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Preface to ”Application of Remote Sensing and GIS

in Droughts and Floods Assessment and Monitoring”

The goal of this Special Issue is to discuss and address the applications of state-of-the-art

techniques such as remote sensing and GIS in drought or flood monitoring and hydrological hazards

assessment. Exhibiting diversity in topic areas, the research can generally be classified as follows: (1)

remote sensing application in drought assessment; (2) the impact of rainfall characters on floods; (3)

GIS technique application in flood forecasting and (4) water quality deterioration investigation based

on GIS technique and in situ observation.
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1. Introduction

Driven by global change and population pressure, droughts and floods have been two
of the most serious natural hazards, leading to crop losses and economic havoc in many
areas and ultimately affecting more people globally than any other natural hazard [1–4]. As
mentioned in the 2021 by the Intergovernmental Panel on Climate Change (IPCC) Group
1 Report, the average global temperature increased by about 1.07 ◦C during 2010–2019.
The report also warns of more frequent and intense extreme weather and climate events,
describing a potential proliferation of droughts and floods [5]. Over the past few decades,
extreme events of floods and droughts have increased [6], such as the severe heatwave and
droughts of Europe in 2003 and 2018 [7,8], the flood that occurred in Pakistan in 2010 [9],
the western Russian drought in 2010 [10], etc. Future changes are particularly drastic in
regions that include many developing nations, societies which are especially vulnerable
to global climate change. Under future climate conditions, the hydrological cycle will be
forced to accelerate, and many areas of the world are projected to experience increased
occurrences of extreme weather and climate events [11,12]. As droughts and floods are
complex hydrological systems, they deserve a multidisciplinary monitoring effort in order
to conduct appropriate and timely hazard assessments. Recently, remote sensing and
GIS-based techniques have been widely applied to obtain synoptic and punctual overviews
of basin-scale monitored areas [13,14]. It is clear that the application of remote sensing and
GIS can potentially provide an extra contribution to drought and flood assessment and
monitoring, for instance, in terms of accuracy of results, amount of information obtained,
temporal availability, and so on.

In this Special Issue, we attempted to discuss and address the applications of remote
sensing, GIS and other state-of-the-art techniques in drought or flood monitoring and
hydrological hazards assessment. To fulfill these objects, we strongly invited contributions
on various droughts or flood monitoring indexes from satellites and other data resources
such as high time resolution and high-resolution imaging, or the Gravity Recovery and
Climate Experiment (GRACE). Considering that the processes of hydrological hazards such
as droughts and floods are complex, research based on machine learning and modeling
was also included in this Special Issue. The investigative approach characterized by the
integration of disciplines at different scales of vision and precision represents a modern
effort to strive for a more complete understanding of drought and flood processes and,
therefore, a better hazard evaluation.

Water 2023, 15, 541. https://doi.org/10.3390/w15030541 https://www.mdpi.com/journal/water1
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2. Summary of This Special Issue

Amongst the papers in this Special Issue that represent examples of the state of the art
of remote sensing application in drought assessment was that submitted by Cui et al. [15],
in which the authors study the influence of climate background on drought events in
mainland China. In fact, droughts are one of the most serious natural hazards in China, but
they are also complexly affected by climate change. By considering water content as a whole
index, the terrestrial water storage changes (TWSCs), derived from GRACE time-variable
gravity fields, have constituted a useful dataset in hydrology research [13,14]. In this case,
a drought severity index (denoted as GRACE-DSI) derived from TWSCs was applied,
analyzing the role of the drought-related factors (e.g., precipitation, evapotranspiration)
and extreme climate events (e.g., El Niño–Southern Oscillation (ENSO) and North Atlantic
Oscillation (NAO) events) in the formation of droughts. The results of this study are
valuable in the efforts to understand the formation mechanism of drought events.

Floods are also one of the most serious natural hazards, which can lead to crop losses
and economic havoc in many areas, affecting more people globally than any other natural
hazard. In this Special Issue, four interesting manuscripts based on the GIS technique
were published, providing new insights about spatiotemporal patterns and modes of rain-
storm, the impact of rainfall movement direction, and the modeling of flood forecasting.
Liu et al. [16] used a manifold learning algorithm method of machine learning to analyze
rainstorm patterns, which is considered to be essential for improving the precision and
accuracy of flood forecasts and constructing flood disaster prevention systems. This re-
search analyzed the spatial–temporal characteristics of heavy rain in Beijing and Shenzhen
in China and found the key factors (topography and water vapor) to be diverse in different
regions. The proposed method provided a possible way to analyze spatio-temporal dis-
tribution characteristics of rainfall, which can help stakeholders to establish strategies to
reduce flood risks in different regions.

Liu et al. [17] proposed an approach to identify the characteristics of rainstorms of a
short duration in urban areas from their temporal and spatial dimensions. This study case
identified the typical spatiotemporal modes of rainfall and the reconstruction of the process
of modes of Beijing in China. The result showed that there were three modes of rainstorms
in the Beijing urban area, information which can be applied to rainstorm forecasting and
flood prevention in inner urban areas. The authors stated that this approach provides more
complete characteristics identification, including of its temporal and spatial dimensions,
than traditional methods for considering a rainfall as one complete process.

Liu et al. [18] found rainfall movement direction to be a significant rainfall variability in
urban floods, which is always ignored when comparing with rainfall intensity and duration.
This study provided a very innovative insight into the impact of spatial–temporal rainfall
variations on urban floods. In total, 1313 rainfall scenarios with different combinations of
rainfall intensity and rainfall movement direction in the typically rainy city of Shenzhen
in China were analyzed to investigate the effect of rainfall movement direction. They
concluded that the impact of rainfall movement direction is almost symmetrical and is asso-
ciated with the direction of the river. The closer rainfall movement direction is to the linear
directional mean of rivers, the larger the peak runoff of section will be. The authors stated
that rainfall movement direction is significant to urban peak runoff in the downstream
reaches, something which should be considered in urban hydrological analysis.

Another example of monitoring floods is the research published by Liu et al. [19] about
improvement of a floods elements correction model of the ridge estimation-based dynamic
system response curve (DSRC-R). They proposed a new criterion called the balance and
random degree criterion, considering the sum of squares of flow errors (BSR) to optimize
the ridge coefficient in the DSRC-R method. The results indicated that the techniques can
greatly shorten the search time of the ridge coefficient in optimization, which will improve
operational efficiency and enhance the real-time flood forecasting performance.

Besides droughts and floods, water quality deterioration has become a serious hydro-
logical hazard of late [20,21]. The rest of the two published papers were both related to
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water quality. These two papers published here showing different study cases are very in-
teresting. Chen et al. [22] studied the changes in the environmental quality of surface water
during the “13th Five-Year Plan” period (2016–2020) in Heilongjiang Province, the location
of the most important grain production base and the province with the highest latitude
in China. They concluded that the population, the primary industry, the tertiary industry
and forestry are the main factors affecting the change in water environment quality in Hei-
longjiang Province. This study provided a case analysis for water quality of Heilongjiang
province in China, which will be helpful to regional water environment protection.

Zhang et al. [23] investigated the temporal and spatial patterns of surface water
quality in China since the reform and opening-up program based on the monitoring of
datasets. They indicated that the temporal change trend in surface water quality in China
presented a “fluctuating changes stage–rapid deterioration stage–fluctuations stalemate
stage–rapid improvement stage” pattern. They also concluded that the current regional
surface water quality of China still has a polluted status. They sated that the potential
for the continuous reduction in major pollutant discharges had become more challenging,
and the marginal cost for pollution control had increased. This study provided a case
analysis for the water quality of a whole country, which will be helpful to national water
environmental protection.
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Abstract: The occurrence of droughts has become more frequent, and their intensity has increased
in mainland China. With the aim of better understanding the influence of climate background on
drought events in this region, we analyzed the role of the drought-related factors and extreme climate
in the formation of droughts by investigating the relationship between the drought severity index
(denoted as GRACE-DSI) based on the terrestrial water storage changes (TWSCs) derived from
Gravity Recovery and Climate Experiment (GRACE) time-variable gravity fields and drought-related
factors/extreme climate. The results show that GRACE-DSI was consistent with the self-calibrating
Palmer Drought Severity Index in mainland China, especially for the subtropical monsoon climate,
with a correlation of 0.72. Precipitation (PPT) and evapotranspiration (ET) are the main factors
causing drought events. However, they play different roles under different climate settings. The
regions under temperate monsoon climate and subtropical monsoon climate were more impacted by
PPT, while ET played a leading role in the regions under temperate continental climate and plateau
mountain climate. Moreover, El Niño–Southern Oscillation (ENSO) and North Atlantic Oscillation
(NAO) events mainly caused abnormalities in PPT and ET by affecting the strength of monsoons
(East Asian and Indian monsoon) and regional highs (Subtropical High, Siberian High, Central Asian
High, etc.). As a result, the various affected regions were prone to droughts during ENSO or NAO
events, which disturbed the normal operation of atmospheric circulation in different ways. The
results of this study are valuable in the efforts to understand the formation mechanism of drought
events in mainland China.

Keywords: GRACE; drought; mainland China; extreme climate; climatic conditions

1. Introduction

Drought is a severe natural hazard event on a global scale characterized by terres-
trial water deficit. It has a negative impact on socioeconomic development, crop failure,
ecosystems, and the lives of people [1–3]. Therefore, research on the influencing factors of
drought events are of great significance for establishing early warning, strengthening water
resources management and reducing disaster losses [4]. The drought index has always
been used as a quantitative indicator to characterize the drought events due to its simple
and easy-to-understand characteristics [5]. At present, the commonly used drought indices

Water 2021, 13, 2575. https://doi.org/10.3390/w13182575 https://www.mdpi.com/journal/water5
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are mainly the palmer drought severity index (PDSI) [6], the standardized precipitation
index (SPI) [7] and the standardized runoff index (SRI) [8]. These traditional drought
indices are mainly calculated based on the long-term accumulation of drought-related data
such as precipitation (PPT), evapotranspiration (ET), temperature, etc. The drought-related
data is provided by the meteorological stations. However, an insufficient number and
uneven distribution of these stations in some regions leads to the inability to obtain surface
data with high spatial resolution [9]. Furthermore, the traditional technical approaches not
only require a great deal of construction and maintenance, and they can only observe parts
of the hydrological component in the terrestrial water cycle [10]. Therefore, it is impossible
to explain the cause of drought from the perspective of the entire terrestrial water cycle.
These problems also appear in the traditional drought indices.

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission [11] has
provided monthly data on Earth’s gravity field to infer the total terrestrial water storage
change (TWSC) including surface and subsurface hydrological components [12]. Many
research works have proved that the GRACE data can detect regional drought events
and assess drought-associated losses, in regions such as the Amazon River [10,13,14],
Yangtze River [9,15–17], Southeastern China [18–20] and State of Texas [21]. Therefore,
some scholars have used GRACE TWSC data to construct drought indexes to achieve more
accurate detection and assessment of local drought. Yirdaw et al. [22] derived the total
storage deficit index (TSDI) to characterize the drought events in the Katchewan River
during 2002 and 2003. Wang et al. [23] used the GRACE TWS anomaly index (TWSI), PPT
anomaly index and vegetation anomaly index to detect drought events in the Haihe River
basin from January 2003 to January 2013. The results indicate that TWSI is more suitable
than traditional indices to monitor these drought events. Yi et al. [24] constructed the
GRACE-based hydrological drought index (GHDI) to monitor the drought events in the
United States from 2003 to 2012. The results indicate that the GHDI has a good correlation
with PDSI over the United States. Sinha et al. [25] used the water storage deficit index
(WSDI) to assess drought events in India. The results illustrate the validity and reliability
of WSDI in quantifying the characteristics of large-scale drought events. Zhao et al. [26]
developed the GRACE-based drought severity index (GRACE-DSI) to capture the major
drought events worldwide, and GRACE-DSI showed good temporal and spatial agreement
with PDSI and the standardized precipitation evapotranspiration index (SPEI). The above
studies show that the GRACE-based drought index is a valuable tool for the detection and
assessment of hydrological drought.

When people conduct in-depth research on drought-related data, they have a certain
understanding of the driving mechanisms of drought. Li et al. [19] and Wu et al. [27]
indicate that the extreme drought in Southwest China in 2010 was mainly caused by
insufficient PPT, and that excessive ET played a secondary role. Panisset et al. [28] explain
that anomalous PPT deficit and solar radiation anomalies were the main factors leading
to the three drought events in the Amazon basin in 2005, 2010 and 2015. Zhang et al. [17]
studied the two drought events that occurred in the Yangtze River basin in 2006 and
2011. The results showed that there was a certain connection with droughts and El Niño–
Southern Oscillation (ENSO) in this region, and the TWSC in the lower reaches was more
sensitive to the change in ENSO than the TWSC in the upper and middle reaches. However,
the above studies mainly focused on a certain local drought event, and did not consider
the influence of the regional climate background on the drought event.

Mainland China (MC) is the region with the most frequent drought disasters world-
wide; these disasters have brought huge losses to the region, and local drought disasters
occur almost every year in the region [29]. Therefore, we used MC as a research region
to study the drought events that occurred from April 2002 to June 2017 in four different
climate regions based on GRACE-DSI data. We calculated the correlation coefficients
between PPT, runoff, ET soil water storage and GRACE-DSI in the four different climate
regions to analyze the impact of the different climate backgrounds on drought events. We
also carried out a statistical analysis of the PPT, ET and GRACE-DSI during ENSO and
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North Atlantic Oscillation (NAO) events to discuss the influence of extreme climate on
drought events in different climate regions. These research results can help to understand
the driving mechanisms of drought events and provide early warning of drought disaster.

2. Study Area

MC is located approximately within 19◦ N–53◦ N and 73◦ E–135◦ E, and has an area
of about 9.6 million km2. Its digital elevation model shows that the terrain is like a ladder,
gradually descending from west to east (Figure 1).

Figure 1. Digital elevation model of mainland China. The different climate regions are marked on the map: temperate
monsoon climate (I), subtropical monsoon climate (II), plateau mountain climate (III), temperate continental climate (IV)
and tropical monsoon climate (V).

China is a vast territory with a wide span of latitudes and many areas that are far from
the sea. In addition, the terrain types and mountain directions are diverse, resulting in a
diversity of temperature, PPT and climates formed. The Eastern region has a monsoon
climate, the Northwest region has a temperate continental climate and the Qinghai-Tibet
Plateau has a plateau mountain climate. There are also humid regions, semi-humid regions,
semi-arid regions and arid regions. Furthermore, it is one of the countries with the most
rivers in the world. There are more than 1500 rivers with an area larger than 1000 km2

in MC, including the Yangtze River, Yellow River, Pearl River, Huaihe River, Liaohe
River and Songhua River. Most rivers are located in Eastern and Southern China, and a
few rivers are located in Northwest China. The ET gradually decreases from Southeast to
Northwest China. The distribution of precipitation decreases sharply from the Southeastern
(>3000 mm) to the Northwestern region (<50 mm) [30]. The occurrence of droughts
and floods has become more frequent, and the intensity of drought and floods has also
increased [31]. According to the climate type, MC can be divided into five parts (Figure 1),
namely temperate monsoon climate (I), subtropical monsoon climate (II), plateau mountain
climate (III), temperate continental climate (IV) and tropical monsoon climate (V). As the
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area of region V is relatively small, it is not suitable for GRACE detection; we focus on
regions I–IV in this study.

3. Data and Methods

3.1. GRACE TWSC

The GRACE RL06 monthly spherical harmonic (SH) coefficients product (truncated to
degree and order 60) was provided by the Center for Space Research at the University of
Texas at Austin, and was used to calculate TWSCs in MC for the period from April 2002 to
December 2016.

The GRACE data were preprocessed as follows: C20 coefficients were replaced with
those derived by satellite laser ranging [32]. Degree-1 coefficients were replaced using
Swenson’s results [33]. Filter processing combining a 300 km fan filter [34] and a PM36
de-correlation filter [35] was performed to weaken high-frequency and correlated errors.
Due to the influence of order truncation and filter processing, there are leakage errors in
the hydrological signals derived from GRACE data. The single scale factor method was
used to calibrate GRACE-based TWSC results to restore loss signals [36].

3.2. GLDAS Model

The GLDAS is a global high-resolution land surface model published jointly by the
Goddard Space Flight Center at NASA and the National Centers for Environmental Predic-
tion at the National Oceanic and Atmospheric Administration (NOAA). It incorporates
space- and ground-based observation and uses data assimilation techniques [37]. The
monthly soil moisture (SM) and runoff data with a 1◦ × 1◦ spatial resolution were pro-
vided by three GLDAS-2.1 models (Noah, the variable infiltration capacity model and the
catchment land surface model). The SM and runoff data were the average of these three
models’ data, and the time span was from April 2002 to December 2016.

3.3. In Situ Precipitation (PPT) Data

Monthly gridded precipitation data for the time period between April 2002 and
December 2016 provided by the China National Meteorological Science Data Center
and sorted by the National Meteorological Information Center with spatial resolution
0.5◦ × 0.5◦ were used for the analysis.

3.4. ET Data

ET is estimated according to a water balance equation [38,39]. Its expression is as follows:

ET = P − R − TWSC (1)

where P is PPT, R is the averaged runoff derived from GLDAS-2.1, and TWSC is derived
from GRACE data.

3.5. Self-Calibrating Palmer Drought Severity Index (SCPDSI) Data

The SCPDSI data [40], a meteorological drought index, can evaluate the water loss
caused by the imbalance of surface water supply and demand [41,42], and is provided by
the Climate Research Unit at University of East Anglia. In this study, we extracted the
relevant gridded data from April 2002 to December 2016 with spatial resolution 0.5◦ × 0.5◦
in MC. The severity of drought events can be classified as shown in Table 1 [43].

Table 1. The grades of SCPDSI drought classification.

Type SCPDSI Type SCPDSI

Extreme Drought ≤ −4.0 Light Drought −1.0~−2.0
Heavy Drought −3.0~−4.0 No Drought ≥ −1.0

Moderate Drought −2.0~−3.0
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3.6. Extreme Weather Index Data

The ENSO is an abnormal phenomenon characterized by ocean surface warming or
higher sea surface temperatures occurring in the Equatorial Eastern and Middle Pacific,
and is able to influence the global atmospheric circulation, causing abnormal temperature
and PPT [44,45]. The monthly Niño 3.4 index data indicate the magnitude of ENSO, which
is provided by the NOAA. An El Niño event is designated as the occurrence of an ENSO
index greater than or equal to 0.5 for 5 consecutive months, while a La Niña event is defined
as an ENSO index less than or equal to −0.5 for 5 consecutive months [44,46].

The NAO is a kind of atmospheric circulation change that occurs in the middle and
high latitudes of the Northern Hemisphere in winter, which reflects the atmospheric mass
changes between Iceland Depression and Azores High in the North Atlantic. The NAO
index can reflect the changes in the Iceland Depression and Azores High [47], and is also
provided by the NOAA.

3.7. Calculation of GRACE-DSI Data

Based on the gridded GRACE TWSCAs estimated in Section 3.1, GRACE-DSI is the
standardized GRACE-based TWSC as follows [26]:

GRACE-DSIi,j =
TWSCi,j − TWSCmean

j

σj
(2)

where TWSCi,j is TWSC in the ith year and jth month. i is a specific year from 2002 to 2016,
and j is a specific month from January to December. TWSCmean

j and σj are the average and
standard deviation of the TWSC in month j, respectively. This index can be used to detect
drought and abnormally wet events. According to the size of GRACE-DSI values, drought
events can be classified as shown in Table 2 [26]. Due to the truncation degree and filtering
effect, the spatial resolution of GRACE-DSI grid data is 350 km [48].

Table 2. GRACE-DSI drought grades classification.

Type GRACE-DSI Type GRACE-DSI

Exceptional Drought ≤ −2.0 Moderate Drought −1.3~−0.8
Extreme Drought −2.0~−1.6 Light Drought −0.8~−0.5
Severe Drought −1.6~−1.3 No Drought ≥ −0.5

3.8. The Extraction of Anomaly Signal

To discuss the relationship between GRACE-DSI and hydrological components, it
is necessary to extract the anomaly signal from the original signal of each hydrological
component. The time series of the original data can be decomposed into a long-term trend
change term, seasonal term and anomaly term. The expression is as follows [36]:

Data(t) = a0 + a1t + a2 cos(2πt) + a3 sin(2πt) + a4 cos(4πt) + a5 sin(4πt) + ε (3)

where Data(t) is the original data; t is the time; ε is the residual signal; and a0, a1, a2, a3, a4, a5
are the pending parameters. a0 is a constant; a1 is the long-term trend change term; and
a2, a3, a4, a5 are the seasonal signals. Therefore, the expression of the anomaly signals is:

Dataanomaly(t) = Data(t)− [a1t + a2 cos(2πt) + a3 sin(2πt) + a4 cos(4πt) + a5 sin(4πt)] (4)

4. Results and Analysis

4.1. Comparison of GRACE-DSI and SCPDSI

To verify the drought detection ability of GRACE-DSI, we compared the temporal and
spatial distribution of GRACE-DSI and SCPDSI (Figures 2 and 3). From Figure 2, it can
be seen that the two drought indices show good consistency in general, with a correlation
of 0.66 (Table 3). There were four episodes with long-term negative GRACE-DSI. The
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first time period was from August 2002 to March 2003, with the minimum value (−0.64)
occurring on March 2003. Although SCPDSI showed similar changes during this period,
the negative value (−0.07) was small and only appeared for one month (October 2002). The
values of GRACE-DSI were mostly negative during the second period from June 2006 to
February 2010, coinciding with SCPDSI. The minimum values of these indices appeared on
April 2008 (GRACE-DSI, −0.62) and August 2006 (SCPDSI, −0.71), respectively. During
the third period from March 2011 to April 2012, the minimum value of GRACE-DSI (−0.40)
was smaller than that of SCPDSI (−0.31), which appeared on January 2012 and July 2011,
respectively. For the fourth dry period from September 2013 to July 2015, the minimum
value (−0.43) of GRACE-DSI occurred in January 2015 and the one of SCPDSI was −0.35
in April 2014.

Figure 3 shows the spatial distribution of GRACE-DSI and SCPDSI from October 2009
to September 2010. It can be seen in Figure 3 that the two drought indices had similar
spatial distribution. In October 2009, most parts of MC were in the dry state, and only parts
of Qinghai Province and the northern part of Northeast China were in the humid state.
From November 2009 to January 2010, the arid regions were gradually decreasing, and
the degree of dryness was also decreasing. January 2010 was the period with the fewest
arid regions. By February 2010, the arid regions suddenly expanded, which was mainly
concentrated in Southwest China, eastern Xinjiang, southern Northeast China and northern
North China. The humid regions were concentrated in Qinghai Province, Northeast China
and the Southeast Coastal region. Subsequently, the arid regions gradually decreased
and the humid regions gradually increased. This trend continued until September 2010.
The temporal and spatial changes of GRACE-DSI and SCPDSI in Southwest China are
consistent with the severe drought event that occurred in the same period in the region [19].

From the perspective of different climate types, the highest correlation (0.72) between
GRACE-DSI and SCPDSI was found in region II under a subtropical monsoon climate
(see Table 3). In this region, the precipitation accounted for a relatively large proportion
of the entire water cycle. The lowest correlation (0.29) was found in region III under the
plateau mountain climate, implying a complex mechanism of droughts in this region. Since
vegetation, snow and other terrestrial surface hydrological components are not explicitly
processed in the SCPDSI [40], the correlations (0.42) between the two drought indices were
the same in the other three regions. By comparing the temporal and spatial distribution of
two drought indices and their correlation coefficients (Table 3, Figures 2 and 3), it can be
seen that GRACE-DSI could detect the drought events.

Figure 2. Time series of GRACE-DSI and SCPDSI.
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Table 3. The correlation coefficients between GRACE-DSI and SCPDSI.

Area I II III IV V MC

Correlation
Coefficient 0.42 0.72 0.29 0.42 0.42 0.66

 

Figure 3. Spatial distribution of GRACE-DSI and SCPDSI concerning the October 2009–September 2010 period.
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4.2. The Analysis of Factors Affecting GRACE-DSI

To study the impact of SM, PPT, ET and runoff on drought events, we calculated
the correlation coefficients between GRACE-DSI/SCPDSI and SM, PPT, ET and runoff
anomaly. The anomaly signals were extracted according to Equation (4). For a more
intuitive comparison and analysis, the following will elaborate on different climate regions.
As the tropical monsoon climate region is very small, it is not conducive to the detection of
GRACE satellites; therefore, it is considered here.

4.2.1. Temperate Monsoon Climate (Region I)

Figure 4 shows the time series of GRACE-DSI and SM, PPT, ET and runoff anomaly.
The SM and runoff had a relatively consistent change trend with GRACE-DSI and the
consistency of SM with GRACE-DSI was higher. However, the time series of GRACE-DSI
and SM had opposite change trends. This is also supported by the correlation coefficient
results (Table 4). The above results indicate that the SM is the most important factor
affecting the GRACE-DSI. This is consistent with the definition of hydrological drought—
that is, an imbalance between the supply and demand of soil water storage causes a drought
event [49].

Figure 4. The time series of GRACE-DSI, PPT, SM, runoff and ET anomaly under the temperate
monsoon climate.

Table 4. The correlation coefficients between GRACE-DSI and hydrological components.

Hydrological Component PPT SM Runoff ET

GRACE-DSI 0.18 0.75 0.37 −0.61

To analyze the interaction between the terrestrial hydrological components under the
temperate monsoon climate, the correlation coefficients between SM, PPT, ET and runoff
were calculated (Table 5). Table 5 shows that there was a strong correlation between PPT
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and runoff, and between runoff and SM, implying an obvious water transport channel
between PPT, SM and runoff—that is, PPT affects runoff, runoff affects SM. Considering
this with Table 4, we can see that the connection between PPT and GRACE-DSI is not
strong, but PPT exerts the effect on GRACE-DSI through runoff and SM. Considering this
alongside the strong correlation between ET and GRACE-DSI, it explains that PPT and
ET are the main factors affecting the occurrence of drought under this climate. Since the
correlation coefficient between SM and GRACE-DSI was larger than that between ET and
GRACE-DSI, it can be said that PPT has a larger impact on drought than ET. In a word,
PPT is the mainstay and ET is the supplement during the formation of drought events.

Table 5. The correlation coefficients between different hydrological components.

Hydrological Component PPT SM Runoff ET

PPT 1 0.29 0.61 0.32
SM 0.29 1 0.54 −0.31

Runoff 0.61 0.54 1 0.13
ET 0.32 −0.31 0.13 1

Usually, PPT and ET are vulnerable to extreme weather, so it is necessary to consider
the impact of extreme weather on drought events. Figures 5 and 6 show the performance of
the time series of GRACE-DSI, PPT and ET during the ENSO and NAO events, respectively.
From Figure 6, a total of five El Niño events and five La Niña events occurred during the
study period. The five El Niño events caused abnormal decreases in PPT, while three El
Niño events also led to abnormal increases in ET. Previous studies [50,51] indicate that
because of the abnormal decrease of sea surface temperature in the Western Pacific (El Niño
event), the East Asian summer monsoon weakened, causing the Western Pacific Subtropical
High and rain belt to move southward, resulting in less PPT and higher temperatures in
Northern China. The results in this paper provide scientific support for these results. Due
to less PPT and more ET, severe drought events occurring during the El Niño events from
June 2002 to February 2003 and from April 2015 to April 2016. While the two El Niño
events from July 2004 to January 2005 and from September 2006 to January 2007 caused
an abnormal decrease in PPT, the ET also showed an abnormal decrease. The drought
did not occur under the mutual offset of PPT and ET. The El Niño events from July 2009
to March 2010 led to less PPT and more ET, but perhaps because of the degree of PPT
reduction and the minor increase in ET, the combined effect was not enough to cause a
drought. According to the above analysis, we found that an El Niño event can indeed cause
an abnormally low PPT and an increase in ET, but its impact on PPT is slightly greater
than that on ET. Whether an El Niño event will cause drought is the result of its combined
effect on PPT and ET. The intensity of this effect needs to reach a certain level in order to
induce drought.

Three La Niña events led to an abnormal increase in PPT, and two La Niña events
caused an abnormal reduction in ET. Ma [52] indicates that when a La Niña event occurs,
the effects are simply the opposite of an El Niño event. At the time, the Western Pacific
Subtropical High and rain belt moved northward with the strengthening of the East Asian
Monsoon. Northern China showed higher PPT and higher temperature. It can be seen
from Figure 6 that the La Niña event mainly affected PPT. Drought events occurred during
the La Niña events from July 2007 to June 2008 and from August 2016 to December 2016.
According to the previous studies, the cause of drought from 2007 to 2008 was that the
northern part of China was in an interdecadal climate with high temperature and low PPT
at that time, which caused a high probability of drought in Northeast China and North
China [53]. The other drought event was the result of the interaction between the abnormal
high pressure in Baikal Lake and Central Siberia and the abnormal low pressures in North
China [54]. Due to the interaction of the above-mentioned high and low pressure, the
central and eastern regions of China were controlled by the extremely strong dry and cold
air flow. Under the control of the air flow, the water vapor transport was reduced, which in
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turn caused an abnormal decrease in PPT. This explains that the two drought events above
had little to do with the La Niña events.

Under the temperate monsoon climate, the ENSO cycle mainly affects the location
of the Western Pacific Subtropical High through the strength of the East Asian Monsoon.
The location of Western Pacific Subtropical High determines the amount of PPT and the
temperature. The temperature affects the amount of ET. Less PPT and more ET will increase
the probability of drought during an El Niño event. The situation is the opposite during a
La Niña event.

Figure 5. GRACE-DSI, PPT anomaly and ET anomaly during NAO events.

The relationship between NAO and GRACE-DSI, PPT and ET were analyzed in this
paper (see Figure 5). There were three negative NAO events and seven positive NAO
events during the study period. We found that the drought events occurred during the
negative NAO events, and they were all caused by less PPT and more ET. Wu et al. [55]
indicate that the NAO index has an inverse relationship with the range of Siberian High.
When the NAO index was abnormally low, the Siberian High enhanced and its impact
scope expanded, which cause the rain belt to move southward and there was less PPT and
more ET in Northern China. This coincides with the results in this paper.

When the NAO index was abnormally high, the situation was the opposite. However,
from Figure 5, it can be observed that there were three drought events during the positive
NAO events. Among them, the drought event from August 2007 to August 2008 was
caused by the background of climate, as explained in the previous section, and the one
from October 2008 to February 2009 was affected by an El Niño event, indicating that the
impact of the El Niño event may have exceeded the positive NAO event. However, the
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specific formation mechanism of the above drought event is relatively complicated, and
conclusions cannot be drawn regarding this as of yet. The drought event from August
2011 to February 2012 was mainly caused by abnormal atmospheric circulation. At the
same time, the Western Pacific Subtropical High was located to the south, which was not
conducive to the transportation of water vapor. In addition, there was a strong sinking
movement and low humidity in this region, which is conducive to the development and
continuation of drought [56].

Figure 6. GRACE-DSI, PPT anomaly and ET anomaly during ENSO events (El, El Niño, orange; La,
La Niña, blue).

Ineson et al. and Graf et al. [57,58] indicate that ENSO signal is propagated to the
stratosphere by upward movement, and then transmitted to the North Atlantic region
through the “subtropical bridge” mechanism in the stratosphere, which causes the NAO
response. El Niño is a negative NAO event, while La Niña is a positive NAO event. This
is consistent with the significant negative correlation (−0.88) between ENSO and NAO
indices in this paper. Comparing Figures 5 and 6, we can see that there were seven ENSO
events accompanied by NAO events. Among the seven events mentioned above, there were
three El Niño events, and the negative NAO events occurred at the same time; additionally,
four La Niña events and positive NAO events occurred together. The above results provide
strong data support for Chen et al. [59]. However, there were three ENSO events that did
not cause corresponding NAO events. This may be because these three ENSO events were
not Central Pacific (CP) events. According to the study results of Zhang et al. [60], there is
a significant relationship between CP ENSO events and NAO events.
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4.2.2. Subtropical Monsoon Climate (II)

Figure 7 shows the time series of GRACE-DSI, PPT, SM, runoff and ET anomaly under
the subtropical monsoon climate. We found that GRACE-DSI, SM and runoff had similar
change trends, which was also confirmed by the correlation coefficient results (Table 6). Unlike
the results under the temperate monsoon climate, the correlation coefficients indicate that
there was no significant correlation between GRACE-DSI and ET, but GRACE-DSI had a
close connection with runoff. This may be related to the sufficient PPT and numerous rivers
in this region. We calculated the correlation coefficients between the four hydrological
components (Table 7). It can be seen that the way in which PPT affected SM was the same
as in the temperate monsoon climate, and the impacts of PPT on runoff, and of runoff
on SM, were much greater than was observed in the temperate monsoon climate. This
indicates that PPT plays a leading role in drought events, and the impact of ET is small
under the subtropical monsoon climate.

Figure 7. The time series of GRACE-DSI, PPT anomaly, SM anomaly, runoff anomaly and ET anomaly
under the subtropical monsoon climate.

Table 6. The correlation coefficients between GRACE-DSI and hydrological components.

Hydrological Component PPT SM Runoff ET

GRACE-DSI 0.47 0.65 0.62 −0.24

Table 7. The correlation coefficients between different hydrological components.

Hydrological Component PPT SM Runoff ET

PPT 1 0.40 0.72 0.29
SM 0.40 1 0.73 −0.23

Runoff 0.72 0.73 1 0.11
ET 0.29 −0.23 0.11 1
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Similarly, to discuss the influence of extreme climate on drought events and PPT, the
change condition of GRACE-DSI and PPT anomaly time series during ENSO and NAO
events are shown in Figures 8 and 9. Figure 8 shows that there were drought events during
three La Niña events. These drought events were caused by low PPT. Previous studies have
shown that the PPT in Southeastern China was greater than normal due to the southward
shift of the PPT belt during La Niña events, while the situation was the opposite during
the El Niño events [50,61]. There was no reduction in PPT during the other two La Niña
events, and so drought events did not appear. This can be attributed to the large amount of
PPT brought by typhoons [62]. However, drought events occurred during three El Niño
events, and these three drought events occurred from July 2004 to January 2005, from
September 2006 to January 2007 and from July 2009 to May 2010. The first drought event
was mainly due to a lack of PPT caused by a lack of tropical cyclones [63]. The second
drought event was mainly caused by the control of the Subtropical High in Southern China,
and the increase and continuation of the Subtropical High in 2006 were closely related to
the strengthening of atmospheric convection in the South China Sea and the abnormal
heating field in the Bengal Bay [64]. The main reason for the drought from 2009 to 2010
was abnormal circulation. The Western Pacific Subtropical High was stronger than usual,
and as a result the Indian Ocean water vapor was not transported to Southwest China.
Therefore, there was less PPT in the region [65].

 
Figure 8. GRACE-DSI and PPT anomaly during ENSO events (El, El Niño; La, La Niña).

From Figure 9, it can be observed that the drought events occurred during four posi-
tive NAO events, which were caused by low PPT. A previous study indicates that a positive
NAO event caused the rain belt to move north, so there was less PPT in this region [55].
The positive NAO event from October 2008 to February 2009 caused a reduction in PPT, but
the peak and average values of GRACE-DSI were greater than 0 because of two large-scale
waves in the winter 2008, which made the temperature lower than usual [66]. Therefore,
severe drought did not appear under the interaction of reduced PPT and low tempera-
ture. There was only one drought during a negative NAO event from October 2009 to
March 2010, which was caused by the Western Pacific Subtropical High. The specific reason
is explained in the previous paragraph.
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Figure 9. GRACE-DSI and PPT anomaly during NAO events.

4.2.3. Plateau Mountain Climate (III)

The time series of GRACE-DSI, PPT, SM, ET and runoff anomaly under the plateau
mountain climate are shown in Figure 10. Only the ET and GRACE-DSI had a significant
correlation, and it was negative. This is also confirmed by the results in Table 8. The
change trends of runoff and PPT anomaly were relatively smooth. Table 9 shows that the
correlations between the four hydrological components (SM, PPT, SM and runoff) were
not strong, indicating that ET is the main factor causing drought events under the plateau
mountain climate.

Figures 11 and 12 show the time series of GRACE-DSI and ET anomaly during ENSO
and NAO events. Figure 11 shows that drought events occurred during all five El Niño
events. There were four drought events caused by higher ET. Xu et al. indicated that ENSO
events affect the surface temperature of the Tibetan Plateau by adjusting the strength of the
Indian Ocean Monsoon [67]. In an El Niño year, the Indian Ocean Monsoon weakens and
the surface temperature rises, leading to an increase in the possibility of drought events. In
La Niña years, the opposite is true. However, drought events occurred during two La Niña
events. The first drought event from July 2007 to June 2008 was due to a stronger Middle
East Subtropical High. The warm and humid airflow from Bengal Bay could not reach the
Tibetan Plateau under the control of this high [68]. The second drought from August to
December 2016 was caused by the southward movement of an abnormal continental warm
high and the northward movement of the Western Pacific Subtropical High. Under the
influence of the above two high pressures, there was long-term, large-scale, sunny and hot
weather in this region [54].

18



Water 2021, 13, 2575

Figure 10. The time series of GRACE-DSI/SCPDSI, PPT anomaly, SM anomaly, runoff anomaly and
ET anomaly under the plateau mountain climate.

Table 8. The correlation coefficients between drought indices and hydrological components.

Hydrological Component PPT SM Runoff ET

GRACE-DSI 0.12 0.29 −0.01 −0.65

Table 9. The correlation coefficients between different hydrological components.

Hydrological Component PPT SM Runoff ET

PPT 1 0.10 0.17 0.30
SM 0.10 1 0.43 −0.25

Runoff 0.17 0.43 1 −0.01
ET 0.30 −0.25 −0.01 1

Figure 12 shows that drought events occurred during all three negative NAO events,
resulting from the southward movement of the Siberian High [55]. The opposite was true
during positive NAO events. However, the drought event from April 2007 to April 2008
appeared during a positive NAO event. The reason for this drought was explained in the
previous paragraph.
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Figure 11. GRACE-DSI and ET anomaly compared with ENSO index (El, El Niño; La, La Niña).

Figure 12. GRACE-DSI and ET anomaly compared with NAO index.

4.2.4. Temperate Continental Climate (IV)

Figure 13 compares the time series of GRACE-DSI and PPT, SM, ET and runoff
anomaly under the temperate continental climate. We found that the GRACE-DSI had a
significant correlation with both ET and SM. Additionally, the change trend of the PPT
anomaly was relatively stable. The absolute value of the correlation coefficient between
ET and GRACE-DSI (0.76) was greater than that of GRACE-DSI and PPT (0.57) (Table 10).
This indicates that the impact of ET on drought events is greater than that of PPT in the
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temperate continental climate in this climate. We calculated the correlation coefficients
between the four hydrological components (SM, ET, PPT and runoff), as shown in Table 11.
The results also show the same relationships between PPT, runoff and SM.

Figure 13. The time series of GRACE-DSI/SCPDSI, PPT anomaly, SM anomaly, runoff anomaly and
ET anomaly under the temperate continental climate.

Table 10. The correlation coefficients between drought indices and hydrological components.

Hydrological Component PPT SM Runoff ET

GRACE-DSI 0.12 0.57 0.37 −0.76

Table 11. The correlation coefficients between different hydrological components.

Hydrological Component PPT SM Runoff ET

PPT 1 0.29 0.53 0.21
SM 0.29 1 0.66 −0.35

Runoff 0.53 0.66 1 −0.15
ET 0.21 −0.35 −0.15 1

The time series of GRACE-DSI, PPT and ET anomaly during ENSO and NAO events
are shown in Figures 14 and 15. Figure 14 shows that drought events occurred during
three El Niño events. The previous studies show that the influence of ENSO events in
the temperate continental climate region is basically the same as that in the temperate
monsoon climate region [50,51]. However, there was no drought during the other two El
Niño events, because the degree of anomalous decrease in PPT was small and the ET was
less than usual. Drought events occurred during two La Niña events. The Subtropical High
that moved eastward from Western or Central Asia under the influence of atmospheric
circulation controlled this region and was the main factor causing the drought event from
July 2007 to June 2008 [69]. The drought event from August 2011 to April 2012 was mainly
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caused by abnormal atmospheric circulation. As the Subtropical High was weaker than
usual, the region was mainly controlled by cold air, and warm and humid air currents
could not reach the area. This led to reduced PPT and drought [56].

Figure 14. GRACE-DSI, PPT and ET anomaly compared with the ENSO index (El, El Niño; La,
La Niña).

From Figure 15, two drought events appeared during negative NAO events. Although
the PPT was less than usual, ET was also less; this is why there was no drought during
the negative event from August 2008 to March 2003. Drought only appeared during two
positive NAO events. The drought from July 2015 and April 2016 was affected by El
Niño events. As the region was affected by the Subtropical High, the cold air flowed
southward. At the same time, due to the influence of the sinking airflow, the transportation
of water vapor in the south was blocked. This caused a drought event from October 2008 to
February 2009 [70].
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Figure 15. GRACE-DSI, PPT and ET anomaly compared with the NAO index.

5. Discussion

PPT and ET are the two decisive factors leading to drought events. Extreme climate is
one of the factors causing abnormal PPT and ET. The purpose of our study is to discuss
the influence of extreme climate on GRACE-DSI, PPT and ET in different climate regions.
According to the results in Section 4, extreme climate led to drought by affecting PPT
and temperature. Table 12 shows relationship between extreme climate and both PPT
and ET anomaly in four climate types. From Table 12, it can be seen that ENSO index
was negatively correlated with PPT anomaly under the temperate continental climate and
temperate monsoon climate. Meanwhile, there was a positive correlation between ENSO index
and PPT anomaly under the subtropical monsoon climate (see the analysis in Section 4). The
previous studies show that East Asian Monsoon weakens during El Niño events, which
causes the Western Pacific Subtropical High to weaken and move to the south. When this
occurs, the boundary between cold air and warm and humid air in MC moves further
southward than in regular years. This increases the probability of excessive PPT in South
China, while it is likely to lead to reduced PPT in North China. During La Niña events, the
situation is the opposite [51,61,71].
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Table 12. The relationship between ENSO and NAO indices and GRACE-DSI, PPT and ET anomaly.

Correlation Coefficient I II III IV

ENSO vs. PPT anomaly −0.30 0.27 - −0.30
ENSO vs. ET anomaly 0.08 - 0.22 0.08
NAO vs. PPT anomaly 0.23 −0.29 - 0.09
NAO vs. ET anomaly −0.11 - −0.25 −0.10

Table 12 shows that ENSO index and ET anomaly were positively correlated in the
temperate continental climate and temperate monsoon climate. Zuo indicated that the
influence of ENSO events on the temperature in China is mainly concentrated in North
China. The average maximum temperature was observed to be higher in the summer
and autumn than normal during El Niño events, while one was lower during La Niña
events [66]. Abnormal temperature changes are directly reflected in the ET. The PPT and
ET are the two important hydrological components in the terrestrial water cycle. Therefore,
abnormal changes in PPT and ET lead to abnormalities in TWSC, which in turn affects the
GRACE-DSI. According to Table 12, the impact of extreme climate on PPT was greater than
that on ET.

Due to the geographical location, the climate of the plateau mountain climate region is
more strongly affected by the Indian Ocean Monsoon. Although blocked by the Himalaya,
the Indian Ocean Monsoon still brings some warm and humid air to this region. In El
Niño years, the surface temperature of the Qinghai-Tibet Plateau is relatively high due to
the weakening of the Indian Ocean Monsoon, resulting in an increase in ET. In La Niña
years, there is less ET in this region [65]. Therefore, the results in Table 12 also confirm
the above conclusion. As the region with temperature continental climate is located in the
hinterland of the continent and far from the ocean, it is difficult for warm humid air to
reach this region, causing the region to be mostly semi-arid and arid. Therefore, the biggest
difference between this region and the temperature monsoon climate is that ET plays a key
role in the entire terrestrial water cycle.

6. Conclusions

To discuss the cause of drought events under different climatic conditions, we took
four climatic regions in MC as an example to study the influences of various hydrological
components and extreme climate on drought events using GRACE-DSI data. Firstly, we
compared the temporal and spatial distribution of GRACE-DSI and SCPDSI and calculated
the correlation coefficient between these two indices. The results indicate that GRACE-DSI
and SCPDSI have similar temporal and spatial distribution and are strongly correlated
(0.66) in MC. This proves that GRACE-DSI can detect drought events in MC. Secondly, we
studied the influence of drought-related factors and extreme climate on drought events by
analyzing the relationship between GRACE-DSI and anomalous changes of SM, PPT, ET
and runoff during ENSO and NAO events. The results show that PPT and ET are the main
causative factors of drought events. However, they play different roles in different climate
regions. PPT plays a major role in temperate monsoon climate and subtropical monsoon
climate regions, while ET plays a dominant role in the other two climate regions. ENSO
and NAO events first affected the monsoon and regional high, and changes in the monsoon
and regional high directly affected the changes of PPT and temperature in a given region.
The changes of temperature affected the amount of ET. Therefore, extreme climate has a
very important influence on regional drought events. However, the influence of extreme
climate on different climatic regions is different depending on the different geographical
locations and influence mechanisms.

Our research helps to further reveal the causes of drought events, and provides a
reference for drought research in other similar and different climate regions. We mainly
focused on the influence of climatic factors on drought events in this paper. Therefore,
future work will mainly study the influence of human factors on drought events and the
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formation mechanisms of drought in key regions, such as the North China Plain, Northwest
China, the Ganges River basin, the Middle East, etc.
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Abstract: Identifying the patterns of rainstorms is essential for improving the precision and accuracy
of flood forecasts and constructing flood disaster prevention systems. In this study, we used a
manifold learning algorithm method of machine learning to analyze rainstorm patterns. We analyzed
the spatial–temporal characteristics of heavy rain in Beijing and Shenzhen. The results showed a
strong correlation between the spatial–temporal pattern of rainstorms and underlying topography
in Beijing. However, in Shenzhen, the spatial–temporal distribution characteristics of rainstorms
were more closely related to the source of water vapor causing the rainfall, and the variation in
characteristics was more complex and diverse. This method may be used to quantitatively describe
the development and dynamic spatial–temporal patterns of rainfall. In this study, we found that
spatial–temporal rainfall distribution characteristics, extracted by machine learning technology could
be explained by physical mechanisms consistent with the climatic characteristics and topographic
conditions of the region.

Keywords: manifold learning; machine learning; spatial–temporal distribution of rainstorms; feature
extraction; Beijing; Shenzhen

1. Introduction

Highly concentrated rainfall and large precipitation events may cause urban floods,
mountain torrents, mud–rock flows, landslides, and other disasters, resulting in substantial
economic losses and casualties [1,2]. The temporal and spatial distribution of hourly
heavy precipitation has a good correspondence with flood disaster data. The intensity
and spatial–temporal distribution of rainstorms show a clear correlation with geological
disasters caused by flooding [3–5]. The movement direction of the rainfall center directly
impacts the shape of the flood hydrograph and the change in flood peak discharge [6].
Under conditions with the same average rainfall and intensity, rainfall patterns with a rain
peak in the middle or rear are more than 30% larger than flood peaks with uniform rain
patterns [7,8]. A thorough understanding of the temporal and spatial variation in rainstorm
patterns is essential for improving the accuracy of flood forecasting and building a flood
disaster prevention system [9,10]. Previous research has contributed to advancements in
the study of the spatial–temporal distribution of rainfall.

Some scholars have studied the temporal and spatial distribution of precipitation by
using multiple analysis methods, combining rainfall data of different scales. Fung et al. [11]
used inverse distance weighting (IDW) and ordinary kriging (OK), geographical weighted
regression (GWR) and multi-scale geographical weighted regression (MGWR) to investigate
spatiotemporal modeling of rainfall distribution in Peninsular Malaysia. Hitchens et al. [12]
study the climatology of heavy rain events using two high-resolution precipitation datasets
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that incorporate both gauge observations and radar estimates. Satya et al. [13] ana-
lyzed Tropical Rainfall Measuring Mission (TRMM) data with grid spatial resolution
of 0.25◦ × 0.25◦ to obtain information about the characteristics of rainfall in South Sumatra.
Ndiaye et al. [14] analyzes the spatio-temporal distribution of daily rainfall data from 13 sta-
tions in the country of Senegal located in the Northwest of Africa. Chaubey, P.K. et al. [15]
examined the trend in extreme rainfall events using long-term observed high-resolution
gridded rainfall data (1901–2019). Audu, M.O. et al. [16] analyzed the spatial distribu-
tion and temporal trends of precipitation and its extremes over Nigeria from 1979–2013
using climate indices in order to assess climatic extremes in the country. Yeung et al. [17]
simulated rainfall in the New York area of the United States using meteorological station,
radar, satellite, and other observation methods combined with a mesoscale meteorological
model. Viglione et al. [18] quantified the temporal and spatial distribution of rainfall.
Zoccatelli et al. [19] proposed an index system based on quantitative descriptions of the
temporal and spatial distribution of rainfall. Wu et al. [20] analyzed the axially symmetri-
cal precipitation characteristics of landfall typhoons in East China using radar data and
historical precipitation data from ground stations. Ngongondo et al. [21] studied the spatial
and temporal characteristics of rainfall in Malawi between 1960 and 2006.

These research results are of great significance for understanding the characteristics
of rainstorms in various regions. However, static indicators, such as the total amount of
rainstorm and distribution of rainfall in various regions, cannot describe characteristics
of rainfall changes in time and space well. Understanding dynamic characteristics, such
as moving path, range of rainstorm center, is important to predict rainstorm development
process, forecast the flood risk area in advance and to effectively preventing the flood and
geological disasters caused by rainstorms.

In recent decades, major advancements have been made in artificial intelligence (AI)
technology [22]. AI has been applied in multiple areas, including the early identification
of disaster risks and water resource management [23–25]. Furthermore, neural network
models have been widely used in many fields [26,27]. A cluster-based Bayesian network has
been used to predict the longitudinal dispersion coefficient in natural rivers [28], and a deep
learning method has been used for spatio-temporal flood prediction [29]. In terms of urban
flood management, the integration of AI and numerical simulation models has enabled
the rapid prediction of urban floods [30]. In hydrology, machine learning technology and
hydrological models have been combined to construct coupled simulations for watershed
runoff and sediment [31]. Manifold learning algorithms are practical data processing
methods in AI technology that play major roles in high-dimensional array reduction and
transfer learning.

This study presents a novel application of these machine learning algorithms in the
analysis of spatial–temporal distribution characteristics of rainstorms. We examined the
spatial–temporal distribution characteristics of rainfall in Beijing and Shenzhen.

2. Materials and Methods

Beijing is located in the inland region of North China and is surrounded by mountains
on three sides—in the west, north, and northeast. The annual distribution of precipitation
varies seasonally. Rainfall during the flood season (from June to September) accounts
for approximately 85% of the total annual precipitation. Heavy rain often occurs in late
July and early August and is likely to cause flood disasters. Shenzhen is located in the
coastal area of South China. The distribution of rainfall here varies, both seasonally and
geographically, throughout the year. Rainfall during the flood season (April to September)
accounts for 86% of the total annual rainfall. The uneven spatial and temporal distribution
of rainfall contributes to alternating droughts and floods [32,33]. This study evaluated
5 min rainfall data from 122 automatic weather stations in Beijing from 1999 to 2020 and
63 automatic weather stations in Shenzhen from 2008 to 2021. We analyzed and extracted
the spatial–temporal rainfall distribution data for the two regions. The locations of the
stations are shown in Figure 1.
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Figure 1. Study area and locations of stations whose data were used in this study.

In this study, 5 min rainfall measurements were used as samples, although many
factors affected the accuracy of them, such as the wind conditions at the measurement
site, which can be challenging during tropical rainfall. There are unreasonable values in
the 5 min rainfall measurement data [34,35]. So, prior to analysis, the historical rainfall
data were cleaned and screened to eliminate inaccurate data. The cleaning standards were
as follows:

1. If the rainfall at a single station exceeded 10 mm in 5 min and existed in isolation, and
there was no rainfall at the same station 30 min before and after the observation, it
was considered an unreasonable record;

2. If the rainfall at a single station exceeded 10 mm in 5 min, but the observed data of
other rain-measuring stations within a range of 5 × 5 km of the station was 0, it was
considered an unreasonable record;

3. In the case of unreasonable records from a single station, the data were compared to
the rainfall isosurface map of the period. If the data from the station were confirmed
to be unreasonable, the interpolation results of surrounding stations within a range of
5 × 5 km were used to replace the unreasonable records of that station.

After cleaning, the data were divided into rainfall events to select samples for further
analysis. The screening criteria were as follows:

1. Rainfall events were first identified. If the 5 min rainfall at all the stations was less
than 0.1 mm over four consecutive hours, it was not considered effective rainfall. Two
independent rainfall events were eliminated according to this standard.

2. Rainstorm samples were screened according to the yellow rainstorm warning stan-
dards of Beijing and Shenzhen. Rainstorm events were selected for further analysis.
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According to the above criteria, we synthesized the historical rainfall data from Beijing
and Shenzhen and categorized the rainstorm events based on duration (12 h, 24 h, and
72 h) in preparation for further analysis.

2.1. Methods and Procedures

In this study, rainstorms were divided into discrete events, and a high-dimensional
matrix was constructed to describe the spatial–temporal characteristics of rainfall. The
spatial–temporal dynamic development characteristics of multiple rainfall events were
described as shown in Equations (1)–(3):

Ω = {X1, X2, . . . XN} (1)

Xi =

⎡
⎢⎢⎢⎣

H11 H21 · · · Hs1
H12 H22 . . . Hs2

...
...

...
H1m H2m . . . Hsm

⎤
⎥⎥⎥⎦, (2)

where Ω is the historical rainstorm samples set, including N rainstorm fields, Xi is the
proportion matrix for the ith rainfall event, and Hit is the percentage of the rainfall at the
ith rainfall station to the total rainfall at all the stations in the time t during the ith rainfall
event, i.e.,

Hit =
Rit

∑s
k=1 Rkt

(3)

where Rit is the rainfall at time t of rain measuring station i, i = 1 , 2 , 3 . . . S, t = 1, 2, 3 . . . m,
S is the number of rain-measuring stations, and m is the number of time periods.

Subsequently, a manifold learning algorithm was used to process the rainfall data. Fur-
thermore, the high-dimensional array of rainfall was projected to the low-dimensional space
to achieve a dimensionality reduction. Clustering and feature extraction were then per-
formed to obtain the spatial–temporal distribution in the low-dimensional space. Following
feature selection and extraction, the information required for our research was extracted.

The manifold learning algorithm applied in this study is based on the consideration
that the local linear relationship between the high-dimensional and the low-dimensional
spaces remains unchanged. That is to say, the array features in the high-dimensional space
remain constant in the low-dimensional space. Accordingly, feature reconstruction in the
high-dimensional space was conducted based on the features in the low-dimensional space.
This method facilitates the extraction of the spatial–temporal distribution features of rainfall
in the high-dimensional space. The specific process is shown in Figure 2.

2.2. Manifold Learning Algorithm

The high-dimensional sample database, describing the spatial–temporal distribution
characteristics of rainstorms, is a nonlinear and high-dimensional data space. In this study,
the locally linear embedding (LLE) algorithm was used to improve the efficiency of analysis
and the accuracy of results [36]. This method is used for dimensionality reductions of
nonlinear data and conducting dimensionality reduction analysis for high-dimensional
data. The main features of the original data were extracted and expressed using the
“effective” feature data with fewer dimensions, without reducing the intrinsic information
contained in the original data.
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Figure 2. Schematic diagram.

The LLE algorithm is an unsupervised dimensionality reduction method for nonlinear
data proposed by Roweis et al. [37]. It is a type of manifold learning algorithm that uses
partial linearity to reflect the whole nonlinearity. This feature enables the dimensionality
reduction data to maintain the original data topology. According to the LLE algorithm,
each data point can be constructed using a linear-weighted combination of its neighboring
points. The linear relation between xi and its surrounding samples in the high-dimensional
space is the same as the partial linear relation between yi and its surrounding samples
in the low-dimensional space. Therefore, the linear relationship between all samples
and the classification results in the low-dimensional space d are similar to those in the
high-dimensional space. The algorithm comprises three main parts:

(1) In higher dimensional space, find the K samples closest to sample xi by Euclidean
distance measurement.

First, the Euclidean distance between each sample point xi and all other samples is
calculated for N data points {x1, x2, · · · xN} ∈ RD. Each xi can be linearly expressed by
K samples {xi1, xi2, · · · xik} in its neighborhood with the nearest distance, as shown in
Equation (4):

xi ≈ xi = ∑k
j=1 wijxj (4)

meets the condition:
k

∑
j=1

wij = 1 (5)

(2) For each sample xi, the linear relationship of K nearest neighbors in its neighbor-
hood is first determined, and the weight coefficient of the linear relationship is obtained
as follows:
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The LLE algorithm is used to obtain the weight coefficient W by solving the minimum
value of Equation (4) in the constraint condition Equation (5).

Wi =
Z−1

i I

ITZ−1
i I

(6)

Subsequently, weights Wi = (wi1, wi2, · · ·wik)
T(i = 1, 2, · · · , N) are obtained.

(3) It is assumed that the linear relation weight coefficient Wi remains in high-dimensional
and low-dimensional space within the K neighborhood. The weight coefficient Wi is then
used to reconstruct sample data in low dimensions and obtain xi ∈ RD → yi ∈ Rd , d � D.

The LLE algorithm assumes that samples in high-dimensional space maintain local linear
relationships in low-dimensional space, and that the weight coefficient remains unchanged.

Samples in high-dimensional space {x1, x2, · · · xN} ∈ RD W are mapped to a low-
dimensional space by weight coefficient and become samples in low-dimensional space,
{y1, y2, · · · yN} ∈ Rd. High-dimensional sample point xi, mapping yi in low-dimensional
space, can also be obtained by solving the minimum mean-square deviation.

As the detailed solution process of this algorithm was not the focus of this study, it
has not been described in detail.

2.3. Dynamic Cluster Analysis and Feature Extraction

After the high-dimensional samples were dimensionally reduced by the LLE algorithm,
the dynamic clustering algorithm was used to classify the dimension-reduced samples [38].
Using this algorithm, the population sample set was divided into r subsets, where the
samples in each subset were the most similar and the samples between each subset were the
most different. The mean value of each subset was then extracted to obtain the features of
the subset. In the analysis, r sample points were randomly selected as the initial clustering
center of r subsets. The distance between all samples and initial clustering centers r, were
calculated, and the samples were divided into the subset of the center nearest to them to
obtain the number of initial classification categories and initial subsets. We calculated the
mean value of all samples of each subset to obtain the new generation cluster center. We
continuously iterated the values according to the above method. When the distance between
the clustering centers of generation p and generation p + 1 was within the threshold range,
the calculation was considered to be convergent, and the final subset and the clustering
centers of each subset were obtained.

Each subset C = {C1, C2, · · · , Cr} and the mean Zp+1
j of each subset obtained by

the above clustering method were the feature spaces of the reduced dimension dataset.
However, sample xi in a higher dimensional space had the same partial linear relationship
with its surrounding samples as a mapping point yi in a lower dimensional space. The
samples in the subsets C = {C1, C2, · · · , Cr} in the lower dimensional space belonged to
the same subset B = {B1, B2, · · · , Br} in the higher dimensional space. The mean value
Sj =

1
Bj

∑
xi∈Bj

xiεRD of all subsets in the high-dimensional space was obtained, which also

belonged to the dynamic spatial–temporal distribution characteristics of the samples in the
high-dimensional space.

3. Results and Discussion

3.1. Results

As shown in Figure 3, the average duration time of heavy rain in Beijing was about
24 h, while in Shenzhen it was about 72 h. A heavy rainstorm in Beijing usually falls within
one day, while a heavy rainstorm in Shenzhen typically lasts 2–3 days.
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Figure 3. Comparison chart of rainfall with different duration.

In this study, we evaluated rainstorm events lasting 24 h in Beijing and 72 h in
Shenzhen. The study samples included 32 events in Beijing and 76 in Shenzhen. The spatial–
temporal distribution characteristics of the rainstorms in the two cities were analyzed and
extracted, and the characteristic rainstorm processes were reconstructed based on the
extracted results.

Our analysis revealed major differences between Beijing and Shenzhen in the spatial–
temporal distribution of rainstorms. The results of the spatial–temporal distribution charac-
teristics analysis of the 24 h duration rainfall in Beijing are shown in Figure 4. We observed
that: (1) The rainstorm started from the mountain areas in the west and north and devel-
oped in the plain area. The temporal and spatial variation of the rainstorm was relatively
stable, and the mobility of the rainstorm center was not strong during rainfall. (2) The
spatial and temporal distribution of the rainstorm presented a line from southwest to north-
east, and the trend of the rainfall belt was consistent with that of the underlying mountain
plain. (3) The distribution of precipitation was not uniform, with more precipitation in the
northeast and southwest, and less precipitation in the northwest and southeast.

Heavy rain occurred in Beijing on 21 July 2012 (Figure 5). During this event, the
rainfall started from the mountainous areas in the southwest and moved to the northeast.
The distribution of the rainstorm zone was consistent with the trend of the underlying
mountain and plain and was similar to the spatial–temporal distribution characteristics of
the extracted rainfall.

Compared with Beijing, which is located in the inland area of North China, the spatial–
temporal distribution characteristics of rainfall in Shenzhen were diverse. Rainstorms in
Shenzhen were divided into three types based on different spatial–temporal distribution
characteristics. Figures 6–11 show the spatial–temporal distribution characteristics of each
type of rainstorm in Shenzhen, along with the actual rainfall event of each type. As shown
in Figure 6, this type of rain starts from the northwest and gradually moves to the southeast,
with large rainfall in the north and northwest. Figure 7 shows the actual rainfall process of
this type on 22 May 2009. As shown in Figure 7, the rainfall started from the northwest,
and the rainfall in the western and northern regions was relatively heavier.
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(a) 6h                             (b) 12h 

 
(c) 18h                              (d) 24h 

 

  

  

Figure 4. Temporal and spatial distribution pattern of 24 h rainfall in Beijing.

The second type of rainstorm, shown in Figure 8, starts from the southern and south-
eastern coastal areas and gradually moves to the north. The center of the rainstorm does
not move significantly, and the rainfall in the southern and southeastern coastal areas is
relatively heavier. Figure 9 shows the actual rainfall process of this type on 26 August 2017.
As shown in the figure, the rainstorm started from the coastal areas and continued to move
northward, with less rainfall in the northwest and more in the coastal areas.

The third type of rainstorm, shown in Figure 10, starts from the southeast coast and
gradually moves to the north and northwest, with heavy rainfall in the east and southeast
and relatively lighter rainfall in the west. Figure 11 shows the actual rainfall process
of this type occurring on 12 June 2017. As shown in the figure, the rainstorm started
from southeastern coastal areas and continued to move to the middle and west, with
relatively lighter rainfall in the northwest and relatively heavier rainfall in the eastern and
southeastern coastal areas.

These three types of rainfall, each with different spatial–temporal distribution patterns,
can be explained by physical mechanisms. The first type of rainfall usually occurs from
April through May. During this period, the cold air from the south is strong, while the
warm and humid air masses in the southwest provide sufficient water vapor. This type of
rainfall usually forms at the intersection of warm and cold air masses, and thus moves from
northwest to southeast [39], and the rainfall in the northern and northwestern regions is
relatively heavier. The second type of rainfall is usually caused by the southwest monsoon,
which occurs from June through August. During this period, warm and humid air masses
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from the sea strengthen, and a large amount of water vapor is continuously brought to the
shore by the southwest monsoon [40]. Therefore, this type of rainfall usually moves from
the southern and southeastern coastal areas to the northern areas, with more precipitation
seen in the coastal areas. The third type of rainfall is generally caused by eastern waves or
typhoons, usually from the northwest Pacific Ocean [41]. This type of rain makes landfall
in coastal areas southeast of Shenzhen, and then continues to move to western areas.

 

 
(a) 6h                             (b) 12h 

 
(c) 18h                              (d) 24h 

 

  

  

Figure 5. Rainfall accumulation of rainstorm occurred on 21 July 2012 in Beijing.

3.2. Discussions

Through analysis, it is found that the rainfall in Beijing in summer has a strong
correlation with underlying surface topography, with obvious characteristics of rain in
front of mountains, but that rainfall movement is obvious. In Shenzhen, weather conditions
that cause rainfall are complex, and the temporal and spatial distribution characteristics of
rainfall are also different. The correlations between the temporal and spatial distribution
characteristics of rainfall and the underlying terrain conditions are weakly established. The
temporal and spatial distribution characteristics of rainfall are closely related to the weather
conditions and are more relevant to the source of water vapor.

In this study, machine learning algorithms are used to analyze the pattern of rainfall.
Although machine learning technology cannot directly study the physical mechanisms
behind rainstorms, it enables the extraction of the spatial–temporal distribution charac-
teristics of regional rainfall through the analysis and mining of historical rainfall data.
The temporal and spatial distribution pattern of characteristics has similar temporal and
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spatial distribution patterns to typical actual rainstorm events. This comparison shows
that temporal and spatial distribution characteristics of rainfall processes are adequately
representative of actual rainfall events. These features and laws are consistent with the
weather conditions that cause rainfall. The extraction results can be reasonably explained
by local climatic characteristics, topographic conditions, and other factors.

 

 

(a) 18h                            (b) 36h 
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Figure 6. Temporal and spatial distribution pattern of the type I characteristics of 72 h rainfall
in Shenzhen.
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Figure 7. Rainfall accumulation of rainstorm of type I occurred on 22 May 2009.
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Figure 8. Temporal and spatial distribution pattern of the type II characteristics of 72 h rainfall
in Shenzhen.
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Figure 9. Rainfall accumulation of rainstorm of type II occurred on 26 August 2017.
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Figure 10. Temporal and spatial distribution pattern of the type III characteristics of 72 h rainfall
in Shenzhen.
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Figure 11. Rainfall accumulation of rainstorm of type III occurred on 12 June 2017.
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4. Conclusions

In this study, we analyzed the 5 min rainfall data from the last 20 years, collected
by stations in Beijing and Shenzhen. We described the spatial–temporal characteristics of
rainfall patterns in a high-dimensional array. We applied manifold learning algorithms to
analyze and extract the spatial–temporal distribution characteristics of rainfall in Beijing
and Shenzhen. The results extracted by the machine learning algorithm in this study
identified physical mechanisms consistent with the climatic characteristics and topographic
conditions of the region.

Our research showed that, although machine learning alone cannot fully explain the
physical mechanisms of rainfall, data analysis utilizing machine learning algorithms can
identify rainfall patterns and quantitative spatial–temporal characteristics. The method
was put forward to analyze spatio-temporal distribution characteristics of rainfall, which
can provide a basis for the design of rainfall patterns in different regions.

In the future, with the increase in data timing and the expansion of data range, the
algorithm will become more objective and produce reasonable results. In this study, only
the ground rainfall observation data were analyzed. The performance of the method can be
improved by combining it with the use meteorological data, such as radar echo maps and
meteorological cloud maps. The proposed method can be further improved to improve the
accuracy of methods to identify early risk of rainstorms.
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Abstract: The identification of the characteristics of short time rainstorms in urban areas is a difficult
problem. The traditional rainfall definition methods, using rainfall graph or a GIS map, respectively
reflect the temporal or spatial variations of a rainfall process, but do not regard a rainfall as one
complete process including its temporal and spatial dimension. In this paper, we present an approach
to define typical modes of rainfall from the temporal and spatial dimensions. Firstly, independent
rainfall processes are divided based on the continuous monitoring data of multiple rainfall stations.
Subsequently, algorithms are applied to identify the typical spatiotemporal modes of rainfall and
reconstruction of the process of modes, including dimensionality reduction, clustering, and recon-
struction. This approach is used to analyze the monitoring data (5 min intervals) from 2004 to 2016 of
14 rainfall stations in Beijing. The results show that there are three modes of rainstorms in the Beijing
urban area, which account for 31.8%, 13.7%, and 54.6% of the total processes. Rainstorm of mode 1
moves from the northwest to the center of Beijing, then spreads to the eastern part of the urban area;
rainstorm of mode 2 occurs in the southwestern region of the urban area, and gradually northward,
but there is no rainfall in the mountainous northwest; rainstorm of mode 3 is concentrated in the
central, eastern, and southern regions. The approach and results of this study can be applied to
rainstorm forecasting or flood prevention.

Keywords: rainstorm mode; high dimension; dimension reduction; cluster

1. Introduction

The security of water resources in this changing environment has become a research
focus, due to the fact that climate change causes variations in rainfall at a large scale, and
human activities influence the spatiotemporal characteristics at the regional scale [1,2]. Big
cities are especially concerned as they are the hub of human activities. Human activities
lead to the frequent occurrence of extreme rainstorms, through the urban heat island
effect and air pollution [3,4]. Statistics show that 60% of the cities in China suffered from
waterlogging from 2014 to 2016 [2]. Studies showed that urban waterlogging is directly
related to the temporal and spatial distribution of rainstorms [5]. For example, the flood
peak of triangle rainfall with a rain-peak in the central or rear is 30% larger than that of
even rainfall, irrespective of whether the average rainfall is the same [6]. It is of great
significance to study the spatial and temporal modes of rainfall to prevent waterlogging [7].

At present, there are two main approaches to the definition of urban rainfall process.
First, different rainfall types are applied to describe various rainfall processes, such as
single peak and double peaks, the method based on site monitoring data. Studies of this
method focus on monitoring data of a single station or the average of multiple stations.
Pilgrim and Cordery [8] put the time of a rain peak at the most likely position, and the
proportion of the rain peak in the total rainfall is the average of the proportion of the
rainfall peaks in each field. Keifer and Chu [9] designed the Chicago-mode according
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to the strength, diachronic, and frequency of rainfall. Huff [10] designed four modes of
rainfall, according to the location of the rain peak and duration of rainfall in Illinois, USA.
These methods only consider the total rainfall and extreme rainfall of a single station [11].
However, the data of a single station cannot reflect the spatial characteristics of rainfall,
especially in metropolitan areas with obvious spatiotemporal variations of the background
environment, such as temperature and wind direction [12]. This method is widely used in
urban planning or urban construction, but it is increasingly criticized for neglecting the
spatial variations of rainfall, especially in large cities. The second method defines rainfall
from the spatial perspective based on geographic theory. The general method is to use a
spatial interpolation algorithm to interpolate the monitoring data from stations into spatial
distribution data, such as the software ANUSPLIN, developed by Hutchinson, of the
Australian National University [13]. In recent years, with the advancement of satellite and
radar technology, rainfall spatial data can be obtained more directly, with higher accuracy,
for example with Global Precipitation Climatology Project (GPCP) and Tropical Rainfall
Measuring Mission (TRMM). These spatial distribution data are more suitable for analyzing
the distribution of total rainfall or cumulative rainfall in a certain period, but it is difficult
to express the correlation between rainfall distributions in different periods. However, in
the real rainfall process, the rain belt usually moves rapidly. The spatial distribution of total
rainfall or the time history distribution of rainfall intensity at a single point are not enough
to accurately describe the dynamic temporal and spatial distribution characteristics of a
rainfall, which is very important for the risk emergency management of rainstorm.

For the purpose of reducing the urban storm disaster effectively, it is necessary to
express a complete “rainfall process”, which includes not only the rainfall graph of stations
at different locations, but also the spatial relationship of rainfall of these stations at different
period. So, rainfall is a multidimensional data that includes time and spatial characteristics.
Some scholars try to integrate the temporal and spatial characteristics of rainfall with
multidimensional data. For example, based on the 3-dimensional mosaic reflectivity
data from 10 S-band Doppler radars in Guangdong province, an artificial intelligence
(AI) algorithm for automatic hail detection and nowcasting is developed in the light
of the machine learning (ML) technology [14]. The temporal and spatial distribution
characteristics of short duration rainfall in Shenzhen are analyzed and extracted by LLE
algorithm [15]. It is necessary to conduct further study on the rainfall process with temporal
and spatial dimensions.

In contrast to taking the rainfall data of a single station as the research object, this
paper used the ML algorithm to extract the temporal and spatial distribution characteristics
of rainfall from the rainfall data of all rainfall stations in the whole research area. The
continuous monitoring data of rainfall stations from 2004 to 2016 were divided into different
rainfall processes in Beijing. The rainfall processes were taken as the research objects, then,
algorithms, such as dimensionality reduction, clustering, and reconstruction were applied
to identify the typical spatiotemporal process of rainfall, and then simulate the rainfall
process of different modes.

2. Study Area and Data Process

According to previous studies, Beijing has become one of the most urbanized cities
in China in the past 30 years [16,17]. In 2013, urban population accounted for 86.3% of
the total population in Beijing, far higher than the average of 53.73% for China, causing a
rapid expansion of built-up areas [17]. In recent years, severe waterlogging has frequently
occurred in Beijing [18]. For example, floods and waterlogging caused serious casualties
on 21 July 2012 [19].

The Beijing urban area is 396 km2. Fourteen meteorological monitoring stations have
continuously recorded the rainfall data of the Beijing urban area in recent years. The
continuous monitoring data of 14 rainfall stations were selected from the database, which
contains data from 2004 to 2016, at intervals of 5 min. The 14 rainfall stations were evenly
distributed in urban areas, as shown in Figure 1.
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Figure 1. Study area.

Statistics show that 89 rainstorms occurred during 2004 and 2016, which is defined
as rainfall of 1 hour exceeding 30 mm [20]. For the comparability of rainfall processes, it
was necessary to standardize the rainfalls with different duration. According to previous
studies, the method of 1-h moving average was used to deal with the rainfall processes, as
shown in Figure 2. The data in the red box were selected as the standardized rainfall.

Figure 2. Rainfall of 1-h moving average.
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Figure 2 shows the data of a rainstorm process at 14 stations. In Figure 2, “cumulative
rainfall” represents the sum of rainfall at 14 stations at a certain period. For example,
“527” represents the sum of rainfall at all 14 stations from the beginning of rainfall to
1 h. The range surrounded by red dotted/dashed outlines indicates that the “cumulative
rainfall” was the largest in this hour compared with any other hour.

According to the early warning standard issued by Beijing Flood Control Office, when
the rainfall exceeds 50 mm in one-hour, yellow warning signals will be issued to the public,
indicating that serious urban disasters may occur. In 2004–2016, 22 rainfall events had a
maximum sliding rainfall of more than 50 mm in one hour, accounting for 24.7% of the
total rainfalls. In this paper, the 22 rainstorms were selected as samples, which are called
“short duration storm”. The rainfall data of these 22 rainstorms are shown in Table 1.

Table 1. Data for 22 rainstorms.

Instantaneous Rainfall (mm) Every 5 min
Date 5 10 15 20 25 30 35 40 45 50 55 60 Total

2006-6-27 23:00 4.2 7.4 22.2 8.2 8.6 8.6 10.3 10.8 12.1 11.1 7.7 5 116.2
2006-6-30 22:45 3.8 3.3 3.8 4 3.4 3 7 19.7 18.9 18.4 5.4 8.9 99.6
2006-7-12 4:25 3 3 3 3 3.5 4.1 13.6 19.3 14.2 22.2 20.6 13.1 122.6
2006-7-12 19:05 4.5 4.5 7.3 20.3 24.2 16.3 11 13.2 14.8 11.6 9.6 8.6 145.9
2006-7-13 22:50 3.6 3.3 3.3 4.2 9.9 11.5 16 11.4 7.3 7.8 6.3 4.3 88.9
2006-7-31 8:50 10.6 7.1 3.3 9.7 12.7 16.7 20.7 28.7 18.2 17.2 15.7 11.7 172.3
2007-6-27 13:05 8.4 12.4 16.4 15.9 23.9 28.9 24.9 20.4 18.4 13.9 11.1 9.6 204.2
2008-6-23 14:55 4.8 3.5 5.8 4 9.2 11.7 16.3 9.2 10.3 7.7 10.7 8.5 101.7
2008-7-18 9:10 8.4 6.8 8.8 7.8 4.8 6.8 5.8 2.8 4.8 3.8 3.8 7.1 71.5
2009-7-22 17:15 6.5 11.5 16 16.2 8.5 20.4 24.9 19.9 17.9 12.9 5 6.5 166.2
2009-7-23 15:50 2 1 13.5 18.7 16.5 28 23 19.4 16.6 4.6 3.6 4.6 151.5
2009-8-7 16:20 2.1 3.4 2.7 6.6 9.3 8.6 9 9.6 6 3.5 5 2.2 68
2011-7-1 7:05 4 5.3 4.2 8.6 4.8 12.2 16.5 19.1 19.9 19.1 19 14.5 147.2
2013-7-31 19:20 5.1 0.6 5.1 1.1 13.6 0.1 5.6 0.6 3.6 1.1 11.1 7.8 55.4
2014-6-10 14:05 4.9 6.9 4.6 7.5 16.5 26.9 52.5 18.8 39.3 25.2 16.5 21.2 240.8
2014-6-15 18:55 8.5 2.3 6.2 9.6 14.2 13.1 8.7 8.4 8.6 9.1 11.2 7.3 107.2
2014-7-16 18:55 16.3 8.8 22 6.3 5.8 8.5 7.3 15.1 15.6 25 26.9 20 177.6
2014-8-23 22:30 0.3 1.8 7.9 14.3 16.8 12.7 18.3 22.8 12.3 7.8 8.4 4.8 128.2
2014-8-30 21:50 4.9 9.4 7.9 14.6 7.7 13.4 8.4 10.9 12.8 7.7 11.2 13.9 122.8
2015-8-23 14:10 2.5 4.5 5.7 9.5 15.6 7.4 3.7 2 5.3 9.9 4.2 5.1 75.4
2016-8-6 22:05 7.5 7 11 7 5.5 5.1 6 7.1 5.5 5.5 6.2 17.3 90.7
2016-9-7 18:25 5 3.7 1.3 21.3 26 32.5 38.1 22.8 6.8 18.3 9.5 5.3 190.6

Data source: Beijing Municipal Land and Water Protection Station.

3. Methodology

3.1. Flowchart for Extraction of Rainfall Temporal and Spatial Modes

Rainstorm is described according to the duration, intensity, total amount, and fre-
quency by most researchers. In this paper, a new method is introduced to describe a rain-
storm. The spatiotemporal process of a rainstorm was constructed as a high-dimensional
array, and then principal component analysis (PCA), dynamic clustering (k-means), and
reconstruction were applied to analyze the array [21]. The flowchart is shown in Figure 3.

In Figure 3, “m” is the number of samples, which represents the number of rain-
falls in the manuscript. “n” is the dimension of the samples which represents the di-
mension of the rainfall matrix. “k” represents the dimension of rainfall samples after
dimensionality reduction.

(1) The rainstorm events were digitized and structured. High-dimensional arrays were
established from temporal and spatial dimension perspectives.

(2) Principal component analysis was used to map high-dimensional array to low
latitude array.

(3) Dynamic clustering was used to categorize samples to typical modes for describing
the temporal and spatial distribution of rainstorms.
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(4) With the inverse calculation of principal component analysis, the low dimensional
array was reduced to a high-dimensional array to express the spatiotemporal process
of each rainstorm modes.

Figure 3. Flowchart for extraction of rainfall temporal and spatial modes.

3.2. Construction of High-Dimensional Array for Rainstorms

Rainstorm was characterized as a spatiotemporal process. The continuous monitoring
data was divided into independent rainfall periods, where the duration of no rainfall was
longer than 120 min [20]. When the maximum rainfall in 1 h was greater than 30 mm, it
was called a rainstorm.

We take the monitoring data from multiple stations in a rainstorm as a multi-dimensional
array (shown in Figure 2). Based on the processing method introduced by “2. Study Area
and Data process” in this paper, the multi-dimensional array was converted to matrix with
same rows and columns, the number of which is 14 × 12 in this paper. Fourteen is the
number of stations and twelve is the number of periods. The matrix forms one sample in
the database of rainstorms (Ω). This is shown in Equation (1).

Ω = {Q1, Q2, . . . Qm}, Qi =

⎡
⎢⎢⎢⎣

r1t1 r2t1 · · · rst1
r1t2 r2t2 . . . rst2

...
...

...
r1tn r2tn . . . rstn

⎤
⎥⎥⎥⎦ (1)

where Qi represents rainstorm i, m is the number of rainstorms, rstn is the rainfall at tn
period of s rainfall station, s = 1,2,3 . . . S, tn = 1,2,3 . . . N, S is the number of stations, and
N is the number of periods. The main objective of this paper is to study the “mode” of
rainfall, or may be called “structure”, so the monitoring rainfall data is standardized by
Equation (2).

xjtn =
rstn

∑s
j−1 rjtn

× 100 (2)
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where xjtn represents the ratio of j station rainfall to all station at tn period, S is the number
of stations.

Figure 4 is a sample of visual representation of the standardized rainstorm matrix.

Figure 4. Sample of rainstorm matrix.

3.3. Dimensionality Reduction of High Dimensional Array

As shown in Figure 4, the Qi is a S × N dimensional array. It was necessary to map the
high-dimensional array to low dimensional space, in order to cluster and analyze arrays
in Ω [22]. Principal component analysis (PCA) was used to reduce the dimensions of
high-dimensional arrays [23].

Taking U represents the arrays in Ω, which is an n×m matrix, where n is the number
of rainstorms, and m represents the number of characteristics, which equal S × N in this
paper, including the monitoring data of each station at all periods. Yn×k is the matrix
converted from Xn×m by the transformation matrix Vm×k, which means that the original
data is converted from m dimensions to k dimensions (k � m). The steps are as follows:

(1) The transformation matrix Xn×m was obtained by centralization of the matrix U,
(2) Calculation of covariance matrix σm×m of Xn×m,
(3) Calculating the eigenvalues and eigenvectors of the variance matrix of M, M = σm×m,
(4) The dimension k, which can retain more than 90% information of original data, was ob-

tained. K eigenvectors constitute the transformation matrix Vm×k as column vectors,
(5) Descending dimensions by Equation (3).

Yn×k = Xn×m × Vm×k (3)
Yn×k is the low dimensional matrix after transformation, which n is the number of

samples and k is the number of dimensions of new matrix.

3.4. Clustering and Feature Selection

After the dimensionality reduction of high-dimensional samples, the k-means cluster-
ing algorithm is used to classify low dimensional samples of Yn×k [24].

(1) r initial cluster centers are set up: Z1(p), Z2(p), . . . . . . Zr(p), where p is the number
of iterations.
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(2) Calculating the distance from samples x (x ∈ X) to each cluster center, if Dx(j) =
min{Dx(i)} i = 1, 2, · · · r, then x ∈ Sj, where Sj represents cluster j with the center
of Zj.

(3) The new center of each cluster is calculated. The new center of Zj is calculated by
Equation (4).

Zj(p + 1) =
1
N

N

∑
i=1

xi , j = 1, 2, · · · r (4)

where N is the number of samples contained in the cluster Sj, and xi is the sample in
Sj. Using Zj(p + 1) as the new cluster center, and the clustering criterion function can
be minimized (Equation (5)).

Jj =

⎡
⎣ ∑

x∈Sj(k)
x − zj(k + 1)2

⎤
⎦

1
2

(5)

where j = 1, 2, · · · K.
(4) If Zj(p + 1) 	= Zj(p), j = 1,2, . . . r, then go to step (2); if Zj(p + 1) = Zj(p), j = 1,2, . . . r,

the calculation is over.

In this paper, different r values were calculated, and the initial values of different
cluster centers were selected for the k-means cluster. Finally, the rainstorms were divided
into three modes. The mean value of each rainstorm was taken as a typical mode of
the rainstorm.

3.5. Reconstruction of Rainstorms

With the inverse calculation of principal component analysis, the low dimensional
array was reduced to a high-dimensional array to express the spatiotemporal process of
each rainstorm. The i clustering centers are reconstructed into i×m matrices (Equation (6)).

Xapp = Zi×k × Vm×k
′ (6)

where i is the number of rainstorm modes and m is the dimension of the original data.

4. Results

The method of extracting rainfall temporal and spatial modes was applied to analyze
the monitoring data of 22 rainstorms in the urban area of Beijing. It was found that
the spatiotemporal distribution can be divided into three modes, and there are obvious
differences in the center, spatial distribution, and occurrence time of three modes. The
movement process of rainfall centers in different modes at different periods is shown in
Figure 5. The centroid coordinates for a certain period was obtained by the method of
calculating the geographical center with the weight of rainfall.

As shown in Figure 5, there are obvious differences in the three modes. The geo-
graphical centers of mode 1, mode 2, and mode 3 are located in northwest, southwest, and
southeast, respectively. Mode 1 moves from the northwest to the urban center, mode 2
mainly spreads from the southwest and south to the north and the urban center, and
mode 3 is basically concentrated in the urban center.

The matrixes of 3 modes are shown in Figure 6, which shows the characteristics of
rainfall distribution. For example, the rainstorms belonging to mode 2 are more centralized
than that belonging to modes and mode 3, which shows rainfall concentrated at several
stations of 30748000, 30523900, 30504030, and 30523650. The rainfall spatial distribution at
different periods of each mode is shown in Figures 7–9, which represents the percentage
of rainfall at all rainfall stations in the period by the depth of the color in the location of
the station.

As shown in Figure 6, the proportion of rainfall at each station is significantly different.
In mode 1, rainfall is mainly concentrated in six stations, which are stations 3, 6, and 4. The
spatial non-uniformity of rainfall in mode 2 is the most obvious, and only four stations
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account for a large proportion of rainfall, which are stations 5, 9, 12, and 4. In mode 3,
almost all stations have obvious rainfall, except station 1 and station 2.

In mode 1, as shown in Figures 5–7, rainstorm spreads from the northwest mountain-
ous area to the central area of the city and the eastern part of the city. Rainfall began at
the beginning of the northwest mountain area, and the rest of the city did not have any
rainfall. Rainfall gradually dispersed and rainfall occurred at all stations. There are seven
rainstorms of this mode, accounting for 31.8% of all sample. Among them, the single peak
and homogeneity stations are 43%, and the double-peak type accounts for 14%.

Figure 5. Centroids of three modes at different periods.

Figure 6. Matrixes of 3 modes. (a) Mode 1; (b) mode 2; (c) mode 3.
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Figure 7. Spatiotemporal process of mode 1.

In mode 2, as shown in Figures 5, 6 and 8, the main rainfall was concentrated in the
southern and southwestern regions of the city, gradually spreading to the northern and
urban central areas, and there was no rainfall in the northwest mountain areas. There are
three rainstorms of this mode, accounting for 13.7% of the total sample. Two of them are
unimodal and one is homogeneous. In addition, this type of rainfall occurs between 14:00
and 16:00.
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Figure 8. Spatiotemporal process of mode 2.

In mode 3, as shown in Figures 5, 6, and 9, the main rainfall was concentrated in the
central area of the city and the eastern and southern parts of the city, which basically did
not move. There was no rain in the northwest mountain areas. There were 12 rainstorms of
this mode, accounting for 54.6% of total sample, among them, 62% were single peak type
and 38% were homogeneity type. This mode was the main rainstorm type in summer in
Beijing, which mainly occurred from afternoon to evening.
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Figure 9. Spatiotemporal process of mode 3.

5. Discussion

How to identify and extract valuable information from multidimensional and massive
rainfall monitoring data is a problem faced by many researchers. In this paper, a new
approach for rainfall mode recognition is introduced, and different rainfall modes are
identified from the massive monitoring data through the algorithms of dimensionality
reduction, clustering, and reconstruction of a high dimensional array. This approach can
be applied to both multidimensional data analysis and spatiotemporal data mining.

The results show that there are three modes of rainstorms in the Beijing urban area.
Rainstorms of mode 1 moved from the northwest to the center of Beijing, then spread to the
eastern part of the urban area; rainstorms of mode 2 occurred in the southwestern region
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of the urban area, and gradually northward, but there was no rainfall in the mountainous
northwest; rainstorms of mode 3 were concentrated in the central and eastern regions, and
basically did not move. The results are consistent with the actual rainstorm process. This
approach provides a framework for analysis, and there is uncertainty in some respects. For
example, the result of the restructured rainfall has certain randomness and uncertainty in
spatiotemporal distribution, which should be paid attention to in future. Because of the
abundance of available data, this paper only selected the rainfall data of 14 years in Beijing.
It should be noted that urban rainfall is a part of a larger range of rainfall in most cases,
the temporal and spatial distribution characteristics of rainfall extracted from the rainfall
data of 14 stations may have a certain randomness and uncertainty. More extensive rainfall
data should be collected, considering terrain, climate, etc., according to the availability of
data. In addition, it is necessary to distinguish the historical evolution of rainfall modes in
different periods due to the climate changes in the city.

There are several suggestions for practice, First, the spatial and temporal resolution
for rainfall data needs to reflect the temporal and spatial differences of a rainfall. Secondly,
the study area should include the urban area and surrounding areas as much as possible,
which is mainly to maintain the integrity of rainfall process.

6. Conclusions

In this paper, a high dimensional array is introduced for the study of the spatiotempo-
ral distribution of rainfall, which describes rainfall by storing continuous rainfall monitor-
ing data of all rainfall stations.

Through the establishment of high dimensional arrays of each rainstorm and algo-
rithms, such as dimensionality reduction, clustering, feature extraction, and reconstruction,
the spatiotemporal distribution of rainstorms in the flood season of Beijing city was an-
alyzed. It was found that there were three spatiotemporal modes of rainstorms in the
urban area of Beijing from 2004 to 2016. Rainstorms of mode 1 moved from the northwest
mountain area to the central district, and further spread to the eastern part of the area.
Rainstorms of mode 2 concentrated in the southwest of the urban area, gradually spreading
to the northern and urban central areas; the northwest mountainous area basically had
no rain. Rainstorms of mode 3 concentrated in the central area of the urban area and the
eastern and southern regions, and basically did not move. The variation of the centroids of
different modes shows a significant difference between the modes. The approach and con-
clusions in this paper can be applied to the study of rainfall modes in other cities or regions
at a different scale, so as to provide assistance for rainfall forecasting and flood prevention.

The limitation of current machine algorithms is that it is too dependent on the number
and quality of learning samples. If the rainfall stations are dense and the rainfall data
quality is accurate, this method can achieve good results. If it is in an area with insufficient
data and sparse rainfall stations, results may not be satisfactory. With the increasing
density of rainfall stations, the improvement of rainfall data quality, and improvement of
machine learning algorithm, the machine learning algorithm will get more reasonable and
objective results.
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Abstract: Urban floods have been exacerbated globally, associated with increasing spatial-temporal
variations in rainfall. However, compared with rainfall variabilities of intensity and duration, the
effect of rainfall movement direction is always ignored. Based on 1313 rainfall scenarios with
different combinations of rainfall intensity and rainfall movement direction in the typically rainy city
of Shenzhen in China, we find that the effect of rainfall movement direction on the peak runoff may
reach up to 20%, which will decrease to less than 5% under heavy rainfall intensity conditions. In
addition, our results show that the impact of rainfall movement direction is almost symmetrical and
is associated with the direction of the river. The closer rainfall movement direction is to the Linear
Directional Mean of rivers, the larger is the peak runoff of section. Our results reveal that rainfall
movement direction is significant to urban peak runoff in the downstream reaches, which should be
considered in urban hydrological analysis.

Keywords: urban floods; rainfall movement direction (RMD); rainfall intensity (RI); peak runoff;
Linear Directional Mean (LDM); Shenzhen

1. Introduction

Extreme rainstorms have been increasing in urban areas due to continued global
warming and rapid urbanization [1–4].This increase is expected to lead to an increment in
urban runoff generation and, consequently, to the intensification of urban flood risks [5,6].
During 2010–2018, more than 160 cities in China suffered from floods each year [7]. Hydro-
logical processes in urban areas are sensitive to small-scale temporal and spatial variations
in rainfall [8]. Furthermore, the probability of extreme rainfall in urban areas is very likely
to increase, with high spatial and temporal variabilities [9,10], yielding further uncertainties
in urban runoff estimations and flood-related damages [11,12]. Understanding the impacts
of spatial and temporal rainfall variabilities on runoff is significant for urban hydrologic
management (e.g., urban drainage design and construction, forecasting and prevention of
flood risk) [13–15] and the development of an Early Warning System (EWS) [16,17].

However, the interactions among extreme rainfall variability, river features and runoff
responses remain poorly understood, especially in urban areas [11,18]. Such attributions
require sufficient information about the spatial distribution of short-term rainstorms and
runoff responses, which is lacking in measurements for the sudden rainfall process and
the complex inhomogeneity of urban areas introduced by the building envelope. With
the development of new instruments, techniques and methods for capturing rainfall and
hydrological processes at high resolution, urban hydrological models, such as the Storm
Water Management Model [19], have been proposed and applied in urban hydrologic
management [20,21]. Although various components of rainfall variability such as the
RI, rainfall duration spatial and temporal resolution, and degree of imperviousness are
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involved in previous studies, these components are far from complete. For example, similar
extreme rainfall patterns of RI and rainfall duration in the same urban area may induce
different flood damages. As a result, there remain critical errors and uncertainties in the
impacts of rainfall variabilities on hydrological process such as runoff and floods [22].

Rainfall movement direction (RMD) is a significant component of rainfall variabil-
ity [23–29] that is always ignored. While some studies have found no impact of RMD
on hydrological responses [8,30], relatively few studies reported in the literature have
remained inconclusive with respect to the impact of RMD on urban runoff. This contrast
may be explained by (1) the limited RMDs observed from rainstorm events, which is almost
fixed rather than 360 degree and lacks information in an urban area; (2) isolated analyses
of the impacts of RMD were conducted in these studies by neglecting the interactions
between RMD and the directions of urban river segments.

In this study, we focus on verifying whether RMDs play a significant role in generating
peak runoff in urban areas. This paper is organized as follows: Section 2 introduces the
study area and the experimental design. Results and discussion are given in Section 3,
which also summarizes the main findings of the impact of RMD on runoff.

2. Materials and Methods

2.1. Study Area

The typically rainy city of Shenzhen in China, with four urban rivers, is selected as
the study area [31], this city has complete hydrological infrastructure and observation
information systems. Shenzhen, located in the southeast coast of China, has the most rapid
urbanization of any city in China with high urban flood risk caused by extreme rainfall.
Shenzhen city ranks fifth among the 136 coastal cities in the world in terms of future
flood loss risk [32]. Shenzhen city is a typical case study area, in which the spatial and
temporal variations in rainfall is wide with rapid movement and obvious “squall line” [33].
Additionally, urban hydrological datasets are sufficient in Shenzhen, which is the benefit
from a 30 million RMB project of building an urban flood model, which began in 2018.
These datasets include underground pipe network data (nearly 3000 km), 1:1000 terrain
data, 13 years of rainfall monitoring data, historical water level data, reservoir operation
data, and more.

2.2. Methods
2.2.1. Construction of Rainfall Schemes

We designed the idealized experimental conditions of rainfall intensity (RI) and RMD
to construct comprehensive rainfall schemes. According to the RI value of 132.7 mm/h
recorded once every 1000 years in Shenzhen, we constructed 13 RIs with 10 mm intervals
from 10 mm/h to 130 mm/h, and chose the commonly used Chicago rain pattern (Table 1)
to represent short-term rainfall. In addition, 100 moving directions with equal intervals
were designed to reflect the continuous RMD. We collected rainfall monitoring data from
63 meteorological stations in Shenzhen from 2008 to 2018, with a time resolution of 5 min.
The rainfall events were extracted from the data and the rainfall center of every 5 min is cal-
culated, then the moving speed of each rainfall events is calculated through the movement
of the center. The average speed of all rainfall events is about 10 km/h.The asynchronous
rainfall process of the whole basin is set to 3 h based on the average moving speed of the
rainfall center (10 km/h) and the diameter of the circumscribed circle of the basin (30 km).
By combining RI and RMD, 1300 rainfall processes (13 RIs × 100 RMDs = 1300) were con-
structed in Figure 1. The two rainfall distribution maps in Figure 1 show distributions
when the RI is 80 mm and the RMDs are 15 and 80 respectively.
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Table 1. Rainfall process of 13 rainfall intensity schemes.

RI Scheme Total Rainfall
Rainfall of 5 min Intervals

5 10 15 20 25 30 35 40 45 50 55 60

RI1: 10 0.4 0.6 0.8 1.4 2.0 1.2 0.9 0.7 0.6 0.5 0.5 0.4
RI2: 20 0.9 1.1 1.6 2.8 4.0 2.4 1.8 1.4 1.2 1.0 0.9 0.8
RI3: 30 1.3 1.7 2.4 4.3 5.9 3.7 2.7 2.1 1.8 1.6 1.4 1.2
RI4: 40 1.8 2.3 3.2 5.7 7.9 4.9 3.6 2.9 2.4 2.1 1.8 1.7
RI5: 50 2.2 2.8 4.0 7.1 9.9 6.1 4.5 3.6 3.0 2.6 2.3 2.1
RI6: 60 2.7 3.4 4.7 8.5 11.9 7.3 5.4 4.3 3.6 3.1 2.8 2.5
RI7: 70 3.2 4.0 5.5 9.6 13.2 9.3 6.2 5 4.2 3.7 3.3 3.0
RI8: 80 3.9 4.7 6.3 10.7 14.6 10.3 7.1 5.8 5.0 4.4 4.0 3.6
RI9: 90 4.5 5.4 7.1 11.8 16.1 11.3 7.9 6.5 5.7 5.1 4.6 4.3
RI10: 100 5.1 6.1 7.9 12.9 17.6 12.3 8.7 7.3 6.4 5.7 5.2 4.8
RI11: 110 5.8 6.7 8.6 13.9 18.8 14.1 9.5 8.0 7.0 6.3 5.9 5.5
RI12: 120 6.3 7.4 9.4 15.2 20.7 15.3 10.3 8.7 7.6 7.0 6.4 6.0
RI13: 130 6.8 8.0 10.2 16.4 22.4 16.4 11.2 9.4 8.4 7.6 6.9 6.5

Figure 1. Schematic diagram of rainfall schemes.

2.2.2. Runoff Numerical Simulation

We applied the IFMS/urban (Integrated Urban Flood Modeling System) platform, an
urban flood simulation platform developed by China Institute of Water Resources and Hy-
dropower Research, to simulate the runoff processes of the studied rivers (Figure 2). Before
the simulations, the model was calibrated by the rainfall–runoff relationship measured
from 2018 to 2020. Based on 1313 rainfall processes, we constructed a set of input conditions
for the model, including the initial water level of each section, the previous rainfall, and the
infiltration process; these conditions were kept consistent for comparison. We calculated
the runoff processes of 414 sections in each scheme by using a parallel computing program
and output the result to structured files in CSV format.
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Figure 2. Location of the four rivers.

IFMS/urban model is a flood analysis model developed in China, which has been suc-
cessfully applied in Shenzhen, Beijing, Chengdu, Shanghai, Foshan and other cities [34,35].
Its main modules include: (1) Flood simulation and analysis: River, lake, nearshore flow,
flood simulation analysis and calculation of flood protection area and flood storage area;
urban rainstorm and waterlogging, overflow (break) flood and dam break flood simulation
Analysis; storm surge simulation and analysis; (2) Engineering scheduling simulation:
reservoir and lake gate dam, weir, culvert, box culvert and pumping station and other
water conservancy engineering facilities scheduling simulation; pipeline one-way valve
control; lake reservoir, underground storage, tank storage, and so on. (3) Data manage-
ment and pre-processing functions: 2D and 3D data and result display platform; data
pre-processing (grid generation, pipeline processing, data management).

2.2.3. Index of Peak Runoff Deviation

We designed a concise index to describe the peak runoff deviation (Equation (1)):

I f p =
Q f p

Qp
(1)

where I f p is the peak runoff deviation of a section caused by the rainfall scheme with
RI = p and RMD = f, Qp is the peak runoff (m3/s) of the section under the condition of a
synchronous rainfall scheme with RI = p, andQ f p is the peak runoff (m3/s) with RI = p and
RMD = f, where f ∈ 1, 2, . . . , 100.

In this paper, the I f p values of 414 sections were extracted from all 1300 rainfall processes.

2.2.4. Rainfall Movement Direction and Flow Concentration Direction

The trend in a set of line features is measured by calculating the average angle of the
lines, which called the “Linear Directional Mean”(LDM) in GIS [36,37]. The LDM often
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represents the paths of objects that move, such as rainfall. We use the LDM to represent the
confluence direction above a certain river section (Equation (2)):

LDM = arctan
∑n

i=1 sin θi

∑n
i=1 cos θi

(2)

where θi is the angle between section i-1 and section i in the confluence area.
The LDM is adjusted according to the angle quadrant, and the adjusted LDM is

between 0◦ and 360◦:

LDM =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

LDM,
n
∑

i=1
sin θi ≥ 0 and

n
∑

i=1
cos θi > 0

180 − LDM,
n
∑

i=1
sin θi ≥ 0 and

n
∑

i=1
cos θi < 0

360 − LDM,
n
∑

i=1
sin θi < 0 and

n
∑

i=1
cos θi > 0

180 + LDM,
n
∑

i=1
sin θi < 0 and

n
∑

i=1
cos θi < 0

The angle between the LDM and RMD is calculated as Equation (3):

ΔLDM =

⎧⎨
⎩

∣∣∣Drain f all − LDMriver

∣∣∣, ∣∣∣Drain f all − LDMriver

∣∣∣ ≤ 180

360 −
∣∣∣Drain f all − LDMriver

∣∣∣, ∣∣∣Drain f all − LDMriver

∣∣∣ > 180
(3)

where Drain f all represents RMD, LDMriver represents the LDM, and ΔLDM is between
0 and 180◦.

2.2.5. Dynamic Clustering of Sections

We use the dynamic clustering machine learning method to classify the I f p values of
all sections. The I f p value of each section in different RMD with same RI is used as the
attribute to construct the sample set. The calculation is as follows:

Si =
{

I f (1)p, I f (2)p, . . . I f (100)p

}
(4)

Ω = {S1, S2, . . . S429} (5)

where Si is section i and I f (1)p is the simulated result with RMD = f (1) and RI = p.
The dynamic cluster analysis method is used to classify the sections in Ω; then, the

features of each subset, that is, the typical features influencing the peak runoff of the section,
are extracted.

The k-means clustering algorithm is used to classify low dimensional with 4 steps:
(1) A total of r initial cluster centers is set up: Z1(p), Z2(p), . . . . . . Zr(p), where p is the

number of iterations.
(2) The distance from samples x (x ∈ X) to each cluster center is calculated,

if Dx(j) = min{Dx(i)} i = 1, 2, · · ·r, then x ∈ Sj

where Sj represents cluster j with the center of Zj.
(3) The new center of each cluster is calculated. The new center of Zj is calculated

as follows.

Zj(p + 1) =
1
N

N

∑
i=1

xi , j = 1, 2, · · · r
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where N is the number of samples contained in cluster Sj and xi is sample i. using Zj(p + 1)
as the new cluster center, the clustering criterion function can be minimized:

Jj =

⎡
⎣ ∑

x∈Sj(k)
‖x − zj(k + 1)‖2

⎤
⎦

1
2

where j = 1, 2, · · · , K.
(4) If Zj(p + 1) 	= Zj(p), j = 1, 2, . . . , r, then go to step (2); if Zj(p + 1) = Zj(p), j = 1,

2, . . . , r, then cease the iteration.
In this paper, different r values are calculated, and the initial values of different cluster

centers are selected for the k-means cluster analysis. Then, the rainstorms are divided into
3 modes. The mean value of each rainstorm is taken as a typical rainstorm mode.

In addition, we reconstructed the typical features of the river sections. With the inverse
calculation of the principal component analysis, the low-dimensional array is reduced to
a high-dimensional array to express the spatiotemporal process of each rainstorm. The i
clustering centers are reconstructed into i × m matrices (Equation (6)):

Xapp = Zi×p × Vm×p
′ (6)

where i is the number of rainstorm modes and m is the dimension of the original data.

3. Results and Discussion

3.1. Influence of Variation in RI and RMD Combinations on the Peak Runoff

We found that the influence of variation in RI and RMD combinations on the peak
runoff can reach 30% based on the index of peak runoff deviation (Ifp) in the study area. The
statistics of 538,200 Ifps show that the variations in the RI and RMD are more likely to cause
negative effects on peak runoff, with 77.1% of Ifps < 1.0 and 22.9% of Ifps > 1.0. However,
this influence is always ignored, possibly due to most Ifps (83.3%) ranging from 0.9 to
1.1, indicating that the effect of these variations is smaller than 10% in most instances.
Additionally, a heavy RI will reduce the effect of RMD on the peak runoff, with more
concentrated of Ifps value of approximately 1.0 correspondingly with the more enhanced RI.
We found that 96% of Ifps values ranged from 0.9 to 1.1 when RI > 70mm/h. Furthermore,
the range of Ifps decreased to 0.95–1.05 when the RI reach an extreme value larger than the
once-in-one-hundred-years value (100 mm/h). We also found that the duration of the peak
runoff was lengthened with extremely high RI values (Figure 3), which is associated with
the processes of drainage networks operating under maximum waterlogging-elimination
capacities. Figure 3A shows that the heavier the RI is, the more concentrated the Ifp is
between 0.9 and 1.1, and the number of Ifp values less than 1.0 is obviously greater than
that of Ifp values more than 1 for all RIs. Figure 3B shows that with an increase in the RI,
the fluctuation range of Ifp decreases obviously and tends toward 1.0.

3.2. Influence of Variation in RMD on the Peak Runoff

To estimate the impact of RMD, we isolate the effect of RMD from the RI by analyzing
the spatial pattern of the RMD impact under similar RI. Based on the dynamic clustering of
414 sections with 100 RMDs each, we do find three typical patterns with proportions of 42%,
21% and 37% of total number of sections, including (1) model 1 shows a nondirectional
effect of RMD by reducing the peak runoff with most Ifps < 1.0; (2) model 2 shows an
obvious directional effect of RMD with a symmetrical distribution of Ifps, in which the
minimum effect of direction is opposite to direction of the maximum; (3) model 3 shows
completely no obvious effect of RMD on peak runoff neither in direction nor in magnitude
with Ifps approximately equal to 1.0 (Figure 4).
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(A) 

 

(B) 

Figure 3. Influence of the rainfall intensity (RI) and rainfall movement direction (RMD) on the peak
runoff. (A) The distribution of Ifp values under 13 different RIs. (B) The distribution of Ifp under
different RIs.

Figure 4. Distribution of Ifps for typical modes.
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Spatially, these three models are primarily related to the location of sections in rivers
(Figure 5).

 
(A) (B) 

(C) (D) 

Figure 5. Influence of the peak runoff on the sections of four rivers. (A) Dasha River. (B) Buji River.
(C) Xinzhou River. (D) Futian River. Only certain parts of the 414 sections are drawn.

Figure 5 shows that the in lower reaches of the rivers, the larger the variation range
of Ifp is, the more symmetrical is the influence. In model 1 and model 3, the influence
of RMD on the peak runoff is negligible in the upper reaches of the river. However,
model 2 shows symmetrical variations in the lower reaches of the river. We also find that
the river length potentially influences the RMD effect. Taking four rivers in Shenzhen
as an example, the Dasha River and Buji River show the effect of model 2 from middle
reaches to lower reaches. While, this effect occurs at the ends of the lower reaches in
the other two rivers, Xinzhou River and Futian River, the lengths of which are just half
of the two aforementioned rivers. The impact of RMD on the peak runoff is primarily
present in the lower reaches, possibly due to the longer duration and larger area of the
flow concentration that gradually increased the asynchrony of rainfall with the peak runoff.
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Furthermore, we find a slightly jagged shape in models of Ifps compared with the natural
watershed, which may be explained by the uneven distribution of underground pipes used
to drain flows into rivers in urban areas and their corresponding covering areas. In rapidly
urbanizing area, the lack of pipe network datasets will increase the complexity of urban
flood analyses.

3.3. How RMD Affect the Peak Runoff across Rivers

To further understand how RMD affect the peak runoff, we calculated three angles
of sections: θmaxPR-FC (the angle between RMD with maximum peak runoff and flow
concentration direction), θmin PR-FC (the angle between RMD with minimum peak runoff
and flow concentration direction) and θmax PR-FD (the angle between RMD with maximum
peak runoff and flow direction). In this paper, we used “Linear Directional Mean” (LDM)
to represent the flow concentration direction, which is the geometric mean of all the reaches
upstream. In contrast with the flow direction, we do find a significant relationship between
RMD and the flow concentration direction during maximum peak runoff (Figure 6), with
decreasing trends of θmaxPR-FC from upstream to downstream. For example, the angles
of the second half of downstream reaches of the Buji River are almost smaller than 20◦,
and some sections even reach 0◦. In contrast, θminPR-FC is gradually increased with the
opposite RMD to θmaxPR-FC, which is consistent with the result of model 2 shown in
Figure 4. Additionally, the θmax PR-FC values are larger in more meandering rivers (e.g.,
Dasha River) than in rivers with straight channels (e.g., Buji River). We can therefore
conclude that RMD is a significant factor to peak runoff downstream in urban areas, and
this influence is not isolated but needs to be combined with the spatial feature of rivers
such as direction and bending.

The impact of RMD on the peak runoff indicates that river flood risks and discharge
capacities should be evaluated from more rainfall variations including RI, rainfall duration,
etc. Commonly used methods that do not consider the impact of RMD, such as constructing
rainfall processes by independent zoning [34,38,39], may underestimate or overestimate
the peak runoff magnitude in rivers. Figure 7 compares the difference of peak runoff
between considering and not considering the impact of RMD, in four urban rivers of
Shenzhen with similar RIs. We found that the uncertainties yielded from RMD may reach
−40% and 50% (Figure 7). In most cases, these uncertainties range from −20% to 20%.
These analyses confirm that the impact of RMD on runoff cannot be ignored in urban
hydrologic management.

Figure 6. Cont.
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Figure 6. Influences of rainfall movement direction (RMD) and the direction of river confluence on the peak runoff. (A)
Dasha River. (B) Buji River. (C) Xinzhou River. (D) Futian River.

  
(A) (B) (C) 

  
(D) (E) (F) 

Figure 7. The peak runoff ranges with the same rainfall intensity (RI) value but different RMDs for 6 river sections.
(A), section 50 of the Dasha River. (B), section 100 of the Dasha River. (C), section 150 of the Dasha River. (D), section 30 of
the Buji River. (E), section 80 of the Buji River. (F), section 130 of the Buji River.

4. Conclusions

Our results show that rainfall movement direction (RMD) are very likely responsible
for variations in flood risks in different sections of urban rivers, which should not be
ignored in urban hydrologic management. Although the impact of RMD on peak runoff in
rivers is always covered up by heavy rainfall intensity (RI), this impact is significant in the
downstream reaches of urban river when combined with spatial features of rivers, such
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as the river direction and bending. We propose that RMD should be involved in urban
hydrologic models and predication, as it may yield substantial uncertainties in peak runoff
in rivers. We provide an empirical evaluation to quantify the contribution of RMD to peak
runoff in urban rivers, indicating that the river flood risk and discharge capacity should
be evaluated based on more variations in rainfall such as RMD. Given the importance
of the prevention and treatment of urban waterlogging with the accelerating process of
urbanization, this empirical evaluation of peak runoff variations due to changing RMDs
represents a contribution for the development of an Early Warning System (EWS) for the
study area and provides critical information to inform policy and decision making.
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Abstract: The ridge estimation-based dynamic system response curve (DSRC-R) method, which is an
improvement of the dynamic system response curve (DSRC) method via the ridge estimation method,
has illustrated its good robustness. However, the optimization criterion for the ridge coefficient in
the DSRC-R method still needs further study. In view of this, a new optimization criterion called the
balance and random degree criterion considering the sum of squares of flow errors (BSR) is proposed
in this paper according to the properties of model-simulated residuals. In this criterion, two indexes,
namely, the random degree of simulated residuals and the balance degree of simulated residuals,
are introduced to describe the independence and the zero mean property of simulated residuals,
respectively. Therefore, the BSR criterion is constructed by combining the sum of squares of flow
errors with the two indexes. The BSR criterion, L-curve criterion and the minimum sum of squares of
flow errors (MSSFE) criterion are tested on both synthetic cases and real-data cases. The results show
that the BSR criterion is better than the L-curve criterion in minimizing the sum of squares of flow
residuals and increasing the ridge coefficient optimization speed. Moreover, the BSR criterion has an
advantage over the MSSFE criterion in making the estimated rainfall error more stable.

Keywords: flood forecasting; error correction; residual property; ridge coefficient criterion

1. Introduction

Flood forecasting, an important non-structural measure, plays an important role in
regional flood control, flood warning, risk decision making, etc. [1–3]. The hydrological
model simplifies and conceptualizes the flood process with a set of equations aiming at
obtaining the outlet flow. However, not all problems can be solved with such a model as
the flood forecasting accuracy is often hampered and influenced by many error factors
existing in the hydrologic system, including the errors in the model inputs, the errors in the
model initial condition, the errors in the model simplification and the errors in the model
parameters. Therefore, many scholars have devoted themselves to the research of error
correction methods. For example, the autoregressive (AR) model estimates the flow error
existing in a certain forecasting period by using the correlation of error series, and it was
later developed into improved methods such as the recursive autoregressive model and the
forgetting factor recursive autoregressive model [4–6]; Kalman filtering (KF) technology
is widely used to update hydrological element time series in flood forecasting, and many
improved types have been gradually formed, including the extended Kalman filter (EKF) [7]
and the ensemble Kalman filter (EnKF) [8]. Data assimilation technology has also shown
satisfying results in improving the prediction accuracy of models, including dynamic
identifiability analysis (DYNIA) [9], and the Bayesian recursive estimation technique
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(BaRE) [10]. Robust theory [11] and the comprehensive correction method [12] are also
used in flood forecasting error correction. However, error correction technology still needs
to be improved; for example, the autoregressive model assumes that the error series has
a linear correlation, but its performance near the flood peak is often not satisfying [12].
Additionally, some studies have also shown that the EnKF does not perform very well
when the error structure is far away from a Gaussian distribution [13]. Scholars are still
trying to solve the above problems.

A new error correction method called the dynamic system response curve (DSRC)
method has been proposed by Bao et al. [14]. This method constructs a feedback model
which is conceptualized on updating the hydrologic element series by tracing back to the
source of the error. With the help of the first-order Taylor linearization to approximate the
hydrologic model, error correction is achieved by solving the corresponding equations
using the least square method. The DSRC method was initially applied to correct single
hydrological elements, including runoff [15], rainfall [16] and model state variables [17].
Then, it was used to correct several hydrological elements comprehensively [18]. However,
some studies [17–20] found that the correction results are not always stable, reflected
in the excessive correction of hydrological element series and none-smooth simulated
flow hydrographs. To solve the above problems, the DSRC-R method was developed
by Si et al. [19] from the point of the regularization known as ridge estimation, and this
method has improved the stability of correction results to some degree. Nevertheless,
the selection criterion of the ridge coefficient still needs further study and improvement.
Previous studies [17–19] often chose the ridge coefficient based on the L-curve criterion [21].
However, it has been found in practice that two aspects still need attention. One is that
the L-curve seems insufficient to reflect the properties of model-simulated residual errors
including the independence and the zero mean property of simulated residuals, which
hinders the performance of DSRC-R in some cases; the other is that the application of the
L-curve criterion takes a long time, which is not conducive to the real-time performance of
flood forecasting. The L-curve criterion involves derivative calculation, and the difference
method makes the operation efficiency lower.

Therefore, in this paper, we analyze the L-curve criterion and introduce the concepts
of the random degree of simulated residuals and the balance degree of simulated residuals
to describe the properties of the model-simulated residuals, and then a new criterion
called the balance and random degree criterion considering the sum of squares of flow
errors (BSR) is proposed. The new criterion takes the independence and the zero mean
property of simulated residuals into account, which is conducive to obtaining a ridge
coefficient in line with the statistical characteristics of residuals. The new criterion does
not involve derivative calculation; thus, it can greatly shorten the search time of the ridge
coefficient in optimization, improve the operational efficiency and enhance the real-time
flood forecasting performance.

2. Methodology

2.1. DSRC Method

The main idea behind the DSRC method is that it firstly retrieves the rainfall errors
from the outlet flow errors, then updates the rainfall series and finally reruns the model
with the updated rainfall series. In this method, given a hydrological model Q = Q(P) that
generates outlet flow Q as a function of rainfall P, the variation process of the outlet flow
change by the unit perturbation in rainfall is called the system response curve. Based on
this, multi-time system response curves form the system response matrix S, and this matrix
sets up the relation between rainfall errors ΔP and flow errors ΔQ; then, the estimation of
rainfall errors Δ̂PLS can be computed via the least square method. In this round, the input
rainfall series is updated with Δ̂PLS, and then the model is rerun with the updated rainfall
series to correct the forecasting results. In this study, the DSRC method was combined
with the Xinanjiang (XAJ) model, a hydrological model constructed by Professor Zhao
Renjun of Hohai University which is widely used in flood forecasting in humid areas of
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China [22]. Additionally, here, we mainly talk about the calculation process of the DSRC
method shown in Figure 1 rather than the XAJ model, as this paper will introduce it in
Section 3. Additionally, the theoretical derivation of the DSRC method can be gained
from [16].

Figure 1. Schematic diagram of the DSRC method. QC, QO and Q′
C are model-simulated flow,

observed flow and updated model-simulated flow, respectively; ΔQ is the model-simulated deviation
series of the outlet flow; Δ̂P is the estimated rainfall error series; PO is the initial rainfall series; P′ is
the updated rainfall series; and E is pan evaporation.

According to [16], the rainfall error estimation Δ̂PLS is expressed as the following
Equation (1):

Δ̂PLS =
(

STS
)−1

STΔQ (1)

where ΔQ is the model-simulated deviation series of the outlet flow, ΔQ = QO − QC;
QO = [QO,1, QO,2, · · · QO,M]T is the observed flow series; and QC = [QC,1, QC,2, · · · QC,M]T

is the simulated flow series computed from the observed rainfall series.
In Equation (1), S is the system response matrix defined as

S =

⎡
⎢⎢⎢⎢⎢⎣

∂Q1(P)
∂p1

∂Q1(P)
∂p2

· · · ∂Q1(P)
∂pN

∂Q2(P)
∂p1

∂Q2(P)
∂p2

· · · ∂Q2(P)
∂pN

...
...

. . .
...

∂QM(P)
∂p1

∂QM(P)
∂p2

· · · ∂QM(P)
∂pN

⎤
⎥⎥⎥⎥⎥⎦ (2)

where p1, p2 · · · pn are the initial rainfall values; and the indices M and N represent the
lengths of observed flow and rainfall, respectively (M ≥ N). ∂Qi(P)

∂pj
represents the influence

of the j-th rainfall on the i-th outlet flow. When i < j, it is obvious that ∂Qi(P)
∂pj

= 0 because

rainfall does not affect the outlet flow that occurs before it. ∂Qi(P)
∂pj

is generally obtained by

the difference, which is ∂Qi(P)
∂pj

=
Q(p1,...,pj+Δp,...,pN)−Q(p1,...,pj ,...,pN)

Δp .
Accordingly, the updated rainfall series P′ can be expressed as Equation (3):

P′ = PO + Δ̂P (3)
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where P′ is the updated rainfall series; PO is the initial rainfall series; and Δ̂P is the rainfall
error estimation series. In the DSRC method, Δ̂P is replaced by Δ̂PLS mentioned above.

In order to improve the forecasting accuracy, the updated rainfall series P′ is intro-
duced into the hydrological model for recalculation, and then the updated model-simulated
flow series Q′

C is obtained by Equation (4):

Q′
C = Q(P′ ) (4)

where Q′
C = [Q′

C,1, Q′
C,2, · · · , Q′

C,N ]
T is the updated model-simulated flow series.

2.2. DSRC-R Method

Correction results from the DSRC method are sometimes unstable. Relevant stud-
ies [19,20] have pointed out that the DSRC method is prone to be ill-conditioned, which
generates unstable results when this method is applied to small basins, or when the length
of flow information is short. Therefore, Si et al. [19] combined the DSRC method with the
ridge estimation method and proposed the DSRC-R method, which is more robust than
the DSRC method. In previous studies, the ridge coefficient β was often selected via the
L-curve criterion [17–19]; however, the correction results were not always stable. Thus, the
criterion for obtaining the appropriate ridge coefficient β in the DSRC-R method needs
further study. Here, we directly provide the formula of rainfall error estimation Δ̂PRE
as the following Equation (5). For more details about the derivation process of DSRC-R,
please refer to [19].

Δ̂PRE =
(

STS + βI
)−1

STΔQ (5)

where β is the ridge coefficient; I is the identity matrix; and Δ̂PRE is the rainfall error
estimation series of the DSRC-R method.

Δ̂PRE can be introduced into Equation (3) to update the rainfall series, and then the
model can be rerun with P′ to correct the forecasted flow. The flow chart of the DSRC-R
method is shown in Figure 2.

 

Figure 2. Flow chart of the DSRC-R method. Si is the system response curve of the i-th rainfall, that
is, the i-th column of matrix S.
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2.3. L-Curve Criterion

The ridge coefficient β is significantly important in the DSRC-R method. In some
previous studies [17–19], the L-curve criterion was used to determine the value of β.
According to [23], the main idea behind the L-curve criterion in selecting the appropriate
ridge estimation coefficient β in the DSRC-R method can be summarized as: the balance of
lg‖Q(PO + Δ̂PRE)− QO‖ and log ‖Δ̂PRE‖, and the appropriate ridge coefficient lies at the
corner of the curve, usually with the largest curvature. That is, the technique to find the
appropriate ridge coefficient can be expressed as Equation (6).

max
β

⎛
⎜⎝ | f ′ g′′ − f ′′ g′ |[

( f ′ )2 + (g′ )2
]3/2

⎞
⎟⎠ (6)

where f (β) = log ‖Δ̂PRE‖2
2; g(β) = lg‖Q(PO + Δ̂PRE)− QO‖2

2; and ‖•‖2
2 is the modu-

lar square.
It can be proved (see Appendices A and B) that f (β) and g(β) can be expressed as

Equations (7) and (8).

f (β) = log[
n

∑
i=1

(
ki

λi + β
)

2
] (7)

g(β) = lg‖Q(PO +
n

∑
i=1

ki
λi + β

vi)− QO‖
2

2

(8)

where λi(i = 1, · · · , N) is the eigenvalue of the matrix STS; vi(i = 1, · · · , N), orthogonal to
each other, is the unit eigenvector corresponding to λi(i = 1, · · · , N); and ki(i = 1, · · · , n)
is a group of coefficients that enable STΔQ to be linearly expressed by vi(i = 1, · · · , N),

that is, STΔQ =
n
∑

i=1
kivi.

The L-curve criterion has a good effect on selecting the ridge coefficient in the DSRC-R
method, but there are still some problems that are worthy of attention. First, the result is
sometimes unsatisfactory. The reason is that the L-curve criterion seems to insufficiently
reflect the properties of the model-simulated residuals, although it pays attention to the
balance of lg‖Q(PO + Δ̂PRE)− QO‖ and log ‖Δ̂PRE‖. Second, the optimization of the ridge
coefficient consumes too much time. The L-curve criterion involves first-order and second-
order derivatives, as shown in Equation (6). Additionally, the explicit expression of g(β)
cannot be obtained at present, meaning its derivative can only be obtained by a difference
method; thus, it will take a long time and is not conducive to the real-time performance of
flood forecasting.

2.4. New Optimization Criterion (BSR)

In previous studies [17–19], the L-curve criterion was generally adopted to find the
suitable ridge estimation coefficient β in the DSRC-R method. Nevertheless, the L-curve
criterion has some shortcomings such as insufficient consideration of model-simulated
residuals, imperfect utilization of information and huge consumption of time. Therefore,
this study takes the properties of the model-simulated residuals into consideration and
then explores a new optimization criterion which is more suitable for the DSRC-R method.

For any model, it is always expected that the simulated residual series satisfies the
zero mean property and non-correlative statistical property; in other words, let the mean
of the residual series and correlation coefficient be as small as possible. This shows us that
the criterion for determining the ridge coefficient should consider Equations (9) and (10).
We use Equation (9) to express the zero mean property of the residuals, and this indicator
is called the balance degree of simulated residuals (BDSR). We use Equation (10) to express
the correlation of the residual series, and its reciprocal is called the random degree of
simulated residuals (RDSR), which is shown in Equation (11). Additionally, RDSR indicates
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the independence of the residuals, and we generally expect a smaller value of the BDSR
indicator and a bigger value of the RDSR indicator.

BDSR = abs

[
m

∑
i=1

(
QO,i − Q′

C,i

)]
(9)

re = abs[

m−1
∑

i=1
(ΔQ′

i − ΔQX)(ΔQ′
i+1 − ΔQY)√

m−1
∑

i=1
(ΔQ′

i − ΔQX)2
m−1
∑

i=1
(ΔQ′

i+1 − ΔQY)2

] (10)

RDSR =
1
re

(11)

where abs represents the absolute value sign; re is the absolute value of the correlation

coefficient of adjacent residuals;ΔQ′
i = QO,i − Q′

C,i; ΔQX = 1
m−1

m−1
∑

i=1
ΔQ′

i ; and ΔQY =

1
m−1

m−1
∑

i=1
ΔQ′

i+1.

Traditional methods often take the minimum sum of squares of flow errors (MSSFE) as
the objective function for calibration parameters, but the effective information contained in
this method is not sufficient to obtain the ridge coefficient. The reason is that the derivation
process of the DSRC-R method utilizes the least square method, and when the system is
linear, the least sum of squares of flow errors equals the least square method; thus, the
value of β should be zero in this circumstance. Although the DSRC-R method belongs to
non-linear system inversion methods, the value of β still has a decreasing tendency, and
this is not conducive to the stability of the method. Therefore, we need to further excavate
more useful information in the simulated errors.

In this paper, we take the independence and the zero mean property of simulated
residuals into account, combine these two points with the sum of squares of flow errors
(SSFE) and lastly explore a new criterion called the balance and random degree criterion
considering the sum of squares of flow errors (BSR criterion). Generally, we hope to find
a large value of RDSR which is more consistent with the property of the residuals and is
conducive to avoiding system errors; moreover, we hope to find a small value of BDSR
which can satisfy the zero mean property of residuals and can decrease the flood volume
errors. Based on this, considering the SSFE indicator, we propose the BSR criterion, the
mathematical form of which is provided in Equation (12). Overall, the new BSR criterion
considers the traditional sum of squares of residuals; furthermore, it is possible to find the
ridge coefficient which satisfies the properties of flow residuals.

min
β

(BDSR + 1)SSFE
RDSR

(12)

where “+1” is used to avoid the value of BDSR being zero; and SSFE =
m
∑

i=1

(
QO,i − Q′

C,i

)2
.

Since the BSR criterion pays more attention to the independence and the zero mean
property of simulated residuals than the L-curve criterion, it is more likely to select a ridge
coefficient β which satisfies the properties of residuals, and thus a better performance can be
achieved with the DSRC-R method; moreover, the BSR criterion does not involve derivation
calculation, meaning it can improve operational efficiency and save much more time.

In real-time flood forecasting, in order to quickly obtain an appropriate β, we need
to utilize an automatic optimization method. Additionally, in this paper, we adopt the
particle swarm optimization algorithm, which was first proposed by Kennedy and Eberhart
and constructed on the concept of mimicking the social behavior of birds [24–27]. This
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algorithm has been widely used in many types of optimization problems. For more details
about particle swarm algorithms, please refer to [24].

2.5. The Entire Research Process

In order to make the whole research process more clear, we created a flow chart, as
shown in Figure 3. The figure shows the entire research process including the proposal of
the BSR criterion, the research of a synthetic case and a real case and the comparison of
three criteria (BSR, L-curve and MSSFE).

 

Figure 3. The research flow chart showing the entire research process.

3. Case Study

This research projecting synthetic and real-data studies aimed at comparing the
performance of the DSRC-R method under three criteria which include the BSR criterion,
the L-curve criterion and the MSSFE criterion.

3.1. Model Description

The selected hydrological model in this research is the Xinanjiang (XAJ) model by
Professor Zhao Renjun of Hohai University [22], which is one of the most widely used
conceptual hydrological models in China. The XAJ model, including the inputs of observed
precipitation as well as pan evaporation, and the outputs of forecasted flow as well as
evaporation, can be used in different spatial and temporal scales and be divided into four
layers: the first layer utilizing the three-layer evapotranspiration (TLE) model to realize
basin evaporation; the second layer utilizing the saturated runoff production (SRP) model to
realize the basin runoff production; the third layer utilizing the free water storage model to
realize runoff separation; and the fourth layer utilizing the linear reservoir method and the
Muskingum method to realize the basin flow concentration. When applying the XAJ model,
firstly, divide the basin into several sub-basins and then compute the runoff and outlet flow
in every sub-basin; lastly, gather the flow of each sub-basin at the outlet of the basin. For
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more details about the XAJ model, please refer to [22]. The structure of the XAJ model is
shown in Figure 4, and the meaning of parameters in each layer is shown in Table 1.

 
Figure 4. Schematic diagram of the Xinanjiang (XAJ) model. TLE represents the three-layer evapo-
transpiration model; SRP represents the saturated runoff production layer; SOR represents the runoff
separation layer; and FC represents the flow concentration layer.

Table 1. The parameters of the XAJ model.

Layer Function Parameter Meaning

First layer Evaporation

K
Ratio of potential

evapotranspiration to pan
evaporation

WUM Areal mean tension water
capacity of the upper layer

WLM Areal mean tension water
capacity of the lower layer

WDM Areal mean tension water
capacity of the deeper layer

C Coefficient of deep
evapotranspiration

Second layer Runoff
production

IM Ratio of impervious area

WM Areal mean tension water
capacity

B Exponent of the tension water
capacity distribution curve

Third layer Runoff separation

SM Areal mean free water capacity
of the surface soil layer

EX Exponent of the free water
capacity curve

KI Outflow coefficients of the free
water storage to interflow

KG Outflow coefficients of the free
water storage to groundwater

Fourth layer Flow
Concentration

CS Recession constant of the surface
water storage

CI Recession constant of the
interflow storage

CG Recession constant of the
groundwater storage

KE Storage time constant
XE Weight factor
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3.2. Synthetic Case

The synthetic case was to design a typical artificial basin whose catchment area, station
distribution, model parameters, hydrological features of the basin condition, “observed”
precipitation, evaporation, “observed” outlet flow, error factors and any other information
about the basin are all known in order to compare different schemes expediently. The
synthetic case included 10,000 synthetic precipitations and corresponding floods in order
to compare the performance of the DSRC-R method under three criteria (the BSR criterion,
the L-curve criterion and the MSSFE criterion).

A major point of the synthetic case was to obtain the “observed” flow. Here, we
referred to [16] and utilized Equation (13) to obtain it. By using different PO and ΔP, we
can obtain a different QO.

QO = Q(PO + ΔP) + e (13)

where QO is the “observed” flow series; PO is the initial precipitation series; ΔP is the given
error series, and each value in the series ΔP does not exceed 30% of the corresponding
value in PO; and e is Gaussian white noise which cannot exceed 5% of the initial value in
this study.

This synthetic case assumed that the basin area is 1000 km2 and there are 8 precipitation
stations in the basin. The value of parameters from each layer is shown in the following
Table 2.

Table 2. The parameters of the XAJ model in the synthetic basin.

Parameter K WM WUM WLM WDM IM B C SM

Value 1.1 150 20 80 50 0.01 0.3 0.16 10

Parameter EX KI KG CS CI CG KE XE

Value 1.5 0.35 0.35 0.78 0.865 0.995 1.50 0.380

3.2.1. Data

A major point of the synthetic case was to generate different initial series of precipita-
tions PO. In order to increase the diversity of PO, we applied the following method. Firstly,
we chose 55 typical areal precipitation processes from a real basin, then transformed the
position of the rainfall peak in each precipitation and eventually formed 500 synthetic typical
precipitation processes. When generating synthetic rainfall, we selected a synthetic typical
precipitation, randomly adjusted each rainfall period ranging less than 30% of the typical
rainfall and then obtained the proportion of each time interval of the rainfall series; then,
we randomly generated the total rainfall and allocated it to each time interval according
to the above proportion, thus forming one synthetic precipitation, that is, one initial series
of precipitation PO. Then, we introduced PO and the given ΔP into Equation (13) to obtain
the “observed” flow series. In this case, we constructed 10,000 synthetic precipitations and
corresponding floods, and the total rainfall of each flood ranged from 10 to 200 mm.

3.2.2. Statistical Indicators

In the synthetic case, what we consider most is the performance of the DSRC-R method
under different criteria rather than the contrast of the results between the DSRC and DSRC-
R methods, as was accomplished in [19]. The criteria include the BSR criterion, the L-curve
criterion and the MSSFE criterion. The relevant statistical indicators include the relative
error of flood peak (RPF), relative error of runoff depth (RRD), Nash–Sutcliffe effiency
coefficent (NSE), time needed to update a flood (TU) and root mean square error (RMSE).
RMSE can be utilized to evaluate the robustness of the DSRC-R method under different
criteria, and this index was applied in [17]. The smaller the value of the RMSE indicator,
the more robust the DSRC-R method will be.

The statistical indicators between synthetic cases and real-data cases are different. In
synthetic cases, RMSE is one of the indicators; however, it is not covered in real-data cases
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as there is no way to obtain the “true” precipitation. The mathematical definitions of each
statistical indicator are expressed as follows:

Relative error of flood peak (RPF):

RPF = (QOP − QCP)/QOP × 100% (14)

Relative error of runoff depth (RRD):

RRD = (RO − RC)/RO × 100% (15)

Nash–Sutcliffe effiency coefficent (NSE):

NSE = 1−

N
∑

i=1
(QC,i − QO,i)

2

N
∑

i=1
(QO,i − QO)

2
(16)

Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i=1

(pT,i − p′
i )

2 (17)

where QCP is the forecasted value of the flood peak; QOP is the observed value of the flood
peak; RC is the forecasted depth of runoff; RO is the observed depth of runoff; QO is the
average value of flow; QC,i and QO,i are the forecasted flow and observed flow in the i-th
time interval; and pT,i and p′

i are the original precipitation and the updated precipitation
in the i-th time interval. In the synthetic case, pT,i = pO,i + Δpi, and p′

i = pO,i + Δ̂pi. The
larger the NSE (NSE ≤ 1), the higher the forecasting accuracy, the smaller the RMSE and
the more robust the DSRC-R method will be.

3.2.3. Computational Process of DSRC Method and DSRC-R Method

The mechanism of the DSRC method is that it firstly utilizes the error information of
the outlet flow to invert and estimate the rainfall error, then updates the original rainfall
series and lastly reruns the model with the updated rainfall series to correct the forecasting
result. The specific steps of the DSRC method are as follows:

1. Add the additional precipitation in the i-th time interval Δpi to the precipitation in
the i-th time interval pO,i while keeping the precipitation in the j-th time interval
(j 	= i)pO,j unchanged; then, obtain the new precipitation series PO + Δpi.

2. Introduce the original precipitation series PO and new precipitation series PO + Δpi
into the model and obtain the series Q(PO) and Q(PO + Δpi), respectively. Then, Si is
obtained by the equation Si = [Q(PO + Δpi)− Q(PO)]/Δpi, where Si is the dynamic
system response curve of the i-th rainfall, that is, the i-th column of matrix S.

3. Cycle Steps 1 and 2 n times and obtain the precipitation dynamic system response
matrix S.

4. Add the estimated precipitation error series Δ̂PLS to the original precipitation series
PO and obtain the updated precipitation series P′ .

5. Introduce the updated precipitation series P′ into the model in order to obtain the
updated forecasted flow Q′

C.

According to relevant research [19,20], when the flow data are insufficient, the DSRC
method will tend to be unstable, characterized by wide fluctuations in the precipitation
error estimated series and potentially oscillation, which will influence the flow correction
effect. Therefore, a more robust method, DSRC-R, is proposed through combination with
the ridge estimation method. Although the DSRC-R method ensures the stability of the
error estimate, the ridge coefficient varies with floods. Thus, the ridge coefficient selection
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should be in accordance with the instant data. The steps of ridge coefficient optimization
are as follows:

1. Initialize the ridge coefficient β;

2. Obtain the precipitation error estimation series Δ̂PRE =
(
STS + βI

)−1STΔQ. Add
Δ̂PRE to PO in order to obtain P′ ;

3. Rerun the model with P′ and obtain the updated flow process Q′
C;

4. Judge whether the results meet the criteria (the criteria adopted in this essay include
the BSR criterion, the L-curve criterion and the MSSFE criterion). If yes, turn to Step 6;
if no, go back to Step 5;

5. Adjust the ridge coefficient β according to the optimization algorithm (this essay
applied the particle swarm optimization algorithm) and then turn to Step 2;

6. Finish the optimization process and acquire the optimal ridge coefficient β.

In order to evaluate the correction effect of the three criteria, the synthetic case not
only includes some flow indicators (RPF, RRD, NSE) but also includes some precipitation
indicators (RMSE). Additionally, RMSE is proposed to quantitatively describe the robust-
ness of the method and the oscillation phenomena. The smaller the RMSE, the more robust
the precipitation error estimation will be. RMSE has been applied in previous studies
and has been successful. However, in the actual case, due to the inability to acquire the
“true” value of rainfall, the performance of the three criteria cannot be evaluated by the
RMSE indicator.

3.2.4. Results and Discussion

The performance of the DSRC-R method on 10,000 synthetic floods under three criteria
is shown in Table 3, and one typical synthetic flood is shown in Figure 5. As can be seen
in Table 3, although the three criteria (BSR, L-curve and MSSFE) have a certain effect,
some differences still exist. In terms of the indicators RPF and RRD, the BSR criterion has
the best performance (1.90% and 1.01%). The MSSFE criterion takes second place in this
regard (1.97% and 1.27%), and the L-curve criterion has the worst performance (2.19% and
1.30%). In terms of the indicator NSE, the BSR criterion and MSSFE criterion have the same
result, with a value of 0.999, which outnumbers that of the L-curve criterion, with 0.001. In
terms of operational efficiency, the L-curve criterion consumes much more time, where the
average TU of a flood is 12.21 s. The value of the ridge coefficient β under the three criteria
has a big difference, and β tends to be smaller (average value of 64.26) when it applies the
MSSFE criterion. In terms of the indicator RMSE, the value under the BSR criterion is 0.759,
which is significantly less than the value (1.040) under the MSSFE criterion, indicating that
the BSR criterion is more conducive to improving the robustness of the DSRC-R method
than the MSSFE criterion.

Table 3. The results of the synthetic case.

Items 1 RPF RRD NSE RDSR BDSR TU β RMSE

Before
correc-

tion
9.38 5.12 0.985 —— —— —— —— ——

L-curve 2.19 1.30 0.998 5.57 80.8 12.21 985.11 0.941
MSSFE 1.97 1.27 0.999 9.31 74.8 3.99 64.26 1.040

BSR 1.90 1.01 0.999 12.88 66.9 4.11 821.35 0.759
1 The values of indicators (RPF, RRD, NSE, RDSR, BDSR, TU, β, RMSE) in the table are the average values of
10,000 synthetic floods.
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(a) (b) 

 
(c) (d) 

Figure 5. The performance of the DSRC-R method in a typical flood under three criteria. (a) The
contrast between the real value of the rainfall error and the estimation value under the MSSFE
criterion; (b) the contrast between the real value of the rainfall error and the estimation value under
the L-curve criterion; (c) the contrast between the real value of the rainfall error and the estimation
value under the BSR criterion; (d) the contrast of a typical flood forecasted flow, where QO is the
“observed” flow, QC is the forecasted flow, QL is the updated forecasted flow under the L-curve
criterion, QSS is the updated forecasted flow under the MSSFE criterion and QBSR is the updated
forecasted flow under the BSR criterion.

As it is depicted in Figure 5a–c, the estimated value of the rainfall error under the BSR
criterion is the closest to the “true” value, the total difference is 0.8 mm (1.2 mm errors
under the L-curve criterion and 0.9 mm errors under the MSSFE criterion), the correlation
coefficient reaches 0.962 (0.875 under the L-curve criterion and 0.896 under the MSSFE
criterion) and the spots are evenly distributed on both sides of the 1:1 line. All of the above
contribute to the DSRC-R method achieving the best performance under the BSR criterion.
As it is shown in Figure 5d, the indicators RPT and RRD have values of 0.9% and 0.6%,
respectively, under the BSR criterion. RPT has a value of 2.7% and RRD a value of 1.4%
under the MSSFE criterion. Lastly, RPT has a value of 4.5% and RRD a value of 3.8% under
the L-curve criterion. In a typical flood, the optimal value of β under the MSSFE criterion is
2.47, which is significantly less than 651.33 under the BSR criterion. This result shows that
the instability of the method is not sufficiently alleviated. Therefore, the points in Figure 5a
are scattered. The L-curve criterion does not fully consider the properties of the simulated
residuals, meaning the flow correction result in Figure 5d is not satisfactory.

Compared with the L-curve criterion, the BSR criterion improves the performance of
the DSRC-R method. This is because the BSR criterion takes more account of the properties
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of model-simulated residuals, including the mutual independence between residuals and
the zero mean property of residuals. As is shown in Table 3, the average BDSR under
the BSR criterion is 66.9 m3/s, which is significantly less than 80.8 m3/s under the L-
curve criterion, indicating that the former can better reflect the zero mean property of
the simulated residuals; moreover, the average RDSR under the BSR criterion is 12.88,
which is significantly greater than 5.57 under the L-curve criterion, indicating that the
former is more conducive to the mutual independence of simulated residuals. The above
analysis shows that the BSR criterion is more conducive to the optimization of the ridge
coefficient, in line with the properties of simulated residuals, than the L-curve criterion.
Therefore, the BSR criterion improves the performance of the DSRC-R method. In terms of
operation efficiency, the BSR criterion takes less time than the L-curve criterion because
the former does not involve derivative calculation, while the latter involves derivative
difference calculation.

Compared with the BSR criterion, the MSSFE criterion tends to make the value of
β smaller (average value of 64.26), which is not conducive to improving the robustness
of the DSRC-R method. The average RSME under the MSSFE criterion is 1.040, which is
significantly greater than 0.759 under the BSR criterion, indicating that the BSR criterion
makes the DSRC-R method more stable. This is because the MSSFE method is equivalent to
the least square method in linear systems, meaning the value of β should be 0 if the DSRC-R
method is applied in a linear system. Although the XAJ model is a non-linear system, the
value of β will still tend to be small, which is not conducive to improving ill-conditioned
problems. However, the BSR criterion introduces BDSR and RDSR, and this makes more
use of the effective information contained in the simulated errors, which is conducive to
avoiding a value of β that is too small, making the DSRC-R method more stable.

To sum up, the BSR criterion has greater advantages among the three criteria. It pays
more attention to extracting effective information from simulated errors of the outlet flow
(in fact, any type of error will eventually be reflected here). It takes more account of the
mutual independence and zero mean property of residuals, which is conducive to selecting
a more reasonable value of β and improving the performance of the DSRC-R method.

3.3. Real Case

The research basin in this study is Tankeng basin, with a total area of 3330 km2 and
15 precipitation stations, which is located at the tributary of the Ou River in Zhejiang
Province. Tankeng basin is in the subtropical monsoon climate zone, and it enjoys a
temperate climate with well-marked seasons and plenty of rainfall and sunshine. Runoff
from Tankeng basin is mainly supplied by precipitation. The annual average precipitation
of Tankeng basin is between 1500 and 2100 mm, and multi-annual average evaporation is
969.9 mm. The precipitation spatial distribution is uneven, as is the annual precipitation
temporal distribution; based on this, the entire year can be divided into three parts with the
first part “spring rain” ranging from March to April, the second part “plum rain” ranging
from May to June and the third part “thunderstorm” ranging from July to September. In
Tankeng basin, multi-annual average flow is 120 m3/s, and the maximal runoff happens in
June, with the proportion of the entire annual runoff reaching up to 19.7%. More details
about Tankeng basin and its rainfall station distribution are illustrated in Figure 6.
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Figure 6. Map showing the location of Tankeng basin and depicting the stations. The map describes
the location, longitude and latitude range and shape of Tankeng basin and shows the location of the
rainfall stations and the flow station.

3.3.1. Data

There are two time scales for observed data including the day scale and the hour scale.
Evaporation data are day-scale information, while precipitation and flow data are both
day-scale information and hour-scale information. This research collected observed data
such as evaporation, observed flow and precipitation from 1980 to 2005. The rainfall data
were from 15 rainfall stations, evaporation data came from one evaporation station and
observed flow data came from the outlet flow of Tankeng basin.

Tankeng basin has been used in previous studies using the XAJ model [20,28], and
thus no calibration was required here. The parameters of the XAJ model at Tankeng basin
are shown in Table 4.

Table 4. Parameters of the XAJ model for Tankeng basin.

Parameter K WM WUM WLM WDM IM B C SM EX

Value 1.296 150 20 80 50 0.01 0.3 0.16 10 1.5

ParameterKI KG CS CI CG KE XE

Value 0.35 0.35 0.65 0.865 0.95 1.466 0.380

3.3.2. Results and Discussion

The statistical indicators of the real case are different from those of the synthetic case.
In the real case, the “true” value of rainfall cannot be obtained, meaning RMSE cannot be
applied. Here, the indicators include RPF, RRD, NSE and TU.

In this study, 31 historical floods in the basin were selected to compare the results of
three criteria including the L-curve criterion, MSSFE criterion and BSR criterion. In order to
show the performance of the DSRC-R method under each criterion, the statistical indicators
of each flood are listed in Table A1 (see Appendix C). In order to more clearly compare the
results of the BSR criterion and the other two criteria, scatter diagrams of each indicator of
31 floods were constructed, as shown in Figure 7. As it is illustrated in Table A1, in terms
of the flood peak, the average RPF is 5.42% under the L-curve criterion, 3.95% under the
MSSFE criterion and 3.49% under the BSR criterion; therefore, it is apparent that the BSR
criterion has a better performance. In terms of the runoff depth, the average RRD is 2.77%
under the BSR criterion, which is 3.91% and 1.31% lower, respectively, than that under
the L-curve and MSSFE criteria. In terms of NSE, the BSR criterion has the maximal NSE
of 0.940, while the NSE under the L-curve criterion is 0.933 and 0.938 under the MSSFE
criterion. In terms of operational efficiency, the average time consumed under the BSR
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criterion is 12.7 s, which is 25.7 s lower than that under the L-curve criterion, and this
illustrates that the operation efficiency is dramatically improved when the BSR criterion
is adopted.

  

(a) (b) (c) 

  
(d) (e) (f) 

Figure 7. The contrast of application effects of 31 floods under three criteria. (a) The contrast of RPF
of each flood between the BSR criterion and L-curve criterion; (b) the contrast of RRD of each flood
between the BSR criterion and L-curve criterion; (c) the contrast of NSE of each flood between the
BSR criterion and L-curve criterion; (d) the contrast of RPF of each flood between the BSR criterion
and MSSFE criterion; (e) the contrast of RRD of each flood between the BSR criterion and MSSFE
criterion; (f) the contrast of NSE of each flood between the BSR criterion and MSSFE criterion.

Figure 7a–c show the comparison of the statistical indicators of 31 floods between the
BSR criterion and L-curve criterion. Figure 7a,b are inclined to the lower side of the 1:1 line,
and Figure 7c is inclined to the upper side of the 1:1 line, indicating that the BSR criterion
is more effective than the L-curve criterion for most floods. In terms of the flood peak and
runoff depth, the BSR criterion is more effective in 24 floods and 29 floods, respectively;
additionally, the NSE of 23 floods is greater under the BSR criterion. Figure 7d–f show the
comparison of flood indicators between the BSR criterion and MSSFE criterion. Similar
to Figure 7a–c, under the BSR criterion, the forecasting accuracy of 21 flood peaks and
25 flood runoff depths is higher, and NSE of 18 floods is larger, indicating that the BSR
criterion has more advantages over the MSSFE criterion for most floods.

Compared with the L-curve criterion, the BSR criterion improves the performance
of the DSRC-R method. This is because the BSR criterion introduces BDSR and RDSR,
thus more fully considering the properties of the model-simulated residuals including
the zero mean property and the mutual independence. The results in Table A1 show that
the average BDSR corresponding to the BSR criterion is 648.1 m3/s, which is far less than
1269.9 m3/s of the L-curve criterion, indicating that the BSR criterion is more conducive to
the zero mean property of the simulated residuals. At the same time, the average RDSR
corresponding to the BSR criterion is 1.69, which is greater than 1.28 of the L-curve criterion,
indicating that the BSR criterion tends to meet the mutual independence of the simulated
residuals. Therefore, under the BSR criterion, the DSRC-R method has a better performance.
In the real case, the mean value of β under the MSSFE criterion is 327.67, which is far less
than 2048.97 under the BSR criterion. This is because the MSSFE criterion only considers
the sum of squares of errors, which tends to make β small, while the BSR criterion focuses
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on the nature of the simulated residuals and extracts more effective information from the
outlet flow error information, which is conducive to avoiding a small value of β. Therefore,
the application of the BSR criterion in the real case is better than that of the MSSFE criterion.

4. Conclusions and Prospect

A previous study [19] proposed the DSRC-R method and verified that it has stronger
robustness. However, the selection criterion of the ridge coefficient, usually the L-curve
criterion [17–19], has only received limited attention. This essay constructed the BSR crite-
rion based on the properties of model-simulated residuals, utilizing the indicator RDSR to
quantitatively describe the independence of the residual series while utilizing the indicator
BDSR to quantitatively describe the zero mean property of residuals. Additionally, we
then contrasted the performance of the DSRC-R method under three different criteria (BSR
criterion, L-curve criterion and MSSFE criterion) through synthetic and real-data studies.

From the results, we found that among the three criteria, the BSR criterion is more
suitable for the DSRC-R method. Compared with the L-curve criterion, the BSR criterion
improves the performance of the DSRC-R method. This is because the BSR criterion in-
troduces RDSR and BDSR, which quantitatively describe the mutual independence of
model-simulated residuals and zero mean property of model-simulated residuals, respec-
tively. Moreover, the BSR criterion saves more time than the L-curve criterion because
the BSR criterion does not involve derivative calculation. In addition, compared with
the traditional MSSFE criterion, the BSR criterion is more conducive to enhancing the
robustness of the DSRC-R method. The MSSFE criterion tends to make the ridge coefficient
β smaller, which is unfavorable to the performance of the DSRC-R method. Meanwhile, the
BSR criterion is conducive to avoiding a small ridge coefficient by extracting more effective
information contained in the simulated errors, and this makes the DSRC-R method more
robust and improves its performance.

Further research is needed. The BSR criterion proposed in this paper improves the
performance of the DSRC-R method, and this seems to benefit from the rational use of
outlet flow information. In recent years, data assimilation technologies combined with
radar information and remote sensing information have been continuously emerging and
have received a significant amount of attention. However, making full use of outlet flow
information to update hydrological elements deserves more attention. This is because
hydrological elements such as rainfall, evaporation and soil moisture will eventually be
reflected in the outlet flow. Therefore, much more effort needs to be made in this regard.
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Appendix A. Proof of Δ̂PRE =
n
∑

i=1

ki
λi+β vi in the DSRC-R Method

Let λi(i = 1, · · · , n) be the eigenvalue of matrix UTU.
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Next, λi + β(i = 1, · · · , n) is the eigenvalue of matrix UTU + βI. Observe that matrix
STS and matrix UTU + βI have the same eigenvectors.

We already have STS as a symmetric matrix; therefore, the N mutually orthogonal
unit eigenvector vi(i = 1, · · · , n) exists. Hence

STSvi = λivi∴ (STS + βI)vi= (λi + β)vi

Let A= (v1, · · · , vn) be the orthogonal matrix.
Next, A is the full rank; thus, Ak = STΔQ must have a unique solution, ... Then,

STΔQ has a linear expression with vi(i = 1, · · · , n) and can be solved with only one group
ki(i = 1, · · · , n). Hence

(STS + βI)ΔP̂RE = STΔQ

=
n
∑

i=1
kivi

=
n
∑

i=1

ki
λi+β [(λi + β)vi]

=
n
∑

i=1

ki
λi+β [(S

TS + βI)vi]

= (STS + βI)
n
∑

i=1

ki
λi+β vi

∴ (STS + βI)Δ̂PRE = (STS + βI)
n
∑

i=1

ki
λi+β vi

Notice that STS + βI is reversible. Hence, Δ̂PRE =
n
∑

i=1

ki
λi+β vi.

Appendix B. Proof of f (β) = log[
n
∑

i=1
( ki

λi+β )
2
]

Notice that if we want to prove the equation f (β) = log[
n
∑

i=1
( ki

λi+β )
2
], firstly, we need

to prove ‖Δ̂PRE‖2
2 =

n
∑

i=1
( ki

λi+β )
2
.

Furthermore,

‖Δ̂PRE‖2
2= (Δ̂PRE, Δ̂PRE) = (

n

∑
i=1

ki
λi + β

vi,
n

∑
i=1

ki
λi + β

vi) =
n

∑
i=1

n

∑
j=1

ki
λi + β

kj

λj + β
(vi, vj)

where (vi, vj) is the inner product of vi, vj.
Notice that vi (i = 1, ..., n) is the mutually orthogonal unit vector.

∴ (vi, vi) = 0 when i 	= j and (vi, vi) = 1 (i = 1, 2 · · · n)

∴ ‖Δ̂PRE‖2
2 =

n
∑

i=1
( ki

λi+β )
2

∴ f (β) = log[
n
∑

i=1
( ki

λi+β )
2
].
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Abstract: Heilongjiang Province is located in the northeastern part of China and is the province
with the highest latitude in China. As Heilongjiang Province is the most important grain production
base in China, the Chinese government attaches great importance to the quality of the ecological
environment in Heilongjiang Province, especially the analysis of changes in the quality of the water
environment and their driving factors. We studied the changes in the environmental quality of
surface water in Heilongjiang Province during the “13th Five-Year Plan” period (2016–2020), and
analyzed the surface water for four major pollutants including the permanganate index, chemical
oxygen demand, ammonia nitrogen and total phosphorus, and the change trends of the proportion
of the water quality of class I–III and the proportion of the water quality of inferior class V. The
results show that the environmental quality of surface water in Heilongjiang Province has improved
significantly during the “13th Five-Year Plan”. The analysis of the driving factors of the change of
surface water environment quality shows that the population, the primary industry, the tertiary
industry and forestry are the main factors affecting the change of water environment quality in
Heilongjiang Province.

Keywords: “Thirteenth Five-Year Plan” period; water environment quality; Heilongjiang Province;
correlation analysis; surface water

1. Introduction

Located in northeastern China, Heilongjiang Province is the northernmost, eastern-
most and highest latitude province in China. Its north and east are separated from Russia
across Heilongjiang River, its west is adjacent to the Inner Mongolia Autonomous Region,
and its south is bordered by Jilin Province. With a total land area of 473,000 Km2, Hei-
longjiang Province is the sixth largest province in China. The geographical location and
water system of Heilongjiang Province are shown in Figure 1.

The period from 2016 to 2020 was the time when China implemented the Outline of the
Thirteenth Five-Year Plan for National Economic and Social Development of the People’s
Republic of China, hereinafter referred to as the “Thirteenth Five-Year Plan” period. During
this period, the government of Heilongjiang Province focused on the improvement of the
Songhua River Basin. All 44 black and odorous water bodies were treated, 72 industrial
parks realized centralized sewage treatment, and 43 water source protection areas were
all rectified for environmental problems. These results demonstrate the determination of
Heilongjiang Province to improve the surface water environment.
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Figure 1. Geographical location and water system of Heilongjiang Province.

At present, scholars’ research on the surface water environment mainly focuses on
the investigation and monitoring of new pollutants. For example, the research of Meng
Qiao et al. (2022) showed that OPAHs exist preferentially in the water environment and
pose a non-negligible ecological risk to the surface water ecosystem [1]. Hai-Yan Zou et al.
(2021) studied the characteristics of antibiotic resistance genes (ARGs) in surface water
affected by mining, and the results show that heavy metals from mining activities have
significant effects on ARGs in surface water to varying degrees [2]. Nina Henning et al.
(2021) detected GBP-Lactam, NA-GBP and CCHA at levels up to 260 ng/L in the Rhine
River and its tributaries, suggesting monitoring of these compounds in drinking water [3].
Silvia Galafassi et al. (2019) reported on microplastic emissions, listing all identified sources
of microplastic waste to date and a quantitative assessment of environmental inputs to
surface water [4]. G. Sammut et al. (2017) conducted an extensive survey of perfluoroalkyl
substances (PFAS) in surface waters of the Maltese Islands and the results show that all
surface water samples are contaminated with at least one PFAS, with PFOS and PFOA
detected in surface water at 100% and 95%, respectively [5].

In addition to increased monitoring of new pollutants, researchers have proposed
a number of methods in recent years that may improve surface water monitoring. For
example, Koyel Sur et al. (2021) conducted a pilot study in northwestern India, and he used
green and shortwave-infrared (SWIR) bands to modify the Modified Normalized Difference
Water Index (MNDWI) method, using this method to monitor the environmental quality of
surface water [6]. The monitoring data can be processed and displayed using the Google
Earth Engine (GEE) platform. Sama Azadi et al. (2021) conducted continuous monitoring
of surface water around a new highway in southern Norway; he used the Gamma Test
theory (GTT) method to optimize the water quality monitoring network (WQMN) of the
road so that WQMN can be suitable for projects with limited design and construction time
and budget or projects lacking sufficient data [7]. With the development of science and
technology, there are more and more types of new pollutants, and their impact on the
water environment is becoming more and more complex. Monitoring and research on new
pollutants is often necessary. The development of science and technology will also lead to
innovations in monitoring technology, and research on the testing and application scope of
new technologies is also necessary to improve the level of environmental monitoring.
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However, for a region as large as Heilongjiang Province, the introduction of new pol-
lutants or new monitoring techniques into surface water monitoring should be carefully
considered. This is because we are still at the stage of “little knowledge” about the sources
of new pollutants and their impact on the ecological environment. At the same time, com-
pared with the existing four major pollutants (permanganate index, chemical oxygen demand,
ammonia nitrogen and total phosphorus), the representation of new pollutants in water envi-
ronmental quality monitoring is still low. In addition, the application of new measurement
technology requires a lot of preliminary evaluation work to ensure the stability, practicability
and data accuracy of the technology. The new approach needs also to be approved by other
provinces in China. Therefore, it is still applicable to use four main pollutants (permanganate
index, chemical oxygen demand, ammonia nitrogen and total phosphorus) to characterize the
overall water environment in Heilongjiang Province at this stage.

In recent years, research on the influencing factors of regional water environment
quality has become an emerging topic at home and abroad. In terms of research methods,
principal component analysis was used to analyze the water environment quality of the
basin [8–11], and this method can be combined with other methods; the selection of
influencing factors also enriches its research perspective. From the perspective of the
scale of the study area, a small-scale study was also carried out, usually for a certain
city. For example, Shexia Zhan et al. (2021) discussed the impact of natural factors and
human activities on the source water quality in Macao based on the obtained statistical
results [12]. The change of the regional water environment is a complex process affected
by the comprehensive action of natural social and economic factors, and is the result of
the interaction of the three systems of society, economy and ecology [13–15]. Factors such
as climate, population, economy, transportation, energy consumption, water resources,
agriculture and forestry are the main drivers of changes in the water environment. In
the analysis of the correlation between water environmental quality and the three major
systems, it tends to be large in scale, time and space, and the analysis direction changes
from single target to multi-target, and develops from single factor to multi-factor, from
static to dynamic, from the natural environment system to a complex natural and social
environment system.

To sum up, many researchers have used different theories and methods to evaluate
the regional water environment, making contributions to ecological and environmental
protection, and the research results have a certain utility. However, most of the existing
studies are limited to the influence of a certain factor on a single indicator or pollutant, and
less attention is paid to the provincial perspective. Finally, there is a lack of analysis of the
relationship between different water quality indicators and natural factors, socio-economic
changes, etc., and a lack of tracking of driving factors. Therefore, this study attempts
to answer the following research questions: (1) How will the water environment quality
change in Heilongjiang Province during the 13th Five-Year Plan? Compared with the
“Twelfth Five-Year Plan”, is the water quality better or worse? (2) What factors drive the
change of water environment quality in Heilongjiang Province? What factors dominate?
Exploring the changes in water environment quality and its influencing factors in the
development process of the “Thirteenth Five-Year Plan” is not only of great practical
significance for realizing the high-quality development of Heilongjiang Province, but also
has certain reference value for other developing countries.

2. Materials and Methods

2.1. Study Area

The water system in Heilongjiang Province is well developed. There are four major
river systems in Heilongjiang Province, which belong to the four major river systems of
Heilongjiang, Songhua River, Ussuri River and Suifen River. Among them, Heilongjiang
and Ussuri River are the international boundary rivers, Xingkai Lake is the international
boundary lake, Suifen River directly enters the Sea of Japan, and Songhua River and Nen
River run through Heilongjiang Province. Heilongjiang Province has 2881 rivers with a
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drainage area of more than 50.0 Km2, 93 rivers between 1000 and 10,000 Km2, and 18 rivers
with an area of more than 10,000 Km2. There are 253 lakes with an annual water surface
area of 1.0 Km2 and above, including 241 freshwater lakes and 12 saltwater lakes, with a
total water surface area of 3037.0 Km2 (excluding the overseas area of transboundary lakes).
The main lakes are Xingkai Lake, Jingbo Lake and Lianhuan Lake.

2.2. Research Methods and Data

The grey relational analysis belongs to the grey system theory, and it further studies
the degree of correlation between the indicators through the similarity of the changes
in the geometric shapes of the indicators [16]. The basic idea is to use the quantitative
analysis of the dynamic process to calculate the correlation degree between the reference
index and each comparison index in the system, and to determine the important factors
that affect the reference index. It can describe the degree of correlation between variables
despite incomplete information. The larger the correlation coefficient is, the closer is the
relationship between the reference index and the comparison index, helping analysis of
the positive factors that are conducive to the development of the system. Grey relational
analysis is not limited by sample size and distribution, and is also applicable to data with
short time span and irregularity. Since there is much unknown information about the
mechanism of the impact of other factors on the quality of the ecological environment, it
conforms to the characteristics of the grey system.

According to the characteristics of the data, it was divided into seven categories: climate,
population, economy, energy, water resources, forestry, and agriculture. Among them, for the
climate index we selected the average temperature, the average annual precipitation and the
annual sunshine hours; for the population index we selected the population of Heilongjiang
Province; for the economic index we selected the per capita GDP, primary industry, secondary
industry, tertiary industry and local environmental protection expenditure; for the energy index
we selected the elastic coefficient of energy consumption; for the water resources index we
selected the surface water resources, the total surface water supply, the total groundwater
supply, the total agricultural water use, the total ecological water consumption and the per
capita water consumption; for the forestry index we selected the area of artificial afforestation in
the current year; for the agricultural index we selected the pure amount of agricultural nitrogen
fertilizer application, the pure amount of agricultural phosphorus fertilizer application, the
pure amount of agricultural potassium fertilizer application and the amount of pesticide use;
for the water environment index we selected permanganate index, chemical oxygen demand,
ammonia nitrogen, total phosphorus and excellent water body proportion. The calculation
method of grey relational analysis was adopted, and the details can be seen in Junli Li et al.
(2020) research [17]. The data comes from the 2016–2020 “Eco-environmental Quality Status
of Heilongjiang Province” [18–22], “Heilongjiang Province Eco-Environmental Quality Status
Bulletin” [23–27], “Heilongjiang Ecological Environment Statistical Annual Report” [28–30],
“China Statistical Yearbook 2020” [31]. The flow chart is shown in Figure 2. We can obtain the
reference sequence and the comparison sequence, respectively:

 

Figure 2. The flow chart of this study.

Reference sequence: statistics related to climate, population, economy, energy, water
resources, forestry and agriculture in Heilongjiang Province from 2006 to 2020.

Comparative sequence: the annual average values of permanganate index, chemical
oxygen demand, ammonia nitrogen, total phosphorus and the proportion of excellent water
bodies in Heilongjiang Province from 2006 to 2020.

In addition, in order to understand the impact of pollution discharge on water envi-
ronment quality in Heilongjiang Province, the Spearman correlation analysis method was
used to analyze the permanganate index, chemical oxygen demand, ammonia nitrogen
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and industrial source chemical oxygen demand discharge, industrial sources of ammonia
nitrogen emissions, domestic sources of chemical oxygen demand emissions and domestic
sources of ammonia nitrogen emissions in Heilongjiang Province from 2006 to 2019. The
pollution emission data comes from the “2019 China Ecological Environment Statistical
Yearbook” [32].

3. Results

3.1. Changes in the Environmental Quality of Surface Water during the “13th Five-Year Plan” Period

The proportions of water quality categories and changes in major pollutants in three
different water stages of rivers in Heilongjiang Province From 2011 to 2020 can be seen in
Tables 1 and 2. Among them, during the “13th Five-Year Plan” period, the proportion of
water quality of class I–III in the dry season is 52.0–74.0%, the proportion of water quality
in class I–III in the normal water period is 62.6–69.2%, and the proportion of water quality
in class I–III in the high water period is 26.4–64.5%. From 2016 to 2020, the change of the
proportion of water quality of class I–III in each water period is in a trend of fluctuation, but
from 2011 to 2020, except for the wet season, the change trend of the proportion of water
quality of class I–III in other water periods is a significant increase. During the “Thirteenth
Five-Year Plan” period, the proportion of water quality of inferior Class V in the dry season
is 3.9–9.2%, the proportion of water quality of inferior Class V in the normal water season
is 2.8–7.4%, and the proportion of water quality of inferior Class V in the wet season is
0.9–5.8%. From 2016 to 2020, the change trend of the dry season and the flat water season is
a fluctuating one, and the proportion of water quality of inferior Class V in the wet season
has dropped significantly. The proportion of water quality of inferior Class V during the
dry season from 2011 to 2020 fluctuates, and the proportion of water quality of inferior
Class V during the normal and wet seasons decreases significantly. The above results
show that although the water quality in the dry, flat and wet periods does not improve
significantly during the “13th Five-Year Plan” period, the number of water bodies with
poor water quality in the wet period is significantly reduced. Compared with the “Twelfth
Five-Year Plan” period (2011–2015), during the “Thirteenth Five-Year Plan” period, the
water quality in the dry and flat water periods is significantly improved, and the number
of water bodies with poor water quality in the flat and wet periods is significantly reduced.

Table 1. 2011–2020 Proportion and change trend of water quality grades I–III in different water stages
of rivers in Heilongjiang Province.

Year Dry Season Normal Water Season High Water Season

2011 39.2% 31.3% 38.6%
2012 47.1% 48.9% 51.1%
2013 50.0% 43.5% 30.4%
2014 58.6% 61.1% 55.6%
2015 57.0% 56.7% 51.1%
2016 70.9% 66.9% 61.2%
2017 74.0% 69.2% 64.5%
2018 52.0% 62.6% 26.4%
2019 74.0% 64.2% 41.9%
2020 68.9% 67.3% 55.1%

2016–2020 rank correlation coefficient rs −0.350 −0.100 −0.500
Trend volatility volatility volatility

2011–2020 rank correlation coefficient rs 0.770 0.842 0.200
Trend Significant increase Significant increase Significant increase
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Table 2. The proportion and trend of water quality of inferior Class V in each water stage of
Heilongjiang Province from 2011 to 2020.

Year Dry Season Normal Water Season High Water Season

2011 7.6% 7.2% 8.4%
2012 13.8% 6.7% 6.7%
2013 6.8% 7.6% 7.6%
2014 3.4% 5.6% 5.6%
2015 5.8% 5.6% 5.6%
2016 5.5% 7.4% 5.8%
2017 5.0% 2.8% 3.7%
2018 9.2% 5.6% 2.8%
2019 7.0% 3.8% 1.9%
2020 3.9% 2.8% 0.9%

2016–2020 rank correlation coefficient rs −0.200 −0.400 −1.000
Trend volatility volatility Significant decrease

2011–2020 rank correlation coefficient rs −0.333 −0.648 −0.939
Trend volatility Significant decrease Significant decrease

The trend of major pollutants in rivers in Heilongjiang Province from 2011 to 2020 is
shown in Table 3. During the “Thirteenth Five-Year Plan” period, the four major pollutants
in Heilongjiang Province show a fluctuating trend. Compared with the end of the “Twelfth
Five-Year Plan” (2015), the main pollution indicators of rivers in Heilongjiang Province, the
permanganate index, chemical oxygen demand, ammonia nitrogen and total phosphorus
pollution concentration decrease by 16.7%, 18.2%, 34.7% and 33.3% respectively, and the
permanganate index, chemical oxygen demand, ammonia nitrogen and total phosphorus
show a significant downward trend from 2011 to 2020. The above results show that
the downward trend of the concentration of major pollutants during the “13th Five-Year
Plan” period is not obvious, but compared with the “12th Five-Year Plan” period, the
concentration of major pollutants has dropped significantly.

Table 3. The major pollutants in rivers of Heilongjiang Province from 2011 to 2020.

Year
Permanganate Index

(mg/L)

Chemical
Oxygen Demand

(mg/L)

Ammonia Nitrogen
(mg/L)

Total Phosphorus
(mg/L)

2011 6.7 25 0.746 0.16
2012 6.3 23 0.722 0.15
2013 6.6 23 0.683 0.15
2014 6.4 22 0.561 0.14
2015 6.6 22 0.575 0.15
2016 5.7 20 0.571 0.12
2017 5.4 19 0.593 0.12
2018 5.9 21 0.622 0.13
2019 5.8 21 0.495 0.10
2020 5.5 18 0.427 0.10

2016–2020 rank correlation coefficient rs 0.1 −0.2 −0.6 −0.6
Trend volatility volatility volatility volatility

2011–2020 rank correlation coefficient rs −0.782 −0.879 −0.770 −0.927
Trend Significant decrease Significant decrease Significant decrease Significant decrease

3.2. Correlation Analysis between Pollution Discharge and Surface Water Environmental Quality

The Spearman correlation coefficient was used to indicate the strength of the correla-
tion between pollution discharge and major pollutants in the surface water environment,
as shown in Figure 3. Among them, X1: surface water permanganate index, X2: surface
water chemical oxygen demand, X3: surface water ammonia nitrogen, X4: industrial source
chemical oxygen demand discharge, X5: industrial source ammonia nitrogen discharge,
X6: living source chemical oxygen demand emissions, X7: ammonia nitrogen emissions
from living sources. The results show that surface water permanganate index, chemical oxy-
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gen demand, ammonia nitrogen and industrial source chemical oxygen demand, ammonia
nitrogen emission, living source chemical oxygen demand and ammonia nitrogen emission
are all positively correlated. Among them, the permanganate index has a significant posi-
tive correlation with the chemical oxygen demand of industrial sources, chemical oxygen
demand of living sources and ammonia nitrogen emissions from living sources, and has
a very significant positive correlation with ammonia nitrogen emissions from industrial
sources. The chemical oxygen demand of surface water has a very significant positive
correlation with industrial source chemical oxygen demand, ammonia nitrogen, and living
source chemical oxygen demand and ammonia nitrogen. There was a significant positive
correlation between surface water ammonia nitrogen and chemical oxygen demand of
industrial sources and ammonia nitrogen emissions from domestic sources.

Figure 3. Spearman correlation coefficients between pollutant emissions and major pollutants in
surface water.

3.3. Correlation Analysis between Surface Water Environmental Quality and Other Factors

The grey correlation degree and its ranking of the surface water environmental quality
comparison series are shown in Table S2 (Supporting Information). Specifically, the influ-
encing factors with high correlation with the permanganate index are: the tertiary industry,
the population of Heilongjiang Province, and net application amount of agricultural com-
pound fertilizer. The influencing factors with a high degree of correlation with chemical
oxygen demand are: tertiary industry, the area of artificial afforestation in the current year
and the annual sunshine hours. The influencing factors with a high degree of correlation
with ammonia nitrogen are: total surface water supply, pure amount of agricultural ni-
trogen fertilizer application, and per capita water consumption. The influencing factors
with high correlation with total phosphorus are: total surface water supply, pure nitrogen
fertilizer application and per capita water consumption. The influencing factors with high
correlation with the proportion of excellent water quality are: primary industry, annual
sunshine hours and tertiary industry.

In order to comprehensively evaluate the correlation between surface water environ-
mental quality and various factors, the average method was used to evaluate the correlation
index. There are 3 factors in the category of high correlation degree, which are population,
forestry and agriculture in descending order of average degree of correlation, and 3 factors
in the category of medium correlation degree, which are economy, meteorology and water
resources in descending order of average degree of correlation. The factor in the category
of low correlation degree is energy. The correlation statistics of each reference sequence are
shown in Figure 4, and the average value is shown in Figure 5.
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Figure 4. Statistical map of the correlation between each reference sequence and the environmental
quality of surface water.

Figure 5. The average value of the correlation between each reference series and the environmental
quality of surface water.

High correlation factor

The average grey correlation between population factors and water environment
quality in Heilongjiang Province is 0.872, ranking first among the seven categories of
factors, showing a very high correlation. Among the seven categories of factors, population
has the greatest impact on water quality. The average grey correlation between forestry
factors and water environment quality in Heilongjiang Province is 0.853, ranking second
among the seven categories of factors, showing a very high correlation. The average grey
correlation between agricultural factors and water environment quality in Heilongjiang
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Province is 0.834, ranking third among the seven categories of factors, showing a very
high correlation.

Medium correlation factor

The average grey correlation degree between economic factors and water environ-
ment quality is 0.799, and the correlation degree is moderate. Among them, the primary
industry, the tertiary industry, the per capita GDP, the secondary industry and the water
environment quality are highly correlated, and the local financial environmental protection
expenditure is low. The average grey correlation degree between climatic factors and water
environment quality is 0.778, and the correlation degree is moderate. Among the climatic
factors, the correlation degree of annual sunshine hours is greater than average temperature
and precipitation, which is similar to ambient air quality. The average grey correlation
degree between water resource factors and water environment quality is 0.748, and the cor-
relation degree is medium. The average grey correlation degree of each factor in the water
resources factor and the water environment quality is in descending order: total surface
water supply, per capita water consumption, total agricultural water consumption, total
groundwater water supply, surface water resources and total ecological water consumption
quantity. Among them, the total surface water supply, per capita water consumption, total
agricultural water supply and total groundwater supply are highly correlated with the
environmental quality of surface water, while surface water resources and total ecological
water are poorly correlated.

Low correlation factor

The average grey correlation between energy factors and water environment quality
is 0.677, which is low. Among them, the energy consumption elasticity coefficient has a low
correlation with the permanganate index, chemical oxygen demand, ammonia nitrogen,
total phosphorus and the proportion of good water quality.

4. Discussion

During the “Thirteenth Five-Year Plan” period, the proportion of water quality of Class
I–III increased, and the proportion of water quality of inferior Class V and the concentration
of major pollutants decreased, indicating that the Heilongjiang Provincial Government’s
continuous “clear water defense war” has achieved remarkable results, mainly including
continuous encryption monitoring and special inspection of law enforcement to ensure
that inferior water bodies such as Ash River, Waken River, and Indus River do not rebound.
In addition, through inter-departmental linkages to carry out special actions and cross-
monitoring of water quality, the treatment of 44 black and odorous water bodies has been
completed [33].

The primary industry has the greatest impact on the proportion of good water quality,
and the primary industry refers to farmers and agriculture, forestry, animal husbandry,
fishery, etc. As a major agricultural province, Heilongjiang Province has four major water
systems flowing through a large amount of farmland. The surface water near the farm-
land is greatly affected by agricultural activities, resulting in the pollution of downstream
waters [34]. This is consistent with the research results that the application rate of agri-
cultural chemical fertilizers has a great influence on the content of ammonia nitrogen and
total phosphorus in surface water. Heilongjiang Province is located in the highest latitude
area in China, with four distinct seasons of precipitation, and the precipitation in the wet
season is much higher than that in other water seasons. Fluctuations in water quality of
Class I–III during the wet season and industrial wastewater discharge have little effect
on ammonia nitrogen concentration in surface water; domestic wastewater discharge and
primary industry have a greater impact on surface water ammonia nitrogen concentration.
These results show that the effluent from farmland water pollution caused by surface water
runoff and pollution caused by domestic wastewater discharge are the main sources of am-
monia nitrogen and total phosphorus pollution in surface water in Heilongjiang Province.
Therefore, the surface water pollution caused by living sources and agricultural sources
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should be listed as the key work of the future surface water environment management in
Heilongjiang Province [35].

The tertiary industry has a greater impact on the permanganate index, chemical oxy-
gen demand and the ratio of good water quality. China’s tertiary industry is other than
the primary and secondary industries, and includes water conservancy, environment and
public facilities management, etc. [36]. Due to the increasing investment in environmental
protection in Heilongjiang Province, this may be related to the increase in the number
of sewage treatment plants [28–30], which means that the increase in sewage treatment
capacity indirectly affects the quality of surface water in Heilongjiang Province [37]. This is
consistent with the research results that local financial environmental protection expendi-
tures have low correlations with permanganate index, chemical oxygen demand, ammonia
nitrogen and total phosphorus, but are correlated with the proportion of good water quality.
It shows that although the local financial environmental protection expenditure has little
effect on the content of pollutants in surface water, it can affect the comprehensive situation
of surface water quality in Heilongjiang Province.

Forestry factors are highly correlated with the environmental quality of surface water
in Heilongjiang Province. The regulatory effect of forests on surface water is mainly due to
the good water storage function and hydrological effect of the forest litter layer and soil
layer. These effects will promote the improvement of water environment quality. Although
there are certain differences between different forest lands, the regulatory effect of natural
mixed forest is better than that of pure forest or artificial afforestation.

As further studies on the impact of land use patterns on surface water systems in recent
years suggest that the contribution of forest drainage to surface water eutrophication may be
greater than previously estimated [38,39], changes in forest surface runoff and the exposure
of understory organic and inorganic layers can affect the concentrations of phosphorus,
nitrogen, and dissolved organic carbon in surface waters [40]. The study by Lepistö et al.
(2021) shows that the percentage of forest drainage is positively correlated with the total
organic nitrogen in forest streams, which in turn is correlated with the total organic carbon
concentration [41]. This shows that the impact of forests on the environmental quality
of surface water is not only positive, but may have some negative effects, especially on
chemical oxygen demand, which is consistent with our findings. In addition, some natural
factors such as annual sunshine hours and total surface water supply also have a major
impact on the surface water environment, which shows that in addition to human activities,
the role of natural conditions cannot be ignored.

5. Conclusions

During the “Thirteenth Five-Year Plan” period, the annual average concentration of major
pollutants in surface water in Heilongjiang Province has dropped significantly, the proportion of
water quality of Class I–III has increased, the proportion of water quality inferior to Class V has
decreased, and the overall environmental quality of surface water has improved. Research on
the driving factors of water quality change shows that nitrogen and phosphorus pollutants in
farmland surface water runoff and domestic sewage are the main sources leading to ammonia
nitrogen and total phosphorus pollution in surface water in Heilongjiang Province. The increase
of sewage treatment plants has a greater impact on the permanganate index, chemical oxygen
demand and the proportion of good water quality, which indirectly affects the overall water
quality of Heilongjiang Province. It is worth noting that the impact of forests on the environ-
mental quality of surface water in Heilongjiang Province is complex and may lead to increased
chemical oxygen demand in surface water. In addition, the influence of natural factors on the
surface water environment, such as the total annual water supply and surface water supply in
Rizhao City cannot be ignored.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14152367/s1, Table S1: Basic items of surface water environmental
quality※ Standard limit. Table S2: Grey correlation degree and ranking of surface water environmental
quality comparison series.

100



Water 2022, 14, 2367

Author Contributions: Conceptualization, B.L. and W.C.; methodology, C.F.; software, C.F.; resources,
W.C.; writing—original draft preparation, C.F.; writing—review and editing, Y.B. and M.Z.; visualization,
C.F.; supervision, Y.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: We would like to thank the Heilongjiang Provincial Department of Ecology and
Environment for providing data support for this study, and Fengying Zhang from China Environ-
mental Monitoring Station for providing technical guidance for this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Qiao, M.; Qi, W.; Liu, H.; Qu, J. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: Occurrence,
ecotoxicity, and sources. Environ. Int. 2022, 163, 107232. [CrossRef] [PubMed]

2. Zou, H.-Y.; He, L.-Y.; Gao, F.-Z.; Zhang, M.; Chen, S.; Wu, D.; Liu, Y.; He, L.; Bai, H.; Ying, G. Antibiotic resistance genes in surface
water and groundwater from mining affected environments. Sci. Total Environ. 2021, 772, 145516. [CrossRef] [PubMed]

3. Henning, N.; Wick, A.; Ternes, T.A. Biotransformation of pregabalin in surface water matrices and the occurrence of transformation
products in the aquatic environment—Comparison to the structurally related gabapentin. Water Res. 2021, 203, 117488. [CrossRef]
[PubMed]

4. Galafassi, S.; Nizzetto, L.; Volta, P. Plastic sources: A survey across scientific and grey literature for their inventory and relative
contribution to microplastics pollution in natural environments, with an emphasis on surface water. Sci. Total Environ. 2019,
693, 133499. [CrossRef] [PubMed]

5. Sammut, G.; Sinagra, E.; Helmus, R.; de Voogt, P. Perfluoroalkyl substances in the Maltese environment—(I) surface water and
rain water. Sci. Total Environ. 2017, 589, 182–190. [CrossRef]

6. Sur, K.; Verma, V.K.; Pateriya, B. Surface water estimation at regional scale using hybrid techniques in GEE environment—A case
study on Punjab State of India. Remote Sens. Appl. Soc. Environ. 2021, 24, 100625. [CrossRef]

7. Azadi, S.; Amiri, H.; Mooselu, M.G.; Liltved, H.; Castro-Muñoz, R.; Sun, X.; Boczkaj, G. Network design for surface water quality
monitoring in a road construction project using Gamma Test theory. Water Resour. Ind. 2021, 26, 100162. [CrossRef]

8. Haghnazar, H.; Johannesson, K.H.; González-Pinzón, R.; Pourakbar, M.; Aghayani, E.; Rajabi, A.; Hashemi, A.A. Groundwater
geochemistry, quality, and pollution of the largest lake basin in the Middle East: Comparison of PMF and PCA-MLR receptor
models and application of the source-oriented HHRA approach. Chemosphere 2022, 288, 132489. [CrossRef]

9. Abdelaziz, S.; Gad, M.I.; el Tahan, A.H.M.H. Groundwater quality index based on PCA: Wadi El-Natrun, Egypt. J. Afr. Earth Sci.
2020, 172, 103964. [CrossRef]

10. Abuzaid, A.S.; Jahin, H.S. Combinations of multivariate statistical analysis and analytical hierarchical process for indexing surface
water quality under arid conditions. J. Contam. Hydrol. 2022, 248, 104005. [CrossRef]

11. Elkorashey, R.M. Utilizing chemometric techniques to evaluate water quality spatial and temporal variation. A case study: Bahr
El-Baqar drain—Egypt. Environ. Technol. Innov. 2022, 26, 102332. [CrossRef]

12. Zhan, S.; Zhou, B.; Li, Z.; Li, Z.; Zhang, P. Evaluation of source water quality and the influencing factors: A case study of Macao.
Phys. Chem. Earth Parts A/B/C 2021, 123, 103006. [CrossRef]

13. Wang, S.; Fu, B.; Zhao, W.; Liu, Y.; Wei, F. Structure, function, and dynamic mechanisms of coupled human–natural systems. Curr.
Opin. Environ. Sustain. 2018, 33, 87–91. [CrossRef]

14. Ferro-Azcona, H.; Espinoza-Tenorio, A.; Calderón-Contreras, R.; Ramenzoni, V.C.; de las Mercedes Gómez País, M.; Mesa-Jurado,
M.A. Adaptive capacity and social-ecological resilience of coastal areas: A systematic review. Ocean. Coast. Manag. 2019, 173,
36–51. [CrossRef]

15. Griffin, M.T.; Montz, B.E.; Arrigo, J.S. Evaluating climate change induced water stress: A case study of the Lower Cape Fear basin,
NC. Appl. Geogr. 2013, 40, 115–128. [CrossRef]

16. Deng, J. Introduction to Grey System. J. Grey Syst. 1989, 1, 1–24.
17. Li, J.; Song, H.; Sun, W.; Sun, P.; Hao, J. Measuring Performance and its influence factors of National Sustainable Development

Pilot Zones in Shandong, China. J. Clean. Prod. 2020, 289, 125620. [CrossRef]
18. Environmental Quality of Heilongjiang Province in 2016. Available online: http://sthj.hlj.gov.cn/hjzlbg/16863.jhtml (accessed

on 1 April 2017).
19. Environmental Quality Status of Heilongjiang Province in 2017. Available online: http://sthj.hlj.gov.cn/hjzlbg/16862.jhtml

(accessed on 24 May 2018).
20. Environmental Quality Status of Heilongjiang Province in 2018. Available online: http://sthj.hlj.gov.cn/hjzlbg/16876.jhtml

(accessed on 1 February 2019).

101



Water 2022, 14, 2367

21. The Quality of Ecological Environment in Heilongjiang Province in 2019. Available online: http://sthj.hlj.gov.cn/hjzlbg/16875.
jhtml (accessed on 10 February 2020).

22. Eco-Environmental Quality Status of Heilongjiang Province in 2020. Available online: http://sthj.hlj.gov.cn/hjzlbg/18011.jhtml
(accessed on 1 February 2021).

23. 2016 Heilongjiang Province Environmental Status Bulletin. Available online: http://sthj.hlj.gov.cn/hjzlzkgb/19153.jhtml
(accessed on 8 August 2017).

24. 2017 Heilongjiang Province Environmental Status Bulletin. Available online: http://sthj.hlj.gov.cn/hjzlzkgb/19154.jhtml
(accessed on 5 June 2018).

25. 2018 Heilongjiang Province Ecological Environment Bulletin. Available online: http://sthj.hlj.gov.cn/hjzlzkgb/19155.jhtml
(accessed on 4 June 2019).

26. 2019 Heilongjiang Province Ecological Environment Bulletin. Available online: http://sthj.hlj.gov.cn/hjzlzkgb/19156.jhtml
(accessed on 3 June 2020).

27. 2020 Heilongjiang Province Ecological Environment Bulletin. Available online: http://sthj.hlj.gov.cn/hjzlzkgb/19492.jhtml
(accessed on 4 June 2021).

28. Heilongjiang Province Environmental Statistics Annual Report 2016. Available online: http://sthj.hlj.gov.cn/hjtj/12362.jhtml
(accessed on 27 February 2018).

29. Heilongjiang Province Environmental Statistics Annual Report 2017. Available online: http://sthj.hlj.gov.cn/hjtj/12364.jhtml
(accessed on 18 March 2019).

30. 2018 Annual Report of Ecological Environment Statistics of Heilongjiang Province. Available online: http://sthj.hlj.gov.cn/hjtj/
12366.jhtml (accessed on 19 January 2020).

31. National Bureau of Statistics. China Statistical Yearbook 2020; China Statistics Press: Beijing, China, 2021.
32. National Bureau of Statistics, Ministry of Ecology and Environment. 2019 China Environmental Statistical Yearbook; China Statistics

Press: Beijing, China, 2021.
33. 2021 Government Work Report. Available online: https://www.hlj.gov.cn/n200/2021/0224/c68-11014966.html (accessed on

24 February 2021).
34. Komariah, I.; Matsumoto, T. Application of Hydrological Method for Sustainable Water Management in the Upper-Middle

Ciliwung (UMC) River Basin, Indonesia. J. Water Environ. Technol. 2019, 17, 203–217. [CrossRef]
35. Mokarram, M.; Saber, A.; Sheykhi, V. Effects of heavy metal contamination on river water quality due to release of industrial

effluents. J. Clean. Prod. 2020, 277, 123380. [CrossRef]
36. Muhammad, S.; Pan, Y.; Agha, M.H.; Umar, M.; Chen, S. Industrial structure, energy intensity and environmental efficiency

across developed and developing economies: The intermediary role of primary, secondary and tertiary industry. Energy 2022,
247, 123576. [CrossRef]

37. Masuda, S.; Sato, T.; Mishima, I.; Maruo, C.; Yamazaki, H.; Nishimura, O. Impact of nitrogen compound variability of sewage
treated water on N2O production in riverbeds. J. Environ. Manag. 2021, 290, 112621. [CrossRef]

38. Nieminen, M.; Sallantaus, T.; Ukonmaanaho, L.; Nieminen, T.M.; Sarkkola, S. Nitrogen and phosphorus concentrations in
discharge from drained peatland forests are increasing. Sci. Total Environ. 2017, 609, 974–981. [CrossRef]

39. Leena, F.; Ahti, L.; Kristian, K.; Antti, R.; Laura, H.; Markus, H.; Samuli, J.; Pirkko, K.; Tuija, M.; Sirpa, P.; et al. Drainage for
forestry increases N, P and TOC export to boreal surface waters. Sci. Total Environ. 2021, 762, 144098. [CrossRef]

40. Menberu, M.W.; Marttila, H.; Tahvanainen, T.; Kotiaho, J.S.; Hokkanen, R.; Kløve, B.; Ronkanen, A. Changes in pore water quality
after peatland restoration: Assessment of a large-scale, replicated before-after-control-impact study in Finland. Water Resour. Res.
2017, 53, 8327–8343. [CrossRef]

41. Lepistö, A.; Räike, A.; Sallantaus, T.; Finér, L. Increases in organic carbon and nitrogen concentrations in boreal forested
catchments—Changes driven by climate and deposition. Sci. Total Environ. 2021, 780, 146627. [CrossRef]

102



Citation: Zhang, F.; Lin, L.; Li, W.;

Fang, D.; Lv, Z.; Li, M.; Ma, G.; Wang,

Y.; Wang, L.; He, L. Long-Term Study

of Monitoring History and Change

Trends in Surface Water Quality in

China. Water 2022, 14, 2134. https://

doi.org/10.3390/w14132134

Academic Editors: George

Arhonditsis and Danny D. Reible

Received: 21 April 2022

Accepted: 28 June 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Long-Term Study of Monitoring History and Change Trends in
Surface Water Quality in China

Fengying Zhang 1,2,†, Lanyu Lin 1,†, Wenpan Li 1, Dekun Fang 1, Zhuo Lv 1, Mingsheng Li 1, Guangwen Ma 1,

Yeyao Wang 1, Li Wang 3,* and Lihuan He 1,*

1 China National Environmental Monitoring Centre, Beijing 100012, China; zhangfy@cnemc.cn (F.Z.);
linly@cnemc.cn (L.L.); liwp@cnemc.cn (W.L.); fangdk@cnemc.cn (D.F.); lvzhuo@cnemc.cn (Z.L.);
lims@cnemc.cn (M.L.); magw@cnemc.cn (G.M.); wangyy@cnemc.cn (Y.W.)

2 Department of Health, Ethics & Society, CAPHRI Care and Public Health Research Institute, Faculty of Health,
Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands

3 Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing 100101, China

* Correspondence: wangli@igsnrr.ac.cn (L.W.); helh@cnemc.cn (L.H.)
† These authors contributed equally to this work.

Abstract: To investigate the monitoring history and long-term change trends in surface water quality
in China since the reform and opening up, the history of surface water environment monitoring is
summarized, including monitoring scope, monitoring methods, and technical requirements. Tempo-
ral and spatial patterns of surface water quality in China were analyzed based on the monitoring
results. In the past 40 years, the monitoring targets for surface water quality have been continu-
ously improved, the frequency of monitoring has become more science-based, and the monitoring
indicators are now comprehensive. Overall, the temporal change trend in surface water quality has
followed a “fluctuating changes stage—rapid deterioration stage—fluctuations stalemate stage—
rapid improvement stage” pattern. However, the current regional surface water quality is still in a
polluted status, and there is a gap between surface water quality status and the goal of building a
well-off society. At present, China’s surface water pollution is prone to high numbers of incidents and
the treatment of surface water pollution has entered a crucial stage. The potential for the continuous
reduction of major pollutant discharges has become more challenging, and the marginal cost for
pollution control has increased. It is very difficult to comprehensively solve the outstanding water
environment problems. In addition to strengthening the existing work on surface water quality
control, it is also necessary to strengthen the work of risk identification, early warning, and regulation
implementation of the surface water environment. During the 14th year plan period (2021–2025),
the overall planning on water resources, water ecology, and water quality will be implemented, and
beautiful rivers and lakes will be created.

Keywords: surface water; monitoring history; change trends in surface water quality; water quality
protection

1. Introduction

Environmental monitoring is an important cornerstone of environmental protection
and an important support for the construction of an ecological civilization and beautiful
China [1–3]. Water quality monitoring is an important branch of environmental moni-
toring [2], which refers to the process of sampling and measuring various characteristic
indexes of water to grasp the water environment quality status and the dynamic changes of
pollutants in the water system, as well as to record the process [2]. Monitoring is the basis
for water pollution control, environmental management, and scientific research. Through
water quality monitoring, we can master the dynamic changes in the water environment
and provide first-hand scientific data to support decisions regarding the prevention and

Water 2022, 14, 2134. https://doi.org/10.3390/w14132134 https://www.mdpi.com/journal/water103



Water 2022, 14, 2134

control of water pollution and the formulation of environmental protection policies and
environmental legislation [2,4].

Many scholars have conducted a great deal of water quality research in China [5–7], but
most studies conducted to date have focused on one aspect [8,9] or on a single river basin or
lake [10–13]. Studies focused on long-term sequences across the country are rare [12]. The
40th anniversary of China’s reform and opening up was in 2018; accordingly, it is important
to summarize the history of water quality monitoring and water environmental protection
during the past 40 years, as well as to analyze the trends in surface water quality during
this time, which could provide support for precise pollution control and environmental
management [11,12].

In this study, the history of surface water quality monitoring and surface water environ-
mental protection is summarized, temporal and spatial variations in surface water quality
are analyzed, and the current existing problems and pressure on surface water quality are
proposed. The analyses conducted in this study are based on the Eco-Environmental Qual-
ity Report of China from 1980 to 2020 [14], the Report on the State of the Eco-environment
in China from 1989 to 2020 [15], and other eco-environmental quality reports, related policy
norms, and data from the government, combined with water quality monitoring data. The
results presented herein will provide a foundation and scientific research support that will
facilitate pollution prevention and control and enable the realization of an ecologically
friendly civilization in China.

2. Materials and Methods

Due to the availability and integrity of historical monitoring data, our study area
focuses on mainland China. All data used in this study were derived from environmental
reports, statistical year books, government reports, relevant literature, or professional
websites. Environmental reports included the China Eco-Environmental Quality Report
(1980–2020) [14], Report on the State of Ecology and the Environment (1989–2020) [15], and
the Annual Statistics Report on the Environment in China (1998–2015) [16]. Statistical year-
books and government reports investigated included the China Statistical Yearbook [17],
China Environmental Yearbook [18], government work reports, etc. Relevant literature and
professional websites, such as academic literature from the China National Knowledge
Internet (CNKI), Elsevier, and relevant data, policies, specifications, and systems published
on governmental networks by the Ministry of Ecology and Environment (MEE), China Na-
tional Environmental Monitoring Center (CNEMC), and the provincial-/city-level Ecology
Environment Agency were also investigated.

The spatial distribution of surface water quality monitoring sites and surface water
quality were evaluated by ArcGIS 10.0 with a license from the Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences, and temporal
patterns in water quality and pollutants were summarized by Origin 2018.

3. Results and Discussion

3.1. History of Surface Water Quality Monitoring

Surface water quality monitoring in China began in the 1980s. Although this was
much later than developed countries, there has been considerable progress in the past
40 years. Currently, China’s water environment monitoring technology covers large rivers,
lakes, and other areas such as reservoirs, etc. Moreover, the monitoring techniques and
means have been improved year by year.

China’s water quality monitoring is conducted in a radiation mode. Specifically, the
water quality monitoring center is the core, and the monitoring points are used as nodes to
form the national surface water quality monitoring network, forming an integrated moni-
toring network covering the national-, provincial-, municipal-, and county-level surface
water quality monitoring, and can meet the needs of water quality monitoring in different
areas and different regions. At the same time, a combination of fixed-point sampling and
mobile sampling is adopted to ensure the real-time accuracy of monitoring data.
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3.1.1. Monitoring Scope

In 1988, the former National Environmental Protection Agency (NEPA) first estab-
lished a national surface water quality monitoring network consisting of 353 sections. In
1993, the NEPA re-examined and certified the monitoring sections in the national control
monitoring network and confirmed that the national surface water quality monitoring
network consisted of 313 national control sections [14,15].

In 2003, the NEPA further adjusted the national environmental monitoring network
and monitoring sections and identified the national surface water quality monitoring
network, which includes the Yangtze River, Yellow River, Haihe River, Liaohe River,
Songhua River, Pearl River, and Huaihe River, the “Three Lakes” (Taihu Lake, Dianchi Lake,
and Chaohu Lake), and the three regional rivers (rivers in Zhejiang and Fujian Province,
rivers in northwestern China, and rivers in southwestern China). Overall, the monitoring
network has 759 monitoring sections (604 rivers and 155 lakes) covering 320 rivers and
28 lakes [14,15].

In 2012, the NEPA released a new national environmental monitoring basin network
consisting of 972 monitoring sections covering 420 rivers and 62 lakes. Water monitoring
sections were set in the main stream of China’s main water systems, the primary and
secondary tributaries with an annual runoff of more than 500 million cubic meters, national
border rivers and provincial rivers with an annual runoff of more than 300 million cubic
meters, and large water conservancy facilities [14,15].

In July of 2015, the State Council issued the “Eco-Environmental Monitoring Network
Construction Plan,” which clearly defined the national surface water monitoring network
during the “13th Five-Year Plan”. The number of national control sections was increased
from 972 in the “12th Five-Year Plan” to 1589 in 2015, including 1246 sections in 1366 rivers
and 343 sections in 139 lakes. These sections (Figure 1) include 1940 assessment and ranking
sections, 195 control sections for evaluation in the estuaries (of which, 85 are evaluation,
assessment, and ranking sections), and 717 sections for scientific research. The “13th Five-
Year” National Surface Water Quality Monitoring Network covers both the main rivers
of the country and important primary and secondary tributaries, as well as the third and
fourth tributaries of the key areas, key lakes/reservoirs, etc. Therefore, it has good regional
spatial representation and can comprehensively, accurately, and objectively reflect the water
quality and temporal–spatial distribution characteristics of pollutants in the water system
or region [14,15].

In summary, China’s national surface water quality monitoring is an organic whole
based on monitoring of surface water quality, adherence to water and land planning, land
and sea planning, river and lake planning, upper and lower planning, urban and rural
planning, and comprehensive monitoring of the national aquatic environment ecosystem.
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Figure 1. China national surface water quality monitoring network in 2020.

3.1.2. Monitoring Indicators

The monitoring indicators during the past 40 years were listed in Appendix A. Before
2011, there were 11 monthly monitoring indicators pertaining to water quality in rivers
(water temperature, pH, conductivity, dissolved oxygen, permanganate index, five-day
biochemical oxygen demand, ammonia nitrogen, petroleum, volatile phenols, mercury, and
lead). When monitoring the water quality in lakes and reservoirs, total phosphorus, total
nitrogen, chlorophyll a, transparency, and water level were also included [14,15].

After the Measures for the Evaluation of Surface Water Quality was issued in 2011, the
monthly monitoring was conducted in accordance with the 24 indicators, as shown in the
Surface Water Quality Standards (GB3838-2002) [14,15] (Appendix B).

3.1.3. Monitoring Frequency

The monitoring frequency of surface water quality has increased obviously [14,15].
Before 2003, the monitoring frequency of surface water quality was generally low (about
six times per year), and it was monitored according to the water periods, including dryness,
flatness, and abundance.

Monthly monitoring has been conducted since the establishment of the monthly
reporting mechanism based on the national water quality monitoring system in 2003.
Monitoring is conducted for the first 10 days of the month.

Since October 2017, the sampling and laboratory analysis separation mode has been
fully implemented, the monitoring frequency has been increased, and the monitoring
work now is being conducted quarterly, monthly, weekly, daily, and, even, one time per
four hours.

3.1.4. Monitoring Method

Sampling for surface water quality monitoring is mainly conducted manually. Since
the beginning of the 21st Century, the state has built 150 automatic surface water quality
monitoring stations in the provincial boundary sections of major rivers and important
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border rivers to provide early warnings regarding water quality. From July 1st 2009, real-
time water quality data from national water quality automatic monitoring stations have
been released to the public and published online [14,15].

Since October 2017, the 1940 national surface water assessment sections have fully
implemented the sampling and laboratory analysis separation mode. By the end of July
2018, 2050 automatic surface water quality monitoring stations were built. Future water
quality monitoring will be based on automatic monitoring supplemented by manual
monitoring, leading to comprehensive realization of sampling and laboratory analysis
separation, automatic monitoring, and data sharing [14,15].

3.1.5. Surface Water Quality Standard

Over the past 40 years, China’s surface water environmental quality standards have
undergone four major changes [19]. In 1983, the Environmental Quality Standard for Sur-
face Water (GB 3838-83) was promulgated and implemented for the first time. In 1988, the
Environmental Quality Standard for Surface Water was revised to the Environmental Qual-
ity Standard for Surface Water (GB 3838-88). In 1999, this was revised to the Environmental
Quality Standard for Surface Water (GHZB 1-1999) and, in 2002 to the Environmental
Quality Standard for Surface Water (GB 3838-2002) [14,15].

3.2. Spatial Temporal Trends in Surface Water Quality
3.2.1. General Temporal Change Trends

Figure 2 showed the general temporal change trends of surface water quality. In the
past four decades, the national surface water quality has shown a trend of fluctuating
changes–rapid deterioration–volatility–rapid improvement.

Figure 2. Annual ratio of water quality in China during 1978–2020.

The period of fluctuating changes was from 1978 to 1983. During this period, the
annual ratios of grade I–III sections (sections with water quality between grade I and grade
III) ranged from 20.0% to 30.5% and the annual proportions of inferior grade V sections
(sections in which water quality failed to meet grade V) were from 28.0% to 36.3%. In this
period, the overall situation of China’s surface water quality transitioned from basically
clean to partially deteriorating.

The stage of rapid deterioration was from 1984 to 1990. During this time, the annual
ratio of grade I–III sections decreased by 18.7% from 45.6% in 1984 to 26.9% in 1990, while
the proportion of inferior grade V sections increased by 12.8%, from 15.8% in 1984 to 28.6%
in 1990. This stage corresponded to the beginning of reform and opening up, accompa-
nied with fast economic and social development. The eastern part of China, including
the Yangtze River Delta and the Pearl River Delta region, had begun to undergo rapid
development, foreign enterprises gradually moved in, and local enterprises developed
everywhere. The environmental effects caused by the rapid development of industry were
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gradually emerging, especially in the 7th Five-Year Period (1986–1990), and pressure on
the surface water quality in China began to increase. In this period, although the status
and role of environmental protection in social and economic development were clarified,
the relationship between economic construction and environmental protection had not
been rationalized. As a result, the surface water quality generally evolved from partial
deterioration to general deterioration.

The phase of volatility was from 1991 to 2001. During this period, the annual ratio of
sections that met the water quality standard (water quality in grade I to grade III, grades
I–III for short) was from 25.7% to 34.5%, and the proportion of inferior grade V sections
was from 32.4% to 35.7%.

The rapid improvement period was from 2002 to 2020, during which time, the annual
ratio of grade I–III sections increased by 48.8%, from 34.6% in 2002 to 83.4% in 2020, while
the proportion of inferior grade V sections decreased by 34.3% from 34.9% in 2002 to 0.6%
in 2020. During the “10th Five-Year Plan” period, water pollution in the country was
initially curbed and environmental quality improved in some areas. These improvements
were mainly attributable to the initial recognition of the relationship between economic
development and the implementation of water environmental protection, strict industrial
structure adjustment policies, urban sewage centralized treatment, total control, and key
river basin water pollution prevention and control planning systems [20].

During the “11th Five-Year Plan” period, chemical oxygen demand and ammonia
nitrogen were introduced as binding indicators in the environmental protection target, and
the implementation of the environmental protection target responsibility system greatly
improved the construction of pollution control facilities and promoted the improvement of
the level of the conventional pollution indicators. During this period, the overall surface
water quality of the national water environment was stable, and the water quality improved.
The water quality of the main stream in the key river basin was obviously improved. The
concentration of the main pollution indicators of the tributaries dropped drastically, and
water pollution prevention and control work in the basin made remarkable achievement.

3.2.2. Trends for Major Pollution Indicators

Among the major pollution indicators, the concentrations of permanganate and ammo-
nia nitrogen showed similar temporal patterns (Figure 3), first increasing, then decreasing.

Figure 3. The annual concentration of NH3-N and CODMn during 1978–2020.

Among these, the annual ammonia nitrogen (NH3-N for short) concentration showed
an increasing trend from 1978–1981, followed by a sharp decrease in 1982, then fluctuations
in 1983 and 1986 and an obviously increasing trend during 1987 and 1995, which increased
from the lowest value of 0.53 mg/L to the highest value of 2.00 mg/L. From 1996 to 2002,
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the annual concentration fluctuated from 0.93 mg/L to 2.36 mg/L, while it improved from
2003 to 2020, by a decrease in annual concentration from 2.62 mg/L to 0.22 mg/L.

The annual permanganate index (CODMn for short) concentration fluctuated from 1991
to 2002, with annual levels ranging from 5.5 mg/L to 9.2 mg/L, while the concentration
improved from 2003 to 2020 when annual concentrations decreased from 9.6 mg/L to
3.2 mg/L.

3.2.3. Spatial Temporal Changes in the Seven Major River Basins

In general, the water quality in the Yangtze River and Pearl River was good comparing
with the rest of the basins. Haihe River had the worst water quality, and it was also the only
water basin with grade V sections. The water quality rankings in 2020 were Yangtze River >
Pearl River > Yellow River > Songhua River > Huaihe River > Liaohe River > Haihe River.

Figure 4 showed the changes of water quality in the major river basins during
2007–2020. During 2007 and 2020, the water quality in Yangtze River experienced an
improvement–fluctuating changes–improvement pattern. The Yellow River, Pearl River.
and Huaihe River have experienced improvement–deterioration–improvement changing
patterns. The Songhua River, Haihe River and Liaohe River have showed fluctuating
improvement. Since 2017, the water quality in the seven major river basins showed a
rapid improvement, with an obvious increase for the ratio of grade I to III sections and a
decreasing trend for the ratio of grade V sections.

Figure 4. Changes of water quality in the major river basins during 2007–2020.

3.3. Surface Water Pollution Prevention and Control in China

Analysis of the correlation between river environmental quality and pollutant emis-
sions, national economic development level, and environmental pollution control invest-
ment revealed that the reduction of ammonia nitrogen and COD emissions [20] and the
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increase in GDP and environmental pollution control investment are the main reasons for
the improvements that have occurred in surface water quality [21,22].

China’s surface water environmental protection work has been developed from scratch
and expanded in scale [23]. During the past four decades, the intensity of surface water
pollution control has increased, and the surface water ecological protection work has been
strengthened, which has greatly improved the surface water environment in China [24].

Overall, in the past 40 years, China’s environmental protection has experienced four
development stages consisting of the initial “three wastes” governance, steady development
of pollution prevention, a total quality control stage, and now, a new stage of environmental
protection with improvement of environmental quality as the primary goal [25]. Since the
founding of the country till the end of the 1970s, during the initial stage of development,
China’s surface water protection work has been in a disorderly status. The first national
environmental protection work conference held in 1973 marked the beginning of water
environment protection in China.

In the steady development stage from the 1980s to the early 21st Century, China’s
economy developed rapidly, while its water environmental protection work had achieved
remarkable progress. During the “9th Five-Year Plan” period, the “Huaihe River Basin
Water Pollution Prevention and Control Plan” was approved and implemented, marking
China’s entry into a stage of large-scale water pollution control. During this period, the
country launched a comprehensive campaign targeting water pollution control of the Three
Rivers and Three Lakes (Huaihe River, Haihe River, and Liaohe River and Taihu Lake,
Dianchi Lake, and Chaohu Lake, respectively). Since then, organic matter pollution of
surface water and the eutrophication of lakes have been effectively curbed, and the water
environmental protection work has made significant progress. The total control led to
a quality improvement from 2002 to 2014. In 2002, China issued the “Clean Production
Promotion Law”, which officially marked the transition from end-of-pipe treatment to
total process control for China’s water environment pollution control, and China’s river
environmental protection work entered a new stage.

In the same year, the MEP promulgated a new “Environmental Quality Standard
for Surface Water” (GB3838-2002), among which the water quality evaluation indicator
increased from 75 to 109, which was more in line with the status quo of surface water
environmental protection in China. Since the “11th Five-Year Plan”, target accountability
for water quality control was introduced with more stringent and clear targets. The capacity
of water quality control improved since then, and the water quality, in particular for the
main stream in key river basins, improved significantly.

In the new stage of environmental protection with the improvement of environmental
quality as the core (since 2015), the “13th Five-Year Plan” has entered a stage of double
constraint on quality improvement and total control. This was marked by the 18th National
Congress of the Communist Party of China (CPC). The ecological civilization’s construction
is included in the overall layout of the “five in one” plan, and water quality has become
an important part of improving people’s livelihood and building a well-off society. As a
program of action for the prevention and control of water pollution in China, the “Water
pollution prevention action plan” clarifies the quality improvement objectives of various
water bodies in different periods, which was, by 2020, for the seven major river basins,
the water quality with a good (grades I–III) ratio being above 70%, and by 2030, the ratio
should reach 75%. The “13th Five-Year Plan for National Economic and Social Development
Outline” also clarifies the dual-binding indicators for water quality improvement and total
control, while the “13th Five-Year Plan for Ecological Environmental Protection” further
proposes specific requirements for systematic treatment with quality improvement as
the core.

The theory of harmonious coexistence between man and nature was introduced for
development in China during the “13th Five-Year Plan”, and the Yangtze River economic
belt development and high-quality development and ecological protection for the Yellow
River Basin were introduced. For the Yangtze River, the eco-environment restoration
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was put in a stronger position compared to development, and for the Yellow River, a
comprehensive management of the eco-environment system, including the environment
quality of mountains, rivers, forests, fields, lakes, and grasslands, and the pollution sources
was planned, to promote high-quality development.

4. Problems and Pressures

Although water quality in China has improved significantly and an environmental
turning point has begun to appear, water quality in some areas is still not improving. As
a result, there is still a gap between the quality of the water environment and the goal of
building a well-off society [7,10,26,27].

4.1. Surface Water Is Still Polluted

In 2020, the national surface water quality was fairly good. The main pollution indica-
tors were chemical oxygen demand (COD), total phosphorus (TP), and the permanganate
index, and the over-standard rates were 9.4%, 7.5%, and 5.8%, respectively. The proportion
of the grade I–III section was 83.4%, which indicates that surface water quality in 16.6%
of the sections was worse than grade III, while the proportion of sections that were worse
than grade V was 0.6%. The Liaohe River and Haihe River were slightly polluted [14,15].

4.2. Total Phosphorus Pollution Has Increased

In 2020, the rate of sections with TP exceeding the national surface water standard was
7.5%, more than that of CODMn, and became the second over-standard indicator affecting
the national surface water quality. The TP concentration in 20 lakes and one reservoir
exceeded the standard; the TP pollution in the lake was higher than in the reservoir [14,15].

4.3. High Pollutant Emission Intensity and Increasing Pollution from Residential Sources

China’s primary source of water pollution has changed from industrial pollution to
domestic pollution, and there is now great pressure to reduce domestic sewage. With
increased urbanization, the contribution of domestic pollution sources has become increas-
ingly prominent, and it is now the main source of water pollution. As a result, pollution
control of rural life at the township level needs to be strengthened. In 2015, the total
discharge of wastewater was 73.53 billion tons in China, which was 2.7% greater than in
2014. However, industrial wastewater discharge was 19.95 billion tons, which was 2.8%
lower than in the previous year, accounting for 27.1% of the total wastewater discharge.
Domestic sewage discharge was 53.52 billion tons, which represented an increase of 4.9%
over 2014 and accounted for 72.8% of the total wastewater discharge. Finally, the dis-
charge of wastewater from centralized pollution control facilities was about 0.6 billion tons,
accounting for 0.1% of the total wastewater discharge [14,15].

4.4. The Problem of Lake Eutrophication Is Obvious

In 2020, 76.8% of the 110 major lakes and reservoirs across the country met the grade
I–III standard, while 15.2% and 2.7% met the grade IV and V standards, respectively, and
5.4% failed to meet the grade V standard. The main pollution indicators were TP, COD,
and CODMn. Of the 110 lakes (reservoirs) being monitored for nutritional status, 10 were
oligotrophic, 68 were mesotrophic, 26 were under slight eutrophication, six were under
intermediate eutrophication, and one was under heavy eutrophication [14,15].

4.5. Heavy Metal Levels in Surface Water Have Exceeded the Standard

In 2019, there were 28 cases of heavy metals exceeding the standard in 23 surface
water sections. The main indicators exceeding the standards were mercury, arsenic, and
selenium. Among these, 12 cases exceeded the mercury limit, seven exceeded the arsenic
limit, and three exceeded the selenium limit. From the perspective of the river basin, the
over-standard sections were mainly distributed in the Yellow River, Haihe River, Yangtze
River, and the Pearl River Basin, with 8 cases, 6 cases, 5 cases, and 4 case of heavy metals
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exceeding the standard, respectively. At the provincial level, the sections exceeding the
standard are mainly distributed in Hebei, Inner Mongolia, Hubei, Hunan, Shanxi, and
other areas.

5. Conclusions

In the past 40 years, China’s environmental monitoring has made great progress.
The monitoring of water quality is developing towards the continuous improvement of
monitoring targets, the frequency of monitoring is becoming more reasonable, the moni-
toring indicators are being comprehensively covered, the technical methods are becoming
scientific, and the quality standards are becoming increasingly stringent.

During this same period, the national surface water quality has shown a trend of
fluctuating changes–rapid deterioration–volatility–rapid improvement. From 2002 to 2020,
the water quality in the main watersheds was generally good, showing a gradual improve-
ment trend, and the pollution was reduced. The main change has been that the proportion
of water quality of grade I–III increased annually, while the proportion of inferior water
quality of grade V has decreased. During 2002–2020, the proportion of grade I–III water
sections increased from 34.6% to 83.4%, while the proportion of inferior grade V sections
decreased from 34.9% to 0.6%. Furthermore, the water quality in the main river basins
has improved.

The increase in GDP and environmental pollution control investment are the main
reasons China’s surface water environmental protection system has been developed from
scratch and expanded, the intensity of surface water pollution control has been strength-
ened, and the surface water ecological protection work has increased, which has greatly
improved the surface water environment in China.

However, with the current rapid development of the economy and high consumption
of materials and energy, the number of surface water pollution incidents in China has been
high, and the treatment of surface water environmental pollution has entered a crucial
stage. Moreover, the potential for the continuous reduction of total pollutant discharges
has been narrowing, while the marginal costs of governance are continually increasing.
Accordingly, it has become very difficult to achieve comprehensive improvement of the
water environment quality by focusing on solving the outstanding water environment
problems in a short period of time. Therefore, it is necessary to improve risk identification,
early warning systems, and regulation of surface water environments.

In the year 2022, the Chinese government released the “14th five-year plan for ecologi-
cal environment protection”, which enhances the regulations on water quality control. In
this plan, specific measures are outlined for water quality monitoring, water ecology moni-
toring, and water pollution source monitoring. For water quality monitoring, a national
water monitoring network will cover key basins and prefecture-level cities, supported
mainly by automatic monitoring. The local water monitoring network should cover the
major water bodies, major cities and towns, large industrial clusters, planting and breeding
areas, and key boundaries. For water ecology monitoring, a water ecology monitoring
framework should be established and implemented in the Yangtze River Basin. For wa-
ter pollution source monitoring, the “water cross section-water quality-pollution source”
monitoring traceability technology and three-dimensional monitoring network for surface
sources should be established and forecast and warning capacity on water environment
should be achieved.
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Appendix A. Monitoring Indicators during the Past 40 Years

Items

Year Since 1983 Since 1988 Since 1999 Since 2002

GB3838-83 GB3838-88 GHZB 1-1999 GB3838-2002

1 pH pH pH pH

2 DO DO DO DO

3 BOD5 BOD5 BOD5 BOD5

4 COD CODMn CODMn CODMn

5 NH3-N / NH3-N NH3-N

6 NO2-N Soluble iron Soluble iron COD

7 Volatile phenols Volatile phenols Volatile phenols Volatile phenols

8 CN- / / /

9 As As As As

10 Hg Hg Hg Hg

11 Cr6+ Cr Cr Cr

12 Pb Pb Pb Pb

13 Cd Cd Cd Cd

14 Cu Cu Cu Cu

15 Petroleum Petroleum Petroleum Petroleum

16 Fecal coliform Fecal coliform Fecal coliform Fecal coliform

17 TP TP TP

18 Zn Zn Zn

19 nitrite nitrite TN

20 Anionic surfactant Anionic surfactant Anionic surfactant

21 Cyanide Cyanide Cyanide

22 Se Se Se

23 Sulfide Sulfide Sulfide

24 temperature temperature temperature

25 CODCr CODCr /

26 Kjeldahl nitrogen Kjeldahl nitrogen /

27 Mn Mn /

28 Chloride Chloride /

29 un-ionized ammonia un-ionized ammonia /

30 Total fluoride F−

31 Benzo (a) pyrene total cyanide /
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Appendix B. Monitoring Indicators for GB3838-2002

Indicator Grade I Grade II Grade III Grade IV Grade V

temperature
The artificial change in water temperature shall be limited to a weekly average maximum
temperature rise ≤ 1 and a weekly average maximum temperature drop ≤ 2

pH 6~9

DO≥ 7.5 6 5 3 2

CODMn (mg/L)≤ 2 4 6 10 15

COD (mg/L)≤ 15 15 20 30 40

BOD5 (mg/L)≤ 3 3 4 6 10

NH3-N (mg/L)≤ 0.15 0.5 1 1.5 2

TP (mg/L)≤ 0.02 0.1 0.2 0.3 0.4

TN (mg/L)≤ 0.2 0.5 1 1.5 2

Cu (mg/L)≤ 0.01 1 1 1 1

Zn (mg/L)≤ 0.05 1 1 2 2

F− (mg/L)≤ 1 1 1 1.5 1.5

Se (mg/L)≤ 0.01 0.01 0.01 0.02 0.02

As (mg/L)≤ 0.05 0.05 0.05 0.1 0.1

Hg (mg/L)≤ 0.00005 0.00005 0.0001 0.001 0.001

Cd (mg/L)≤ 0.001 0.005 0.005 0.005 0.01

Cr (mg/L)≤ 0.01 0.05 0.05 0.05 0.1

Pb (mg/L)≤ 0.01 0.05 0.05 0.05 0.1

Cyanide (mg/L)≤ 0.005 0.05 0.2 0.2 0.2

Volatile phenol (mg/L)≤ 0.002 0.002 0.005 0.01 0.1

Petroleum (mg/L)≤ 0.05 0.05 0.05 0.5 1

Anionic surfactant (mg/L)≤ 0.2 0.2 0.2 0.3 0.3

Sulfide (mg/L)≤ 0.05 0.1 0.2 0.5 1

Fecal coliform
(number/L)≤ 200 2000 10,000 20,000 40,000
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