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1. Introduction

Electrification plays a critical role in decarbonizing energy consumption for various
sectors, including transportation, heating, and cooling. Several essential infrastructures
are incorporated in smart cities, including smart grids and transportation networks. These
infrastructures are complementary solutions to the development of novel services, offering
enhanced energy efficiency and energy security.

The purpose of this Special Issue is to collect high-quality papers that address issues
related to cutting-edge technologies employed by smart cities undergoing electrification.
Some of the topics of interest for this Special Issue include:

• The electrification of building environments and transportation systems;
• The role of smart grids in smart cities and their impacts;
• The influence of ICT and IoT infrastructures incorporating big data on smart

cities’ electrification;
• Market, services, and business models for smart cities’ electrification;
• Standards for smart cities’ electrification and their implementation;
• The integration of advanced smart grid technology in smart cities, including in terms

of energy storage, demand-side management, and distributed energy resources.

2. Short Summary of the Papers

The variation of energy consumption in transportation and the main influencing
factors of decomposition contribute to reducing transportation energy consumption and
realizing the sustainable development of the transportation industry. Yuan, Jiang, and
Lai [1] proposed an improved decomposition model according to the factors governing
the direction of change based on existing index decomposition methods. The influencing
factors of transportation energy consumption are quantitatively decomposed according to a
transportation energy consumption decomposition model. The contributions of transporta-
tion turnover, transportation structure, and transportation energy consumption intensity
changes to the variation of transportation energy consumption are quantitatively calculated.
The results demonstrate that there is great energy conservation potential in the adjustment
of transportation structures and that transportation energy intensity is the main factor of
energy conservation.

Hasan et al. [2] presented the optimization and tuning of a simulation framework to
improve its simulation accuracy while evaluating the energy utilization of electric buses
under various mission scenarios. The simulation framework was developed using a low-
fidelity (Lo-Fi) model of a forward-facing electric bus’s (e-bus) powertrain to achieve the
fast simulation speeds necessary for real-time fleet simulations. The measurement data
required verification that the proper tuning of the simulation framework was provided by
the bus’s original equipment manufacturers (OEMs), and these data were obtained from
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various demonstrations of 12 m and 18 m buses in the cities of Barcelona, Gothenburg,
and Osnabruck.

Recently, the increasing winter load peak has applied great pressure on power grids.
The demand response on the load side helps alleviate the expansion of the power grid
and promote the consumption of renewable energy. However, the response of large-scale
electric heat loads to the same electricity price curve leads to new load peaks and regulation
failure. Guo and Gong [3] proposed a grouping-coordinated preheating framework based
on a demand response model that realizes the integration of information between the
central controller and each regulation group. A thermal parameter model of a room
and a performance map of an inverter air conditioner/heat pump are integrated into the
demand response model. In this framework, a coordination mechanism is adopted to
avoid regulation failure, an edge computing structure is applied to consider the users’
preferences and plans, and a grouped and parallel computing structure is proposed to
improve computing efficiency.

Communication networks in power systems constitute a major component of the smart
grid paradigm. These networks enable the automation of power grid operation and self-
recovery in negative contingencies. However, this dependency on communication networks
attracts cyber threats. An adversary can launch an attack on a communication network,
which, in turn, can influence a power grid’s operation. Such attacks may constitute the
injection of false data into system measurements, the flooding of communication channels
with unnecessary data, or the interception of messages. The use of machine learning to
process data gathered from communication networks and the power grid is a promising
solution for detecting cyber threats. Agnew et al. [4] presented a co-simulation of cyber-
security for a cross-layer strategy. The advantage of such a framework is the augmentation
of valuable data, which enhances the detection and identification of anomalies in the
operation of a power grid. The framework is implemented on the IEEE 118-bus system.
The system is constructed in Mininet to simulate a communication network and obtain data
for analysis. A distributed three-controller software-defined networking (SDN) framework
is proposed that utilizes an Open Network Operating System (ONOS) cluster. According
to the findings of our recommended program, it outperforms a single SDN controller
framework by a factor of more than ten times the throughput.

Multi-view subspace clustering has drawn significant attention in the pattern recogni-
tion and machine learning research communities. However, most of the existing multi-view
subspace clustering methods are still limited in two aspects. (1) The subspace representation
yielded by the self-expression reconstruction model ignores the local structural information
of the data. (2) The development of subspace representation and clustering are used as two
individual procedures, thereby failing to account for their interactions. To address these
problems, Duan et al. [5] proposed a novel multi-view subspace-clustering method fusing
local and global information for one-step multi-view clustering.

The city of Tampere in Finland aims to be carbon-neutral by 2030 and seeks to deter-
mine how the electrification of public transport would help achieve this climate goal. Thus
far, research has covered topics related to electric buses, ranging from battery technologies
to lifecycle assessment and cost analysis. However, less is known about electric city buses’
performance in cold climatic zones. Vehviläinen et al. [6] collected and analyzed weather
and electric-city-bus-related data to ascertain the effects of temperature and weather con-
ditions on the electric buses’ efficiency. Data were collected from four battery-electric
buses and one hybrid bus as a reference. The buses were fast-charged at a market and
slow-charged at a depot. The test route ran downtown.

Water distribution infrastructure (WDI) has been well established and significantly
improves living quality. Nonetheless, aging WDI poses a challenging worldwide problem
entailing the wasting of natural resources, leading to direct and indirect economic losses.
The total losses due to leaks are valued at USD 7 billion per year. However, Wei et al. [7]
developed a multi-classification multi-leak identification (MC-MLI) scheme to combat this
problem. In this MC-MLI scheme, a novel adaptive kernel (AK) program is developed to
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adapt to different WDI scenarios. The AK program improves overall identification capacity
by customizing a weighting vector and transforming into the extracted feature vector.
Afterwards, a multi-classification (MC) scheme is designed to facilitate efficient adaptation
to potentially hostile inhomogeneous WDI scenarios. The MC scheme comprises multiple
classifiers for customizing the network to different pipelines.

Solar forecasting plays a crucial role in the renewable energy transition. Major chal-
lenges related to load balancing and grid stability emerge when a high percentage of energy
is provided by renewables. These can be tackled by new energy management strategies
guided by power forecasts. Bendiek et al. [8] presented a data-driven and contextual
optimization-forecasting (DCF) algorithm for solar irradiance that was comprehensively
validated using short- and long-term predictions in three US cities: Denver, Boston, and
Seattle. Moreover, step-by-step implementation guidelines with which to follow and
reproduce the results were proposed.

Fault-cause identification plays a significant role in transmission line maintenance and
fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and
geographic information, multiview learning can be used to realize the fusion of information
for better fault-cause identification. To reduce the amount of redundant information in
different types of monitoring data, Jian et al. [9] proposed a hierarchical multiview feature
selection (HMVFS) method to address the challenge of combining waveform and contextual
fault features. To enhance the discriminant ability of the model, an ε-dragging technique
is introduced to enlarge the boundary between different classes. To effectively select the
useful feature subset, two regularization terms, namely, l2,1-norm and Frobenius norm
penalties, are adopted to conduct hierarchical feature selection for multiview data.

Demand response programs (DRs) can be implemented with fewer investment costs
than those incurred in power plants or facilities and enable us to control power demand.
Therefore, they are widely regarded as an efficient option for power supply–demand-
balancing operations. On the other hand, DRs bring new difficulties regarding the evalua-
tion of consumers’ cooperation and the setting of electricity prices or rebate levels while
reflecting their results. Takano et al. [10] presented a theoretical approach that calculates
electricity prices and rebate levels in DRs based on the framework of social welfare maxi-
mization. In the authors’ proposal, the DR-originated changes in the utility functions of
power suppliers and consumers are used to set a guide for DR requests. Moreover, optimal
electricity prices and rebate levels are defined from the standpoint of minimal burden in
DRs. Through numerical simulations and a discussion of their results, the validity of the
authors’ proposal is verified.

The construction and operation of wind turbines have become important aspects of
the development of smart cities. However, a fault in the main drive chain often causes
wind turbine outages, thereby seriously impacting the normal operation of wind turbines
in smart cities. To overcome the shortcomings of the commonly used main drive chain
fault diagnosis method, which only uses a single data source, Xu et al. [11] proposed a fault
feature extraction and fault diagnosis approach based on data source fusion. By fusing
two data sources, that is, the supervisory control and data acquisition (SCADA) real-time
monitoring system data and the main drive chain vibration monitoring data, the fault
features of the main drive chain are jointly extracted, and an intelligent fault diagnosis
model for the main drive chain in the wind turbine based on data fusion is established.

Lai et al. [12] presented a new coordinated operation (CO) framework for electricity
and natural gas networks that considers network congestion and demand response. A credit
rank (CR) indicator for coupling units was introduced, and gas consumption constraint
information of natural-gas-fired units (NGFUs) was provided. A natural gas network
operator (GNO) delivers this information to an electricity network operator (ENO). A major
advantage of this operation framework is that frequent information interaction between
GNO and ENO is unnecessary. The entire framework contains two participants and three
optimization problems, namely, GNO optimization sub-problem-A, GNO optimization
sub-problem-B, and ENO optimization sub-problem.
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Blockchain technologies have received considerable attention from academia and
industry due to their distinctive characteristics, such as data integrity, security, decentral-
ization, and reliability. However, their adoption rate is still low, which is one of the primary
reasons behind conducting studies related to users’ satisfaction and adoption. Determin-
ing the factors impacting the use and adoption of blockchain technologies can efficiently
address their adoption challenges. Alshamsi, Al-Emran, and Shaalan [13] performed a
systematic review of blockchain technologies to offer a thorough understanding of what
impacts their adoption and discuss the main challenges and opportunities across various
sectors. Of the 902 studies collected, 30 empirical studies met the eligibility criteria and
were thoroughly analyzed. The results confirmed that the technology acceptance model
(TAM) and technology–organization–environment (TOE) model were the most common
models for studying blockchain adoption.

The upward trend of adopting Distributed Energy Resources (DER) reshapes the
energy landscape and supports the transition toward a sustainable, carbon-free electricity
system. The integration of the Internet of Things (IoT) in Demand Response (DR) enables
the transformation of energy flexibility, stemming from electricity consumers/prosumers,
into a valuable DER asset, thus placing consumers/prosumers at the center of the electricity
market. Andriopoulos et al. [14] showed how Local Energy Markets (LEM) act as a catalyst
by providing a digital platform where the prosumers’ energy needs and offerings can
be efficiently settled locally while minimizing grid interaction. This paper unveils how
IoT technology, which enables the control and coordination of numerous devices, further
unleashes the flexibility potential of the distribution grid, offered as an energy service to
both the LEM participants and the external grid.

Author Contributions: Writing—original draft preparation, C.S.L.; writing—review and editing,
K.-F.T. and Y.W. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Blockchain technologies have received considerable attention from academia and industry
due to their distinctive characteristics, such as data integrity, security, decentralization, and reli-
ability. However, their adoption rate is still scarce, which is one of the primary reasons behind
conducting studies related to users’ satisfaction and adoption. Determining what impacts the use and
adoption of Blockchain technologies can efficiently address their adoption challenges. Hence, this
systematic review aimed to review studies published on Blockchain technologies to offer a thorough
understanding of what impacts their adoption and discuss the main challenges and opportunities
across various sectors. From 902 studies collected, 30 empirical studies met the eligibility criteria and
were thoroughly analyzed. The results confirmed that the technology acceptance model (TAM) and
technology–organization–environment (TOE) were the most common models for studying Blockchain
adoption. Apart from the core variables of these two models, the results indicated that trust, perceived
cost, social influence, and facilitating conditions were the significant determinants influencing several
Blockchain applications. The results also revealed that supply chain management is the main domain
in which Blockchain applications were adopted. Further, the results indicated inadequate exposure
to studying the actual use of Blockchain technologies and their continued use. It is also essential to
report that existing studies have examined the adoption of Blockchain technologies from the lens of
the organizational level, with little attention paid to the individual level. This review is believed to
improve our understanding by revealing the full potential of Blockchain adoption and opening the
door for further research opportunities.

Keywords: Blockchain; technology adoption theories; technology adoption models; systematic review

1. Introduction

The creator of Bitcoin, Satoshi Nakamoto, proficiently described the Blockchain tech-
nology as a dispersed “peer-to-peer linked-structure” that could be used to resolve the
apprehensions of maintaining the transaction order along with dodging double-spending
issues [1]. With Bitcoin, transactions are commanded by grouping them into constrained-
size structures called blocks, and a similar timestamp is shared between all blocks. In a
Blockchain, miners such as network nodes connect the blocks preferably in chronological
order, with each block containing a hash of the previous one [2]. Hence, the structure of a
Blockchain often succeeds in holding an auditable and robust registry for all the related
transactions. Any technology has its negative and positive sides. Negatively, Blockchain
technologies have some disadvantages [3]. For example, Blockchains are harder to scale be-
cause of their consensus approach. Processing can be slow on Blockchains when many users
exist on the network. Some solutions require high energy consumption. It’s challenging to
integrate Blockchains with several systems, specifically the legacy ones.

Positively, Blockchain technologies have brought many opportunities for various sec-
tors. For instance, the banking sector can benefit from Blockchain to drive customer transac-
tions under similar Blockchain standards. Blockchain allows for the transparent auditing of
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transactions. It is the case that different organizations have invested in this technology for a
variety of reasons, such as reducing transaction costs and making architectures more trans-
parent, safe, and quick. The significance of the Blockchain is demonstrated by the number
of crypto-currencies, which have surpassed 1900 and are still growing [4]. This growth pace
often creates interoperability problems due to the assortment of cryptocurrency-related
applications [5,6]. Such a landscape is quickly evolving, as Blockchain is being applied in
other fields outside of cryptocurrencies, where smart contracts play a primary role. Smart
contracts are described as “a computerized transaction protocol that executes the terms of
a contract” [7]. These contracts enable an individual to transform contractual clauses into
embeddable code [8], consequently limiting the external risks and participation. Thus, a
smart contract is an agreement between two parties where the agreed terms and conditions
are automatically imposed even if the parties do not trust each other. As such, smart
contracts in the context of Blockchains are scripts that run in a decentralized manner and
are saved in the Blockchain without relying on third parties [9].

In healthcare, Blockchains can be used to reduce the communication and computa-
tional burden in data management [10]. This can be achieved through a secure transaction
for a group of networks. Large amounts of healthcare data can also be managed using
smart contract systems [11]. Additionally, linking medical devices to a Blockchain platform
can connect patients, doctors, and providers to better understand who is complying with
treatments and their consequences. In education, Blockchain applications can be used for
certificate/degree verification, students’ assessments, credit transfer, data management,
and admission purposes. Academic credential verification is essential for employers and
other authorities to affirm the validity of an academic degree. Blockchain technologies
allow students to access their official certificates under the protection and control of their
universities [12].

The significance of Blockchain technology is increasing [13]. IBM added that around
33% of C-suite executives itemized that Blockchain is being discovered by them or were
involved actively in the past projects [14]. The research and development community at
large is already aware of the potential of upcoming technologies, along with discovering
many different applications across a wide array of industries [9]. The development of
Blockchain applications can be classified into three generations: (i) Blockchain 1.0 is used
for cryptocurrency transactions, (ii) Blockchain 2.0 is used for financial applications, and
(iii) Blockchain 3.0 is used for other industrial applications, such as government, health,
science, and Internet of Things (IoT) [13].

Blockchain assists in tracing and verifying multistep transactions that require trace-
ability and verification. Blockchains minimize compliance costs and accelerate data transfer
processing. Perhaps the worthiest value of adopting Blockchains is the enhanced security
provided to users while making transactions. This feature builds confidence between
consumers and industry partners, protects privacy, and increases transparency in tracing
transactions. Despite the tremendous opportunities of Blockchain technologies, their adop-
tion across many domains is still in short supply [15]. Their low adoption rates stem from
inadequate knowledge regarding the factors affecting their use [16]. To draw a holistic view
of the factors affecting Blockchain adoption, we need to understand the theories/models
through which these factors are derived. Understanding those factors through the lenses of
these theories/models would help scholars and practitioners prepare future policies and
procedures for effectively employing Blockchain technologies across various sectors. By
inspecting the existing reviews on Blockchain, it has been observed that there is inadequate
knowledge about the main research methods used in Blockchain adoption and the primary
domains involving Blockchain applications. To understand these issues, this systematic
review aimed to provide a holistic view of Blockchain adoption through the lenses of
technology adoption theories and models, and to identify the main research gaps that
would guide future research. Therefore, this review study poses the following research
questions:

Q1: What are the main research methods and domains in the selected studies?
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Q2: What are the main theories/models used for studying the use of Blockchain?
Q3: What are the most frequent external factors affecting the use of Blockchain?
Q4: What is the primary purpose of the reviewed studies?
Q5: Who are the target participants in the selected studies?

2. Related Work

Blockchain technology is a distributed ledger introduced for cryptocurrency in 2008
by Satoshi Nakamoto. In October 2008, Bitcoin was released [17]. In the second genera-
tion, smart contracts were introduced for assets and trust agreements. It was initiated by
Ethereum, one of the most renowned Blockchain-based software platforms. The next wave
of Blockchain technologies will focus on scaling and addressing transaction processing
times and bottlenecking problems. There are three categories of Blockchains, including
public, proprietary, and permissioned. As a public Blockchain, anyone can join, leave, con-
tribute, read, and audit the Blockchain network, as it is decentralized, self-governed, and
authority-free. Bitcoin represents an instance of public Blockchain. The private Blockchain,
in contrast, is a closed network with a verified and authentic invitation that is only available
for trusted and selected parties. This means only the Blockchain owner has the authority
to edit, delete, or override entries on the Blockchain. The last type is referred to as per-
missioned Blockchain, which permits anyone to join after their identity is verified. Each
individual is given specific permissions on the network to perform specific processes. In
the supply chain, suppliers, for instance, could manage a permissioned Blockchain for their
business partners and customers with different access rights. On the other hand, customers
can only be allowed to read product documents, whereas wholesalers and suppliers have
access to edit information about the goods and delivery.

Due to its intrinsic characteristics in maintaining transaction transparency across
various entities, Blockchain has received much attention from different industries. The
primary example is the use of cryptocurrencies in finance [18,19]. Further, pharmaceutical,
transportation, origin-to-consumer, legal, and regulatory areas are other non-financial
domains that have witnessed prompt adoption and use of Blockchain applications [20].
Moreover, other applications have emerged regarding the use of Blockchain in the health-
care industry [21,22], the chemical industry [23], and big data [24]. Blockchain technology
is viewed as a significant component of the fourth industrial revolution that has facili-
tated changing the structure of the global economy and enhancing the opportunities for
innovation, development, and improved quality of life. Furthermore, a Blockchain-based
digital government often streamlines processes, protects data, and reduces abuse and fraud
while instantaneously boosting accountability and trust. Governments, businesses, and
individuals share resources through a distributed ledger protected by cryptography. By
eliminating single points of failure, it protects governments and citizen data.

A synthesis of the previously published reviews was performed to understand the
current state-of-the-art of Blockchain technologies. Table 1 shows the earlier review studies
conducted on Blockchain technology. This subject has recently gained extensive interna-
tional interest and attention. It can be noticed that Blockchain technology has been studied
across several disciplines, including energy, healthcare, agriculture, education, logistics,
and supply chain management. Some reviews have examined the underlying Blockchain
technology, such as cryptography, peer-to-peer networking, distributed storage, consensus
algorithms, and smart contracts [25–27]. Other reviews were interested in highlighting
the laws and regulations governing this technology [28]. Some of the reviews focused on
the educational applications built using Blockchain technologies, their benefits, and the
obstacles to implementation [29]. Another review identified organizational theories and
discussed their application in adopting Blockchain technologies in logistics and supply
chain management [30]. It can be observed that the existing reviews have neglected to
review the factors affecting Blockchain adoption from the perspective of technology adop-
tion theories/models. In addition, there is insufficient knowledge about the main research
methods used in Blockchain adoption and the primary domains involving Blockchain

9



Appl. Sci. 2022, 12, 4245

applications. Therefore, this systematic review aimed to provide a comprehensive review
of Blockchain adoption by examining the main research methods, domains, technology
acceptance models/theories, influential factors, research objectives, and target participants.

Table 1. Previous review studies on Blockchain technologies.

Source Review Type Number of
Reviewed Studies Domain Aim

[31] Systematic
review 65 studies Healthcare To review the use of Blockchain technology in healthcare.

[25] Systematic
review 140 studies Energy

To review and examine the basic ideas that drive Blockchain
technology, such as systems design and distributed consensus
methods. It also concentrated on Blockchain solutions for the
energy industry and enlightened the state-of-the-art issues by

extensively analyzing the literature and existing business cases.

[32] Systematic
review 33 studies Healthcare To demonstrate the potential use of Blockchain technologies,

their obstacles, and future research directions in healthcare.

[33] Systematic
review 27 studies Supply chain

management

To explain the most common Blockchain applications in supply
chain management (SCM). It also covered the critical

disruptions and problems resulting from Blockchain adoption
in SCM, and how the future of Blockchains in SCM holds.

[29] Systematic
review 31 studies Education

To review the applications of Blockchain in education and
provide an insight into the main benefits and obstacles of

implementation.

[28] Systematic
review 29 studies Supply chain To evaluate how Blockchain technologies would affect supply

chain practices and policies in the future.

[26] Systematic
review 61 studies Healthcare To review the prototypes, frameworks, and implementations of

Blockchain in healthcare.

[34] Systematic
review 10 studies Agriculture To review current research subjects, significant contributions,

and benefits of using Blockchain technologies in agriculture.

[30] Systematic
review 22 studies

Logistics and
supply chain
management

To identify the most relevant organizational theories used in
Blockchain literature in the context of logistics and supply

chain management (LSCM). It also examined the content of
those organizational theories to formulate relevant research

questions for investigating the adoption of Blockchain
technologies in LSCM.

[35] Review -

General (not
specific to a
particular
domain)

To examine the Blockchain and its related essential features,
concerns (IoT, security, and data management), and industrial
applications. It also provides potential difficulties and future

directions.

[36] Systematic
review 42 studies Healthcare To figure out how Blockchain technologies can be used in the

healthcare domain.

[37] Systematic
review 35 studies Governance To provide scholars and practitioners with directions on using

Blockchain applications in governance research.

[38] Systematic
review 32 studies

General (not
specific to a
particular
domain)

To offer the most recent state of research on the potential
combination of AI and Blockchain technologies and discuss the

possible advantages of such a combination.

[39] Review - Supply chain
and logistics

To explain and describe the idea of Blockchain and its use in
logistics and supply chains.

[40] Systematic
review 35 studies IoT To evaluate academic solutions and approaches of integrating

Blockchain with IoT.

[41] Review -

General (not
specific to a
particular
domain)

To discuss the fundamentals of Blockchain technologies and
their technical details.

This
study

Systematic
review 30 studies

General (not
specific to a
particular
domain)

To provide a thorough review of Blockchain adoption by
examining the main research methods, domains, technology

acceptance models/theories, influential factors, research
objectives, and target participants.

3. Materials and Methods

This study applied the systematic review approach to review the existing studies
on Blockchain adoption. This approach uncovers sources relevant to a research topic
and provides a rich synthesis of the subject under examination. This research follows
the systematic review guiding principles introduced by Kitchenham and Charters [42]
and other related systematic reviews [43–45]. The following subsections detail the phases
followed during the review process.
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3.1. Inclusion and Exclusion Criteria

Table 2 lists the inclusion and exclusion criteria for the publications that were critically
evaluated in this review.

Table 2. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Should be published between 2010 and 2021. Studies involving Blockchain but without a
theoretical model.

Should involve a theoretical model for
evaluating Blockchain.

Studies involving a theoretical model but
without a Blockchain.

Should measure the adoption, acceptance, or
continued use of Blockchain. Studies written in languages other than English.

Should be written in English language.

3.2. Data Sources and Search Strategies

In this systematic review, the surveyed articles were collected from a wide range of
online databases, including Emerald, IEEE, ScienceDirect, Springer, MDPI, and Google
Scholar. The search for these studies was undertaken in April 2021. The keywords used
in the search include ((“Blockchain”) AND (“adoption” OR “acceptance” OR “use” OR
“intention to use” OR “continued use” OR “continuous intention”)). Choosing the keywords
is essential since it determines which articles are to be retrieved [46]. Using the above search
strategies, the search results retrieved 902 articles. Of those, 218 were marked as duplicates,
so we removed them from the analysis. Thus, the overall number of the remaining articles
becomes 684. We have applied the inclusion and exclusion criteria for each of these studies.
Accordingly, 30 studies met these criteria and were kept for the final analysis. The search
and refinement stages were carried out using the “Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA)” [47]. Figure 1 shows the PRISMA flow diagram.

Figure 1. PRISMA flowchart.
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3.3. Quality Assessment

Along with the inclusion and exclusion criteria, quality assessment is another crucial
factor to consider [48]. A nine-criteria checklist was adopted from Alqudah et al. [49] and
Al-Emran et al. [48] as a quality assessment and used to provide a method for evaluating
the quality of the research papers that were kept for the final analysis (n = 30). Table 3
illustrates the quality assessment checklist. The primary purpose of the checklist was not
to criticize any scholar’s work, and the checklist was adapted from those suggested by
Kitchenham and Charters [42]. Each question in the checklist was scored according to
the three-point scale, an answer of “Yes” being worth 1 point, an answer of “No” being
worth 0 points, and an answer of “Partially” being worth 0.5 points. Therefore, each study
could receive an accumulated score between 0 and 9. The higher the total scores a study
attained, the higher the degree to which the study addressed the research questions. This
was ensured by assessing each study against the nine quality assessment criteria. For each
study, the first and second authors assigned scores to the nine quality assessment criteria
independently to ensure accuracy. Differences in assigning scores between the two authors
were resolved through discussion and further review of the disputed articles. Table 4
presents the quality assessment results of all 30 studies. It is evident that all studies passed
the quality assessment, and they were eligible for final analysis.

Table 3. Quality assessment checklist.

# Questions

1 Is the research aim specified clearly?
2 Did the study achieve its aim?
3 Are the variables considered by the study clearly indicated?
4 Is the context/discipline of the study clearly defined?
5 Are the data collection methods sufficiently detailed?
6 Are the measures’ reliability and validity clearly described?
7 Are the statistical techniques used to analyze the data sufficiently described?
8 Do the findings add to the literature?
9 Does the study add to your knowledge or understanding?

Table 4. Quality assessment results.

Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Total Percentage

S1 1 1 1 0.5 1 1 1 1 1 8.5 94.44%
S2 1 1 1 1 1 1 1 1 1 9 100%
S3 1 0.5 1 1 1 1 1 0.5 0.5 7.5 83.33%
S4 1 1 1 1 1 1 1 1 1 9 100%
S5 1 0.5 1 1 1 1 1 0.5 0.5 7.5 83.33%
S6 1 1 1 1 1 1 1 1 1 9 100%
S7 1 1 1 1 0 1 0 1 0.5 6.5 72.22%
S8 1 0.5 1 0.5 1 0.5 1 0.5 0.5 6.5 72.22%
S9 1 1 1 1 1 1 1 1 1 9 100%

S10 1 1 1 1 1 1 1 1 0.5 8.5 94.44%
S11 1 1 0.5 0.5 0.5 0.5 0.5 1 0.5 6 66.66%
S12 1 1 1 1 1 1 1 1 1 9 100%
S13 1 1 1 1 1 1 1 1 1 9 100%
S14 1 1 1 1 0 0.5 0 1 0.5 6 66.66%
S15 1 1 1 1 1 1 1 1 1 9 100%
S16 1 1 1 1 1 1 0.5 1 1 8.5 94.44%
S17 1 1 1 1 1 1 1 1 1 9 100%
S18 1 1 1 1 1 1 1 1 1 9 100%
S19 1 1 1 1 1 0.5 0.5 1 1 8 88.88%
S20 1 1 1 1 1 1 1 1 1 9 100%
S21 1 0.5 1 1 1 0.5 1 0.5 1 7.5 83.33%
S22 1 1 1 1 1 1 1 1 1 9 100%
S23 1 1 1 1 0.5 1 0.5 1 1 8 88.88%
S24 1 1 1 1 1 1 1 1 1 9 100%
S25 1 1 1 1 0.5 1 1 1 1 8.5 94.44%
S26 1 1 1 1 1 1 1 1 1 9 100%
S27 1 1 1 1 1 1 0.5 1 0.5 8 88.88%
S28 1 1 1 1 0.5 1 1 1 1 8.5 94.44%
S29 1 1 1 1 1 1 0.5 1 1 8.5 94.44%
S30 1 1 1 1 0.5 1 1 1 1 8.5 94.44%
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3.4. Data Coding and Analysis

For the sake of answering the research questions of this review, we have coded the
final list of the remaining articles (n = 30) based on several characteristics, including authors,
publication year, methods, countries, factors, domains, theories/models, research aims,
and participants.

4. Results

Drawing upon the 30 research studies analyzed in this systematic review, we have
reported the findings to answer the formulated research questions. Table A1 (Appendix A)
provides a brief description of all the analyzed studies.

4.1. Main Research Methods

Figure 2 depicts the distribution of studies according to the research method used
in data collection. It is evident that questionnaire surveys represent the primary research
method used in 77% of the analyzed Blockchain adoption studies. However, only 10% of
the Blockchain adoption studies relied on interviews in collecting their data.

Figure 2. Distribution of studies by research methods.

4.2. Main Domains

Blockchain applications have been extensively used across many domains/sectors.
The collected studies were analyzed according to these domains/sectors to provide an
overview of the current status of Blockchain applications. Figure 3 depicts the main
domains/sectors in which Blockchain applications were adopted. It can be seen that supply
chain management dominates the list, with 12 studies. This is followed by education
and agriculture, with three studies each. In the supply chain, organizations can automate
physical assets and create a decentralized steady record of all transactions, making it
possible to track assets from production to delivery or use by end-users. Other applications
include maritime shipping [50], organizing decisions [51], and executing operations [52].
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Figure 3. Main domains in Blockchain adoption.

4.3. Prevailing Theories/Models in Blockchain Adoption

As we aimed to examine the adoption of Blockchain technologies, the collected articles
were analyzed from the perspective of technology adoption theories/models, as shown
in Figure 4. It can be seen that the “technology acceptance model (TAM)” is the most
common model in studying Blockchain adoption, with 14 studies. This is followed by the
“technology-organization-environment (TOE)” (n = 8), “unified theory of acceptance and
use of technology (UTAUT)” (n = 7), and “innovation diffusion theory (IDT)” (n = 5). The
rest of the theories/models appeared only once in the examined studies (i.e., TRI2, ISS, TTF,
TPB, TRA, and TAM3).

Figure 4. Distribution of studies by technology adoption models/theories.
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4.4. Most Frequent External Factors Affecting the Use of Blockchain

The low adoption rates of many technologies, with no exceptions to Blockchain, stem
from the inadequate knowledge regarding the factors affecting their use. Therefore, we
have analyzed the collected studies to identify the most common external factors affecting
the adoption of Blockchain technologies, as shown in Figure 5. Trust appeared to be the
most common factor affecting the adoption of Blockchain technologies (n = 17). This is
followed by the perceived cost and social influence with 11 studies each, then by facilitating
conditions (n = 10), performance expectancy, effort expectancy, and information security,
with seven studies each.

Figure 5. Most common external factors affecting Blockchain adoption.

Apart from the collected studies, we have also analyzed the existing literature on
Blockchain to determine the barriers affecting its adoption. Security risk [53,54] and privacy
risk [53,55,56] were among the main risks that negatively affect the use of Blockchain
technologies. High energy costs [53,54,57] and investment costs [58–60] represent the
main costs of using Blockchain technologies. Organizations also impose some barriers
to using Blockchain technologies, such as organizational policies [61–63], organizational
culture [55,61,64,65], lack of knowledge and management support [63,65,66], and lack of
collaboration and coordination [63,64,67]. It is also imperative to mention that adopting
Blockchain is hindered by some technological barriers, such as technological immatu-
rity [53,54,65], reluctance to change [60,68,69], interoperability issues [60,63,65,70,71], and
scalability issues [53,56,63]. Cultural differences [61,64,72] are also considered a barrier
to Blockchain adoption. This is mainly because users rely on themselves when seeking
advice related to using Blockchains in individualistic societies, while they rely on others in
collectivistic cultures.

4.5. Primary Purpose of the Reviewed Studies

There are three different concepts within the technology adoption domain, including
adoption, acceptance, and post-adoption/continuous intention. The adoption is usually
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measured by potential users who have not yet used the technology, whereas actual users
measure the acceptance. The post-adoption/continuous intention measures the continued
use of the technology after a sufficient period of users’ experience. It is essential to under-
stand the purpose of the analyzed studies concerning the previously mentioned concepts
to understand where we stand on Blockchain adoption. It has been noticed that 80% of the
analyzed studies concentrated on measuring Blockchain adoption, followed by 10% for
both acceptance and continuous intention.

4.6. Target Participants in the Selected Studies

To understand who evaluated the use of Blockchain technologies, we have classified
the analyzed studies in terms of participants, as depicted in Figure 6. Fifty percent of
the analyzed studies relied on the top management to evaluate the use of Blockchain
technologies. This was followed by experts and consultants (28%), academics (13%), and
students (5%).

Figure 6. Distribution of studies by participants.

5. Discussion

It is imperative to understand what impacts the adoption of new technologies, such as
Blockchain. Adopting any technology relies on the determinants affecting its users [73–75].
A forecasting report illustrates the positive evolution of the Blockchain market between
2017 and 2024 [76]. While this magnitude was USD 800 million in 2017, it is estimated
to reach USD 20,550 million in 2024. Therefore, it is vital to gain more insights into what
impacts the adoption of Blockchain technologies across many sectors to improve and
sustain their usage. Hence, this systematic review was carried out to analyze the adoption
of Blockchain technologies from the lenses of technology adoption theories/models.

The results showed that questionnaire surveys represent the primary research method
used in 77% of the analyzed Blockchain adoption studies. These outcomes agree with
some of the earlier systematic reviews in the technology adoption domain [77–80], which
concluded that questionnaire surveys were the most common data collection method. In
terms of the Blockchain, these results contradict what Frizzo-Barker et al. [81] reported, in
which comparative studies were the primary method used in most of the analyzed articles.
Drawing upon the findings of this systematic review, it is suggested that further research
would consider the mixed-research approach by involving interviews or focus groups
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besides using questionnaire surveys. This is because qualitative approaches provide more
insights into the cause–effect relationships among the factors affecting Blockchain adoption.

Regarding the main domains/sectors through which the analyzed studies were carried
out, supply chain management dominates the list with 12 studies, followed by education
and agriculture, with three studies each. While our findings agree with [82], who found
that supply chain management is the dominating sector concerning studies related to
Blockchain adoption, it contradicts what is reported by [81], who suggested that banking
and finance was the primary sector. Regardless of the differences between this review
and the previously conducted reviews, understanding Blockchain adoption across many
domains is still in short supply due to the limited number of applications.

Concerning the prevailing technology adoption theories/models, the results pointed
out that the TAM is the most common model in studying Blockchain adoption, with
14 studies. This is followed by the TOE (n = 8), UTAUT (n = 7), and IDT (n = 5). In the
same vein, Taherdoost [82] found that TAM and TOE were the most dominating models in
studying Blockchain adoption. TAM is still a valid model to evaluate large-scale emerging
technologies [83,84], where Blockchain is not an exception. These results indicate that
studies focusing on the individual level have mainly relied on TAM, while those examining
the organizational level have relied on TOE. Further research might consider other adoption
models that have yet to be used in the existing literature, such as UTAUT2, ECM, PMT, etc.

For the influential factors affecting Blockchain adoption, trust was seen to be the
most common factor affecting the adoption of Blockchain technologies (n = 17). This
was followed by the perceived cost and social influence, with 11 studies each, as well as
facilitating conditions (n = 10), performance expectancy, effort expectancy, and information
security, with seven studies each. Studies on the individual level have examined trust,
social influence, performance expectancy, effort expectancy, and information security. In
contrast, those focusing on the organizational level studied mainly the organizational
perspective’s factors in delivering Blockchain-based services, such as trust, perceived cost,
and facilitating conditions. Still, there is abundant room for other factors to be investigated
from the perspective of other technology adoption theories/models and Blockchain-related
specific characteristics. On the other side, we have also analyzed the existing literature on
Blockchain to determine the barriers affecting its adoption. Being aware of these barriers
and considering them when implementing Blockchains would improve their adoption
rate. Security risk and privacy risk were among the main risks that negatively affect the
use of Blockchain technologies. High energy and investment costs represent the main
costs of using Blockchain technologies. Organizations also impose some barriers to using
Blockchain technologies, such as organizational policies, organizational culture, lack of
knowledge and management support, and lack of collaboration and coordination. It is
also imperative to mention that adopting Blockchain is hindered by some technological
barriers, such as technological immaturity, reluctance to change, interoperability issues, and
scalability issues. Cultural differences are also considered a barrier to Blockchain adoption.
This is mainly because users rely on themselves when seeking advice related to using
Blockchains in individualistic societies, while they rely on others in collectivistic cultures.

To understand the primary purpose of the analyzed studies, the results showed that
80% of those studies concentrated on measuring Blockchain adoption, followed by 10% for
both acceptance and continuous intention. These results clearly indicate that the majority
of existing studies have examined the adoption stage of Blockchain technologies, the step
that precedes the actual use of the technology. The results provided evidence that there
is inadequate exposure to studying the actual use of Blockchain technologies and their
continued use, which furnish a good space for further research.

The results reported that 50% of the analyzed studies relied on the top management to
evaluate the use of Blockchain technologies, followed by experts and consultants (28%),
academics (13%), and students (5%). This shows that most of the existing studies have
examined the adoption of Blockchain technologies from the lens of the organizational level,
with little attention paid to the individual level.
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This systematic review differs from previous reviews in several ways. This review
did not limit the data collection to a specific domain, while most of the earlier reviews
did. Most of the earlier reviews concentrated on using Blockchain applications in health-
care [26,31,32,36] and supply chain and logistics [28,30,33,39]. While some of the previously
conducted reviews were general in the domain, their aims and scope were entirely dif-
ferent from the current study. For instance, Lu [35] investigated the Blockchain and its
essential features, concerns (IoT, security, and data management), and industrial appli-
cations. Karger [38] offered the most recent research on the potential combination of AI
and Blockchain technologies and discussed the possible advantages of such a combination.
Besides, Namasudra et al. [41] discussed the fundamentals of Blockchain technologies and
their technical details. To make it distinct, this systematic review provided a thorough
review of Blockchain adoption by examining the main research methods, domains, influen-
tial factors, research objectives, and target participants through the lenses of technology
acceptance models/theories.

6. Conclusions and Future Work

Despite the immense opportunities of Blockchain technologies, their adoption across
many domains is still in short supply [15]. This is one of the main reasons behind conducting
studies related to users’ satisfaction and adoption. Determining what impacts the use and
adoption of Blockchain technologies can efficiently address their adoption challenges.
Therefore, we have reviewed the Blockchain adoption studies from the perspective of
technology adoption theories/models to identify the most influential factors, main research
methods, domains/sectors, research objectives, and target participants. It is believed that
this systematic review would be a valuable guide for scholars and practitioners seeking
to understand the challenges and opportunities related to the adoption of Blockchain
technologies across various sectors.

This review shed light on several gaps in research. First, the TAM and TOE were
the most common models for understanding the factors affecting the use and adoption of
Blockchain technologies. Little attention has been paid to the role of technical, social, and
psychological elements in understanding the adoption of Blockchain applications. This gap
requires further research by considering other adoption theories/models such as UTAUT2,
ECM, PMT, etc. Second, although Blockchain adoption is still in short supply, the findings
showed that supply chain management was the dominating sector among others in the
examined studies. We found a dearth of empirical research in the other domains, which
necessitates the need for future research to look at how Blockchain technologies are adopted.
Third, trust, perceived cost, and social influence were the most common factors affecting
the adoption of Blockchain technologies. The other factors were mainly adapted from
the most common theories, such as TAM and TOE. By involving other theories/models,
understanding what impacts the use and adoption of Blockchain technologies would be
enlightened, specifically when the factors are related to Blockchain-specific characteristics.

Fourth, 77% of the analyzed Blockchain adoption studies relied on questionnaire
surveys for data collection. Hence, it is suggested that further research would consider the
mixed-research approach by involving interviews or focus groups, besides using question-
naire surveys. This is because qualitative methods can explain the interrelationships among
the factors affecting the adoption of Blockchain. Fifth, unlike the previous systematic
reviews that analyzed conceptual and empirical studies, it is imperative to mention that
this review has concentrated only on empirical Blockchain studies. Since there is still a
limited number of studies across the world, more empirical research is required to examine
the users’ maturity levels and capabilities of adopting Blockchain applications across many
collectivistic and individualistic societies. The implications of Blockchain applications, with
their negative or positive sides, in certain cultural environments would assist in developing
these applications both socially and economically.

Sixth, the findings showed that 80% of the examined studies concentrated on measur-
ing Blockchain adoption, with a limited number of studies focusing on the acceptance and
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continuous intention perspectives. There is insufficient knowledge of what impacts the
actual use of Blockchain technologies and their continued use, which opens the door for
further research trials. Seventh, 50% of the analyzed studies relied on the top management,
experts, and consultants to evaluate the use of Blockchain technologies. This shows that
most of the existing studies have examined the adoption of Blockchain technologies from
the organizational level perspective, with little attention paid to the individual level.

This review is limited in two ways. First, we focused on specific online databases
to collect articles, such as Emerald, IEEE, ScienceDirect, Springer, MDPI, and Google
Scholar. However, these online databases do not represent the entire literature published on
Blockchain adoption. Further reviews might thus extend this review by involving studies
indexed in other databases, such as Scopus and Web of Science. Second, this systematic
review involved analyzing only empirical quantitative studies. Considering qualitative
studies in future reviews would add more insights into the observed results.
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Appendix A

Table A1. List of analyzed studies.

# Source Year Method Country Domain Theories/Models

S1 [85] 2020 Survey Not specified Finance TAM

S2 [51] 2021 Survey India Supply chain
management TAM and TOE

S3 [52] 2020 Survey Malaysia Supply chain
management TOE

S4 [86] 2020 Survey India Supply chain
management TAM and IDT

S5 [87] 2020 Survey India Agriculture supply chain ISM-DEMATEL

S6 [50] 2019 Survey and
interviews Taiwan Maritime shipping TAM

S7 [88] 2020 Not specified Malaysia Warehouse industry UTAUT

S8 [89] 2020 Survey Nigeria Logistics TOE

S9 [90] 2019 Survey Brazil Supply chain
management UTAUT

S10 [91] 2019 Survey Indonesia Gaming TAM

S11 [92] 2017 Survey Taiwan Finance IDT and TAM

S12 [93] 2019 Survey USA Academia UTAUT

S13 [94] 2019 Survey USA and India Logistics and supply
chain management TAM and UTAUT

S14 [95] 2018 Not specified Not specified Supply chain
management UTAUT

S15 [96] 2021 Survey Kenya Finance TAM and IDT

S16 [97] 2019 Survey Canada Research community TAM

19



Appl. Sci. 2022, 12, 4245

Table A1. Cont.

# Source Year Method Country Domain Theories/Models

S17 [98] 2019 Survey Taiwan Tourism and hospitality TAM

S18 [99] 2020 Survey Developed countries Energy TAM and DOI

S19 [100] 2021 Survey Malaysia Education TAM and DOI

S20 [101] 2020 Survey Malaysia Intelligence community TAM 3 and TRI 2

S21 [102] 2021 Semi-structured
interviews

Middle East and
North Africa N/A DOI and TOE

S22 [103] 2021 Survey India Agri-food supply chain ISM and DEMATEL

S23 [61] 2021 Survey Not specified Supply chain
management TOE

S24 [104] 2021 Survey Malaysia Manufacturing TOE

S25 [105] 2021 Survey Australia Supply chain
management UTAUT, TTF, and ISS

S26 [106] 2018 Survey India Supply chain
management TAM, TRI, and TPB

S27 [17] 2019 Interviews Ireland Mixed contexts TOE

S28 [107] 2020 Not specified Not specified Finance TAM

S29 [108] 2020 Survey Brazil Supply chain
management UTAUT

S30 [109] 2020 Case study Indonesia Agriculture TOE and the theory of
mindfulness of adoption
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Abstract: Energy consumption in transportation industry is increasing. Transportation has become
one of the fastest energy consumption industries. Transportation energy consumption variation and
the main influencing factors of decomposition contribute to reduce transportation energy consump-
tion and realize the sustainable development of transportation industry. This paper puts forwards
an improved decomposition model according to the factors of change direction on the basis of the
existing index decomposition methods. Transportation energy consumption influencing factors
are quantitatively decomposed according to the transportation energy consumption decomposition
model. The contribution of transportation turnover, transportation structure and transportation en-
ergy consumption intensity changes to transportation energy consumption variation is quantitatively
calculated. Results show that there exists great energy-conservation potential about transportation
structure adjustment, and transportation energy intensity is the main factor of energy conservation.
The research achievements enrich the relevant theory of transportation energy consumption, and
help to make the transportation energy development planning and carry out related policies.

Keywords: transportation; energy consumption; influencing factors; index decomposition approach

1. Introduction

Transportation has become one of the fastest growing energy consumption industries
worldwide. Quantitative assessment of various factors affecting energy consumption is
essential not only for a better understanding of past behaviors of transportation energy
consumption, but also for estimating energy requirements of alternative industrialization
strategies.

To study the related issues of energy consumption in the transportation system, we
should first clarify the composition of the transportation system. The national transporta-
tion system divides into the domestic inter-city transportation system composed of railway,
highway, waterway, civil aviation, and pipeline, and the urban transportation system
formed by urban road and rail transportation. Therefore, waterway transportation does
not include ocean transportation. According to the nature of transportation tasks, road
transportation can divide into operational transportation completed by operating vehicles,
and non-operational transportation completed by non-operating vehicles. According to the
different railway transportation systems undertaken, railway transportation can be divided
into passenger and freight transportation completed by the national and local railway
transportation systems with or without a network, and urban passenger transportation
completed by the urban rail transit system. The inter-city transportation system, composed
of five modes of transportation, undertakes the road transportation of operational and
non-operational vehicles, the same as the transportation tasks of railway, waterway, civil
aviation, and pipeline, defined as complex transportation. The transportation system is
composed of the domestic inter-city transportation system, and the intra-city transporta-
tion system is a total transportation system. To facilitate the analysis and calculation and
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the availability of data, the scope of the transportation system studied is the operational
transportation system, which includes five modes of transportation (highway, railway,
waterway, aviation, and pipeline).

Decomposition methodology is an effective method dealing with energy consumption-
related issues analysis. Studies can be traced back to the early 1980s. Laspeyres index
decomposition was first proposed to analyze the influence factors of industrial energy
consumption [1]. Many researchers subsequently applied this method to decompose the
energy consumption change [2–4]. However, an important factor, called residual known as
the sum of all the interactions of the main effects, was usually ignored, which caused large
estimation errors.

Boyd et al. is likely to be the first to analyze energy consumption problems using
Divisia index decomposition [5–7]. The same decomposition methods were also directly
applied in Howarth et al. [8,9] and Li [10], where the residual was not resolved. Though
Sun, J. [11–13] proposed a complete decomposition model, which disposed the residual
according to the principle of “common creation, equal distribution”, the error will become
bigger when the time span of analysis is enlarged.

Among Divisia index decomposition methods, two methods are widely applied:
arithmetic mean Divisia index method (AMDI) [14] and logarithmic mean Divisia index
decomposition method (LMDI) [15]. In the formulae of AMDI, logarithmic terms were
introduced, which might lead to computational problems when zero values appear in
the data set (i.e., denominator is zero). A framework for additive and multiplicative
decomposition [16,17] was extended based on the two general parametric Divisia index
methods, i.e., additive and multiplicative decompositions [14]. The LMDI was proposed
with the continuous development of the Divisia Decomposition [18,19]. It is reasonable to
replace arithmetic mean weight function by logarithmic mean weight function, because
the latter can decompose the residual completely without generating unexplained residual.
Ang B.W. [20–27] analyzed many index decomposition approaches and pointed out the
advantages of LMDI including eliminating residual term and using time independence.
Many researchers analyzed the problems of the LMDI method, which occurred when
processing negative numbers and zero values [28–31]. A new decomposition method
called the LMDII was introduced [21]. This approach could completely decompose the
remaining items and deal with zeros appearing in the data set in the decomposition process.
However, it is lack of the consideration of changes of intermediate demand, and it ignores
the influence of the energy consumption or consumption structure changes. Another
method introduced a ‘mean rate-of-change index’ (MRCI) [28] to give different weights for
decomposed terms. This method provides more plausible and reasonable results, because
it ensures residual-free decomposition even when data contain negative values, which
cannot be handled by the LMDI method.

In addition, the Shapley decomposition, which calculates the influence of factors on
the energy consumption variation according to the total contribution of various factors [24],
makes it possible to present a correct and symmetric decomposition without residual [32].
Thus, the residual can be resolved completely.

In summary, every method has its own advantages and disadvantages. The Laspeyres
and Divisia index decompositions are the most primitive methods. However, neglecting
residual term is their common problem. The complete decomposition model is widely used
to solve the residual, the index weight and the change of the positive and negative numbers
are neglected. In LMDI decomposition, the residual term can be totally decomposed, while
zero and negative values remain as a problem in data processing.

Analyzing energy consumption trends and strength is beneficial to solving the problem
of energy distribution imbalance and then to improving energy efficiency [33–36]. The
calculation results also have many errors according to different decomposition methods of
the residual items. Therefore, it is necessary to seek a more scientific decomposition method
to accurately analyze influence factors of energy consumption. The residual term is related
to changes in both quantity and direction of influence factors, and is more likely decided
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by negatively changed factors. To this end, this paper proposes a perfect decomposition
method that considers the changes of influence factors and the changing direction. The
remainder of this paper is organized as follows: Section 2 proposes the methodology;
Sections 3 and 4 describe an empirical case study and discuss the results; Conclusions are
made at last.

2. Methodology
2.1. Decomposition Model Construction According to Factor Direction

A perfect decomposition model is proposed according to the different changing di-
rections of factors. This principle can be extended from two factors and three factors to
multiple factors.

2.1.1. Two-Factor Decomposition Model

We take a two-factor model as a sample example to describe this principle. Figure 1
illustrated the process of the factor changes in different directions, i.e., x1 decreases by ∆x1,
and then x2 increases by ∆x2.
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Figure 1. Index change when two factors change at different directions.

Assume that v = x1x2, i.e., variable v is determined by factors x1 and x2, within
the time period [0, t], xt

1 = x0
1 + ∆x1, xt

2 = x0
2 + ∆x2, the change of variable ∆v can be

represented as:

∆v = vt − v0 = xt
1xt

2 − x0
1x0

2 = x0
2∆x1 + x0

1∆x2 + ∆x1∆x2 (1)

where x0
2∆x1 and x0

1∆x2 represent the contributions of x1 and x2 to the total change of
variable v, respectively; ∆x1∆x2 is the residual term. There are two situations need to be
discussed.

The factors change at the same direction;
If x1 increases by ∆x1, x2 increases by ∆x2, accordingly. The complete decomposition

of two factors is as follows:

x1−e f f ect = x0
2∆x1 +

1
2

∆x1∆x2 (2)

x2−e f f ect = x0
1∆x2 +

1
2

∆x1∆x2 (3)

The term ∆x1∆x2 is the residual term in the traditional decomposition method, which
can be divided equally to the contributions of x1 and x2. Both the changes of x1 and x2,
i.e., ∆x1 and ∆x2, determines the contributions. If one of ∆x1 and ∆x2 is zero, the other is
also zero.

The factors change in different directions;
Figure 1 illustrated the process of the factor changes in different directions, i.e., x1

decreases by ∆x1, and then x2 increases by ∆x2.
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It can be seen from Figure 1 that when x0
2 increases by ∆x2, x0

1∆x2 is the contribution
of the change of x2 to the total change of v that contains two parts, i.e., xt

1∆x2 and ∆x1∆x2.
When x0

1 decreases by ∆x1, x0
2∆x1 is the contribution of the change of x2 to the total change

of v, which counteracts ∆x1∆x2 because x0
2 increase by ∆x2, the contribution of x1 and x2 to

the total change of variable v can be respectively calculated as follows:

x1−e f f ect = x0
2∆x1 + ∆x1∆x2 (4)

x2−e f f ect = x0
1∆x2 (5)

From Figure 1 and Equations (2)–(5), it can be summarized that for the two-factor
model, if the two factors change at same direction, the residual term can be divide equally
to the two factors; however, if the two factors change at different directions, the residual
term belongs to the factor that changes negatively.

2.1.2. Three-Factor Decomposition Model

Assume that the variable v = x1x2x3, where the variable v is determined by x1, x2 and
x3, within the time period [0, t]. The change of variable v, i.e., ∆v, can be calculated as:

∆v = vt − v0 = xt
1xt

2xt
3 − x0

1x0
2x0

3 = (x0
1 + ∆x1)(x0

2 + ∆x2)(x0
3 + ∆x3)− x0

1x0
2x0

3

=

similar items︷ ︸︸ ︷
x0

2x0
3∆x1 + x0

1x0
3∆x2 + x0

1x0
2∆x3 +

joint effect items︷ ︸︸ ︷
x0

3∆x1∆x2 + x0
2∆x1∆x3 + x0

1∆x2∆x3 +

residual item︷ ︸︸ ︷
∆x1∆x2∆x3

(6)

where ∆v is composed of the following three parts: the first part is the contributions of the
change of single factor x1, x2, or x3 to the total change of v, which is the sum of x0

2x0
3∆x1,

x0
1x0

3∆x2, and x0
1x0

2∆x3; the second part x0
3∆x1∆x2, x0

2∆x1∆x3, and x0
1∆x2∆x3 are the joint

effects of the change of two factors; the third part ∆x1∆x2∆x3 is a residual item produced
by the change of the three factors simultaneously.

The factors change at the same direction;
In the three-factor model, when all factors change at the same direction, there are two

situations, i.e., all factors increase or decrease simultaneously. The common effect and
contribution of the changes of the factors are the same, which can be equally assigned to
each factor as follows:

x1−e f f ect = x0
2x0

3∆x1 +
1
2

∆x1(x0
3∆x2 + x0

2∆x3) +
1
3

∆x1∆x2∆x3 (7)

x2−e f f ect = x0
1x0

3∆x2 +
1
2

∆x2(x0
3∆x1 + x0

1∆x3) +
1
3

∆x1∆x2∆x3 (8)

x3−e f f ect = x0
1x0

2∆x3 +
1
2

∆x3(x0
2∆x1 + x0

1∆x2) +
1
3

∆x1∆x2∆x3 (9)

The factors change at different directions;
When the three factors change at different directions, two cases are needed to discuss.
The change of two factors is positive, and one factor is negative;
Assume that the change of x3 is negative, i.e., x3 decreases, while the changes of x1

and x2 are positive, i.e., both x1 and x2 increase. Figure 2 illustrates the changes of the
three factors.
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Figure 2. Index change when three factors change at different directions.

It can be seen from Figure 2 that, when x2 increase by ∆x2, the total change of v
increases by x0

1x0
3∆x2, (x0

1x0
3∆x2 = xt

3x0
1∆x2 + x0

1∆x2∆x3); when x1 increases by ∆x1, the
total change of v increases by x0

2x0
3∆x1 = xt

3x0
2∆x1 + x0

2∆x1∆x3; when x3 decreases by ∆x3,
the total change of v decreases by x0

2x0
1∆x3, x0

2∆x1∆x3, x0
1∆x2∆x3, and ∆x1∆x2∆x3. At the

same time, it also cancels out the total change of x0
2∆x1∆x3, x0

1∆x2∆x3, and ∆x1∆x2∆x3,
because x2 increases by ∆x2 and x1 increases by ∆x1. Each factor increases or decreases to
offset the other. The contribution of x1, x2 and x3 to the total change of v is represented in
the following formulas, respectively.

x1−e f f ect = ∆x1x0
2x0

3 +
∆x1x0

3∆x2

2
(10)

x2−e f f ect = ∆x2x0
1x0

3 +
∆x2x0

3∆x1

2
(11)

x3−e f f ect = x0
1x0

2∆x3 + ∆x2∆x3x0
1 + ∆x1∆x3x0

2 + ∆x1∆x2∆x3 (12)

It can be seen that, when the factors change at different directions, an amount of
changes are negative, such as x0

2x0
1∆x3, x0

2∆x1∆x3, x0
1∆x2∆x3, the residual ∆x1∆x2∆x3

belongs to the change of the negative factors.
The change of two factors is negative, and one factor is positive;
Assume that the change of x1 and x2 are negative, while the change of x3 is positive.

Then, the contribution of x1, x2 and x3 can be respectively calculated as follows:

x1−e f f ect = ∆x1x0
2x0

3 + ∆x1x0
2∆x3 +

∆x1∆x2x0
3

2
+

∆x1∆x2∆x3

2
(13)

x2−e f f ect = ∆x2x0
1x0

3 + ∆x2x0
1∆x3 +

∆x1∆x2x0
3

2
+

∆x1∆x2∆x3

2
(14)

x3−e f f ect = x0
1x0

2∆x3 (15)

2.1.3. Multi-Factor Decomposition Model According to Factors Changing Direction

In general, if variable v is determined by n factors, denoted by x1, x2, . . . , xn,

i.e., v = x1x2 . . . xn =
n
∏
i=1

xi, we can analyze the changes as follows.

All factors change at the same direction;
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According to the two-factor and three-factor decomposition processes, the common
effect of the changes of the factors is the same, when the changing directions of the factors
are the same. The influence of the interaction in ∆v can be separated into related factors,
and the contribution of each factor to the total change of v can be respectively calculated
as follows:

xi−e f f ect =
v0

x0
i

∆xi + ∑
j 6=i

v0

2x0
i x0

j
∆xi∆xj + ∑

j 6=r 6=i

v0

3x0
i x0

j x0
r

∆xi∆xj∆xr + . . . +
1
n

∆x1∆x2 . . . ∆xn (16)

Factors change at different directions;
According to the decomposition process of two factors and three factors, whose

changing directions are different, the perfect decomposed principles can be generalized.
During the decomposition, it is considered that the positive and negative terms offset
each other, xi−e f f ect must contain ∆xi, for the negative variable xi, all the variables xi and
increment ∆xi are needed to consider in the process of decomposition. For the positive
variable xi, only variables xi are considered, and the increment ∆xi, which is more than 0,
cannot contain the variables less than zero. Unified expression of multiple variables can
be deduced.

When the changing directions are different, there are n − 1 cases that need to be
discussed, i.e., ∆xk < 0, where k = 1, 2, 3 . . . , n− 1.

• One factor changes less than 0, i.e., k = 1;

x1−e f f ect = ∆x1

n

∏
j=2

xt
j = ∆x1

n

∏
j=2

(
x0

j + ∆xj

)
, if i = 1 (17)

xi−e f f ect =
v0

x0
i
∆xi + ∑

j 6=i 6=1

v0

2x0
i x0

j
∆xi∆xj + ∑

j 6=r 6=i 6=1

v0

3x0
i x0

j x0
r
∆xi∆xj∆xr

+ . . . + x1
n−1 ∆x2 . . . ∆xn, if i > 1

(18)

• More than one factor change less than 0, i.e., k ≥ 2;

According to the size of i and k, two cases are needed to discuss.

xi−e f f ect =
v0

x0
i
∆xi + ∑

j 6=i>k

v0

x0
i x0

j
∆xi∆xj + . . . + ∑

j 6=r 6=i>k

v0

x0
i x0

j x0
r
∆xi∆xj∆xr

+ v0

xixk+1 ...xn
∆xi∆xk+1 . . . ∆xn + ∑

j 6=i<k

x0
1x0

2 ...x0
k

2x0
i x0

j
∆xi∆xjP(X)

+ ∑
j 6=r 6=i<k

x0
1x0

2 ...x0
k

3x0
i x0

j x0
r

∆xi∆xj∆xrP(X) + . . . + v0

kx0
1x0

2 ...x0
k
∆x1∆x2 . . . ∆xk

if i ≤ k

(19)

where P(X) is a mixed term that can be expressed as P(X) = ∑ p(x), where p(x) =
n
∏

i=k+1
τi , (i ≥ k + 1). τi can be uniquely taken from x0

i or ∆xi, i.e., from the following

2(n − k) variables: x0
k+1, ∆xk+1, x0

k+2, ∆xk+2, . . . , x0
n, ∆xn. Thus, the number of p(x) is

2n−k, and P(X) is equal to their sum.

xi−e f f ect =
v0

x0
i
∆xi + ∑

k<j 6=i

v0

2x0
i x0

j
∆xi∆xj + ∑

k<j 6=r 6=i

v0

3x0
i x0

j x0
r
∆xi∆xj∆xr

+ . . . + v0

(n−k)x0
k+1x0

k+1 ...x0
n

∆x0
k+1∆x0

k+1 . . . ∆x0
n, if k < i ≤ n

(20)

It should be pointed out that for the influence factors of the decomposition model, the
change of dependent variable is caused by several factors, when the factors change at the
same direction. The residual term is decomposed according to the principle of “average
distribution”. When the factors change in different directions, the changing direction that

30



Appl. Sci. 2023, 13, 4179

offsets each other must be considered by the residual items decomposition. The more the
variables are, the more complex their changing directions are.

2.2. Transportation Energy Consumption Decomposition Model

Transportation energy consumption is connected with transportation turnover volume
(the product of transportation volume and average distance), transportation structure (the
transport structure usually refers to the transport volume structure. In a certain period,
within the scope of a country or region, the proportion of various transport modes in the
total passenger and freight transport volume or total turnover. It reflects the status and
role of modes of transportation in the whole transportation system. Transportation volume
share of mode i among all modes) and transportation energy intensity. The perfect complete
decomposition model for explaining the change of transportation energy consumption can
be written as follows.

E = ∑
i

Et
i =∑

i

Et
i

Dt
i
×Dt

i = ∑
i

Et
i

Dt
i
×Dt

i
Dt × Dt = ∑

i
It
i×St

i × Dt (21)

where i = 1, 2, 3, 4, 5 presents five transportation modes, namely, highway, railway, aviation,
water transportation, pipeline, respectively; E is total energy consumption of the five
transportation modes; Et

i is energy consumption transportation mode i in year t; Dt
i is

transportation turnover volume of mode i in year t; It
i = Et

i /Dt
i is transportation energy

intensity of mode i in year t; St
i = Dt

i /Dt is transportation structure share of mode i in
year t.

It can be seen from Equation (21), transportation energy consumption can be decom-
posed into the common effect of three factors: transportation turnover volume, transporta-
tion structure and transportation energy consumption intensity. The impact of each factor
on transportation energy consumption not only has a close relationship with the changes
of the factors, but is also connected with the initial and final value of the other two factors.

The contribution of each influence factor to transportation energy consumption change
can be seen as the product of five “three factors”. Transportation energy consumption factor
decomposition model can be constructed. Dt

i = D0
i + ∆Di, St

i = S0
i + ∆Si, It

i = I0
i + ∆Ii,

according to the three-factor decomposition model, the change of transportation energy
consumption in the base year 0 and target year t, ∆E can be calculated as Equations (22)
and (23).

∆E = Et − Eo = ∑
i

It
i×St

i × Dt −∑
i

I0
i ×S0

i × D0 (22)

∆E = ∆Et − ∆E0 = ∆ED + ∆EI + ∆ES (23)

where ∆EI , ∆ES and ∆ED are the contributions of transportation energy consumption
intensity, transportation structure, and transport turnover volume, respectively.

Based on the perfect decomposition model, three influence factors of transportation
energy consumption changing direction can be divided into two cases.

2.2.1. Change at the Same Direction

Three influence factors change at the same direction, i.e., “the three factor” increase
(∆Di > 0, ∆Si > 0, ∆Ii > 0) or decrease (∆Di < 0, ∆Si < 0, ∆Ii < 0) simultaneously.
According to the perfect decomposition model, the contribution of three factors to the
transportation energy consumption can be determined as follows:

∆ED = ∑ ∆DI0
i S0

i +
∑ ∆D

2
(∆IS0

i + I0
i ∆S) + ∑ ∆D∆Ii∆Si

3
(24)

∆ES = ∑ ∆SI0
i D0

i +
∑ ∆S

2
(∆ID0

i + I0
i ∆D) +

∑ ∆D∆Ii∆Si
3

(25)
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∆EI = ∑ ∆IS0
i D0

i +
∑ ∆I

2
(∆SD0

i + S0
i ∆D) +

∑ ∆D∆Ii∆Si
3

(26)

2.2.2. Change at Different Directions

Three influence factors change at different directions, i.e., one factor decreases (∆Di ×
∆Ii × ∆Si < 0) or two-factor decrease (∆Di × ∆Ii × ∆Si > 0), simultaneously. According
to the perfect decomposition model, the contribution of three factors to the transportation
energy consumption is as follows.

(i) When ∆Di < 0, ∆Si > 0 and ∆Ii > 0 the formulas are as follows:

∆ED = ∑ ∆DiSt
i It

i (27)

∆ES =
∑ ∆Si

2
D0

i (It
i + I0

i ) (28)

∆EI =
∑ ∆Ii

2
D0

i (S
t
i + S0

i ) (29)

When ∆Di > 0, ∆Si < 0, ∆Ii > 0 and ∆Di > 0, ∆Si > 0, ∆Ii < 0, the formulas can also
be obtained just by replacing the corresponding variables of the calculated formula.

(ii) When ∆Di < 0, ∆Si < 0 and ∆Ii > 0, the formulas are as follows:

∆ED =
∑ ∆Di

2
I0
i (S

t
i + S0

i ) (30)

∆ES =
∑ ∆Si

2
I0
i (∑ DT

i + ∑ D0
i ) (31)

∆EI = ∑ D0
i × S0

i × ∆Ii (32)

The cases ∆Di > 0, ∆Si < 0, ∆Ii < 0 and ∆Di < 0, ∆Si > 0, ∆Ii < 0 of the formulas
can be similarly obtained.

3. Effective Verification and Case Study
3.1. The Effective Verification of the Perfect Decomposition Model

To examine the effectiveness of the proposed decomposition model, transportation
energy consumption data based on the transportation sectors in China are decomposed
from 1985 to 2012. To illustrate the remaining items and to omit for index, we use period
wise decomposition. The change is only analyzed by the validation between the two base
years, i.e., setting two different time intervals, 10 years (1985–1995) and 27 years (1985–2012).
The results are presented in Table 1.

It can be seen from Table 1 that the total contribution of the perfect model and the
complete decomposition model is identical (∆E = ∆ED + ∆ES + ∆EI), because the residual
items are completely decomposed in both models. However, the Laspeyres model neglects
the residual, therefore the results ∆E is different from the sum of influence factors change
∆ED + ∆ES + ∆EI . Compared with Laspeyres model and the complete decomposition
model, the results of the proposed perfect decomposition model are more accurate and the
method is more appropriate.
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Table 1. The calculation results of the three decomposition model.

Time 1985–1995 1985–2012

Model ∆E ∆ED ∆ES ∆EI ∆E ∆ED ∆ES ∆EI

Laspeyres model 2680.71 3069.77 538.38 −927.44 19,807.90 19,735.56 1442.69 −1370.36

Complete decomposition
model 2306.64 2906.42 722.16 −1321.94 23,233.83 20,770.77 6205.35 −3742.29

Errors — 5.32% 34.14% 42.54% — 5.25% 330.12% 173.09%

proposed perfect
decomposition model 2306.64 3397.81 716.47 −1807.63 23,233.83 26,504.38 5190.34 −8460.89

Errors — 10.69% 33.08% 94.91% — 34.30% 259.77% 517.42%

For the influence of each factor, compared with Laspeyres, the errors of three influence
factors (transportation turnover volume, transportation structure and transportation energy
consumption intensity) are 10.69%, 33.08% and 94.91%, respectively, from 1985 to 1995.
When the analysis period is longer (from 1985 to 2012), the errors are larger, i.e., −34.29%,
259.77% and 517.42%, respectively. It can be seen that the errors caused by the negative
factors are very obvious, and the perfect decomposition model takes into account the
effects of the different factors, when dealing with the remaining items. The weight is more
consistent with the actual situation, and the perfect decomposition model is necessary.

Compared to the complete decomposition model, the errors of three influence factors
are 16.91%, 0.79% and 36.74% during the period from 1985 to 1995. When the analysis
period is enlarged, the error will be greater, which are 27.60%, −17.66% and 126.09%,
respectively, during the period from 1985 to 2012. The longer the analysis time is, the
larger the error percentage is, because the residual processing, are even greater than the
total change of a single factor. Therefore, the Lapsers index and its model of residual term
ignore will produce a larger error. The changing directions of the factor are considered
in the perfect decomposition model when dealing with the remaining items; therefore,
decomposition results are more reasonable.

3.2. Perfect Decomposition Results Analysis

Index decomposition models can be divided into period wise and time series accord-
ing to research objects. Time series decomposition can reflect energy changes trajectory
within a certain period, and better explain the change mechanism of transportation energy
consumption. Time series decomposition model is used to study transportation energy
consumption, and conversion turnover is used in the decomposition process.

Based on the perfect decomposition model, we analyze the three factors (transporta-
tion turnover volume, transportation structure, transportation energy intensity) affecting
transportation energy consumption change and calculate the change of related factors and
the contribution rate with the analysis time period from 1985 to 2012. The decomposed
results are shown in Table 2.
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Table 2. The decomposed results.

Years ∆ED ∆ES ∆EI ∆E ∆TE ∆TER

1985–1986 340.21 32.75 −141.23 231.72 108.49 2.56
1986–1987 431.09 181.26 −172.46 439.90 −8.80 −0.19
1987–1988 412.91 170.07 −280.40 302.58 110.33 2.22
1988–1989 196.77 −33.64 −51.38 111.75 85.02 1.68
1989–1990 −63.88 46.12 55.58 37.82 −101.70 −2.07
1990–1991 283.64 −37.40 −159.97 86.28 197.36 3.73
1991–1992 361.64 93.44 −231.47 223.61 138.03 2.53
1992–1993 388.21 50.38 −183.30 255.29 132.92 2.33
1993–1994 414.79 72.13 −63.15 423.77 −8.98 −0.15
1994–1995 167.67 116.10 −89.85 193.92 −26.25 −0.43
1995–1996 241.12 66.81 142.52 450.45 −209.33 −3.25
1996–1997 −376.25 448.84 −18.99 53.61 −429.86 −6.85
1997–1998 −42.96 187.87 195.32 340.23 −383.19 −5.75
1998–1999 209.89 123.32 378.85 712.06 −502.17 −6.93
1999–2000 1139.04 −299.36 −760.84 78.85 1060.19 11.92
2000–2001 −30.15 205.71 528.81 704.36 −734.5 l −9.41
2001–2002 610.43 75.41 −107.62 578.22 32.20 0.35
2002–2003 552.78 −126.55 24.64 450.87 101.90 1.05
2003–2004 1719.26 −287.88 −184.78 1246.60 472.66 4.19
2004–2005 1225.18 −9.56 343.83 1559.46 −334.27 −2.78
2005–2006 1322.41 208.45 −479.51 1 OS 1.34 271.06 1.98
2006–2007 1794.73 308.25 −291.36 1811.62 −16.89 −0.11
2007–2008 1663.56 612.10 −102.06 2173.60 −510.04 −3.02
2008–2009 698.49 1017.68 −349.13 1367.05 −668.56 −3.69
2009–2010 2985.27 344.51 −526.76 2803.02 182.25 0.84
2010–2011 2759.44 318.17 −644.49 2433.12 326.32 1.34
2011–2012 1650.27 1438.64 23.83 3112.74 −1462.47 −5.70
1985–2012 26,504.38 5190.34 −8460.89 23,233.83 3270.55 30,395.08

From the decomposed results of the perfect model where transportation turnover
volume is the main influence factor in determining the main trend of transportation energy
consumption, the contribution is gradually strengthened. The transportation volume makes
transportation energy consumption increase by 265.044 Mtce from 1985–2012, according
to the perfect decomposition model. Except for a few years, the contribution rate of
transportation turnover volume to transportation energy consumption growth is more
than 80%.

The change in transportation structure, transportation energy, and consumption inten-
sity saves transportation energy consumption by 32.706 (51.903 − 84.609 = −32.706) Mtce,
with an energy saving rate of 10.76%. The average annual energy saving rate is 1.06% from
1985 to 2012.

The transportation energy consumption intensity is the main factor of energy saving.
From 1985 to 2012, the change in energy intensity saves 84.609 Mtce. Except for 1989–1990,
1995–1996, 1997–1998, 1997–1999, and 2000–2001, 2001–2003, and 2004–2005, most of the
other years have energy saving effects.

The change in transportation structures reduces the demand for energy in 1988–1989,
1990–1991, 1999–2000, 2002–2003,2003–2004 and 2004–2005, and the energy demand has
been increased in most of the other years. Energy demand increased by 51.903 Mtce due
to the change of transportation structure from 1985 to 2012, and thus the transportation
structure adjustment is the key to saving energy and has great potential to economize.

According to the above analysis, the structure adjustment has great energy saving
potential. It is necessary to analyze the specific contribution of each transportation mode to
energy consumption. It is transportation turnover volume, transportation structure and
transportation energy consumption intensity of five transportation modes changes on the
influence of transportation energy consumption, which are shown in Table 3.
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Table 3. The contribution of five transportation modes for irallic mileage.

Years Highway Railway Aviation Water
Transportation Pipeline Total

1985–1986 125.42 176.46 8.96 20.47 8.90 340.21
1986–1987 168.10 216.39 12.83 23.22 10.55 431.09
1987–1988 179.10 189.73 12.92 21.67 9.49 412.91
1988–1989 88.76 86.46 6.28 10.84 4.43 196.77
1989–1990 −29.16 −27.47 −2.10 −3.74 −1.41 −63.88
1990–1991 129.17 119.25 10.84 18.01 6.37 286.64
1991–1992 162.18 149.98 15.40 25.64 8.14 361.64
1992–1993 180.05 150.95 19.46 29.47 8.28 388.21
1993–1994 198.96 148.99 23.50 35.10 8.25 414.79
1994–1995 83.26 56.39 10.47 15.00 2.54 167.67
1995–1996 120.99 79.83 15.64 21.20 3.46 241.12
1996–1997 −195.97 −117.09 −25.54 −32.67 −4.98 −376.25
1997–1998 −23.73 −12.61 −3.22 −2.83 −0.57 −42.96
1998–1999 121.91 54.96 16.45 13.93 2.65 209.89
1999–2000 706.40 259.61 82.90 76.28 13.86 1139.04
2000–2001 −18.19 −6.47 −2.51 −2.62 −0.35 −30.15
2001–2002 394.87 123.22 58.37 26.93 7.05 610.43
2002–2003 364.39 102.70 53.19 26.16 6.33 552.78
2003–2004 1127.44 310.14 169.19 92.48 20.00 1719.26
2004–2005 795.29 200.77 129.56 84.43 15.13 1225.18
2005–2006 862.69 196.88 140.16 102.68 19.99 1322.41
2006–2007 1223.53 253.38 199.73 85.96 32.13 1794.73
2007–2008 1160.47 214.18 177.65 81.43 29.83 1663.56
2008–2009 503.70 80.31 70.08 33.05 11.36 698.49
2009–2010 2142.39 343.70 317.42 135.72 46.05 2985.27
2010–2011 1975.57 319.64 285.68 133.43 45.11 2759.44
2011–2012 1233.04 147.62 163.59 76.76 29.25 1650.27
1985–2012 12,016.48 10,303.26 1944.56 1702.93 537.14 26,504.38

From the decomposition results of this perfect method in the share of transport volume
contribution, the energy demand is increased with the growth of each mode transportation
volume. Railway transportation turnover volume plays a dominant role from the 1985–1987,
and contribution rate is more than road transportation rate, at 51.87%, 50.20% and 45.95%,
respectively. With the rapid development of highway, road transportation turnover volume
increase during 1987–1988, the contribution share of highway is more than rail for the first
time. Since 1995–1996, the contribution share is more than 50% and continues to increase.
The highest contribution share reached 74.72% from 2010–2011. Certain volatility exists in
other modes of transportation.

Highway is the dominant in the changes of the transportation structure, in the total
contribution of the transportation structure, and the contribution of highway was more
than 30% apart from 1988–1989. Therefore, the adjustment of the transportation structure
is the key to reduce energy demand. Railway plays an obvious energy saving role in the
transportation structure in two-thirds of the analysis period. The change of air transport
structure over a few years has an energy saving effect. Pipeline plays a certain role in energy
saving during more than half of the analysis period. The change of water transportation
turnover volume saves energy over eight years.

Except for a few years, the five transportation modes play a certain important role in
energy saving due to the lower energy intensity. Over the course of 27 years, road energy
consumption intensity has an energy saving effect in 15 years, with the highest years saving
6.1414 million tons of standard coal (in 1999–2000). The energy consumption increase was
promoted by the change of energy intensity in the rest of the years. The main reason is
continuous increasing comfort requirements for highway transportation services, turning
out the increase of highway energy intensity. The change of railway energy intensity on
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energy conservation effects in 23 years, the highest energy saving is in 2010–2011. The
main reasons are the implementation of electrification railways instead of steam and diesel
locomotives, which prompts the railway transportation energy consumption intensity to
decrease. The energy consumption intensity of aviation changes have been saving energy in
18 years, with the highest energy saving is in 2009–2010. The energy consumption intensity
of the pipeline has no change in some years without obviously energy saving. The year
with the highest energy saving are 1993–1994.

In the long-term development, highway transportation will still account for a large
proportion of the total transportation volume, but highway transportation is mainly based
on regional short-distance transportation and passenger and freight distribution and plays
a role in the connection. The railway will bear a large proportion of inter-regional and inter-
city transport demand. Civil aviation mainly completes long-distance transportation and
transportation of high-value-added products. The waterway undertakes the transportation
of medium and long-distance bulk and cheap goods. However, from the analysis of the
energy consumption intensity, the energy consumption intensity of railways is the lowest
among various transportation modes. China’s railway energy consumption accounts for
only 8% of the total consumption of the national transportation industry, fully reflecting the
comparative advantage of “low energy consumption and high efficiency”, therefore, the
railway is the best way to adapt to the development direction of China’s energy structure
in the transportation industry and plays a significant role in adjusting and optimizing the
energy consumption structure in transportation.

4. Conclusions

A perfect model that decomposes the residual term is proposed on the basis of the
Laspeyres Index Decomposition and complete decomposition method. This paper focuses
on the residual terms in the exponential decomposition method. The existing complete
decomposition model is improved, the improved decomposition model is summarized
and deduced in detail, and the unified expression of the decomposition model is derived.
The model is applied to build a complete decomposition model of the impact factors of
transportation energy consumption in different directions. The decomposition model not
only has the advantages of the existing decomposition methods but also can “perfect”
decompose the remaining items, taking into account the direction of the change of the index
influencing factors. This technique makes it possible to present symmetric decomposition
without residuals. The perfect method decomposes the residual term completely according
to the direction of index change. More accurate calculation results are obtained by com-
paring Laspeyres and the complete decomposition method. The validity of the perfect
model is verified. Lastly, this decomposition model to transportation energy consumption
is applied in China and the following conclusions have been drawn.

Transportation turnover volume is the main influencing factor that determines the
main trend of transportation energy consumption. Except for a few years, the contribution
rate of transportation turnover volume to transportation energy consumption growth is
more than 80%.

Transportation energy consumption intensity is the main factor for energy savings.
From 1985 to 2012, the change of energy intensity saves 84.609 Mtce. Except for a few
years, five transportation modes play a key role in energy saving due to their lower energy
intensity. Research on energy consumption intensity should focus on reducing energy
consumption intensity of highway and aviation.

The transportation structure adjustment is the key to saving energy and has great
potential to save energy. Highways account for absolute advantage. Reducing energy de-
mand is mainly decided by the adjustment of highway transportation structures. Railways
play an obvious energy saving role in structure share.
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Abstract: The city of Tampere in Finland aims to be carbon-neutral in 2030 and wanted to find out how
the electrification of public transport would help achieve the climate goal. Research has covered topics
related to electric buses, ranging from battery technologies to lifecycle assessment and cost analysis.
However, less is known about electric city buses’ performance in cold climatic zones. This study
collected and analysed weather and electric city bus data to understand the effects of temperature
and weather conditions on the electric buses’ efficiency. Data were collected from four battery-electric
buses and one hybrid bus as a reference. The buses were fast-charged at the market and slow-charged
at the depot. The test route ran downtown. The study finds that the average energy consumption of
the buses during winter was 40–45% higher than in summer (kWh/km). The effect of cabin cooling is
minor compared to the cabin heating energy needs. The study also finds that infrastructure needs to
have enough safety margins in case of faults and additional energy consumption in harsh weather
conditions. In addition, appropriate training for operators, maintenance and other personnel is
needed to avoid disturbances caused by charging and excessive energy consumption by driving style.

Keywords: electric city bus; energy consumption; winter; weather; temperature; infrastructure;
driving style; cooling; heating; emissions

1. Introduction

Several cities across the world have sustainable mobility plans to reduce carbon
dioxide (CO2) emissions, pollution and traffic jams [1–3]. For example, the city of Tampere
in Finland aims to be carbon-neutral in 2030 and wants to find out how the electrification
of public transport would help achieve the climate goal. Public transportation, especially
in the form of green solutions, such as electrification, walking, and cycling, can have
an enormous effect on reducing CO2 emissions [4]. The European Commission’s 2016
strategy towards low emission mobility includes zero-emission vehicles, such as fully
electric cars [5]. Research shows that electric buses produce up to 75% fewer emissions
than conventional diesel buses [6]. However, fewer emissions are determined by the grid
emissions of the used electricity [7]. Electric buses can also decrease the city transport
noise [2,8]. Some studies have also mentioned that electric buses are more comfortable than
buses with combustion engines [9].

Electric city buses are still a fairly new phenomenon in city transport. Less research
has been conducted on testing electric city buses in various climatic zones. For example, in
Finland, the temperature can vary from +35 ◦C to −35 ◦C [8]. It is of utmost importance
for city traffic planners to understand how electric buses perform in different ambient
temperatures [10]. This understanding forms the basis for making other crucial decisions
related to electric city buses, such as investment costs, the number of buses, charging
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stations and routes [11,12]. It needs to be noted that the electric buses’ procurement cost is
still higher than buses with conventional combustion engines [13].

A research gap exists as less is known about the effects of ambient temperature change
on the efficiency (vehicle fuel economy) and range of the city buses in cold climatic zones.
In addition, less is known how to operate city buses in hard winter conditions. Therefore,
this study aims to understand how to operate battery-electric buses in a city located at
latitude 61.3 North, where temperature varies between +32 ◦C and −32 ◦C, and buses need
to operate on snowy and icy street conditions. In addition, the study aims to understand
how electric buses perform in such conditions.

This study collected and analysed weather and electric city bus data to understand the
effects of ambient temperature, driving conditions and weather on the efficiency (vehicle
energy economy) and range of the city buses in the city of Tampere, Finland.

2. Theoretical Background
2.1. Challenges and Opportunities for Wider Dissemination of Electric City Buses

Previous technology-driven research has covered various crucial aspects of electric
buses, such as the performance of battery technologies [14,15], energy-efficient heating,
ventilation, air-conditioning (HVAC) systems [16,17] and optimised charging infrastructure
settings [18–23]. For example, Cho et al. [14] studied the time-dependent low-temperature
power performance of a lithium-ion battery. Their study shows that the interfacial charge-
transfer resistance of the anode (graphite) and the cathode (lithium cobalt dioxide) greatly
impact the low-temperature power decline. Other non-technical studies have focused
on incentives, such as contracting and financing mechanisms, to increase the adoption
of electric buses in cities [2,13,24]. For example, Li, Castellanos, et al. [13] found three
contracting and financing mechanisms to accelerate electric bus adoption: (1) public and
private grants, (2) less costly sources of financing and (3) innovative ways of structuring
contractual implementation.

Several studies have also examined the lifecycle assessment (LCA) of the energy and
carbon dioxide emissions and calculated lifecycle costs (LCC) of city buses [6,7,12,25–27]. For
example, Meishner and Sauer [12] conducted an economic comparison of four different battery
charging methods based on the total cost of ownership (TCO), including all investment and
operating costs in the bus service. They found that electric buses are economically competitive
under favourable conditions. Topić et al. [28] developed a simulation tool to calculate the
optimal type and number of buses and charges and predict the TCO of city bus fleets. On the
other hand, Bi et al. [26] created an integrated LCA and LCC model to compare the lifecycle
performance of plug-in charging versus wireless charging of an electric bus system. It turned
out that the wireless charging bus system had the lowest LCC per bus kilometre and had the
potential to reduce use-phase carbon emissions due to the light-weighting benefits of onboard
battery downsizing compared to plug-in charging [26].

Based on the previous studies, the wider dissemination of battery electric vehicles
(BEVs) in cities requires two decisions by authorities. The first is that the city decision
makers identify the right contracting and financing mechanisms for replacing conventional
buses with BEVs. The second decision is selecting the optimal infrastructure setting for
electric city buses. For example, some buses can run almost the whole day with a big
enough battery. In contrast, other buses are slow or fast charged in specific charging
stations, overnight or in dedicated bus stops. Some researchers have created models
for determining the optimal number and location of required charging stations for a bus
network and the adequate battery capacity for each bus line [10,18,29,30]. Some studies also
report efforts to quickly change the battery in a battery-changing station [20]. In addition,
wireless charging technology for electric buses might be an option in the future [26].

2.2. The Effect of Ambient Temperature on Electric City Buses’ Electric Consumption

It is already widely communicated that the range of electric vehicles varies with
temperature [31]. Research results also confirm this observation. For example, previous
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studies have shown that the range of electric buses decreases a lot as the temperature
drops below zero degrees [32]. This happens because the functioning of the lithium-ion
battery varies with temperature [14]. In 2015, Graurs et al. [33] studied public electric bus
energy consumption during the coldest months in Latvia (Jan-Mar) and found that the bus
consumed 2.86 kWh per kilometre. In 2015, a study estimated that an electric bus with
a light aluminium chassis (9000 kg curb weight) consumed on average 1 kWh/km [34].
Electric Commercial Vehicles project (2012–2016) reports that the voltage drop caused by
the internal impedance and the applied current at cold temperatures is the reason for
reduced battery capacity [8]. In addition, Henning et al. [32] report that temperature drops
from around 10.0 ◦C to around 0 ◦C caused battery-electric buses to lose around 32.1% of
their battery capacity. Another study found that ambient temperature impacted energy
consumption a lot in the case of a DC/DC-converter, heat pump and drive motor [35].
However, power steering and an air compressor did not have an insignificant impact.

Ambient temperature and several other factors influence the range of electric buses,
such as topography, the road pave (sand, concrete), and the road’s surface conditions
(wetness, snowfall, sleet, ice). Bartłomiejczyk and Kołacz [36] studied the relationship
between ambient temperature and demand for heating power. They found that traffic
congestion can result in a 60% overall increase in energy consumption. They also found
that auxiliaries may consume 70% of the electric bus’s energy during winter, whereas they
generally consume almost 50% of total energy use [36]. In addition, the driving style affects
the use of energy. For example, fast accelerations consume lots of energy [20]. Preheating
the battery and indoor air before starting the bus, on the other hand, saves energy [16].
However, heating the bus cabin during the drive also reduces the range. Research shows
that heating and cooling can consume 35% of all energy in electric cars [37]. While the
energy consumption of an electric bus increases, the battery’s state of charge and the travel
range are reduced [38]. Therefore, researchers have proposed a fuzzy braking strategy of
which electricity consumption was shown in a simulation platform to decrease by 9.8%
compared to the normal braking energy management control strategy [39]. Then again,
using a novel sorption air conditioner was shown to save cruising electric vehicles’ mileage
by 100 km [40].

The bus body and insulation materials also impact how efficiently a bus passenger
cabin is kept warm or cool, which again affects the energy usage of the bus [32]. For
example, Chiriac et al. [41] estimated that the average energy demand due to ambient heat
loss of bus structure and opening the doors at the stops was 12–14 kWh. The bus was
12-m long, had 100 passengers and three doors, 150 kW electric traction motor and 33 kW
installed power for the heating system [41].

3. Case Study

This paper adopts a case study methodology to describe the procurement and opera-
tional models used for setting up the needed technical infrastructure for electric city buses
and operating those buses in a cold climatic zone to understand the effect of this climate on
the energy use of buses. A single case study approach [42] was adopted because it well
suits the study of a topic that is not yet well explored.

The city of Tampere in Finland aims to be carbon-neutral in 2030. Currently, the
traffic is accountable for about a quarter of the city’s carbon dioxide emissions. In 2019, an
amendment to the Clean Vehicles Directive came into force. The amendment obliges the
public sector to procure zero-emission vehicles. The city of Tampere is one of the lighthouse
cities of the EU-funded STARDUST project where new solutions for reducing emissions
are piloted. In Tampere, the focus is on reducing emissions from public transport and
supporting light transport. Furthermore, the 2017 climate strategy of the Finnish Govern-
ment necessitates a 50% reduction, compared to the year 2005, in transport greenhouse
gas (GHG) emissions by 2030 [43]. Thus, the cities in Finland are encouraged to electrify
public transportation.
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Nysse is the Tampere regional public transport organisation in Finland. It had around
41,300,000 passengers in 2019. In 2020, the number of passengers was lower due to COVID-
19, which made people remote work. Nysse serves an area that includes eight municipalities
where approximately 390,000 inhabitants live. About 60% of bus services are outsourced to
three major private operators, and in-house operator drives around 40% of bus services.
Nysse has 280 buses in operation.

The climate in Tampere is cold and temperate can vary between +32 ◦C and −32 ◦C.
The lowest average temperature is −8.2 ◦C in February, and the average temperature is
16.0 ◦C in July. The average annual temperature is 3.7 ◦C.

In Tampere, electric city buses were introduced at the end of 2016. A test system was
created to collect data on electric buses. Initially, a meter was placed in one bus for sensing
energy efficiency. Later on, measuring equipment was installed on three other electric
buses. When problems in setting up the data collection were tackled, the data has been
collected for more than two years, including a couple of winter seasons.

Since 2017, electric buses have been operating in the city of Tampere’s bus route 2,
which starts from Pyynikintori market and ends at Rauhaniemi. The round-trip length is
around 8.8 km. The buses are fast-charged at the market and slow-charged at the depot.
The buses spend the night inside a warm depot; thus, the buses’ interiors are warm when
they leave.

Data were collected from four battery-electric buses and one hybrid bus as a reference.
The electric buses were model Solaris Urbino 12 low entry, with an autonomy of approxi-
mately 60 km. The electric buses used lithium-titanate (LTO) batteries of 3 × 25 kWh that
last at least 10 years and demand 0.5 h for a total fast charge. The maximum speed of the
buses is over 70 km/h, and the average consumption is 100–150 kWh each 100 km (without
heating). Buses have 32 fixed seats, four-fold seats, and 46 standing spaces. The dimensions
of the buses are the following:

• Wheelbase: 5900 mm
• Length: 12,000 mm
• Width: 2550 mm
• Height: 3300–3480 mm
• Curb weight: 14 t
• Max torque: 973 Nm
• Max power: 250 kW

Data was collected with WRM-247 of Wapice Ltd. for three years, between January
2017 and August 2021. The following data was collected by the meter in real-time: latitude,
longitude, speed, energy consumption, charging time, temperature, battery’s state of charge,
battery power and distance travelled. The typical sampling frequency was 1 Hz.

WRM-247 devices allow remote management, measurement and control. They were
purchased and installed by the STARDUST lighthouse project. One of the e-buses already
used this device, so the other three e-buses and the hybrid bus were equipped with the
same devices to achieve comparable data. The buses’ mobile networks (3G/4G) were used
as the connectivity layers towards the server that collects the data. The aim was to also
have the same equipment on the charging platform to acquire more accurate information
about the charging of the buses.

The data from the WRM-247 devices was sent to an IoT-Ticket instance, which is an
IoT platform product by Wapice. City’s Azure logic app checks the IoT-Ticket REST API for
new data once every two hours and transfers all the new data to City’s Azure blob storage.
From there, the data is aggregated and stored in Azure SQL database. Data analysis from
the stored data is carried out and presented in a dashboard using Microsoft Power BI.
Datasets are shared via a REST API. Figure 1 illustrates the architecture of the e-bus data in
the city’s Azure.
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In addition, two interviews were conducted in December 2021 to understand the
operation of the electric bus system. The purpose of the interviews was to form an overall
picture of the operation and find out whether there were any challenges in the charging
system or the operation of the buses related to winter conditions. Both interviewees
work in the city of Tampere, and they are experienced experts in city transportation and
urban environmental infrastructure systems such as maintenance. The interviews focused
on specific questions that emerged during the setup phase of the charging system and
measurement data-analysis process. Each interview lasted around one hour, and they were
not recorded, but detailed notes were taken. The failure situations have also been collected
and listed in an excel document throughout the operation period.

4. Results and Discussion

This section first reports the procurement and operational model of the electric city
buses in Tampere, Finland. After that, the section presents the results regarding the energy
consumption of the buses and explains the energy monitoring and estimation in detail.
Finally, the section discusses the energy consumption of the buses and the charging strategy.

4.1. Procurement and Operational Model of Electric City Buses

Tampere has been travelling by public transport since 1948. The City of Tampere
Transport Authority—now Tampere City Transport, better known as TKL—operated the
public transport service for half a century. A new era of public transport started in April
2006, when it was organised with a subscriber-producer model and brand “Nysse” was born
to Tampere public transport. In addition to customer service, planning and administration
departments were located in the subscriber unit. TKL stayed to provide a transport service.
At the same time, some bus lines began to be put out to tender for private transport
producers. The name of the comprehensive service was Tampere Public Transport.

Several parties were involved in preparing and implementing the electric bus sys-
tem procurement; Tampere city was the main implementer of the procurement project
(Figure 2). The buses were acquired and operated by TKL. The public transport planning
was responsible for the procurement of the charger. The City of Tampere’s public transport
unit acted as a subscriber to electronic transport. At the beginning of the project, the City of
Tampere’s ECO2 project worked as a leader and coordinator. Inter-city co-operation was
also used in the preparation of the acquisition. The collaboration during the acquisition
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preparation deepened with establishing a joint Forum eKEKO (Extended Management
Team for Electric Bus Projects) headed by VTT. In the forum, Finnish cities working with
electric buses and VTT as an organizer shared experiences about electric bus operation.
Sharing experiences and deepening knowledge, especially with Helsinki and Turku, has
been enlightening, especially from the operator’s point of view.
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Figure 2 illustrates the operational model of the electric bus system in the subscriber-
producer framework. The city owns charging stations. The procurement process was felt
to be easier to start when the city decided to make the charging station investment itself.
The supplier is responsible for its maintenance for the five first years, and the charging
station also has a warranty. TKL signed a contract with Solaris to lease the four e-buses
and maintain the charging stations. The companies Ekoenergetyka and Schunk acted as
charger suppliers. The buses used roof-mounted pantographs Schunk SL102.

The tender for the electric bus system of line 2 was opened on 1 July 2015, and the
offer period ended on 30 September 2015. With the competition, Tampere became the first
city in Finland to acquire an electric bus system through an open tender. Tenders were
initially reviewed, and a supplier was selected in October 2015. Tampere decided to ask for
a tender for a five-year leasing agreement. At the end of the deadline, Tampere could have
decided to buy the buses in a case seen as feasible and reasonable.

The city bought a study that showed that choosing the line in economic terms necessi-
tates making decisions on the following questions [44]:

• How many buses can use the same charger, and what the utilisation rate is? For
example, charger costs can be shared between the buses that use it.

• How much is the annual mileage? For example, an electric bus saves more expenses
compared to a diesel bus the more you drive it.

• What is the line terminus time? For example, optimal terminus times minimise the
indirect costs for additional equipment and staff.

• How much does the terminal stop time shorten during peak hours?
• How long is the route? This information affects the battery dimensioning.

With these calculations, line 2 was identified to be well suited for electric buses. The
line is relatively slow and contains a lot of traffic lights. Electric buses are very suitable
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for urban traffic on routes with lots of stops and traffic lights, allowing energy efficiency
compared to diesel buses.

The selection of the charging type in the procurement affects the selected line. The
study by Markkula and Vilppo states that charging at the terminus is the best option
because then the battery size may be small [44]. If buses were to be charged only in the
depot, the passenger space would be reduced because the battery needs to be bigger and
thus requires space. The charging method selection was also in favour of line 2, which is
suitable for an electric bus line due to its Pyynikintori terminal. Pyynikintori has several
line terminuses, which allows the charging station to be used jointly on several bus lines.
Using the charger on more than one line would increase the system’s profitability. It was
also considered whether the terminal has enough time to charge when choosing a line.

During the monitoring period, line 2 experienced minor route changes as the construc-
tion of a tram site progressed in the centre of Tampere. Figure 3 illustrates how the route
has changed since 2018.
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During the procurement process, many issues related to the procurement method and
the technology to be procured had to be resolved, confirming earlier findings that the oper-
ation of electric buses requires more planning than the operation of conventional buses [10].
For example, the choice of procurement method was already the subject of debate. The
decision on the open procedure was questioned. The experience of Tampere concerning
electric bus systems was still limited, which raised many additional questions during the
acquisition. In this respect, the conciliation procedure would have been more forgiving.
The market dialogue aimed to identify available solutions and meet the city’s needs. The
key issue for the procurement was whether the electric buses and chargers were to be
purchased separately or together. The city ended up with a single-supplier model because
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it was perceived to simplify procurement, which already had sufficient uncertainties. This
model could avoid possible disagreements between the bus and charger supplier.

Already in 2019, the buses had travelled 600,000 km. Theoretically, the mileage should
have been 800,000 km. The lost driving time is due to, e.g., traffic accidents in cramped
urban traffic that led to sheet metal crashes. According to Nysse’s (Tampere regional public
transport organization) own customer feedback survey on using the electric buses, the
passengers have given positive feedback. The electric buses have a low noise level, and
they are easily accessible because of low-floor vehicles, three wide doors and no steps
on the aisle. The only negative feedback has been a large number of rear-facing seats in
low-floor city buses.

The development of a sustainable public transport system requires a shift to emission-
free bus transport, the development of smooth travel chains and new mobility services,
and an overall improvement in service level to increase the modal share of public transport
in line with the target set. Targets in the number of outsourced transport services using
low emission fuel sources (bus and tramway line kilometres) are set 35% (2025) and 100%
(2030). More than 700 tonnes of CO2 emissions have been saved during the pilot. This is a
conservative estimate because the saved CO2 emissions had to be partially extrapolated to
the monitoring time due to data interruptions. In spring 2021, Tampere started a tender
for two different bus lines. The requirement was that buses must comply with the clean
vehicles Directive (EU 2019/1161). The selected operator implements the requirements
with an electric bus system. During spring 2022, there will be 26 new electric buses when
the winning operator brings its buses into service.

4.2. Monitoring and Estimation of Energy Consumption

During the monitoring period between 2019 and the end of August 2021, the four
electric buses travelled approximately 500,000 kilometres using an average of 1.43 kWh/km
electricity. Figure 4 shows seasonal variation of energy efficiency between 2019–2021 in
monthly intervals. However, it has to be taken into account that cooling systems use
electricity during summer and heating during winter. These electricity consumptions could
not be separated in our monitoring setup.
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The monitoring setup experienced fewer problems during the last two years. Thus,
these years are more closely analysed. Figures 5 and 6 show summer, and Figures 7
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and 8 wintertime, separately divided into weekly intervals. Summer is defined as the
months between May and October. Respectively, winter is defined by the months between
November and April.

Appl. Sci. 2021, 12, x FOR PEER REVIEW 9 of 19 
 

wintertime, separately divided into weekly intervals. Summer is defined as the months 
between May and October. Respectively, winter is defined by the months between 
November and April. 

The findings show that the energy consumption was 1.24 kWh/km during summer 
2020 and 1.30 kWh/km during summer 2021. Then again, the energy consumption was 
1.71 kWh/km during winter 2020 and 1.95 kWh/km during winter 2021. 

 
Figure 5. Energy efficiency and outside temperature per week during 1 May 2020–31 October 
2020. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

 
Figure 6. Energy efficiency and outside temperature per week during 1 May 2021–31 October 
2021. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

Figure 5. Energy efficiency and outside temperature per week during 1 May 2020–31 October 2020.
Disclaimer: The comma is used as a decimal separator instead of a dot because the version of Power
BI used in the visualization followed the grammar rules of the Finnish language.

Appl. Sci. 2021, 12, x FOR PEER REVIEW 9 of 19 
 

wintertime, separately divided into weekly intervals. Summer is defined as the months 
between May and October. Respectively, winter is defined by the months between 
November and April. 

The findings show that the energy consumption was 1.24 kWh/km during summer 
2020 and 1.30 kWh/km during summer 2021. Then again, the energy consumption was 
1.71 kWh/km during winter 2020 and 1.95 kWh/km during winter 2021. 

 
Figure 5. Energy efficiency and outside temperature per week during 1 May 2020–31 October 
2020. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

 
Figure 6. Energy efficiency and outside temperature per week during 1 May 2021–31 October 
2021. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

Figure 6. Energy efficiency and outside temperature per week during 1 May 2021–31 October 2021.
Disclaimer: The comma is used as a decimal separator instead of a dot because the version of Power
BI used in the visualization followed the grammar rules of the Finnish language.

47



Appl. Sci. 2022, 12, 2762Appl. Sci. 2021, 12, x FOR PEER REVIEW 10 of 19 
 

 
Figure 7. Energy efficiency and outside temperature per week during 1 November 2019–30 April 
2020. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

 
Figure 8. Energy efficiency and outside temperature per week during 1 November 2020–30 April 
2021. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

The results of this study inform traffic planners on how electric buses perform in 
different environmental conditions. Several factors influence the energy consumption of 
electric city buses. The design considerations such as the total mass of the bus and the 
regeneration rate can significantly affect the energy efficiency. Several studies have been 
made where the driving range of different structure selection have been analysed by 
making simulation or analysing measured data [10,45,46]. This investigation focuses on 
the effect of environmental factors since the monitored buses are completely similar. In 
cold climatic zones, the temperature changes the most energy consumption. Still, the 
number of passengers, road topography, traffic congestion, driving style, and surface 
condition contribute to it, as previous studies have shown [16,20,36].  

The previous results dealt with daily averages. It is necessary to analyse each driving 
from Pyynikintori to Rauhaniemi individually to obtain more detailed information on the 
effect of weather phenomena on consumption. Since the elevation variations along the 
route are about 28 m, the directions are analysed separately. Measurements from January 

Figure 7. Energy efficiency and outside temperature per week during 1 November 2019–30 April
2020. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of
Power BI used in the visualization followed the grammar rules of the Finnish language.

Appl. Sci. 2021, 12, x FOR PEER REVIEW 10 of 19 
 

 
Figure 7. Energy efficiency and outside temperature per week during 1 November 2019–30 April 
2020. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

 
Figure 8. Energy efficiency and outside temperature per week during 1 November 2020–30 April 
2021. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of 
Power BI used in the visualization followed the grammar rules of the Finnish language. 

The results of this study inform traffic planners on how electric buses perform in 
different environmental conditions. Several factors influence the energy consumption of 
electric city buses. The design considerations such as the total mass of the bus and the 
regeneration rate can significantly affect the energy efficiency. Several studies have been 
made where the driving range of different structure selection have been analysed by 
making simulation or analysing measured data [10,45,46]. This investigation focuses on 
the effect of environmental factors since the monitored buses are completely similar. In 
cold climatic zones, the temperature changes the most energy consumption. Still, the 
number of passengers, road topography, traffic congestion, driving style, and surface 
condition contribute to it, as previous studies have shown [16,20,36].  

The previous results dealt with daily averages. It is necessary to analyse each driving 
from Pyynikintori to Rauhaniemi individually to obtain more detailed information on the 
effect of weather phenomena on consumption. Since the elevation variations along the 
route are about 28 m, the directions are analysed separately. Measurements from January 

Figure 8. Energy efficiency and outside temperature per week during 1 November 2020–30 April
2021. Disclaimer: The comma is used as a decimal separator instead of a dot because the version of
Power BI used in the visualization followed the grammar rules of the Finnish language.

The findings show that the energy consumption was 1.24 kWh/km during summer
2020 and 1.30 kWh/km during summer 2021. Then again, the energy consumption was
1.71 kWh/km during winter 2020 and 1.95 kWh/km during winter 2021.

The results of this study inform traffic planners on how electric buses perform in
different environmental conditions. Several factors influence the energy consumption
of electric city buses. The design considerations such as the total mass of the bus and
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the regeneration rate can significantly affect the energy efficiency. Several studies have
been made where the driving range of different structure selection have been analysed by
making simulation or analysing measured data [10,45,46]. This investigation focuses on the
effect of environmental factors since the monitored buses are completely similar. In cold
climatic zones, the temperature changes the most energy consumption. Still, the number
of passengers, road topography, traffic congestion, driving style, and surface condition
contribute to it, as previous studies have shown [16,20,36].

The previous results dealt with daily averages. It is necessary to analyse each driving
from Pyynikintori to Rauhaniemi individually to obtain more detailed information on the
effect of weather phenomena on consumption. Since the elevation variations along the
route are about 28 m, the directions are analysed separately. Measurements from January
2019 to August 2021 have been selected for the study. There have been some changes to the
route, but they are so minor that their effect is negligible. The lengths of the routes have
ranged from 8.8 km to 10.3 km. The analyses have been performed only for working day
hours from 6:30 to 22:30 and on a route where the doors have been open for more than half
a minute to obtain comparable results.

Figure 9 shows electrical energy consumption as a function of temperature so that
each blue dots represent one drive between the start and end station. Since 2019, it has
been possible for the operators to choose between diesel fuel and electricity for heating
the battery and the interior. The measurements show that most drivers had opted for fuel
heating. This option was removed from 2020 onwards, and the fuel heater was controlled
automatically; it was activated only when the ambient temperature was below –15 ◦C. This
can be clearly seen from the figure. The figure also has a polynomial curve fit to data, which
have been carried out in two separate cases due to the diesel heating. Below 0 ◦C, the fitting
is carried out to temperature data between −15 and 10 ◦C. At temperatures above zero
degrees, a fitting was made to those values. The energy consumption (EC) is shown in
Equation (1), where T is the temperature in degrees Celsius.

EC =

{
5.4 × 10−5T3 − 2.7 × 10−4T2 − 0.05T + 1.6, T ≥ 0 ◦C
−0.04T + 1.6, T < 0 ◦C

(1)
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the first case is the short duration when doors are open, meaning few passengers and little 
heat escaping from the doors. There might be several reasons for the second group: snow, 
slush or slippery road. In any case, they have the doors open for a long time, indicating a 
lot of passengers. 

Table 1 shows energy consumption (kWh/km) for different cases for 2019 and 2020–
2021 separately due to the change in the heating mentioned above. The data is the same 
as in Figure 9 except that the cumulative passenger entry and exit time shall be at least 
one minute. There are some high values for 2019 since the winter was rather cold and 
snowy. The highest six values occurred when the temperature was between −1 and 5 °C. 
This reflects the fact that snowy weather, particularly snowmelt, increases consumption 

Figure 9. Energy consumption as a function of temperature (blue dots—samples; red line—
polynomial curve fit).

The graph shows that the average energy consumption increased by about 0.4 kWh
when the temperature decreased to 10 ◦C. Air conditioning increases consumption when
the temperature is above 15 degrees. Its effect is approximately equivalent to an increase in
consumption at temperatures below zero.
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Two outlier groups are interesting: (1) Although there is considerable frost, there is
small consumption, and (2) high consumption near zero degrees. A common feature of
the first case is the short duration when doors are open, meaning few passengers and little
heat escaping from the doors. There might be several reasons for the second group: snow,
slush or slippery road. In any case, they have the doors open for a long time, indicating a
lot of passengers.

Table 1 shows energy consumption (kWh/km) for different cases for 2019 and 2020–
2021 separately due to the change in the heating mentioned above. The data is the same
as in Figure 9 except that the cumulative passenger entry and exit time shall be at least
one minute. There are some high values for 2019 since the winter was rather cold and
snowy. The highest six values occurred when the temperature was between −1 and 5 ◦C.
This reflects the fact that snowy weather, particularly snowmelt, increases consumption
significantly. Winter 2020 was warm and had hardly any snow, but 2021 had cold and snowy
winter. The median energy consumption was 0.8 kWh/km greater when the temperature
was below zero than over zero. Again, there were some high consumptions near zero
degrees, which can be observed from the figure. The median difference between driving the
route when the snow was melting and without melting was 0.2 kWh/km. The distribution
of melting cases was twofold: either it had little effect, or the consumption increased
greatly. Understandably, a small melt has little effect, but if the vehicle is driven in slush
ice, consumption increase considerably.

Table 1. Energy consumption (kWh/km) for specific conditions.

2019 2020–2021

Samples Median Mean Max. Samples Median Mean Max.

Doors open 1–3 min 3354 1.1 1.2 3.1 7592 1.2 1.3 3.0

Doors open > 3 min 2839 1.2 1.3 3.5 1536 1.4 1.5 3.2

Temperature ≥ 0 ◦C 4638 1.1 1.3 3.5 7282 1.1 1.2 3.0

Temperature < 0 ◦C 1555 1.2 1.4 3.5 1846 1.9 1.9 3.2

Snowing > 0 cm/h 551 1.2 1.4 3.0 539 1.8 1.8 3.0

Snowing > 1 cm/h 239 1.2 1.4 2.8 229 1.9 1.9 2.9

Snow melt or sublimation 1220 1.2 1.3 3.5 1260 1.7 1.7 3.1

Temperature −1–10 ◦C
without snow melt 1602 1.2 1.4 3.4 2158 1.4 1.5 3.0

Temperature −1–10 ◦C
and snow melt 877 1.2 1.3 3.5 977 1.6 1.6 3.1

The results show that the weather and climate affect the operation of buses and the
entire electric bus system. Four electric buses travelled approximately 500,000 kilometres
(2019–2021) using an average of 1.43 kWh/km electricity. However, this number also
includes the energy use by cooling systems during summer and heating during winter, as
they could not be separated in the monitoring setup. The average energy consumption
during thermal winter was 2.1 kWh/km and 1.2 kWh/km during thermal summer. Thermal
winter starts when the average temperature is below 0 degrees Celsius at least five days in
a row. Thermal summer starts when the temperature is over +10 degrees Celsius at least
five days in a row. In Tampere, the thermal winter was 7 December 2020–22 March 2021,
and thermal summer was 10 May 2021–14 September 2021.

4.3. Experiences in Operating and Charging Electric Buses

The electric motor does not generate waste heat the same way as a diesel motor, and
separate heating must be provided. When electric buses started to operate in Tampere,
the heating system worked with diesel fuel. The heating system was changed in winter
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2019 to an electricity-based system where the water circulation system is electrically heated.
In the beginning, a bus driver could select if the electric heating is used instead of a fuel
heater. It was noticed that drivers tended to select the fuel heater, as they wanted to avoid
charging as it was difficult. Therefore, the operation was changed so that the electric
heating is the default, and the fuel heater activates if the outside temperature decreases
under −15 degrees Celsius. The effect can be seen when comparing the winter energy
consumption between 2020 and 2021.

The study finds that the effect of cooling is minor compared to the effect of heating
energy needs. The data includes two different periods in which the buses were using
different control strategies for indoor heating. The second winter period shows the increase
in electrical energy consumption when using a full electric indoor heating instead of
using an auxiliary fuel heater for heating when a heat pump cannot produce enough
heating power. When considering local emissions and total greenhouse gas emissions
of an electric bus system, one option to minimise the emissions is to go for full electric
heating. Still, the penalty in cold climates is the increased battery energy consumption at
very low temperatures, which needs to be taken into account in the electric bus charging
design—either the battery capacities need to be increased to be able to handle the additional
consumption, or opportunity charging needs to be arranged to be able to charge the buses
more often.

A more detailed analysis of energy consumption would have required data that was
not accessible because there was no mention of ownership or access to the data in the
model leasing agreement. This must be considered in future agreements in other areas than
e-mobility.

Another area that could use detailed data is the passenger number and its effect on
energy consumption. Currently, only passengers boarding the bus can be entered into the
information system. Therefore, the exact number of passengers is not known. The city of
Tampere has carried out pilots to monitor the number of passengers to monitor, improve
and optimise the occupancy rate, but this is still a clear area for development and research;
how many passengers there are and how their number affects energy consumption. The
graphs (Figures 10 and 11) show the number of passengers per hour made by one bus.
Winter weather is not attractive for cycling or walking. Passenger number is smaller during
summertime compared to winter. The bus runs a round trip from the departure stop to the
charging station (one end) and back during the hour. It can be estimated that the passenger
number in the bus simultaneously during peak hours is ~50.

The energy consumption of electric buses as a whole has been lower than expected, but
the differences per driver have been surprisingly large. For the project, it was impossible to
monitor driver-specific energy consumption more accurately since it would have required
an act on co-operation [47].

The study also reveals that when setting up and operating charging systems with
automated charging devices (pantographs), the effects of the weather must be considered
when selecting and preparing the location of the charging point. The buses were charged
with a bus-mounted pantograph, where an automated charging connector rises from the
bus roof to connect with a receptacle mounted on a charging mast or pole (Figure 12). This
connection has some tolerances for misalignment, but snow build-up on the driving tracks
during winter has shown in practice that these tolerances are not enough to maintain a
reliable connection in all weather conditions without additional measures.

Positioning the bus under the charging system pantograph was a difficult task in
the beginning since the bus needed to be in an exact correct spot to initiate the charging.
Therefore, paint markers on the curb were used. The bus’s front door was aligned with
the markers when the bus was in a correct position (Figure 13). Another challenge was the
alignment of the bus lateral distance from the kerb.

A defrost system was built at the Pyynikki charging point to prevent a hard snow
ridge from building on the charging point driving tracks. The defrosting system caused
decreasing soil bearing capacity, and buses driving to the same spot for charging caused a
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depression to the charging area, causing problems in the charging connection. A heated
concrete foundation was built, and the area was paved again with new asphalt. There have
been no problems with durability since the latest repair.
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In addition to the equipment that affects the operation of the electric bus system,
people and the operation of electric buses also notice the great importance of the way
drivers drive, for example, in energy consumption, which raises the importance of training
the drivers.
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Operating electric buses is generally different from operating diesel or hybrid buses.
There was some training included in the contract with Solaris, but common thought
amongst drivers has been that there should have been more operator training. The charging
was perceived to be difficult for drivers, and the driving style affected the electricity
consumption greatly. Driver assistance tools could be one solution to help drivers better
operate electric buses [48].

5. Conclusions

The data shows the increased energy consumption of electric buses in cold climatic
conditions. During thermal winter, the average energy consumption was 2.1 kWh/km and
1.2 kWh/km during thermal summer. Thermal winter starts when the average temperature
is below 0 degrees Celsius at least five days in a row. Thermal summer starts when the
temperature is over +10 degrees Celsius at least five days in a row. When comparing the best-
case energy consumption in summer, with energy consumption of roughly 1.1 kWh/km
with the hot summer weeks of around 1.35 kWh/km and cold winter weeks with the
highest energy consumption of almost 2.5 kWh/km, one can see that the effect of cooling is
minor compared to the effect of heating energy needs.

When using a fuel heater, the energy consumption from the battery can be reduced,
with the best results being roughly 1.35 kWh/km. This was also indicated by the operators’
behaviour when they could prioritise the diesel heater to avoid charging. However, using
a fuel heater comes with the cost of local emissions, even though the fuel would be from
sustainable sources. When using electric heating, local emissions can be minimised. Even
with diesel heating during colder months, the greatly increased energy consumption from
the traction battery needs to be taken into account in the charging design—either the
battery capacities need to be increased to be able to handle the additional consumption,
or opportunity charging needs to be arranged to be able to charge the buses more often.
Driving in the heavy slush ice, in particular, increases consumption considerably.

The comments from the interviews highlight the systemic nature of the electrification
of transport. The design of an electric bus system, especially in cold climate conditions,
needs to address appropriate energy transfer to the buses, without affecting the operation,
in all conditions. The system needs to have enough safety margins in case of faults and
for additional energy consumption in harsh weather conditions. Charging equipment and
locations need to withstand the continuous loading of soil on same positions and maintain
the potentially needed opportunity charging systems within their operating tolerances.
Finally, appropriate training for operators, maintenance, and all relevant personnel can help
avoid disturbances caused by charging and excessive energy consumption by driving style.

The motivation for this test was to determine whether the electrification of public
transport helps achieve the carbon neutrality goal of Tampere. This goal was met, but the
test raised several technical issues, such as the energy consumption of different devices
and the impact of driving styles. The depth of analysis was limited because the test project
was not granted access to the leasing bus internal data collection system. In addition,
some issues during the analysis phase were caused by the synchronisation of time series
data from different sources, which should also be taken care of when setting up a data
collection system.

Promoting alternative propulsion for transport and procuring an electric bus system
are ways to achieve the city’s climate goals. In addition to meeting the emission targets,
there is a desire to try new promising technology in public transport, which will lead to
cost savings in the longer term. The acquisition was also based on the goal of making
the electric bus line an innovation platform for intelligent transport, which can be used
to test and put into practice products and services related to intelligent transport. On the
operational side, the experience was gained, and an overview of operations was obtained
in winter conditions. From the point of view of innovation and information, leasing buses
is not ideal unless the contract ensures that the collected data can be utilised with sufficient
precision for the subscriber. Unfortunately, the agreement did not take a sufficient position
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on data ownership. There was no agreement on data collection, which prevented a more
detailed analysis of energy consumption. With a view to future agreements, data ownership
must be considered, and transparency of operations is important for development and
scientific studies.

Further research could collect more data to conduct a more thorough operational
analysis using the charger and charging process data, including the vehicle alignment to
the charging point. For example, the number of unsuccessful charging attempts could have
pointed out areas of improvement in the charging process or training. The effect of drivers’
driving style on energy consumption is an interesting area for study, but such research
must take into account GDPR and the required anonymisation of data. Tampere collects a
lot of data related to traffic and distributes it as open data [49]. Combining this data with
more accurate data collected from buses creates the basis for new studies and the ability to
find correlations between conditions and different parameters.
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Abstract: This study presents the optimization and tuning of a simulation framework to improve its
simulation accuracy while evaluating the energy utilization of electric buses under various mission
scenarios. The simulation framework was developed using the low fidelity (Lo-Fi) model of the
forward-facing electric bus (e-bus) powertrain to achieve the fast simulation speeds necessary for
real-time fleet simulations. The measurement data required to verify the proper tuning of the
simulation framework is provided by the bus original equipment manufacturers (OEMs) and taken
from the various demonstrations of 12 m and 18 m buses in the cities of Barcelona, Gothenburg, and
Osnabruck. We investigate the different methodologies applied for the tuning process, including
empirical and optimization. In the empirical methodology, the standard driving cycles that have
been used in previous studies to simulate various use case (UC) scenarios are replaced with actual
driving cycles derived from measurement data from buses traversing their respective routes. The key
outputs, including the energy requirements, total cost of ownership (TCO), and impact on the grid
are statistically compared. In the optimization scenario, the assumptions for the various vehicle and
mission parameters are tuned to increase the correlation between the simulation and measurement
outputs (the battery SoC profile), for the given scenario input (the velocity profile). Improved simple
optimization (iSOPT) was used to provide a superfast optimization process to tune the passenger
load in the bus, cabin setpoint temperature, battery’s age as relative capacity degradation (RCD),
SoC cutoff point between constant current (CC) and constant voltage charging (CV), charge decay
factor used in CV charging, charging power, and cutoff in initial velocity during braking for which
regenerative braking is activated.

Keywords: e-bus powertrain; tuning and optimization; iSOPT; digital twins; internet-of-things

1. Introduction

Automotive system engineering has come a long way since Henry Ford spearheaded
the assembly line process a century prior, resulting in sharp increases in productivity and
manufacturing efficiency and corresponding decreases in the price of the manufactured
vehicle [1]. The evolution in automotive system engineering in the 21st century saw the
advent of Industry 4.0, empowered by the very high-speed internet (Internet 2.0), resulting
in paradigm shifts in manufacturing production operations by merging the boundaries of
the physical and virtual worlds [2]; the current state of the art (SotA) includes the Internet-of-
things (IoT), cloud-connected processes, and digital twins (DT) technology. A DT model can
have various levels of fidelity [3] in the virtual domain, but they are all tuned to accurately
reflect a physical object or system. A DT model relies on the real-time measurement of
data from numerous sensors installed in the physical system to continuously train itself to
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behave as its physical counterpart to corresponding input stimuli [4]. A fully trained and
tuned DT offers several advantages, including quicker iterative testing of the virtual model,
using multiple copies for evaluation of different aspects of the vehicle at a fraction of the
cost and time. For a city bus operator (CBO) and electricity distribution system operator
(DSO), the virtual models can substitute for their real counterparts during fleet use case
(UC) simulations to determine the real-world feasibility of electrification of the bus routes.

In [5], a simulation framework developed for the European Commission’s Horizon
2020 project ASSURED was used to investigate the UCs of single buses and fleets of buses in
various cities to determine their energy expenditure and TCO. The simulation framework
was also used to study the reduction in energy utilization possible by applying different
energy saving (ECO) strategies, and various optimization scenarios were investigated
to determine the charging infrastructure that will minimize the fleet TCO (for the CBO)
and load on the grid due to fleet charging (for the DSO). However, due to the lack of
measurement data during the research conducted using various assumptions, including the
use of a standard (hybrid SORT) driving cycle as the input scenario, constant average vehicle
speed profile and a randomized passenger profile throughout the simulation period of one
day, these assumptions naturally were not consistent with real-world conditions, including
traffic situations on the road, and did not differentiate between peak and non-peak hours
for passenger commutes. The hybrid SORT driving cycle can only be applied repetitively,
synchronized to a constant average vehicle speed, throughout the simulation implying a
constant traffic situation throughout the day. Furthermore, although the passenger profile
was randomized, the output of the randomizer tended towards a full bus with time??,
resulting in energy requirements that were aggressive. Similarly, the charging scenario
assumed constant duration spacing in between two charging events, which resulted in a
more simplified charging strategy. Finally, the results of the simulation framework were
not validated using actual measurements; thus, the output of the simulation framework
could only be taken as estimates.

In this research, the measurement data from the electric buses in the cities of Barcelona,
Osnabruck, and Gothenburg are used to tune and validate the simulation framework.
Furthermore, the study investigates the differences in energy consumption between the
standard and actual driving scenarios, and finally an optimization was performed to deter-
mine the optimal charging strategy, given variable durations between two charging events,
based on the input scenario. The objectives of this research are twofold: one is to validate
the simulation framework, so that it can be used to investigate different scenarios with a
high degree of confidence in its results; and two is to lay the framework for the creation of
a DT of the electric bus for future research. Section 2 introduces the simulation framework
and the necessary modification that enables it to work with actual measurements. Section 3
reports on the energy requirements from the vehicle demonstrations in cities. The tuning
methodologies used to ensure that the output of the simulation framework matches the
measured output, given similar inputs, are described in Section 4. Section 5 describes the
optimization procedure for the charging strategy for bus fleets, whose driving scenarios
were constructed using the actual driving scenarios. Finally, Section 6 concludes with how
this research can be used to construct a DT from the simulation framework.

2. The Simulation Framework

A low fidelity (Lo-Fi) simulation framework illustrated in [5] was used to evaluate
the energy expenditure for fleets of vehicles and impact on the electricity grid for a given
mission profile in this research, with modifications in the framework to accept measure-
ment data as the scenario input. An offline scenario input process was developed for
the framework in this research, meaning that the simulation is not occurring parallelly in
real-time using the measurement data taken during the bus demonstrations. Rather, the
measurement data from the sensors are stored and later input to the simulation.

The simulation framework is based on basic electrical, mechanical, kinematic, and
thermal equations needed to represent the charging infrastructure and forward-facing
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electric bus (e-bus) powertrain model, as shown in Figure 1. Unlike a high fidelity (Hi-Fi)
simulation model, where the simulation model is based on detailed physical equations of
the actual system and uses small timesteps to ensure very high accuracy of the simulation
output, the Lo-Fi framework uses look-up tables (LuTs) to define the efficiency maps of the
various electronic, mechanical, electromechanical, and electrochemical devices integrated
within the powertrain; and basic equations that model the overall energy transfer behavior
of each component. The timestep in a Lo-Fi model is large to ensure high simulation
speed at the cost of accuracy. Thus, even though a Lo-Fi model cannot simulate transient
behaviors, they can be used to get a rapid estimate of the steady-state behavior. Therefore,
Lo-Fi models can be used to simulate large time ranges covering the lifetime of the e-bus
or large fleets of e-buses within a reasonable timeframe. Furthermore, a Lo-Fi model
can be used to perform a fleet-level energy management and charging strategy (EM&CS)
optimization, which require very fast simulation speeds. The Simulink framework was
designed to use the measurement data from the demonstrations as inputs: the design
of the energy storage system (ESS) block allowed comparison to be made between the
simulated and measured battery SoC values for validation purposes, while the energy
management system (EMS) block was designed to allow the model to be tuned to minimize
the difference between the simulated and measured values. More details of the tuning
process are provided in Section 4.
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Figure 1. Overview of the simulation framework illustrating the forward-facing e-bus powertrain
and grid infrastructure.

Inputs to the Simulation Framework

The framework was designed to accept measurement data from the bus as inputs in an
offline process. In ASSURED, the various OEMs and CBOs involved in the demonstrations
were responsible for the data collection process and then forwarding those data to the
simulation team. However, different OEMs and CBOs used different data logging and data
processing techniques. Therefore, it was not possible to apply a standardized methodology
for data collection, making the offline validation the most suitable option. Table 1 gives
a concise overview of the measurement data collected in each city. As can be seen, the
collected data seems rather arbitrary; it is due to different stakeholders being involved
in the data collection process. However, each stakeholder was required, at minimum,
to provide the vehicle’s speed profile (to be used as the simulation input) and battery
SoC profile (to be compared with the simulation output), at a data logging frequency of
1 Hz, to ensure reasonable tuning and validation of the simulation framework. Beyond
these constraints, each stakeholder communicated, according to their data sharing policies,
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a subset of the following parameters: energy usage rate, mileage, charging state, charging
time, ambient temperature, road inclination, GPS coordinates, and altitude.

Table 1. Overview of the measured data collected.

City and Bus Type Measured Parameter (Unit) Logging Frequency

BCN, 12 m *

Speed profile (km/h)
Measured energy (kWh)
State of charge (%)
GPS coordinates (◦)

0.5 Hz

BCN, 18 m * Speed profile (km/h)
State of charge (%) 20 Hz

OSN, 12 m *

Speed profile (km/h)
Measured energy (kWh)
State of charge (%)
GPS coordinates (◦)

0.5 Hz

OSN, 18 m *

Speed profile (km/h)
Mileage (km)
State of charge (%)
Charging state (-)

20 Hz

GOT, 12 m *

Speed profile (km/h)
State of charge (%)
Mileage (km)
Charging time (s)
Road inclination (◦)
Ambient temperature (◦C)

10 Hz

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

Sensor data in vehicles are mainly communicated via the CAN bus network and
logged via CAN-based dataloggers attached to the vehicle’s CAN network and wirelessly
communicated to a central server via the GSM (3G/4G) or Wi-Fi. The data is then decoded
from the CAN message format (.blf), which is binary, into a more user readable format,
including comma separated values (.csv), excel (.xlsx), or a simple text (.txt) file, using a
CAN database (.dbc) file structure. The next step is to convert them into a common format,
the MATLAB data (.mat) file, after which the parameter values are brought to a common
sampling rate of 10 Hz, using up-and-down sampling techniques; wherein 10 Hz was
chosen as a simulation time step of the Lo-Fi model. The data is then pre-processed to
remove noise from the data, especially those which were measured via the GPS module,
since GPS user accuracies, even with augmentation and when operated in wide open areas,
are in “meters” for horizontal (i.e., longitude and latitude) measurements, and much worse
for vertical (i.e., altitude) measurements [6]. In an urban setting featuring many obstacles
(i.e., buildings, bridges etc.) and a multipath signal environment due to reflected signals,
these accuracies are further degraded. Finally, the data is thoroughly checked to ensure
that the speed and acceleration do not exceed the vehicle maximum for those parameters,
and that the road inclination and difference in altitude between the lowest and highest
point of the route were within known ranges.

3. Use Case Demonstration Overview

Numerous demonstration runs were conducted in the cities of Barcelona and Os-
nabruck using 12 m and 18 m e-buses, and in the city of Gothenburg using 12 m e-bus. For
the 12 m bus, the demonstrations took place at two different months of the year to account
for variation in weather. Table 2 provides the details for all the demonstrations considered
for simulation and analysis. The simulations were run for approximately the same duration
as their standard driving cycle counterparts in [5]; thus, some of the scenarios described
in Table 2 were repeated until the desired timeframe was achieved. The complete specifi-
cations of the scenarios of the three routes, the 12 m and 18 m bus, as well as the climate
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profile for each city, used as inputs for the simulations are presented in [5], while the exact
maps of the demonstration routes are shown in the Appendix A.

Table 2. Overview of the demonstration scenarios.

City and Bus Type Demonstration Month Operational Scenario Route

BCN, 12 m *

December 25.7 km in 160 min

H16February
16.7 km in 68 min
13.3 km in 31 min

26.3 km in 126 min

BCN, 18 m * June 109.8 km in 558 min

OSN, 12 m *
March

49.1 km in 243 min

N5

64.0 km in 310 min
63.2 km in 357 min

May 88.7 km in 473 min

OSN, 18 m * April 88.1 km in 252 min

GOT, 12 m *
May 168.3 km in 784 min

R5599.5 km in 434 min

October 148.4 km in 575 min
* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

The measurement data gathered from the demonstrations were used to improve the
UCs that were simulated using the standard driving cycles. Comparing the kinematic
characteristics between the actual and standard driving cycles, very striking differences can
be seen in their respective profiles. All measurements from the demonstrations exhibited
accelerations whose ranges were higher than what was assumed when simulating the
UCs using the standard driving cycle. Similarly, the maximum measured velocity from
the demonstrations were higher than the maximum velocities assumed in the standard
driving cycle, except in the case of the Osnabruck 12 m bus. Finally, in Barcelona, the
average velocity measured during the demonstrations were higher than what was assumed
in the standard driving cycle, while those of Osnabruck and Gothenburg were lower. From
these facts, it can be assumed that the energy requirements for the buses subject to the
measured driving cycles will be higher. Table 3 details the characteristics of the measured
driving cycle from the demonstrations as well as the standard driving cycle, while Figure 2
illustrates this difference visually. As can be seen from the figure, the standard driving
cycle is composed of clean and repeating patterns, while the actual measurements look
random and somewhat noisy.

Table 3. Comparison between the demonstration and the standard driving profile characteristics.

City and Bus Type Demonstration Profile Characteristics Standard Profile Characteristics

BCN, 12 m *
(4 demos)

Avg. vel. 9.65~26.2 km/h
Max. vel. 59.8~78.4 km/h
Max acc. 1.30~2.06 m/s2

BCN, Route H16, All buses:
Avg. vel. 9.52 km/h
Max. vel. 29.8 km/h
Max. acc. 0.51 m/s2BCN, 18 m *

(1 demo)

Avg. vel. 11.8 km/h
Max. vel. 72.0 km/h
Max acc. 2.36 m/s2

OSN, 12 m *
(4 demos)

Avg. vel. 10.6~12.8 km/h
Max. vel. 43.2~59.0 km/h
Max acc. 1.30~3.51 m/s2

OSN, Route N5, All buses:
Avg. vel. 19.8 km/h
Max. vel. 61.9 km/h
Max. acc. 1.06 m/s2OSN, 18 m *

(1 demo)

Avg. vel. 21.0 km/h
Max. vel. 67.3 km/h
Max acc. 2.39 m/s2

63



Appl. Sci. 2023, 13, 940

Table 3. Cont.

City and Bus Type Demonstration Profile Characteristics Standard Profile Characteristics

GOT, 12 m *
(3 demos)

Avg. vel. 7.99~12.6 km/h
Max. vel. 70.9~82.4 km/h
Max acc. 4.99~5.33 m/s2

GOT, Route R55, 12 m bus:
Avg. vel. 18.3 km/h
Max. vel. 57.2 km/h
Max. acc. 0.98 m/s2

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.
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Figure 2. Comparison between the measured driving cycle from the demonstrations and standard
driving cycles.

3.1. Simulation Output

Figure 3 compares the energy requirements determined from the simulation of the
measurement data of the demonstrations to those from the UC simulations in [5], while
Figure 4 illustrates the effects of the various ECO-features in reducing the energy consump-
tion of the bus. For the remainder of the article, the baseline energy requirement is defined
as the average energy requirement found from the UC simulations in [5] using the standard
driving cycle. Figure 3 shows, as expected, that in Barcelona the energy requirements are
significantly higher for the demonstrations compared with the baseline. However, the
opposite is true for Osnabruck, where the energy requirements are significantly lesser than
the baseline. This can be explained by the simple fact that in Barcelona, the average and
maximum speeds of the buses in the demonstration are much higher than the baseline.
Thus, the buses in the demonstration experience higher aerodynamic drag, leading to
greater energy requirements compared with the baseline. In the case of Osnabruck, the
opposite was true; for the 12 m bus, the average and maximum speeds of the demonstra-
tions were less than those of the baseline, thus lesser energy was required than for the
baseline. In the case of the 18 m bus, the average and maximum speeds are comparable
between the demonstrations and the baseline; thus, the energy requirement between the
baseline and demonstration is similar. For Gothenburg, the average velocity is less than
the average velocity of the baseline, even if the maximum velocity is higher. Thus, the bus
expends less energy on average compared to the baseline. From the results, it can also be
deduced that normal acceleration and deceleration have a low impact on the rate of energy
expenditure of the vehicle; this can be explained by the fact that the vehicle is an electric
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bus with an efficient energy recovery system (via regenerative braking), thus 70% to 80%
of the traction energy expended during acceleration is recovered during braking [7]. The
amount of energy recovered depends on several factors including the momentum of the
vehicle during braking, SoC of the battery, and capability of the battery to accept the power
influx. For small EVs such as the Renault Zoe, the cutoff velocity beyond which energy
recovery can efficiently occur during braking is 5 m/s [7], but for heavy-duty vehicles
such as buses, the regeneration can occur from a lower velocity due to their larger masses
resulting in greater braking momentum. Thus, regenerative braking in an urban scenario
with low speeds and heavy traffic is more suitable for electric buses and trucks.
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3.2. Energy Reduction Using ECO-Features

Three energy management techniques are considered to reduce the energy require-
ments of the buses, namely, ECO-comfort [8], ECO-driving [9], and ECO-charging [10,11].
ECO-comfort optimizes the thermal management system of the bus responsible for the
cabin and battery cooling systems, ECO-driving optimizes the EMS of the bus responsible
for vehicle traction and regeneration, and ECO-charging optimizes the charging man-
agement system of the vehicle responsible for battery charging. Figure 4 highlights the
effects of the ECO-features on the SoC; and details about the functionality of the three
ECO-algorithms are presented in the Appendix B. Based on the SoC profile shown in the
top row of Figure 4, ECO-driving has a significant effect on energy reduction, as seen from
the smaller drop in the battery SoC with ECO-driving compared with the baseline. This
is because the baseline driving profile featured aggressive driving, i.e., high speed (max.
velocity of 18.7 m/s) and acceleration (max. acceleration of 2.39 m/s2), and ??these see
the highest reduction in the energy requirement due to the application of ECO-driving.
There is modest energy savings due to ECO-comfort, as it was simulated for moderate
springtime weather conditions. ECO-charging does not change the energy requirement of
the vehicle compared to the baseline, but as can be seen from the bottom row of Figure 4, it
does spread out the charging duration, resulting in a lower average load on the electricity
grid; this is important during fleet charging so as not to put undue stress on the electricity
grid. Overall, the 12 m bus saw an average reduction of 0.4 kWh/km from the baseline
energy requirements, while the 18 m bus had a reduction of almost 1.8 kWh/km from
the baseline. On average, at least three quarters of the reduction was achieved due to
ECO-driving, while barely 2% is due to ECO-charging, as shown in Figure 5.
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Figure 5. Breakdown of energy savings due to ECO-features for 12 m and 18 m electric bus.

Table 4 shows that there is a high correlation between the amount of energy savings
due to ECO-driving and average speed of the vehicle in the baseline scenario. There is also
a link between the size of the bus and possible energy savings. However, the data also
show that there is no link between the top speed of the vehicle in the baseline scenario and
possible energy reduction; this may be because the vehicle does not spend sufficient time at
its top speed for it to matter. These results prove that there is a lot of room for improvement
when it comes to driving behavior and low-speed driving is recommended for optimum
traction energy utilization.
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Table 4. Energy reduction possible due to ECO-driving.

City, Bus Type and
Demo Number

Speed
(Mean and maximum)

Baseline Energy
Requirement

Energy
Savings

BCN 12 m, Demo 1 * 2.68 m/s, 21.9 m/s 1.47 kWh/km 21.8%
BCN 12 m, Demo 2 * 4.08 m/s, 16.6 m/s 1.52 kWh/km 22.8%
BCN 12 m, Demo 3 * 7.28 m/s, 20.4 m/s 1.57 kWh/km 27.5%
BCN 12 m, Demo 4 * 3.48 m/s, 21.4 m/s 1.50 kWh/km 20.9%

BCN 18 m, Demo 1 * 4.28 m/s, 20.0 m/s 3.42 kWh/km 39.5%

OSN 12 m, Demo 1 * 3.37 m/s, 16.0 m/s 1.50 kWh/km 24.2%
OSN 12 m, Demo 2 * 3.44 m/s, 12.0 m/s 1.20 kWh/km 17.6%
OSN 12 m, Demo 3 * 2.95 m/s, 16.4 m/s 1.56 kWh/km 21.9%
OSN 12 m, Demo 4 * 3.13 m/s, 14.7 m/s 1.42 kWh/km 18.7%

OSN 18 m, Demo 1 * 5.82 m/s, 18.7 m/s 2.79 kWh/km 47.4%

GOT 12 m, Demo 1 * 3.50 m/s, 22.9 m/s 1.83 kWh/km 7.4%
GOT 12 m, Demo 2 * 2.22 m/s, 21.6 m/s 1.75 kWh/km 8.1%
GOT 12 m, Demo 3 * 3.30 m/s, 19.7 m/s 2.11 kWh/km 5.3%

* BCN: Barcelona, OSN: Osnabruck, GOT: Gothenburg; 12 m and 18 m refers to the bus length.

4. Validation of the Simulation Framework

This section focuses on the methodology followed to validate the simulation frame-
work through real measurement data from the demonstrations. The measurements were
also used to improve the inputs to the simulation model to have a better representation
of the UCs; these improved inputs are then used for the simulation. Measurement data
from Osnabruck and Gothenburg were used in the validation process. The quality of the
data from the two sources were different. The Gothenburg dataset consists of continuous
measurement values sampled at 20 Hz directly from the vehicle’s CAN-bus. The data from
Osnabruck, extracted from the CBO’s cloud server, were only available at intermittent
intervals. Thus, the two cases were handled differently.

The validation and tuning process addressed the following features:

• The EMS: The energy recovery system was tuned to align the traction energy profile
with the measurement data. The regenerative braking system (RBS) is a proprietary
system for many OEMs; thus, assumptions were made during model development.

• The charging management system (CMS): The cutoff between the constant current
(CC) mode and the constant voltage (CV) mode, and the current decay parameter
during the CV mode were tuned based on the measurement data. These parameter
values are also not forthcoming by the OEMs.

• The passenger load estimation: Passenger load inside the bus is the one aspect that
could not be automatically measured and requires manual counting; thus, it is usually
ignored. Instead, some simulations involved an intricate passenger model based on
the passenger appearance rate at each bus stop as a function of time [12], which is
modeled on actual bus traffic data by the CBO. Others use agent-based modeling
whereby each passenger is a unique object that has “preferences”, such as drop in
point, drop off point, and waiting time [13]. In [14], a cellular automata model is
utilized to study behavioral characteristics of bus passengers boarding and alighting
behavior. There are also certain cases where a fixed load was assumed within the
bus, based on passenger load factor [15], when the passenger load is ancillary to other
considerations. The UC simulations carried out in [5] assumed a random passenger
profile as a function of time within the bus cabin; however, for this validation, the
passenger inside the bus was estimated based on the measured SoC profile.

4.1. Tuning and Validation Methodology

The tuning was performed by using optimization to directly determine the parame-
ters’ values of the powertrain module (e.g., EMS, CMS, BMS) that needs to be tuned, to
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minimize the normalized root mean squared error (NRMSE) between the simulated and
measured outputs.

Ctotal =

√
∑n

i=1(SOCSIM, i− SOCMEAS,i)
2

n
max(SOCMEAS)− min(SOCMEAS)

+ constraint penalty (1)

The cost function, Ctotal, shown in (1), gives an estimate of the deviation between the
simulated and measured SoC of the battery. The closer the value of the cost function is
to zero, the closer the match between the two SoC signals. To achieve a minimum value
of Ctotal in the optimization process, not only must the two SoC signals match as closely
as possible, but the simulation must also not violate any of the constraints elaborated on
in Section 4.2. The output score calculated by the NRMSE ranges from 0 (perfect match
between simulated and measured signals) to 1 (implying the maximum mismatch between
the two signals), thus any penalty applied has values greater than 1. The magnitude of the
penalty depends on the extent of the violation of a given constraint.

By the standard definition [16], the tuning methodology described in this study is an
example of the offline tuning process because the tuning occurs in the simulation model
using saved data, i.e., the measured input during the demonstration was not processed in
real-time but cached for later processing and simulation. Instead, for this study, a different
definition is used to differentiate between an offline and an online tuning process. The
online tuning process is defined as the tuning that occurred while the simulation was still
ongoing, whereas in offline tuning, the tuning occurred in an iterative process between
separate simulations, after each simulation had finished running in its entirety. For the
online tuning process, the total time duration of the simulation was split into several
“windows”; the tuning occurred in between each time window, and its result was applied
to the next window until no further improvement could be seen, i.e., it converged. If
the convergence occurred before the end of the simulation, the tuning was considered
completed; otherwise, the simulation was repeated with the latest tuned configuration as
the starting condition. As expected, the online process is faster due to the small dataset
involved in the tuning process, so the tuning completes quicker.

The online tuning process was applied during the optimization; the simulation time
duration was split into variable-sized windows based on the driving cycle. As there were no
discernable patterns, the split was made according to different categories of driving, such
as constant speed driving or driving with frequent accelerations, as shown in Figure 6. The
tuning algorithm assessed various parametric configurations within a window sample to
minimize the NRMSE within that window, before applying the best possible configuration
to the next window and repeating the process, as in [16].
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4.2. Optimization Based Tuning Process

In [17], constrained minimization was used in the tuning process of the controller to
allow the controller to become flexible, so it can respond in a robust fashion to changes in
the inputs, and be used for different purposes by optimally retuning the control parameters
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subject to different constraints. In [18], a constrained nonlinear optimization was carried
out using a sequential quadratic programming (SQP) algorithm to tune PID gains to allow
the controller to adapt to changes in the plant; this not only offered superior performances
when compared to traditional PID tuning, the tuning process was much quicker. Similarly,
linear programming was utilized in [19] to tune the weights of a symmetric finite impulse
response (FIR) filter of low-bandwidth controllers for a linear time and spatial invariant
(LTSI) systems; a hybrid genetic algorithm (GA) followed by constrained nonlinear mini-
mization was used in [20] to optimize in real time the autopilot gain of an unmanned aerial
vehicle (UAV); the GA ensured a global minimum, but without running the GA process
to its conclusion, and the fmincon function utilized to finetune the results of the GA at a
higher speed. In this study, the meta-heuristic algorithm, improved simple optimization
(iSOPT) [21], was used to tune the EMS and CMS of the electric bus powertrain model, to
ensure a global minimum within the fastest possible time, so that the tuning can be carried
out in real-time.

The set of parameters that were tuned for the EMS are:

• Cutoff velocity for regenerative braking activation
• Passenger load in the bus (broad categories: full load, half load, driver only)

The set of parameters that were tuned for the thermal management system (TMS) are:

• Cabin setpoint temperature

The set of parameters that were tuned for the CMS are:

• Cutoff SoC between CC and CV charging mode
• The current decay factor for CV charging mode
• The charging duration and power
• Initial Battery ageing

The final two parameters that were tuned are the passenger load estimate in the bus
and the cabin setpoint temperature. Thus, a total of seven parameters makes up the solution
space. An initial population size of 11 with random combinations of the seven parametric
values was generated, and the algorithm described in [5] is followed till its conclusion. The
maximum number of iterations was set to 50. The optimization is handled via MATLAB
scripts, which populates the variables of the Simulink model with updated values every
iteration while simulating the demonstration scenario.

The following constraints were applied to the optimization, and a penalty was added
to the optimization score if one or more of these constraints were exceeded in any way:

• The current decay factor, cutoff velocity, and cutoff SoC were positive
• The cutoff SoC was below 100%
• The RCD was below 25%
• The charging duration exceeds 1 min and charging power was positive
• The battery SoC should not drop below 10% during the simulation

The advantage of using optimization techniques to tune the model is that it preserves
the integrity of the model, with the only factor being changed is the set of parameter values
of the respective modules that are being tuned. The improvements of the optimization
methodology followed in this research compared with [5] are twofold. The first is an
improvement in speed of optimization. In all cases, it is noticed that Topt < n * Tsim,
where n was the number of iterative simulations required during the optimization before
convergence and Tsim is the duration of one complete simulation. This is because using the
methodology in [5], we would have needed to run the complete simulation ‘n’ times before
convergence, but with the window technique presented in this article, we only needed to
run the 1st and the 2nd windows ‘n’ times, and the subsequent windows needed to be run
less than ‘n’ times, as the parameters values have already become optimal by that point.
The second improvement was the fact that the optimization process could be made online
in the traditional sense [16] by focusing on optimizing the model using the measurement
data dump from a previous time window, while the measurement is in progress for the
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current time window. This is a necessary first step to overcome in the process to develop a
real-time DT of the system, which is the end goal of this research track.

5. Validation Results
5.1. Osnabruck

The demonstration for Osnabruck city took place in the months of March, April, and
May using an 18 m bus type. Measurement data are available for a total of 9 days, with 2
days each in March and May, and the rest in April. The demonstrations focus on different
charging characteristics, with the March and April demonstration clearly focusing on low-
power depot charging, and the May demonstration focusing on the high-power opportunity
charging. The measurement data provided included the time, speed, and distance travelled
data taken at 5-minute intervals. The sampling rate of the provided data is not sufficient to
perform simulation and, therefore, each five-minute interval was replaced by the standard
SORT driving cycle whose mean velocity was adjusted to match the measured speed value
if the distance covered by the adjusted driving cycle was less than or equal to the actual
distance traversed during that five-minute interval. If, on the other hand, the adjusted
driving cycle covered a larger distance than the actual measured value, the simulation was
conducted assuming a constant velocity for that five-minute interval. The measurement
also consisted of the battery SoC level at different points during the demonstration. These
SoC values are used to verify the simulation results by comparing the simulated SoC
values with the actual demonstration SoC values at the same point in time. The simulation
assumptions were tuned to give the scenario configuration that provides a simulation with
the closest match between the simulated SoC values and measured SoC values.

Figure 7 illustrates the driving and charging scenario constructed from the demonstra-
tion data provided for March 29th and 31st, April 7th, 12th & 13th, and 20th & 21st, and
May 6th and 12th. The driving and charging scenario will be shown within the same plot.
There is no charging taking place between the 20th and 21st; the vehicle is switched off
and restarted the next day. The estimated (average) power of the charger used during the
March and April demonstrations is 18 kW, thus making it an AC charger in the depot; the
estimated power of the charger used for the May demonstrations is 290 kW, thus making
it a DC fast charger used for opportunity charging. The charging duration is determined
by the type of charger, with opportunity charging active for 10 minutes, while the depot
charging is active for hours. The total increase in battery SoC during charging was used to
estimate the rated power of the charger.

Table 5 lists the estimates of the driving scenario that gave the closest SoC match
between the simulated values and demonstration measurements. Based on these estimates,
Figure 8 shows the validation output of the simulation framework.

Table 5. Estimation of the driving scenario configuration for the Osnabruck demonstration.

Parameter to Be Estimated March April May 6th May 12th

Passenger load Driver only Full load Full load followed by driver only

Cabin setpoint temperature 20 ◦C 15 ◦C 20 ◦C

Charging type Depot Opportunity

Charging power 18 kW 290 kW

Battery capacity 120 kWh

Initial battery age Relative capacity degradation of 20%

RBS cutoff velocity RBS active when vehicle speed above 1.5 m/s
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5.2. Gothenburg

The demonstration for Gothenburg city took place in the month of May and October
using 12 m bus. Measurement data are available for a total of 3 days, with 2 days in
May and 1 day in October. The demonstrations focus on different charging characteristics,
with the May demonstration clearly focusing on shorter duration opportunity charging in
the constant voltage (CV) mode, and the October demonstration focusing on the longer
duration opportunity charging in the constant current (CC) mode. The duration of the May
demonstration was between 12 h to 14 h per day, while the October demonstration was
limited to below 3 h. The Gothenburg demonstration had access to continuous driving cycle
data; thus, the actual speed measurements were used as inputs after suitable preprocessing.
Furthermore, the Gothenburg demonstration also had access to the road inclination profile
and ambient temperature profile, in addition to the velocity profile, as inputs. Thus, more
relevant simulations could be produced for the validation process. The speed tracking
and battery SoC level were validated by comparing the measured values against the
simulated values. Table 6 lists the estimates made for the simulations, which achieved a
high correlation between the simulated and measured SoC.
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Table 6. Estimation of the driving scenario configuration for Gothenburg demonstration.

Parameter to Be Estimated March April May 12th

Passenger load
Only driver initially, full load between

1 h and 4 h, then half load until 13 h, then
driver only until end

Driver only
Only driver when idle (i.e., at end of

the route or during charging), full load
when bus is moving

Cabin setpoint temperature 20 ◦C

Charging type Opportunity

Charging power 450 kW (current decay has a β = 0.23 in CV mode, which is activated when SoC > 87.5%)

Battery capacity 200 kWh

Initial battery age New batteries with no degradation

RBS cutoff velocity RBS active when vehicle speed above 1.5 m/s

Figure 9 shows the results of the October 13th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 2.5 h with the bus standing
idle for the first 40 min. The bus charged using an opportunity charger, with a rated power
of 450 kW, at the 1.5 h mark. The simulation tracks the speed accurately with minimal
deviation between the simulated and measured outputs. The battery SoC is also tracked
accurately; however, there is a deviation between the measured and simulated outputs
when the bus is standing idle. The energy usage during that time is very high according to
the measured SoC values, which cannot be reasonably explained, unless the speed signal is
missing/corrupted.
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Figure 10 shows the results of the May 27th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 13.5 h with the bus standing
idle for the first 1 h. The bus was charged using an opportunity charger, with a rated power
of 450 kW at 22 different instances. The first charging instance occurs entirely in the CC
mode and the second charging instance happens partially in both CC and CV modes, while
the remaining charging occurs entirely in the CV mode. The charging current decay (β)
of 0.23, when battery SoC exceeds 90%, accurately models the measured charging current.
There is a deviation between the measured SoC and simulated SoC at two points; one when
the bus was standing idle and the measured SoC showed greater than expected energy
usage for an idle vehicle, and the other when the reference speed of the bus was 83 km/h,
which exceeded the modeled maximum speed of the bus of 80 km/h.

Figure 11 shows the results of the May 29th demonstration based on the assumptions
listed in Table 6. The total demonstration was conducted over 12.5 h; however, the mea-
surements are only available after the 5 h mark. The bus was charged using an opportunity
charger, with a rated power of 450 kW at 14 different locations; all the charging events were
short in duration. For this demonstration, all charging events occurred entirely in the CV
mode. Unlike the other demonstrations, which were modeled with high passenger loads,
this one is modeled with only the driver to account for the minimal energy utilization
observed. There is a deviation between the measured SoC and simulated SoC at a few
locations; the deviations are most likely due to inaccurate battery models for LFP battery
chemistry above 90% SoC. The deviations in the beginning can be explained by the fact
that the measurements prior to the 5 h mark are not presented; thus, it was not possible
to determine the state of the bus prior to the start of the simulation. The deviation at the
end was most likely due to a more efficient energy recovery process during regenerative
braking than was accounted for in the vehicle model.

There is a deviation between the measured SoC and simulated SoC at a few locations
in Figure 11; the deviations are most likely due to inaccurate battery models for LFP battery
chemistry above 90% SoC. The deviations in the beginning can be explained by the fact
that the measurements prior to the 5 h mark are not presented; thus, it was not possible
to determine the state of the bus prior to the start of the simulation. The deviation at the
end was most likely due to a more efficient energy recovery process during regenerative
braking than was accounted for in the vehicle model.

One of the clear outcomes of the validation process was an accurate determination of
the current decay factor (β) during the CV mode of charging and the CC/CV cutoff SoC
value. It is understood that after the bulk charging phase of a battery in CC mode, the
charging switches to the CV mode, where the current reduces to a trickle. This reduction of
the current was modeled as an exponential decay once the battery SoC exceeds 87.5%.

The decay amount is given as:

Iout =
∣∣∣Imax_cc × eβ×(SoC−90), SoC > 87.5

|Imax_cc, otherwise
(2)

where Imax_cc is the maximum charging c-rate during the CC charging mode (-3C for an
LFP battery chemistry), and β is the decay factor; it was found that a β of 0.23 models the
charging current that gives the closest correlation between the measured and simulated
battery SoC profile during charging.
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Figure 10. Validation of the May 27th demonstration of 12 m bus in Gothenburg city using the
estimates in Table 6. (a) Scenario inputs, (b) Scenario outputs and validation.
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Figure 11. Validation of the May 29th demonstration of 12 m bus in Gothenburg city using the
estimates in Table 6. (a) Scenario inputs, (b) Scenario outputs and validation.
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6. Conclusions

This study presents a methodology for improving the accuracy of a Lo-Fi model of
the electric bus powertrain using measurement data from 12 m and 18 m electric bus
demonstrations in cities. First, a qualitative comparison is made of the bus’s energy
requirements between the baseline UC simulations, which used a standard driving profile,
and the actual driving profile from the demonstrations. The results show that in Barcelona,
the energy requirements of the 12 m buses were 17.5% higher, while those of the 18 m buses
were 33% higher, when using the driving profile of the demonstration. For Osnabruck, the
energy requirements were 20% lower for the 12 m buses when using the driving profile of
the demonstrations, while the 18 m buses had similar energy requirements to the baseline.
This is because the Barcelona demonstrations had a higher average velocity compared
with the baseline, while the Osnabruck 12 m bus demonstrations had a lower average
velocity. The magnitude of the acceleration and deceleration had less effect on the energy
requirements of an electric powertrain, since energy expended during accelerations are
recovered during decelerations. Only in cases where the driving profile showed many hard
decelerations did the energy requirement become higher; this was because during hard
decelerations, the bus requires friction brakes to decelerate in addition to the electric motor,
leading to less energy recovered via regeneration.

Next, the measurement data of the vehicle’s speed profile from the demonstration were
used as inputs to the simulation framework, and the simulation results of the battery SoC
profile were compared to measured battery SoC profiles from the demonstrations. A tuning
methodology, based on iSOPT optimization, combined with splitting the simulation into
smaller time windows during optimization, was used to minimize the NRMSE between
the simulated and measured battery SoC signals and ensure that there is a high degree of
correlation between them. The results show that the tuning process based on the window
technique applied to the optimization process successfully synchronized the simulation and
measurement outputs quicker than the technique presented in [5]. In rare cases, deviations
are encountered between the simulated and measured output. Of these, the deviations that
describe a situation that is physically impossible, based on the data provided, are ignored.
Other deviations result from limitations in the assumptions made during the design of the
simulation framework, and those were fixed by correcting the assumptions. However, in
two cases, deviations occurred for which no suitable explanation could be determined, and
those would require further research to fix. Overall, the optimization achieved more than
90% correlation between the simulated and measured SoC profile.

The techniques utilized in this research will be refined further in future research to
perform real-time tuning of the platform with the aim of deploying a cloud-based DT of
the electric bus that will be able to make predictions in real-time based on the measurement
data from the real vehicle. To achieve that goal requires two systems working in synergy:
first, it would be necessary to invest in CAN dataloggers with WiFi or 3G/4G capability
that will capture the sensor data from the vehicle’s CAN network and periodically transmit
these measurements to a cloud server. Then, a highspeed simulation model needs to be
deployed in the cloud server that will periodically take in these measurements data as
inputs and quickly simulate the outputs and tune itself using appropriate tuning techniques
to minimize the error between the simulated and measured outputs. The key will be
to reduce the simulation time needed during the tuning process (whether via machine
learning or optimization), so the model can tune itself in real time. This requires further
improvements to the optimization technique and utilizing machine learning using artificial
neural networks. Machine learning algorithms are also able to adapt to changes in behavior
over time. Once the error has been reduced below an acceptable threshold, then many
virtual copies of the DT can be deployed in the cloud to act as virtual testbeds for a
myriad of different tests, or to simulate fleets of such vehicles to investigate the charging
infrastructure requirements in city bus routes and depots.
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Appendix B. Review of Energy Management (ECO) Features

Appendix B.1. ECO-Driving Functionality

ECO-driving transforms the driving cycle into an eco-friendlier profile that limits the
maximum acceleration and speed of the vehicle resulting in less tractive energy require-
ments; furthermore, it also optimizes the energy recovery during regeneration by keeping
the EM in the optimum power band to recover the maximum power. As can be seen from
Figure A4, the velocity profile is smoothened by application of a ramp to the acceleration.
The velocity modification ensures smoother changes in velocity and removes discontinuity
in the acceleration. The top velocity and acceleration are also limited to save energy. The
overall driving behavior is gentler, with minimal hard accelerations and braking. This
is important because, unlike normal braking action, hard braking is not as efficient at
energy recovery as a large portion of the braking power needs to be diverted to the friction
brakes, rather than the electric motor, to cope with the braking load. This is why applying
ECO-driving to an aggressive driving style results in significant energy savings. Therefore,
good driving behavior is a requirement for proper regenerative braking action and is a
core component of ECO-driving. The ECO-driving method also ensures that regardless of
the velocity modification, the distances traveled between the ECO and non-ECO version
remains synchronized. This distance synchronization is important to convince many CBOs
to adopt ECO-driving principles for their routes, as they can still maintain their default bus
schedules even while limiting top speed and acceleration.
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Appendix B.2. ECO-Comfort Functionality

Figure A5 shows how the ECO-comfort functionality dynamically alters the cabin
setpoint temperature throughout the day. The dynamic temperature setpoint of the ECO-
comfort depends on the passenger count inside the bus as well as the ambient temperature.
The temperature setpoint is devised to save the energy required for climate control at the
expense of slightly reduced passenger comfort. This means a little less cooling inside the
bus during summers and a little less heating inside the bus during winters. As well as dy-
namic temperature setpoints, ECO-comfort also uses pre-conditioning to reduce the energy
requirement needed for heating or cooling when the bus is in motion. Pre-conditioning
means to utilize the thermal management system to track the setpoint temperature of the
bus while it is connected to the grid for charging; thus appropriating the energy from the
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grid instead of the battery. The energy reduction by ECO-comfort is highly dependent on
the climate, e.g., for a hot climate, the maximum energy reduction due to ECO-comfort is
achieved during mid-summer, while for colder climates, the maximum energy reduction is
attained in mid-winter.
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Appendix B.3. ECO-Comfort Functionality

Figure A6 shows the ECO-charging functionality, which makes use of pulsed charging,
instead of continuous charging. Since the charging is pulsed, the battery has a chance to
cool down in between the charging pulses; this reduces the temperature increase during
charging, and necessitates less cooling by the HVAC system. At the same time, this
also results in low c-rate charging on average, thus improving battery longevity. The
disadvantage of this charging method is that the battery will take longer to charge; to
mitigate this, either the charging duration needs to be increased, which is not always
possible due to bus scheduling constraints, or the battery size needs to be increased so that
the battery can deliver the range required during its scheduled operational period. Thus,
ECO-charging prevents excessive battery heating during charging, has minimal effect on
the vehicle’s energy requirements, and lowers the load on the electricity grid.
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Abstract: In recent years, the increasing winter load peak has brought great pressure on the operation
of power grids. The demand response on the load side helps to alleviate the expansion of the
power grid and promote the consumption of renewable energy. However, the response of large-scale
electric heat loads to the same electricity price curve will lead to new load peaks and regulation
failure. This paper proposes a grouping coordinated preheating framework based on a demand
response model, which realizes the interaction of information between the central controller and
each regulation group. The room thermal parameter model and the performance map of the inverter
air conditioner/heat pump are integrated into the demand response model. In this framework,
the coordination mechanism is adopted to avoid regulation failure, an edge computing structure is
applied to consider the users’ preferences and plans, the grouping and parallel computing structure
is proposed to improve the computing efficiency. Users optimize their heat load curves based on a
demand response model, which can consider travel planning and ensure user comfort. The central
controller updates the marginal cost curve based on the predicted scenario set to coordinate the
regulation groups and suppress the new peaks. The simulation results show that the proposed
method can promote the consumption of renewable energy through coordinated preheating and
reduce the system energy consumption cost and user bills. The parallel computing structure within
the regulation group also ensures the computing efficiency under large-scale loads.

Keywords: demand response; coordinated preheating; inverter air conditioner; equivalent thermal
parameter model; smart grid

1. Introduction

In recent years, the peak power consumption in winter has become more and more
obvious. The maximum load in winter exceeds that in summer in many southern provinces
in many southern provinces of China [1], and Texas in the United States has also set a record
for the peak power consumption in winter in 2021 [2]. Different from the central heating in
the north, the household independent heating mode is more common in hot summer and
cold winter regions, with the characteristics of intermittent heating on demand [3]. It is
important to promote heating electrification to achieve carbon neutrality in winter heating
systems. The heat pump, hot air blower/cooling and heating air conditioner follows the
reverse Carnot cycle and transfers more heat with less energy consumption, which is
highly energy efficient. Jiang [4] pointed out that the air source heat pump is the most
important way of heating electrification. The European Commission has also set a heat
pump development target, that is, 40% of residential buildings and 65% of commercial
buildings are expected to achieve electric heating by 2030 [5]. With the increase in power
demand in the winter peak period [6], efficient demand management technology can
help to reduce system costs, promote the consumption of renewable energy, and achieve
carbon neutrality.
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Residential air conditioning plays an important role in demand response resources. A
demand response model for single residential buildings was established in [7], in which
heat pumps preheat at low electricity prices to reduce power demand at high electricity
prices. The home energy management system with integrated intelligent heat load has been
studied in [8,9] and the corresponding optimization problems were found, with the purpose
of minimizing energy consumption cost and ensuring user comfort. Comfort is actually
guaranteed by the precooling/preheating. Large scale day-ahead heat load regulation is an
attractive solution for power system scheduling due to its economy and security, but there
are many difficulties to be solved. The assessment of the maximum adjustable load of the
air conditioning cluster can be used for real-time regulation [10,11], but it cannot be used
for day ahead scheduling because of the neglect of load-time coupling. For example, the
time point and adjustment amount of preheating/precooling cannot be determined by the
above methods. Equivalent energy storage models and cluster models for air-conditioning
clusters are studied for day-ahead scheduling [12,13], in which temperature setpoints are
regarded as consistent and fixed. In fact, the temperature setpoints of users are different
and time-variant, and are related to their respective travel schedules. Most importantly, the
scheduling results are not practical due to the lack of instructions specific to each user. In
view of the above problems, some studies have been carried out from the characteristics of
intermittent heating/cooling [14–16] and the respective thermal parameters and thermal
demands of households [17]. However, the above methods are only applicable to a single
residential or commercial building and will encounter difficulties in solving large-scale
problems. It is worth noting that if all participants adjust based on the same electricity price
curve, it will fundamentally change the marginal cost curve of the system, which will lead
to failure of the adjustment. A new coordinated preheating scheme based on game theory
was proposed in [18] to ensure the effectiveness of large-scale family collective preheating,
which effectively takes into account changes in marginal costs in the coordination process.
However, households need to iterate one by one, and the computation time is linearly
related to the household scale, which is unacceptable in large-scale problems. Intermittent
heating, personalized thermal demand, and computational efficiency are the three major
difficulties in large-scale day-ahead thermal load regulation.

Accurate house thermal models [19] and air conditioning models have a significant
impact on the conditioning effect. In terms of air conditioning, constant frequency air con-
ditioning has been gradually replaced by inverter air conditioning (IAC). The performance
of IAC is related to the indoor/outdoor temperature and the compressor speed, and its
steady-state model can be used to study the coupled dynamic characteristics of the room
and IAC. Research and experiments on steady-state models are abundant [20–22], but their
computation time is unacceptable for scheduling problems. In [16,23], the performance
map based on the steady-state model was obtained for the direct control of IAC.

This paper proposes a day-ahead group coordinated preheating method based on
demand response model for large-scale electric heating load, which is carried out in a
framework composed of a central controller and several regulation groups. Under this
framework, users can reduce electricity bills through the proposed demand response model,
in which personalized settings such as travel schedules and user temperature demand
curves can be fully considered. The central controller updates the marginal cost curve
after each round of regulation and transmits it to the next group, and the interaction
avoids new peaks. In each round of adjustment, households in the regulation group
solve their respective optimization problems in parallel, ensuring computational efficiency.
In addition, a room equivalent thermal parameter (ETP) model and an IAC model are
established to form a single household demand response model. In order to quickly
obtain the performance parameters of IAC under given conditions, this paper develops
a performance map based on the steady-state model of IAC, which can be applied to the
direct control of the compressor frequency to determine the power consumption. And
the mapping can be easily transformed into piecewise linear constraints and added to the
optimization problem.
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This article is organized as follows. In Section 3, a detailed ETP model of residence
and the performance map based on the IAC model are established. In Section 4, a single
household demand response model is given, and the grouping coordinated preheating
framework is proposed. In Section 5, the performance of the proposed methods are
presented through numerical simulation. Finally, the main conclusions are discussed in
Section 6.

2. Methodology
2.1. Research Objectives

The preheating model is an economical and efficient load side regulation method to
realize economic savings of a single household. However, regulation failure will occur
such as new peaks and increasing system costs when preheating without coordination,
which is due to the lack of interaction between global interests and demand scheduling.
The response of large-scale electric heat loads to the same electricity price curve will
lead to new load peaks and regulation failure. And most of the existing studies take the
thermal comfort into consideration by reducing the temperature deviation with the desired
value. However, the user’s temperature demand is time-variant, which is related to the
user’s travel planning. In other words, many existing studies cannot take into account
users’ personal preferences and travel plans. Finally, considering the practicability of the
model, the solution time of large-scale preheating planning must meet the scheduling
requirements, which is extremely challenging. The research objectives of this paper are
summarized as follows:

(1) To solve the problem of regulation failure under large-scale preheating, such as new
peaks and increasing system costs.

(2) To consider the temperature preferences and travel planning of each user, and formu-
late customized heat consumption plan for each user.

(3) To ensure that the running time of the whole preheating framework can meet the
scheduling time requirements.

2.2. Research Method

In order to solve the problem of regulation failure under large-scale preheating, a
coordinated preheating mechanism is proposed which links the global interests with the
demand side response. To formulate a customized heat consumption plan for each user
according to their temperature preferences and travel planning, a kind of edge computing
and central regulation framework is applied to the coordination mechanism. In addition,
to meet the scheduling time requirements, a grouping and parallel computing structure is
proposed. According to the above logic, the research architecture is shown in Figure 1.

To formulate the single household regulation model with IAC, a detailed ETP model
of residence and the performance map of the IAC model need to be established, which can
link the indoor temperature change with the user energy consumption scheduling. Then
the grouping coordinated preheating mechanism based on edge computing and central
regulation framework is proposed, which links the single household regulation model and
the changes of marginal cost curve.

2.3. Simulation Parameters

The simulation is implemented on the python platform. CoolProp is called in the IAC
system simulation to obtain physical properties, and Gurobi is called as the solver for the
single household demand response optimization. The building parameters and thermal
parameters are shown in Table 1. User status division and distribution of parameters can
be seen in Section 5.
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Figure 1. Research architecture.

Table 1. The parameters of the room thermal model.

Parameter Value Parameter Value

Thickness of solid brick/mm 240 Thermal conductivity of solid brick/(W/mK) 0.86

Gypsum thickness/mm 15 Gypsum thermal conductivity/(W/mK) 0.386

Window thermal conductivity/(W/m2K) 5.2 Convection–radiation transfer coefficient of
outer surface of exterior wall/(W/m2K) 24

Convection–radiation transfer coefficient of
inner surface of exterior wall/(W/m2K) 8.4 Solar heat gain coefficient SHGC 0.7

Equivalent heat capacity of indoor internal mass
per unit residential area/(kJ/Km2) 150 Equivalent heat capacity of external wall per unit

area/(kJ/Km2) 376

Convective heat conduction coefficient of air and
indoor mass Uam/Acon/(W/m2K) 10 Absorptance of surface for solar radiation 0.8

Lighting heat gain/W 720 Electric appliance heat gain/W 780

Human body thermal radiation gain/W 300 The convective split
for solar heat gain 0.6

The convective split
for lighting heat gain 0.6 The convective split

for electric appliance heat gain 0.8

The convective split
for human body heat gain 0.5 The radiative split

for solar heat gain 0.4

The radiative split
for lighting heat gain 0.4 The radiative split

for electric appliance heat gain 0.2

The radiative split
for human body heat gain 0.5

In this paper, a certain type of apartment in southern China is used as the standard
type. The geometric parameters are: length 13.6 m, width 8.6 m, and height 2.6 m. The
residence has a north/south external wall, with one external wall on the east or west side,
totaling three external walls. The window-to-wall ratio of each orientation is 0.25 in the
north direction; 0.35 in the south direction; and 0.2 in other directions.
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3. Residential Electric Heating System Model
3.1. Room Thermal Model

In order to link the indoor temperature change with the user energy consumption
scheduling, a residential ETP model is established, which consists of the outdoor part,
the exterior wall and the indoor part, as seen in Figure 2. There are three main modes
of heat transfer in the model: heat conduction, heat convection and heat radiation. The
outer wall is equivalent to a thermal resistance and two thermal capacitances, which are
denoted as R and C, respectively. For the external surface of the wall, it obtains the heat
gain Qsolar,w from solar radiation, obtains heat from the inside of the wall, and transfers
heat to the outdoor air by convection. Equation (1) depicts the change rate of the exterior
wall temperature Twe, which is related to heat transfer. Similarly, Equation (2) depicts the
change rate of the internal wall surface temperature Twi, which is influenced by both indoor
air convection and wall conduction heat transfer. Equation (3) gives the energy balance
equation of indoor air. Indoor air has a certain heat storage capacity, and it exchanges
heat with internal mass, the air outside walls and windows. In the model, indoor air also
absorbs heat gain Qsolar,a from solar radiation, internal heat gain Qgain,a and heat QAC
generated by IAC, but will leak heat Qlk due to the gap at the junction. Equation (4) gives
the energy balance equation of internal mass. The internal mass such as room partitions
and furniture have large thermal inertia, and their equivalent heat capacity Cm can maintain
the slow change of mass temperature Tm. In addition to the heat exchange with indoor
air, the internal mass absorbs the solar radiation heat gain and internal heat gain, which
are denoted as Qsolar,m and Qgain,m. Equations (5)–(7) are the expressions of solar heat gain
absorbed by exterior walls, internal mass and indoor air, respectively. Equation (8) is the
heat loss. Equations (9) and (10) represent the absorption of internal heat gain by mass and
air respectively. Equation (11) represents three sources of internal heat gain: household
appliances, lighting and human body heat radiation.

Cw
dTwe

dt
=

To − Twe

Rwo
+

Twi − Twe

Rw
+ Qsolar,w (1)

Cw
dTwi

dt
=

Twe − Twi
Rw

+
Ta − Twi

Rwi
(2)

Ca
dTa

dt
=

Tm − Ta

Ram
+

Twi − Ta

Rwa
+

To − Ta

Rwin
+ Qsolar,a + Qgain,a + QAC −Qlk (3)

Cm
dTm

dt
=

Ta − Tm

Ram
+ Qsolar,m + Qgain,m (4)

Qsolar,w = ksolar Aw Isolar (5)

Qsolar,m = fsolar,m × SHGC× Awin Isolar (6)

Qsolar,a = fsolar,a × SHGC× Awin Isolar (7)

Qleak = ρCpVroom × ACH × (Ta − To)/3600 (8)

Qgain,m = fgain,mQgain (9)

Qgain,a = fgain,aQgain (10)

Qgain = Qequip + Qlamp + Qoccup (11)

where ksolar denotes absorptance of surface for solar radiation; Aw denotes geometric area of
the exterior wall; Isolar denotes solar radiation; SHGC represents solar heat gain coefficient;
fsolar,m and fsolar,a represent the radiative/convective split for the solar heat gain respectively;
Aw denotes geometric area of the window; ρ is the air density; Cp denotes the specific
heat of air at constant pressure. Vroom represents the room volume; ACH denotes the air
exchange per hour; fgain,m and fgain,a represent the radiative/convective split for the internal
heat gain respectively. The thermal dynamic model of the room can be added to the convex
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optimization problem as constraint conditions, which can be easily solved with advanced
optimization techniques. The discretization expression is shown in (12)–(15).

Twe(t) =
(

1− ∆t
CwRwo

− ∆t
CwRw

)
Twe(t− 1) +

∆t
CwRwo

To(t− 1) +
∆t

CwRw
Twi(t− 1) +

∆t
Cw

Qsolar,w(t− 1) (12)

Twi(t) =
(

1− ∆t
CwRw

− ∆t
CwRwi

)
Twi(t− 1) +

∆t
CwRw

Twe(t− 1) +
∆t

CwRwi
Ta(t− 1) (13)

Ta(t) =
(

1− ∆t
CaRam

− ∆t
CaRwa

− ∆t
CaRwin

)
Ta(t− 1) + ∆t

CaRam
Tm(t− 1) + ∆t

CaRwa
Twi(t− 1)

+ ∆t
CaRwin

To(t− 1) + ∆t
Ca

(
Qsolar,a + Qgain,a + QAC −Qlk

) (14)

Tm(t) =
(

1− ∆t
CmRam

)
Tm(t− 1) +

∆t
CmRam

Ta(t− 1) +
∆t
Cm

(
Qsolar,m + Qgain,m

)
(15)

Figure 2. ETP model of residences.

3.2. Performance Maps of IAC
3.2.1. Performance Calculation of IAC

Steady-state IAC models can be used to study the cycling characteristics of IAC under
different environment and control conditions. Specifically, the performance of IAC includes
power consumption PAC and coefficient of performance COP, which are affected by com-
pressor speed Ncomp, outdoor temperature To and indoor temperature Ta. Figure 3 shows
the main components of the air conditioning heating system and the cycle process, which
meets the conservation of energy and mass. Starting from point A, the cycle is analyzed.
The specific enthalpy hA of refrigerant steam is calculated from the evaporation temperature
Tevap and the degree of superheat SH, and the steam changes into high-temperature and
high-pressure steam through the compressor module (including the accumulator, suction
pipe, compressor and exhaust pipe, etc.). Then the compressor power Wcomp and the
mass flow rate mcomp can be obtained. The high-temperature and high-pressure steam
releases heat to the indoor air through the condenser and cools to subcooled liquid. The
degree of subcooling SC, is calculated by the condenser model. The refrigerant liquid with
medium temperature and high pressure is depressurized by the thermal expansion valve,
and the mass flow rate mexp is calculated according to the expansion valve model. The
low-temperature and low-pressure liquid absorbs heat and turns into a gas through the
evaporator, and the output specific enthalpy hevap is calculated according to the evaporator

92



Appl. Sci. 2022, 12, 10758

model. There are three independent variables in the above cycle, namely [Devap, Dcond, SH],
where Devap is the difference between the inlet temperature at the air side of the evaporator
and the evaporation temperature, and Dcond is the difference between the condensation
temperature and the inlet temperature at the air side of the condenser. Accordingly, the
cycle should also meet three balance constraints, namely, specific enthalpy constraints at
the start and end of the cycle, condenser subcooling constraints and mass flow balance
constraints. The constraints are represented by residuals [∆1, ∆2, ∆3] respectively. When
the steady state model converges, the residual values are all zero.

PAC = Wcomp + Wcond, f an + Wevap, f an (16)

COP =
Qcond + Wcond, f an

PAC
(17)

Figure 3. Schematic diagram of AC heating cycle.

Figure 4 shows the numerical calculation flow of the system, which is mainly divided
into four parts: initial value calculation, independent variable update, pressure drop
correction and performance parameter calculation. The operating condition parameters
include the indoor air temperature Ta, the outdoor temperature Tout and the rotor speed
Ncomp of the inverter compressor. The model first solves the independent variables in the
minimal model as the initial value of the iteration. Secondly, the Broyden algorithm is used
to solve the independent variable iteratively to make the residual close to zero, and the
pressure drop at the high pressure side ∆Ph+, and low pressure side ∆pl- are calculated
when converged. The pressure drop is introduced into the compressor model, and the
pressure drop and independent variables are updated iteratively under this condition. The
iteration stops when the pressure drop difference is less than the threshold. Finally, the
performance parameters are calculated. As shown in Equations (16) and (17), the power
consumption of IAC is mainly related to the compressor, condenser fan and evaporator
fan. At the same time, the electric energy consumed by the condenser fan is eventually
converted into the internal energy of the indoor air. Therefore, in addition to the heat
release of the condenser, the numerator of COP also contains the internal energy.

3.2.2. 3D Storage of the Mapping

The calculation of the steady state model is time-consuming, while the demand
response problem needs to ensure the accuracy and speed of the calculation. To this end,
this paper calculates the performance parameters of IAC at each operating point in advance,
and uses the 3D map to store the mapping relationships.
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Figure 4. Flow chart of air conditioning system simulation calculation.

As shown in Figure 5, the power consumption of IAC increases with the rotational
speed, while COP increases first and then decreases with the speed. As shown in Figure 5b,
the COP corresponding to 30 Hz is lower than that of 40 Hz. At the same frequency, the
closer Ta and Tout are, the higher the COP. According to Figure 5a,b, there is the following
mapping: QAC = f (PAC, Ta, Tout). With Ta and Tout determined, QAC can be expressed as a
piecewise linear function of PAC, denoted as fPQ. It can be easily added to mixed integer
linear problems as constraints. Tout is obtained from day-ahead weather forecasts, while Ta
is related to the temperature set by the household.

Figure 5. Performance maps of IAC.
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4. Day-Ahead Coordinated Preheating Control

The preheating control utilizes the thermal inertia of the room to transfer heat loads to
improve the economy of the heating system. Specifically, houses are preheated with cheap
electricity during the high generation period of renewable energy or the low load period
of the system, so as to reduce the energy consumption of marginal units during the high
load period of the system. At present, most of the southern areas of China are in the mode
of intermittent air conditioning heating, and the heat load is flexible. This paper firstly
proposes the heat load scheduling of a single house to minimize the operating cost of IACs
while meeting the user’s temperature requirements. We then propose an efficient grouping
coordinated control framework considering that the large-scale heat load regulation will
change the marginal cost of the system.

4.1. Single Household Demand Response Regulation

The objective of single household demand response regulation (SDR) is to reduce user
bills within the scheduling period while meeting the user’s temperature demands. The
optimization problem is formulated as Equations (16)–(18).

min
PAC

∑
t∈T

PAC(t)∆t · prt + ρeet (18)

s.t. Eq.(12) ∼ Eq.(15)

QAC(t) = fPQ(PAC(t), T∗a (t), Tout(t)) (19)

Tlb,t + et ≤ Ta(t) ≤ Tub,t + et (20)

Equation (18) is the objective function, where T is the scheduling interval; ∆t is the
scheduling time step; prt is the electricity price at time t; et ≥ 0 is a slack variable, used to
avoid failure to solve optimization problems under tight constraints, and ρe is the corre-
sponding penalty factor. Equations (12)–(15) are the discretized equivalent heat balance
constraints, and each time step corresponds to four heat balance equations. Equation (19)
is the COP mapping relationship of IACs, which is discretized into a piecewise linear
constraint of PAC → QAC. The addGenConstrPWL function in Gurobi makes it easy to
add to constraints. Equation (20) represents the user’s demand constraints at different
times, that is, the room temperature should be within the upper and lower limits set by
the user. The upper and lower temperature limits at time t are respectively denoted as Tlb,t
and Tub,t. There are different settings for working and sleeping. In addition, considering
the threshold of IAC in actual operation, PAC is set as a semi continuous variable, that is, it
should meet PAC(t) = 0 or Plb,t ≤ PAC(t) ≤ Pub,t.

4.2. Grouping Coordinated Preheating Framework

Although the above optimization model can reduce user bills, if all users schedule
based on the same price curve, the marginal cost of power generation will change, which
cannot guarantee the reduction in total power generation cost. In order to solve this
problem, this paper proposes a grouping coordinated preheating framework with edge
computing and central coordination.

As shown in Figure 6, each household acts as an edge computing unit to solve the
demand response problems (18)–(20) according to the received marginal electricity price.
The central controller is the key to coordinate all groups, which contains three functional
modules: user grouping, marginal cost calculation and specifying scheduling group. Ac-
cording to the central controller, the user adjusts the heat load planning based on the
updated marginal cost. And in each round of adjustment, only a small number of users
participate in scheduling so that the marginal cost will not be significantly changed.
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Figure 6. Edge computing architecture for coordinated preheating.

The interactive process of coordinated preheating is shown in Figure 7, which consists
of the original load upload and several scheduling rounds. First, users of all groups upload
the original load curve shown in 1©. Next, Group # 1 ~ Group # G participates in each
scheduling round in turn. Taking Group # 1 as an example, each round incorporates three
steps: (1) The central controller sends the marginal generation cost curve to Group # 1
as process 2©. (2) All local controllers in Group # 1 receive marginal cost curve based on
Equations (18)–(20) to update the heat load curve. (3) The local controller uploads the
new load curve, namely process 3©. After the central controller updates the marginal cost
curve, Group # 2 conducts the next round of adjustment. The iteration will continue until
the groups balance or the set number of rounds are met. The process is summarized as
Algorithm 1.

Algorithm 1 Coordinated Preheating Control Algorithm

Grouping: Group #1 ~ Group #G
Local controller input: Day-ahead travel planning and temperature range of each user
Central controller input: Generation cost function
1: Each user sets the day-ahead travel plan and acceptable temperature range, then the local
controller calculates and uploads the heat load curve based on the on-off control.
2: The central controller calculates the marginal generation cost curve λn based on the aggregated
load curve and passes it to Group #1.
3: for iteration = 1 to N do
4: After receiving the marginal cost curve, all users within selected group get their own
optimized heat load curve based on Equations (18)–(20). The local controller uploads the curve.
5: The central controller updates the load curve, calculates the new marginal generation cost
curve and passes it on to the next group.
6: end for
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Figure 7. Interactive process of coordinated preheating.

5. Simulation Results

This paper will evaluate the effect of coordinated preheating from indicators such as
energy consumption cost, user bills, renewable energy consumption, and iteration rounds.

The demo is a regional power system including 20,000 households, in which the
installed capacity of wind power is 30 MW. All users are divided into ten groups to ensure
that the adjustment of a single group has less impact on the system. Tlb,t and Tub,t in
Equation (20) are related to the user status, which includes awake at home, out of home
and sleeping. The user status is divided by the time points shown in Table 2, where
tup denotes wake-up time, tleave denotes departure time, treturn denotes home time, tdown
denotes bedtime. In addition, the relationship between these time points is as follows:
tup = tleave − dmor, tdown = treturn + deve, in which dmor and deve are the awake time spent at
home in the morning/evening respectively. This paper assumes that tleave and treturn follow
truncated normal distribution, and dmor and deve follow uniform distribution, as shown in
Table 3. The value of the time step is an integer between 0 and 96, and the time step is the
scheduling interval, which is 15 min.

Table 2. User status division.

Status Time Ranges Temperature Range

Status 1: Awake at home
[
tup , tleave], [treturn , tdown] [21 ◦C, 25 ◦C]

Status 2: Out of home [tleave , treturn] /
State 3: Sleeping [tstart , tup], [tdown , tend] [18 ◦C, 24 ◦C]

Table 3. Distribution of parameters.

Distribution Range

Time to leave home/(15 min) tleave ∼ N
(
31, 32) [25, 37]

Time to get home/(15 min) treturn ∼ N
(
76, 32) [70, 82]

Activity duration at home in the morning/(15 min) dmor ∼ U (2, 9) /
Activity duration at home at night/(15 min) deve ∼ U (12, 21) /

The generation cost function required by the central controller can be in any form, includ-
ing expressions, step function curve and even calculation programs. It is worth mentioning
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that the central controller only needs to perform a limited number of marginal cost calculations
based on the generation cost during iteration, which can be extended to any user scale and
network topology. As in [24–26], this paper sets the cost function in the form of quadratic
function, that is, Ctotal = ax2 + bx + c. The coefficient of the quadratic term is 5 ¥/MW2 h, the
coefficient of the primary term is 200 ¥/MWh, and the constant term is 800 ¥.

5.1. Coordinated Preheating Results and Comparison

The simulation will be implemented within the time range of 04:00~24:00. In order to
comprehensively analyze the performance of the coordinated preheating algorithm, this
paper compares several cases, and the results are shown in Figure 8. The gray area in the
figure represents the base load, and the yellow area represents the wind power output.
The base load is not adjustable. The black solid line is the baseline heating schedule, in
which all users set heating schedules by on-off mode according to the set temperature.
The solid red line is the result of coordinated preheating. It can be seen that the curve
is smoother than the baseline because part of the peak load is shifted to the valley. And
the red solid line is almost all above the yellow area, so the wind power consumption is
greatly promoted. Another two cases were analyzed to demonstrate the superiority of the
coordinated preheating strategy. In case 1, all households schedule their heat load curves
based on the baseline electricity price to reduce the energy bill on the premise of meeting
the temperature demand. The baseline electricity price curve is the marginal generation
cost curve in the baseline case. It can be seen that in case 1, a forward and higher peak is
formed due to the neglect of marginal cost change, which leads to excessive preheating and
heat loss instead. Therefore, concentrated scheduling in the absence of coordination will
lead to preheating failure and increase the cost of power generation. To further illustrate the
necessity of coordination, case 2 is used for comparison. In case 2, all households schedule
their heat load curves based on the marginal cost curve of the coordinated preheating case,
which can be regarded as the optimal electricity price curve. However, it also failed to
reduce the peak, indicating that the scheduling based on a single price curve is not feasible
and the coordination is necessary.

Figure 8. Total load under different conditions.

A total of 30 adjustment rounds were conducted in the simulation, namely Round
# 1~Round # 30. In Round #1, Group #1 performs rescheduling based on the electricity
price given by the central controller. Similarly, Group #10 performs rescheduling in Round
#10. In Round # 11, it returns to Group # 1. The change of each evaluation index with the
number of rounds, is shown in Figure 9. Figure 9a shows the change of total generation
cost, which is reduced by 36.8% due to coordinated preheating. Figure 9b shows that
the total electricity bill of users has decreased by 48.3%. In addition, it can be seen from
Figure 9c that wind power curtailment is significantly reduced, and almost all wind power
can be consumed. It is worth noting that the total user bill decreases more than the total
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generation cost, which is attributed to the smoother load curve after preheating adjustment.
The two values are quite close when reaching the group equilibrium, which indicates that
the proposed algorithm achieves the optimal adjustment.

Figure 9. Changes of Evaluation Indexes with the Adjustment Rounds.

In addition, it can be found that all indicators have reached a balance in ten rounds.
At this time, all groups performed a round of adjustment, and subsequent optimization
produced only slight fluctuations. In the simulation, limited by the computing power of a
single computer, users in the group need to schedule one by one, so it takes a long time.
However, in practical applications, with the help of users’ edge computing capabilities,
users in the group solve optimization problems in parallel, and the adjustment time for
each round is within 10 s. The whole coordinated preheating process can reach equilibrium
within 2 min, which is suitable for day-ahead scheduling. In addition, the time-consuming
is related to the number of groups, but not related to the user scale due to the group-by-
group coordination method, which is extensible for super-large-scale coordination. On the
contrary, the one-by-one coordination method requires 20,000 rounds of adjustment in this
example, whose calculation time is linearly related to the user size, so it is not scalable.

Table 4 presents the performance comparison under different models, and two con-
clusions can be drawn: (1) A coordination mechanism is necessary. Preheating without
coordination will lead to the failure of adjustment. Its net peak and generation cost are
even higher than those without preheating; (2) A grouping mechanism is necessary, which
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can achieve scale-independence, while coordination one by one is unacceptable in terms of
computing time.

Table 4. Comparison of different preheating effects.

Generation Cost
(10,000 ¥)

User Bill
(10,000 ¥)

Net Peak
(MW)

Wind Power
Curtailment (MW)

Required
Rounds

No preheating 15.90 21.92 73.33 88.34 —
Preheating without

coordination 22.42 33.16 92.89 50.32 1

Coordinated preheating
group by group 10.04 11.33 38.40 1.03 20

Coordinated preheating one
by one — — — — 20,000

(Unacceptable)

In order to analyze the impact of each round of adjustment on the system, the impor-
tant process curves are given in Figure 10, and their meanings have been marked in the
figure. It can be seen from Figure 10a that both the morning and evening peaks of the total
load decrease with the adjustment. The peak decreases more obviously in the first few
rounds, and gradually approaches the balance in the later rounds. It is worth noting that
compared with the morning peak, the evening peak has dropped more significantly. This
is because the preheating period before the evening peak is long and there is no specific
heat demand (the user has not yet arrived home), so the adjustable range is large. The
preheating period before the morning peak has strict temperature restrictions (to ensure
a proper sleep temperature), and the adjustment range is limited. In addition, since the
earlier the preheating is, the greater the heat loss will be, the preheating period will not be
too long. The gray part in Figure 10b represents the wind power curtailment area, and it
can be seen that the curve gradually leaves the area with adjustment. Figure 10c shows the
change process of the marginal cost curve, which becomes smoother with adjustment.

Figure 10. Process display of each round.
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5.2. Analysis of Temperature and Energy Consumption in the Coordinated Preheating Process

To further explore the details of the preheating process, Figure 11 shows the temper-
ature and power curves of users participating in Round #1, including the adjusted and
original curves. In the temperature chart, the blue dotted line represents the temperature
limit when awaking at home; The red dotted line represents the temperature limit when
sleeping at home; The green area represents the sleeping period set by the user; The grey
area refers to the period of awaking at home. Therefore, the indoor temperature curve must
be in the orange and blue areas to meet user demands. The original curve adopts an on–off
adjustment mode to ensure that the temperature does not exceed the limit.

Figure 11. Comparison between optimization curves and original curves of a family participating in
the Round #1.

Figure 11b is the original temperature curve, and Figure 11d is the corresponding
IAC power curve. It can be seen that the black solid line representing the indoor air
temperature is located at the bottom of the orange and blue areas, which both meet the
user’s temperature demands and save energy. From 04:00 to 07:15, the user was sleeping,
so the IAC adjusts the power to ensure that the temperature does not exceed the lower
limit. The power is increased around 07:00 to ensure a comfortable temperature when the
user wakes up. After the user leaves home, the IAC stops running, so Ta and Tm starts to
drop. Tm decreases more slowly than Ta because the heat capacity of internal mass is larger
than that of air. At this time, the internal mass transfers heat to the air. As the temperature
difference between Ta and Twi gradually decreases, the heat loss becomes smaller, so the
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temperature drops faster first and then slower. The IAC power starts to rise at about 18:15
to ensure a comfortable temperature when users get home. As the air heat capacity is small,
Ta rises rapidly. And due to the large temperature difference between the air and internal
mass, the air begins to transfer a lot of heat to internal mass until temperature Tm is close to
temperature Ta. In addition, as the temperature demand decreases during sleep, although
the IAC power drops to zero at 23:15, the temperature still meets the demands when the
user sleeps (around 23:30).

Figure 11a,c are the temperature and power curves after preheating adjustment. The
marginal cost curve received by the user is the baseline curve in Figure 10c. It can be seen
that the marginal cost is lower in the period of 04:00~04:30 and the period out of home, so
the two periods are selected for preheating. Compared with the original power curve, the
power of the IAC is higher during the preheating period, and the room temperature also
increases while keeping within the set range. It is worth noting that, in order to reduce heat
loss, the preheating power increases gradually in the second half of the time out of home.
When users get home, the IAC is shut down for a long time, while the indoor temperature
is still in a comfortable range, thus reducing the energy consumption during the high
marginal cost period.

6. Conclusions

In this paper, a grouping coordinated preheating method based on a demand response
model is proposed for large-scale electric heating load, and the effectiveness of the proposed
method is verified by simulation. The main conclusions are as follows:

(1) The proposed framework can effectively coordinate the preheating scheduling of
users, take into account the changes in the marginal cost of the system, so as to solve
the problem of regulation failure under large-scale preheating, namely, new peaks
and increasing system costs, which promotes the consumption of renewable energy.
The effectiveness of the coordination is proved by the results in Figures 8–10.

(2) The room thermal parameter model and the performance map of IAC are integrated
into the demand response model. The model can take into account the travel planning
of users and ensure that the indoor temperature does not exceed the limit while reduc-
ing the electricity bill. A kind of edge computing and central regulation framework is
applied to the coordination mechanism, in which customized heat consumption plan
can be formulated for each user according to their temperature preferences and travel
planning. The effectiveness is proved by the results in Figure 11.

(3) The parallel computing structure within the adjustment group under the coordination
framework ensures the computing efficiency to meet the scheduling time requirements.
The proposed framework can be extended to larger scale systems. The effectiveness is
proved by the results in Table 4.
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Abstract: The upward trend of adopting Distributed Energy Resources (DER) reshapes the energy
landscape and supports the transition towards a sustainable, carbon-free electricity system. The
integration of Internet of Things (IoT) in Demand Response (DR) enables the transformation of energy
flexibility, originated by electricity consumers/prosumers, into a valuable DER asset, thus placing
them at the center of the electricity market. In this paper, it is shown how Local Energy Markets (LEM)
act as a catalyst by providing a digital platform where the prosumers’ energy needs and offerings can
be efficiently settled locally while minimizing the grid interaction. This paper showcases that the
IoT technology, which enables control and coordination of numerous devices, further unleashes the
flexibility potential of the distribution grid, offered as an energy service both to the LEM participants
as well as the external grid. This is achieved by orchestrating the IoT devices through a Consumer
Digital Twin (CDT), which facilitates the optimal adjustment of this flexibility according to the
consumers’ thermal comfort level constraints and preferences. An integrated LEM-CDT platform
is introduced, which comprises an optimal energy scheduler, accounts for the Renewable Energy
System (RES) uncertainty, errors in load forecasting, Day-Ahead Market (DAM) feed in/out the
tariff, and a fair price settling mechanism while considering user preferences. The results prove that
IoT-enabled consumers’ participation in the energy markets through LEM is flexible, cost-efficient,
and adaptive to the consumers’ comfort level while promoting both energy transition goals and social
welfare. In particular, the paper showcases that the proposed algorithm increases the profits of LEM
participants, lowers the corresponding operating costs, addresses efficiently the stochasticity of both
energy demand and generation, and requires minimal computational resources.

Keywords: local energy markets; consumer digital twin; transactive energy; thermal comfort; DER

1. Introduction

In recent years, technological advancements and policy directives in the European
Union (EU) [1] and the United States of America [2] have led to a significant increase in
the number of Distributed Energy Resources (DER) that are primarily connected to the
energy grid [3]. Therefore, the traditional energy consumers have been transformed into
prosumers, i.e., active entities of the energy market that simultaneously consume, produce
and share energy, depending on the regulatory framework, the weather and the operating
conditions [4]. Prosumers may own multiple energy assets, primarily small-scale DERs
for energy generation, and batteries or Electric Vehicles (EVs) for energy storage [5]. These
trends reshape the conventional and centralized power system and eventually disrupt
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the existing energy system. In this emerging landscape, the power system must undergo
structural changes to adapt and leverage the benefits of Internet of Things (IoT) technologies,
digitalization, and decarbonization policies.

The edge grid is a structural component of the power system; thus, the concepts of
Transactive Energy System (TES) and Local Energy Market (LEM) are considered novel
solutions that enable energy exchange between prosumers, increase the power system’s
efficiency, and reliability, and support the coordination between DERs [6]. Financial and
engineering advancements are embraced by TES and LEM, and they form an integral
part of the hierarchical energy marketplace, which includes wholesale, retail, and local
markets. Inevitably, the solutions of TES and LEM offer incentives for participation for all
stakeholders and maximize the social welfare in the energy market.

The exponential growth of computational power and IoT has created a strong techno-
logical infrastructure for collecting, transmitting, and processing data in a reliable, efficient,
and cost-effective manner. In this context, the concept of Digital Twin (DT), i.e., virtual
representations of physical entities that encompass the most discriminative characteristics
of the corresponding entity, has attracted the attention of researchers and the industry.
Bidirectional and automatic data flow between the physical and virtual entities are used
by DTs to produce predictive analytics, perform actions and support informed decisions.
In the power sector, DTs are considered promising solutions for sustainability, demand
side management, control of energy assets, reliable energy distribution and monitoring of
energy grid operations [7].

As flexibility can be obtained either at the residential or community level, this work
focuses on residential flexibility, which is then procured to the external grid through LEM.
Controlling Heating, Ventilation and Air Conditioning (HVAC) systems based on con-
sumers’ thermal comfort tolerance, scheduling household appliances and EV charging
are the typical ways to obtain residential flexibility. Based on the consumer’s preferences,
designated flexible loads are activated at optimal intervals during the desired time window
to minimize energy costs. Moreover, by allowing the consumer to specify the subjective in-
tensity of importance for each flexible load, prioritized Demand Response (DR) scheduling
can be implemented.

As residential flexibility is becoming critical for power systems and is now at the
forefront of the energy market, LEMs are acting as a catalyst in procuring residential
flexibility and empowering small RES owners [8]. LEMs simplify and accelerate this
process, enabling energy consumers at the edge of the grid to evolve from passive entities
to active integral energy market actors. Despite the fact that LEMs expedite consumers’
participation in the energy market, prosumers’ involvement will not be materialized as long
as their market engagement is conducted in a complicated way, limiting the interest on LEM
and leading to potential depreciation and eventually failure. Apparently, a seamless and
consumer-friendly way of market engagement is a decisive factor for LEM’s success. To this
end, the Consumer Digital Twin (CDT) serves as a powerful information tool that provides
automated data streams on consumers’ key characteristics and personalized preferences to
minimize their active involvement in operations, increase the efficiency of operations and
enhance the consumer-centricity of the LEM.

In this work, a LEM-CDT structure is introduced in order to bridge the gap between
local flexibility potential and the consumers’ preferences. Towards this end, the benefits
of both concepts are leveraged. On one hand, the local flexibility is procured efficiently
to the wholesale energy markets while guaranteeing monetary and social benefits for
LEM’s participants and at the same time the preferences of LEM members are not only
respected but also, and most importantly, incorporated in the optimal LEM scheduling.
By combining these concepts, the aim is to harness optimally the local flexibility capacity at
the distribution grid and attract more participants at LEM initiatives in order to create local
sustainable energy communities. To achieve this, CDT is an essential tool since it provides
the necessary information to the LEM operator in order to consider the particularities and
preferences of each participant placing them at the center of the electricity market. This user-
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centric approach is one of the main novelties of this paper, offering an efficient solution for
LEM operators to model their energy scheduling accurately and attract more participants.

The envisaged LEM–CDT structure is shown in Figure 1. Flexibility stems from the
prosumers’ side, either in the form of production from various DERs or through DR actions.
As shown, prosumers are at the center of the energy market, contributing to the energy mix
with any means they own, such as DERs, EVs, or even via DR schema. Supplying flexibility
has both technical advantages (e.g., quick response time) and widens the pool of potential
LEM members; thus, consumers who do not own DER assets can also be members and
contribute to the overall supply through their load flexibility. In addition, participation via
DR schema promotes democratization within the community, as all members contribute
to the aggregation generation and benefit from their participation. The stochasticity of
both energy demand and generation is taken into account to ensure a constant, reliable,
and cost-effective energy supply, thereby mitigating the cost of remedial action.

Figure 1. The consumer-centric structure of LEM

This paper is divided into five sections: In Section 2, a comprehensive literature review
for both LEMs and CDTs is provided. In Section 3, the proposed solution for the integration
of CDT and LEM is presented. In Section 4, the results from experiments are displayed
revealing the benefits of integrating CDT into LEM. Finally, in Section 5, the conclusions of
the work are provided.

2. State of the Art
2.1. Local Energy Market

Recent research by Honarmand et al. [9] and Doumen et al. [10] emphasized the
emergence of the LEM as a solution that prioritizes consumers in integrating DERs into
distribution networks effectively. The LEM approach allows the efficient management
of DERs, thereby increasing their utilization and overall impact on the distribution grid.
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LEMs facilitate prosumers’ unfettered access to the electricity market, leading to increased
flexibility in the grid and creating revenue streams for small-scale prosumers while sup-
porting balancing, congestion management, and ancillary services [11]. An LEM comprises
small-scale energy deployments and energy assets located in a small or a wide geographic
area. They are connected to the distribution grid in a decentralized structure where par-
ticipants cooperate with the available resources (DERs, DR, EVs) on a community level,
as depicted in Figure 2. LEM’s main objective is to encourage market participation by pro-
viding monetary incentives to prosumers to trade energy with one another with minimum
or no intermediate (e.g., energy aggregators) [12]. In this market, prosumers can share the
benefits of local flexibility within the community, promoting the deployment of distributed
renewable generation and DR [13]. To promote prosumers’ participation, the LEM achieves
load balancing at a lower price compared to the external grid. Consumers (buyers) can
reduce energy costs by buying energy at a lower price. In comparison, producers (sellers)
can increase their profit by offering energy at a higher price compared to the external grid.
Moreover, from a social perspective, it allows participants to be active members of their
communities by supporting and enabling them to consume renewable energy and benefit
from its distributed generation.

Figure 2. The future decentralized electricity system.

The pricing mechanisms of an LEM constitute one of its most important elements; many
algorithms for the LEM clearing price have been proposed. Specifically, Tushar et al. [14]
investigated the feasibility of social cooperation among prosumers participating in a peer-
to-peer (P2P) energy trading market by utilizing a canonical coalition game approach.
The results indicated that the proposed scheme can increase the prosumers’ willingness
to participate in P2P energy trading schemes. Lee et al. [15] proposed a direct electricity
trading market, in which the electricity pricing scheme achieves a fair allocation of profits
between consumers and small-scale energy suppliers by using the asymptotic Shapley
value function. Tsaousoglou et al. [16] presented a TES where an auction mechanism is
implemented with non-convex prosumer models and resource constraints. Long et al. [17]
presented three examples of a P2P market structure, namely bill sharing, mid-market rate,
and auction-based pricing, to validate the effectiveness of the proposed markets. These
market structures were applied on a residential community microgrid with a PV system.
Mengelkamp et al. [18] proposed a blockchain-based microgrid energy market without
central coordination and evaluated the ‘Brooklyn Microgrid Project’ as a case study. Finally,
Paudel et al. [19] introduced a game-theoretic approach for P2P energy trading among
prosumers, where consumers can adjust their consumption according to market conditions.
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Since LEMs are not fully restricted in electricity production, Brolin et al. [20] presented
a corresponding multi-energy structure that utilizes its full flexibility potential, while
Hayes et al. [21] facilitated the efficient flexibility procurement by an aggregator. In the
proposed platform, an aggregator can communicate directly with the participants and
determine costs and rewards between them so the benefits for both the aggregator and
the electrical systems are mutually increased. Lyu et al. [22] proposed a comprehensive
energy-sharing framework for smart buildings considering multiple dynamic components
covering heating, ventilation, air conditioning, battery energy storage systems, and EVs.
Bachoumis et al. [23] investigated the provided ancillary services to the external grid and
particularly the fast frequency response service. Finally, Huo et al. [24] considered the
uncertainty of PV production by employing the chance-constraints optimization method
for the operation of an energy hub.

The current LEMs lack consumer-centrism, failing to take into account the individual
preferences of participants. This proposal aims to address this knowledge gap by designing
a consumer-centric LEM that respects the priorities of LEM participants, as expressed
through personalized preferences for the flexible residential loads and the individual’s
indoor thermal comfort level. By prioritizing the preferences of consumers, the proposed
LEM will increase the effectiveness of DERs integration in distribution networks, providing
more efficient and cost-effective energy solutions for the participants.

2.2. Consumer Digital Twin

In electricity markets, DTs are promising solutions for sustainability, control of energy
assets, demand-side management, control of energy assets, reliable energy distribution,
and monitoring of energy grid operations [25]. Danilczyk et al. [26] proposed a DT to
address security issues and detect potential failures in a microgrid, such as instabilities and
failures in power distribution, in a timely manner. Darbali-Zamora et al. [27] introduced
a real-time DT that optimizes DER operations for distribution voltage regulation and
increases the awareness of power system dynamics. Podvalny et al. [28] proposed a scalable
and evolutionary DT framework to simulate the behavior of a power system under critical
events by employing a neural network as a decision support infrastructure. Wu et al. [29]
introduced a DT of grid batteries to diagnose faults in time and control their usage to extend
their lifetime, while Jain et al. [30] proposed a virtual replica of solar PVs to promptly detect
operational faults and evaluate their power generation performance. Atalay et al. [31]
proposed a DT that performs simulations over the virtual copy of the physical grid to
detect possible power supply interruptions. Dembski et al. [32] introduced an urban
DT representing a real community to enable the execution of scenarios over the virtual
twin and provide customized energy services to prosumers. Bazmohammadi et al. [33]
mentioned the enhancement of microgrid operations through DTs. Nguyen-Huu et al. [34]
and Han et al. [35] utilized DTs as an orchestration mechanism to coordinate the operation
of LEM and DER, respectively. Aghazadeh Ardebili et al. [36] used DTs as a tool to predict
energy production in power systems with a high volume of RES. Zhou et al. [37] highlighted
the benefits of DTs for providing flexibility in industrial power systems.

In the energy sector, the employment of DTs has gained significant attention as a
means to optimize the management of DERs. However, while DTs have proven to be
versatile tools in representing and simulating physical entities, their application to human
entities remains a challenge. The complexity of human behavior, influenced by factors
such as mental activities, ethics, and social interactions, makes it difficult to model human
behavior deterministically [38]. As a result, human DTs tend to only include key attributes
and selected characteristics to represent the corresponding human entity from a specific
socioeconomic perspective. Despite this limitation, the development of human-oriented
DTs holds potential for further advancements in the energy sector, particularly in the areas
of demand response and local energy markets.

The proposed CDT is a human-oriented, simplified virtual replica that represents the
entity of an electricity consumer within the context of an energy market. It incorporates

109



Appl. Sci. 2023, 13, 1798

the most informative and distinguishing characteristics, attributes, and behaviors of its
physical counterpart, while ensuring synchronous and bidirectional data flow between the
physical and virtual entities. To achieve this, raw data from both physical sources (smart
meters and wearable devices) and digital sources (REST API services) are collected and
processed to extract knowledge and facilitate informed decision-making.

The functionalities performed by the CDT include developing dynamic constructs of
prosumer energy behaviors, while also identifying consumer preferences with respect to
energy usage, thermal comfort tolerance and openness to engaging in flexibility and DR
actions, and the assessment of prosumer’s indoor thermal comfort level according to the
ASHRAE-55 standard [39] using environmental and physiological parameters captured
by a wrist-worn device. Thermal comfort expresses the personal thermal satisfaction as-
sociated with indoor thermal environmental conditions and adheres to an ideal thermal
condition and the appropriate tolerance limits within which the consumer feels comfort-
able. Continuous and automatic consumer thermal comfort assessment in conjunction
with consumer preferences is critical since it enables pertinent and optimal demand side
management while preserving the desirable thermal tolerance limits making the consumer
predictable energy-wise.

By utilizing time series of predicted weather data, CDT produces forecasts of the
consumer’s energy demand and projected energy production from owned RES, which
are further optimized based on the user’s preferences. With this in mind, the proposed
CDT is a core element that facilitates the deployment of human-centric DR optimization
strategies, it enables personalized and non-intrusive control functions of energy assets
without compromising the consumer’s desired thermal comfort tolerance, and it provides
consumer flexibility to aggregators. Additionally, it ensures the improvement of short and
mid-term demand forecasting by using real data streams from the consumer’s energy assets
to address the stochasticity of the distribution grid and minimize DR strategy overruns.

The CDT consists of a front-end, a back-end, and a database intending to act as a
web-based tool that records and processes the user’s preferences to produce priority vec-
tors through multi-criteria decision analysis, and user’s environmental and physiological
parameters through ML methods to assess indoor thermal comfort. Additionally, CDT
completes analytics and enables interoperability to cater to aggregator platforms with
critical flexibility information in real-time.

The overall contribution of this paper can be summarized as follows:

• An energy market design that enables the unfettered participation of small-scale,
local DERs and residential flexible loads in electricity markets, allowing the exchange
of energy without any external involvement and eliminating the requirement for
ownership of energy assets;

• A consumer-centric LEM that respects the priorities of LEM participants, as expressed
through personalized preferences for the flexible residential loads and the individual’s
indoor thermal comfort level;

• The maximization of potential benefit for LEM participants by integrating CDT in-
formation into the LEM marketplace. The CDT provides information regarding the
consumer’s energy demand and production, the energy consumption of electric ap-
pliances within the household, the consumer’s personalized preferences, and the
consumer’s indoor thermal comfort level;

• An optimal energy scheduling considering the stochastic nature of both the generation
assets and the local demand by employing the chance-constraints method.

3. Framework Implementation

In this section, the CDT and LEM-implemented models are described and their inte-
gration is presented. The main goal of the proposed framework is to integrate the benefits
of CDT into the LEM architecture. This will enable every member of an LEM to be an active
prosumer and empower its position in the energy market through the LEM. In that context,
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CDT offers the opportunity of seamless participation in the local market and at the same
time the incorporation of consumers’ preferences into the market outcome.

3.1. Consumer Digital Twin

Consumer preferences constitute a set of decision criteria that reflect the consumer’s
prioritized demand response potential within an LEM. As such, the consumer defines the
subjective intensity of importance for each residential flexible load, i.e., HVAC system, heat
pump, EV charger, battery storage unit, dishwasher, and washing machine, and the desired
operation time window of each load, to generate a priority vector as input to the LEM.
Additionally, the boundaries of the consumer’s thermal comfort tolerance are defined,
adhering to Fanger’s 7-point thermal sensation scale [40], as depicted in Figure 3. In this
scale, each state of thermal sensation corresponds to a numerical value between −3 and +3,
where −3 and +3 denote the cold and hot thermal states, respectively, and 0 denotes the
neutral state.

The hierarchical ordering of consumer preferences needs to be arranged through
a formal methodological approach. Therefore, the Analytical Hierarchy Process (AHP),
which is a decision-making framework that allocates weights to a set of N decision criteria
and produces a priority vector imposing pairwise comparisons between them, is employed.
A 9-pointed balanced importance scale is utilized, in which the consumer defines whether
a criterion is superior or inferior to the compared one in terms of verbal appreciation.
More specifically, the scale’s values come under the discrete set of ∆1 = {1, 3, 5, 7, 9}
and indicate equal, moderate, strong, very strong, and extreme importance, respectively,
whereas intermediate values of the discrete set ∆2 = {2, 4, 6, 8} are omitted as they represent
a compromise between the compared criteria. To a superior criterion, the corresponding
numerical value of the verbal response is assigned as priority value aij, while the reciprocal
a−1

ij one is assigned to the inferior one. The priority values are allocated to a squared
decision matrix AN×N to derive the normalized priority vector for the set of decision
criteria (preferences). To evaluate whether the obtained weights from the AHP method
are plausible, the consistency ratio metric (CR) is applied to the normalized priority vector.
This metric employs the random consistency index, whose value results from a predefined
set of constant values with respect to the number of decision criteria. The results of the
method are considered sufficiently consistent and acceptable if the CR index is less than 0.1.
If this condition is not met, the stakeholder should revise the intensity of importance for
each pairwise comparison, and the process of the method is iterated.

CDT provides two matrices as input to LEM; the load flexibility matrix, denoted by LF ,
whose elements represent the relative importance of each flexible load as determined by the
AHP method along with the operating time window of each flexible load as defined by the
consumer, and the thermal flexibility matrix, denoted by TF, whose elements include the
consumer’s current thermal comfort level and thermal comfort tolerance deviation.

The LF matrix allocates to each row the weight of the corresponding flexible load and
the operating time window intervals, respectively, so that the first column vector l f:,1 of
LF matrix represents the priority vector determined by the AHP method. For instance,
the vector l fn,: = [0.2, 2, 7] represents a weight of 0.2 assigned to the corresponding load
and a desired load’s operating time window between 2:00 a.m. and 7:00 a.m., whereas the
vector l f:,1 = [0.2, 0.1, 0.1, 0.3, 0.1, 0.2] indicates weights of 0.2, 0.1, 0.1, 0.3, 0.1, 0.2 to the
HVAC system, the heat pump, the EV charger, the battery storage unit, the dishwasher and
the washing machine, respectively. At the same time, CDT provides data streams with the
consumer’s current thermal comfort level and the thermal comfort tolerance deviation from
the desired range in 15-min intervals. For instance, the TF = [−1.1, +0.9, +2.1] represents
a consumer with thermal comfort tolerance desired range from −2 (cool) to +1 (slightly
warm) and a current thermal comfort level of −1.1.

To insert and update the subjective intensity of importance for each residential flexible
load, as well as the desired load’s operation time window and thermal comfort tolerance
boundaries, CDT offers a user-friendly graphical interface. This interface allows consumers
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to determine their thermal comfort tolerance over the thermal comfort scale, as presented
in Figure 3 and the intensity of importance for each load through pairwise comparisons
and the desired operation’s time window intervals over a 9-pointed importance scale,
as presented in Figure 4.

Figure 3. The implemented thermal comfort scale.

Figure 4. The implemented 9-pointed importance scales.

3.2. Local Energy Market

The LEM is a digital platform that facilitates transactions between a number of energy
actors, i.e., consumers and prosumers, at a local level. A community, comprising at least
two participants engaging in energy trading, can be characterized as LEM. The LEM
optimizes the Day-Ahead (DA) scheduling to minimize its operating costs. The price at
which the transaction is cleared within LEM can be determined using different approaches.
In this section, two applied pricing algorithms are presented and compared along with the
market design.

3.2.1. Market Design

LEM allows small-scale DER owners to actively engage in energy trading among
themselves and to participate in the wholesale and retail energy markets. The fundamental
feature of the LEM is the lower market clearing price compared to the external grid, which
provides an incentive for prosumers and consumers to participate in such a cooperative
market mechanism. Another important feature of the proposed LEM market is the clear
definition of the market architecture and the pricing rules. It is evident that the rules of
the design should be disseminated and explained in detail to the LEM participants so that
each participant knows in advance the operation of the market. In our case, a two-sided
market is considered, meaning that several buyers hold items for sale and several buyers
consider buying these items. The key concept in such a market is that every participant
(either buyer or seller) has a different valuation and risk profile of the held items, products
and services. An efficient market maximizes the total profit obtained both from the buyers’
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and sellers’ sides. To achieve an efficient local market, the total profit must be maximized
for both groups.

3.2.2. Pricing Algorithms

For the validation of the proposed coordination scheme between CDT and LEM,
the first step is the local price clearing at which the transactions take place in the market.
Regarding the pricing algorithms, two different approaches are considered. In both algo-
rithms, the price resolution is hourly, similar to the price signals of the external day-ahead
market (DAM). Therefore, there is a different arbitrage (difference between LEM price and
external price) for each particular hour. The two algorithms are summarized below:

• Peer-to-peer (P2P) pricing algorithm: The first approach is a direct P2P pricing mecha-
nism. In a P2P transaction, the buyer and the seller transact directly with each other in
terms of the delivery of the good or service and the exchange of payment. Specifically,
after the initial submission of the bids from both sides, the order book of the pairs of
transactions is created. Multiple price levels are initially created since different energy
levels are offered at different prices. Prices are ranked for sellers from the lowest to
the highest and vice versa for buyers. If the lowest price for consumers is lower than
the highest price for sellers, the transaction can be executed. Otherwise, there is a
case of supply deficit; in that case, the minimum of the supply-demand pair is cleared
within the internal market and the rest is supplied by the grid. The clearing price
Plem (the average value of the two prices) creates one universal price inside the LEM.
A universal (same) price is desirable since it is easier to evaluate the efficiency of the
market. The clearing price results from:

Plem =
Pprodlow

+ Pconshigh

2
(1)

• CDT-LEM pricing algorithm: In this work, the price is calculated based on the LEM’s
production and consumption values. In other words, the participants are not directly
participating in the market in the form of bids. This pricing mechanism has three
main advantages. First, it minimizes the participants’ involvement so that the LEM
is accessible to more potential members by lowering the entry barriers. Secondly,
the elimination of a bidding process strengthens the resiliency of LEM against market
manipulation concerns. Finally, the solution’s applicability is straightforward since all
the necessary data are directly taken from smart meters or IoT devices. The process of
determining the clearing price is analyzed in more detail in the following section.

In both pricing algorithms, the internal market is cleared at a price lower than the
selling price of the retail external grid and higher than the buying price of the external
grid. The internal energy is practically exempt from transfer losses and any other monetary
burdens (such as transfer may incur due to the transition of energy through a large-scale
grid) and thus the internal price can be lower. The time horizon that transactions take
place depends on the market design (Day-ahead market, Real-time market, etc.), while
the granularity of the algorithm’s solution is determined mainly by how often the system
updates its information and control signals.

3.2.3. LEM and CDT Integration

The potential impact of CDT on LEM services is significant due to the integration
of consumers’ energy flexibility information with supplementary parameters from third-
party resources, such as the energy retailer’s price. As shown in Figure 5, bidirectional
and automatic data flows between the LEM and the CDT platform are enabled by the
communication layer, so thus individual parameters that affect the consumer’s energy
flexibility potential are seamlessly elicited by CDT for each LEM participant, specifically,
the participant’s energy demand and production, the prioritized DR scheduling based
on the participant’s preferences and the participant’s thermal comfort level. The LEM
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platform refers to the energy market and the assets that locally generate electricity while
CDT involves information regarding user comfort. The information exchange between
the platforms aims at the maximization of users’ benefits. To this end, CDT serves as a
strong knowledge base for enhancing the efficiency of LEM operations and price discovery
mechanism and optimizing energy management services.

Figure 5. Integration of LEM and CDT.

The information exchange between LEM and CDT is critical for the integration of the
two platforms and provides the following benefits:

• Information about the LEM participant’s priorities and preferences. CDT employs
a multi-criteria methodological framework, as described in Section 3.1, from which
the importance level of a family of energy criteria is determined. Thus, the consumer-
centrism of LEM is enhanced and LEM operations are personalized.

• Information about LEM participants energy consumption and production. The con-
sumption levels of the consumer are elicited from the IoT devices installed within the
domicile, i.e., smart meters and sub-meters, on the desired time scale. The energy
production levels from RES are retrieved from the smart sensors installed on house-
hold rooftop solar. In addition, CDT analyzes historical consumption data to forecast
future energy demand and employs a forecast model for energy production from
solar PVs based on the predictive analytics of outdoor weather conditions. For the
implementation of LEM, energy demand and generation data are essential for both
price discovery and energy scheduling. The forecasted values of energy consumption
and production allow LEM to plan its operation in a more efficient way.

• Optimization of Energy Management System (EMS) services. CDT can optimize
the EMS services since it contributes valuable information about the behavior of an
LEM participant. More specifically, it provides data related to the individual’s energy
consumption, which is utilized to discover energy consumption patterns and classify
consumers into groups. Thus, LEM can be operated in a coordinated manner to
initially connect users with similar behavioral patterns, and then seek alternative
solutions. In addition, the LEM operator can classify LEM participants based on their
flexibility potential, as retrieved from the CDT information. In a nutshell, the LEM-
CDT integration can offer a highly scalable and easy-to-implement solution that
enables LEM to harness the available flexibility in its ecosystem in an optimal and
efficient manner.
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4. Results and Validation
Use Case Description

In this work, the CDT-LEM pricing is compared with P2P pricing [18]. The evaluation
is conducted in terms of consumers’ payment, prosumers’ profit, and computational per-
formance of both algorithms. To assess the applicability of LEM, both pricing algorithms
are examined in a real-world test case: a residential community in central Germany. In par-
ticular, the total number of participants in the community is 27 residential members, 12 of
them have installed PV systems on their rooftops, while the rest of them are solely energy
consumers. The former group contributes to the LEM through their flexible loads, in our
case their HVAC systems, via a DR scheme. This specific flexible load was chosen since it
is the most energy-consuming appliance in households and, in our case, it is possible to
control HVACs’ operation through smart controllers. Moreover, the time period is a typical
single day during summer, characterized by substantial PV production and high demand
for HVAC load.

The pricing algorithm and the optimal scheduling are calculated on the LEM operator’s
cloud platform. Additional critical services, such as load and generation forecasting,
interaction with the wholesale energy market, and integration of meteorological data, are
also deployed in LEM’s cloud. Regarding the CDT implementation, each participant is
equipped with a wrist-worn wearable device, which assesses and transmits the thermal
comfort level. In addition, energy preferences have been provided by the consumer and
processed by CDT, as described in Section 3.1. Based on this information, participants are
classified into three classes. To simulate the participation of the consumers, the different
classes of flexibility capacity stemming from each participant are considered to follow
the normal distribution. The classes are derived based on the values provided by the
flexibility and thermal comfort matrices. The first class contains the non-flexible consumers
whose load profile cannot be altered. The second class contains low-flexibility participants,
while the third class contains fully flexible participants with no constraints of adjusting
their load. In all three classes, the thermal comfort limits of each user are not violated.
These classes are formulated as parameters in the optimization problem and determine the
allowed shiftable demand of each participant. In that context, CDT extends the flexibility
capabilities of LEM by creating a more stable and fair cooperative energy scheme, since even
the members who do not own any energy production assets can contribute to the energy
community. Accordingly, all participants contribute to LEM for mutual benefit. Finally,
CDT offers a seamless way of performing load shifting based on participants’ preferences.
The main advantage of the CDT-LEM pricing algorithm is that active engagement of
participants is not required. Consumers are encouraged to participate, as the price results
are always within the range of feed-in and feed-out tariffs. The inputs of the algorithm
are consumption and generation forecasts, along with feed-in and feed-out tariffs, and the
output is the resulting LEM clearing price. The LEM price curve is a representation of the
local generation and demand, and is made available to all participants. It is depicted as a
three-dimensional surface, as illustrated in Figure 6. The curve is generated for each hour,
although it can be created for any other desired time horizon.

On the contrary, in the case of P2P pricing, the price is calculated based on each
participant’s bidding strategy, which is prone to market manipulation, especially in the case
of a single participant with significant market power (e.g., higher installed PV capacity).
Hence, the adoption of the P2P algorithm requires a sufficient regulatory framework. Even
so, both algorithms lead to lower energy costs, where consumers and prosumers interact
with the external grid via feed-in and feed-out tariffs respectively.

LEM’s main goal is to optimize the DA scheduling by minimizing its operating costs.
Batteries’ charging and discharging are among the decision variables of the optimization
problem. The minimization of LEM’s operating cost is calculated based on the forecasted
values of local generation and local demand in a one-day horizon. The forecasting error,
especially in low-scale energy deployments [41], leads to deviations in the output of the
optimization problem. Hence, the DAM schedule differs from the optimal deterministic
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solution, leading to remedial actions that bear down higher costs on LEM participants.
Incorporating stochastic variables in the optimization problem is the key to ensuring a
constant, reliable power supply and achieving a cost-efficient LEM operation.

Figure 6. LEM pricing curves with feed-out and feed-in tariffs as limits.

The stochasticity of DERs generation and local consumption affects the LEM schedul-
ing [42]. It is crucial to design a market that effectively deals with stochasticity, as the
cost for remedial actions will be significant in the case of high uncertainty levels [43].
A wide variety of stochastic optimization methods have been employed to cope with
uncertainty in power systems operation, namely scenario-based approaches, robust opti-
mization, and chance-constrained optimization [44]. The chance-constraints method allows
certain unexpected events to violate specific constraints considering the overall constraint
satisfaction is satisfied with a predefined level of probability. Chance constraints are trans-
formed into deterministic equivalents, and a standard solution method is then employed to
solve the problem. The uncertainty of DERs and demand is incorporated into the optimal
scheduling process by using statistical moments of the parameters’ distribution, which
are derived from historical data such as mean and standard deviation [45]. The ability
to accommodate a wide range of distributions eliminates the need for discretization of a
probability space for scenario sampling [46] or the derivation of a finite uncertainty set [47].

In this work, a chance-constraints approach for the DA scheduling is employed,
which explicitly incorporates the stochasticity of DERs generation and local demand and
analyzes the effect of uncertainty level on LEM’s social welfare. The rationale behind our
choice was that compared to the other two stochastic optimization methods, the chance-
constrained leads to less conservative results [48]. Another important factor is that the level
of uncertainty can be tuned via a confidence interval [49]. Finally, by incorporating the
stochastic optimization problem into a chance constraints formulation, the convexity of the
optimization problem is maintained. In this paper, stochasticity is accounted for on both
the supply (i.e., solar PV) and demand sides. The granularity of the optimal scheduling of
the LEM is equal to 1 h and has an interval horizon of 24 h, similar to the wholesale DAM
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market architecture. The objective function of the optimization problem is formulated
as follows:

min Ctotal =
24

∑
i=1

(πi
int × Pi

int + πi
buy × Pi

in − πi
sell × Pi

out) (2)

where i, l, k, and n indicate the hour, flexible consumers, PV owners and battery owners,
respectively. Ci

total denotes the total LEM cost, πi
int is the LEM price, and πi

buy and πi
sell

are the respective feed in and feed out grid tariffs. Pi
in and Pi

out denote power import and
export from and to the grid.

Equations (3)–(6) outline the energy conservation laws and constitute the constraints
of the optimization problem:

Pi
int = Pi

gen + Pi
BBdis − Pi

load + FI × SC+
l,i − FI × SC−l,i − Pi

BBch (3)

Pi
gen =

k

∑
1
(Pi,k

gen) (4)

Pi
load =

l

∑
1
(Pi,l

load) (5)

Pi
int = Pi

gen + Pi
BBdis − Pi

load + FI × SC+
l,i − FI × SC−l,i (6)

where FI indicates the flexibility index derived from the flexibility matrix and thermal
comfort matrix, SC+

l,i and SC−l,i indicate the amount of power consumption for the specific
i-hour, shifted by each household at each time-step and the amount of power consumption
that has previously been shifted and is now consumed, respectively. Additionally, Pi

gen

indicates the total LEM production, Pi
BBdis and Pi

BBch indicate the battery’s discharging and
power, respectively, and Pi

load indicates the LEM’s load profile. The notations of k, l and n
indicate the number of producers, consumers and storage owners, respectively:

0 ≤ Pi
in ≤ Pmax

in (7)

0 ≤ Pi
out ≤ Pmax

out (8)

The allowed bounds of energy exchange between the LEM and the grid are defined by
constraints (7) and (8):

en,i
BB = en,i−1

BB + ηn
chPn,i

BBch × ∆t− (1/ηn
dis)× Pn,i

BBdis × ∆t (9)

0 ≤ Pn,i
BBch ≤ Pn

BBch,max (10)

0 ≤ Pn,i
BBdis ≤ Pn

BBdis,max (11)

0 ≤ en,i
BB ≤ en

BB,max (12)

en,1
BB = en,T

BB = (1/2)en
BB,max (13)

Equations (9)–(13) denote the storage energy state update, in which en,i
BB denotes the

battery’s energy state and ηn
ch and ηn

dis show charging and discharging efficiency levels,
respectively. Lastly, Pn

BBch,max and Pn
BBdis,max denote the maximum and minimum storage

charging rate while en
BB,max and SDt define the maximum storage capacity and shifted

demand, respectively,
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FI × SC+
l,i ≤ FI × SDt + SC−l,i (14)

SC−l,i = SC+
k,i−1 (15)

SC+
l,I = 0 (16)

Demand can be shifted by one hour at a fixed rate determined for each tenant based
on their preferences. Constraint (14) assures that the amount of the shifted demand does
not exceed the maximum residential load, by restricting the amount of shifted demand to
the residential load for the specific time step plus the shifted demand in the previous time
step. Equation (15) guarantees that the already shifted demand is either consumed in the
current time-step or shifted further. The shifted demand at the end of the time horizon for
the optimization problem in Equation (16) should equal zero, ensuring that the demand
will not be shifted to the next day’s optimization problem:

Pr{Pi
gen ≤ P̃i

gen} ≥ α
′

(17)

Pr{Pi
gen ≥ P̃i

gen} ≤ β
′

(18)

α
′
+ β

′ ≤ 1 (19)

Equations (17)–(19) denote the probability of the actual production to be in a specific
range, where P̃i

gen is equal to the forecasted generation value plus the forecast error εi.

Finally, α
′

and β
′

denote the probabilities of upper and lower bounds, respectively.
The proposed method in [50] is applied in order to transform the probabilistic chance

constraints into deterministic values that can be used as input to the optimization procedure.
The maximum PV forecasting error εi is considered equal to 20% following the nor-

mal distribution N(0, σ2), with a 99.7% confidence interval achieved in [−3σ,+3σ] range.
At time interval i, σ is equal to 0.1Pi

Fgen, which is the forecasted PV generation. Moreover,

εi is constrained between maximum installed capacity Pmax
gen and the forecasted value Pi

Fgen;

therefore, the error distribution εi belongs within the range [−Pi
Fgen, Pmax

gen − Pi
FPV ]. The εi

follows the conditional probability distribution given by:

Φi(x) ∼ N(0, 0.01(Pi
FPV)

2) (20)

where Φi(x) is the conditional probability distribution:

Φ
′
i(x) =

Φi(x)−Φi(−Pi
Fgen)

Φi(Pmax
gen − Pi

Fgen)−Φi(−Pi
Fgen)

(21)

Φ−1′
i (x) = Φ−1

i [xΦi(Pmax
gen − Pi

Fgen) + (1− x)Φi(−Pi
Fgen)] (22)

If (22) is solved and Φ−1′
i (x) can be found, then (17) and (18) can be transformed into

the following equation:
F−1

β
′ {P̃i

gen} ≤ Pi
gen ≤ F−1

1−α
′ {P̃i

gen} (23)

where F−1{P̃i
gen} is the inverse forecasted PV production distribution.

To address the stochastic nature of demand, a similar approach as the one described
above for the generation is followed. Across the literature, there are two approaches
for modeling load uncertainty as a way to ensure that demand will not be shifted with
equality constraints containing stochastic parameters in the optimization problem. The first
method converts the equality constraints into inequality ones, whereas the second method
eliminates variables [51]. However, by following the second one, the final variable values
will remain uncertain; this is because the aforementioned variables depend on stochastic
parameters. In our case, those variables are the charging/discharging level of the batteries
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and the demand shift, while the parameter is the day-ahead load. Moreover, if the variables
that will be eliminated contain stochastic parameters as coefficients, eliminating such
variables leads to nonlinear optimization problems. On that account, this approach is not
recommended because the eliminated variables (i.e., the charging/discharging level of
the batteries and the demand shift) depend on the stochastic parameters, which is the
day-ahead demand. Moreover, it is evident that the selection of variables determines
the subsequent optimization problem. In other words, the choice of different eliminating
variables leads to different optimization problems.

Based on the above, the first approach is followed and the equality constraints (4) and
(5) are converted into inequality constraints (25) and (26), respectively:

k = Pi
gen + Pi

BBdis − Pi
load − Pi

BBch (24)

k− d ≤ Pi
int ≤ k + d (25)

l

∑
1
(Pi,l

load)− d ≤ Pi
load ≤

l

∑
1
(Pi,l

load) + d (26)

where d is a small parameter to ensure that the above inequalities are tight at optimality.

5. Results

In Figure 7, the hourly prices for both pricing algorithms are presented. The price
levels of both algorithms are within the bounds defined by the external grid (feed-in and
feed-out tariffs); therefore, consumer participation in an LEM framework is beneficial under
both pricing algorithms. In particular, the prices of our proposed algorithm are lower than
those of the P2P approach during hours of high PV production. This is to be expected
since, in the CDT-LEM pricing, no direct bids are submitted by the participants; the price
behavior follows the pattern of residual load. Therefore, during time intervals with excess
PV production, the community energy demand is lower and the prosumer is not adequately
compensated. On the other hand, the prices of the proposed algorithm are significantly
higher during the night hours of the day (7:00 p.m.–6:00 a.m.), as shown in Figure 7.

Figure 7. Hourly prices with the two (2) different pricing algorithms.

In Table 1, it is evident that, without an LEM, the procurement daily costs are sig-
nificantly higher. Specifically, employing the proposed algorithm without CDT, the cost
is reduced by 20.7%, while the cost reduction with CDT is 27.8%. It is noticeable that,
while P2P pricing also leads to cost reduction, the percentage drop is smaller compared
to the respective one from our proposed algorithm. This is due to the different way,
in which the LEM operates; under the P2P algorithm, there is a higher trade of energy with
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the external grid, while the proposed algorithm seeks to optimize the energy within the
LEM framework.

Table 1. Total Daily Cost in Euros.

Market No LEM (e) P2P w/o
CDT (e)

Proposed
Algorithm

w/o CDT (e)
P2P w/t CDT (e)

Proposed
Algorithm

w/t CDT (e)

Total Cost 20.091 e 18.792 e 17.490 e 16.351 e 15.612 e

In Table 2, consumer payments are the lowest under the proposed method with
CDT. The producers’ profit is also the highest under the same schema since the traded
energy is higher with the proposed algorithm than with the P2P approach, which leads to
profit maximization.

Table 2. Total payment and profit in euros.

No LEM (e) P2P Algorithm (e) Proposed Algorithm (e)

Payment 48.555 e 37.087 e 33.767 e

Profit 36.670 e 51.096 e 58.196 e

In Table 3, the results for both pricing algorithms are displayed, with and without
the utilization of the CDT. The results focus on two time periods, between 2:00 a.m. and
8:00 p.m. and between 2:00 p.m. and 8:00 p.m. These time periods are selected because
the pricing algorithms generate different state-of-charge values during these time periods.
In particular, under P2P pricing, the excess energy (during midday) is sold to the exter-
nal grid, leading the batteries to reach their lowest accepted levels (20% state of charge)
regardless of the CDT. On the other hand, with CDT-LEM pricing, this energy is used to
charge the batteries, which is why there are no abrupt peaks. This fact leads to a more
“self-sufficient” LEM since the interaction with the external grid is lower than in the P2P
case. In the CDT-LEM pricing mechanism, the LEM prioritizes the local energy needs and
then the energy trading with the external grid via the wholesale markets. Apparently, our
algorithm leads to battery charging when there is a higher local generation while the P2P
algorithm sells the excess capacity to the wholesale market.

Figures 8 and 9 show how the probability of constraint violation affects the total
operational LEM costs. As the probability decreases, the total expected cost increases due
to the fact that the LEM operation becomes more “conservative” in order to respect the
optimization constraints. Furthermore, the CDT-LEM pricing coupled with the CDT results
in the lowest costs, regardless of the probability. Clearly, there is a trade-off between higher
operating costs and low-risk scheduling, and the associated decision rests with the LEM
operator and the specific pricing mechanism.

In Figure 10, the energy exchange levels with the external grid are presented. Positive
values represent the sale of energy to the grid and negative values represent the purchase
of energy from the grid. As mentioned earlier and shown in Figure 10, the energy exchange
is actually higher in the P2P approach, while our algorithm leads to lower dependence on
the external grid. This is due to the fact that LEM first resolves its local imbalances and then
interacts with the external grid. The hourly intervals with the highest grid interactions are
around midday since the production level within LEM is high during these hours leading
to a large energy surplus.
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Finally, in Table 4, the scalability and the computational performance of the two pro-
posed algorithms are examined for an increasing number of LEM participants. Apparently,
our proposed algorithm outperforms the P2P pricing, as it is multiple times faster, particu-
larly as the number of participants increases. This is due to the fact that the P2P algorithm
requires a computationally demanding matching algorithm between the energy supply
offers and energy demand bids. This procedure is conducted through an optimization
problem in order to achieve optimal matching. Hence, as the number of participants in-
creases, the optimization problem is more complex with a higher computational burden.
On the other hand, the CDT-LEM pricing computational needs are minimal, since it results
from a heuristic process that requires only the generation/demand values and the external
market tariffs.

Figure 8. Total cost vs. probability of generation stochasticity violation

Table 3. Batteries state of charge.

Hour P2P w/o CDT (%)
Proposed

Algorithm w/o
CDT (%)

P2P w/t CDT (%)
Proposed

Algorithm w/t
CDT (%)

2 a.m. 22.0 23.4 27.9 27.0

3 a.m. 21.5 33.0 30.0 37.3

4 a.m. 48.2 59.1 38.0 74.0

5 a.m. 73.0 100.0 74.3 74.0

6 a.m. 100.0 100.0 100.0 100.0

7 a.m. 25.0 75.0 20.0 73.9

8 a.m. 22.5 75.1 20.0 73.5

2 p.m. 22.0 24.0 20.0 67.0

3 p.m. 20.0 25.7 20.0 66.2

4 p.m. 20.0 75.2 20.0 65.3

5 p.m. 76.7 74.0 40.0 72.0

6 p.m. 76.7 75.2 42.3 69.2

7 p.m. 76.7 75.0 36.1 65.0

8 p.m. 25.0 26.0 20.0 20.0
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Table 4. Computational performance of the P2P and proposed algorithm.

Algorithm N = 10 N = 20 N = 50 N = 100

P2P 0.1 s 0.12 s 0.47 s 3.2 s

Proposed 0.004 s 0.0035 s 0.0065 s 0.017 s

Figure 9. Total cost vs. probability of demand stochasticity violation.

Figure 10. Energy exchange with the external grid.

Visualization of Results through CDT

In the proposed integration, CDT additionally serves as a visualization tool for con-
sumers to track key indicators of their participation in LEM, as shown in Figure 11, promot-
ing energy flexibility as a financial incentive. Specifically, a dashboard displays information
on weekly energy production and demand with a daily resolution, financial profit from
LEM participation, and specific parameters that affect thermal comfort.
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Figure 11. Consumer digital twin dashboard.

6. Conclusions

This paper presents an integrated framework of LEM-CDT that maximizes the flexibil-
ity potential of the participants and improves the market’s operations efficiency. A detailed
market design with different pricing mechanisms for handling LEM transactions is also
introduced. The results of the proposed framework are summarized as follows:

• Consumer preferences regarding thermal comfort and residential loads are proved to
be valuable inputs for optimizing LEM operations.

• The attainment of optimal energy exchange with the external grid and the maximiza-
tion of social welfare is accomplished.
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• The enhancement of consumer-centricity and ease of implementation, as the partic-
ipants are not required to actively submit energy selling or buying offers through a
bidding process.

• The democratization of LEM through CDT-enabled automated participation broadens
the potential participant base, positioning it as a more environmentally-friendly,
attractive, and consumer-centric alternative to traditional energy markets.

• The generation and demand stochasticity is modeled by a chance-constrained schedul-
ing optimization algorithm that ensures lower balancing needs with minimal require-
ments for market participation or remedial actions, despite the higher costs.

The proposed solution encounters challenges with regard to regulatory compliance
and ensuring the confidentiality of participants’ data. Despite a current dearth of clear
guidelines for LEMs design and operations, efforts are being undertaken to rectify this.
In order to establish trust and attract new members, LEMs must prioritize creating a reliable
environment. Additionally, the integration of a large number of IoT devices accentuates
the necessity for robust cybersecurity measures to safeguard against potential breaches.

The proposed model holds the potential for further enhancement in two directions.
One area of improvement would be the integration of a more comprehensive collection of
consumer preferences, with the aim of augmenting its consumer-centric orientation and
further refining the consumer priorities for LEM operation. Another avenue for research
would be to incorporate the distribution network constraints within LEM, in order to
prevent voltage and line congestion incidents. Additionally, the proposed integration of
LEM-CDT should be assessed in a larger-scale study utilizing a larger volume of data.
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11. Herenčić, L.; Ilak, P.; Rajšl, I. Effects of local electricity trading on power flows and voltage levels for different elasticities and

prices. Energies 2019, 12, 4708. [CrossRef]
12. Rassa, A.; van Leeuwen, C.; Spaans, R.; Kok, K. Developing local energy markets: A holistic system approach. IEEE Power Energy

Mag. 2019, 17, 59–70. [CrossRef]
13. Khorasany, M.; Mishra, Y.; Ledwich, G. A decentralized bilateral energy trading system for peer-to-peer electricity markets. IEEE

Trans. Ind. Electron. 2019, 67, 4646–4657. [CrossRef]
14. Tushar, W.; Saha, T.K.; Yuen, C.; Liddell, P.; Bean, R.; Poor, H.V. Peer-to-peer energy trading with sustainable user participation: A

game theoretic approach. IEEE Access 2018, 6, 62932–62943. [CrossRef]
15. Lee, W.; Xiang, L.; Schober, R.; Wong, V.W. Direct electricity trading in smart grid: A coalitional game analysis. IEEE J. Sel. Areas

Commun. 2014, 32, 1398–1411. [CrossRef]
16. Tsaousoglou, G.; Pinson, P.; Paterakis, N.G. Transactive energy for flexible prosumers using algorithmic game theory. IEEE Trans.

Sustain. Energy 2021, 12, 1571–1581. [CrossRef]
17. Long, C.; Wu, J.; Zhang, C.; Thomas, L.; Cheng, M.; Jenkins, N. Peer-to-peer energy trading in a community microgrid. In

Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5.
18. Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study:

The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [CrossRef]
19. Paudel, A.; Chaudhari, K.; Long, C.; Gooi, H.B. Peer-to-peer energy trading in a prosumer-based community microgrid: A

game-theoretic model. IEEE Trans. Ind. Electron. 2018, 66, 6087–6097. [CrossRef]
20. Brolin, M.; Pihl, H. Design of a local energy market with multiple energy carriers. Int. J. Electr. Power Energy Syst. 2020,

118, 105739. [CrossRef]
21. Hayes, B.P.; Thakur, S.; Breslin, J.G. Co-simulation of electricity distribution networks and peer to peer energy trading platforms.

Int. J. Electr. Power Energy Syst. 2020, 115, 105419. [CrossRef]
22. Lyu, C.; Jia, Y.; Xu, Z. Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system

and aggregated electric vehicles. Appl. Energy 2021, 299, 117243. [CrossRef]
23. Bachoumis, A.; Andriopoulos, N.; Plakas, K.; Magklaras, A.; Alefragis, P.; Goulas, G.; Birbas, A.; Papalexopoulos, A. Cloud-Edge

Interoperability for Demand Response-Enabled Fast Frequency Response Service Provision. IEEE Trans. Cloud Comput. 2021, 10,
123–133. [CrossRef]

24. Huo, D.; Gu, C.; Greenwood, D.; Wang, Z.; Zhao, P.; Li, J. Chance-constrained optimization for integrated local energy systems
operation considering correlated wind generation. Int. J. Electr. Power Energy Syst. 2021, 132, 107153. [CrossRef]

25. Zhang, X.; Shen, J.; Saini, P.K.; Lovati, M.; Han, M.; Huang, P.; Huang, Z. Digital twin for accelerating sustainability in positive
energy district: A review of simulation tools and applications. Front. Sustain. Cities 2021, 3, 35. [CrossRef]

26. Danilczyk, W.; Sun, Y.; He, H. ANGEL: An Intelligent Digital Twin Framework for Microgrid Security. In Proceedings of the 2019
North American Power Symposium (NAPS), IEEE, Wichita, KS, USA, 13–15 October 2019. [CrossRef]

27. Darbali-Zamora, R.; Johnson, J.; Summers, A.; Jones, C.B.; Hansen, C.; Showalter, C. State Estimation-Based Distributed Energy
Resource Optimization for Distribution Voltage Regulation in Telemetry-Sparse Environments Using a Real-Time Digital Twin.
Energies 2021, 14, 774. [CrossRef]

28. Podvalny, S.L.; Vasiljev, E.M. Digital twin for smart electricity distribution networks. IOP Conf. Ser. Mater. Sci. Eng. 2021,
1035, 012047. [CrossRef]

29. Wu, B.; Widanage, W.D.; Yang, S.; Liu, X. Battery digital twins: Perspectives on the fusion of models, data and artificial intelligence
for smart battery management systems. Energy AI 2020, 1, 100016. [CrossRef]

30. Jain, P.; Poon, J.; Singh, J.P.; Spanos, C.; Sanders, S.R.; Panda, S.K. A Digital Twin Approach for Fault Diagnosis in Distributed
Photovoltaic Systems. IEEE Trans. Power Electron. 2020, 35, 940–956. [CrossRef]

125



Appl. Sci. 2023, 13, 1798

31. Atalay, M.; Angin, P. A Digital Twins Approach to Smart Grid Security Testing and Standardization. In Proceedings of the 2020
IEEE International Workshop on Metrology for Industry 4.0. & IoT, Roma, Italy, 3–5 June 2020. [CrossRef]

32. Dembski, F.; Wössner, U.; Letzgus, M.; Ruddat, M.; Yamu, C. Urban Digital Twins for Smart Cities and Citizens: The Case Study
of Herrenberg, Germany. Sustainability 2020, 12, 2307. [CrossRef]

33. Bazmohammadi, N.; Madary, A.; Vasquez, J.C.; Mohammadi, H.B.; Khan, B.; Wu, Y.; Guerrero, J.M. Microgrid Digital Twins:
Concepts, Applications, and Future Trends. IEEE Access 2022, 10, 2284–2302. [CrossRef]

34. Nguyen-Huu, T.A.; Tran, T.T.; Tran, M.Q.; Nguyen, P.H.; Slootweg, J. Operation Orchestration of Local Energy Communities
through Digital Twin: A Review on suitable Modeling and Simulation Approaches. In Proceedings of the 2022 IEEE 7th
International Energy Conference (ENERGYCON), Riga, Latvia, 9–12 May 2022; pp. 1–6. [CrossRef]

35. Han, J.; Hong, Q.; Syed, M.H.; Khan, M.A.U.; Yang, G.; Burt, G.; Booth, C. Cloud-Edge Hosted Digital Twins for Coordinated
Control of Distributed Energy Resources. IEEE Trans. Cloud Comput. 2022, 1–15. [CrossRef]

36. Aghazadeh Ardebili, A.; Longo, A.; Ficarella, A. Digital Twins bonds society with cyber-physical Energy Systems: A literature
review. In Proceedings of the 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing &
Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and
IEEE Congress on Cybermatics (Cybermatics), Melbourne, Australia, 6 December 2021; pp. 284–289. [CrossRef]

37. Zhou, Y.; Su, P.; Wu, J.; Sun, W.; Xu, X.; Abeysekera, M. Digital Twins for Flexibility Service Provision from Industrial Energy
Systems. In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing,
China, 15 July–15 August 2021; pp. 274–277. [CrossRef]

38. Shengli, W. Is Human Digital Twin possible? Comput. Methods Programs Biomed. Update 2021, 1, 100014. [CrossRef]
39. ASHRAE Standard 55–2013; Thermal Environmental Conditions for Human Occupancy. ANSI/ASHRAE: Peachtree Corners, GA,

USA, 2013.
40. Fanger, P.O. Assessment of man’s thermal comfort in practice. Occup. Environ. Med. 1973, 30, 313–324. [CrossRef]
41. Andriopoulos, N.; Magklaras, A.; Birbas, A.; Papalexopoulos, A.; Valouxis, C.; Daskalaki, S.; Birbas, M.; Housos, E.; Papaioannou,

G.P. Short Term Electric Load Forecasting Based on Data Transformation and Statistical Machine Learning. Appl. Sci. 2021,
11, 158. [CrossRef]

42. Wong, S.; Fuller, J.D. Pricing energy and reserves using stochastic optimization in an alternative electricity market. IEEE Trans.
Power Syst. 2007, 22, 631–638. [CrossRef]

43. Kazempour, J.; Pinson, P.; Hobbs, B.F. A stochastic market design with revenue adequacy and cost recovery by scenario: Benefits
and costs. IEEE Trans. Power Syst. 2018, 33, 3531–3545. [CrossRef]

44. Dall’Anese, E.; Baker, K.; Summers, T. Chance-constrained AC optimal power flow for distribution systems with renewables.
IEEE Trans. Power Syst. 2017, 32, 3427–3438. [CrossRef]

45. Fang, X.; Hodge, B.M.; Du, E.; Kang, C.; Li, F. Introducing uncertainty components in locational marginal prices for pricing wind
power and load uncertainties. IEEE Trans. Power Syst. 2019, 34, 2013–2024. [CrossRef]

46. Mieth, R.; Dvorkin, Y. Data-driven distributionally robust optimal power flow for distribution systems. IEEE Control Syst. Lett.
2018, 2, 363–368. [CrossRef]

47. Mieth, R.; Dvorkin, Y. Distribution electricity pricing under uncertainty. IEEE Trans. Power Syst. 2019, 35, 2325–2338. [CrossRef]
48. Bienstock, D.; Chertkov, M.; Harnett, S. Chance-constrained optimal power flow: Risk-aware network control under uncertainty.

Siam Rev. 2014, 56, 461–495. [CrossRef]
49. Wu, H.; Shahidehpour, M.; Li, Z.; Tian, W. Chance-constrained day-ahead scheduling in stochastic power system operation. IEEE

Trans. Power Syst. 2014, 29, 1583–1591. [CrossRef]
50. Hu, Z. Energy Storage for Power System Planning and Operation; John Wiley & Sons: Hoboken, NJ, USA, 2020.
51. Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization (Princeton Series in Applied Mathematics; Princeton University Press:

Princeton, NJ, USA, 2009.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

126



Citation: Agnew, D.; Aljohani, N.;

Mathieu, R.; Boamah, S.; Nagaraj, K.;

McNair, J.; Bretas, A. Implementation

Aspects of Smart Grids Cyber-Security

Cross-Layered Framework for Critical

Infrastructure Operation. Appl. Sci.

2022, 12, 6868. https://doi.org/

10.3390/app12146868

Academic Editors: Chun Sing Lai,

Yinhai Wang and Kim-Fung Tsang

Received: 3 June 2022

Accepted: 5 July 2022

Published: 7 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Implementation Aspects of Smart Grids Cyber-Security
Cross-Layered Framework for Critical Infrastructure Operation
Dennis Agnew 1 , Nader Aljohani 1, Reynold Mathieu 1, Sharon Boamah 1 , Keerthiraj Nagaraj 1, Janise McNair 1

and Arturo Bretas 1,2,*

1 Department of Electrical & Computer Engineering, University of Florida, Gainesville, FL 32611, USA;
dennisagnew@ufl.edu (D.A.); eng89nader@ufl.edu (N.A.); reynold.mathieu@ufl.edu (R.M.);
sharonboamah@gmail.com (S.B.); k.nagaraj@ufl.edu (K.N.); mcnair@ece.ufl.edu (J.M.)

2 Distributed Systems Group, Pacific Northwest National Laboratory, Richland, WA 99354, USA
* Correspondence: arturo@ece.ufl.edu

Abstract: Communication networks in power systems are a major part of the smart grid paradigm.
It enables and facilitates the automation of power grid operation as well as self-healing in contin-
gencies. Such dependencies on communication networks, though, create a roam for cyber-threats.
An adversary can launch an attack on the communication network, which in turn reflects on power
grid operation. Attacks could be in the form of false data injection into system measurements, flood-
ing the communication channels with unnecessary data, or intercepting messages. Using machine
learning-based processing on data gathered from communication networks and the power grid is
a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security
for cross-layer strategy is presented. The advantage of such a framework is the augmentation of
valuable data that enhances the detection as well as identification of anomalies in the operation of the
power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed
in Mininet to simulate a communication network and obtain data for analysis. A distributed three
controller software-defined networking (SDN) framework is proposed that utilizes the Open Net-
work Operating System (ONOS) cluster. According to the findings of our suggested architecture, it
outperforms a single SDN controller framework by a factor of more than ten times the throughput.
This provides for a higher flow of data throughout the network while decreasing congestion caused
by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms
state-of-the-art physics and machine learning-based techniques in terms of attack classification. The
performance of the framework is investigated under various types of communication attacks.

Keywords: cyber security; software-defined networking; network security; cyber-physical systems;
cross-layered; power systems; machine learning

1. Introduction

Over the last decade, there has been a growing and significant demand for cyber-
related smart grid (SG) security. Physical operation process dependability is the focus of
current research on cyber-related power grid vulnerabilities, whereas the cyber-physical
security of SGs is still evolving. The traditional power system is often safeguarded by
isolated and uncoordinated equipment that offers ad-hoc solutions to each protection
challenge. As these tools do not work together; they are vulnerable to dispersed attacks.
The creation of cross-layer awareness of the smart grid system is a potential new technique
in this field. The current study into the cyber-security of power grid operation is centered
on a method known as State Estimation (SE). The fundamental purpose of SE is to offer a
real-time grid monitoring technique by estimating system states utilizing measurements
and static data on system topology [1]. False Data Injection Attack (FDI), which changes
the measures utilized by SE, is the most prevalent cyber-attack in the literature. Multiple
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actors exploiting diverse security weaknesses in the physical and cyber domains of the
cyber-physical system is a more realistic scenario for cyber-attacks. Denial-of-Service (DoS),
Distributed Denial-of-Service (DDoS), and Man-in-the-Middle (MITM), False Data Injection
(FDI) attacks might all be launched. These types of attacks impact data from several
layers of the grid’s physical structure. As a result, an integrated approach for identifying
numerous attacks launched from different tiers inside the SG will improve grid security.

Machine Learning (ML) technology is presently being utilized to aid in the detection
process or to acquire reliable findings through statistical data analysis. At various phases
of the SE process, the work of the data-driven anomaly detection framework and the
cross-layer viewpoint has progressed and been examined [2–6]. An integrated solution of
a cyber-physical security framework based on a cross-layer approach that focuses on the
detection of various cyber assaults is described in this study. The implementation is based
on a real-world scenario. The power grid is modeled in Simulink and data from the grid is
gathered every 4 s and delivered to the cloud for analysis. SimComponents [7] is used to
simulate communication grid data, which is created and transferred to the cloud. In the
analysis layer, SE and ML models are used to identify data threats. The SE exclusively uses
measured data from the power grid, but the ML combines data from both the power and
communication grids.

In addition, we propose an Open Network Operating System (ONOS) [8] three-
controller distributed Software Defined Networking (SDN) architecture for the commu-
nication layer, which we tested and compared to the performance of one of the first SDN
controllers, POX [9], which comes as standard with the Mininet emulation tool. SDN is
a network architecture technology that allows networks to be intelligently and centrally
managed, or programmed, using software applications. As its public release in 2009,
software-defined networking (SDN) research has seen tremendous advancements and
breakthroughs. SDN provides improved utilization, resource efficiency, network service
flexibility, and lower maintenance costs as compared to conventional networks [10].

To the best of our knowledge, our suggested SDN framework is the first of its kind
proposed in the literature. ONOS is the most widely used open-source SDN controller
for next-generation SDN and Network function virtualization (NFV) applications. ONOS
allows for network configuration as well as real-time control, removing the requirement
for routing and switching control protocols to be executed inside the network fabric.
By leveraging an SDN network topology, we can move the routing intelligence of the
network to the ONOS controller to allow for better management, response, and visibility
against cyber attacks against our network.

In a previous work [11], the authors have demonstrated that a distributed SDN frame-
work may effectively and efficiently govern and assist in the protection of a smart grid.
The authors were able to protect the smart grid from a denial of service attack by com-
bining distributed SDN controller placement, intrusion detection systems (IDS), and state
estimation. However, the framework uses a global SDN controller and a global security
controller as the network and security masters, respectively, which introduce single points
of failure. Furthermore, defense results against false data injection or man-in-the-middle
(MiTM) attacks are not discussed. In another previous work [12,13], researchers suggest
a distributed SDN framework to address scalability and reliability in smart grid systems.
The authors of this study assume controller communication by using the BGP protocol to
link two OpenDaylight controllers, allowing the controllers to share the workload of the
network. This study, however, does not address smart grid security or protect against cy-
berattacks. Furthermore, the authors do not discuss or consider controller failure resistance
in their framework.

In another previous work [4], The authors created the Ensemble CorrDetwith Adaptive
Statistics (ECD-AS) technique to analyze measurement data and packet contents. ECD-
AS is another data-driven approach for detecting FDI attacks that takes into account the
changing status of the SG. This method’s drawback is that it solely employs measurement
data, limiting its capacity to identify cyberattacks focused on the SG’s communication
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network layer. However, the work in this research will make use of the analysis layer,
which may also take into account data from the communication network that powers
the SG, notably packet inter-arrival intervals, transmission delay (TD), and packet count
(PC). Consideration of this form of data would broaden the model of an FDI cyberattack
as well as uncover models of other types of cyberattacks that would be undetected by
present methodologies in the literature. Previous work [3,14] demonstrated that ML may
be utilized in the cyber domain to enhance bad data analysis by acting on the same data
as the SE. This hybrid data-driven physics-model-based framework makes use of both
temporal data through ML and the system’s known topology through SE. However, this
approach, like the other current research investigations, solely covers FDI attacks and
relies on routine measurements of power systems. As a result, it overlooks the SG’s
cross-layer interdependence.

The remainder of the paper is organized as follows. Background information on the
major components of the framework is presented in Section 2. Section 3 contains data
flow information about the framework, and the implementation necessary to make it work.
In Section 4, we present a case study. Lastly, in Section 5, we conclude the paper. The
contribution of this work towards the state-of-the-art is two folds:

1. To the best of our knowledge, the first proposed three controllers distributed SDN
architecture for the Smart Grid’s communication layer.

2. Identification of cyber attacks against the power grid using a cross-layered framework.

2. Theoretical Background

In the following, the theoretical background of SE, ML, cyber-attack models, and com-
munication networks performance metrics are presented. The equations utilized in this
study are derived from our previous work [6].

2.1. State Estimation

In modern Energy Management Systems (EMS), the SE process is most important for
situational awareness of power system operation and is used in many EMS applications,
including the detection of bad data. The common approach to SE is using the classical
Weighted Least Squares (WLS) method described in [15]. In this approach, the power grid
is modeled as a set of non-linear equations based on the physics of the system:

z = h(x) + e (1)

where z ∈ R1×d is the measurement vector, x ∈ R1×N is the vector of state variables,
h : R1×N → R1×d is a continuously non-linear differentiable function, and e ∈ R1×d

is the measurement error vector. Each measurement error, ei, is assumed to have zero
mean, standard deviation σi and Gaussian probability distribution. d is the number of
measurements and N is the number of states.

In the classical WLS approach, the best estimate of the state vector in (1) is found by
minimizing the cost function J(x):

J(x) = ‖z− h(x)‖2
R−1 = [z− h(x)]T R−1[z− h(x)] (2)

where R is the covariance matrix of the measurements. In [16], it is shown that the error
can be decomposed into detectable and undetectable parts where the undetectable part is
recovered through the Innovation Index. Hence, the composed measurement error CME is
then used for Bad Data analysis, one of the main applications of SE [17], as

JCME(x̂) =
d

∑
i=1

[
CMEi

σi

]2
> χ2

d,p (3)

where σi the measurement’s standard deviation, p is the probability (typically p = 0.95)
and d the degrees of freedom.
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2.2. Machine Learning

ECD-AS is an adaptive data-driven anomaly detection framework presented in [4].
ECD-AS learns and adapts from the real-time SG data to distinguish any anomalous
behavior from the normal behavior of the system. The ECD-AS detector learns a series of
statistics (µm, Σm and τm), one for each bus m and then updates them with new incoming
data samples to adapt them. ECD-AS uses mean (µm) and covariance matrix (Σm) of each
bus established using normal samples data to calculate squared Mahalanobis distance
(δECD−AS

m ) and uses it as a decision score for the bus m and detects any anomalies by
comparing it to the adaptive threshold of bus m (τm). The squared Mahalanobis distance is
calculated as

δECD−AS
m (zm) = (zm − µm)

TΣ−1
m (zm − µm) (4)

where zm is the measurement vector of bus m, µm is the mean and Σ−1
m is the inverse

covariance matrix of normal samples related to mth bus. The mean, µm, and inverse
covariance matrix, Σ−1

m , for each bus are updated using the Woodbury Matrix Identity
equations provided in [18]. The adaptive threshold (τm) of bus m is updated with a sliding
window of size β over recent normal samples using the equation

τm = µthr,m,−β + η ∗ σthr,m,−β (5)

where µthr,m,−β and σthr,m,−β are the mean and standard deviation of the squared Maha-
lanobis distance values of normal samples in β most recent samples of selected measure-
ments associated with mth bus, and η is a hyper-parameter that decides how many standard
deviations the threshold should be from the mean.

2.3. Software-Defined Networking

The concept and practice of SDN is enticing to those in the field of networking due to
its visibility and ease of network device programmability. In recent years, SDN has taken
shape. At Stanford University, the name SDN was coined to describe the concepts and
techniques of Openflow [19]. SDN is divided into three planes:

1. Application Plane: It covers network management, policy implementation, and secu-
rity services SDN applications.

2. Control Plane: This is a logically centralized control framework that runs the network
operating system, operates the network operating system, and provides hardware
abstractions to SDN applications. A flow in SDN is described as a set of instructions
followed by a sequence of packets between the source and destination. Controllers
install the flows into the flow tables of the forwarding devices.

3. Data Plane: A set of forwarding components used to move traffic flows in response
to control plane instructions.

Figure 1 represents an overview example of a modern functional SDN architecture.
Routers, switches, and access points comprise the infrastructure layer, as indicated in the
diagram. The data plane is formed by this layer, which represents the physical network
equipment in the network. Information is passed across planes of the SDN architecture
through application programming interfaces (APIs). Southbound APIs like OpenFlow,
ForCES, PCEP, NetConf, or IRS are used by the controller to communicate with the data
plane. If there are multiple controllers, they interact via Westbound and Eastbound APIs like
AlTO or Hyperflow. The application plane is the uppermost layer. The network operator
can use functional applications for activities like energy efficiency, access control, mobility
management, and security management at this layer. Northbound APIs such as FML,
Procera, Frenetic, or RESTful are used by the application layer to communicate with the
control layer. The network operator can use these APIs to relay the necessary modifications
to the control layer, allowing the controller to make the appropriate adjustments in the
infrastructure layer.
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Figure 1. SDN Architecture.

To emulate the SDN framework, we use Mininet. Mininet [20] is an open-source
networking software used to quickly prototype and emulate networks consisting of hosts,
links, and switches on a single system. Mininet uses process-based virtualization and
network namespaces to establish virtual networks, both of which are present in modern
Linux kernels [21]. As hosts in Mininet are simulated as bash processes running in a
network namespace, any code that would usually execute on a Linux server (e.g., web
server or client software) operates as it normally would. Each Mininet “Host” have their
own private network interface and will only be able to see the processes it is running.
Software-based switches, such as Open vSwitch or the OpenFlow reference switch, are
used in Mininet. Links are virtual ethernet pairs that reside in the Linux kernel and connect
our simulated switches and hosts.

Without a controller to manage the network, no SDN network would be complete.
The POX [22] controller is the default controller in Mininet and is an OpenFlow controller
written in Python that is useful for quick prototyping. It was built from NOX [23], the first
OpenFlow controller with only C++ language support. As the POX controller does not
support multiple, distributed controllers, East/Westbound API communication, as shown
in Figure 1, is not possible. It is, nonetheless, the go-to controller for quickly testing SDN
frameworks in Mininet due to its simplicity of setup. Because of this, we use it as our
standard of comparison for our proposed framework.

There are a variety of different controllers used in SDN literature research, such as
Floodlight [24], OpenDaylight (ODL) [25], RYU [26], and Open Network Operating System
(ONOS) [8]. Each has its own set of features and functions, as determined by the developers.
As of its relative ease of use, multiple software applications, and network visibility in
the form of a graphical user interface (GUI), we employ ONOS to construct a controller
cluster to manage our SDN network to achieve our distributed three controller architecture.
A detailed overview of our implementation of ONOS can be found in Section 4.
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2.4. Network Performance Statistics

The cross-layered analysis framework is based on the IEEE 118-bus system, which uses
TCP/IP protocols to imitate the Modbus RTU. This model, which resembles the Poisson
traffic model [27], sends packets in groups of four every four seconds. Each bus represents
the M/M/c queue [28], i.e., cc 1, in which packet arrival is Poisson and queue service time
is exponential. The traffic intensity or utilization is represented by the following equation:

Putil =
λ

µ
(6)

The packets’ arrival rate is denoted by λ, while the packets’ service time is represented
by µ. The time difference (∆t) between packet arrivals is known as the inter-arrival time
(IAT). With parameterλ, it has an exponential distribution. For t≥0, the probability density
function is defined as follows:

f (t) = λeλt. (7)

The average IAT is defined as

IAT =
1
λ

(8)

The service time follows an exponential distribution with parameter µ. The probability
density function is as follows:

g(s) = µe−µs, ∀ ≥ 0 (9)

where 1
µ is the average service time of the system. Utilizing Little’s theorem, the total

waiting time is defined as transmission delays (TD), and represented as the following:

W = TD =
1

µ− λ
(10)

The normal distribution of network packet arrivals (i.e., non-attacked packets) into
each system was decided by the probability of witnessing a number of packet arrivals in a
period from [0, T]. This equation is used to model the traffic volume of the bus:

P(n arrivals in interval T) =
(λT)ne−λT

n!
(11)

whereas T is the IAT, and the n represents the number of packets. The packet count (PC) is
modeled as the following:

PC = λT (12)

2.5. Communication Layer

The SCADA network (Supervisory Control and Data Acquisition) is vulnerable to
cyber-attacks. This section will detail how we implemented simulations for the DoS, MITM,
and FDI attack scenarios.

2.5.1. Denial of Service Attack Simulation

A denial-of-service (DoS) attack is a type of cyber-attack in which the perpetrator tries
to prevent intended users from accessing a node or network by temporarily or permanently
disrupting the services of a host connected to the network. A DoS attack is regularly
carried out in an attempt to overwhelm systems and prevent some or all real requests from
being handled by flooding the targeted computer or resource with unnecessary requests or
packets (e.g., TCP, UDP, SYN, etc.). Communication between nodes is disrupted during
a DoS attack because a huge number of service requests are delivered to the target node,
depleting all of the node’s resources. A spike in network traffic to the victim (i.e., arrival
rate) is created as a result of such an attack. As a result, large queues are formed, resulting
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in higher wait times and transmission delays [29]. Therefore, we record interarrival times
(IAT) and transmission delays (TD) in our DoS attack datasets.

To simulate the effects of a DoS attack on our network traffic SimPy and component
toolkit SimComponents [7] are used at the communication layer to simulate network traffic
in the smart grid layer. SimPy is a discrete-event simulation framework based on Python.
Active components such as packets, packet generators, packet sinks, switch ports, and port
monitors may all be simulated using it. To define and replicate these components and their
functionality, the SimComponents toolkit is employed. To achieve synchronization between
the communication layer, smart grid layer, and machine learning model, we append the
start time and index to the sample measurements. We generate data for one day’s worth
of measurements and create datasets to reflect DoS attack scenarios. DoS Algorithm 1
illustrates our pseudo-code and shows the overview of our attack data generation. Figure 2
shows a histogram of malicious traffic sink interarrival times for DoS attacks. When the
victim node is attacked, an influx of packets is sent to it, causing the frequency of packets
received to increase.

Algorithm 1 Denial of Service Attack

1: for One day worth of measurements do
2: Create arrays for the IAT & TD values
3: Append Index & Current Time
4: if An attack sample is detected then
5: Set error equal to 1
6: Create Attack Bus List
7: Extend Attack Bus List with attack bus number
8: else
9: Set error equal to 0

10: end if
11: for Each smart grid measurement do:
12: if error = 0 then
13: Simulate normal traffic
14: Append IAT & TD values to arrays
15: else
16: if a from bus is in the attack bus list then
17: Simulate malicious DoS traffic
18: Append IAT & TD values to arrays
19: else
20: Simulate normal traffic
21: Append IAT & TD values to arrays
22: end if
23: end if
24: Update IAT CSV File
25: Update TD CSV File
26: end for
27: end for
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Figure 2. Histogram for sink interarrival times.

2.5.2. False Data Injection (FDI) Attack Simulation

False Data Injection Attacks in the communication layer occur when the adversary
accesses the network layer and either manipulates the data within a packet or transmits
wrong data packets. This subsequently affects the behavior of the packets in the network
layer. Thus, FDI attacks have the capability to increase the inter-arrival time and transmis-
sion delay at the network level. Using these performance metrics, FDI attacks in the IEEE
118-bus system are emulated in the communication network based on the M/M/c queue,
where c ≥ 1. The SimComponents and SimPy libraries are used to emulate packet genera-
tion, transmission, and FDI attacks in the communication layer. The implementation of this
cyber-attack is summarized in Algorithm 2. This scenario is demonstrated by generating
the inter-arrival times and transmission delay of normal and malicious packet samples
using the SimPy environment. The start time is appended to the sample measurements
for synchronization between the network layer and the power system layer. The packet
generator function is utilized to send normal or malicious packets with a fixed inter-arrival
time distribution and packet size distribution for the sample buses. In addition, the switch
port is simulated with exponential packet inter-arrival times and exponentially distributed
packet sizes by setting the port rate and queue limits. The port rate of false data injections
is set to be lower than the normal traffic, while the queue limit of false data injections is set
to be higher than the normal traffic.

The implementation of FDI attacks in Algorithm 2 is done based on the presence of
normal and attacked buses in the generated bus list for the IEEE 118-bus system. Consider-
ing the bus list, if a normal bus is detected, the switch port parameters for the port rate and
queue limit are set to values of 10,000 and 100,000, respectively. The packet generator is
used to generate the normal packets with exponential inter-arrival times and exponentially
distributed packet sizes. Similarly, if a malicious bus is detected, the switch port parameters
for the port rate and queue limit are assigned values of 30 and 10,000,000, respectively.
Moreover, the packet generator generates malicious packets with exponential inter-arrival
times and exponentially distributed packet sizes. The packet sink records the inter-arrival
times and transmission delays and appends the values of each time measurement to a
CSV file, which is utilized by the ML model in real-time. The experiment is conducted for
21,600 packet samples.

Figure 3a,b represent the statistics of the transmission delay and inter-arrival time of
21,600 samples taken for 691 measurements, respectively. The generated values for the
packet transmission delay and inter-arrival time are exponentially distributed.
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Algorithm 2 False Data Injection Attack

1: Initialize transmission delay (TD) array, inter-arrival time (IAT) array, switch function
variables; port_rate_normal, queue_limit_normal, port_rate_malicious, queue_limit-
malicious

2: for all samples do
3: Append Index & CurrentTime to IAT array, TD array
4: if An attack sample is detected then
5: Create Attack Bus List packets sink
6: Setup switch port using port_rate_malicious,
7: queue_limit_malicious
8: Simulate malicious traffic
9: Append IAT & TD values to arrays

10: else
11:
12: Create the packets generator and packets sink
13: Setup switch port using port_rate_normal,
14: queue_limit_normal
15: Simulate normal traffic
16: Append IAT & TD values to arrays
17: end if
18: Create IAT CSV File
19: Create TD CSV File
20: end for

(a) (b)

Figure 3. 21,600 samples taken for 691 measurements. (a) Statistics measurements for transmission
delay. (b) Statistics measurements for Inter-arrival time.
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Figure 4a,b are the plots for the transmission delay and inter-arrival time of 21,600 sam-
ples taken for the 690th normal traffic measurement. The values for the transmission delay
and inter-arrival time fall within close ranges of each other for normal traffic measure-
ment in the figures. Figure 5a,b illustrate the transmission delay and inter-arrival time of
21,600 samples for the 690th malicious traffic measurement. An instance of an FDI attack is
demonstrated with a higher transmission delay at a maximum value of 8.30 in the 7712th
sample, indicating malicious traffic. An occurrence of malicious traffic is represented in the
7718th sample, which shows an increased inter-arrival time with a maximum value of 3.83.

(a) (b)
Figure 4. The 690th measurement for 21,600 samples with normal traffic. (a) Transmission delay for
normal traffic. (b) Inter-arrival time for normal traffic.

(a) (b)
Figure 5. The 690th measurement for 21,600 samples with malicious traffic. (a) Transmission delay
for malicious traffic. (b) Inter-arrival time for malicious traffic.

2.5.3. Man-in-the-Middle Attack Simulation

MITM attack is a type of attack during which malicious third parties position them-
selves between the communication of two other parties, or between a user and an appli-
cation. The attack can be passive where the adversary eavesdrops and extract sensitive
information. In this instance, communication confidentiality is compromised, and the
adversary can remain undetected if a special network penetration test or analysis is not
performed on a regular basis. The attack can also be active where the attackers hijack the
router to which the victims are connected, or advertise false information using Address
Resolution Protocol(ARP) messages. In doing so, they can gain access to the information
being shared, and manipulate the data [30].

Our simulation considers only the active type of MITM attack because our code detects
the difference in the number of packets transmitted and received between the victims.
During an active MITM attack, the adversary flood the network with ARP messages to
mislead the victims into thinking he is one of them. By doing so, there is a substantial
increase in the number of packets transmitted that can be easily detected during the analysis
of network statistics data. Moreover, active MITM attacks can also be detected with the
analysis of network latency. Since the adversary is a pass-through between the two trusting
parties, a delay is observed when the forwarding happens. We will only develop the
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concept of an increase in packet count in the following lines because this is the method
used by our machine learning model to predict the behavior of the 118 bus system.

Algorithm 3 demonstrates how the principal purpose of a MITM cyber attack may
be recognized and data collected. As we aforementioned, the traffic volume is affected by
MITM attacks. This is why the method of detection is implemented by generating and
testing packet counts. In this simulation, we alter the network traffic of randomly selected
bus samples and as indicated in the algorithm and in the simulation result of Figure 6, we
get alerts with the bus number and sample number for every bus that has an error.

Algorithm 3 Man-in-the-Middle Attack Detection

1: Create benchmark arrays from arPoisson.txt
2: Create array of sample data from matlab file
3: for the length of the victim list do
4: if An attacked sample is detected then
5: Set error equal to 1
6: Extend Attacked Bus List with attack Bus number
7: Alert of error with error number and bus number
8: else
9: Set error equal to 0

10: end if
11: for the length of victim list do:
12: if error = 0 then
13: Append packet count values to array from firsth
14: else
15: if a from bus is in the attack bus list at this index then
16: Append packet count values to array from secondh
17: else
18:
19: end if
20: end if
21: Create packet count CSV File
22: end for
23: end for

Figure 6. Simulation result showing buses under attack in each sample.
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In conclusion, MITM attacks typically have a low impact or no impact at all on network
performance but they are the first steps to achieve to jeopardize a cyber security system.
During MITM attacks and depending on the type of MITM attack, a flux of packets could
increase the network traffic. These kinds of attacks are amongst the most dangerous ones
because they are very hard to detect and can easily open doors to other types of attacks like
DoS or FDI.

2.6. Power Grid: FDI and Parameter Attacks

The power grid can be modeled through nodes and edges. Measurements collected
from the grid are power flows into those edges (lines) and injections into the nodes. SE reads
off those measurements and uses a model that is based on the connectivity of the nodes and
the electrical characteristics of the lines (system database). Hence, SE is a monitoring tool
to observe the healthiness of the power grid over time. Therefore, the attacks pertaining to
the power grid could affect the collected measurements or the database used by SE. FDI
attacks can be on measurements or databases [31]. Attack types result in different residual
characteristics and patterns [17]. These will be used here for the correction. This work [32]
was used towards parameter cyber-attack correction, while [33] is used for measurement
FDI attack correction.

3. Framework

The cross-layered cyber security framework takes into account the cyber-physical
domain of the concept of the smart grid. The physical domain is composed of a power grid
and communication network while in the cyber domain, the collected and communicated
data are analyzed. The top view of the cross-layer framework is illustrated in Figure 7.
As shown in Figure 7 and reading the figure from left to right, the attacker is designed as an
outside entity where the desired scenario. Data collected from the power grid and commu-
nication network are stored in files to be analyzed by the cyber-domain. The collected data
then passes through three stages: detection, identification, and correction. In the detection
stage, the data collected from the power grid as well as the communication network are
combined and analyzed by Machine Learning techniques as shown in Figure 8. It is worth
mentioning that the data stored in the “CSV” file are after the attack took place and their
effects happened. For instance, for an FDI attack on measurement, the corresponding
measurement in the “CSV” file named “Measurements” are altered based on the attack sce-
nario constructed. The output of the detection stage is a flag that corresponds to the attack
scenario initiated. In the identification stage, each flag will be passed to a corresponding
routine for identifying the location of the attack within the network of interest. For instance,
in an attack in the system database used by State Estimation (SE), the k-nearest neighbor
(kNN) routine will be activated to identify which line (Edge/Arc) in the power network is
being altered/attacked by the attack scenario.

Figure 7. Proposed framework for cross-layer integration.
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Figure 8. Detection framework.

3.1. Implementation of SDN

We use a distributed, three-controller SDN structure to serve as the communication
layer for the smart grid. To avoid a single point of failure, we use three controllers, each
of which has the same authority level in the network. This means that each controller
has equal control over the network. There isn’t a single point of failure in the network
since there aren’t any single controllers. We utilize ONOS as our SDN framework’s control
layer, which is primarily open source. It provides for network and configuration control
in real-time.

ONOS also allows for quick redistribution of controller load, allowing each controller
to function optimally for the network. We can monitor and regulate the flow of packets in
our smart grid infrastructure from the ONOS cluster GUI. Furthermore, ONOS eliminates
controller single points of failure by dynamically shifting the workload from a down con-
troller to the remaining controllers if necessary. This is done by Atomix [34], a reactive java
framework for building scalable fault-tolerant distributed systems. The Atomix cluster is re-
sponsible for ONOS cluster administration, service discovery, and data storage, as depicted
in Figure 9. ONOS controllers may be quickly discovered and removed if down, thanks
to the Atomix framework. First, we utilized Docker containers to build the Atomix and
ONOS clusters in a local virtual machine (VM) installation on a local personal device, using
ONOS version 2.3, Openflow version 1.3, and Atomix version 3.1.5. Then, using a python
script with Mininet 2.3 APIs, we built 118 hosts and 45 Open vSwitches with OpenFlow
1.3, as illustrated in Figure 10. Open vSwitch [35] is an open-source distributed virtual
multilayer switch solution and one of the most popular implementations of OpenFlow.
This is our proposed SDN framework, which is modeled around the IEEE 118 bus system.
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Figure 9. Atomix framework [34].

Figure 10. Proposed distributed three controller.

3.2. Details on the Apps: Cybersecurity Framework

The KNN (k Nearest Neighbors) algorithm is known as a non-parametric supervised
learning classifier. This algorithm is typically used as a classification algorithm in Machine
Learning. The favor of choosing this technique typically is the ease of interpretation as well
as the low computation time. The main idea of the KNN algorithm is that most similar
samples are clustered and grouped into the same class. Classification of a new sample
in KNN starts by finding k nearest neighbors of the new sample in the training dataset,
and then the new sample is classified to the major class in the k nearest neighbors.

The Cross-Layer Ensemble CorrDet with Adaptive Statistics (CECD-AS) algorithm
proposed iteAllen2022Starke is utilized as the cyber threat detection technique in this paper
and is used in conjunction with polling and synchronization steps to make it work for a real-
time system. The CECD-AS algorithm combines data from measurement collection devices
in SG and communication networks in real-time to detect any anomalous behavior caused
due to cyber attacks such as FDI, DoS, or MITM. The power grid and communication
layers generate measurement and network performance values every 4 s respectively
and save them in corresponding CSV files. The data acquisition component in the ML
layer is equipped with a polling module that polls for data every 2 s and checks if the
CSV files are updated with any new data. If the CSV files are updated, then the data
acquisition component collects newly added data samples along with index numbers and
time stamps. The index numbers and timestamp values of data samples incoming from
the communication layer and power grid layer are matched to synchronize and combine
data as needed for the CECD-AS algorithm. The CECD-AS algorithm creates and updates
statistical models for different regions of the SG using Woodbury Matrix Identities, anomaly
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scores using Mahalanobis distance measures, and updates adaptive thresholds for different
regions based on the equations provided [4,6].

4. Case Study

We built a 691 × 10,000 matrix in the form of a CSV file to create our dataset. Each
row represents a moment in time for the respective measurements, while each column
indicates a measurement point in the grid. A sample of measurements for the full grid is
considered one row of data. Mininet takes around 4 s to create one data point, or 45 min for
a given network sample, or row of data. This creates a temporal constraint because our ML
model requires 10,000 rows of data. We use SimComponent, as previously stated, to reduce
the time spent obtaining network data. In comparison, SimComponent generates the data
required for one data sample in roughly 0.80 s, which is substantially quicker than Mininet,
allowing the completion of the necessary dataset to acquire the results for the CECD-AS
method, as shown in Table 1.

Table 1. Performance results for FDI, DoS, and MITM attacks (FDI: False Data Injection attacks, DoS:
Denial of Service attacks, MITM: Man In The Middle attacks).

Attack Type Accuracy Precision Recall F1-Score
µcv ± σcv µcv ± σcv µcv ± σcv µcv ± σcv

MITM 92.48 ± 00.20 91.65 ± 00.29 86.41 ± 00.28 88.91 ± 00.24

FDI 99.95 ± 00.01 99.46 ± 00.34 99.87 ± 00.13 99.61 ± 00.17

DoS 99.88 ± 00.07 99.75 ± 00.09 99.80 ± 00.16 99.78 ± 00.08

FDI-DoS 99.63 ± 00.08 98.42 ± 00.26 99.95 ± 00.04 99.20 ± 00.15

CBench [36], a tool for benchmarking Openflow controllers, is used to test the SDN
architecture. We can calculate the maximum throughput, or how much data was sent
from a source at any particular moment, using CBench. CBench emulates the N amount
of OpenFlow switches set by the researchers and connects it to the controller. Then, it
emulates traffic and calculates and records the throughput. In the cluster, we test each
ONOS controller individually to establish the maximum throughput for 45 open vswitches
(15 switches for each controller). We ran this test again for the single POX controller for
all 45 open vswitches at once and documented the results. Figure 11 shows the results
of our controller benchmarking test. The ONOS cluster had an average throughput of
533.121 flows/ms, whereas the POX controller had a flow rate of 50.267 flows/ms, which
is more than a tenfold improvement. Our tests revealed that a distributed controller
design not only removes a single point of failure but also improves network and resource
management throughput. By spreading the network workload, the ONOS cluster can
endure the rigors of the smart grid better than a single controller.

For parameter attack in the lines of power grid used by State Estimator, each line is
attacked to form classes for classification. In the system under study, we have 117 lines,
which are transformed into 117 classes in the KNN algorithm. For identifying which line
of the power grid is being attacked, the KNN algorithm is implemented. The dataset is
split into training and testing. For the training dataset, each line is attacked with false data
injection into its parameter. The classification accuracy of the presented KNN algorithm is
illustrated in Figure 12.
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Figure 11. Throughput benchmark of controllers.

Figure 12. Prediction accuracy of KNN for attacks in power grid line parameter.

To validate the cyber threat detection framework, IEEE 118 bus system is selected
as the power grid under study. The power grid is simulated such that every 4 s a set
of measurements is sent to the cloud where data is stored and analyzed by SE and ML.
Hence, the data in the cloud is updated every 4 s. The data from the smart grid layer
and communication are combined in the cloud and then analyzed to detect cyber threats.
The detection results of MITM, FDI, DoS, and simultaneous FDI-DoS attacks through
the use of the real-time CECD-AS algorithm are presented in Table 1 in terms of accuracy,
precision, recall, and F1-score values. In the paper [6] where CECD-AS is presented, its cyber
threat detection performance is shown to outperform the state-of-the-art physics-based and
machine learning-based techniques. The results in this paper are based on the data and
experiments discussed [6]. Table 1 shows that the real-time CECD-AS algorithm performs
extremely well for a variety of cyber threats discussed in this paper. The enhancement in the
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detection is due to the integration (combined) data from communication and power grid
that added values to the ECD-AS algorithm. Hence, data from the two layers, i.e., power
grid and communication grid, complement each other.

5. Conclusions and Future Work

The design of a Cross-Layerered framework for safeguarding the power grid’s op-
eration from physical component or communication network threats is described in this
paper. To address power grid communication, we recommended adopting a distributed
three-controller SDN architecture. We can manage our network with increased visibility,
control, and responsiveness because of SDN. Moreover, using ONOS clusters eliminates
the single point of failure that might occur when using a single controller. We benchmarked
our proposed SDN framework against the conventional POX controller to demonstrate
the network’s increased performance and load management. SimComponents is used
to quickly build and simulate DoS, Man-in-the-Middle (MiTM), and False Data Injection
attacks (FDI) attacks. The state estimation is affected by FDI and DoS attacks, and all
attacks have an impact on the communication network. To detect the corresponding attack,
the state estimator and machine learning examine the consequences of all attacks. Simulink
is used to represent the power grid, allowing for real-time simulation. SimComponent,
a Python library, is used to simulate a communication network. To detect attacked samples,
data from each layer is synced and evaluated using a real-time cross-layered machine learn-
ing technique. According to the results of our suggested architecture, a three-controller
distributed arrangement outperforms a single controller by a factor of more than ten times
the throughput. This allows for a greater flow of data throughout the network while
reducing congestion caused by the processing constraints of a single controller. Moreover,
our CECD-AS approach outperforms state-of-the-art physics and machine learning-based
algorithms in attack classification.

In future work, we would like to extend this framework to include more types of cyber
attacks, additional controllers, and P4 [37] and Stratum [38]-enabled switches. There are
other cyber attacks we would like to defend against, such as ransomware, botnet, and host
impersonation attacks. Furthermore, we would like to build upon our failure-resistant
framework by adding additional standby controllers for each of the current controllers to
increase protection against our model from unforeseen outages that may be experienced in
the field. In addition, we would like to include P4 and Stratum-enabled switches/routers
to allow for complete “white box” control of the forwarding devices. This would allow for
the control of packet parsing at the forwarding device level to increase QoS in the network.
The framework was developed in a real-time simulated environment, making it an ideal
starting point for future research on data integrity cyber threats in smart grids.
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Abstract: Multi-view subspace clustering has drawn significant attention in the pattern recognition
and machine learning research community. However, most of the existing multi-view subspace
clustering methods are still limited in two aspects. (1) The subspace representation yielded by the
self-expression reconstruction model ignores the local structure information of the data. (2) The
construction of subspace representation and clustering are used as two individual procedures, which
ignores their interactions. To address these problems, we propose a novel multi-view subspace
clustering method fusing local and global information for one-step multi-view clustering. Our
contribution lies in three aspects. First, we merge the graph learning into the self-expression model
to explore the local structure information for constructing the specific subspace representations of
different views. Second, we consider the multi-view information fusion by integrating these specific
subspace representations into one common subspace representation. Third, we combine the subspace
representation learning, multi-view information fusion, and clustering into a joint optimization model
to realize the one-step clustering. We also develop an effective optimization algorithm to solve the
proposed method. Comprehensive experimental results on nine popular multi-view data sets confirm
the effectiveness and superiority of the proposed method by comparing it with many state-of-the-art
multi-view clustering methods.

Keywords: multi-view learning; subspace representation; graph learning; one-step clustering

1. Introduction

Clustering is a fundamental unsupervised learning problem that is widely used in the
tasks of machine learning [1], computer vision [2], and data mining [3]. It attempts to help
to understand the structure of unlabeled data by dividing the entire unlabeled samples
into clusters, where the samples in the same cluster are not similar to samples in the other
clusters [4–6].

With the continuous development of information technology, different features of the
object can be easily acquired by different feature extractors, data sources or sensors. For
example, an image can be depicted by the color, texture, and edge features. A news report
is usually composed of text descriptions and pictures. In the field of autonomous driving,
an obstacle can be captured by different types of sensors. These different features can be
viewed as multi-view data. Since each view commonly contains view-specific information
about the object, using only one view for clustering may yield poor results [7]. Therefore,
it is reasonable and appropriate to fuse different views for clustering. It is known that
multiple views come from the same object. Hence, multi-view data contain not only the
consistency but also the diversity across views. How to reasonably utilize the consistency
and diversity to find the underlying clustering structure of multi-view data has become an
important research topic .
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To deal with the multi-view data, a natural idea is to concatenate these different
feature vectors into a new vector and then adopt some existing single-view clustering
methods to group the multi-view data. Although this idea is intuitive and simple to deal
with multi-view data, it ignores the consistency and complementary information across
these views. To address this problem, lots of multi-view clustering methods have been
developed to obtain the good clustering performance. For background reading, the reader
can refer to the surveys on multi-view clustering [8–10]. In this paper, we mainly focus
on the multi-view subspace clustering, which has received extensive attention due to its
advanced clustering performance and good mathematical interpretability.

Multi-view subspace clustering attempts to construct an ideal subspace representation
to describe the multiple linear subspace structure, and the clustering results are then ob-
tained by utilizing the spectral clustering for this obtained subspace representation. The
mechanism for computing the subspace representation is based on the self-expressive recon-
struction model, where each sample is reconstructed by entire samples. Hence, subspace
representation yielded by the self-expressive reconstruction model can exploit the global in-
formation but may ignore the local information of multi-view data. Nevertheless, exploring
the local structure has been confirmed to improve the learning performance [11]. Moreover,
most multi-view subspace clustering methods divide the learning subspace representation
and clustering into two individual procedures, which ignores their communications.

To address the above-mentioned issues, in this paper, we propose a novel subspace
clustering method fusing local and global information for one-step multi-view subspace
clustering (LGOMSC). The proposed method combines the procedures of constructing
subspace representation, multi-view information fusion, and clustering into a unified
optimization framework. In this framework, as shown in Figure 1, to exploit the local
and global information of multi-view data, we integrate graph learning into the self-
expressive reconstruction model by adaptively exploring the local structure information
for the construction of subspace representation. To capture latent consistency information
across views, the proposed method adopts a multi-view information fusion to learn the
common subspace representation from these specific subspace representations of different
views. Meanwhile, in graph learning, a rank constraint is applied to the Laplacian matrix
yielded by the common subspace representation to directly produce the clustering result.
Therefore, the proposed method is a one-step multi-view subspace clustering method. The
main contributions of the work are summarized as follows:

• A novel one-step multi-view subspace clustering method is proposed, which fuses the
subspace representation (exploring local and global information), multi-view infor-
mation fusion (constructing a common subspace representation by fusing different
view-specific subspace representations), and clustering (imposing rank constraint
on the Laplacian matrix from the common subspace representation) as a unified
optimization framework to realize the end-to-end clustering.

• We develop an effective optimization algorithm to solve the proposed method. Com-
prehensive experiments on nine popular multi-view data sets confirm the effectiveness
and superiority of the proposed method by comparing it with some state-of-the-art
multi-view clustering methods.

The rest of this paper is organized as follows. In Section 2, we review the related works.
In Section 3, we introduce the formulation of the proposed LGOMSC method. In Section 4,
we provide the optimization algorithm to solve the proposed LGOMSC method, including
the analysis of the convergence and computation complexity. In Section 5, we conduct the
experiments on nine popular multi-view data sets and analyze the experimental results.
Finally, we provide the conclusion in Section 6.
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Figure 1. Framework of proposed LGOMSC.

2. Related Work

Multi-view clustering is a very powerful data analysis tools for unsupervised learning
of data with heterogeneous features. In the past two decades, many multi-view clustering
methods have been proposed to achieve robust clustering performance. In the following,
we will briefly introduce several multi-view clustering methods from different perspectives.

Subspace-based methods have recently become the mainstay of multi-view clustering
research, aiming to discover potential subspace structures across different views. For
example, Gao et al. [12] propose a multi-view subspace clustering method that utilizes
a common cluster structure to exploit the consistency information across multiple views.
Cao et al. [13] propose a diversity-induced multi-view subspace clustering method that
adopts the Hilbert–Schmidt independence criterion as the diversity term to explore the
complementary information of multi-view data. Luo et al. [14] propose a multi-view sub-
space clustering method that simultaneously considers the consistency and specificity for
learning the subspace representation. Wang et al. [15] propose a multi-view subspace
clustering method that considers the complementarity of multi-view data by adopting
a position-aware exclusivity term. Guo et al. [16] propose a rank consistency induced
multi-view subspace clustering model that learns a consistent subspace structure. Brbić and
Kopriva [17] propose a multi-view subspace clustering method that adopts an agreement
term to ensure the consistency among these subspace representations. To capture the high-
order correlations underlying multi-view data, the tensor technique is adopted to exploit
the complementary information among different views. For example, Zhang et al. [18]
propose a low-rank tensor constrained multi-view subspace clustering model that adopts
a low-rank tensor constraint for the obtained subspace representations. Xie et al. [19]
utilize the subspace representations of multiple views as a tensor data and then utilize
the tensor-singular value decomposition on the rotated tensor to guarantee the consen-
sus among different views. Zhang et al. [20] propose a tensorized multi-view subspace
representation learning that adopts a low-rank constraint model for the subspace represen-
tation tensor. Yin et al. [21] propose a multi-view subspace clustering model by organizing
the multi-view data as tensorial data, and the tensorial data can be represented by a t-
linear combination with sparse and low-rank penalty. Recently, researchers considered
partition-level multi-view information fusion and proposed a partition-based clustering
model to construct joint optimization of multi-view subspace clustering. For example,
Kang et al. [22] propose a unified multi-view subspace clustering model that implements
the graph construction, the generation of basic partitions, and the fusion of consensus
clustering in an interactive way. Lv et al. [23] propose a partition fusion-based multi-view
subspace clustering method that utilizes the different partitions to find a shared partition.
Zhang et al. [24] develop a consensus one-step multi-view subspace clustering method that
fuses the subspace representation learning, partition learning, and clustering into a whole
to iteratively optimize. Kang et al. [25] propose to integrate multi-view information in the
partition space and obtain clustering results by assigning each partition with a respective
rotation matrix. Furthermore, each view is assigned a weight to consider the differences
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in the clustering capacity of the views. The anchor-based model is proposed to fit for the
large-scale multi-view data. Kang et al. [26] propose a large-scale multi-view subspace
clustering method by integrating the anchor graphs from different views for spectral clus-
tering. Wang et al. [27] propose a fast parameter-free multi-view subspace clustering by
adaptively learning the anchors and graph structure. Sun et al. [28] propose to combine
anchor learning and graph construction into a unified optimization framework, allowing
the learned anchors to represent the actual latent data distribution more accurately, leading
to a more discriminative clustering structure.

Matrix factorization-based methods refer to obtaining consistent latent representations
through matrix factorization. Specifically, a given data matrix can be represented by the
product of two or more low-dimensional matrices. Liu et al. [29] extended the traditional
single-view non-negative matrix factorization algorithm to multi-view application scenarios
and proposed a multi-view clustering algorithm based on non-negative matrix factorization.
Guo et al. [30] propose to exploit group sparsity inducing norm in a matrix factorization
framework to learn shared sparse subspace representations. Recently, Wang et al. [31]
proposed a diversity non-negative matrix factorization multi-view clustering method by
introducing a new diversity term to increase the diversity among multi-view representa-
tions and linearize the running time. Nie et al. [32] propose a new joint clustering method
named Fast Multi-view Matrix Tri-Factorization to reduce the information loss in the matrix
factorization process, while reducing the computational complexity and improving the
operational efficiency. Liu et al. [33] propose a novel multi-view matrix factorization-based
clustering method, which proposes to consider the higher-order relationships among fea-
tures using an optimal graph regularization strategy and introduces the Hilbert–Schmidt
independence criterion (HSIC) to fully explore the complementary information in different
views. In addition, researchers have extended matrix factorization from the perspective of
intact space learning [34]. For example, Zhang et al. [35] propose a latent multi-view sub-
space clustering that utilizes the latent representation for subspace clustering. Li et al. [36]
propose a flexible multi-view representation learning that utilizes the kernel dependence
measure to obtain a latent representation from different views for subspace clustering.
Xie et al. [37] propose a multi-view subspace clustering method that fuses graph learning,
latent representation, and clustering into a unified optimization framework.

Graph-based methods provides an effective way to solve the nonlinearly separated
problems. For example, Tang et al. [38] propose a fusion process using linked matrix
factorization to fuse the graph matrices corresponding to all views with multiple sources
of information. Nie et al. [39] propose a multi-view graph clustering method based on
the idea of manifold learning that can perform local structure learning and multi-view
clustering at the same time and can also adaptively learn the weights corresponding to each
view. Meanwhile, Nie et al. [40] propose an automatic weighting method to fuse a series
of view-specific low-quality graphs into a high-quality unified graph, while extending
the Laplacian rank approach to multi-view learning. Similarly, Zhan et al. [41] further
design a notable clustering method based on twostep multiple graph fusion strategy.
Recently, Zhan et al. [42] proposed a method to learn a consensus graph matrix by all views
by minimizing disagreement between different views and constraining the rank of the
Laplacian matrix. Wang et al. [43] propose another graph-based multi-view clustering
method that automatically fuses multiple graph matrices to generate a unified graph matrix.
The learned unified graph matrix can help the graph matrices of all views and gives the
clustering indicator matrix. Recently, Zhao et al. [44] proposed to minimize the divergence
between graphs using tensor Schatten p-norm regularization and integrate the tensor
Schatten p-norm regularization and the manifold learning regularization into a unified
framework to learn a shared common graph.

Although most of existing multi-view subspace clustering methods have achieved
good clustering performance, they still have some limitations. First, the subspace rep-
resentation generated by the self-expression reconstruction model usually ignores the
local structure of the data set. Second, most multi-view subspace clustering methods

150



Appl. Sci. 2022, 12, 5094

usually divide the subspace representation learning process and the subsequent clustering
task into two separate processes, ignoring the interactions between them. To address
these issues, in this paper we propose an LGOMSC method that considers adding graph
learning to explore local information adaptively for obtaining subspace representations.
Moreover, LGOMSC performs multi-view information fusion directly on the subspace
representation and introduces rank constraints on the Laplacian matrix of the common
subspace representation matrix, which helps to naturally partition the data points into
the desired number of clusters. Our approach integrates similarity learning, multi-view
information fusion and clustering as a unified framework to achieve multi-view clustering
in an end-to-end manner.

Duan et al. [45] propose a multi-view subspace clustering (MVSCLG) that also utilizes
the local and global information to achieve the end-to-end clustering. The main differences
between MVSCLG and LGOMSC include: (1) to explore the consistency between different
views, MVSCLG adopts the spectral matrix fusion, but LGOMSC adopts the graph matrix
fusion; (2) to achieve end-to-end clustering, MVSCLG adopts a rotation matrix to map
the common spectral matrix to the final cluster label matrix, but LGOMSC adopts a rank
constraint on the common Laplacian matrix to directly achieve clustering. Moreover,
compared with MVSCLG, LGOMSC has some advantages. Firstly, MVSCLG involves many
singular value decomposition procedures and contains many variables, which leads to
longer running times and more memory usage than LGOMSC. Secondly, LGOMSC contains
fewer hyperparameters than MVSCLG, which is more suitable for practical applications.

3. Proposed Method
3.1. Notations

For convenience, we list important mathematic notations that are used throughout the
paper in Table 1. Matrices are represented in bold uppercase, while vectors are represented
in bold lowercase.

Table 1. Notations and abbreviations.

Notation Definition

In n×n Identity matrix
1 All-ones column vector
n Number of data sample
c Number of clusters
V Number of views
dv Feature dimension of the v-th view
Xv ∈ Rdv×n Feature matrix of the v-th view

xi,:, xj, xij
Represented as the i− th row, j− th column, and ij−
th element of matrix X, respectively

XT The transpose of a matrix
Sv ∈ Rn×n Subspace representation matrix of the v-th view
U ∈ Rn×n Common subspace representation matrix
‖·‖F The Frobenius norm
Tr(·) Trace operator of a matrix
diag(·) Vector of the diagonal elements of a matrix
rank(·) The rank of a matrix

3.2. Formulation

In this section, we provide the detailed modeling process of the proposed LGOMSC
method. For a multi-view data set with V views, let X1, . . . , XV be the data matrices of the V
views and Xv =

{
xv

1 , . . . , xv
n
}
∈ Rdv×n be the v-th view data, where dv is the dimensionality

of the v-th view, and n is the number of data points. Since each view contains view-
specific information about the object, we respectively compute the view-specific subspace
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representation of each view to capture the diversity across views. The objective function of
the self-expression model for the multi-view data can be formulated as:

min
Sv

V
∑

v=1
‖Xv −XvSv‖2

F + λ1
V
∑

v=1
‖Sv‖2

F

s.t.0 ≤ sv
ij ≤ 1, (Sv)T1 = 1, diag(Sv) = 0

(1)

where Sv =
{

sv
1, sv

2, . . . , sv
n
}
∈ Rn×n is the subspace representation matrix of the v-th view,

sv
ij is the j-th element of sv

i , 1 denotes a column vector with all entries of one, diag(·) denotes
a vector of the diagonal elements of a matrix.

Since Model (1) adopts the entire data set to linearly reconstruct each data sample, the
subspace representation matrix Sv captures the global information of the v-th view data.
However, this subspace representation obtained by Model (1) ignores the local structure to
construct the subspace representations. In other words, two closed data samples should
have similar subspace representations. Hence, to exploit the local information of multi-view
data, we integrate the graph learning into Model (1) to compute the subspace representation.
Hence, the objection function can be formulated as:

min
Sv

V
∑

v=1
‖Xv −XvSv‖2

F + λ1
V
∑

v=1
‖Sv‖2

F +
V
∑

v=1

n
∑

i=1

n
∑

j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij

s.t.0 ≤ sv
ij ≤ 1, (Sv)T1 = 1, diag(Sv) = 0

(2)

Since multi-view data come from the same object, they should have latent consistency.
To characterize this consistency, we adopt a multi-view information fusion term to obtain
a common subspace representation matrix U ∈ Rn×n from the subspace representation
matrices {S1, S2 . . . SV}. This term can be represented as:

min
U

V
∑

v=1
‖Sv −U‖2

F

s.t.U ≥ 0, UT1 = 1
(3)

Through minimizing Model (3), this common subspace representation matrix U can
make these the subspace representation matrices {S1, S2 . . . SV} to have latent consistency.
Hence, we add this multi-view information fusion term into Model (2) as:

min
Sv ,U,F

V
∑

v=1
‖Xv −XvSv‖2

F + λ1
V
∑

v=1
‖Sv‖2

F +
V
∑

v=1

n
∑

i=1

n
∑

j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij

+
V
∑

v=1
‖Sv −U‖2

F

s.t.0 ≤ sv
ij ≤ 1, 1Tsv

i = 1, diag(Sv) = 0, U ≥ 0, UT1 = 1

(4)

After obtaining the common subspace structure, we can get the affinity matrix
W = 1/2(U + UT) and perform spectral clustering on such a subspace affinity matrix.
However, the constructions of subspace representation and clustering are divided into
two individual procedures, which ignore their interactions. To address this problem,
we consider introducing a rank constraint [46] on the Laplacian matrix LU = D −W,
where the degree matrix D is defined as a diagonal matrix whose i-th diagonal element is
dii = ∑n

j=1 wij. If the common subspace representation matrix U is non-negative, then the
Laplacian matrix has the following theorem.

Theorem 1. The number of connected components in the graph with U is equal to the multiplicity
of zero eigenvalue of the Laplacian matrix LU [47].

According to Theorem 1, we consider making the number of zero eigenvalues of the
Laplacian matrix LU to be equal to the number of clustering clusters, i.e., rank(LU) = n− c.
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By adding the rank constraint rank(LU) = n− c into Model (4), the common subspace
representation matrix U will have the ideal property. Therefore, we can directly obtain the
cluster result from U without discretization.

However, it is difficult to directly solve the rank constraint rank(LU) = n − c. It
is known that rank(LU) = n− c is equivalent to ∑c

i=1 σi(LU) = 0, where σi(LU) denotes
the i-th smallest eigenvalues of LU. Since LU is positive semi-definite, σi(LU) ≥ 0. Ac-
cording to Ky Fan’s Theorem [48], ∑c

i=1 σi(LU) = minFTF=ITr(FTLUF). Therefore, to hold
∑c

i=1 σi(LU) = 0, the objective function of the proposed LGOMSC is formulated as:

min
Sv ,U,F

V
∑

v=1
‖Xv −XvSv‖2

F + λ1
V
∑

v=1
‖Sv‖2

F +
V
∑

v=1

n
∑

i=1

n
∑

j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij

+
V
∑

v=1
‖Sv −U‖2

F + 2λTr(FTLUF)

s.t.0 ≤ sv
ij ≤ 1, 1Tsv

i = 1, diag(Sv) = 0, U ≥ 0, UT1 = 1, FTF = Ic

(5)

where λ > 0 is a parameter, F= {f1, . . . , fc} ∈ Rn×c is the embedding matrix, and Ic ∈ Rc×c

denotes the identity matrix.
In Model (5), when λ is large enough, the obtained common subspace representation

U makes ∑c
i=1 σi(LU) zero. Hence, rank(LU) = n− c is satisfied. To effectively accelerate

the optimization procedure, we determine the value of λ in a heuristic way. Moreover, in
Model (5), we integrate subspace representation learning, multi-view information fusion,
and clustering into a unified framework. The aim is to exploit the internal relationships of
the three procedures to obtain a good clustering performance.

4. Optimization

There are several variables and constraints in the proposed method. To effectively
solve these variables from LGOMSC, we developed an alternate optimization algorithm.

4.1. Update Sv

When U and F are fixed, the objective function about Sv becomes:

min
Sv
‖Xv −XvSv‖2

F + λ1‖Sv‖2
F +

n
∑

i=1

n
∑

j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij + ‖Sv −U‖2
F

s.t.0 ≤ sv
ij ≤ 1, 1Tsv

i = 1, diag(Sv) = 0
(6)

In this paper, we adopt a two-step approximation strategy [25] to optimize Sv.
Firstly, we ignore the constraints in Model (6) to solve Sv as:

min
Sv
‖Xv −XvSv‖2

F + λ1‖Sv‖2
F +

n

∑
i=1

n

∑
j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij + ‖Sv −U‖2
F (7)

Through making the derivative of Model (7) of Sv as zero, we have:

Ŝv
= ((Xv)TXv + In + λ1In)

−1((Xv)TXv + U− 1
2

Bv) (8)

where bv
ij =

∥∥∥xv
i − xv

j

∥∥∥
2

2
is the ij-th element of Bv ∈ Rn×n and In ∈ Rn×n denotes the

identity matrix.
Secondly, through adding the constraints of Sv, the solution of Sv can be obtained by:

min
Sv

i

∥∥sv
i − ŝv

i
∥∥2

2

s.t.sv
ii = 0, Sv

i ≥ 0, 1TSv
i = 1

(9)
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Model (9) is a constrained quadratic optimization problem, which can be effectively
solved by the iterative algorithm in the work [49].

4.2. Update U

When Sv and F are fixed, the objective function about U is represented as:

min
U

V
∑

v=1

n
∑

i=1

n
∑

j=1
(sv

ij − uij)
2 + 2λTr(FTLUF)

s.t.uij ≥ 0, 1Tui = 1
(10)

where ui ∈ Rn×1 is a column vector, uij is the j-th element of ui.

Noting that Tr(FTLUF)= 1/2∑n
i=1 ∑n

j=1

∥∥∥fi,: − fj,:

∥∥∥
2

2
uij, we denote hi be a vector with

the j-th element hij =
∥∥∥fi,: − fj,:

∥∥∥
2

2
. Through simple mathematical derivation, problem (10)

can be rewritten as follows:

min
ui

V
∑

v=1

∥∥∥ui − sv
i +

λ
2V hi

∥∥∥
2

2

s.t.uij ≥ 0, 1Tui = 1
(11)

We define qv = sv
i − λ

2V hi, we can obtain:

min
ui

V
∑

v=1
‖ui − qv‖2

2

s.t.uij ≥ 0, 1Tui = 1
(12)

Model (12) is effectively optimized by an iterative algorithm referring to the work [50].

4.3. Update F

When U and Sv are fixed, the objective function about F is represented as:

min
F

Tr(FTLUF)

s.t.FTF = Ic
(13)

The optimal solution F yielded by Model (13) is formed by the c eigenvectors of LU
corresponding to the c smallest eigenvalues. Finally, the procedure for optimizing Model (5)
is described in Algorithm 1.

4.4. Convergence Analysis

In this paper, we adopt an alternate updating algorithm (Algorithm 1) to solve the
objective function in Model (5). Since λ is changed during the iteration to accelerate the pro-
cedure in the experiment, the objective function of Model (5) is varied during each iteration.
Hence, it is difficult to guarantee convergence theoretically. However, in the experiments,
the results show that Algorithm 1 for optimizing Model (5) has good convergence.

4.5. Computational Complexity Analysis

According to the optimization process described in Algorithm 1, the computational
complexity of LGOMSC consists of updating Sv, U, and F. First, the update of Sv takes
O(n3 + Vn2). Second, the update of U needs O(n2). Third, the update of F costs O(n3) for
compute eigenvectors of the Laplacian matrix. Overall, the complexity of Algorithm 1 is
O((2n3 + (V + 1)n2))T), where T is the total number of iterations.
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Algorithm 1: Optimization Algorithm for Model (5)

Input: given V view data X1, . . . , XV with Xv ∈ Rdv×n, the number of clusters c, parameters λ1
and λ.
Output: U with exact c connected components.
Initialize Sv by the optimization problem [51]:

min
Sv

∑n
i=1 ∑n

j=1

∥∥∥xv
i − xv

j

∥∥∥
2

2
sv

ij + λ1‖Sv‖2
F

s.t.sv
ii = 0, 0 ≤ sv

ij ≤ 1, 1Tsv
i = 1

Initialize U and F based on s1, s2...sV .
Repeat
Update Sv by model (9).
Update U by model (12).
Update F by model (13).
Until ∑c

i σi(LU) < 1.0e−13and ∑c+1
i σi(LU) > 1.0e−13

5. Experiments

In this section, we use nine popular multi-view data sets to assess the clustering
performance of LGOMSC.

5.1. Data Set Descriptions

In the experiments, the nine public multi-view benchmark data sets were 3Sources,
100leaves, BBC, Caltech101, COIL-20, NottingHill, Webkb, Cornell, and Wikipedia Articles.
All the data sets are summarized in Table 2.

Table 2. Summary of nine multi-view benchmark data sets (dv denotes the dimensionality of the v-th view).

Data Set Point Class View d1 d2 d3 d4 d5 d6

3sources 169 6 3 3560 3631 3068
100leaves 1600 100 3 64 64 64

BBC 685 5 4 4659 4633 4665 4684
Caltech101 1474 7 6 48 40 254 1984 512 928

COIL-20 1440 20 3 1024 3304 6750
NottingHill 4660 5 3 6750 3304 2000

Webkb 1051 2 2 1840 3000
Cornell 195 5 2 195 1703

Wikipedia 693 10 2 128 10

5.2. Experimental Setting

In this paper, LGOMSC is compared with twelve relevant methods including

• FeatConcate: Concatenate the features of different views into a vector and utilize
k-means to acquire the clustering result. It is regarded as the baseline method.

• Co-reg_c and Co-reg_p: Centroid-based co-regularization [52] and pairwise co-regulari
zation [52].

• LMSC: Latent multi-view subspace clustering [35].
• FMR: Flexible multi-view representation learning for subspace clustering [36].
• MLRSSC: Multi-view low-rank sparse subspace clustering [17].
• RMKMC: Robust multi-view k-means clustering [53].
• mPAC: Multiple partitions aligned clustering [25].
• LMVSC: Large-scale multi-view subspace clustering in linear time [26].
• PMSC: Partition level multi-view subspace clustering [22].
• COMVSC: Consensus one-step multi-view subspace clustering [24].
• GMC: Graph-based multi-view clustering [43].
• MVSCLG: Multi-view subspace clustering with local and global information [45].

We conduct these comparison methods from corresponding open-source codes and
follow their papers to set the optimal parameters. LGOMSC contains two parameters λ
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and λ1. For λ, it is first set with a proper value in a heuristic way, then in each iteration, λ is
divided by two if the number of zero eigenvalues of LU is greater than c and multiplied by
two if it is smaller than c. For λ1, we adopt the grid search method to empirically choose it
in the range of {1, 10, 20, . . . , 100}. In this paper, we use L2 norm for data normalization,

i.e., (xv
i )
′ =

xv
i
‖xv

i ‖ 2
.

5.3. Experiment Results and Analysis

In the experiments, four popular metrics including accuracy (ACC), normalized mu-
tual information (NMI), F-score and adjusted Rand index (ARI) are utilized to assess the
clustering result. These evaluation metrics reflect different natures of the clustering results,
thus providing a comprehensive analysis from multiple perspectives. For all four of the
evaluation metrics, higher values indicate better results. The comparison results are shown
in Tables 3–6. The best result is highlighted in red font, and the second best result is
reported in blue font.

Table 3. The clustering performance comparison in terms of ACC on nine multi-view data sets.

ACC (%) 3sources 100leaves BBC Caltech101 COIL-20 NottingHill Webkb Cornell Wikipedia

FeatConcate 65.09 71.00 61.46 54.27 67.50 91.93 94.77 43.08 57.72
Co-reg_c 69.17 78.53 34.74 42.00 70.36 74.77 80.42 38.41 38.59
Co-reg_p 66.18 75.60 35.99 42.14 72.42 72.14 83.24 36.26 20.70

LMSC 71.60 77.00 86.28 53.80 75.35 83.78 95.34 43.59 56.85
FMR 70.41 69.25 85.11 47.69 72.01 82.85 93.24 43.08 56.85

MLRSSC 34.88 1.44 33.14 54.21 5.07 30.11 78.02 43.08 15.22
RMKMC 54.44 1.00 60.44 54.14 61.60 75.43 94.01 43.59 61.04

mPAC 76.92 47.06 58.10 59.36 73.40 90.28 78.12 45.64 56.71
LMVSC 63.31 71.06 84.38 56.72 74.17 89.25 95.62 55.90 59.16
PMSC 63.85 22.46 34.45 44.45 49.09 70.21 78.02 45.44 19.70

COMVSC 65.09 70.88 69.49 77.54 77.64 81.70 82.87 55.38 60.46
GMC 65.09 86.38 69.05 65.74 87.57 31.24 77.64 38.97 31.89
Ours 83.43 94.31 88.47 79.85 92.08 100.00 98.38 64.62 62.63

Table 4. The clustering performance comparison in terms of NMI on nine multi-view data sets.

NMIn (%) 3sources 100leaves BBC Caltech101 COIL-20 NottingHill Webkb Cornell Wikipedia

FeatConcate 56.53 87.64 60.63 56.18 79.15 86.66 66.18 19.02 54.04
Co-reg_c 55.03 92.04 13.38 43.68 81.69 69.79 8.79 12.60 26.22
Co-reg_p 50.85 90.04 6.59 43.59 82.17 67.73 18.91 11.57 7.54

LMSC 69.18 89.22 65.70 51.85 84.54 78.57 70.36 18.89 52.60
FMR 57.34 85.44 66.04 46.77 78.53 66.38 59.59 21.44 51.81

MLRSSC 5.75 13.33 1.03 2.11 2.66 0.23 0.08 4.86 2.31
RMKMC 40.23 0.00 54.38 63.16 79.06 75.28 63.81 27.99 55.09

mPAC 64.13 73.96 47.41 50.56 85.86 83.14 16.79 15.48 47.53
LMVSC 59.35 87.49 69.45 55.70 82.24 82.33 69.41 27.84 52.81
PMSC 48.75 64.02 4.19 21.38 70.31 65.73 7.95 10.42 6.47

COMVSC 50.69 87.19 57.67 52.70 87.50 75.16 23.73 24.51 53.58
GMC 53.73 95.37 55.62 53.77 96.31 9.23 0.17 15.90 29.98
Ours 77.74 97.43 75.20 54.23 97.44 100.00 84.84 39.40 56.06
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Table 5. The clustering performance comparison in terms of F-score on nine multi-view data sets.

F-score (%) 3sources 100leaves BBC Caltech101 COIL-20 NottingHill Webkb Cornell Wikipedia

FeatConcate 66.61 63.54 60.32 56.91 61.05 88.77 92.78 33.27 50.34
Co-reg_c 69.04 74.46 37.00 42.83 68.20 72.38 79.66 32.06 26.96
Co-reg_p 66.01 69.67 37.74 42.34 69.67 69.08 81.71 31.12 13.00

LMSC 65.58 68.72 76.81 53.58 71.33 83.04 93.02 42.59 48.96
FMR 63.89 59.07 76.55 47.24 66.58 72.19 90.08 34.50 48.22

MLRSSC 37.49 1.97 37.88 55.93 9.42 36.03 79.27 42.88 19.57
RMKMC 47.89 1.86 57.46 55.64 58.84 72.58 91.87 35.94 51.85

mPAC 76.93 36.61 59.10 61.19 68.73 88.17 79.18 43.34 45.81
LMVSC 55.85 61.67 78.44 51.90 69.29 85.36 93.83 49.57 50.13
PMSC 57.05 18.77 38.48 43.46 49.56 66.84 79.27 43.55 19.67

COMVSC 56.74 62.95 62.72 71.83 71.79 80.11 81.47 46.18 51.02
GMC 52.88 66.27 63.05 61.54 85.31 36.94 78.67 37.06 23.00
Ours 78.34 88.91 82.83 75.72 91.86 100.00 97.58 57.32 52.48

Table 6. The clustering performance comparison in terms of ARI on nine multi-view data sets.

ARI (%) 3sources 100leaves BBC Caltech101 COIL-20 NottingHill Webkb Cornell Wikipedia

FeatConcate 56.90 63.17 49.20 41.94 58.89 85.67 76.99 12.33 44.28
Co-reg_c 58.38 74.20 6.05 27.03 66.46 64.70 16.20 6.57 18.39
Co-reg_p 54.81 69.36 1.52 26.46 68.03 60.71 27.19 2.47 2.80

LMSC 56.72 68.41 69.70 37.80 69.74 78.20 80.79 10.18 42.89
FMR 53.70 58.66 69.13 31.86 64.83 64.68 72.84 12.01 42.12

MLRSSC 0.33 0.12 −0.04 0.93 0.03 0.04 −0.14 1.33 −0.09
RMKMC 34.27 0.00 45.61 41.21 56.45 64.69 73.61 15.73 45.97

mPAC 69.79 35.87 40.27 45.19 67.08 84.79 28.17 8.97 38.86
LMVSC 43.16 61.36 71.75 34.48 67.67 81.15 80.81 32.54 44.24
PMSC 36.70 17.47 1.17 17.58 46.33 57.26 0.18 10.44 1.96

COMVSC 36.94 62.55 47.36 50.17 70.28 74.50 25.52 17.68 44.69
GMC 32.87 65.86 47.46 39.64 84.45 2.21 1.02 3.47 6.07
Ours 70.63 88.79 77.06 57.54 91.42 100.00 92.92 35.08 46.13

Experiment Analysis. Through observing the clustering results from Tables 3–6, one
can see that our proposed method can obtain the best results on all multi-view data sets
except Caltech101. For the Caltech101 data set, LGOMSC is lower than FeatConcate and
RMKMC in terms of NMI. However, in terms of ACC, our proposed method exceeds
the second best results on the data sets including 3sources, 100leaves, BBC, Caltech101,
COIL-20, NottingHill, Webkb, Cornell, and Wikipedia by 6.51%, 7.93%, 2.19%, 2.31%, 4.51%,
8.07%, 2.76%, 8.72% and 1.59%, respectively. For NMI, our proposed method is 8.93% lower
than the best method, RMKMC, on the Caltech101 data set. For F-score, our proposed
method exceeds the second best method by 1.41%, 14.45%, 4.39%, 3.89%, 6.55%, 11.23%,
3.75%, 7.75% and 0.63% for the corresponding data sets, respectively. In terms of ARI, our
proposed method exceeds the second best method by 0.84%, 14.59%, 5.31%, 7.37%, 6.97%,
14.33%, 12.11%, 2.54% and 0.16% for the corresponding data set, respectively. The above
results demonstrate the effectiveness and superiority of the proposed method. Hence, our
LGOMSC method is a valuable multi-view subspace clustering method.

From the results in these tables, one can see that the baseline method (i.e., FeatConcate)
sometimes exhibits comparable performance to the multi-view subspace method and even
exceeds some multi-view clustering methods. However, in most cases, this baseline method
still has a big gap in comparison with multi-view clustering methods. It confirms that multi-
view clustering methods that consider the consistency or complementary information can
obtain a good multi-view clustering performance. However, in some data sets, e.g., 3sources
and 100leaves, the multi-view k-means method RMKMC, produces even worse results than
FeatConcate. This phenomenon has been observed by some previous researchers [18,54].
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Multi-view subspace clustering based on intact space learning methods like LMSC
and FMR performs clustering on the latent representation space. However, there is a
large gap between these methods and our approach, probably because they separate the
representation learning and clustering processes, leading to suboptimal clustering results.

Compared with similar multi-view information fusion methods like GMC and LMVSC,
our approach achieves a more impressive performance. This is mainly because we fuse
graph learning into the self-expression model to jointly explore local and global structural
information in the data. More information is used to serve the clustering task and therefore
better performance is obtained.

Compared with the partition-based models to construct multi-view subspace clus-
tering for joint optimization methods like COMVSC, mPAC, and PMSC, our approach
achieves more impressive performance. This is mainly because we make the clustering
structure of the multi-view data revealed while generating the common subspace repre-
sentation under the rank constraint of Laplacian matrix. Thus, the end-to-end clustering
approach facilitates a better clustering performance.

Compared with the MVSCLG method, the overall results from the nine data sets
show that our method achieves the best results on all evaluation criteria, except for the
Caltech101, Cornell and Wikipedia data sets. It states that using rank constraint can obtain
an ideal graph matrix fitting for direct clustering. Our method also has superiorities in
terms of running time and memory usage, which will be discussed in the next subsection.
Thus, our method is more effective than MVSCLG.

Compared with these state-of-the-art clustering methods, the proposed method can
achieve a more impressive clustering performance. The main reason is that it considers
the local and global information from the original multi-view data to learn the subspace
representation. Moreover, the proposed LGOMSC is an end-to-end model, which fuses the
construction of subspace representation, multi-view information fusion, and clustering into
a seamless whole. The purpose for this is to dig into their potential correlations.

Statistical Analysis. To demonstrate the statistical properties of our proposed method,
we conducted the Friedman test and Nemenyi post-hoc test.

The Friedman test assumes that all the k compared methods hold the same perfor-
mance on H data sets. Specifically, this model performance evaluation consists of the
following two main steps. In the first step, first, sort all methods on each data set from high
to low according to the clustering performance index and assign corresponding ordinal
values (e.g., 1, 2, . . . ), and then calculate each method on all data sets average rank. In
particular, the ordinal values are averaged if the performance of the two methods is the
same. Finally, Γχ2 and ΓF are calculated, and their mathematical expressions are as follows:

ΓF =
(H − 1)Γχ2

H(k− 1)− Γχ2
(14)

where Γχ2 = 12H
k(k+1) (∑

k
i=1 r2

i −
k(k+1)2

4 ),ri represents the average rank of the i-th method
over all data sets. Besides, ΓF obeys the F-distribution with the degree of freedom k−1
and (k−1)(H−1). The correctness of the hypothesis is eliminated by comparing the ΓF
with its corresponding threshold (the thresholds of the Friedman test can be calculated by
q f (1− α, k− 1, (k− 1)(H − 1)) in R programming language). If the hypothesis is rejected,
this indicates a significant difference in the performance of the compared methods. A
further Nemenyi post-hoc test is then required to further distinguish between the methods.

In the second step, the Nemenyi post-hoc test calculates the critical distance by
Equation (15) to reflect the difference between the average ordinal results of various methods.

CD = qα

√
k(k + 1)

6H
(15)

where qα can be calculate by qtukey(1− α, k, In f )/Sqrt(2) in R programming language.
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In our case, the number of compared methods, k, equals 13 and H equals 9. We sort
the ACC, NMI, F-score, and ARI of the compared methods from high to low and obtain the
average ranking of each method in terms of all data sets.

When α = 0.05, the threshold for the Friedman test was 1.8544. According to Equation (14),
the ΓF values can be calculated for different clustering evaluation metrics (ACC, NMI, F-
score, and ARI), which are 8.4348, 13.0826, 5.9892 and 11.3655, respectively. These ΓF values
are all greater than the threshold of the Friedman test, which rejects the hypothesis that all
the methods being compared hold the same performance. Then, we perform the Nemenyi
post-hoc test to further distinguish multiple methods. After obtaining the critical distance,
CD = 6.2982, according to Equation (15), we can draw the Friedman test chart as Figure 2.
For each method, the blue dot marks its average rank. The horizontal lines with the dot at
the center indicate the critical distance, CD. If the lines do not have overlapping areas this
indicates a significant difference in the comparison methods.

Figure 2. Friedman test charts. (a) Friedman test on ACC, (b) Friedman test on NMI, (c) Friedman
test on F-score, (d) Friedman test on ARI.

From the figure, we can see that there are significant differences between the method
in this paper and Co_reg_c, Co_reg_p, MLRSSC, and PMSC, and that the other methods do
not differ from one another significantly. Compared with other methods, our method has
the best average ranking regardless of the clustering evaluation index. In summary, our
proposed method holds statistical advantages.
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5.4. Running Time Analysis

We used MATLAB 2018b to run each clustering method independently and recorded
the running time of each clustering method under one hyperparameter combination on each
data set in Figure 3. From these results, one can see that FeatConcate is the fastest among
most of multi-view data sets. To explore the consistency or complementary information of
the multi-view data, these multi-view clustering methods generally need a relatively long
running time to produce the final clustering. Our LGOMSC method is faster than Co_reg_c,
Co_reg_p, LMSC, FMR, MLRSSC, RMKMC, mPAC, PMSC, and COMVSC on most data
sets. On the Caltech101 data set, our LGOMSC method is 4.35 s slower than MLRSSC,
and on the Wikipedia data set, our LGOMSC method is 1.89 s slower than MLRSSC and
0.21 s slower than RMKMC. On these data sets, LMVSC and GMC are the fastest, and they
are more suitable for solving large-scale clustering problems. They are more concerned
with efficiency rather than effectiveness. Therefore, the clustering performance is relatively
poor. Although our proposed method is slower than the methods designed specifically
for large-scale scenarios, our method is still comparable to LMVSC and GMC for the
NottingHill data set. In Table 7, MVSCLG costs more running times than our method. In
the NottingHill data set, LGOMSC costs 4744.49 s under one hyperparameter combination.
However, since MVSCLG contains three hyperparameters, we need to conduct the grid
search strategy to select the optimal one from 420 hyperparameter combinations, which
may need 553.52 h. Hence, we ignore it.

Figure 3. Running time of different methods on nine multi-view data sets.
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Table 7. Comparing LGOMSC with MVSCLG on nine multi-view data sets.

Methods 3sources 100leaves BBC Caltech101 COIL-20 NottingHill Webkb Cornell Wikipedia

MVSCLG

ACC 78.70 73.38 80.88 82.56 78.61 - 91.82 70.77 63.49
NMI 65.13 88.54 58.14 58.06 90.28 - 56.49 49.88 59.09

F-score 76.13 66.10 69.95 79.07 72.94 - 88.04 65.40 56.16
ARI 68.10 65.74 61.18 61.76 71.34 - 67.89 51.35 49.69

Time (s) 59.77 947.71 209.86 764.76 443.21 4744.49 163.05 40.27 107.10

Ours

ACC 83.43 94.31 88.47 79.85 92.08 100.00 98.38 64.62 62.63
NMI 77.74 97.43 75.20 54.23 97.44 100.00 84.84 39.40 56.06

F-score 78.34 88.91 82.83 75.72 91.86 100.00 97.58 57.32 52.48
ARI 70.63 88.79 77.06 57.54 91.42 100.00 92.92 35.08 46.13

Time (s) 0.53 17.03 3.91 27.87 7.79 102.3 4.54 0.56 4.15

“-” indicates that MVSCLG requires more than 553.52 h on the NottingHill data set.

5.5. Memory Usage Analysis

We use MATLAB 2018b to run each clustering method independently and recorded
the memory usage of each clustering method. Specifically, we recorded the current matlab
memory usage once before we ran the program. After the program has finished, we
recorded the current matlab memory usage again. Subtracting the first reading from the
second reading gives us the memory usage of the method. For example, on the 3sources
data set, as can be seen in Figure 4, the memory usage of our method is small compared
with the LMVSC, PMSC, COMVSC and MVSCLG methods. The memory usage of our
method is slightly larger than the other remaining methods, but there is no significant
difference between our method and the other remaining methods in terms of memory usage
by an order of magnitude. Therefore, our method has an appropriate space complexity.

Figure 4. The memory usage representation of compared methods on 3sources.

5.6. Convergence Study

The objective function of LGOMSC has multiple variables and constraints. We have
developed an effective iterative optimization algorithm to solve the proposed method. We
conduct the convergence experiment in Figure 5, which provides the convergence curves
of LGOMSC on nine multi-view data sets. The x-axis displays the number of iterations,
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and the y-axis displays the corresponding objective function value. From these results,
one can see that the proposed method is well convergent and converges quickly. Within
10 iterations, the objective function value can converge to a stable value.

Figure 5. Convergence performance on nine multi-view data sets. (a) 3sources, (b) 100leaves, (c) BBC,
(d) Caltech101, (e) COIL-20, (f) NottingHill, (g) Webkb, (h) Cornell, (i) Wikipedia.

5.7. Parameter Tuning

We conducted an experiment to analyze the hyperparameter λ1 in this paper. In the
experiment, we tuned λ1 from a candidate set of {1, 10, 20, . . . , 100}. As shown in Figure 6,
we give the parameter tuning of LGOMSC on nine multi-view data sets and show the
clustering performance under different values. One can see that the proposed method
keeps a relatively robust clustering performance under a large range of λ1. This helps us to
easily select a proper parameter.
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Figure 6. The parameter sensitivity of λ1 on nine multi-view data sets. (a) 3sources, (b) 100leaves,
(c) BBC, (d) Caltech101, (e) COIL-20, (f) NottingHill, (g) Webkb, (h) Cornell, (i) Wikipedia.

6. Conclusions

In this paper, we propose a novel one-step multi-view subspace clustering method,
which integrates the self-expression model and graph learning to simultaneously exploit the
local and global information of subspace representations from multi-view data. Moreover,
to further exploit the hidden relationships between different steps to achieve an end-to-
end clustering, our method integrates the subspace representation learning, multi-view
information fusion, and clustering tasks into a joint framework. Experimental results on
nine popular multi-view data sets confirm the effectiveness of our method by comparing
with many baseline methods.

In the future, we have two directions to improve our method. First, since our method
is a linear model, we will consider expanding our model to non-linear cases to deal with
complex multi-view data. Second, for better fitting for large-scale multi-view subspace
clustering, we will adopt anchor-based ideas to improve our method.

Author Contributions: Conceptualization, Y.D. and H.Y.; methodology, H.Y. and C.S.L.; software,
Y.D.; experiment, validation and analysis, Y.D. and H.Y.; investigation, Y.D. and H.Y.; resources,
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Abstract: Water distribution infrastructure (WDI) is well-established and significantly improves
living quality. Nonetheless, aging WDI has posed an awkward worldwide problem, wasting natural
resources and leading to direct and indirect economic losses. The total losses due to leaks are valued at
USD 7 billion per year. In this paper, a multi-classification multi-leak identification (MC-MLI) scheme
is developed to combat the captioned problem. In the MC-MLI, a novel adaptive kernel (AK) scheme is
developed to adapt to different WDI scenarios. The AK improves the overall identification capability
by customizing a weighting vector into the extracted feature vector. Afterwards, a multi-classification
(MC) scheme is designed to facilitate efficient adaptation to potentially hostile inhomogeneous WDI
scenarios. The MC comprises multiple classifiers for customizing to different pipelines. Each classifier
is characterized by the feature vector and corresponding weighting vector and weighting vector
pertinent to system requirements, thus rendering the developed scheme strongly adaptive to ever-
changing operating environments. Hence, the MC scheme facilitates low-cost, efficient, and accurate
water leak detection and provides high practical value to the commercial market. Additionally, graph
theory is utilized to model the realistic WDIs, and the experimental results verify that the developed
MC-MLI achieves 96% accuracy, 96% sensitivity, and 95% specificity. The average detection time is
about 5 s.

Keywords: adaptive kernel; multiple classifiers; graph theory; hydraulic model; multi-criteria
decision-making

1. Introduction

Freshwater is one of the most important components to maintain human survival.
The reliability and sustainability of water distribution infrastructure (WDI) are always the
fundamental issues determining the livability of cities. The WDIs established in the past are
now facing an aging problem. The number of leakages and bursts has been ever-escalating
year-by-year. This results in not only economic losses but also the dissipation of natural
resources. Half of the freshwater is wasted worldwide due to leaking pipelines [1]. In the
United States, over 200,000 water bursts are recorded, yielding USD 2 billion of economic
loss every year [2]. In Europe, WDIs in England, France, and Italy are leaking around 25%
of freshwater annually [2]. It is also highlighted that 15% of the freshwater is wasted due to
leaking pipelines in Hong Kong [3]. To combat this problem, current research on water leak
detection technologies with high detection accuracy shows great effectiveness in protecting
water resources and mitigating economic loss.

A variety of water leak detection approaches for WDIs were developed by researchers.
One of the most common leak detection methods is manual listening through portable
detection devices [4]. These devices are usually placed on the surface of the pipelines, and
the leaking point is determined by listening for changes in sound or vibration produced by
leaky pipes. Paper [5] proposed an effective detection scheme based on acoustic emission
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and pattern recognition. Paper [6] proved the leak detection efficiency via laboratory
validation experiments with ground penetrating radar. Other detection approaches based
on portable devices have been developed [7–9].

However, low penetration capability and ambient noise are two critical challenges
for external portable detection. Moreover, lack of autonomy is another disadvantage for
external portable detection. As a result, internal automatic leak detection methods are being
explored. An automatic leak detection system integrates internal-sensor water network
and automatic leak detection algorithms, which enable capacities in real-time motoring and
early detection. In an internal-sensor water network, wireless sensors (e.g., flow meters,
pressure sensors) are embedded into pipelines for remote data measurement and collection.
Based on the data from internal sensors in the water distribution network, automatic leak
detection algorithms have been developed to analyze variations in hydraulic behavior,
indicate pipe status, and produce early alarms. Given their high efficiency, internal auto-
matic leak detection systems have been reported extensively in the literature [10–13]. The
paper [11] proposed a small-town water system combining water balance and minimum
night flow approaches to detect water leakage efficiently. However, only the influence on
water flow was considered. The detection accuracy can be improved by integrating other
types of sensors (e.g., pressure sensors). In paper [13], an accelerometer-based automatic
leak detection system was developed for early detection of single-event leaks in water
pipelines with high accuracy; however, it shows relative low efficiency in the detection
of multiple leak. To reduce the computational complexity, in [14] a model reduced by
integrating multiple pipe branches into a single node was proposed to convert complicated
WDI into a network. In terms of the practicability of internal automatic leak detection, vari-
ous automatic leak detection algorithms have been developed, including state estimation
algorithms [15,16], signal analysis algorithms [2,17], machine learning algorithms [12,18,19],
etc. The paper [15] proposed a burst detection approach that utilizes an adaptive Kalman
filter to perform hydraulic measurement of flow and pressure in a district metered area
(DMA). In research [17], a burst detection scheme using principal component analysis
was proposed, which enables a sensitive and quick analysis of water flow in DMAs with
low computational complexity. By integrating CNN-SVM and graph-based localization
algorithms, the proposed leakage detection scheme in paper [18] achieved more than 90%
detection accuracy and positioning accuracy within less than 3 m.

Most of the aforementioned leakage detection schemes and algorithms showed rela-
tively high detection accuracy in experimental settings or a certain part of WDI. Neverthe-
less, these methodologies would reveal certain limitations in flexibility and adaptiveness
whenever water distribution infrastructure is modified or expanded. In general, WDIs
inevitably undergo modification or expansion due to urban reconstruction or pipeline
system optimization. When a new pipe branch is added to the existing system, most
of the above detection algorithms need to be reconfigured to apply to the new pipeline
architecture, which increases the complexity of operation. In addition, different hydraulic
behaviors in various pipeline conditions are not considered in these algorithms. These
hydraulic behaviors greatly impact the accuracy of detection. For instance, water pressure
decreases gradually as the distance from the water pump increases. The corresponding
water pressure due to leakage would also drop. Hence, it is necessary to assign different
levels of importance to different hydraulic behaviors to ensure leak detection accuracy for
each pipeline. Further, whether these detection methods are applicable to multiple leaks
remains to be investigated.

This paper aims at developing a multi-leak identification (MLI) system for WDI. At
this point in time, the real challenges in leak detection and the related research consist of the
following: (i) lack of systematic design for automated leak detection systems; (ii) low prac-
ticability limited by inhomogeneous operating environments, i.e., the MLI system might
perform differently in different parts of WDI; and (iii) lack of adaptiveness to modifications
of WDI (referred to as the addition/removal/repair/replacement of pipelines).
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In view of the need for an MLI system, a multi-classification MLI system (MC-MLI) for
WDI is developed in this paper. An adaptive kernel (AK), which is the core of classification,
is designed to incorporate the weighting vector into the extracted feature vector. The
weighting vector revealing the features’ importance levels will improve the overall detection
performance. The problem of inhomogeneous working environments is always critical,
and now it will be solved by the proposed multi-classification (MC) scheme. The MC
scheme is composed of multiple unique classifiers assigned to the specific pipe sections.
The classifiers are configured by different classifier scenarios, which are subject to feature
combinations, feature weighting vector, and performance weighting vector. Every scenario
has different detection performance, and will be chosen to meet certain requirements
(e.g., sensitivity > detection time > cost). Thus, the proposed MC scheme can adapt to
inhomogeneous working environments and system requirements. High system flexibility
to the modification of WDI is another crucial advantage attributed to the MC scheme. When
WDI is modified, only several affected classifiers will be re-trained, or new classifiers will
be trained for new pipe sections. This mechanism significantly improves system feasibility.

The novelty of this study is as follows. A new multi-leak detection scheme, namely
multi-classification-based multi-leak identification (MC-MLI), is developed for WDI. In this
scheme, an adaptive kernel (AK) and a multi-classification (MC) algorithm are developed
to adapt to inhomogeneous working environments and maintain high detection accuracy.

2. Methodology of the Multi-Classification Multi-Leak Identification
(MC-MLI) Scheme

In this paper, an MC-MLI for WDI is proposed, and its development flow is illustrated
in Figure 1. First, pressure sensors and flow meters are deployed and initialized in WDI.
Data collection from practical WDI is then performed. The measured detection parameters,
such as mean value, peak-to-peak value, and the variance in flow rates and pressures, are
collected. Furthermore, the water behavior of the WDI determined by the WDI structure, the
pipe properties and sensor locations, etc., are modeled as a hydraulic model. The estimated
detection parameters can then be obtained based on the hydraulic model. Afterward, data
analysis and feature extraction are performed to design the adaptive kernel, which is the
core of classification. It is worthwhile to point out that the proposed multi-classification is a
parallel structure in which the status of each pipe section is identified by a unique classifier.
Feature combination will influence the design of the adaptive kernel and the detection
performance. The proposed scheme is adaptive in that various classifiers might have
different feature combinations and kernels to accomplish the desired detection performance.
For instance, sensitivity and detection time take priority over accuracy and specificity for an
important pipe section. Multiple classifier scenarios with varying feature combinations are
created and evaluated by multi-criteria decision-making (MCDM). Afterward, the overall
scoring of each classifier scenario is obtained and becomes the reference to select the best
classifier under certain system requirements. Finally, MLI is obtained by integrating all
selected classifiers in a parallel structure.
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2.1. Hydraulic Model Analysis

A hydraulic model is a mathematical model to represent the water behavior in a
given hydraulic system. The model facilitates the analysis of general WDIs. In this paper,
the model revealing hydraulic behavior in the pipeline system is used to estimate the
identification parameters for feature vector construction.

Obviously, there is no ideal (frictionless) fluid in a practical situation. Energy is
required to push fluid moving along a pipe against the friction due to the fluid viscosity.
The energy, also known as the loss in pressure energy, is defined as the hydraulic head loss
in a pipe. The factors affecting hydraulic head loss include flow rate, the friction of the
inner wall related to pipe material, and pipe diameter.

The Hazen–William equation is an empirical formulation to describe the water flow
inside the pipeline with practical considerations such as pipe material, pipe diameter,
pressure drop due to friction, etc. It has lower complexity compared to other hydraulic
models, and therefore, it is suitable for low-cost and real-time applications. According
to the Hazen–Williams equation, the water flow rate Q (m3/s) in a pipe is expressed as
follows [20]:

Q = 0.278× C× D2.63 × S0.54 (1)

where C is the Hazen–Williams friction coefficient dependent on the pipe material [21]. D
is the pipe diameter in meters, and S represents the energy slope, which is also known as
the head loss per pipe length.

The proposed scheme considers not only the water flow rate but also pressure drop.
Similarly, pressure drop PD (kPa/m) as defined in the Hazen–Williams equation is ex-
pressed as follows [20]:

PD = 1.192× 1021 ×
(

Q
C

)1.85
× SG

D4.87 (2)

where Q, C, and D are consistent with previous definitions. SG is the specific gravity of the
liquid, and the SG of water equals 1.

Note that the Hazen–Williams equation is generally accurate under the conditions
of >50 mm pipe diameter, 5–25 ◦C water temperature, and <1.2 MPa of inner pressure.
Otherwise, a large error will occur, and a more complicated hydraulic model, namely the
D’Arcy–Weisbach formula, should be considered.

2.2. Feature Extraction for the MC-MLI

The features are defined as the parameters that can be commonly found in all situations
but demonstrate distinctive characteristics. Based on the data analysis, ten (10) features are
extracted for pattern recognition and classification. They are listed in Table 1.
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Table 1. Ten features for the proposed MC-MLI scheme.

Feature Symbol Detail

Feature 1 ∆QM The difference between mean measured flow rate (QM,m ) and mean estimated flow rate (QM,e )

Feature 2 ∆PM The difference between mean measured pressure (PM,m ) and mean estimated pressure (PM,e )

Feature 3 ∆Qp−p
The difference in peak-to-peak values between measured flow rate(

Qp−p,m ) and estimated flow rate
(
Qp−p,e )

Feature 4 ∆Pp−p
The difference in peak-to-peak values between measured pressure(

Pp−p,m ) and estimated pressure
(

Pp−p,e ).

Feature 5 σQ The variance of measured flow rate σQm.

Feature 6 σP The variance of measured pressure σPm.

Feature 7 xcorrQ The correlation of measured flow rate and estimated flow rate.

Feature 8 xcorrP The correlation of measured pressure and estimated pressure.

Feature 9 xcorrQ+P The correlation of measured flow rate and measured pressure.

Feature 10 ∆QT The difference in total flow volume between measured and estimated values.

The feature vector X with features entry xi for i = 1, 2, . . . , M, is formulated as follows:

X = [x1 x2 . . . xM] (3)

where M denotes the number of features and is equal to 10 in this case.
Note that the extracted features will be further analyzed and weighted at the stage

of designing an adaptive kernel. Further, the proposed MC-MLI is said to be adaptive
because it combines multiple unique classifiers that are customized to the assigned pipe
sections. Eventually, the overall detection performance will be enhanced. The variation
of data quality among different pipes will influence detection performance. For example,
the pressure in a pipe at a faraway location might remain at a low level. False alarms
might frequently occur if all classifiers utilize the same feature vector. In this paper, the
customization of the feature vector for each pipe section will overcome the captioned
challenge and thus improve overall detection performance.

2.3. The Adaptive Kernel Design for MC-MLI

The proposed MC-MLI scheme involves a classification problem to identify multiple
leak points. As such, a support vector machine (SVM), recognized for its low computational
cost and good classification performance, is suitable for MLI in WDI. Therefore, SVM-based
multi-classification is designed and customized with a newly designed adaptive kernel.

In most practical problems, data are not linearly separable. Non-linear hyperplanes
separating the data of different classes will significantly increase computational cost, which
is not practical. Kernel trick is a solution to model linear hyperplanes through mapping the
input feature vector into a high-dimension feature space.

Conventionally, all features share the same weighting in the kernel trick method.
However, the feature importance should not be equal in reality. This means that various
features should contribute to the classification to different degrees. The kernel function is
not able to discover the feature importance levels. Therefore, an adaptive kernel is designed
via incorporating a weighting vector and the feature vector. Correlation is performed on the
features to determine their importance levels and weighting values. A higher correlation
coefficient value for a feature indicates that it has a higher impact on the classification
output. Therefore, a larger weighting value is assigned to that feature.

The designed adaptive kernel Ka(xi, xj) is formulated as:

Ka
(
xi, xj

)
=

M

∑
n=1

wnkn(xn
i , xn

j ) (4)
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where xi and xj denote the feature vectors of i-th and j-th data samples, respectively.
kn(.) is the radial basis function (RBF) kernel with respect to the n-th feature entry, for
n = 1, 2, . . . , M of the feature vector. wn represents the weighting of the n-th feature entry
of the feature vector, and it is calculated by:

wn =
∑N

q=1

(
xn

q − xn
)(

yq − y
)

√
∑N

q=1

(
xn

q − xn
)2(

yq − y
)2

(5)

where (¯) denotes taking the mean value and y is the class label. N is the total number of
training data samples. Note that the number of training samples of normal cases and leak
cases are equal to avoid the classifier being biased.

The data for different classes can be linearly separated by hyperplanes after the feature
vectors are transformed into high-dimensional feature space using a kernel trick. The
feature vectors lying on the hyperplanes are defined as support vectors. The gap between
the support vectors is defined as a margin. A larger separation distance of the margin will
increase classification accuracy because the data for other classes are less likely to cross the
large-distance margin. The high leak identification accuracy will be achieved by solving
the maximizing margin problem. The customized optimization problem is formulated
as follows:

L(α, wn) = argmax

{
L
∑

i=1
αi − 1

2

L
∑

i=1

L
∑

j=1
αiαjyiyjKa

(
xi, xj

)
}

s.t.





αi ≥ 0
L
∑

i=1
αiyi = 1

M
∑

n=1
wn = 1

∀i = 1, 2, . . . , L
(6)

where α denotes the Lagrange multiplier and Ka
(
xi, xj

)
is the designed adaptive kernel.

2.4. The Development of Multi-Classification for MLI

Inspired by biometric authentication, each pipe section is assigned with a unique
classifier to identify the pipe status. Figure 2 shows the parallel detection structure of the
proposed MC-MLI. The input of MC-MLI is the feature vector composed of the measured
parameters from practical WDI and the estimated parameters from the hydraulic model.
For a classifier Ch of the h-th pipe section, the output “1” means the pipe section operates
normally, where the output “0” means leakage exists in the pipe section. Each pipe status
is identified by a unique classifier. It is worthwhile to point out that the parallel structure
facilitates the expansion of WDI. For example, when a new pipe section (e.g., (G + E)th
pipe section) is connected to the WDI, a new classifier C(G+E) will be trained for the newly
added pipe section. Other existing classifiers do not need to be re-trained unless the new
pipe section influences the hydraulic behaviors of other pipe sections. The advantages of
the proposed multi-classification structure are summarized as:

Sa,b =
Va,b

∑NS
l=1 Va,l

with
NS

∑
l=1

Sa,l = 1 (7)

where V is the value of Acc, Se, Sp, and T. NS is the number of classifier scenarios.
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The overall scoring OSb of classifier Ch in the b-th scenario is computed as:

OSb =
4

∑
a=1

Sa,bwa (8)

where wa is the weighting of the a-th criterion obtained from AHP (with pairwise compari-
son [22]).

The overall scoring obtained from MCDM is a good indicator to evaluate classifier
performance. The values of the four criteria are obtained from 10-fold cross-validation. Ten-
fold cross-validation is a commonly adopted method for training and validating classifiers.

The proposed MC-MLI was implemented experimentally and evaluated practically.
Around 500,000 pieces of data were collected and analyzed. The huge amount of data was
sufficient to develop and validate the proposed MC-MLI.

3. Performance Evaluation of Different Classifier Scenarios
3.1. Experimental Setup for Evaluating MC-MLI

In real WDI, the underground pipeline network consists of multiple branches for water
distribution. In this paper, a multi-leak scenario is considered, and thus a multi-branch
pipe network is established. Recently, plastic pipe has been more common in practical
WDIs due to its low-cost, light-weight, chemically and electrically neutral, anti-rusting
and anti-corrosion properties. Therefore, the pipes utilized in the experimental setup are
made of PVC. The proposed scheme is applicable to other WDIs using pipes made of other
materials by adjusting several parameters in the hydraulic model. The experimental setup
of the multi-branch pipe network (i.e., 3 branches: B1, B2, B3) is shown in Figure 3. Each
sensor group contains a flow meter (Q) and a pressure sensor (P). All sensors are connected
to Arduino broad for data transmission. In the middle of each branch, one adjustable
valve is installed to act as a leak point (L). This facilitates the evaluation of different leak
sizes/rates by controlling the degree of valve opening.
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Graph theory is the best candidate to represent pairwise linkages between entities. In
this paper, the WDI is transformed into a directed graph using graph theory, thus identify-
ing the behavior of WDI and exploring the correlation between a real-world model and
small-scale model. An example of transforming a realistic WDI model and the developed
small-scale WDI model is shown in Figure 3. Water supply zones can be clustered by
deploying cut-line valves and boundary valves. The valves control the amount of water
flowing into the zones, and thus they can be transformed into control nodes ch in the
directed graph. Denoted ni and wi−j are the i-th node and the edge between the i-th and
j-th nodes in the directed graph, respectively. The node n represents the reference and/or
conjunction point in a realistic WDI, whereas the edge represents the pipe connecting two
points. The pairwise relations between nodes can be formulated as an adjacent matrix, i.e.,

A =




a11 · · · a1M
...

. . .
...

aM1 · · · aMM


 (9)

where the entry aij represents the directed connection from the i-th node to the j-th node. If
there is a connection between the i-th node and the j-th node, aij equals 1. Otherwise, there
is no connection between them, and aij equals 0.

The essential metrics in graph theory include average node degree K, average node
betweenness NB, edge betweenness EB, and the distribution of edge weighting. In order to
compare these metrics between realistic a WDI and the small-scale WDI, the developed
small-scale model is transformed into a graph representation, as shown in Figure 3. The
transformed small-scale model is configured the same as one of the water supply zones.
The correlation between the two transformed models is evaluated as follows.

Rm =
n(∑ rm × pm)− (∑ rm)(∑ pm)√

[n ∑ rm2 − (∑ rm)
2][n ∑ pm2 − (∑ pm)

2]
(10)

where n denotes the amount of data, rm denotes the m-th metric of the transformed realistic
WDI model, and pm denotes the m-th metric of the transformed small-scale model.
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The results reveal that the transformed realistic WDI model is highly correlated to the
transformed small-scale WDI model, reflected on the resultant coefficient of correlation
(close to 1).

3.2. Performance Evaluation of the MC-MLI

The performance of the proposed MC-MLI is evaluated in terms of average accuracy,
sensitivity, specificity, and detection time. In this experiment, all classification schemes
are evaluated under the same scenario, i.e., the same training data, same testing data,
and the same leak scenario. Three (3) schemes are compared, namely prime multi-class
classification (prime MCC), multi-class classification with the adaptive kernel (MCC +
AK), prime multi-classification (prime MC), and multi-classification with the adaptive
kernel (MC + AK) (the proposed MC-MLI). The multi-class classification refers to one
multi-class classifier. The multi-classification refers to multiple binary classifiers. The prime
classification means the classifier does not comprise any adaptive kernel or MCDM.

As shown in Figure 4, the proposed MC-MLI achieves the best performances: 96.1%
accuracy, 96.9% sensitivity, 95.3% specificity, and 5.3 s detection time. The comparison
of prime MCC and MCC + AK reveals that the adaptive kernel significantly improves
detection accuracy, sensitivity and specificity by >15%. The main drawback of multi-class
classification is low accuracy, and thus the performance of MCC + AK is limited. The
performance of multi-class classification degrades with the increasing number of classes.
This renders serious challenges for multi-leak detection. For instance, if there are 10 pipe
sections and 10 potential leak points, the number of leak combinations will be 1023, and
thus 1023 classes will be needed for the multi-class classifier. Furthermore, multi-class
approaches are inflexible in that the entire detection system need to be re-trained when a
new pipe section is connected.
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Multi-classification is proposed to overcome the captioned challenges. The multi-
classification can break down an entire pipeline system into numerous pipe sections. A
unique classifier is assigned to each pipe section. This facilitates classifier customization for
every pipe. Furthermore, it is not necessary to re-train the entire detection system when
the new pipe section is connected. A new classifier will be assigned and customized to the
new pipe section. This facilitates the management of WDI. The result demonstrates that
prime MC achieves higher accuracy, sensitivity and specificity than that of prime MCC. The
performance of the prime MC is close to MCC + AK. This proves that multi-classification
accomplishes better identification performances than multi-class classification. However,
the detection time of prime MC is much longer than that of other schemes due to the
complex feature vector. The proposed MC-MLI solves the problem by determining the best
feature combination for every classifier by MCDM. Owing to weighting assignment for
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feature importance levels, MC-MLI using adaptive kernel improves accuracy, sensitivity
and specificity by >15% compared to the prime MC.

3.3. Performance Evaluation of Different Classifier Scenarios

The proposed MC-MLI customizes every classifier for the assigned pipe sections. The
hydraulic behavior of each pipe section can be different. It depends on various factors,
such as pipe locations, user behaviors, pipe properties, network structure, etc. The classifier
customization will improve not only detection performance but also operating efficiency by
selecting a proper feature combination. In addition, the classifier customization facilitates
meeting certain performance requirements. For example, the classifier scenario with short
detection time and high sensitivity will be chosen for the important pipe sections. The
classifier scenario with high specificity will be chosen for the pipes with a lower importance
level. This reduces the probability of false alarms as well as unnecessary inspection costs.

The performance of different classifier scenarios of MC-MLI is shown in Figure 5.
The y-axis denotes average accuracy, average sensitivity, average specificity, and average
detection, respectively. The x-axis denotes the classifier scenarios. Each classifier scenario
refers to a feature combination. The number of feature combinations is calculated as:

NC =
M

∑
m=1

CM
m (11)
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Note that there are 10 features for classifier development, and thus M equals 10. The
total number of classifier scenarios is 1023. The 1st to 10th classifier scenarios refer to the 1st
to 10th feature combinations comprising one feature. The 11th to 55th classifier scenarios
refer to the 11th to 55th feature combinations comprising two features, and so on. The
result reveals that the accuracy, sensitivity, and specificity are generally improved with
the increasing number of features. Meanwhile, the detection time becomes longer. The
result is consistent with the previous discussion that increasing feature dimensions (i.e.,
the number of feature elements) usually improves the detection performance, but it leads
to longer detection time. In brief, the classifier scenarios with the feature vectors made of
>7 features (i.e., >967th classifier scenarios) achieve over 85% accuracy, over 80% sensitivity
and over 80% specificity. The detection time is about 5 s. The classifier performances can
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be converted to overall scoring using the weighted sum of the performance indicators. To
summarize, the customization in MC-MLI provides high adaptiveness to meet various
system requirements. The best classifier for each pipe section can be evaluated using
overall scoring.

3.4. The Performance of MC-MLI under Different Leak Rates

During the experiment, various leak scenarios were considered. The leak scenarios
refer to different leak rates and leak locations. There are three adjustable valves to act as
leak points. The leak rate is adjusted by controlling the valve openness. The leak rates vary
from 0 mL/s to 40 mL/s with an interval of 5 mL/s. The number of leaks in the scenarios
can be either a single leak or multiple leaks.

The result, as shown in Figure 6, is averaged from all leak scenarios (i.e., both single
leak and multiple leaks are involved). The detection accuracies of three pipe branches
B1, B2, and B3 are represented by three curves, respectively. Note that the curves of
sensitivity and specificity are similar to the accuracy curve. The result demonstrates that
the identification accuracy of MC-MLI is directly proportional to the leak rate. This is
because a higher leak rate will show more significant changes in feature values, and thus
a higher probability of correct classification. In the normal cases (0 mL/s leak rate), the
average accuracies of all three classifiers are higher than 80%. Furthermore, the average
accuracies of all classifiers are >80% under >15 mL/s leak rate, and >90% under >30 mL/s
leak rate. Several factors lead to unsatisfactory accuracies at a low leak rate, including
sensor sensitivity and network structure. For instance, if the noise level of a sensor is
sufficiently high to interrupt measured data, a large error will occur.
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4. Conclusions

Aged water distribution infrastructure (WDI) is a global issue for water wastage due
to leakage. It is necessary to develop automated leak detection to avoid economic loss
and save freshwater resources. In this paper, a new multi-classification-based multi-leak
identification (MC-MLI) scheme was proposed. After the data analysis, ten (10) features
were extracted to develop classifiers. A new adaptive kernel was developed to transform
the input features into high dimensional feature space. The features were weighted in the
adaptive kernel with respect to their importance levels to improve identification perfor-
mances. Moreover, a multi-classification with a parallel structure was designed to integrate
multiple binary classifiers. Each pipe section was monitored by a unique binary classifier.
Owing to the parallel structure of multi-classification, single/multiple detection(s) can be
performed without activating all classifiers. Additionally, it facilitates the integration of a
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newly added pipe section. An extra classifier is trained for the newly added pipe section
without reconfiguration of the whole identification system. Multiple classifier scenarios
were designed to adapt to various performance requirements (e.g., accuracy, detection
time, etc.). All scenarios had different performances in terms of accuracies, sensitivities,
specificities and detection times. The performance requirements can be varied according to
the pipes’ importance levels. Therefore, the proposed MC-MLI has high detection efficiency,
high system flexibility, and high system adaptiveness. An experiment involving multiple
leak scenarios was performed to evaluate the proposed MC-MLI. The results demonstrate
that MC-MLI achieves 96% accuracy, 96% sensitivity, and 95% specificity. The average
detection time was about 5 s. The improvement in identification performance was in the
range of 15% to 30% compared to prime classification schemes.

In the experiment, the same types of flow sensors and same types of pressure sensors
were adopted. They had the same connection interface (i.e., serial port) and showed similar
measurement precision. In reality, different types of sensors from different manufacturers
may be utilized, which may pose difficulty when replacing sensors in the detection system.
Considering this situation, the interoperability of different sensors based on the IEEE P2668
standard will be studied in future work to make sensors “plug-and-play”. Besides that,
the accuracy of sensor data needs to be guaranteed. By evaluating the accuracy of sensor
data based on the IEEE P2668 standard, the reliability of the detection system will be
further improved.
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12. Romano, M.; Kapelan, Z.; Savić, D.A. Automated detection of pipe bursts and other events in water distribution systems. J. Water
Resour. Plan. Manag. 2014, 140, 457–467. [CrossRef]

13. Zahab, S.E.; Mosleh, F.; Zayed, T. An accelerometer-based real-time monitoring and leak detection system for pressurized water
pipelines. In Proceedings of the Pipelines 2016 Conference, Kansas City, MO, USA, 17–20 July 2016.

14. Moser, G.; Paal, S.G.; Smith, I.F. Performance comparison of reduced models for leak detection in water distribution networks.
Adv. Eng. Inform. 2015, 29, 714–726. [CrossRef]

15. Choi, D.Y.; Kim, S.-W.; Choi, M.-A.; Geem, Z.W. Adaptive Kalman filter based on adjustable sampling interval in burst detection
for water distribution system. Water 2016, 8, 142. [CrossRef]

16. He, Y.; Li, S.; Zheng, Y. Distributed state estimation for leak detection in water supply networks. IEEE/CAA J. Autom. Sin. 2017, 7,
1–9. [CrossRef]

17. Palau, C.; Arregui, F.; Carlos, M. Burst detection in water networks using principal component analysis. J. Water Resour. Plan.
Manag. 2012, 138, 47–54. [CrossRef]

18. Kang, J.; Park, Y.-J.; Lee, J.; Wang, S.-H.; Eom, D.-S. Novel leakage detection by ensemble CNN-SVM and graph-based localization
in water distribution systems. IEEE Trans. Ind. Electron. 2017, 65, 4279–4289. [CrossRef]

19. Mounce, S.; Mounce, R.; Jackson, T.; Austin, J.; Boxall, J. Pattern matching and associative artificial neural networks for water
distribution system time series data analysis. J. Hydroinform. 2014, 16, 617–632. [CrossRef]

20. Lin, C.-C. A hybrid heuristic optimization approach for leak detection in pipe networks using ordinal optimization approach and
the symbiotic organism search. Water 2017, 9, 812. [CrossRef]

21. Mays, L.W. Water supply security: An introduction. In Water Supply Systems Security; Larry, W.M., Ed.; McGraw-Hill: New York,
NY, USA, 2004; pp. 1.1–1.12.

22. Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport
service development. Expert Syst. Appl. 2019, 116, 21–30. [CrossRef]

179





Citation: Bendiek, P.; Taha, A.;

Abbasi, Q.H.; Barakat, B. Solar

Irradiance Forecasting Using a

Data-Driven Algorithm and

Contextual Optimisation. Appl. Sci.

2022, 12, 134. https://doi.org/

10.3390/app12010134

Academic Editor: Chun Sing Lai

Received: 21 October 2021

Accepted: 7 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Solar Irradiance Forecasting Using a Data-Driven Algorithm
and Contextual Optimisation

Paula Bendiek 1,2, Ahmad Taha 3 , Qammer H. Abbasi 3 and Basel Barakat 1,4,*

1 School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH14 1DJ, UK;
paula.bendiek.21@ucl.ac.uk

2 Bartlett School of Environment, Energy and Resources, University College London, Central House,
14 Upper Woburn Pl, London WC1H 0NN, UK

3 James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK;
Ahmad.Taha@Glasgow.ac.uk (A.T.); Qammer.Abbasi@glasgow.ac.uk (Q.H.A.)

4 School of Computer Science, University of Sunderland, Sir Tom Cowie Campus, St Peters Way,
Sunderland SR6 0DD, UK

* Correspondence: basel.barakat@sunderland.ac.uk

Abstract: Solar forecasting plays a key part in the renewable energy transition. Major challenges,
related to load balancing and grid stability, emerge when a high percentage of energy is provided by
renewables. These can be tackled by new energy management strategies guided by power forecasts.
This paper presents a data-driven and contextual optimisation forecasting (DCF) algorithm for solar
irradiance that was comprehensively validated using short- and long-term predictions, in three US
cities: Denver, Boston, and Seattle. Moreover, step-by-step implementation guidelines to follow and
reproduce the results were proposed. Initially, a comparative study of two machine learning (ML)
algorithms, the support vector machine (SVM) and Facebook Prophet (FBP) for solar prediction was
conducted. The short-term SVM outperformed the FBP model for the 1- and 2- hour prediction,
achieving a coefficient of determination (R2) of 91.2% in Boston. However, FBP displayed sustained
performance for increasing the forecast horizon and yielded better results for 3-hour and long-term
forecasts. The algorithms were optimised by further contextual model adjustments which resulted in
substantially improved performance. Thus, DCF utilised SVM for short-term and FBP for long-term
predictions and optimised their performance using contextual information. DCF achieved consistent
performance for the three cities and for long- and short-term predictions, with an average R2 of 85%.

Keywords: solar irradiance forecasting; short-term and long-term predictions; machine learning;
support vector machine; Facebook Prophet; contextual optimisation

1. Introduction

Greenhouse gases are major drivers of climate change [1] and are primarily produced
by energy generation from fossil fuels [2]. Substantial research and political attention
have been devoted to renewable energies in order to reduce the consumption of fossil
fuels [3]. According to Huybrechts [4], renewable solar energy generation has continuously
increased in the context of attempts to transition to a net-zero carbon economy, as shown in
Figure 1. However, major challenges arise when a higher percentage of renewable energy
is connected to the grid, due to its volatile nature [5]. If supply and demand are not of
a similar magnitude, energy grids become unstable, potentially leading to blackouts [6].
Load balancing, ensuring that equal amounts of energy are generated and consumed, is
one of the most important and difficult of these challenges [7]. This has conventionally
been achieved by adjusting energy generation to demand patterns and scaling up power
generation whenever necessary. Currently, the backup capacity for load balancing is mostly
provided by fossil fuels, generation of which can be ramped up on demand [8].
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Renewable energy depends on environmental factors [10,11], and is, therefore, harder
to match to demand patterns. This stipulates the need for appropriate energy management,
including the organisation of generation, storage, and consumption. Understanding energy
generation patterns plays a key part in developing effective management strategies. There-
fore, the prediction of renewable power output is necessary to integrate more renewable
energy into the grid and thus reduce the emission of greenhouse gases [12].

In order to forecast the power output of any solar technology, the amount of available
potential energy must be known. If prediction models are specific to one type of device,
it is harder to adapt them to other use cases. The potential energy generated by many
technologies, e.g., PV panels, depends on the amount of solar global horizontal irradiance
received at a certain location. Global horizontal irradiance is the sum of direct and diffuse
radiation on a horizontal plane and is also used to calculate the radiation on an inclined
plane, such as a solar panel [13]. The prediction of solar radiation allows us to infer the
power output of devices, such as photovoltaic cells or solar water heaters. Throughout this
paper, global horizontal irradiance will also be referred to as simply irradiance or radiation.

In recent years, solar prediction in particular has become more sophisticated. Much
of this advancement is attributed to the development of machine learning (ML) algo-
rithms [14]. There has been a tremendous increase in the use of ML for solar predictions in
the last decade. It has been successfully employed and is extensively discussed in review
papers by Sobri et al. [12] and Wang et al. [14]. This paper builds on these insights and
proposes a forecasting algorithm that predicts solar irradiance using ML algorithms and
contextual optimisation.

Motivations and Impact

The need for ML-driven energy management solutions is increasing with the net-zero
carbon by 2050 target set by the UK government [15]. Several contributing parameters to
managing energy in our society include demand, energy usage behaviour, environmental
factors, etc. In this paper, we addressed the question of how to accurately forecast solar irra-
diance. This plays a crucial role in choosing the most optimal energy system management
strategy, and optimising the integration of solar cells [16]. Moreover, we aim to present a
methodological foundation of algorithm and feature selection, and evaluation metrics for
other studies to follow.

The main contributions of this paper are as follows:
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• Data-driven and contextual optimisation forecasting (DCF) algorithm, which accu-
rately predicts solar irradiance in the short- and long term. DCF is a hybrid algorithm
that utilises state-of-the-art ML algorithms and optimises their accuracy using contex-
tual information;

• A comparative study of two ML algorithms (Support Vector Machine and Facebook
Prophet), in which an investigation was made into the effect of adding extraterrestrial
radiation as a feature;

• Comprehensive validation of the forecasting accuracy for short- and long-term pre-
dictions in three cities to ensure that the model is not specific to one location. This
was evaluated by computing the coefficient of determination (R2), mean absolute error
(MAE), and root-mean-squared error (RMSE).

The rest of the paper is organised as follows: Section 2 reviews previously proposed
algorithms for solar forecasting. Section 3 presents the dataset used for training the ML
algorithms and the evaluation methods, respectively. The DCF algorithm is introduced in
Section 4, while Section 5 discusses the forecasting results. Finally, Section 6 concludes this
paper, and Section 7 suggests potential future research.

2. Literature Review

There is a range of ML algorithms that have been used in solar irradiance predic-
tion, such as regression, Markov chain [17], autoregressive integrated moving average
(ARIMA) [18], and neural networks [19]. One of the most commonly used ML algorithms is
the support vector machine (SVM) [12,20–22]. The SVM model is a conventional algorithm
that has been used for more than a decade to predict solar irradiance [21]. There are several
advantages to using an SVM; for example, it is able to model complex nonlinear models
with considerably high accuracy and robustness, and it is usually immune to overfitting.
Furthermore, there are novel algorithms, which are not yet established in solar prediction
but have the potential to increase forecasting accuracy, such as the Facebook Prophet (FBP)
algorithm. FBP was proposed for forecasting time series where nonlinear trends fit with
yearly, weekly, and daily seasonality. It achieves high accuracy with time series that have
strong seasonal effects and several seasons of historical data. Additionally, it is robust in
handling missing data and shifts in the trend and typically reduces the effect of outliers as
shown in Section 2.2.

2.1. Support Vector Machines

SVM is a statistical learning algorithm originally designed for classifying data [23].
It can also be used for regression tasks such as predicting solar radiation [24]. A kernel
function transforms a nonlinear input space into a higher-dimensional space [25]. It allows
efficient computation of the scalar products of multiple vectors in this higher-dimensional
space. Common kernel functions include the polynomial, radial basis (RBF), and sigmoid
functions [21]. In the higher-dimensional space, the optimal hyperplane, which separates
the margins of errors in regression and classes in classification, can be identified.

The use of SVMs in renewable forecasting has increased drastically in recent years [21].
The SVM is an established method, used across the renewable energy sector, especially
for solar forecasting, because of its accurate prediction ability for nonlinear data. Further
advantages include its fast computational speed, as no iterative tuning is required, and its
capability to produce accurate predictions with a small volume of data [26]. SVMs solve a
convex programming problem resulting in the global optimum, avoiding being trapped in
local optima (local optimum is either the highest or lowest point, compared with nearby
data points. The global optimum is the highest or lowest point in the whole function or
dataset. Further reading on convex optimisation problems can be found in [27]).

Zeng and Qiao proposed a least-square SVM to forecast global horizontal irradiance
for 1-, 2- and 3-hour ahead [28]. Their model significantly outperformed an autoregressive
(AR) model, as well as a radial basis function neural network. However, their evaluation
was performed for a short period (10 days) without cross-validating the model performance.
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VanDeventer et al. developed an SVM model in hybrid with a genetic algorithm to forecast
the power output of residential PV systems [29]. The model demonstrated good adaptability
to different locations, weather patterns, and climatic conditions. As, PV power output
depends on the system parameters and technologies, prediction of the power source
(irradiance) is more useful in the long term. An SVM with radial basis function to global
solar irradiance in a single location (Tehran) was used by Ramedani et al. [25]. The radial
basis function was chosen because it outperformed the polynomial as a kernel function.
Furthermore, it outperforms an ANN in terms of root-mean-squared error (RMSE) while
being computationally more efficient.

2.2. Facebook Prophet

Facebook Prophet (FBP) is a decomposable time series model, based on additive mod-
elling [30]. Recently, it has gained significant attention due to its capability to accurately
forecast time series data. For instance, Lim et al. compared FBP to autoregressive inte-
grated moving average (SARIMA) and concluded that FBP outperformed SARIMA for the
prediction of electricity and natural gas demand [31]. Additionally, Shawon et al. predicted
PV short circuit current for the next day, deeming it to be a reliable forecasting method [32].

FBP delivers its peak performance when dealing with a time series with strong seasonal
effects [33]. This applies to solar irradiance and is one of the main reasons to believe that
this algorithm is suitable for solar irradiance forecasting. However, in the literature, FBP
has not yet been utilised for solar irradiance prediction.

FBP models the time series data as follows:

y(t) = g(t) + s(t) + h(t) + εt (1)

where the trend is g(t), the seasonality is s(t), and the holidays are h(t). It is worth
mentioning that holidays and weekly trends were not accounted for, as these have no
influence on solar irradiance, εt indicates the changes not represented by the model and is
assumed to be normally distributed. It has intuitively adaptable parameters, designed to be
used by analysts that have domain knowledge rather than statistical expertise. Therefore, it
is important to know the characteristics of the subject that is being predicted, in this case,
the behaviour of solar radiation.

3. Dataset and Evaluation
3.1. Dataset

The data for this paper were acquired from the National Solar Radiation Database
(NSRDB) [34] for solar irradiance values in Denver, Seattle, and Boston, as shown in Table 1.
These were selected due to their different geographical and meteorological conditions.
Thus, the forecasting algorithm would not be specific to one location.

Table 1. Datasets are from the National Solar Radiation Database [34].

City Station Name ID Latitude Longitude

Denver Denver/Centennial 724666 39.742◦ −105.179◦

Boston Boston Logan 725090 42.367◦ −71.017◦

Seattle Seattle Seattle-Tacoma 727930 47.46◦ 122.317◦

The datasets contained hourly data for 8 years (1998–2005), including global horizontal
irradiance and extraterrestrial radiation on a horizontal surface. Extraterrestrial radiation
on a horizontal surface is the amount of solar radiation received at the top of the atmosphere
on a horizontal surface. This will be referred to as extraterrestrial radiation throughout this
paper (this is not to be confused with the solar constant. Further reading on solar radiation
can be found in Kalogirou’s book Solar Energy Engineering [35]. These datasets were used to
predict hourly values for the global horizontal irradiance.
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By averaging every hour of the day over the given 8 years, 1D and 2D plots were
created and are shown in Figure 2, respectively. While the 1D plot only captures the
seasonal trend, the 2D representation also displays the daily seasonality which depends on
the latitude of the location.
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(c) 2D representation of average irradiance in Boston (d) 2D representation of average irradiance
in Denver.

3.2. Evaluation

The DCF algorithm was assessed for short- and long-term forecasting. The short-term
forecasts for 1-, 2- and 3-hour ahead were generated, as is common in the literature [12,29,36,37].
Forecasts for a few hours ahead help to manage and schedule the start-up of power plants
(load scheduling) [37]. Furthermore, short-term forecasts of 30 min to 6 h are important for
load dispatch and scheduling [24]. Load dispatch means that electricity can be dispatched
on demand, and load scheduling is the management of this electricity and its usage.

The long-term prediction capabilities were investigated by forecasting irradiance data
for 1 year (24× 365 h) ahead. Long-term forecasting of several months up to a year is useful
for scheduling maintenance and has value when bidding on the energy market [38]. There
are few studies on long-term predictions in the literature using statistical methods [12]. It
might relate to the fact that physical models based on meteorological expertise are generally
more accurate at predicting long-term solar radiation [39]. The long-term prediction of this
ML model does not detect any change in weather and only gives an approximate idea of
the radiation values. However, this model is useful, as its implementation is easier and
quicker than the implementation of a physical model and still gives a good indication of
the amount of radiation that will be received

All models were tested on hourly data for a whole year (2005). These results were
affirmed using fivefold cross validation for the SVM model. Cross validation for FBP cannot
be performed like common k-fold validation, as the time series should not be randomly
separated. Therefore, the 1-, 2-, and 3-hour predictions were made for FBP using every
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hour of the year as the starting point, thus generating 8760 × 3 forecasts. Based on these
predictions and target values, several evaluation metrics were calculated. As for k-fold
cross validation, the more starting points there are (the higher the k), the more generalised
the result will be.

The forecasting was evaluated and compared using the coefficient of determination
(R2), mean absolute error (MAE), and root-mean-squared error (RMSE).

The R2 value is obtained as follows [40]:

R2 =
Σi(yi − ŷi)

Σi(yi − yi)
(2)

where yi are the actual values, yi is the mean of the actual values, and ŷi are the predicted values.
MAE has the same units as the predicted value and thus represents the expected

absolute error, which is calculated by [41].

MAE =
1
N

N

∑
i=1
|yi − ŷi| (3)

where N is the total number of samples.
The RMSE value squares the difference between actual and predicted values, em-

phasising larger errors. This is appropriate for solar prediction as larger errors lead to
disproportionally higher costs [42]. RMSE can be calculated as follows [43]:

RMSE =

√√√√ N

∑
i=1

(yi − ŷi)
2

N
(4)

To evaluate the prediction accuracy, the data were trained on radiation data from 1998
to 2004 and tested on data from 2005. Cross validation was performed, showing that the
models generalise well. Furthermore, grid search was applied to tune the hyperparameters.
After training and making predictions, these were adjusted using contextual optimisation.

4. Data-Driven and Contextual Optimisation Forecasting Algorithm

The DCF algorithm consists of two parts, i.e., data-driven and optimisation using
contextual information, as shown in Figure 3. The data-driven part purely depends on the
algorithm and the input data, e.g., the selection of the input features. The optimisation part
uses contextual information to enhance the forecasting of the data-driven models, such as
the elimination of negative predictions. Using this approach, we can harvest the strengths
of both machine learning and the contextual understanding of the data.
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Figure 3. Block diagram of DCF, showing its two main parts: data-driven model and contextual optimisation.

4.1. Data-Driven Model

In the data-driven part, two promising ML algorithms (SVM and FBP) were utilised
to generate the predictions. It was implemented in Python [44] using Scikit-learn [45] and
Prophet Libraries [30]. Initially, a comparative study of the SVM and FBP algorithms was
conducted to assess their accuracy. Subsequently, the effects of adding extraterrestrial
radiation as an input feature to the model were investigated.

For the SVM short-term prediction, three variables were used as initial features, all
past values of the global horizontal irradiance. These are the radiation of the same day 1 h
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ago, the same hour 1 day ago, and the same hour 2 days ago, as shown in Table 2. Zeng
and Qiao found that the same hour of previous days has a stronger correlation with the
target variable than radiation data from 1h ago [28]. For the long-term prediction of the
SVM model, radiation values of the same hour and same day one year ago were used as its
initial feature (see Table 2), as these have a strong correlation [38].

Table 2. Initial and additional features for SVM short- and long-term forecast.

Variable Name Description

Short-term Forecast

Initial Input Features

1H Radiation Radiation values for the same day 1 h ago
1D Radiation Radiation values for the same hour 1 day ago
2D Radiation Radiation values for the same hour 2 days ago

Additional Input Features

1H Extraterr Extraterrestrial values for the same day 1 h ago
1D Extraterr Extraterrestrial values for the same hour 1 day ago
2D Extraterr Extraterrestrial values for the same hour 2 days ago

Long-term Forecast

Initial Input Features

1Y Radiation Radiation from the same hour and day a year ago

Additional Input Features

2Y Radiation Radiation at the same hour and day two years ago
1Y Extraterr Extraterrestrial radiation of same hour and day a year ago
2Y Extraterr Extraterrestrial radiation of same hour and day two years ago

For the Facebook Prophet short-term prediction, the same variable as for SVM was
used, the global horizontal irradiance. However, as FBP has a different algorithm structure,
the feature is the time series of solar radiation up to the values that are predicted. There is
no differentiation of global horizontal radiation (1H-, 1D-, 2D radiation) as for the SVM
model. For example, all values from 00:00 on 1 January 1998 up to 08:00 on 24 June 2005
were used to predict 09:00 + 10:00 + 11:00 on 24 June 2005. Similarly, for the long-term
prediction, the entire past time series up to the predicted year was used. The past time
series should contain at least one year of data so that seasonalities can be captured. Both
the long- and short-term prediction features are shown in Table 3. These will only differ in
their predicted output values (3 h or 1 year).

Table 3. Initial and additional features for FBP short- and long-term forecast.

Variable Name Description

Short- and Long-term Forecast

Initial Input Features

Xt=0 . . . Xt=N Time series of radiation values from 1 January 1998 to 31 December 2004

Additional Input Features

Et=0 . . . Et=N
Time series of extraterrestrial radiation values from 1 January 1998 to

31 December 2004

After choosing the initial features for the data-driven model, further features were
added and their effectiveness evaluated. Adding features to a model can improve its
performance [28]. However, there is no inherent benefit to increasing the model complexity.
Additional features can also lead to worse results or have no impact on performance [46].
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Therefore, additional features must be carefully evaluated and only added if shown to have
a positive impact.

For the SVM short-term forecast, three inputs were added to the initial features, as
shown in Table 2: extraterrestrial radiation for the previous hour of the same day, for the
same hour 1 day ago, and for the same hour 2 days prior. For the long-term forecast, the
irradiance of the same hour and the same day two years ago, as well as the extraterrestrial
radiation were added. The long-term forecast further included the global horizontal
irradiance of the same hour and the same day two years ago, as well as the extraterrestrial
radiation, as shown in Table 2.

It is only possible to add features to FBP if the future values for these are known.
This is not the case for most additional features, such as extraterrestrial radiation. How-
ever, extraterrestrial radiation is approximately the same for every time of the year at a
given location, so it can be predicted precisely. Thus, a time series of predicted extraterres-
trial radiation was added for FBP as additional regressors, for both short- and long-term
predictions, as shown in Table 3.

Hyperparameters are different from “normal” parameters, e.g., the weights (ω) and
biases (b). They are the parameters that cannot be learned by the SVM model but must be
chosen. The hyperparameter were tuned after evaluating the results of the basic algorithm
operations for the default values in Scikit-learn. Hyperparameters should be selected to
give the best results and can be tuned using several different methods. These include grid
search [47], random search [48], and bio-inspired techniques, e.g., swarm optimisation [49].

The hyperparameters for this SVM model were tuned by the grid search cross valida-
tion (grid-search cross-validation searches for the best combination of the given parameters
using cross validation to evaluate each combination of hyperparameters). For this, a grid
of possible hyperparameters was provided. Firstly, the radial basis function (RBF), shown
in Equation (5), was chosen, as it produces the best results in the literature [50]. This was
verified for these solar models. When using an SVM for regression with an RBF kernel,
three parameters must be found: C, the regularisation parameter; ε, the term defining the
size of the error tube; γ, the width of the RBF kernel.

RBF = exp
(
−γ‖x− x′‖2

)
(5)

One drawback of grid search cross validation is its computational cost. Other opti-
misation techniques should be investigated, as discussed in Section 7. To avoid excessive
computations, a log-scale was initially used for all hyperparameters, e.g., 0.1, 1, 10, and
100 for C. Depending on the outcome, the range was adjusted (e.g., 5, 10, and 50). It was
found that C had the greatest influence on the results of this model.

4.2. Contextual Optimisation

The second part of the DCF algorithm optimised the accuracy of the data-driven
predictions using the contextual information of solar irradiance. This information was
derived from comparing the forecasted values to the measured values, thus not relying
on a specific location/time. As shown in Figure 4, optimisation had three steps. It was
observed that the data-driven approaches forecasted negative values, so these negative
values were eliminated. Then, the forecasted values were amended based on the time of
sunrise and sunset, (a similar approach were taken in [19] daytime forecasting). Here, we
used two approaches: one static, in which night hours were defined from 8 p.m. to 6 a.m.,
and one dynamic which determined the hours of sunset and sunrise. The static approach
was implanted by Zeng and Quiao, producing good results [28]. The dynamic approach
is a more accurate representation of reality and thus can be more flexibly implemented in
any location. However, it requires additional computational power. The last step was the
seasonal adaptation in which we amended the forecasted values in the long-term model
according to the month of the year.
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Figure 4. Contextual optimisation block diagram showing the three main steps.

FBP generated large negative values for both long- and short-term predictions. For all
negative predictions (which only occurred in winter), the target value was zero. This shows
that FBP only forecasted negative values during the night hours, as shown in Figure 5. In
summer, all night hour predictions were positive. As there could not be negative irradiance
and most negative predictions occurred at night, all negative values were eliminated and
set to zero. The SVM model also predicted some negative values (around 5% for short-term
and 50% for long-term). For most predictions with negative values, the target value was
zero. For the non-zero target values, the radiation was very low (maximum of 15 W/m2).
Therefore, here too, all negative values were set to zero.
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After eliminating the negative values, all values between 8 pm and 6 am were set
to zero, as they were considered night hours [28]. However, this static approach does
not represent that sunrise and sunset hours vary over the year. Therefore, the sunset and
sunrise for every day of the year were determined and subsequently used to set all values
between sunset and sunrise to zero. Both static and dynamic methods were implemented
to compare their impact on the model accuracy.

A seasonal adaptation was created for the long-term models, as a general trend
was detected. For instance, the long-term FBP model would overpredict in summer and
underpredict in winter, especially for the model without extraterrestrial radiation. Further,
there was over- and underprediction trends in both seasonal and daily forecasts. For
example, in some months, morning and evening hours were underpredicted, while the
noon hours were overpredicted, as shown in Figure 6. The seasonal adaptation aimed to
prevent these general trends of over- and underpredicting. The model with extraterrestrial
radiation displayed less of a yearly seasonal trend; however, the daily trend still existed.
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Figure 6. FBP, displaying overprediction in morning and evening and underprediction at noon.

For the seasonal adaptation, for every hour of the day within each month (e.g., the 6th
hour of every day in January), all values from previous years were collected. The average of
these target values for the particular hour was taken for each month, as shown in Figure 7.
The same was carried out for the predicted values. Three different versions of average were
used: the mean (V1), the median (V2), and the mean of median and mean (V3).
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The seasonal adaptation adjusted the values according to the month of the year by
increasing/decreasing every predicted value that was on average lower/higher than the
target values of the same hour of the day of that month in past years. The seasonal
adaptation (SA) is calculated as follows:

ŷ SA = ŷ×
(

1 +
y− ŷ

ŷ

)
(6)

where ŷ refers to the predicted value, y is the target value, and the ŷ is the average predicted
value. The average here refers to either the mean, median, or mean of median and mean,
depending on the version.

In the final DCF, SVM was used for first- and second-hour predictions. Beyond
this, FBP would be used as the core algorithm. Furthermore, the best outcome of every
comparative step was used. In the data-driven part, extraterrestrial radiation was added
as an input feature to the DCF algorithm. The most influential hyperparameter was the
regularisation parameter C, which was chosen to be 120 for the short-term model and 0.5 for
the long-term DCF. In the contextual optimisation, the negative values were eliminated and
dynamic sunset- and sunrise adjustments were performed. For the long-term prediction,
seasonal adaptation was applied. From the seasonal adaptation variations, V3 (mean of
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median and mean) was chosen for the SVM model, while V1 (mean) was selected for the
FBP. This was verified by the results, presented in Section 5.

5. Results and Discussion

This section consists of three main parts. First, the data-driven part of the model is
evaluated, followed by a discussion of the improvements brought about by contextual
optimisation. Subsequently, the final DCF model is presented and validated by the short-
and long-term models in all three cities.

5.1. Data-Driven Model Results

The initial model was based on historical solar radiation data and the respective
algorithm. SVM outperformed FBP in the 1-hour ahead prediction in terms of R2 and
RMSE (Table 4). It also had the lowest MAE for all three horizons. For 2-hour prediction,
the FBP yielded similar results in R2 and MAE to SVM, while beyond this horizon, it
outperformed the SVM model. This is because SVM displayed a stark decline in accuracy
with the increase in prediction horizon. For the long-term forecast, FBP resulted in a
better R2 and RMSE, while SVM yielded a better MAE (Table 5). Adding extraterrestrial
radiation to the model enhanced the performance of SVM and FBP for both the short-
and long-term predictions (Tables 4 and 5). For the short-term prediction, R2 increased
by ca. 7% for FBP, and between 5% (for 1 hour ahead) and 10.5%, (for 3 hours ahead)
for the SVM model. MAE decreased noticeably for FBP, by ca. 34 W/m2, and also, but
less drastically, for the SVM model. RMSE also decreased for both algorithms. The SVM
model, which included global and extraterrestrial radiation of the same hour and day, 1 and
2 years ago, yielded the best results. The R2 value in the long-term model increased by
7% for FBP and 17% for SVM. Furthermore, MAE and RMSE were reduced substantially.
Overall, the addition of extraterrestrial radiation resulted in considerable improvements of
all models. Extraterrestrial radiation on a horizontal surface is a good indicator of potential
global horizontal irradiance, stating how much solar radiation is received at the top of the
atmosphere for a certain location [51].

Table 4. Short-term results using data-driven and contextual optimisation.

Data-Driven Contextual

Algorithm Forecast
Horizon

Initial
Features

Additional
Features Tuned Negative Elimination

and Night Hours
Overall

Improvement

R2

SVM
1 h 83.27% 87.45% 87.64% 87.64% 5.25%
2 h 76.02% 82.74% 83.07% 83.07% 9.27%
3 h 72.05% 79.56% 80.02% 80.02% 11.07%

FBP
1 h 77.84% 83.46% 83.46% 83.55% 7.34%
2 h 77.82% 83.37% 83.37% 83.46% 7.24%
3 h 77.82% 83.33% 83.33% 83.41% 7.18%

MAE

SVM
1 h 73.42 55.2 46.88 46.70 36.40%
2 h 84.71 67.5 58.86 58.86 30.51%
3 h 89.98 74.65 65.99 65.96 26.69%

FBP
1 h 99.49 65.39 65.39 60.69 39.00%
2 h 99.53 65.62 65.62 60.97 38.74%
3 h 99.54 65.79 65.79 61.23 38.49%

RMSE

SVM
1 h 124.93 108.2 107.37 107.37 14.06%
2 h 149.55 126.90 125.68 125.68 15.96%
3 h 161.48 138.07 136.51 136.51 15.47%

FBP
1 h 135.03 116.47 116.47 116.30 13.87%
2 h 135.07 116.78 116.78 116.63 13.65%
3 h 135.09 116.94 116.94 116.81 13.53%
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Table 5. Long-term results using data-driven and contextual optimisation.

Data-Driven Contextual

Algorithm Initial
Features

Additional
Features Tuned Negative

Elimination
Negative Elimination and

Night Hours
Seasonal

Adaptation
Overall

Improvement

R2

SVM 68.72% 80.32% 80.78% 80.78% 80.78% 82.56% 20.13%
FBP 77.83% 83.11% 83.11% 83.19% 83.22% 83.97% 7.89%

MAE

SVM 72.67 54.02 55.61 55.57 55.56 56.67 22.01%
FBP 99.57 67.07 67.07 63.96 62.42 57.81 41.94%

RMSE

SVM 160.33 127.19 125.67 125.67 125.67 119.74 25.32%
FBP 135.02 117.85 117.85 117.59 117.46 114.83 14.95%

The hyperparameters were tuned for the SVM model, using grid search cross valida-
tion. The tunable parameters were the regularisation parameter C, the size of the error tube
ε, and the width of the RBF kernel γ. The influence of ε and γ were minimal, leading to
improvements of less than 0.0004% in R2. Therefore, it was focused on tuning the regulation
parameter C. SVMs are generally strongly dependent on their hyperparameters [10]. How-
ever, tuning the hyperparameters for these models did not lead to significant improvements.
For the short-term prediction, C = 120 led to the best results. This, however, only improved
R2 by 0.5%, MAE by 8.6 W/m2, and RMSE by 1.6 W/m2. These improvements were low,
compared with the addition of features. For the long-term prediction, the best C was 0.5.
The improvements for this were even smaller.

The results of the data-driven model can be seen in Figure 8, displaying the same trend
as described for the initial model (untuned, without added features).
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5.2. Contextual Optimisation Results

The results of further contextual optimisation are presented in this section. Setting all
negative values to zero slightly improved the SVM model. It further enhanced the model,
as it does not confuse the user with the prediction of impossible (negative) values. As the
FBP short-term model had larger negative predictions, eliminating these led to greater
improvements. The R2 increased by 3% and MAE and RMSE decreased by 26 W/m2 and
8 W/m2, respectively. The long-term model improvements were less significant. As neither
of the models predicted negative solar radiation during the day, setting all values to zero
was appropriate. A model that predicted zero values at night, instead of negative values,
was a closer reflection of reality.

There were some positive predictions at night. As this was not possible, sunrise
and sunset adjustments were applied. Setting all values from sunset to sunrise to zero
gave slightly better prediction results than defining all night hours as 8 p.m.–6 a.m. This
was to be expected and true for short- and long-term predictions, in both SVM and FBP
models. Including the flexible sunrise and sunset in the model allowed it to be easily
applied to a location with different geographical conditions. This is particularly important
in locations that are far from the equator, as sunset and sunrise vary more over the year
in those places. However, it must be noted that including this adjustment into the model
requires extra computational power. In locations where there is no significant variation
in sunset and sunrise times during the year, this step may not be worth the marginally
improved performance.

Seasonal adaptation only applied to the long-term forecast. There were three versions
of this amendment, using the mean (V1), the median (V2), and the mean of the mean and
median (V3). For SVM, the seasonal adaptation had a greater impact on the model with
additional features. Version 1 performed best for the R2 value, reducing the error by 11%
and decreasing RMSE by 7 W/m2, as shown in Figure 9. However, MAE increased by
6 W/m2, which should be avoided. Version 2 performed better for MAE, decreasing it.
However, the R2 value decreased by 0.2% and RMSE increased slightly, which is also not
desirable. Version 3 combines aspects of both preceding versions, offering more continuity
and stable results. The R2 and RMSE values for this version were better in comparison with
the previous amendment (sunrise and sunset), while MAE was very similar. Therefore,
version 3 of the seasonal adaptation, using the mean of the median and mean, was chosen
as the last amendment for the long-term SVM model. The improvement of applying the
seasonal adaptation can clearly be observed in Figure 10.
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Figure 9. Comparison of (a) FBP and (b) SVM of seasonal adaptation versions.
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Figure 10. SVM (a) before and (b) after seasonal adaptation.

For FBP, the improvement on the model with additional features was marginal. As
version 1 (using the mean as the average) led to improvements for all metrics, it was
chosen for the FBP model. Interestingly, applying the seasonal adaptation to the FBP model
without the extraterrestrial radiation led to results in R2, MAE, and RMSE that were only
slightly different from the model with extraterrestrial radiation. The seasonal adaptation
had a greater positive impact on the model without extraterrestrial radiation, as shown in
Table 6, with the addition of correcting the daily seasonality. The impact on this model was
larger because the yearly and daily seasonality were both corrected, while for the model
with extraterrestrial radiation mostly daily seasonality was adjusted. Thus, using a model
without extraterrestrial radiation could be considered if these data are not available.

Table 6. Comparison of influence on seasonal adaptation on FBP models with different features.

Initial Features Initial + Additional Features

Sunset and
Sunrise

Seasonal
Adaptation Improvement Sunset and

Sunrise
Seasonal

Adaptation Improvement

R2 80.56% 83.35% 2.79% 83.22% 83.97% 0.74%
MAE 70.1 61.51 8.60 62.42 57.81 4.61
RMSE 126.4 117.01 9.42 117.46 114.83 2.62

Tables 4 and 5 display the results of all steps of data-driven and contextual parts for
short- and long-term forecasts. It is clear that the accuracy was enhanced at each step of
the algorithm, starting from the initial features training to the SA. The proposed model
changes improved R2 of the short-term model by 5% (1 h) to 11% (3 h) for SVM and 7% for
FBP. The MAE for the FBP model decreased by 39 W/m2 and by ca. 25 W/m2 for SVM.
RMSE was also decreased by 17 to 24 W/m2 for SVM and 18 W/m2 for FBP. The overall R2

improvement associated with model changes for the long-term forecast is 20% for SVM
and 8% for FBP, as shown in Table 5. MAE decreased by 42 W/m2 for FBP but only by
16 W/m2 for SVM. For SVM, however, RMSE decreased by 41 W/m2, whereas for FBP, it
decreased by 20 W/m2.

The insights of the individual model results for different horizons were taken to
determine which algorithm to use for which horizon in the final DCF. For DCF, the highest
accuracy for the 1- and 2-hour predictions was achieved using SVM with extraterrestrial
radiation as an additional input feature, using the dynamic night-time adjustment and
version 3 of the seasonal adaptation. Figure 11 shows that the 1-hour prediction SVM
displayed a compact trend line with only a few normally distributed errors. For FBP,
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most values were on a line that was slightly too steep, indicating an overprediction for
those values. However, there were also many points below the dense line, signalling
underprediction. For the 3-hour and long-term predictions, the FBP using V1 of the seasonal
adaptation outperformed all the other versions and algorithms. It can be concluded that
the SVM model should be used for 1- and 2-hour ahead predictions, while beyond that, the
FBP model should be utilised in the final DCF.
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The performance of FBP suffered less from an increase in horizon than the SVM model.
This is due to the underlying characteristics of the algorithm; FBP is specifically designed
for time-series prediction [30]. An advantage is that the performance declines less over time.
However, inputting the whole past time series into the model did not allow emphasising
values that had a higher correlation and were more relevant to the particular prediction.
For SVM, this could be differentiated.

5.3. DCF Performance

In this section, the DCF performance for short- and long-term forecasting is presented.
To validate its performance and ensure that DCF is a generic model that can be utilised for
different locations, forecasts were conducted for three cities, i.e., Denver, Boston, and Seattle.

The results for all three cities and both algorithms are presented in Table 7. It can be
seen that the SVM model performed even better on the short-term prediction in Seattle
and Boston than for Denver, while the general trend remained the same as for the Denver
results. For the long-term prediction, Denver displayed the best results in terms of R2;
however, both MAE and RMSE were as low or lower for Boston and Seattle than for Denver.
Again, the SVM model mostly outperformed FBP in the 1- and 2-hour forecasts, while the
FBP model generally generated better results for 3-hour prediction and in the long term.
This was observed similarly in the results and its trend validated the chosen DCF model.

Two days of short-term predictions by the DCF algorithm are displayed in Figure 12.
It shows that the model was noticeably accurate for sunny days (first day), with smooth
irradiance transitions. Furthermore, it captured trends for changes in weather, as can
be observed on the second day. Despite the rapid change in irradiance, the model still
generated accurate predictions.

As shown in Figure 13, DCF was applicable to different locations, conserving the
general pattern of performance. This validated the DCF algorithm and provided us with
confidence that this model will perform well in other not-yet-tested locations. Results of
around 90% (91.2%, 90.6%, and 87.6%) for the 1-hour predictions were achieved for R2,
while MAE ranged from 36 W/m2 for Seattle to 47 W/m2 for Denver and RMSE from 75
W/m2 for Seattle to 107 W/m2 for Denver. For the 2-hour forecast, the R2 value declined
by about 5%, and MAE and RMSE increased by ca. 12 and 18 W/m2, respectively, for all
locations. The 3-hour prediction still generated R2 of 78% (Seattle) to about 83% (Denver
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and Boston), while MAE ranged from 56 (Seattle) to about 61 W/m2 (Denver and Boston)
and RMSE from 103 W/m2 (Seattle) to 116 W/m2 (Denver and Boston). Even the long-term
prediction for one year ahead still generated good results for all cities, with high R2 values
and low error values, as shown in Figure 13.

Table 7. Comparison of SVM and FBP performance in all cities.

Algorithm Horizon Denver Seattle Boston

R2

SVM Short term
1 h 87.64% 90.62% 91.19%
2 h 83.07% 85.80% 86.77%
3 h 80.02% 82.32% 81.94%

Long term 8760 h 82.56% 78.41% 75.92%

FBP Short term
1 h 83.55% 78.35% 83.53%
2 h 83.46% 78.32% 83.44%
3 h 83.41% 78.32% 83.39%

Long term 8760 h 83.97% 80.29% 78.32%

MAE

SVM Short term
1 h 46.70 37.40 36.15
2 h 58.86 49.27 47.48
3 h 65.96 58.39 57.95

Long term 8760 h 56.67 52.90 58.67

FBP Short term
1 h 60.69 55.94 60.96
2 h 60.97 56.01 61.23
3 h 61.23 56.02 61.48

Long term 8760 h 57.81 51.04 57.86

RMSE

SVM Short term
1 h 107.37 75.36 77.05
2 h 125.68 92.72 94.42
3 h 136.51 103.48 110.29

Long term 8760 h 119.74 106.39 116.94

FBP Short term
1 h 116.30 103.54 116.37
2 h 116.63 103.60 116.69
3 h 116.81 103.60 116.87

Long term 8760 h 114.83 98.77 110.99
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6. Conclusions

This paper presented the DCF algorithm, a forecasting algorithm that accurately
predicts solar irradiance. Unlike other state-of-the-art models, the forecast accuracy was
validated for short- and long-term predictions in three cities. The DCF algorithm had two
main parts. Initially, it utilised the most accurate data-driven (ML) algorithms and then
optimised their performance using contextual information. SVM and FBP were used as
the data-driven models. SVM has been used for solar forecasting for over a decade. FBP,
in contrast, is a novel algorithm that has rarely been used in the field of solar prediction.
Nevertheless, its design characteristics seemed inherently promising for solar prediction.

Firstly, a basic model was constructed for both algorithms with only hourly solar
irradiance as input. The data were taken from the National Solar Radiation Database
(NSRDB). Adding extraterrestrial radiation led to the largest improvement in R2, MAE, and
RMSE, for both SVM and FBP models. For the SVM model, the regularisation parameter
C was tuned using grid search cross validation. This did not have a significant impact on
the performance of the model. After training the model with the additional input features
and the tuned hyperparameters, solar irradiance was predicted. The prediction was subject
to several adjustments. All negative values and all values between sunset and sunrise
were set to zero. This had a greater impact on FBP than on SVM, as FBP would generate
larger non-zero predictions at night. Furthermore, a seasonal adaptation was applied. This

197



Appl. Sci. 2022, 12, 134

increased or decreased every hour of the day for each month if it was above or below the
average of the last years. It led to a significant improvement, as shown in Table 6.

For the 1-hour short-term prediction, the final SVM model outperformed FBP and,
thus, was utilised for the DCF algorithm. As shown in Table 7, it achieved an R2 value
of 87.6% for Denver, 90.6% for Seattle, and 91.2% for Boston. An MAE value of 36 W/m2

was attained for Boston and similar values for Seattle and Denver. RMSE varied from
75 W/m2 (Seattle) and 77 W/m2 (Boston) to 107 W/m2 (Denver). For the 2-hour prediction,
SVM mostly outperformed FBP. On occasions in which this was not the case, the results
were very similar. However, the SVM model displayed a strong decrease in forecasting
accuracy with the increase in the forecast horizon. Therefore, for the 3-hour prediction,
the FBP model yielded better results and thus was used beyond the 3-hour forecast in the
DCF algorithm. The FBP performance only decreased very slightly over time, compared
to the SVM. The reason for its sustained performance is its specific design for time-series
predictions. The FBP model performed better for the long-term forecast than the SVM
model. This was true for all cities and thus validated the use of the suggested model.

7. Future Research

Improvements may arise from analysing and adding further meteorological input
features. This could, for example, be a measure of cloud cover or temperature. Care must
be taken that no features are included that either worsen the prediction or have no positive
impact while making the model more complicated. Adding features could be advantageous
for the SVM model, as for SVM, any features can be added, while for FBP, only features
that are known in the future can be added.

The SVM model might be improved by further analysing the correlation of the irra-
diance with past values. This could reveal correlations with hours that have not yet been
used as input features. Adding these would be a promising path to further enhance the
model. This also suggests another set of experiments that could be executed to examine the
mid-term horizon for both SVM and FBP models. FBP might be better at mid-term forecasts,
e.g., 3 months. However, this has not been experimentally investigated. A correlation
analysis would be of great use for a mid-term SVM model and would therefore lend itself to
being carried out in parallel with a comparative analysis of mid-term SVM and FBP models.

The long-term FBP model showed that applying the seasonal adaptation to Denver
nearly made the extraterrestrial radiation redundant. Both models, with and without
extraterrestrial radiation, displayed similar results. This could be useful for datasets that
do not possess measurements of extraterrestrial radiation. Therefore, the benefits of only
seasonal adaptation instead of adding extraterrestrial radiation to the model should be
explored further.
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Abstract: Fault-cause identification plays a significant role in transmission line maintenance and
fault disposal. With the increasing types of monitoring data, i.e., micrometeorology and geographic
information, multiview learning can be used to realize the information fusion for better fault-cause
identification. To reduce the redundant information of different types of monitoring data, in this
paper, a hierarchical multiview feature selection (HMVFS) method is proposed to address the
challenge of combining waveform and contextual fault features. To enhance the discriminant ability
of the model, an ε-dragging technique is introduced to enlarge the boundary between different
classes. To effectively select the useful feature subset, two regularization terms, namely l2,1-norm and
Frobenius norm penalty, are adopted to conduct the hierarchical feature selection for multiview data.
Subsequently, an iterative optimization algorithm is developed to solve our proposed method, and its
convergence is theoretically proven. Waveform and contextual features are extracted from yield data
and used to evaluate the proposed HMVFS. The experimental results demonstrate the effectiveness
of the combined used of fault features and reveal the superior performance and application potential
of HMVFS.

Keywords: fault-cause identification; transmission line; sparse learning; multiview learning; fea-
ture selection

1. Introduction

Transmission lines cover a wide area and work in diverse outdoor environments to
achieve long-distance, high-capacity power transmission. In order to maintain stable power
supply, high-speed fault diagnosis is indispensable for line maintenance and fault disposal.

Traditional fault diagnosis technologies concerning fault detecting, fault locating,
and phase selection are well developed [1,2], while diagnosis on external causes is still
underdeveloped. Operation crews attach great importance to fault location for line patrol
and manual inspection. However, on-site inspection is labor-intensive and depends on
subjective judgment. Moreover, cause identification after inspection is too late for dispatch-
ers to give better instructions according to the external cause, such as forced energization.
Fault-cause identification is expected to help dispatch and maintenance personnel make a
proper and speedy fault response.

Transmission line faults are more often triggered by external factors due to environ-
mental change or surrounding activities. Though the cause categories are slightly different
between regions or institutions, the common causes can be listed as lighting, tree, animal
contact, fire, icing, pollution and external damage [3]. Considering complexity and vari-
ability of open-air work, it is hard to model fault scenarios for diverse root causes [4,5].
Thus, these existing studies on line fault-cause identification have been developed based
on data-driven methods rather than physical modeling.
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The early identification methods were rule-based, such as statistical analysis, CN2
rule induction [6] and fuzzy inference system (FIS) [7–9]. Their identification frameworks
are finally presented in the form of logic flow, demanding a great degree of robustness
and generality for their rules or thresholds. In recent years, various machine learning
(ML) techniques that attach great importance to hand-crafted features have been applied to
diagnose external causes [10–14], such as logistic regression (LR), artificial neural network
(ANN), k-nearest neighbor (KNN) and support vector machine (SVM). Deep learning (DL)
provides a more efficient way in the field of fault identification. In [15], deep belief network
(DBN) is used as the classification algorithm after extracting time–frequency characteristics
from traveling wave data. Even when using DL methods, feature engineering is still an
inevitable part to achieve high accuracy.

Feature signature study provides knowledge about fault information and plays a
critical role in fault-cause identification. On the one hand, when fault events happen,
power quality monitors (PQMs) enable us to have easy access to electrical signals and time
stamps [16]. Time-domain features extracted from fault waveform and time stamp were
used to construct logic flow to classify lightning-, animal- and tree-induced faults [6]. To
exploit transient characteristics in the frequency domain, signal processing techniques such
as wavelet transform (WT) and empirical mode decomposition (EMD) are used for further
waveform characteristic analysis [17–20]. In [21], a fault waveform was characterized based
on the time and frequency domain to develop an identification logic. However, a fault
waveform is easily affected by the system operation state, and there is no direct connection
between these characteristics and external causes. On the other hand, weather condition is
directly relevant to many fault-cause categories such as lightning, icing and wind. With the
development of monitoring equipment and communication technology, dispatchers now
can make judgments with more and more outdoor information [22]. These nonwaveform
characteristics such as time stamps, environment attributes and other textual data are called
contextual characteristics in this paper. Table 1 lists and compares the characterization and
classification methods in existing works.

Table 1. A summarized list of characterization and classification methods used for fault-cause identification.

Article

Waveform Characteristics
Time Char-
acteristics

External Char-
acteristics

Classification
MethodsSignal

Amplitude
Sequence

Component
Spectrum
Analysis

Phase or
Phase Angle

* Núñez, Meléndez [6]
√ √ √ √

CN2
Liang, Li [7]

√ √
FIS

* Xu, Chow [8–10]
√ √ √

FIS/LR/ANN
* Cai, Chow [11]

√ √ √
LR

Chang, Hong [12]
√ √

SVM
* Jiang, Liu [14]

√ √ √ √ √
KNN

Liang, Liu [15]
√ √ √

DBN
Asman, Aziz [20]

√ √
decision tree

* Qin, Wang [21]
√ √ √ √ √

logic flow
* Dehbozorgi, Rastegar [22]

√ √
decision tree

Minnaar, Nicolls [23]
√ √ √ √ √

KNN

Articles with * concern faults on distribution network but their work is still inspiring for transmission network.

Studies have shown that waveform and contextual features can achieve high accuracy
without each other, but there are high data requirements. For economic and operational
reasons, data condition will not change significantly in the short term. It is necessary
to study performance improvement for fault-cause identification based on current data
conditions. One of the challenges is determining how to combine waveform features and
multisource contextual features. This is an information fusion problem, and the simplest
approach is feature concatenation. The authors of [23] tried to combine contextual features
and waveform features as a mixed vector, but concatenated features reduce performance.
Moreover, in contrast to focusing on either side, a few studies use both waveform and
contextual characteristics for higher classification performance.
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To tackle the fusion challenge, multiview learning (MVL) is introduced in this pa-
per because waveform and contextual features describe the same fault event in different
views. MVL aims to integrate multiple-view data properly and overcome biases between
multiple views to obtain satisfactory performance. One of typical MVL methods is canon-
ical correlation analysis (CCA), which maps multiview features into a common feature
space [24]. Instead of mapping features, multiview feature selection that selects features
from each view is preferred in fault-cause identification. Unlike traditional feature selec-
tion, multiview feature selection treats multiview data as inherently related and ensures
that complementary information from other views is exploited [25,26]. In [27], a review
on real-time power system data analytics with wavelet transform is given. The use of
discrete wavelet transform was used to identify the high impedance fault and heavy load
conditions [28]. The authors of [29] propose a fault diagnosis approach for the main drive
chain in a wind turbine based on data fusion. To deal with the kind of multivariable fault
diagnosis problem for which input variables need to be adjusted for different typical faults,
the deep autoencoder model is adopted for the fault diagnosis model training for different
typical fault types.

In this paper, we propose a hierarchical multiview feature selection (HMVFS) method
for transmission line fault-cause identification. Two view datasets are composed of the
waveform features and the contextual features. Our proposed HMVFS is applied to conduct
the feature selection for the optimal feature combination. In our model, to enhance the
discriminant ability of regression, an ε-dragging technology is used to enlarge the margin
between classes. Next, two regularization terms, namely l2,1-norm and Frobenius norm
(F-norm) penalty, are adopted to perform the hierarchical feature selection. Here, the
l2,1-norm realizes the row sparsity to reduce the unimportant features of each view and the
F-norm realizes the view-level sparsity to reduce the diversity between these two-view data.
Hence, these two penalties can be viewed as low-level and high-level feature selection,
respectively. At last, the fault-cause identification is carried out using ML classifiers and
integrated features. The contributions of this paper are highlighted as follows:

• To the best of our knowledge, this is the first time that multiview learning is introduced
for transmission line fault-cause identification in view of the nature of multiview
fault data.

• We propose a novel approach, HMVFS, based on the ε-dragging and two regular-
ization terms to select the discriminative features across views. We also develop
an iterative algorithm to solve the optimization problem and prove its convergence
theoretically.

• The performance of HMVFS is evaluated on field data and compared with classical
feature selection methods. Experimental results prove the effectiveness of combining
waveform and contextual features and demonstrate the feasibility and superiority
of HMVFS.

The rest of this paper is organized as follows: Section 2 presents the proposed HMVFS
algorithm and its convergence analysis. Section 3 outlines the real-life line fault dataset and
extracts features in terms of waveform and nonwaveform. The empirical study is provided
and discussed in Section 4. Section 5 presents concluding remarks.

2. Hierarchical Multiview Feature Selection (HMVFS)
2.1. Notation

Sparsity-based multiview feature selection can be formulated as an optimization
problem and denoted by loss functions and regularization items. Before introducing our
formulation, the notation is stated.

Matrices are denoted by boldface uppercase letters, and vectors are denoted by bold-
face lowercase letters. Given original feature matrix X = [x1, x2, . . . , xn]

T ∈ Rn×d, each
row of which corresponds to a fault instance, n is the total number and d denotes the size
of features. X(v) ∈ Rn×d(v) and x(v)i ∈ Rd(v) denote a feature matrix and a vector in the
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vth view. There are two views in this paper; thus, X = [X(1), X(2)]. Suppose there are c
categories, the label matrix will be represented as Y = [y1, y2, . . . , yn]

T ∈ {0, 1}n×c. Weight

matrix W can be derived as W = [W(1), W(2)]
T
= [w1, w2, . . . , wd]

T ∈ Rd×c.

2.2. The Objective Function

Given the notation defined and a fault dataset (X, Y), the problem of HMVFS is
transformed into determining weight matrix W and then ranking features for selection. We
formulate the optimization problem as

min
W,M

Ψ(W, M) + αΦ(W) + βΩ(W) = min
W,M
‖XW− Y− B⊗M‖2

F + α‖W‖2,1 + β
m
∑

v=1
‖Wv‖F, (1)

where m is the view number; m = 2 in this paper.
In this formulation, Ψ(W, M) is the loss function that measures the calculation distance

to achieve minimum regression error, which is derived from the least square loss function.
Furthermore, the ε-dragging is introduced to drag binary outputs in Y away along two
opposite directions. The outputs for positive digits will become 1 + εi and the outputs
for negative digits will be −εi, in which all of the εs are nonnegative. The treatment that
enlarges the distance between data points from different classes helps to develop a compact
optimization model for classification [30]. B ∈ {−1, 1}n×c in the formulation is a constant
matrix, and its element Bij is defined as

Bij =

{
+1, Yij = 1
−1, Yij = 0.

(2)

Bij denotes the dragging direction for elements in label matrix Y. M ∈ Rn×c is a
nonnegative matrix that records all εs. The operator ⊗ is the Hadamard product operator
of matrices. Thus, B ⊗M represents the dragging distance, and we have a new label matrix
after the ε-dragging:

Y′ = Y + B⊗M. (3)

With the least square loss function defined as

Ψ(W) = ‖XW − Y‖2
F, (4)

we can attain our loss function Ψ(W,B,M).

Ψ(W, B, M) = ‖XW − Y − B⊗M‖2
F. (5)

Next, regularization items used in the formulation are l2,1-norm and F-norm, and we
take row-wise feature selection and view-wise feature selection into account.

Φ(W) = ‖W‖2,1 = ∑d
i=1

√
∑c

j=1 w2
ij. (6)

Ω(W) =
m

∑
v=1
‖Wv‖F =

m

∑
v=1

√
∑d

i=1 ∑c
j=1 w2

ij. (7)

l2,1-norm measures the distance of features as a whole and forces the weights of
unimportant features to be assigned small values so that it can perform feature selection
among all features. Similarly, F-norm measuring the distance between views forces the
weights of unimportant views to be assigned small values [31]. The weight matrix W is
regulated by these penalty terms, and hierarchical feature selection is completed with
row-wise and view-wise selection. l2,1-norm penalty corresponds to the low-level feature
selection, and F-norm penalty corresponds to the high-level feature selection.
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Therefore, the objective function of the HMVFS model is obtained and represented as
(1). α and β are nonnegative constants that tune hierarchical feature selection. This model
is also available with more than two views.

2.3. Optimization

In order to solve l2,1-norm minimization and F-norm minimization problems, the

regularization terms ‖W‖2,1 and
m
∑

v=1
‖Wv‖F need to be respectively relaxed by Tr(WTCW)

and Tr(WTDW) [32]. The objective function is rewritten as

min
W,M,C,D

‖XW− Y− B⊗M‖2
F + αTr(WTCW) + βTr(WTDW),

s.t. Cii =
1

2‖wi‖2
, Djj =

1
2‖Wv‖F

,
(8)

where C ∈ Rd×d and D ∈ Rd×d are diagonal matrices and derived from W. For Dii, wi is
the row vector of Wv.

Though two more variables are introduced, we obtain a convex function, and we can
solve the optimization problem iteratively. In each iteration, we update one variable while
others are fixed, and all variables can be optimized in order. In view of C and D derived
from W, we fix M and update W at first. The derivative of (8) w.r.t. W is calculated as

2XT(XW− Y− B⊗M) + 2αCW + 2βDW. (9)

Let (9) equal zero, then the updated W can be obtained by solving the equation. If there
are big-size data or high-dimensional data, the gradient descent method is recommended.
Following that, C and D can be updated.

When it turns to M, the optimization problem can be transformed from (8) to (10).

min
M
‖Z− B⊗M‖2

F,

s.t. Z = XW− Y.
(10)

According to the definition of F-norm, this problem can be decoupled into n × c
subproblems [30] and represented as

min
Mij

(
Zij − Bij Mij

)2. (11)

With Bij
2 = 1, (11) is equivalent to (12).

min
Mij

(
ZijBij −Mij

)2. (12)

With the nonnegative constraint, Mij is calculated as

Mij = max(ZijBij, 0). (13)

Accordingly, M can be updated as

M = max(Z⊗ B, 0). (14)

Up to now, all variables are updated in the iteration and we present the optimization
process in Algorithm 1.

After optimization, we obtain weight matrix W learned across all views and then sort
all features according to their importance. The importance is measured by the l2-norm
value of each row vector of W, ‖wi‖2(i = 1, 2, . . . , d). Feature selection can be completed
with features ranked in descending order.
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2.4. Convergence

In this subsection, we analyze the convergence of Algorithm 1. We need to guarantee
the objective function decreases in each iteration of the optimization algorithm. The
following lemma is used to verify its convergence.

Lemma 1. For any nonzero values a, b ∈ R, the following inequality holds:

2ab ≤
(

a2 + b2
)
⇒ a− a2

2b
≤ b− b2

2b
. (15)

Theorem 1. The objective Function (1) monotonically decreases in the iteration of Algorithm 1.

Proof. According to Step 6 and Step 7 in Algorithm 1, we have Wt+1 and Mt+1 as follows:

Wt+1 ⇐ min
W
‖XWt − Y− B⊗Mt‖2

F + αTr(WT
t CtWt) + βTr(WT

t DtWt), (16)

Mt+1 ⇐ min
M
‖XWt+1 − Y− B⊗Mt‖2

F. (17)

Firstly, according to (16) and (17), there is

‖XWt+1 − Y− B⊗Mt+1‖2
F + αTr(WT

t+1CtWt+1) + βTr(WT
t+1DtWt+1)

≤ ‖XWt+1 − Y− B⊗Mt‖2
F + αTr(WT

t+1CtWt+1) + βTr(WT
t+1DtWt+1) ≤ ‖XWt − Y− B⊗Mt‖2

F + αTr(WT
t CtWt) + βTr(WT

t DtWt).
(18)

Thus, according to the definition of C, we have

αTr(WT
t+1CtWt+1) =

d
∑

i=1

‖(wi)t+1‖2
2

2‖(wi)t‖2

= α
d
∑

i=1

∥∥(wi)t+1
∥∥

2 − α(
d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖2
2

2‖(wi)t‖2
) = αΦ(Wt+1)− α(

d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖2
2

2‖(wi)t‖2
)

(19)

We also perform the same transformation with Tr(WT
t+1DtWt+1), Tr(WT

t CtWt) and
Tr(WT

t DtWt). We can rewrite (18) as

Ψ(Wt+1, Mt+1) + αΦ(Wt+1) + βΩ(Wt+1)− α(
d
∑

i=1

∥∥(wi)t+1
∥∥

2 −
d
∑

i=1

‖(wi)t+1‖2
2

2‖(wi)t‖2
)− β(

m
∑
v

∥∥(Wv)t+1
∥∥

F−
m
∑
v

‖(Wv)t+1‖2
F

2‖(Wv)t‖F
)

≤ Ψ(Wt, Mt) + αΦ(Wt) + βΩ(Wt)− α(
d
∑

i=1
‖(wi)t‖2 −

d
∑

i=1

‖(wi)t‖2
2

2‖(wi)t‖2
)− β(

m
∑
v
‖(Wv)t‖F−

m
∑
v

‖(Wv)t‖2
F

2‖(Wv)t‖F
).

(20)

According to Lemma 1, we arrive at

Ψ(Wt+1, Mt+1) + αΦ(Wt+1) + βΩ(Wt+1) ≤ Ψ(Wt, Mt) + αΦ(Wt) + βΩ(Wt). (21)

Thus, Algorithm 1 decreases the optimization problem in (1) for each iteration so (1)
will converge to its global optimum according to its convexity.
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Algorithm 1 The optimization algorithm for (8)

Input: The feature matrix across all views, X ∈ Rn×d; the label matrix, Y ∈ {0, 1}n×c; the parameters α and β

Output: The weight matrix across all views, W ∈ Rd×c

1: Calculate B from Y via (2)
2: Initialize W0 and M0
3: Initialize t = 0
4: Repeat
5: Calculate Ct and Dt from Wt
6: Wt+1= (XTX + αCt + βDt)−1(XTY + XTB⊗Mt)
7: Mt+1 = max((XWt+1 − Y)⊗ B)
8: t = t + 1
9: Calculate residue via (1)
10: Until convergence or maximum iteration number achieved

3. Material and Characterization
3.1. Data Collection and Cleaning

In this study, the fault data were collected from an AC transmission network located
in a coastal populous city in Guangdong Province, China. These faults occurred between
2016 and 2019, and the voltage levels varied from 110 to 500 kV. Fault signals were recorded
by digital fault recorders (DFRs) installed on substations. The DFR equipment involves
PMUs and computer systems to synchronize, store and display analog data for voltage
and current signals. These signals can be remotely accessed through a communication
network and provide offline data stored in common format for transient data exchange
(COMTRADE). The sampling rate is 5 kHz in the dataset. Environmental information and
other associated monitoring data were obtained through the inner maintenance system. A
patrol report of manual inspection was attached to each fault, describing the inspection
result and labeling its cause. The original dataset comprised 551 samples, and 288 of them
remained after cleansing. The distribution of fault-cause categories is shown in Figure 1.
Lightning, external force and object contact are the three dominant causes. External force
refers to collision or damage due to human activity. Object contact is usually caused by
floating objects in the air. These are typical causes in a densely populated city, causing
more than 90% of known faults.

Figure 1. Distribution of transmission line fault cause after cleansing.

3.2. Waveform Characteristics

It is believed that the disturbance variation of electrical quantity after faults occurring
contains important transient information for fault diagnosis [33]. The original waveform
data are recorded in COMTRADE files with the sampling frequency of 5 kHz. The first
step is to acquire fault segments and extract valid waveform segments without disturbance
caused by tripping. In this paper, the beginning of valid segments is determined by
inspection thresholds based on root mean squared (rms) current magnitude. dI is the
difference between consecutive values.

dI ≥ 0.15 pu or I ≥ 1.2 pu. (22)

The start thresholds are determined by inspection to make sure that fault measure-
ments in this study are correctly captured. Since COMTRADE stores not only electrical
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signals in analog channels but also tripping information in digital channels, one and a half
cycles after tripping enabling signal is regarded as the end of the segment. In characteri-
zation, we extend previous research work on waveform characterization. The following
waveform features are considered and extracted.

1. Maximum Change of Sequence Components: Instantaneous magnitude is calculated
relative to prefault amplitude in order to be compatible with measurements from
different voltage levels and operation conditions. Karenbauer transformation is used
to obtain zero, positive and negative components of three-phase signals, denoted by s,
s = 0, 1, 2.

Vs(max) =
max

(
Vs( f ault)

)

Vs(pre− f ault)
, s = 0, 2. (23)

Is(max) =
max

(
Is( f ault)

)

Is(pre− f ault)
, s = 0, 1, 2. (24)

2. Maximum Rate of Change of Sequence Components:

∆Vs(max) =
max(|∆Vs|)
Vs(pre− f ault)

, s = 0, 1, 2. (25)

∆Is(max) =
max(|∆Is|)
Is(pre− f ault)

, s = 0, 1, 2. (26)

3. Sequence Component Values at t-cycle: t is set to be 0, 0.5, 1 and 1.5. For instance,
t = 0.5 means the measuring point is 1/2 cycle from the start.

Vs(t) =
Vs(t)

Vs(pre− f ault)
, s = 0, 1, 2. (27)

Is(t) =
Is(t)

Is(pre− f ault)
, s = 0, 1, 2. (28)

4. Custom Time Constant of Sequence Current: Inspired by a linear time-invariant
system, time content is introduced to reflect the dynamic response of the network [23].
Time content is the time required to rise from the zero point to 1/e of the maximum
current. In this study, 1/e is replaced with a custom value, m. These features are
denoted as TC_Is(m), m = 0.1, 0.2, . . . , 0.9, 1

5. DC and Harmonic Content: Hilbert–Huang transform is used to conduct spectrum
analysis [17]. The harmonic content and DC content are calculated from the ratio of
the specific component to the fundamental component. DC and harmonic content are
denoted as Har_k, k = 0, 3, 5, 7, 9, 11

6. Wavelet Energy and Energy Entropy: Discrete wavelet transform is applied to de-
compose fault-phase current signals into three wavelet scales. Wavelet energy E and
energy entropy S are calculated for each scale.

pj =
Ej

∑
j

Ej
=

∑
∣∣Cj
∣∣2

∑
j

∑
∣∣Cj
∣∣2 , Sj = −pj log2(pj). (29)

where Cj, Ej, pj denote wavelet coefficient, wavelet energy and relative energy in scale
j, j = 1, 2, 3.
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7. Maximum DC Current: Equation (30) is used to calculate the maximum DC current
on three-phase signals. Ns is the number of data points in one cycle, and n = 0 means
the triggering point.

Idc(max) = max(Idc_a, Idc_b, Idc_c), Idc =

Ns
∑

n=1
in −

Ns
∑

n≤−Ns

in

max(Ipre− f ault)
. (30)

8. Time Domain Factors: Form factor, crest factor, skewness and kurtosis, denoted as
t1–t4, respectively, are introduced to reflect characteristics of waveform shape and the
shock for fault-phase current signals. SD denotes their standard deviation.

t1 =

√
1

Ns

Ns
∑

n=1
(in)

2

1
Ns

Ns
∑

n=1
|in|

, t2 =
max(in)

1
Ns

Ns
∑

n=1
|in|

, t3 =

Ns
∑

n=1

(
in − i

)3

SD3Ns
, t4 =

Ns
∑

n=1

(
in − i

)4

SD4Ns
(31)

9. Approximation Constants δ for Neural Waveform: In order to learn more from the
front wave, the waveform of rms neutral voltage/current is approximated by (32), as
introduced in [33].

f (t, δ) = 1− e−δt, (32)

where t is time step and δ is the approximation constant. Equation (32) estimates the
closest value with regard to the actual waveform in per unit value.

10. Fault Inception Phase Angle (FIPA): FIPA is calculated based on the trigger time after
the last zero crossing point prior to fault happening.

All waveform features are listed in Table 2. Faulted phase features are included in the
next subsection.

Table 2. Feature pools.

Pool Type Feature Total Number

Waveform

Maximum sequence voltage/current 5
Maximum change of three-phase signals and sequence components 6

Sequence component values 24
Custom time constant of sequence current 30

DC and harmonic content 6
Wavelet energy and energy entropy 6

Maximum DC current 1
Form factor, crest factor, skewness and kurtosis 4

Approximation constants 2
FIPA 1

Contextual

Time stamp: season, day/night, mouth, hour 4
Location: landform, zone 2

Meteorological data: weather, temperature, humidity, rainfall, cloud
cover, maximum wind speed, wind scale 7

Protection data: reclosing, fault phase, fault duration, tripping time,
breaker quenching time, reclosing time, number of triggering 7

Others: voltage level, number of faults 2

3.3. Contextual Characteristics

Most monitoring technologies are developed for specified causes and work indepen-
dently with interconnected data. In this study, due to data restriction, available nonwave-
form data include time stamps, meteorological data, geographical data, protection data and
query information. These informative values are preprocessed and integrated into the pool
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of candidate contextual features, as shown in Table 2. Considering that there is no accurate
discretization standard, we only discretize text data roughly if necessary. The time stamp
information is discretized twice based on season and day/night as a contrast of months
and daytime. As for dynamic records such as meteorological value, the records closest to
the fault time are retained. Protection data are feedback information of protection devices
after fault, usually obtained from the production management system. Although these
collected data are related to fault events, they are not suitable for fault cause identification.
These irrelevant features pose a great challenge in feature selection.

4. Experiments and Discussion
4.1. Experiment Setup

To validate the effectiveness and efficiency of HMVFS, we conducted comparison
experiments using the mentioned field data previously. Three strategies for utilizing mul-
tiview data with feature selection were considered, namely single-view learning, feature
concatenation after selection and feature selection after concatenation. The last two are the
simplest early fusion methods. Single-view learning is represented via best single view
(BSV) method, through which the most informative view achieves the best performance
among views. As for the dataset in this paper, contextual features are more representative
than hand-crafted waveform features. Feature concatenation after selection (FSFC) employs
a feature selection technique separately and concatenates features selected from different
views. Feature selection after concatenation (FCFS) concatenates original feature sets of
two views and then performs feature selection. Adaptable feature selection methods listed
in the next subsection are applied to select discriminative features.

The fault dataset was split into training data and testing data in a stratified fashion
according to the ratio of 3:1. All samples were normalized by standard deviation after
zero-mean standardization. Then, feature selection methods were used to seek the optimal
feature combination using training sets and transform all samples for fault-cause classifica-
tion. ML classifiers were utilized to finish the classification. In the presence of imbalanced
data, criteria such as G-mean and accuracy were used to quantitatively assess classification
performance. Since G-mean is a metric within biclass concepts, its microaverage was
computed and adopted. The final results of each metric were calculated as the average of
the 5 trials.

4.2. Comparison Feature Algorithms

As reviewed in [34], there are many feature selection methods. We conducted com-
parison experiments between our MVFS and several typical feature selection algorithms,
namely Fisher score (F-Score), mutual information (MI), joint mutual information (JMI),
joint mutual information maximization (JMIM), ReliefF, Hilbert–Schmidt independence
criterion lasso (HSIC Lasso) [35] and recursive feature elimination (RFE). F-Score ranks
features through variance similarity calculation, and the same rank can be obtained by
analysis of variance (ANOVA). MI ranks features according to values of their mutual
information with class labels. JMI and JMIM are developed from MI [36]. RFE ranks
and discards features after training a certain kind of classifier. Starting from all features,
the elimination process continues until the feature number or output error is settled
to a minimum.

The above algorithms are developed for single-view learning and can be used in BSV,
FCFS and FSFC directly. Except for RFE, all of them are filter feature selection approaches,
as is HMVFS. Besides, the comparison algorithms designed for multiview learning are
kernel canonical correlation analysis (KCCA) [24] and discriminant correlation analysis
(DCA) [37]. These feature extraction approaches map multiview data into a common feature
space so their results are attached to the comparison in FCFS. As for the proposed algorithm,
there are two hyperparameters in HMVFS. In the experiments, these hyperparameters α
and βwere tuned ranging in {10−2, 10−1, 1, 10, 102, 103} through grid search on the training
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sets. Moreover, experiments without any feature algorithm were conducted using BSV
features and all features, tabbed as RAW_BSV and RAW.

4.3. Overall Classification Performance

In this subsection, we compare the mentioned dimension reduction approach on
the basis of SVM to verify the effectiveness of multiview learning and HMVFS. Two
concatenating rules were applied to FSFC. The first rule tries to keep 1:1 proportion of
waveform and contextual features. There is one more contextual feature when the total
number is odd. The second rule holds the same proportion of waveform and contextual
features as that in HMVFS.

The results in terms of Gmean with different numbers of selected features are shown in
Figure 2. By comparing single-view feature selection methods among strategies, we notice
that most of them perform best in BSV rather than in FSFC and FCFS. Added fault features
from the other view will even degrade their classification, and this indicates that simple
concatenation cannot help conventional feature selection methods adapt to multiview
classification. A similar conclusion is drawn in [23]. Thus, the introduction of MVL appears
vital in particular. HMVFS has comprehensive advantages in the comparison of FSFC
and FCFS and achieves the best performance compared with methods in BSV. HMVFS
outperforms others in the middle of feature increasing, and its result with 14 selected
features is the global or near-global optimum. When features from the other view increase,
the performance is degraded to a certain extent, and then it rises to another peak. Most
methods in BSV produce a zigzag rise curve and reach their best when almost all view
features are selected. They are also inferior to HMVFS in FSFC and FCFS. ReliefF is the
best competitor that achieves acceptable performance in different strategies. As for KCCA
and DCA, their performance is low. Figure 2 illustrates that HMVFS is more capable of
obtaining the best performance combining waveform and contextual features.

Figure 2. Classification comparison between HMVFS and other feature algorithms in strategies: (a) BSV; (b) FSFC_rule1;
(c) FSFC_rule2; (d) FCFS.
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Due to the limit of yield data condition and fault signature study, irrelevant and
redundant features are introduced with increasing feature numbers. This problem is
more prominent in the waveform view in both theoretical and experimental studies. The
advantage of HMVFS is that it selects features with independent and complementary
information of all views, while the single-view methods are easily affected by irrelevant
features facing concatenated assembly or meeting the limitation of single-view features. As
seen from Figure 2, concatenating and mapping fail to select or transform discriminative
features with combined waveform and contextual features. There are two local optimums
for HMVFS, and they are better than the performance of competitors, which demonstrates
that HMVFS overcomes the negative effect of redundant features in multiview data.

4.4. Parameter Sensitivity

Determination of hyperparameters is an open problem for many algorithms. We
conducted parameter sensitivity study by testing different settings of parameters α and β.
Since these parameters help HMVFS perform hierarchical feature selection, it is clear that
HMVFS will be sensitive to parameter change, and this study may reveal a hierarchical
feature relationship. The candidate set was {10−2, 10−1, 1, 10, 102, 103} for each parameter.
Classification performance and average running time are recorded and illustrated in
Figure 3.

Figure 3. Performance variation of HMVFS with different values for the parameters α and β in terms of (a) Gmean; (b) ACC;
(c) time.

It is observed that α = 10 is beneficial to final selection and maintains relatively high
classification performance, among which lower β has slight advantages. View importance
is different in multiview learning. From the perspective of view importance, when only two
views exist and one of them is generally better, acceptable performance can be achieved
by one view, and additional features are expected for improvement. High-level feature
selection is weak because the other view has relatively more redundant features and will
be ignored with higher β. Meanwhile, appropriately higher α enhances low-level feature
selection to exploit the most representative features from the unimportant view. Moreover,
acceptable performance is achieved with α = 10−2, β = 102 and α = 10−1, β = 102. High-
level selection is enhanced, and low-level selection is restrained, which results in limited
performance approximating in single-view learning and short convergence time.

4.5. Comparison between ML Classifiers

In order to investigate the effect of classifiers and explore better identification accuracy,
we employed different ML learners to complete fault-cause classification with HMVFS.
Owing to space limitation and performance stability, F_Score and ReliefF were used for
comparison. The typical individual classifiers CN2, LR, KNN, SVM and ANN, which
have been proven effective in fault-cause identification studies, were tested, and the results
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are presented in this subsection. Ensemble models promote fault-cause identification by
combining individual learners [22], so we also explored the performance of various ensem-
ble models, including random forest (RF), AdaBoosting, stacking ensemble and dynamic
ensemble. META-DES, DES-Clustering and KNORA-U are dynamic ensemble techniques
based on metalearning, clustering and k-nearest neighbors, respectively. Classification
models were developed using Python machine learning library, scikit-learn and DESlib.
Table 3 presents the best performance for each combination of feature selection methods
and classifiers. Considering some data may be similar, AUC is introduced as a supple-
ment criterion, which is derived from receiver operating characteristic (ROC) analysis and
calculated as the area under the ROC curve.

Table 3. Best performance comparison with different ML classifiers.

Classifier Feature Selection Feature Number Gmean ACC AUC

CN2
F_Score 39 0.707 0.581 0.834
ReliefF 33 0.707 0.580 0.836

HMVFS 28 0.730 0.612 0.841

LR
F_Score 16 0.833 0.756 0.889
ReliefF 15 0.833 0.756 0.896
HMVFS 33 0.831 0.752 0.896

KNN
F_Score 14 0.838 0.764 0.891
ReliefF 11 0.835 0.760 0.895

HMVFS 7 0.848 0.778 0.909

SVM
F_Score 18 0.812 0.728 0.908
ReliefF 18 0.837 0.761 0.906

HMVFS 14 0.849 0.779 0.921

ANN
F_Score 18 0.837 0.761 0.891
ReliefF 15 0.850 0.780 0.911
HMVFS 36 0.842 0.769 0.915

RF
F_Score 27 0.878 0.821 0.926
ReliefF 12 0.876 0.819 0.935
HMVFS 9 0.875 0.817 0.935

AdaBoost
F_Score 36 0.781 0.684 0.797
ReliefF 19 0.777 0.679 0.830

HMVFS 14 0.784 0.690 0.846

META-DES
F_Score 19 0.876 0.816 0.930
ReliefF 11 0.872 0.812 0.928

HMVFS 12 0.881 0.824 0.937

DES-Clustering
F_Score 32 0.872 0.812 0.916
ReliefF 13 0.875 0.817 0.932

HMVFS 10 0.882 0.827 0.945

KNORA-U
F_Score 15 0.872 0.812 0.926
ReliefF 14 0.870 0.809 0.932

HMVFS 12 0.884 0.829 0.942

Stacking
F_Score 16 0.880 0.824 0.930
ReliefF 13 0.874 0.814 0.936

HMVFS 11 0.886 0.831 0.939

As seen from the table, HMVFS outperforms F_Score and ReliefF except with LR
and ANN. It is observed that HMVFS always takes fewer features to achieve the best
performance in the remaining comparisons. In the group of RF, the best scores of F_Score,
ReliefF and HMVFS are very close to each other because RF has the ability of variable
selection. Thus the features that function in final classification are similar if selected feature
subsets are large enough to contain valuable features. Except for mentioned learners,
HMVFS has advantages in both score and feature number.
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From the perspective of learners, the classification performance improves with the
enhancement of model complexity. CN2 as a rule-based learner cannot cope with multiview
features to achieve acceptable performance. Individual learners cannot achieve accuracies
greater than 0.8, which are apparently inferior to most ensemble models. Among ensemble
models, stacking ensemble realizes the best fault-cause identification in this study. The
experimental results of ML classifiers indicate that HMVFS is more suitable for classifiers
with high generalization and that ensemble models can bring significant improvement for
fault-cause identification.

5. Conclusions

Associated multisource data for transmission line fault-cause diagnosis are divided
and extracted as waveform and contextual features in this paper. MVL is introduced to
appropriately combine these features for performance improvement. A novel hierarchi-
cal multiview feature selection method based on an ε-dragging technique and sparsity
regularization is proposed to perform hierarchical feature selection with multiview data.
The ε-dragging is applied in the loss function to enlarge sample distance between classes.
l2,1-norm and F-norm conduct row-wise and view-level selection, respectively, which can
be viewed as the low-level and high-level feature selection. We also develop the optimiza-
tion algorithm and prove its convergence theoretically. The proposed HMVFS is evaluated
by comparisons on yield data. The results reveal that HMVFS outperforms conventional
feature selection methods in single-view and early fusion strategies. The further experi-
ments concerning ML classifiers also demonstrate the superiority and effectiveness of the
proposed method with high generalization learners. This study has shown the combined
use of waveform and contextual features with HMVFS can cause significant improvement
for fault-cause identification. In future work, more multiview data and further fault sig-
nature study are needed to refine the feature pools, and the performance of HMVFS is
expected to be further improved.
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Abstract: Demand response programs (DRs) can be implemented with less investment costs than
those in power plants or facilities and enable us to control power demand. Therefore, they are
highly expected as an efficient option for power supply–demand-balancing operations. On the other
hand, DRs bring new difficulties on how to evaluate the cooperation of consumers and to decide
electricity prices or rebate levels with reflecting its results. This paper presents a theoretical approach
that calculates electricity prices and rebate levels in DRs based on the framework of social welfare
maximization. In the authors’ proposal, the DR-originated changes in the utility functions of power
suppliers and consumers are used to set a guide for DR requests. Moreover, optimal electricity prices
and rebate levels are defined from the standpoint of minimal burden in DRs. Through numerical
simulations and discussion on their results, the validity of the authors’ proposal is verified.

Keywords: demand response programs; social welfare maximization; utility function; power supply–
demand balance; electricity price; rebate level

1. Introduction

Demand response programs (DRs) are defined as changes in electricity-consuming
patterns in response to changes in electricity price or to incentive payment [1]. There are
two major categories in DRs: one is the price-based DR, and the other is the incentive-
based one. Time of use (TOU), real-time pricing (RTP), and critical-peak pricing (CPP) are
well-known as the former. Unit prices of the electric power in these DRs become expensive
during the periods of high electricity costs or critical power grid’s conditions (peak periods)
in comparison with those in off-peak periods. On the other hand, peak time rebate (PTR)
and critical peak rebate (CPR) are categorized into the latter. In incentive-based DRs, power
suppliers (or power producers, retailers, etc.) reward consumers, who respond to the
request of DRs, with money rebates. Since DRs bring controllability in the power demand
without huge investment costs in power plants or facilities, they have been attracting
attention as one of the most economical and sustainable alternatives to traditional power
supply–demand-balancing operations. Therefore, many DR-related studies have been
carried out [2–4], as well as demonstrative field tests.

There are various studies contributing to the design of DRs. In [5], states of DR-related
activities are analyzed with highlighted deregulation in electricity markets. The authors
in [5] defined evaluation indices and discussed effects of DRs in electricity prices. Refer-
ence [6] reviews the means by which power suppliers induce their preferable electricity
consumption in DRs. Several mathematical problem frameworks and models are sum-
marized, and their solution techniques are introduced. In [7], DRs are classified from
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the viewpoints of their control mechanisms, motivations offered to changes in electricity
consuming patterns, and decision variables. Besides, several models for optimizing control
strategies of the DRs are categorized in association with the application targets. The authors
in [8] focused on price-based DRs and evaluated their advantages and disadvantages with
experimental results. This reference also includes a review of case study results of the DRs
in several countries. Reference [9], similarly, summarizes results of case studies, and its
authors analyzed them to discuss preferable price settings in price-based DRs.

Although these references indicate a great deal of useful information in the design
of DRs, there are still difficulties on settings of electricity prices or rebate levels while
ensuring resources of DRs. In fact, electricity prices or rebate levels in field tests have been
decided, relying on knowledge, experience, and experimental results [10–16], and thus, it
is difficult to discuss on the appropriateness of their settings. For these reasons, the design
of efficient DRs becomes a crucial component for advancing technologies of the power
grids’ management.

This paper presents a theoretical approach that calculates electricity prices and rebate
levels in DRs. To set the basis of discussion, the framework of social welfare maximization
(SWM), which has often been used to represent models of electricity markets [6,7,17–21], is
applied. First, the authors set the utility functions of the power suppliers and the consumers
and represent the power supply–demand-balancing operation under the SWM framework.
In the process, contributions of the DRs become measurable as an increment/decrement
in the utility functions. As a result, we can treat the DR-originated changes in the power
demand as an influential factor in the power supply–demand management. Next, accept-
able conditions of electricity prices and rebate levels are derived as a guide for the DR
request, and then, their optimal values are defined in consideration of burden on both
power suppliers and consumers. Finally, the validity of the authors’ proposal is verified
through numerical simulations with a model constructed by using the actual record of the
electricity consumption.

2. Formulation of Power Supply–Demand-Balancing Operation under SWM

SWM is formulated as a problem to maximize the weighted sum of utility functions
in a society without regarding to how the profit is distributed in each member of the
society [22–24]. Since the members of the society are classified into power suppliers (or
power producers, etc.) and consumers, the social welfare function is written as:

SW = ∑ T
t=1SWt = ∑ T

t=1

(
∑ NS

i=1U1,t(si,t) + α ∑ NC
j=1U2,t

(
dj,t
))

, (1)

where t is the time slot (t = 1, · · · , T); i is the number assigned to the power suppliers
(i = 1, · · · , NS); si,t is the electric power fed from power supplier i and an element of
vector st; U1,t(·) is the utility function of the power suppliers; j is the number assigned
to the consumers (j = 1, · · · , NC); dj,t is the power consumption in the consumer j and
an element of vector dt; U2,t(·) is the utility function of the consumers; α is the weighting
coefficient.

In the design of DRs, we can regard the power suppliers and the consumers as
aggregated ones. Besides, the coefficient α in Equation (1) equals to 1, if we align the units
of the utility functions, e.g., into the price.

The suppliers’ utility is expressed with the sum of the income by selling electricity
and the operational costs in the power supply, while the consumers’ utility is described
with the sum of the satisfaction obtained in exchange for consuming electricity and the
electricity costs [6,25]. Their utility functions are represented as:

U1,t(st) = ptst − Et(st), for ∀t, (2)

U2,t(dt) = Ft(dt)− ptdt, for ∀t, (3)
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where pt is the standard price of electric power; Et(·) is the operational cost of the power
suppliers; Ft(·) is the satisfaction of the power consumers.

Since ptst, ptdt, and Et(st) are expressed with the price, all units in Equation (1) were
unified when we evaluated Ft(dt) in Equation (3) by the price. In this case, the SWM
problem can be formulated as:

max
s, d

SW, (4)

SWt = Ft(dt)− Et(st) + pt(st − dt), for ∀t, (5)

s.t. st = dt, for ∀t, (6)

Gmin ≤ st ≤ Gmax, for ∀t, (7)

where Gmax and Gmin are the maximum and the minimum values of the power supply,
respectively.

Equation (6) shows the balance of the power supply and demand, and the constraint
Equation (7) restricts the controllability of the power supply, depending on specifications of
the target power grid, e.g., the maximum and the minimum outputs of power generation
units. Hence, the optimal solution of the formulated SWM problem represents the power
supply–demand operation that maximizes the social welfare.

If Equation (5) is a convex function, we can apply Lagrange relaxation [6,26,27], and
Lagrange multipliers correspond to shadow prices. Lagrangian function and Karush–
Kuhn–Tucker conditions are represented as:

Lt(st, dt, λt, µ1,t, µ2,t) = SWt + λt(st − dt) + µ1,t

(
st − Gmin

)
+ µ2,t(Gmax − st), (8)

{
− ∂U1,t(st)

∂st
+ λt + εt − µt = 0

∂U2,t(dt)
∂dt

− λt = 0
, (9)

where λt, µ1,t, and µ2,t are the Lagrange multipliers.
The authors assumed simple utility functions in the numerical simulations of this

paper, and thus, we can solve the target problem based on the Newton-Raphson method.
Otherwise, any of other techniques, e.g., intelligent optimization algorithms, will be useful
for solving SWM problems. For detailed definitions of the assumed functions, refer to
Section 4.

3. Calculation Methodology of Electricity Prices and Rebate Levels

The power suppliers bring the electricity consumption closer to the target value, which
is preferable in the power supply–demand management by changing the electricity price
or rewarding the money rebate to the consumers. The target electricity consumption in
DRs is defined as:

d′t = d∗t + ∆dt, (10)

where d∗t is the standard electricity consumption, which is the actual consumption without
DRs; ∆dt is the change in electricity consumption by the DR request.

In the actual power grids’ operations, d∗t is replaced with the estimated value, because
we cannot know it. This replacement brings an uncertainty to Equation (10), and therefore,
can lead to new challenges in the design of DRs. Detailed discussion on the issues remains
as a future work of this study.

Under the following assumption, the authors set the acceptable conditions of electricity
prices and rebate levels and define their optimal values.

Assumption 1. Consumers buy electricity to maximize their utility.
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This assumption activates Equation (11), which is derived by Equations (8) and (9):

p∗t =
∂Ft

∂dt

∣∣∣∣
dt=d∗t

, (11)

where p∗t is the standard electricity price, which is the actual price without DRs.

3.1. Definition of the Optimal Electricity Price and Its Calculation

The power suppliers decide the electricity price in the price-based DR to control the
power demand. The optimal electricity price is defined as:

p′t = p∗t + ∆pt, (12)

where ∆pt is the change of electricity price in the DR.
According to Equations (2) and (3), the values of the utility of the power suppliers and

the consumers in the DR are calculated as:

U1,t
(
d′t
)
= p′td

′
t − Et

(
d′t
)
, (13)

U2,t
(
d′t
)
= Ft

(
d′t
)
− p′td

′
t. (14)

In addition, the DR-originated changes in them are calculated as:

∆U1,t = U1,t
(
d′t
)
−U1,t(d∗t ) =

(
p′td
′
t − p∗t d∗t

)
− ∆Et, (15)

∆U2,t = U2,t
(
d′t
)
−U2,t(d∗t ) = ∆Ft −

(
p′td
′
t − p∗t d∗t

)
, (16)

where ∆Et is the change in the suppliers’ utility by the DR and is written as: Et(d′t)− Et(d∗t );
∆Ft is the change in the consumers’ utility by the DR and is described as: Ft(d′t)− Ft(d∗t ).

In the DR, each of the power suppliers’ utility and the consumers’ one (or each sum of
them during the target period) is greater than or equal to zero (U1,t(d′t) ≥ 0; U2,t(d′t) ≥ 0).
Since the power suppliers request the DR cooperation considering their economic efficiency,
the changes in the utility of the power suppliers are also greater than or equal to zero
(∆U1,t ≥ 0). By contrast, without any incentive, the changes in the utility of the consumers
are negative (∆U2,t < 0), because their utility function is maximized (approximately
maximized in the actual situations) at the standard electricity consumption. By assumption
1, we can represent the electricity price that maximizes the consumers’ utility at d′t as:

pt =
∂Ft

∂dt

∣∣∣∣
dt=d′t

. (17)

If the power suppliers set higher electricity price p+t than its standard, the consumers’
utility decreases according to Equation (16), and thus, the electricity consumption is reduced
(∆dt < 0). Meanwhile, the electricity consumption is encouraged by setting lower electricity
price p−t (∆dt > 0). The acceptable conditions p+t and p−t to achieve the target of the price-
based DR are separately derived as:

∂Ft

∂dt

∣∣∣∣
dt=d′t

≤ p+t ≤
Ft(d′t)

d′t
, (18)

p∗t d∗t + ∆Et

d′t
≤ p−t ≤

∂Ft

∂dt

∣∣∣∣
dt=d′t

. (19)

When the electricity price does not satisfy both Equations (18) and (19), the DR request
brings negative economic impacts on the utility of the power suppliers, or the consumers’
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cooperation cannot reach the target of DR request. With a view to minimizing the burden
in the price-based DR, the authors defined the optimal electricity price as:

p′t =
∂Ft

∂dt

∣∣∣∣
dt=d′t

. (20)

3.2. Definition of the Optimal Rebate Level and Its Calculation

If there is no incentive payment, the utility of the consumers decreases, depending on
contribution to the DR. This is because the consumers must accept less satisfaction than
that in the standard electricity consumption. In the incentive-based DR, values of the utility
of the power suppliers and the consumers and their changes are separately calculated as:

U1,t
(
d′t
)
= p∗t d′t − Et

(
d′t
)
, (21)

U2,t
(
d′t
)
= Ft

(
d′t
)
− p∗t d′t, (22)

∆U1,t = p∗t ∆dt − ∆Et, (23)

∆U2,t = ∆Ft − p∗t ∆dt. (24)

These equations are similar to Equations (13)–(16); however, the electricity price is
fixed to p∗t in the incentive-based DR. Although the consumers accept less satisfaction,
their utility recovers to its original level by compensating the decrement of Equation (24).
Therefore, we can set the acceptable condition for the unit price of money rebate rt as:

p∗t ∆dt − ∆Ft

|∆dt|
≤ rt ≤

p∗t ∆dt − ∆Et

|∆dt|
. (25)

Under this condition, the DR does not bring negative impacts to both the power
suppliers and the consumers. The authors defined the optimal rebate level to induce the
active cooperation of the consumers as:

r′t =
p∗t ∆dt − ∆Et

|∆dt|
. (26)

4. Numerical Simulation Model

To apply the authors’ proposal, actual utility functions are needed. Since there are no
established utility functions, these functions were made in this paper using a widely used
function for the fuel cost of power generation units and a record of smart power meters.
Discussion on their appropriateness remains as a future work of this study.

In this paper, the standard electricity prices in the SWM framework were replaced
with the annual average price as:

p∗t = p∗ (= 23.90 ), for ∀t. (27)

In the numerical simulations, p∗ was set to 23.90 JPY/kWh, which is the Japanese
annual average in 2015. The utility functions are shown below.

4.1. Utility Function for Suppliers

Thermal power generation has taken a large portion in the power supply, e.g., approx-
imately 85% in Japan [28], and its fuel cost, as is well-known, has powerful influence on
the operational costs of the power suppliers. The fuel costs of thermal power units are
traditionally approximated as quadratic functions by means of generating power [29–34].
For these reasons, the authors added the following assumptions to make the operational
cost function.

Assumption 2. Total operational cost in the power supply is approximated as the quadratic function
relying on the fuel costs of thermal power units.
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Assumption 3. The power suppliers decide the electricity price to maximize their utility function
at the annual average of electricity consumption (103.94 kW in this paper).

The normalized utility function of the power suppliers was defined as:

U†
1 (st) = −A†s2

t +
(

p†
1 − B†

)
st − C†, for ∀t, (28)

where p†
1 is the electricity price in the normalized function; A†, B†, and C† are the coeffi-

cients for the normalized function.
With reference to [35,36], the coefficients of the fuel cost function were set to 2.73 × 10−7

JPY/kWh2, 2.27 JPY/kWh, and 1.50× 105 JPY. In addition, the maximum and the minimum
outputs of power generation (Gmax and Gmin) were set to 175 kW and zero, respectively,
based on the electricity consumption of 500 households in the record. With these values,
the coefficients in Equation (28) were assumed to 4.63 × 10−5/kWh2, 1.20 × 10−7/kWh,
and 0. Owing to Assumption 3, we can calculate p†

1 as:

p†
1 = 2A†s + B†, (29)

where s is the annual average of electricity consumption.
By multiplying p∗

p†
1

on both sides in Equation (29), we can update the coefficients as A

and B, and as a result, the functions of the power suppliers’ utility and the operational cost
were written as:

U1(st) = −As2
t + (p∗ − B)st, for ∀t, (30)

Et(st) = As2
t + Bst (= E(st) ), for <!−− ∀t, (31)

where A = p∗

p†
1

A†; B = p∗

p†
1

B†.

Figure 1 displays the resulting operational cost function of the suppliers, and its
coefficients are summarized in Table 1.

Figure 1. Operational cost function.

Table 1. Coefficients in Figure 1.

A (×10−1 JPY/kWh2) B (×10−4 JPY/kWh) C (JPY)

1.15 2.99 0

4.2. Utility Function for Consumers

The consumers’ satisfaction is assumed by several functions such as logarithmic or
sigmoidal functions [37–42]. In this paper, the functions of hourly satisfaction were made
by relying on the record of smart power meters for 500 households. Figure 2 shows
the profiles of the hourly total electricity consumption of the 500 households, which are
samples including the highest or the lowest electricity consumption for one year. The hourly
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cumulative frequency distributions of the electricity consumption in each household are
displayed in Figures 3 and 4.

Figure 2. Example of profiles of hourly electricity consumption.

Figure 3. Hourly cumulative frequency distributions in the day of the highest electricity consumption.

Figure 4. Hourly cumulative frequency distributions in the day of the lowest electricity consumption.

Based on these data, the normalized utility function of the consumers was approxi-
mated as:

U†
2,t(dt) = X†

t ln
(

Y†
t

(
dt + Z†

t

))
− p†

2,tdt, for ∀t, (32)

where p†
2,t is the electricity price in the normalized function; X†

t , Y†
t , and Z†

t are the coeffi-
cients for the hourly normalized function of consumers’ satisfaction.
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Equation (32) suggests how many consumers are satisfied with the electricity con-
sumption dt. With assumption 1, p†

2,t can be calculated as:

p†
2,t =

X†
t

d∗t + Z†
t

, for ∀t. (33)

As with Equations (30) and (31), we can derive the functions of the consumers’ hourly
utility and satisfaction as:

U2,t(dt) = Xt ln(Yt(dt + Zt))− p∗dt, for ∀t, (34)

Ft(dt) = Xt ln(Yt(dt + Zt)), for ∀t, (35)

where Xt =
p∗

p†
1

X†
t ; Yt = Y†

t ; Zt = Z†
t .

Figures 5 and 6 show the hourly satisfaction functions, and their coefficients are
summarized in Tables 2 and 3.

Figure 5. Hourly satisfaction functions in the day of the highest electricity consumption.

Figure 6. Hourly satisfaction functions in the day of the lowest electricity consumption.
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Table 2. Coefficients in Figure 5 (the day of the highest electricity consumption).

t Xt (×10−3) Yt (×102) Zt t Xt (×10−3) Yt (×102) Zt

1 3.41 3.16 32.03 13 4.55 1.85 54.75
2 3.35 3.25 31.15 14 4.44 1.93 52.78
3 3.32 3.32 30.41 15 4.39 1.97 51.77
4 3.50 2.99 33.77 16 4.39 1.97 51.47
5 3.60 2.84 35.59 17 4.89 1.63 62.21
6 4.11 2.22 45.55 18 5.93 1.18 85.10
7 4.56 1.85 54.56 19 6.25 1.08 92.87
8 4.92 1.61 62.80 20 6.52 1.02 99.01
9 5.15 1.49 67.62 21 6.58 1.00 100.57
10 4.76 1.71 59.44 22 6.43 1.04 97.03
11 4.46 1.91 53.44 23 5.34 1.40 71.73
12 4.49 1.89 53.69 24 4.35 2.01 50.33

Table 3. Coefficients in Figure 6 (the day of the lowest electricity consumption).

t Xt (×10−3) Yt (×102) Zt t Xt (×10−3) Yt (×102) Zt

1 2.15 8.38 12.13 13 2.56 5.65 18.38
2 2.14 8.47 12.09 14 2.44 6.29 16.42
3 2.08 9.03 11.29 15 2.36 6.72 15.42
4 1.89 11.40 9.03 16 2.45 6.20 16.62
5 2.10 8.90 11.43 17 2.52 5.85 17.59
6 2.74 4.92 20.63 18 3.28 3.40 29.87
7 2.97 4.14 24.45 19 3.58 2.87 35.21
8 2.79 4.72 21.59 20 3.53 2.95 34.27
9 2.53 5.80 17.77 21 3.54 2.93 34.57
10 2.34 6.90 14.97 22 3.38 3.20 31.49
11 2.34 6.87 15.15 23 2.91 4.34 23.33
12 2.44 6.26 16.64 24 2.60 5.47 18.54

5. Numerical Simulation Results

Numerical simulations were carried out with the model constructed in Section 4. The
following scenarios were assumed:

Scenario 1. The power suppliers request to reduce the electricity consumption at any time slot in
the day of the highest electricity consumption.

Scenario 2. The power suppliers request to encourage the electricity consumption at any time slot
in the day of the lowest electricity consumption.

Under these scenarios, the authors calculated the sets of the optimal electricity price
or rebate level and the acceptable condition on each time slot.

5.1. Numerical Simulation Results for Price-Based DRs

By using Equations (18)–(20), the optimal electricity prices and the acceptable condi-
tions in the price-based DR were calculated as:

p′t =
Xt

d′t + Zt
, (36)

p′t ≤ p+t ≤ p+t , (37)

p−t ≤ p−t ≤ p′t. (38)

where p+t = Xt
d′t

ln(Yt(d′t + Zt)); p−t =
A
(

d′t
2−d∗2t

)
+B(d′t−d∗t )+p∗t d∗t

d′t
.
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Tables 4 and 5 summarize the calculation results in the case that the power suppliers
set the DR target as a 1% decrease (Scenario 1) or increase (Scenario 2) of the standard
electricity consumption. Figures 7 and 8 illustrate changes in the utility functions of the
power suppliers and the consumers and those in the social welfare functions.

Table 4. Numerical simulation results of price-based demand response programs (DRs) under scenario 1.

t p
′
t (JPY/kWh) p+

t (JPY/kWh) t p
′
t (JPY/kWh) p+

t (JPY/kWh)

1 24.09 46.61 13 24.07 42.42
2 24.09 46.88 14 24.07 42.79
3 24.09 47.00 15 24.07 42.93
4 24.09 46.15 16 24.07 42.90
5 24.08 45.71 17 24.07 41.52
6 24.08 43.72 18 24.06 39.29
7 24.07 42.33 19 24.06 38.76
8 24.07 41.43 20 24.05 38.35
9 24.07 40.89 21 24.05 38.26

10 24.07 41.86 22 24.05 38.49
11 24.07 42.74 23 24.06 40.43
12 24.07 42.59 24 24.07 42.96

Table 5. Numerical simulation results of price-based DRs under scenario 2.

t p−t (JPY/kWh) p
′
t (JPY/kWh) t p−t (JPY/kWh) p

′
t (JPY/kWh)

1 23.84 23.69 13 23.87 23.70
2 23.84 23.70 14 23.86 23.70
3 23.84 23.69 15 23.85 23.70
4 23.82 23.69 16 23.86 23.70
5 23.84 23.69 17 23.86 23.70
6 23.88 23.71 18 23.91 23.71
7 23.89 23.71 19 23.93 23.72
8 23.88 23.71 20 23.92 23.72
9 23.86 23.70 21 23.92 23.72

10 23.85 23.70 22 23.92 23.72
11 23.85 23.70 23 23.89 23.71
12 23.86 23.70 24 23.87 23.70

Figure 7. Changes in each function by the 1% DR request in the day of the highest electricity
consumption.
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Figure 8. Changes in each function by the 1% DR request in the day of the lowest electricity
consumption. In this scenario, the power suppliers could not request the DR cooperation in the target
period.

In Table 4, the calculation results in scenario 1 satisfied with their acceptable condi-
tions, and as a result, the optimal electricity prices were slightly increased (less than 1%)
as compared to the standard electricity price (23.90 JPY/kWh). By contrast, as shown in
Table 5, the power suppliers could not request a 1% increase in the electricity consumption
in scenario 2, because the calculation results did not satisfy their acceptable conditions. In
particular, the electricity consumption became higher than its annual average (103.94 kW)
from 18:00 to 22:00, and therefore, p−t exceeded the standard price. In the other periods, the
power suppliers can request the DR cooperation, until the condition shown in Equation (38)
is violated. With reference to Figure 2 we can understand that the calculated electricity
prices changed inversely to the profile of electricity consumption in Table 4, while syn-
chronously in Table 5. These results indicated that the consumers can reduce the power
demand during the peak periods, and it becomes difficult in the off-peak periods. That
is, the calculated prices reflected the controllability in the electricity consumption on each
time slot.

In Figures 7 and 8, there were no significant differences in the social welfare by the
DR; however, we can confirm that the price-based DRs took burden on the consumers in
Figure 7 or the suppliers in Figure 8. As displayed in Figure 9, the optimal electricity price
became 25.01 JPY/kWh, and the increment of the price exceeded 1 JPY/kWh when the DR
target was set to 7% of the actual electricity consumption. As for the reference, the optimal
electricity price in scenario 2 is shown in Figure 10.

Figure 9. Results on the typical time slots in scenario 1 (at 22:00).
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Figure 10. Results on the typical time slots in scenario 2 (at 4:00). In this scenario, the power suppliers
could not request the DR cooperation in the target period.

In the numerical simulation model, the authors made the operational cost function
of the power suppliers relying on the fuel costs of thermal power units. However, in the
actual operations, the other factors such as the surplus power of renewable energy sources
have influences on the operational cost. If we reflect them appropriately in the model, the
results in scenario 2 can be activated.

From these results, the authors concluded that the authors’ proposal functioned
properly in the price-based DR.

5.2. Numerical Simulation Results for Incentive-Based DRs

By using Equations (25) and (26), the optimal rebate levels and the acceptable condi-
tions in the incentive-based DR were calculated as:

r′t =
−A

(
d′2t − d∗2t

)
+ (p∗ − B)(d′t − d∗t )
|d′t − d∗t |

, (39)

rt ≤ rt ≤ r′t. (40)

where rt =
p∗t (d

′
t−d∗t )t−Xt log

d′t+Zt
d∗t +Zt

|d′t−d∗t | .

Tables 6 and 7 summarize the calculation results in the case that the power suppliers
set the DR target as a 1% decrease (Scenario 1) or increase (Scenario 2) of the standard
electricity consumption. Figures 11 and 12 illustrate changes in the utility functions of the
power suppliers and the consumers. Changes in the social welfare functions were omitted
in Figures 11 and 12, because they were the same with the changes of the consumers’ utility
functions in the authors’ proposal.

Table 6. Numerical simulation results of incentive-based DRs under scenario 1.

t rt (×10−2 JPY/kWh) r
′
t (JPY/kWh) t rt (×10−2 JPY/kWh) r

′
t (JPY/kWh)

1 9.31 1.38 13 8.55 7.10
2 9.35 1.08 14 8.59 6.50
3 9.38 0.95 15 8.62 6.26
4 9.24 1.90 16 8.64 6.31
5 9.17 2.42 17 8.36 8.68
6 8.83 5.06 18 7.89 13.40
7 8.57 7.24 19 7.74 14.72
8 8.34 8.85 20 7.64 15.81
9 8.23 9.89 21 7.62 16.07

10 8.42 8.06 22 7.67 15.43
11 8.57 6.57 23 8.15 10.83
12 8.58 6.82 24 8.69 6.23
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Table 7. Numerical simulation results of incentive-based DRs under scenario 2.

t rt (×10−2 JPY/kWh) r
′
t (JPY/kWh) t rt (×10−2 JPY/kWh) r

′
t (JPY/kWh)

1 10.28 5.90 13 9.84 3.41
2 10.28 6.00 14 9.97 4.14
3 10.34 6.37 15 10.03 4.60
4 10.52 7.70 16 9.96 4.02
5 10.33 6.27 17 9.90 3.62
6 9.74 2.22 18 9.30 −0.88
7 9.55 0.80 19 9.10 −2.61
8 9.68 1.94 20 9.13 −2.33
9 9.89 3.55 21 9.12 −2.36

10 10.07 4.75 22 9.24 −1.53
11 10.04 4.77 23 9.61 1.19
12 9.95 4.15 24 9.86 3.01

Figure 11. Changes in each function by the 1% DR request in the day of the highest electricity
consumption.

Figure 12. Changes in each function by the 1% DR request in the day of the lowest electricity
consumption. In this scenario, the power suppliers could not request the DR cooperation from 18:00
to 22:00.

In Table 6, the calculated rebate levels were in the range of 0.95 JPY/kWh to
16.07 JPY/kWh. Meanwhile, the rebate levels in Table 7 were in the range of−2.61 JPY/kWh
to 7.70 JPY/kWh. As opposed to the results of price-based DRs, the time variation in Table 6
and Figure 11 had a similar trend to the electricity consumption. As shown in Table 7
and Figure 12, the optimal rebate levels were lower than rt from 18:00 to 22:00, and thus,
the consumers’ utility became negative during the periods. It indicated that the power
suppliers could not ensure the resources for the DR, and the DR request was impossible
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during the periods. In Figures 11 and 12, there were no burden on the power suppliers and
no decrement in the social welfare excepting the period from 18:00 to 22:00 in scenario 2.

As shown in Figures 13 and 14, the optimal rebate levels reduced in response to the
decrease (Figure 13) or increase (Figure 14) of the target values of the DR. In contrast, the
lower limits of the rebate levels were gradually raised. This is because the resources for the
DR were limited in association with the utility function of the power suppliers.

Figure 13. Results on the typical time slots in scenario 1 (at 22:00).

Figure 14. Results on the typical time slots in scenario 2 (at 4:00). In this scenario, the power suppliers
could not request the DR cooperation from 18:00 to 22:00.

These results showed that the authors’ proposal functioned properly in the incentive-
based DR as well.

6. Conclusions

The authors proposed a theoretical approach that calculates electricity prices and
rebate levels in DRs, based on the framework of SWM. In the authors’ proposal, first, the
utility functions of the power suppliers and the consumers were set, and then, the power
supply–demand-balancing operation was represented under the SWM framework. Next,
the authors derived the acceptable conditions for price-based DRs as Equations (18) and
(19) and the acceptable conditions for incentive-based DRs as Equation (25). Besides, the
optimal values of electricity prices and rebate levels were defined as Equations (20) and (26),
respectively, in consideration of burden on the society. The distinctive feature of the pro-
posed approach was to make influences of the DRs measurable as an increment/decrement
in the utility functions. Finally, to verify the validity of the authors’ proposal, the nu-
merical simulations were carried out with the model, which was constructed using the
approximated fuel cost function of power generation units and the record of smart power
meters.
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As shown in Section 5, the calculated electricity prices and rebate levels became smaller
than the values applied in the demonstrative field tests. This is because the calculation
results, as defined in Equations (18)–(20) as well as Equations (25) and (26), strongly
depended on the utility functions of the power suppliers and the consumers. In other
words, the assumed utility functions have room for discussion on their appropriateness.
However, the results of the numerical simulations reflected the controllability in electricity
consumption, and we can conclude that the authors’ proposal functioned appropriately.

In future works, the appropriateness of the assumed utility functions will be discussed
in more detail. Furthermore, the authors will analyze influences of the replacement of the
actual electricity consumption, d∗t , with the estimated one, and the proposed framework
will be expanded.
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Abstract: The construction and operation of wind turbines have become an important part of the
development of smart cities. However, the fault of the main drive chain often causes the outage
of wind turbines, which has a serious impact on the normal operation of wind turbines in smart
cities. In order to overcome the shortcomings of the commonly used main drive chain fault diagnosis
method that only uses a single data source, a fault feature extraction and fault diagnosis approach
based on data source fusion is proposed. By fusing two data sources, the supervisory control and
data acquisition (SCADA) real-time monitoring system data and the main drive chain vibration
monitoring data, the fault features of the main drive chain are jointly extracted, and an intelligent
fault diagnosis model for the main drive chain in wind turbine based on data fusion is established.
The diagnosis results of actual cases certify that the fault diagnosis model based on the fusion of
two data sources is able to locate faults of the main drive chain in the wind turbine accurately and
provide solid technical support for the high-efficient operation and maintenance of wind turbines.

Keywords: data fusion; main drive chain; fault diagnosis; wind turbine

1. Introduction

The smart city concept is an advanced trend for the development for cities today and
some crucial technologies such as Internet of Things (IoT), renewable energy, and smart
grids are integrated to build the intelligent energy system in a smart city [1–5]. To increase
the share of renewable energy in electricity generation and avoid the challenges caused by
the centralized construction, centralized grid connection, and long-distance transmission
of large-scale wind farms far away from the load center, distributed wind turbines are
being widely used in development of smart cities [6–8]. The operation and maintenance of
wind turbines distributed around the whole smart city are more difficult than the operation
and maintenance of wind turbines in a centralized large-scale wind farm. In the wind
turbines, electrical components have the highest fault frequency, followed by the main
drive chain components. However, the electrical component faults can be located quickly,
and the time to recover is short. Compared with the electrical component, the main drive
chain component faults have a longer positioning time. Because of their huge size and
heavy weight, it is cumbersome to replace them, and they need more time to recover. The
outage of wind turbines before the replacement of the main drive chain fault components
severely affects the operational reliability. So the wind turbines are in urgent need of
economic efficiency of the wind turbines and the accurate and highly efficient remote
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intelligent operation and maintenance service. Therefore, it is imperative to establish the
fault diagnosis system with high precision for the wind turbine main drive chain [9–11].

To improve the accuracy of main drive chain fault diagnosis in wind turbines, scholars
worldwide have carried out a lot of research on the fault diagnosis of main drive chain.
Among all the researchers, most of them try to alarm the out-of-limit main drive chain based
on the real-time monitoring data of the wind farm supervisory control and data acquisition
(SCADA) system [12–17] so as to maintain the normal operation state of wind turbines.
Based on the real-time monitoring data of the SCADA system and the out-of-limit alarms of
the main drive chain, the fault diagnosis framework of the wind turbine is established, and
the out-of-limit diagnosis indexes of typical faults are given [18]. The research uses high-
frequency SCADA data to extract the core technical indicators to improve the performance
of wind turbines [19]. Further, the real-time monitoring data of the SCADA system is used
to establish the fault prediction model of wind turbines [20]. More approached-based data
analysis of the SCADA are being used today [21,22]. For instance, a data-driven method
is proposed to diagnose the pitch fault of wind turbines [23]. Reference [24] authors also
use a data-based prognostic system without any additional sensor out of the SCADA. This
paper [25] summarizes various types of real-time monitoring systems of wind turbines
and states the advantages and disadvantages of various methods for fault monitoring of
wind turbines based on the real-time monitoring data of the SCADA system. To improve
the accuracy of the main drive chain fault diagnosis in wind turbines, people began to
use the professional fault main drive chain diagnosis system for high-frequency vibration
data acquisition and fault analysis to its main components [26]. Damage can be detected
based on the differences between modified modal displacements in the undamaged and
damaged states [27]. Based on the high-frequency vibration signal analysis of the main
drive chain fault diagnosis system in reference [28], the gearbox faults under the non-
stationary state of speed and load were statistically analyzed. Compared with the out-
of-limit alarm signal in the low frequency real-time monitoring system of the SCADA
system, the high-frequency signal analysis can locate the gearbox faults more accurately. In
references [29–34], the high-frequency resonance vibration signal of bearing is extracted by
wavelet analysis. Combined with the classification ability of the support vector machine
(SVM) and the dynamic time series processing ability of the hidden Markov model, a new
bearing fault diagnosis scheme is proposed so as to improve the accuracy of bearing fault
diagnosis. In reference [35], wavelet packet energy entropy is combined with empirical
mode decomposition (EMD) to enhance the noise elimination of original vibration data and
improve the accuracy of diagnosis. References [36–38] proposed a typical fault diagnosis
method of the gearbox based on wavelet decomposition and support vector machine
classification, a wind turbine bearing vibration fault diagnosis method based on noise
suppression and a fault diagnosis method for the planetary gearbox of main drive chain
of wind turbine under non-stationary conditions based on adaptive optimal kernel time-
frequency analysis, respectively. References [39–41] show other methods of fault diagnosis
based on wavelet transform. They all show that more effective typical fault features
are extracted from the high-frequency vibration signals of the professional main drive
chain vibration fault diagnosis system. Reference [42] began to introduce the influence of
different working conditions on wind turbine fault analysis. Recently, more scholars used
advanced algorithms such as neural network and machine learning for fault diagnosis in
wind turbines [43–46]. References [47,48] compare the advantages and disadvantages of
the neural network model and traditional condition monitoring analysis model in the fault
diagnosis of wind turbines. Some other methods proposed fault diagnosis using different
technologies such as thermal imaging [49]. They are non-invasive but limited to specific
tested objects and show less universality than the commonly used SCADA and vibration
fault diagnosis system. For instance, reference [50] uses thermal imaging to evaluate
the condition of only angle grinders in wind turbines. Moreover, wind turbines usually
operate in wild environments with variable temperatures, and, therefore, evaluating the
wind turbine using only thermal imaging is possible to be disturbed in operating states.
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Reference [51] uses ultrasonic reflectometry for detecting while the targeted fault to be
detected is limited to the lubrication failure of the wind turbine bearing.

The main drive chain vibration fault diagnosis system and wind turbine SCADA
system are two of the most popular diagnosis systems for wind turbines. However, their
suppliers are independent of each other so the data of these two systems cannot be shared,
and, therefore, each of the research projects above is based on one of these two data sources
for fault diagnosis.

In this paper, a data interface between the two systems is established through the
technical transformation of the two systems by the wind farm owners. An approach of
using a data fusion method of two types of data to extract fault features of the wind
turbine main drive chain is proposed and paves a new way to improve the accuracy of
fault diagnosis of the main drive chain in the wind turbine.

The contributions of this study are as follows:

(1) Proposing a fault diagnosis strategy of the main drive chain in wind turbines based on
data fusion, considering both the real-time monitoring data from the SCADA system
and the high-frequency vibration data of the main chain.

(2) Proposing the detailed method to classify and extract the fault features based on two
types of data and the method for fault diagnosis using the deep autoencoder model.

(3) Conduct case studies in a real wind farm to verify the effectiveness of the proposed
strategy, and analyze the experimental results and the benefits to the high-efficient
operation and maintenance of wind turbines.

2. Fault Features Extraction of Wind Turbine Main Drive Chain Based on Data Fusion

The entire process of the proposed data-fusion based method is given in Figure 1. The
whole process can be divided into two steps: fault features extraction, and fault diagnosis
based on data fusion. Details of each step are described separately in Sections 2 and 3.
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This section demonstrates the method of fusing two types of real-time monitoring
systems to extract the features of main drive chain faults. This method takes advantage
of the globality of the wind turbine SCADA system and the pertinence and depth of the
main drive chain vibration fault diagnosis system for the real-time monitoring of the wind
turbine main drive chain.

2.1. Process of Fault Features Extraction of the Main Drive Chain in Wind Turbine

The supervisory control and data acquisition (SCADA) system of a wind farm collects
real-time operating status data of each wind turbine in the wind farm comprehensively,
with the sampling frequency of 1 s. Specifically, it comprehensively monitors the parameters
and operating status of each operation control module in a wind turbine, including pitch,
yaw, gearbox, generator, hydraulic pump station, nacelle, converter, power grid, safety
chain, torque, main shaft, tower base, anemometer, and other modules. With the analysis
and judgment for each module’s operating status parameters, faults, and trend, normal
operation of the turbine is maintained through the approaches of over-limit alarm and
over-limit shutdown. However, the fault has already risen to a certain extent when the
parameters and trends of modules of the wind turbine exceed the limit, and, therefore, how
to trigger early warning becomes a core concern of wind farm owners. In recent years, many
wind farm owners have equipped a high-frequency vibration signal acquisition system
specifically for the main drive chain in order to improve the accuracy of fault diagnosis
to the main drive chain of the wind turbine. They use acceleration sensors and other
high-speed sensors to collect the high-frequency vibration signal of the main points of the
main drive chain and do time-domain analysis, frequency domain analysis, as well as time-
frequency domain analysis to extract more detailed fault features to locate the main drive
chain faults more accurately. However, sometimes the added high-frequency vibration
signal acquisition system gets noisy result data because it is susceptible to interference from
different operating conditions, such as the yaw state of the unit, the rotational speed, and
the icing of blades or anemometers. The added high-frequency vibration signal acquisition
system is unable to deal with the operating status of the wind turbine or to remove the
noise of the vibration data in a well-targeted manner. These deficiencies all make it difficult
to reflect the fault state of the main drive chain accurately and comprehensively based on
the fault eigenvector extracted from a single data source. That in turn reduces the accuracy
of diagnosis results.

Therefore, this paper proposes a method to transform two types of systems technically,
the main drive chain vibration fault diagnosis system and the wind turbine SCADA system,
to establish a data interface between them and use a method of fusing two kinds of data
to extract the fault features of the wind turbine main drive chain. On the one hand, the
wind turbine SCADA system has the ability to monitor the overall situation of the wind
turbine in real time, which is used to extract low-frequency vibration signals related to
drive chain faults, the rotational speed of main shaft and generator, and the operation
control mode of the wind turbine. The last two types of signals, the rotational speed of main
shaft and generators and the operation control mode of the wind turbine, are highly related
to the vibration mode of the main drive chain and provide supplementary knowledge
for the denoising of high-frequency vibration signals of the main drive chain. On the
other hand, taking advantage of pertinence and depth of the main drive chain vibration
fault diagnosis system for real-time monitoring of the wind turbine main drive chain, the
high-frequency vibration signals of all added measurement points of the main drive chain
can be extracted and use two types of signal, rotational speed of main shaft and generator
of the wind turbine and wind turbine operation control mode, to classify the background
noises of high-frequency vibration signals. The used sensors and method to equip them are
shown in Figures 2 and 3. High-frequency vibration signals are clearly different between
different speed ranges of the main shaft and generators and between the power-up and
power-down operation intervals of the wind turbine. The effective removal of background
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noises is beneficial to the extracting of the high-frequency vibration features of the main
drive chain itself.
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When using the SCADA system to extract low-frequency vibration signals related
to drive chain faults, it is also necessary to use two types of signals, the speed of main
shaft and generators of the wind turbine and the operation control mode of the wind
turbine, to classify its background noise. Between different speed ranges of the main shaft
and generators and between the power-up and power-down operation intervals of the
wind turbine, background noises are classified and removed to extract the low-frequency
vibration characteristics of the main drive chain itself.

2.2. Fault Features Extraction of Wind Turbine Main Drive Chain Based on Data Fusion

Table 1 shows the types and causes of typical faults in the main drive chain of wind
turbines. For the typical types of the wind turbine main drive chain faults, the low-
frequency vibration signal and high-frequency vibration signal of the main drive chain
are denoised, respectively, according to the fault features extraction flowchart given in
Figure 4. On the basis of this procedure, it is necessary to extract the low-frequency fault
features and high-frequency fault features of each typical fault in the main drive chain, and
then eliminate redundant fault features to reduce dimensionality of the fault features to
form eigenvectors that characterize the typical faults of the main drive chain.

Among them, the noise reduction of low-frequency and high-frequency vibration
signals of the main drive chain, the extraction of low-frequency and high-frequency fault
features of typical faults, and the dimensionality reduction of fault features are the core
procedures of fault features extraction of the wind turbine main drive chain based on
data fusion:

(1) Noise reduction of low-frequency and high-frequency vibration signals of the main
drive chain

The nacelle of the wind turbine will still shake and vibrate during normal operation
when the main drive chain is not vibrating. The frequency and amplitude of shaking and
vibration are closely related to the rotational speed of the main shaft and generators and
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the operation control mode of the wind turbine. Experimental data indicate that it is a non-
linear relationship. To simplify the calculation, this article firstly segments the rotational
speed of the main shaft and generators of the wind turbine according to their sizes and
classifies the operation control mode of the wind turbine according to the increasing power
and decreasing power. Based on the combination of these two approaches, we classify the
nacelle shake and vibration during the normal operation of wind turbine and give out
the frequency and amplitude of the nacelle shake and vibration background noise in the
combination of each rotational speed range of the main shaft and generator as well as the
wind turbine power-up or power-down operation.

Table 1. Types and causes of typical faults of main drive chain in wind turbine.

Faulty Module Main Fault Type Fault Cause

Gearbox gear

Gear break
Sudden impact overload, bearing damage, shaft

bending, continuous contact fatigue, foreign matter
mixed in the meshing area, etc.

Tooth surface wear Material defects, poor lubrication, foreign matter mixed
in the meshing area, etc.

Tooth surface pitting Poor lubrication, over-high speed, over-high
oil temperature

Tooth surface bonding Poor lubrication, over-concentrated local load, over-high
oil temperature, over-high speed, etc.

Bearings (gearbox, main shaft,
generator, etc.)

Rust and corrosion Poor sealing, insufficient rust prevention
Wear Poor lubrication, foreign matter mixed in, etc.

Surface peeling Overload, design or installation defect, foreign matter
mixed in, over-small clearances, etc.

Bonding Over-small clearance, poor lubrication, overload, rolling
body deflection, etc.

Crack Impact load, fatigue friction crack, large foreign body
stuck in, etc.

Shafting (main shaft, low/high
speed shaft in gearbox, etc.) Shaft misalignment Design or installation defect, etc.

Shaft bending
Material and installation defect, stress concentration is

not eliminated during the manufacturing process,
gearbox damaged, etc.

Shaft fracture
Material defect, stress concentration is not eliminated

during the manufacturing process, gearbox
damaged, etc.

Coupling Misalignment
The gearbox high-speed shaft is misaligned with the

generator, bearing air gap is too large, the ball is slightly
corroded, etc.

Grinding disc fracture Safety cover scratch, the high-speed shaft of the gearbox
and the generator are misaligned, etc.

Generator winding fault Rotor fault Rotor eccentricity fault, bearing deformation, design
defect, poor installation, etc.

Stator fault Winding insulation aging
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Assume that the background noise of the nacelle shaking and vibration under the first
section of rotational speed ranges of the main shaft and generator and the wind turbine
power up operation state are x1(t). Fourier transform of x1(t) is:

F1(ω) =
∫ +∞

−∞
x1(t)e−jωtdt (1)

This will be used as the background noise of the low-frequency and high-frequency
vibration signal of the main drive chain in the first section of the main shaft and gener-
ator rotational speed ranges and the wind turbine power-up operation. Before extract-
ing the low-frequency and high-frequency fault features, these background noises are
eliminated separately.

(2) Extraction of low-frequency and high-frequency fault features of typical faults

After getting the low-frequency vibration signal and high-frequency vibration signal
without background noise in the previous section, the frequency domain analysis method
is adopted to calculate the following parameters as the low-frequency fault features: the
low-frequency radial vibration, the axial vibration amplitude, and the vibration phase
difference of the main frequency band. For high-frequency vibration data, it is necessary
to calculate dimensional parameters, such as effective value, average amplitude, mean
square error, kurtosis, and slope, and non-dimensional parameters, such as kurtosis index,
impulse index, and margin index. With the help of the spectrum analysis method, the
radial vibration amplitude, axial vibration amplitude, and phase difference of the main
frequency band of each frequency band can be extracted as high-frequency fault features.

(3) Dimensionality reduction of fault features

For each type of typical fault, enough fault features should be extracted to determine
the type of fault accurately. However, too many redundant fault features will not help
increase the accuracy of fault determination, and contradictory samples inside will reduce
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the accuracy of fault diagnosis. Therefore, it is necessary to reduce the dimensionality of
fault features.

In order to judge each type of typical fault, we require not only low-frequency fault
and high-frequency fault features data, but also the combination of how the main shaft and
generator rotational speed of the wind turbine are segmented according to the sizes and
how the operation control mode of the wind turbine is classified according to the power-up
and power-down operations. Therefore, it is necessary to take the rotational speed of the
main shaft and generators and the operation control mode of the wind turbine as fault
features when reducing the dimensionality of fault features. In this paper, the dimensional-
ity reduction algorithm using Principal Component Analysis (PCA) is used to reduce the
dimensionality of the fused eigenvectors. Based on the original n-dimensional features, the
k-dimensional orthometric eigenvector is extracted as the principal component through
centralized processing and calculation of covariance. It uses orthogonal transformation as
the mapping matrix, calculates the covariance matrix of data matrix, obtains an eigenvalue
and eigenvectors of the covariance matrix, and then selects the eigenvectors corresponding
to the k characteristics with the largest eigenvalue (that is, the largest variance) from the
matrix. In this way, the data matrix can be transformed into a new space, and dimension-
ality reduction of data characteristics can be realized. The main processing steps for a
high-dimensional space data sample x ∈ Rd are: use the orthogonal matrix A ∈ R̂(k× d) to
map the sample to a low-dimensional space Ax ∈ Rk, where k� d states that the purpose
of dimensionality reduction is to alleviate the curse of dimensionality and classify data
better. The specific algorithm is as follows:

Input: n-dimensional sample set D =
(

x(1), x(2), . . . , x(m)
)

, the dimension to be
reduced to is k.

Output: the sample set D′ after dimensionality reduction.

(1) Centralize all samples:

x(i) = x(i) − 1
m

m

∑
j=1

x(i)j (2)

where m is data volume of sample x(i),

(2) Calculate the covariance matrix XXT of the sample,
(3) Perform singular value decomposition on the matrix XXT ,
(4) Take out the eigenvectors w1, w2, · · · , wk corresponding to the largest k singular

values, and normalize all the eigenvectors to form an eigenvector matrix W,
(5) For each sample x(i) in the sample set, transform it into a new sample:

z(i) = WTx(i) (3)

(6) Obtain the output sample set:

D′ = z(1), z(2), · · · , z(k) (4)

Through the dimensionality reduction processing using the PCA algorithm, the di-
mension of the fault characteristic vector can be reduced from hundreds to dozens, which
can markedly reduce the complexity of the following step of data processing.

3. Fault diagnosis of Wind Turbine Main Drive Chain Based on Fusion of Two Types
of Data

Based on low-frequency fault and high-frequency fault features obtained from the
fusion of two types of data and fault characteristic variables obtained by combining the
main shaft and generator rotation speed of the wind turbine and the operation control
mode of the wind turbine, dozens of typical characteristics of fault early warning are
generated after dimensionality reduction. However, they are still multi-variable and large-
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scale data. Moreover, different typical faults have a different number of characteristics of
fault early warning. To deal with this kind of multi-variable fault diagnosis problem that
input variables need to be adjusted for different typical faults, the Deep Autoencoder (DA)
model is a suitable approach for the fault diagnosis model training of different typical fault
types. The training of the fault diagnosis model for typical fault types mainly includes the
following steps:

(1) Select the low-frequency monitoring data from the SCADA system and the high-
frequency vibration monitoring data from the main drive chain vibration fault di-
agnosis system under the normal state and a typical fault state of the wind turbine
main drive chain. Calculate the characteristics of a fault warning and establish a
sample data set of this typical fault. Normalize the sample data set and divide it into
a training set and test set with a certain proportion.

(2) Determine the number of stacked AEs (Auto Encoders) and establish the DA with
multiple hidden layers. The number of input layer neurons is the dimension of the
input sample, and the data set is used for pre-training by stacking AEs.

(3) Use the labeled samples in the main drive chain training data set to apply supervised
fine-tuning to the entire DA to complete all training processes.

(4) When the entire DA training is completed, establish the DA model for the main drive
chain, calculate the reconstruction error R with the test sample set, and integrate the
test samples into the DA model for testing.

The fault diagnosis model training process of typical fault types is shown in Figure 5.
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The DA model training process above is unsupervised learning of the sample data
set. The parameters obtained by training can be used as prior information of supervised
learning of the DA model. The DA model can be further optimized by using the labeled
data set for supervised learning to improve accuracy of fault diagnosis. This fine-tuning
process is designed as follows:

Assume that the sample data are:

{(
x(1), y(2)

)
, · · · ,

(
x(i), y(i)

)
, · · ·

(
x(m), y(m)

)}m

i=1
(5)

where the category status corresponding to xi is y(i) ∈ {1, 2, · · · , k}, which is generally
is given in the form of label encoder, and k represents the total number of categories.
According to the analysis above, the k-dimensional vector output obtained by the clas-
sifier represents the conditional probability hθ

(
x(i)
)
= p(y = j

∣∣∣x) that the input x is the
corresponding category, and the main form is:

hθ

(
x(i)
)
=




p(y(i) = 1
∣∣∣x(i); θ)

p(y(i) = 2
∣∣∣x(i); θ)

· · ·
p(y(i) = k

∣∣∣x(i); θ)



=

1

∑k
j=1 eθj

T x(i)




eθ1
T x(i)

eθ2
T x(i)

· · ·
eθk

T x(i)


 (6)

θ is not a column vector but a matrix as

θ =
(

θ1
T , θ2

T , · · · , θk
T
)

(7)

where each row of the matrix represents the parameter corresponding to a category in the
classifier while the count of all categories is k. The supervised global fine-tuning stage aims
to do further parameters’ adjustment to minimize the value of the objective optimization
function. The objective optimization function (or, more exactly, the cost function) is:

J(θ) = − 1
m

[
m

∑
i=1

k

∑
j=1

1
{

y(i) = j
}

log
eθj

T x(i)

∑k
l=1 eθl

T x(i)

]
(8)

where 1{· · · } is the indicator function. The function value is 1 when the value in parenthe-
ses is true; otherwise it is 0. We have to minimization the value of J(θ), and we still use the
stochastic gradient descent method to solve it here. The iterative formula is:

θj = θj − α
∂J(θ)
∂θjl

(9)

∂J(θ)
∂θjl

= − 1
m

m

∑
i=1

[
x(i)(1

{
y(i) = j

}
− p(y(i) = j

∣∣∣x(i); θ))
]

(10)

The stochastic gradient descent method is a popular method in the field of machine
learning. We repeat the process in Equation (9) until convergence. α

∂J(θ)
∂θjl

in Equation (10) is
the partial differential of cost function to θj. At the convergence point, the partial differential
is 0, and therefore the cost function is minimized.

4. Results

In this section, we analyze the actual data of 66 doubly fed generators of 2MW in a
wind farm. This wind farm is fully equipped with a SCADA system and a vibration fault
diagnosis system for the main drive chain. Some user interfaces of the software system
after upgrading are shown in Figures 6 and 7. The upgrading of the fault diagnosis module
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for the main chain in the software uses the data-fusion-based fault diagnosis approach we
discussed in this article.
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For the typical fault of a gearbox with broken tooth in the main drive chain, the actual
data of the wind turbine from 2 May to 29 June 2019 are used to calculate the fault features
based on the fusion of the two types of data, and the result is 21 fault warning characteristic
variables. The actual data from 2 May to 29 June 2019 are a total of 2000 pairs of fault
characteristic data, of which three-quarters are used as the training set of the main drive
chain fault diagnosis DA model while the rest are used as the test set. The number of
hidden layers of this DA model is set to 17 while the average absolute error of the overall
data set is the smallest, and it has the greatest ability to excavate deep features of the
input data. The number of hidden nodes in each layer of the DA network are set to 152,
314, and 528, with the consideration to minimize the mean absolute deviation (MAD) and
loss indicators.

Because the data sets of the main drive chain under normal operating status are used
for the construction of DA model, the reconstruction error under abnormal states is great
enough to exceed the monitoring threshold under normal states.

After the training of the fault diagnosis DA model, the test set data are used to test the
gearbox broken tooth diagnosis model, and the verified results are shown in Figures 8 and 9.
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As shown in the figures above, before the gearbox teeth of the main drive chain of the
wind turbine A and B are broken at a data point of about 150, the model output was within
the monitoring threshold range, and the fluctuation range is not large, indicating that the
main drive chain gearboxes of the two turbines are operating in normal states. However,
the output of the model begins to increase and exceeds the pre-set monitoring threshold
after the tooth break. Hence, it is judged that the two wind turbines are malfunctioning,
and fault diagnosis as well as early warning are performed.

Consistent with the actual data, the time domain and frequency spectrum diagrams of
the vibration signal of the medium-speed shaft of the gearbox of turbine A (9 May 2019)
are shown in Figures 10 and 11.

Contrastively, the time domain and frequency spectrum diagrams of the vibration
signal of the medium-speed shaft in the gearbox in the early warning state (12 May 2019)
are shown in Figures 12 and 13.
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As shown in Figures 10 and 12, the time domain diagrams under the normal and
warning conditions are similar and show little valuable information. However, the hid-
den differences can be clearly revealed in the diagrams of the frequency spectrum in
Figures 11 and 13. The details are described below.

Figure 13 shows a sideband modulation signal of 5.99 HZ (signal in the red box in
Figure 13) at a rotational frequency of the medium-speed shaft near the gear mesh frequency
(670.833 HZ) from the medium-speed shaft to the high-speed shaft of the gearbox. However,
there is no sideband signal such as this under the normal operating state in Figure 12. This
difference can be judged as an abnormal condition of the meshing gear of the shaft. The
operation and maintenance personnel disassembled the on-site gearbox and found that the
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fault was the breakage of tooth on the medium-speed gear, as shown in Figure 14. This
model correctly warned the early fault of the main drive chain gearbox of turbine A and
avoided further expansion of this failure.
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The details of all experiments are not shown completely here. However, a brief table
is shown below as Table 2 to demonstrate the results of diagnoses to different typical faults
in the main drive chain in wind turbines.

Table 2. Results of diagnoses of to typical faults in wind turbine main drive chain.

Turbine Fault Type Fault Location Abnormal Phenomena Maintenance after
Early Warning

Duration between
Early Warning and

Alarm from
SCADA

#23 Broken tooth Gear at medium
speed shaft

Sideband signal in
frequency spectrum Yes -

#32 Broken tooth
Minor gear at

medium speed
shaft

Sideband signal in
frequency spectrum Yes -

#15 Broken tooth
Minor gear at

medium speed
shaft

Sideband signal in
frequency spectrum Yes -

#30 Corrosion Tooth Planet bearing

Abnormal peak in
frequency spectrum near

the characteristic
frequency of

planet bearing

No 14 days

#13 Corrosion Outer raceway of
rear bearing

Exorbitant peak value of
vibration signal No 5 days

As shown in the table above, maintenances are not taken immediately after the early
warnings emitted by the diagnosis system in some scenes, and there are considerable
interval times before we got alarms from the traditional SCADA system. Additionally, the
following maintenances indicate that there is no false alarm. That clearly indicates the
efficiency and accuracy of the diagnosis method proposed.

5. Conclusions

This article demonstrates the shortcomings of the commonly used main drive chain
fault diagnosis methods that only use a single data source. Then a method of fault features
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extraction and fault diagnosis based on data source fusion is proposed. The new method
makes integrated uses of the globality of the wind turbine SCADA system and the per-
tinence and depth of the vibration fault diagnosis system for main drive chain in wind
turbines to solve the problem that background noises from a single data source are difficult
to process.

In the proposed method, fault features of the main drive chain are jointly extracted
and a deep self-encoding network fault diagnosis model based on data fusion is established
by integrating SCADA real-time monitoring system data with main drive chain vibration
monitoring data. The parameters obtained by the unsupervised learning training of the
deep auto-encoding network can be used as the prior information of the following super-
vised learning model. Using labeled data sets for supervised learning further optimizes
the deep auto-encoding network model and improves the accuracy of fault diagnosis.

The experimental results show that the diagnosis system using the proposed method
accurately located the gearbox broken tooth fault in a wind turbine at a very early phase
before the traditional SCADA system raised any alarm. That diagnosis avoided further
expansion of this failure followed by greater loss. Obviously, this new approach provides
strong technical support for the operation and maintenance of wind turbines with more
immediacy and efficiency.

There is a possibility to use the way of fusing data from multiple sources for other
problems. However, the scenes and methods proposed in this article are specific and highly
concentrated. More complete and pertinent analysis and experiments must be done for
another specific problem.

Future related research will be focused on classification and recognition of possible
original causes of the detected faults. Various types of faults and the original reasons
will be analyzed. It will allow for the pre-analysis and early warning of faults before the
manual detection and will improve the efficiency of the operation and maintenance of
wind turbines.
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Abstract: This work presents a new coordinated operation (CO) framework for electricity and natural
gas networks, considering network congestions and demand response. Credit rank (CR) indicator
of coupling units is introduced, and gas consumption constraints information of natural gas fired
units (NGFUs) is given. Natural gas network operator (GNO) will deliver this information to an
electricity network operator (ENO). A major advantage of this operation framework is that no
frequent information interaction between GNO and ENO is needed. The entire framework contains
two participants and three optimization problems, namely, GNO optimization sub-problem-A, GNO
optimization sub-problem-B, and ENO optimization sub-problem. Decision sequence changed from
traditional ENO-GNO-ENO to GNO-ENO-GNO in this novel framework. Second-order cone (SOC)
relaxation is applied to ENO optimization sub-problem. The original problem is reformulated
as a mixed-integer second-order cone programming (MISOCP) problem. For GNO optimization
sub-problem, an improved sequential cone programming (SCP) method is applied based on SOC
relaxation and the original sub-problem is converted to MISOCP problem. A benchmark 6-node
natural gas system and 6-bus electricity system is used to illustrate the effectiveness of the proposed
framework. Considering pipeline congestion, CO, with demand response, can reduce the total cost
of an electricity network by 1.19%, as compared to −0.48% using traditional decentralized operation
with demand response.

Keywords: coordinated operation; natural gas network; electrical network; credit rank indicator

1. Introduction

In November 2018, the European Union (EU) presented its long-term vision for a
carbon-neutral economy by 2050. While renewable energy sources are adopted in achiev-
ing this goal, the EU will require more grid scale storage as the fraction of intermittent
renewable energy becomes larger. Without significant grid scale storage, renewable energy
sources may have to be taken off the grid or carry out large-scale load shedding to avoid
de-stabilizing the grid when supply outstrips demand. Many options are being studied
for grid scale storage, but no sustainable, marketable, affordable, and renewable solution
is on the table. Power to Gas is a technology that could be useful in the short to medium
term, as a component of a comprehensive grid scale storage solution, in support of a power
grid supplied by intermittent renewable energy systems (RES) in the long term to promote
smart energy for smart cities [1–3]. At the same time, some research deals with the energy,
exergy, economic, and exergoenvironmental analyses of hybrid combined system [4].

The use of natural gas to produce electricity is increasing dramatically throughout the
world. This trend is being driven by the cost and environmental advantages of gas-fired
generation as compared to that of the coal. This increase has also highlighted the need for
greater coordination between natural gas and electricity systems. Insufficient coordination
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limits pipeline operators from providing accurate guidance on gas quantities to supply
gas-fired generators each hour [5]. In general, generators overschedule gas deliveries to
ensure enough resources to operate. The inefficiency will only increase with the growing
use of natural gas for electricity generation. While the two systems have operated for
decades, closer coordination could save money, improve efficiencies, and minimize poten-
tial disruptions. Improved coordination of these networks will increase energy resiliency
and reliability while reducing the cost of natural gas supply for electricity generation.

Natural gas generation can reduce the use of coal-fired power, support integration
of renewable resources, and reduce greenhouse gas emission. In power systems with
increasing numbers of uncertain renewable sources, gas generation is taking a more impor-
tant role in supplying short-term flexibility to match unexpected electricity consumption.
In the electricity network, the natural gas generation units are rapid response units that
overcome generation scarcity caused by sudden variations in the electricity consumption or
the renewable generation dispatch. The gas turbines’ flexibility relates to the gas network’s
flexibility [5]. The performance of the gas turbine is affected by some important parameters
that consist of the compression ratio, ambient temperature, pressure, humidity, turbine
inlet temperature, specific fuel consumption, and air to fuel ratio [6].

Reference [7] examined the renewable energy sources impact, including pumped-
storage units and photovoltaic systems on power system security from electricity and
natural gas networks perspective. With the large-scale natural gas infrastructure deploy-
ment, which leads to changes in capabilities of pipelines, operational procedures, supply,
and tariffs, it is important to have coordination between the two networks to enhance
future energy system reliability [8].

Natural gas volume is susceptible to price changes and influences the generation
and commitment costs of generating units. Naturally, an increasing amount of natural
gas usage in the electricity sector has raised difficulties for natural gas network planning
and operation. Natural gas pipelines’ pressure interruption or loss may contribute to the
outage of several natural gas-fired generators and lead to power system security issues.
For electricity networks, intermittent renewable energy sources have no fuel costs and
only have a fixed operating cost for operation. To achieve robust power system operations,
natural gas units may provide flexible dispatch and rapid ramping capability. Turning to
variable renewables, it is expected that the intermittency in generation due to, for example,
wind will have an impact on other generation units, which will be required to increase
and decrease their generation, as the wind generation falls and rises, to meet the shortfall
between generation and demand. Naturally, gas turbines will have a greater role to play in
generating electricity due to their ability to ramp up/down quickly.

Natural gas fired units (NGFUs) gradually replace coal fired units due to the operation
flexibility, great efficiency and little capital costs in many countries [9]. In China, NGFUs
occupy 4% of total generating capacity, while in the USA, it reached 39% [10]. Therefore,
integrating natural gas systems with power systems is challenging.

A great amount of overall electricity production is produced by gas-fired power plants
for several countries. It is projected to rise to 7600 TWh by 2035. With increasing gas
demand, gas networks need to expand capacity to provide fuel to additional gas-fired
power plants. Reference [11] presents an integrated gas and electricity network expansion
planning model. Gas fired generation plants were seen as connections between the two
networks. The model concurrently minimizes electricity and gas operational and network
development costs.

Various research works were performed on optimal operation strategy and interdepen-
dency of the integrated electricity-natural gas system. Reference [7] examined the influence
of natural gas infrastructure on the electricity system by focusing on particular constraints
of the natural gas network. Reference [12] presented an in-depth integrated model for
examining the influence of interdependency between natural gas and electricity networks
on power system security, considering constraints of natural gas network in the security-
constrained unit commitment (SCUC) problem for power systems. References [13,14]
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formulated the co-planning process as a mixed-integer nonlinear programming problem to
consider recent challenges, including congestions, demand response effect, etc.

The growing reliance of the power system on NG systems has demanded an integrated
planning approach for the two systems [12]. Reference [15] proposed a decentralized
operation strategy and applied it to coordinate energy flow in a multi-area integrated
electricity-natural gas system (IEGS). The complete decentralized operation of intercon-
nected large-scale IEGS is achieved with the iterative alternating direction method of
multipliers (ADMM) algorithm. IEGS was represented by several subsystems that were
tied by electricity and natural gas networks. An optimal operation strategy based on
decentralization was developed for multi-area IEGS.

Reference [10] showed that integrated natural gas and electricity networks operation
can be attained in a distributed method with ADMM. Results showed that the ADMM-
based approach gives enhanced convergence performances than the classical Lagrange
Relaxation (LR), as well as augmented LR-based methods. Reference [16] propose a mixed
integer programming model to characterize the electricity portfolio of large consumers.
References [17,18] propose electricity and natural gas networks by considering energy
hubs. As reported in Reference [19], the changes of natural gas unit’s generation dispatch
will provide natural gas demand profile changes. The changes may harm the natural
gas network’s security. Electricity and natural gas infrastructure’s coordinated operation
can enhance reliability and security for the infrastructure and avoid demand curtailment
risks. Reference [20] presented a novel robust operation model for IEGS but without the
solution algorithm. With ADMM, reference [21] presented a study on robust optimization
for IEGS with distributed structures. Previous works have fixated on the coordination of
natural gas and electricity networks at synergistic scheduling level. Electricity network
flow rules are summarized in [22] to solve the gas flow problem. Reference [23] presented
a methodology for considering the combination of the natural gas network. Coordination
with stochastic scheduling were studied in [24]. Scheduling problems, including electricity
demand response, were presented in [25,26]. Natural gas prices impacting on the system
were examined in [27–29].

Several investigations have fixated on solving steady-state natural gas flow. The chal-
lenges are contributed from the non-linear and non-convex Weymouth equation, that is, the
natural gas flow is a nonlinear programming (NLP) problem. References [22,23] employed
a nonlinear solution or commercial solvers to determine gas flow, including interior point
method or Newton-Raphson methods. Approximate piecewise linearization methods
were presented in [30] and [31] by transforming to a mixed-integer linear programming
(MILP) problem. To eliminate non-convexity, researchers in [10] and [32] employed the
special form of the Weymouth equation by transforming the NLP problem to MISOCP via
convex relaxation.

Natural gas and electricity networks are owned by various operators and stakeholders.
However, both networks are often seen as an integrated system to achieve coordinated
operation or establish a third-party coordinator with a lot of information interaction. The
main contributions of this work are as follows:

• Proposed a novel CO framework and this changes the traditional decision sequence.
With this framework, it is possible to avoid frequent information interaction and
without a third coordinator.

• A model is constructed to generate NGFUs’ gas consumption constraints. A CR
indicator and an update method are introduced, to generate reasonable gas consump-
tion constraints information deliver from gas network operator (GNO) to electricity
network operator (ENO).

• Impact of considering classic demand response program [33] and congestion is dis-
cussed in a decentralized and coordinated operation. For GNO optimization sub-
problem, an improve SCP method based SOC with reasonable initial expansion value
is used to determine the steady-state gas flow in a natural gas network.
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• Simulations under different scenarios, considering the NG and electricity networks
operation, based on a benchmark 6-bus electricity system and 6-node natural gas
system were used to verify the proposed framework, considering solution convergence
and benefits obtained.

• The impact of the coordinated operation is studied with congestions and demand
response. The present method can give a better convergence when compared to a very
popular method such as ADMM.

Section 2 presents the formulations of the framework for coordination operation for
one IEGS. Section 3 provides a mathematical model for the two sub-optimization problems,
namely, GNO optimization and ENO optimization. Section 4 gives the solution methodol-
ogy for solving the optimization of the two networks based on Weymouth function. Case
studies and discussions are given in Section 5. Conclusion and future work are provided in
Section 6.

2. Framework for Coordinated Operation
2.1. Coordination of Interdependent Electricity and Natural Gas Systems (IENS): An Overview

Due to the increasing interdependence between power grids and natural gas networks,
it may be unreasonable, or physically infeasible, to model and optimize the two energy
systems separately in practice. Different coordination strategies are as follows:

• From the perspective of the macro scope of the energy system model, the models can
be classified from four aspects: comprehensive evaluation, energy economy, power
system planning, and energy system planning [34]. They have different methods,
different ranges of use and different fields of application. Energy modeling tools
such as LEAP, EnergyPlan, MASSAGE, MARKAL/TIMES have been designated
for sustainable energy planning analysis [35]. The main methods of energy system
modeling are top-down and bottom-up. The combination of these models leads to a
hybrid energy model.

• In IENS, due to the uncertainty of natural gas supply, the balance of supply and
demand in power system may be affected for security and economic purposes. Power
system researchers have incorporated natural gas transmission constraints into the
unit commitment problem of security constraints [12,23,24]. The uncertainty of nat-
ural gas supply and the variability of natural gas price are also considered in refer-
ence [36] to study the impact of natural gas supply shortage on the optimal dispatch
of power system.

• In the natural gas optimization problem, the time-varying gas consumption of gas gen-
erating units is simulated to explore the influence of large gas generating units [37–39]
on the daily operation efficiency of natural gas network.

• For sequence optimization of power grid and natural gas network [38,39], this model
cannot guarantee global optimality of the IENS.

• The collaborative optimization of IENS considers the power grid and natural gas
network as a whole to minimize the total cost associated with the two energy systems.
It can achieve the best solution for the whole IENS [40–42]. In addition, considering
that power grid and natural gas network may belong to different system operators and
information exchange may be restricted by policies, researchers explore decentralized
algorithms to obtain high-quality coordination solutions of IENS, while maintaining
decision independence and information privacy of the two systems [43–45]

• IENS should be considered from operational and long-term planning aspects [46].
Co-planning of power and natural gas networks can be proposed at system level [47]
and local level [48]. The integration of natural gas and power sectors usually needs
to study the interaction between them and Resource Co-optimization from the per-
spective of central planners [49]. The mathematical model used in the joint planning
of electric power and natural gas shows that some relationships are nonlinear and
nonconvex [50]. The most common problem in this paper is MINLP model [51]. In
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order to solve the complexity of the model, various techniques of linear and convex
reconstruction/relaxation [52] and decomposition method [53] are proposed.

2.2. Coordinated Operation Method Based on ADMM Algorithm

For the synergy between power and gas networks and coordination operators, the
synergy among the three decision makers is achieved through consensus based ADMM
method. Consensus variables are introduced to reflect the interaction between upper and
lower operators. In each iteration, the upper coordination operator checks the convergence
and updates the consensus variables, while the lower electric operator and natural gas
operator solve the local optimization problem at the same time. The cooperative operation
mode of the third party is: Based on the synchronous ADMM decoupling algorithm, a
higher-level third-party cooperative operator (CO) is introduced to solve the electricity
network subproblem and the natural gas network subproblem simultaneously, and the
relevant information is transferred to the third-party scheduling department to realize the
cooperative operation.

The structure of ADMM with coordination is shown in Figure 1 composed of five steps:

Figure 1. ADMM information flow with coordination operator.

1. Parameter initialization: Initialize the coupling variable values Gg,1
i and Hg,1

e of the
power grid sub-problem and the natural gas network sub-problem respectively. Initial-
ize the coupling variable value Jg,1

e of the third-party dispatching department, set the
ADMM algorithm step size ρ1and ρ2. Initialize the Lagrange multiplier λk

ie,1 and λk
ie,2

of the grid sub-problem and the gas grid sub-problem respectively.
2. Simultaneously solve the electricity network subproblem and the gas network subproblem.
3. Update ADMM multiplier and third-party coupling variable.
4. Convergence criterion: The original residual is the coupling unbalance, and the dual

residual is the difference before and after the iteration of the coupling variable.

2.3. Traditional Decentralized Operation

The structure of traditional decentralized operation (DO) is shown in Figure 2 com-
posed of two steps:

Step 1: ENO carries out the optimal local scheduling of electricity network which described
as ENO sub-problem, and the corresponding consumption of natural gas information will
deliver to the GNO.
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Step 2: GNO carries out the optimal scheduling of natural gas network and is described
as GNO sub-problem. If GNO cannot supply enough expected gas volume in Step 1 as
the premise of resident gas demand has a higher priority, ENO needs to re-dispatch in the
electricity network.

Figure 2. The structure of traditional DO.

The main defect with this traditional DO is that ENO as an advance decision-maker,
cannot guarantee the local scheduling result at coupling units will always be a feasible
solution in the GNO scheduling feasible domain shown in Figure 3. The decision sequence
is ENO-GNO-ENO.

Figure 3. The diagram of traditional DO.

2.4. A New Framework for Coordinated Operation

A new framework is established for CO of electricity and natural gas networks, as
presented in Figure 4. It is different from the traditional DO in decision sequence as
GNO-ENO-GNO. GNO as advance decision-maker provides NGFUs gas consumption
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constraints to ENO. When there are multiple coupling units and gas supply capacity is
limited, how to generate reasonable constraints for multiple coupling units is extremely
important. To solve this problem, to the knowledge of the authors, it is the first time
to introduce an indicator, that is, credit rating (CR) for decision making and the entire
framework for CO is shown in Figure 5. There are three steps in the procedure.

Figure 4. The diagram of the proposed CO framework.

Figure 5. The structure of proposed CO framework.
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Step 1: Receive NGFUs’ CR from the previous period, GNO calculates the maximum profit
with an uncertain gas load of NGFUs, named GNO sub-optimization-A problem. GNO
as advance decision-maker provides NGFUs gas consumption constraints to ENO. To
generate reasonable gas consumption constraints information that deliver from GNO to
ENO. This means that the natural gas network supplies the maximum capacity to NGFUs.
Step 2: ENO set the maximum gas supply of NGFUs as constraints in optimization sub-
problem to determine the hourly dispatch, including the dispatching generation and actual
gas consumption of NGFUs.
Step 3: After receiving the actual gas load of NGFUs in natural gas network, GNO optimizes
the gas network scheduling to achieve the minimal operation cost and updates the CR of
NGFUs for the next scheduling period.

Some insights could be summarized as follows:

(1) The GNO and ENO do not have dispatching power and networks information of an-
other party, but the information in coupling units is available for both GNO and ENO.

(2) In a natural gas network, resident natural gas load priority is higher than NGFUs gas
load, GNO will cut the gas supply of NGFUs first if there is a natural gas shortage.
Thus, in GNO optimization sub-problem, the resident natural gas load is the control
parameters and the profit of this part is fixed.

(3) In GNO optimization sub-problem-A, the cost of a gas well is ignored. It assumes
that the gas purchase price of NGFUs is greater than the production cost of a gas well,
GNO will always benefit from it.

(4) CR is a gas price-related indicator, we assume that the forecast gas contract price of
all NGFUs is the same. A higher CR means GNO will provide as much natural gas as
possible to this NGFU, so that the gas constraint value deliver to ENO will be greater.

3. Mathematical Model
3.1. GNO Optimization Sub-Problem-A

As shown in (1), the objective of GNO sub-optimization-A problem is to maximize
profit. In this sub-problem, the resident natural gas load is fixed, and NGFUs gas load is
a variable. The first term of the objective function represents incomes from the resident
natural gas load and the second term is expected profits from NGFUs natural gas load.

Natural gas network model is given by Equations (2)–(6) when applied by the steady-
state natural gas flow. Constraint (2) represents the pressure of the gas node and gas flow in
the pipeline relationship, which is a Weymouth function. The pressure of gas node upper
and lower limits is shown in (3). Nodal natural gas balance in the network is given in (4),
and the natural gas well production boundary is shown in (5). The gas load of NGFUs
is constrained by the unit’s maximum gas consumption as given by (6). Constraint (7)
represents the relationship between CR, the gas contract price of NGFUs and credit value
factor, which is equal to the product of CR and forecast gas contract price.

Max obj_Ga =
NT

∑
t=1

(
NL

∑
gl=1

τgl L + ∑
i∈GU

λ0
i Gg

i,t

)
(1)

Fmn,t = sgn(ωm,t, ωn,t) · Cmn

√∣∣∣ω2
m,t −ω2

n,t

∣∣∣ (2)

ωmin
m,t ≤ ωm,t ≤ ωmax

m (3)

TwW − TgGg − Tl L = T f F (4)

Wmin
s ≤Ws,t ≤Wmax

s (5)

Gg
i,t ≤ Gg,max

i (6)

λ0
i = ηiCR0

i (7)
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After completing the above optimization solution, a series of constraints of NGFUs
will be generated, the gas supply to NGFUs of this optimization result is given by (8). This
value will deliver to the next step.

Gg,0
i,t = Gg

i,t = argmax(obj_Ga), ∀i ∈ GU (8)

3.2. ENO Optimization Sub-Problem

(1) Objective function

As shown in (9), the objective function of ENO sub-optimization problem is deter-
mined by the hourly dispatch. It is to minimize the operating cost over the complete
scheduling horizon with security-constraints. The first term of the objective function is
the generation costs and startup cost of NGFUs, the second term is the generation costs
and startup cost of non-NGFUs. The shutdown cost of units has been converted into the
startup cost.

Min obj_E =
NT

∑
t=1





∑
i∈GU

(
Gg

i,tηi + SUi,t

)

+ ∑
i∈NGU

(
Gc

i,t + SUi,t

)





(9)

(2) Units and network constraints

Equations (10)–(21) are physical constraints of generating unit. Generation scheduling
of each thermal unit is constrained by maximum and minimum output of the unit as
presented in (10). The renewable power dispatch at individual hour is constrained by
the renewable power forecast given in (11). Thermal units operating ramping up/down
constraints are given in (12) and (13). Minimum on/off-limits are enforced by (14) and (15).
The relationships between unit states and startup/shutdown indicators are given in (16).
The logic between startup indicators and shutdown indicators are given in (17). Constraint
(18) represents the generation costs of non-NGFUs. Constraint (19) represents the fuel
consumption NGFUs. Constraint (20) shows the startup costs of thermal units.

Pmin
i ui,t ≤ Pi,t ≤ Pmax

i ui,t (10)

Pr,t ≤ PW
r,t (11)

Pi,t − Pi,t−1 ≤ URi(1− yi,t) + Pmin
i yi,t (12)

Pi,t−1 − Pi,t ≤ DRi(1− zi,t) + Pmin
i zi,t (13)

[
Xon

i,t−1 − Ton
i
]
[ui,t−1 − ui,t] ≥ 0 (14)

[
Xo f f

i,t−1 − To f f
i

]
[ui,t − ui,t−1] ≥ 0 (15)

yi,t − zi,t = ui,t − ui,t−1 (16)

yi,t + zi,t ≤ 1 (17)

Gc
i,t = αc

i ui,t + βc
i Pi,t + γc

i P2
i,t, ∀i ∈ NGU (18)

Gg
i,t = α

g
i ui,t + β

g
i Pi,t + γ

g
i P2

i,t, ∀i ∈ GU (19)

SUi,t = suiyi,t (20)

Constraint (21) limits the gas consumption of NGFUs, the information of this constraint
is from GNO optimization sub-problem-A.

Gg
i,t ≤ Gg,0

i,t , ∀i ∈ GU (21)

For simplicity, the electric power transmission is modeled by (22)–(26) in DC power
flow form. Constraint (22) shows the system power balance at each hour. Constraint (23)
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is the power balance for individual bus. Constraint (24) represents the DC power flow
in branch br with first and last buses at j and k. Constraint (25) means line capacity limit,
pf max is power flow limits. Constraint (26) is the phase angle for reference bus.

∑
i∈GU

Pi,t + ∑
i∈NGU

Pi,t +
NR

∑
r=1

Pr,t =
NB

∑
b=1

Db,t (22)

KP · Pi + KW · Pr − KD · D = KL · p f (23)

p fbr =
θj − θl

xjl
, (j, l ∈ br) (24)

|p fbr| ≤ p f max
br (25)

θre f = 0 (26)

(3) Demand response constraints

The price-elastic load in the electricity network is based on the model reported in Ref-
erences [54,55]. Equations (27)–(30) represent electrical load deviation and electricity price
deviation in the demand response program. In this paper, the time-of-use electricity price
is adopted to describe the price change in one day. In this demand response strategy, the
satisfaction of customers should be considered. At the same time, customers’ satisfaction
cannot break the limit as shown in (31). Constraint (32) represents the load is shiftable and
the sum of electrical load cannot be changed in one day.

Ddev = E · pdev (27)

Ddev = [∆D1/Dini
1 , · · · , ∆DNT/Dini

NT
] (28)

pdev = [∆p1/pini
1 , · · · , ∆pNT/pini

NT
] (29)

Dt = Dini
t + ∆Dt (30)

CS = 1−

NT
∑

t=1
|∆Dt|

NT
∑

t=1

∣∣Dini
t
∣∣
≥ CSmin (31)

NT

∑
t=1

Dini
t =

NT

∑
t=1

Dt (32)

After ENO completing optimization sub-problem, the actual gas consumption of
NGFUs will be fixed and delivered to GNO for Step 3 as Equation (33) shown.

Gg,1
i,t = Gg

i,t = argmin(obj_E), ∀i ∈ GU (33)

3.3. GNO Optimization Sub-Problem-B

As shown in (34), the objective function of GNO sub-optimization-B problem is
to minimize the cost of gas wells. The resident natural gas load and NGFUs gas load
are assumed to be fixed. The natural gas network constraints are similar to GNO sub-
optimization-A, consisting of (2)–(6).

Min obj_Gb =
NT

∑
t=1

NS

∑
s=1

τsWs,t (34)

s.t Constraints (2)–(6).
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Meanwhile, GNO updates the CR as shown in Equation (35).

CR1
i = 0.5


CR0

i +

NT
∑

t=1
Gg,1

i,t

NT
∑

t=1
Gg,0

i,t


 (35)

4. Solution Methodology
The Solution of Network Sub-Problem Solving

This work adopted an improved SCP method based on SOC with reasonable initial
expansion value for natural gas network sub-problem. The method is suitable for both
sub-problems A and B. The steps of solving are derived from the special form of the
Weymouth function. Weymouth nonlinear steady-state pipeline flow of constraints (2)–(3)
can be transformed as follows and shown in (36)–(38).

(
I+mn,t − I−mn,t

)
(πm,t − πn,t) = (1/Cmn)

2F2
mn,t (36)

I+mn,t + I−mn,t = 1 (37)

πmin
m ≤ πm,t ≤ πmax

m (38)

According to [8], (36) is substituted by McCormick envelope (39)–(43) which converts
the whole model into the MISOCP problem.

Πmn,t ≥ (1/Cmn)
2F2

mn (39)

Πmn,t ≥ πn,t − πm,t +
(

I+mn,t − I−mn,t + 1
)(

πmin
m − πmax

n

)
(40)

Πmn,t ≥ πm,t − πn,t +
(

I+mn,t − I−mn,t − 1
)(

πmax
m − πmin

n

)
(41)

Πmn,t ≤ πm,t − πn,t +
(

I+mn,t − I−mn,t − 1
)(

πmin
m − πmax

n

)
(42)

Πmn,t ≤ πn,t − πm,t +
(

I+mn,t − I−mn,t + 1
)(

πmax
m − πmin

n

)
(43)

Constraints (39)–(43) will be equal to constraint (36) if (39) is tight. This work adopts a
penalty function by combining SCP method to tight the constraint (39).

(1) Penalty function method

To tighten the inequality as much as possible under constraint (39), the objective
function includes a penalty as shown in (44), to make the left term of inequality (39) as
small as possible. This kind of solution is often not accurate enough but could be used to
determine an initial solution. ϕ represents a pre-set positive number.

Min
NT

∑
t=1

NS

∑
t=1

τsWs,t +
NT

∑
t=1

NP

∑
mn=1

ϕΠmn,t (44)

s.t Constraints (4) and (5), (37)–(43)

(2) Sequential cone programming method

In SCP method, extra concave constraint (45) is adopted to let constraints (39)–(43),
(45) equivalent to constraint (36).

Πmn,t ≤
(

1
Cmn

)2
F2

mn,t (45)
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As such, the key problem becomes the processing of Equation (45), and linearization
is a common method. According to Taylor series, it can be approximated as (46). When
the right-hand side value of the inequality is close to 0, the solution meets the expected
requirements. Where S is an auxiliary variable.





Πk
mn,t −

(
1

Cmn

)2(
Fk−1

mn,t

)2
−

(
1

Cmn

)2
· 2Fk−1

mn,t ·
(

Fk
mn,t − Fk−1

mn,t

)




≤ Sk

mn,t (46)

(3) Solution procedure

The Algorithm 1 solution procedure is given as follows:

Algorithm 1: Improve SCP method for natural gas network sub-problem based on SOC

Step 1 Use penalty function method to solve natural gas steady-state flow problem to get the
initial solution of gas flow F0

mn. Set initial iteration number k = 0.

Min Min
{

∑NT
t=1 ∑NS

s=1 τsWs,t + ∑NT
t=1 ∑NP

mn=1 ϕΠmn,t

}

s.t Constraints (4) and (5), (37)–(43)
Step 2 Parameter settings. Set a punish growth rate v and maximum penalty factor φmax, SCP
residual tolerance ξ Z and ξS.
Step 3 Solve the following MISOCP problem:

Zk = Min Zk = Min
{

∑NT
t=1 ∑Ns

s=1 τsWs,t + ∑NT
t=1 ∑NP

mn=1 φk−1Sk
mn,t

}

s.t Constraints (4) and (5), (37)–(43), (46)
Step 4 Check SCP residuals.∣∣∣Zk − Zk−1

∣∣∣ ≤ ξZ

max
( NP

∑
mn=1

Sk
mn,t

)
≤ ξS

If yes, end the procedure. Otherwise, update the penalty factor and iteration number.

φh = min
(

vφh−1, φmax
)

Step 5 Set k = k + 1 and repeat Steps 3–4 until the convergence conditions are met.

The gas flow directions will not change after several iterations. The binary variables
in the gas network sub-problem (MISOCP) are fixed.

5. Case Studies and Discussions

All the cases are conducted on a Windows 10 64-bit personal computer with Intel
Core i5-6500 3.2 GHz CPU and 8 GB of RAM using MATLAB R2014b in YALMIP with
Gurobi 6.5 solver. A 6-bus electricity system and 6-node natural gas system is employed to
examine the effectiveness of the proposed CO framework. Figure 6 presents the integrated
topology. The test networks have one non-NGFU, seven transmission lines, two natural
gas wells, five pipelines, three NGFUs, and one renewable energy source. The network
considers varying electricity and natural gas loads, the networks test data can be found in
http://motor.ece.iit.edu/data/ (accessed on 22 March 2021). Tables 1 and 2 give the gas
source characteristics for S1 and S2 and natural gas line characteristics respectively.

Table 1. Natural gas source characteristics.

Source Connection
Node

Minimum
Capacity (kcf/h)

Maximum
Capacity (kcf/h) Cost ($/kcf)

S1 4 2000 5000 3.2
S2 5 1500 6000 2.6

262



Appl. Sci. 2021, 11, 4987

Table 2. Natural gas pipeline characteristics.

Pipeline Number Start Node End Node Pipeline Constant
(kcf/Psig)

1 2 1 50.6
2 4 2 50.1
3 5 2 37.5
4 5 3 43.5
5 6 5 45.3

Figure 6. The topology of electricity and natural gas networks.

5.1. Comparison between DO, ADMM and CO

Figure 7 shows the variation of the original residuals and dual residuals with the itera-
tion progress under the synchronous ADMM algorithm. In the 129 iterations, the residuals
have a significant downward trend, showing a fluctuating decline. At the beginning of
iterations, the magnitude of residual error is about 1e4, which indicates that there is a large
gap in the coupling part of gas turbine. In the middle and later stage of the iteration, the
residuals do not increase or decrease monotonically, but decrease gradually under small
oscillation, and finally reach the convergence requirement.

The main idea of the proposed step-by-step cooperative operation method for a power
gas interconnected system is the constructed credit degree and credit value parameters,
and the credit value is directly determined by the credit degree. Therefore, this part of the
example mainly studies the influence of credit degree on the effectiveness of the proposed
method. First, it should be noted that, because the cost, the coefficient of G2 is higher than
that of other units. The minimum output is maintained, so the credit degree is set to a
fixed value of 1. It mainly analyzes the change and influence of credit degree of G1 and G3.
Credit degree indicates the quantitative degree of the relationship between the actual gas
consumption of gas units and the constraints generated by gas units. It is suitable for gas
network managers to evaluate large gas users. Figure 8 shows the output of gas turbine
G1 under different credit combinations under step-by-step coordinated operation, and the
credit degree of G1 is 1-1. 9, the interval is 0. 1, G3 credit rating is 1-1. 9, the interval is 0. 1.
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Figure 7. Residual change of synchronous ADMM.

Figure 8. Residual change of synchronous ADMM.

A one-hour operation between electricity and the natural gas network was analyzed.
An economic dispatch model was adopted in electricity system and an hourly steady-state
gas flow model was adopted in the natural gas system [19]. Concurrently, the gas flow
upper limit is similar for the comparison.

This study illustrates the overall advantage obtained from the proposed framework
CO, as compared to the other usual methods for coordinated operation of natural gas and
electricity networks.

Table 3 shows that performance comparison between DO, alternating direction method
of multipliers (ADMM) and CO. It is observed that ADMM requires a longer time to obtain
a solution. The convergence time for DO and CO are nearly the same. However, DO
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cannot produce better solutions under congestions and demand response situations, so
CO gives the best overall performance. Due to the information asymmetry of the coupled
gas units in the discrete operation, the natural gas required by the gas units in the power
grid dispatching has no solution in the gas grid dispatching, that is, the dispatching is
unbalanced. The dispatching unbalance of the discrete operation in the table comes from G1,
and the specific reasons have been explained in the previous paper. In the operation cost of
the two networks, due to the reduction in power generation and gas supply, the operation
cost of discrete operation of the two networks is lower than that of other operation modes,
but the existence of dispatching imbalance requires the power grid to pay a higher price.
In terms of solution time, the optimization time of step-by-step collaborative operation
is 1.04s, which is larger than that of discrete operation and much smaller than that of
ADMM operation. The reason why the time difference is so large is that the optimization
times of each mode are different. The discrete operation mode solves the electric network
subproblem and the gas network subproblem once. The step-by-step cooperative operation
model solves the electric network subproblem once and the gas network subproblem twice.
When the synchronous ADMM runs for 129 iterations, the electric network subproblem
and the gas network subproblem are solved for 129 iterations, the asynchronous ADMM
only runs for 35 iterations. The solution of the gas network subproblem is the multi-layer
iterative sequential cone optimization method, as proposed in this paper.

Table 3. Performance comparison.

Methods DO ADMM Proposed
Framework (CO)

CPU time (s) 1.51 241.39 2.29
Gas shortage (kcf) 280.38 0 0

Load shedding (MW) 17.76 0 0
Power generation cost ($) 22,358.3 22,969.2 22,969.5

Load shedding cost ($) 1176 0 0
Total cost of electricity ($) 23,534.3 22,969.5 22,969.5
Gas network income ($) 15,781.9 17,794.9 17,794.9

Under the research background of the collaborative operation of the electricity-gas
interconnection system, this case shows the specific modes and advantages and disadvan-
tages of the discrete operation of the electricity-gas interconnection system, the coordinated
operation, based on the alternating direction multiplier method, and the proposed step-by-
step collaborative operation method. The following observations are obtained:

1. The discrete operation mode of the electricity-gas interconnection system will pro-
duce unbalanced coupling dispatch when the gas network is blocked, and the gas
generators cannot get enough natural gas supply, which does not meet the optimal
economic dispatch decision-making results.

2. Based on the alternating direction multiplier method, the coordinated scheduling
of the electricity-gas interconnection system can be realized. It can be divided into
asynchronous and synchronous cooperative operation modes with or without the
participation of third-party organizations. The above two modes can achieve coor-
dinated scheduling when gas network pipelines are blocked, that is, gas generating
units can get enough natural gas supply, and there will be no unbalanced coupling
scheduling due to asymmetric information.

3. This case proposes a new idea of realizing step-by-step coordinated operation, based
on credit indicators, and establishes a corresponding mathematical model and specific
operation framework. This operating mode belongs to the concept of distributed
scheduling. Through case analysis, the feasibility and superiority of the proposed
method are discussed, and the sensitivity analysis of credit changes is carried out.
Compared with other methods, the proposed method has the advantages of simplicity,
reliability, and strong applicability.
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5.2. Impact Due to Congestion and Demand Response

In this simulation, the impact due to congestion and demand response, with the same
fuel price for all units, is adopted for investigation. Load shedding is added to avoid
imbalance between load and generation. It is assumed that all NGFUs have an initial credit
rank of 0.5, the entire scheduling time is for four days, and an hour is taken as a time step.

The advantages of the proposed framework applied to daily scheduling for a few days
are illustrated with the following case studies:

Case 1: Decentralized and coordinated operation without natural gas pipelines congestion.
Case 2: Decentralized and coordinated operation with natural gas pipelines congestion.
Case 3: Decentralized and coordinated operation considering demand response (Based on
Case 2).

For Case 1, the natural gas supply capacity of the natural gas network to NGFUs is
redundant. Because the gas consumption of NGFUs in ENO optimal scheduling is feasible
for GNO, so the cost of ENO in DO is minimum and with no-load shedding.

The hourly cost, total cost of ENO, and hourly generation of G1 are shown in Figure 9.
It can be seen that DO hourly cost of the electricity network is less than CO for day 1, the
main reason is due to the CR parameter is introduced in CO and has an initial credit rank
of 0.5 at first day of optimization. CO has not reached the optimization. In Case 1, without
natural gas pipelines congestion, the gas consumption in ENO optimization scheduling is
feasible for GNO. Therefore, the cost of ENO in DO is the smallest. After updating the CR,
DO total cost of the electricity network is same as that of CO, the scheduling results of the
two coordinated operation methods are consistent.

Figure 9. Hourly and total cost of ENO, hourly generation of G1.

Table 4 shows the gap of the iteration process with various expansion points. SCP
with initial point achieved by the penalty function is denoted as penalty function (PF)
initial. Zero initial means SCP with zero initial points [56]. The gap of the proposed
method reduces greatly, and the accuracy will converge 5 iterations later. The zero-point
method will converge after 6 iterations. The proposed method has quicker convergence
characteristics, while the zero-point method convergence is slower [57].
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Table 4. Gap of iteration process with various expansion point.

Iteration 1 2 3 4 5 6

Gap-S
PF point 1385.308 2.707 0.652 0.366 0.048 N/A

Zero point 707557.820 471.389 365.477 205.691 0.300 0.038

Gap-Z
PF point 143.076 139.152 0.730 0.552 0.090 N/A

Zero point 305592.919 70906.237 48.071 15.128 164.559 0.067

Case 2: According to steady-state natural gas flow model, the gas flow in pipelines
depends on the first and last node pressure. To simplify the debugging process, we included
the gas flow upper limit on pipeline 1 and pipeline 4 in this case.

Pipeline congestion at hours 19–22 is a peak period for both electricity and gas net-
works in decentralized operation. Pipeline congestion creates the difference between
expected generation and actual generation of NGFUs in DO. Figure 10 shows the output of
gas-fired units with the optimal economic dispatch of the power grid and the discrete oper-
ation of the electricity-gas interconnection system. For the gas unit G1, under the condition
of economic dispatch, the output has been kept at full capacity, but when considering
the natural gas network constraints, in the discrete operation mode, due to the blockage
of pipeline 1 during the period 19–22, G1 cannot get enough gas supply. The output is
affected, and there is an imbalance in coupled scheduling. For gas-fired unit G3, in the
discrete operation mode, pipeline 3 was blocked during the period 19–21. G3 could not get
enough gas supply and there was also unbalanced coupling scheduling. This shows that in
the case of natural gas network constraints, once the gas network pipeline is blocked, it
will have a negative impact on the grid dispatching. The actual power generation is fewer
than the expected one in hour 19–22, and part of the load is not satisfied in DO, so load
shedding has to take place. CO total electricity cost is slightly higher than that in DO on
the first day, but there is no load shedding. Electricity operation cost will be minimum on
the next day in the proposed framework.

Figure 10. Electricity load profile without and with demand response.
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Case 3: The demand response program is considered, and the electricity load is shown
in Figure 10. There is increased load in the pipeline congestion period when DR becomes
effective. This will cause a more serious gas shortage of NGFUs, and insufficient generation
of electricity network as compared to Case 2. Table 5 provides gas shortage and load
shedding information with different operation modes. The unbalanced amount of coupled
dispatch increased due to the addition of demand response action. The reason is that, due
to the consideration of time-of-use electricity prices, electricity price-sensitive loads will be
adjusted according to changes in electricity prices, and electricity demand will increase
during the period when the gas network pipeline is blocked. This adjustment supply gap
is enlarged. As shown in Figure 11, due to the addition of price-based demand response
action, the power demand shifts from the peak period (14–19 h) to the valley period (3–6 h),
and the load in the valley period increases. The peak load is reduced, so the peak-valley
difference is reduced, and the effect of demand response is reflected. However, at 20–22 h,
because the demand response action increases the power demand, the load curve is larger
than the original curve, so the unbalanced amount of coupled dispatch increases. At 19 h,
due to the peak load period, regardless of whether demand response is considered or
not, G1 and G3 remain at full output. The impact of the gas network on scheduling does
not change due to demand response, so the unbalanced amount of coupled scheduling
remains unchanged.

Table 5. Gas shortage and load shedding in DO.

Case 2 Case 3

DO CO DO CO

Gas shortage of NGFUs (kcf) 428.3 0 728.8 0

Load shedding (MW) 29.7 0 46 0

Figure 11. Hourly generation and total cost of ENO.

Table 6 shows the total cost of the electricity network with different operation modes
in different cases. In DO pipeline congestion cases, the addition of a demand response
program not only promotes the reduction in costs but also increases profit. CO mode can
solve this problem with a great extent, not only minimizing the negative impact of DR, but
also reducing load shedding.
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Table 6. The total cost of the electricity network.

Decentralized Operation Coordinated Operation

Without DR With DR Without DR With DR

Without
pipelines

congestion
1708547.2 $ 1687651.1 $ 1708547.2 $ 1687645.0 $

Pipelines
congestion 1762052.3 $ 1770473.1 $ 1721257.2 $ 1700798.7 $

The work demonstrates that demand response can achieve benefits, for example,
to reduce congestion so as to improve energy supply security and enhance low-carbon
economy. The use of gas storage is no double can improve co-ordination with electricity
network operation. This gives a direction for future work to study the gas storage invest-
ment in detail. A similar approach derived from electrical energy storage (EES) may be
considered. At present, EES, such as lithium-ion (Li-ion) batteries, can reduce curtailment
of renewables, maximizing renewable utilization by storing surplus electricity. Several
techno-economic analyses have been performed on EES, but few have investigated the
financial performance. However, [58] presents a state-of-the-art financial model obtaining
novel and significative financial and economics results when applied to Li-ion EES. A
discounted cash flow model for the Li-ion EES is introduced and applied to examine the
financial performance of different EES operating scenarios. It is expected that similar
approaches could be investigated for investment purposes for gas storage [59,60]. It is
believed that co-ordination of electricity and gas networks could benefit the transition from
fossil fuel energy to clean energy with net-zero emission by 2050.

6. Conclusions and Future Work

This paper proposed an innovative coordinated operation framework for natural gas
and electricity networks to effectively solve the optimization problem of the operation of
integrated gas and electricity systems. The modeling approach developed is applied to
demonstrate the benefits of an integrated approach to the operation of interdependent gas
and electricity systems. In addition, the novel coordinated operation framework changes
the traditional decision sequence. GNO as an advance decision-maker provides NGFUs
gas consumption constraints to ENO. With this framework, it is possible to avoid frequent
information interaction and without a third coordinator. This framework will not affect
the local optimal scheduling for both the electricity network and the natural gas network.
The modeling indicates that, in pipeline congestion situations, this framework for CO
reduces the impact on the electricity network as compared to that of DO. At the same time,
it improves DR program acceptance of electricity networks and prevents massive load
shedding. The proposed framework can produce more cost-effective solutions as compared
to other methods, such as ADMM. It was demonstrated that CO with demand response
can reduce the electricity network total cost by 1.19% when pipeline congestion occurs, as
compared to −0.48% using traditional decentralized operation with demand response.

Future work will investigate the application of a coordinated operation framework
to a very large-scale, multi-area system with gas and electricity networks managed by
different operators. Sensitivity analysis of credit rank will also be studied in detail. The
credit rank will be further developed to form in the hope of a guideline or recommended
practices. Gas storage in the view of technical, economic, social, and environmental aspects
will be looked at.
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Nomenclature
Indices and Sets:
t Index of time periods
i Index of thermal units
b Index of buses
r Index of renewable energy
br Index of power transmission lines
j, l Index of buses in the electricity network
m, n Index of gas nodes
s Index of gas wells
mn Index of gas pipelines
gl Index of resident natural gas load
GU Set of NGFUs
NGU Set of non-NGFUs

Parameters:
NT Number of time periods
NB Number of thermal units
NR Number of renewable power generators
NP Number of gas pipelines
Ns Number of gas wells
NL Number of resident gas load
Pmin

i , Pmax
i Minimum and maximum output of unit i

URi, DRi Ramp up/down limits of unit i
Ton

i , To f f
i Minimum on/off time of unit i

αc, βc, γc Cost coefficient of non-NGFUs
αg, βg, γg Fuel coefficient of NGFUs
sui Startup cost coefficient of unit i
η Natural gas contract price of NGFUs.
PW

r,t Forecast of renewable energy r at hour t
p f max

br Maximum power flow of power transmission line br
xjk Reactance between bus j and k
Dini Initial electrical load
pini Initial electricity price
E Price-elastic matrix of electrical load
CSmin Minimum customer’s satisfaction
Cmn Weymouth constant of pipelines
Wmin

s , Wmax
s Minimum and maximum production of gas well s

τs Cost coefficient of gas well s
τgl Gas price of resident natural gas load
L Resident natural gas load
KP Bus-thermal unit incidence matrix
KW Bus-renewable unit incidence matrix
KD Bus-electrical load incidence matrix
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KL Bus-branch incidence matrix
Tw Node-gas well incidence matrix
Tg Node-NGFUs incidence matrix
Tl Node-resident natural gas load incidence matrix
T f Node-gas pipe incidence matrix
ϕ Pre-set constants

Variables:
Gc

i,t Cost of non-NGFU i at hour t
Gg

i,t Fuel consumption of NGFU i at hour t in electricity network
Pi,t Generation dispatch of unit i at hour t
Pr,t Generation dispatch of renewable energy r at hour t
SUi,t Startup cost of unit i at hour t
ui,t Status indicator of unit i at hour t
yi,t, zi,t Indicator for startup/ shutdown of unit i at hour t
Xon

i,t , Xo f f
i,t On/Off time of unit i at hour t

θ Bus voltage angle
p fbr Power flow on transmission line br
D Adjusted electrical load
∆Dt Variety in electrical load at hour t
∆pt Variety in electricity price at hour t
Ddev Deviation matrix of electrical load
pdev Deviation matrix of electricity price
CS Electricity customer’s satisfaction
Ws,t Production of gas well s at hour t
ωm,t Gas pressure of gas node m at hour t
πm,t Quadratic pressure of gas node m at hour t
Fmn,t Gas flow of pipeline mn at hour t
I+mn,t, I−mn,t Binary indicators of gas flow direction of pipeline mn at hour t
Π, S Auxiliary variable
λ0, λ1 Initial and updated credit value factor
CR0, CR1 Initial and updated credit rank
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