.9% versus
22.6% for C16). In adipose tissues, glucose-6-P is considered to be the main precursor of
acetyl-CoA [25], with the PPP considered to be the principal source of NADPH [26]. An in
situ measurement of PPP flux in human adipose tissue via a microdialysis method yielded
a PPP fraction of 17–22%, approaching the theoretical value for quantitative glucose-6-P
conversion to fatty acids [27]. In the liver, lipogenic acetyl-CoA is derived from sources
other than glucose-6-P, notably acetate. Therefore, under these conditions, if the PPP was
the sole source of NADPH, then a higher fractional PPP flux per equivalent of glucose-6-P
converted to acetyl-CoA would be required. For example, if acetate and glucose-6-P each
contribute 50% of acetyl-CoA for palmitate synthesis as follows:

4 Acetate→ 4 Acetyl-CoA

2 Glucose-6-P→ 4 Acetyl-CoA

1.17 Glucose-6-P→ 14 NADPH

then, to provide the theoretical amount of NADPH, the fraction of glucose-6-P that under-
goes PPP oxidation would need to increase to 1.17/(2 + 1.17) = 37%. Our data indicate that
glucose-6-P accounted at most for about half of lipogenic acetyl-CoA, but only 11% was
oxidized by the PPP. This suggests that the PPP accounted, at the most, for only about 11/37,
or about 30%, of the total NADPH demand for DNL under these conditions (If NADPH
derived from PPP oxidation was also consumed by other processes, such as the reduction
of oxidized glutathione, then its fractional contribution to DNL would be even less than
30%). Other possible sources of cytosolic NADPH include cytosolic NADP-malic enzyme 1
and NADP-isocitrate dehydrogenase 1 [2] and folate-mediated serine catabolism [28].
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4.4. Limitations of the Approach

There are several important limitations of our approach that must be taken into
account when interpreting the results. As previously discussed, our mouse model involved
a very high intake of sugar that ensured that the fructose component was predominantly
metabolized by the liver. If the amount of sugar was reduced, then it is likely that a much
higher proportion of the [U-13C]fructose would be metabolized by the intestine to form 13C-
isotopomers of glucose, lactate, and other metabolites [17], and these would be the principal
products seen by the liver rather than [U-13C]fructose. Nevertheless, aside from the
uncertainty in determining the contribution of fructose to the hepatic gluconeogenic triose-
P pool, the 13C-isotopomer distributions of glycogen and triglycerides would still provide
valid information on PPP fluxes, glyceroneogenesis, and the contribution of glucose-6-P and
non-glucose-6-P sources to DNL. Under high sugar intake conditions, Jang et al. reported a
substantial amount of fructose metabolism by the intestinal microbiota [17], with acetate
being a principal product [23]. The microbial fermentation of [U-13C]fructose results in the
formation of [U-13C]acetate, whose incorporation into DNL is indistinguishable from that
of [U-13C]acetyl-CoA derived from hepatic [U-13C]fructose metabolism. To the extent that
the fermentative metabolism of [U-13C]fructose contributes to the fatty acid 13C-isotopomer
enrichment, then the fraction of acetyl-CoA derived from non-glucose-6-P sources would
be expected to be underestimated, and, accordingly, the contribution of glucose-6-P to
DNL overestimated. However, when these parameters obtained from [U-13C]fructose are
compared with those derived from [U-13C]glucose (Table 2), they show a strong tendency
to report higher non-glucose-6-P and lower glucose-6-P fractions. One possibility is that,
given the very high sugar intake, there may have also been extensive microbial metabolism
of [U-13C]glucose. Glucose is normally efficiently absorbed in the small intestine, but small
intestinal bacterial overgrowth [29,30], possibly induced by high sugar diets [31], can result
in a portion of the glucose being fermented instead. Finally, the PPP flux is based on the
sugar phosphates that are recycled back to fructose-6-P and glucose-6-P and does not take
into account those pentose-P equivalents that were recruited for nucleotide biosynthesis.
Thus, the PPP estimate represents a lower limit of the real oxidative glucose-6-P flux.

4.5. Conclusions

Hepatic metabolism and assimilation of dietary sugar involves the co-ordination of
gluconeogenic, glycogenic, PPP, glycolytic, and lipogenic fluxes. While there are longstand-
ing methodologies for measuring these fluxes individually, until now there has been no
approach for quantifying fluxes through the entire ensemble. We demonstrate that, with
a combination of 2H2O and a [U-13C]hexose sugar that can be either glucose or fructose,
these fluxes can be quantified in mice under natural feeding conditions by analysis of liver
glycogen and triglyceride 13C-isotopomers. In addition to confirming a previous study that
a substantial fraction of lipogenic acetyl-CoA is derived from sources other than glucose-6-P,
even during high sugar feeding [5], our analysis also reveals that the PPP was not the main
supplier of NADPH for DNL, at least under our study conditions. Such information could
be valuable in improving our understanding of hepatic sugar metabolism under different
physiological and pathophysiological states.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12111142/s1, Figure S1: 13C-Isotopomers of selected
metabolic intermediates generated from [U-13C]fructose metabolism into lipogenic and glycogenic
pathways. These include hepatic glucose-6-P—inferred from the analysis of newly-synthesized
glycogen; triose-P recruited for gluconeogenesis (GNG-triose-P)—inferred from the analysis of indi-
rect pathway glycogen 13C-isotopomers; triose-P supplying glycerol-3-P for fatty acid esterification
and acetyl-CoA units for de novo lipogenesis—inferred from the 13C-isotopomer analysis of newly-
synthesized triglyceride glycerol, and the acetyl-CoA pool supplying lipogenesis—inferred from
the 13C-isotopomer analysis of newly-synthesized fatty acids. For the metabolite carbon skeletons,
the red filled and unfilled circles represent 13C and 12C, respectively. The shading highlights those
isotopomers that form [U-13C]acetyl CoA and the colors indicate isotopic equivalence (same color)
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or non-equivalence (different colors). For simplicity, in depicting the fatty acid labeling, only the
13C-isotopomers of the last two fatty acid carbons (representing the first acetyl-CoA moiety to be
incorporated into DNL) are shown.; Table S1: Liver glycogen 13C-isotopomer enrichments from mice
provided with [U-13C]glucose (n = 4) and [U-13C]fructose (n = 5). The glycogen 13C-isotopomers
shown in bold text are metabolized to [U-13C]acetyl-CoA. Table S2: Newly synthesized glycogen
fraction (f glycogen) with direct and indirect pathway contributions to the newly synthesized glycogen
(fdirect and findirect), and newly synthesized triglyceride glyceryl and fatty acid fractions (f glyceryl and
f fatty acid) from 2H-enrichment data of liver glycogen and triglyceride, respectively.

Author Contributions: J.G.J., C.B., L.C.T. and G.D.B. designed the experiments. I.V., G.D.N., G.D.B.,
J.G.S., L.P. and L.C.T. conducted the experiments. J.G.J. and I.V. provided facilities to perform the
experiments and provided material and instrumentation to perform the experiments and analyze
samples. Results were discussed and analyzed by J.G.J., I.V., G.D.N., G.D.B., J.G.S., L.P., C.B., A.N.T.
and L.C.T. The manuscript was written by J.G.J. and I.V. All authors reviewed the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: The authors acknowledge financial support from the Portuguese Foundation for Sci-
ence and Technology (research grant FCT-FEDER-02/SAICT/2017/028147). Structural funding
for the Center for Neurosciences and Cell Biology and the UC-NMR facility is supported in part
by FEDER—European Regional Development Fund through the COMPETE Programme, Centro
2020 Regional Operational Programme, and the Portuguese Foundation for Science and Technology
through grants UIDB/04539/2020; UIDP/04539/2020, LA/P/0058/2020, POCI-01-0145-FEDER-
007440; REEQ/481/QUI/2006, RECI/QEQ-QFI/0168/2012, CENTRO-07-CT62-FEDER-002012, and
Rede Nacional de Ressonancia Magnética Nuclear. The National Mass Spectrometry Network (RNEM)
provided funding under the contract POCI-01-0145-FEDER-402-022125 (ref.: ROTEIRO/0028/2013).
GDB was supported by the European Union’s Horizon 2020 Research and Innovation programme
under the Marie Skłodowska-Curie Grant Agreement No. 722619 (Project FOIE GRAS).

Institutional Review Board Statement: The study was conducted in accordance with the University
of Coimbra Ethics Committee on Animal Studies (ORBEA) and the Portuguese National Authority
for Animal Health (DGAV), approval code 0421/000/000/2013.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request. The data are not publicly
available due to privacy.

Conflicts of Interest: The authors declare no competing interest.

References
1. Sclafani, A. Gut-brain nutrient signaling. Appetition vs. satiation. Appetite 2013, 71, 454–458. [CrossRef] [PubMed]
2. Xiao, W.S.; Wang, R.S.; Handy, D.E.; Loscalzo, J. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

Antioxid. Redox Signal. 2018, 28, 251–272. [CrossRef]
3. DiNunzio, G.; Belew, G.D.; Torres, A.N.; Silva, J.G.; Silva, L.P.; Barosa, C.; Tavares, L.; Jones, J.G. Determining the contribution of a

high-fructose corn syrup formulation to hepatic glycogen synthesis during ad-libitum feeding in mice. Sci. Rep. 2020, 10, 12852.
[CrossRef] [PubMed]

4. Belew, G.D.; Di Nunzio, G.; Tavares, L.; Silva, J.G.; Torres, A.N.; Jones, J.G. Estimating pentose phosphate pathway activity from
the analysis of hepatic glycogen C-13-isotopomers derived from U-C-13 fructose and U-C-13 glucose. Magn. Reson. Med. 2020, 84,
2765–2771. [CrossRef] [PubMed]

5. Silva, J.C.P.; Marques, C.; Martins, F.O.; Viegas, I.; Tavares, L.; Macedo, M.P.; Jones, J.G. Determining contributions of exogenous
glucose and fructose to de novo fatty acid and glycerol synthesis in liver and adipose tissue. Metab. Eng. 2019, 56, 69–76.
[CrossRef] [PubMed]

6. Jensen, T.; Abdelmalek, M.F.; Sullivan, S.; Nadeau, K.J.; Green, M.; Roncal, C.; Nakagawa, T.; Kuwabara, M.; Sato, Y.; Kang,
D.-H.; et al. Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. J. Hepatol. 2018, 68, 1063–1075. [CrossRef]
[PubMed]

7. Chiu, S.; Mulligan, K.; Schwarz, J.-M. Dietary carbohydrates and fatty liver disease: De novo lipogenesis. Curr. Opin. Clin. Nutr.
Metab. Care 2018, 21, 277–282. [CrossRef]

8. Hodson, L.; Gunn, P.J. The regulation of hepatic fatty acid synthesis and partitioning: The effect of nutritional state. Nat. Rev.
Endocrinol. 2019, 15, 689–700. [CrossRef] [PubMed]

173



Metabolites 2022, 12, 1142

9. Jarak, I.; Barosa, C.; Martins, F.O.; Silva, J.C.P.; Santos, C.; Belew, G.D.; Rito, J.; Viegas, I.; Teixeira, J.; Oliveira, P.J.; et al. Sources of
hepatic glycogen synthesis in mice fed with glucose or fructose as the sole dietary carbohydrate. Magn. Reson. Med. 2019, 81,
639–644. [CrossRef] [PubMed]

10. Soares, A.F.; Carvalho, R.A.; Veiga, F.J.; Alves, M.G.; Martins, F.O.; Viegas, I.; Gonzalez, J.D.; Meton, I.; Baanante, I.V.; Jones,
J.G. Restoration of direct pathway glycogen synthesis flux in the STZ-diabetes rat model by insulin administration. Am. J.
Physiol.-Endocrinol. Metab. 2012, 303, E875–E885. [CrossRef]

11. Perdigoto, R.; Rodrigues, T.B.; Furtado, A.L.; Porto, A.; Geraldes, C.; Jones, J.G. Integration of U-C-13 glucose and (H2O)-H-2 for
quantification of hepatic glucose production and gluconeogenesis. Nmr Biomed. 2003, 16, 189–198. [CrossRef] [PubMed]

12. Newgard, C.B.; Hirsch, L.J.; Foster, D.W.; McGarry, J.D. Studies on the Mechanism by Which Exogenous Glucose Is Converted
into Liver-Glycogen in the Rat—A Direct or an Indirect Pathway. J. Biol. Chem. 1983, 258, 8046–8052. [CrossRef]

13. Belew, G.D.; Silva, J.; Rito, J.; Tavares, L.; Viegas, I.; Teixeira, J.; Oliveira, P.J.; Macedo, M.P.; Jones, J.G. Transfer of glucose
hydrogens via acetyl-CoA, malonyl-CoA, and NADPH to fatty acids during de novo lipogenesis S. J. Lipid Res. 2019, 60,
2050–2056. [CrossRef] [PubMed]

14. Jones, J.G.; Barosa, C.; Gomes, F.; Mendes, A.C.; Delgado, T.C.; Diogo, L.; Garcia, P.; Bastos, M.; Barros, L.; Fagulha, A.; et al. NMR
derivatives for quantification of H-2 and C-13-enrichment of human glucuronide from metabolic tracers. J. Carbohydr. Chem. 2006,
25, 203–217. [CrossRef]

15. Jones, J.G.; Merritt, M.; Malloy, C. Quantifying tracer levels of 2H2O enrichment from microliter amounts of plasma and urine by
2H NMR. Magn. Res. Med. 2001, 45, 156–158. [CrossRef]

16. Jin, E.S.; Sherry, A.D.; Malloy, C.R. Interaction between the Pentose Phosphate Pathway and Gluconeogenesis from Glycerol in
the Liver. J. Biol. Chem. 2014, 289, 32593–32603. [CrossRef] [PubMed]

17. Jang, C.; Hui, S.; Lu, W.; Cowan, A.J.; Morscher, R.J.; Lee, G.; Liu, W.; Tesz, G.J.; Birnbaum, M.J.; Rabinowitz, J.D. The Small
Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab. 2018, 27, 351–361. [CrossRef] [PubMed]

18. Soares, A.F.; Carvalho, R.A.; Veiga, F.J.; Jones, J.G. Effects of galactose on direct and indirect pathway estimates of hepatic glycogen
synthesis. Metab. Eng. 2010, 12, 552–560. [CrossRef] [PubMed]

19. Rother, K.I.; Schwenk, W.F. Glucose-Production in Glycogen-Storage-Disease-I Is Not Associated with Increased Cycling through
Hepatic Glycogen. Am. J. Physiol.-Endocrinol. Metab. 1995, 32, E774–E778. [CrossRef] [PubMed]

20. Jin, E.S.; Sherry, A.D.; Malloy, C.R. An Oral Load of C-13(3) Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification,
Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver. J. Biol. Chem. 2016,
291, 19031–19041. [CrossRef]

21. Jones, J.G.; Garcia, P.; Barosa, C.; Delgado, T.C.; Diogo, L. Hepatic anaplerotic outflow fluxes are redirected from gluconeogenesis
to lactate synthesis in patients with Type 1a glycogen storage disease. Metab. Eng. 2009, 11, 155–162. [CrossRef] [PubMed]

22. Zhang, X.F.; Grosfeld, A.; Williams, E.; Vasiliauskas, D.; Barretto, S.; Smith, L.; Mariadassou, M.; Philippe, C.; Devime, F.; Melchior,
C.; et al. Fructose malabsorption induces cholecystokinin expression in the ileum and cecum by changing microbiota composition
and metabolism. Faseb J. 2019, 33, 7126–7142. [CrossRef] [PubMed]

23. Zhao, S.; Jang, C.; Liu, J.; Uehara, K.; Gilbert, M.; Izzo, L.; Zeng, X.; Trefely, S.; Fernandez, S.; Carrer, A.; et al. Dietary fructose
feeds hepatic lipogenesis via microbiota-derived acetate. Nature 2020, 579, 586–591. [CrossRef] [PubMed]

24. Bachmanov, A.A.; Reed, D.R.; Beauchamp, G.D.; Tordoff, M.G. Food intake, water intake, and drinking spout side preference of
28 mouse strains. Behav. Genet. 2002, 32, 435–443. [CrossRef] [PubMed]

25. Yoo, H.; Stephanopoulos, G.; Kelleher, J.K. Quantifying carbon sources for de novo lipogenesis in wild-type and IRS-1 knockout
brown adipocytes. J. Lipid Res. 2004, 45, 1324–1332. [CrossRef] [PubMed]

26. Liu, L.; Shah, S.; Fan, J.; Park, J.O.; Wellen, K.E.; Rabinowitz, J.D. Malic enzyme tracers reveal hypoxia-induced switch in adipocyte
NADPH pathway usage. Nat. Chem. Biol. 2016, 12, 345–352. [CrossRef]

27. Minehira, K.; Bettschart, V.; Vidal, H.; Vega, N.; Di Vetta, V.; Rey, V.; Schneiter, P.; Tappy, L. Effect of carbohydrate overfeeding on
whole body and adipose tissue metabolism in humans. Obes. Res. 2003, 11, 1096–1103. [CrossRef]

28. Zhang, Z.; TeSlaa, T.; Xu, X.; Zeng, X.; Yang, L.; Xing, G.; Tesz, G.J.; Clasquin, M.F.; Rabinowitz, J.D. Serine catabolism generates
liver NADPH and supports hepatic lipogenesis. Nat. Metab. 2021, 3, 1608–1620. [CrossRef]

29. Wu, W.C.; Zhao, W.; Li, S. Small intestinal bacteria overgrowth decreases small intestinal motility in the NASH rats. World J.
Gastroenterol. 2008, 14, 313–317. [CrossRef]

30. Batt, R.M.; Hall, E.J.; McLean, L.; Simpson, K.W. Small intestinal bacterial overgrowth and enhanced intestinal permeability in
healthy beagles. Am. J. Vet. Res. 1992, 53, 1935–1940.

31. O’Brien, P.; Han, G.; Ganpathy, P.; Pitre, S.; Zhang, Y.; Ryan, J.; Sim, P.Y.; Harding, S.V.; Gray, R.; Preedy, V.R.; et al. Chronic Effects
of a High Sucrose Diet on Murine Gastrointestinal Nutrient Sensor Gene and Protein Expression Levels and Lipid Metabolism.
Int. J. Mol. Sci. 2021, 22, 137. [CrossRef] [PubMed]

174



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Metabolites Editorial Office
E-mail: metabolites@mdpi.com

www.mdpi.com/journal/metabolites





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34

www.mdpi.com ISBN 978-3-0365-7422-6 


