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Abstract: In this paper, we study a slotted-time system where a base station needs to update multiple
users at the same time. Due to the limited resources, only part of the users can be updated in each
time slot. We consider the problem of minimizing the Age of Incorrect Information (AoII) when
imperfect Channel State Information (CSI) is available. Leveraging the notion of the Markov Decision
Process (MDP), we obtain the structural properties of the optimal policy. By introducing a relaxed
version of the original problem, we develop the Whittle’s index policy under a simple condition.
However, indexability is required to ensure the existence of Whittle’s index. To avoid indexability,
we develop Indexed priority policy based on the optimal policy for the relaxed problem. Finally,
numerical results are laid out to showcase the application of the derived structural properties and
highlight the performance of the developed scheduling policies.

Keywords: age of incorrect information; multi-user system; scheduling policy

1. Introduction

The Age of Incorrect Information (AoII) is introduced in [1] as a combination of age-
based metrics (e.g., Age of Information (AoI)) and error-based metrics (e.g., Minimum
Mean Square Error). In communication systems, AoII captures not only the information
mismatch between the source and the destination but also the aging process of inconsistent
information. Hence, two functions dominate AoII. The first is the time penalty function,
which reflects how the inconsistency of information affects the system over time. In real-
life applications, inconsistent information will affect different communication systems in
different ways. For example, machine temperature monitoring is time-sensitive because
the damage caused by overheating will accumulate quickly. However, reservoir water
level monitoring is less sensitive to time. Therefore, by adopting different time penalty
functions, AoII can capture different aging processes of the mismatch in different systems.
The second is the information penalty function, which captures the information mismatch
between the source and the destination. It allows us to measure mismatches in different
ways, depending on how sensitive different systems are to information inconsistencies.
For example, the navigation system requires precise information to give correct instructions,
but the real-time delivery tracking system does not need very accurate location information.
Since we can choose different penalty functions for different systems, AoII is adaptable to
various communication goals, which is why it is regarded as a semantic metric [2].

Since the introduction of AoII, several studies have been performed to reveal its funda-
mental nature. The authors of [3] consider a system with random packet delivery times and
compare AoII with AoI and real-time error via extensive numerical results. The authors
of [4] study the problem of minimizing the AoII that takes the general time penalty function.
Three real-life applications are considered to showcase the performance advantages of AoII
over AoI and real-time error. In [5], the authors investigate the AoII that considers the
quantified mismatch between the source and the destination. The optimization problem
is studied when the system is resource-constrained. The authors of [6] studied the AoII

Entropy 2021, 23, 1572. https://doi.org/10.3390/e23121572 https://www.mdpi.com/journal/entropy1
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minimization problem in the context of scheduling. It considers a system where the central
scheduler needs to update multiple users at the same time. However, the central scheduler
cannot know the states of the sources before receiving the updates. By introducing the
belief value, Whittle’s index policy is developed and evaluated. In this paper, we also
consider the problem of minimizing AoII in scheduling. Different from [6], we consider
the generic time penalty function and study the minimization problem in the presence of
imperfect Channel State Information (CSI). Due to the existence of CSI, Whittle’s index
policy becomes infeasible in general. Hence, we introduce another scheduling policy that
is more versatile and has comparable performance to Whittle’s index policy.

The problem of scheduling to minimize AoI is studied under various system settings
in [7–11]. The problem studied in this paper is different and more complicated because
AoII considers the aging process of inconsistent information rather than the aging process
of updates. Meanwhile, none of them consider the case where CSI is available. The problem
of optimizing information freshness in the presence of CSI is studied in [12,13]. However,
they focus on the system with a single user and mainly discuss the case where CSI is perfect.
The scheduling problems with the goal of minimizing an error-based performance measure
are considered in [14–16]. Our problem is fundamentally different because AoII also
considers the time effect. Moreover, we consider the system where a base station observes
multiple sources simultaneously and needs to send updates to multiple destinations.

The main contributions of this work can be summarized as follows. (1) We study
the problem of minimizing AoII in a multi-user system where imperfect CSI is available.
Meanwhile, the time penalty function is generic. (2) We derive the structural properties
of the optimal policy for the considered problem. (3) We establish the indexability of the
considered problem under a simple condition and develop Whittle’s index policy. (4) We
obtain the optimal policy for a relaxed version of the original problem. By exploring the
characteristics of the relaxed problem, we provide an efficient algorithm to obtain the
optimal policy. (5) Based on the optimal policy for the relaxed problem, we develop the
Indexed priority policy that is free from indexability and has comparable performance to
Whittle’s index policy.

The remainder of this paper is organized in the following way. In Section 2, we introduce
the system model and formulate the primal problem. Section 3 explores the structural
properties of the optimal policy for the primal problem. Under a simple condition, we
develop Whittle’s index policy in Section 4. Section 5 presents the optimal policy for a
relaxed version of the primal problem. On this basis, we develop the Indexed priority
policy in Section 6. Finally, in Section 7, the numerical results are laid out.

2. System Overview

2.1. Communication Model

We consider a slotted-time system with N users and one base station. Each user is
composed of a source process, a channel, and a receiver. We assume all the users share
the same structure, but the parameters are different. The structure of the communication
model is provided in Figure 1.

Base
Station

Receiver1

Receiver2

ReceiverN

U
S
E
R
1

U
S
E
R
2

U
S
E
R
N

Source1

Source2

SourceN

Channel1

Channel2

ChannelN

Figure 1. The structure of the communication model.
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For user i, the source process is modeled by a two-state Markov chain where transitions
happen between the two states with probability pi > 0 and self-transitions happen with
probability 1 − pi. At any time slot t, the state of the source process Xi,t ∈ {0, 1} will
be reported to the base station as an update, and the base station will decide whether
to transmit this update through the corresponding channel. The channel is unreliable,
but the estimate of the Channel State Information (CSI) is available at the beginning of
each time slot. Let ri,t ∈ {0, 1} be the CSI at time t. We assume that ri,t is independent
across time and user indices. ri,t = 1 if and only if the transmission attempt at time t will
succeed and ri,t = 0 otherwise. Then, we denote by r̂i,t ∈ {0, 1} the estimate of ri,t. We
assume that r̂i,t is an independent Bernoulli random variable with parameter γi, i.e., r̂i,t = 1
with probability γi ∈ [0, 1] and r̂i,t = 0 with probability 1 − γi. However, the estimate
is imperfect. We assume that the error depends only on the user and its estimate. More
precisely, we define the probability of error as pr̂i

e,i � Pr[ri �= r̂i | r̂i]. We assume pr̂i
e,i < 0.5

because we can flip the estimate if pr̂i
e,i > 0.5. We are not interested in the case of pr̂i

e,i = 0.5
since r̂i,t is useless in this case. Although the channel is unreliable, each transmission
attempt takes exactly one time slot regardless of the result, and the successfully transmitted
update will not be corrupted. Every time an update is received, the receiver will use it as
the new estimate X̂i,t. The receiver will send an ACK/NACK packet to inform the base
station of its reception of the new update. Since an ACK/NACK packet is generally very
small and simple, we assume that it is transmitted reliably and received instantaneously.
Then, if ACK is received, the base station knows that the receiver’s estimate changed to
the transmitted update. If NACK is received, the base station knows that the receiver’s
estimate did not change. Therefore, the base station always knows the estimate at the
receiver side.

At the beginning of each time slot, the base station receives updates from each source
and the estimates of CSI from each channel. The old updates and estimates are discarded
upon the arrival of new ones. Then, the base station decides which updates to transmit,
and the decision is independent of the transmission history. Due to the limited resources,
at most M < N updates are allowed per transmission attempt. We consider a base station
that always transmits M updates.

2.2. Age of Incorrect Information

All the users adopt AoII as a performance metric, but the choices of penalty functions
vary. Let Xt and X̂t be the true state and the estimate of the source process, respectively.
Then, in a slotted-time system, AoII can be expressed as follows

ΔAoII(Xt, X̂t, t) =
t

∑
k=Ut+1

(
g(Xk, X̂k)× F(k − Ut)

)
, (1)

where Ut is the last time instance before time t (including t) that the receiver’s estimate
is correct. g(Xt, X̂t) can be any information penalty function that captures the difference
between Xt and X̂t. F(t) � f (t)− f (t− 1) where f (t) can be any time penalty function that
is non-decreasing in t. We consider the case where the users adopt the same information
penalty function g(Xt, X̂t) = |Xt − X̂t| but possibly different time penalty functions. To ease
the analysis, we require f (t) to be unbounded. Combined together, we require f (t1) ≤ f (t2)
if t1 < t2 and limt→+∞ f (t) = +∞. Without a loss of generality, we assume f (0) = 0, as the
source is modeled by a two-state Markov chain, g(Xt, X̂t) ∈ {0, 1}. Hence, Equation (1)
can be simplified to

ΔAoII(Xt, X̂t, t) =
t

∑
k=Ut+1

F(k − Ut) = f (st),

where st � t − Ut. Therefore, the evolution of st is sufficient to characterize the evolution
of AoII. To this end, we distinguish between the following cases.

3
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• When the receiver’s estimate is correct at time t + 1, we have Ut+1 = t + 1. Then,
by definition, st+1 = 0.

• When the receiver’s estimate is incorrect at time t + 1, we have Ut+1 = Ut. Then,
by definition, st+1 = t + 1 − Ut = st + 1.

To sum up, we get
(2)

A sample path of st is shown in Figure 2. In the remainder of this paper, we use fi(·) to
denote the time penalty function user i adopts.

0 1 2 3 4 5 6 7

1

2

3

X1 = 1

X̂1 = 1

X2 = 0

X̂2 = 1

X3 = 0

X̂3 = 0

X4 = 1

X̂4 = 0

X5 = 1

X̂5 = 0

X6 = 0

X̂6 = 1

X7 = 1

X̂7 = 1

t

st

Figure 2. A sample path of st.

Remark 1. Under this particular choice of the penalty function, st can be interpreted as the time
elapsed since the last time the receiver’s estimate is correct. Please note that st is different from
the Age of Information (AoI) [17], which is defined as the time elapsed since the generation time
of the last received update. We can see that AoI considers the aging process of the update, while
AoII considers the aging process of the estimation error. At the same time, st is also fundamentally
different from the holding time, which, according to [18,19], is defined as the time elapsed since the
last successful transmission. We notice that the receiver’s estimate can become correct even when
no new update is successfully transmitted. Moreover, the information carried by the update may
have become incorrect by the time it is received. We also notice that [18,19] consider the problem of
minimizing the estimation error. However, by adopting AoII as the performance metric, we study
the impact of estimation error on the system.

2.3. System Dynamic

In this section, we tackle the system dynamic. We notice that the status of user i can
be captured by the pair xi,t � (si,t, r̂i,t). In the following, we will use xi,t and (si,t, r̂i,t)
interchangeably. Then, the system dynamic can be fully characterized by the dynamic of
xt � (x1,t, . . . , xN,t). Hence, it suffices to characterize the value of xt+1 given xt and the
base station’s action. To this end, we denote, by at = (a1,t, . . . , aN,t), the base station’s
action at time t. ai,t = 1 if the base station transmits the update from user i at time t and
ai,t = 0 otherwise. We notice that given action at, users are independent and the action
taken on user i will only affect itself. Consequently

Pr(xt+1 | xt, at) =
N

∏
i=1

Pr(xi,t+1 | xi,t, at) =
N

∏
i=1

Pr(xi,t+1 | xi,t, ai,t).

Combined with the fact that all the users share the same structure, it is sufficient to study
the dynamic of a single user. In the following discussions, we drop the user-dependent
subscript i. We recall that r̂t+1 is an independent Bernoulli random variable. Then, we have

Pr(xt+1 | xt, at) = P(r̂t+1)× Pr(st+1 | xt, at). (3)

4
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By definition, P(r̂t+1 = 1) = γ and P(r̂t+1 = 0) = 1 − γ. Then, we only need to tackle the
value of Pr(st+1 | xt, at). To this end, we distinguish between the following cases

• When xt = (0, r̂t), the estimate at time t is correct (i.e., X̂t = Xt). Hence, for the
receiver, Xt carries no new information about the source process. In other words,
X̂t+1 = X̂t regardless of whether an update is transmitted at time t. We recall that
Ut+1 = Ut if X̂t+1 �= Xt+1 and Ut+1 = t + 1 otherwise. Since the source is binary, we
obtain Ut+1 = Ut if Xt+1 �= Xt, which happens with probability p and Ut+1 = t + 1
otherwise. According to (2), we obtain

Pr(1 | (0, r̂t), at) = p,

Pr(0 | (0, r̂t), at) = 1 − p.

• When at = 0 and xt = (st, r̂t), where st > 0, the channel will not be used and no new
update will be received by the receiver,and so, X̂t+1 = X̂t. We recall that Ut+1 = Ut if
X̂t+1 �= Xt+1 and Ut+1 = t + 1 otherwise. Since Xt �= X̂t and the source is binary, we
have Ut+1 = Ut if Xt+1 = Xt, which happens with probability 1 − p and Ut+1 = t + 1
otherwise. According to (2), we obtain

Pr(st + 1 | (st, r̂t), at = 0) = 1 − p,

Pr(0 | (st, r̂t), at = 0) = p.

• When at = 1 and xt = (st, 1) where st > 0, the transmission attempt will succeed
with probability 1 − p1

e and fail with probability p1
e . We recall that Ut+1 = Ut if

X̂t+1 �= Xt+1 and Ut+1 = t + 1 otherwise. Then, when the transmission attempt
succeeds (i.e., X̂t+1 = Xt), Ut+1 = Ut if Xt+1 �= Xt and Ut+1 = t + 1 otherwise. When
the transmission attempt fails (i.e., X̂t+1 = X̂t �= Xt), we have Ut+1 = Ut if Xt+1 = Xt
and Ut+1 = t + 1 otherwise. Combining (2) with the dynamic of the source process
we obtain

Pr(st + 1 | (st, 1), at = 1) = p1
e (1 − p) + (1 − p1

e )p � α,

Pr(0 | (st, 1), at = 1) = p1
e p + (1 − p1

e )(1 − p) = 1 − α.

• When at = 1 and xt = (st, 0), where st > 0, following the same line, we obtain

Pr(st + 1 | (st, 0), at = 1) = p0
e p + (1 − p0

e )(1 − p) � β,

Pr(0 | (st, 0), at = 1) = p0
e (1 − p) + (1 − p0

e )p = 1 − β.

Combines together, we obtain the value of Pr(st+1 | xt, at) in all cases. As only M out
of N updates are allowed per transmission attempt, we realize a necessity to require
transmission attempts always help minimize AoII. It is equivalent to impose Pr(st+1 >
st | (st, r̂t), at = 0) > Pr(st+1 > st | (st, r̂t), at = 1) for any (st, r̂t). Leveraging the results
above, it is sufficient to require p < 0.5. As all the users share the same structure, we
assume, for the rest of this paper, that 0 < pi < 0.5 for 1 ≤ i ≤ N.

2.4. Problem Formulation

The communication goal is to minimize the expected AoII. Therefore, the problem can
be formulated as the following

arg min
φ ∈ Φ

lim
T→∞

1
T
Eφ

(
T−1

∑
t=0

N

∑
i=1

fi(si,t)

)
(4a)

subject to
N

∑
i=1

ai,t = M ∀t, (4b)

5
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where Φ is the set of all causal policies. We refer to the constrained minimization problem
reported in problem (4) as the Primal Problem (PP). We notice that the PP is a Restless
Multi-Armed Bandit (RMAB) Problem. The optimal policy for this type of problem is far
from reachable since it is PSPACE-hard in general [20]. However, we can still derive the
structural properties of the optimal policy. These structural properties can be used as a
guide for the development of scheduling policies and can indicate the good performance
of the developed scheduling policies.

3. Structural Properties of the Optimal Policy

In this section, we investigate the structural properties of the optimal policy for PP.
We first define an infinite horizon with an average cost Markov Decision Process (MDP)
MN(w, M) = (XN ,AN(M),PN , CN(w)), where

• XN denotes the state space. The state is x = (x1, . . . , xN) where xi = (si, r̂i).
• AN(M) denotes the action space. The feasible action is a = (a1, . . . , aN) where

ai ∈ {0, 1} and ∑N
i=1 ai = M. Note that the feasible actions are independent of the

state and the time.
• PN denotes the state transition probabilities. We define Px,x′(a) as the probability that

action a at state x will lead to state x′. It is calculated by

Px,x′(a) =
N

∏
i=1

P(r̂′i)Psi ,s′i
(ai, r̂i),

where Psi ,s′i
(ai, r̂i) is the transition probability from si to s′i when the estimate of CSI

is r̂i and action ai is taken. The values of Psi ,s′i
(ai, r̂i) can be obtained easily from the

results in Section 2.3.
• CN(w) denotes the instant cost. When the system is at state x and action a is taken,

the instant cost is C(x, a) � ∑N
i=1 C(xi, ai) � ∑N

i=1
(

fi(si) + wai
)
.

We notice that PP can be cast into MN(0, M). Since w = 0, the instant cost is indepen-
dent of action a. Therefore, we abbreviate C(x, a) as C(x). To simplify the analysis, we
consider the case of M = 1. Equivalently, we investigate the structural properties of the
optimal policy for MN(0, 1).

Remark 2. For the case of M > 1, we can apply the same methodology. However, as M increases,
the action space will grow quickly, resulting in the need to consider more feasible actions in each
step of the proof. Hence, to better demonstrate the methodology, we only consider the case of M = 1
in this paper.

It is well known that the optimal policy for MN(0, 1) can be characterized by the
value function. We denote the value function of state x as V(x). A canonical procedure to
calculate V(x) is applying the Value Iteration Algorithm (VIA). To this end, we define Vν(·)
as the estimated value function at iteration ν of VIA and initialize V0(·) = 0. Then, VIA
updates the estimated value functions in the following way

Vν+1(x) = C(x)− θ + min
a∈AN(1)

{
∑

x′∈XN

Px,x′(a)Vν(x′)
}

, (5)

where θ is the optimal value of MN(0, 1). VIA is guaranteed to converge to the value
function [21]. More precisely, Vν(·) = V(·) when ν → +∞. However, the exact value
function is impossible to get since we need infinite iterations and the state space is infinite.
Instead, we provide two structural properties of the value function.

Lemma 1 (Monotonicity). For MN(0, 1), V(x) is non-decreasing in si for 1 ≤ i ≤ N.

6
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Proof. Leveraging the iterative nature of VIA, we use mathematical induction to prove the
desired results. The complete proof can be found in Appendix A.

Before introducing the next structural property, we make the following definition.

Definition 1 (Statistically identical). Two users are said to be statistically identical if the user-
dependent parameters and the adopted time penalty functions are the same.

For the users that are statistically identical, we can prove the following

Lemma 2 (Equivalence). For MN(0, 1), if users j and k are statistically identical, V(x) = V
(P(x)) where P(x) is state x with xj and xk exchanged.

Proof. Leveraging the iterative nature of VIA, we use mathematical induction to prove the
desired results. At each iteration, we show that for each feasible action at state x, we can
find an equivalent action at state P(x). Two actions are equivalent if they lead to the same
value function. The complete proof can be found in Appendix B.

Equipped with the above lemmas, we proceed with characterizing the structural
properties of the optimal policy. We recall that the optimal action at each state can be
characterized by the value function. Hence, we denote, by Vj(x), the value function
resulting from choosing user j to update at state x. Then, Vj(x) can be calculated by

Vj(x) = C(x)− θ + ∑
x′−x′j

⎧⎨⎩
(

∏
i �=j

Pxi ,x′i
(0)

)
∑
r̂′j

⎡⎣P(r̂′j)

⎛⎝∑
s′j

Psj ,s′j
(1, r̂j)V(x′)

⎞⎠⎤⎦⎫⎬⎭.

If Vj(x) < Vk(x) for all k �= j, it is optimal to transmit the update from user j. When
Vj(x) = Vk(x), the two choices are equally desirable. In the following, we will characterize
the properties of δj,k(x) � Vj(x)− Vk(x) for any j and k.

Theorem 1 (Structural properties). For MN(0, 1), δj,k(x) has the following properties

1. δj,k(x) ≤ 0 if r̂k = p0
e,k = 0. The equality holds when sj = 0 or r̂j = p0

e,j = 0.

2. δj,k(x) is non-increasing in r̂j and is non-decreasing in r̂k when sj, sk > 0. At the same time,
δj,k(x) is independent of r̂i for any i �= j, k.

3. δj,k(x) ≤ 0 if sk = 0. The equality holds when sj = 0 or r̂j = p0
e,j = 0.

4. δj,k(x) is non-increasing in sj if Γ
r̂j
j ≤ Γr̂k

k and is non-decreasing in sk if Γ
r̂j
j ≥ Γr̂k

k when

sj, sk > 0. We define Γ1
i � αi

1−pi
and Γ0

i � βi
1−pi

for 1 ≤ i ≤ N.

5. δj,k(x) ≤ 0 if sj ≥ sk, r̂j ≥ r̂k, and users j and k are statistically identical.

Proof. The proof can be found in Appendix C.

We notice that Γr̂i
i can be written as

Γr̂i
i =

Pr(si + 1 | (si, r̂i), ai = 1)
Pr(si + 1 | (si, r̂i), ai = 0)

< 1,

where si can be any positive integer. Consequently, Γr̂i
i is independent of any si > 0 and

indicates the decrease in the probability of increasing si caused by action ai = 1. When Γr̂i
i

is large, action ai = 1 will achieve a small decrease in the probability of increasing si. In the
following, we provide an intuitive interpretation of why the monotonicity in Property 4 of

Theorem 1 depends on Γr̂i
i . We take the case of Γ

r̂j
j ≤ Γr̂k

k as an example and assume that
there are only users j and k in the system. Then, according to Section 2.3, the dynamic of sj
and sk can be divided into the following three cases

7
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• Neither sj nor sk increases. In this case, both sj and sk become zero.
• Either sj or sk increases and the other becomes zero. We denote by Pk

j the probability
that only sk increases when aj = 1. The notation for other cases is defined analogously.
The probabilities can be obtained easily using the results in Section 2.3.

• Both sj and sk increase. We denote by Pj the probability that both sj and sk increase
when aj = 1. Pk is defined analogously. The probabilities can be obtained easily using
the results in Section 2.3.

We notice that δj,k(x) implies the tendency of the base station to choose between the
two users. The larger δj,k(x) is, the more the base station tends to choose user k. Thus, we
investigate the base station’s propensity to choose user k when sk increases but sj stays
the same. We ignore the case where the resulting sk is zero since it is independent of the
increase in sk. With this in mind, we first notice that Pk

k ≤ Pk
j . Meanwhile, we can easily

verify that
Pj
Pk

=
Γ

r̂j
j

Γ
r̂k
k

. When Γ
r̂j
j ≤ Γr̂k

k , we have Pj ≤ Pk. Then, there exists a subtle trade-off.

More precisely, choosing user k will result in Pk
k ≤ Pk

j , but at the cost of Pk ≥ Pj. Hence,
in this case, the propensity of the base station is hard to determine. Following the same
line, we can show that choosing user j will lead to Pj

j ≤ Pj
k and Pj ≤ Pk. Thus, there exists

no such trade-off when we investigate the base station’s propensity to choose user j as sj
increases but sk stays the same.

Leveraging Theorem 1, we can provide some specific structural properties of the
optimal policy.

Corollary 1 (Application of Theorem 1). When M = 1, the optimal policy for PP must satisfy
the following

1. The user i with r̂i = p0
e,i = 0 or si = 0 will not be chosen unless it is to break the tie.

2. When user j is chosen at state x1, then for state x2, such that r̂1,j ≤ r̂2,j and s1,i = s2,i for
1 ≤ i ≤ N, the optimal choice must be in the set G = {j} ∪ {k : r̂1,k < r̂2,k}.

3. When N = 2, we consider two states, x1 and x2, which differ only in the value of sj.

Specifically, s1,j ≤ s2,j. If user j is chosen at state x1 and Γ
r̂1,j
j ≤ Γr̂1,k

k , the optimal choice at
state x2 will also be user j.

4. When N = 2, we consider two states, x1 and x2, which differ only in the value of sk.

Specifically, s1,k ≥ s2,k. If user j is chosen at state x1 and Γ
r̂1,j
j ≥ Γr̂1,k

k , the optimal choice at
state x2 will also be user j.

5. When all users are statistically identical, the optimal choice at any time slot must be either
the user with x = (smax,1, 1) where smax,1 � maxsi{(si, 1)} or the user with x = (smax,0, 0)
where smax,0 � maxsi{(si, 0)}. Moreover,

• If smax,1 ≥ smax,0, it is optimal to choose the user with x = (smax,1, 1).
• If smax,1 < smax,0, the optimal choice will switch from the user with x = (smax,0, 0) to

the user with x = (smax,1, 1) when smax,1 increases from 0 to smax,0 solely.

Proof. The first property follows directly from Property 1 and Property 3 of Theorem 1.
For the second property, leveraging Property 2 of Theorem 1, we have δj,k(x2) ≤ δj,k(x1) ≤
0 if r̂1,j ≤ r̂2,j, r̂1,k ≥ r̂2,k, and s1,i = s2,i for 1 ≤ i ≤ N. Thus, the optimal choice will not
be user k in this case. Then, we can conclude that the optimal choice must be in the set
G = {j} ∪ {k : r̂1,k < r̂2,k}.

For the third property, we have proved in Property 4 of Theorem 1 that δj,k(x) is

non-increasing in sj if Γ
r̂j
j ≤ Γr̂k

k . Hence, δj,k(x2) ≤ δj,k(x1) ≤ 0. As we consider the case of
N = 2, the optimal choice at state x2 will also be user j. The fourth property can be shown

in a similar way by noticing that δj,k(x) is non-decreasing in sk when Γ
r̂j
j ≥ Γr̂k

k .
For the last property, we recall from Property 5 of Theorem 1 that it is always better to

choose the user with a larger s if they are statistically identical and have the same r̂. Thus,

8
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we can conclude that the optimal choice must be either the user with x = (smax,1, 1) or
the user with x = (smax,0, 0). Without a loss of generality, we assume xj = (smax,1, 1) and
xk = (smax,0, 0). Now, we distinguish between the following cases

• According to Property 5 of Theorem 1, we can conclude that it is optimal to choose
user j when smax,1 ≥ smax,0.

• To determine the optimal choice in the case of smax,1 < smax,0, we recall that the optimal
choice will be user k (i.e., δj,k(x) ≥ 0) if sj = 0 and will be user j (i.e., δj,k(x) ≤ 0) if
sj = sk. At the same time, Property 4 of Theorem 1 tells us that δj,k(x) is non-increasing
in sj when users j and k are statistically identical. Therefore, we can conclude that the
optimal choice will switch from user k to user j when sj increases from 0 to sk solely.

4. Whittle’s Index Policy

Whittle’s index policy is a well-known low-complexity heuristic that shows a strong
performance in many problems that belong to RMAB [22–24]. In this section, we develop
Whittle’s index policy for PP. We first present the general procedures we adopt to obtain
Whittle’s index.

• We first formulate a relaxed version of PP and apply the Lagrangian approach.
• Then, we decouple the problem of minimizing the Lagrangian function into N decou-

pled problems, each of which only considers a single user. By casting the decoupled
problem into an MDP, we investigate the structural properties and performance of the
optimal policy.

• Leveraging the results above and under a simple condition, we establish the indexa-
bility of the decoupled problem.

• Finally, we obtain the expression of Whittle’s index by solving the Bellman equation.

4.1. Relaxed Problem

The first step in obtaining Whittle’s index is to formulate the Relaxed Problem (RP).
More precisely, instead of requiring the limit on the number of updates allowed per
transmission attempt to be met in each time slot, we relax the constraint such that the limit
is not violated in an average sense. Then, RP can be formulated as

arg min
φ ∈ Φ

Δ̄φ � lim
T→∞

1
T
Eφ

(
T−1

∑
t=0

N

∑
i=1

fi(si,t)

)
(6a)

subject to ρ̄φ � lim
T→∞

1
T
Eφ

(
T−1

∑
t=0

N

∑
i=1

ai,t

)
≤ M. (6b)

As RP is specified, we apply the Lagrangian approach. First of all, we write RP into its
Lagrangian form.

L(λ, φ) = lim
T→∞

1
T
Eφ

(
T−1

∑
t=0

N

∑
i=1

( fi(si,t) + λai,t)

)
− λM,

where λ ≥ 0 is the Lagrange multiplier. Then, we investigate the problem of minimizing
the Lagrangian function. Since λM is independent of policies, we can ignore it. More
precisely, we consider the following minimization problem

minimize
φ ∈ Φ

lim
T→∞

1
T
Eφ

(
T−1

∑
t=0

N

∑
i=1

( fi(si,t) + λai,t)

)
. (7)

4.2. Decoupled Model

In this section, we formulate the decoupled problem and investigate its optimal policy.
The decoupled model associated with each user follows the system model with N = 1.

9
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Since all the users share the same structure, we drop the user-dependent subscript i for
simplicity. Then, the decoupled problem can be formulated as

minimize
φ ∈ Φ′ lim

T→∞

1
T
Eφ

(
T−1

∑
t=0

( f (st) + λat)

)
, (8)

where Φ′ is the set of all causal policies when N = 1. We notice that problem (8) can be cast
into the MDP M1(λ,−1). We define M = −1 when there is no restriction on the number
of updates allowed per transmission attempt.

We first investigate the structural properties of the optimal policy for M1(λ,−1) when
λ is a given non-negative constant. We start with characterizing the corresponding value
function V(x).

Corollary 2 (Extension of Lemma 1). For M1(λ,−1), V(x) is non-decreasing in s.

Proof. The proof follows the same steps as in the proof of Lemma 1. The complete proof
can be found in Appendix D.

Equipped with the above corollary, we can characterize the structural properties of
the optimal policy for (8).

Proposition 1 (Optimal policy for decoupled problem). The optimal policy for the decoupled
problem is a threshold policy with the following properties.

• The optimal policy can be fully captured by n = (n0, n1). More precisely, when the system is
at state (s, r̂), it is optimal to make a transmission attempt only when s ≥ nr̂.

• n0 ≥ n1 > 0.

Proof. We define ΔV(x) � V1(x)− V0(x), where Va(x) is the value function resulting
from taking action a at state x. Then, the optimal action at state x is a = 1 if ΔV(x) < 0,
and a = 0 is optimal otherwise. We use Corollary 2 to characterize the sign of ΔV(x).
The complete proof can be found in Appendix E.

In the following, we evaluate the performance of the threshold policy detailed in
Proposition 1. More precisely, we calculate the expected AoII Δ̄n and the expected transmis-
sion rate ρ̄n resulting from the adoption of threshold policy n. We will see in the following
that Δ̄n and ρ̄n are essential for establishing the indexability and obtaining the expression
of Whittle’s index.

Proposition 2 (Performance). Under threshold policy n = (n0, n1),

Δ̄n = π0 p

[
n1−1

∑
k=1

f (k)(1 − p)k−1 + (1 − p)n1−1

(
n0−1

∑
k=n1

f (k)ck−n1
1 + cn0−n1

1

+∞

∑
k=n0

f (k)ck−n0
2

)]
,

ρ̄n = π0 p(1 − p)n1−1
[

γ

1 − c1
+ cn0−n1

1

(
1

1 − c2
− γ

1 − c1

)]
,

where
π0 =

1

2 + p(1 − p)n1−1
[

1
1 − c1

− 1
p
+ cn0−n1

1

(
1

1 − c2
− 1

1 − c1

)] ,

c1 = (1 − γ)(1 − p) + γα, and c2 = (1 − γ)β + γα.

Proof. We notice that the dynamic of AoII under the threshold policy can be fully captured
by a Discrete-Time Markov Chain (DTMC). Then, combined with the fact that r̂ is an inde-
pendent Bernoulli random variable, we can obtain the desired results from the stationary
distribution of the induced DTMC. The complete proof can be found in Appendix F.
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As f (·) can be any non-decreasing function, Δ̄ can grow indefinitely. Thus, it is
necessary to require that there exists at least one threshold policy that causes a finite Δ̄.
By noting that 1 − p ≥ c1 ≥ c2, we have

Δ̄ ≥ π0 p

[
n1−1

∑
k=1

f (k)ck−1
2 + cn1−1

2

(
n0−1

∑
k=n1

f (k)ck−n1
2 + cn0−n1

2

+∞

∑
k=n0

f (k)ck−n0
2

)]

= π0 p

(
+∞

∑
k=1

f (k)ck−1
2

)
.

The equality is achieved when n0 = n1 = 1. Then, we can conclude that it is sufficient to
require ∑+∞

k=1 f (k)ck−1
2 < +∞. This will be the underlying assumption throughout the rest

of this paper.

4.3. Indexability

In this section, we establish the indexability of the decoupled problem, which ensures
the existence of Whittle’s index. We start with the definition of indexability.

Definition 2 (Indexability). The decoupled problem is indexable if the set of states in which a = 0
is the optimal action increases with λ, that is,

λ′ < λ =⇒ D(λ′) ⊆ D(λ),

where D(λ) is the set of states in which a = 0 is optimal when Lagrange multiplier λ is adopted.

The Lagrange multiplier λ can be viewed as a cost associated with each transmission
attempt. Intuitively, as λ increases, the base station should stay idle (i.e., a = 0) for a longer
time until s becomes large enough to offset the cost. Although it is intuitively correct that
the decoupled problem is indexable, the indexability is hard to establish as the optimal
policy is characterized by two thresholds. Thus, Whittle’s index does not necessarily exist.
However, the indexability can be established when the following condition is satisfied

p0
e,i = 0 f or 1 ≤ i ≤ N. (9)

Remark 3. Problem (9) only requires the estimate r̂i to be perfect when r̂i = 0. In the case of
r̂i = 1, we still allow the estimate to be inaccurate.

When (9) is satisfied, Propositions 1 and 2 reduce to the following

Corollary 3 (Consequences of (9)). When (9) is satisfied, the optimal policy for the decoupled
problem (8) is the threshold policy n = (+∞, n). The corresponding Δ̄n and ρ̄n are

Δ̄n = π0 p

(
n−1

∑
k=1

f (k)(1 − p)k−1 + (1 − p)n−1
+∞

∑
k=n

f (k)ck−n
1

)
,

ρ̄n = π0 p(1 − p)n−1
(

γ

1 − c1

)
,

where
π0 =

1

2 + p(1 − p)n−1
(

1
1 − c1

− 1
p

) .

Proof. We continue with the same notations as in the proof of Propositions 1 and 2. It is
sufficient to show that n0 = +∞. To this end, we consider the state x = (s, 0). By following
the same steps as in the proof of Proposition 1, we have

11
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ΔV(s, 0) = λ ≥ 0.

Therefore, it is optimal to stay idle (i.e., a = 0) at state x = (s, 0) for any s ≥ 0. Equivalently,
n0 = +∞. Then, the corresponding Δ̄n and ρ̄n can be calculated as a special case of
Proposition 2 where n0 = +∞, n1 = n, and p0

e = 0.

Leveraging Corollary 3, we can establish the indexability of the decoupled problem.

Proposition 3 (Indexability of decoupled problem). The decoupled problem is indexable when
(9) is satisfied.

Proof. According to Proposition 2.2 of [25], we only need to verify that the expected
transmission rate ρ̄n is strictly decreasing in n. From Corollary 3, we have

ρ̄n =

γ

(
p

1 − c1

)
2

(1 − p)n−1 +

(
p

1 − c1
− 1

) .

As 1
2 < 1 − p < 1, we can easily verify that ρ̄n is strictly decreasing in n. Thus, the decou-

pled problem is indexable when (9) is satisfied.

4.4. Whittle’s Index Policy

In this section, we proceed with finding the expression of Whittle’s index and defining
Whittle’s index policy. First of all, we give the definition of Whittle’s index.

Definition 3 (Whittle’s index). When the decoupled problem is indexable, Whittle’s index at state
x is defined as the infimum λ, such that both actions are equally desirable. Equivalently, Whittle’s
index at state x is defined as the infimum λ such that V0(x) = V1(x).

Let us denote by Wx the Whittle’s index at state x. Then, the expression of Whittle’s
index is given by the following Proposition.

Proposition 4 (Whittle’s index). When (9) is satisfied, Whittle’s index is

Wx =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 when x = (0, r̂) or x = (s, 0),

(1 − c1)
+∞

∑
k=s+1

f (k)ck−s−1
1 − Δ̄s

(1 − c1)(1 − p)− γ(1 − p − α)

c1(1 − p − α)
+ ρ̄s

when x = (s, 1),

where s > 0 and c1 = (1 − γ)(1 − p) + γα. Δ̄s and ρ̄s are the expected AoII and the expected
transmission rate when threshold policy n = (+∞, s) is adopted, respectively. At the same time,
Wx is non-negative and is non-decreasing in s.

Proof. Whittle’s indexes at state x = (0, r̂) and x = (s, 0) are obtained easily from the
proof of Proposition 1. For state x = (s, 1), we first use backward induction to calculate
the expressions of some value functions. Then, the expression of Whittle’s index can be
obtained from its definition. The complete proof can be found in Appendix G.

Definition 4 (Whittle’s index policy). At any state x = (x1, x2, . . . , xN), the base station will
transmit the updates from M users with the largest Wxi . The ties are broken arbitrarily. Wxi is
calculated using Proposition 4 with the parameters of user i.

Remark 4. Whittle’s index policy possesses the structural properties detailed in Corollary 1.
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• The first two properties can be verified by noting that Wxi ≥ 0 and the equality holds when
r̂i = 0 or si = 0. At the same time, Wxi is non-decreasing in r̂i.

• The third and fourth properties can be verified by noting that Wxi is non-decreasing in si.
• For the last property, we first notice that Wxj = Wxk when users j and k are statistically

identical and xj = xk. Then, the property can be verified by noting that Wxi is non-decreasing
in both si and r̂i.

5. Optimal Policy for Relaxed Problem

In this section, we provide an efficient algorithm to obtain the optimal policy for RP,
based on which we will develop another scheduling policy for PP in the next section that
is free from indexability. At the same time, the performance of the optimal policy for RP
forms a universal lower bound because the following ordering holds

Δ̄RP
AoII ≤ Δ̄PP

AoII ,

where Δ̄RP
AoII and Δ̄PP

AoII are the minimal expected AoII of RP and PP, respectively.

Remark 5. Note that the optimal policy for RP may not necessarily be a valid policy for PP,
as the transmitter may transmit more than M updates in one transmission attempt under RP-
optimal policy.

To solve RP, we follow the discussion in Section 4.1. More precisely, we take the
Lagrangian approach and consider the problem reported in (7). We will see in the following
discussion that the optimal policy for RP can be characterized by the optimal policies for
problem (7). Therefore, we first cast problem (7) into the MDP MN(λ,−1). However,
the optimal policy for MN(λ,−1) is difficult to obtain because the state space is infinite.
Even though we can make the state space finite by imposing an upper limit on the value
of s, the state space and the action space grow exponentially with the number of users in
the system. To overcome the difficulty, we investigate the optimal policy for Mi

1(λ,−1)
where 1 ≤ i ≤ N. The superscript i means that the only user in the system is user i. We
will show later that the optimal policy for MN(λ,−1) can be fully characterized by the
optimal policies for Mi

1(λ,−1) where 1 ≤ i ≤ N.

5.1. Optimal Policy for Single User

In this section, we tackle the problem of finding the optimal policy for Mi
1(λ,−1).

Since the users share the same structure, we ignore the superscript i for simplicity. To find
the optimal policy, we first use the Approximating Sequence Method (ASM) introduced
in [26] to make the state space finite. More precisely, we impose s ≤ m where m is a
predetermined upper limit. The state transition probabilities P′

s,s′(a, r̂) are modified in the
following way

P′
s,s′(a, r̂) =

{
Ps,s′(a, r̂) i f s′ < m,
Ps,s′(a, r̂) + ∑z>m Ps,z(a, r̂) i f s′ = m.

(10)

The action space and the instant cost remain unchanged. Then, we can apply Relative
Value Iteration (RVI) with convergence criteria ε to obtain the optimal policy. We notice
that M1(λ,−1) coincides with the decoupled model studied in Section 4.2. Hence, we can
utilize the threshold structure of the optimal policy to improve RVI. To this end, we class
a state as active if the optimal action at this state is a = 1. Then, the threshold structure
detailed in Proposition 1 tells us the following. For any state x, if there exists an active state
x1 with s1 ≤ s and r̂1 ≤ r̂, then x must also be active. Hence, we can determine the optimal
action at state x immediately instead of comparing all feasible actions. In this way, we can
reduce the running time of RVI. The pseudocode for the improved RVI can be found in
Algorithm A1 of Appendix M. A similar technique is also presented in [5].
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For M1(λ,−1), when problem (9) is satisfied, Whittle’s index exists and can be
calculated efficiently using Proposition 4. Therefore, we can obtain the optimal policy using
Whittle’s index and further reduce the computational complexity. To this end, we denote
by nλ the optimal policy for M1(λ,−1) and present the following proposition

Proposition 5 (Optimal deterministic policy). When (9) is satisfied, the optimal policy for
M1(λ,−1) is nλ = (+∞, n) where n is given by

n =

{
1 i f λ = 0,
max{s ∈ N0 : Ws ≤ λ}+ 1 i f λ > 0.

Ws is the Whittle’s index at state (s, 1).

Proof. We first notice that M1(λ,−1) coincides with the decoupled model studied in
Section 4.2. Then, we show the optimal action for each state with r̂ = 1 using the definition
of Whittle’s index and the fact that the decoupled problem is indexable when (9) is satisfied.
The complete proof can be found in Appendix H.

In the following, we provide a randomized policy that is also optimal for M1(λ,−1).
We will see later that the randomized policy is the key to obtaining the optimal policy
for RP.

Theorem 2 (Optimal randomized policy). There exist two deterministic policies nλ+ and nλ− ,
which are both optimal for M1(λ,−1). We consider the following randomized policy nλ: every time
the system reaches state (0, 0), the base station will make the choice between nλ− with probability
μ and nλ+ with probability 1 − μ. The chosen policy will be followed until the next choice. Then,
the randomized policy nλ is optimal for M1(λ,−1) under any μ ∈ [0, 1].

Proof. We show that our system verifies the assumptions given in [27]. Then, leveraging
the characteristics of our system, we can obtain the optimal randomized policy. The com-
plete proof can be found in Appendix I.

In practice, we approximate λ+ ≈ λ + ξ and λ− ≈ λ − ξ where ξ is a small pertur-
bation. Then, the deterministic policies nλ+ and nλ− can be obtained by following the
discussion at the beginning of this subsection. Note that, in most cases, nλ+ and nλ− are
the same.

5.2. Optimal Policy for RP

In this section, we characterize the optimal policy for RP. Let us denote by V(x) and
Vi(xi) the value functions of MN(λ,−1) and Mi

1(λ,−1), respectively. Then, we can prove
the following

Proposition 6 (Separability). V(x) = ∑N
i=1 Vi(xi) where x = (x1, . . . , xN). In other words,

the policy, under which each user adopts its own optimal policy, is optimal for MN(λ,−1).

Proof. We show V(x) = ∑N
i=1 Vi(xi) by comparing the Bellman equations they must satisfy.

The complete proof can be found in Appendix J.

We denote the optimal policy for MN(λ,−1) as φλ = [nλ,1, . . . , nλ,N ] where nλ,i is the
optimal policy for Mi

1(λ,−1). For simplicity, we define Δ̄(λ) and ρ̄(λ) as the expected
AoII and the expected transmission rate associated with φλ, respectively. Δ̄i(λ) and ρ̄i(λ)
are defined analogously for user i under policy nλ,i. We also define λ∗ � inf{λ > 0 :
ρ̄(λ) ≤ M}. With Proposition 6 and the above definitions in mind, we proceed with
constructing the optimal policy for RP.
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Theorem 3 (Optimal policy for RP). The optimal policy for RP can be characterized by two
deterministic policies φλ∗

+
= [nλ∗

+ ,1, . . . , nλ∗
+ ,N ] and φλ∗− = [nλ∗− ,1, . . . , nλ∗− ,N ] where nλ∗

+ ,i and
nλ∗− ,i are both the optimal deterministic policies for Mi

1(λ
∗,−1). Then, we mix φλ∗

+
and φλ∗− in

the following way: for each user i, every time the user reaches state (0, 0), the base station will make
the choice between nλ∗− ,i with probability μi and nλ∗

+ ,i with probability 1 − μi. The chosen policy
will be followed by user i until the next choice. Where 1 ≤ i ≤ N, the μi is chosen in such a way as
to satisfy

N

∑
i=1

ρ̄i(λ∗) =
N

∑
i=1

(
μi ρ̄

i(λ∗−) + (1 − μi)ρ̄
i(λ∗

+)

)
= M. (11)

Then, the mixed policy, denoted by φλ∗ , is optimal for RP.

Proof. According to Lemma 3.10 of [27], a policy is optimal for RP if

1. It is optimal for MN(λ
∗,−1);

2. The resulting expected transmission rate is equal to M.

Then, we construct such a policy using Theorem 2 and Proposition 6. The complete proof
can be found in Appendix K.

Since we approximate λ∗
+ ≈ λ∗ + ξ and λ∗− ≈ λ∗ − ξ in practice, ρ̄i(λ∗

+) ≤ ρ̄i(λ∗−)
for all i according to the monotonicity given by Lemma 3.4 of [27]. Combining with the
definition of λ∗, we must have ρ̄(λ∗

+) ≤ M < ρ̄(λ∗−). Therefore, we can always find μi’s
that realize (11). In this paper, we choose

μi = μ =
M − ρ̄(λ∗

+)

ρ̄(λ∗−)− ρ̄(λ∗
+)

, f or 1 ≤ i ≤ N. (12)

Then, we describe the algorithm used to obtain the optimal policy for RP. As detailed
in Theorem 3, it is essential to find λ∗. To this end, we recall that, for any user i under given
λ, the optimal deterministic policy nλ,i can be obtained using the results in Section 5.1
and the resulting expected transmission rate ρ̄i(λ) is given by Proposition 2. Since ρ̄i(λ)
is non-increasing in λ for all i according to Lemma 3.4 of [27], ρ̄(λ) = ∑N

i=1 ρ̄i(λ) is also
non-increasing in λ. Hence, we can regard ρ̄(λ) as a non-increasing function of λ. Then,
according to the definition of λ∗, we can use the Bisection search to obtain λ∗ efficiently.
The main steps can be summarized as follows.

1. Initialize λ− = 0 and λ+ = 1.
2. Do λ− = λ+ and λ+ = 2λ+ until ρ̄(λ+) < M.
3. Run Bisection search on the interval [λ−, λ+] until the tolerance 2ξ is met.

Then, λ∗− and λ∗
+ can simply be the boundaries of the final interval. The pseudocode for

the Bisection search can be found in Algorithm A2 of Appendix M. After obtaining λ∗− and
λ∗
+, the optimal policy φλ∗ is detailed in Theorem 3 and the mixing probabilities μi’s are

given by (12).

Remark 6. We recall that the optimal deterministic policy for each user can be characterized by
two positive thresholds (i.e., n0, n1 > 0). Consequently, under RP-optimal policy, the base station
will never choose the user at state (0, r̂). Then, when M increases, the expected transmission rate
achieved by RP-optimal policy will saturate before M reaches N. When the expected transmission
rate saturates, the RP-optimal policy is φ∗ = [n1, . . . , nN ] where ni = (1, 1) for 1 ≤ i ≤ N.
The saturation happens when M is larger than or equal to the expected transmission rate achieved
by φ∗.

6. Indexed Priority Policy

Although the performance of Whittle’s index policy is known to be good, it requires
indexability, which is usually difficult to establish. In this section, based on the primal-
dual heuristic introduced in [28], we develop a policy that does not require indexability
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and has comparable performance to Whittle’s index policy. We start with presenting the
primal-dual heuristic.

6.1. Primal-Dual Heuristic

The heuristic is based on the optimal primal and dual solution pair to the linear
program associated with RP. To introduce the linear program, we define π

ai
xi (φ) ≥ 0 as the

expected time that user i is at state xi and action ai is taken according to policy φ. Then,
for any φ, π

ai
xi (φ) must satisfy the following problems

π0
xi
(φ) + π1

xi
(φ) = ∑

x′i
∑
a′i

Px′i ,xi
(a′i)π

a′i
x′i
(φ), ∀xi, i.

∑
xi

∑
ai

π
ai
xi (φ) = 1, ∀i.

The objective function of RP can be rewritten as

minimize
φ ∈ Φ

N

∑
i=1

∑
xi ,ai

C(xi)π
ai
xi (φ),

where C(xi) = fi(si) is the instant cost at state xi. The constraint on the expected transmis-
sion rate can be rewritten as

N

∑
i=1

∑
xi

π1
xi
(φ) ≤ M.

Thus, the linear program associated with RP can be formulated as the following

minimize
π

ai
xi

N

∑
i=1

∑
xi ,ai

C(xi)π
ai
xi (13a)

subject to π0
xi
+ π1

xi
− ∑

x′i
∑
a′i

Px′i ,xi
(a′i)π

a′i
x′i
= 0, ∀xi, i, (13b)

∑
xi

∑
ai

π
ai
xi = 1, ∀i, (13c)

N

∑
i=1

∑
xi

π1
xi
≤ M, (13d)

π
ai
xi ≥ 0, ∀xi, ai, i. (13e)

The corresponding dual problem is

maximize
σ, σi, σxi

N

∑
i=1

σi − Mσ (14a)

subject to σxi + σi − ∑
x′i

Pxi ,x′i
(0)σx′i

≤ C(xi), ∀xi, i, (14b)

σxi + σi − ∑
x′i

Pxi ,x′i
(1)σx′i

− σ ≤ C(xi), ∀xi, i, (14c)

σ ≥ 0. (14d)

Let {π̄
ai
xi} and {σ̄, σ̄i, σ̄xi} be the optimal primal and dual solution pair to the problems

reported in (13) and (14). We define

ψ̄0
xi
= ∑

x′i

Pxi ,x′i
(0)σ̄x′i

+ C(xi)− σ̄i − σ̄xi ≥ 0,

ψ̄1
xi
= ∑

x′i

Pxi ,x′i
(1)σ̄x′i

+ σ̄ + C(xi)− σ̄i − σ̄xi ≥ 0.
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For any state x = (x1, . . . , xN), let h(x) = ∑N
i=1 {π̄1

xi>0}. Then, the heuristic operates in the

following way

• If h(x) ≥ M, the base station will choose the M users with the largest ψ̄0
xi

among the
h(x) users.

• If h(x) < M, these h(x) users are chosen by the base station. The base station will
choose M − h(x) additional users with the smallest ψ̄1

xi
.

However, Linear Programming (LP) is a very general technique and does not appear
to take advantage of the special structure of the problem. Although there are algorithms for
solving rational LP that take time polynomial in the number of variables and constraints,
they run extremely slowly in practice [29]. For our problem, we notice that the users have
separate activity areas that are linked through a common resource constraint. Therefore,
the primal problem can be solved using Dantzig-Wolfe decomposition. Even so, the prob-
lem is still computationally demanding when the system scales up. We recall that we
solved the exact problem efficiently using MDP-specific algorithms in Section 5. It is more
efficient because of the following reasons

• According to Proposition 6, we can decompose the problem into N subproblems.
• For each subproblem, the threshold structure of the optimal policy is utilized to reduce

the running time of RVI.
• As we will see later, the developed policy can be obtained directly from the result of

RVI in practice.

In the following, we will translate the results in Section 5 into the optimal primal and dual
solution pair and propose Indexed priority policy.

6.2. Indexed Priority Policy

We first define the Lagrangian function associated with (13).

L(πai
xi , σ, σi, σxi , ψ

ai
xi ) =

( N

∑
i=1

∑
xi ,ai

C(xi)π
ai
xi

)
+ ∑

i,xi

σxi

(
∑
x′i

∑
a′i

Px′i ,xi
(a′i)π

a′i
x′i
− π0

xi
− π1

xi

)
+

N

∑
i=1

σi

(
1 − ∑

xi

∑
ai

π
ai
xi

)
+ σ

( N

∑
i=1

∑
xi

π1
xi
− M

)
− ∑

i,xi ,ai

ψ
ai
xi π

ai
xi .

Then, the corresponding Lagrangian dual function is

g(σ, σi, σxi , ψ
ai
xi ) = inf

π
ai
xi

L(πai
xi , σ, σi, σxi , ψ

ai
xi ).

Let πxi be the expected time that user i is at state xi caused by the adoption of φλ∗ , where
φλ∗ is the optimal policy detailed in Theorem 3. Then, we define {π

ai
xi} as follows

• State xi is where randomization happens (randomization happens when the actions
suggested by the two optimal deterministic policies are different), and it has a value
of π0

xi
= anλ∗− ,i

(xi)(1 − μi)πxi + anλ∗+ ,i
(xi)μiπxi and π1

xi
= πxi − π0

xi
where μi is given

by (12) and anλ,i (xi) is the action suggested by nλ,i at state xi.
• For other values of xi, we have π0

xi
= (1 − anλ∗ ,i (xi))πxi and π1

xi
= πxi − π0

xi
.

We also define σ = λ∗, σi = θi, and σxi = Vi(xi) where λ∗ is specified in Section 5.2, θi is the
optimal value of Mi

1(λ
∗,−1), and Vi(xi) is the value function associated with Mi

1(λ
∗,−1).

Lastly, we define {ψ
ai
xi} as follows

ψ0
xi
= ∑

x′i

Pxi ,x′i
(0)σx′i

+ C(xi)− σi − σxi ,

ψ1
xi
= ∑

x′i

Pxi ,x′i
(1)σx′i

+ σ + C(xi)− σi − σxi .
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Then, we can prove the following proposition.

Proposition 7 (Optimal solution pair). {π
ai
xi} and {σ, σi, σxi , ψ

ai
xi} are primal and dual solutions

to (13), respectively.

Proof. Since (13) is linear and strictly feasible, it is sufficient to show that {π
ai
xi} and

{σ, σi, σxi , ψ
ai
xi} verify the KKT conditions, which can be expressed as the following four con-

ditions.

1. Primal feasibility: the constraints in (13) are satisfied.
2. Dual feasibility: σ ≥ 0 and ψ

ai
xi ≥ 0 for all xi, ai, and i.

3. Complementary slackness: σ
(

∑N
i=1 ∑xi

π1
xi
− M

)
= 0 and ψ

ai
xi π

ai
xi = 0 for all xi, ai,

and i.
4. Stationarity: the gradient of L(πai

xi , σ, σi, σxi , ψ
ai
xi ) with respect to {π

ai
xi} vanishes.

Apparently, the first condition is satisfied by {π
ai
xi}. For the second condition, σ ≥ 0 since

σ = λ∗ ≥ 0 by definition. For ψ
ai
xi , we can verify that ψ

ai
xi = Vi,ai (xi) − Vi(xi) where

Vi,ai (xi) is the value function resulting from taking action ai at state xi. Then, the non-
negativity is guaranteed by the Bellman equation. For the third condition, the first term
is zero because we choose the μi’s given by (12). For the second term, we recall that
ψ

ai
xi = Vi,ai (xi)− Vi(xi). According to the definition of π

ai
xi , we know Vi(xi) = Vi,ai (xi) if

π
ai
xi > 0. Combined together, we can conclude that ψ

ai
xi = 0 when π

ai
xi > 0. Thus, the third

condition is satisfied. For the last condition, setting the gradient equal to zero yields a
system of linear equations. More precisely, for each xi and 1 ≤ i ≤ N⎧⎪⎪⎪⎨⎪⎪⎪⎩

∑
x′i

Pxi ,x′i
(0)σx′i

+ C(xi) = σxi + σi + ψ0
xi

.

∑
x′i

Pxi ,x′i
(1)σx′i

+ σ + C(xi) = σxi + σi + ψ1
xi

.

Then, {σ, σi, σxi , ψ
ai
xi} verifies the system of linear equations by definition. Since all four

conditions are satisfied, we can conclude our proof.

According to Proposition 7, we know that {π
ai
xi} and {σ, σi, σxi} defined above are

the optimal solutions to problems (13) and (14), respectively. As the optimal solutions are
obtained, we can adopt the heuristic detailed in Section 6.1.

The heuristic can be expressed equivalently as an index policy. To this end, we define
the index Ixi for state xi as

Ixi � ψ̄0
xi
− ψ̄1

xi
.

According to the complementary slackness, Ixi can be reduced to the following.

• For state xi such that π̄1
xi
> 0 and π̄0

xi
= 0, we have ψ̄1

xi
= 0. Therefore, Ixi = ψ̄0

xi
≥ 0.

• For state xi such that π̄1
xi
> 0 and π̄0

xi
> 0, we have ψ̄1

xi
= ψ̄0

xi
= 0. Therefore, Ixi = 0.

• For state xi such that π̄1
xi
= 0 and π̄0

xi
> 0, we have ψ̄0

xi
= 0. Therefore, Ixi = −ψ̄1

xi
≤ 0.

We can show that Ixi possesses the following properties.

Proposition 8 (Properties of Ixi ). For 1 ≤ i ≤ N, Ixi ≥ −λ∗ for any xi. The equality holds
when r̂i = p0

e,i = 0 or si = 0. At the same time, Ixi is non-decreasing in both si and r̂i.

Proof. We notice that Ixi can be expressed as a function of Vi(xi) and λ∗. Meanwhile,
Mi

1(λ
∗,−1) coincides with the decoupled model studied in Section 4.2. Then, we can

verify the properties of Ixi using the results in Section 4.2. The complete proof can be found
in Appendix L.

Comparing with the heuristic detailed in Section 6.1, we can define the Indexed
priority policy.

18



Entropy 2021, 23, 1572

Definition 5 (Indexed priority policy). At any state x = (x1, x2, . . . , xN), the base station will
transmit the updates from M users with the largest Ixi . The ties are broken arbitrarily.

Remark 7. Indexed priority policy belongs to the class of priority policies introduced in [30]. These
priority policies are asymptotically optimal when certain conditions are satisfied.

Remark 8. Indexed priority policy possesses the structural properties detailed in Corollary 1.

• The first two properties can be verified by noting that Ixi ≥ −λ∗ and the equality holds when
r̂i = p0

e,i = 0 or si = 0. At the same time, Ixi is non-decreasing in r̂i.
• The third and fourth properties can be verified by noting that Ixi is non-decreasing in si.
• For the last property, we first notice that Ixj = Ixk when users j and k are statistically identical

and xj = xk. Then, the property can be verified by noting that Ixi is non-decreasing in both si
and r̂i.

We notice that θi’s and C(xi)’s are canceled out by the definition of Ixi . Therefore, Ixi

can be calculated using λ∗ and the value function of Mi
1(λ

∗,−1). In practice, we can use
either λ∗− or λ∗

+ to approximate λ∗, and the value function can be approximated by the
result of the RVI detailed in Section 5.1. Since the state space is infinite, we only calculate a
finite number of Vi(xi), the number of which depends on the truncation parameter m of
ASM. Meanwhile, the probabilities Pxi ,x′i

(ai) in Ixi are modified according to (10).

7. Numerical Results

In this section, we provide numerical results to showcase the performance of the
developed scheduling policies. To eliminate the effect of N, we plot the expected average
AoII. In particular, we provide the expected average AoII achieved by the Indexed priority
policy and Whittle’s index policy when M = 1. The policies are calculated using the results
detailed in Sections 4–6. When obtaining the Indexed priority policy, we set the tolerance
in the Bisection search to ξ = 0.005. Meanwhile, we choose the truncation parameter in
ASM m = 800 and the convergence criteria in RVI ε = 0.01. We notice that the calculation
of Whittle’s index involves an infinite sum. In practice, we approximate the result by
replacing +∞ with a large enough number kmax. Here, we choose kmax = 800. For both
scheduling policies, the resulting expected average AoII is obtained via simulations. Each
data point is the average of 15 runs with 15,000 time slots considered in each run.

We also compare the developed policies with the optimal policy for RP, which can
be calculated by following the discussion in Section 5.2. We adopt the same choices of
parameters as we used to obtain the developed policies. The corresponding performance
is calculated using Proposition 2. Like before, the infinite sum is approximated by replac-
ing +∞ with kmax = 800. We also provide the expected average AoII achieved by the
Greedy policy to show the performance advantages of the developed policies. When the
Greedy policy is adopted, the base station always chooses the user with the largest AoII.
The resulting expected average AoII is obtained via the same simulations as applied to the
developed policies.

Figures 3 and 4 illustrate the performance when the source processes have different
dynamics and when each user’s communication goal is different, respectively. Figure 3a
provides the performance when pi = 0.05 + 0.4(i−1)

N−1 for 1 ≤ i ≤ N. For other parameters,
the users make the same choices. More precisely, fi(s) = s, γi = 0.6, and p0

e,i = p1
e,i = 0.1

for 1 ≤ i ≤ N. Figure 4a provides the performance when fi(s) = s0.5+ i−1
N−1 for 1 ≤ i ≤ N.

Same as before, the users make the same choices for other parameters. More precisely,
pi = 0.3, γi = 0.6, and p0

e,i = p1
e,i = 0.1 for 1 ≤ i ≤ N. In Figures 3b and 4b, we force

p0
e,i = 0 for all users to ensure the existence of Whittle’s index. Other choices remain the

same as in Figures 3a and 4a. According to Corollary 1, the optimal policy will never
choose the user with r̂ = p0

e = 0 unless it is to break the tie. Therefore, in Figures 3b and
4b, we also consider the Greedy+ policy where the base station always chooses the user
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with the largest AoII among the users with r̂ = 1. The resulting expected average AoII is
obtained via the same simulations as applied to the Greedy policy.

Figure 5 shows the performance in systems where the parameters for each user are
generated uniformly and randomly within their ranges. In Figure 5a, we consider N = 5,
γ ∈ [0, 1], p ∈ [0.05, 0.45], pr̂

e ∈ [0, 0.45], and f (s) = sτ , where τ ∈ [0.5, 1.5]. There are a
total of 300 different choices and the results are sorted by the performance of RP-optimal
policy in ascending order. Figure 5b adopts the same system settings except that we impose
p0

e,i = 0 for 1 ≤ i ≤ N to ensure the feasibility of Whittle’s index policy. Meanwhile,
we ignore the Greedy policy since the Greedy+ policy achieves a better performance, as
indicated by Figures 3b and 4b.

(a) When p0
e = 0.1. (b) When p0

e = 0.

Figure 3. Performance when the source processes vary. We choose pi = 0.05 + 0.4(i−1)
N−1 , fi(s) = s, γi = 0.6, p0

e,i = p0
e ,

and p1
e,i = 0.1 for 1 ≤ i ≤ N.

(a) When p0
e = 0.1. (b) When p0

e = 0.

Figure 4. Performance when the communication goals vary. We choose fi(s) = s0.5+ i−1
N−1 , pi = 0.3, γi = 0.6, p0

e,i = p0
e ,

and p1
e,i = 0.1 for 1 ≤ i ≤ N.
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(a) When I = [0, 0.45]. (b) When I = {0}.

Figure 5. Performance in systems with random parameters when N = 5. The parameters for each user are chosen randomly
within the following intervals: γ ∈ [0, 1], p ∈ [0.05, 0.45], p0

e ∈ I, p1
e ∈ [0, 0.45], and f (s) = sτ where τ ∈ [0.5, 1.5].

We can make the following observations from the figures.

• The Greedy+ policy yields a smaller expected average AoII than that achieved by the
Greedy policy. Recall that we obtained the Greedy+ policy by applying the structural
properties detailed in Corollary 1. Therefore, simple applications of the structural
properties of the optimal policy can improve the performance of scheduling policies.

• The Indexed priority policy has comparable performance to Whittle’s index policy
in all the system settings considered. The two policies have their own advantages.
The Indexed priority policy has a broader scope of application, while Whittle’s index
policy has a lower computational complexity.

• The performance of the Indexed priority policy and Whittle’s index policy is better
than that of the Greedy/Greedy+ policies and is not far from the performance of
the RP-optimal policy. Recall that the performance of the RP-optimal policy forms a
universal lower bound on the performance of all admissible policies for PP. Hence, we
can conclude that both the Indexed priority policy and Whittle’s index policy achieve
good performances.

8. Conclusions

In this paper, we studied the problem of minimizing the Age of Incorrect Information
in a slotted-time system where a base station needs to schedule M users among N available
users. Meanwhile, the base station has access to imperfect channel state information in
each time slot. The problem is a restless multi-armed bandit problem which is SPACE-
hard. However, by casting the problem into a Markov decision process, we obtain the
structural properties of the optimal policy. Then, we introduce a relaxed version of the
original problem and investigate the decoupled model. Under a simple condition, we
establish the indexability of the decoupled problem and obtain the expression of Whittle’s
index. On this basis, we developed Whittle’s index policy. To get rid of the requirement
for indexability, we developed the Indexed priority policy based on the optimal policy
for the relaxed problem. The characteristics of the relaxed problem are explored to make
the calculation of its optimal policy more efficient. Finally, through numerical results, we
show that simple applications of the structural properties can improve the performance
of scheduling policies. Moreover, Whittle’s index policy and the Indexed priority policy
achieve good and comparable performances.
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Appendix A. Proof of Lemma 1

We consider two states, x1 and x2, that differ only in the value of sj. Without the loss
of generality, we assume s1,j < s2,j. Then, it is sufficient to show that, for any 1 ≤ j ≤ N,
V(x1) ≤ V(x2). Leveraging the iterative nature of VIA, we use mathematical induction
to prove the monotonicity. First of all, the base case (i.e., ν = 0) is true by initialization.
We assume the lemma holds at iteration ν. Then, we want to examine whether it holds at
iteration ν + 1. The update step reported in problem (5) can be rewritten as follows.

Vν+1(x) = min
a∈AN(1)

Va
ν+1(x), (A1)

where

Va
ν+1(x) = C(x)− θ + ∑

x′−{x′j}

⎧⎨⎩
(

∏
i �=j

Pxi ,x′i
(ai)

)
∑
r̂′j

P(r̂′j)U
j
ν(x, x′)

⎫⎬⎭,

Uj
ν(x, x′) = ∑

s′j

Psj ,s′j
(aj, r̂j)Vν(x′).

To prove the desired results, we distinguish between the following cases.

• We first consider the case of s1,j = 0 < s2,j and r̂1,j = r̂2,j = 0. When aj = 1 and for
any x′ − {s′j}, we have

Uj
ν(x1, x′) = pjVν(x′; s′j = 1) + (1 − pj)Vν(x′; s′j = 0),

Uj
ν(x2, x′) = β jVν(x′; s′j = s2,j + 1) + (1 − β j)Vν(x′; s′j = 0),

where Vν(x′; s′j = 0) is the estimated value function of the state x′ with s′j = 0 at
iteration ν (at the risk of abusing the notation, we use V(x; sj = s1) and V(x; sj = s2)
to represent the value functions of two states that differ only in the value of sj). Then,
we get

Uj
ν(x1, x′)− Uj

ν(x2, x′) ≤ (pj − β j)
(
Vν(x′; s′j = 1)− Vν(x′; s′j = 0)

) ≤ 0.

The inequalities hold since β j > pj and Lemma 1 are true at iteration ν by assumption.

Therefore, we have Uj
ν(x1, x′) ≤ Uj

ν(x2, x′) when aj = 1 for any x′ − {s′j}.
For the case of ai = 1 where i �= j, we notice that aj = 0. Then, for any x′ − {s′j},
we obtain

Uj
ν(x1, x′) = pjVν(x′; s′j = 1) + (1 − pj)Vν(x′; s′j = 0),

Uj
ν(x2, x′) = (1 − pj)Vν(x′; s′j = s2,j + 1) + pjVν(x′; s′j = 0).

Therefore, when ai = 1, we have

Uj
ν(x1, x′)− Uj

ν(x2, x′) ≤ (2pj − 1)
(
Vν(x′; s′j = 1)− Vν(x′; s′j = 0)

) ≤ 0.

The inequalities hold since 2pj − 1 < 0 and Lemma 1 is true at iteration ν by as-

sumption. Combining with the case of aj = 1, Uj
ν(x1, x′) ≤ Uj

ν(x2, x′) holds for any
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x′ − {s′j} under any feasible action. Since x1 and x2 differ only in the value of sj and
C(x) is non-decreasing in si for 1 ≤ i ≤ N, we can see that Va

ν+1(x1) ≤ Va
ν+1(x2) for

any feasible a. Then, by (A1), we can conclude that the lemma holds at iteration ν + 1
when s1,j = 0 < s2,j and r̂1,j = r̂2,j = 0.

• When s1,j = 0 < s2,j and r̂1,j = r̂2,j = 1, by replacing the β j’s in the above case with
αj’s, we can achieve the same result.

• When 0 < s1,j < s2,j and r̂1,j = r̂2,j, we notice that

Ps1,j ,s1,j+1(aj, r̂1,j) = Ps2,j ,s2,j+1(aj, r̂2,j),

Ps1,j ,0(aj, r̂1,j) = Ps2,j ,0(aj, r̂2,j).

Then, leveraging the monotonicity of Vν(x) and C(x), we can conclude with the
same result.

Combining the three cases, we prove that the lemma also holds at iteration ν + 1 of VIA.
Therefore, the lemma holds at any iteration ν by mathematical induction. Since the results
hold for any 1 ≤ j ≤ N and VIA is guaranteed to converge to the value function when
ν → +∞, we can conclude our proof.

Appendix B. Proof of Lemma 2

We inherit the notations in the proof of Lemma 1. We still use mathematical induction
to obtain the desired results. The base case ν = 0 is true by initialization. We assume the
lemma holds at iterative ν and examine whether it still holds at iteration ν + 1. In the case
of M = 1, we rewrite (5) as

Vν+1(x) = min
1≤j≤N

Vj
ν+1(x), (A2)

where

Vj
ν+1(x) = C(x)− θ + ∑

x′

{(
∏
i �=j

Pi
xi ,x′i

(0)

)
Pj

xj ,x′j
(1)Vν(x′)

}
, (A3)

and Pi
x,x′(ai) is the probability that action ai will lead to state x′ when user i is at state x.

To get the desired results, we distinguish between the following cases

• We first show that Vj
ν+1(x) = Vk

ν+1(P(x)). According to (A3), we have

Vj
ν+1(x) = C(x)− θ + ∑

x′

{(
∏

i �=j,k
Pi

xi ,x′i
(0)

)
Pk

xk ,x′k
(0)Pj

xj ,x′j
(1)Vν(x′)

}
.

Vk
ν+1(P(x)) = C(P(x))− θ+

∑
P(x)′

(
∏

i �=j,k
Pi
P(x)i ,P(x)′i

(0)

)
Pk
P(x)k ,P(x)′k

(1)Pj
P(x)j ,P(x)′j

(0)Vν(P(x)′).

It is obvious that for any P(x)′, there always exists P(x′′) = P(x)′. Then, we obtain

Vk
ν+1(P(x)) = C(P(x))− θ+

∑
P(x′′)

(
∏

i �=j,k
Pi

xi ,x′′i
(0)

)
Pk

xj ,P(x′′)k
(1)Pj

xk ,P(x′′)j
(0)Vν(P(x′′))

= C(P(x))− θ + ∑
x′′

(
∏

i �=j,k
Pi

xi ,x′′i
(0)

)
Pk

xj ,x′′j
(1)Pj

xk ,x′′k
(0)Vν(x′′)

= C(P(x))− θ + ∑
x′

(
∏

i �=j,k
Pi

xi ,x′i
(0)

)
Pk

xj ,x′j
(1)Pj

xk ,x′k
(0)Vν(x′).
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The second equality follows from the definition of P(·), the property of sum-
mation, and the assumption at iteration ν. The last equality follows from the
variable renaming. Then, by the definition of statistically identical, we have
Pk

xj ,x′j
(1) = Pj

xj ,x′j
(1), Pj

xk ,x′k
(0) = Pk

xk ,x′k
(0), and C(x) = C(P(x)). Therefore, we can

conclude that Vj
ν+1(x) = Vk

ν+1(P(x)).

• Along the same lines, we can easily show that Vk
ν+1(x) = Vj

ν+1(P(x)) and Vi
ν+1(x) =

Vi
ν+1(P(x)) for i �= j, k.

Combining the above cases with (A2), we prove that Vν+1(x) = Vν+1(P(x)). Then,
by induction, we have Vν(x) = Vν(P(x)) at any iteration ν. Since VIA is guaranteed to
converge to the value function when ν → +∞, we can conclude our proof.

Appendix C. Proof of Theorem 1

For arbitrary j and k

δj,k(x) = ∑
x′−{x′j ,x

′
k}

⎧⎨⎩
(

∏
i �=j,k

Pxi ,x′i
(0)

)
∑
r̂′j ,r̂

′
k

P(r̂′j)P(r̂′k)Rj,k(x, x′)

⎫⎬⎭, (A4)

where

Rj,k(x, x′) = ∑
s′j ,s

′
k

[(
Psk ,s′k

(0, r̂k)Psj ,s′j
(1, r̂j)− Psk ,s′k

(1, r̂k)Psj ,s′j
(0, r̂j)

)
V(x′)

]
. (A5)

With this in mind, we will prove the properties one by one.

Property 1—δj,k(x) ≤ 0 if r̂k = p0
e,k = 0. The equality holds when sj = 0 or r̂j = p0

e,j = 0.

When r̂k = p0
e,k = 0, transmitting the update from user k will necessarily fail. Therefore,

Psk ,s′k
(0, 0) = Psk ,s′k

(1, 0) for any sk and s′k. Then, we have

Rj,k(x, x′) = ∑
s′k

Psk ,s′k
(0, 0)∑

s′j

[(
Psj ,s′j

(1, r̂j)− Psj ,s′j
(0, r̂j)

)
V(x′)

]
.

To identify the sign of Rj,k(x, x′), we distinguish between the following cases

• When sj = 0, we can easily show that Rj,k(x, x′) = 0 for any x′ − {s′j, s′k} by noticing
that the two possible actions with respect to user j (i.e., aj = 1 and aj = 0) are
equivalent when sj = 0. Since δj,k(x) is a linear combination of Rj,k(x, x′)’s with
non-negative coefficients, we can conclude that δj,k(x) = 0 in this case.

• When sj > 0 and r̂j = 1, for any x′ − {s′j, s′k}, we have

Rj,k(x, x′) = ∑
s′k

Psk ,s′k
(0, 0)(αj + pj − 1)

(
V(x′; s′j = sj + 1)− V(x′; s′j = 0)

)
≤ 0.

(A6)

The inequality holds because of Lemma 1 and the fact that αj + pj < 1. We recall that
δj,k(x) is a linear combination of Rj,k(x, x′)’s with non-negative coefficients. Then, we
can conclude that δj,k(x) ≤ 0 in this case.

• When sj > 0 and r̂j = 0, by replacing the αj in (A6) with β j, we can get the same result.
In this case, the equality holds when β j + pj = 1, or, equivalently, p0

e,j = 0.

Combining the cases, we prove the first property.

24



Entropy 2021, 23, 1572

Property 2—δj,k(x) is non-increasing in r̂j and is non-decreasing in r̂k when sj, sk > 0.
At the same time, δj,k(x) is independent of r̂i for any i �= j, k.

We first prove the monotonicity of δj,k(x) with respect to r̂j. To this end, we define
x1 and x2 as two states that differ only in the value of r̂j. Without a loss of generality, we
assume r̂1,j = 1 and r̂2,j = 0. Then, we investigate the sign of δj,k(x1)− δj,k(x2). We define
xi � x1,i = x2,i for i �= j. Then, according to (A4), δj,k(x1)− δj,k(x2) can be written as

δj,k(x1)−δj,k(x2) =

∑
x′−{x′j ,x

′
k}

⎧⎨⎩
(

∏
i �=j,k

Pxi ,x′i
(0)

)
∑
r̂′j ,r̂

′
k

P(r̂′j)P(r̂′k)
(

Rj,k(x1, x′)− Rj,k(x2, x′)
)⎫⎬⎭.

Since x1,k = x2,k, we have Ps1,k ,s′k
(a, r̂1,k) = Ps2,k ,s′k

(a, r̂2,k) for any s′k. We recall that the
transition probability is independent of r̂ when a = 0. Combining with the fact that
s1,j = s2,j, we also have Ps1,j ,s′j

(0, r̂1,j) = Ps2,j ,s′j
(0, r̂2,j) for any s′j. Combining together,

we obtain
Ps1,k ,s′k

(1, r̂1,k)Ps1,j ,s′j
(0, r̂1,j) = Ps2,k ,s′k

(1, r̂2,k)Ps2,j ,s′j
(0, r̂2,j),

Ps1,k ,s′k
(0, r̂1,k) = Ps2,k ,s′k

(0, r̂2,k).

Leveraging the above two problems, we have

Rj,k(x1, x′)− Rj,k(x2, x′) =

∑
s′j ,s

′
k

[
Psk ,s′k

(0, r̂k)

(
Ps1,j ,s′j

(1, r̂1,j)− Ps2,j ,s′j
(1, r̂2,j)

)
V(x′)

]
.

Consequently, we obtain

δj,k(x1)−δj,k(x2) =

∑
x′−{x′j}

⎧⎨⎩∏
i �=j

Pxi ,x′i
(0)

⎡⎣∑
r̂′j

P(r̂′j)∑
s′j

(
Ps1,j ,s′j

(1, 1)− Ps2,j ,s′j
(1, 0)

)
V(x′)

⎤⎦⎫⎬⎭.

In the following, we characterize the sign of

R1 � ∑
s′j

(
Ps1,j ,s′j

(1, 1)− Ps2,j ,s′j
(1, 0)

)
V(x′).

As s1,j = s2,j > 0, for any x′ − {s′j}, we have

R1 =
(
(1 − αj)− (1 − β j)

)
V(x′; s′j = 0) + (αj − β j)V(x′; s′j = s1,j + 1) ≤ 0.

The inequality follows from Lemma 1 and the fact that β j > αj. Since δj,k(x1)− δj,k(x2)
is a linear combination of R1’s with non-negative coefficients, we can conclude that
δj,k(x1) ≤ δj,k(x2). Since r̂1,j > r̂2,j, we can see that δj,k(x) is non-increasing in r̂j.

In a very similar way, we can show that δj,k(x) is non-decreasing in r̂k. We recall that
r̂i will not affect the system dynamic if ai = 0. Consequently, we can conclude that δj,k(x)
is independent of r̂i for any i �= j, k.

Combining together, we prove the second property.

Property 3—δj,k(x) ≤ 0 if sk = 0. The equality holds when sj = 0 or r̂j = p0
e,j = 0.

Since the probabilities are non-negative, it is sufficient to show that Rj,k(x, x′) satisfies
Property 3 for any x′ − {s′j, s′k}. More precisely, it is sufficient to show that Rj,k(x, x′) ≤ 0
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for any x′ − {s′j, s′k} when sk = 0 and the equality holds when sj = 0 or r̂j = p0
e,j = 0. We

recall that Psk ,s′k
(1, r̂k) = Psk ,s′k

(0, r̂k) for any s′k when sk = 0. Hence, for any x′ − {s′j, s′k},
we have

Rj,k(x, x′) = ∑
s′k

[
Psk ,s′k

(0, r̂k)∑
s′j

(
Psj ,s′j

(1, r̂j)− Psj ,s′j
(0, r̂j)

)
V(x′)

]
.

Then, we investigate the following quantity for any x′ − {s′j}

R2 � ∑
s′j

(
Psj ,s′j

(1, r̂j)− Pxj ,x′j
(0, r̂j)

)
V(x′).

To this end, we distinguish between the following cases

• When sj = 0, we have Psj ,s′j
(1, r̂j) = Psj ,s′j

(0, r̂j) for any s′j. Thus, we conclude that

R2 = 0 for any x′ − {s′j}. Consequently, Rj,k(x, x′) = 0 for any x′ − {s′j, s′k}.
• When sj > 0 and r̂j = 1, for any x′ − {s′j}, we have

R2 = (αj − 1 + pj)V(x′; s′j = sj + 1) + (1 − αj − pj)V(x′; s′j = 0) ≤ 0 (A7)

The inequality follows from Lemma 1 and the fact that αj + pj < 1. Thus, Rj,k(x, x′) ≤ 0
for any x′ − {s′j, s′k}.

• When sj > 0 and r̂j = 0, by replacing the αj in (A7) with β j, we can get the same result.
In this case, the equality holds when β j + pj = 1, or, equivalently, p0

e,j = 0.

Combined together, we can conclude that Property 3 is true.

Property 4—δj,k(x) is non-increasing in sj if Γ
r̂j
j ≤ Γr̂k

k and is non-decreasing in sk if Γ
r̂j
j ≥ Γr̂k

k

when sj, sk > 0. We define Γ1
i � αi

1−pi
and Γ0

i � βi
1−pi

for 1 ≤ i ≤ N.

Such as we did in the proof of Property 3, it is sufficient to show that Rj,k(x, x′) satisfies
Property 4 for any x′ − {s′j, s′k}. We recall that Rj,k(x, x′) depends on the values of r̂j and r̂k.
Therefore, we distinguish between the following cases

• In the case of r̂j = r̂k = 1 and sj, sk > 0, for any x′ − {s′j, s′k}, (A5) can be written as

Rj,k(x, x′) = ∑
s′j ,s

′
k

[(
Psk ,s′k

(0, 1)Psj ,s′j
(1, 1)− Psk ,s′k

(1, 1)Psj ,s′j
(0, 1)

)
V(x′)

]
=

(
pkαj − (1 − pj)(1 − αk)

)
V(x′; s′j = sj + 1; s′k = 0)

+
(
(1 − pk)(1 − αj)− pjαk

)
V(x′; s′j = 0; s′k = sk + 1)

+
(
(1 − pk)αj − (1 − pj)αk

)
V(x′; s′j = sj + 1; s′k = sk + 1)

+
(

pk(1 − αj)− pj(1 − αk)
)
V(x′; s′j = 0; s′k = 0).

As we can verify

pkαj − (1 − pj)(1 − αk) <
1
2
(pk + pj − 1) < 0,

(1 − pk)(1 − αj)− pjαk >
1
2
(1 − pk − pj) > 0.

We define Γ1
i � αi

1−pi
and Γ0

i � βi
1−pi

for 1 ≤ i ≤ N. Then, we have

Γ1
j � Γ1

k =⇒ (1 − pk)αj − (1 − pj)αk � 0.
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Combining with Lemma 1, we can conclude that, for any x′ − {s′j, s′k}, Rj,k(x, x′) is

non-increasing in sj if Γ1
j ≤ Γ1

k and is non-decreasing in sk if Γ1
j ≥ Γ1

k .

• In the case of r̂j = r̂k = 0 and sj, sk > 0, by replacing the α’s in the above case with β’s,
we can conclude with the same result.

• In the case of r̂j = 1, r̂k = 0, and sj, sk > 0, for any x′ − {s′j, s′k}, (A5) can be written as

Rj,k(x, x′) = ∑
s′j ,s

′
k

[(
Psk ,s′k

(0, 0)Psj ,s′j
(1, 1)− Psk ,s′k

(1, 0)Psj ,s′j
(0, 1)

)
V(x′)

]
=

(
pkαj − (1 − pj)(1 − βk)

)
V(x′; s′j = sj + 1; s′k = 0)

+
(
(1 − pk)(1 − αj)− pjβk

)
V(x′; s′j = 0; s′k = sk + 1)

+
(
(1 − pk)αj − (1 − pj)βk

)
V(x′; s′j = sj + 1; s′k = sk + 1)

+
(

pk(1 − αj)− pj(1 − βk)
)
V(x′; s′j = 0; s′k = 0).

As we can verify

pkαj − (1 − pj)(1 − βk) < pk

(
pj − 1

2

)
< 0,

(1 − pk)(1 − αj)− pjβk > (1 − pk)

(
1
2
− pj

)
> 0.

At the same time
Γ1

j � Γ0
k =⇒ (1 − pk)αj − (1 − pj)βk � 0.

Combined with Lemma 1, we can conclude that, for any x′ − {s′j, s′k}, Rj,k(x, x′) is

non-increasing in sj if Γ1
j ≤ Γ0

k and is non-decreasing in sk if Γ1
j ≥ Γ0

k .

• In the case of r̂j = 0, r̂k = 1, and sj, sk > 0, by swapping the α’s and β’s in the above
case, we can conclude with the same result.

Combined together, we conclude that Rj,k(x, x′) satisfies Property 3 for any x′ − {s′j, s′k}.

Consequently, δj,k(x) is non-increasing in sj if Γ
r̂j
j ≤ Γr̂k

k and is non-decreasing in sk if

Γ
r̂j
j ≥ Γr̂k

k when sj, sk > 0.

Property 5—δj,k(x) ≤ 0 if sj ≥ sk, r̂j ≥ r̂k, and users j and k are statistically identical.

According to Property 3, it is sufficient to consider the case where sj, sk > 0. We
notice that the sign of δj,k(x) can be captured by the sign of the quantity Qj,k(x, x′) � ∑r̂′j ,r̂

′
k

P(r̂′j)P(r̂′k)Rj,k(x, x′). Thus, we divide our discussion into the following cases.

• We first consider the case of sj ≥ sk > 0 and r̂j = r̂k = 0. Leveraging the definition of
statistically identical, for any x′ − {x′j, x′k}, we have

Qj,k(x, x′) = ∑
r̂′j ,r̂

′
k

P(r̂′j)P(r̂′k)κ1

(
V(x′; x′j = (0, r̂′j); x′k = (sk + 1, r̂′k))−

V(x′; x′j = (sj + 1, r̂′j); x′k = (0, r̂′k))
)

,

where κ1 = 1 − pj − β j ≥ 0. Then, by substituting the values of P(r̂) and using
Lemma 2, we obtain
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Qj,k(x, x′) =γjγkκ1V(x′; x′j = (sk + 1, 1); x′k = (0, 1))−
γjγkκ1V(x′; x′j = (sj + 1, 1); x′k = (0, 1))+

(1 − γj)(1 − γk)κ1V(x′; x′j = (sk + 1, 0); x′k = (0, 0))−
(1 − γj)(1 − γk)κ1V(x′; x′j = (sj + 1, 0); x′k = (0, 0))+

γk(1 − γj)κ1V(x′; x′j = (sk + 1, 1); x′k = (0, 0))−
γk(1 − γj)κ1V(x′; x′j = (sj + 1, 0); x′k = (0, 1))+

γj(1 − γk)κ1V(x′; x′j = (sk + 1, 0); x′k = (0, 1))−
γj(1 − γk)κ1V(x′; x′j = (sj + 1, 1); x′k = (0, 0)).

Since users j and k are statistically identical, we have γj = γk. Then, by Lemma 1,
we have Qj,k(x, x′) ≤ 0 for any x′ − {x′j, x′k}. Since δj,k(x) is a linear combination of

Qj,k(x, x′)’s with non-negative coefficients, we can conclude that δj,k(x) ≤ 0.
• For the case of sj ≥ sk > 0 and r̂j = r̂k = 1, by replacing β j in κ1 with αj, we can

conclude with the same result.
• Then, we consider the case of sj ≥ sk > 0, r̂j = 1, and r̂k = 0. We first notice that,

for any x′ − {s′j, s′k}

Rj,k(x, x′) =
(

pkαj − (1 − pj)(1 − βk)
)
V(x′; s′j = sj + 1; s′k = 0)+(

(1 − pk)(1 − αj)− pjβk
)
V(x′; s′j = 0; s′k = sk + 1)+(

(1 − pk)αj − (1 − pj)βk
)
V(x′; s′j = sj + 1; s′k = sk + 1)+(

pk(1 − αj)− pj(1 − βk)
)
V(x′; s′j = 0; s′k = 0).

As users j and k are statistically identical, we have pj = pk and αj < βk. Leveraging
Lemma 1, we have

Rj,k(x, x′) ≤ (αj + pj − 1)
(

V(x′; s′j = sj + 1; s′k = 0)−

V(x′; s′j = 0; s′k = sk + 1)
)

.

Then, for any x′ − {x′j, x′k}

Qj,k(x, x′) ≤ ∑
r̂′j ,r̂

′
k

P(r̂′j)P(r̂′k)κ2

(
V(x′; x′j = (0, r̂′j); x′k = (sk + 1, r̂′k))−

V(x′; x′j = (sj + 1, r̂′j); x′k = (0, r̂′k))
)

,

where κ2 = 1 − pj − αj > 0. Such as we did in the previous cases, we can leverage
Lemmas 1 and 2 to conclude that Qj,k(x, x′) ≤ 0 for any x′ − {x′j, x′k}. Consequently,

δj,k(x) ≤ 0 in this case. The details are omitted for the sake of space.

Combined together, we conclude the proof of Property 5.

Appendix D. Proof of Corollary 2

We follow the same steps as in the proof of Lemma 1. To prove the corollary, it is
sufficient to show that V(x1) ≤ V(x2) when s1 < s2 and r̂1 = r̂2. We use mathematical
induction to prove the monotonicity. First of all, the base case (i.e., ν = 0) is true by
initialization. We assume the lemma holds at iteration ν. Then, we want to examine
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whether it holds at iteration ν + 1. For the system with a single user, the update step
reported in problem (5) can be simplified and rewritten as follows

Vν+1(x) = min
a∈{0,1}

Va
ν+1(x), (A8)

where
Va

ν+1(x) = C(x, a)− θ + ∑
r̂′

P(r̂′)∑
s′

Ps,s′(a, r̂)Vν(x′),

and θ is the optimal value for M1(λ,−1). To prove the desired results, we distinguish
between the following cases

• We first consider the case of s1 = 0 < s2 and r̂1 = r̂2 = 0. When a = 1, we have

V1
ν+1(x1) = C(x1, 1)− θ + ∑

r̂′
P(r̂′)

(
pVν(1, r̂′) + (1 − p)Vν(0, r̂′)

)
,

V1
ν+1(x2) = C(x2, 1)− θ + ∑

r̂′
P(r̂′)

(
βVν(s2 + 1, r̂′) + (1 − β)Vν(0, r̂′)

)
.

Subtracting the two expressions yields

V1
ν+1(x1)− V1

ν+1(x2)

≤ C(x1, 1)− C(x2, 1) + ∑
r̂′

P(r̂′)
[
(p − β)

(
Vν(1, r̂′)− Vν(0, r̂′)

)] ≤ 0.

The inequalities hold since β > p, C(x, a) is non-decreasing in s, and Corollary 2 is
true at iteration ν by assumption.
For the case of a = 0, we obtain

V0
ν+1(x1) = C(x1, 0)− θ + ∑

r̂′
P(r̂′)

(
pVν(1, r̂′) + (1 − p)Vν(0, r̂′)

)
,

V0
ν+1(x2) = C(x2, 0)− θ + ∑

r̂′
P(r̂′)

(
(1 − p)Vν(s2 + 1, r̂′) + pVν(0, r̂′)

)
.

Therefore, when a = 0, we have

V0
ν+1(x1)− V0

ν+1(x2)

≤ C(x1, 0)− C(x2, 0) + ∑
r̂′

P(r̂′)
[
(2p − 1)

(
Vν(1, r̂′)− Vν(0, r̂′)

)] ≤ 0.

The inequalities hold since 2p − 1 < 0, C(x, a) is non-decreasing in s, and Corol-
lary 2 is true at iteration ν by assumption. Combined together, we can see that
Va

ν+1(x1) ≤ Va
ν+1(x2) for any feasible a. Then, by problem (A8), we can conclude that

the lemma holds at iteration ν + 1 when s1 = 0 < s2 and r̂1 = r̂2 = 0.
• When s1 = 0 < s2 and r̂1 = r̂2 = 1, by replacing the β’s in the above case with α’s, we

can achieve the same result.
• When 0 < s1 < s2 and r̂1 = r̂2, we notice that Ps1,s1+1(a, r̂1) = Ps2,s2+1(a, r̂2) and

Ps1,0(a, r̂1) = Ps2,0(a, r̂2). Then, leveraging the monotonicity of Vν(x) and C(x, a), we
can conclude with the same result.

Combining the three cases, we prove that the lemma holds at iteration ν + 1 of VIA.
Therefore, the lemma holds at any iteration ν by mathematical induction. Since VIA is
guaranteed to converge to the value function when ν → +∞, we can conclude our proof.
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Appendix E. Proof of Proposition 1

We define ΔV(x) � V1(x)− V0(x) where Va(x) is the value function resulting from
taking action a at state x. Then, Va(x) can be calculated as follows

Va(x) = C(x, a)− θ + ∑
x′∈X

Px,x′(a)V(x′), (A9)

where θ is the optimal value for M1(λ,−1). Hence, the optimal action at state x can be
fully characterized by the sign of ΔV(x). More precisely, the optimal action at state x is
a = 1 if ΔV(x) < 0, and a = 0 is optimal otherwise. To determine the sign of ΔV(x) for
each state, we distinguish between the following cases

• We first consider the state x = (0, r̂). Applying the results in Section 2.3 to prob-
lem (A9), we obtain

V0(0, r̂) =− θ + (1 − γ)(1 − p)V(0, 0) + (1 − γ)pV(1, 0)+

γ(1 − p)V(0, 1) + γpV(1, 1),

V1(0, r̂) = λ + V0(0, r̂). (A10)

Therefore, ΔV(0, r̂) = λ ≥ 0. Thus, the optimal action at state (0, r̂) is a = 0.
• Then, we consider the state x = (s, 0) where s > 0. Applying the results in Section 2.3

to Equation (A9), we obtain

V0(s, 0) = f (s)− θ + (1 − γ)pV(0, 0) + (1 − γ)(1 − p)V(s + 1, 0)+

γpV(0, 1) + γ(1 − p)V(s + 1, 1),

V1(s, 0) = f (s) + λ − θ + (1 − γ)(1 − β)V(0, 0) + (1 − γ)βV(s + 1, 0)+

γ(1 − β)V(0, 1) + γβV(s + 1, 1).

Then,
ΔV(s, 0) = λ + p0

e (1 − 2p)ω, (A11)

where ω = (1 − γ)[V(0, 0)− V(s + 1, 0)] + γ[V(0, 1)− V(s + 1, 1)] ≤ 0.
• Finally, we consider the state x = (s, 1) where s > 0. Following the same trajectory,

we have

ΔV(s, 1) = λ + (1 − p1
e )(1 − 2p)ω.

According to Corollary 2 and the fact that p < 0.5, we can see that ΔV(s, 0) and ΔV(s, 1)
are both a constant λ plus a term that is non-increasing in s. As the time penalty function is
unbounded, the value function must also be unbounded. Then, combining the three cases,
we can conclude the following. For fixed r̂, there always exists a threshold nr̂ > 0 such that
the optimal action at state (s, r̂) where s ≥ nr̂ is a = 1, otherwise a = 0 is optimal. Since
r̂ ∈ {0, 1}, the optimal policy can be fully captured by the pair (n0, n1).

In the following, we determine the relationship between n0 and n1. We have

ΔV(s, 1)− ΔV(s, 0) = (1 − p1
e − p0

e )(1 − 2p)ω ≤ 0.

At the same time, for the threshold n0, we know ΔV(n0, 0) < 0. Then, we have ΔV(n0, 1) ≤
ΔV(n0, 0) < 0. Combined with the fact that ΔV(s, r̂) is non-increasing in s, we can conclude
that the ordering n0 ≥ n1 is true.

Appendix F. Proof of Proposition 2

We notice that the dynamic of AoII under threshold policy can be fully captured by
a Discrete-Time Markov Chain (DTMC). Then, the expected AoII Δ̄n and the expected
transmission rate ρ̄n under threshold policy n = (n0, n1) can be obtained from the stationary
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distribution of the induced DTMC. Let the states of the induced DTMC be the values of s.
We recall that r̂ is an independent Bernoulli random variable with parameter γ. Combined
with the results in Section 2.3, we can easily obtain the state transition probabilities of the
induced DTMC, which are shown in Figure A1.

0 1 2 n1 n1 + 1 n0 n0 + 11− p

p 1− p 1− p c1c1 c2

p

p

1− c1
1− c1

1− c2
1− c2

Figure A1. DTMC induced by the threshold policy n = (n0, n1). In the figure, c1 = (1 − γ)(1 − p) + γα and c2 = (1 − γ)

β + γα.

The balance equations of the induced DTMC are the following

(1 − p)π0 + p
n1−1

∑
k=1

πk + (1 − c1)
n0−1

∑
k=n1

πk + (1 − c2)
+∞

∑
k=n0

πk = π0.

pπ0 = π1.

(1 − p)πk−1 = πk f or 2 ≤ k ≤ n1.

c1πk−1 = πk f or n1 + 1 ≤ k ≤ n0.

c2πk−1 = πk f or n0 + 1 ≤ k.

+∞

∑
k=0

πk = 1.

Then, we can easily solve the above system of linear equations. After some algebraic
manipulation, we obtain the following

π0 =
1

2 + p(1 − p)n1−1
[

1
1 − c1

− 1
p
+ cn0−n1

1

(
1

1 − c2
− 1

1 − c1

)] .

πk = p(1 − p)k−1π0 f or 1 ≤ k ≤ n1.

πk = p(1 − p)n1−1ck−n1
1 π0 f or n1 + 1 ≤ k ≤ n0.

πk = p(1 − p)n1−1cn0−n1
1 ck−n0

2 π0 f or n0 + 1 ≤ k.

Equipped with the above results, we proceed with calculating Δ̄n and ρ̄n. According to
problem (6a), the expected AoII is:

Δ̄n =
+∞

∑
k=0

f (k)πk.

Substituting the expressions of πk’s, we can get the expression of Δ̄n. Proposition 1 tells us
the following.

• For state (s, r̂) where s < n1, it is optimal to stay idle (i.e., a = 0).
• For state (s, r̂) where n1 ≤ s < n0, it is optimal to make a transmission attempt

only when r̂ = 1. We recall that r̂ is an independent Bernoulli random variable with
parameter γ. Therefore, the expected proportion of time that the system is at state
(s, 1) is γπs.
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• For state (s, r̂) where s ≥ n0, it is optimal to make transmission attempt regardless
of r̂.

Combined with problem (6b), we have

ρ̄n = γ
n0−1

∑
k=n1

πk +
+∞

∑
k=n0

πk.

Substituting the expressions of πk’s, we can obtain the closed-form expression of ρ̄n.

Appendix G. Proof of Proposition 4

We first tackle the Whittle’s indexes at state (0, r̂) and (s, 0) where s > 0. To this end,
we distinguish between the following cases

• We first consider the state x = (0, r̂). By definition, Whittle’s index is the infimum λ

such that V0(x) = V1(x). According to (A10), we can conclude that Wx = 0 when
x = (0, r̂).

• Then, we consider the state x = (s, 0) where s > 0. We recall that p0
e = 0. Then, we

can conclude, from (A11), that Wx = 0 for all x = (s, 0) where s > 0.

Now, we tackle the Whittle’s index at state x = (s, 1) where s > 0. For convenience,
we denote by Wn the Whittle’s index at state x = (n, 1). According to the monotonicity
of ΔV(x) shown in the proof of Proposition 1, we can conclude that threshold policy
n = (+∞, n + 1) is optimal when V0(n, 1) = V1(n, 1). Then, we can prove the following

Lemma A1. When (9) is satisfied and V0(n, 1) = V1(n, 1), V(s, 1) = V(s, 0) � V(s) for
0 ≤ s ≤ n.

Proof. Since the value function satisfies the Bellman equation, it is sufficient to show that
V(s, 1) and V(s, 0) satisfy the same Bellman equation. We recall that the Bellman equation
for V(x) is given by

V(x) = min
a∈{0,1}

Va(x),

where
Va(x) = C(x, a)− θ + ∑

x′
Px,x′(a)V(x′), (A12)

and θ is the optimal value of the decoupled problem. We recall, from Corollary 3, that the
optimal action at state (s, 0) is staying idle (i.e., a = 0) for any s. We also know that threshold
policy n = (+∞, n+ 1) is optimal when V0(n, 1) = V1(n, 1). Therefore, the optimal actions
at states (s, 0) and (s, 1) where s ≤ n are the same (i.e., a = 0). Equivalently, we have

V(s, r̂) = V0(s, r̂), f or s ≤ n. (A13)

According to the system dynamic reported in Section 2.3, we know that the state transition
probabilities are independent of r̂ when a = 0. Meanwhile, r̂ does not affect the instant cost.
Let x1 = (s, 1) and x2 = (s, 0). Then, for any x′, we have

Px1,x′(0) = Px2,x′(0).

C(x1, 0) = C(x2, 0).

Hence, according to (A12), we can see that V0(s, 0) = V0(s, 1) for any s ≤ n. Combined
with problem (A13), we can conclude that V(s, 0) = V(s, 1) for any 0 ≤ s ≤ n.

By definition, Whittle’s index Wn is the infimum λ such that V0(n, 1) = V1(n, 1).
In this case, according to Lemma A1, V(0, 1) = V(0, 0) = V(0). Then, V0(n, 1) and V1(n, 1)
can be written as

V0(n, 1) = f (n)− θ + pV(0) + (1 − p)[(1 − γ)V(n + 1, 0) + γV(n + 1, 1)]. (A14)
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V1(n, 1) = f (n) + Wn − θ + (1 − α)V(0) + α[(1 − γ)V(n + 1, 0) + γV(n + 1, 1)].

Without a loss of generality, we assume V(0) = 0. Then, equating the two expressions
yields

Wn = (1 − p − α)(γV(n + 1, 1) + (1 − γ)V(n + 1, 0)). (A15)

Combining problems (A14) and (A15), we conclude that Wn is

Wn =
(1 − p − α)(V0(n, 1) + θ − f (n))

1 − p
.

Since the optimal action at state (n, 1) is a = 0, we have V0(n, 1) = V(n, 1) = V(n). Finally,
we obtain

Wn =
(1 − p − α)(V(n) + θ − f (n))

1 − p
. (A16)

Now, we tackle the expression of V(n). When V0(n, 1) = V1(n, 1), the optimal action at
state (s, r̂) where 0 ≤ s < n is staying idle. Then, leveraging Lemma A1, value function
V(s) where 0 ≤ s < n satisfies the following

V(s) =

{
−θ + f (0) + pV(1) when s = 0,
−θ + f (s) + (1 − p)V(s + 1) when 0 < s < n.

(A17)

By backward induction, we end up with the following equation for 0 < s < n.

V(s) =
−θ(1 − (1 − p)n−s)

p
+

n−s

∑
k=1

f (n − k)(1 − p)n−s−k + (1 − p)n−sV(n).

Letting s = 1 yields

V(1) =
−θ(1 − (1 − p)n−1)

p
+

n−1

∑
k=1

f (n − k)(1 − p)n−1−k + (1 − p)n−1V(n).

From problem (A17), V(1) also satisfies the following

V(1) =
θ − f (0)

p
.

Equating the two expressions of V(1), we obtain

V(n) =
− f (0)

p(1 − p)n−1 + θ

(
2

p(1 − p)n−1 − 1
p

)
−

n−1

∑
k=1

f (n − k)(1 − p)−k. (A18)

We recall that, when V0(n, 1) = V1(n, 1), threshold policy n = (+∞, n + 1) is optimal and
both actions at state x = (n, 1) are equally desirable. Thus, threshold policy n = (+∞, n) is
also optimal. Then, we know

θ = Δ̄n + Wnρ̄n, (A19)

where Δ̄n and ρ̄n are the expected AoII and the expected transmission rate under threshold
policy n = (+∞, n), respectively. Finally, combining problems (A16), (A18) and (A19),
we obtain

Wn =

− f (0)
p(1 − p)n + Δ̄n

2 − (1 − p)n

p(1 − p)n − (1 − p)−n

(
n

∑
k=1

f (k)(1 − p)k−1

)
1

1 − p − α
− ρ̄n

2 − (1 − p)n

p(1 − p)n

.

After some algebraic manipulation, we have

33



Entropy 2021, 23, 1572

Wn =

(1 − c1)
+∞

∑
k=n+1

f (k)ck−n−1
1 − Δ̄n

(1 − c1)(1 − p)− γ(1 − p − α)

c1(1 − p − α)
+ ρ̄n

,

where c1 = (1 − γ)(1 − p) + γα.
In the following, we investigate some properties of Whittle’s index. First of all, Wn

is non-negative since 1 − p − α and V(n + 1, r̂) in (A15) are all non-negative. Meanwhile,
combining (A15) with the fact that V(n, r̂) is non-decreasing in n, we can verify that Wn is
non-decreasing in n. Combined with the Whittle’s indexes in two other cases (i.e., x = (0, r̂)
and x = (s, 0) where s > 0), we can easily obtain the properties of Wx as detailed in
Proposition 4.

Appendix H. Proof of Proposition 5

We notice that M1(λ,−1) coincides with the decoupled model studied in Section 4.2.
When problem (9) is satisfied, the decoupled problem is indexable, and, according to
Corollary 3, we only need to show that n is the optimal threshold for the states with
r̂ = 1. We first tackle the case of λ > 0. To this end, we divide our discussion into the
following cases

• For state (s, 1) where s < n, Ws ≤ λ by definition. As the problem is indexable,
we have D(Ws) ⊆ D(λ). We recall that Ws � min{λ′ ≥ 0 : V0(s, 1) = V1(s, 1)}.
Equivalently, Ws � min{λ′ ≥ 0 : (s, 1) ∈ D(λ′)}. Then, we know (s, 1) ∈ D(Ws).
Combined together, we conclude that (s, 1) ∈ D(λ). In other words, the optimal
action at state (s, 1) where s < n is to stay idle (i.e., a = 0).

• For state (s, 1) where s ≥ n, we first recall that Ws = min{λ′ ≥ 0 : (s, 1) ∈ D(λ′)}.
Consequently, for any λ′ < Ws, we know (s, 1) /∈ D(λ′). Meanwhile, we have
Ws ≥ Wn > λ by the monotonicity of Whittle’s index and the definition of n. Hence,
we can conclude that (s, 1) /∈ D(λ). In other words, the optimal action at state (s, 1)
where s ≥ n is to make the transmission attempt.

Then, we conclude that n is the optimal threshold for the states with r̂ = 1 when λ > 0.
In the case of λ = 0, according to the proof of Proposition 1, we can easily verify that the
optimal threshold is 1.

Appendix I. Proof of Theorem 2

We first make the following definitions. When M1(λ,−1) is at state x and action
a is taken, cost C1(x, a) � f (s) and C2(x, a) � λa are incurred. We denote the expected
C1-cost and the expected C2-cost under policy φ as C̄1(φ) and C̄2(φ), respectively. Let G be
a non-empty set of states. For the given state i, we define R∗(i, G) as the class of policies φ,
for which the following hold

• The probability Pφ(xn ∈ G f or some n ≥ 1 | x0 = i) = 1 where xn is the state of
M1(λ,−1) at time n.

• The expected time miG(φ) of a first passage from i to G under φ is finite.
• The expected C1-cost C̄i,G

1 (φ) and the expected C2-cost C̄i,G
2 (φ) of a first passage form

i to G under φ are finite.

With the definitions in mind, we proceed with verifying the assumptions given in [27].

1. For all d > 0, the set A(d) = {x | there exists an action a such that C1(x, a) +C2(x, a) ≤ d}
is finite: For any state x, the cost satisfies C1(x, a) + C2(x, a) = f (s) + λa ≥ f (s).
The equality holds when a = 0. Then, the states in A(d) must satisfy f (s) ≤ d.
Combined with the fact that f (s) is a non-decreasing and unbounded function when
s ∈ N0, we can conclude that A(d) is finite.

2. There exists a stationary policy e such that the induced Markov chain has the following
properties: the state space S consists of a single (non-empty) positive recurrent class R and a
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set U of transient states such that e ∈ R∗(i, R) for i ∈ U. Moreover, both C̄1(e) and C̄2(e) on
R are finite: We consider the policy under which the base station makes a transmission
attempt at every time slot. According to the system dynamic detailed in Section 2.3,
we can see that all the states communicate with state (0, 0) and (0, 0) communicates
with all other states. Thus, the state space S consists of a single (non-empty) positive
recurrent class and the set of transient states can simply be an empty set. C̄1(e) and
C̄2(e) are trivially finite as we can verify using Proposition 2.

3. Given any two state x �= y, there exists a policy φ such that φ ∈ R∗(x, y): We notice that,
under any policy, the maximum increase of s between two consecutive time slots is 1.
Meanwhile, when s decreases, it decreases to zero. Combined with the fact that r̂ is
an independent Bernoulli random variable, we can conclude that there always exists
a path between any x and y with positive probability. mxy(φ), C̄x,y

1 (φ), and C̄x,y
2 (φ)

are trivially finite.
4. If a stationary policy φ has at least one positive recurrent state, then it has a single positive

recurrent class R. Moreover, if x = (0, 0) /∈ R, then φ ∈ R∗(x, R): Given that r̂ is an
independent Bernoulli random variable, we can easily conclude from the system
dynamic that all the states communicate with state (0, 0) and (0, 0) communicates
with all other states under any stationary policy. Therefore, any positive recurrent
class must contain state (0, 0). Thus, there must have only one positive recurrent class
which is R = S .

5. There exists a policy φ such that C̄1(φ) < ∞ and C̄2(φ) < K where K ∈ (0, 1]: We notice
that C̄1(φ) and C̄2(φ) are nothing but the expected AoII and the expected transmission
rate achieved by φ, respectively. Then, we can easily verify that such policy exists
using Proposition 2.

As the assumptions are verified, we proceed with introducing the optimal randomized
policy for given λ. We say a policy is λ-optimal if the policy is optimal for M1(λ,−1). We
consider two monotone sequences λn

+ ↓ λ and λn− ↑ λ. Then, there exist subsequences
of λn

+ and λn− such that the corresponding sequences of optimal policies converge. Then,
according to Lemma 3.7 of [27], the limit points, denoted by nλ+ and nλ− , are both λ-
optimal. By Proposition 3.2 of [27], the Markov chains induced by nλ+ and nλ− both
contain a single non-empty positive recurrent class and state (0, 0) is positive recurrent in
both induced Markov chains. Hence, the base station can choose which policy to follow
each time the system reaches state (0, 0) while keeping the resulting randomized policy
λ-optimal as suggested by Lemma 3.9 of [27]. More precisely, we consider the following
randomized policy: each time the system reaches state (0, 0), the base station will choose
nλ− with probability μ and nλ+ with probability 1 − μ. The chosen policy will be followed
until the next choice. We denote such policy as nλ and conclude that nλ is λ-optimal under
any μ ∈ [0, 1].

Appendix J. Proof of Proposition 6

The value function V(x) and Vi(xi)must satisfy their own Bellman equations. More precisely

V(x) + θ = min
a∈AN(−1)

{
C(x, a) + ∑

x′
Pr(x′ | x, a)V(x′)

}
,

Vi(xi) + θi = min
ai∈{0,1}

⎧⎨⎩C(xi, ai) + ∑
x′i

Pr(x′i | xi, ai)Vi(x′i)

⎫⎬⎭, (A20)

where θ and θi are the optimal values of MN(λ,−1) and Mi
1(λ,−1), respectively. We

recall from Section 2.3 that the users are independent when action a and current state x are
given. Thus

Pr(x′ | x, a) =
N

∏
i=1

Pr(x′i | x, a),

where x′ = (x′1, . . . , x′N). Then, we have
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∑
x′−{x′i}

Pr(x′ − {x′i} | x, a) = ∑
x′−{x′i}

∏
j �=i

Pr(x′j | x, a) = 1.

We also recall from Section 2.3 that the state of user i depends only on its previous state
and the action with respect to user i. Thus

Pr(x′i | x, a) = Pr(x′i | xi, ai).

Combined together, we obtain

N

∑
i=1

∑
x′i

Pr(x′i | xi, ai)Vi(x′i) =
N

∑
i=1

∑
x′i

⎡⎣ ∑
x′−{x′i}

∏
j �=i

Pr(x′j | x, a)

⎤⎦Pr(x′i | xi, ai)Vi(x′i)

=
N

∑
i=1

∑
x′i

⎛⎝ ∑
x′−{x′i}

N

∏
i=1

Pr(x′i | x, a)Vi(x′i)

⎞⎠
= ∑

x′
Pr(x′ | x, a)

(
N

∑
i=1

Vi(x′i)
)

.

(A21)

Then, we sum problem (A20) over all users which yields

N

∑
i=1

(Vi(xi) + θi) = min
a

⎧⎨⎩ N

∑
i=1

⎛⎝C(xi, ai) + ∑
x′i

Pr(x′i | xi, ai)Vi(x′i)

⎞⎠⎫⎬⎭.

We recall that C(x, a) = ∑N
i=1 C(xi, ai) by definition. Then, leveraging problem (A21),

we obtain
N

∑
i=1

Vi(xi) +
N

∑
i=1

θi = min
a∈AN(−1)

{
C(x, a) + ∑

x′
Pr(x′ | x, a)

(
N

∑
i=1

Vi(x′i)
)}

.

Since the solution to the Bellman equation is unique [21], we must have ∑N
i=1 Vi(xi) = V(x)

and ∑N
i=1 θi = θ. Then, we can conclude that it is optimal for MN(λ,−1) if each user

adopts its own optimal policy.

Appendix K. Proof of Theorem 3

In this proof, we class a policy as λ∗-optimal if it is optimal for MN(λ
∗,−1). In

Section 4.2, we ensure that, for each user, there exists at least one threshold policy that
yields a finite expected AoII. Therefore, we can conclude that, for RP, there exists at least
one policy that causes the expected AoII and the expected transmission rate to be both
finite. Then, according to Lemma 3.10 of [27], a policy is optimal for RP if

1. It is λ∗-optimal;
2. The resulting expected transmission rate is equal to M.

We first construct a policy φλ∗ that is λ∗-optimal. We recall from Proposition 6 that
a policy is λ∗-optimal if it consists of the optimal policies for each Mi

1(λ
∗,−1) where

1 ≤ i ≤ N. According to Theorem 2, for any i, there exist nλ∗− ,i and nλ∗
+ ,i that are both

optimal for Mi
1(λ

∗,−1). Then, we can construct the policy φλ∗ in the following way.

• For user i with nλ∗− ,i = nλ∗
+ ,i � nλ∗ ,i, the threshold policy nλ∗ ,i is used. Then, the de-

terministic policy nλ∗ ,i is optimal for Mi
1(λ

∗,−1) and

ρ̄i(λ∗) = ρ̄i(λ∗−) = ρ̄i(λ∗
+).

In this case, the choice of μi makes no difference.
• For user i with nλ∗− ,i �= nλ∗

+ ,i, the randomized policy nλ∗ ,i as detailed in Theorem 2 is used.
Then, for any μi ∈ [0, 1], the randomized policy nλ∗ ,i is optimal for Mi

1(λ
∗,−1) and
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ρ̄i(λ∗) = μi ρ̄
i(λ∗−) + (1 − μi)ρ̄

i(λ∗
+).

Combing the two cases, we conclude that φλ∗ = [nλ∗ ,1, . . . , nλ∗ ,N ] is λ∗-optimal under
any μi ∈ [0, 1]. Hence, as long as the chosen μi’s realize ∑N

i=1 ρ̄i(λ∗) = M, we can conclude
that the randomized policy φλ∗ is optimal for RP.

Appendix L. Proof of Proposition 8

We notice that Mi
1(λ

∗,−1) coincides with the decoupled model studied in Section 4.2.
Therefore, we can use the results in Section 4.2 to prove the properties. Since the users share
the same structure, we ignore the user index i for simplicity. According to the definition of
Ix, we have

Ix = ∑
x′

Px,x′(0)V(x′)− ∑
x′

Px,x′(1)V(x′)− λ∗

= −ΔV(x).

Leveraging the results in the proof of Proposition 1, we have the following

• For state x = (0, r̂), Ix = −λ∗.
• For state x = (s, 0) where s > 0, Ix = −λ∗ − p0

e (1− 2p)ω where ω = (1−γ)[V(0, 0)−
V(s + 1, 0)] + γ[V(0, 1)− V(s + 1, 1)] ≤ 0.

• For state x = (s, 1) where s > 0, Ix = −λ∗ − (1 − p1
e )(1 − 2p)ω.

From the above three cases, we can easily conclude that Ix ≥ −λ∗ and the equality
holds when r̂ = p0

e = 0 or s = 0. As is proven in Corollary 2, V(x) is non-decreasing in s.
Hence, we can conclude that Ix is also non-decreasing in s. To show that Ix is monotone in
r̂, we consider two states x1 = (s, 1) and x2 = (s, 0). Then, we have

Ix2 − Ix1 = ΔV(s, 1)− ΔV(s, 0) = (1 − p1
e − p0

e )(1 − 2p)ω ≤ 0.

Therefore, we can conclude that Ix is non-decreasing in r̂.

Appendix M

Algorithm A1 Improved Relative Value Iteration
Require:

MDP M = (X ,P ,A, C)
Convergence Criteria ε

1: procedure RELATIVEVALUEITERATION(M,ε)
2: Initialize V0(x) = 0; ν = 0
3: Choose xre f ∈ X arbitrarily
4: while Vν is not converged (RVI converges when the maximum difference between

the results of two consecutive iterations is less than ε) do
5: for x = (s, r̂) ∈ X do
6: if ∃ active state (s1, r̂1) s.t. s1 ≤ s and r̂1 ≤ r̂ then
7: a∗(x) = 1
8: Qν+1(x) = C(x, 1) + ∑x′ Pxx′(1)Vν(x′)
9: else

10: for a ∈ A do
11: Hx,a = C(x, a) + ∑x′ Pxx′(a)Vν(x′)
12: a∗(x) = arg mina{Hx,a}
13: Qν+1(x) = Hx,a∗

14: for x ∈ X do
15: Vν+1(x) = Qν+1(x)− Qν+1(xre f )

16: ν = ν + 1
return n ← a∗(x)
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Algorithm A2 Bisection Search
Require:

Maximum updates per transmission attempt M
MDP MN(λ,−1) = (XN ,AN(−1),PN , CN(λ))
Tolerance ξ
Convergence criteria ε

1: procedure BISECTIONSEARCH(MN(λ,−1), M, ξ, ε)
2: Initialize λ− = 0; λ+ = 1
3: φλ+ ← (MN(λ+,−1), ε) using Section 5.1 and Proposition 6
4: ρ̄(λ+) ← φλ+ using Proposition 2
5: while ρ̄(λ+) ≥ M do
6: λ− = λ+; λ+ = 2λ+

7: φλ+ ← (MN(λ+,−1), ε) using Section 5.1 and Proposition 6
8: ρ̄(λ+) ← φλ+ using Proposition 2

9: while λ+ − λ− ≥ 2ξ do

10: λ = λ++λ−
2

11: φλ ← (MN(λ,−1), ε) using Section 5.1 and Proposition 6
12: ρ̄(λ) ← φλ using Proposition 2
13: if ρ̄(λ) > M then
14: λ− = λ
15: else
16: λ+ = λ

return (λ∗
+, λ∗−) ← (λ+, λ−)
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Abstract: We study a general setting of gossip networks in which a source node forwards its measure-
ments (in the form of status updates) about some observed physical process to a set of monitoring
nodes according to independent Poisson processes. Furthermore, each monitoring node sends sta-
tus updates about its information status (about the process observed by the source) to the other
monitoring nodes according to independent Poisson processes. We quantify the freshness of the
information available at each monitoring node in terms of Age of Information (AoI). While this
setting has been analyzed in a handful of prior works, the focus has been on characterizing the
average (i.e., marginal first moment) of each age process. In contrast, we aim to develop methods
that allow the characterization of higher-order marginal or joint moments of the age processes in
this setting. In particular, we first use the stochastic hybrid system (SHS) framework to develop
methods that allow the characterization of the stationary marginal and joint moment generating
functions (MGFs) of age processes in the network. These methods are then applied to derive the
stationary marginal and joint MGFs in three different topologies of gossip networks, with which
we derive closed-form expressions for marginal or joint high-order statistics of age processes, such
as the variance of each age process and the correlation coefficients between all possible pairwise
combinations of age processes. Our analytical results demonstrate the importance of incorporating
the higher-order moments of age processes in the implementation and optimization of age-aware
gossip networks rather than just relying on their average values.

Keywords: Age of Information; information freshness; gossip networks; stochastic hybrid systems

1. Introduction

Timely delivery of status updates is crucial for enabling the operation of many emerg-
ing Internet of Things (IoT)-based real-time status updating systems [1]. The concept of
AoI was introduced in [2] to quantify the freshness of information available at some node
about a physical process as a result of status update receptions over time. In particular,
for a single source of information queueing theoretic model in which status updates about
a single physical process are generated randomly at a transmitter node and are then sent to
a destination node through a single server, the AoI at the destination was defined in [2] as
the following random process: x(t) = t − u(t), where u(t) is the generation time instant
of the latest status update received at the destination by a time t. Assuming that the AoI
process is ergodic, in [2], the stationary average value of the AoI under the first-come-first-
serve (FCFS) queueing discipline was derived by leveraging the properties of the AoI’s
sample functions and applying appropriate geometric arguments. Although this geometric
approach has been considered in a series of subsequent prior works [3–13] to analyze the
marginal distributional properties of AoI or peak AoI (an AoI-related metric introduced
in [3] to capture the peak values of AoI over time) for adaptations of the queueing model
studied in [2], it often requires tedious calculations of joint moments that limit its tractability
in analyzing more sophisticated queueing models or disciplines.

Motivated by the above limitations of the geometric approach to AoI analysis, the au-
thors of [14,15] developed an SHS-based framework to allow the analysis of the marginal
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distributional properties of each AoI process (in a network with multiple AoI processes)
through the characterization of its stationary marginal moments and MGF. Furthermore,
by using the notion of tensors, the authors of [16] generalized the analysis in [14,15]
and developed an SHS-based general framework that facilitates the analysis of the joint
distributional properties of an arbitrary set of AoI processes in a network through the
characterization of their stationary joint moments and MGFs. In the piecewise linear SHS
model with linear reset maps considered in the analyses in [14–16], the discrete state of the
system q(t) is modeled as a finite-state, continuous-time Markov chain, and the continuous
state of the system is modeled using the vector x(t), which contains the AoI or age pro-
cesses at different nodes in the network. When a transition l occurs in q(t) (as a result of
status update generation or reception at one of the nodes in the network), the continuous
state is updated according to the following linear mapping of x(t): x′(t) = x(t)Al , where
x′(t) is the updated version of x(t) and Al is the reset mapping matrix associated with
a transition l. Additionally, in the absence of a transition in q(t), the age processes in
x(t) grow at a unit rate with time, which yields piecewise linear age processes over time.
Based on this description of the piecewise linear SHS model with linear reset maps, one
can realize that the frameworks in [14–16] are not applicable to age analysis in classes of
status-updating systems where it is not possible for every transition l in q(t) to express the
updated value of each age process in the network as a linear combination of the age pro-
cesses in x(t). A popular class of such systems is the gossip-based status-updating system,
where each node in the network randomly shares its information status over time with the
other nodes [17,18]. Here, when there is a transition caused by a status update reception at
node j from node i, the updated value of the age process at node j is given by the minimum
between the values of the age processes at nodes i and j. As a result, there have been a
handful of recent efforts for developing new SHS-based methods that are suitable for age
analysis in such gossip networks [19,20]. However, the methods developed thus far have
been limited to the characterization of the stationary marginal first moment (average value)
of each age process in the network. In this paper, we develop new SHS-based methods
that allow the evaluation of the stationary marginal or joint high-order moments of the age
processes in gossip networks through the characterization of their stationary marginal or
joint MGFs.

1.1. Related Work

The literature relevant to this paper can be categorized into the following two cate-
gories: (1) prior analyses of AoI applying the SHS approach with linear reset maps and
(2) prior analyses of AoI in gossip networks. We now discuss the relevant prior work in
these two directions.

Analyses of AoI applying the SHS approach with linear reset maps. The SHS approach with
linear reset maps developed in [14,15] has been applied to characterize the marginal distri-
butional properties of AoI under a variety of system settings or queueing disciplines [21–33].
In particular, the average AoI was characterized for single-source systems in [21,22] and
multi-source systems in [23–27], whereas the MGF of AoI was derived for single-source
systems in [28,29], two-source systems in [30], and multi-source systems in [31–33]. Note
that a multi-source system refers to the set-up where a transmitter has multiple sources
of information generating status updates about multiple physical processes. The authors
of [21] derived the average AoI under the last-come-first-serve (LCFS) with preemption
in service queueing discipline when the transmitter contained multiple parallel servers.
Furthermore, the authors of [22] derived the average AoI under the LCFS with preemption
in service queueing discipline when the transmitter contained multiple servers in series
or there existed a series of nodes between the transmitter and destination nodes. In [23],
the average AoI was characterized under the priority LCFS with preemption in service or
waiting queueing model. The authors of [24] derived the average AoI in the presence of
packet delivery errors under stationary randomized and round-robin scheduling policies.
In [25], the average AoI was characterized under the LCFS with preemption in service
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queueing discipline when the transmitter contained multiple parallel servers. The authors
of [26] analyzed the average AoI for a network in which multiple transmitter-destination
pairs contended for the channel using the carrier sense multiple access scheme. In [27]
(in [30]), the average AoI (the MGF of AoI) was derived under several source-aware packet
management scheduling policies at the transmitter. For the case where the transmitter was
powered by energy harvesting (EH), the authors of [28,31] derived the MGF of AoI under
several queueing disciplines, including the LCFS with and without preemption in service
or waiting strategies. On the other hand, the authors of [16,34] applied their SHS-based
framework (developed to allow the analysis of the joint distributional properties of AoI
processes in networks) to characterize the joint MGF of an arbitrary set of AoI processes in a
multi-source updating system under non-preemptive and source-agnostic or source-aware
preemptive-in-service queueing disciplines.

Analyses of AoI in gossip networks. There are only a handful of recent works focusing
on the analysis or optimization of AoI and its variants in gossip networks [19,20,35–41].
For a general setting of gossip networks, the author of [19,20] first developed SHS-based
methods for the evaluation of the average AoI and the average version age at each node
in the network. Note that the version age is a discrete form of AoI defined as the number
of versions where the current status of information at a node is out of date compared
with the current status of the original source of information. The authors of [35] applied
the results of [20] to derive the average version age at each node in several topologies of
clustered gossip networks and characterized the average version age scaling as a function
of the network size. The authors of [36] extended the SHS-based method developed in [19]
for the evaluation of the average AoI in the setting where a timestomping adversary is
present and then obtained the average AoI scaling for several network topologies. In [37],
each node was assumed to have the ability to estimate the information at the source by
applying the majority rule to the information received from the other nodes, and an error
metric was introduced to quantify the average percentage of nodes that could accurately
obtain the most up-to-date information. The authors of [38–40] developed gossip protocols
with the objective of improving the average version age scaling. In [41], the problem of
optimizing the average version age was formulated as a Markov decision process for a
setting where an energy harvesting (EH)-powered sensor was sending status updates to
an aggregator with caching capabilities (which served the requests of a gossip network),
and the structural properties of the optimal policy were analytically characterized. Different
from the analyses in [19,20,35–41], which were focused on characterizing or optimizing the
stationary marginal first moment of AoI or some other AoI-related metrics, this paper is
the first to develop SHS-based methods that allow the characterization of the stationary
marginal or joint MGFs of AoI processes in gossip networks.

Before delving into more detail about our contributions, it is worth noting that aside
from the above queueing theory-based analyses of AoI, there have been efforts to evaluate
and optimize AoI or some other AoI-related metrics in a variety of communication systems
that deal with time-sensitive information (see [42] for a comprehensive book and [43] for a
recent survey). For instance, AoI has been studied in the context of age-optimal transmission
scheduling policies [44–52], multi-hop networks [53–55], broadcast networks [56,57], ultra-
reliable low-latency vehicular networks [58], unmanned aerial vehicle (UAV)-assisted com-
munication systems [59–61], Internet of Underwater Things networks [62], reconfigurable
intelligent surface (RIS)-assisted communication systems [63,64], EH systems [65–74], large-
scale analysis of IoT networks [75–77], remote estimation [78,79], information-theoretic
analysis [80–83], timely source coding [84,85], cache updating systems [86–88], economic
systems [89], and timely communication in federated learning [90,91].

1.2. Contributions

A general setting of gossip networks is analyzed in this paper, where a source node
forwards its measurements (in the form of status updates) about some observed physical
process to a set of monitoring nodes according to independent Poisson processes. Further-
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more, each monitoring node sends status updates about its information status (about the
process observed by the source) to the other monitoring nodes according to independent
Poisson processes. We quantify the freshness of the information available at each monitor-
ing node in terms of AoI. The continuous state of the system is then formed by the AoI or
age processes at different monitoring nodes. For this set-up, our main contributions are
listed below.

Developing SHS-based methods for the evaluation of the MGF of age of gossip in networks. For the
general setting of gossip networks described above, we use the SHS framework to characterize
(1) the stationary marginal MGF of each age process in the network and (2) the stationary joint
MGF of any two arbitrarily selected age processes in the network. In particular, we first construct
two classes of test functions (functions whose expected values are quantities of interest)
that are suitable for analyzing the marginal or joint MGF. By applying Dynkin’s formula
to each test function, we derive two systems of first-order ordinary differential equations
characterizing the temporal evolution of the marginal and joint MGFs, from which the
stationary marginal and joint MGFs are evaluated. To the best of our knowledge, this paper
makes the first attempt at developing SHS-based methods for the characterization of the
marginal or joint MGF of age of gossip in networks.

Analysis of the stationary marginal or joint MGF of age of gossip in three different network
topologies. We apply our developed SHS-based methods to study the marginal or joint
distributional properties of age processes in the following three network topologies: (1) a
serially-connected topology, (2) a parallelly-connected topology, and (3) a clustered topol-
ogy. For each of these topologies, we derive close-form expressions for (1) the stationary
marginal MGF of the age process at each node and (2) the stationary joint MGFs of all
possible pairwise combinations of the age processes.

System design insights. Using the MGF expressions derived for each network topology
considered in this paper, we obtain closed-form expressions for the following quantities:
(1) the stationary marginal first and second moments of each age process, (2) the variance
of each age process, and (3) the correlation coefficients between all possible pairwise
combinations of the age processes. For these derived quantities, we characterize their
structural properties in terms of their convexity and monotonic nature with respect to the
status updating rates and further provide asymptotic results showing their behaviors when
each of the status updating rates becomes small or large. A key insight drawn from our
analysis is that it is crucial to incorporate the higher-order moments of age processes in the
implementation or optimization of age-aware gossip networks rather than just relying on
the average values of the age processes (as has been performed in the existing literature
thus far). This insight promotes the importance of the SHS-based methods developed in
this paper for the characterization of the marginal or joint MGFs of different age processes
in a general setting of gossip networks.

1.3. Organization

The rest of this paper is organized as follows. Section 2 presents the system model
and the problem statement. Afterward, in Section 3, we develop the SHS-based methods
that allow the evaluation of the stationary marginal or joint high-order moments of the age
processes in gossip networks through the characterization of their stationary marginal or
joint MGFs. Section 4 applies the SHS-based methods developed in Section 3 to derive the
marginal or joint MGFs of age processes at different nodes in three different connected net-
work settings. For each considered connected network setting, we further use the derived
MGF expressions to obtain the marginal or joint high-order statistics of age processes such
as the variance of each age process and the correlation coefficients between all possible
pairwise combinations of the age processes. Finally, Section 5 concludes the paper.

2. System Model and Problem Statement

We consider a general setting of gossip networks where a source node (referred to
as node 0) provides its measurements about some observed physical process for a set of
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nodes N = {1, 2, · · · , N} in the form of status updates. In particular, all the nodes in N are
tracking the age of the process observed by the source, and the status updates sent by node
0 to node j ∈ N are assumed to follow an independent Poisson process with a rate λ0j.
Aside from that, node i ∈ N sends updates about its information status (about the process
observed by the source) to each node j ∈ N \ {i} according to an independent Poisson
process with a rate λij. When λij > 0, we say that nodes i and j are connected to each other.
Since we allow each λij (i ∈ {0} ∪ N and j ∈ N ) to take a value in [0, ∞], we refer to the
above setting as an arbitrarily connected gossip network. Note that this gossip network
setting is of interest in many practical networks, such as low-latency vehicular networks
and UAV-assisted communication networks. The freshness of status of the information
available at each node is quantified in terms of AoI. Let xi(t) denote the AoI process (or
equivalently the age process) at node i ∈ N . Assuming that node 0 always maintains a
fresh status of information about the observed physical process, the age or AoI at node
j ∈ N is reset to zero whenever it receives a status update from node 0. Furthermore, when
node j ∈ N receives a status update from node i ∈ N \ {j} at time t, its age xj(t) is reset to
the age of node i xi(t) only if xi(t) is smaller than xj(t). To summarize, when node j ∈ N
receives a status update from node i ∈ {0} ∪ N , the age at node k ∈ N is updated as
follows:

x′k(t) =

⎧⎪⎨⎪⎩
0, if i = 0 and k = j,
min

[
xj(t), xi(t)

]
, if i ∈ N and k = j,

xk(t), otherwise.

(1)

For an arbitrary set S ⊆ N , define xS(t) = min
i∈S

xi(t) as the age or AoI process as-

sociated with S (or simply the age or AoI of S). For the above gossip network setting,
the method developed in [19] has been limited to the characterization of the stationary
marginal first moment of xS(t) (i.e., the stationary average value of xS(t)). In this paper,
our prime objective is to develop a method that allows characterizing (1) the stationary
marginal higher-order moments of xS(t) and (2) the stationary joint high-order moments
of the two age processes associated with two arbitrary sets S1 and S2 (i.e., xS1(t) and xS2(t),
respectively). Note that we do not place any restrictions on the construction of S1 or S2.
For instance, they could even have common elements. Formally, we aim at characterizing
the stationary marginal MGF of xS(t) and the stationary joint MGF of xS1(t) and xS2(t),
which are of the following forms: lim

t→∞
E[exp[nxS(t)]] and lim

t→∞
E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
,

respectively, where n, n1, n2 ∈ R and S, S1, S2 ⊆ N . As will be evident from the technical
sections shortly, the characterization of such MGFs allows one to derive the marginal or
joint high-order statistics of the AoI processes at different nodes in the network, such as the
variance of each AoI process and the correlation coefficients between all possible pairwise
combinations of the AoI processes. Given the generality of the system setting considered in
this paper, the importance of our method lies in the fact that it is applicable to the marginal
or joint analysis of AoI processes for an arbitrary structured gossip network setting.

3. MGF Analysis of Age in Arbitrarily Connected Gossip Networks

In this section, we first formulate the problem at hand as an SHS. We then use the SHS
framework to characterize (1) the stationary marginal MGF of the age process associated
with an arbitrary set S ⊆ N (i.e., xS(t)) and (2) the stationary joint MGF of the two age
processes associated with two arbitrary sets S1 ⊆ N and S2 ⊆ N (i.e., xS1(t) and xS2(t),
respectively) for the arbitrarily connected gossip network setting described in Section 2.

The SHS framework is used to analyze hybrid queueing systems that can be modeled
by a combination of discrete and continuous state parameters. For the gossip network
setting considered in this paper, the continuous state of the system is modeled using the
row vector x(t) = [x1(t) x2(t) · · · xN(t)] containing the AoI or age processes at different
nodes in the network. Furthermore, since the status updates sent by each node in the
network to the other nodes are assumed to follow independent Poisson processes, it is
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sufficient to model the discrete state of the system as a singleton set. To complete the
description of an SHS, one needs to define a set of transitions L along with the continuous
and discrete states of the system. This set L refers to changes in either the continuous state
or the discrete state. Since the discrete state of the SHS under consideration is a singleton
set, the set L corresponds to only the changes in the continuous state of the system. In our
system setting, a change in the continuous state of the system occurs when there is a status
update reception at some node in the network. Furthermore, as long as there is no status
update reception at any of the nodes, the AoI or age at each node grows linearly with time
(which yields piecewise linear age processes over time); in other words, ẋ(t) = 1N , where
1N is the row vector [1 · · · 1] ∈ R1×N . By inspecting the age updating rule in (1), the set L
can be defined as follows:

L = {(0, j) : j ∈ N} ∪ {(i, j) : i, j ∈ N}. (2)

For the above SHS-based formulation, we derive two systems of linear equations for
evaluating the stationary marginal MGF lim

t→∞
E[exp[nxS(t)]] and the stationary joint MGF

lim
t→∞

E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
. The description of these systems of equations and the

presentation of the subsequent results require defining the following quantities:

v(n)S (t) = E[exp[nxS(t)]], v̄(n)S = lim
t→∞

v(n)S , ∀S ⊆ N , (3)

v(n1,n2)
S1,S2

(t) = E
[
exp

[
n1xS1(t) + n2xS2(t)

]]
, v̄(n1,n2)

S1,S2
= lim

t→∞
v(n1,n2)

S1,S2
, ∀S1, S2 ⊆ N , (4)

v(m)
S (t) = E[xm

S (t)], v̄(m)
S = lim

t→∞
v(m)

S , ∀S ⊆ N , (5)

v(m1,m2)
S1,S2

(t) = E
[

xm1
S1
(t)xm2

S2
(t)]

]
, v̄(m1,m2)

S1,S2
= lim

t→∞
v(m1,m2)

S1,S2
, ∀S1, S2 ⊆ N , (6)

where v(m)
S is the marginal mth moment of the age process xS(t) and v(m1,m2)

S1,S2
is the joint

moment of the two age processes xS1(t) and xS2(t). From (3) and (5), v(1)S (t) may generally

refer to v(n)S (t)|n=1 or v(m)
S (t)|m=1. To eliminate this conflict, the convention that v(i)S (t)

for an integer i refers to v(m)
S (t) at m = i is maintained here. The previous argument also

applies to v(n1,n2)
S1,S2

(t) and v(m1,m2)
S1,S2

(t) in (4) and (6), respectively, where v(i,j)S1,S2
(t), for integers

i and j, refers to v(m1,m2)
S1,S2

(t) at m1 = i and m2 = j. Furthermore, following the notations
in [19], we define the update rate of node i into set S and the set of updating neighbors of
S as

λi(S) =

{
∑j∈S λi,j, if i /∈ S,
0, otherwise,

(7)

N(S) = {i ∈ N : λi(S) > 0}. (8)

We are now ready to present the two systems of linear equations for the evaluation
of v̄(n)S and v̄(n1,n2)

S1,S2
in the following two theorems:
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Theorem 1. For an arbitrarily connected gossip network, there exists a threshold δ > 0 such that
for n ∈ [0, δ), the stationary marginal MGF of AoI of set S ⊆ N is given by

v̄(n)S =
λ0(S) + ∑i∈N (S) λi(S)v̄

(n)
S∪{i}

λ0(S) + ∑i∈N (S) λi(S)− n
. (9)

Furthermore, for m ≥ 1, the stationary marginal m-th moment of AoI of set S ⊆ N is given
by

v̄(m)
S =

mv̄(m−1)
S + ∑i∈N (S) λi(S)v̄

(m)
S∪{i}

λ0(S) + ∑i∈N (S) λi(S)
. (10)

Proof of Theorem 1. See Appendix A.

Theorem 2. For an arbitrarily connected gossip network, there exists a threshold δ > 0 such that
for 0 ≤ n1 + n2 < δ, the stationary joint MGF of the two AoI processes associated with the two
sets S1 and S2 is given by

v̄(n1,n2)
S1,S2

=
1

λ0(S1 ∪ S2) + ∑i∈N\(S1∩S2) λi(S1 ∩ S2) + ∑i∈N\S1
λi(S1 \ S2) + ∑i∈N\S2

λi(S2 \ S1)− (n1 + n2)
×

[
λ0(S1 ∩ S2)

+ λ0(S1 \ S2)v̄
(n2)
S2

+ λ0(S2 \ S1)v̄
(n1)
S1

+ ∑
i∈N\S1

λi(S1 \ S2)v̄
(n1,n2)
S1∪{i},S2

+ ∑
i∈N\S2

λi(S2 \ S1)v̄
(n1,n2)
S1,S2∪{i}

+ ∑
i∈N\(S1∪S2)

λi(S1 ∩ S2)v̄
(n1,n2)
S1∪{i},S2∪{i} + ∑

i∈S1\S2

λi(S1 ∩ S2)v̄
(n1,n2)
S1,S2∪{i} + ∑

i∈S2\S1

λi(S1 ∩ S2)v̄
(n1,n2)
S1∪{i},S2

]
. (11)

Furthermore, for m1, m2 ≥ 1, the stationary joint (m1, m2)-th moment of the AoI processes
associated with the two sets S1 and S2 is given by

v̄(m1,m2)
S1,S2

=
1

λ0(S1 ∪ S2) + ∑i∈N\(S1∩S2) λi(S1 ∩ S2) + ∑i∈N\S1
λi(S1 \ S2) + ∑i∈N\S2

λi(S2 \ S1)
×

[
m1v̄(m1−1,m2)

S1,S2

+ m2v̄(m1,m2−1)
S1,S2

+ ∑
i∈N\S1

λi(S1 \ S2)v̄
(m1,m2)
S1∪{i},S2

+ ∑
i∈N\S2

λi(S2 \ S1)v̄
(m1,m2)
S1,S2∪{i} + ∑

i∈N\(S1∪S2)

λi(S1 ∩ S2)v̄
(m1,m2)
S1∪{i},S2∪{i}

+ ∑
i∈S1\S2

λi(S1 ∩ S2)v̄
(m1,m2)
S1,S2∪{i} + ∑

i∈S2\S1

λi(S1 ∩ S2)v̄
(m1,m2)
S1∪{i},S2

]
. (12)

Proof of Theorem 2. See Appendix B.

Remark 1. Note that the stationary marginal MGF of S1 or S2 can be obtained from the stationary
joint MGF in (11). In particular, when n2 = 0 and S2 = ∅, v̄(n1,n2)

S1,S2
reduces to

v̄(n1,0)
S1,∅ =

λ0(S1) + ∑i∈N (S1)
λi(S1)v̄

(n)
S1∪{i}

λ0(S1) + ∑i∈N (S1)
λi(S1)− n1

(a)
= v̄(n1)

S1
, (13)

where step (a) follows from (9). Similarly, one can observe that v̄(0,n2)
∅,S2

= v̄(n2)
S2

.
Furthermore, when m = 1, (10) reduces to ([19] Theorem 1) characterizing the stationary

marginal first moment of the AoI of set S ⊆ N .

It is worth highlighting that the generality of Theorems 1 and 2 lies in the fact that
they allow one to investigate the stationary marginal or joint MGFs of the age processes
at different nodes in an arbitrarily connected gossip network. This opens the door for
the application of Theorems 1 and 2 to characterize the marginal or joint high-order
moments of age processes for different configurations or topologies of gossip networks
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studied in the literature, which have only been analyzed in terms of the marginal first mo-
ments of age processes (i.e., average age values) until now. Furthermore, the expressions in
(10) and (12) provide a straightforward way for the numerical evaluation of the stationary
marginal or joint high-order moments.

4. Applications of Theorems 1 and 2

In this section, we first apply Theorems 1 and 2 to understand the distributional
properties of the age processes in the two canonical settings depicted in Figure 1 (i.e., the
the serially and parallelly-connected network settings). We then aim to analyze a more
complicated network setting, which was chosen to be the clustered gossip network topology
depicted in Figure 2. Our choice for the clustered gossip network setting was inspired
by the recent interest in analyzing its different topologies in terms of the marginal first
moment of each age process (average age) in the network [35].

Figure 1. (a) A serially-connected network setting. (b) A parallelly-connected network setting.

Figure 2. A clustered gossip network topology consisting of C clusters such that the status updating
rate from node 0 to the c-th cluster is λc.

4.1. Serially-Connected Networks

Theorem 3. For the serially-connected network in Figure 1a, the stationary marginal MGFs of the
AoI processes at nodes 1 and 2 are respectively given by

v̄(n){1} =
λ0

λ0 − n
, (14)
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v̄(n){2} =
λ0λ

(λ0 − n)(λ − n)
. (15)

Additionally, the stationary joint MGF of the two AoI processes at nodes 1 and 2 is given by

v̄(n1,n2)
{2},{1} =

λ0λ

λ0 + λ − (n1 + n2)

(
λ0

(λ0 − n1)(λ − n1)
+

1
λ0 − (n1 + n2)

)
. (16)

Proof of Theorem 3. See Appendix C.

Proposition 1. For the serially-connected network in Figure 1a, the first moment, second moment,
and variance of the AoI process at each node are given by

v̄(1){1} = λ−1
0 , v̄(2){1} = 2λ−2

0 , var[x1(t)] = λ−2
0 , (17)

v̄(1){2} =
1

λ0
+

1
λ

, v̄(2){2} = 2

(
1

λ2
0
+

1
λ0λ

+
1

λ2

)
, var[x2(t)] =

1
λ2

0
+

1
λ2 . (18)

Furthermore, the correlation coefficient between the AoI processes at nodes 1 and 2 can be
expressed as

cor[x1(t), x2(t)] =
λ2

(λ0 + λ)
√

λ2
0 + λ2

. (19)

Proof of Proposition 1. See Appendix D.

Remark 2. Note that the expressions of the stationary marginal MGFs in Theorem 3 and the
stationary marginal moments in Proposition 1 match their corresponding ones for the preemptive
line networks analyzed in [15].

Remark 3. Note that the stationary moments and variance of the age process at node 1 in (17)
are univariate functions of λ0. This happens because node 1 is directly connected to node 0. This
argument will also apply to: (i) the expressions derived for the age processes at nodes 1 and 2 in the
parallelly-connected network in Figure 1b, and (ii) the expressions derived for the age process at
node 1 inside each cluster of the clustered gossip network in Figure 2.

Remark 4. Note that the stationary moments and variance of the age process at node 2 in (18) are
invariant to exchanging λ and λ0. These quantities are also jointly convex functions in (λ0, λ),
where the minimum value (zero) of each function is achieved at λ0 = λ = ∞. Furthermore, for a
given λ or λ0, each quantity in (18) is a monotonically non-increasing function with respect to λ0
or λ. This can also be observed in Figure 3.

Remark 5. For a given λ, cor[x1(t), x2(t)] in (19) monotonically decreases as a function of λ0
in the form lim

λ0→0
cor[x1(t), x2(t)] = 1 until it approaches lim

λ0→∞
cor[x1(t), x2(t)] = 0. On the

other hand, for a given λ0, cor[x1(t), x2(t)] monotonically increases as a function of λ in the form
lim
λ→0

cor[x1(t), x2(t)] = 0 until it approaches lim
λ→∞

cor[x1(t), x2(t)] = 1. This can also be observed

in Figure 4.
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4.2. Parallelly-Connected Networks

Theorem 4. For the parallelly-connected network in Figure 1b, the stationary marginal MGFs of
the AoI processes at nodes 1, 2, and 3 are given by

v̄(n){1} = v̄(n){2} =
λs

λs − n
, (20)

v̄(n){3} =
λs(2λs − n)

[
λ1(λs + λ1 − n) + λ2(λs + λ2 − n)

]
+ 2λsλ1λ2(2λs + λ1 + λ2 − 2n)

(2λs − n)(λ1 + λ2 − n)(λs + λ1 − n)(λs + λ2 − n)
. (21)
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Additionally, the stationary joint MGF of the two AoI processes at nodes 1 and 3 is given by

v̄(n1,n2)
{3},{1} =

∑4
i=1 αi(n1, n2)

[λs + λ1 + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]

× 1
(λs − n2)(λ1 + λ2 − n1)(2λs − n1)(λs + λ2 − n1)(λs + λ1 − n1)

, (22)

where

α1(n1, n2) =λ2
s (λs − n2)[λs + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)]

×
[
(2λ2 − n1)

[
λ1(λs + λ1 − n1) + λ2(λs + λ2 − n1)

]
+ 2λ1λ2(2λs + λ1 + λ2 − 2n1)

]
, (23)

α2(n1, n2) = λ2
s λ2(λ1 + λ2 − n1)(2λs − n1)(λs + λ1 − n1)(λs + λ2 − n1)[2λs + λ1 − (n1 + n2)][λs + λ1 + λ2 − (n1 + n2)], (24)

α3(n1, n2) = λ2
s λ2(λ1 + λ2 − n1)(λs + λ2 − n1)(2λs + 2λ1 − n1)(λs − n2)[λs + λ2 − (n1 + n2)][2λs − (n1 + n2)], (25)

α4(n1, n2) =λsλ1(λs − n2)(λ1 + λ2 − n1)(2λs − n1)(λs + λ2 − n1)(λs + λ1 − n1)

×
[[

2λs + λ1 − (n1 + n2)
][

2λs + λ2 − (n1 + n2)
]
+ λ2

[
λs + λ2 − (n1 + n2)

]]
. (26)

Proof of Theorem 4. See Appendix E.

Proposition 2. For the parallelly-connected network in Figure 1b, the first moment, second moment,
and variance of the AoI process at each node are given by

v̄(1){1} = v̄(1){2} = λ−1
s , v̄(2){1} = v̄(2){2} = 2λ−2

s , var[x1(t)] = var[x2(t)] = λ−2
s , (27)

v̄(1){3} =
2λs(λs + λ1)(λs + λ2) + λ1(2λs + λ2)(λs + λ1) + λ2(2λs + λ1)(λs + λ2)

2λs(λs + λ1)(λs + λ2)(λ1 + λ2)
, (28)

v̄(2){3} =
∑6

i=0 γiλ
i
s

2λ2
s (λ1 + λ2)

2(λs + λ1)
2(λs + λ2)

2 , (29)

var[x3(t)] =
∑6

i=0 ηiλ
i
s

4λ2
s (λ1 + λ2)

2(λs + λ1)
2(λs + λ2)

2 , (30)

where

γ6 = 4, γ5 = 12(λ1 + λ2), γ4 = 4
[
4(λ1 + λ2)

2 + λ1λ2

]
, γ3 = 12(λ1 + λ2)

3,

γ2 = (λ1 + λ2)
2
[
4(λ1 + λ2)

2 + λ1λ2

]
, γ1 = 3λ1λ2(λ1 + λ2)

3, γ0 = λ2
1λ2

2(λ1 + λ2)
2,

η6 = 4, η5 = 8(λ1 + λ2), η4 = 8
[
(λ1 + λ2)

2 + λ1λ2

]
, η3 = 4(λ1 + λ2)

(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

η2 = 2(λ1 + λ2)
2
(

2λ2
1 + λ1λ2 + 2λ2

2

)
, η1 = 2λ1λ2(λ1 + λ2)

3, η0 = λ2
1λ2

2(λ1 + λ2)
2.
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Furthermore, the correlation coefficient between the AoI processes at nodes 1 and 3 can be
expressed as

cor[x1(t), x3(t)] =
λ1(λ1 + λ2)

2(λs + λ1 + λ2)(2λs + λ1)(λs + λ2)
√

∑6
i=0 δiλ

i
s

×
[
8λ4

s + λ3
s (12λ1 + 7λ2) + 2λ2

s (λ1 + 2λ2)(2λ1 + λ2) + λsλ2

(
3λ2

1 + 5λ1λ2 + λ2
2

)
+ λ1λ2

2(λ1 + λ2)
]
, (31)

where

δ6 = 4, δ5 = 8(λ1 + λ2), δ4 = 8
[
(λ1 + λ2)

2 + λ1λ2

]
, δ3 = 4(λ1 + λ2)

(
2λ2

1 + 3λ1λ2 + 2λ2
2

)
,

δ2 = 2(λ1 + λ2)
2
(

2λ2
1 + λ1λ2 + 2λ2

2

)
, δ1 = 2λ1λ2(λ1 + λ2)

3, δ0 = λ2
1λ2

2(λ1 + λ2)
2.

Proof of Proposition 2. See Appendix F.

Remark 6. When λ1 or λ2 is zero, the parallelly-connected network reduces to a serially-connected
network with a single path from node 0 to node 3. Thus, in this case, the stationary moments
and variance of the age process at node 3 reduce to the corresponding expressions associated with
the age process at node 2 in the serially-connected network such that λ0 and λ are replaced by λs

and λ1 or λ2. On the other hand, when λ1 and λ2 approach ∞, we have lim
λ1→∞,λ2→∞

v̄(1){3} = 1
2λs

,

lim
λ1→∞,λ2→∞

v̄(2){3} =
1

2λ2
s
, and lim

λ1→∞,λ2→∞
var[x3(t)] = 1

4λ2
s
. Note that the stationary moments and

variance of x3(t) reduce to the ones associated with x{1,2}(t).

Remark 7. Note that the stationary moments and variance of the age process at node 3 in (28)–(30)
are invariant to exchanging λ1 and λ2. Furthermore, for a given (λs, λ2), (λs, λ1), or (λ1, λ2),
each quantity in (28)–(30) is a monotonically non-increasing function with respect to λ1, λ2, or λs.
This can also be observed in Figure 3.

Remark 8. For the same status updating rate from node 0 (i.e., λ0 = 2λs) and λ = λ1 = λ2, one
can compare the achievable age performance at node 3 in the parallelly-connected network with the
achievable age performance at node 2 in the serially-connected network using Propositions 1 and 2
as follows:

v̄(1){2} − v̄(1){3} =
λ0

2λ(λ0 + 2λ)
, (32)

v̄(2){2} − v̄(2){3} =
3λ2

0 + 4
(
λ2 + 2λ0λ

)
2λ2(λ0 + 2λ)2 , (33)

var[x2(t)]− var[x3(t)] =
3λ0(λ0 + 4λ)

4λ2(λ0 + 2λ)2 . (34)

By inspecting (32)–(34), one can see that these are positive quantities for any choice of values of
(λ0, λ). This certainly indicates that node 3 in the parallelly-connected network achieved a better age
performance than the one achievable by node 2 in the serially-connected network. The improvement
in the age performance at node 3 resulted from the existence of two status-updating paths from node
0 to node 3, as opposed to only a single path from node 0 to node 2 in the serially-connected network.
Furthermore, each quantity in (32)–(34) is a monotonically decreasing function of λ for a given λ0
such that its value approaches zero as λ → ∞. This can also be observed in Figure 3.
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Remark 9. Due to the symmetry in the configuration of the parallelly-connected network, note
that the correlation coefficient between x2(t) and x3(t) (i.e., cor[x2(t), x3(t)]) can be obtained by
replacing λ1 and λ2 with λ2 and λ1, respectively, in (31). Furthermore, for a given (λ1, λ2),
cor[x1(t), x3(t)] monotonically decreases as a function of λs from lim

λs→0
cor[x1(t), x3(t)] = 1

2 until

it approaches lim
λs→∞

cor[x1(t), x3(t)] = 0. On the other hand, for a given (λs, λ2), cor[x1(t), x3(t)]

monotonically increases as a function of λ1 from lim
λ1→0

cor[x1(t), x3(t)] = 0 until it approaches

lim
λ1→∞

cor[x1(t), x3(t)] =
4λ2

s+3λsλ2+λ2
2

2(λs+λ2)
√

4λ2
s+2λsλ2+λ2

2
. Finally, for a given (λs, λ1), one can deduce the

following asymptotic results: lim
λ2→0

cor[x1(t), x3(t)] =
λ2

1

(λs+λ1)
√

λ2
s+λ2

1
and lim

λ2→∞
cor[x1(t), x3(t)] =

λ1(λs+λ1)

2(2λs+λ1)
√

4λ2
s+2λsλ1+λ2

1
. Clearly, when λ2 = 0, there will only be a single status-updating path from

node 0 to node 3 (through node 1), and hence we observe that cor[x1(t), x3(t)] reduced to the same
expression as cor[x1(t), x2(t)] in (19) for the serially-connected network after replacing λ0 and λ with
λs and λ1, respectively. Some of the above insights can also be seen in Figure 4.

4.3. Clustered Gossip Networks

Theorem 5. For the clustered gossip network in Figure 2, the stationary marginal MGFs of the
AoI processes at nodes 1, 2, and 3 in the c-th cluster are respectively given by

v̄(n){1} =
λc

λc − n
, (35)

v̄(n){2} =
λcλ

(λc − n)(λ − n)
, (36)

v̄(n){3} =
λcλ2

(λc − n)(λ − n)2 . (37)

Additionally, the stationary joint MGF of each pair of AoI processes at nodes 1, 2, and 3
is given by

v̄(n1,n2)
{1},{2} =

λcλ[(λc + λ − n2)(λc − n2)− λcn1]

(λc − n2)(λ − n2)[λc + λ − (n1 + n2)][λc − (n1 + n2)]
, (38)

v̄(n1,n2)
{1},{3} =

λcλ2[λc + 2λ − (n1 + n2)]
3
[
λc[λc − (n1 + n2)][λc + 2λ − n1 − 2n2] + (λc − n2)(λ − n2)

2
]

(λc − n2)(λ − n2)
2[λc − (n1 + n2)][λc + λ − (n1 + n2)]

2[λc + 2λ − (n1 + n2)]
3 , (39)

v̄(n1,n2)
{2},{3} =

λcλ2 ∑4
i=1 βi(n1, n2)

(λc − n2)(λ − n2)
2[λc − (n1 + n2)][λ − (n1 + n2)][2λ − (n1 + n2)][λc + λ − (n1 + n2)]

2[λc + 2λ − (n1 + n2)]
2 , (40)

where

β1(n1, n2) = (λc − n2)(λ − n2)
2[λc + λ − (n1 + n2)]

2[λc + 2λ − (n1 + n2)]
2, (41)

β2(n1, n2) = λ2(λc − n2)(λ − n2)
2[λ − (n1 + n2)][3λc + 4λ − 3(n1 + n2)], (42)

β3(n1, n2) = λ(λc − n2)(λ − n2)
2[λ − (n1 + n2)][λc − (n1 + n2)][λc + λ − (n1 + n2)], (43)
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β4(n1, n2) = λλc[λ − (n1 + n2)][λc − (n1 + n2)]
[
[λc + 2λ − (n1 + n2)]

2[λc + λ − (n1 + n2)] + (λ − n2)[λc + λ − (n1 + n2)]
2

+ λ(λ − n2)[2λc + 3λ − 2(n1 + n2)]
]
. (44)

Proof of Theorem 5. See Appendix G.

Proposition 3. For the clustered gossip network in Figure 2, the first moment, second moment,
and variance of the AoI process at each node in the c-th cluster are given by

v̄(1){1} = λ−1
c , v̄(2){1} = 2λ−2

c , var[x1(t)] = λ−2
c , (45)

v̄(1){2} = λ−1
c + λ−1, v̄(2){2} = 2

(
λ−2

c + λ−1
c λ−1 + λ−2

)
, var[x2(t)] = λ−2

c + λ−2, (46)

v̄(1){3} = λ−1
c + 2λ−1, v̄(2){3} = 2

(
λ−2

c + 2λ−1
c λ−1 + 3λ−2

)
, var[x3(t)] = λ−2

c + 2λ−2. (47)

Furthermore, the correlation coefficient between each pair of nodes can be expressed as

cor[x1(t), x2(t)] =
λ2

(λc + λ)
√

λ2
c + λ2

, (48)

cor[x1(t), x3(t)] =
λ3

(λc + λ)2√2λ2
c + λ2

, (49)

cor[x2(t), x3(t)] =
λ4

c + 2λ3
c λ + 2λ2

c λ2 + 2λcλ3 + 2λ4

2(λc + λ)2√(λ2
c + λ2)(2λ2

c + λ2)
. (50)

Proof of Proposition 3. See Appendix H.

Proposition 4. Let Nc denote the set of nodes inside cluster c. For i, j ∈ {1, 2, · · · , C}, the two
age processes xNi (t) and xNj(t) are not correlated.

Proof of Proposition 4. See Appendix I.

Remark 10. From Proposition 3, one can deduce that v̄(1){1} ≤ v̄(1){2} ≤ v̄(1){3}, v̄(2){1} ≤ v̄(2){2} ≤ v̄(2){3},
and var[x1(t)] ≤ var[x2(t)] ≤ var[x3(t)] for any choice of values of λc and λ. This follows from
the fact that the configuration of each cluster in the clustered gossip network under consideration
is a uni-directional ring, where each node has a single status-updating path from node 0 passing
through its preceding node in the cluster.

Remark 11. Similar to Remark 4, note that the quantities in (46) and (47) associated with the age
processes at nodes 2 and 3 are jointly convex functions in (λc, λ), where the minimum value (zero)
of each function is achieved at λc = λ = ∞. Furthermore, for a given λ or λc, each quantity in
(46) and (47) is a monotonically non-increasing function with respect to λc or λ. This can also be
observed in Figure 5.

Remark 12. Note that the correlation coefficients in (48)–(50) are monotonically non-increasing
functions of λc for a given λ, whereas they are monotonically non-decreasing functions of λ
for a given λc. In particular, cor[x1(t), x2(t)] and cor[x1(t), x3(t)] monotonically increase
as functions of λ from lim

λ→0
cor[x1(t), x2(t)] = lim

λ→0
cor[x1(t), x3(t)] = 0 until they approach
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lim
λ→∞

cor[x1(t), x2(t)] = lim
λ→∞

cor[x1(t), x3(t)] = 1 and monotonically decrease as functions of

λc from lim
λc→0

cor[x1(t), x2(t)] = lim
λc→0

cor[x1(t), x3(t)] = 1 until they approach lim
λc→∞

cor[x1(t),

x2(t)] = lim
λc→∞

cor[x1(t), x3(t)] = 0. Additionally, cor[x2(t), x3(t)] monotonically increases as

a function of λ from lim
λ→0

cor[x2(t), x3(t)] = 1
2
√

2
until it approaches lim

λ→∞
cor[x2(t), x3(t)] = 1

and monotonically decreases as a function of λc from lim
λc→0

cor[x2(t), x3(t)] = 1 until it approaches

lim
λc→∞

cor[x2(t), x3(t)] = 1
2
√

2
. These insights can also be seen in Figure 6.
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Figure 5. Stationary first and second moments of age processes at the nodes inside the cth cluster
of the clustered gossip network topology. The simulated curves were obtained from the numerical
evaluation of the stationary marginal moments using (10) in Theorem 1.
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Figure 6. Correlation coefficients between age processes in the clustered gossip network topology.

Remark 13. Note that the result of Proposition 4 agrees with the intuition. In particular, since the
nodes in each cluster are disconnected from the nodes in the other clusters, the two age processes
associated with any two arbitrary clusters in the network are uncorrelated.
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Remark 14. From Propositions 1–3, one can see that the standard deviation of x1(t) (i.e.,
√

var[x1(t)])
was equal to its average value v̄(1){1}. Additionally, the standard deviations of the age processes at the other
nodes were relatively large with respect to their average values (which is also demonstrated numerically
in Figures 7–10). This key insight promotes the importance of incorporating the higher-order moments of
age processes in the implementation or optimization of age-aware gossip networks rather than just relying
on the average values of the age processes (as has been performed in the existing literature thus far). This
insight also demonstrates the need for the development of Theorems 1 and 2 in this paper, which allow the
characterization of the marginal or joint MGFs of different age processes in the network that can then be
used to evaluate the marginal or joint higher-order moments.
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Figure 7. Variance of x2(t) in the serially-connected network setting. We denote the standard
deviation of x2(t) as σ2.
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Figure 8. Variance of x3(t) in the parallelly-connected network setting. We denote the standard
deviation of x3(t) as σ3.
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Figure 9. Variance of x2(t) in the clustered gossip network topology. We denote the standard
deviation of x2(t) as σ2.
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Figure 10. Variance of x3(t) in the clustered gossip network topology. We denote the standard
deviation of x3(t) as σ3.

5. Conclusions

In this paper, we developed SHS-based methods that allow the characterization of the
stationary marginal and joint MGFs of age processes in a general setting of gossip networks.
In particular, we used the SHS framework to derive two systems of first-order ordinary
differential equations characterizing the temporal evolution of the marginal and joint
MGFs, from which the stationary marginal and joint MGFs were evaluated. Afterward,
these methods were applied to derive the stationary marginal and joint MGFs in the
following three network topologies: (1) a serially-connected topology, (2) a parallelly-
connected topology, and (3) a clustered topology. Using the MGF expressions derived for
each network topology, we obtained closed-form expressions for the following quantities:
(1) the stationary marginal first and second moments of each age process, (2) the variance
of each age process, and (3) the correlation coefficients between all possible pairwise
combinations of the age processes. We further characterized the structural properties of
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these quantities in terms of their convexity and monotonic nature with respect to the status
updating rates and provided asymptotic results showing their behaviors when each of
the status updating rates became small or large. Our analytical findings demonstrated
that the standard deviations of the age processes in each network topology considered
in this paper were relatively large with respect to their average values. This key insight
promotes the importance of incorporating the higher-order moments of age processes in
the implementation and optimization of age-aware gossip networks rather than just relying
on the average values of the age processes (as has been performed in the existing literature
thus far).

Given the generality of the setting of gossip networks analyzed in this paper, our
developed methods can be applied to understand the marginal or joint distributional
properties of age processes in any arbitrary gossip network topology. This opens the door
for the use of these methods in the future to characterize the stationary marginal or joint
moments and MGFs of the age processes in gossip network topologies that have only
been analyzed in terms of the stationary first moment of each age process in the network
until now. It would also be interesting to investigate how the stationary marginal or joint
moments scale as functions of the network size.
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Appendix A. Proof of Theorem 1

We derive this result by first using the SHS framework to obtain a system of differential
equations characterizing the temporal evolution of the marginal MGFs of the age processes
associated with all sets S ⊆ N . We then obtain the stationary marginal MGFs as the fixed
point of this system of equations (i.e., when t → ∞). To derive the system of differential
equations, we follow a similar approach to that in [15,92], where the idea is to define the test
functions {ψ(x(t))} whose expected values {E[ψ(x(t))]} are quantities of interest. Since
we are interested here in the characterization of the marginal MGFs, we define the following
class of test functions that is appropriate for this analysis:

ψ
(n)
S (x(t)) = exp[nxS(t)], ∀S ⊆ N , (A1)

where the expected value E
[
ψ
(n)
S (x(t))

]
is v(n)S (t). We apply the SHS mapping ψ(x(t)) →

Lψ(x(t)) (known as the extended generator) to every test function in (A1). Since the test
functions defined above are time-invariant, it follows from [92] Theorem 1 that the extended
generator of a test function ψ(x(t)) under the considered piecewise linear SHS is given by

Lψ(x(t)) =
dψ(x(t))

dx(t)
1T

N + ∑
l=(i,j)∈L

λij
[
ψ
(
x′(t)

)− ψ(x(t))
]
, (A2)

where x′(t) =
[
x′1(t) x′2(t) · · · x′N(t)

]
such that the updated age at node k, x′k(t) resulting

from the transition (i, j) is given by (1). In addition, note that x′S(t) = min
i∈S

x′i(t). Now, we
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proceed to evaluate Lψ
(n)
S (x(t)). From the age updating rule in (1), the set of transitions L

in (2), and the structure of ψ
(n)
S (x(t)) in (A1), we have

dψ
(n)
S (x(t))
dx(t)

1T
N = nψ

(n)
S (x(t)), (A3)

ψ
(n)
S

(
x′(t)

)
= exp

[
nx′S(t)

]
=

⎧⎪⎪⎨⎪⎪⎩
exp[n × 0] = 1, l = (0, j), j ∈ S,

exp
[
nxS∪{i}(t)

]
= ψ

(n)
S∪{i}(x(t)), l = (i, j), j ∈ S, i ∈ N \ S,

exp[nxS(t)] = ψ
(n)
S (x(t)), otherwise.

(A4)

Substituting (A3) and (A4) into (A2) gives

Lψ
(n)
S (x(t)) = nψ

(n)
S (x(t)) + ∑

j∈S
λ0j

[
1 − ψ

(n)
S (x(t))

]
+ ∑

i∈N\S
∑
j∈S

λij

[
ψ
(n)
S∪{i}(x(t))− ψ

(n)
S (x(t))

]
, (A5)

The system of differential equations characterizing the temporal evolution of the
marginal MGFs {v(n)S (t)}S⊆N can be derived by applying Dynkin’s formula [92] to each
test function and its associated extended generator. In particular, for a test function ψ(x(t)),
the Dynkin’s formula can be expressed as

dE[ψ(x(t))]
dt

= E[Lψ(x(t))]. (A6)

Plugging ψ
(n)
S (x(t)) and Lψ

(n)
S (x(t)) into (A6) gives

v̇(n)S (t) = nv(n)S (t) + ∑
j∈S

λ0j

[
1 − v(n)S (t)

]
+ ∑

i∈N\S
∑
j∈S

λij

[
v(n)S∪{i}(t)− v(n)S (t)

]
(a)
= λ0(S) + v(n)S (t)

⎡⎣n − λ0(S)− ∑
i∈N(S)

λi(S)

⎤⎦+ ∑
i∈N(S)

λi(S)v
(n)
S∪{i}(t), (A7)

where step (a) directly follows from the definitions of λi(S) and N(S) in (7) and (8), respec-
tively. Note that there exists a range of n values for which the differential equation in (A7) is
asymptotically stable for any arbitrary set S ⊆ N . To see this, let us first express v̇(n)N (t) using
(A7) as follows:

v̇(n)N (t) = λ0(N ) + v(n)N (t)[n − λ0(N )]. (A8)

For 0 ≤ n < λ0(N ), (A8) is asymptotically stable, and the stationary marginal MGF
v̄(n)N can be obtained by setting v̇(n)N (t) to zero and replacing v(n)N (t) with v̄(n)N . Now, when
S = N \ {k}, (A7) is given by

v̇(n)S (t) = λ0(S) + v(n)S (t)[n − λ0(S)− λk(S)] + λk(S)v
(n)
N (t). (A9)

For 0 ≤ n < min[λ0(S) + λk(S), λ0(N )] and S = N \ {k}, v(n)N (t) converges as t → ∞,
and the differential equation in (A9) is asymptotically stable. The stationary marginal MGF
v̄(n)N\{k} is then the fixed point of (A9), which can be obtained after setting the derivative to
zero. Afterward, when S = N \ {k1, k2}, one can follow the above procedure to obtain the
range of n values under which (A7) is asymptotically stable. Generally, for an arbitrary set
S, there exists a threshold δ such that for n ∈ [0, δ), the stationary marginal MGF v̄(n)S is the
fixed point of (A7).
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Finally, the stationary marginal mth moment v̄(m)
S in (10) can be obtained by substi-

tuting ψ(x(t)) in (A2) with ψ
(m)
S (x(t)) = xm

S (t) and following similar steps to those in
(A2)–(A9). This completes the proof.

Appendix B. Proof of Theorem 2

The flow of this proof is similar to that for Theorem 1 in Appendix A. In particular,
we start by constructing a class of test functions that is appropriate for the joint MGF
analysis. We then use (A2) to derive the extended generator for each test function, which is
then plugged into Dynkin’s formula in (A6) to obtain the system of differential equations
characterizing the temporal evolution of the joint MGFs {v(n1,n2)

S1,S2
}S1,S2⊆N . The class of test

functions we define here for the joint MGF analysis is given by

ψ
(n1,n2)
S1,S2

(x(t)) = exp
[
n1xS1(t) + n2xS2(t)

]
, ∀S1, S2 ⊆ N , (A10)

such that the expected value E
[
ψ
(n1,n2)
S1,S2

(x(t))
]

is v(n1,n2)
S1,S2

(t). For such a structure of test
functions, we have

dψ
(n1,n2)
S1,S2

(x(t))

dx(t)
1T

N = (n1 + n2)ψ
(n1,n2)
S1,S2

(x(t)). (A11)

Compared with the proof for Theorem 1 in Appendix A, a key challenge in the
derivation of the extended generator here is to carefully identify all the possible transitions
in L that result in having ψ

(n1,n2)
S1,S2

(x′(t)) �= ψ
(n1,n2)
S1,S2

(x(t)). We provide Figure A1 to help
one easily visualize the following arguments. For the first subset of transitions {(0, j) : j ∈
N} ⊂ L, we have

ψ
(n1,n2)
S1,S2

(
x′(t)

)
= exp

[
n1x′S1

(t) + n2x′S2
(t)

]
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ψ
(n2)
S2

(x(t)), l = (0, j), j ∈ S1 \ S2,

ψ
(n1)
S1

(x(t)), l = (0, j), j ∈ S2 \ S1,

1, l = (0, j), j ∈ S1 ∩ S2,

ψ
(n1,n2)
S1,S2

(x(t)), otherwise.

(A12)

To help one easily grasp the different cases in (A12), we elaborate more on the construction
of the first case, and the other cases can be interpreted similarly. In particular, when j ∈ S1 \ S2,
the transition (0, j) results in resetting the age of S1 to zero, whereas the age of S2 will not

change. As a result, ψ
(n1,n2)
S1,S2

(x′(t)) = exp
[
n1 × 0 + n2 × xS2(t)

] (a)
= ψ

(n2)
S2

(x(t)), where step
(a) follows from (A1).
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Figure A1. A Venn diagram representation.

For the second subset of transitions {(i, j) : i, j ∈ N} ⊂ L, we have

ψ
(n1,n2)
S1,S2

(
x′(t)

)
= exp

[
n1x′S1

(t) + n2x′S2
(t)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ
(n1,n2)
S1∪{i},S2

(x(t)), l = (i, j), j ∈ S1 \ S2, i ∈ N \ S1,

ψ
(n1,n2)
S1,S2∪{i}(x(t)), l = (i, j), j ∈ S2 \ S1, i ∈ N \ S2,

ψ
(n1,n2)
S1∪{i},S2∪{i}(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ N \ S1 ∪ S2,

ψ
(n1,n2)
S1,S2∪{i}(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ S1 \ S2,

ψ
(n1,n2)
S1∪{i},S2

(x(t)), l = (i, j), j ∈ S1 ∩ S2, i ∈ S2 \ S1,

ψ
(n1,n2)
S1,S2

(x(t)), otherwise.

(A13)

Plugging (A11)–(A13) into (A2) gives

Lψ
(n1,n2)
S1,S2

(x(t)) = (n1 + n2)ψ
(n1,n2)
S1,S2

(x(t)) + ∑
j∈S1\S2

λ0j

[
ψ
(n2)
S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]
+ ∑

j∈S2\S1

λ0j

[
ψ
(n1)
S1

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]

+ ∑
j∈S1∩S2

λ0j

[
1 − ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈N\S1

∑
j∈S1\S2

λij

[
ψ
(n1,n2)
S1∪{i},S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]

+ ∑
i∈N\S2

∑
j∈S2\S1

λij

[
ψ
(n1,n2)
S1,S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈N\S1∪S2

∑
j∈S1∩S1

λij

[
ψ
(n1,n2)
S1∪{i},S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]

+ ∑
i∈S1\S2

∑
j∈S1∩S2

λij

[
ψ
(n1,n2)
S1,S2∪{i}(x(t))− ψ

(n1,n2)
S1,S2

(x(t))
]
+ ∑

i∈S2\S1

∑
j∈S1∩S2

λij

[
ψ
(n1,n2)
S1∪{i},S2

(x(t))− ψ
(n1,n2)
S1,S2

(x(t))
]
. (A14)

By applying Dynkin’s formula in (A6) to ψ
(n1,n2)
S1,S2

(x(t)) and Lψ
(n1,n2)
S1,S2

(x(t)), we have
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v̇(n1,n2)
S1,S2

(t) = (n1 + n2)v
(n1,n2)
S1,S2

(t) + ∑
j∈S1\S2

λ0j

[
v(n2)

S2
(t)− v(n1,n2)

S1,S2
(t)

]
+ ∑

j∈S2\S1

λ0j

[
v(n1)

S1
(t)− v(n1,n2)

S1,S2
(t)

]
+ ∑

j∈S1∩S2

λ0j

[
1 − v(n1,n2)

S1,S2
(t)

]
+ ∑

i∈N\S1

∑
j∈S1\S2

λij

[
v(n1,n2)

S1∪{i},S2
(t)− v(n1,n2)

S1,S2
(t)

]
+ ∑

i∈N\S2

∑
j∈S2\S1

λij

[
v(n1,n2)

S1,S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]
+ ∑

i∈N\S1∪S2

∑
j∈S1∩S1

λij

[
v(n1,n2)

S1∪{i},S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]

+ ∑
i∈S1\S2

∑
j∈S1∩S2

λij

[
v(n1,n2)

S1,S2∪{i}(t)− v(n1,n2)
S1,S2

(t)
]
+ ∑

i∈S2\S1

∑
j∈S1∩S2

λij

[
v(n1,n2)

S1∪{i},S2
(t)− v(n1,n2)

S1,S2
(t)

]
(a)
= v(n1,n2)

S1,S2
(t)

⎡⎣(n1 + n2)− λ0(S1 ∪ S2)− ∑
i∈N\(S1∩S2)

λi(S1 ∩ S2)− ∑
i∈N\S1

λi(S1 \ S2)− ∑
i∈N\S2

λi(S2 \ S1)

⎤⎦
+ λ0(S1 ∩ S2) + λ0(S1 \ S2)v

(n2)
S2

(t) + λ0(S2 \ S1)v
(n1)
S1

(t) + ∑
i∈N\S1

λi(S1 \ S2)v
(n1,n2)
S1∪{i},S2

(t)

+ ∑
i∈N\S2

λi(S2 \ S1)v
(n1,n2)
S1,S2∪{i}(t) + ∑

i∈N\(S1∪S2)

λi(S1 ∩ S2)v
(n1,n2)
S1∪{i},S2∪{i}(t) + ∑

i∈S1\S2

λi(S1 ∩ S2)v
(n1,n2)
S1,S2∪{i}(t)

+ ∑
i∈S2\S1

λi(S1 ∩ S2)v
(n1,n2)
S1∪{i},S2

(t), (A15)

where step (a) follows from applying the definition of λi(S) in (7), followed by some algebraic
simplifications. Now, following a similar procedure to that in (A8) and (A9) in Appendix A,
one can show that for any two arbitrary sets S1 and S2, there exists a threshold δ (such that
0 ≤ n1 + n2 < δ) under which the differential equation in (A15) is asymptotically stable. Thus,
the final expression of the stationary joint MGF v̄(n1,n2)

S1,S2
in (11) can be obtained by taking the

limit as t → ∞ in (A15) (i.e., setting v̇(n1,n2)
S1,S2

(t) to zero and replacing v(n1,n2)
S1,S2

(t) with v̄(n1,n2)
S1,S2

).

Finally, the stationary joint (m1, m2)th moment v̄(m1,m2)
S1,S2

in (12) can be obtained by

substituting ψ(x(t)) in (A2) with ψ
(m1,m2)
S1,S2

(x(t)) = xm1
S1
(t)xm2

S2
(t) and following similar steps

to those in (A11)–(A15). This completes the proof.

Appendix C. Proof of Theorem 3

We start the proof by showing how one can use Theorem 1 to obtain the stationary
marginal MGF of the AoI or age process at each node in the network. In particular,
by observing the set of transitions in Figure 1a, repeated application of (9) gives

v̄(n){1} =
λ0

λ0 − n
, (A16)

v̄(n){2} =
λv̄(n){1,2}
λ − n

, (A17)

v̄(n){1,2} =
λ0

λ0 − n
. (A18)

By substituting (A18) into (A17), we obtain

v̄(n){2} =
λ0λ

(λ0 − n)(λ − n)
. (A19)
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Now, we proceed to the evaluation of the stationary joint MGF v̄(n1,n2)
{2},{1} using Theorem 2.

In particular, by applying (11) twice (the first time for S1 = {2} and S2 = {1} and the second
time for S1 = {1, 2} and S2 = {1}), we obtain

v̄(n1,n2)
{2},{1}[λ0 + λ − (n1 + n2)] = λ0v̄(n1)

{2} + λv̄(n1,n2)
{1,2},{1}, (A20)

v̄(n1,n2)
{1,2},{1}[λ0 − (n1 + n2)] = λ0. (A21)

The final expression of v̄(n1,n2)
{2},{1} in (16) can be obtained by substituting v̄(n1)

{2} and

v̄(n1,n2)
{1,2},{1} from (A17) and (A21), respectively, into (A20).

Appendix D. Proof of Proposition 1

The stationary marginal mth moment of the age process at node i ∈ N = {1, 2}
(i.e., v̄(m)

{i} ) is given by

v̄(m)
{i} =

dm
[
v̄(n){i}

]
dnm

∣∣∣∣∣
n=0

. (A22)

Furthermore, for i, j ∈ N , the stationary joint moment v̄(m1,m2)
{i},{j} of the two age processes

at nodes i and j is given by

v̄(m1,m2)
{i},{j} =

∂m1+m2
[
v̄(n1,n2)
{i},{j}

]
∂nm1

1 ∂nm2
2

∣∣∣∣∣
n1=0,n2=0

. (A23)

The marginal first and second moments of the age process at each node in the serially-
connected network (in (A22) and (A23)) can be obtained by plugging the marginal MGF
expressions derived in Theorem 3 into (A22). Furthermore, the variance of the age process
at node i is given by

var[xi(t)] = v̄(2){i} −
(

v̄(1){i}
)2

. (A24)

Finally, for nodes i, j ∈ N , the correlation coefficient can be evaluated as follows:

cor
[
xi(t), xj(t)

]
=

v̄(1,1)
{i},{j} − v̄(1){i}v̄(1){j}√

var[xi(t)]
√

var
[
xj(t)

] , (A25)

In order to obtain cor[x1(t), x2(t)], what remains is only to evaluate v̄(1,1)
{2},{1} from (A23)

(using the joint MGF expression in (16)) as

v̄(1,1)
{2},{1} =

λ2
0 + 2λ0λ + 2λ2

λλ2
0(λ0 + λ)

. (A26)

By noting that

v̄(1,1)
{2},{1} − v̄(1){2}v̄(1){1} =

λ2
0 + 2λ0λ + 2λ2

λλ2
0(λ0 + λ)

− λ0 + λ

λ2
0λ

=
λ

λ2
0(λ0 + λ)

, (A27)

then the final expression of cor[x1(t), x2(t)] in (19) can be obtained, which completes
the proof.
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Appendix E. Proof of Theorem 4

For the parallelly-connected network in Figure 1b, the stationary marginal MGF of the
age process at each node i ∈ N = {1, 2, 3} can be derived by repeatedly applying (9) as
follows:

v̄(n){3} =
λ1v̄(n){1,3} + λ2v̄(n){2,3}

λ1 + λ2 − n
, (A28)

v̄(n){1,3} =
λs + λ2v̄(n){1,2,3}

λs + λ2 − n
, (A29)

v̄(n){2,3} =
λs + λ1v̄(n){1,2,3}

λs + λ1 − n
, (A30)

v̄(n){1,2,3} =
2λs

2λs − n
, (A31)

v̄(n){1} = v̄(n){2} =
λs

λs − n
, . (A32)

The final expression of v̄(n){3} in (21) can be obtained by substituting v̄(n){1,3} and v̄(n){2,3}
from (A29)–(A31) into (A28).

We now derive the stationary joint MGF v̄(n1,n2)
{3},{1} by repeatedly applying (11) as follows:

v̄(n1,n2)
{3},{1}[λs + λ1 + λ2 − (n1 + n2)] = λsv̄(n1)

{3} + λ1v̄(n1,n2)
{1,3},{1} + λ2v̄(n1,n2)

{2,3},{1}, (A33)

v̄(n1,n2)
{1,3},{1}[λs + λ2 − (n1 + n2)] = λs + λ2v̄(n1,n2)

{1,2,3},{1}, (A34)

v̄(n1,n2)
{2,3},{1}[2λs + λ1 − (n1 + n2)] = λs

(
v̄(n2)
{1} + v̄(n1)

{2,3}
)
+ λ1v̄(n1,n2)

{1,2,3},{1}, (A35)

v̄(n1,n2)
{1,2,3},{1}[2λs − (n1 + n2)] = λs + λsv̄(n2)

{1} . (A36)

By substituting (A34)–(A36) into (A33), v̄(n1,n2)
{3},{1} can expressed as

v̄(n1,n2)
{3},{1} =

1
[λs + λ1 + λ2 − (n1 + n2)][2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]

×[
λs[2λs + λ1 − (n1 + n2)][2λs − (n1 + n2)][λs + λ2 − (n1 + n2)]v̄

(n1)
{3} + λsλ2[2λs + λ1 − (n1 + n2)]

× [λs + λ1 + λ2 − (n1 + n2)]v̄
(n2)
{1} + λsλ2[λs + λ2 − (n1 + n2)][2λs − (n1 + n2)]v̄

(n1)
{2,3} + λsλ1λ2

× [λs + λ2 − (n1 + n2)] + λsλ1[2λs + λ1 − (n1 + n2)][2λs + λ2 − (n1 + n2)]
]
. (A37)

The final expression of v̄(n1,n2)
{3},{1} in (22) can be obtained by substituting v̄(n1)

{3} , v̄(n2)
{1} and

v̄(n1)
{2,3} from (21), (A32) and (A30), respectively, into (A37).
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Appendix F. Proof of Proposition 2

The expressions in (27)–(30) of the first moment, second moment, and variance of the
age process at each node i ∈ N = {1, 2, 3} can be derived by plugging the marginal MGF
expressions in Theorem 2 into (A22). Furthermore, by plugging the joint MGF v̄(n1,n2)

{3},{1} in

(22) into (A23), one can obtain v̄(1,1)
{3},{1} as follows:

v̄(1,1)
{3},{1} =

1

4λ2
s (λs + λ1 + λ2)(λs + λ2)

2(2λs + λ1)(λ1 + λ2)(λs + λ1)
×

[
8λ6

s + 4λ5
s (7λ1 + 8λ2) + 4λ4

s

(
11λ2

1 + 24λ1λ2 + 12λ2
2

)
+ λ3

s (λ1 + λ2)
(

32λ2
1 + 75λ1λ2 + 32λ2

2

)
+ 4λ2

s (λ1 + λ2)
2
(

2λ2
1 + 9λ1λ2 + 2λ2

2

)
+ 3λsλ1λ2

(
3λ2

1 + 7λ1λ2 + 3λ2
2

)
× (λ1 + λ2) + 3λ2

1λ2
2(λ1 + λ2)

2
]
, (A38)

The final expression of cor[x1(t), x3(t)] in (31) can be obtained from (A25) while noting that
we have

v̄(1,1)
{3},{1} − v̄(1){3}v̄(1){1} =

λ1
[
8λ4

s + λ3
s (12λ1 + 7λ2) + 2λ2

s (λ1 + 2λ2)(λ2 + 2λ1) + λsλ2
(
3λ2

1 + 5λ1λ2 + λ2
2
)
+ λ1λ2

2(λ1 + λ2)
]

4λ2
s (λs + λ1 + λ2)(λs + λ2)

2(2λs + λ1)(λs + λ1)
,

This completes the proof.

Appendix G. Proof of Theorem 5

Repeated application of (9) gives

v̄(n){1} =
λc + λv̄(n){1,3}
λc + λ − n

, (A39)

v̄(n){1,3} =
λc + λv̄(n){1,2,3}

λc + λ − n
(a)
=

λc

λc − n
, (A40)

v̄(n){1,2,3} =
λc

λc − n
, (A41)

v̄(n){2} =
λv̄(n){1,2}
λ − n

, (A42)

v̄(n){1,2} =
λc + λv̄(n){1,2,3}

λc + λ − n
(a)
=

λc

λc − n
, (A43)

v̄(n){3} =
λv̄(n){2,3}
λ − n

, (A44)

v̄(n){2,3} =
λv̄(n){1,2,3}

λ − n
(a)
=

λcλ

(λc − n)(λ − n)
, (A45)
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where step (a) in (A40), (A43), and (A45) follows from substituting v̄(n){1,2,3} from (A41).

The expressions of {v̄(n){i}}i∈{1,2,3} in (35)–(37) are obtained from substituting (1) v̄(n){1,3} from

(A40) into (A39), (2) v̄(n){1,2} from (A43) into (A42), and (3) v̄(n){2,3} from (A45) into (A44).
Regarding the evaluation of the stationary joint MGF expressions, we start by deriving

v̄(n1,n2)
{1},{2}. Repeated application of (11) gives

v̄(n1,n2)
{1},{2}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,3},{2} + λv̄(n1,n2)

{1},{1,2}, (A46)

v̄(n1,n2)
{1,3},{2}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,2,3},{2} + λv̄(n1,n2)

{1,3},{1,2}, (A47)

v̄(n1,n2)
{1},{1,2}[λc + λ − (n1 + n2)] = λc + λv̄(n1,n2)

{1,3},{1,2}, (A48)

v̄(n1,n2)
{1,2,3},{2}[λc + λ − (n1 + n2)] = λcv̄(n2)

{2} + λv̄(n1,n2)
{1,2,3},{1,2}, (A49)

v̄(n1,n2)
{1,3},{1,2}[λc + 2λ − (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2} + λv̄(n1,n2)
{1,3},{1,2,3}, (A50)

v̄(n1,n2)
{1,2,3},{1,2}[λc + λ − (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2,3}, (A51)

v̄(n1,n2)
{1,3},{1,2,3}[λc + λ − (n1 + n2)] = λc + λv̄(n1,n2)

{1,2,3},{1,2,3}, (A52)

v̄(n1,n2)
{1,2,3},{1,2,3} =

λc

λc − (n1 + n2)
. (A53)

By substituting v̄(n1,n2)
{1,2,3},{1,2,3} from (A53) into (A48) and (A50)–(A52), we obtain

v̄(n1,n2)
{1,2,3},{1,2} = v̄(n1,n2)

{1,3},{1,2,3} = v̄(n1,n2)
{1,3},{1,2} = v̄(n1,n2)

{1},{1,2} =
λc

λc − (n1 + n2)
, (A54)

Furthermore, from (A47), (A49), (A50) and (A54), v̄(n1.n2)
{1,3},{2} can be expressed as

v̄(n1,n2)
{1,3},{2} =

λc[λc − (n1 + n2)]v̄
(n2)
{2} + λλc

[λc + λ − (n1 + n2)][λc − (n1 + n2)]
. (A55)

The final expression of v̄(n1,n2)
{1},{2} in (38) can be obtained by substituting v̄(n1,n2)

{1,3},{2}, v̄(n1,n2)
{1},{1,2},

and v̄(n2)
{2} from (A55), (A54) and (36), respectively, into (A46). Now, we proceed with the

evaluation of v̄(n1,n2)
{1},{3}. Repeated application of (11) gives

v̄(n1,n2)
{1},{3}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,3},{3} + λv̄(n1,n2)

{1},{2,3}, (A56)

v̄(n1,n2)
{1,3},{3}[λc + λ − (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{2,3}, (A57)
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v̄(n1,n2)
{1},{2,3}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,3},{2,3} + λv̄(n1,n2)

{1},{1,2,3}, (A58)

v̄(n1,n2)
{1,2,3},{2,3}[λc + λ − (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,2,3},{1,2,3}, (A59)

v̄(n1,n2)
{1,3},{2,3}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,3},{1,2,3} + λv̄(n1,n2)

{1,2,3},{2,3}, (A60)

v̄(n1,n2)
{1},{1,2,3}[λc + λ − (n1 + n2)] = λc + λv̄(n1,n2)

{1,3},{1,2,3}, (A61)

where v̄(n1,n2)
{1,3},{1,2,3} = v̄(n1,n2)

{1,2,3},{1,2,3} = λc
λc−(n1+n2)

. By substituting v̄(n1,n2)
{1,3},{1,2,3} into (A61), we

obtain

v̄(n1,n2)
{1},{1,2,3} =

λc

λc − (n1 + n2)
. (A62)

Furthermore, from (A57)–(A62), v̄(n1,n2)
{1,3},{3} and v̄(n1,n2)

{1},{2,3} can be respectively expressed as

v̄(n1,n2)
{1,3},{3} =

λc[λc + λ − (n1 + n2)]v̄
(n2)
{3} + λ

(
λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,2,3},{1,2,3}

)
[λc + λ − (n1 + n2)]

2 , (A63)

v̄(n1,n2)
{1},{2,3} =

λcv̄(n2)
{2,3} + λv̄(n1,n2)

{1},{1,2,3}
λc + λ − (n1 + n2)

. (A64)

The final expression of v̄(n1,n2)
{1},{3} in (39) can be obtained from substituting (A63) and

(A64) into (A56), followed by some algebraic simplifications. Finally, to derive v̄(n1,n2)
{2},{3}, we

first repeatedly use (11) as follows:

v̄(n1,n2)
{2},{3}[2λ − (n1 + n2)] = λv̄(n1,n2)

{1,2},{3} + λv̄(n1,n2)
{2},{2,3}, (A65)

v̄(n1,n2)
{1,2},{3}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{3} + λv̄(n1,n2)

{1,2},{2,3}, (A66)

v̄(n1,n2)
{2},{2,3}[λ − (n1 + n2)] = λv̄(n1,n2)

{1,2},{1,2,3}, (A67)

v̄(n1,n2)
{1,2,3},{3}[λc + λ − (n1 + n2)] = λcv̄(n2)

{3} + λv̄(n1,n2)
{1,2,3},{2,3}, (A68)

v̄(n1,n2)
{1,2},{2,3}[λc + 2λ − (n1 + n2)] = λcv̄(n2)

{2,3} + λv̄(n1,n2)
{1,2,3},{2,3} + λv̄(n1,n2)

{1,2},{1,2,3}. (A69)

From (A66)–(A69), v̄(n1,n2)
{1,2},{3} and v̄(n1,n2)

{2},{2,3} can be respectively expressed as

v̄(n1,n2)
{1,2},{3} =

1

[λc + λ − (n1 + n2)][λc + 2λ − (n1 + n2)]
2 ×

[
λc[λc + 2λ − (n1 + n2)]

2v̄(n2)
{3}

+ λ[λc + λ − (n1 + n2)]
(

λcv̄(n2)
{2,3} + λv̄(n1,n2)

{1,2},{1,2,3}
)
+ λ2[2λc + 3λ − 2(n1 + n2)]v̄

(n1,n2)
{1,2,3},{2,3}

]
, (A70)

67



Entropy 2023, 25, 364

v̄(n1,n2)
{2},{2,3} =

λcλ

[λc − (n1 + n2)][λ − (n1 + n2)]
. (A71)

The final expression of v̄(n1,n2)
{2},{3} in (40) can be obtained from plugging (A70) and (A71) into (A65),

followed by substituting (1) v̄(n2)
{3} from (37), (2) v̄(n2)

{2,3} from (A45), (3) v̄(n1,n2)
{1,2,3},{2,3} from (A59),

and (4) v̄(n1,n2)
{1,2},{1,2,3} as λc

λc−(n1+n2)
.

Appendix H. Proof of Proposition 3

The results of this proposition can be derived by following similar steps to those
in Appendices D and F while noting that

v̄(1,1)
{1},{2} =

λ2 + (λc + λ)2

λλ2
c (λc + λ)

, (A72)

v̄(1,1)
{1},{2} − v̄(1){1}v̄(1){2} =

λ

λ2
c (λc + λ)

, (A73)

v̄(1,1)
{1},{3} =

2λ3
c + 5λ2

c λ + 4λcλ2 + 2λ3

λλ2
c (λc + λ)2 , (A74)

v̄(1,1)
{1},{3} − v̄(1){1}v̄(1){3} =

λ2

λ2
c (λc + λ)2 , (A75)

v̄(1,1)
{2},{3} =

5λ4
c + 16λ3

c λ + 20λ2
c λ2 + 12λcλ3 + 4λ4

2λ2
c λ2(λc + λ)2 , (A76)

v̄(1,1)
{2},{3} − v̄(1){2}v̄(1){3} =

λ4
c + 2λ3

c λ + 2λ2
c λ2 + 2λcλ3 + 2λ4

2λ2
c λ2(λc + λ)2 . (A77)

Appendix I. Proof of Proposition 4

We first apply (11) to obtain v̄(n1,n2)
Ni ,Nj

as

v̄(n1,n2)
Ni ,Nj

=
λi v̄

(n2)
Nj

+ λj v̄
(n1)
Ni

λi + λj − (n1 + n2)

(a)
=

λiλj

(λi − n1)
(
λj − n2

) , (A78)

where step (a) follows from substituting v̄(n1)
Ni

and v̄(n2)
Nj

from (A41) as
λi

λi − n1
and

λj

λj − n2
,

respectively. We then obtain
∂2v̄(n1,n2)

Ni ,Nj

∂n2∂n1
as

∂2v̄(n1,n2)
Ni ,Nj

∂n2∂n1
=

λiλj

(λi − n1)
2(λj − n2

)2 . (A79)
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Thus, from (A79), we have

v̄(1,1)
Ni ,Nj

=
1

λiλj
. (A80)

The conclusion that the two age processes xNi (t) and xNj(t) are uncorrelated follows

from noting that v̄(1,1)
Ni ,Nj

− v̄(1)Ni
v̄(1)Nj

= 0, and hence the correlation coefficient between xNi (t)

and xNj(t) is zero.
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Abstract: Applications requiring services from modern wireless networks, such as those involving
remote control and supervision, call for maintaining the timeliness of information flows. Current
research and development efforts for 5G, Internet of things, and artificial intelligence technologies
will benefit from new notions of timeliness in designing novel sensing, computing, and transmission
strategies. The age of information (AoI) metric and a recent related urgency of information (UoI)
metric enable promising frameworks in this direction. In this paper, we consider UoI optimization
in an interactive point-to-point system when the updating terminal is resource constrained to send
updates and receive/sense the feedback of the status information at the receiver. We first propose a
new system model that involves Gaussian distributed time increments at the receiving end to design
interactive transmission and feedback sensing functions and develop a new notion of UoI suitable
for this system. We then formulate the UoI optimization with a new objective function involving a
weighted combination of urgency levels at the transmitting and receiving ends. By using a Lyapunov
optimization framework, we obtain a decision strategy under energy resource constraints at both
transmission and receiving/sensing and show that it can get arbitrarily close to the optimal solution.
We numerically study performance comparisons and observe significant improvements with respect
to benchmarks.
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1. Introduction

As demand from wireless networks exponentially increases to enable emerging tech-
nologies, the timeliness of data delivery and adaptation to the context of information
becomes essential for improved quality of service and experience in time-sensitive applica-
tions. To this end, the measurement and improvement of the timeliness of data delivery
and the effective adaptation to the context of delivered data have been fundamental chal-
lenges that researchers and practitioners have worked on actively in recent years. The
age of information (AoI) is a well-known metric to measure the timeliness of data from
the perspective of the nodes receiving or consuming data [1] and is expressed as the time
elapsed since the generation of the latest received data. Although AoI has received much
interest as a metric representing the freshness of information, new metrics are needed to
address nonlinearity in the aging of data and time-varying value or context associated
with flowing data. As a matter of fact, context-based applications (e.g., automatic driving
and artificial intelligence) and nonlinear age [2–4] (as in many IoT applications) require a
departure from AoI definition and analysis. Toward this end, the references [5,6] recently
proposed an urgency of information (UoI) framework by combining the timeliness and
context associated with information updates. In these papers, UoI was formally defined as
the product of context-aware weight and the cost resulting from real-time estimation error
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in a Gaussian dynamical system, the latter being a well-known nonlinear function of AoI.
UoI expression can be expressed in mathematical form as follows:

F(t) = wtδ(C(t)), (1)

where wt is the nonnegative coefficient representing the context or value at a specific time
t, δ(.) is the cost function, and C(t) is the instantaneous cost measuring the urgency. This
formulation subsumes the typical definition of AoI. If C(t) increases by one each time
an update is not received, then the common AoI problem can be formulated as wt = 1
and δ(Q(t)) = U(t)C(t), where U(t) is an indicator that shows whether the information
is updated or not. In our current paper, we will pursue a similar metric whereby the
urgency level is represented by a coefficient wt, which will be set as an independent,
identically distributed random process that shows how crucial the status information is at a
specific moment t. In addition, we will pursue a quadratic cost function. This formulation
enables us to analyze error increments and connect the proposed framework to the classical
AoI problem.

The UoI framework in this paper will be designed to measure the expected perfor-
mance degradation as a weighted sum of expected staleness or informativeness of the latest
sensed Gaussian process at the receiving end with respect to the transmitter and the lack
of synchrony between them, maintained by status updating from the transmitting end to
the receiving end. Our goal is to build a systematic understanding on the interaction of
feedback sensing and update transmission to maintain improved UoI levels measuring the
synchrony and informativeness of information at one side about the other side when both
actions are resource constrained. We will employ Lyapunov optimization tools to address
this crucial problem.

Lyapunov optimization methods and tools have been well-known to various research
communities to control queues and more generally dynamical systems in a near-optimal
sense. In the context of queuing theory, the state of a system at a particular time is the
vector of realizations of error variables which can easily be brought in queue forms by
lower bounding it by zero and studied for upper bounding the optimal cost. Typically, the
cost function is defined to take smaller value when the system moves toward the desirable
states. System stability is achieved by taking control actions that make the Lyapunov drift
in the negative direction toward zero. The key requirement is that all the queues and virtual
queues in the system are mean rate stable [7,8]. In addition, the target function is achieved
by taking control actions that minimize the Lyapunov penalty. However, because of the
system stability awareness, the solution always has a gap with the optimal solution. Due
to its general applicability in queuing theory, Lyapunov optimization is also used in AoI
analysis and optimization. Ref. [9] used Lyapunov optimization to identify the tradeoff
between AoI, accuracy, and completeness with the constrained throughput optimization
problem. Ref. [10] used Lyapunov optimization to jointly minimize the average cost of
sampling and transmitting status updates by users over a wireless channel subject to
average AoI constraints.

Our work’s motivation is rooted in AoI research that was presented in the recent past.
We next aim to cover some of the literature that relates to the proposed research in this paper.
The references [11,12] address varying source update frequency and [13,14] address service
rate in various queuing models. In the wireless network scenario, the scheduling algorithms
for optimizing AoI is studied extensively, such as those considering the channel state [15,16],
throughput [17–19], energy harvesting [20–22], and average resource constraints [23,24],
multiple sources [25–28], and multiple channels [29–32] to name a few. Ref. [33] studied the
calculation and iterative process of AoI in combination with queuing theory and gave the
analytic formula of average AoI under the random scheduling strategy. Ref. [34] explored
the impact of service rate on average AoI under fixed deadline constraints and random
exponential deadline constraints. Regarding link scheduling in wireless networks, ref. [35]
studied the link-scheduling problem for every time slot under periodic data updates, and
proposed random, greedy, Lyapunov optimization, Whittle Index, and other strategies for
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link scheduling to optimize the average AoI of the network. Ref. [36] proposed offline and
online scheduling algorithms based on the Markov decision process for the random data
arrival scenario.

Feedback is also an essential factor in wireless communication scenarios and can
influence the AoI performance significantly. In particular, it is well known that the feedback
may help maintain expedient processing, non-repetitive transmission, and hence, energy
efficiency in wireless transmission. For the case of battery-based non-energy harvesting
devices, it is also vital to schedule appropriate transmission and sensing strategies to
prolong the device’s life. As a result, the role of feedback and energy cost in AoI analysis
and optimization has received much interest from the research community (see e.g., [37–41]).
Additionally, ref. [42] proves that the AoI and energy-harvesting scheduling strongly differ
with or without the feedback. Refs. [43,44] minimized the AoI when the sensor uses
ON/OFF schemes with energy harvesting nodes. Ref. [45] focused on the extreme cases
of one unit battery and infinite battery situations to minimize the average peak AoI with
energy constraints. Most recently, the paper [46] provided an analysis of feedback cost in
AoI optimization over a point-to-point channel and determined specific conditions when
feedback may or may not be useful for AoI optimization.

Decisions to sense/receive updates under energy constraints have also been of interest
to AoI researchers. In particular, energy constraints can limit the chance of sensing new
data and hence cause AoI to increase. In this context, refs. [47,48] proposed the joint
scheduling of sense and transmission schemes to optimize the average peak AoI in an
energy-harvesting system. In this paper, we will combine the concept of feedback and
sensing, which means that the system will decide whether to sense the feedback information
as input. As other related research, refs. [49,50] studied the value of information (VoI) in
status update systems, and compared the performance of VoI with AoI. We also refer the
reader to the related paper [51]. Based on the idea that AoI is only important when the
receiver performs a query, refs. [52,53] proposed the age of information at query (QAoI)
and optimized the QAoI.

In this paper, we will extend the UoI optimization framework in [6] to an interactive
scenario by considering sensing/receiving costs at the updating terminal under energy
resource constraint by using a Lyapunov optimization framework. Resource constraints
in receiving/sensing the feedback can be interpreted as a limitation due to processing or
energy to make it available for decision making on update transmission. Our motivation
can be compared to that of [46] as well, which assumes the cost of feedback is incurred at
the receiving end. This new problem calls for coordinated decisions to sense the feedback
from the receiver and transmit the update to the receiver. Additionally, we need to account
for relativity with respect to the transmitter and receiver sides and measure urgency by
using a weight representing their importance under resource constraints. Our framework
will address these new issues.

As the main contributions of this paper, we extend the UoI optimization framework by
using a new definition that addresses the interactive nature of the setting when transmitting
and receiving/sensing information is costly and average resource constraints are present
on both actions. Constructing the objective function by assigning different weights to the
urgency levels at the transmitting and receiving terminals, we determine jointly optimal
scheduling of transmission and receiving/sensing the feedback by using a Lyapunov
optimization framework. We obtain the Lyapunov gap and show that the result can
be made arbitrarily close to the optimal solution. Our simulation results show that the
proposed algorithm performs significantly better than two benchmark schemes, namely
the greedy and AoI optimal algorithms.

The rest of the paper is organized as follows. In Section 2, we present the system model
of the UoI problem. In Section 3, we formulate the UoI problem and analyze it. In Section 4,
we offer numerical results to show the behavior of the solution. Finally, we conclude this
paper in Section 5 by summarizing our contributions and discussing future directions.
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2. System Model

We consider the system model in Figure 1. Here, the time is slotted: t = 1, 2, . . . , T. The
information-carrying signal in the service center and terminal, At and Qt, are as follows:

At+1 = (1 − U2(t))At + Kt (2)

Qt+1 = (1 − StU1(t))Qt + U2(t)At. (3)

The variable Kt ∼ N (0, σ2) represents the increments added to the information-carrying
signal At and is a Gaussian random variable independent over time and other variables.
For convenience, we take the variable A1, Q1 ∼ N (0, σ2); however, the initial conditions
are assumed given and do not determine the outcome as long as they come from a well-
behaving distribution that makes the expectations well defined (c.f. Lemma 3 below).
U1(t), U2(t) ∈ {0, 1} are decision variables to determine whether to transmit an update
and sense the feedback, respectively. Equation (2) represents the evolution of information
at the receiver with respect to the sensing at the transmitter. When U2(t) = 1, the sensing
action is activated and the information at both ends are synchronized except an additive
Gaussian noise due to causality and one time slot difference. The Equation (3) represents
the evolution of the information at the transmitter with respect to the receiver side. These
two equations represent the interaction between the transmitter and the receiver. Note
that if the transmission or sensing does not happen, i.e., if U1(t)St = 0 or U2(t) = 0,
then Qt or At, respectively, will become noisier. This is at the heart of the urgency of
information notion we pursue in this paper. When a transmission does not happen (due to
not transmitting or a channel erasure), the synchrony between the two sides, represented
by Qt, is not affected as long as a new sensing action is not taken. At the beginning of the
tth time slot, the terminal first decides U1(t) ∈ {0, 1} to determine whether to transmit the
information-carrying variable Qt to the service center or not. The transmission takes one
time slot and goes through an erasure-type wireless channel represented by St with a fixed
failure transmission rate p. In particular, St = 1 if the transmission is successful and St = 0
otherwise. At the same time, the service center feeds back At to the terminal, which also
takes one time slot with no failure rate. At the end of the tth time slot, the feedback arrives at
the terminal, and the terminal will decide U2(t) ∈ {0, 1} to determine whether to sense the
feedback or not. We can, in principle, let At and Qt evolve as max{(1 − U2(t))At + Kt, 0}
and max{(1 − StU1(t))Qt + U2(t)At, 0} with nonnegative initial values. These versions
bring these system states to the form of queues with potentially dependent arrivals and
departures. Our Lyapunov drift plus penalty-based analysis will be applicable for both
versions. We therefore prefer to keep them as in (2) and (3) in the ensuing analysis.

Now we can elicit our optimization problem P1 to minimize an upper bound of
average UoI:

min
πt

lim
T→∞

sup
1
T

T−1

∑
t=0

E
[
wt(Qt

2 + MAt
2)
]

(4)

s.t lim
T→∞

sup
1
T

T−1

∑
t=0

E[U1(t)] ≤ ϕ1 (5)

lim
T→∞

sup
1
T

T−1

∑
t=0

E[U2(t)] ≤ ϕ2, (6)

where πt is the set of sequence of decisions πt = {U1(t), U2(t)}, wt is the nonnegative
weight of urgency modeled as an i.i.d. random variable, M is the weight of the relative
error of the variable At at the transmitter side, ϕ1 is the energy (or frequency) constraint on
transmission, and ϕ2 is the energy (or frequency) constraint on sensing. In order to satisfy
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the average transmission/sensing frequency constraints (5) and (6), we define the virtual
queues Ht and Gt as follows, which are both initialized at 0:

Ht+1 = max{Ht − ϕ1 + U1(t), 0} (7)

Gt+1 = max{Gt − ϕ2 + U2(t), 0}. (8)

Next, let us consider the evolution of the transmission virtual queue: If the terminal
decides to transmit at time slot t, the transmission virtual queue Ht will increase by
1 − ϕ1. Otherwise, it will decrease by ϕ1. As a result, the longer the virtual queue, the
more transfers will be performed. The virtual queue of sensing Gt evolves similarly.
Therefore, these two virtual queues can appropriately express the usage of the historical
transmission/sensing frequency.

Figure 1. Systemmodel with joint transmission and feedback reception.

3. Optimizing the Urgency of Information in P1

In this section, we will systematically develop a Lyapunov optimization framework
for optimizing an upper bound for the solution of P1. We summarize the notations we use
throughout the rest of the paper in Table 1.

Table 1. Definitions of Variables.

Symbol Description

At Error in Service Center
Qt Error in Terminal
Ht Transmission Frequency Virtual Queue
Gt Sensing Frequency Virtual Queue
nt Number of Time Slots since Last Sense
St Channel Situation

U1(t), U2(t) Transmission/Sensing Decision
πt Set of Decisions

ϕ1, ϕ2 Transmission/Sensing Frequency Constraints
wt Weight of Urgency
∼
w Average Weight of Urgency

V, Z, θ, β Weight of H2
t , G2

t , Q2
t , A2

t in Drift Function
M Weight of A2

t in Target Function
R Weight of Penalty Compared with Drift
Lt Summation of all the Queues
Δt Lyapunov Drift
ft Lyapunov Penalty
Yt Set of Given Parameters in tth Time Slot
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3.1. Lyapunov Function Definitions

In order to use the Lyapunov optimization framework, we will first define the Lya-
punov drift function Δt by using the quadratic sum of system states:

Lt =
1
2

VH2
t +

1
2

ZG2
t +

1
2

θQt
2 +

1
2

βAt
2, (9)

where V, Z, θ and β are the weights for different variables, which represent different impor-
tance levels of the stability of the queues or system states Ht, Gt, Qt and At, respectively.
In our analysis, we use the terms “queue” or “system state” interchangeably. Although
the evolution of At and Qt in (2) and (3) can take negative values, we can redefine them by
lower bounding their evolution by zero and make their definitions suitable as a queue with
arrivals and departures potentially depending on the control actions. However, none of the
analysis steps we take in this paper will be affected by this redefinition, as the Lyapunov
analysis we present essentially optimizes a bound on the system performance. We therefore
continue using the original definitions (2) and (3). The Lyapunov drift function for this
system can be expressed as

Δt = E[Lt+1 − Lt|Qt, nt, Ht, Gt, wt+1], (10)

where nt is the number of time slots since the last time we decide to sense the feedback. It
is obvious that in tth time slot, the terminal has a knowledge of Ht, Gt, Qt. However, the
terminal cannot access the specific value of At because the latest estimation error arrived at
the service center at the end of (t − 1)st time slot. Nevertheless, the terminal is aware of
the number of time slot since the last time it decides to sense nt, which can be expressed as:

nt+1 = (1 − U2(t))nt + 1. (11)

As a result, the terminal will decide whether to sense based on the number of time
slot since the last time it decided to sense nt rather than the error in the service center At.

Lemma 1. In each time slot t, given the error in terminal Qt, urgency weight at the next time slot
wt+1, the number of time slots since the last time terminal decides to sense nt, virtual queue length
Ht and Gt, set Yt = {Qt, nt, Ht, Gt, wt+1}, we can obtain an upper bound on the Lyapunov drift
Δt as

Δt ≤1
2
(V + Z) +

1
2

βσ2 − Vϕ1Ht − Zϕ2Gt + (VHt − 1
2

θpQt
2)E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2)E[U2(t)|Yt]. (12)

Proof. See Appendix A.

Denote the penalty in the tth time slot by ft. Because of causality, U1(t), U2(t) will
affect UoI in (t + 1)st time slot. Therefore, we let ft = Rwt+1(Qt+1

2 + MAt+1
2), where R

is the weight of the UoI compared with system stability and the remaining terms represent
UoI at t + 1.

Lemma 2. If we set the penalty in the tth time slot as ft = Rwt+1(Qt+1
2 + MAt+1

2), and the
average of the weight of the urgency as

∼
w. The Lyapunov drift plus penalty function is upper

bounded as:
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Δt + E[ ft|Yt] ≤1
2
(V + Z) +

1
2

βσ2 + R
∼
w(Q2

t + Mσ2 + Mntσ
2)− Vϕ1Ht − Zϕ2Gt

+ (VHt − 1
2

θpQt
2 − R

∼
wpQ2

t )E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2 + (1 − M)R
∼
wntσ

2)E[U2(t)|Yt]. (13)

Proof. See Appendix B.

Lemma 3. If E[L0] < ∞, and Δt + E[ ft] ≤ C, where C is a constant, then all the queues and
virtual queues in the system are mean rate stable.

Proof. See Appendix C.

3.2. Finding Appropriate Weights for the System

Next, we are going to find the optimal value of the weight parameters θ and β to
minimize the right hand side of (13) to the extent possible. Note that it is feasible to use a
stationary randomized scheme that independently transmits and senses with probability
ϕ1 and ϕ2 at each time slot, which translates to E[U1(t)] = ϕ1 and E[U2(t)] = ϕ2. As a
result, we reorder (13) to get

E[Lt+1 − Lt + ft|Yt] ≤(R
∼
wM +

1
2

β)σ2 +
1
2
(V + Z) + (−1

2
θpϕ1 − R

∼
wpϕ1 + R

∼
w)Qt

2

+ (
1
2
(θ − β)ntσ

2 + R
∼
wM + (1 − M)R

∼
wϕ2)ntσ

2. (14)

To make the right hand side of (14) no larger than a constant, we want the coefficients of
Qt

2 and ntσ
2 no larger than 0. For the coefficient of Qt

2,

−1
2

θpϕ1 − R
∼
wpϕ1 + R

∼
w ≤ 0

θ ≥ 2
pϕ1

(1 − pϕ1)R
∼
w. (15)

For the coefficient of ntσ
2,

1
2
(θ − β)ntσ

2+R
∼
wM + (1 − M)R

∼
wϕ2 ≤ 0

β ≥ θ + 2(
1
ϕ2

− 1)R
∼
wM + 2R

∼
w. (16)

As a result, we take the value of the parameters θ and β as

θ =
2

pϕ1
(1 − pϕ1)R

∼
w (17)

β =
2

pϕ1
R
∼
w + 2(

1
ϕ2

− 1)R
∼
wM. (18)

Put the value of the parameters θ and β back to (14), then we can get the upper bound of
E[Lt+1 − Lt + ft|Yt] as

E[Lt+1 − Lt + ft|Yt] ≤ (
1

pϕ1
+

M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z). (19)
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Note that the right hand of (19) is a constant, which means that all the queues and virtual
queues in the system are mean rate stable under above derived conditions.

3.3. Deriving Lyapunov Optimal Decisions

We now minimize the upper bound in the RHS of (13), which is actually in the
following form:

min
πt

(VHt − 1
2

θpQt
2 − Rwt+1 pQ2

t )U1(t)

+ (ZGt +
1
2
(θ − β)ntσ

2 + (1 − M)Rwt+1ntσ
2)U2(t). (20)

We next show the scheduling scheme for each time slot. Putting the value of the parameters
θ and β back to (20), we get the following:

min
πt

[VHt − (wt+1 − ∼
w +

∼
w

pϕ1
)RpQt

2]U1(t)

+ [ZGt + ((M − 1)
(∼

w − wt+1

)
−

∼
wM
ϕ2

)Rntσ
2]U2(t). (21)

Set the update index at = VHt − (wt+1 − ∼
w +

∼
w

pϕ1
)RpQt

2 and update index bt = ZGt +

((M− 1)
(∼

w − wt+1

)
−

∼
wM
ϕ2

)Rntσ
2, and then the solution to the scheme (20) can be achieved:

U1(t) =
{

1 , at < 0 (22a)

0 , otherwise (22b)

U2(t) =
{

1 , bt < 0 (23a)

0 , otherwise. (23b)

We summarize below the resulting Lyapunov optimal Algorithm 1.

Algorithm 1 Decisions scheduling scheme based on Lyapunov optimization

Require: A0, Q0, H0, G0, n0, St, Kt, ϕ1, ϕ2, wt,
∼
w, V, Z, M, R

1: for each time slot t do

2: Calculate at = VHt − (wt+1 − ∼
w +

∼
w

pϕ1
)RpQt

2;

3: Calculate bt = ZGt + ((M − 1)
(∼

w − wt+1

)
−

∼
wM
ϕ2

)Rntσ
2;

4: if at < 0 then
5: U1(t) = 1
6: else
7: U1(t) = 0;
8: end if
9: if bt < 0 then

10: U2(t) = 1;
11: else
12: U2(t) = 0;
13: end if
14: Calculate At+1 = (1 − U2(t))At + Kt;
15: Calculate Qt+1 = (1 − StU1(t))Qt + U2(t)At;
16: Calculate Ht+1 = max{Ht − ϕ1 + U1(t), 0};
17: Calculate Gt+1 = max{Gt − ϕ2 + U2(t), 0};
18: Calculate nt+1 = (1 − U2(t))nt + 1;
19: end for
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Based on the algorithm, we can make decisions by scheduling every time slot to
minimize the value of UoI and maintain the virtual queue stability simultaneously. From
the algorithm, it is apparent that we can successfully decouple the joint decisions into two
independent threshold schemes, which makes the implementation desirably simple.

3.4. Solving for the Target Function and Lyapunov Gap

In this section, we will solve for the target function and achieve the expression of the
gap between the optimal solution and the result obtained by the Lyapunov optimization al-
gorithm. We will also prove that the result gained by the Lyapunov optimization algorithm
can be infinitely close to the optimal solution. Now make the summation of the total T-time
slot on both sides of (19), and we can get

E

[
LT − L0 +

T−1

∑
t=0

ft

]
≤ T

[
(

1
pϕ1

+
M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z)

]
. (24)

Note that LT ≥ 0 and L0
T = 0, and then divide T on both sides of (24) to get the

time-averaged result

1
T

E

[
T−1

∑
t=0

ft

]
≤ (

1
pϕ1

+
M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z). (25)

Theorem 1. Set the problem of (20) as P2(πt), and then the solution of P2(πt) will satisfy the
following gap:

1
T

T−1

∑
t=0

E
[
wt(Qt

2 + MAt
2)
]
≤ (

1
pϕ1

+
M
ϕ2

)
∼
wσ2 +

(V + Z)
2R

(26)

That is, the solution of P2(πt) can be approximated by the solution of P1(πt), and the gap between
them is (V+Z)

2R .

Proof. See Appendix D.

To be precise, the proof of this gap result in Appendix D requires At and Qt in (2) and
(3) to be lower bounded by zero. Nevertheless, our numerical results show consistence
with this gap even when they are non-negative. Note that as the value of R is taken as large
as possible, and the result obtained by the Lyapunov optimization algorithm P2(πt) can be
made arbitrarily close to the optimal result P∗

1 (πt).
(V+Z)

2R can also seem to be the ratio of
the weight of the energy constraints and UoI, which shows the tradeoff between the UoI
and the energy constraints.

4. Numerical Results

In this section, we present extensive numerical results to explore the behaviour of
the optimal scheme under various constraints and scenarios. At the beginning of each
time slot, the terminal first decides whether to transmit the error packets to the service
center or not. The transmission takes 1 ms and goes through a wireless channel with a
fixed failure transmission rate. At the same time, the service center transmits the estimation
error (feedback) to the terminal, which also takes 1 ms with no failure rate. At the end of
each time slot, the feedback arrives at the terminal, and the terminal will decide whether
to sense this feedback. Meanwhile, the service channel receives the error packets and the
latest estimation of Gaussian noise. The service center will immediately calculate the error
difference between the transmitted status information and the received status information
and add that new error into the error packet.
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4.1. Response to Urgency Levels

To demonstrate the system’s response to a new urgency, for every 5000 time slots, we
set W = 100 in the 50 consecutive time slots and W = 1 in the rest of the time slots. The
transmission/sense energy constraints are set as ϕ1 = 0.25 and ϕ2 = 0.5. The channel
error rate is p = 0.8, the weight of the UoI is set as M = 2.5 and R = 2, and the weight
of the system states is set as V = Z = 1. Additionally, the Gaussian noise variance will
be set to unity. Figures 2–4 show a sample evolution of the squared of errors MA2

t + Q2
t

and two virtual queue length Ht, Gt. Observing Figures 2–4, we understand that when
the urgency level rises, the square of errors will drop significantly, and the virtual queues
will keep increasing because update transmissions are ramped up. However, due to the
energy constraints, the terminal’s probability of transmitting and sensing are affected. This
is the reason why the square of errors will increase, and the transmission virtual queue
will decrease after the urgency. These show that the system can swiftly respond to urgency
levels while keeping the error variance portion of UoI (i.e., Q2

t + MA2
t ) at a reasonable level

at all times.
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Figure 2. UoI sequence obtained by the proposed Lyapunov algorithm under a specific realization of
weights wt.
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Figure 3. Transmission virtual queue under the same realization of weight wt in Figure 2.
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Figure 4. Sensing virtual queue under the same realization of weight wt in Figure 2.

4.2. Tradeoff between UoI and System Parameters

In this section, we compare how the relationship between different variables will
affect the UoI in the system. Unless otherwise specified, we set the energy constraint of
transmission/sensing as ϕ1 = ϕ2 = 0.8, the weight of the system stability as V = Z = 1,
the weight of totally UoI and the UoI in service center as R = M = 2, the channel error rate
as p = 0.8, and the weight of urgency at each time slot is i.i.d. with probability 0.99 being 1
and probability 0.01 being 100.

Figures 5 and 6 present the relationship between UoI and transmission/sense energy
constraint. They also show the effect of system stability weights on UoI. In Figure 5, the
energy constraint of transmission ranges from 0.1 to 1.0, and the weight of the queue
stability (i.e., the virtual queue levels) in the transmission part will be set as V = 1, 10, 100,
and 1000. Similarly, in Figure 6, we set the energy constraint of sensing from 0.1 to 1.0 and
Z = 1, 10, 100, and 1000. We observe that when average energy is less constrained, the
UoI decreases. However, the UoI will not change much when the transmission frequency
reaches 0.5. This is due to the fact that the frequency constraint becomes inactive after a
certain level depending on the sensing activity. As sensing and transmission are in tandem,
the higher frequency drives the overall performance. Moreover, when the weight of the
stability V and Z are small, e.g., V = 1 or Z = 1, we pay more attention to the value of
UoI than the frequency of transmission levels, yielding a virtual queue significantly above
the set constraint. On the other hand, if we set the weight of the stability V and Z at a
high level, e.g., V = 1000 or Z = 1000, the virtual queue stability becomes much more
important, which compromises UoI performance.

In Figure 7, the energy constraint of transmission will be set from 0.1 to 1.0, and the
failure probability of transmission will be set as p = 0.2, 0.4, 0.6, 0.8, and 1.0. We observe
that the higher p is, the lower the average UoI is. This is because we need to decide to
transmit more frequently to achieve the optimal average of UoI when the success rate
is lower. In Figure 8, we observe that the average UoI decreases no matter whether ϕ1
or ϕ2 increases because we have more chances to transmit or sense when the energy is
sufficient. Additionally, as ϕ2 gets smaller, the curve will converge earlier because the error
packets in the service center are the input of the terminal. When we have less probability of
sensing the feedback, the transmission frequency will also not be large because of the input
limitation, even if the transmission energy is sufficient.
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Figure 5. Tradeoff between transmission energy constraint, V and UoI.
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Figure 6. Tradeoff between sense energy constraint, Z and UoI.
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Figure 7. Tradeoff between transmission energy constraint, channel failure rate p, and UoI.
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Figure 8. Tradeoff between transmission energy constraint, sensing energy constraint, and UoI.

In Figure 9, we set the weight of total UoI as R = 1, 8, 16 and 64, and the weight of
two virtual queues as V = Z = 20. As expected, the larger the weight of the total UoI is,
the smaller the average UoI will be. This is because the system will consider the UoI more
important and will take more chances to transmit and sense. Moreover, the Lyapunov gap,
i.e., (V+Z)

2R , will diminish as R increases.
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Figure 9. Tradeoff between transmission energy constraint, R and UoI.

4.3. Tradeoff between UoI and System Stability

The tradeoff between the target function and the system stability is always an exciting
and crucial question in the Lyapunov optimization framework. This section will show ex-
amples of how different weights can affect the system stability and UoI. We set T = 10, 000
and channel error rate as p = 0.8. The urgency weight wt is determined as an i.i.d. random
process with probability 0.99 being 1 and probability 0.01 being 1000. We will observe the
number of update transmissions and senses (i.e. the energies spent for update transmission
and sensing throughout T = 10, 000 slots) to represent system stability.

In Figures 10 and 11, we set the weight of the system stability as V = Z = 10, and
the weight of UoI as R = M = 2. As the energy is sufficient, we can have more chances to
transmit and sense. In addition, the number of transmissions is always smaller or equal to
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the number of senses. This makes sense because the input error in the terminal comes from
the service center and will be sent together in one transmission. In addition, even if there
is no energy constraint for the transmission, e.g., ϕ1 = 1.0, the number of transmissions
will not reach the value of constraints. This is due to the fact that the frequency constraint
becomes inactive after a certain level. However, when ϕ2 ≤ 0.2, the energy spent for
sensing goes above the set energy constraints. The reason is that the weight of UoI is much
larger than the weight of stability. This means that the system will sacrifice stability for
better UoI.
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Figure 10. Energy spent for update transmission when V = Z = 10.
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Figure 11. Energy spent for sensing when V = Z = 10.

In Figures 12 and 13, we set the weight of the system stability as V = Z = 80, which is
larger than the weight of UoI. We see that both the transmission and sensing constraints are
not binding. Comparing with the Figures 5 and 6, we observe that the UoI with V, Z = 100
is close to the UoI with V, Z = 1. Hence, by sacrificing a small amount of UoI, a very stable
system can be guaranteed.
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Figure 12. Energy spent for update transmission when V = Z = 80.
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Figure 13. Energy spent for sensing when V = Z = 80.

In Figure 14, we set the weight of the UoI in service center as M ∈ [1, 10], the weights
Z = 8, 16, 32, 64, and 128, and V = 5, ϕ1 = 0.5 and ϕ2 = 0.8. The virtual queue Gt is small
when its weight is large, and the energy constraints are tight. In addition, when the weight
of UoI in the service center M increases, the sensing time will keep increasing because the
UoI in the service center is much more important than the virtual queue stability and the
information in the terminal. This also exemplifies that our framework can accommodate
different cases flexibly by using different weights.
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Figure 14. Tradeoff between M, Z and sensing frequency.

4.4. Comparison of Lyapunov Optimal Performance with Other Algorithms

The greedy and probabilistic algorithms are also very suitable naive algorithms to
solve this problem. The main idea of the greedy algorithm is that the terminal will decide to
transmit/sense at time t if the instantaneous transmission/sensing frequency at time t has
not reached the corresponding set limits. Moreover, for the probabilistic algorithm, in each
time slot the terminal will transmit/sense with probability equal to the value of frequency
constraints. For Figure 15, we set the weight of system stability as V = Z = 30. Channel
success rate is set as p = 0.6, sense energy constraint is set as ϕ2 = 0.8, and the weight of
urgency at each time slot is the same as before. Because the greedy algorithm takes action
independent of urgency, we will compare the average UoI with wt = 1. From the figure,
the average error portion of UoI (i.e., Q2

t + MA2
t ) obtained by Lyapunov optimization is

always lower than the other two algorithms, especially when the energy is insufficient and
the gap closes with increasing energy availability.
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Figure 15. Lyapunov optimal algorithm and greedy algorithm.
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Recall that UoI can subsume various AoI problems. For instance, if we set the cost
function δ(.) as a linear function with the unit parameter and the urgency weight wt = 1,
then we can express the AoI in terminal Q̃t and the AoI in service center Ãt as

Ãt+1 = (1 − U2(t))Ãt + 1 (27)

Q̃t+1 = (1 − S(t)U1(t))Q̃t + U2(t)Ãt. (28)

Let us use the same Lyapunov optimization algorithm described earlier along with
the same weights for system state variables and target function for a fair comparison.
In Figure 16, we set the weight of virtual queues as V = Z = 20, the weight of UoI as
R = M = 2, the weight of system states θ, β in AoI optimal will be the same as the value
of UoI optimal and will be calculated each round. Additionally, set the probability of fail
transmission as p = 0.6, sensing frequency limitation as ϕ2 = 0.6. We can deduce that
the average UoI obtained by UoI optimal is much better than the value obtained by AoI
optimal. In addition, the value of average UoI by UoI optimal is smaller than that of the
average weighted AoI by AoI optimal. This is because, in the AoI model, the increment Kt
will always be 1; however, the UoI model yields a lower expectation.
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Figure 16. Lyapunov optimization vs. AoI optimal.

5. Conclusions

This paper focused on urgency of information (UoI) optimization through joint sensing
and transmission. We proposed a new interactive status updating problem over a point-to-
point channel in which transmission and sensing actions are determined to minimize UoI as
a combination of the staleness of sensed data and synchronization between two ends under
resource constraints, and we used a Lyapunov optimization framework for its optimization.
We obtained the gap between the optimal solution and the result gained by the Lyapunov
optimal algorithm, and proved that the gap between them can be made arbitrarily small.
We presented an extensive numerical study that illustrates various features of the model
and resulting algorithm, and potential performance improvements with respect to several
schemes. In our future work, we plan to extend this work in multiple directions such
as the case of multiple terminals in series or parallel, on demand UoI definition and
optimization as well as the cases of computation transmission tradeoffs and dynamical
energy constraints.
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Appendix A

Based on (7) we can get the following sequence of steps:

E
[

H2
t+1 − Ht

2|Yt

]
≤ E

[
(Ht − ϕ1 + U1(t))2 − Ht

2|Yt

]
= E

[
H2

t + ϕ2
1 + U1(t)2 − 2ϕ1Ht + 2HtU1(t)− 2ϕ1U1(t)− H2

t |Yt

]
= E

[
(ϕ1 − U1(t))2 + 2(−ϕ1 + U1(t))Ht|Yt

]
≤ 1 + 2(−ϕ1 + E[U1(t)|Yt])Ht, (A1)

where the first inequality follows from the definition of Ht in (7) used in the identity
that for any X = max{a + b − c, 0}, X2 ≤ (a + b − c)2, the following equalities follow
from rearranging terms and the final inequality follow from ϕ1 − U1(t) ≤ 1. Based on
Equation (8), and using the same method as that for obtaining (A1), we get the following
inequality:

E
[

Gt+1
2 − Gt

2|Yt

]
≤ 1 + 2(−ϕ2 + E[U2(t)|Yt])Gt. (A2)

Based on (2), we have

E
[

At+1
2 − At

2|Yt

]
= E

[
(1 − U2(t))2 At

2 + 2AtKt(1 − U2(t)) + Kt
2 − At

2|Yt

]
. (A3)

Recall that Kt ∼ (0, σ2) follows i.i.d Gaussian distributions. This is due to the fact that
the queue At is the summation of Kt; it is obvious that the summation of the Gaussian
distribution is still a Gaussian distribution. As a result, the error in the service center
also follows a Gaussian distribution At ∼ (0, nσ2). In addition, as U2(t) ∈ {0, 1}, we can
simplified (A3) by U2(t)2 = U2(t) and (1 − U2(t))2 = 1 − U2(t). As a result, we have

E
[

At+1
2 − At

2|Yt

]
= −ntσ

2E[U2(t)|Yt] + σ2. (A4)

Based on (3) and the fact that (1 − U1(t)St)2 = (1 − U1(t)St), we have

E
[

Qt+1
2 − Qt

2|Yt

]
= E

[
(1 − U1(t)St)

2Qt
2 + 2Qt AtU2(t)(1 − U1(t)St) + At

2U2(t)
2 − Qt

2|Yt

]
= −Qt

2 pE[U1(t)|Yt] + ntσ
2E[U2(t)|Yt]. (A5)

Based on (A1)–(A5), we have
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Δt = E[Lt+1 − Lt|Yt]

= E
[

1
2

V(H2
t+1 − Ht

2) +
1
2

Z(G2
t+1 − G2

t ) +
1
2

θ(Q2
t+1 − Q2

t ) +
1
2

β(A2
t+1 − At

2)|Yt

]
≤ 1

2
(V + Z) +

1
2

βσ2 − Vϕ1Ht − Zϕ2Gt + (VHt − 1
2

θpQt
2)E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2)E[U2(t)|Yt]. (A6)

Appendix B

Set the Lyapunov penalty function as ft = Rwt+1(Qt+1
2 + MAt+1

2), where wt ≥ 0.
Based on (A4) and (A5), we can get the Lyapunov penalty function as follows:

E[ ft|Yt] =RE
[
wt+1(−Q2

t StU1(t) + 2Qt AtU2(t)(1 − StU1(t)) + A2
t U2(t) + Q2

t )|Yt

]
+ RME

[
wt+1(−A2

t U2(t) + K2
t + A2

t |Yt

]
=R

∼
w(−Q2

t pE[U1(t)|Yt] + Q2
t + Mσ2 + Mntσ

2 + (1 − M)ntσ
2E[U2(t)|Yt]). (A7)

Combining (A6) and (A7), the Lyapunov drift plus penalty function satisfies the following
inequality:

Δt + E[ ft|Yt] ≤1
2
(V + Z) +

1
2

βσ2 + R
∼
w(Q2

t + Mσ2 + Mntσ
2)− Vϕ1Ht − Zϕ2Gt

+ (VHt − 1
2

θpQt
2 − R

∼
wpQ2

t )E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2 + (1 − M)R
∼
wntσ

2)E[U2(t)|Yt]. (A8)

Appendix C

We start by assuming that the initial values satisfy E[L0] < ∞. If Δt + E[ ft] ≤ C, where
C is a constant, then take the summation over T time slots to get

E

[
LT − L0 +

T−1

∑
t=0

ft

]
≤ TC. (A9)

Based on (9) we have

E[LT ] ≥ 1
2

VE
[
(H2

t )
]
. (A10)

From the definition of the virtual queue Ht (A1), it is obviously that E
[
(H2

t )
] ≥ (E[(Ht)] )2,

and also because the penalty function ft is always non-negative, we can change (A9) into

1
2

VE[(Ht)])
2 ≤ TC + L0

E[(Ht)] ≤
√

2(TC + L0)

V
E[(Ht)]

T
≤

√
2(TC + L0)

VT
. (A11)

Since T → ∞, the right hand side of (A11) is equal to 0. As a result,

E[(Ht)]

T
→ 0. (A12)
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As a result, the virtual queue Ht is mean rate stable. The other system states Qt, At and the
virtual queue Zt can be proven as mean rate stable with the same method above. Therefore,
the expressions of the queues in the system are appropriate, and the Lyapunov optimization
algorithm is applicable. We also recall that the evolution of Qt, At, although not originally
in a queue form, can be easily redefined to be bounded below by 0, and the analysis in our
paper will be valid without any changes.

Appendix D

First, let us assume that P1 has an optimal solution, which is to take the best decision
for every time slot and get the optimal result of the target function (4). Because this optimal
solution does not use the Lyapunov algorithm, the decision has no relationship with the
queues and virtual queues in the system. Below πt = {U1(t), U2(t)} will be used to repre-
sent the decision policy of the Lyapunov optimization algorithm and π∗

t = {U1(t)∗, U∗
2 (t)}

is used to represent the decisions of the optimal solution. Based on Equations (A1)–(A5),
we have

Lt+1 − Lt + ft(πt) ≤ 1
2
(V + Z) + (−ϕ1 + U1(t))Ht + (−ϕ2 + U2(t))Gt

+
1
2

θ
(
−Qt

2U1(t)St + 2Qt AtU2(t)(1 − U1(t)St) + At
2U2(t)

)
+

1
2

β
(
−U2(t)At

2 + 2AtKt(1 − U2(t)) + Kt
2
)
+ ft(πt). (A13)

Because the optimal solution is a solution of the problem, it should also obey (A13)

Lt+1 − Lt + ft(πt) ≤ 1
2
(V + Z) + (−ϕ1 + U∗

1 (t))Ht + (−ϕ2 + U∗
2 (t))Gt

+
1
2

θ
(
−Qt

2U∗
1 (t)St + 2Qt AtU∗

2 (t)(1 − U∗
1 (t)St) + At

2U∗
2 (t)

)
+

1
2

β
(
−U∗

2 (t)At
2 + 2AtKt(1 − U∗

2 (t)) + Kt
2
)
+ ft(π

∗
t ). (A14)

Then take the expectation on both sides of (A14)

E[Lt+1 − Lt + ft(πt)|Yt] ≤ 1
2
(V + Z) + E[(−ϕ1 + U∗

1 (t))Ht] + E[(−ϕ2 + U∗
2 (t))Gt]

+
1
2

θE
[
−Qt

2U∗
1 (t)St + 2Qt AtU∗

2 (t)(1 − U∗
1 (t)St) + At

2U∗
2 (t)

]
+

1
2

βE
[
−U∗

2 (t)At
2 + 2AtKt(1 − U∗

2 (t)) + Kt
2
]
+ E[ ft(π

∗
t )]. (A15)

As is well known in the literature [7,8], there exists a w-optimal decision rule that makes
decision randomly and independent of the variables in the system. In the analysis below,
we assume such an optimal policy and denote it as (U∗

1 (t), U∗
2 (t)):

E[Lt+1 − Lt + ft(πt)|Yt] ≤ 1
2
(V + Z) + (−ϕ1 + E[U∗

1 (t)])E[Ht] + (−ϕ2 + E[U∗
2 (t)])E[Gt]

+
1
2

θ(−E
[

Qt
2
]

E[U∗
1 (t)]p + 2E[Qt]E[At]E[U∗

2 (t)](1 − E[U∗
1 (t)]p) + E

[
At

2
]

E[U∗
2 (t)])

+
1
2

β(−E[U∗
2 (t)]E

[
At

2
]
+ 2E[At]E[Kt](1 − E[U∗

2 (t)]) + E
[
Kt

2
]
) + E[ ft(π

∗
t )]. (A16)

Placing E[Kt] = 0, E
[
Kt

2
]
= σ2, E[At] = 0, as well as ϕ1 into E

[
U∗

1 (t)
]
, and ϕ2 into

E[U∗
2 (t)], we get the following. It is worth noting that placing the time-average constraint

on E
[
U∗

1 (t)
]

and E[U∗
2 (t)] with equality in the Lyapunov drift analysis can be justified
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easily by observing that the constraints must be active almost always over the T time
horizon O(T) time instants:

E[Lt+1 − Lt + ft(πt)|Yt] ≤1
2
(V + Z) +

1
2

θ(−E
[

Qt
2
]

pϕ1 + E[At]ϕ2)

+
1
2

β(−ϕ2E[At] + σ2) + E[ ft(π
∗
t )]. (A17)

Recalling that queues At and Qt are mean rate stable, we have, E
[

Qt
2
]
= E

[
Qt+1

2
]

and

E
[

At
2
]
= E

[
At+1

2
]
. From (A3)–(A5), we can get the expectation of A2

t and Q2
t as

E
[

At
2
]
=

σ2

ϕ2
(A18)

E
[

Qt
2
]
=

σ2

pϕ1
. (A19)

As a result, (A17) can be simplified as follows:

E[Lt+1 − Lt + R ft(πt)|Yt] ≤1
2
(V + Z) +

1
2

θ(− σ2

pϕ1
pϕ1 +

σ2

ϕ2
ϕ2)

+
1
2

β(−ϕ2
σ2

ϕ2
+ σ2) + E[ ft(π

∗
t )]

=
1
2
(V + Z) + E[ ft(π

∗
t )]. (A20)

Now take the summation of the total T-time slot on both sides of (A20) and we have

E

[
LT − L0 +

T−1

∑
t=0

ft(πt)|Yt

]
≤1

2
(V + Z)T +

T−1

∑
t=0

E[ ft(π
∗
t )]. (A21)

Note that LT ≥ 0 and L0
T = 0; we then divide T on both sides of (A21) to get the time

averaged result

1
T

E

[
T−1

∑
t=0

ft(πt)|Yt

]
≤1

2
(V + Z) +

1
T

T−1

∑
t=0

E[ ft(π
∗
t )]. (A22)

Finally, divide R on both side of (A22) to convert ft into target function

P∗
1 (πt) ≤ P2(πt) ≤ V + Z

2R
+ P∗

1 (πt). (A23)
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Abstract: The timely delivery of status information collected from sensors is critical in many real-
time applications, e.g., monitoring and control. In this paper, we consider a scenario where a wireless
sensor sends updates to the destination over an erasure channel with the supply of harvested energy
and reliable backup energy. We adopt the metric age of information (AoI) to measure the timeliness
of the received updates at the destination. We aim to find the optimal information updating policy
that minimizes the time-average weighted sum of the AoI and the reliable backup energy cost. First,
when all the environmental statistics are assumed to be known, the optimal information updating
policy exists and is proved to have a threshold structure. Based on this special structure, an algorithm
for efficiently computing the optimal policy is proposed. Then, for the unknown environment,
a learning-based algorithm is employed to find a near-optimal policy. The simulation results verify
the correctness of the theoretical derivation and the effectiveness of the proposed method.

Keywords: age of information; information update; energy harvesting; reliable backup energy

1. Introduction

Timely information updates from wireless sensors to destinations are essential for
real-time monitoring and control systems. To describe the timeliness of information up-
dates from the receivers’ perspective, a new metric called age of information (AoI) is pro-
posed [1–3]. Unlike general performance metrics, such as delay and throughput, AoI refers
to the time elapsed since the generation of the latest received information. A lower AoI
generally reflects more timely information at the destination. Therefore, the AoI-minimal
status updating policies in sensor networks have been widely studied [4–7].

The destinations always desire information updates in as timely a manner as possible,
which is typically constrained by sensors’ energy. Generally, energy sources include the
grid and sensors’ own non-rechargeable batteries. We call these sources reliable energy since
they enable sensors to reliably operate until the power grid is cut off or sensors’ batteries are
exhausted [8]. Specifically, if sensors consume energy from the grid, they need to pay the
electricity bill; if sensors only use the power of their own batteries, the price of sensing and
transmitting updates will be the cost of frequent battery replacement. There is clearly a price
to pay for using reliable energy to update. Energy harvesting (EH) is a promising technology
that can help reduce the consumption of reliable energy for information update [9,10]. It can
continuously extract energy from solar power, ambient RF, and thermal energy and store
the harvested energy in sensors’ rechargeable batteries. The stored energy is renewable
and can be used for free. Hence, in this case, the reliable energy can serve as backup energy.
The design of the coexistence of reliable backup energy and harvested energy has been
researched and promoted in academia and industry [8,11–14]. The mixed energy supply
mode can enhance the reliability of the system.

However, the irregular arrivals of harvested energy and the limited capacity of
rechargeable batteries still motivate us to schedule the energy usage properly to reduce
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the cost of using reliable backup energy while maintaining the timeliness of information
updates (i.e., the average AoI). Intuitively, the average AoI and the cost of using reliable
energy cannot be minimized simultaneously. On the one hand, a lower average AoI means
that the sensor senses and transmits updates more frequently, which will increase the
consumption of reliable backup energy since the harvested energy is limited. On the other
hand, to reduce the cost of reliable backup energy, the sensor will only exploit the harvested
energy. Due to the uncertainty of the energy harvesting behavior, the average AoI of the
system will inevitably increase. Therefore, in this paper, we focus on achieving the best
trade-off between the average AoI and the cost of reliable backup energy.

We consider a sensor-based information update system, where an energy harvesting
sensor with reliable backup energy sends timely updates to the destination through an era-
sure channel. Based on our settings, we will minimize the long-term average weighted sum
of the AoI and the paid reliable energy cost to find the optimal information updating policy
by Markov decision process (MDP) theory [15]. First, we assume that the sensor knows
the relevant statistics in advance, such as the success probability of each transmission and
the probability of energy arrival, so that the sensor can make the optimal decision at any
time. Then we consider a more realistic scenario where the sensor has no knowledge of
the environment. In such an unknown environment, learning-based approaches should be
adopted to obtain the updating policy.

1.1. Related Work

There have been a series of related works studying AoI minimization in EH communi-
cation systems [16–34]. In these systems, each update consumes harvested energy and is
constrained by the energy causality.

Refs. [16–23] focus on how to optimize AoI under general energy causality constraints,
where different battery model settings are considered. Constrained by the average power
available in the infinite-sized battery, ref. [16] shows that a lazy policy which leaves a certain
idle period between updates outperforms the greedy policy under random service times.
With the same assumption of an infinite-sized battery, ref. [17] focuses on both offline
and online policies under energy replenishment constraints with zero service time. While
considering fixed service times, the offline results in [17] are extended to a two-hop scenario
in [18], and online policy is provided in [19]. In the case of the delay being controlled by
transmission energy, ref. [20] also investigated the optimal offline policy. For the error-free
and delay-free channel, the optimal updating policies were investigated for different battery
settings [21,22]. Ref. [21] derived the asymptotically optimal policies for the infinite-sized,
finite-sized, and unit-sized battery by renewal theory. It turned out to be a threshold
policy for the unit-sized battery case. More general battery models were considered in [22].
The optimal policy was also proved to be multi-threshold and the energy-dependent
thresholds were characterized explicitly. When the battery is finite sized and there is
no feedback from the destination, it was shown that the optimal updating policy is of
a threshold structure and the threshold is non-increasing with the battery level [23].

Refs. [24–30] studied how to properly utilize the harvested energy to transmit updates
over imperfect channels. For the noisy channel, ref. [24] considered an infinite-sized battery
model and derived the different optimal policies for updating with and without feedback.
Ref. [25] further derived a closed-form expression for the threshold of the unit-sized battery
model and extended the threshold-based policies to multiple sources case. To combat the
noisy channel, some channel coding schemes for EH communication were investigated
in [26,27]. In [28], the HARQ protocol was applied for a single EH sensor to send updates to
the destination. The optimal policies were obtained by employing reinforcement learning in
both known and unknown environments, but no clear intuition on the policy structure was
provided. Considering energy harvesting wireless sensor networks (EH-WSNs), ref. [29]
suggested to estimate the channel state of a Rayleigh fading channel before transmitting to
improve the AoI, update interval and packet loss performance, despite the associated time
and energy costs. Ref. [30] aimed to minimize the average AoI of an EH-aided secondary
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user(SU) in a cognitive ratio network. The SU has to make sensing and updating decisions
subject to random energy arrivals and the available spectrum. The sequential decision
problem is formulated as a partially observable Markov decision process (POMDP).

Refs. [31–34] paid attention to other AoI-related metrics in EH communication and
even the distributional properties of AoI, not just the average AoI. Different freshness
metrics were considered, such as nonlinear AoI [31], urgency-aware AoI (U-AoI) [32],
and peak AoI [33] in EH sensor network. To better understand the distributional properties
of AoI, ref. [34] further derived closed-form expressions of the moment generating function
(MGF) of AoI in an EH-powered queuing system using the stochastic hybrid systems
(SHS) framework.

The above works focus on optimizing information freshness under the EH supply.
Different from them, energy sources in this paper include both harvested energy and
reliable backup energy, and our goal is to achieve the best trade-off between age and
reliable energy consumption, instead of merely optimizing AoI. Among the above works,
refs. [23,25] are the most related to our paper. The following Table 1 summarizes the
detailed differences. It is worth noting that by letting the reliable energy consumption be
small enough, our results can be compared with some prior results in [23,25].

Table 1. Comparative summary of the most related works in contrast to our paper.

Feature
Ref

[23] [25] Our

Energy supply EH EH EH + reliable energy

Battery capacity Finite-sized Unit-sized Finite-sized

Wireless channel Error-free Error-prone Error-prone

Optimization objective AoI AoI AoI-reliable energy trade-off

The age–energy trade-off has been widely studied in [35–39]. The age–energy trade-off
in the erasure channel was studied in [35], and the fading channel case was investigated
in [36]. Ref. [37] adopted a truncated automatic repeat request (TARQ) scheme and charac-
terized the age–energy trade-off for the IoT monitoring system. Optimum energy efficiency
and AoI trade-off was considered in a multicast system in [38]. In [39] , the authors investi-
gated the optimal age–energy trade-off, where status sensing and data transmission can be
carried out separately. By the MDP analysis similar to [6,15], the optimal policy exists and
is proved to have two thresholds. The energy sources are all reliable in these works, which
means that the energy cost of the update is easy to track. However, the uncertainty of the
energy arrival and mixed energy supplies bring more challenges to the MDP analysis in this
paper. To the best of our knowledge, this paper is the first to consider the timeliness of the
system under mixed energy supplies. The preliminary results of this paper are presented
in [40].

1.2. Main Contributions

The main contributions of this paper are as follows:

• We consider an information update system where the harvested energy and reliable
energy coexist. The goal is to find the optimal policy that achieves the best trade-off
between age and reliable energy consumption. Compared to the existing works [23,25],
our problem is more practical and general, which will provide some insights for future
green and durable update system designs.

• For the case that all the statistics such as channel erasure probability and EH probability
are known a priori, we formulate an unconstrained infinite space Markov decision
process (MDP) problem, and prove the existence of the optimal policy. By revealing
the monotonicity and proportional differential property of the value function, we find
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that the optimal policy is of the threshold-type. Based on this special structure, we
propose an efficient algorithm to compute the optimal policy.

• In an unknown environment, we propose an average cost Q-learning algorithm to
obtain the updating policy.

• Simulation results show that the optimal policy outperforms other baseline policies
when the environmental statistics are known. At the same time, the performance of
the policy learned in the unknown environment is very close to the theoretical optimal
policy. We also compare the age-reliable energy trade-off curves of the optimal updat-
ing policies under different energy supply conditions, which reflects the rationality of
mixed energy supplies. The optimal policy can also be particularized to a special case,
where the sensor can only utilize the harvested energy and the battery is unit-sized,
and its performance coincides with the existing results in [23,25].

1.3. Organization

The rest of this paper is organized as follows. In Section 2, we introduce the model
of the information update system and formulate the problem. In Section 3, we analyze
the optimal policy when all the statistics are known. In Section 4, we aim to minimize
the average cost of updating in an unknown environment. In Section 5, we present the
simulation results. Finally, in Section 6, we conclude the paper.

2. System Model and Problem Formulation

2.1. System Model

In this paper, we consider a point-to-point information update system, where a wireless
sensor and a destination are connected by an erasure channel, as shown in Figure 1.
The channel is assumed to be noisy and time invariant, and each update is corrupted with
probability p during transmission (Note p ∈ (0, 1)). Both the free harvested energy stored
in the rechargeable battery and the reliable backup energy that needs to be paid can be
used for real-time environmental status updates.

Without loss of generality, time is slotted with equal length and indexed by t = 0, 1, 2 . . . .
At the beginning of each time slot, the sensor decides whether to generate and transmit
an update to the destination or stay idle. The decision action at slot t, denoted by a[t],
takes value from action set A = {0, 1}, where a[t] = 1 means that the sensor decides to
generate and transmit an update to the destination while a[t] = 0 means the sensor is idle.
The destination will feed back an instantaneous ACK to the sensor through an error-free
channel when it has successfully received an update and a NACK otherwise. We assume
the above processes can be completed in one time slot. The destination keeps track of the
environment status through the received updates. We apply the metric age of information
to measure the freshness of the status information available at the destination.

Figure 1. System model.
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2.1.1. Age of Information

Age of Information (AoI) is defined as the elapsed time since the generation of the
latest successfully received update [1–3]. Denote Δ[t] as the AoI of destination in time slot
t. Then, we have

Δ[t] = t − U[t]. (1)

where U[t] denotes the time slot when the most recently received update was generated
before time slot t. In particular, the AoI will decrease to one if a new update is successfully
received. Otherwise, it will increase by one. The evolution of AoI can be expressed
as follows:

Δ[t + 1] =

{
1, successful transmission,
Δ[t] + 1, otherwise.

(2)

A sample path of AoI is depicted in Figure 2.

Figure 2. A sample path of AoI with initial age 1.

2.1.2. Description of Energy Supply

We assume that only the sensor’s measurement and transmission process will consume
energy and ignore other energy consumption. The energy unit is normalized, so the
generation and transmission for each update will consume one energy unit. As previously
described, the energy sources of the sensor include energy harvested from nature and
reliable backup energy.

For the harvested energy, the sensor can store it in a rechargeable battery for later use.
The maximum capacity of the rechargeable battery is B units (B > 1). Considering the
scarcity of energy in nature, the total energy harvested in one time slot may sometimes not
reach an energy unit. So we consider using the Bernoulli process with the parameter λ to
approximately capture the arrival process of harvested energy, which was also adopted
in [41–43]. Let b[t] be the accumulated harvested energy in time slot t. That is, we have
Pr{b[t] = 1} = λ and Pr{b[t] = 0} = 1 − λ in each time slot t (note λ ∈ (0, 1)). Here, we
assume that the energy arrival at each slot is independently and identically distributed.
Time-correlated energy arrival processes, such as Markov process, will be considered in
future work.

For reliable backup energy, we assume that it contains much more energy units than
the rechargeable battery, so the energy it contains can be viewed as infinite. However, it
needs to be used for a fee compared to the free renewable energy stored in the rechargeable
battery. Therefore, when the stored renewable energy is not zero, the sensor will prioritize
using it for status updates; otherwise, it will automatically switch to the reliable backup
energy until the sensor has harvested energy. Defining the power of the rechargeable
battery at the beginning of time slot t as the battery state q[t], then the evolution of battery
state from time slot t to t + 1 can be summarized as follows:

q[t + 1] = min{q[t] + b[t]− a[t]u(q[t]), B}, (3)
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where u(·) is unit step function, which is defined as

u(x) =

{
1, if x > 0,
0, otherwise.

(4)

Suppose that under reliable energy supply, the cost of generating and transmitting
an update is a non-negative value Cr. Defining E[t] as the paid reliable energy cost at the
time slot t, then we have

E[t] = Cra[t](1 − u(q[t])). (5)

2.2. Problem Formulation

Let Π denote the set of non-anticipative policies in which scheduling decision a[t] are
made based on the action history {a[k]}t−1

k=0, the evolution of AoI {Δ[k]}t
k=0, the evolution of

battery state {q[k]}t
k=0 as well as the system parameters (e.g., p and λ). In order to keep the

information freshness at the destination, the sensor needs to send updates. However, due
to the randomness of energy arrivals, the battery energy may sometimes be insufficient to
support updates, and the sensor has to take energy from reliable backup energy. To balance
the information freshness and the paid reliable backup energy cost, we aim to find the
optimal information updating policy π ∈ Π that achieves the minimum of the time-
average weighted sum of the AoI and the paid reliable backup energy cost. The problem is
formulated as follows:

min
π∈Π

lim sup
T→∞

1
T
Eπ

{
T−1

∑
t=0

[Δ[t] + ωE[t]]

}
,

s.t. (2), (3), (5),

(6)

where ω is the pre-defined non-negative weighting factor. If ω = 0, the optimal policy
is to update in each time slot, i.e., zero-wait policy [4]. Since the effect of energy can be
ignored, if the rechargeable battery is not empty, the sensor uses the renewable energy;
otherwise, the sensor will use the reliable energy directly. When ω > 0, the optimal policy
is non-trivial. So we will focus on the optimal policy for ω > 0 in the rest of the paper.
The smaller ω is, the more we attach importance to the system AoI; otherwise, the more
emphasis is placed on the cost of reliable energy.

Remark 1. The optimal trade-off between age and reliable energy consumption can also be formu-
lated as a constrained problem, where the reliable energy consumption serves as a constraint (not
exceeding Em) but not a penalty, and the goal is to minimize the long-term average age. By the
Lagrangian method, it can be converted into an unconstrained weighted sum problem, where the
Lagrangian multiplier is exactly the weight factor ω. So the solution proposed in this paper can
be used. If there exists an ω such that the average reliable energy consumption in the minimum
weighted sum is Em, the optimal policy of the weighted sum problem also minimizes the long-term
average age with the Em constraint. Otherwise, a randomized optimal policy for the constrained
problem needs to be considered; see details in [44].

3. Optimal Policy Analysis In A Known Environment

In this section, we aim to solve the problem (6) in a known environment and obtain
the optimal policy. It is difficult to solve the original problem directly due to the random
erasures and the temporal dependency in both AoI and battery state evolution. However,
since the statistics such as channel erasure probability and EH probability are known, we
can reformulate the original problem as a time-average cost MDP with infinite state space
and analyze the structure of the optimal policy.
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3.1. Markov Decision Process Formulation

According to the system description mentioned in the previous section, the MDP is
formulated as follows:

• State space . The sensor’s state x[t] in slot t is a couple of the current destination
AoI and the battery state, i.e., (Δ[t], q[t]). Define B = {0, 1, . . . , B}. The state space
S = Z+ ×B is thus infinite countable.

• Action space. The sensor’s action a[t] in time slot t takes value from the action set
A = {0, 1}.

• Transition probabilities. Denote Pr(x[t + 1]|x[t], a[t]) as the transition probability
that current state x[t] transits to next state x[t + 1] after taking action a[t]. Suppose the
current state x[t] = (Δ, q) and action a[t] = a, then the transition probability is divided
into two following cases conditioned on different values of action.
Case 1 . a = 0, ⎧⎪⎨⎪⎩

Pr{(Δ + 1, q + 1)|(Δ, q), 0} = λ, if q < B,
Pr{(Δ + 1, B)|(Δ, B), 0} = 1, if q = B,
Pr{(Δ + 1, q)|(Δ, q), 0} = 1 − λ, if q < B.

(7)

Case 2. a = 1, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr{(Δ + 1, q)|(Δ, q), 1} = pλ, if q > 0,
Pr{(1, q)|(Δ, q), 1} = (1 − p)λ, if q > 0,
Pr{Δ + 1, q − 1)|(Δ, q), 1} = p(1 − λ), if q > 0,
Pr{(1, q − 1)|(Δ, q), 1} = (1 − p)(1 − λ), if q > 0,
Pr{(Δ + 1, 1)|(Δ, 0), 1} = pλ, if q = 0,
Pr{(1, 1)|(Δ, 0), 1} = (1 − p)λ, if q = 0,
Pr{(Δ + 1, 0)|(Δ, 0), 0} = p(1 − λ), if q = 0,
Pr{(1, 0)|(Δ, 0), 0} = (1 − p)(1 − λ), if q = 0.

(8)

In both cases, the evolution of AoI still follows Equation (2) and the evolution of
battery state follows Equation (3).

• One-step cost. For the current state x = (Δ, q), the one-step cost C(x, a) of taking
action a is expressed by

C(x, a) = Δ + ωCra(1 − u(q)). (9)

After the above modeling, the original problem (6) is transformed into obtaining the
optimal policy for the MDP to minimize the average cost in an infinite horizon:

min
π∈Π

lim sup
T→∞

1
T
Eπ

{
T−1

∑
t=0

C(x[t], a[t])

}
. (10)

Denote ΠSD as the set of stationary deterministic policies. Given observation
(Δ[t], q[t]) = (Δ, q), the policy π ∈ ΠSD selects action a[t] = π(Δ, q), where π(·) : (Δ, q) →
{0, 1} is a deterministic function from state space S to action space A. In the next section, we
prove that there is an optimal stationary deterministic policy for the above unconstrained
MDP with infinite countable state and action space.
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3.2. The Existence of the Optimal Stationary Deterministic Policy

According to [15], we need to first address a discounted cost MDP, then relate it to the
original average cost problem. Given an initial state x[0] = x̂, the total expected discounted
cost under a policy π is given by

Vπ
γ (x̂) = lim sup

T→∞
Eπ

{
T−1

∑
t=0

γtC(x[t], a[t])
∣∣∣∣x[0] = x̂

}
, (11)

where the discounted factor is γ ∈ (0, 1). Therefore, the problem of minimizing the
expected discounted cost can be formulated as

Vγ(x̂) � min
π∈Π

Vπ
γ (x̂), (12)

where value function Vγ(x̂) denotes the minimum expected discounted cost. The policy is
γ-optimal if it minimizes the above discounted cost. The optimality equation of Vγ(x̂) is
introduced in Proposition 1.

Proposition 1.

(a) The optimal expected discounted cost Vγ(x̂) satisfies the Bellman equation as follows:

Vγ(x̂) = min
a∈A

Qγ(x̂, a), (13)

where the state–action value function Qγ(x̂, a) is defined as

Qγ(x̂, a) = C(x̂, a) + γ ∑
x′∈S

Pr(x′|x̂, a)Vγ(x′). (14)

(b) The policy π determined by the right hand side of (13) is γ-optimal, and π ∈ ΠSD.
(c) Vγ(x̂) can be solved by value iteration algorithm. Specifically, let Vγ,n(x̂) be the cost-to-go

function and Vγ,0(x̂) = 0 for all state x̂ ∈ S . For all n ≥ 1, we have:

Vγ,n(x̂) = min
a∈A

Qγ,n(x̂, a), (15)

where Qγ,n(x̂, a) is obtained as follows:

Qγ,n(x̂, a) = C(x̂, a) + γ ∑
x′∈S

Pr(x′|x̂, a)Vγ,n−1(x′). (16)

Then the equation lim
n→∞

Vγ,n(x̂) = Vγ(x̂) holds for every state x̂ and γ.

Proof. See Appendix A.

Now, we can show the monotonic properties of Vγ(x̂) in the following lemma by using
(c) in Proposition 1.

Lemma 1. Given fixed channel erasure probability p and EH probability λ, then

(a) value function Vγ(Δ, q) is non-decreasing in Δ, i.e., for any 1 ≤ Δ1 ≤ Δ2 and any battery
state q ∈ B, we have

Vγ(Δ1, q) ≤ Vγ(Δ2, q), (17)

and
Vγ(Δ2, q)− Vγ(Δ1, q) ≥ Δ2 − Δ1. (18)
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(b) value function Vγ(Δ, q) is non-increasing in q, i.e., for AoI Δ ≥ 1 and any battery state
q ∈ {0, 1, . . . , B − 1}, we have

Vγ(Δ, q) ≥ Vγ(Δ, q + 1), (19)

Proof. See Appendix B.

Based on the Proposition 1 and Lemma 1, we will verify the existence of the optimal
stationary deterministic policy for the average cost problem (10) in the following theorem.

Theorem 1. There exists an optimal policy π� ∈ ΠSD for the average cost MDP in (10). Moreover,
for every state x, there exists a value function V(·) : S → R and a unique constant g� ∈ R

such that:

g� + V(x) = min
a∈A

{
C(x, a) + ∑

x′∈S
Pr(x′|x, a)V(x′)

}
, (20)

where g� is the optimal average cost of problem (10) and satisfies g� = lim
γ→1

(1 − γ)Vγ(x) for every

state x, and the value function V(x) satisfies

V(x) = lim
γ→1

γVγ(x) = lim
γ→1

Vγ(x)− g� = lim sup
T→∞

1
T
Eπ

{
T−1

∑
t=0

[C(x[t], a[t])− g�]

}
. (21)

Proof. See Appendix C.

Based on Theorem 1, we have the following corollary:

Corollary 1. The state–action value function Q(x, a) for the average cost is given as follows:

Q(x, a) = C(x, a) + ∑
x′∈S

Pr(x′|x, a)V(x′), (22)

which is similar to Qγ(x, a) in (14) by letting γ → 1. Then the optimal policy π� ∈ ΠSD for the
average cost MDP in (10) can be expressed as follows:

π�(x) = arg min
a∈A

Q(x, a), ∀x ∈ S . (23)

3.3. Structure Analysis of Optimal Policy

Before analyzing the structure of the optimal policy π�, we first prove some monotonic
properties of the value function V(x) on different dimensions, which is summarized in the
following lemma.

Lemma 2. Given fixed channel erasure probability p and EH probability λ, then

(a) value function V(Δ, q) is non-decreasing in Δ, i.e., for any 1 ≤ Δ1 ≤ Δ2 and any battery
state q ∈ B, we have

V(Δ1, q) ≤ V(Δ2, q), (24)

and
V(Δ2, q)− V(Δ1, q) ≥ Δ2 − Δ1. (25)

(b) value function V(Δ, q) is non-increasing in q, i.e., for AoI Δ ≥ 1 and any battery state
q ∈ {0, 1, . . . , B − 1}, we have

V(Δ, q) ≥ V(Δ, q + 1), (26)
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Proof. According to the (21), V(x) = lim
γ→1

Vγ(x)− g. Therefore, the monotonic properties

of Vγ(x) in Lemma 1 are also valid for V(x), which completes the proof.

Based on Lemma 2, we will derive the proportional differential property of the value
function in Lemma 3.

Lemma 3. Given fixed channel erasure probability p and EH probability λ, then value function
V(Δ, q) has the proportional differential property, i.e., the inequality

V(Δ + 1, q + 1)− V(Δ, q + 1)
V(Δ + 1, q)− V(Δ, q)

≥ p (27)

holds for AoI Δ ≥ 1 and any battery state q ∈ {0, 1, ..., B − 1}.

Proof. See Appendix D.

With Corollary 1, Lemmas 2 and 3, we directly provide our main result in the follow-
ing theorem.

Theorem 2. Assuming that the channel erasure probability p and EH probability λ are both fixed ,
there exists a threshold Δq ∈ Z+ for given battery state q, such that when Δ < Δq, the optimal
action π�(Δ, q) = 0, i.e., the sensor keeps idle; when Δ ≥ Δq, the optimal action π�(Δ, q) = 1,
i.e., the sensor chooses to generate and transmit a new update.

Proof. See Appendix E.

Theorem 2 reveals the threshold structure of the optimal policy: if the optimal action in
a certain state is to generate and transmit an update, then in the state with the same battery
state and larger AoI, the optimal action must be the same. Note that the threshold Δq is
actually determined by the channel erasure probability p, EH probability λ and pre-defined
weighting factor ω. The closed-form expression of the threshold is difficult to be derived
due to the complex transition probabilities. In the next section, we will show how to
compute the optimal policy numerically.

3.4. Modified Relative Value Iteration Algorithm Design

In this section, we will propose a computationally efficient algorithm to find the
optimal stationary deterministic policy based on the threshold structure.

Since the state space S is infinite, we will use a truncated space SN for approximation
in practice, where SN = {(Δ, q)|Δ ≤ N, Δ ∈ Z+, q ∈ B}. It can be proved that when N is
large enough, the optimal policy of the approximated MDP will be identical to that of the
original problem [6].

However, the value iteration algorithm in Proposition 1 for the discounted cost prob-
lem cannot be applied to the average cost problem by letting γ = 1. It does not converge
because the value function V(·) in (20) is not unique. One can check if V(·) satisfies (20),
a new function V′(·) = V(·) + c also satisfies (20), where c ∈ R. Therefore, we introduce
a relative value iterative (RVI) algorithm to obtain the optimal policy of the approximate
average cost MDP [45]. We choose a reference state x̂ ∈ SN and set V0(x) = 0 for all states
x ∈ SN Then for all n ≥ 0, we have

Vn+1(x) = min
a∈A

Qn+1(x, a), (28)

and Qn+1(x, a) is obtained as follows:

Qn+1(x, a) = C(x, a) + ∑
x′∈SN

Pr(x′|x, a)hn(x
′), (29)
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where the differential value function is hn(x) = Vn(x)−Vn(x̂). The equation lim
n→∞

Qn(x, a) =

Q(x, a) holds for every state x ∈ SN and action a ∈ A. Finally, we compute the optimal
policy by

π�(x) = arg min
a∈A

Q(x, a). (30)

Note that the optimal policy is still of a threshold structure. The corresponding proof is
similar to that of Theorem 2.

Moreover, based on the RVI algorithm, we can exploit this threshold structure to
reduce the computational complexity. When the optimal policy of a state x′ = (Δ′, q′) is
1, the optimal policy of state x′ ∈ {(Δ, q)|Δ > Δ′, Δ ≤ N, q = q′} will also be 1 without the
need to calculate (30). Therefore, we propose a modified RVI algorithm, and the details are
given in Algorithm 1.

Algorithm 1 Modified relative value iteration algorithm.

Input:
Iteration number K,
Iteration threshold ε,
Maximum of AoI N,
Maximum of battery state B,
Reference state x̂.

Output:
Optimal policy π�(x) for all state x.

1: Initialization: h0(x) = 0, for all x ∈ SN

2: for episodes n = 0, 1, 2, . . . , K do
3: for state x ∈ SN do
4: for action a ∈ A do
5: Qn(x, a) ← C(x, a) + ∑

x′∈SN
Pr(x′|x, a)hn(x′)// Update the state-action

value function.
6: end for
7: Vn+1(x) ← min

a∈A
Qn(x, a)// Update the value function.

8: hn+1(x) ← Vn+1(x) − Vn+1(x̂)// Update the differential value
function.

9: end for
10: if ‖hn+1(x)− hn(x)‖ ≤ ε, ∀x ∈ SN then
11: for x = (Δ, q) ∈ SN do
12: if π�(Δ − 1, q) = 1 then
13: π�(x) ← 1, // Leverage the threshold structure of the

optimal policy.
14: else
15: π�(x) ← arg min

a∈A
Qn(x, a)

16: end if
17: end for
18: break
19: end if
20: end for

4. Minimize Average Cost in an Unknown Environment

In the previous sections, we assumed that the channel erasure probability p and EH
probability λ are known in advance. Thus, the model-based RVI method can be employed to
obtain the optimal updating policy. However, statistics such as p and λ may be unknown
and even time variant in many practical scenarios, which makes it impossible to apply mod-
ified RVI algorithm because the transition probabilities are not explicit and Equation (29)
cannot be applied to estimate the state-action value function Q(x, a). In the field of reinforce-
ment learning, alternatively, model-free methods can solve MDP problems with unknown
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transition probabilities. An example of a model-free algorithm is Q-learning [46]. Q-learning
finds an optimal policy in the sense of maximizing the expected value of the total reward
over any and all successive steps. However, it is only designed for discounted MDP. For the
average cost problem in (10), we employ an average cost Q-learning algorithm. The basic
idea of this algorithm comes from the SMART algorithm in [47], which is a model-free
reinforcement learning algorithm proposed for semi-Markov decision problems (SMDP)
under the average-reward criterion. We modify it to fit the average cost MDP problem.

The state–action value function Q(x, a) is essential for solving the optimal policy.
When the model is unknown, as long as Q(x, a) can be estimated accurately, the optimal
policy can also be obtained immediately by (30). So the key question is how to estimate the
Q(x, a) function, or equivalently, the value of all state–action pairs. Similar to Q-learning,
the average cost Q-learning algorithm uses the minimum value of the next state–action
pairs to update the value of the current state–action pair. Moreover, it needs to estimate the
shift value g by averaging all immediate cost.

Specifically, the average cost Q-learning algorithm learns Q(x, a) by episodes. Each
episode contains several iterations, and each iteration corresponds to one time slot. Then in
the nth time slot of an episode, the algorithm first observes the current state x[n] = (Δ[n], q[n]),
selects an action a[n] according to the ε-greedy policy:

a[n] =

⎧⎨⎩arg min
a∈A

Q(x[n], a), with probability 1 − ε,

random action, otherwise.
(31)

By (9), the immediate cost C[n] = Δ[n] + ωCra[n](1 − u(q[n])) occurs, and the system
will transit to the next state x[n + 1]. The value of Q(x[n], a[n]) is updated as follows:

Q(x[n], a[n]) = (1 − α[n])Q(x[n], a[n]) + α[n](C[n]− g + min
a∈A

Q(x[n + 1], a)), (32)

where α[n] is the learning rate. The shift value g is updated as follows:

g = (1 − β[n])g + β[n]C[n] (33)

where β[n] = 1
n . The details are given in Algorithm 2. We leverage the parameter ε to

balance exploration and exploitation. As the number of epochs increases, the learned Q(x, a)
value will approach its true value, so we can gradually decrease ε to 0 to reduce invalid
exploration. At the same time, the shift value g will also be close to the optimal average
cost g� in (20). Note that in [47], the shift value g is updated only in a non-exploratory
time slot. Here we update it by simply averaging all cost, similar to [48]. The performance
comparison of the average cost Q-learing algorithm and modified RVI algorithm is shown
in the next section.
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Algorithm 2 Average cost Q-learning algorithm.

Input:
Maximum number of episodes K,
Maximum iteration number of an episode Ne,
Maximum of AoI N,
Maximum of battery state B,
Initial value of QN×B×2 ← 0,
Initial value of ε ← 0,
Initial value of the shift value g ← 0.

Output:
Learned policy π(x) for all state x,
Average cost g� by following the policy π.

1: for episodes k = 0, 1, 2, . . . , K do
2: g ← 0 // Initialize the shift value at the beginning of every

episode.
3: for n = 1, 2, . . . , Ne do
4: Observe the current state x[n]
5: Select an action a[n] according to ε-greedy policy in (31)
6: Calculate immediate cost C[n] ← Δ[n] + ωCra[n](1 − u(q[n]))
7: Observe the next state x[n + 1]
8: α[n] ← 1√

n
9: Q(x[n], a[n]) ← (1 − α[n])Q(x[n], a[n]) + α[n](C[n] − g + min

a∈A
Q(x[n + 1], a)) //

Update the state-action value function.
10: β[n] ← 1

n
11: g ← (1 − β[n])g + β[n]C[n]// Update the shift value.
12: end for
13: Decrease ε
14: end for
15: for x = (Δ, q) ∈ SN do
16: π(x) ← arg min

a∈A
Q(x, a) // Calculate the learned policy π.

17: end for

5. Numerical Results

In this section, we first show the threshold structure of the optimal policy by the
simulation results. Then we compare the performance of the optimal policy with the
following representative policies under different system parameters:

• Zero-wait policy [4]. The sensor generates and transmits an update in every time slot.
• Periodic policy. The sensor periodically generates and sends updates to the destination.
• Randomized policy. The sensor chooses to send an update or stay idle in each time

slot with the same probability.
• Energy first policy. The sensor only uses the harvested energy, that is, as long as the

battery state is not zero, it will choose to sense and send updates, otherwise it will
remain idle.

Moreover, we will show the average cost Q-learning algorithm performs very close to
the modified RVI with known statistics. We will also compare age and reliable energy cost
trade-off curves of the optimal updating policies under EH supply, reliable energy supply
and mixed energy supplies. Finally, we compare the performance of the optimal policy
under the only EH supply and unit-sized battery setting with the prior results in [23,25].

5.1. Simulation Setup

In our simulations, we set the maximum of AoI N = 500, and the maximum of battery
state B = 20. So the finite state space SN = {(Δ, q)|Δ ≤ 500, Δ ∈ Z+, q ∈ B}. The cost of
reliable energy Cr for one update is equal to 2. For the modified RVI algorithm, we set the
iteration number K = 1000, iteration threshold ε = 10−5 and reference state x̂ = (1, B).
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The optimal policy and other baseline policies are run for T = 10,000 time slots to compute
the average cost. For the average cost Q-learning algorithm, we set the total number of
episodes K = 1000, and the maximum iteration number in an episode Ne = 100,000.

5.2. Results

Figure 3 shows the optimal policy under different system parameters. All the subfig-
ures in Figure 3 exhibit the threshold structure described in Theorem 2. Intuitively, when
ω is very small, the optimal action for every state should be 1, and when ω is very large,
the optimal action for battery state q = 0 should be 0. It can be observed from Figure 3a,b
that when ω is small (i.e., ω = 0.1), the optimal policy is to update for every state, which
is exactly the zero-wait policy. Figure 3 also shows that when ω is relatively large (e.g.,
ω = 10), and the AoI is small, even if the battery state is not zero, the optimal action
in the corresponding state is to keep idle. When the AoI is large or the battery state is
large, the optimal action is to measure and send updates. Moreover, in all the subfigures,
the threshold Δq keeps monotonically non-increasing with the battery state q. However,
this conclusion has not been rigorously proven.

(a) (b)

(c) (d)

Figure 3. Optimal policy conditioned on different parameters: (a) ω = 0.1, p = 0.2, λ = 0.5,
(b) ω = 0.1, p = 0.4, λ = 0.5, (c) ω = 10, p = 0.2, λ = 0.5 and (d) ω = 10, p = 0.4, λ = 0.5.

Figure 4 shows the time average cost with respect to ω under different policies. Here,
we set the period of the periodic policy to 5 and 10 for comparison without loss of generality.
It can be found that under different weighting factor ω, the optimal policy proposed in this
paper can obtain the minimum long-term average cost compared with the other policies,
which indicates the best trade-off between the average AoI and the cost of reliable energy.
When ω tends to 0, the zero-wait policy tends to be optimal. Since there is no need to
consider the update cost brought by paid reliable backup energy, the optimal policy should
maximize the utilization of the updating opportunities.
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Figure 4. Performance comparison of the proposed optimal policy, zero-wait policy, periodic policy
(period = 5), periodic policy (period = 10), randomized policy and energy first policy versus the
weighting factor ω with simulation conditions: (a) p = 0.2, λ = 0.5 and (b) p = 0.2, λ = 0.1.

It can also be observed from Figure 4 that the growth of the optimal policy curve slows
down as ω increases. This is because the optimal policy in the case of large ω does not
tend to use the reliable energy when battery state q = 0, but prefers to wait for harvested
energy, as shown in Figure 3. Since the EH probability is constant, the average AoI does
not change much, resulting in no significant increase in the total average cost. Comparing
Figure 4a,b, it is found that the larger the λ, the smaller the average cost variation with ω.
This is because there is not much opportunity for the sensor to use reliable energy in the
case of sufficient harvested energy.

Figure 5 reveals the impact of EH probabilities λ. In Figure 5a,b, we set p = 0.2,
ω = 10 and p = 0.2, ω = 1, respectively.
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Figure 5. Performance comparison of the proposed optimal policy, zero-wait policy, periodic policy
(period = 5), periodic policy (period = 10), randomized policy and energy first policy versus the EH
probability λ with simulation conditions: (a) p = 0.2, ω = 10 and (b) p = 0.2, ω = 1.

It can also be found from both Figure 5a,b that the proposed optimal update policy
outperforms all other policies under different EH probability. The interesting point is that
when the EH probability tends to 1, i.e., energy arrives in each time slot, the performance
of the zero-wait policy and the energy first policy is equal to the optimal policy, while there
is still a performance gap between the optimal policy and the other two polices. This is
intuitive because when the free harvested energy is sufficient, the optimal policy must be
to generate and transmit updates in every time slot. However, the periodic policy and the
randomized policy still keep idle in many time slots, which will lead to a higher average
AoI and thus increase the average cost. Results show that the performance of zero-wait
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policy approaches the optimal policy for large λ, which is consistent with our findings in
Figure 4.

In Figure 6, we compare the five policies under different channel erasure probability p.
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Figure 6. Performance comparison of the proposed optimal policy, zero-wait policy, periodic policy
(period = 5), periodic policy (period = 10), randomized policy and energy first policy versus the
erasure probability p with simulation conditions: (a) λ = 0.5, ω = 10 and (b) λ = 0.2, ω = 10.

It can be found that when the erasure probability increases from 0 to 0.9, the proposed
optimal update policy always performs better than the other baseline policies. As p tends to
1, the average cost under all policies theoretically tends to infinity because all updates will
be erased by the noisy channel and cannot be received by the destination. The simulation
results confirmed this conjecture. Comparing Figure 6a,b, we can observe that when λ is
large, the energy-first strategy will be close to the optimal strategy, which is also illustrated
in Figure 5.

Figure 7 shows the performance of the average cost Q-learning algorithm. In every
episode, the shift value g of the last inner iteration is recorded as the average cost. It can
be found from Figure 7a that the average cost achieved by Algorithm 2 converges to that
obtained by the modified RVI algorithm under different EH probability λ and channel
erasure probability p. The age–energy trade-off is shown in Figure 7b. By fixing λ and
p and changing ω from 0 to 1000, we run the modified RVI algorithm and average cost
Q-learning algorithm to obtain the corresponding trade-off curve. It can be found that the
curve obtained by the average cost Q-learning algorithm is very close to the optimal trade-
off curve under the same condition, which further verifies the near-optimal performance of
the average cost Q-learning algorithm in an unknown environment.
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Figure 7. (a) Performance of the average cost Q-learning with respect to the modified RVI algorithm
under different system parameters (ω = 10); (b) age–energy trade-off curves computed by the
average cost Q-learning and modified RVI algorithm.
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Figure 8 shows the optimal age and reliable energy cost trade-off curves for different
energy supplies. By fixing EH probability λ and channel erasure probability p and changing
ω from 0 to 10,000, we run the modified RVI algorithm to get the optimal trade-off curve
for mixed energy supplies. By letting EH probability λ = 0 and following the same
steps, we can obtain the optimal trade-off curve for reliable energy supply. By letting
weighting factor ω go to infinity, we can theoretically obtain the optimal trade-off “curve”
corresponding to the EH supply. The “curve” contains only one point because the reliable
energy consumption can only be 0 for the EH supply case. It should be noted that ω cannot
be infinite in a simulation. Instead, we can set ω to a relatively large number (e.g., 10,000).
To facilitate comparison, the channel erasure probability is set as p = 0.2, and the EH
probability λ is set as 0.1, 0.3 and 0.7. It can be observed that the curves for the mixed
energy supplies are always at the lower left of the curve for relying solely on reliable
energy, which indicates that under the same average AoI, the reliable energy required by
the system under the mixed energy supplies is smaller, and under the same reliable energy
consumption, the AoI of the system under the mixed energy supplies is lower. The mixed
energy design also achieves lower AoI than that with only EH, at the cost of paying for
reliable energy. The optimal updating policy proposed in this paper makes full use of the
harvested energy.
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Figure 8. Age-reliable energy trade-off for different energy supplies: mixed energy supply, reliable
energy supply and EH supply. The channel erasure probability p = 0.2, and the EH probability λ is
set as 0.1, 0.3 and 0.7, respectively.

Figure 9 compares the performance of the optimal policy with the prior results
in [23,25] for a special case where the sensor only uses the harvested energy and the
battery capacity B = 1. Both [23,25] considered a continuous-time model, i.e., the energy
arrival process is a Poisson process with an arrival rate of Λ energy units per time unit
(TU), and proved that the optimal policies are threshold structure, in which a new up-
date is generated and transmitted only if the time until the next energy arrival since the
latest successful transmission exceeds a certain threshold. Specifically, [23] (Theorem 4,
Equation (13)) provided the average AoI and threshold in closed-form under the optimal
update policy for any energy arrival rate Λ in the error-free channel case. It is interest-
ing that the optimal average AoI and the corresponding threshold are equal. Ref. [25]
(Theorem 4, Equation (14)) extended the results of [23] to an error-prone channel case,
while the energy arrival rate Λ is assumed to be 1. So we first show the results of [23,25] vs.
different channel erasure probability p in Figure 9, where the energy arrival rate Λ = 1. It
should be emphasized that the unit of the average AoI and threshold is TU. According to
Theorems 1 and 2 in this paper, the optimal update policy exists and admits a threshold
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structure for any EH probability λ, channel erasure probability p, weighting factor ω and
battery capacity B. This conclusion is based on the discrete-time model, i.e., the energy
arrives as a Bernoulli process with parameter λ, which is different from the continuous-time
model in [23,25], and the reliable backup energy is also considered. However, by the choice
of some parameters (large ω, small λ), our results can be a good approximation of the
results in [23,25]. First, by choosing a large ω, the reliable energy will almost never be used,
and equivalently, only the EH supply exists. Secondly, by choosing a small λ, the Poisson
process can be approximated as a Bernoulli process. This is because for a Poisson process
with parameter Λ, we can discretize a TU into n small time slots of equal length, then
according to probability theory, when n is large enough, the energy arrival process within
a time slot can be approximated as a Bernoulli process with parameter λ = Λ/n, which
is relatively small. In our simulation, we set the battery capacity B = 1, and take λ = 0.1
(i.e., n = 10) and ω = 10,000. By changing the channel erasure probability p, we can run the
modified RVI algorithm to compute the minimum average AoI and the optimal threshold.
It needs to be mentioned that the unit of them is a time slot. For comparison, we need to
divide their values by n to obtain the average AoI and threshold in TU. The final results
are shown by the dashed lines in Figure 9. It can be observed that the results of this paper
are extremely close to the explicit results in [23,25], which verifies the correctness of the
analysis and also reflects the generality of our system model.
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Figure 9. AoI and threshold with the proposed optimal policy for a special case where the sensor
only uses the harvested energy and the battery capacity B = 1, and those with a unit-sized battery
in [23,25] (error-free channel case and error-prone channel case, respectively), vs. the channel erasure
probability p.

6. Conclusions

In this paper, we studied the optimal updating policy for an information update sys-
tem, where a wireless sensor sends updates over an erasure channel using both harvested
energy and reliable backup energy. Theoretical analysis indicates the threshold structure
of the optimal policy and simulation results verify its performance. For the practical case
where the statistics, such as the EH probability and channel erasure probability, are un-
known in advance, a learning-based algorithm is proposed to compute the updating policy.
Simulation results show its performance is close to that of the optimal policy. With the
optimal policy, the design of mixed energy supplies can make full use of harvested energy
and achieve the best age–energy trade-off. In future work, we will focus on the timeliness
of the multi-sensor system under mixed energy supplies.
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Appendix A. Proof of Proposition 1

According to [15], the proof of Proposition 1 is equivalent to proving that there is
a stationary deterministic policy π such that the expected discounted cost Vπ

γ (x) is finite
for all x, γ. So we can select a policy π which chooses to keep idle in each time slot. Then
by (11), for any state x = (Δ, q) ∈ S and γ ∈ (0, 1), we have

Vπ
γ (x) = Eπ

{
∞

∑
t=0

γtC(x[t], a[t])|x[0] = x

}

=
∞

∑
t=0

γtC(x[t], a[t])

=
∞

∑
t=0

γt(Δ + t)

=
1

1 − γ
(Δ +

γ

1 − γ
) < ∞, (A1)

which completes the proof.

Appendix B. Proof of Lemma 1

The proof requires the use of value iteration algorithm(VIA) and mathematical induc-
tion. According to (c) in Proposition 1, The specific iteration process of VIA is as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

Vγ,0(x) = 0,
Qγ,k(x, a) = C(x, a) + γ ∑

x′∈S
Pr(x′|x, a)Vγ,k(x

′),

Vγ,k+1(x) = min
a∈A

Qγ,k(x, a),

(A2)

where k ∈ Z+. For any state x ∈ S , Vγ,k(x) will converge when k goes into infinity:

lim
k→∞

Vγ,k(x) = Vγ(x). (A3)
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Then we will use mathematical induction to prove the monotonicity of the value
function in each component.

First let us tackle part (a) of Lemma 1.
For (17), we can verify that the inequality Vγ,1(Δ1, q) ≤ Vγ,1(Δ2, q) holds when k = 1.

Then we assume that at the kth step of the induction method, the following formula holds:

Vγ,k(Δ1, q) ≤ Vγ,k(Δ2, q), ∀Δ1 ≤ Δ2. (A4)

So the next formula that needs to be verified is

Vγ,k+1(Δ1, q) ≤ Vγ,k+1(Δ2, q), ∀Δ1 ≤ Δ2 (A5)

Since Vγ,k+1(x) = min
a∈A

Qγ,k(x, a), we need to bring out Qγ,k(x, a) first. Due to the

complexity of the transition probabilities and one-step cost function, we need to discuss
the following three cases: q = 0, 0 < q < B and q = B. For the sake of brevity, we only give
the calculation details of the case 0 < q < B, and the other two cases can be verified by
following the exact same steps.

According to transition probability (7) and (8), we have the state-action value function
Qγ,k(Δ, q, 0) and Qγ,k(Δ, q, 1) as follows:

Qγ,k(Δ, q, 0) = Δ + γλVγ,k(Δ + 1, q + 1) + γ(1 − λ)Vγ,k(Δ + 1, q), (A6)

and

Qγ,k(Δ, q, 1) = Δ + γpλVγ,k(Δ + 1, q) + γp(1 − λ)Vγ,k(Δ + 1, q − 1)

+ γ(1 − p)λVγ,k(1, q) + γ(1 − p)(1 − λ)Vγ,k(1, q − 1). (A7)

Because Vγ,k(Δ, q) is assumed to be non-decreasing function with respect to Δ for any
fixed q, it is obvious that both Qγ,k(Δ, q, 0) and Qγ,k(Δ, q, 1) are non-decreasing with respect
to Δ. Therefore, for any Δ1 ≤ Δ2, we have

Vγ,k+1(Δ1, q) = min
a∈A

{
Qγ,k(Δ1, q, a)

}
= min

{
Qγ,k(Δ1, q, 0), Qγ,k(Δ1, q, 1)

}
≤ min

{
Qγ,k(Δ2, q, 0), Qγ,k(Δ2, q, 1)

}
= Vγ,k+1(Δ2, q). (A8)

As a result, with the induction we prove that Vγ,k(Δ, q) is a non-decreasing function
with respect to Δ for any q ∈ {1, . . . , B − 1}, i.e., the Equation (A4) holds. When k goes to
infinity, combining (A3) and (A4), we prove that (17) holds in the case 0 < q < B. In the
other two cases, (17) still holds. So we have proved that (17) holds for any q ∈ B.

For (18), it is easy to yield

Qγ(Δ2, q, 0)− Qγ(Δ1, q, 0) = Δ2 − Δ1

+ γλ[Vγ(Δ2 + 1, q + 1)− Vγ(Δ1 + 1, q + 1)]

+ γ(1 − λ)[Vγ(Δ2 + 1, q)− Vγ(Δ1 + 1, q)]
(a)
≥Δ2 − Δ1, (A9)
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and

Qγ(Δ2,q, 1)− Qγ(Δ1, q, 1) = Δ2 − Δ1

+ γpλ[Vγ(Δ2 + 1, q)− Vγ(Δ1 + 1, q)]

+ γp(1 − λ)[Vγ(Δ2 + 1, q − 1)− Vγ(Δ1 + 1, q − 1)]

+ γ(1 − p)λ[Vγ(1, q)− Vγ(1, q)]

+ γ(1 − p)(1 − λ)[Vγ(1, q − 1)− Vγ(1, q − 1)]
(b)
≥Δ2 − Δ1, (A10)

where (a) and (b) are due to (17). Since Vγ(x) = min
a∈A

Qγ(x, a), we prove that Equation (18)

holds for all q ∈ {1, . . . , B − 1}. Through the same proof process, it can also be verified
that (18) is also valid when q = 0 and q = B. Therefore, we have completed the proof of
part (a).

Second, we will tackle the part (b) of Lemma 1.
For (19), according to the exact same mathematical induction we have applied to (17),

we can also verify that Equation (19) holds. Due to limited space, the details are omit-
ted here.

Hence, we have completed the whole proof.

Appendix C. Proof of Theorem 1

By Proposition 4 in [15], it suffices to show that the following four conditions hold:

(1): For every state x and discount factor γ, the discount value function Vγ(x) is finite.
(2): There exists a non-negative value L such that L ≤ hγ(x) for all x and γ, where

hγ(x) = Vγ(x)− Vγ(x̂), and x̂ is a reference state.
(3): There exists a non-negative value M(x), such that hγ(x) ≤ M(x) for every x and γ.
(4): The inequality ∑

x′∈S
Pr(x′|x, a)M(x′) < ∞ holds for all x and a.

For condition (1), recall that we have verified that there exists a stationary deterministic
policy π such that the expected discounted cost Vπ

γ is finite in the proof of Proposition 1,
and here we will extend this conclusion to any policy π ∈ Π. For any non-anticipative
policy π and state x = (Δ, q), we have

C(x[t], a[t]) = Δ + ωCra(1 − u(t)) ≤ Δ + ωCr. (A11)

Since the AoI grows linearly at most, for any state x = (Δ, q) and discounted factor γ,
we have

Vγ(x) = min
π∈Π

Vπ
γ (x) = min

π∈Π
Eπ

{
∞

∑
t=0

γtC(x[t], a[t])|x[0] = (Δ, q)

}

≤
∞

∑
t=0

γt(Δ + t + ωCr)

=
1

1 − γ
(Δ + ωCr +

γ

1 − γ
) < ∞, (A12)

which verifies condition (1).
Next let us focus on condition (2). By (17) and (19) in Lemma 1, Vγ(Δ, q) is non-

decreasing with regard to age Δ and non-increasing with regard to battery state q. Hence,
we can choose L = 0 and reference state x̂ = (1, B). Then we have L = 0 ≤ Vγ(x)−Vγ(x̂) =
hγ(x), which verifies condition (2).

To prove that condition (3) holds, we need to introduce the following lemma:
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Lemma A1. Denote x̂ = (1, B) as the reference state, and T = inf{t : t ≥ 0, x[t] = x̂} as the first

hitting time from the initial state x to x̂. Under the following lazy policy π′:

π′(Δ, q) =

{
1, if q = B,
0, otherwise,

(A13)

the expected discounted cost from x to x̂ is finite for all initial state x ∈ S , i.e.,

Cπ′
(x) = Eπ′

{
T−1

∑
t=0

γtC(x[t], a[t])|x[0] = x

}
< ∞. (A14)

Note that if x = x̂, Cπ′
(x) = 0.

Proof. see Appendix F.

Considering a mixed non-anticipative policy πm consisting of π′ and optimal policy
π� for (12) from the initial state x as follows,

πm(x[t]) =

{
π′(x[t]), if t < T,
π�(x[t]), otherwise,

(A15)

we have

Vγ(x) ≤ Vπm

γ (x) = Eπ′

{
T−1

∑
t=0

γtC(x[t], a[t])|x[0] = x

}
+Eπ�

{
∞

∑
t=T

γtC(x[t], a[t])|x[T] = x̂

}
(a)
= Cπ′

(x) +Eπ�

{
γTVγ(x̂)

}
(b)
≤ Cπ′

(x) + Vγ(x̂), (A16)

where (a) is due to (A14) and (12), (b) is due to γ ∈ (0, 1). Recall the definition of hγ(x),
by setting M(x) = Cπ′

(x), the condition (3) holds.
Based on Lemma A1, M(x) = Cπ′

(x) < ∞ holds for any state x. Since there will be
finite possible states after transition from x under any action, the sum of finite M(·) is also
finite. Hence, condition (4) holds.

Appendix D. Proof of Lemma 3

For (27), an equivalent transformation is made as follows:

V(Δ + 1, q + 1) + pV(Δ, q) ≥ V(Δ, q + 1) + pV(Δ + 1, q). (A17)

For every state x, we have

V(x) = min
a∈A

Q(x, a) = min{Q(x, 0), Q(x, 1)}. (A18)

So every value function in (A17) has two possible values. In order to prove Equation (A17),
theoretically we need to discuss 24 = 16 cases, which is obviously a bit too cumbersome.
Here we use a little trick, that is, as long as we prove that for the 22 = 4 possible combi-
nations on the left hand side(LHS) of (A17), there exists a combination on the right hand
side (RHS) of (A17) to make “≥” hold, then we complete the proof. For convenience, we
make a mapping by using four numbers to sequentially represent the action taken by the
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minimum state–action value function in Equation (A17). For example, “1010” represents
the following:

Q(Δ + 1, q + 1, 1) + pQ(Δ, q, 0) ≥ Q(Δ, q + 1, 1) + pQ(Δ + 1, q, 0), (A19)

So according to the previous trick, we only need to verify “0000”, “1010”, “0101”, and
“1111” to prove Equation (A17). For brevity, we only show the verification process of “1010”
in the following proof. The other three cases can also be proved by exactly the same steps.

Now we start to apply VIA and mathematical induction. Assuming that V0(x) = 0 for
any states x, it is easy to yield

V1(Δ + 1, q + 1) + pV1(Δ, q) ≥ V1(Δ, q + 1) + pV1(Δ + 1, q), (A20)

for any q ∈ {0, 1, ..., B − 1} and Δ ∈ Z+. By induction, assuming that for any q ∈
{0, 1, . . . , B − 1} and Δ ∈ Z+, we have:

Vk(Δ + 1, q + 1) + pVk(Δ, q) ≥ Vk(Δ, q + 1) + pVk(Δ + 1, q). (A21)

What we need to do is to verify that Equation (A21) still holds in the next value
iteration. Based on our previous analysis, we will focus on the “1010” case. For Δ ∈ Z+

and q ∈ {0, 1, . . . , B − 1}, we have

Qk(Δ + 1, q + 1, 1) + pQk(Δ, q, 0)

− [Qk(Δ, q + 1, 1) + pQk(Δ + 1, q, 0)]

=Δ + 1 + pλVk(Δ + 2, q + 1) + p(1 − λ)Vk(Δ + 2, q)

+ (1 − p)λVk(1, q + 1) + (1 − p)(1 − λ)Vk(1, q)

+ p[Δ + ωCr + λVk(Δ + 1, q + 1) + (1 − λ)Vk(Δ + 1, q)]

− Δ − pλVk(Δ + 1, q + 1)− p(1 − λ)Vk(Δ + 1, q)

− (1 − p)λVk(1, q + 1)− (1 − p)(1 − λ)Vk(1, q)

− p[Δ + 1 + ωCr + λVk(Δ + 2, q + 1)− (1 − λ)Vk(Δ + 2, q)]

=1 − p ≥ 0. (A22)

Therefore, by the similar step, we can verify the other three cases and confirm that the
following formula

Vk+1(Δ + 1, q + 1) + pVk+1(Δ, q) ≥ Vk+1(Δ, q + 1) + pVk+1(Δ + 1, q) (A23)

holds for any Δ ∈ Z+ and q ∈ {0, 1, . . . , B − 1}. Therefore, by induction, we prove that
for any k, the Equation (A21) holds. Take the limits of k on both sides, then we are able
to prove that (A17) holds, which indicates that (27) holds. Therefore, we have completed
the proof.

Appendix E. Proof of Theorem 2

By Corollary 1, the optimal policy is of a threshold structure if Q(x, a) has a sub-modular
structure, that is,

Q(Δ, q, 0)− Q(Δ, q, 1) ≤ Q(Δ + 1, q, 0)− Q(Δ + 1, q, 1). (A24)

We will divide the whole proof into the following three cases:
Case 1. When q = 0, for any Δ ∈ Z+ we have:
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Q(Δ, q, 0)− Q(Δ, q, 1)

=Δ + λV(Δ + 1, q + 1) + (1 − λ)V(Δ + 1, q)

− Δ − ωCr − pλV(Δ + 1, q + 1) + p(1 − λ)V(Δ + 1, q)

− (1 − p)λV(1, q + 1)− (1 − p)(1 − λ)V(1, q)

=(1 − p)λ(V(Δ + 1, q + 1)− V(1, q + 1))

+ (1 − p)(1 − λ)(V(Δ + 1, q)− V(1, q))− ωCr. (A25)

Therefore, we have

Q(Δ + 1, q, 0)− Q(Δ + 1, q, 1)− [Q(Δ, q, 0)− Q(Δ, q, 1)]

=(1 − p)λ(V(Δ + 2, q + 1)− V(Δ + 1, q + 1))

+ (1 − p)(1 − λ)(V(Δ + 2, q)− V(Δ, q))
(a)
≥0, (A26)

where the last inequality (a) is due to (24) in Lemma 2.
Case 2. When q ∈ {1, . . . , B − 1}, for any Δ ∈ Z+ we have

Q(Δ + 1, q, 0)− Q(Δ + 1, q, 1)− [Q(Δ, q, 0)− Q(Δ, q, 1)]

=Q(Δ + 1, q, 0)− Q(Δ, q, 0)− [Q(Δ + 1, q, 1)− Q(Δ, q, 1)]

=λ[V(Δ + 2, q + 1)− V(Δ + 1, q + 1)]

− pλ[V(Δ + 2, q)− V(Δ + 1, q)]

+ (1 − λ)[V(Δ + 2, q)− V(Δ + 1, q)]

− p(1 − λ)[V(Δ + 2, q − 1)− V(Δ + 1, q − 1)]
(a)
≥0, (A27)

where the last inequality (a) is due to (27) in Lemma 3.
Case 3. When q = B, for any Δ ∈ Z+ we have

Q(Δ + 1, q, 0)− Q(Δ + 1, q, 1)− [Q(Δ, q, 0)− Q(Δ, q, 1)]

=Q(Δ + 1, q, 0)− Q(Δ, q, 0)− [Q(Δ + 1, q, 1)− Q(Δ, q, 1)]

=(1 − λ)[V(Δ + 2, q)− V(Δ + 1, q)]

− p(1 − λ)[V(Δ + 2, q − 1)− V(Δ + 1, q − 1)]
(a)
≥0, (A28)

where the last inequality (a) is also due to (27) in Lemma 3.
Therefore, we have completed the whole proof.

Appendix F. Proof of Lemma A1

Before dealing with the expected discounted cost Cπ′
(x), we need to find the probabil-

ity distribution of the first hitting time T, which is determined by the transition probabilities
of system states. Under the lazy policy π′, we can formulate a two-dimensional Markov
chain to describe the dynamic changes of system states. The state transition probabili-
ties of the formulated Markov chain is extremely complicated, and we can simplify it by
combining some states, as depicted in Figure A1.
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(⋅, 1) (⋅, ܤ − 2) (⋅, ܤ − 1) (1, ,⋅)(ܤ 0) (ܤ,⋆)
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ߣ ߣ
1 − ߣ ݌ߣ

1)ߣ − (݌

Figure A1. A simplified Markov chain of system states under the lazy policy. Note that (1, B)
is the reference state. (·, 1) means the state set

{
(Δ, q)|Δ ∈ Z+, q = 1

}
, (�, B) means the state set{

(Δ, q)|Δ ∈ Z+, Δ > 1, q = B
}

and so on for the rest.

According to the simplified Markov chain, the initial state x can be divided into three
cases: (�, B), (·, B − 1), and (·, q) where q < B − 1. Note that for the special case x = x̂,
Cπ′

(x) is set to be 0. First, we focus on the case x = (·, q), where q < B − 1. Suppose it takes
T = k time slots for state x to transit to state x̂ for the first time. Then state x′ = (·, B − 1)
must be passed during these k time slots. Therefore, we can divide the entire transition
process into two parts: state x first visits state x′ after k1 time slots, and then starts from
state x′ and enters state x̂ for the first time after k2 = k − k1 time slots. Denote f (n)x1,x2 as the
first hitting probability from state x1 to state x2 after n time slots, then we have

f (k)x,x̂ =
k

∑
k1=0

f (k1)
x,x′ f (k2)

x′ ,x̂ . (A29)

When the initial state first transits to state x′, the total energy arrivals must be exactly
B − q − 1. Hence, the first hitting probability f (k1)

x,x′ from state x to state x′ can be expressed
as follows:

f (k1)
x,x′ =

(
k1 − 1

B − q − 2

)
λB−q−2(1 − λ)k1−1−(B−q−2)λ

=

(
k1 − 1

B − q − 2

)
(

λ

1 − λ
)B−q−1(1 − λ)k1

(a)
≤ (k1 − 1)B−q−2(

λ

1 − λ
)B−q−1(1 − λ)k1 , (A30)

where k1 ≥ B − q − 1. The inequality (a) in (A30) is due to combination (N
r ) ≤ Nr, ∀N ≥ r.

For any k1 < B − q − 1, we have f (k1)
xx′ = 0.

After entering state x′, the system state will always change between states x′ =
(·, B − 1) and (�, B) before entering state x̂ for the first time. By mathematical induction,
f (k2)
x′ ,x̂ is given as follows:

f (k2)
x′ ,x̂ =

[
1 − λ λ

]⎡⎣ 1 − λ λ

1 − λ λp

⎤⎦k2−2⎡⎣ 0

λ(1 − p)

⎤⎦
= (1 − p)λ2 βk2−1

1 − βk2−1
2

β1 − β2

= (1 − p)λ2
k2−2

∑
i=0

βi
1βk2−2−i

2

(a)
< (1 − p)λ2(k2 − 1)βk2−2

1 , (A31)
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where k2 ≥ 2, β1 and β2 are the eigenvalues of the matrix

⎡⎣ 1 − λ λ

1 − λ λp

⎤⎦ and satisfy

−1 < β2 < 0 < 1 − λ < β1 < 1. The last inequality (a) of (A31) is due to β2 < 0 < β1 and
|β2| < |β1|. For any k2 < 2, we have f (k2)

x′ ,x̂ = 0.
Therefore, we will verify the discounted cost from the initial state x to reference state x̂

is finite as follows:

Cπ′
(x) = Eπ′

{
T−1

∑
t=0

γtC(x[t], a[t])|x[0] = x

}
(a)
≤

∞

∑
k=0

f (k)x,x̂ [
k

∑
t=0

(Δ + t + ωCr)]

(b)
=

∞

∑
k=B−q+1

k

∑
k1=B−q−1

f (k1)
x,x′ f (k2)

x′ ,x̂ [
k

∑
t=0

(Δ + t + ωCr)]

(c)
≤ (1 − p)λ2

( 1−λ
β1

)B−q−1

1 − 1−λ
β1

∞

∑
k=2

βk−2
1 kB−q−1[

k

∑
t=0

(Δ + t + ωCr)]

(d)
< ∞. (A32)

where inequality (a) is due to (A11), equality (b) is due to (A29), inequality (c) is due
to (A30) and (A31), and inequality (d) is due to 0 < β1 < 1.

For the other two case where the initial state is (·, B − 1) or (�, B), the discounted
cost to the reference state for the first time can also be verified to be finite by similar steps.
Therefore, we have completed the proof of Lemma A1.
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Abstract: The age of information (AoI) metric was proposed to measure the freshness of messages
obtained at the terminal node of a status updating system. In this paper, the AoI of a discrete time
status updating system with probabilistic packet preemption is investigated by analyzing the steady
state of a three-dimensional discrete stochastic process. We assume that the queue used in the system
is Ber/Geo/1/2∗/η, which represents that the system size is 2 and the packet in the buffer can be
preempted by a fresher packet with probability η. Instead of considering the system’s AoI separately,
we use a three-dimensional state vector (n, m, l) to simultaneously track the real-time changes of
the AoI, the age of a packet in the server, and the age of a packet waiting in the buffer. We give
the explicit expression of the system’s average AoI and show that the average AoI of the system
without packet preemption is obtained by letting η = 0. When η is set to 1, the mean of the AoI of the
system with a Ber/Geo/1/2∗ queue is obtained as well. Combining the results we have obtained and
comparing them with corresponding average continuous AoIs, we propose a possible relationship
between the average discrete AoI with the Ber/Geo/1/c queue and the average continuous AoI with
the M/M/1/c queue. For each of two extreme cases where η = 0 and η = 1, we also determine
the stationary distribution of AoI using the probability generation function (PGF) method. The
relations between the average AoI and the packet preemption probability η, as well as the AoI’s
distribution curves in two extreme cases, are illustrated by numerical simulations. Notice that the
probabilistic packet preemption may occur, for example, in an energy harvest (EH) node of a wireless
sensor network, where the packet in the buffer can be replaced only when the node collects enough
energy. In particular, to exhibit the usefulness of our idea and methods and highlight the merits
of considering discrete time systems, in this paper, we provide detailed discussions showing how
the results about continuous AoI are derived by analyzing the corresponding discrete time system
and how the discrete age analysis is generalized to the system with multiple sources. In terms of
packet service process, we also propose an idea to analyze the AoI of a system when the service time
distribution is arbitrary.

Keywords: age of information; discrete time status updating system; probabilistic preemption;
probability generation function; stationary distribution

1. Introduction

The freshness of transmitted messages has attracted increased attention in the design of
practical communication systems. Messages obtained by a controller in a real-time monitor
system may be used to perform traffic scheduling or resource allocation, and for such
applications, the system’s timeliness is crucial for the scheduler to make the right response
and for precise control. The age of information (AoI) metric was proposed in [1] as the time
elapsed since the generation time of the last received packet in the destination, which has
been used widely in recent years to measure the packet’s freshness and characterize the
timeliness of various communication networks. A simple introduction to the AoI theory can
be found in [2], and in [3], the authors made a detailed summary about the analytical results
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of age of information, along with employing the AoI optimization in many cyber-physical
applications.

1.1. Related Work

For a status updating system with simple queue models, such as M/M/1, M/D/1,
and D/M/1 queues, the expression of average AoI was obtained in [4–7]. In particular,
in [7], the authors considered a queue using Last-Come-First-Served (LCFS) discipline,
and the newer packet from the source could preempt the packet currently in service.
The influence of different packet management strategies on a system’s average AoI was
investigated in [8,9], where only one or two packets can be stored in the system. Specifically,
the average AoI of a system with three queues—that is, M/M/1/1, M/M/1/2, and
M/M/1/2*—was determined. The difference between last two queues lies in whether the
packet waiting in the buffer can be substituted by following packets from the source. For
two cases with a system size equal to 2, it was shown that updating the waiting packet
with a fresher one can always result in a lower average AoI, which is apparent because
transmitting the packet with a smaller age is helpful for improving the timeliness of the
information transmission systems. Apart from these, the benefit of introducing a proper
packet deadline, both deterministic and random, to reduce the average age of information
was proved in [10–12]. Controlling packet preemptions to improve the freshness of a
transmitted message was discussed in [13–15]. The authors of [16] showed that the average
AoI can be significantly improved when adding a period of waiting time before the service
of a new packet begins. Assuming there are two parallel servers in the status updating
system, the expressions of the average AoI were determined in [17]. A freshness-based
cache updating in a parallel relay network was considered in [18]. Notice that when more
than one server was present, the updating packet could reach the destination through
different paths. In these situations, since a packet generated behind may be transmitted to
destination via a short-delay path, it is possible that this packet arrives at the receiver before
the packets generated before it. Recently, many papers have been launched considering the
AoI of status updating networks with simple structures, such as the status updating system
with multiple sources [19–25], the system with more than one hop transmission [26–30], and
the system in which the packet transmission is assisted by a relay [31–35]. Recently, using
the SHS method, the AoI of an arbitrarily connected network named the gossip network
was discussed in [36,37]. For each of the above systems, the average performance of the
AoI was characterized, and even some properties of the AoI’s distribution were obtained
in certain papers. For example, for the age on a line network of preemptive memoryless
servers, in [38], the author proved that the age at a node is identical in distribution to
the sum of independent exponential service times by calculating the Moment Generation
Function (MGF) of the defined age vector. In [39,40], the distribution of AoI was studied in a
wireless networked control system with two-hop packet transmission. The authors devised
the problem of minimizing the tail of the AoI distribution with respect to the sampling
rate under a First-Come First-Serve (FCFS) queuing discipline. In [41], for the phase-type
(PH-type) interarrival time or packet service time, the authors numerically obtained the
exact distribution of the (peak) age of information for the system with PH/PH/1/1 and
M/PH/1/2 queues. Within the paper, they used the sample path arguments and the
theory of Markov Fluid Queues (MFQ). Except for the works we mentioned above which
focus on obtaining analytical results of the AoI for status updating systems with various
queue models, even more papers have been published in which the authors considered
designing optimal systems under different timeliness requirements, such as in [42–51]. In
such problems, usually the age of information is used as a freshness metric and is studied
as the optimization objective.

1.2. Discussion of Existing Methods

As far as we know, at least three methods have been proposed to analyze the AoI of a
continuous time status updating system. The first one is the method based on the graph
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of the AoI stochastic process, which was given in [2]. The time average AoI is obtained
by calculating the area below the sample path of the AoI process. Using the common
assumption that the age process is ergodic, this time average AoI converges to the AoI’s
mean as the observation time tends to infinity. It shows that the average AoI of a status
updating system is determined by

E[Δ] =
E[YT] +E

[
Y2]/2

E[Y]
(1)

when the packet arrival process and the distribution of service time are specified, in which
the notation Y denotes the interarrival time between two successive updating packets, and
T represents the packet system time. Secondly, in [6], the authors illustrated the usage of
the Stochastic Hybrid System (SHS) approach to the analysis of system’s stationary AoI.
They employed a continuous state vector to track the real-time age of the updating packets
from the source and described all the possible state vector transfers under the system’s
random dynamics—for example, if a new packet arrives, whether the packet service is
completed. Then, the steady state of the multiple-dimensional continuous time Markov
process was characterized by a group of differential equations, and the first few of the AoI’s
moments could be obtained using the theory of SHS [52]. This method was used later to
determine the average AoI of more general systems, including the system with multiple
sources, packet preemption, and even stochastic energy harvesting at certain system nodes.
The last method was introduced in [5], where the authors proposed a novel description of
the AoI process and characterized its sample paths using a new point process. They proved
that the stationary distribution of the AoI can be represented in terms of the distributions of
the system’s delay and the peak AoI. From this point of view, large numbers of analytical
formulas about the AoI’s stationary distribution were obtained (in the form of its Laplace
Stieljes Transform (LST)) for single-server systems. In addition, we found that the same
method has been used to consider the distribution of discrete time (peak) AoI in [53,54],
where the z-transform of the (peak) AoI’s distribution was derived for the system with
some discrete queues.

Although plenty of results have been obtained using the methods mentioned above,
interested readers may find that most of the results are heavily dependent on the assump-
tions that the packet arrivals form a Poisson process and the service time distribution are
exponential, especially for the SHS method. The memoryless property of both interarrival
time distribution and the distribution of packet service time dramatically simplifies the
age analysis of the considered status updating system. So far, the first method based on
the graphical argument of the AoI process is used only to calculate the AoI’s mean, but it
seems that the theory of Level Crossing in [55] may be useful when considering the AoI’s
distribution from the sample paths themselves. The level crossing method has been used
to derive the steady-state probability density function of queue waiting in several variants
of the M/G/1 queue. It is worth trying to determine whether this theory can be used to
find the stationary distribution of continuous AoI. Using the SHS method, similarly, only
the first few of the AoI’s moments can be calculated. In order to obtain the distribution
property of system’s AoI, one has to solve the system of differential equations, which is
extremely hard in general. At last, in [5], the authors pointed out that the general formula
they proposed holds sample-path-wise, regardless of the service discipline or the distri-
butions of interarrival and packet service times; however, the results they obtained are
not straight-forward, as they only derived the LST of the AoI’s stationary distribution,
while computing the explicit expression of this distribution is also a hard problem due
to the difficulty of computing the inverse of the LST. On the other hand, it is unknown if
the method and the obtained formula can be generalized to more general status updating
systems, not just for the system with a single server.

In the following part, we introduce the idea and methods to analyze the AoI of discrete
time status updating systems and talk about their merits compared with those ways dealing
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with continuous time age of information. By an explicit example, we show how the results
of continuous AoI can be obtained by considering the corresponding discrete time systems.

1.3. Analysis of Discrete Time AoI: Idea and Methods

We propose the idea and methods to characterize the steady state AoI of a discrete
time status updating system, in which the packet arrivals, the packet service, and AoI
declines are considered in discrete time slots. Although there are not many, there are still
some works analyzing the AoI of a discrete system with different queue models. To our
best knowledge, the analysis of discrete AoI was proposed for the first time in [56]. Using
the proof techniques and tools developed to analyze continuous AoI, the authors obtained
the average (peak) AoI of a Ber/G/1 and G/G/∞ queue modeled discrete time status
updating system. The notation “Ber” represents that the packet arrival or the service of the
packet forms a Bernoulli stochastic process; equivalently, in each time slot, a packet arrives
(or the packet service is completed), which is independent and occurs with an identical
probability. Later, using the similar description of the age process’s sample path as in [5],
in [53,54] the expression of the discrete AoI’s distribution was obtained for the system with
a First-Come First-Served (FCFS) queue, the preemptive Last-Come First-Served (LCFS)
queue, and the bufferless status updating system. Discrete time systems with multiple
sources are considered in [57]. Under the assumption of Bernoulli packet arrivals and a
common general discrete phase-type service time distribution across all the sources, the
authors obtained the exact per-source distributions of AoI and peak AoI in matrix-geometric
form for three different queueing disciplines, i.e., nonpreemptive bufferless, preemptive
bufferless, and nonpreemptive single buffer with replacement.

In our work [58], we obtain the explicit formula of average discrete AoI, ΔBer/Geo/1/1
for a bufferless status updating system (actually, the service time distribution in [58] is
arbitrary) by defining a two-dimensional age process which characterizes the AoI at the
destination and the age of packet in service as a whole. The idea we proposed in [58] can be
regarded as the discretization of the SHS method, which is shown to be equally powerful
and more flexible when applied to more general systems. We describe all the possible
state transfers for every initial state vector and then establish the stationary equations of
the defined two-dimensional discrete age process. These equations are solved completely
in [58]; thus, the distribution of AoI can be determined explicitly as one of the marginal
distributions of the two-dimensional age process’s stationary distribution. Given the AoI’s
distribution, the mean, the variance, and the tail probabilities of the AoI can be easily
calculated. The idea of constituting multiple-dimensional age processes is then used in [59]
to obtain the mean and the distribution of the infinite size state updating system. In [60], the
distributions of the AoI of a system with Ber/Geo/1/1, Ber/Geo/1/2, and Ber/Geo/1/2*
queues are derived explicitly using the method of solving equations. In this paper, the AoIs
of a system with Ber/Geo/1/2 and Ber/Geo/1/2* queues are considered simultaneously,
which are connected together by the probabilistic packet preemption in the system’s buffer.
In addition, in order to avoid the tedious calculation required to solve the stationary
equations and calculate the marginal distribution, we define the Probability Generation
Function (PGF) of the multiple-dimensional stationary distribution, from which both the
AoI’s mean and its stationary distribution can be obtained effectively. For the system’s
average AoI, in Table 1, we list the results we have obtained about the discrete AoI and
the corresponding expressions of the continuous system’s average AoI. The average AoI
ΔBer/Geo/1/1 was obtained in [58], and the other two expressions will be derived in the
current paper. Apart from the AoI’s mean, we also determine the distribution of the discrete
AoI ΔBer/Geo/1/2 and ΔBer/Geo/1/2∗ by writing the PGF as the power series.

As mentioned above, one can see the similarity between our idea and the SHS method,
and one may mistakenly think that we simply change the continuous time into discrete
time slots. The power of combining multiple-dimensional state vector descriptions with
the PGF method may be underestimated due to the simple assumptions used in the current
paper—that is, the packet arrivals form a Bernoulli process and the packet service time
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is geometrically distributed. It is known that in order to obtain the complete statistical
information, not just the mean of the stationary AoI by the method of SHS, one has to
solve a group of differential equations, which may be possible for some systems with
simple queues but generally is impossible. In addition, the usage of SHS analysis is heavily
restricted because it requires that both the packet arrival process and the packet service
process are memoryless, i.e., the interarrival time and the packet service time have to be
i.i.d. exponential random variables. In the following, we explain the merits of considering
a discrete time system in two aspects.

Table 1. Some formulas of the average continuous and average discrete age of information.

Average Continuous and Average Discrete AoIs

ΔM/M/1/1 = 1
μ

(
1 + 1

ρ +
ρ

1+ρ

)
ΔBer/Geo/1/1 = 1

γ

(
(1 − γ) + 1

ρd
+

ρd
1/(1−γ)+ρd

)
ΔM/M/1/2 = 1

μ

(
1 + 1

ρ +
2ρ2

1+ρ+ρ2

)
ΔBer/Geo/1/2 = 1

γ

(
(1 − γ) + 1

ρd
+

2ρ2
d(1−γ)(1−γ/2)

1+ρd(1−2γ)+ρ2
d(1−γ)2

)
ΔM/M/1/2∗ =

1
μ

(
1 + 1

ρ +
ρ2(1+3ρ+ρ2)

(1+ρ+ρ2)(1+ρ)2

)
ΔBer/Geo/1/2∗ =

1
γ

(
(1 − γ) + 1

ρd
+

ρ2
d(1−γ)[1+3ρd(1−γ)+ρ2

d(1−γ)(1−2γ)]
[1+ρd(1−2γ)+ρ2

d(1−γ)2][1+ρd(1−γ)]2

)

(1) Calculation: reducing the complexity

Observing that when all the state transitions are described in discrete time slots, the
stationary equations characterizing the steady state of the defined age process become a
set of linear equations, which is more likely to be solved compared with those differential
equations, we show in this paper that these linear equations can be dealt with using the PGF
method even more easily and more effectively. In our another work, we have determined
the explicit expression of average AoI and the corresponding AoI’s distribution assuming
the Ber/Geo/1/c queue is used in the status updating system, where the system’s size c
can be arbitrary. For the cases c = 3 and 4, we obtain that

ΔBer/Geo/1/3 =
1
γ

(
(1 − γ) +

1
ρd

+
ρ2

d(1 − γ2) + 3ρ3
d(1 − 5γ/3 + γ2/3)

1 + ρd(1 − 3γ) + ρ2
d(1 − 3γ + 3γ2) + ρ3

d(1 − γ)3

)
(2)

and

ΔBer/Geo/1/4 =
1
γ

(
(1 − γ) +

1
ρd

+
ρ2

d(1 − γ) + 2ρ3
d(1 − γ)(1 − 2γ) + 4ρ4

d(1 − γ)(1 − 11γ/4 + 9γ2/4 − γ3/4)
1 + ρd(1 − 4γ) + ρ2

d(1 − 4γ + 6γ2) + ρ3
d(1 − 4γ + 6γ2 − 4γ3) + ρ4

d(1 − γ)4

)
(3)

Although we have not mentioned this yet, the readers should find that those expres-
sions of average continuous and average discrete AoI given in Table 1 are quite similar. We
propose the following possible relationship:

μ · ΔM/M/1/c = γ · ΔBer/Geo/1/c
∣∣
γ=0, then replacing ρd with ρ (4)

The relation (4) holds at least for c = 1, c = 2, and c = 2∗. Note that the relation (4)
is given only by observation, and it is not easy to prove that (4) is applicable in general
situations, because the average continuous AoI ΔM/M/1/c is temporarily unknown. If Equa-
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tion (4) is fortunately applicable in general, which we hope, then from expressions (2) and (3),
immediately we have

ΔM/M/1/3 =
1
μ

(
1 +

1
ρ
+

ρ2 + 3ρ3

1 + ρ + ρ2 + ρ3

)
(5)

and

ΔM/M/1/4 =
1
μ

(
1 +

1
ρ
+

ρ2 + 2ρ3 + 4ρ4

1 + ρ + ρ2 + ρ3 + ρ4

)
(6)

Notice that the average continuous AoIs (5) and (6) are not derived using any of
the three methods we discussed earlier—that is, the method based on the sample path
of the AoI process, the SHS, and the method proposed in [5,54]. On the contrary, we
first characterize the stationary AoI of the corresponding discrete time system and then
obtain the expression of the continuous AoI’s mean through relationship (4). There is
no doubt that the formulas of ΔM/M/1/3 and ΔM/M/1/4 can be obtained using AoI’s SHS
analysis; however, the general formula of AoI’s mean, i.e., ΔM/M/1/c for arbitrary size
c is temporarily unknown. Furthermore, the stationary distribution of discrete AoI can
also be determined explicitly from the PGF defined for the considered system, while the
distribution properties of the continuous AoI cannot be revealed easily through either
the graphical method or the AoI’s SHS analysis. Although it is not possible to accurately
reprint the continuous AoI’s distribution in every position using the discrete approximation,
the difference between them can be reasonably small when the length of the time slot is
short enough. In the current paper, we determine the distribution expressions of discrete
AoI for the system with Ber/Geo/1/2 and Ber/Geo/1/2∗ queues. Unlike in [5,54], these
expressions are straight-forward and not expressed in the form of other transformations.

According to vabove discussions, from the perspective of deriving the average AoI or
obtaining the AoI’s distribution, considering the status updating system in the discrete time
model is of great significance. To a certain extent, we can even conclude that our method is
stronger since more specific results about AoI have been obtained.

(2) Generalization: In terms of system structure and service time distribution

Recently, using the SHS method, the age analysis has been generalized to the status
updating networks with a simple structure, especially the system with multiple sources.
In this part, we briefly explain how the discrete age of information is characterized in the
multiple-source bufferless system and the two-source system equipped with a size 1 buffer.
The system models are depicted in Figure 1.

(a) (b)

Figure 1. (a) Status updating system with multiple sources and bufferless server. (b) Status updating
system with two sources and a size 1 buffer.

Specifically, we assume the packets arrive at the beginning of one time slot; whether
the packet service is completed is determined at the end of the time slot. Since the system’s
random dynamics are considered in time slots, it is possible that more than one packet
arrives to the server (buffer) from different sources in a time slot. The server has to choose
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one of these and discard the other packets if the system does not have a buffer. This packet
collision problem can be solved by assigning priorities to the packets from different sources;
then, the packet with the highest priority is selected and put into the server.

In the bufferless system given in the first picture of Figure 1, let ri be the priority of
source si, 1 ≤ i ≤ N, and assume r1 > r2 > · · · > rN—that is, the priority of source si is
over that of sj if i < j. In each time slot, source si generates a new packet with probability
pi, and the packet generation process is independent of all other sources. Actually, this
situation is exactly the generalization of our work in [58] when the status updating system
has multiple independent sources. For the given i ∈ [1, N], it shows that the AoI process
corresponding to source si can be analyzed separately and is thus similar to work [58],
showing that a two-dimensional state vector (ni, mi) is sufficient to track the real-time
changes of AoIi and the age of the packet in the server from source si. In this system, we
observe that it does not matter whether the service of the packet from si can be preempted
by other packets with higher priorities. The state vector transfers from every (ni, mi) can
be described as in [58], but the transition probabilities need to be modified. For example,
for ni > mi ≥ 1, we have

State vector at next time slot =

{
(ni + 1, mi + 1) the packet service is not completed,
(mi + 1, 0) the service of the packet is over.

(7)

if the service process cannot be preempted. In contrast, it can be decided that

State vector at next time slot =

⎧⎪⎨⎪⎩
(ni + 1, mi + 1) no packets of higher priorities arrive, the service is not over,
(ni + 1, 0) one packet with higher priority comes,
(mi + 1, 0) no packets with higher priorities arrive, the service is over.

(8)

when packet service preemption is allowable. After all the state transfers are described and
their transition probabilities are determined, we can obtain the stationary equations, which
can be solved completely as in [58] or by using the PGF method as in this paper. Like [58],
the service time distribution in this case can be arbitrary.

Although there are multiple sources, it can be seen that the age analysis of each source
is easy when the status updating system has no buffer. Notice that in this case, no queue is
formed before the server; thus, there is no chance that the packets from different sources
are combined. As a result, the packets from every source are totally divided, and the AoI of
each source can be analyzed separately. The situation is much more difficult if the system
has a buffer. As an example, we consider the AoI of each source of a two-source system,
which is depicted in the second picture of Figure 1.

We can define a six-dimensional state vector (n1, n2, m1, m2, l1, l2) to describe the AoI
of two sources simultaneously, where the state components represent the values of two AoIs
at the destination, the age of a packet in the server, and the age of a packet in the system’s
buffer. In every position of the system, apart from the ”age”, it is necessary to indicate
which source the packet comes from. Therefore, a three-dimensional state vector (n, m, l)
that does not include this information is not sufficient. Notice that at any time, at most one
of m1 and m2 are non-zero. This is the same for the parameters l1 and l2. When there is a
buffer in front of the server, apparently a queue is formed if a packet arrives and finds that
the server is currently busy. Each one of two packets in the system (one is in the server
and the other is in the buffer) may come from source s1 or s2. Of course, these two packets
may belong to different sources. Although the problem becomes complex, theoretically, all
the state transfers of every initial six-dimensional state vector can be determined explicitly,
since the randomness that causes the state vector transfers are limited to random packet
arrival, the service of the packet, and the additional packet preemption. Then, according
to the balance of probabilities in the steady state, the stationary equations are established;
this solves the first half of the AoI analysis. Details of the latter half—that is, deriving the
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average AoI from the group of stationary equations—can be found in the procedures in
this article.

We find that in [61], the authors obtained the average continuous AoI for the same two-
source status updating system in Figure 1b using the SHS method. They added another
assumption that the packet in the server and the packet in the buffer must belong to
different sources in their second and the third considered situation and named the policies
“source-aware packet management”. As we have mentioned above, although the packets
from two sources are still combined, after adding this restriction, the complexity of the
problem has been greatly reduced.

In fact, the state vector defined for a discrete time system has a very clear physical
meaning. For the status updating system with the FCFS queue, the first parameter denotes
the AoI and the other state components represent the ages of packets in the server and
in the buffer of the system. Thus, a (c + 1)-dimensional state vector is needed if the size
of the system is equal to c. Compared with analyzing the AoI of discrete systems, in
the SHS method, the defined state vector is sometimes easier, such as in the system with
multi-sources. In [61], in order to characterize the AoI of one source in a two-source system,
the authors used a four-dimensional state vector [x0(t), x1(t), x2(t), x3(t)] that describes
the evolutions of AoI when different random events occur. As mentioned before, we use
the six-dimensional state vector (n1, n2, m1, m2, l1, l2) describing the random changes of
both source 1 and source 2. The parameter n1 or n2 can also be deleted if only one of two
sources are analyzed. In our proposed method, we show the correspondence between the
dimension of the state vector and the size of the discrete system; this may not be a unique
way to define the discrete state vector. Although considering the AoI of the discrete time
system has higher computational complexity, the biggest advantage of discrete AoI analysis
is that it can obtain the stationary distribution of the AoI.

Except the simple status updating networks given in Figure 1, we have also obtained
the average discrete AoI for a status updating system with two-stage service, where for
simplicity, in front of each server, no buffer is equipped. For the system with two parallel
servers, the age analysis is more difficult, since some packets may become “ineffective” if
one packet is generated later but arrives to the destination earlier. Some policies need to
be identified to deal with these packets—for instance, deleting the packet directly once
it becomes ineffective. If nothing is done, when an ineffective packet is obtained at the
receiver, the value of AoI will not be reduced.

Another direction of generalization we shall talk about is the distribution of packet
service time (while the packet arrival process is still Bernoulli). Now, taking the size 2 status
updating system as an example, we explain how the service time distribution is relaxed to
be an arbitrary distribution. Using a three-dimensional state vector (n, m, l), we can fully
describe the random dynamics including the AoI at the receiver and the age of two packets
in the system if both the packet interarrival time and the service time have memoryless
properties. In each time slot, the changes of the AoI’s value and the packet ages depend
on random packet arrival, which is memoryless and independent, and whether the packet
service is over. When the service time distribution is arbitrary, the probability that the
service is completed in one time slot is related to the time this packet has experienced in
the server. Let S be the random variable of service time, and we represent the general
distribution as

Pr{S = i} = qi (i ≥ 1) (9)

We assume that, before the current time slot, the packet has stayed in server for j time slots;
then, the probabilities that determine the state vector transfers should be the following two
conditional probabilities:

Pr{S = j + 1|S > j} and Pr{S > j + 1|S > j} (10)

Therefore, if we have knowledge about this passed service time j, as before, all the state
transfers of state vector (n, m, l) can be completely described and the age analysis becomes
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feasible. Since no one of the three parameters n, m, and l can provide this information,
it is natural to introduce an extra component, say k, to denote the service time that the
packet has consumed and constitute the four-dimensional state vector (n, m, l, k). In this
way, the possible state transfers of this four-dimensional state vector can be described and
the transition probabilities can also be determined. For example, let the initial state vector
be (n, m, l, k)—we have the state transfers and transition probabilities as

Next state vector =

{
(n + 1, m + 1, l + 1, k + 1) the service is not over with prob. 1 − qk+1/ ∑∞

i=k+1 qi

(m + 1, l + 1, 0, 0) the service completes with prob. qk+1/ ∑∞
i=k+1 qi

(11)

where we assume the queue discipline is FCFS and there is no packet preemption. We
show that the four parameters n, m, l, and k satisfy the relationships n > m > l ≥ 0 and
n > m ≥ k ≥ 0. The first one holds because n, m, and l are three ages of packets generated
in chronological order, and n > m ≥ k is satisfied since the packet system time m must
be larger than or equal to the service time of the packet, which is denoted by k. These
relations determine which vectors are qualified state vectors. Although we show that the
state transfers can be analyzed and the group of stationary equations can be determined by
considering the balance of those stationary probabilities; however, it can be expected that
solving these equations is not easy. Since the service time probabilities qis are arbitrary, the
expression of the average AoI, as we can determine in later work, will not be closed-formed.
It is also important to note that the PGF method cannot be used when the service time
distribution is not geometric, because the transition probabilities is no longer the same for
different state vectors and thus cannot be the common factor.

Summarizing the above discussions, we have proved that on the basis of original
memoryless status updating system, by introducing an extra component to denote the time
the packet has consumed in the server, the age analysis becomes feasible for the situation
where the packet service time is arbitrarily distributed. Although it may be difficult to
obtain the expressions of the system’s average AoI, the idea is still applicable when we
generalize the size 2 system to a status updating system with arbitrary size c. In one of our
works, we have shown that for a size c discrete time status updating system with Bernoulli
packet arrivals and geometrically distributed service time, in order to fully characterize
the real time transfers of the system’s AoI and all the packet ages, a (c + 1) dimensional
state vector (n, m1, · · · , mc) should be defined. By adding an extra state component k that
records the service time the packet has experienced in the server, according to previous
discussions, the age analysis can be generalized to a size c status updating system whose
service time distribution is arbitrary (at least we can establish all the stationary equations).

We have to attribute the above idea to [62], in which the authors considered the
timely transmission of the updates over an erasure channel. They assume that each update
consists of k symbols and the symbol erasure in each time slot is an i.i.d. Bernoulli process.
The aim of [62] is to design an optimal online transmission scheme to minimize the time
average AoI, and the problem is formulated as a Markov Decision Process (MDP). Although
the optimization of AoI is not our interest, the state tuple (δt, dt, lt) defined in Section 2.
A is very enlightening, based on which the transmission policy at the next time slot is
determined. At the t-th time slot, the notation δt denotes the value of AoI, dt is the age
of the next update, i.e., the packet at the head of the queue, and lt records the number of
symbols that has been obtained successfully up to this time slot—these symbols belong
to the update that is transmitted currently. A similar timely source coding problem was
also discussed in [63], in which the authors also pointed out that the length of the encoded
update is equivalent to the service time of the update, and their considered system behaves
as a discrete time Geo/G/1 queue (we use the notation Ber/G/1). Therefore, the role of
lt in [62] can be regarded (or redefined) as the service time that the current update has
consumed. By adding this knowledge, the distribution of the source in these papers and
the service time distribution in the discrete time status updating system which we study in
this part can be arbitrary.
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In previous paragraphs, we explain the idea and methods used to study the AoI of
discrete time status updating systems. We have shown how the discrete AoI is characterized
for the basic system, the system with multiple sources, and the system whose service time
distribution is arbitrary. As part of AoI theory, we believe that discrete AoI deserves more
attention, and it is meaningful to establish analytical results including the AoI’s mean and
its distribution for more general systems. In particular, the proposed possible relationship
in (4) shows that discussing discrete AoI not only has independent theoretical significance
but also helps to determine certain results about continuous AoI. If one problem is difficult
in the continuous time model, it is a choice to consider it in discrete time settings.

1.4. The Work in the Current Paper

We have discussed numerous topics of discrete AoI in the previous subsection, and
it is inappropriate to consider all the issues in one article. In this paper, we focus on the
stationary AoI of a discrete time system with a Ber/Geo/1/2 and Ber/Geo/1/2∗ queue and
discuss both in a single model. We assume the packet in the buffer can be probabilistically
preempted by the fresher packets from the source and define the queue model in this
scenario as Ber/Geo/1/2∗/η, where η is the preemption probability. In the literature of
AoI, the probabilistic packet preemption (replacement) has been studied in [64]. In [65], the
probabilistic preemption was considered in the scenario where a CPU is used frequently
to deal with the unpredictable tasks. Then, for the case of η = 0, the queue model of
the system reduces to Ber/Geo/1/2, while when η is equal to 1, the status updating
system with Ber/Geo/1/2∗ queue is obtained. For the general case, we derive the explicit
expression of the system’s average AoI. By writing the defined PGF as the power series, for
two extreme cases of η = 0 and η = 1, the distribution expressions of two discrete AoIs are
determined as well.

The rest of the paper is organized as follows. In Section 2, we describe the model of a
discrete time status updating system with probabilistic packet preemption. The stationary
distribution and the mean of the system’s AoI are also defined. By analyzing the steady
state of a three-dimensional stochastic age process, in Section 3, we obtain the explicit
formula of the average AoI under general preemption probability using the probability
generation function (PGF) method. In Section 4, let η = 0 and η = 1, and we determine the
average AoIs ΔBer/Geo/1/2 and ΔBer/Geo/1/2∗ from the general expression derived previously
in Section 3. Furthermore, in order to obtain the stationary distribution of two discrete
AoIs, we write the PGF as power series. Then, the coefficient before xn gives the probability
that the AoI takes value n for each n ≥ 1. Numerical results are placed in Section 5. For
the general case, we illustrate the relationships between the average AoI and η and the
traffic intensity ρd, respectively. In addition, the mean and the cumulative probabilities
of three discrete AoIs including ΔBer/Geo/1/1, ΔBer/Geo/1/2, and ΔBer/Geo/1/2∗ are depicted.
These average discrete AoIs and their corresponding average continuous AoIs are also
numerically compared in Section 5. Finally, we conclude the paper in Section 6.

2. System Model and Problem Formulation

We depict the model of the status updating system which uses the Ber/Geo/1/2∗/η
queue in Figure 2, in which the packet in the system’s buffer can be preempted by a fresher
packet from the source s with probability η. The packet arrivals to the transmitter are
assumed to form a Bernoulli stochastic process—that is, in each time slot, a new packet
comes with an identical probability, which we denote by p. Packet service time follows the
geometric distribution with intensity γ. The updated packet generated at s is transmitted
to the destination d through the transmitter, in which a random period of time is consumed.
The age of information (AoI) at d is defined as the time elapsed since the generation time
of the last obtained packet. Within the time when no packet is received, the value of AoI
increases by 1 after each time slot ends. Every time a packet passes the transmitter and
arrives to d, the AoI will be reduced to the system time of the obtained packet, which is
actually equal to the instantaneous age of this packet.
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Figure 2. The model of the discrete time status updating system with probabilistic packet preemption
in the system’s buffer.

Let a(k) be the value of AoI in the kth time slot. The AoI at the next time slot, a(k + 1),
is determined by

a(k + 1) =

{
a(k) + 1 if no packet is obtained,
a(k) + 1 − Yj when jth generated packet arrives to d.

(12)

where Yj is the interarrival time between the (j − 1)th and jth arriving packet.
Notice that these (j − 1)th and jth packets may be generated discontinuously, since

between them, some updating packets may be discarded when they arrive and find the
system full. Actually, this is exactly the difference between the finite and infinite status
updating systems. Based on this observation, in [59], we have determined the average AoI
and its stationary distribution for an infinite size status updating system with Bernoulli
packet arrivals and geometric service time.

Denote the stationary AoI for the system with probabilistic packet preemption as
ΔBer/Geo/1/2∗/η . We define the time average AoI as follows, which is equal to the mean of
the AoI because the age process is assumed to be ergodic. We have

ΔBer/Geo/1/2∗/η = limT→∞
1
T ∑T

k=1 a(k) (13)

= limT→∞
1
T ∑MT

i=1 i · |{1 ≤ k ≤ T : a(k) = i}| (14)

= ∑∞
i=1 i · πi (15)

where |{1 ≤ k ≤ T : a(k) = i}| is the times that the AoI takes value i, and MT = max1≤k≤T
a(k) is the maximal discrete AoI in T time slots. For each i ≥ 1,

πi = limT→∞
|{1 ≤ k ≤ T : a(k) = i}|

T
(16)

is the probability that the stationary AoI takes value i. In fact, the probability distribution
{πi, i ≥ 1} forms the stationary distribution of the AoI ΔBer/Geo/1/2∗/η .

The randomness of both packet arrivals and the service time in the server, along with
the probabilistic packet preemption in the system’s buffer, together make the AoI at the
destination change randomly. After one time slot, the value of AoI may increase by 1 if no
packet is obtained or drop to the age of the obtained packet at that time if one such packet is
successfully received. In order to fully describe these random dynamics of AoI, we propose
to use a three-dimensional state vector to simultaneously record the changes of the AoI,
the age of a packet in the server, and the age of the packet waiting in the buffer, and then
constitute the three-dimensional stochastic process. Next, the steady-state of this multiple-
dimensional age process is analyzed. To obtain the mean and the distribution of AoI, we
define the PGF corresponding to the stationary distribution of the three-dimensional age
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process, from which both the AoI’s mean and its distribution can be obtained. The detailed
analysis of the system’s AoI is given in Section 3.

3. AoI Analysis for Status Updating System with Probabilistic Packet Preemption

Define the three-dimensional state vector (n, m, l), where we use n to denote the AoI
at destination d, and the other two parameters m and l are the ages of the packets in the
system’s server and the buffer. In the kth time slot, if the server is busy while the buffer is
empty, then nk and mk are greater than 0 but lk = 0. When both the server and the buffer
are empty, we have mk = lk = 0. In this case, the entire system is empty.

Consider the following three-dimensional age process

AoIPP = {(nk, mk, lk) : nk > mk ≥ lk ≥ 0, k ∈ N} (17)

where the subscript “PP” in expression (17) is the abbreviation of probabilistic preemption.
Notice that when the system is empty, the last two parameters mk and lk are both equal to 0.
When there are two packets in the system, i.e., one is in the server and the other is in the
buffer, we show that the state components satisfy nk > mk > lk ≥ 1, since in a path from the
source to the receiver, the packet ahead always has a greater age. It is clearly shown later
that this relationship facilitates the derivation of probability generation function HPP(x),
which is defined in Equation (20).

Define three random variables A, B, and F to represent whether a packet is generated
in a time slot, if the service of the packet is completed, and if the arriving packet replaces
the original one in the buffer. For each possible initial state vector, according to different
realizations of r.v.s (A, B, F), the state transfers of the three-dimensional state vector (n, m, l)
can be described specifically. We list all of them using Table 2. For example, the third row
of the table shows that a packet of age l is in the buffer and a new packet arrives, since
the r.v. A takes value 1. However, F = 0 means that this new packet will not substitute
the original one; meanwhile, B = 0 implies that the packet service is not over at this time
slot. Summarizing all these events, the beginning state vector (n, m, l) will transfer to
(n + 1, m + 1, l + 1) at the next time slot, and the transition probability is determined as
p(1− γ)(1− η). The other cases in the third column of Table 2 are obtained through similar
discussions.

From the state transfers given in Table 2 and the corresponding transition probabilities,
we can establish all the stationary equations that characterize the steady-state of age process
AoIPP. Let π(n,m,l), n > m ≥ l ≥ 0 be the probability that the process stays at the state
vector (n, m, l) when it reaches the steady-state; we show that these stationary probabilities
π(n,m,l) satisfy the following equations.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(n,m,l) = π(n−1,m−1,l−1)[(1 − p)(1 − γ) + p(1 − γ)(1 − η)] (n > m > l ≥ 2)
π(n,m,1) = π(n−1,m−1,0)p(1 − γ) + ∑m−2

j=1 π(n−1,m−1,j)p(1 − γ)η (n > m ≥ 3)

π(n,2,1) = π(n−1,1,0)p(1 − γ) (n ≥ 3)
π(n,m,0) = π(n−1,m−1,0)(1 − p)(1 − γ)

+∑∞
k=n π(k,n−1,m−1)[(1 − p)γ + pγ(1 − η)] (n > m ≥ 2)

π(n,1,0) = π(n−1,0,0)p(1 − γ)

+∑∞
k=n π(k,n−1,0)pγ + ∑∞

k=n ∑n−2
j=1 π(k,n−1,j)pγη (n ≥ 3)

π(2,1,0) = π(1,0,0)p(1 − γ) + ∑∞
k=2 π(k,1,0)pγ

π(n,0,0) = π(n−1,0,0)(1 − p) + ∑∞
k=n π(k,n−1,0)(1 − p)γ (n ≥ 2)

π(1,0,0) = ∑∞
n=1 π(n,0,0)pγ

(18)
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Table 2. The state vector transfers of age process AoIPP.

Initial State Vector Considered r.v.s Realizations and Next State Vector

(n, m, l),
n > m > l ≥ 1

(A = 0, B) (0, 0):(n + 1, m + 1, l + 1)

(0, 1):(m + 1, l + 1, 0)

(A = 1, B, F) (1, 0, 0):(n + 1, m + 1, l + 1)

(1, 0, 1):(n + 1, m + 1, 1)

(1, 1, 0):(m + 1, l + 1, 0)

(1, 1, 1):(m + 1, 1, 0)

(n, m, 0),
n > m ≥ 1

(A, B) (0, 0):(n + 1, m + 1, 0)

(0, 1):(m + 1, 0, 0)

(1, 0):(n + 1, m + 1, 1)

(1, 1):(m + 1, 1, 0)

(n, 0, 0),
n ≥ 1

A = 0 (n + 1, 0, 0)

(A = 1, B) (1, 0):(n + 1, 1, 0)

(1, 1):(1, 0, 0)

We explain the stationary equations only for a part of the state vectors and show that
the other equations in (18) can be determined in a similar manner. Firstly, for the fifth
row of (18), the state vector (n, 1, 0) can be obtained from (n − 1, 0, 0) assuming that a new
packet arrives and enters the server directly, but the service does not end in a single time
slot. Next, from the current state vector (k, n − 1, 0), k ≥ n, if the service of the age (n − 1)
packet is completed and a new packet arrives at the same time slot, it is observed that
the packet of age (n − 1) will be sent to the receiver, which makes the AoI change to n at
next time slot. The new packet enters the server; thus, the middle parameter of the state
vector changes to 1. This gives the expected state (n, 1, 0). Since in this case, the buffer is
empty, when a new packet comes, it occupies the buffer directly, and no packet preemption
occurs. At last, we consider the situation where the age process begins with an arbitrary
state (k, n − 1, j) where k > n − 1 > j ≥ 1. As long as the packet service is completed and
at the same time a new packet arrives preempting the original one in the buffer, again, we
will obtain the state vector (n, 1, 0) after one time slot. Combining all of the above cases,
the stationary equation corresponding to (n, 1, 0) is finally determined. In addition to the
fifth row, we also explain the last equation in (18). Observing that in order to obtain the
state vector (1, 0, 0), the receiver needs a packet of age 1, the system has then to be emptied.
This state can be transferred to only from (n, 0, 0), and the service time of the newly arrived
packet is restricted to be only one time slot.

To derive the expression of the average AoI ΔBer/Geo/1/2∗/η, we do not solve Equation (18)
although this approach is feasible for the AoI analysis of tje current system. In our work [60],
we analyzed the AoI of a status updating system with Ber/Geo/1/1, Ber/Geo/1/2, and
Ber/Geo/1/2∗ queues, and the expression of the AoI’s stationary distribution was de-
termined for each case. There, we completely solved the stationary equations for each
system and obtained the explicit expression for every stationary probability. Notice that
this work can be regarded as a discrete correspondence of the packet management of
continuous AoI in [8,9]. Assuming all the probabilities π(n,m,l) have been determined by
solving Equation (18), we have

Pr
{

ΔBer/Geo/1/2∗/η = n
}
=

{
π(1,0,0) (n = 1)
π(n,0,0) + ∑n−2

l=0 ∑n−1
m=l+1 π(n,m,l) (n ≥ 2)

(19)
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since the probability that the AoI takes each n is equal to the sum of all the stationary prob-
abilities with the identical first component. Equation (19) gives the stationary distribution
of the AoI, from which we can calculate the average value of AoI as

ΔBer/Geo/1/2∗/η = ∑∞
n=1 n · Pr

{
ΔBer/Geo/1/2∗/η = n

}
However, the number of calculations to solve Equation (18) may be large, and apart

from this, extra computations are required to determine the AoI’s distribution according to
Formula (19). Since the AoI is denoted by the first component, to obtain the distribution
of AoI, we need to sum all the other state components. Notice that when the dimension
of defined state vector is bigger, more calculations are required to determine the AoI’s
distribution. Therefore, we must determine the mean of AoI and its distribution in another
way, i.e., the probability generation function (PGF) method.

For 0 < x ≤ 1, define the probability generation function

HPP(x) = ∑∞
n=1 xn Pr

{
ΔBer/Geo/1/2∗/η = n

}
(20)

and we write HPP(x) further as

HPP(x) = x Pr
{

ΔBer/Geo/1/2∗/η = 1
}
+ ∑∞

n=2 xn Pr
{

ΔBer/Geo/1/2∗/η = n
}

= xπ(1,0,0) + ∑∞
n=2 xn

{
π(n,0,0) + ∑n−2

l=0 ∑n−1
m=l+1 π(n,m,l)

}
(21)

= ∑∞
n=1 xnπ(n,0,0) + ∑∞

n=2 xn ∑n−2
l=0 ∑n−1

m=l+1 π(n,m,l) (22)

= ∑∞
n=1 xnπ(n,0,0) + ∑∞

l=0 ∑∞
m=l+1 ∑∞

n=m+1 xnπ(n,m,l) (23)

= ∑∞
n=1 xnπ(n,0,0) + ∑∞

m=1 ∑∞
n=m+1 xnπ(n,m,0) + ∑∞

l=1 ∑∞
m=l+1 ∑∞

n=m+1 xnπ(n,m,l) (24)

where in (21) we have used the probability expressions (19). Equation (23) is obtained
by exchanging the summation order in (22). In Equation (24), we divide the PGF HPP(x)
into three parts. It can be seen in the following paragraphs that the entire function (20) is
obtained by determining these parts separately.

According to expression (20), immediately, we have

HPP(1) = 1,
dHPP(x)

dx

∣∣∣∣
x=1

= ΔBer/Geo/1/2∗/η (25)

That is, the average AoI can be obtained from the PGF’s derivative at point x = 1, and the
probability that the steady state AoI equals n is determined by the coefficient before the
term xn for every n ≥ 1.

Now, we determine the PGF HPP(x). For 0 < x ≤ 1, define the functions

h1(x) = ∑∞
n=1 xnπ(n,0,0)

h2(x) = ∑∞
m=1 ∑∞

n=m+1 xnπ(n,m,0)

h3(x) = ∑∞
l=1 ∑∞

m=l+1 ∑∞
n=m+1 xnπ(n,m,l)

and
h(m)

2 (x) = ∑∞
m=1 ∑∞

n=m+1 xmπ(n,m,0)

We first give the following lemma, from which the PGF HPP(x) can be determined
completely.
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Lemma 1. For the functions hi(x), 1 ≤ i ≤ 3 and h(m)
2 (x), we have

h1(x) =
pγM1x

1 − (1 − p)x
+

(1 − p)γx
1 − (1 − p)x

h(m)
2 (x) (26)

h2(x) =
p(1 − γ)x

1 − (1 − p)(1 − γ)x
h1(x) +

pγx
[1 − (1 − p)(1 − γ)x][1 − (1 − γ)x]

h(m)
2 (x) (27)

h3(x) =
p(1 − γ)x

1 − (1 − γ)x
h2(x) (28)

and it is determined that

h(m)
2 (x) =

[
γ + p2(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γx

]
M2x

[1 − (1 − p)(1 − γ)x][1 − (1 − γ)(1 − pη)x]
(29)

in which the numbers M1 and M2 are given as

M1 =
(1 − p)γ2

(p + γ − 2pγ)γ + p2(1 − γ)2 (30)

M2 =
pγ(1 − γ)

(p + γ − 2pγ)γ + p2(1 − γ)2 (31)

Proof. Lemma 1 is proved in Appendix A.

Using Lemma 1, we calculate the PGF HPP(x) as follows. Equation (24) shows

HPP(x) = h1(x) + h2(x) + h3(x)

= h1(x) + h2(x) +
p(1 − γ)x

1 − (1 − γ)x
h2(x)

= h1(x) +
1 − (1 − p)(1 − γ)x

1 − (1 − γ)x

(
p(1 − γ)x

1 − (1 − p)(1 − γ)x
h1(x)

+
pγx

[1 − (1 − p)(1 − γ)x][1 − (1 − γ)x]
h(m)

2 (x)
)

(32)

=
1 − (1 − p)(1 − γ)x

1 − (1 − γ)x
h1(x) +

pγx
[1 − (1 − γ)x]2

h(m)
2 (x)

where in (32) we have substituted Equation (27).
Using Equation (26) and merging the same terms, eventually, we obtain

HPP(x) =
pγM1x[1 − (1 − p)(1 − γ)x]
[1 − (1 − p)x][1 − (1 − γ)x]

+
γx

{
1 − (1 − p)[2(1 − γ) + pγ]x + (1 − p)2(1 − γ)2x2}

[1 − (1 − p)x][1 − (1 − γ)x]2
h(m)

2 (x) (33)

in which the function h(m)
2 (x) is given in Equation (29).

According to Formula (25), the average AoI of the system with probabilistic packet
preemption is calculated in Theorem 1.

Theorem 1. For the discrete time state updating system with a Ber/Geo/1/2∗/η queue, assuming
the packet waiting in the buffer can be preempted by following fresher packets with probability η,
then the average age of information of this system is determined as
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ΔBer/Geo/1/2∗/η =
(p + γ − pγ)(p + γ)− pγ

pγ
M1 +

(p + γ − pγ)2 − pγ(1 − p)
pγ

· dh(m)
2 (x)
dx

∣∣∣∣∣
x=1

+

{
(p + γ − pγ)[1 − 3(1 − p)(1 − γ)]− 2pγ(1 − p)

}
pγ + Poly1

p2γ2 M2 (34)

in which we define

Poly1 = [(p + γ − pγ)2 − pγ(1 − p)][2p(1 − γ) + (1 − p)γ] (35)

and the derivative of h(m)
2 (x) at point 1 is calculated as

dh(m)
2 (x)
dx

∣∣∣∣∣
x=1

=

(
1

p + γ − pγ
+

p(1 − γ)(1 − pη)

(p + γ − pγ)[γ + p(1 − γ)η]

)
M2 (36)

Let p = ρd · γ and substitute numbers M1, M2; the average AoI is also written as

ΔBer/Geo/1/2∗/η =
1 + ρd(1 − 2γ) + ρ2

d(1 − γ)2 + 2ρ3
d(1 − γ)2

ρdγ[1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2]

+
(1 − γ) + ρd(1 − γ)(1 − 2γ) + ρ2

d(1 − γ)(1 − γ + γ2)

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

{
(2 − γ)− ρdγ(1 − γ)

γ[1 + ρd(1 − γ)]

− (1 − γ)− ρd(1 − γ)[1 + γ − (1 − γ)η] + ρ2
dγ2(1 − γ)η

γ[1 + ρd(1 − γ)(1 + η) + ρ2
d(1 − γ)2η]

}
(37)

where ρd = p/γ is defined as the discrete traffic load.

Proof. The average AoI is determined by first computing the derivative of HPP(x) in (33)
and then letting x = 1. Replacing parameter p with ρd · γ, expression (37) is obtained
eventually. Although a certain amount of calculation is required, all the computations are
straight-forward.

Here, we only provide the details from obtaining Equation (36). From (29), we have

dh(m)
2 (x)
dx

∣∣∣∣∣
x=1

=
d

dx

[
γ + p2(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γx

]
M2x

[1 − (1 − p)(1 − γ)x][1 − (1 − γ)(1 − pη)x]

∣∣∣∣∣
x=1

=
d

dx

(
M2

[γ + p2(1 − γ)η]x − (1 − p)(1 − γ)(1 − pη)γx2

1 − [(1 − p)(1 − γ) + (1 − γ)(1 − pη)]x + (1 − p)(1 − γ)2(1 − pη)x2

)∣∣∣∣
x=1

= M2
Poly2 · (p + γ − pγ)[γ + p(1 − γ)η] + [γ + p2(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γ] · Poly3

(p + γ − pγ)2[γ + p(1 − γ)η]2
(38)

where
Poly2 = γ + p2(1 − γ)η − 2(1 − p)(1 − γ)(1 − pη)γ

and

Poly3 = (1 − p)(1 − γ) + (1 − γ)(1 − pη)− 2(1 − p)(1 − γ)2(1 − pη)

= (1 − p)(1 − γ)[γ + p(1 − γ)η] + (p + γ − pγ)(1 − γ)(1 − pη)
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Notice that

γ + p2(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γ

= γ + p(1 − γ)η − p(1 − p)(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γ

= γ + p(1 − γ)η − (1 − p)(1 − γ)[γ + p(1 − γ)η]

= (p + γ − pγ)[γ + p(1 − γ)η] (39)

Substituting (39) into (38) results in

dh(m)
2 (x)
dx

∣∣∣∣∣
x=1

= M2

(
1 − (1 − p)(1 − γ)(1 − pη)γ

(p + γ − pγ)[γ + p(1 − γ)η]
+

(1 − p)(1 − γ)

p + γ − pγ
+

(1 − γ)(1 − pη)

γ + p(1 − γ)η

)
= M2

(
1

p + γ − pγ
+

p(1 − γ)(1 − pη)

(p + γ − pγ)[γ + p(1 − γ)η]

)
(40)

which is exactly Equation (36).

Notice that in definition (20), for each n ≥ 1, the coefficient of xn is the probability that
the AoI equals n. In order to obtain these coefficients, we decompose the PGF HPP(x) into
power series. This shows that

HPP(x) =
pγM1x
γ − p

(
(1 − p)γ

1 − (1 − p)x
− p(1 − γ)

1 − (1 − γ)x

)
−

(
(1 − p)2γ2M2x2

(γ − p)[1 − (1 − p)x]
− pγ(1 − p)(1 − γ)M2x2

(γ − p)[1 − (1 − γ)x]
+

pγM2x2

[1 − (1 − γ)x]2

)

×
(

η(1 − p)(p + γ − pγ)

(1 − η)[1 − (1 − p)(1 − γ)x]
− (1 − pη)[γ + p(1 − γ)η]

(1 − η)[1 − (1 − γ)(1 − pη)x]

)
(41)

when the preemption probability η �= 1, while for the case η = 1, we have

HPP(x) =
pγM1x
γ − p

(
(1 − p)γ

1 − (1 − p)x
− p(1 − γ)

1 − (1 − γ)x

)
+

(
(1 − p)2γ2M2x2

(γ − p)[1 − (1 − p)x]
− pγ(1 − p)(1 − γ)M2x2

(γ − p)[1 − (1 − γ)x]
+

pγM2x2

[1 − (1 − γ)x]2

)

× γ + p2(1 − γ)− (1 − p)2(1 − γ)γx

[1 − (1 − p)(1 − γ)x]2
(42)

The details of obtaining Equations (41) and (42) are given in Appendix B. In Section 4,
along with the average value of the AoI, we determine the AoI’s stationary distribution for
two extreme cases: η = 0 and η = 1.

4. Stationary Age of Information under Two Extreme Cases

In this section, we determine the average AoI of the status updating system without
packet preemption by setting η = 0, and when the preemption probability η is equal to
1, the mean of the AoI for the Ber/Geo/1/2∗ queue modeled system is also derived. In
addition, using Equations (41) and (42), the stationary distributions of the discrete AoI for
two cases are also obtained.
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Theorem 2. Assuming the packet arrivals form a Bernoulli process and the service time is geomet-
rically distributed, the average AoIs of the discrete time status updating system with Ber/Geo/1/2
and Ber/Geo/1/2∗ queues are calculated as

ΔBer/Geo/1/2 =
1
γ

(
(1 − γ) +

1
ρd

+
2ρ2

d(1 − γ)(1 − γ/2)
1 + ρd(1 − 2γ) + ρ2

d(1 − γ)2

)
(43)

and

ΔBer/Geo/1/2∗ =
1
γ

(
(1 − γ) +

1
ρd

+
ρ2

d(1 − γ)
[
1 + 3ρd(1 − γ) + ρ2

d(1 − γ)(1 − 2γ)
][

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

]
[1 + ρd(1 − γ)]2

)
(44)

For each n ≥ 1, the distribution of the AoI ΔBer/Geo/1/2 is given by

Pr{ΔBer/Geo/1/2 = n} =
pγ2(1 − p)M1

(γ − p)2 (1 − p)n − (γ − p2)(1 − p)γ2 M2

(γ − p)2 (1 − γ)n−1

− pγ2(1 − p)M2
γ − p

(n − 1)(1 − γ)n−1 +
pγ2 M2

2
n(n − 1)(1 − γ)n−2 (45)

while when the system has full packet preemption, we show that

Pr{ΔBer/Geo/1/2∗ = n}

=
pγM1

γ − p

(
γ(1 − p)n − p(1 − γ)n

)
+

(1 − p)[γ2 + p(1 − γ)(p + γ)]M2

γ − p

(
(1 − p)n−1 − [(1 − p)(1 − γ)]n−1

)
− (1 − p)γ[p + 2(1 − p)γ]M2

γ − p

(
(1 − γ)n−1 − [(1 − p)(1 − γ)]n−1

)
+ pγM2

(
A(1 − γ)n−2

+ B(n − 1)(1 − γ)n−2 + C[(1 − p)(1 − γ)]n−2 + D(n − 1)[(1 − p)(1 − γ)]n−2
)

(46)

in which the coefficients A, B, C, and D are determined by

A =
2 − p

p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(47)

C = − (1 − p)(2 − p)
p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(48)

D = − p2(1 − p) · A + (1 − p)2[γ + p2(1 − γ)]

p(2 − p)
(49)

and
B = [γ + p2(1 − γ)]− A − C − D (50)

Proof. We first derive two average AoIs in Equations (43) and (44) from the general
expression (37). Let η be 0; then, no packet preemption will occur in the system’s buffer. The
system’s queue model reduces to Ber/Geo/1/2, and from (37), we can obtain the average
AoI ΔBer/Geo/1/2.
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In this case, it is easy to show the last two terms within the brace of (37) can be
calculated to be 1/γ. Thus, we have

ΔBer/Geo/1/2 = ΔBer/Geo/1/2∗/η

∣∣∣
η=0

=
1 + ρd(1 − 2γ) + ρ2

d(1 − γ)2 + 2ρ3
d(1 − γ)2

ρdγ[1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2]

+
(1 − γ) + ρd(1 − γ)(1 − 2γ) + ρ2

d(1 − γ)(1 − γ + γ2)

γ[1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2]

=
1 + ρd(2 − 3γ) + ρ2

d(1 − γ)(2 − 3γ) + ρ3
d(1 − γ)(3 − 3γ + γ2)

ρdγ[1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2]

=
1

ρdγ

(
1 + ρd(1 − γ) +

2ρ3
d(1 − γ)(1 − γ/2)

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

)
(51)

=
1
γ

(
(1 − γ) +

1
ρd

+
2ρ2

d(1 − γ)(1 − γ/2)
1 + ρd(1 − 2γ) + ρ2

d(1 − γ)2

)
(52)

where in Equation (51) we use the method of long division.
For the other extreme case of η = 1, obviously the general expression (37) gives the

average AoI ΔBer/Geo/1/2∗ . Similarly, we first determine the value of the last two terms
within the brace. We show that the difference of the last two terms equals

1
γ
− ρ2

d(1 − γ)

γ[1 + ρd(1 − γ)2]
(53)

thus, the average AoI ΔBer/Geo/1/2∗ is calculated as

ΔBer/Geo/1/2∗ = ΔBer/Geo/1/2∗/η

∣∣∣
η=1

= ΔBer/Geo/1/2 −
(1 − γ) + ρd(1 − γ)(1 − 2γ) + ρ2

d(1 − γ)(1 − γ + γ2)

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

· ρ2
d(1 − γ)

γ[1 + ρd(1 − γ)]2
(54)

=
1
γ

(
(1 − γ) +

1
ρd

+
ρ2

d(1 − γ)(2 − γ)

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

− ρ2
d(1 − γ)2 + ρ3

d(1 − γ)2(1 − 2γ) + ρ4
d(1 − γ)2(1 − γ + γ2)[

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

]
[1 + ρd(1 − γ)]2

)
(55)

=
1
γ

(
(1 − γ) +

1
ρd

+
ρ2

d(1 − γ)
[
1 + 3ρd(1 − γ) + ρ2

d(1 − γ)(1 − 2γ)
]

1 + ρd(1 − 2γ) + ρ2
d(1 − γ)2

)
(56)

In Equation (54), since in the case of η = 0, the difference of the last two terms is 1/γ,
the average AoI ΔBer/Geo/1/2 is obtained. This equation also gives the exact gap between
two average AoIs of the system with and without packet preemption. Notice that the latter
term in (54) is always positive; then, the average AoI must become lower when the packet
preemption strategy is applied. Equation (52) is substituted in (55), and in Equation (56),
the expression of the average AoI ΔBer/Geo/1/2∗ is finally determined.

Next, the distribution of the discrete AoI is calculated. Before the expressions (45) and
(46) are derived, we first verify that both (45) and (46) are proper probability distributions
by providing a specific numerical example.

Numerical results of two AoI distributions. Let p = 1/4 and γ = 1/2.
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Firstly, from Equations (30) and (31), two numbers M1 and M2 are determined to be

M1 =
12
17

, M2 =
4
17

.

after some simple calculations, for each n ≥ 1, the expression (45) gives

Pr{ΔBer/Geo/1/2 = n} =
9
17

(
3
4

)n
− 21

68

(
1
2

)n
− 3

68
(n − 1)

(
1
2

)n−1
+

1
136

n(n − 1)
(

1
2

)n−2
(57)

To obtain the numerical result of Equation (46), it is necessary to determine the four
coefficients A, B, C, and D according to expressions (47)–(50). We directly find that

A = −39
2

, C =
117
8

, D =
45
32

, B = 4.

After some extra computations, it is shown that

Pr{ΔBer/Geo/1/2∗ = n} =
1
2

(
3
4

)n
− 105

34

(
1
2

)n

+
57
17

(
3
8

)n
+

2
17

(n − 1)
(

1
2

)n−2
+

45
1088

(n − 1)
(

3
8

)n−2
(58)

It can be checked directly that the sum of both (57) and (58) from n = 1 to ∞ are equal
to 1. Therefore, expressions (45) and (46) indeed form the proper probability distributions.

In the following, by decomposing (41) and (42) further into several simplest rational
fractions, we derive the explicit expressions of AoI distributions for the system with and
without packet preemption.

First of all, for η = 0, it is easy to prove that the last part of (41) is equal to

−γ

1 − (1 − γ)x

thus, we have following equations. This shows that
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HPP(x)|η=0

=
pγM1x
γ − p

(
(1 − p)γ

1 − (1 − p)x
− p(1 − γ)

1 − (1 − γ)x

)
−

(
(1 − p)2γ2M2x2

(γ − p)[1 − (1 − p)x]
− pγ(1 − p)(1 − γ)M2x2

(γ − p)[1 − (1 − γ)x]
+

pγM2x2

[1 − (1 − γ)x]2

)
· −γ

1 − (1 − γ)x

=
pγ2(1 − p)M1x

(γ − p)[1 − (1 − p)x]
− p2γ(1 − γ)M1x

(γ − p)[1 − (1 − γ)x]

+
(1 − p)2γ3M2x2

(γ − p)[1 − (1 − p)x][1 − (1 − γ)x]
− pγ2(1 − p)(1 − γ)M2x2

(γ − p)[1 − (1 − γ)x]2
+

pγ2M2x2

[1 − (1 − γ)x]3

=
pγ2(1 − p)M1x

(γ − p)[1 − (1 − p)x]
− p2γ(1 − γ)M1x

(γ − p)[1 − (1 − γ)x]

+
(1 − p)2γ3M2x2

(γ − p)

(
1 − p

(γ − p)[1 − (1 − p)x]
− 1 − γ

(γ − p)[1 − (1 − γ)x]

)
− pγ2(1 − p)(1 − γ)M2x2

(γ − p)[1 − (1 − γ)x]2
+

pγ2M2x2

[1 − (1 − γ)x]3

=

(
pγ2(1 − p)M1x

γ − p
+

(1 − p)3γ3M2x2

(γ − p)2

)
∑∞

n=0[(1 − p)x]n

−
(

p2γ(1 − γ)M1x
γ − p

+
(1 − p)2(1 − γ)γ3M2x2

(γ − p)2

)
∑∞

n=0[(1 − γ)x]n

− pγ2(1 − p)(1 − γ)M2x2

γ − p ∑∞
n=1 n[(1 − γ)x]n−1 +

pγ2M2x2

2 ∑∞
n=2 n(n − 1)[(1 − γ)x]n−2 (59)

Taking the coefficient before xn, we find that

Pr{ΔBer/Geo/1/2 = n}

=

(
pγ2(1 − p)M1

γ − p
(1 − p)n−1 +

(1 − p)3γ3M2

(γ − p)2 (1 − p)n−2
)

−
(

p2γ(1 − γ)M1

γ − p
(1 − γ)n−1 +

(1 − p)2(1 − γ)γ3M2

(γ − p)2 (1 − γ)n−2
)

− pγ2(1 − p)(1 − γ)M2

γ − p
(n − 1)(1 − γ)n−2 +

pγ2M2

2
n(n − 1)(1 − γ)n−2

=
pγ2(1 − p)M1

(γ − p)2 (1 − p)n − (γ − p2)(1 − p)γ2M2

(γ − p)2 (1 − γ)n−1

− pγ2(1 − p)M2

γ − p
(n − 1)(1 − γ)n−1 +

pγ2M2

2
n(n − 1)(1 − γ)n−2 (60)

This gives the stationary distribution (45) for the system without packet preemption.
On the other hand, when η is equal to 1, the system has full packet preemption.

Factoring the PGF in Equation (42), we can also determine the stationary distribution of
the AoI ΔBer/Geo/1/2∗ by taking the coefficients of terms xn for each n ≥ 1. We give the
explicit decomposition below, from which the distribution of AoI for the system with packet
preemption is obtained explicitly.
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From Equation (42), we show that

HPP(x)|η=1

=
pγM1x
γ − p

(
(1 − p)γ

1 − (1 − p)x
− p(1 − γ)

1 − (1 − γ)x

)
+

(1 − p)2γ2M2x2

γ − p

(
γ2 + p(1 − γ)(p + γ)

γ2[1 − (1 − p)x]

− (1 − γ)[γ2 + p(1 − γ)(p + γ)]

γ2[1 − (1 − p)(1 − γ)x]
− p(1 − γ)(p + γ − pγ)

γ[1 − (1 − p)(1 − γ)x]2

)
− pγ(1 − p)(1 − γ)M2x2

γ − p

(
p + 2(1 − p)γ

p[1 − (1 − γ)x]
− (1 − p)[p + 2(1 − p)γ]

p[1 − (1 − p)(1 − γ)x]

− (1 − p)(p + γ − pγ)

[1 − (1 − p)(1 − γ)x]2

)
+ pγM2x2

(
A

1 − (1 − γ)x
+

B
[1 − (1 − γ)x]2

+
C

1 − (1 − p)(1 − γ)x
+

D
[1 − (1 − p)(1 − γ)x]2

)
(61)

in which we determine

A =
2 − p

p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(62)

C = − (1 − p)(2 − p)
p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(63)

D = − p2(1 − p) · A + (1 − p)2[γ + p2(1 − γ)]

p(2 − p)
(64)

and
B = [γ + p2(1 − γ)]− A − C − D (65)

Obtaining the second and the third row of (61) is not hard, while for the last row, we
give some derivation details in Appendix C. Following the same procedures as those used
to obtain (60), according to Equation (61), the probability that a stationary AoI equals each
n is determined by the coefficient of the term xn.

HPP(x)|η=1

=
pγM1

γ − p

(
(1 − p)γ(1 − p)n−1 − p(1 − γ)(1 − γ)n−1

)
+

(1 − p)2γ2 M2

γ − p

×
(γ2 + p(1 − γ)(p + γ)

γ2 (1 − p)n−2 − (1 − γ)[γ2 + p(1 − γ)(p + γ)]

γ2 [(1 − p)(1 − γ)]n−2

− p(1 − γ)(p + γ − pγ)

γ
(n − 1)[(1 − p)(1 − γ)]n−2

)
− pγ(1 − p)(1 − γ)M2

γ − p

×
( p + 2(1 − p)γ

p
(1 − γ)n−2 − (1 − p)[p + 2(1 − p)γ]

p
[(1 − p)(1 − γ)]n−2

− (1 − p)(p + γ − pγ)(n − 1)[(1 − p)(1 − γ)]n−2
)
+ pγM2

(
A(1 − γ)n−2

+ B(n − 1)(1 − γ)n−2 + C[(1 − p)(1 − γ)]n−2 + D(n − 1)[(1 − p)(1 − γ)]n−2
)

=
pγM1

γ − p

(
γ(1 − p)n − p(1 − γ)n

)
+

(1 − p)[γ2 + p(1 − γ)(p + γ)]M2

γ − p

(
(1 − p)n−1 − [(1 − p)(1 − γ)]n−1

)
− (1 − p)γ[p + 2(1 − p)γ]M2

γ − p

(
(1 − γ)n−1 − [(1 − p)(1 − γ)]n−1

)
+ pγM2

(
A(1 − γ)n−2

+ B(n − 1)(1 − γ)n−2 + C[(1 − p)(1 − γ)]n−2 + D(n − 1)[(1 − p)(1 − γ)]n−2
)

(66)

which determines the distribution of AoI ΔBer/Geo/1/2∗ .
So far, in Equations (52), (56), (60) and (66), we have obtained all the results in

Theorem 2; thus, the proof is completed.
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Actually, we have obtained the explicit expression of AoI’s distribution for the system
with packet preemption in our early work [60]. Earlier in this paper, we explain that solving
the stationary equations is feasible for the easy situations but cannot be generalized when
the system structure or queue models become complex. In [60], we focused on the discrete
time system with three queues, i.e., the Ber/Geo/1/1, Ber/Geo/1/2, and Ber/Geo/1/2∗,
and named them “discrete packet management strategies”. There, we determined the AoI’s
stationary distribution for each system, and all the cases are dealt with by solving the
stationary equations directly. Although the calculations are long—even tedious—these
methods still have great significance, especially when the general status updating system is
considered where the packet arrival process or the packet service process is arbitrary. It is
with these methods that the analysis of discrete AoI can break through the limitation of the
memoryless property that is imposed on the packet arrival and packet service processes in
the SHS approach.

In [9], based on graphical arguments of the age process, the authors determined the
average continuous AoI for the system with M/M/1/2 and M/M/1/2∗ queues as

ΔM/M/1/2 =
1
μ

(
1 +

1
ρ
+

2ρ2

1 + ρ + ρ2

)
(67)

and

ΔM/M/1/2∗ =
1
μ

(
1 +

1
ρ
+

ρ2(1 + 3ρ + ρ2)

(1 + ρ + ρ2)(1 + ρ)2

)
(68)

In addition, in previous work [58], we have proved that the mean of the AoI for a
bufferless discrete time status updating system is equal to

ΔBer/Geo/1/1 =
1
γ

(
(1 − γ) +

1
ρd

+
ρd

1/(1 − γ) + ρd

)
(69)

while the corresponding continuous system with an M/M/1/1 queue has the average AoI

ΔM/M/1/1 =
1
μ

(
1 +

1
ρ
+

ρ

1 + ρ

)
(70)

which was also given in [9].
We list Equations (43), (44) and (67)–(70) in Table 3—notice that this table has been

given previously in Table 1 except for the last row, which gives the average continuous
and discrete AoI for an infinite size status updating system. The mean of the discrete
AoI ΔBer/Geo/1/∞ was obtained recently in our work [59]. It is observed that apart from
some additional product factors, the expressions of discrete AoI means for the system
with Bernoulli packet arrivals and geometric service times are identical to those of the
continuous system’s average AoI, which uses the Poisson-exponential assumptions. So
far, we have obtained enough evidence to propose the following relationship between the
mean of discrete and continuous AoIs:

μ · ΔM/M/1/c = γ · ΔBer/Geo/1/c
∣∣
γ=0 then replacing ρd by ρ (71)

It is interesting and meaningful to verify the correspondence (71) by calculating the average
AoI for more continuous time and discrete time systems. For example, determining the
mean of AoI assuming the M/M/1/c queue is used in the continuous time system and for
the discrete time systems with general Ber/Geo/1/c queues, where the system’s size c is
larger than 2.
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Table 3. Some formulas of the average continuous and average discrete age of information.

Average Continuous and Average Discrete AoIs

ΔM/M/1/1 = 1
μ

(
1 + 1

ρ +
ρ

1+ρ

)
ΔBer/Geo/1/1 = 1

γ

(
(1 − γ) + 1

ρd
+

ρd
1/(1−γ)+ρd

)
ΔM/M/1/2 = 1

μ

(
1 + 1

ρ +
2ρ2

1+ρ+ρ2

)
ΔBer/Geo/1/2 = 1

γ

(
(1 − γ) + 1

ρd
+

2ρ2
d(1−γ)(1−γ/2)

1+ρd(1−2γ)+ρ2
d(1−γ)2

)
ΔM/M/1/2∗ =

1
μ

(
1 + 1

ρ +
ρ2(1+3ρ+ρ2)

(1+ρ+ρ2)(1+ρ)2

)
ΔBer/Geo/1/2∗ =

1
γ

(
(1 − γ) + 1

ρd
+

ρ2
d(1−γ)[1+3ρd(1−γ)+ρ2

d(1−γ)(1−2γ)]
[1+ρd(1−2γ)+ρ2

d(1−γ)2][1+ρd(1−γ)]2

)
ΔM/M/1/∞ = 1

μ

(
1 + 1

ρ +
ρ2

1−ρ

)
ΔBer/Geo/1/∞ = 1

γ

(
(1 − γ) + 1

ρd
+

ρ2
d(1−γ)
1−ρd

)
5. Numerical Simulation

We provide the numerical results in this section. For general preemption probability,
in the first two plots of Figure 3, we illustrate the relationships between the average AoI
ΔBer/Geo/1/2∗/η and the packet preemption probability η, and the traffic load ρd, respectively.
The means of three discrete AoIs including ΔBer/Geo/1/1, ΔBer/Geo/1/2, and ΔBer/Geo/1/2∗
are plotted in Figure 3c. For comparison, we also provide the numerical simulations
of corresponding average continuous AoIs. At last, for three discrete AoIs, we depict
their distribution curves and the cumulative probabilities in Figure 4. Notice that in our
work [58], the distribution of the AoI for the bufferless system was obtained as

Pr{ΔBer/Geo/1/1 = n} =
p(1 − p)γ3[(1 − p)n − (1 − γ)n]

(p + γ − pγ)(γ − p)2 − (pγ)2n(1 − γ)n

(p + γ − pγ)(γ − p)
(72)

For three different traffic loads ρd, we first draw the graphs between the average AoI
ΔBer/Geo/1/2∗/η and the preemption probability η. It is understandable that replacing the
packet in a buffer with a fresher one can decrease the average AoI at the destination, and
the numerical results in Figure 3a show that this trend is consistent as the preemption
probability becomes large; that is, the mean of the AoI is decreasing monotonically when η
increases. We mark the values at two extreme points where η = 0 and η = 1, which gives
the average AoI ΔBer/Geo/1/2 and ΔBer/Geo/1/2∗ . Notice that the closer to η = 0, the more
similar the behavior of the system becomes to that of a system using Ber/Geo/1/2 queues,
and when η gradually gets to 1, a status updating system with Ber/Geo/1/2∗ queue is
finally obtained. The three curves in Figure 3a also show that as the traffic load ρd increases
from 0.4 to 0.45, the average AoI of the system with probabilistic packet preemption is
reduced; thus, the timeliness performance is improved.

In Figure 3b, for three settings of preemption probabilities, i.e., η = 0, η = 0.5 and
η = 1, the relationships of the average AoI versus traffic intensity ρd are illustrated. The
topmost curve gives the average AoI of the system without packet preemption because for
the case of η = 0, the average AoI reduces to ΔBer/Geo/1/2. On the other hand, the curve at
the bottom corresponds to the AoI’s mean of the system that has full packet preemption. In
order to make the differences among these graphs more significant, we draw the results in
the range ρd ≥ 0.45. Three curves in Figure 3b clearly show that the timeliness of the system
with complete packet preemption is the best, since when η is set to 1, the system’s average
AoI is the lowest. Since the results in Figure 3a show that the average AoI is monotonically
decreasing when η increases, the graphs of the AoI’s mean for a system with probabilistic
packet preemption is located between the blue and the black lines in Figure 3b, such as the
red line, which denotes the average AoI ΔBer/Geo/1/2∗/0.5. In addition, the gaps between
these curves are not significant for small ρds but become large as ρd increases.
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(a) (b)

(c)

Figure 3. (a) Average AoI versus preemption probability η (different traffic load). (b) Average AoI
versus traffic load ρd (different preemption intensity). (c) Comparisons of average discrete AoI and
average continuous AoI.

(a) (b)

Figure 4. (a) Stationary distributions of discrete AoI for bufferless system and the system with and
without packet preemption. (b) The cumulative probabilities of three discrete AoIs.

From ρd = 0.15 to 0.9, we depict both the average discrete AoIs and the corresponding
continuous average AoIs in Figure 3c for a bufferless system and size 2 status updating
system with and without preemption. Continuous AoIs are denoted by dashed lines, and
we use solid lines to represent the discrete AoIs. First of all, all the curves are decreasing as
ρd becomes large, and the gaps between them are gradually apparent. For three continuous
AoIs, it is observed that the average AoI ΔM/M/1/2∗ is the lowest in all the range of traffic
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load ρ. For the other two status updating systems, it is found that the system with an
M/M/1/2 queue has a lower average AoI when ρ takes small values, while for high ρ,
the average AoI of the bufferless system is smaller, and thus the timeliness is better. These
results are the same for the graphs of discrete AoIs. Notice that when the discrete traffic
intensity ρd is extremely large (near 0.9), the numerical results show that the average AoI
ΔBer/Geo/1/1 can be even smaller than ΔBer/Geo/1/2∗ .

In Figure 3c, both continuous and discrete average AoIs are monotonically decreasing
in the whole range of ρd; however, the monotonicity of the curve between the average AoI
and ρd can only be maintained for small-size status updating systems. It is known that the
average AoI of an infinite size system, i.e., ΔM/M/1/∞, is not monotonic when the traffic
load varies from 0 to 1. Thus, for a size c status updating system with Bernoulli packet
arrivals and geometrically distributed service time, there must be a critical size c∗ such
that when c < c∗, the mean of the system’s AoI ΔBer/Geo/1/c is monotonically decreasing
as ρd tends to 1. In contrast, for those cases where the system size c ≥ c∗, the curve has
a valley, and an optimal ρd exists at which the average AoI is minimized. Similarly, for
the continuous average AoI ΔM/M/1/c of the system with general size c, a c∗ also exists
so that ΔM/M/1/c is always decreasing when c < c∗ and the graph of ΔM/M/1/c first falls
and then rises for those cs where c ≥ c∗. In addition, from the alternation of ΔM/M/1/1 and
ΔM/M/1/2, and also of ΔBer/Geo/1/1 and ΔBer/Geo/1/2, we can infer that, as a function of c,
the graphs of ΔM/M/1/c and ΔBer/Geo/1/c are not monotonic.

At last, the distribution curves and cumulative probabilities of three discrete AoIs are
depicted in Figure 4, in which we set a relatively large ρd to make the difference between
them clear. On the whole, these curves are similar. In Figure 4a, from the distributions of
AoI ΔBer/Geo/1/1 to that of ΔBer/Geo/1/2, the peak of the curve decreases and the point at
which the peak stationary probability is achieved moves slightly to the right. As the AoI
becomes large, the distribution curve of the system with the Ber/Geo/1/1 queue drops
more sharply. The distribution corresponding to ΔBer/Geo/1/2∗ has the largest peak value pf
all of three discrete AoIs, and the descent speed is the fastest when the value of AoI is large.
In addition, it seems that this maximal probability is taken at the same discrete AoI as that
of the distribution of ΔBer/Geo/1/2. We also provide the cumulative probabilities of three
discrete AoIs in Figure 4b.

6. Conclusions

In this paper, we consider the stationary AoI of a size 2 status updating system where
the packet waiting in the buffer can be preempted by fresher packets with the given
probability η. We show that this phenomenon may occur in the energy-harvest (EH) nodes
of wireless sensor networks where the charging process is stochastic. We constitute a
three-dimensional age process and derive the general expression of the system’s average
AoI using the PGF method. Let η = 0 and η = 1; the mean of two discrete AoIs ΔBer/Geo/1/2
and ΔBer/Geo/1/2 are determined, and the exact distribution expressions of both AoIs are
also obtained by writing the PGF as the power series.

We propose the idea and methods for the analysis of discrete AoIs—that is, consti-
tuting multiple-dimensional age processes and applying the PGF method. A detailed
introduction is given to exhibit the usage of the idea and methods to more discrete time
status updating systems. With this paper, we have shown how the AoI of basic discrete
system is characterized, while in further work, we will focus on the age analysis of systems
with a more general structure, such as systems with multi-sources and systems with multi-
hop packet transmission. As one part of the AoI theory, we believe that the research into
discrete AoI deserves more attention.
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Appendix A. Proof of Theorem 1

In this appendix, we derive all the results in Lemma 1 from the stationary
Equations (18).

Define that

M1 = ∑∞
n=1 π(n,0,0), M2 = ∑∞

m=1 ∑∞
n=m+1 π(n,m,0), and M3 = ∑∞

l=1 ∑∞
m=l+1 ∑∞

n=m+1 π(n,m,l),

These three numbers are determined at the first place.
According to the last two rows of (18), we have

M1 = π(1,0,0) + ∑∞
n=2 π(n,0,0)

=
(
∑∞

n=1 π(n,0,0)

)
pγ + ∑∞

n=2

{
π(n−1,0,0)(1 − p) + ∑∞

k=n π(k,n−1,0)(1 − p)γ
}

= pγM1 + (1 − p)M1 + ∑∞
m̃=1 ∑∞

ñ=m̃+1 π(ñ,m̃,0)(1 − p)γ (A1)

= pγM1 + (1 − p)M1 + (1 − p)γM2 (A2)

where in (A1), we have used the substitutions k = ñ and n − 1 = m̃. From Equation (A2),
we obtain the first relation

p(1 − γ)M1 = (1 − p)γM2 (A3)

Next, we deal with the number M3 as follows.

M3 = ∑∞
l=1 ∑∞

m=l+1 ∑∞
n=m+1 π(n,m,l)

= ∑∞
m=2 ∑∞

n=m+1 π(n,m,1) + ∑∞
l=2 ∑∞

m=l+1 ∑∞
n=m+1 π(n,m,l) (A4)

Using the first row of (18), the latter sum in Equation (A4) equals

∑∞
l=2 ∑∞

m=l+1 ∑∞
n=m+1 π(n−1,m−1,l−1)(1 − γ)(1 − pη)

= ∑∞
l=1 ∑∞

m=l+1 ∑∞
n=m+1 π(n,m,l)(1 − γ)(1 − pη)

= (1 − γ)(1 − pη)M3 (A5)

and from the second and the third row of (18), the first part of (A4) is calculated as

∑∞
n=3 π(n,2,1) + ∑∞

m=3 ∑∞
n=m+1 π(n,m,1)

= ∑∞
n=3 π(n−1,1,0)p(1 − γ)

+ ∑∞
m=3 ∑∞

n=m+1

{
π(n−1,m−1,0)p(1 − γ) + ∑m−2

j=1 π(n−1,m−1,j)p(1 − γ)η
}

= ∑∞
n=2 π(n,1,0)p(1 − γ)

+ ∑∞
m=2 ∑∞

n=m+1 π(n,m,0)p(1 − γ) + ∑∞
m=3 ∑∞

n=m+1 ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η

= ∑∞
m=1 ∑∞

n=m+1 π(n,m,0)p(1 − γ) + ∑∞
m̃=2 ∑∞

ñ=m̃+1 ∑m̃−1
l̃=1 π(ñ,m̃,l̃)p(1 − γ)η (A6)

= p(1 − γ)M2 + p(1 − γ)ηM3 (A7)

151



Entropy 2022, 24, 785

where in (A6), we let n − 1 = ñ, m − 1 = m̃, and j = l̃. Equations (A4), (A5) and (A7)
together give

p(1 − γ)M2 = γM3 (A8)

Since the sum of all the stationary probabilities equals 1, thus we have

M1 + M2 + M3 = 1 (A9)

Combining Equations (A3), (A8) and (A9), we can solve that

M1 =
(1 − p)γ2

(p + γ − 2pγ)γ + p2(1 − γ)2 (A10)

M2 =
pγ(1 − γ)

(p + γ − 2pγ)γ + p2(1 − γ)2 (A11)

M3 =
p2(1 − γ)2

(p + γ − 2pγ)γ + p2(1 − γ)2 (A12)

We mention that from the fourth, the fifth, and the sixth equation in (18), another
relation can also be obtained for the second number M2, which is given directly as

M2 = p(1 − γ)M1 + pγM2 + pγηM3 + (1 − p)(1 − γ)M2 + (1 − pη)γM3 (A13)

which is reduced to (A8) when eliminating M1 using the relation (A3).
Then, the relationships between functions hi(x), 1 ≤ i ≤ 3 and h(m)

2 (x) are determined
through similar procedures. First of all, we see that

h1(x) = ∑∞
n=1 xnπ(n,0,0)

= xπ(1,0,0) + ∑∞
n=2 xn

{
π(n−1,0,0)(1 − p) + ∑∞

k=n π(k,n−1,0)(1 − p)γ
}

= pγM1x + ∑∞
n=1 xn+1π(n,0,0)(1 − p) + ∑∞

n=2 xn ∑∞
k=n π(k,n−1,0)(1 − p)γ

= pγM1x + (1 − p)xh1(x) + ∑∞
m̃=1 xm̃+1 ∑∞

ñ=m̃+1 π(ñ,m̃,0)(1 − p)γ (A14)

= pγM1x + (1 − p)xh1(x) + (1 − p)γxh(m)
2 (x) (A15)

in which we denote k = ñ and n − 1 = m̃.
From (A15), we obtain

h1(x) =
pγM1x

1 − (1 − p)x
+

(1 − p)γx
1 − (1 − p)x

h(m)
2 (x) (A16)

Using stationary Equation (18), we determine function h2(x) in the following.

h2(x) = ∑∞
m=1 ∑∞

n=m+1 xnπ(n,m,0)

= ∑∞
n=2 xnπ(n,1,0) + ∑∞

m=2 ∑∞
n=m+1 xn

×
{

π(n−1,m−1,0)(1 − p)(1 − γ) + ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

}
= x2π(2,1,0) + ∑∞

n=3 xn
{

π(n−1,0,0)p(1 − γ) + ∑∞
k=n π(k,n−1,0)pγ

+ ∑∞
k=n ∑n−2

j=1 π(k,n−1,j)pγη
}
+ ∑∞

m=1 ∑∞
n=m+1 xn+1π(n,m,0)(1 − p)(1 − γ)

+ ∑∞
m=2 ∑∞

n=m+1 xn ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

= x2
{

π(1,0,0)p(1 − γ) + ∑∞
k=2 π(k,1,0)pγ

}
+ ∑∞

n=2 xn+1π(n,0,0)p(1 − γ)

+ ∑∞
n=3 xn ∑∞

k=n π(k,n−1,0)pγ + ∑∞
n=3 xn ∑∞

k=n ∑n−2
j=1 π(k,n−1,j)pγη

+ (1 − p)(1 − γ)xh2(x) + (1 − pη)γxh(m)
3 (x) (A17)
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Let k = ñ, n − 1 = m̃, and m − 1 = l̃, we have

∑∞
m=2 ∑∞

n=m+1 xn ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

= ∑∞
l̃=1 ∑∞

m̃=l̃+1 xm̃+1 ∑∞
ñ=m̃+1 π(ñ,m̃,l̃)(1 − pη)γ

= (1 − pη)γxh(m)
3 (x) (A18)

where we define
h(m)

3 (x) = ∑∞
l=1 ∑∞

m=l+1 ∑∞
n=m+1 xmπ(n,m,l) (A19)

and the last term in Equation (A17) is obtained.
Continuing the calculation of (A17), we obtain that

h2(x) = p(1 − γ)xh1(x) + pγxh(m)
2 (x) + ∑∞

m̃=2 xm̃+1 ∑∞
ñ=m̃+1 ∑m̃−1

l̃=1 π(ñ,m̃,l̃)pγη

+ (1 − p)(1 − γ)xh2(x) + (1 − pη)γxh(m)
3 (x) (A20)

In (A20), we have used the substitutions k = ñ, n − 1 = m̃, and j = l̃.
Except for the factor pγηx, the sum in (A20) is equal to

x2 ∑∞
n=3 π(n,2,1) + x3 ∑∞

n=4

[
π(n,3,1) + π(n,3,2)

]
+ x4 ∑∞

n=5

[
π(n,4,1) + π(n,4,2) + π(n,4,3)

]
+ · · ·

= ∑∞
m=2 xm ∑∞

n=m+1 π(n,m,1) + ∑∞
m=3 xm ∑∞

n=m+1 π(n,m,2) + ∑∞
m=4 xm ∑∞

n=m+1 π(n,m,3) + · · ·
= ∑∞

l=1 ∑∞
m=l+1 xm ∑∞

n=m+1 π(n,m,l)

= h(m)
3 (x) (A21)

Substituting the result (A21) into Equation (A20) and merging the same terms gives

h2(x)[1 − (1 − p)(1 − γ)x] = p(1 − γ)xh1(x) + pγxh(m)
2 (x) + γxh(m)

3 (x) (A22)

We compute h(m)
3 (x) while determining the other function h(m)

2 (x) in the end. As
before, from the equations in (18), we find that

h(m)
3 (x) = ∑∞

l=1 ∑∞
m=l+1 ∑∞

n=m+1 xmπ(n,m,l)

= ∑∞
m=2 ∑∞

n=m+1 xmπ(n,m,1) + ∑∞
l=2 ∑∞

m=l+1 ∑∞
n=m+1 xmπ(n−1,m−1,l−1)(1 − γ)(1 − pη)

= ∑∞
n=3 x2π(n,2,1) + ∑∞

m=3 ∑∞
n=m+1 xm

{
π(n−1,m−1,0)p(1 − γ)

+ ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η

}
+ (1 − γ)(1 − pη)xh(m)

3 (x)

= ∑∞
n=3 x2π(n−1,1,0)p(1 − γ) + ∑∞

m=2 ∑∞
n=m+1 xm+1π(n,m,0)p(1 − γ)

+ ∑∞
m=3 ∑∞

n=m+1 xm ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η + (1 − γ)(1 − pη)xh(m)

3 (x)

= p(1 − γ)xh(m)
2 (x) + p(1 − γ)ηxh(m)

3 (x) + (1 − γ)(1 − pη)xh(m)
3 (x)

= p(1 − γ)xh(m)
2 (x) + (1 − γ)xh(m)

3 (x) (A23)

which shows that

h(m)
3 (x) =

p(1 − γ)x
1 − (1 − γ)x

h(m)
2 (x) (A24)

Combining Equations (A22) and (A24) yields the relation

h2(x) =
p(1 − γ)x

1 − (1 − p)(1 − γ)x
h1(x) +

pγx
[1 − (1 − p)(1 − γ)x][1 − (1 − γ)x]

h(m)
2 (x) (A25)
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Now, we deal with function h3(x). Similarly to the process of obtaining (A23), we have

h3(x) = ∑∞
m=2 ∑∞

n=m+1 xnπ(n,m,1) + ∑∞
l=2 ∑∞

m=l+1 ∑∞
n=m+1 xnπ(n−1,m−1,l−1)(1 − γ)(1 − pη)

= ∑∞
n=3 xnπ(n,2,1) + ∑∞

m=3 ∑∞
n=m+1 xn

{
π(n−1,m−1,0)p(1 − γ)

+ ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η

}
+ (1 − γ)(1 − pη)xh3(x)

= ∑∞
n=3 xnπ(n−1,1,0)p(1 − γ) + ∑∞

m=2 ∑∞
n=m+1 xn+1π(n,m,0)p(1 − γ)

+ ∑∞
m=3 ∑∞

n=m+1 xn ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η + (1 − γ)(1 − pη)xh3(x)

= p(1 − γ)xh2(x) + p(1 − γ)ηxh3(x) + (1 − γ)(1 − pη)xh3(x)

= p(1 − γ)xh2(x) + (1 − γ)xh3(x) (A26)

from which we derive

h3(x) =
p(1 − γ)x

1 − (1 − γ)x
h2(x) (A27)

So far, we have obtained the relations (26)–(28) in Equations (A16), (A25) and (A27). To
complete the proof of Lemma 1, the remaining part is the determination of the last function
h(m)

2 (x). It is shown that

h(m)
2 (x) = ∑∞

m=1 ∑∞
n=m+1 xmπ(n,m,0)

= ∑∞
n=2 xπ(n,1,0) + ∑∞

m=2 ∑∞
n=m+1 xm

×
{

π(n−1,m−1,0)(1 − p)(1 − γ) + ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

}
= xπ(2,1,0) + ∑∞

n=3 x
{

π(n−1,0,0)p(1 − γ) + ∑∞
k=n π(k,n−1,0)pγ

+ ∑∞
k=n ∑n−2

j=1 π(k,n−1,j)pγη
}
+ ∑∞

m=1 ∑∞
n=m+1 xm+1π(n,m,0)(1 − p)(1 − γ)

+ ∑∞
m=2 ∑∞

n=m+1 xm ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

= x
{

π(1,0,0)p(1 − γ) + ∑∞
k=2 π(k,1,0)pγ

}
+ ∑∞

n=2 xπ(n,0,0)p(1 − γ)

+ ∑∞
n=3 x ∑∞

k=n π(k,n−1,0)pγ + ∑∞
n=3 x ∑∞

k=n ∑n−2
j=1 π(k,n−1,j)pγη

+ (1 − p)(1 − γ)xh(m)
2 (x) + (1 − pη)γxh(l)3 (x) (A28)

Similarly, we use the substitutions k = ñ, n − 1 = m̃, and m − 1 = l̃, and we write

∑∞
m=2 ∑∞

n=m+1 xm ∑∞
k=n π(k,n−1,m−1)(1 − pη)γ

= ∑∞
l̃=1 ∑∞

m̃=l̃+1 xl̃+1 ∑∞
ñ=m̃+1 π(ñ,m̃,l̃)(1 − pη)γ

= (1 − pη)γxh(l)3 (x) (A29)

Thus, the last term in Equation (A28) is obtained, where h(l)3 (x) is defined and determined as

h(l)3 (x) = ∑∞
l=1 ∑∞

m=l+1 xl ∑∞
n=m+1 π(n,m,l)

= ∑∞
m=2 x ∑∞

n=m+1 π(n,m,1) + ∑∞
l=2 ∑∞

m=l+1 xl ∑∞
n=m+1 π(n−1,m−1,l−1)(1 − γ)(1 − pη)

= x ∑∞
n=3 π(n,2,1) + ∑∞

m=3 x ∑∞
n=m+1

{
π(n−1,m−1,0)p(1 − γ)

+ ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η

}
+ (1 − γ)(1 − pη)xh(l)3 (x)

= x ∑∞
n=3 π(n−1,1,0)p(1 − γ) + ∑∞

m=2 x ∑∞
n=m+1 π(n,m,0)p(1 − γ)

+ ∑∞
m=3 x ∑∞

n=m+1 ∑m−2
j=1 π(n−1,m−1,j)p(1 − γ)η + (1 − γ)(1 − pη)xh(l)3 (x)

= p(1 − γ)M2x + p(1 − γ)ηM3x + (1 − γ)(1 − pη)xh(l)3 (x)

= [γ + p(1 − γ)η]M3x + (1 − γ)(1 − pη)xh(l)3 (x) (A30)
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In Equation (A30), we have used the relation (A8), which says p(1 − γ)M2 = γM3. From
(A30), we obtain the result

h(l)3 (x) =
[γ + p(1 − γ)η]M3x
1 − (1 − γ)(1 − pη)x

(A31)

Coming back to the calculation of function h(m)
2 (x), Equation (A28) shows

h(m)
2 (x)[1 − (1 − p)(1 − γ)x] = p(1 − γ)M1x + pγM2x + pγηM3x + (1 − pη)γxh(l)3 (x)

=
[
γ + p2(1 − γ)η

]
M2x + (1 − pη)γxh(l)3 (x), (A32)

in which we have used Equations (A3) and (A8) to replace numbers M1 and M3. Substituting
expression (A31), after some extra operations, we determine that

h(m)
2 (x) =

[
γ + p2(1 − γ)η − (1 − p)(1 − γ)(1 − pη)γx

]
M2x

[1 − (1 − p)(1 − γ)x][1 − (1 − γ)(1 − pη)x]
(A33)

This eventually completes the proof of Lemma 1.

Appendix B. Proof of Equations (41) and (42)

In Equation (33), we show that

HPP(x) =
pγM1x[1 − (1 − p)(1 − γ)x]
[1 − (1 − p)x][1 − (1 − γ)x]

+
γx

{
1 − (1 − p)[2(1 − γ) + pγ]x + (1 − p)2(1 − γ)2x2}

[1 − (1 − p)x][1 − (1 − γ)x]2
h(m)

2 (x) (A34)

Equations (41) and (42) are obtained by decomposing each part of (A34). For the first
part, we assume

1 − (1 − p)(1 − γ)x
[1 − (1 − p)x][1 − (1 − γ)x]

=
A

1 − (1 − p)x
+

B
1 − (1 − γ)x

=
(A + B)− [A(1 − γ) + B(1 − p)]x

[1 − (1 − p)x][1 − (1 − γ)x]
(A35)

and according to the coefficients of corresponding terms, we obtain

A + B = 1, A(1 − γ) + B(1 − p) = (1 − p)(1 − γ) (A36)

which determine A and B as

A =
(1 − p)γ

γ − p
, and B =

p(1 − γ)

γ − p
(A37)

Therefore,

pγM1x[1 − (1 − p)(1 − γ)x]
[1 − (1 − p)x][1 − (1 − γ)x]

=
pγM1x
γ − p

(
(1 − p)γ

1 − (1 − p)x
− p(1 − γ)

1 − (1 − γ)x

)
(A38)
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For the second part of expression (A34), let

1 − (1 − p)[2(1 − γ) + pγ]x + (1 − p)2(1 − γ)2x2

[1 − (1 − p)x][1 − (1 − γ)x]2

=
A

1 − (1 − p)x
+

B
1 − (1 − γ)x

+
C

[1 − (1 − γ)x]2

=
(A + B + C)− [(A + B)(1 − γ) + A(1 − γ) + B(1 − p) + C(1 − p)]x + c2x2

[1 − (1 − p)x][1 − (1 − γ)x]2

in which
c2 = [A(1 − γ) + B(1 − p)](1 − γ)

Thus, we have⎧⎪⎪⎨⎪⎪⎩
1 = A + B + C

(1 − p)[2(1 − γ) + pγ] = (A + B)(1 − γ) + A(1 − γ) + B(1 − p) + C(1 − p)

(1 − p)2(1 − γ) = A(1 − γ) + B(1 − p)

(A39)

Substituting the third relation and A + B = 1− C into the second equation, we obtain

(1 − p)[2(1 − γ) + pγ] = (1 − C)(1 − γ) + (1 − p)2(1 − γ) + C(1 − p) (A40)

from which we can solve that C = p.
Then, according to the equations

A + B = 1 − p and A(1 − γ) + B(1 − p) = (1 − p)2(1 − γ)

the other two numbers are obtained to be

A =
(1 − p)2γ

γ − p
, B = − p(1 − p)(1 − γ)

γ − p
(A41)

Thus, the factorization of the second part is obtained.
The last part—that is, the function h(m)

2 (x)—is dealt with similarly. Omitting the
straight-forward calculations, we directly find that

h(m)
2 (x) = − η(1 − p)(p + γ − pγ)

(1 − η)[1 − (1 − p)(1 − γ)x]
+

(1 − pη)[γ + p(1 − γ)η]

(1 − η)[1 − (1 − γ)(1 − pη)x]
(A42)

Notice that (1 − η) is contained in the denominator of fractions in Equation (A42);
thus, η �= 1. When η = 1, Equation (29) shows that

h(m)
2 (x)

∣∣∣
η=1

=
γ + p2(1 − γ)− (1 − p)2(1 − γ)γx

[1 − (1 − p)(1 − γ)x]2
(A43)

Summarizing the above results, both the Equations (41) and (42) are determined.

Appendix C. Factorization of Last Part of Equation (42)

We write

pγM2x2

[1 − (1 − γ)x]2
· γ + p2(1 − γ)− (1 − p)2(1 − γ)γx

[1 − (1 − p)(1 − γ)x]2

= pγM2x2
(

A
1 − (1 − γ)x

+
B

[1 − (1 − γ)x]2
+

C
1 − (1 − p)(1 − γ)x

+
D

[1 − (1 − p)(1 − γ)x]2

)
= pγM2x2

(
(A + B)− A(1 − γ)x

[1 − (1 − γ)x]2
+

(C + D)− C(1 − p)(1 − γ)x
[1 − (1 − p)(1 − γ)x]2

)
(A44)
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Merging the terms in the bracket of (A44), according to corresponding coefficients, it
is shown that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A + B + C + D = γ + p2(1 − γ)

2(A + B)(1 − p) + 2(C + D) + A + C(1 − p) = (1 − p)2γ

(A + B)(1 − p)2 + 2A(1 − p) + (C + D) + 2C(1 − p) = 0
A(1 − p) + C = 0

(A45)

The last row of (A45) shows that C = −A(1 − p), and using the first relationship, the
second and the third row of Equation (A45) are equivalent to{

2(1 − p)[γ + p2(1 − γ)− (C + D)] + 2(C + D) + A − A(1 − p)2 = (1 − p)2γ

(1 − p)2[γ + p2(1 − γ)− (C + D)] + 2A(1 − p) + (C + D)− 2A(1 − p)2 = 0
(A46)

which gives

p(2 − p)(C + D) = −2p(1 − p)A − (1 − p)2[γ + p2(1 − γ)] (A47)

and
2p(C + D) = −p(2 − p)A + (1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)] (A48)

Combining Equations (A47) and (A48), the coefficient A is solved as

A =
2 − p

p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(A49)

and immediately

C = −A(1 − p) = − (1 − p)(2 − p)
p3

(
(1 − p)2γ − 2(1 − p)[γ + p2(1 − γ)]

2 − p

)
(A50)

Using Equation (A47), we have

D =
−2p(1 − p)A − (1 − p)2[γ + p2(1 − γ)]

p(2 − p)
− C

=
−2p(1 − p)A − (1 − p)2[γ + p2(1 − γ)]

p(2 − p)
+ A(1 − p)

=
p2(1 − p)A − (1 − p)2[γ + p2(1 − γ)]

p(2 − p)
(A51)

and in the end, the last number B is determined by

B = [γ + p2(1 − γ)]− A − C − D (A52)

So far, all the coefficients are obtained and the decomposition is totally determined.
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Abstract: We consider real-time timely tracking of infection status (e.g., COVID-19) of individuals in
a population. In this work, a health care provider wants to detect both infected people and people
who have recovered from the disease as quickly as possible. In order to measure the timeliness of the
tracking process, we use the long-term average difference between the actual infection status of the
people and their real-time estimate by the health care provider based on the most recent test results.
We first find an analytical expression for this average difference for given test rates, infection rates
and recovery rates of people. Next, we propose an alternating minimization-based algorithm to find
the test rates that minimize the average difference. We observe that if the total test rate is limited,
instead of testing all members of the population equally, only a portion of the population may be
tested in unequal rates calculated based on their infection and recovery rates. Next, we characterize
the average difference when the test measurements are erroneous (i.e., noisy). Further, we consider
the case where the infection status of individuals may be dependent, which occurs when an infected
person spreads the disease to another person if they are not detected and isolated by the health
care provider. In addition, we consider an age of incorrect information-based error metric where
the staleness metric increases linearly over time as long as the health care provider does not detect
the changes in the infection status of the people. Through extensive numerical results, we observe
that increasing the total test rate helps track the infection status better. In addition, an increased
population size increases diversity of people with different infection and recovery rates, which may
be exploited to spend testing capacity more efficiently, thereby improving the system performance.
Depending on the health care provider’s preferences, test rate allocation can be adjusted to detect
either the infected people or the recovered people more quickly. In order to combat any errors in
the test, it may be more advantageous for the health care provider to not test everyone, and instead,
apply additional tests to a selected portion of the population. In the case of people with dependent
infection status, as we increase the total test rate, the health care provider detects the infected people
more quickly, and thus, the average time that a person stays infected decreases. Finally, the error
metric needs to be chosen carefully to meet the priorities of the health care provider, as the error
metric used greatly influences who will be tested and at what test rate.

Keywords: timely infection tracking; age of information; timely tracking of multiple processes;
Markovian infection spread model

1. Introduction

We consider the problem of timely tracking of an infectious disease, e.g., COVID-19,
in a population of n people. In this problem, a health care provider wants to detect infected
people as quickly as possible in order to take precautions such as isolating them from the
rest of the population. The health care provider also wants to detect people who have
recovered from the disease as soon as possible since these people need to return to work
which is especially critical in sectors such as education, food retail, public transportation,

Entropy 2022, 24, 779. https://doi.org/10.3390/e24060779 https://www.mdpi.com/journal/entropy161
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etc. Ideally, the health care provider should test all people all the time. However, as the total
test rate is limited, the question is how frequently the health care provider should apply
tests on these people when their infection and recovery rates are known. In a broader sense,
this problem is related to timely tracking of multiple processes in a resource-constrained
setting where each process takes binary values of 0 and 1 with different change rates.

Recent studies have shown that people who have recovered from infectious diseases
such as COVID-19 can be reinfected. Furthermore, the recovery times of individuals may
vary significantly. For these reasons, in this problem, the ith person becomes infected with
rate λi which is independent of the others. Similarly, the ith person recovers from the
disease with rate μi. We note that the index i may represent a specific individual or a group
of individuals that share common features such as age, gender, and profession. Depending
on the demographics, coefficients λi and μi may be statistically known by the health care
provider. We denote the infection status of the ith person as xi(t) (shown with the black
curves on the left in Figure 1) which takes the value 1 when the person is infected and
the value 0 when the person is healthy. The health care provider applies tests to people
marked as healthy with rate si and to people marked as infected with rate ci. Based on the
test results, the health care provider forms an estimate for the infection status of the ith
person denoted by x̂i(t) (shown with the blue curves on the right in Figure 1) which takes
the value 1 when the most recent test result is positive and the value 0 when it is negative.

t

x̂1(t)

t

x̂2(t)

t

x̂3(t)

t

x̂n(t)

t

x1(t)

t

x2(t)

t

x3(t)

t

xn(t)

Figure 1. System model. There are n people whose infection status are given by xi(t). The health care
provider applies tests on these people. Based on the test results, estimations for the infection status
x̂i(t) are generated. Infected people are shown in red and healthy people are shown in green.

We measure the timeliness of the tracking process by the difference between the actual
infection status of people and the real-time estimate of the health care provider which
is based on the most recent test results. The difference can occur in two different cases:
(i) when the person is sick (xi(t) = 1) and the health care provider maps this person as
healthy (x̂i(t) = 0), and (ii) when the person recovers from the disease (xi(t) = 0) but the
health care provider still considers this person as infected (x̂i(t) = 1). The former case
represents the error due to late detection of infected people, while the latter case represents
the error due to late detection of healed people. Depending on the health care provider’s
preferences, detecting infected people may be more important than detecting recovered
people (controlling infection), or the other way around (returning people to workforce).

The age of information was proposed to measure timeliness of information in commu-
nication systems, and has been studied in the context of queueing systems [1–8], multi-hop
and multi-cast networks [9–17], social networks [18], timely remote estimation of random
processes [19–25], energy harvesting systems [26–40], wireless fading channels [41,42],
scheduling in networks [43–55], lossless and lossy source and channel coding [56–66],
vehicular, IoT and UAV systems [67–70], caching systems [71–82], computation-intensive
systems [83–90], learning systems [91–93], gossip networks [94–97] and so forth. A more
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detailed review of the age of information literature can be found in references [98–100].
Most relevant to our work, the real-time timely estimation of single and multiple counting
processes [19,25], a Wiener process [20], a random walk process [101], and binary and
multiple states Markov sources [23,51,102] have been studied. The study that is closest
to our work is reference [23], where the remote estimation of a symmetric binary Markov
source is studied in a time-slotted system by finding the optimal sampling policies via
formulating a Markov Decision Process (MDP) for real-time error, AoI and AoII metrics.
Different from [23], in our work, we consider real-time timely estimation of multiple non-
symmetric binary sources for a continuous time system. In our work, the sampler (health
care provider) does not know the states of the sources (infection status of people), and
thus, takes the samples (applies medical tests) randomly (exponential random variables)
with fixed rates. Thus, we optimize the test rates of people to minimize the real-time
estimation error.

In this paper, we consider the real-time timely tracking of infection status of n people.
We first find an analytical expression for the long-term average difference between the
actual infection status of people and the estimate of the health care provider based on
test results. Then, we propose an alternating minimization-based algorithm to identify
the test rates si and ci for all people. We observe that if the total test rate is limited, we
may not apply tests on all people equally. Next, we provide an alternative method to
characterize the average difference, by finding the steady state of a Markov chain defined
by (xi(t), x̂i(t)). By using this alternative method, we determine the average estimation
error when there are errors in the test measurements expressed by a false positive rate p
and a false negative rate q. Next, we consider the infection status of two people where
an infected person may spread the disease to another person if the infection has not been
detected by the health care provider to consequently isolate the infected person. Finally,
we consider an age of incorrect information-based error metric where the estimation error
increases linearly over time when the health care provider has not detected the changes in
the infection status of the people.

Through extensive numerical results, we observe that increasing the total test rate
helps track the infection status of people better, and increasing the size of the population
increases diversity which may be exploited to improve the performance. Depending on
the health care provider’s priorities, we can allocate additional tests to people marked
as healthy to detect the infections faster or to people marked as infected to detect the
recoveries more quickly. In order to combat the test errors, the health care provider may
prefer to apply tests to only a selected portion of the population with higher test rates.
When the infection status of a person depends on that of another person, the average time
that a person remains infected can be reduced by increasing the total test rate as it helps to
detect the infected people more quickly. Finally, we observe that depending on the error
metric used, the test rate distribution among the population differs greatly, and thus, we
should choose an error metric that aligns with the priorities of the health care provider.

2. System Model

We consider a population of n people. We denote the infection status of the ith person
at time t as xi(t) (black curve in Figure 2a) which takes binary values 0 or 1 as follows,

xi(t) =

{
1, if the ith person is infected at time t,
0, otherwise.

(1)

In this paper, we consider a model where each person can be infected multiple times
after recovering from the disease. We denote the time interval that the ith person stays
healthy for the jth time as Wi(j) which is exponentially distributed with rate λi. We denote
the recovery time for the ith person after being infected with the virus for the jth time as
Ri(j) which is exponentially distributed with rate μi.
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A health care provider wants to track the infection status of each person. Based on the
test results at times ti,�, the health care provider generates an estimate for the status of the
ith person denoted as x̂i(t) (blue curve in Figure 2a) by

x̂i(t) = xi(ti,�), ti,� ≤ t < ti,�+1. (2)

When x̂i(t) is 1, the health care provider applies the next test to the ith person after an
exponentially distributed time with rate ci. When x̂i(t) is 0, the next test is applied to the
ith person after an exponentially distributed time with rate si.

(a) (b)

Figure 2. (a) A sample evolution of xi(t) and x̂i(t), and (b) the corresponding Δi(t) in (5). Green
areas correspond to the error caused by Δi1(t) in (3). Orange areas correspond to the error caused by
Δi2(t) in (4).

An estimation error happens when the actual infection status of the ith person, xi(t),
is different than the estimate of the health care provider, x̂i(t), at time t. This could happen
in two ways: when xi(t) = 1 and x̂i(t) = 0, i.e., when the ith person is sick, but remains
undetected by the health care provider, and when xi(t) = 0 and x̂i(t) = 1, i.e., when
the ith person has recovered, but the health care provider is unaware that the ith person
has recovered.

We denote the error caused by the former case, i.e., when xi(t) = 1 and x̂i(t) = 0, by
Δi1(t) (green areas in Figure 2b),

Δi1(t) = max{xi(t)− x̂i(t), 0}, (3)

and we denote the error caused by the latter case, i.e., when xi(t) = 0 and x̂i(t) = 1, by
Δi2(t) (orange areas in Figure 2b),

Δi2(t) = max{x̂i(t)− xi(t), 0}. (4)

Then, the total estimation error for the ith person Δi(t) is

Δi(t) = θΔi1(t) + (1 − θ)Δi2(t), (5)

where θ is the importance factor in [0, 1]. A large θ gives more importance to the detection of
infected people, and a small θ gives more importance to the detection of recovered people.

We define the long-term weighted average difference between xi(t) and x̂i(t) as

Δi = lim
T→∞

1
T

∫ T

0
Δi(t)dt. (6)

Then, the overall average difference of all people Δ is

Δ =
1
n

n

∑
i=1

Δi. (7)

Our aim is to track the infection status of all people. Due to limited resources, there
is a total test rate constraint ∑n

i=1 si + ∑n
i=1 ci ≤ C. Thus, our aim is to find the optimal
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test rates si and ci to minimize Δ in (7) while satisfying this total test rate constraint. We
formulate the following problem,

min
{si ,ci}

Δ

s.t.
n

∑
i=1

si +
n

∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (8)

We provide a summary of the list of the variables used in this work in Table 1. In the next
section, we find the total average difference Δ.

Table 1. List of variables used in this work.

Variables Definition of the Variables

Sections 2–4

n number of people in the population

xi(t) infection status of the ith person at time t

x̂i(t) estimation of xi(t) at the health care provider

λi, μi infection and recovery rates for the ith person

ci, si test rates applied to the ith person when x̂i(t) = 1, and x̂i(t) = 0

Δi(t) total estimation error for the ith person at time t

θ importance factor in [0, 1]

Δi the long-time weighted average for the ith person

C total test rate constraint

Section 5

Δe
i

the long-time average difference for the ith person with
erroneous test measurements

q false-negative testing probability with 0 ≤ q < 1
2

p false-positive testing probability with 0 ≤ p < 1
2

vi test rate applied to the ith person with erroneous test measurements

Section 6

λ, μ individual infection and recovery rate of a person

λ12
the rate of spreading the virus from an undetected infected person
to a healthy person

c, s test rates applied to people when x̂i(t) = 1, and x̂i(t) = 0

Δd
i

the long-time average difference for the ith person with
dependent infection rates

Section 7

wi test rate applied to the ith person for AoII-based error metric

Δs
i

the long-time average difference for the ith person with
AoII-based error metric

3. Average Difference Analysis

In this section, we provide a probabilistic analysis to characterize the average difference
Δ. In Section 5.1, we give an alternative method to find Δ by analyzing the steady-state
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distribution of the Markov chain induced by the states (xi(t), x̂i(t)). Here, we first find
analytical expressions for Δi1(t) in (3) and Δi2(t) in (4) when si > 0 and ci > 0. We note that
Δi1(t) can be equal to 1 when x̂i(t) = 0 and is always equal to 0 when x̂i(t) = 1. Assume
that at time 0, both xi(0) and x̂i(0) are 0. After an exponentially distributed time with rate
λi, which is denoted by Wi, the ith person is infected, and thus xi(t) becomes 1. At that
time, since x̂i(t) = 0, Δi1(t) becomes 1. Further, Δi1(t) will be equal to 0 again either when
the ith person recovers from the disease which happens after Ri which is exponentially
distributed with rate μi or when the health care provider performs a test on the ith person
after Di, which is exponentially distributed with rate si. We define Tm(i) as the earliest
time at which one of these two cases happens, i.e., Tm(i) = min{Ri, Di} (which is shown
by the green areas in Figure 3a). We note that Tm(i) is also exponentially distributed with
rate μi + si, and we have P(Tm(i) = Ri) = μi

μi+si
and P(Tm(i) = Di) = si

μi+si
. If the ith

person recovers from the disease before testing, we return to the initial case where both
xi(t) and x̂i(t) are equal to 0 again. In this case, the cycle repeats itself, i.e., the ith person
becomes sick again after Wi and Δi1(t) remains as 1 until either the person recovers or the
health care provider performs a test which takes another Tm(i) duration. If the health care
provider performs a test before the person recovers, then x̂i(t) becomes 1. We denote the
time interval for which x̂i(t) stays at 0 as Ii1 which is given by

Ii1 =
K1

∑
�=1

Tm(i, �) + Wi(�), (9)

where K1 is geometric with rate P(Tm(i) = Di) = si
μi+si

. Due to [103] (Prob. 9.4.1),

∑K1
�=1 Tm(i, �) and ∑K1

�=1 Wi(�) are exponentially distributed with rates si and λi si
μi+si

, respec-

tively. As E[Ii1] = E[∑K1
�=1 Tm(i, �)] +E[∑K1

�=1 Wi(�)], we have

E[Ii1] =
1
si
+

si + μi
siλi

. (10)

When x̂i(t) = 1, the health care provider marks the ith person as infected. The ith
person recovers from the virus after Ri. After the ith person recovers, either the health care
provider performs a test after Zi which is exponentially distributed with rate ci or the ith
person is reinfected with the virus which takes Wi time. We define Tu(i) as the earliest time
at which one of these two cases happens, i.e., Tu(i) = min{Wi, Zi} (which is shown by the
orange areas in Figure 3b). Similarly, we note that Tu(i) is exponentially distributed with
rate λi + ci, and we have P(Tu(i) = Wi) =

λi
λi+ci

and P(Tu(i) = Zi) =
ci

λi+ci
. If the person is

reinfected with the virus before a test is applied, this cycle repeats itself, i.e., the ith person
recovers after another Ri, and then either a test is applied to the ith person, or the person is
infected again which takes another Tu(i). If the health care provider performs a test to the
ith person before the person is reinfected, the health care provider marks the ith person as
healthy again, i.e., x̂i(t) becomes 0. We denote the time interval that x̂i(t) is equal to 1 as Ii2
which is given by

Ii2 =
K2

∑
�=1

Tu(i, �) + Ri(�), (11)

where K2 is geometric with rate P(Tu(i) = Zi) = ci
λi+ci

. Similarly, ∑K2
�=1 Tu(i, �) and

∑K2
�=1 Ri(�) are exponentially distributed with rates ci and ciμi

λi+ci
, respectively. As E[Ii2] =

E[∑K2
�=1 Tu(i, �)] +E[∑K2

�=1 Ri(�)], we have

E[Ii2] =
1
ci
+

ci + λi
ciμi

. (12)
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We denote the time interval between the jth and (j + 1)th times that x̂i(t) changes
from 1 to 0 as the jth cycle Ii(j) where Ii(j) = Ii1(j) + Ii2(j). We note that Δi1(t) is always
equal to 0 during Ii2(j), i.e., x̂i(t) = 1, and Δi1(t) is equal to 1 when xi(t) = 1 in Ii1(j). We
denote the total time duration when Δi1(t) is equal to 1 as Te,1(i, j) during the jth cycle
where Te,1(i, j) = ∑K1

�=1 Tm(i, �). Thus, we have E[Te,1(i)] = 1
si

. Then, using ergodicity,
similar to [80], Δi1 is equal to

Δi1 =
E[Te,1(i)]
E[Ii]

=
E[Te,1(i)]

E[Ii1] +E[Ii2]
. (13)

Thus, we have

Δi1 =
μiλi

μi + λi

ci
μici + λisi + cisi

. (14)

Next, we find Δi2. We note that Δi2(t) is equal to 1 when xi(t) = 0 in Ii2(j) and is
always equal to 0 during Ii1(j). Similarly, we denote the total time duration where Δi2(t) is
equal to 1 in the jth cycle Ii(j) as Te,2(i, j) which is equal to Te,2(i, j) = ∑K2

�=1 Tu(i, �). Thus,
we have E[Te,2(i)] = 1

ci
. Then, similar to Δi1 in (13), Δi2 is equal to

Δi2 =
μiλi

μi + λi

si
μici + λisi + cisi

. (15)

By using (5), (14), and (15), we obtain Δi as

Δi =
μiλi

μi + λi

θci + (1 − θ)si
μici + λisi + cisi

. (16)

Then, by inserting (16) in (7), we obtain Δ. In the next section, we solve the optimization
problem in (8).

t

Δi1(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(a)

t

Δi2(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(b)

Figure 3. A sample evolution of (a) Δi1(t), and (b) Δi2(t) in a typical cycle.

4. Optimization of Average Difference

In this section, we solve the optimization problem in (8). Using Δi in (16) in (7), we
rewrite (8) as

min
{si ,ci}

n

∑
i=1

μiλi
μi + λi

θci + (1 − θ)si
μici + λisi + cisi

s.t.
n

∑
i=1

si +
n

∑
i=1

ci ≤ C

si ≥ 0, ci ≥ 0, i = 1, . . . , n. (17)

167



Entropy 2022, 24, 779

We define the Lagrangian function [104] for (17) as

L =
n

∑
i=1

μiλi
μi + λi

θci + (1 − θ)si
μici + λisi + cisi

+ β

(
n

∑
i=1

si + ci − C

)
−

n

∑
i=1

νisi −
n

∑
i=1

ηici, (18)

where β ≥ 0, νi ≥ 0, and ηi ≥ 0. The KKT conditions are

∂L
∂si

=
μiλici

μi + λi

(1 − θ)μi − θ(ci + λi)

(μici + λisi + sici)2 + β − νi = 0, (19)

∂L
∂ci

=
μiλisi

μi + λi

θλi − (1 − θ)(μi + si)

(μici + λisi + sici)2 + β − ηi = 0, (20)

for all i. The complementary slackness conditions are

β

(
n

∑
i=1

si + ci − C

)
= 0, νisi = 0, ηici = 0. (21)

First, we find si. From (19), we have

(μici + λisi + sici)
2 =

μiλici
μi + λi

θ(ci + λi)− (1 − θ)μi
β − νi

. (22)

When θ(ci + λi) ≥ (1 − θ)μi, we solve (22) for si as

si =
μici

λi + ci

(√
1

μici

λi
μi + λi

θ(ci + λi)− (1 − θ)μi
β

− 1

)+

, (23)

where we used the fact that we either have si > 0 and νi = 0, or si = 0 and νi ≥ 0, due
to (21). Here, (·)+ = max(·, 0). On the other hand, when θ(ci + λi) < (1 − θ)μi, we have
∂Δi
∂si

> 0, and thus it is optimal to choose si = 0 as our aim is to minimize Δ in (7). In this

case, when si = 0, we have Δi =
θλi

μi+λi
which is independent of the value of ci. As we obtain

the same Δi for all values of ci, and the total update rate is limited, i.e., ∑n
i=1 si + ci ≤ C, in

this case, it is optimal to choose ci = 0 as well (i.e., when si = 0).
Next, we find ci. From (20), we have

(μici + λisi + sici)
2 =

μiλisi
μi + λi

(1 − θ)(μi + si)− θλi
β − ηi

. (24)

When (1 − θ)(μi + si) ≥ θλi, we solve (24) for ci as

ci =
λisi

μi + si

(√
1

λisi

μi
μi + λi

(1 − θ)(si + μi)− θλi
β

− 1

)+

, (25)

where we used the fact that we either have ci > 0 and ηi = 0, or ci = 0 and ηi ≥ 0, due
to (21). Similarly, when (1 − θ)(si + μi) < θλi, we have ∂Δi

∂ci
> 0. Thus, in this case, it is

optimal to choose ci = 0. When ci = 0, we have Δi =
(1−θ)μi
μi+λi

which is independent of the
value of si. Thus, it is optimal to choose si = 0 when ci = 0.

From (23), if 1
μici

λi
μi+λi

(θ(ci + λi) − (1 − θ)μi) ≤ β, we must have si = 0. Thus,
for a given ci, the optimal test rate allocation policy for si is a threshold policy where
si’s with small 1

μici

λi
μi+λi

(θ(ci + λi)− (1 − θ)μi) are equal to zero. Similarly, from (25), if
1

λi si

μi
μi+λi

((1 − θ)(si + μi)− θλi) ≤ β, we must have ci = 0. Thus, for a given si, the optimal

policy to determine ci is a threshold policy where ci’s with small 1
λi si

μi
μi+λi

((1 − θ)(si + μi)−
θλi) are equal to zero.
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Next, we show that in the optimal policy, if si > 0 and ci > 0 for some i, then the total
test rate constraint must be satisfied with equality, i.e., ∑n

i=1 si + ci = C.

Lemma 1. In the optimal policy, if si > 0 and ci > 0 for some i, then we have ∑n
i=1 si + ci = C.

Proof of Lemma 1. The derivatives of Δi with respect to si and ci are

∂Δi
∂si

=
μiλici

μi + λi

(1 − θ)μi − θ(ci + λi)

(ciμi + sici + λisi)
2 , (26)

∂Δi
∂ci

=
μiλisi

μi + λi

θλi − (1 − θ)(si + μi)

(ciμi + sici + λisi)
2 . (27)

We note that si > 0 in (23) implies that θ(ci + λi) > (1 − θ)μi. In this case, we have
∂Δi
∂si

< 0. Similarly, ci > 0 in (25) implies that (1 − θ)(si + μi) > θλi. Thus, we have ∂Δi
∂ci

< 0.
Therefore, in the optimal policy, if we have si > 0 and ci > 0 for some i, then we must have
∑n

i=1 si + ci = C. Otherwise, we can further decrease Δ in (7) by increasing ci or si.

Next, we propose an alternating minimization-based algorithm for finding si and ci.
For this purpose, for given initial (si, ci) pairs, we define φi as

φi =

{
1

μici

λi
μi+λi

(θ(ci + λi)− (1 − θ)μi), i=1, . . . , n,
1

λi si

μi
μi+λi

((1 − θ)(si + μi)− θλi), i=n + 1, . . . , 2n.
(28)

Then, we define ui as

ui =

⎧⎪⎨⎪⎩
μici

λi+ci

(√
φi
β − 1

)+
, i = 1, . . . , n,

λi si
μi+si

(√
φi
β − 1

)+
, i = n + 1, . . . , 2n.

(29)

From (23) and (25), si = ui and ci = un+i, for i = 1, . . . , n.
Next, we find si and ci by determining β in (29). First, assume that, in the optimal

policy, there is an i such that si > 0 and ci > 0. Thus, by Lemma 1, we must have
∑n

i=1 si + ci = C. We initially take random (si, ci) pairs such that ∑n
i=1 si + ci = C. Then,

given the initial (si, ci) pairs, we immediately choose ui = 0 for φi < 0. For the remaining
ui with φi ≥ 0, we apply a solution method similar to that in [80]. By assuming φi ≥ β, i.e.,
by disregarding (·)+ in (29), we solve ∑2n

i=1 ui = C for β. Then, we compare the smallest φi
which is larger than zero in (28) with β. If we have φi ≥ β, then it implies that ui ≥ 0 for all
remaining i. Thus, we have obtained ui values for given initial (si, ci) pairs. If the smallest
φi which is larger than zero is smaller than β, then the corresponding ui is negative and we
should choose ui = 0 for the smallest non-negative φi. Then, we repeat this procedure until
the smallest non-negative φi is larger than β. After determining all ui, we obtain si = ui and
ci = un+i for i = 1, . . . , n. Then, with the updated values of (si, ci) pairs, we keep finding
ui’s until the KKT conditions in (19) and (20) are satisfied.

We note that for indices (persons) i for which (si, ci) are zero, the health care provider
does not perform any tests, and maps these people as either always infected, i.e., x̂i(t) = 1
for all t, or always healthy, i.e., x̂i(t) = 0. If x̂i(t) = 0 for all t, Δi =

θλi
μi+λi

, and if x̂i(t) = 1

for all t, Δi =
(1−θ)μi
μi+λi

. Thus, for such i, the health care provider should choose x̂i(t) = 0 for

all t, if θλi
μi+λi

< (1−θ)μi
μi+λi

, and should choose x̂i(t) = 1 for all t, otherwise, without performing
any tests.

Finally, we note that the problem in (17) is not a convex optimization problem as the
objective function is not jointly convex in si and ci. Therefore, the solutions obtained via
the proposed method may not be globally optimal. For this reason, we select different
initial starting points and apply the proposed alternating minimization-based algorithm
and choose the solution that achieves the smallest Δ in (7).
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In the next section, we first provide an alternative method to find the average difference
Δ in (6) and then characterize the average difference for the erroneous test measurements.

5. Average Difference for the Case with Erroneous Test Measurements

We note that the infection status of the ith person and its estimate at the health
care provider form a continuous time Markov chain (Section 7.5 of [105]) with the states
(xi(t), x̂i(t)) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. In this section, by finding the steady-state dis-
tribution for (xi(t), x̂i(t)), we provide an alternative method to find Δ in (6). Then, we
consider the case with erroneous test measurements. For this case, we characterize the
long-term average difference for the ith person denoted by Δe

i .

5.1. An Alternative Method to Characterize Average Difference

When there is no error in the tests, the state transition graph is shown in Figure 4a.
Assuming that si > 0, ci > 0, every state is accessible from any other state, and thus,
the Markov chain induced by the system is irreducible. Note that in Section 4, we see
that the testing rates for some people can be equal to 0, i.e., si = 0 and ci = 0. For these
people, we choose x̂i(t) to be either always 0 or 1, i.e., consider them as always healthy
or sick all the time. Depending on the choice of x̂i(t), when si = 0 and ci = 0, either the
states (0, 0) and (1, 0), or the states (0, 1) and (1, 1) will be transient, and thus, have 0
probability in the steady state. By using small time-step approximation to a discrete time
Markov chain, one can show that the self transition probabilities are non-zero, and thus,
the Markov chain induced by the system is also aperiodic (Section 7.5 of [105]). Therefore,
the Markov chain shown in Figure 4a admits a unique stationary distribution given by
π = {π00, π01, π10, π11}. We find the stationary distribution by writing the local-balance
equations which are given as

π00λi =π10μi + π01ci, (30)

π10(μi + si) =π00λi, (31)

π01(ci + λi) =π11μi, (32)

π11μi =π10si + π01λi. (33)

By using (30)–(33) and ∑2
k=1 ∑2

�=1 πk� = 1, we find the steady-state distribution π as

π01 =
μiλi

μi + λi

si
μici + λisi + cisi

, (34)

π10 =
μiλi

μi + λi

ci
μici + λisi + cisi

, (35)

and π00 = μi+si
λi

π10, and π11 = ci+λi
μi

π01. We note that Δi1 in (14) is also equal to π10 in (35),
i.e., we have Δi1 = π10. Similarly, Δi2 in (15) is equal to π01 in (34). Thus, by observing
that the states (xi(t), x̂i(t)) form a continuous time Markov chain, we can find the average
difference Δ in (6) by finding the steady-state distribution for π. This method will be
particularly useful in the following section where we consider the case with erroneous test
measurements.
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(0, 0) (0, 1)

(1, 0) (1, 1)

ci

λi μi

si

λiμi

(a)

(0, 0) (0, 1)

(1, 0) (1, 1)

pvi

λi μi

(1− q)vi

μiλi

(1− p)vi

qvi

(b)

Figure 4. Transition graphs of the states (xi(t), x̂i(t)) (a) when there is no error in the tests, and
(b) when there are errors in the tests.

5.2. Average Difference with Erroneous Test Measurements

In this section, we consider the case where the test measurements can be erroneous.
When a test in applied to an infected person, i.e., when xi(t) = 1, the test result will be
0 with probability q and 1 with probability 1 − q, where 0 ≤ q < 1

2 . In other words, the
false-negative probability is equal to q. Similarly, when a test is applied to a healthy person,
i.e., when xi(t) = 0, the test result will be 1 with probability p and 0 with probability
1 − p, where 0 ≤ p < 1

2 . Thus, the false-positive probability is equal to p. The probability
distribution for the test measurements is provided in Table 2.

Table 2. The probability distribution for successful and false test measurements.

xi(t) \ x̂i(t) 0 1

0 1 − p p
1 q 1 − q

In this section, we consider the case where the health care provider applies only one
test rate vi to the ith person, whether the person is currently marked as healthy or infected.
That is, we do not consider separate testing rates of si and ci for healthy and infected people
as we did before, instead, here both si and ci are equal o vi. Since the health care provider
applies the same test rate for the ith person, here we do not consider the importance factor
θ either. Then, we define the long-term average difference for the ith person with the error
on the test measurements as follows, where the superscript e stands for “erroneous”.

Δe
i = Δe

i1 + Δe
i2, (36)

and the definitions of Δe
i1 and Δe

i2 follow similarly from (13). We note that with the test
rates vi and errors on the test measurements, the states (xi(t), x̂i(t)) form a continuous
time Markov chain, and the corresponding state transition graph is shown in Figure 4b.
Assuming that vi > 0, one can show that there is a unique steady-state distribution
πe = {πe

00, πe
01, πe

10, πe
11} which can be found by solving the local balance equations which

are given as follows
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πe
00(vi p + λi) =πe

01vi(1 − p) + πe
10μi, (37)

πe
10(vi(1 − q) + μi) =πe

00λi + πe
11viq, (38)

πe
01(vi(1 − p) + λi) =πe

00vi p + πe
11μi, (39)

πe
11(viq + μi) =πe

10vi(1 − q) + πe
01λi. (40)

Then, by using (37)–(40) and ∑2
k=1 ∑2

�=1 πe
k� = 1, we find the steady-state distribution πe as

πe
00 =

μiλiq + (1 − p)μi(vi + μi)

(λi + μi)(λi + μi + vi)
, (41)

πe
01 =

μiλi(1 − q) + pμi(vi + μi)

(λi + μi)(λi + μi + vi)
, (42)

πe
10 =

μiλi(1 − p) + qλi(vi + λi)

(λi + μi)(λi + μi + vi)
, (43)

πe
11 =

μiλi p + (1 − q)λi(vi + λi)

(λi + μi)(λi + μi + vi)
. (44)

We note that Δe
i1, and Δe

i2 are equal to πe
10 in (43), and πe

01 in (42), respectively. Thus, if
vi > 0, then Δe

i in (36) becomes

Δe
i =

pμ2
i + qλ2

i + (2 − p − q)μiλi + vi(pμi + qλi)

(λi + μi)(λi + μi + vi)
. (45)

We immediately note that if false-positive test probability p and false-negative test
probability q are equal to 0, Δe

i becomes 2μiλi
(λi+μi)(λi+μi+vi)

which is equal to Δi1 +Δi2 provided

in (14) and (15), respectively, when vi = si = ci. Then, ∂Δe
i

∂p ≥ 0 is equivalent to vi +μi −λi ≥
0 and ∂Δe

i
∂q ≥ 0 is equivalent to vi + λi − μi ≥ 0 which means that depending on the values

of vi, μi, and λi, the long-term average difference Δe
i can be an increasing function of only p

or only q, or both p and q, but Δe
i cannot be a decreasing function of both p and q. This is

expected as false-negative and false-positive tests negatively affect the estimation process.

One can also show that ∂Δe
i

∂vi
< 0 and ∂2Δe

i
∂v2

i
> 0 which means that Δe

i decreases with vi and is

a convex function of the test rate vi.
Next, we consider the case when vi = 0. Note that when vi = 0, the health care

provider either maps these people as always sick or always healthy depending on their
infection and recovery rates. Thus, when vi = 0 and depending on the estimate x̂i(t),
two of the states in Figure 4b will never be visited and thus, these states will have 0
steady-state probabilities. For this case, the steady states are given by π̄e

1,x̂i
and π̄e

0,x̂i
. The

local balance equation is λiπ̄
e
0,x̂i

= μiπ̄
e
1,x̂i

. By using π̄e
0,x̂i

+ π̄e
1,x̂i

= 1, we find the steady-

state distribution as π̄e
0,x̂i

= μi
μi+λi

, and π̄e
1,x̂i

= λi
μi+λi

. Thus, if μi < λi, i.e., if people are
infected more frequently, then the health care provider chooses its estimate as x̂i(t) = 1
and, Δe

i =
μi

μi+λi
. If μi ≥ λi, i.e., if people stay healthy more often, then we have x̂i(t) = 0,

and Δe
i =

λi
μi+λi

. Therefore, when vi = 0, we have

Δe
i = min

{
μi

μi + λi
,

λi
μi + λi

}
. (46)

In order to find the optimal test rates vi in the case of errors on the test measurements,
we formulate the following optimization problem
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(47)

where the objective function is given by the summation of Δe
i in (45) when vi > 0 and

Δe
i in (46) when vi = 0 over all people and {.} is the indicator function taking value 1

when {·} is true and 0, otherwise. In (47), we have a constraint on the total test rate, i.e.,
∑n

i=1 vi ≤ C. We note that the optimization problem in (47) is in general not convex due
to the indicator function in the objective function. However, for a given set of {vi =
0}, the optimization problem in (47) is convex and can be solved optimally. Thus, by
solving the problem in (47) for all possible set of {vi = 0}, we can determine the global
optimal solution which requires to solve 2n different optimization problems which can be
impractical for large n. Because of this reason, next, we provide a greedy algorithm to solve
the optimization problem in (47).

In the greedy solution, initially, assuming that {vi > 0} = 1 for all i, we consider the
following the optimization problem

min
{vi}

n

∑
i=1

pμ2
i + qλ2

i + (2 − p − q)μiλi + vi(pμi + qλi)

(λi + μi)(λi + μi + vi)

s.t.
n

∑
i=1

vi ≤ C

vi ≥ 0, i = 1, . . . , n, (48)

where the objective function in (48) is equal to Δe
i in (45). For this optimization problem, we

define the Lagrangian function for (48) as

L =
n

∑
i=1

pμ2
i + qλ2

i + (2 − p − q)μiλi + vi(pμi + qλi)

(λi + μi)(λi + μi + vi)
+ β̄

(
n

∑
i=1

vi − C

)
−

n

∑
i=1

ν̄ivi, (49)

where β̄ ≥ 0, ν̄i ≥ 0. We note that the problem defined in (48) is a convex optimization
problem, and thus we can find the optimal test rates vi by analyzing the KKT and the
complementary slackness conditions. The KKT conditions are given by

∂L
∂vi

=
−2(1 − p − q)μiλi

(μi + λi)(μi + λi + vi)2 + β̄ − ν̄i = 0, (50)

for all i. The complementary slackness conditions are

β̄

(
n

∑
i=1

vi − C

)
= 0, ν̄ivi = 0. (51)

By using (50) and (51), we find the optimal vi values for the problem in (48) as

vi = (μi + λi)

(√
μiλi

(μi + λi)3
2(1 − p − q)

β̄
− 1

)+

. (52)

With the test rates vi in (52) we find the average differences Δe
i in (45) and then compare

them with Δe
i in (46) when vi = 0. Due to the errors in the tests, Δe

i in (46) with vi = 0
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can be smaller than Δe
i in (45) with the test rates vi found in (52). For these people, we

choose index i where the difference between Δe
i in (45) with the vi in (52) and Δe

i in (46) is
the highest. Then, we take vi = 0 as applying no test to this person can further decrease Δe

i .
For the remaining people, we solve the optimization problem in (48). After obtaining the
test rates for the remaining people, we again compare average differences Δe

i with the test
rates in (52) and with no test and we choose vi = 0 for the person where Δe

i can be further
decreased. We repeat these steps until all Δe

i s with vi > 0 cannot be further decreased by
choosing vi = 0.

We note that the solution obtained in (52) has a threshold structure. As false-positive
and -negative test rates increase, the term 2(1−p−q)

β̄
in (52) becomes smaller. As a result,

some people with higher
√

(μi+λi)3

μiλi
may not be tested by the health care provider. Thus,

when p and q are high, a smaller portion of the population is tested with higher test rates
in order to combat the test errors.

6. Average Estimation Error with Dependent Infection Rates

In this section, we consider the case where we have two people whose infection rates
depend on each other. When these two people are healthy, they can be individually infected
with the virus after an exponential time with rate λ. When one of these two people is
infected and this has not been detected by the health care provider, this person can infect
the other healthy person after an exponential time with rate λ12 which has been illustrated
in Figure 5. Thus, when both of the people are healthy, their individual infection rate is
λ. However, when one of them is sick and this has not been detected by the health care
provider, the healthy person’s total infection rate is equal to λ + λ12. On the other hand, if
only one person is infected, i.e., xi(t) = 1, which has also been detected by the health care
provider, x̂i(t) = 1, then we assume that we isolate the infected person from the healthy
one, and thus, the healthy person’s infection rate remains as λ instead of λ + λ12. When
the people are infected, they recover from the disease after an exponential time with rate μ.

person 1 person 2

λ λ
λ12

Figure 5. The infection rates of two people where the individual infection rate is equal to λ. When
the infection has not been detected, these two people can infect each other with rate λ12.

When the health care provider believes that a person is healthy, i.e., x̂i(t) = 0, the next
test is applied to this person after an exponential time with rate s. When the health care
provider believes that a person is sick, i.e., x̂i(t) = 1, the next test applied to this person
after an exponential time with rate c. Here, we note that since the people are identical
in terms of their infection and recovery rates, the health care provider applies the same
test rates.

Similar to Section 5, we note that the states {x1(t), x̂1(t), x2(t), x̂2(t)} form a con-
tinuous time Markov chain where the unique stationary distribution is given by πd =
{πd

0000, πd
0001, . . . , πd

1111}. In order to find the stationary distribution, we write the local
balance equations as follows

2λπd
0000 =μπd

1000 + cπd
0100 + μπd

0010 + cπd
0001, (53)

(2λ + c)πd
0001 =μπd

0011 + cπd
0101 + μπd

1001, (54)

(λ + λ12 + μ + s)πd
0010 =cπd

0110 + μπd
1010 + λπd

0000, (55)

(λ + μ)πd
0011 =cπd

0111 + μπd
1011 + sπd

0010 + λπd
0001, (56)
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(2λ + c)πd
0100 =cπd

0101 + μπd
0110 + μπd

1100, (57)

(2λ + 2c)πd
0101 =μπd

0111 + μπd
1101, (58)

(λ + μ + s + c)πd
0110 =λπd

0100 + μπd
1110, (59)

(λ + μ + c)πd
0111 =sπd

0110 + λπd
0101 + μπd

1111, (60)

(λ + λ12 + μ + s)πd
1000 =λπd

0000 + cπd
1001 + μπd

1010, (61)

(λ + μ + s + c)πd
1001 =μπd

1011 + λπd
0001, (62)

(2μ + 2s)πd
1010 =(λ + λ12)π

d
1000 + (λ + λ12)π

d
0010, (63)

(2μ + s)πd
1011 =sπd

1010 + λπd
1001 + λπd

0011, (64)

(λ + μ)πd
1100 =sπd

1000 + λπd
0100 + cπd

1101 + μπd
1110, (65)

(λ + μ + c)πd
1101 =sπd

1001 + λπd
0101 + μπd

1111, (66)

(2μ + s)πd
1110 =λπd

1100 + sπd
1010 + λπd

0110, (67)

2μπd
1111 =sπd

1110 + λπd
1101 + sπd

1011 + λπd
0111. (68)

By using (53)–(68) and ∑2
j=1 ∑2

�=1 ∑2
m=1 ∑2

h=1 πd
j�mh = 1, we find the stationary distri-

bution πd. We denote the long-term average estimation error for person i as Δd
i for i = 1, 2,

where the superscript d stands for “dependent”, which is given by

Δd
i = Δd

i1 + Δd
i2, (69)

where Δd
i1 and Δd

i2 follow from (13). Then, we have

Δd
11 =πd

1000 + πd
1001 + πd

1010 + πd
1011, (70)

Δd
12 =πd

0100 + πd
0101 + πd

0110 + πd
0111, (71)

Δd
21 =πd

0010 + πd
0110 + πd

1010 + πd
1110, (72)

Δd
22 =πd

0001 + πd
0101 + πd

1001 + πd
1101. (73)

In Section 8, for given infection, recovery and test rates, we numerically evaluate the
stationary distribution and find the average difference Δd

i .

7. Age of Incorrect Information Based Error Metric

To date, we have considered an estimation error metric that takes the value 1 if the
actual infection status of a person is different than the real-time estimation at the health
care provider. Thus, the error metric takes values based on the information content. On
the other hand, the traditional age metric introduced in [1] considers only the time passed
since the most recently received status update packet is generated at the source. As a result,
the traditional age metric does not consider the information content and age alone may not
be a suitable performance metric for the problem considered in our work.

In the context of infection tracking, it is important to know how long the estimations
at the health care provider have been different from the actual infection status of the
people. However, the error metric that we have considered thus far does not have the time
component, i.e., it only takes value 1 independent of the time duration that it has been off
from the actual health status. Motivated by the AoII introduced in [51,102] which accounts
for both the time and the information content, in this section, we consider the following
error metric, where the superscript s stands for “synchronization” implied in AoII,

(74)
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where Vi(t) is the last time instant where the health care provider makes an accurate
estimation of the health status for the ith person, i.e., the last time instant when Δs

i = 0.
Similarly, we define

Δs
i1 =(t − Vi1(t))max{xi(t)− x̂i(t), 0}, (75)

Δs
i2 =(t − Vi2(t))max{x̂i(t)− xi(t), 0}, (76)

where Vi1(t) and Vi2(t) are equal to the last time instants when Δs
i1 and Δs

i2 are equal to
0, respectively. A sample evolution of Δs

i1 and Δs
i2 is shown in Figure 6 and we note that

Δs
i (t) = Δs

i1(t) + Δs
i2(t).

t

Δ
s

i1
(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(a)

t

Δ
s

i2
(t)

1

Wi(1)Tm(i, 1) Wi(2) Tm(i, 2) Ri(1) Tu(i, 1) Ri(2) Tu(i, 2)

Ii1(1) Ii2(1)

Ii(1)

(b)

Figure 6. A sample evolution of (a) Δs
i1(t), and (b) Δs

i2(t) in a typical update cycle.

Similar to Section 3, the infection and the recovery rates of the ith person are λi and
μi, respectively. In this section, the health care provider applies only one test rate for
each person denoted by wi. That is, we do not consider separate testing rates of si and
ci for healthy and infected people as we did previously, instead, here both si and ci are
equal o wi. We first consider the case where wi > 0. By following the steps in Section 3,
one can show that E[Ii1] =

1
wi

+ wi+μi
wiλi

and E[Ii2] =
1

wi
+ wi+λi

wiμi
which can be obtained by

substituting wi instead of si and ci in (10) and (12), respectively. Next, we denote the total

area when Δs
i1(t) > 0 as Ae,1(i, j) during the jth cycle where Ae,1(i, j) = ∑K1

�=1
Tm(i,�)2

2 and K1

has a geometric distribution with success rate wi
μi+wi

. Then, we have E[Ae,1(i)] = 1
wi(wi+μi)

.
Similarly, we denote the total area when Δs

i2(t) > 0 as Ae,2(i, j) during the jth cycle where

Ae,2(i, j) = ∑K2
�=1

Tu(i,�)2

2 and K2 has a geometric distribution with success rate wi
λi+wi

. Then,

we have E[Ae,2(i)] = 1
wi(wi+λi)

. By using ergodicity, the long-term average differences

become Δs
i1 =

E[Ae,1(i)]
E[Ii1]+E[Ii2]

and Δs
i2 =

E[Ae,2(i)]
E[Ii1]+E[Ii2]

which gives

Δs
i = Δs

i1 + Δs
i2 =

μiλi
μi + λi

2wi + μi + λi
(wi + μi + λi)(wi + μi)(wi + λi)

, (77)

when wi > 0. One can show that Δs
i is a decreasing function of wi, i.e., ∂Δs

i
∂wi

< 0, and Δs
i is a

convex function of wi, i.e., ∂2Δs
i

∂w2
i
> 0.

When wi = 0, we have E[Ii] =
μiλi

μi+λi
, i.e., E[Ii] is equal to the expected time of a

person’s healthy and sick states. Since the health care provider applies no tests to test
a person, it either estimates this person to be always sick (x̂i(t) = 1) or always healthy
(x̂i(t) = 0). When wi = 0 and x̂i(t) = 1, then Δs

i = 1
μi

λi
μi+λi

. When wi = 0 and x̂i(t) = 1,

we have Δs
i = 1

λi

μi
μi+λi

. If μi < λi, then the health care provider x̂i(t) = 1, and x̂i(t) = 0,

otherwise. Thus, when wi = 0, we have Δs
i = min

{
1
μi

λi
μi+λi

, 1
λi

μi
μi+λi

}
.
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In order to find the optimal test rates, we formulate the following optimization problem

(78)

where the objective function in (78) is equal to the summation of Δs
i in (77) when wi > 0

and Δs
i when wi = 0 over all people. In order to solve the problem in (78), we follow the

same greedy solution approach in Section 5. First, by assuming that wi > 0, and thus, the
average difference Δs

i is given in (77), we solve the following optimization problem

min
{wi}

n

∑
i=1

μiλi
μi + λi

2wi + μi + λi
(wi + μi + λi)(wi + μi)(wi + λi)

s.t.
n

∑
i=1

wi ≤ C

wi ≥ 0, i = 1, . . . , n. (79)

Since the problem in (79) is a convex optimization problem, by defining Lagrangian function
and analyzing the KKT and the complementary slackness conditions, we can find the
optimal wi values. In order to avoid being repetitive, we skip these optimization steps.
Then, we compare Δs

i in (77) with wi values found in (79) with min{ 1
μi

λi
μi+λi

, 1
λi

μi
μi+λi

}. If
we can reduce Δs

i further, we choose wi = 0 for the person with the highest improvement.
Then, we solve the optimization problem in (79) for the remaining people. We repeat these
steps until there is no improvement in Δs

i by choosing wi = 0.
In the next section, we provide extensive numerical results to evaluate optimal test

rates in various settings considered in this paper.

8. Numerical Results

In this section, we provide seven numerical results. For these examples, we take λi as

λi = ari, i = 1, . . . , n, (80)

where r = 0.9 and a is such that ∑n
i=1 λi = 6. Furthermore, we take μi as

μi = bqi, i = 1, . . . , n, (81)

where q = 1.1 and b is such that ∑n
i=1 μi = 4. Since λi in (80) decreases with i, people with

lower indices become infected more quickly compared to people with higher indices. Since
μi in (81) increases with i, people with higher indices recover more quickly compared to
people with lower indices. Thus, a person with a low index becomes infected quickly and
recovers slowly.

In the first example, we take the total number of people as n = 10, the total test rate as
C = 16, and θ = 0.5. We start with randomly chosen si and ci such that ∑n

i=1 si + ci = 16,
and apply the alternating minimization-based method proposed in Section 4. We repeat this
process for 30 different initial (si, ci) pairs and choose the solution that gives the smallest
Δ. In Figure 7a, we observe that the first three people are never tested by the health care
provider. We note that si, which is the test rate when x̂i(t) = 0, initially increases with i
but then decreases with i. This means that people who become infected rarely are tested
less frequently when they are marked as healthy. Similarly, we observe in Figure 7a that
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ci, which is the test rate when x̂i(t) = 1, monotonically increases with i. In other words,
people who recover from the virus quickly are tested more frequently when they are
marked as infected.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

(a)

1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

(b)

Figure 7. (a) Test rates si and ci, (b) corresponding average difference Δi.

In Figure 7b, we plot Δi resulting from the solution found from the proposed algorithm,
Δi when the health care provider applies tests to everyone in the population uniformly,
i.e., si = ci = C

2n for all i, and Δi when the health care provider applies no tests, i.e.,

si = ci = 0 for all i. In the case of no tests, we have Δi = min{ θλi
μi+λi

, (1−θ)μi
μi+λi

}. We observe
in Figure 7b that the health care provider applies tests on people whose Δi can be reduced
the most as opposed to uniform testing where everyone is tested equally. Thus, the first
three people who have the smallest Δi are not tested by the health care provider. With
the proposed solution, by not testing the first three people, Δi are further reduced for the
remaining people compared to uniform testing. For the people who are not tested, the
health care provider chooses x̂i(t) = 1 all the time, i.e., marks these people always sick
as θλi

μi+λi
> (1−θ)μi

μi+λi
. This is expected as these people have high λi and low μi, i.e., they are

infected easily and they stay sick for a long time.
In the second example, we use the same set of variables except for the total test rate C.

We vary the total test rate C in between 5 and 20. We plot Δ with respect to C in Figure 8.
We observe that Δ decreases with C. Thus, with higher total test rates, the health care
provider can track the infection status of the population better as expected.

In the third example, we use the same set of variables except for the total number
of people n. In addition, we also use uniform infection and healing rates, i.e., λi = 6

n
and μi =

4
n for all i, for comparison with λi in (80) and μi in (81), while keeping the total

infection and healing rates the same, i.e., ∑n
i=1 λi = 6 and ∑n

i=1 μi = 4, for both cases. We
vary the number of people n from 2 to 30. We observe in Figure 9 that when the infection
and healing rates are uniform in the population, the health care provider can track the
infection status with the same efficiency, even though the population size increases (while
keeping the total infection and healing rates fixed). For the case of λi in (80) and μi in (81),
when we increase the population size, we increase the number of people who rarely become
sick, i.e., people with high i indices, and also people who rarely heal from the disease, i.e.,
people with small i indices. Thus, it becomes easier for the health care provider to track the
infection status of the people. This is why when we use λi in (80) and μi in (81), we observe
in Figure 9 that the health care provider can track the infection status of the people better,
even though the population size increases.
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Figure 8. The average difference Δ with respect to total test rate C.
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Figure 9. The average difference Δ with respect to number of people n. We use uniform infection and
healing rates, i.e., λi =

6
n and μi =

4
n for all i, and also λi in (80) and μi in (81) with ∑n

i=1 λi = 6 and
∑n

i=1 μi = 4.

In the fourth example, we employ the same set of variables as the first example except
for the importance factor θ. Here, we vary θ in between 0.2 and 0.7. We plot Δ in (7), Δ̄1
which is Δ̄1 = 1

n ∑n
i=1 Δi1, and Δ̄2 which is Δ̄2 = 1

n ∑n
i=1 Δi2 in Figure 10a. Note that Δ̄1

represents the average difference when people are infected, but have not been detected
by the health care provider, and Δ̄2 represents the average difference when people have
recovered, but the health care provider still marks them as infected. Note that when θ
is high, we assign importance to minimization of Δ̄1, i.e., the early detection of people
with infection, and when θ is low, we give importance to minimization of Δ̄2, i.e., the early
detection of people who recovered from the disease. This is why we observe in Figure 10a
that Δ̄1 decreases with θ while Δ̄2 increases with θ.

We plot the total test rates ∑n
i=1 si and ∑n

i=1 ci in Figure 10b. We observe in Figure 10b
that if it is more important to detect the infected people, i.e., if θ is high, then the health
care provider should apply higher test rates to people who are marked as healthy. In other
words, ∑n

i=1 si increases with θ. Similarly, if it is more important to detect people who
recovered from the disease, then the health care provider should apply high test rates
to people who are marked as infected. That is, ∑n

i=1 ci is high when θ is low. Therefore,
depending on the priorities of the health care provider, a suitable θ needs to be chosen.

179



Entropy 2022, 24, 779

In the fifth numerical result, we consider the case where there are errors in the test
measurements, i.e., the model in Section 5. We take the total test rate as C = 20, and vary
error rates in the test p = q = {0.1, 0.2, 0.4}. In Figure 11a, we provide the test rates vi that
we found as a result of our greedy policy in Section 5. When the error rates p and q are
low, i.e., when p = q = 0.1, we see that the health care provider applies tests to everyone
in the population and the corresponding Δe

i is lower than applying no test as shown in
Figure 11b. As we increase the error rates, we observe that some people in the population
start to be not tested by the health care provider, see Figure 11a when p = q = {0.2, 0.4}. In
this case, the health care provider applies more tests to the remaining people to combat the
test errors. However, although it applies more tests to the remaining people, we observe in
Figure 11b that the achieved average difference Δe

i becomes higher as error rates increase.
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Figure 10. (a) Δ in (7), Δ̄1 which is 1
n ∑n

i=1 Δi1, and Δ̄2 which is 1
n ∑n

i=1 Δi2, (b) corresponding total
test rates ∑n

i=1 si and ∑n
i=1 ci.
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Figure 11. (a) Test rates vi, (b) corresponding average difference Δe
i when there is error in the tests.

In the sixth numerical result, we consider the case where the infection status of the
people depend on each other. In other words, when one person is infected, they can infect
the other person with rate λ12 when they are not detected by the health care provider, i.e.,
the infection model in Section 6. For this example, first, we take μ = 5, λ = 2.5, s = c = C

4
and vary λ = {2, . . . , 200} and C = {20, 40, 60}. If λ12 = 0, i.e., if the infection status of
people are independent from each other, then the average time that person 1 or 2 is sick is
equal to λ

λ+μ = 1
3 . As we increase infection rate λ12 among the person 1 and 2, we see in

Figure 12a that the average time that person 1 is sick increases. However, we note that as we
increase the total test rate, the health care provider can detect a sick person more frequently,
and this explains why the average infected time is low in Figure 12a when the test rate is
high. Then, we consider λ12 = {5, 10, 15} and vary the total test rates λ = {2, . . . , 200}. We
plot the average time that both person 1 and 2 stay as sick in Figure 12b. As we increase the
total test rate, the health care provider detects the infected person more quickly, and thus,
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prohibits the infection from spreading. As a result, we observe that the average time that
both people are infected decreases in C in Figure 12b. Since both people can be infected
with the virus independent from each other with rate λ, the plots in Figure 12b do not drop
to 0.
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Figure 12. (a) The percentage of the time that person 1 stays as infected while we increase λ12, (b) the
percentage of the time that both person 1 and 2 stay as infected while we increase the total test rate C.

In the last numerical result, we consider the age of incorrect information-based error
metric in Section 7. Here, the estimation error increases with the time that the health care
provider does not detect the changes in the infection status of the people. As a result, the
average difference expression given by Δs

i in (77) is different than Δe
i in (45) when p = q = 0.

For this example, we consider the total test rate C = 4 and compare the normalized average

differences given by Δs
i

∑n
i=1 Δs

i
, and Δe

i
∑n

i=1 Δe
i

and the corresponding test rates wi and vi. In
Figure 13b, depending on the error metric model, people who are tested by the health care
provider show considerable variation in their test rates. For example, with the error metric
Δs

i in (77), we apply tests to every third person while the same person is not tested with the
error metric Δe

i in (45). In Figure 13a, we provide the normalized average difference values.
Here, the average normalized error for the tested people exhibit similar values whereas the
normalized difference may vary for the untested people. Thus, we should choose a suitable
error metric that satisfies the priorities of the health care provider as it greatly affects who
is tested and with which test rates.
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Figure 13. (a) The normalized average differences Δs
i

∑n
i=1 Δs

i
, and Δe

i
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i=1 Δe
i
, and (b) the corresponding test

rates wi and vi.

9. Conclusions and Discussion

We considered the timely tracking of infection status of individuals in a population.
For exponential infection and healing processes with given rates, we determined the rates
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of exponential testing processes. We considered errors on the test measurements and
observed that in order to combat the test errors, a limited portion of the population may
be tested with higher test rates. Then, we studied a dependent infection spread model
for two people, where one infected person can spread the virus to the other if it has not
been detected by the health care provider. Finally, we studied an AoII-based error metric
where the error function linearly increases over time as the changes in the infection status
have not been detected by the health care provider. We observed in numerical results that
the test rates depend on the individuals’ infection and recovery rates, the individuals’ last
known state of being healthy or infected, as well as the health care provider’s priorities of
detecting infected people versus detecting recovered people more quickly.

In the literature, in order to model epidemics, population is partitioned into groups
called compartments. One such example is the SIR model used in [106] with the compart-
ments susceptible (S), infected (I), and recovered (R) which has been further developed
by adding the states hospitalized (H), and death (D) in [107]. In these epidemic models,
the transitions between the compartments are assumed to be Markovian. In [107], with
epidemiological data, the delay distributions for the infected (I) to hospitalized (H), and
infected (I) to death (D) are well approximated by exponential and gamma distributions,
respectively. However, due to the lack of data availability the delay distribution for infected
(I) to recovered (R) is modeled with gamma distribution with higher tolerance. In our
work, we modeled infection and recovery times, i.e., the delays between recovered (R) to
infected (I) and infected (I) to recovered (R) with exponential distributions. Therefore, more
realistic infection tracking models can be developed by considering gamma distributions
as observed in [107]. This more realistic model corresponds to the problem of real-time
timely tracking of a binary Markov source in a serially connected network. The serially
connected network model was studied in [8] with the traditional age of information metric.
We note that considering the same networking model with the AoII-based error metric to
track information dissemination of a binary Markov source represents a promising research
direction and has direct applications to the real-time tracking of epidemic spread models.
One can also study the extension of dependent infection spread model in Section 6 to n > 2
people as a future research direction.

Another interesting research direction could be to consider different kinds of tests
with different false-positive and false-negative test rates. Regarding this problem, instead
of having a total test rate capacity C, we may consider a total test budget K. Assuming that
each test bears a different cost, the goal might be to identify how many tests the health care
provider should obtain from each type. Here, one can study a trade-off between applying
fewer tests with a small probability of error versus applying more tests to individuals
with a high probability of error. Moreover, one can consider a scenario where the health
care provider may prefer to apply different test types to individuals depending on their
infection and recovery rates.
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Citation: Oğuz, T.K.; Ceran, E.T.;

Uysal, E.; Girici, T. Implementation

and Evaluation of Age-Aware

Downlink Scheduling Policies in

Push-Based and Pull-Based

Communication. Entropy 2022, 24,

673. https://doi.org/10.3390/

e24050673

Academic Editor: Syed A. Jafar

Received: 2 March 2022

Accepted: 23 March 2022

Published: 11 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Implementation and Evaluation of Age-Aware Downlink
Scheduling Policies in Push-Based and
Pull-Based Communication
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Abstract: As communication systems evolve to better cater to the needs of machine-type applications
such as remote monitoring and networked control, advanced perspectives are required for the design
of link layer protocols. The age of information (AoI) metric has firmly taken its place in the literature
as a metric and tool to measure and control the data freshness demands of various applications. AoI
measures the timeliness of transferred information from the point of view of the destination. In
this study, we experimentally investigate AoI of multiple packet flows on a wireless multi-user link
consisting of a transmitter (base station) and several receivers, implemented using software-defined
radios (SDRs). We examine the performance of various scheduling policies under push-based and
pull-based communication scenarios. For the push-based communication scenario, we implement
age-aware scheduling policies from the literature and compare their performance with those of
conventional scheduling methods. Then, we investigate the query age of information (QAoI) metric,
an adaptation of the AoI concept for pull-based scenarios. We modify the former age-aware policies
to propose variants that have a QAoI minimization objective. We share experimental results obtained
in a simulation environment as well as on the SDR testbed.

Keywords: age of information; query age of information; wireless networks; software-defined radio;
scheduling

1. Introduction

The advent and the fast growth of the Internet of things (IoT) has further compli-
cated the design of communication networks, in the presence of an increase in demand
in networked services catered by the fifth generation (5G) evolution of communication
networks. On the one hand, machine-type communications are typically less bandwidth
hungry than typical multimedia services. On the other hand, IoT flows tend to be com-
posed of many small packets generated by large numbers of end nodes, and they may have
end-to-end freshness requirements that may be challenging to satisfy with conventional
link or transport layer approaches based on optimizing throughput and delay. Increasing
the sampling rate of IoT nodes to respond to freshness requirements or adopting first-
come-first-served service policies can cause bottlenecks on the network, resulting in a
reduction in quality of service. It has been argued in recent literature that optimizing data
generation, transmission, and transport with respect to higher-level metrics such as Age of
Information can prevent unnecessary network load, while improving the freshness of flows.
In a broader perspective, there are proposals to encapsulate the significance or the value of
the transferred information to the communication problem in certain “semantic metrics”
and use these in the design of algorithms and protocols in all network layers, referred to as
“semantic communication” [1].

Entropy 2022, 24, 673. https://doi.org/10.3390/e24050673 https://www.mdpi.com/journal/entropy187



Entropy 2022, 24, 673

Within the set of semantic metrics, the age of information (AoI) from the receiver’s
point of view is defined as the time elapsed since the generation of the newest status
update that has been received by the destination [2]. AoI is gaining momentum as a key
performance indicator (KPI) for machine-type communications (MTC). The primary reason
for the interest in AoI is the growing demand for timely and fresh information in many
emerging real-time and remote monitoring-based applications such as the Internet of things,
vehicular networks, and cyber-physical systems.

AoI monitors the freshness of the entire information stream from the receiver’s point
of view. Hence, it reveals further aspects of the network compared to traditional metrics
such as delay or throughput. For instance, the delay metric measures the timeliness from
the transmitted packet’s perspective. A low average delay does not mean a low average
age in every case [3]. Continuous packet transmission policy (known as zero-wait policy in
the literature) can optimize delay, but it may not provide age-optimality in the presence
of FCFS (first-come-first-serve) queues [4]. Moreover, if the transmitter has an energy
constraint, the inefficiency of the zero-wait policy becomes more apparent [3]. Improving
the throughput alone can maximize the amount of data flow to the receiver node but may
cause an overload of the queues within the network. Packets waiting in the queue result in
outdated information reaching the receiver node. In this case, to reduce backlogs within
queues, the packet generation rate should be decreased. However, an over-reduction of
the packet generation rate would cause the receiver to be updated sporadically, which also
leads to reduced AoI performance. This dilemma shows that AoI is a composite measure
of both throughput and delay. For achieving optimal AoI, frequent packets must arrive
regularly [5]. Consequently, solving the scheduling problem with an AoI minimization
objective requires a novel formulation.

A significant portion of the AoI literature consists of studies involving push-based
communication scenarios. In the push-based model, the generation of a new packet triggers
the communication process. Then, the transmitter module sends the generated packet to
the receiver module. The sequence of operations of the communication process proceeds
from the information source to the destination. However, one of the network models
often encountered in real-life scenarios is the pull-based model, where the query source
requests (or queries) information from the receiver module. In this scenario, the initiator
of the communication process is the query source that aims to pull information from the
receiver module. The source of these queries could be users or applications that want to
monitor the information source. In the pull-based network, the sequence of operations of
the communication process proceeds from the destination to the source.

In this paper, we consider both push-based and pull-based status update systems and
experimentally investigate the performance of several age-aware downlink scheduling
policies in wireless multi-user networks. The main contribution of this study is to report one
of the pioneering experimental studies of age-aware MAC layer scheduling policies. We
have implemented a multi-user downlink network with a single base station and multiple
receivers using software-defined radios (SDRs). This testbed implementation allowed us
to examine push-based and pull-based scenarios and state-of-the-art scheduling policies.
Along with the other well-known policies, we have proposed max-weight policies for
different pull-based scenarios and provided extensive simulation and experimental results.

The rest of the paper is organized as follows. In Section 2, we present the related work.
In Section 3, the system model is presented and the problems of minimizing the average
AoI, QAoI,gmagmaild and EAoI in the network are formulated. Age-aware downlink
scheduling policies are exhibited in Section 4, and the experimental setup is explained in
detail in Section 5. Simulation and experimental results are presented in Section 6, and the
paper is concluded in Section 7.

2. Related Work

There are numerous studies examining the AoI metric in the literature. The major
works that stand out in the literature are those investigating the effects of different queuing
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types and developing scheduling policies to minimize average AoI in the network. An
important concern when proposing a scheduling policy is the required computational
load [5]. The work in [6] shows that a scheduling problem with an age minimization goal
is an NP-hard problem in a multi-user network. In [7], age-aware scheduling policies are
derived for the lossy channel case in a multi-user network. The greedy policy is inspected,
and results indicate that the policy is optimal in the symmetric channel state for mean
AoI minimization. In [8], the network is analyzed based on the peak-age and mean-age
metrics, and a virtual-queue-based policy and an age-based policy are developed. The
virtual-queue-based policy is shown to be peak-age optimal. The age-based policy is proved
to be within a factor of four of optimal values for peak age as well as average age. In [5],
Whittle’s index (WI) policy and max-weight (MW) policy are proposed. The lower bound
for AoI that can be calculated by using the statistical information of the network is derived.
Lower and upper limits of AoI performances for WI and MW policies are calculated and
proven to be within a factor of four of the optimal (upper limit is at most four times higher
than the lower limit). There are also learning-based approaches in the literature to find an
optimal age-aware policy for multi-user networks [9,10].

In the multi-user scheduling problem, the generation procedure of the packets has
a significant impact on the AoI. In the literature, sources that generate a fresh packet at
every time frame are referred to as “active sources” [8]. For a system model with active
sources, whenever there is a transmission, the age of the corresponding flow will be reset
to its minimum possible value (one frame duration in our setup). However, many realistic
scenarios may be better modeled with a packet generation that is a stochastic process. For
example, [11] studied a case where the packet generation procedure is a Bernoulli stochastic
process and proposed scheduling policies suitable for that system model.

The queue service policy (e.g., LCFS (last-come-first-serve), FCFS (first-come-first-
serve)) also has a significant effect on AoI [12,13]. For the active source case, queuing
policies become even more important since sources load the network with the highest rate
available. Queue management policy determines the behavior of the queue when the new
packets arrive. If the queue is managed with an LCFS policy, the freshest packet will be
at the top of queue, and the first packet that leaves the queue will be the one with the
most up-to-date information. In FCFS queues, a new packet is added to the bottom end
of the queue. To transmit the most timely packet, all packets in front of the last inserted
packet must be sent for transmission. As a result, the most up-to-date packet loses time
and becomes stale waiting the transmission of other packets in the queue.

The overwhelming majority of the AoI literature to date has emphasized theoretical
studies. However, there are also studies on implementation in the literature [14–22]. For
a survey of this implementation-oriented literature, see [23]. In [14–17], the experimental
setup mostly lies between the transport layer and application layer. The effects of different
wireless access technologies on end-to-end TCP/IP connections were measured by [14–16].
Studies in [18–20] cover a broader range of interconnection layers and capture the perfor-
mances of novel age-based MAC layer algorithms. In [18], Wi-Fi protocol is implemented
on SDRs. The uplink of a wireless network is taken into consideration, and the effect of
utilizing the MW scheduling policy is investigated. The work presented in [19] experi-
mentally investigates the effects of packet management policies on the performance of
networked control systems. A test environment was developed by [20] to evaluate various
ALOHA-like random access protocols. In our previous work in [21], we implemented a
multi-user wireless network using SDRs. We compared the AoI performances of MW and
WI policies with round-robin and greedy policies.

The time-average age metric weighs information freshness of all time frames equally.
However, there are many types of real-world applications where the demand for timely
information varies in time. For these, minimization of time-average age may not be the most
relevant objective. In the literature, various semantic metrics alter this model, placing higher
emphasis on selected time frames. For example, the age of incorrect information (AoII)
metric focuses on the usefulness of the information and aims to maximize the freshness
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of non-repetitious information. In the AoII concept, obtaining redundant information is
pointless for the receiver and does not reduce AoII. The objective is to minimize the age of
differing information [24–26].

Query age of information (QAoI) is a recent semantic metric proposed to investigate
pull-based scenarios from the AoI perspective [27–30]. QAoI considers a model where the
freshness of information is valuable only at query moments. These queries are sent to the
receiver modules in the network. Then, the receiver modules respond to these queries with
the most up-to-date information. The source of the queries can be a user or an application
that needs to obtain the most up-to-date information. In [29], the pull-based scenario is
discussed, and the effective age of information (EAoI) metric is presented for the multi-user
system model. Query generation is modeled as an independent Bernoulli process for each
receiver, and the immediate EAoI is assumed to be zero for frames without queries. For the
queried frames, immediate EAoI is related to the immediate AoI of the receiver under the
proactive serving assumption as a query response procedure. According to the proactive
serving method, the receiver module can wait for the query response for a frame if it is
expecting a packet arrival within the frame. If a packet arrives at the end of the frame, the
receiver sends the information in the newly received packet as a query response. In the
study, WI-based scheduling policy is proposed for the multi-user system model, and the
performance of the policy is demonstrated in the simulation environment.

The work in [28] presents the query-AoI metric for a single receiver in pull-based
communication. The calculation of the QAoI metric presented in this study is similar to
the EAoI. However, an instantaneous serving scenario is adopted instead of the proactive
serving in [29]. In addition, the transmitter module is assumed to have an energy constraint,
and the presence of the energy constraint turns the problem in another direction while
increasing the value of the QAoI reduction per transmission. Within the scope of the study,
the permanent query (PQ) model, which is a query generation procedure that approximates
the studied problem with the standard AoI problem, and the query arrival process-aware
(QAPA) model, which generates queries based on periodic or stochastic processes, are
examined. The optimal scheduling policy in the PQ process is the same as the optimal
scheduling policy for AoI. In the case of QAPA, the scheduling policy has information on
the query process (either stochastic or deterministic) and can schedule accordingly.

A continuous-time status update model is investigated in [30], where a source node
submits update packets to a channel with random transmission delay, and the query source
tries to pull information from the receiver module according to a stochastic arrival process.
The average QAoI is defined as the average AoI measured at query instants, and the system
model is examined from both AoI and QAoI perspectives. Age-aware scheduling policies
do not use the information about the query process and freshness equally for all frames.
On the other hand, QAoI-aware scheduling policies use additional information about the
query process in the scheduling decisions. This extra information allows the scheduling
policy to distribute transmission attempts more efficiently and reduce the time spent in
the FCFS queue. Eventually, from the query source’s perspective, QAoI-aware policies can
provide better AoI performance than AoI-aware policies.

To the best of our knowledge, this is the first work in the literature that considers
practical implementation and evaluation of QAoI-aware scheduling policies. In addition,
we propose and implement novel max-weight policies for the effective AoI and query-AoI
system models and evaluate their performance in terms of AoI, EAoI, and QAoI, in both
simulation and SDR environments. We have observed that the resulting EAoI-aware max-
weight (EAoI-MW) policy has a similar EAoI performance to the WI but yields a higher
network throughput. We have also observed that QAoI-aware max-weight (QAoI-MW)
provides superior QAoI performance than AoI-aware policies.

3. System Model

We consider a wireless multi-user network where a common access point or a base
station (BS) needs to send status update packets containing time-sensitive information
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to multiple receiver modules. Let M denote the total number of receivers. We also as-
sume a discrete time system where time is divided into fixed-length frames denoted by
t ∈ {1, . . . , T}. In each frame, the base station (transmitter) is allowed to activate the con-
nection for a single receiver i ∈ {1, . . . , M}, and it cannot send packets to more than one
receiver within a frame. A transmission attempt of a status update to a single user takes a
constant time, which is assumed to be equal to the duration of one frame. Wireless channels
between the receivers and the base station are unreliable. The state of each channel changes
randomly from one time slot to the next and is modeled by a Bernoulli random variable.
Channel states for each receiver are also independent of the others.

The packet generation scheme in the system follows the “active source” model. At
the beginning of each frame, information sources generate new packets for each receiver,
and these packets reach the BS immediately. The base station selects one of these packets
for transmission and discards the others. There are no queuing-related delays between
the information sources and the base station. If a receiver successfully receives a packet,
the AoI of this receiver successfully drops to one since the newly formed packet at the
information source reaches the receiver within a frame, without observing any delay.

In the system model, there are also query sources linked to each receiver. Each query
source is independent of the other, and used to model the behavior of a real-life user or
application interested in a particular time-sensitive piece of information at query instants.
Query arrival frames to receivers can follow either a deterministic or stochastic pattern.
When a query source requests information from a receiver, it sends a query. Then, the
receiver responds to it with the latest information that the receiver holds. Query and
response messages are transmitted without any errors.

The BS judiciously selects a receiver for transmission according to a stationary schedul-
ing policy π ∈ Π represented by ai(t), for all i ∈ {1, . . . , M} and t ∈ {1, . . . , T}. If the
receiver i is selected for transmission in frame t, then ai(t) will be equal to one. Otherwise,
ai(t) will be equal to zero. Evaluation of ai(t) is given in (1).

ai(t) =
{

1 if the receiver i is selected,
0 otherwise .

(1)

If a successful transmission occurs, the base station is informed over an error-free
channel in the same frame. By utilizing this knowledge, scheduling policy can keep track of
the AoI of the receivers. Similarly, ci(t) is a binary variable indicating the random channel
state of receiver i at frame t. If the channel status of the receiver i is ON, then the successful
transmission can be made at frame t, and ci(t) will be equal to one. Otherwise, if the
channel is not available for transmission, ci(t) will be equal to zero. We assume ci(t) is an
independent and Bernoulli-distributed random variable and the probability of successful
transmission (i.e., reliability) is pi, for all i ∈ {1, . . . , M}. Evaluation of ci(t) is given in (2).

ci(t) =
{

1 if the channel is ON ,
0 if the channel is OFF .

(2)

To have a successful transmission in frame t, the receiver i must be selected for
transmission, and the channel status of that receiver must be available for transmission.
Let ui(t) denote the overall result of the transmission to receiver i at frame t (3). Evaluation
of ui(t) is given in (3).

ui(t) =
{

1 if ci(t)ai(t) = 1,
0 otherwise .

(3)

We also define fi(t) as complementary of ui(t) for simplification of some equations through-
out the paper, that is, fi(t) = 1 − ui(t).

The instantaneous AoI of receiver i at the beginning of the tth frame is denoted by
Δi(t). Note that Δi(t) drops to one if the transmission to receiver i succeeds and increases
by 1 if receiver i is not selected for transmission or fails to successfully receive a packet.
Evaluation of Δi(t) is given in (4).

191



Entropy 2022, 24, 673

Δi(t + 1) =
{

1 if ui(t) = 1
Δi(t) + 1 otherwise

(4)

di(t) indicates the query presence. If a query arrives to the receiver i at frame t, di(t)
will be equal to one. Otherwise, di(t) will be equal to zero. Evaluation of di(t) is given
in (5).

di(t) =
{

1 if a query arrives to the receiver
0 otherwise

(5)

The instantaneous query age of receiver i at the beginning of the tth frame is Δqi (t). The
evaluation of the Δqi (t) varies with the adopted query response scenario within the system
model. In the scope of this study, we assume that query arrival to the receiver and receiver’s
response will happen at the beginning of the frame. We denote this query response scenario
as the “instantaneous serving” scenario. Evaluation of Δqi (t) for instantaneous serving
scenario is given in (6).

Δqi (t) = di(t)Δi(t) (6)

An alternative query response scenario called “proactive serving” is defined in the
literature in [29]. In proactive serving, the response to the query may be delayed by at
most one frame. The purpose of this delay is to put the newest information into the query
if the receiver acquires a packet within the queried frame. Nevertheless, unless stated
otherwise, the instantaneous serving strategy will be adopted throughout this study. The
overall system model is illustrated in Figure 1.
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Figure 1. The architecture of the system model.

Next, we formally define the AoI and QAoI minimization problems in Sections 3.1 and 3.2,
respectively.

3.1. AoI Minimization Problem

The analytical expressions for the AoI minimization problem have been previously
studied in [5]. The objective of the scheduling policy is to minimize the average AoI in the
network. Average AoI is calculated for M receivers across T frames. The objective is to find
a stationary scheduling policy π ∈ Π that minimizes the long-term average AoI, which is
defined in (7).
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min
π∈Π

lim
T→∞

E[JA(π)], where JA(π) =
1

TM

T

∑
t=1

M

∑
i=1

Δi(t) (7)

3.2. QAoI Minimization Problem

For the QAoI problem, the main objective of the scheduling policy is to minimize
the average age of the query sources in the network. This problem differs from the AoI
problem since the query sources do not require fresh data at every instant but only at
the queried frames. The difference between the two problem statements has also been
previously investigated in [28,30].

There are two major approaches in the literature to calculate the average ages of the
users at query instants in pull-based communication systems. In the first approach, the
sum of the ages at query instants is divided by the total number of frames. This method
is followed by [27,29] to develop age-aware scheduling policies, and the metric is called
effective age of information (EAoI). Note that [28] also follows a similar approach in the
discounted setting for single-user pull-based communication.

The objective function obtained by utilizing this approach is given in (8).

min
π∈Π

lim
T→∞

E[JE(π)], where JE(π) =
1

TM

[
M

∑
i=1

T

∑
t=1

Δqi (t)

]
(8)

The second approach divides the sum of all query ages by the total number of query
arrivals. This approached is used by [30] for the average query age calculation. The
objective function obtained by utilizing this approach is given in (9).

min
π∈Π

lim
T→∞

E
[

JQ(π)
]
, where JQ(π) =

1
M

M

∑
i=1

1
Ni(T)

[
T

∑
t=1

Δqi (t)

]
, (9)

where Ni(T) denotes the total number of queries arrived at receiver i throughout T frames.
Throughout this study, we refer to the metric aligned with the first approach as the

effective age of information (EAoI), following its definition in [27]. We call the metric evaluated
with the second approach the query age of information (QAoI).

In the average EAoI calculation, the query age of the frames for which the query is not
present is taken as zero and included in the average. This calculation method may lead
to misleading results for measuring the average AoI of the query sources. This is because
even if the AoI of a rarely queried receiver is very high at the time of query, it remains low
on average due to the inclusion of unqueried frames. Similarly, for a frequently queried
receiver, since the number of unqueried frames is low, the number of zeros included in the
calculation of the average EAoI will be low. Therefore, the EAoI of this receiver will tend
to be higher than the rarely queried receiver. The effect of the scheduling policy becomes
less apparent as the query frequency decreases. Therefore, to measure the performance
of scheduling policies, comparing average EAoI values of two individual systems with
different query arrival frequencies would provide inconsistent results. When the same
problem is analyzed from the QAoI perspective, the effect of the scheduling policy becomes
more decisive, as the unqueried frames are discarded in the average query age calculation.

To examine the QAoI problem, we first consider the case where the query generation
is an independent Bernoulli process. Note that [28,30] indicates that, to see a difference
between QAoI and AoI metrics, the query arrival process must be non-stationary. For the
Bernoulli query arrival case, the QAoI problem converges to the AoI problem. On the other
hand, EAoI can yield results different than AoI even under the Bernoulli-arrival scheme.
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4. Age-Aware Downlink Scheduling Policies

In this section, we define scheduling policies to minimize age-aware metrics. We describe
AoI-aware, EAoI-aware, and QAoI-aware scheduling policies in Section 4.1, Section 4.2,
Section 4.3, respectively.

4.1. Scheduling Policies for AoI Minimization

AoI-aware scheduling policies have been previously investigated in [5,7,8,10]. The WI
and MW policies proposed in [5,7] utilize the instantaneous ages of the receivers and the
reliabilities of the corresponding links to calculate the expected costs {Ci} associated with
each receiver. To maximize the cost reduction, the scheduling policy selects the receiver
with the highest Ci at each frame.

The max-weight policy is an adaptation of the Lyapunov optimization technique to
the AoI minimization problem. Lyapunov optimization provides a method for penalty
minimization while maintaining the queue stability [31]. The objective of the MW policy
is to minimize Lyapunov drift in the network with the appropriate scheduling decision.
Lyapunov drift measures the expected cost increase between two consecutive frames. In
each frame, the policy calculates the expected Lyapunov drift of the receivers. Then, the
policy selects the receiver with the highest Lyapunov drift. With this decision, the policy
aims to minimize the overall cost. The calculation of expected costs for the MW policy is
given in (10). At each frame, the scheduling policy selects the receiver with the highest Ci.

Ci(Δi(t)) = piΔi(t)(Δi(t) + 2) (10)

The WI policy has been presented in [5,7,10] by formulating the AoI minimization
problem in (7) as a restless multi-armed bandit (MAB) problem. The MAB problem in
general aims to optimize the reward in an unknown environment through a series of trials
where the decision-maker can activate only one of the arms and each arm has an immediate
reward (or penalty for the minimization problem case) associated with it. The closed-form
costs (indexes) for the WIP are given in (11). At each frame, the scheduling policy transmits
to the receiver with the highest Ci.

Ci(Δi(t)) = piΔi(t)
[

Δi(t) +
2 − pi

pi

]
(11)

In our study, we implement AoI-aware MW and WI policies on the USRP testbed and
compare their performances with round-robin and greedy policies.

4.2. Scheduling Policies for EAoI Minimization

In the USRP testbed, we implement and evaluate the performance of the EAoI-aware
WI policy that was previously proposed in [29]. In addition, we propose an EAoI-aware
MW policy by modifying the AoI-aware max-weight policy previously proposed in [5] and
compare their performances.

EAoI-aware WI in [29] is given in (12). In each frame, the policy chooses the receiver
with the highest Ci.

Ci(t) = qi(piΔi(t) + 2)(Δi(t)− 1) (12)

We can derive the max-weight policy for the pull-based instantaneous serving scenario:
First, we calculate the Lyapunov drift of the instantaneous EAoI’s between consecutive
frames. Then, in line with [5], we select quadratic Lyapunov function to calculate the
Lyapunov drift.

Lemma 1. In each frame, EAoI-MW policy selects the receiver with highest Ci(t), which can be
computed as in (13).
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Ci(t) = qi pi

(
Δ2

i (t) + 2Δi(t)
)

. (13)

Derivation of the EAoI-MW Policy can be found in Appendix A.

4.3. Scheduling Policies for QAoI Minimization

For the QAoI metric investigation, we evaluate the cases where the query arrival
process forms a Markov chain. Within the Markov chain, we designate one state as the
“Query” state and other states as “non-query” states. When the current state of the Markov
chain reaches the query state, a query arrives.

For QAoI minimization, we propose a max-weight-based scheduling policy, following
similar steps as in [5]. To adapt this policy to the QAoI model, we utilize the main features
of the Markov chain, which determines the query process. In the first step, we calculate
the future AoI Δi(t + K) in terms of current AoI Δi(t). The evaluation of AoI between
consecutive frames is given in (14).

Δi(t + 1) = ui(t) + (1 − ui(t))(Δi(t) + 1)

= ai(t)ci(t) + (1 − ai(t)ci(t))(Δi(t) + 1)

= 1 + fi(t)Δi(t)

(14)

Repeating this approach multiple times enables us to obtain the future AoI in terms of
current AoI. The result is given in (15).

Δi(t + 1) = 1 + fi(t)Δi(t)

Δi(t + 2) = 1 + fi(t + 1) + fi(t + 1) fi(t)Δi(t)

Δi(t + 3) = 1 + fi(t + 2) + fi(t + 2) fi(t + 1) + fi(t + 2) fi(t + 1) fi(t)Δi(t)

(15)

In the following equations, we indicate the future time frames as t̂. Although it may
lead to suboptimal results, for computational convenience, we assume that future decisions
ai(t̂) are independent variables and stationary through time with a fixed expected value.
Based on this assumption, we can argue that fi(t̂) is also stationary. Therefore, we define fi
as the stationary version of the fi(t̂) as shown in Equation (16).

E
[

fi(t̂)
]
= E[ fi(t + 1)] = E[ fi(t + 2)] = E[ fi(t + K)] = fi (16)

Then, we define the closed-form version the future AoI with current AoI in (17).

Δi(t + K) =

[
K

∑
k=1

f k−1
i

]
+ f K−1

i fi(t)Δi(t) (17)

To simplify the notation, we define Fs(K) and Fm(K) as in (18) and (19).

Fs(K) =
K

∑
k=1

f k−1
i (18)

Fm(K) = f K−1
i (19)

We then rewrite the simplified version of Equation (17) in Equation (20).

Δi(t + K) = Fs(K) + Fm(K) fi(t)Δi(t) (20)

We proceed with the max-weight policy derivation steps by the definition of Lyapunov
function and Lyapunov drifts. Similar to [5], we use the quadratic Lyapunov function
as given in Equation (21). However, rather than calculating the Lyapunov drift between
consecutive frames, we calculate the Lyapunov drift Yi(t) between the current frame t
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and the expected query-arrival frame t + K. Calculation of Lyapunov drift is given in
Equation (22).

L(t) =
1
M

M

∑
i=1

Δ2
qi
(t) (21)

Yi(t) = E
[
Δ2

i (t + K)− Δ2
i (t)

]
= E

[
Fs(K)2 + 2 fi(t)Fs(K)Fm(K)Δi(t) + fi(t)F2

m(K)Δ
2
i (t)− Δ2

i (t)
]

= E
[

Fs(K)2 − Δ2
i (t) + (1 − ai(t)ci(t))

[
2Fs(K)Fm(K)Δi(t) + F2

m(K)Δ
2
i (t)

]] (22)

In Equation (22), ai(t) is the only decision variable from which the scheduling policy
can choose its value. For simplification, we ignore terms in the calculation of Yi(t) that are
not affected by the decision ai(t). We denote the modifiable part of the Lyapunov drift with
ai(t) decision as Ŷi(t).

Ŷi(t) =−E[ci(t)]E[ai(t)]E
[
2Fs(K)Fm(K)Δi(t) + F2

m(K)Δ
2
i (t)

]
= E[ai(t)]piE

[
2Fs(K)Fm(K)Δi(t) + F2

m(K)Δ
2
i (t)

] (23)

At each frame, the main objective of the scheduling policy is to minimize the Lyapunov
drift. Therefore, the scheduling policy must eliminate the receiver with the highest Ci(t) to
cause maximum reduction to Lyapunov drift.

Lemma 2. For each frame, QAoI-aware max-weight (Q-MW) policy selects the receiver with
highest immediate cost Ci(t). Calculation of immediate cost is given in (24).

Ci(t) = piFm(K)Δi(t)(Fm(K)Δi(t) + 2Fs(K)) (24)

To emphasize what our system model corresponds to in practice and depict the
difference between AoI- and QAoI-aware policies, we can consider a simple IoT network
as an example. This network consists of sensors, microprocessors, a base station, and
individual users. In the network, sensor devices generate time-sensitive data about their
current status. Nevertheless, the sensors cannot process this data, and they have to transfer
it over a wireless network to remote microprocessors. The sensors send the data to a base
station, and the base station transmits this data over the wireless network. However, the
transmission capacity of the base station is limited, and it cannot simultaneously transmit
data to multiple processors.

There is a dedicated microprocessor for each sensor. Microprocessors use the sensor
data and generate status reports. Each microprocessor is tracked by an individual user that
queries the processor to obtain the freshest status report about the sensor. Query arrivals to
each microprocessor are independent of each other and occur infrequently.

QAoI-aware policies come to the fore if the requirement in the system precedes the
query source’s request for timely information. For the system model given in this example,
AoI-aware policies concentrate on the AoI at the microprocessors, and the QAoI-aware policies
focus on the AoI at the individual users. The impact of the QAoI-aware policy is shown in
Figure 2. The figure examines the instantaneous AoI of a receiver (microcontroller in our
example) in a multi-user network. A query source (individual user in our example) generates
queries at the 41st, 81st, and 121st frames. From the query source’s perspective, freshness is
only important at query instants. In line with the query source’s demands, the QAoI-aware
policy aims to minimize the AoI of the receiver at the 41st, 81st, and 121st frames. Since there
is no need for AoI minimization in all frames, the transmission constraint in the system can be
relieved, and transmission attempts can be utilized more efficiently.
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Figure 2. Instantaneous AoI of a receiver in a multi-user network.

5. Implementation

In this section, we describe our implementation work on USRPs. We firstly share
detailed information about the implementation environment. Then, we describe the packet
interface that we use to transmit time-sensitive information in Section 5.2, and we explain
the runtime of our setup in Section 5.3.

Software-based radios, also called “software radios” in pioneering studies, are radios
that allow the user to change main parameters of communication systems such as center
frequency, bandwidth, and coding of the communication system only by changing the
software [32,33]. With SDRs, all layers of the communication system, from the physical
layer to the application layer, can be changed only by software modifications. These
radios play an important role in the development of today’s technologies that require
rapid prototyping of various parameters, protocols, and standards, because software-based
radios reduce the burden of extra hardware production for test and development studies
and provide significant improvement in terms of time and cost.

For the AoI testbed implementation, we use one Ettus USRP N210, one NI USRP 2930,
and two NI USRP 2930 SDR devices. General specifications of the devices are available
in the devices’ datasheets [34,35]. Both USRPs have independent transmit and receive
modules. For this reason, these devices can operate as a transmitter and a receiver simulta-
neously. Nevertheless, it is not possible to run two transmission operations simultaneously.

The host computer runs a LabVIEW application that interfaces with the USRP devices.
USRP communicates with the host computer via a 1 Gb Ethernet link. Signals are frag-
mented to in-phase and quadrant components and carried over in the Ethernet packets.
Each transmitter and receiver module contains an amplifier that is controllable through
software. In the experiments, we often use these amplifiers to change channel reliabilities.

The LabVIEW environment contains useful built-in functions for system implementa-
tion. We use them frequently in our study. We also benefited from the examples regarding
the PSK-modulated communication system and packet-based digital link tutorials and
examples provided by LabVIEW and the LabVIEW community [36].

5.1. Setup

Among four USRPs, one USRP is configured as the base station, and the other three are
the receiver modules. The setup configuration for the implementation is given in Table 1.
An overview of the USRP testbed is given in Figure 3.
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Figure 3. Overview of the implementation environment.

System time is discretized in 50 ms duration frames. The LabVIEW application keeps
track of the frame number, that is, the total number of frames that have passed since the
experiment began. The frame number is the system’s reference clock. All radios run in separate
threads over a single LabVIEW application running on the host computer. Thus, difficulties
related to synchronization are reduced, as all USRPs are managed from a single host.

We use QPSK modulation in the air interface. The maximum operating frequency
of the USRP-2920 is 2.2 GHz [35], and we choose a center frequency of 1.9 GHz for all
receivers. We prefer the high center frequency of the carrier signal to induce higher path
loss since we have a limited area in the test environment.

The sampling rate of the USRP is configurable via the LabVIEW application. Detailed
information about this configuration is described in the USRP documentation [35]. NI
specifies that the I/Q ratio must be multiplied by 0.8 to convert to the sample rate [37]. In
the implementation, we use the I/Q ratio 500k samples/s, which corresponds to a sampling
rate of 400k samples/sec or bandwidth of 200 kHz. This bandwidth meets the requirements
of our target application. Selecting higher I/Q rates increases the bandwidth. However,
increasing the sample rate causes more data to be processed and transported. Therefore,
more data would put a higher load on the USRP and Ethernet connection and eventually
induce higher delay. Since timeliness is the primary concern in AoI calculations, we keep
the I/Q Ratio low to achieve a more stable operating point without overloading the USRP
and Ethernet.

Table 1. Overview of parameters.

Modulation: Quadrature Phase-Shift Keying (QPSK)
Center Frequency: 1.9 GHz

I/Q Rate: 500k Samples/s
Sample Rate: 400k Samples/s

Bandwidth: 200 kHz
Bits Per Symbol: 2

Samples Per Symbol: 8
Duration of one Frame: 50 ms

5.2. Packet Interface

In the implementation, time-sensitive information is carried through the packets. The
structure of the packet interface is summarized in Figure 4. There are six guard bits at
the beginning of a packet. These bits are placed to prevent the pulse shaping filter from
damaging the message content. The synchronization bit field starts after the guard bits. A
30-bit synchronization sequence is known in advance by both the sending and receiving
modules. This sequence is created by a LabVIEW function that generates pseudo-random
bits in the Galois domain. Receivers that continuously acquire data from the air interface
use the synchronization sequence to detect the beginning of the packet.

198



Entropy 2022, 24, 673

Figure 4. Packet content in the air interface.

The message field contains time-sensitive information. The message consists of Re-
ceiver ID (RX ID) and Packet ID fields. RX ID field is a 4-bit address that is used to
distinguish receivers. Each receiver has a unique RX ID. When a receiver obtains a packet,
it locates the RX ID field in the packet content and compares it with its RX ID. If the RX ID
of the packet and the receiver do not match, the receiver discards the packet, and Δi(t) for
that receiver increases by one for the next frame.

The frame number is the reference clock of the entire system. It initially starts from
one at the beginning of the experiment and increases by one for each frame. Upon the
generation of a packet, the Packet ID field is filled with the frame number of the system.
Thus, the Packet ID field operates as the packet timestamp. Since the receiver also knows
the current frame number, the difference between the packet’s creation frame (contained in
the Packet ID field) and the current frame gives the instant information age Δi(t).

Packets sent over an unreliable channel may suffer corruption due to noise. The
receiver should discard packets containing incorrect information since processing this
data may lead to incorrect AoI measurements. To detect errors, we use cyclic redundancy
check (CRC). Within the packet generation process, we pass the message field through the
16-bit CRC and write the result to the CRC field. When a receiver obtains a packet, it first
calculates the CRC of the message field of the packet and compares the result with the
CRC field in the packet. If both CRCs are equal, we consider the message to be error-free.
We track the number of successful CRC checks for each receiver, thereby dynamically
measuring the reliability of the channel. In the implementation, we dynamically estimate
channel reliability throughout the experiment. Accurate calculation of the channel reliability
values is essential, as MW policy and WIP take this value as input. We pre-run the setup to
initialize the channel reliabilities. During the pre-run, we discard AoI calculations.

5.3. Runtime

The LabVIEW program allows multi-threading, which allows us to execute processes
independently in different threads. We implement the Receiver, Transmitter, and Logging
modules as separate threads in the program. In this way, we were able to perform these
operations simultaneously. Moreover, the LabVIEW program has the feature of providing
synchronization between threads. With the activation of this feature, it has been possible to
organize processes running in different threads and following each other. The runtime of
the system can be described step by step as follows:

1. The new frame starts with incrementing the frame number.
2. The scheduling policy performs the receiver selection for the new frame. AoIs of the

receivers, query arrival status, and channel statistics are the inputs of the schedul-
ing policy.

3. In the meantime, receiver threads start acquiring a signal from receiver USRPs. The
acquired signal is demodulated using LabVIEW’s built-in demodulation function. We
synchronize the transmit and receive threads using the synchronization function of
the LabVIEW program. Moreover, we keep the receiver thread’s acquisition duration
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long enough compared to the transmission thread’s time to complete its task so that
the receiver can acquire the signal sent by the transmitter.

4. A time-sensitive packet is constructed in the transmitter thread. The ID of the selected
receiver is inserted into the new packet. The current frame number is also inserted in
the “Package ID” field.

5. The constructed packet is modulated using LabVIEW’s Modulation function and
prepared for transmission. The transmitter thread transmits this packet to the USRP
over an Ethernet connection.

6. The transmitter USRP converts this packet to an RF signal and broadcasts it on the
air interface.

7. The receiver threads demodulate the signal in the air interface and try to catch the
transmitted packet. The demodulator tries to detect synchronization bits to find the
beginning of the packet. If the demodulator finds the synchronization bits, it returns a
bit field that contains the packet.

8. At the next stage, the receiver thread checks the CRC value of the acquired packet. The
CRC field in the packet content is extracted. Next, the receiver thread passes the first
16 bits of the packet through the CRC. Then, the receiver compares this CRC result
with the extracted CRC field in the packet. If both CRCs are equal, the receiver thread
concludes that the packet is valid. Otherwise, the receiver discards the packet.

9. The total number of successful CRC checks for each receiver is used to calculate
channel reliabilities.

10. After the CRC check, the receiver thread checks the Receiver ID field of the packet. If
the Receiver ID field in the packet is different from the ID of the receiver, the receiver
discards the packet again. If the Receiver IDs align, the acquired packet is assumed to
be successfully received.

11. Receiver threads that have finished their processes are set to idle for a while. The
receiver thread will start listening to the air interface again before the new frame starts
to activate the receiving process before the transmission occurs.

12. Results obtained within a frame are passed to the logging thread. The main task of
this thread is to calculate the average AoI, EAoI, and QAoI based on the result of the
experiment. In addition, channel reliability and other statistics about the experiment
are also calculated in this thread.

13. Before the frame ends, the transmitter thread calculates instantaneous AoIs of the
receivers with the data received within the frame. In the next frame, AoIs of the
receivers and channel statistics will be used as input to the scheduling policy.

This experimental procedure is repeated at each frame. After the overall experiment is
finished, results are saved to a text file.

6. Experiments and Results

Throughout this section, we share the results that we obtained in the USRP envi-
ronment and MATLAB simulations. We share the performances of AoI-aware policies in
Section 6.1, EAoI-aware policies in Section 6.2, and QAoI-aware policies in Section 6.3.

6.1. Evaluation of AoI-Aware Scheduling Policies

In this section, we share the results of the experiments conducted in the SDR network.
We evaluate the performances of AoI-aware scheduling policies, and compare their AoI
performances with round-robin and greedy policies. Round-robin policy activates all links
sequentially, one per frame, regardless of any prior knowledge obtained about receivers.
Greedy policy uses the AoIs of the receivers and selects the receiver with the highest age
for packet transmission.

We evaluate the scheduling policies under various conditions by changing the channel
reliabilities of the receivers among experiments. To change channel reliabilities, we manip-
ulate the gains of the receiver and transmitter USRPs. LabVIEW allows configuring the
signal gains of USRPs. Moreover, we locate receiver USRPs with different distances to the
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transmitter USRP to induce diverse path losses to receiver USRPs. When the signal power
of the transmitter USRP increases, all receivers in the network acquire stronger signals.
Therefore, the channel reliabilities of all receivers increase. Throughout the experiments, we
also adjust the power gains of the receivers to alter the channel reliabilities. The receiver’s
power gain is directly proportional to its channel reliability. Increasing the signal gain of a
receiver reduces the error probability for that receiver and increases the channel reliability.

In the experiments, we run scheduling policies multiple times at each power gain level
and take the average of the obtained results. We compare the scheduling policies in terms
of the average AoI and the throughput of the network.

6.1.1. Adjusting the Gain of an Individual Receiver

In this case, we increase the input signal gain of an individual receiver USRP. Through-
out the experiments, we test the policies ten times at each transmitter gain level and average
the results of redundant experiments. In each experiment, the frame length is K = 7500,
and M = 3 receivers are available in the network. Results of the experiments in terms of
AoI and throughput are given in Figure 5. Average channel reliabilities for each USRP gain
level are given in Table 2.

(a) (b)

Figure 5. Evaluation of average AoI JA (a) and throughput (b) with varying receiver gain
(SDR testbed).

Table 2. Channel statistics in the first experiment set.

Experiment Index p1 p2 p3 Coefficient of Variation CV among Channels

0 0.9997 0.0517 0.0779 0.84
1 0.9997 0.3698 0.078 1.16
2 0.9997 0.7135 0.0747 1.337
3 0.9997 0.9139 0.0795 1.361

6.1.2. Adjusting the Gain of the Base Station

In this case, we increase the output signal gain of the transmitter USRP (base station).
Throughout the experiments, we test the policies five times at each transmitter gain level
and average the results of redundant experiments. In each experiment, the frame length is
K = 7500, and M = 3 receivers are active in the network. Average AoI and throughput of
age-aware policies are illustrated in Figure 6, and the channel statistics for the experimental
setup are given in Table 3.
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(a) (b)

Figure 6. Evaluation of average AoI JA (a) and throughput (b) with varying BS output gain
(SDR testbed).

Table 3. Channel statistics in the second experiment set.

Experiment Index p1 p2 p3 Coefficient of Variation CV among Channels

0 0.9997 0.0814 0.2317 0.988
1 0.9997 0.3566 0.5891 0.496
2 0.9997 0.6811 0.8587 0.196
3 0.9997 0.9055 0.9733 0.051

6.1.3. Comparison of SDR Testbed Results with Simulations

In this section, we share the results of the comparison between simulation and re-
alization. We use the results of the experiment mentioned in Section 6.1.2 as a reference
to the simulation. We use the same channel reliabilities from Table 3 for the simulation
environment and evaluate the policies. Results of the comparison in terms of average AoI
and throughput are given in Figure 7.

(a) (b)

Figure 7. Comparison of simulation and implementation in terms of average AoI JA (a) and through-
put (b).

6.1.4. Interpretation of the Results

As channel reliability decreases, the performances of MW and WIP differ positively
from the others. MW and WIP policies take channel reliability into account in the scheduling
decision. This information enables more efficient use of transmission attempts. On the
other hand, greedy policy does not utilize channel reliability information. If a receiver
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with a very low-quality channel is present in the network, the greedy policy may block
the network by continuous unsuccessful update attempts to that receiver. This results
in an increase in the average AoI of the network. For the first experiment set with the
results illustrated in Figure 5, the performance degradation of the greedy algorithm is more
apparent. Greedy policy always tries to send an update packet to the receiver with the
worst channel condition. However, that receiver rarely receives packets successfully, and
the base station gets stuck in that receiver until a successful packet reception. On the other
hand, since the round-robin policy proceeds by transmitting to all receivers one by one
without using any information about whether the packet is successfully received or not, the
starvation problem does not occur. In both experiments, we also observe that as channel
reliability values of receivers improve and asymmetry of channels decreases, greedy policy
performs better than round-robin. As the channel conditions improve and the asymmetry
among the channels decreases, performances of both policies converge to the optimal. As
the channel reliability rises to 100%, all scheduling policies behave like round-robin and
transmit to all receivers in a cyclic order.

For the SDR testbed simulation comparison case, we use the same average channel
reliabilities in both experiments. We do not observe any significant difference in through-
put, as expected. However, in terms of AoI, we found that the simulation results yield
lower AoI than the SDR implementation. In the simulation environment, the channel
status is a Bernoulli random variable. However, in the SDR implementation, the channel
status is formed by realistic conditions and doesn’t have to be stationary or follow the
Bernoulli distribution. The regularity of the packet arrivals is an essential factor for low
AoI. Even if the channel reliabilities over time are equal for SDR realization and simulation
environments, the imperfections of the realistic channel may reduce the update regularity
more drastically than the Bernoulli-distributed channel.

6.2. Evaluation of EAoI-Aware Scheduling Policies

In this section, we compare the EAoI-aware policies with the traditional policies.
Traditional policies do not utilize query statistics for scheduling decisions, and we aim
to observe the outcomes of using query statistics. We evaluate the policies in the SDR
environment and use EAoI as the primary performance indicator. We also share results
about AoI and throughput metrics. Throughout the experiments, query presences at each
frame are implemented as i.i.d. Bernoulli random variables. In each experiment, the frame
length is K = 7500, and M = 3 receivers are active in the network. We use the proactive
serving method as the query response scenario.

6.2.1. Adjusting the Gain of an Individual Receiver

In this case, we increase the output signal gain of an individual receiver USRP. Through-
out the experiments, we test the policies ten times for each gain level and average the results
of redundant experiments. Evaluation of EAoI and AoI throughout the experiments are
given in Figure 8. Channel statistics corresponding to USRP gain levels are given in Table 4
and query statistics are given in Table 5.
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(a) (b)

Figure 8. Evaluation of effective AoI JE (a) and throughput (b) with varying input gain of second
receiver (SDR testbed).

Table 4. Channel statistics.

Gain p1 p2 p3

0 0.999 0.363 0.078
1 0.999 0.735 0.076
2 0.999 0.930 0.077

Table 5. Query statistics.

q1 q2 q3

0.9 0.9 0.1

6.2.2. Adjusting the Gain of the Base Station

In this case, we increase the output signal gain of the transmitter USRP (base station).
Throughout the experiments, we test the policies at least five times for each gain level and
average the results of redundant experiments. Evaluation of EAoI and AoI throughout the
experiments are given in Figure 9. Channel statistics corresponding to USRP gain levels are
given in Table 6 and query statistics are given in Table 7.

(a)

g

(b)

Figure 9. Evaluation of effective AoI JE (a) and throughput (b) with varying output gain of BS
(SDR testbed).
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Table 6. Channel statistics.

Gain p1 p2 p3

0 0.9997 0.6652 0.2439
1 0.9997 0.9073 0.5983
2 0.9997 0.9830 0.8651
3 0.9997 0.9980 0.9736

Table 7. Query statistics.

q1 q2 q3

0.9 0.1 0.1

6.2.3. Interpretation of the Results

For the EAoI minimization objective, the EAoI-MW and EAoI-WI policies outperform
the policies that do not utilize query information. Moreover, experimental results show that
EAoI-MW surpasses the EAoI-WIP in terms of throughput. For EAoI-aware scheduling
policies, whether the policy is derived for the instantaneous serving or the proactive serving
scenario does not cause a significant difference in EAoI performance. Rather than utilizing
the exact timings of the query arrivals, EAoI-aware policies weight receivers according to
their long-term query arrival statistics. Since there is no significant difference between the
proactive response and instant response scenarios in the long-term query arrival statistics,
there is no significant difference between the performances of the policies. As can be seen
from Figures 8 and 9, the EAoI performances of EAoI-MW derived for the instantaneous
response scenario and the EAoI-WIP derived for the proactive response scenario are very
close to each other.

6.3. Evaluation of QAoI-Aware Scheduling Policies

In this section, we share the results of our experiments. We conducted the experiments
in the simulation environment and the SDR environment. Throughout the experiments, we
evaluated the performance of the QAoI-aware MW policy in terms of QAoI and AoI, and
we used the AoI-aware MW policy as a benchmark.

6.3.1. Results from Simulation Environment

We conducted four experiments in the MATLAB environment. In each experiment, the
frame length was K = 1,100,000, and M = 10 receivers were active in the network. Within
the experiments, we adjusted the query period of the receivers and observed the result of
this increment from the AoI and QAoI perspectives. We initialized query periods to prevent
the overlap of the query frames for each receiver. We assume ai(t) is stationary through
time by taking advantage of non-overlapping queries, and we calculate fi as fi = 1 − pi in
Q-MW policy. Channel reliabilities (long-term average packet success rates) measured in
the experiments are summarized in Table 8. Average QAoI and AoI obtained by Q-MW
policy for each experiment are given in Figures 10 and 11, respectively.

Table 8. Channel statistics for simulations.

Experiment Index p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
2 0.9 0.9 0.9 0.9 0.9 0.1 0.1 0.1 0.1 0.1
3 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
4 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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(a) Experiment-1 (b) Experiment-2

(c) Experiment-3 (d) Experiment-4

Figure 10. Evaluation of Q-MW policy in terms of average QAoI (JQ).

(a) Experiment-1 (b) Experiment-2

Figure 11. Cont.
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(c) Experiment-3 (d) Experiment-4

Figure 11. Evaluation of Q-MW policy in terms of average AoI (JA).

6.3.2. Results from the USRP Testbed

We conducted two experiment sets in the SDR testbed. In both experiment sets, we
increased the output signal gain of the transmitter USRP (base station) to observe the effects
of various channel reliabilities (i.e., packet success rates). For each signal gain level, we test
the policies at least ten times and average the results of redundant experiments. The frame
length of each test was K = 7500, and there were M = 3 receivers in the network. In the
first experiment set, the query period of receivers was 25, and in the second experiment set,
the query period of the receivers was 5. In both experiment sets, we initialize the query
periods to prevent the arrival of multiple queries within the same frame. We assume ai(t) is
stationary through time by taking advantage of non-overlapping queries, and we calculate
fi as fi = 1 − pi in Q-MW policy.

For the first experiment set, evaluation of QAoI and AoI are given in Figures 12 and 13,
respectively. Channel reliabilities corresponding to USRP gain levels are given in Table 9.
For the second experiment set, evaluation of QAoI and AoI are given in Figures 14 and 15,
respectively. Channel reliabilities corresponding to USRP gain levels are given in Table 10.

Figure 12. Evaluation of QAoI (JQ) for varying power levels of transmitter USRP, 25 frames length
query period.
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Figure 13. Evaluation of AoI (JA) for varying power levels of transmitter USRP, 25 frames length
query period.

Table 9. Channel statistics.

USRP Power Level p1 p2 p3

2 0.9997 0.2331 0.1681
3 0.9997 0.4203 0.3175
4 0.9997 0.5567 0.4775
5 0.9997 0.7245 0.6589

In the second experiment, we increase the output signal gain of the transmitter USRP
(base station). Throughout the experiments, we test the policies at least ten times for each
gain level and average the results of redundant experiments. In each experiment, the frame
length is K = 7500, and M = 3 receivers are active in the network. In this experiment, the
query period for each receiver is 5 frames. We initialize the query periods such that the
queried frames of receivers do not overlap at the same frame.

Figure 14. Evaluation of QAoI for varying power levels of transmitter USRP.
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Figure 15. Evaluation of AoI for varying power levels of transmitter USRP.

Table 10. Channel statistics.

USRP Power Level p1 p2 p3

2 0.9997 0.2380 0.1687
3 0.9997 0.4109 0.3167
4 0.9997 0.5721 0.4796
5 0.9996 0.7299 0.6635

6.3.3. Comparison of SDR Testbed Results with Simulations

In this section, we share the results of the comparison between simulation and re-
alization. We use the results of the experiment illustrated in Figure 14 as a reference for
the simulation. We use the same channel reliabilities from Table 10 for the simulation
environment. Results of the comparison in terms of QAoI are given in Figure 16.

Figure 16. Comparison of simulation and realization results.

6.3.4. Interpretation of the Results

Within the scope of the experiments, we studied the case where query arrivals are
periodic. According to the results of both SDR realization and simulations, the Q-MW
policy outperforms the AoI-MW policy for the QAoI minimization objective. By utilizing
the query arrival information, the Q-MW scheduling policy can select receivers more
efficiently, and thus it can exhibit superior QAoI performance compared to AoI-MW.

Throughout the simulations, we investigated Q-MW in networks with various channel
reliabilities. In the first experiment, we considered ten receivers with good channel relia-
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bility. According to the results of this experiment, in cases where the query periods of the
receivers do not overlap, the QAoI policy can reduce the average QAoI in the network to
approximately one, which is the lowest possible limit. In the first experiment, the expected
number of attempts to update a receiver is close to one. Having a reduced number of
attempts enables the scheduling policy to distribute scheduling decisions more effectively
and eases the alignment of the scheduling decisions with the query periods. In the second
experiment, all receivers have poor channel qualities,and the number of attempts needed to
update a receiver is high. As the channel reliabilities decrease, the expected number of at-
tempts to update a receiver increases, and aligning the scheduling decisions with the query
periods become more challenging. In this case, the performance of query-aware policies
is reduced. As the query period increases, queried frames of the receivers become more
distant from each other, which positively affects the performance of query-aware policies.

The fact that the transmission can only be allocated to a single receiver in each frame
is one of the most fundamental limitations of the network. The QAoI-aware MW policy we
recommend, on the other hand, reduces the need for packet transmission in the network by
taking into account the query periods of receivers’ timely information requests and eases
the transmission allocation constraint in line with the query periods.

7. Conclusions and Future Work

Within the scope of the paper, we have examined the AoI, EAoI, and QAoI, which are
semantic communication metrics that prioritize information freshness. We implemented a
multi-user wireless network with SDRs to examine these metrics in real-world scenarios.
We investigated the performance of AoI-aware scheduling policies by comparing their AoI
performance with traditional scheduling policies. The emulation results reveal that the
WI and MW policies are superior to the round-robin and greedy policies, as they exploit
the information on the link reliabilities and AoIs of the receivers. Experimental results
obtained in the SDR testbed are close to simulation results when packet drops are rare, but
as the link reliabilities decrease, they begin to show some slight discrepancies. We attribute
this to the following: the AoI-aware policies adopted in this work were derived under
Bernoulli-distributed packet drops; however, as channels get poorer, the sequence of packet
drops tends to acquire a memory.

We have also studied the Effective AoI and Query AoI metrics to examine the freshness
of information from the perspective of the query source in pull-based networks. For the
EAoI domain, we proposed EAoI-MW policy by leveraging the formerly defined AoI-aware
policies. We implemented and tested the EAoI-MW and EAoI-WI policies on the SDR
Network. Experiment results show that utilizing the statistical information about the query
process significantly improves EAoI performance. We observed that EAoI-MW policy
exhibits a comparable performance with EAoI-WI and yields better results throughput. For
the Query AoI metric, we have proposed a scheduling policy by adapting the max-weight
policy to the QAoI case for multi-user pull-based network scenarios. We tested the resulting
Q-MW policy in simulation and SDR implementation environments. Results reveal that
utilizing the Q-MW policy can reduce QAoI significantly compared to AoI-aware policies.

In future studies, we seek to examine different semantic metrics beyond AoI. To this
end, we want to expand the scope of our work on the QAoI. We also aim to investigate and
optimize the Q-MW policy for the stochastic query arrival scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

AoI Age of information
WIP Whittle’s index policy
EAoI-WIP EAoI-aware Whittle’s index policy
MWP Max-weight policy
EAoI-MW EAoI-aware max-weight policy
Q-MW QAoI-aware max-weight policy
QAoI Query age of information
EAoI Effective age of information
MAB Multi-armed bandit
RMAB Restless multi-armed bandit
MDP Markov decision process
SDR Software-defined radio
USRP Universal software radio peripheral
PSK Phase Shift Keying

Appendix A

The framework of the Lyapunov optimization aims to minimize the Lyapunov function
at every time instant t. Lyapunov function at time t is given in (A1).

L(t) =
1
M

M

∑
i=1

Δ2
qi
(t) (A1)

At frame transitions, each receiver causes a drift in L. For the EAoI concept, we focus on the
drift between consecutive frames. The drift is associated with the receiver’s AoI evolution.
For each receiver, calculation of the Lyapunov drift Yi(t) between the frames t and t + 1 is
given in (A2).

Yi(t) = E
[
Δ2

qi
(t + 1)− Δ2

qi
(t)

]
= E

[
di(t)Δ2

i (t + 1)− di(t)Δ2
i (t)

]
(A2)

Since we assume that policies are non-anticipative, which means the policies do not
have information about future channel or query status, we can argue that Δi(t) and di(t)
are independent.

E[di(t)Δi(t)] = E[di(t)]E[Δi(t)] (A3)

We rewrite the Lyapunov drift using E[di(t)] = qi and E[di(t + 1)] = qi.

Yi(t) = E
[
qiΔ2

i (t + 1)− qiΔ2
i (t)

]
(A4)

After this modification, the derivation process becomes identical with [5]. We write
the transition of Δi(t) between consecutive frames in (A5).

Δi(t + 1) =ui(t) + (1 − ui(t))(Δi(t) + 1)

=ai(t)ci(t) + (1 − ai(t)ci(t))(Δi(t) + 1)
(A5)

Then, we rewrite the Lyapunov drift by expressing Δi(t + 1) in terms of Δi(t).

Yi(t) = E
[
qi[ui(t) + (1 − ui(t))(Δi(t) + 1)]2 − qiΔ2

i (t)
]

(A6)
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Since ui(t) is 0-or-1 variable, we can argue that u2
i (t) = ui(t), (1− ui(t))2 = (1− ui(t))

and ui(t)(1 − ui(t)) = 0. With these simplifications, we can rewrite Yi(t).

Yi(t) =E
[
qi

[
ui(t) + (1 − ui(t))(Δi(t) + 1)2

]
− qiΔ2

i (t)
]

=E
[
qi

[
Δ2

i (t) + 2Δi(t) + 1 − ui(t)Δ2
i (t)− 2ui(t)Δi(t)

]
− qiΔ2

i (t)
]

=E
[
qi

[
2Δi(t) + 1 − ui(t)Δ2

i (t)− 2ui(t)Δi(t)
]]

=qi

[
2Δi(t) + 1 −E[ui(t)]Δ2

i (t)− 2E[ui(t)]Δi(t)
]

=
[
2qiΔi(t) + qi − qi piE[ai(t)]Δ2

i (t)− 2qi piE[ai(t)]Δi(t)
]

(A7)

The ai(t) is the decision variable that we can select zero or one. We only aim to
investigate the effect of changing ai(t). Since the results of other terms in Yi(t) do not
change as ai(t) change, we omit them and focus on the terms that have ai(t) as a coefficient.

Ŷi(t) =− qi piE[ai(t)]Δ2
i (t)− 2qi piE[ai(t)]Δi(t)

= −E[ai(t)]
(

qi pi

(
Δ2

i (t) + 2Δi(t)
))

= −E[ai(t)]Ci(t)

(A8)

Ci(t) = qi pi

(
Δ2

i (t) + 2Δi(t)
)

(A9)

The max-weight policy aims to minimize the average Lyapunov drift by selecting the
receiver i with maximum Ci(t) = qi pi

(
Δ2

i (t) + 2Δi(t)
)

at every frame t.
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Abstract: The Age of Information (AoI) measures the freshness of information and is a critic perfor-
mance metric for time-sensitive applications. In this paper, we consider a radio frequency energy-
harvesting cognitive radio network, where the secondary user harvests energy from the primary
users’ transmissions and opportunistically accesses the primary users’ licensed spectrum to deliver
the status-update data pack. We aim to minimize the AoI subject to the energy causality and spectrum
constraints by optimizing the sensing and update decisions. We formulate the AoI minimization
problem as a partially observable Markov decision process and solve it via dynamic programming.
Simulation results verify that our proposed policy is significantly superior to the myopic policy under
different parameter settings.

Keywords: Age of Information; RF energy-harvesting; cognitive radio network; dynamic programming

1. Introduction

To cope with both the spectrum scarcity and the energy shortage challenges in future
wireless networks, radio frequency (RF) energy-harvesting in cognitive radio networks
(CRN) has been increasingly attractive. Cognitive radio technology allows secondary users
(SUs) to opportunistically access the primary users’ (PUs) licensed spectrum, based on
the condition that the SUs transmission must not cause harmful interference to PUs [1–4].
Meanwhile, the RF energy-harvesting technique conquers the intermittency and uncon-
trollability of the conventional charging techniques absorbing energy from renewable
energy sources [5–7]. Hence, it can simultaneously improve energy efficiency and spectral
efficiency, where the SUs can both capture energy and spectrum [8].

While existing works mainly investigated throughput of the RF energy-harvesting
CRN, many emerging applications require timely status-update delivery [9–15], i.e., health
monitoring, environment monitoring, smart building, vehicle-to-vehicle networking, and so
on. For example, in health monitoring, the sensors continuously measure and update blood
pressure and heartbeat to the health monitoring platform, which implies the importance of
the freshness and timeliness of status-update. The Age of Information (AoI) as a recently
proposed performance metric can be used to quantify the freshness and timeliness of
status-update [16–23]. It is defined as the time elapsed since the generation time of the
latest successfully received status-update at the destination.

Some innovative efforts have been devoted to the AoI of CRN [24–28]. In [24], the
authors considered a cognitive wireless sensor network with a cluster of SUs, where
the authors proposed a joint and scheduling strategy that optimized energy efficiency
of a communication system subject to the expected AoI. The authors in [25] considered
an overlay CRN where the SU acted as a relay. The SU forwarded the PU’s packets or
transmitted its own packets. The optimal policy for status-update and packet relaying
was investigated to minimize the average AoI and energy efficiency. In [26], the authors
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analyzed the average peak AoI of the PU and SU for both overlay and underlay schemes.
The asymptotic expressions of the average peak AoI were derived when the PU operated
at high signal-to-noise ratio. Considering that it is difficult for PU keeping time-slotted
synchronization with SU, the authors in [27] investigated AoI minimization in CRN with
an unslotted PU. The closed-form expression was derived by conducting a Markov chain
analysis. In [28], the authors considered AoI minimization for energy-harvesting CRN.
They assumed that the SU harvests energy from ambient energy sources and derived the
optimal sensing and update policies for both perfect and imperfect spectrum sensing.

Overall, the aforementioned research efforts rarely address AoI minimization for RF
energy-harvesting CRN. Motivated by this, this article attempts to minimize the average
AoI by adaptively making sensing and updating decisions subject to the energy causality
and spectrum constraints with imperfect spectrum sensing. The system consists of one PU
and one SU. Different from [28], the SU harvests RF energy from PU transmissions instead
of ambient energy sources, which is further used to generate and deliver the status-update
data pack when the PU is idle. The SU utilizes the harvested energy to perform spectrum
sensing and updating. The main contributions of this paper are summarized as follows:

• We study the average AoI minimization for RF energy-harvesting CRN where the SU
harvests energy from PU transmissions. In each time slot, the SU adaptively makes
sensing and updating decisions based on the channel state information, the AoI value,
the available energy, and the belief of PU’s spectrum.

• We formulate the decision-making problem as a framework of a partially observable
Markov decision process (POMDP) with finite state and action spaces. Then we use
dynamic programming to obtain the optimal policy.

• We demonstrate through extensive simulations that the proposed policy can essentially
improve the system performance compared to the myopic policy under different
system parameter settings.

The remaining part of the paper is organized as follows. In Section 2, we review the
works on RF energy-harvesting CRN in the literature. Section 3 describes the studied system
model for RF energy-harvesting CRN. Section 4 first formulates the AoI minimization
problem as a POMDP framework and then solves it through the dynamic programming.
Section 5 presents simulation results and discussions. Finally, Section 6 concludes this paper.

2. Related Works on RF Energy-Harvesting CRN

Recently, cognitive radio technology has drawn significant attention as a promising
solution to overcome the licensed spectrum severe scarcity. Cognitive radio allows SUs
to opportunistically access PUs’ licensed spectrum, based on the condition that the SUs
transmission must not cause harmful interference to PUs [1–3]. Spectrum sensing is an
important functionality in the cognitive radio system [29], by which the SUs decide whether
the spectrum is occupied by the PUs. It can be performed by a single SU or in cooperation
with multiple SUs. The SUs can only transmit data when the PUs are idle [30]. Various
spectrum-sensing approaches have been developed based on employing different features
of the PUs’ signal [31], such as coherent detection [32], energy detection [33], and feature
detection [34].

On the other hand, energy shortage is also a challenge in future wireless networks.
Over the last past years, the RF energy-harvesting technique has emerged as a candidate
method for charging low-power wireless devices, which can conquer the intermittency and
uncontrollability of the conventional charging techniques absorbing energy from renewable
energy sources [5–7]. In [35], the authors proposed the harvest-then-transmit (HTT) protocol
as one of the important transmission strategies of RF energy-harvesting technology, where
the users first harvest energy from the hybrid access point (HAP) and then use the captured
energy to transmit information to the HAP. There have been some related works before.
In [36], the authors investigated the wireless-powered network (WPCN) where one HAP
coordinated the wireless information and energy transmissions to a set of nodes, where
the transmission completion time minimization subject to the throughput requirement per
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node was considered. Furthermore, the authors studied a similar WPCN scenario in [37],
where they focused on energy provision minimization for two physical-layer protocols, non-
orthogonal multiple access (NOMA) and time-division multiple access (TDMA). Different
from the common WPCN with a fixed HAP, the transmission completion time minimization
was investigated in aerial vehicle-enabled WPCN in [38].

To jointly solve the aforementioned two challenges including spectrum scarcity and
energy shortage, introducing RF energy-harvesting in CRN has been increasingly attractive
due to the fact that it can simultaneously improve energy efficiency and spectral efficiency,
where the SUs can both capture energy and spectrum [8]. The timely-delivery probability
of data packs for the RF energy-harvesting SU was derived in [39], where the SU oppor-
tunistically accesses the spectrum vacated by the PU to deliver real-time data packs and
harvests RF energy when the PU is active. Unlike the traditional RF energy-harvesting CRN
system where the SU keeps synchronization with the PU, the authors in [40] considered
unslotted PU. The sensing intervals were derived to balance between energy harvesting
and spectrum access. However, both [39,40] focused on a simple CRN consisting of one
PU and one SU. The authors in [41–43] considered a more general scenario where there
were multiple SUs or multiple PUs. In [41], the multiple selection strategy was proposed
for RF energy-harvesting CRN to maximize the SUs’ average throughput. In [42], the au-
thors studied a hybrid energy-harvesting SU that can capture energy from both renewable
sources and ambient radio frequency signals. The asymptotic activity behavior of a single
SU was analyzed by deriving the theoretical upper bound on sensing and transmission
opportunities. In [43], the authors investigated the end-to-end throughput maximization
by jointly optimizing the transmit power and time allocation for multiple SUs.

3. System Model

As illustrated in Figure 1, we investigated AoI minimization for a RF energy-harvesting
CRN, where the system consists of one PU, one SU, and one CBS communicating with the
SU. The SU is a wireless sensor node that monitors the physical process and randomly
generates status updates to the CBS. It has no embedded power supply available and
harvests RF energy from PU transmissions. Additionally, it opportunistically accesses the
PU’s licensed spectrum. We considered a time-slotted system with a time interval of T time
slots. The duration of each time slot is sufficient for the SU to generate one status-update
data packet and receive it successfully at the CBS. Without loss of generality, we assume
that the time slot duration is 1 s. The important notations are summarized in Table 1.

Figure 1. System model. In each time slot, the SU can harvest energy from the PU transmissions and
can deliver the status-update date pack to the CBS when the channel is idle.
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Table 1. List of notations used in this paper.

Notation Definition

pai The transition probability from the active state to the idle state
pii The transition probability from the idle state to the idle state
p f The false alarm probability
pd The detection probability
φt The sensing decision at time slot t
θt The update decision at time slot t
q̂t The sensing result
δ The energy consumption on sensing spectrum
τs The time consumption on sensing spectrum

ET,t The energy consumption on update
τt The time consumption on update
S The size of status-update data pack
at The AoI at time slot t
ρt The belief probability

bmax The maximum battery energy level
gmax The maximum channel power gain level from the SU to the CBS
hmax The maximum channel power gain level from the PU to the SU

Φ The belief space
η The energy-harvesting efficiency
σ2 The noise power

Bmax The battery capacity of the SU
Amax The upper of AoI

st The current state
xt The action at time slot t

3.1. Primary User Model

The occupancy of a channel by the PU is modeled as a two-state continuous-time
Markov chain [44], i.e., active (A) and idle (I) states. In each time slot, the PU either stays
in the idle state or occupies the spectrum in an active state. The two-state (active/idle)
Markov chain model for modeling PU activity has been verified to be an appropriate model
to characterize spectrum occupancy in the time domain [45]. Let qt ∈ {A, I} denote the
state of the PU for t = 0, 1, . . . , T − 1. The transition probabilities of the two-state Markov
chain are expressed as pai and pii, which represent transitioning from the active state to the
idle state, and still staying in the idle state, respectively. For t = 0, 1, . . . , T − 1, we have

pai � P(qt+1 = I|qt = A), (1)

pii � P(qt+1 = I|qt = I). (2)

The transition probabilities are known to SU, which can be obtained by long-term measure-
ments.

3.2. Secondary User Model

We considered the SU time-slotted synchronization with the PU. At the beginning of
each time slot, the SU needs to decide whether to sense the PU’s spectrum. If it decides
not to sense the spectrum, it takes the entire time slot to harvest energy from the PU
transmissions. That is, energy can be harvested when the PU is active; otherwise, no energy
is harvested. We assume the imperfect sensing outcome for the SU [46]. We denote the
probability of a false alarm by p f (i.e., the probability of deciding the spectrum is occupied
by the PU while it is not). The probability of detection is denoted by pd (i.e., the probability
of deciding PU is active when it is active). Then, we have

p f = P(q̂t = A|qt = I), (3)

pd = P(q̂t = I|qt = I). (4)
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The SU will take two actions after obtaining the sensing result. When the PU is sensed
to be active, the SU will not deliver the status-update data pack. This means that it can
harvest energy when the PU is actually active. On the other hand, if the sensing result is
that the spectrum is vacated by the PU, the SU needs to further decide whether to update.
If an update package is delivered, the SU will receive a 1-bit feedback signal from the CBS
to determine whether the update is successful or not. When the sensing result q̂t = I is
correct, the update is successful. This happens with probability 1 − p f . Update failure
occurs if the PU is active despite the SU declaring it idle. This happens with probability
1 − pd. The SU aims to minimize the average AoI by making the optimal sensing and
update decisions over time slot t = 0, 1, . . . , T − 1. We denote the decision of time slot t
by xt = (φt, θt), where φt∈{0(not sense), 1(sense)} and θt ∈ {0(not update), 1(update)}
denote the sensing and update decisions, respectively. The optimal sensing and update
decisions are based on the SU’s states and its statistical knowledge of the PU activity.

(1) Belief model: The SU observes the availability of the PU spectrum by adaptively
detecting and accessing the spectrum. The belief state of the PU spectrum can be obtained
based on the SU’s action and observation history. That is, at the beginning of each time slot
t, the SU forms the belief ρt. The belief ρt is the conditional probability that the PU is in an
idle state given the SU’s action and observation history.

(2) Channel model: Denote the channel power gains from the PU to the SU and from
the SU to the CBS by ht and gt over time slot t. We consider a quasi-static channel model
based on one time slot by assuming that the channel state information is constant in a
single time slot and variable in different time slots. Especially, as is commonly assumed in
the works about the wireless communication system, the channel state information of the
current time slot can be perfectly obtained.

(3) RF energy-harvesting model: The batter-free SU harvests energy from the occupied
spectrum by the PU. For the SU, the HTT protocol is employed. That is, the SU first captures
energy from the PU transmissions and then utilizes the harvested energy to sense spectrum
and transmit data. Overall, there are two cases where energy can be harvested over time
slots: (1) The not sensing decision is made, and the PU is inactive, and (2) the sensing
decision is made, and the sensing result q̂t = A is correct. The energy captured by the SU is
expressed as

Em
H,t = ητPht, (5)

for t = 0, 1, . . . , T − 1 and m = 1, 2, where η, τ and P denote the energy-harvesting efficiency,
energy-harvesting time and transmit power at the PU, respectively. The superscript m
denotes the two cases of energy-harvesting mentioned above. The captured energy is used
to perform sensing spectrum and update. Denote the energy and time consumption on
sensing spectrum by δ and τs, respectively. Similarly, let ET,t and τt denote the energy
and time consumption on update, respectively. Energy consumption ET,t is time-varying,
which is related to the channel state information gt from the SU to the CBS. According to
Shannon’s formula [47], the transmission rate S

τt
can be expressed as S

τt
= W log2(1+

ET,tgt
τtσ2 ),

where σ2 is the noise power at the CBS, S is the size of status-update data pack, and W is
the bandwidth. Reorganizing the expression, we obtain the energy consumption, ET,t, as

ET,t =
σ2τt

gt

(
2

S
τtW − 1

)
. (6)

Since the size of the status-update data pack is fixed, ET,t is only related to the channel
state information from the SU to the CBS. Although the update decision can reduce the AoI
to one, when the channel quality is poor, it may be better not to deliver the status-update
data pack to conserve energy. Note that update failure occurs if the sensing result q̂t = I
is incorrect. In this case, the SU will consume all its available energy. Let Bmax denote the
battery capacity of the SU. In time slot t, the battery state is bt, which evolves as

bt+1 = min{bt + Em
H,t − φtδ − θtET,t, Bmax}, t = 0, 1, . . . , T − 1. (7)
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Hence, for the SU, the energy causality constraint should satisfy

φtδ + θtET,t ≤ bt, t = 0, 1, . . . , T − 1. (8)

(4) AoI model: We consider a linear model for the AoI [16], where the AoI is defined as
the time elapsed from the moment when the most recently received update was generated
to the present. Let the AoI at time slot t denote by at ∈ A � {1, 2, . . ., Amax}. Here Amax is
the upper of the AoI and is defined as

Amax = a0 + T. (9)

In the considered system, the SU adopts the generate-at-will scheme. That is, the SU
generates and delivers a status-update data pack after making an update decision. At
each time slot t, the size of the data packet S is small enough to be generated and updated
immediately and received by the end of the current time slot when the update decision
is made and the sensing result q̂t = I is correct. If the update is received at the CBS, AoI
decreases to one; otherwise, it increases by one. We consider an error-free channel through
which the status-update data pack can be successfully received at the CBS when the update
decision is made and the sensing result q̂t = I is correct. The average AoI for an interval of
T time slots is expressed as

A =
1
T

T−1

∑
t=0

at, t = 0, 1, . . . , T − 1. (10)

4. POMDP for AoI Minimization

In this section, we formulate the AoI minimization as a finite-horizon POMDP problem
and solve for the optimal solutions via dynamic programming.

4.1. POMDP Formulation

We use a POMDP framework to model the optimal sensing and update decisions for
the SU’s AoI minimization. The components of POMDP are described as follows.

• Actions: At the beginning of each time slot t, the SU needs to decide whether to sense
the spectrum. If it decides not to sense the spectrum, then it captures energy from
the PU transmissions and does not update, i.e., xt = (0, 0). If it decides to sense the
spectrum and finds that the PU is idle, it further decides whether to update based on
the available energy, the AoI value, the channel state information from the SU to the
CBS and from the PU to the SU, i.e., xt = (1, 0) and xt = (1, 1). Thus, the action for
each time slot t is xt = (φt, θt) ∈ X � {(0, 0), (1, 0), (1, 1) : bt ≥ φtδ + θtET,t}, where
φt ∈ Γφ � {0, 1 : bt ≥ φtδ} and θt ∈ Γθ � {0, 1 : bt ≥ δ + θtET,t} .

• Observations and beliefs: Let q̂t ∈ {A, I} denote the observation of the PU’s state. The
belief ρt ∈ [0, 1] is a condition probability that the spectrum is vacated by the PU. The
belief is updated according to the following cases.
Case 1: The SU does not sense the spectrum; the new belief is given by

ρt+1 = Λ0(ρt) = ρt pii + (1 − ρt)pai. (11)

Case 2: If the PU is sensed to be active, the SU harvests energy in the remaining time
of the current time slot, i.e., the battery energy increases. This implies the true state of
the PU is qt = A. The belief is updated as

ρt+1 = pai. (12)
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Case 3: If the PU is sensed to be active, the SU does not harvest energy; i.e., the battery
energy does not change and is lower than Bmax. This implies the true state of the PU
is qt = I. The new belief is expressed as

ρt+1 = pii. (13)

Case 4: If the PU is sensed to be active, the battery energy is Bmax at time slot t. The
new belief is given by

ρt+1 = Λ1A(ρt) = ζt pii + (1 − ζt)pai, (14)

where

ζt�P(qt = I|q̂t = A) =
ρt(1 − p f )

ρt p f +(1 − ρt)(1 − pd)
. (15)

Case 5: If the PU is sensed to be idle, the SU does not update. The belief is updated as

ρt+1 = Λ1I(ρt) = ζ̄t pii + (1 − ζ̄t)pai, (16)

where

ζ̄t�P(qt = I|q̂t = I) =
ρt(1 − p f )

ρt(1 − p f )+(1 − ρt)(1 − pd)
. (17)

Case 6: If the PU is sensed to be idle, the SU updates successfully. This implies that
the true state of the PU is qt = I. Then, we have

ρt+1 = pii. (18)

Case 7: If the PU is sensed to be idle, the SU update fails. This implies that the true
state of the PU is qt = A. Then, we have

ρt+1 = pai. (19)

Although (11)–(19) cover seven cases from case one to case seven, the new beliefs in
both case two and case seven are denoted as pai, and the new beliefs in both case three
and case six are denoted as pii. Hence, the SU can only transit to five beliefs. That is,
the number of possible beliefs is finite over T time slots. Thus, for the length of T time
slots, the belief space Φ is a finite set.

• States: Denote the discrete battery energy level of the SU at the beginning of time
slot t by b

′
t ∈ B � {0, 1, 2, . . ., bmax}, where bmax is the maximum battery energy level

that can be stored inside the battery of the SU. Then, each energy quantum of the
SU’s battery contains Bmax

bmax
Joules. In this case, we use b

′
t =

⌊
btbmax
Bmax

⌋
to convert the

continuous battery energy of the SU to the discrete battery energy level, by which
a lower bound to the AoI of the original continuous system is obtained. Similarly,
divide continuous channel power gain into finite number of intervals according to
fading probability density function (PDF). Thus, the discrete channel power gain
levels from the SU to the CBS and from the PU to the SU are expressed as g

′
t ∈ G �

(0, 1, 2, . . ., gmax) and h
′
t ∈ H � (0, 1, 2, . . ., hmax), respectively. Here, gmax and hmax

denote the corresponding maximum channel power gain levels. At each time slot t, the
completely observable states include channel state from the PU to the SU, channel state
from the SU to the CBS, the AoI state, and battery state, denoted by st � (h

′
t, g

′
t, at, b

′
t).

Note that the state space, i.e., S � H× G ×A×B, is finite. Due to imperfect sensing,
an update may be unsuccessful when the sensing result is q̂t = I and the update
decision is θt = 1. Thus,

at+1=

{
1, when xt = (1, 1) and q̂t = qt,
at + 1, otherwise,

(20)
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for t = 1, 2, . . . ., T. Alternatively, we can express at+1 = (1 − θt)at + 1 when the
sensing result q̂t = I is correct. Additionally, the PU’s spectrum state is only partially
observable, which is described by the belief ρt. Thus, for each time slot t, the complete
system state is denoted by (st, ρt). Since S and Φ are finite, the SU experiences a finite
number of possible system states (st, �t) ∈ S × Φ.

• Transition probabilities: For time slot t, given the current state st = (h
′
t, g

′
t, at, b

′
t) and

the action xt = (φt, θt), the transition probability to the next state st+1 = (h
′
t+1, g

′
t+1, at+1,

b
′
t+1) is denoted by pxt(st+1|st). Since the captured energy and the channel power

gains are independently and identically distributed (i.i.d), the transition probabilities
for taking actions other than xt = (1, 1) are given as follows.

pxt(st+1|st) = P(at+1|at, xt)P(b
′
t+1|b

′
t, g

′
t, h

′
t, xt)P(g

′
t+1)P(h

′
t+1), (21)

where

P(at+1|at, xt)=

{
1, when at+1 = (1 − θt)at + 1,
0, otherwise,

(22)

P(b
′
t+1|b

′
t, g

′
t, h

′
t, xt) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, when φt = 0 and bt+1 = min{ bt + E1
H,t, Bmax},

1, when φt = 0 and bt+1 = bt,
1, when φt = 1, θt = 0, and bt+1 = min{bt − δ + E2

H,t, Bmax},
1, when φt = 1, θt = 0, and bt+1 = bt − δ,
0, otherwise.

(23)

For the action xt = (1, 1), the transition probability is expressed as follows.

pxt(st+1|st, q̂t, qt) = P(at+1|at, xtq̂t, qt)× P(b
′
t+1|b

′
t, g

′
t, h

′
t, xt)× P(g

′
t+1)P(h

′
t+1), (24)

where

P(at+1|at, xt)=

⎧⎨⎩
ζ̄, when at+1 = 1 and qt = q̂t,
1 − ζ̄, when at+1 = at + 1 and qt ≤ q̂t,
0, otherwise,

(25)

and

P(b
′
t+1|b

′
t, g

′
t, h

′
t, xt) =

⎧⎨⎩
1, when φt = 1, θt = 1, bt+1 = bt − δ − ET,t, and q̂t = qt,
1, when φt = 1, θt = 1, bt+1 = 0, q̂t = I, and qt = A,
0, otherwise.

(26)

• Cost: Let the immediate cost at state st denoted by C(st), which is the accumulated
AoI at time slot t. Then, we have

C(st) = at, t = 0, 1, . . ., T − 1. (27)

• Policy: The policy is expressed as π = {ϑ0, ϑ1, . . ., ϑT−1}, where ϑt is the deterministic
decision rule that maps a system state (st, ρt) ∈ S × Φ into an action xt ∈ X , i.e.,
xt = ϑt(st, ρt). In this paper, let Π denote the set of all deterministic decision policies.

Given the SU’s initial state s0 and belief ρ0 of PU’s spectrum, the average AoI of T
time slots under the policy π is given by

Aπ
(s0, ρ0) =

1
T
E

[
T−1

∑
t=0

C(st)|s0, ρ0

]
, (28)

where the expectation is caused by policy π. Based on the above analysis, minimize the
average AoI by finding the optimal sensing and update policy corresponds to solving

min
π∈Π

Aπ
(s0, ρ0). (29)
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Given T, (29) is a finite-state MDP with total cost. Based on (28) and (29), to minimize the
average AoI, the SU should sense the spectrum and deliver the status-update data pack as
long as it has sufficient energy. However, considering the channel state information, the
belief of PU’s spectrum, and the battery energy available, preferring the spectrum sensing
and status-update may not be the best decision.As a result, there is an optimal decision
scheduling problem.

4.2. POMDP Solution

In this section, we use dynamic programming to solve total cost minimization of T
time slots in (29) [48]. At a time slot t, the successive actions {xk}T−1

k=t affect the states sk
along with the accumulated AoI C(sk) for all k = t, t + 1, . . . , T − 1. Let Vt(st, ρt) denote
the state-value function, which is given by

Vt(st, ρt) � min
{xk}T−1

k=t

E

[
T−1

∑
k=t

C(sk)|st, ρt

]
. (30)

It is the minimum expected cost accumulated from time slot t to T − 1 given state (st, ρt).
Thus, denote the minimum AoI in (29) by A∗ = V0(s0, ρ0)/T. Additionally, given (st, ρt)

and sensing action φt, let Qφt
t (st, ρt) represent the action-value function or Q-function,

which is the minimum expected cost for taking sensing action φt at state (st, ρt). The
Q-function includes two parts: the immediate cost of taking action at the current state and
the expected sum of the state-value functions from the next time slot.

Overall, the formulated MDP problem can be solved recursively by dynamic program-
ming as follows. For t = 0, 1, . . . , T − 1,

Vt(st, ρt) = min
φt∈Γφ

Qφt
t (st, ρt), (31)

When t = T − 1, we have

Q0
T−1(sT−1, ρT−1) = C(sT−1) + C(sT), (32)

Q1
T−1(sT−1, ρT−1) = (1 − ΔT−1)C(sT−1) + ρT−1 × ΔT−1 min

φT−1∈Γφ

C(sT−1) + C(sT). (33)

When t = 0, 1, . . . , T − 2, we have

Q0
t (st, ρt) = C(st) + ∑

st+1

p00(st+1|st)Vt+1(st+1, Λ0(�t)), (34)

Q1
t (st, ρt) = (1 − Δt)Q1A

t (st, ρt) + Δt min
θt∈Γφ

Q1φt
t (st, ρt), (35)

Q1A
t (st, ρt) = C(st) + ∑

st+1

p10(st+1|st)Vt+1(st+1, Λ1A(�t)), (36)

Q10
t (st, �t) = C(st) + ∑

st+1

p10(st+1|st)Vt+1(st+1, Λ1I(�t)), (37)

Q11
t (st, ρt) =C(st)+∑

st+1

p11(st+1|st, q̂t =qt)Vt+1(st+1, ΛI(�t))

+ ∑
st+1

p11(st+1|st, q̂t ≤ qt)Vt+1(st+1, ΛA(�t)), (38)
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where Δt represents the probability of observing PU idle. That is

Δt = P(q̂t = I) = ρt(1 − p f ) + (1 − ρt)(1 − pd). (39)

Especially, Q1A
t (st, ρt) in (36) represents the minimum expected cost by adopting sensing

action φt = 1 and sensing result q̂t = A, i.e., xt = (1, 0). In (37) and (38), given the sensing
action φt = 1 and sensing result q̂t = I, Q10

t (st, �t) and Q11
t (st, �t) denote the minimum

expected costs by adopting update action θt = 0 and θt = 1, respectively. Then, by recursion
in (31)–(38), the optimal policies for sensing and update are given by

φ∗
t (st, ρt) ∈ argmin

φt∈Γφ

Qφt
t (st, �t), (40)

θ∗t (st, ρt) ∈ argmin
φt∈Γθ

Q1θt
t (st, �t). (41)

5. Numerical Results

In this section, we evaluate the performance of our proposed optimal policy through
comparing it with the myopic policy and the random policy. At the beginning of time
slot t, for the myopic policy, the SU senses the spectrum if it has enough energy. When
the sensing result is q̂t = I, the SU generates and delivers a status-update data pack if the
energy available is sufficient. For the random policy, the SU randomly chooses to deliver
the status-update data pack or harvest energy with a probability. Taking into account the
protection of the PU’s transmission, the probability of harvesting energy is set to be 90%,
and the probability of delivering the status-update data pack is set to be 10%. If the SU
chooses to deliver the status-update data pack while the spectrum is occupied by the PU,
the status-update fails, and the AoI increases by one. The PU’s state transition probabilities
are pii = 0.8 and pai = 0.5. The probability of detecting an active PU is pd = 0.8. The
channel power gains from the PU to the SU and from the SU to the CBS are modeled
as h = ΥΨ2d−κ

1 and g = ΥΨ2d−κ
2 , where d1 and d2 denote the distances from the PU to

the SU, and the SU to the CBS, respectively. Υ represents a signal power gain at a 1 m’s
reference distance, Ψ ∼ exp(1) denotes the small-scale fading gain, and d−κ

1 and d−κ
2 are

standard power law path-loss with exponent κ. In the simulations, the system parameter
values are set as follows: η = 0.5, σ2 = −95 dBm, W = 1 MHz, Υ = 0.2, κ = 2, bmax = 5,
gmax = hmax = 10, ρ0 = pii, τs = 0.2 s, and Amax = 13.

Figure 2 shows one sample path of the AoI by the optimal policy. The transmit power
of the PU is 35 dBm, the energy consumption is one energy quantum, the distance from
the the SU to the CBS is 20 m, the distance from the PU to the SU is 25 m, the size of the
status-update data pack is 14 Mbits, and the battery capacity is 0.5 mJoules. The trend
of the AoI over time slots is clearly observed. In the simulations, we found the SU did
not perform sensing spectrum even the remaining energy was enough, which verifies the
foresight of the optimal policy compared with the myopic policy.

Figure 3 shows the size of the status-update data packet versus the AoI, where the
simulation setup is similar as in Figure 3. It is clear that our proposed policy is superior to
the other policies. For the random policy, the AoI is obviously high due to the low probabil-
ity of delivering the status-update data pack. For the random policy, the AoI is greater than
5.57, due to the low probability of delivering the status-update data pack. Considering
the poor AoI performance of the random policy, we only compare our algorithm with the
myopic algorithm in the following numerical evaluations. We can observe that the AoI
increases with the size of the status-update data packet. The reason is that the increase
in the size of the status-update data packet will result in increasing the energy needed to
deliver one status-update data pack. This decreases the possibility that the SU will have
enough energy to update, and hence the AoI is increased.
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Figure 2. One sample path of the AoI by the optimal policy.

Figure 3. The size of status-update data packet versus the AoI when T = 10.

Figure 4 shows the transmit power of the PU versus the AoI, where the capacity of
battery is 0.2 mJoules, the distance from the PU to the SU is 5 m, the distance from SU to the
CBS is 25 m, the size of status-update data pack is 15 Mbits. We can observe from Figure 4
that the average AoI increases with the transmit power of PU. The reason is that the SU
will harvest more energy as the transmit power of PU increases, which allows the SU to
store more energy in the battery. This increases the possibility that the SU will have enough
energy to update, and hence the AoI is decreased.
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Figure 4. The transmit power of PU versus the AoI when T = 10.

Figure 5 shows the battery capacity versus the AoI, where the size of the status-update
data pack is 15 Mbits, the energy consumption on the sensing spectrum is one energy
quantum, the transmit power of the PU is 35 dBm, the distance from the SU to the CBS is
10 m, and the distance from the PU to the SU is 5 m. It is clearly observed that the proposed
policy essentially improves the AoI as compared to the myopic policy. We can also observe
the average AoI decreases with the battery capacity. The reason is that increasing the
battery capacity allows more harvested energy to be stored inside the battery. Thus, the SU
will have enough energy to perform an update, and hence the AoI is reduced.

Figure 5. The battery capacity versus the AoI when T = 10.

Figure 6 shows the energy consumption on sensing spectrum versus the AoI. The
simulation setup is the similar as in the Figure 5. It is observed that the average AoI
increases with the energy consumption on sensing action. The reason is that increasing
the energy consumption on sensing spectrum can result in less energy remaining inside
the battery. This, in turn, decreases the possibility that the SU will have enough energy to
deliver status-update data packet, and hence the AoI is increased.
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Figure 6. The energy consumption on sensing spectrum versus the AoI when T = 10.

6. Conclusions

In this paper, we investigated RF energy-harvesting CRN with the aim of AoI mini-
mization subject to the energy causality and spectrum constraints. We first used POMDP to
formulate this average AoI minimization based on the AoI value, the channel state informa-
tion, the energy available, and the PU’s spectrum belief, and then dynamic programming
was adopted to find the optimal sensing and update decisions. Numerical results showed
the influence of system parameters on the AoI, and demonstrated that the proposed policy
significantly outperform the myopic policy.
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Abstract: This work considers a two-user multiple access channel in which both users have Age of
Information (AoI)-oriented traffic with different characteristics. More specifically, the first user has
external traffic and cannot control the generation of status updates, and the second user monitors
a sensor and transmits status updates to the receiver according to a generate-at-will policy. The
receiver is equipped with multiple antennas and the transmitters have single antennas; the channels
are subject to Rayleigh fading and path loss. We analyze the average AoI of the first user for a
discrete-time first-come-first-served (FCFS) queue, last-come-first-served (LCFS) queue, and queue
with packet replacement. We derive the AoI distribution and the average AoI of the second user for a
threshold policy. Then, we formulate an optimization problem to minimize the average AoI of the
first user for the FCFS and LCFS with preemption queue discipline to maintain the average AoI of the
second user below a given level. The constraints of the optimization problem are shown to be convex.
It is also shown that the objective function of the problem for the first-come-first-served queue policy
is non-convex, and a suboptimal technique is introduced to effectively solve the problem using the
algorithms developed for solving a convex optimization problem. Numerical results illustrate the
performance of the considered optimization algorithm versus the different parameters of the system.
Finally, we discuss how the analytical results of this work can be extended to capture larger setups
with more than two users.

Keywords: age of information; multiple access channels; multiple-input multiple-output Rayleigh
fading channel; discrete-time Markov chain; convex optimization

1. Introduction

Age of Information (AoI) is considered to be a metric for characterizing the timeliness
and freshness of data [1–4]. AoI was first introduced in [4], and it is defined as the time dif-
ference between the current time and the time that the latest status update was successfully
received by a destination. In [4–9], the authors derived the average AoI for systems with
different availability of resources using different queuing models. The M/M/1, M/D/1,
and D/M/1 queues were studied under the first-come-first served (FCFS) queue manage-
ment protocols in [4]. In [5–9], the authors considered the last-come-first-served (LCFS)
queue protocols with or without the ability to preempt the packet in service. Recently,
different types of traffic associated with different source nodes have been considered in
which some nodes generate time-sensitive status updates and other nodes strive to achieve
high throughput. The performance of a multiple access channel with heterogeneous traffic
has been investigated in [10] where one user has bursty arrivals of regular data packets
while another AoI-oriented sensor has energy-harvesting capabilities.

The interplay between delay guarantees and information freshness in a two-user
multiple access channel with multi-packet reception (MPR) capability at the receiver and
heterogeneous traffic is studied in [11]. Motivated by [11], in [12] the interplay of deadline-
constrained traffic and the average AoI in a two-user random-access channel with MPR
reception capabilities was investigated. The authors obtained analytical expressions for
the throughput and drop rate of a user with external bursty traffic, which is the deadline-
constrained and analytical expression for the average AoI of a user monitoring the sensor.
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In [13], the authors presented the analysis of the average AoI with and without packet
management at the transmission queue of the source nodes. In the proposed system, each
source node has a buffer of infinite capacity to store incoming bursty traffic in the form
of packets.

A small average AoI corresponds to having fresh information, which is a key re-
quirement in various applications, including Internet of Things (IoT) scenarios, wireless
sensor networks, industrial control, and vehicular networks. The problem of optimizing
the process, i.e., of sending status updates from a user to minimize the average AoI, was
studied in [14–24]. The works [14,25] consider real-time IoT monitoring systems, where
IoT devices sample a physical process and transmit status updates to a remote monitor to
minimize the average AoI. In [15], the worst-case average AoI and average peak AoI from
a sensor in a system where all other sensors have a saturated queue are analyzed. In [16], a
randomized policy, a MaxWeight policy, and a Whittle’s Index policy have been proposed
to minimize the AoI subject to minimum throughput requirements. In [17], the problem of
minimizing AoI in various continuous-time and discrete-time queuing systems, such as the
FCFS G/G/1, the LCFS G/G/1, and the G/G/∞, has been studied. In [18], the age-optimal
scheduling policies in a network with general interference constraints have been studied.
In [19], the authors considered an energy-harvesting sensor and determined the optimal
status update policy to minimize the average AoI. In [20], several methods have been
proposed for solving an AoI minimizing problem with throughput constraints. In [20–24],
the authors developed the Drift-Plus-Penalty (DPP) policy from the Lyapunov optimization
theory which is often used for solving stochastic network optimization problems with
stability constraints. In [23], the authors applied the Lyapunov DPP method to minimize
the average AoI total transmit power of sensors under constraints on the maximum av-
erage AoI and the maximum power of each sensor. In [24], the authors proposed the
probabilistic random-access (PRA) and DPP methods for solving an optimization problem
that aims to minimize the average AoI of the energy-harvesting node subject to the queue
stability constraint of the grid-connected node. Recently, the performance of AoI has been
investigated in Multiple-Input Multiple-Output (MIMO) systems [26–30]. In [26,27], the
user scheduling problem has been investigated to minimize AoI in a multiuser MIMO
status update system where multiple single-antenna devices send their information over a
common wireless uplink channel to a multiple-antenna access point. In [28], a novel MIMO
broadcast setting is studied to minimize the sum average AoI through precoding and
transmission scheduling. The age-limited capacity through MIMO setup was investigated
in [29], where a random subset of users are active in any transmission period. In [30], the
authors analyzed and optimized the performance of AoI in a grant-free random-access
system with massive MIMO.

Contributions

Motivated by [12,24,29] in this paper we consider a multiple access channel (MAC)
with two users that have AoI-oriented traffic with different characteristics. The receiver
has multiple antennas, and the communication channels are subject to Rayleigh fading and
path loss, as depicted in Figure 1. The key contributions of this paper are:

1. We consider a MIMO Rayleigh fading channel in which the receiver has multiple
antennas. Most of the literature assumes single-antenna setups.

2. In a two-user multiple access setup, we study the performance of the average AoI of
the first user for the cases of FCFS, LCFS with preemption, and queue with packet
replacement when external status update packets are arriving according to a Bernoulli
process. The case of FCFS can be useful when we do not allow out-of-order transmis-
sions, since we intend to also monitor the evolution of a process in addition to the
freshness. The policies of LCFS with preemption and the queue with replacement
are more relevant when we do not care for the evolution of the process; thus, we can
allow packet dropping.
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3. Furthermore, we consider a threshold for the AoI of the second user which affects the
sampling and transmission frequency, and we conduct a detailed analysis for the AoI
of the second user. In particular, we derive exact analytical expressions for

• The distribution of the AoI of the second user;
• The probability that the AoI of the second user is greater than a threshold;
• The average AoI of the second user;
• The average AoI of the first user for the LCFS with preemption policy by assum-

ing the threshold for the AoI of the second user.

4. We formulate and analyze a constrained optimization problem where the objective
function is the average AoI of the first user for the FCFS queue discipline, with
a constraint on the average AoI for the second user, which should be less than a
threshold. We show that the problem is not convex in general. Then, we propose a
suboptimal approach to solve the problem. Furthermore, we solve the optimization
problem where the objective function is the average AoI of the first user for the LCFS
scheme with preemption.

The considered setup is expected to occur in several scenarios in wireless industrial
automation (Industry 4.0, Industrial IoT), in which several processes are coexisting by
sharing the same network resources, and sensing the states of a set of systems is essential.

The remainder of this paper is organized as follows. In Section 2, the system model
is introduced. In Section 3, we analyze the average AoI of the first and second users;
we formulate an optimization problem and propose a convex optimization algorithm to
minimize the average AoI of the first user under the constraint on the average AoI for the
second user. In Section 4, we present the numerical and simulation results to evaluate the
performance of the proposed optimization method. Conclusions are drawn in Section 6.

(1)

(2)

(M)

S1

S2

D

λ

Status Updates Queue

Q

Sensor

Figure 1. User 1 has AoI-oriented external bursty traffic with probability λ, user 2 has also AoI-
oriented traffic but it can control the generation of status updates.

2. System Model

We consider a time-slotted MAC with two users equipped with a single antenna
transmitting their information in the form of packets over a MIMO Rayleigh fading channel
to a common receiver with M antenna, as shown in Figure 1. We assume that both users
have AoI-oriented traffic, but with different characteristics. One of the main differences
between the users is that the first one does not have control over the generation of the
status update packets, but they are externally generated according to a Bernoulli process
with a probability λ, while the second user can control the generation of status update
packets. Let Q(t) denote the status update queue of the first user in time slot t, which has
infinite capacity. When the queue of the first user is not empty, it attempts to transmit its
status update packets with a probability q1. Additionally, it is assumed that the second user
samples and transmits its status updates with probability q2 based on a generate-at-will
policy. Note that in Section 3.5, we will consider the case where the second user can adjust
its sampling and transmission probability based on an AoI threshold.
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2.1. Physical Layer Model

We assume a quasi-static Rayleigh fading model for the duration of the timeslot in
which hi ∈ CM denotes the M × 1 channel vector between the user i (i = 1, 2) and the
receiver and reads

hi =
√

βigi, (1)

where gi ∈ CM denotes the fast-fading coefficients between user i and receiver antenna, and
βi models path loss where βi = r−α

i . Please note that ri is the distance between user i and
the receiver and α is the path-loss exponent that 2 < α < 7. At each time slot, the received
signal-to-noise ratio (SNR) at the receiver when only user i transmits and the received
signal to interference and noise ratio (SINR) at the receiver when both users transmit are
given by

SNRi =
Pt,iβi‖gi‖2

σ2 ,

SINRi =
Pt,iβi‖gi‖2

σ2 + Pt,jβ j|g̃i
Hgj|2

,
(2)

where Pt,i is the transmitted power by user i and σ2 is the variance of the complex additive
white Gaussian noise (AWGN) at the receiver. Please note that ‖gi‖2 follows a gamma
distribution with shape parameter M, and scale parameter 1 (i.e., ‖gi‖2 ∼ Γ(M, 1)). Addi-
tionally, it is shown in [31] that g̃i

Hgj ∼ CN (0, 1)∀i, j, where g̃i
H = gi

H/‖gi‖ and they are
mutually independent and independent of ‖gi‖2. In this paper, we assume MPR capability
at the receiver, which means that the receiver can correctly decode packets from multiple
simultaneous transmissions that are interfering with each other. It is assumed that a packet
is successfully transmitted from the user i if the received SNR or SINR at the receiver
exceeds a certain threshold. The success transmission probability for user i when only user
i transmits pi/i and when both users transmit pi/i,j can be obtained as [31]

pi/i = Pr{SNRi > γ} =
∫ ∞

γσ2
Pt,i βi

zM−1e−z

(M − 1)!
dz =

Γ
[

M, γσ2

Pt,i βi

]
(M − 1)!

, i = {1, 2} (3a)

pi/i,j = Pr{SINRi > γ} =
∫ ∞

0

∫ ∞(
γσ2

Pt,i βi
+

Pt,j βj
Pt,i βi

γt
) zM−1e−(z+t)

(M − 1)!
dzdt, i = {1, 2}, j �= i. (3b)

Note that for the special case of M = 1, (3a) and (3b) can be written as

pi/i = Pr{SNRi > γ} = exp
(
− γσ2

Pt,iβi

)
(4a)

pi/i,j = Pr{SINRi > γ} = exp
(
− γσ2

Pt,iβi

)(
1 + γ

Pt,jβ j

Pt,iβi

)−1

, i = {1, 2}, j �= i. (4b)

The results presented in this work are general and can also be applied to other types of
wireless channels as long as we can calculate the aforementioned success probabilities.

2.2. The Service Probability

The service probability of a user is defined as the probability of successful transmission
in a timeslot. The service probability for the first user is given by

μ1 = q1(1 − q2)p1/1 + q1q2 p1/1,2. (5)

To obtain the service probability of the second user, three cases are considered as follows.

1. When the queue of the first user is empty.
2. When the queue of the first user is not empty, and it does not transmit a status update

to the receiver.
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3. When the queue of the first user is not empty, and it transmits a status update to the
receiver with probability q1.

The service probability of the second user can be written as

μ2 = Pr{Q = 0}q2 p2/2 + Pr{Q �= 0}(1 − q1
)
q2 p2/2 + Pr{Q �= 0}q1q2 p2/1,2

= q2

(
1 − q1Pr{Q �= 0}

)
p2/2 + q2q1Pr{Q �= 0}p2/1,2. (6)

The status updates at the first user are arriving according to a Bernoulli process with a
probability λ. When the status update queue of the first user is stable λ < μ1, the probability
that the queue of user 1 is not empty can be written as

Pr{Q �= 0} =
λ

μ1
. (7)

Now, using (7), the expression (6) can be written as

μ2 = q2

(
p2/2 −

λ(p2/2 − p2/1,2)

p1/1 − q2(p1/1 − p1/1,2)

)
. (8)

3. Analysis of the Age of Information and Problem Formulation

In this section, we analyze the average AoI of the first and second users, and formulate
an optimization problem to minimize the average AoI of the first user. In the following
subsections, we first derive the average AoI of the first user for a discrete-time FCFS queue,
LCFS queue with preemption, and queue with packet replacement policies. Then, we
obtain the AoI and average AoI of the second user for a case threshold policy.

3.1. Average Age of Information of the First User

The AoI of the first user at the receiver is defined as a random process Δt = t − G(t),
where G(t) is the time slot when the latest successfully received a status update from the
first user. The evolution of AoI of the first user is illustrated in Figure 2. In this figure, we
assume that all packets need to be delivered to the destination regardless of the freshness
of the status update information. Therefore, we consider that jth status update is generated
at time slot tj, and received by the receiver at time slot t

′
j. Then, we denote Tj = t

′
j − tj

and Yj = tj − tj−1 as the system time of update j and the interarrival time of update j,
respectively. Without loss of generality, the average AoI of the first user for an interval of
observation (0, τ) is defined as

Δτ =
1
τ

N(τ)

∑
t=0

Δt, (9)

where N(τ) is the number of samples during the observation interval. Using Figure 2,
Equation (9) can be calculated as the area under Δt. Starting from t = 0, the area is
decomposed into the areas J1, J2, . . . , JN(τ), and the area of width Tn over the time interval
(tn, t′n) that is denoted by J̄. Therefore, one can write the average AoI of the first user as a
sum of disjoint geometric parts as

Δτ =
1
τ

(
J1 + J̄ +

N(τ)

∑
j=2

Jj

)
=

J1 + J̄
τ

+
N(τ)− 1

τ

1
N(τ)− 1

N(τ)

∑
j=2

Jj. (10)

Now, the average AoI of the first user is given by

Ā1 = lim
τ→∞

Δτ , (11)

we can write the expression given in (11) as [5]

Ā1 =
1

E[Y]

(
E[YT] +

E[Y2]

2
+

E[Y]
2

)
. (12)
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Δt

Δ0
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t′1

t2 t3 t4 tn−1 tn t
t′2 t′3
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J̄

t′n

Y2 T2

Z2 Z3

Yn Tn

W3 S3

Figure 2. An example of the age evolution of user 1 at the receiver.

3.2. The FCFS Geo/Geo/1 Queue

In this section, we obtain the average AoI of the first user for a discrete-time Geo/Geo/1
queue discipline of FCFS. When status update packets are arriving according to the
Bernoulli process with a probability λ, the interarrival times Yj are i.i.d. sequences that
follow a geometric distribution with probability mass function (PMF) as

Pr{Yj = y} = λ(1 − λ)y−1, y = 1, 2, . . . . (13)

Thus, we can obtain E[Y] and E[Y2] in Equation (12) as

E[Y] =
1
λ

, E[Y2] =
2 − λ

λ2 . (14)

Also, the expression E[YT] can be obtained as [13]

E[YT] =
λ(1 − μ1)

(μ1 − λ)μ2
1
+

1
λμ1

. (15)

Now, using Equations (14) and (15), the expression given in (12) can be written as

Ā1 =
1
λ
+

1 − λ

μ1 − λ
− λ

μ2
1
+

λ

μ1
. (16)

3.3. The Preemptive LCFS Geo/Geo/1 Queue

In this section, we consider a discrete-time LCFS Geo/Geo/1 queue with preemptive
service, where a newly generated packet is given priority for service immediately. It is
assumed that status update packets are arriving according to the Bernoulli process with
probability λ. The probability distribution of interarrival time between the jth and (j + 1)th
status update packet is assumed to be geometric with mean E[Y] = 1/λ, and the probability
distribution time until successful delivery is assumed to be geometric distribution with
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mean E[S] = 1/μ1, in which μ1 denotes the service probability of the first user. In [32], it is
shown that the PMF of AoI for a discrete-time LCFS Geo/Geo/1 queue is given by

Pr{A1 = x} =
λμ1

[
(1 − λ)x−1 − (1 − μ1)

x−1]
μ1 − λ

. (17)

Now, we can write the average AoI of the first user as

Ā1 =
∞

∑
x=1

xPr{A1 = x} =
1
λ
+

1
μ1

. (18)

3.4. Queue with Replacement

In this section, we derive the average AoI of the first user for a queue with replacement.
In this case, it is assumed that a newly generated packet discards the packet waiting in the
queue. As shown in Figure 2, we express the areas Jj with respect to the random variables
Zj as follows

Jj =

Tj−1+Zj

∑
m=1

m −
Tj

∑
m=1

m

=
(Tj−1 + Zj)(Tj−1 + Zj + 1)

2
− Tj(Tj + 1)

2
. (19)

We use the fact that in the steady state Tj−1 and Tj are identically distributed. Therefore,
the average AoI of the first user for a queue with packet replacement is given by [13]

Ā1 = λe

(
E[ZT] +

E[Z2]

2
+

E[Z]
2

)
, (20)

where one can obtain λe, E[Z], E[Z2] and E[ZT] as [13]

λe = λ − λ3(1 − μ1)

λ2(1 − μ1) + λ(1 − μ1)μ1 + μ2
1

E[Z] =
λ2(1 − μ1) + λ(1 − μ1)μ1 + μ2

1
λμ1(λ + μ1 − λμ1)

E[Z2] =
(2λ2 + 2λμ1 − λ2μ1 + 2μ2

1 − λμ2
1)(μ1 − λμ1)

λ2μ2
1(λ + μ1 − λμ1)

+
λ(2 − μ1)

μ2
1(λ + μ1 − λμ1)

E[ZT] =
1

μ2
1
+

1 − λ

λμ1
− 1 + λ

(λ + μ1 − λμ1)2 +
1 + 2λ

λ + μ1 − λμ1
+

λ(1 − 2μ1 + λ(3μ1 − 2))
λ2(1 − μ1)2 + λμ1(1 − 2μ1) + μ2

1
. (21)

3.5. Age of Information and the Average Age of Information of the Second User

We assume A2(t) be a positive integer that represents the AoI associated with the
second user at the receiver. The AoI evolution between two consecutive time slots at the
receiver can be written as

A2(t + 1) =

{
1, successful packet reception at time slot t
A2(t) + 1, otherwise.

(22)

According to (22), the AoI drops to one when there is a successful reception of a status
update at the receiver. Otherwise, it increases by one. We can model the evolution of the
AoI of the second user as a Discrete-Time Markov Chain (DTMC). The DTMC is shown
in Figure 3, in which when A2(t) < κ (κ is the threshold of the AoI of the second user),
a packet is transmitted with the probability q2. Also, a packet is transmitted with the
probability q′2 when A2(t) � κ. The service probability of the first user can be written as
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μ′
1 = q1(1 − q′2)p1/1 + q1q′2 p1/1,2. (23)

According to the DTMC described in Figure 3, we can obtain the steady-state probabilities
of the AoI of the second user as follows

πi =

{
(1 − μ2)

i−1π1 , i < κ( 1−μ2
1−μ′

2

)κ−1
(1 − μ′

2)
i−1π1 , i � κ

(24)

where for λ < μ′
1, μ′

2 is given by

μ′
2 = q′2

(
p2/2 −

λ(p2/2 − p2/1,2)

p1/1 − q′2(p1/1 − p1/1,2)

)
. (25)

Additionally, we can obtain π1 as

π1 =

{
μ′

2 , κ = 1
μ2μ′

2
μ′

2+(μ2−μ′
2)(1−μ2)κ−1 , κ � 2.

(26)

· · ·κ· · ·321

μ2
1 − μ2

μ2

1 − μ2

μ2

1 − μ2

μ2

1 − μ2

μ′
2

1 − μ′
2

μ′
2

Figure 3. The DTMC, which models the evolution of AoI of the second user.

Using Equations (24) and (26), we can write the probability that the AoI of the second
user is smaller than a threshold κ, as follows

Pr{A2 < κ} =
κ−1

∑
i=1

(1 − μ2)
i−1π1 =

(1 − (1 − μ2)
κ−1)π1

μ2
. (27)

Furthermore, one can write the probability that the AoI of the second user is greater than a
threshold, κ, as follows

Pr{A2 � κ} =
∞

∑
i=κ

(
1 − μ2

1 − μ′
2

)κ−1

(1 − μ′
2)

i−1π1

=
(1 − μ2)

κ−1π1

μ′
2

. (28)

Now, using Equations (27) and (28), the average AoI of the second user is described as

Ā2 =
∞

∑
i=1

iπi =
κ−1

∑
i=1

i(1 − μ2)
i−1π1 +

∞

∑
i=κ

i
(

1 − μ2

1 − μ′
2

)κ−1

(1 − μ′
2)

i−1π1

=
1 − μ2 − (1 − μ2)

κ
[
1 − μ2 + κμ2

]
(1 − μ2)μ

2
2

π1 +
(1 − μ2)

κ
[
1 − μ′

2 + yμ′
2
]

(1 − μ2)μ
′2
2

π1, (29)
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where μ2, μ′
2, and π1 are given by (8), (25) and (26), respectively. Additionally, when κ → ∞

and λ < μ1, Equation (29) can be written as

Ā2 =
1

μ2
. (30)

3.6. The Average AoI of S1 for the Preemptive LCFS Geo/Geo/1 Queue for the Threshold-Based
Policy of S2

By considering the threshold-based policy explained in Section 3.5, the average AoI of
S1 for the preemptive LCFS queue discipline given in (17) can be written as

Pr{A1 = x} = Pr{A1 = x|A2 < κ}Pr{A2 < κ}+ Pr{A1 = x|A2 � κ}Pr{A2 � κ}, (31)

where Pr{A2 < κ}, Pr{A2 � κ} are given by (27) and (28). Using Equation (17), the first
and second conditional probabilities given in (31) can be written as

Pr{A1 = x|A2 < κ} =
λμ1

[
(1 − λ)x−1 − (1 − μ1)

x−1]
μ1 − λ

(32a)

Pr{A1 = x|A2 � κ} =
λμ′

1
[
(1 − λ)x−1 − (1 − μ′

1)
x−1]

μ′
1 − λ

, (32b)

where μ′
1 is given by (23). Now, we can write the average AoI of S1 for threshold-based

policy of the AoI of S2 as

Ā1 =
∞

∑
x=1

xPr{A1 = x}

=

(
1
λ
+

1
μ1

)(
[1 − (1 − μ2)

κ−1]π1

μ2

)
+

(
1
λ
+

1
μ′

1

)(
(1 − μ2)

κ−1π1

μ′
2

)
, (33)

where π1 is given by (26).

3.7. Optimizing the Average AoI of S1 subject to AoI constraints on S2

3.7.1. Using the Average AoI of the FCFS as the objective function

In this section, our objective is to minimize the average AoI of user 1 for a discrete-time
Geo/Geo/1 queue discipline of FCFS with a constraint on the average AoI for user 2, which
should be less than a threshold. Let Amax be a strictly positive real value that represents the
maximum average AoI of user 2. Thus, the optimization problem is formulated as follows

minimize Ā1 (34a)

subject to Ā2 < Amax. (34b)

Using the expressions given in Equations (16) and (30), one can write Equation (34)
as follows

minimize
q1,q2,λ

1
λ
+

1 − λ

μ1 − λ
− λ

μ2
1
+

λ

μ1
(35a)

subject to
1

μ2
< Amax, (35b)

0 � λ < μ1, (35c)

q1, q2 ∈ [0, 1]. (35d)

where the constraint in (35c) ensures that the queue of the first user is stable. To solve this
optimization problem, we first note that for λ < μ1 when the service probability of the
first user increases, the objective function given in (35a) decreases. Hence, to minimize the
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objective function, we must obtain the maximum value of μ1. The service probability of the
first user given in (5) can be simplified as

μ1 = q1(1 − q2)p1/1 + q1q2 p1/1,2

= q1
[
p1/1 − q2(p1/1 − p1/1,2)

]
. (36)

According to Equation (36), μ1 has its maximum value when q1 is maximum. Therefore, by
selecting q1 = 1, we can maximize the service probability of the first user and minimize the
average AoI of the first user as an objective function. Therefore, the optimal value of q1 is
given by

q∗1 = 1. (37)

Now, using Equations (8), (36) and (37), we can write the optimization problem given in
(35) as

minimize
q2,λ

1
λ
+

1 − λ

p1/1 − q2(p1/1 − p1/1,2)− λ
− λ

(
1 − p1/1 + q2(p1/1 − p1/1,2)

)(
p1/1 − q2(p1/1 − p1/1,2)

)2 (38a)

subject to
p1/1 − q2(p1/1 − p1/1,2)

q2
(

p1/1 p2/2 − q2 p2/2(p1/1 − p1/1,2)− λ(p2/2 − p2/1,2)
) − Amax < 0, (38b)

λ − p1/1 + q2(p1/1 − p1/1,2) < 0, (38c)

λ, q2 ∈ [0, 1]. (38d)

By definition, an optimization problem is convex when its objective function and the
inequality constraints are convex, and its equality constraints are affine, see Chapter 4.2
in [33]. We can show that the Hessian matrix of the objective function given in (38a) is
positive semi-definite for some parameters of λ and q2 and for some others is not positive
semi-definite and therefore it is not a convex function. Additionally, it can be verified that
the Hessian matrices of the inequality constraints (38b) and (38c) are positive semi-definite
for different values of λ and q2. Therefore, this optimization problem is not a convex
optimization problem, a trivial solution does not exist for this problem, and finding the
optimal solution is computationally involved. Hence, to find the optimal values of λ and
q2, a suboptimal technique is proposed to effectively solve the problem using an algorithm
developed for solving convex optimization problems. This approach is known as the bilevel
optimization algorithm and is used when optimization parameters are interdependent, and
the optimization problem is convex with respect to each of the optimization parameters
when other parameters are fixed [34].

3.7.2. Bilevel Convex Optimization

Using the procedure explained in Appendix A, it can be verified that the objective
function given in (38a) is a convex function of λ when q2 is fixed and λ < μ1. Therefore, the
optimization problem can be solved for λ by assuming that q2 is fixed. Then, substituting
for λ in (38a) from the previous stage and assuming that this parameter is fixed, we can
solve the optimization problem for q2. This procedure continues until the convergence
condition is satisfied (for example, the change in the objective function in two successive
iterations is lower than a small threshold).

In this paper, an interior-point method is used to solve the optimization problem in
each iteration of the bilevel optimization algorithm. The iteration complexity of this method
is shown in Chapter 3.4.3 in the work of den Hertog [35] to be O(ν(c

√
n)), where ν denotes

the number of iterations, n is the number of constraints and c is a constant, which depends
on system parameters such as tolerance.
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3.7.3. Using the Average AoI of the LCFS with Preemption as an Objective Function

In this section, our objective is to minimize the average AoI of user 1 for a discrete-time
preemptive LCFS Geo/Geo/1 queue discipline with a constraint on the average AoI for
user 2, which should be less than a threshold. Using the expressions given in Equations (18)
and (30), the optimization problem is formulated as follows

minimize
q1,q2,λ

1
λ
+

1
μ1

(39a)

subject to
1

μ2
< Amax, (39b)

0 � λ < μ1, (39c)

q1, q2 ∈ [0, 1]. (39d)

Using the procedure explained in Section 3.7.1, the q∗1 = 1 and the optimization problem
given in (39) is simplified as

minimize
q2,λ

1
λ
+

1
p1/1 − q2(p1/1 − p1/1,2)

(40a)

subject to
p1/1 − q2(p1/1 − p1/1,2)

q2
(

p1/1 p2/2 − q2 p2/2(p1/1 − p1/1,2)− λ(p2/2 − p2/1,2)
) − Amax < 0, (40b)

λ − p1/1 + q2(p1/1 − p1/1,2) < 0, (40c)

λ, q2 ∈ [0, 1]. (40d)

We can prove that the Hessian matrix of the objective function given in (40a) is positive
semi-definite and the optimization problem is convex (see Appendix B). Therefore, this
optimization problem can be solved using an algorithm developed for solving convex
optimization problems such as the interior-point method.

4. Numerical Results and Discussion

In this section, we illustrate our analytical results presented in Section 3 and we
verify them by means of computer simulation. Simulation results are obtained using 106

independent realizations of the system. Additionally, we evaluate the performance of the
proposed interior-point algorithm presented in Section 3. It is assumed that the users are
located at a distance ri = 30 m (i = 1, 2) from the receiver. The receiver noise power is
assumed to be σ2 = −100 dBm, and the path-loss exponent is α = 4. Additionally, the
assumed transmit powers are Pt,1 = Pt,2 = 5 mW, and the transmission channels between
the users and receiver are subject to Rayleigh fading model and we use the expressions for
the success probabilities that were presented in Section 2. Furthermore, the initial point for

the interior-point algorithm is zero, i.e.,
(

λ(0), q(0)2

)
= 0.

Figure 4 shows the average AoI of the first user for the FCFS Geo/Geo/1 queue,
preemptive LCFS Geo/Geo/1 queue, and queue with replacement as a function of λ,
γ = −5 dB, M = 1, q1 = 0.8, and q2 = 0.2. As seen in this figure, the preemptive LCFS
Geo/Geo/1 queue outperforms the FCFS Geo/Geo/1 queue, and queue with replacement.
Additionally, note that the average AoI of the first user for the FCFS Geo/Geo/1 queue we
plot for λ < 0.7 to satisfy the stability requirements. Figure 4 also shows that the simulation
results match the analytical results.

The average AoI of S1 and S2 are shown in Figure 5 as a function of κ, for λ = 0.5,
q1 = 1, q2 = 0.2, q′2 = 0.5, γ = 3 dB, and various values of M. As seen in this figure, as
κ increases, the slope of the average AoI of S2 and S1 decreases because when κ becomes
larger, the average AoI of S2 and S1 tends to 1/μ2 and 1/λ + 1/μ1, respectively, and
becomes independent of q′2. Therefore, by changing q′2 the average AoI of S2 and S1 will not
change. Furthermore, when κ increases, the average AoI of S2 increases and the average
AoI of S1 decreases. This is because for smaller values of κ, a packet is transmitted with
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probability q′2 that q′2 > q2 sooner than larger values of κ. Therefore, the average AoI of the
first and second users has larger and smaller values, respectively, for smaller values of κ.
Additionally, note that when M increases, the average AoI of the first and second users
decreases because for a larger value of M the service probabilities of the first and second
users have larger values such that they decrease the average AoI of S1 and S2.
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Figure 4. The average AoI of the first user for the FCFS Geo/Geo/1 queue, preemptive LCFS
Geo/Geo/1 queue, and queue with replacement for γ = −5 dB, M = 1, q1 = 0.8, and q2 = 0.2, and
various values of λ.
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Figure 5. The average AoI of the S1 and S2 for γ = 3 dB, λ = 0.5, q1 = 1, q2 = 0.2, q′2 = 0.5,
κ = 1, 5, 10, . . . , 30, and various values of M.
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Figure 6 shows the probability that the AoI of the second user to be greater than a
threshold as a function of λ for q1 = 1, q2 = 0.2, q′2 = 0.5, γ = 3 dB, x = 5, and selected
values of M. As seen in this figure, when λ increases the probability Pr{A2 � x} increases.
This is because when λ increases the service probability of the second user decreases and
therefore it increases the AoI of the second user. Furthermore, by increasing M, the success
transmission probabilities increase, and the service probability of the second user increases.
As a result, the AoI of the second user decreases and the probability Pr{A2 � x} has lower
values. Note, importantly, that when M = 1, the probability Pr{A2 � x} does not have a
value for λ > 0.6. This is because for λ > 0.6, λ becomes larger than μ1 and thus the AoI of
the second user does not have a value.
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Figure 6. The probability the AoI of the S2 at the receiver greater than a threshold, x = 5, for γ = 3 dB,
q1 = 1, q2 = 0.2, q′2 = 0.5, λ = 0.1, 0.2, . . . , 1, and various values of M.

Figure 7 shows the average service time of the first user, 1/μ1, as a function of
Pt,1 (Pt,1 = Pt,2) for σ2 = −50 dBm, α = 4, ri = 30 m (i = 1, 2), γ = 0 dB, q1 = 0.8,
q2 = 0.4, and selected values of M. As seen in this figure, when transmitted power in-
creases, the average service time decreases. This is because by increasing the transmitted
power, the success transmission probabilities increases and thus the average service time
decreases. Furthermore, when M increases, the average service time decreases. This is
because when M increases, the service probability increases such that it decreases the
average service time.

The average service time is illustrated in Figure 8 as a function of r1 (r1 = r2) for
σ2 = −50 dBm, α = 4, Pt,1 = Pt,2 = 5 mW, γ = 0 dB, q1 = 0.8, q2 = 0.4, and various
values of M. As seen in this figure, the average service time increases by increasing r1.
This is because when r1 increases, the service probability of the first user decreases, which
results in decreasing in the average service time. Moreover, by increasing M, the average
service time decreases. This is because when M increases, the success probabilities increase
and therefore the average service time decreases.
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Figure 7. The average service time of the first user as a function of Pt,1 for σ2 = −50 dBm, α = 4,
r1 = 30 m (i = 1, 2), γ = 0 dB, q1 = 0.8, q2 = 0.4, and various values of M.
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Figure 8. The average service time of the first user as a function of r1 for σ2 = −50 dBm, α = 4,
Pt,1 = Pt,2 = 5 mW, γ = 0 dB, q1 = 0.8, q2 = 0.4, and various values of M.

The minimum average AoI of the first user for the case where M = 1 as a function of γ
and selected values of Amax is illustrated in Figure 9. As seen in this figure and Tables 1–4,
the minimum average AoI of the first user has a larger value when the SNR threshold γ is
larger. This is because a higher γ gives lower success probabilities and therefore increases
the minimum average AoI. An important observation is that as Amax increases, the average
AoI of the first user does not depend on Amax. This is because when Amax increases, the
constraint on the average AoI of the second user becomes independent of Amax. Hence,
when Amax increases, the optimal value of transmit probability q2, λ and therefore the
minimum average AoI of the first user will not change.
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Table 1. The minimum average AoI of the first user and the optimal values of λ∗, q∗1, and q∗2 for
Amax = 2.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.6159 1 0.6047 3.10

−3 dB 0.5264 1 0.6443 3.54

−1 dB 0.4263 1 0.6859 4.20

1 dB 0.3264 1 0.7175 5.16

3 dB 0.2425 1 0.7289 6.46

5 dB 0.1832 1 0.7239 8.02

Table 2. The minimum average AoI of the first user and the optimal values of λ∗, q∗1, and q∗2 for
Amax = 5.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.7539 1 0.2477 2.59

−3 dB 0.6947 1 0.2684 2.78

−1 dB 0.6260 1 0.2935 3.02

1 dB 0.5519 1 0.3196 3.32

3 dB 0.4806 1 0.3416 3.67

5 dB 0.4208 1 0.3560 4.04

Table 3. The minimum average AoI of the first user and the optimal values of λ∗, q∗1, and q∗2 for
Amax = 10.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.8246 1 0.1257 2.39

−3 dB 0.7815 1 0.1376 2.50

−1 dB 0.7303 1 0.1531 2.64

1 dB 0.6730 1 0.1708 2.81

3 dB 0.6147 1 0.1880 3.01

5 dB 0.5622 1 0.2019 3.19

Table 4. The minimum average AoI of the first user and the optimal values of λ∗, q∗1, and q∗2 for
Amax = 15.

γ λ∗ q∗1 q∗2 The Minimum Average AoI of the First User

−5 dB 0.8563 1 0.0844 2.31

−3 dB 0.8206 1 0.0929 2.40

−1 dB 0.7777 1 0.1043 2.51

1 dB 0.7288 1 0.1179 2.63

3 dB 0.6775 1 0.1320 2.78

5 dB 0.6297 1 0.1441 2.92
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Figure 9. The minimum average AoI of user 1, for M = 1, Amax = 2, 5, 10, 15, and various values
of γ.

Figure 10 shows the interplay between the average AoI of the first user for a discrete-
time Geo/Geo/1 queue discipline of FCFS and the average AoI of the second user when
y → ∞ as a function of q2 and selected values of γ. In this figure, we consider the
weak/strong MPR capabilities. We denote that the strong and weak MPR capability of a
receiver corresponds to K =

p1/1,2
p1/1

+
p2/1,2
p2/2

> 1 and K =
p1/1,2
p1/1

+
p2/1,2
p2/2

< 1, respectively [24].
When M = 1 for γ = −5 dB and γ = −3 dB, K = 1.51 and K = 1.33, respectively. There-
fore, the receiver has strong MPR capabilities. Furthermore, for γ = 1 dB and γ = 3 dB,
K = 0.88 and K = 0.66, respectively; thus, the receiver has weak MPR capabilities. Addi-
tionally, when M = 2 for γ ∈ {−5,−3, 1, 5} dB, K ∈ {1.88, 1.77, 1.37, 1.11}, respectively.
Moreover, when M = 4 for γ ∈ {−5,−3, 1, 5} dB, K ∈ {1.99, 1.97, 1.80, 1.60}, respectively.
Therefore, when M > 1 the receiver has strong MPR capabilities for selected values of γ.
In Figure 10, we consider a different scenario from the optimization problem scenario in
(34). Here we intend to find transmission probabilities q1 and q2 that both users transmit
at the same time to keep the average AoI of the first and second users below a threshold
A1max1 and A2max respectively. Observe that when the receiver has strong MPR capabil-
ities, we have Ā1 < A1max and Ā2 < A2max with a high value of transmit probability q2.
Therefore, in this case, both users can transmit at the same time with a high probability.
For example, we assume the thresholds for the average AoI of the first and second users
are equal to A1max = 6 and A2max = 6, respectively. As seen in this figure when M equals
1, and γ = −5 dB (strong MPR capability), we can achieve our purpose with q1 = 0.6
and q2 = 0.5 while for γ = 1 dB (weak MPR capability), we cannot find a value of q2 to
achieve our goal. In this case, both users cannot transmit at the same time. Additionally,
observe that in Figure 10b, when γ = −5 dB the first and second users can transmit at the
same time with the probabilities of q1 = 0.6 and q2 = 1. Furthermore, when γ = 1 dB, the
transmit probability of q1 and q2 are equal to q1 = 0.6 and q2 = 0.4. In addition, as shown
in Figure 10c, when γ = −5 dB and γ = 1 dB, both users can transmit at the same time
with the probabilities of q1 = 0.6 and q2 = 1. This reflects the fact that when the number of
receiver antenna increases, the receiver has a strong MPR capability for higher values of γ
and thus both users can transmit at the same time with a high probability.
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Figure 10. The interplay between the average AoI of the first and second users for q1 = 0.6, λ = 0.3,
q2 = 0.1, 0.2, . . . , 1, (a) M = 1, (b) M = 2, and (c) M = 4.
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5. Discussion on Larger Topology

In this section, we discuss how this work can be extended to capture more than two
users. However, detailed analysis and optimization for more than two users is left for a
future publication. Below, we provide some details for a setup with two users with external
traffic and two users with control over the generation of the status updates as depicted
in Figure 11. More specifically, it is assumed that the users S1 and S2 do not have control
over the generation of status update packets, and they are externally generated according
to Bernoulli processes with probabilities λ1 and λ2, respectively. When the queue of Si,
i = 1, 2 is not empty, Si attempts to transmit with probability qi. We also consider that
users S3 and S4 can control the generation of status update packets; thus, they sample and
transmit with probabilities q3 and q4, respectively, based on a generate-at-will policy. Using
the same approach presented in Section 2.2, we derive the service probabilities of S1, and
S3 as

μ1 = q1Pr{Q2 = 0}(1 − q3)(1 − q4)p1/1 + q1Pr{Q2 = 0}q3(1 − q4)p1/1,3

+ q1Pr{Q2 = 0}(1 − q3)q4 p1/1,4 + q1Pr{Q2 = 0}q3q4 p1/1,3,4

+ q1Pr{Q2 �= 0}(1 − q2)(1 − q3)(1 − q4)p1/1 + q1Pr{Q2 �= 0}(1 − q2)q3(1 − q4)p1/1,3

+ q1Pr{Q2 �= 0}(1 − q2)(1 − q3)q4 p1/1,4 + q1Pr{Q2 �= 0}(1 − q2)q3q4 p1/1,3,4

+ q1Pr{Q2 �= 0}q2(1 − q3)(1 − q4)p1/1,2 + q1Pr{Q2 �= 0}q2q3(1 − q4)p1/1,2,3

+ q1Pr{Q2 �= 0}q2(1 − q3)q4 p1/1,2,4 + q1Pr{Q2 �= 0}q2q3q4 p1/1,2,3,4

= q1(1 − q3)(1 − q4)
[
p1/1 − q2Pr{Q2 �= 0}(p1/1 − p1/1,2)

]
+ q1q3(1 − q4)

[
p1/1,3 − q2Pr{Q2 �= 0}(p1/1,3 − p1/1,2,3)

]
+ q1q4(1 − q3)

[
p1/1,4 − q2Pr{Q2 �= 0}(p1/1,4 − p1/1,2,4)

]
+ q1q3q4

[
p1/1,3,4 − q2Pr{Q2 �= 0}(p1/13,4 − p1/1,2,3,4)

]
(41)

μ3 = Pr{Q1 = 0, Q2 = 0}q3(1 − q4)p3/3 + Pr{Q1 = 0, Q2 = 0}q3q4 p3/3,4

+ Pr{Q1 �= 0, Q2 = 0}q3(1 − q1)(1 − q4)p3/3 + Pr{Q1 �= 0, Q2 = 0}q3q4(1 − q1)p3/3,4

+ Pr{Q1 �= 0, Q2 = 0}q1q3(1 − q4)p3/1,3 + Pr{Q1 �= 0, Q2 = 0}q1q3q4 p3/1,3,4

+ Pr{Q1 = 0, Q2 �= 0}q3(1 − q2)(1 − q4)p3/3 + Pr{Q1 = 0, Q2 �= 0}q3(1 − q2)q4 p3/3,4

+ Pr{Q1 = 0, Q2 �= 0}q2q3(1 − q4)p3/2,3 + Pr{Q1 = 0, Q2 �= 0}q2q3q4 p3/2,3,4

+ Pr{Q1 �= 0, Q2 �= 0}q3(1 − q1)(1 − q2)(1 − q4)p3/3

+ Pr{Q1 �= 0, Q2 �= 0}q2q3(1 − q1)(1 − q4)p3/2,3

+ Pr{Q1 �= 0, Q2 �= 0}q3q4(1 − q1)(1 − q2)p3/3,4

+ Pr{Q1 �= 0, Q2 �= 0}q1q3(1 − q2)(1 − q4)p3/1,3

+ Pr{Q1 �= 0, Q2 �= 0}q2q3q4(1 − q1)p3/2,3,4+Pr{Q1 �= 0, Q2 �= 0}q1q2q3(1 − q4)p3/1,2,3

+ Pr{Q1 �= 0, Q2 �= 0}q1q3q4(1 − q2)p3/1,3,4 + Pr{Q1 �= 0, Q2 �= 0}q1q2q3q4 p3/1,2,3,4 (42)

Similarly, we can write the service probabilities for S2 and S4. As we can observe, we see
that the service probability of S1 depends on the state of the queue of S2 and vice versa.
Thus, the queues are coupled, which is a known problem and closed form solutions cannot
be obtained for more than three users. Furthermore, the service probabilities of S3 and S4
depend on the joint PDF of the queues of S1 and S2.

A way to bypass the difficulty due to coupling among the queues is to assume inde-
pendence as in [13], or if we further assume that the queues have finite capacity then we
can use semi-analytical methods from queuing theory. In the first case, we can approximate
the performance and that approximation is tight for higher values of the arrival probabili-
ties. After characterizing the service probabilities for each node, we can use the provided
analysis in the earlier sections. In a scenario where we have only one user with a queue
and N users with the generate-at-will policy, the extension becomes a trivial exercise of our
analytical results since one can use the expressions directly.
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Figure 11. S1 and S2 have AoI-oriented external bursty traffic, S3 and S4 have also AoI-oriented
traffic but they can control the generation of status updates.

6. Conclusions

In this work, we considered a two-user multiple access channel in which both users
have AoI-oriented traffic, but with different characteristics. All transmission channels were
assumed to be subject to path loss and fading. We have investigated the performance of
the average AoI of the first user for the FCFS, LCFS Geo/Geo/1 with preemption, and
queue with replacement. Additionally, we have derived the AoI and the average AoI of
the second user by considering a threshold for the AoI of the second user. Then, we have
formulated an optimization problem to minimize the average AoI of the first user with
a constraint on the average AoI of the second user. To solve the proposed optimization
problem, we used the interior-point method. Numerical results showed the performance
of the proposed algorithm for the different parameters of the system and the impact of
multiple antennas.

Future extensions of this work include larger topologies, as discussed in Section 5.
Furthermore, an interesting extension is to consider more elaborate schemes at the physical
layer such as the MMSE receiver or zero-forcing. Another interesting direction is to con-
sider power control schemes with dynamic programming methodologies such as Markov
Decision Processes or stochastic optimization.
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Appendix A

To prove the convexity of the objective function, we first define the expression given
in (38a) as

A =
1
λ
+

1 − λ

p1/1 − q2(p1/1 − p1/1,2)− λ
− λ

(
1 − p1/1 + q2(p1/1 − p1/1,2)

)(
p1/1 − q2(p1/1 − p1/1,2)

)2 . (A1)

Now, by taking the second derivative d2A
dλ2 we have

d2A
dλ2 =

2
λ3 +

2(1 − X)

(X − λ)3 (A2)

where X = p1/1 − q2(p1/1 − p1/1,2), and using the expression given in (38c), we have

λ < X � 1. Therefore, for all values of X and λ, the second derivative d2A
dλ2 is positive, and

thus the objective function is a convex function of λ when q2 is fixed. Similarly, by taking
the second derivative d2A

dq2
2

when λ is fixed we have

d2A
dq2

2
= (p1/1 − p1/1,2)

2

[
−2λ(3 − X)

X4 +
2(1 − λ)

(X − λ)3

]
(A3)

where X = p1/1 − q2(p1/1 − p1/1,2) and λ < X � 1. It can be readily shown that for

all values of X and λ, d2A
dq2

2
is positive and therefore the objective function A is a convex

function of q2 when λ is fixed.

Appendix B

In order to prove the convexity of the objective function given in (40a), we must verify
that the Hessian matrix of the objective function is positive semi-definite. We first consider
the objective function as

B =
1
λ
+

1
p1/1 − q2(p1/1 − p1/1,2)

. (A4)

To obtain the Hessian matrix, we need to derive d2B
dλ2 , d2B

dλdq2
, and d2B

dq2
2

.

d2B
dλ2 =

2
λ3 � 0

d2B
dλdq2

= 0

d2B
dq2

2
=

2(p1/1 − p1/1,2)

(p1/1 − q2(p1/1 − p1/1,2))3 � 0. (A5)

According to the stability constraint in (40c), λ < p1/1 − q2(p1/1 − p1/1,2) � 1 and therefore
d2B
dq2

2
� 0. Since d2B

dλ2 × d2B
dq2

2
−

(
d2B

dλdq2

)2
> 0, the Hessian matrix is positive semi-definite and

the objective function is convex.
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Abstract: The age of information (AoI) is now well established as a metric that measures the freshness
of information delivered to a receiver from a source that generates status updates. This paper is
motivated by the inherent value of packets arising in many cyber-physical applications (e.g., due to
precision of the information content or an alarm message). In contrast to AoI, which considers all
packets are of equal importance or value, we consider status update systems with update packets
carrying values as well as their generated time stamps. A status update packet has a random initial
value at the source and a deterministic deadline after which its value vanishes (called ultimate
staleness). In our model, the value of a packet either remains constant until the deadline or decreases
in time (even after reception) starting from its generation to the deadline when it vanishes. We
consider two metrics for the value of information (VoI) at the receiver: sum VoI is the sum of the
current values of all packets held by the receiver, whereas packet VoI is the value of a packet at the
instant it is delivered to the receiver. We investigate various queuing disciplines under potential
dependence between value and service time and provide closed form expressions for both average
sum VoI and packet VoI at the receiver. Numerical results illustrate the average VoI for different
scenarios and relations between average sum VoI and average packet VoI.

Keywords: age of information; status update system; value of information

1. Introduction

In many cyber-physical applications, the need for real-time communication of informa-
tion packets involves not only maintaining information freshness but is also accompanied
by the need to preserve the importance or value of those packets. Examples of such cases
include autonomous cars and general vehicular networks [1–3], sensor networks [4–6],
tactical networks [7] and other systems making decisions in real-time [8,9]. In this context,
the value of information is another crucial dimension in addition to the notion of timeliness
associated with information. In this paper, we address this issue in a queuing system
carrying status update packets.

Status update systems with the age of information (AoI) metric measuring end-to-end
freshness of packets have received extensive interest recently. Pioneered by the analysis
in [10,11] motivated from vehicular status update systems, the AoI metric has been found
to be useful in various scenarios such as single server queuing systems [12–14], energy
harvesting systems [15–20], single and multi-hop networks [21–25], cognitive radio [26,27]
and vehicular communication networks [28]. The AoI metric provides exclusive meaning
to the timing of packets and connects a packet’s usefulness at the receiver with how long
the packet spends before its reception. As such, each packet is assumed to be created
with the same value starting at generation. The current literature on status update system
abstractions is focused mostly on information freshness and does not consider real-time
communication of information packets involving a (time-varying) value associated with its
content as well as timing, with some attempts in [29–33] being exceptions. In particular,
different packets may have different values with respect to the application at the receiver
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using it. In such scenarios, the AoI metric falls short of capturing all the dimensions of the
problem, and a separate value of information (VoI) metric has to be introduced.

In this paper, we abstract out the VoI of a status update packet as a time-varying
quantity with a random initial value which becomes zero after a deterministic deadline
(identical over all packets) inspired by the AoI metric. Packets are assumed to be useless
after the deadline, which we term as ultimate staleness. We also assume a functional
dependence between the initial value of an information packet and its service time to
capture the relation between value and data size (e.g., packets carrying higher resolution
information are more valuable but larger in size), the growth rate of processes to be
monitored (e.g., state estimation in cyber-physical systems) and the content of packets
regarding an alarming event. We propose two definitions for VoI. The sum VoI is the sum of
the current values of all packets held by the receiver, which is reminiscent of throughput.
Note that the value of a packet continues to decay after it is received until ultimate staleness.
On the other hand, the packet VoI is simply the instantaneous value of a packet at the
moment it is delivered to the receiver. By comparing the initial value and the packet value,
we aim to understand the effect of communication on the lost value.

We note that the use of deadlines has been a topic of research in earlier works in the
literature on AoI, motivating us to further explore it in the context of value of information
updates. Reference [34] shows how packet deadlines, buffer sizes and packet replacement
influence average AoI. Closed-form expressions for average AoI with deadline are derived
in [35,36]. Reference [37] studies AoI in a status update system with random packet
deadlines and infinite buffer capacity.

Previous works in [29–33] have components related to our view on value of infor-
mation. For example, references [29,32] consider the quality of information associated
with the distortion observed at the receiving end and [38] considers partial updates. Simi-
larly, [31,39] relate the timeliness of observations with the correctness of information. The
author of [30] considers age and the value of information with a notion of value taking into
account the non-linear costs regarding information updates in various queuing disciplines.
The work in [33] evaluates the value of information in addition to age of information in
uplink/downlink transmissions in network control systems. The authors of [40] study
the performance of VoI and AoI in a first responders’ health monitoring system; their VoI
metric is very closely related to our VoI metric originally presented in [41]. In the current
paper, we propose a new notion of VoI where a packet’s inherent properties at the time
of generation determine its value, in contrast to a value evaluated after processing at the
receiver as in previous work. We investigate VoI in M/GI/1/1, M/GI/1/2, M/GI/1/2*
and M/GI/1/1* queuing disciplines and provide closed-form expressions for average sum
VoI and packet VoI.

The work in this paper is a significantly extended version of our conference paper [41].
In particular, we include the following:

1. We propose and analyze a second VoI metric (average packet VoI) in addition to the
average sum VoI analyzed in [41].

2. We add the case of constant value over time until deadline to our analysis on top of
the previous work on linear value descent over time until deadline.

3. We analyze the performance of a new queuing scheme, which is M/GI/1/1* in the
server. This extended analysis enables us to study the possible use for the value of
status update packets in different kinds of systems.

4. We present more numerical results on the two VoI metrics and the four queuing
schemes that enable the reader to obtain a clear picture of the various trade-offs
involved.

2. System Model

We consider a point-to-point communication system with a single transmitter sending
status updates from a source to a receiver, as shown in Figure 1. The update packets arrive
at the transmitter as a Poisson process with arrival rate λ at instants ti. A packet may be
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discarded in the queuing phase; those that are not discarded enter the server. A packet
may also be preempted and discareded while undergoing service; otherwise, it is received
by the receiver after system time Ti at t′i = ti + Ti. In this paper, we cover M/GI/1/1,
M/GI/1/2, M/GI/1/2* and M/GI/1/1* queuing schemes. In M/GI/1/1, there are no
buffer and packets arriving in the server-busy state that are discarded. In M/GI/1/2, there
is a single data buffer with a first come first serve discipline so that an arriving packet
that finds the buffer occupied will be discarded. In M/GI/1/2*, there is a single data
buffer but, in this case, an arriving packet will preempt the packet stored in the buffer.
In M/GI/1/1*, there are no buffer and packets arriving in the server-busy state that will
preempt the current packet in service. For the two no-buffer schemes M/GI/1/1 and
M/GI/1/1*, Ti = Si where Si is the service time for the ith packet, which is independent
and identically distributed with fS(s). For the two schemes with buffer M/GI/1/2 and
M/GI/1/2*, Ti = Si + Wi where Wi is the waiting time for the ith packet. We derive Ti for
different schemes in Section 3. We focus on these four queuing systems because previous
research has shown that excessive queuing in large buffer systems can adversely impact
AoI, and limited-buffer systems with packet management can improve AoI [12,34]. Since
the value also potentially becomes worse with time, a similar behavior is expected for VoI.

Figure 1. System model with status update packets arriving at a single server transmission queue.

2.1. Value of a Packet

The ith update packet has initial value V0,i at the generation instant. This is a random
sequence independent over different i. V0,i has the identical general distribution fV(v)
with mean value E[V]. This initial value represents the importance of a packet for an
application. It could be related to the precision of a measurement, proximity of the sensor
to the measured object or it could indicate an alarm event. Each packet has a deterministic
lifetime D after which it reaches ultimate staleness. Hence, after a fixed time period D
from packet generation, the packet has no value for the receiver. We use Vr,i to denote
the instantaneous value of the ith update packet when it is delivered to the receiver and
ρi =

Vr,i
V0,i

to denote the fraction of the initial value of the ith update packet that is delivered
to the receiver.

Motivated by various applications of sensor networking and the value of information
in them [1–6], in our model, we assume that packet i’s value can decrease from its time
of generation at ti until it hits the deadline at ti + D. The value Vi(τ) = hi(V0,i, τ) for
the ith packet decreases with τ = t − ti, representing the time passed after generation at
the transmitter. This value keeps on decreasing (even after a packet is received) until it
becomes zero. We have hi(V0,i, 0) = V0,i and hi(V0,i, D) = 0. In this paper, we consider two
different descend functions h(.) for the value: (i) constant value and (ii) linear descend. The
former models the case where the packet’s value does not change with time as long as it is
delivered by the deadline, while the latter models the case where a packet that is delivered
earlier has a higher value. In the constant value case, we have the following.

Vi(τ) = hi(V0,i, τ) =

{
V0,i (τ < D)
0 (τ > D).

(1)

In the linear case, since hi(V0,i, 0) = V0,i and hi(V0,i, D) = 0, we have a linear descend
function.

Vi(τ) = hi(V0,i, τ) =

{
−V0,i

D τ + V0,i (τ < D)
0 (τ > D).

(2)
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Then we have the following:

Vr,i = hi(V0,i, Ti), (3)

ρi =
hi(V0,i, Ti)

V0,i
, (4)

for packets that are deliverd to the receiver. We set Vr,i = 0, ρi = 0, for packets that are not
delivered to the receiver.

2.2. Value-Dependent Service Times

We consider two possibilities for a packet’s service time. In one model, the service
times are independent of the initial value of a packet. In another model, the service time of
a packet depends on the initial value of the packet through a non-decreasing function g.

Si = g(V0,i). (5)

In this case, the distribution function of Si is fS(s) = fV(g−1(s)) dg−1(s)
ds where g−1(.)

is the inverse function of g(.), and the mean service time is E[S] = E[g(V)]. Corresponding
to the general distribution, we have the moment generating function (MGF) evaluated at
−γ for γ ≥ 0:

MS(γ) � E[e−γS].

This monotonic relation reflects the fact that a larger packet takes longer time to transmit
and its reception yields more value. This relation causes an interesting tradeoff between
value and age as a larger value is obtained at the receiver by paying a longer service time.

In this paper, we consider two definitions for VoI. The first one is Υsum, which denotes
the sum VoI, i.e., the sum of the current values of all packets received by the receiver
(cf. [4–6] where the additive nature of VoI is discussed in various wireless sensor networks).
Hence, Υsum(t) is as follows:

Υsum(t) =
it

∑
j=1

Vj(t) (6)

where it = max{i : t′i ≤ t}. The time average of Υsum(t) is the following.

E[Υsum] = lim
T→∞

1
T

∫ T

t=0
Υsum(t). (7)

Another definition is Υpacket, which measures the instantaneous value of a packet at
the moment it is delivered to the receiver (if it is delivered). Packets that are dropped are
assumed to have zero value. The average packet VoI is then defined as follows.

E[Υpacket] = E[Vr,i]. (8)

E[ρi] is the expected fraction of the initial value that is delivered to the receiver, which
illustrates the amount of value received by the receiver compared to the generated initial
value at the source. We reiterate that E[Vr,i] and E[ρi] are expectations over all packets;
dropped packets contribute zero received value.

We illustrate the evolution of value with an example. In Figures 2 and 3, the evolution
of value for specific packets generated over time is shown in an M/GI/1/1 system with
constant value and linearly descending values, respectively. We use Xi to denote the inter-
arrival period between two packets i − 1 and i. Therefore, Xi is an exponentially distributed
random variable with rate parameter λ. Packet 1 finds the server idle and begins service at
t1; service ends at t′1. Packet 2 arrives between t1 and t′1, and it is discarded. The service of
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packet 1 finishes at t′1 before the deadline of packet 1, D1 = t1 + D. The value of packet 1 at
t′1, when received by the receiver, is non-zero, and it becomes zero at D1. Packets 3, 4 and
5 arrive to the system during the idle period, and they are received at t′3, t′4 and t′5. Note
that when packet 4 is received, packet 3 has a non-zero value; thus, the sum VoI, which is
shown with a solid red line, is the sum of the values of these packets.

Figure 2. Evolution of value in M/GI/1/1 system when the value remains constant until deadline.

Figure 3. Evolution of thevalue in the M/GI/1/1 system with linearly descending values.

We define areas Qi under the rectangular regions of the curve shown in Figure 2 or the
triangular regions of the curve shown in Figure 3, and we set Qi = 0 for packets discarded
in the queuing phase. Then, the expected sum VoI at the receiver is as follows:

E[Υsum] = λE[Qi], (9)

where λ is the arrival rate of packets at the transmitter.

3. Evaluating Value of Information

In this section, we derive closed-form expressions for E[Vr,i], E[Qi] and E[ρ] for the var-
ious queuing systems. E[Υpacket] and E[Υsum] can then be obtained by using Equations (8)
and (9).

3.1. Average VoI for M/GI/1/1

In the M/GI/1/1 queueing system, there is a single server and no buffer. Packets
that arrive in the idle period are taken to service immediately and those arriving in busy
period are dropped. In view of the renewal structure, we have the following stationary
probabilities for each state:
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pI =
1

λTcycle
, pB =

E[S]
Tcycle

, (10)

where Tcycle = 1
λ +E[S] is the expected length of one renewal cycle; and I and B indicate

the idle and busy states. In the M/GI/1/1 system, packets are delivered to the receiver if
they arrive when the server is idle. Recall that if the total time spent by the packet before
reaching the receiver is larger than D, its value vanishes. Since a packet that is taken to
service spends service time Si in the queue before reaching the receiver, the packet’s value
vanishes if Si is larger than D. Hence, we just need to consider condition Si < D and i
arriving in idle states. Based on the two time-dependent functions for the value shown in
(1) and (2) and the relationship shown in (3)–(5), we have the following:

E[Vr,i] = pI

∫ Ṽ

0
hi(v, g(v)) fV(v)dv, (11)

E[ρi] = pI

∫ Ṽ

0

hi(v, g(v))
v

fV(v)dv, (12)

E[Qi] = pI

∫ Ṽ

0

∫ D

g(v)
hi(v, τ) fV(v)dτdv, (13)

where Ṽ = g−1(D) denotes the corresponding initial value when the related service time is
equal to the deadline.

3.2. Average VoI for M/GI/1/2

In the M/GI/1/2 queueing system, there is a single buffer. The server is in either idle
or busy states. Packets that arrive in the idle period are served immediately; those that
arrive in the busy period are stored in the buffer if there is no other packet in it and they
are discarded otherwise. In view of the renewal structure, we have the following stationary
probabilities for each state of the server:

pI =
1

λTcycle
, pB =

E[S]
TcycleMS(λ)

, (14)

where we use MS(λ) to denote the moment generating function of the service distribution
evaluated at −λ:

MS(λ) = E[e−λS], (15)

where Tcycle = 1
λ + E[S]

MS(λ)
is the expected length of one renewal cycle. Next, we evaluate

E[Vr,i] and E[Qi|(s)] for s ∈ SM/GI/1/2 = {I, B} and conditioning is on the server state
observed by packet i. Due to the PASTA property, Pr[Pi = (s)] = ps, where ps, s ∈
SM/GI/1/2 are as in (14).

3.2.1. Idle State Analysis

As a packet arriving in the idle state is served immediately, we have the following.

E[Vr,i|I] =
∫ Ṽ

0
hi(v, g(v)) fV(v)dv, (16)

E[ρi|I] =
∫ Ṽ

0

hi(v, g(v))
v

fV(v)dv, (17)
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E[Qi|I] =
∫ Ṽ

0

∫ D

g(v)
hi(v, τ) fV(v)dτdv. (18)

3.2.2. Busy State Analysis

Since only the first packet that arrives during the busy period is served and the others
are discarded, we introduce a lemma for the probability that an arriving packet is the first
one that arrives in the busy state. To do so, we first define states B1 and B2 as the busy states
of the server with zero and one packet waiting in the queue, respectively. The renewal
cycle is as follows. After the idle period, an arrival happens and the system turns to B1
state. Now, a time duration of service S starts and if during the service period another
arrival occurs, the system turns to B2 state. This back-and-forth between B1 and B2 states
continues until no packet arrives in one service time. We provide an example in Figure 4
for the three states in the M/GI/1/2 scheme. At time t0, packet 1 arrives and finds the
system idle. Packet 2 finds the system in B1 state at t1 and is stored in the buffer. Packet 3
finds the system in B2 state at t2 and is dropped.

Figure 4. Three states that can be observed by packets in M/GI/1/2 scheme.

This renewal structure yields the following result.

Lemma 1. In the M/GI/1/2 scheme, the waiting time of a packet in the buffer conditioned on its
arrival in B1 state is as follows

E[WB2 ] = E[S − X|X < S]Pr[X < S]

= E[S] +
1
λ

MS(λ)− 1
λ

.

The stationary probability of B2 state is as follows:

pB2 = pB
E[WB2 ]

E[S]
= pB

(
1 +

MS(λ)− 1
λE[S]

)
,

and the probability of B1 state is pB1 = pB − pB2 .

Then, we have E[Qi|B] = E[Qi|B1] and we provide the probability distribution func-
tion for the conditional residual service time W

′
under the condition that the packet arrives

in the B1 state:

P[W
′
> w] = P[S − X > w|X < S]

=

∫ ∞
w

∫ s−w
0 fS(s) fX(x)dxds

P[X < S]

=

∫ ∞
w fS(s)(1 − e−λ(s−w))ds

1 − MS(λ)
,

and we have the following.
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fW ′ (w) =
d(1 − P[W

′
> w])

dw
. (19)

Then, we have the following.

E[Vr,i|B1] =
∫ Ṽ

0

∫ D−g(v)

0
hi(v, g(v) + w) fW ′ (w) fV(v)dwdv, (20)

E[ρi|B1] =
∫ Ṽ

0

∫ D−g(v)

0

hi(v, g(v) + w)

v
fW ′ (w) fV(v)dwdv, (21)

E[Qi|B1] =
∫ Ṽ

0

∫ D−g(v)

0

∫ D

g(v)+w
hi(v, τ) fW ′ (w) fV(v)dτdwdv. (22)

Therefore, we haveE[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 , E[ρi] = E[ρi|I]pI +E[ρi|B1]pB1

and E[Qi] = E[Qi|I]pI +E[Qi|B1]pB1 .

3.3. Average VoI for M/GI/1/2*

The M/GI/1/2* queueing system is the same as M/GI/1/2 except that we use a
last-come first-serve order with packet discarding in the buffer. The latest packet arriving
in a busy period takes the place of the old packet in the buffer. Therefore, we have the same
stationary probabilities for each state as the M/GI/1/2 system in (14). Additionally, the
expressions for E[Vr,i|I], E[ρi|I] and E[Qi|I] are the same as in (16)–(18) separately. We now
derive expressions for E[Qi|B] and E[Vr,i|B].
Busy State Analysis

If the ith packet arrives to the server during the busy period, it will be transmitted to
the receiver conditioned on event {Xi > Wi−1}, which means the next packet arrives for
the server after the current service finishes. W is the general residual service time for all
packets arriving in the busy state, and we have the following: fW(w) = P[S>w]

E[S] . Then, the
following is the case.

E[Vr,i|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w
hi(v, g(v) + w) fX(x)

fW(w) fV(v)dxdwdv, (23)

E[ρi|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w

hi(v, g(v) + w)

v
fX(x)

fW(w) fV(v)dxdwdv, (24)

E[Qi|B] =
∫ Ṽ

0

∫ D−g(v)

0

∫ ∞

w

∫ D

g(v)+w
hi(v, τ) fX(x)

fW(w) fV(v)dτdxdwdv. (25)

Therefore, we haveE[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 , E[ρi] = E[ρi|I]pI +E[ρi|B1]pB1

and E[Qi] = E[Qi|I]pI +E[Qi|B1]pB1 .

3.4. Average VoI for M/GI/1/1*

In the M/GI/1/1* queueing system, there is no buffer and a new packet that arrives
during busy state will preempt the current packet in service. Since the arrival process is a
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Poisson with rate λ, pe, the probability that a packet is delivered to the receiver is given by
the following:

pe = P[Si < Xi+1] = MS(λ), (26)

which means, in preemption scheme, only the packet that has a service time less than the
upcoming inter-arrival period is delivered to the receiver. We use relation fG|G<F(t) =

fG(t)
P(F>t)
P(G<F) from [13] where G and F are arbitrary random variables. Since P(G < F) =

MG(λ) and P(F > t) = e−tλ, we have the probability density function for conditional
service time.

fS|S<X(s) = fS(s)
e−sλ

MS(λ)
. (27)

We use S′ to denote the conditional service time S; therefore, we have fS′(s) =
fS|S<X(s). In this case, we rewrite Equation (1) as follows:

hi(g−1(s), τ) =

{
g−1(S′

i) (τ < D)
0 (τ > D)

(28)

and Equation (2) as the following.

hi(g−1(s), τ) =

{
− g−1(S′

i)
D τ + g−1(S′

i) (τ < D)
0 (τ > D)

(29)

Then, we have the following.

E[Vr,i] = pe

∫ D

0
hi(g−1(s), s) fS′(s)ds, (30)

E[ρi] = pe

∫ D

0

hi(g−1(s), s)
g−1(s)

fS′(s)ds, (31)

E[Qi] = pe

∫ D

0

∫ D

s
hi(g−1(s), τ) fS′(s)dτds, (32)

4. Numerical Results

In this section, we provide numerical results for average VoI for various cases. We
also perform packet-based queue simulations offline for 106 packets as verification of the
analytical results. An example of our simulation results is shown in Figure 5. We use
g(V) = V as the relation between service time and value to model the case where the
value is directly proportional to the packet size. Results are presented for three different
distributions for the initial value of packets.

4.1. Uniformly Distributed Initial Value

First, we assume that the initial value of each packet is uniformly distributed between
Vmin and Vmax and the value follows the linear descend function. In Appendix A, we
provide closed-form expressions for E[Υsum] and E[Υpacket] in various systems with linearly
descending value.

We show a comparison of average Υsum and average Υpacket in Figure 5. In Figure 5a,
we show average Υsum versus arrival rate λ for the four queuing schemes. We observe that
M/GI/1/1 and M/GI/1/2* perform better than M/GI/1/1* as λ increases. In particular,
due to the linear relation between time and value, keeping a packet in the buffer to keep
the server busy turns out to yield smaller value at the receiver with respect to keeping none
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and serving only the freshest packets. For M/GI/1/1* and M/GI/1/2, on the other hand,
there is an optimal value of λ after which average Υsum drops. For M/GI/1/2, it is due to
undesired increases in waiting times in the data buffer while for M/GI/1/1*, it is due to
undesired decrease in the number of delivered packets.
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Figure 5. (a) Average Υsum and (b) average Υpacket for uniformly distributed initial value with linear
descend function versus λ; Vmin = 0, Vmax = 10, D = 8. Circles are simulation results.

In Figure 5b, we show Υpacket versus arrival rate λ for the four queuing schemes.
Again, we observe that M/GI/1/1 performs better than the other three.We observe that as
λ increases, E[Υpacket] decreases in all four queuing schemes due to the fact that most of the
generated packets are discarded in the queuing phase and have zero value for the receiver.

In Figure 6, we show E[ρ], which denotes the average ratio of the received value
compared to the generated values over all the generated packets. We observe that as λ in-
creases, E[ρ] decreases in all four queuing schemes, which matches the result for E[Υpacket].
However, interestingly, M/GI/1/1* scheme performs best for E[ρ]. This is because as λ
increases, even though there will be more packets dropped, the packets delivered to the
receiver have smaller service times, which increases the ratio of the delivered value to the
initial value.
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Figure 6. E[ρ] for uniformly distributed initial value with linear descend function versus λ; Vmin = 0,
Vmax = 10, D = 8.
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Next, we consder the case when the service times are independent of the initial values
and are exponentially distributed with service rate μ. In Figure 7, we show the average
Υsum versus arrival rate λ for the four queuing schemes. We observe that M/GI/1/1*
performs better than the other three.This is because the service time is independent of the
initial value, and large-valued packets may have small service times. In particular, due
to the linear relation between time and value, keeping a packet in the buffer to keep the
server busy turns out to yield smaller values at the receiver compared to keeping none and
serving only the freshest packets.
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Figure 7. Average Υsum for uniformly distributed initial value with linear descend function and
exponential independent service time versus λ; Vmin = 0, Vmax = 10, D = 8, μ = 0.2.

Finally, in Figure 8, we show the average Υsum versus service rate μ for the four
queuing schemes when the service times are independent of the initial values and are
exponentially distributed. We observe that M/GI/1/2 and M/G/1/2* perform better than
M/GI/1/1* as μ increases. This is because, as the average service time deceases, fewer
packets will expire, i.e., reach ultimate staleness, during the waiting period in the buffer,
and in this case, having a buffer to store the packets turns out to yield larger value at the
receiver with respect to dropping the packets in the server.
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Figure 8. Average Υsum for uniformly distributed initial value with linear descend function and
exponential independent service time versus μ; Vmin = 0, Vmax = 10, D = 8, λ = 1.

4.2. Exponentially Distributed Initial Value

Next, we consider fV(v) = μve−μvv with constant value. In this case, we have service
rate μ = μv due to g(V) = V. We compare average AoI with average sum VoI for the same
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schemes as both of them are time-average metrics over all the packets. In Appendix B,
we provide closed-form expressions for E[Υsum] and E[Υpacket] in various systems for
constant values.

In Figure 9a, we plot the average Υsum with respect to λ for various schemes. We
observe that M/M/1/2* always performs better than the others. This is connected to the
fact that when the value of packet is constant over time, all packets received within the
deadline contribute their full initial value. Since Υsum is the accumulated value of received
packet values, the total value is higher if a packet is stored in the buffer instead of dropping
it. At the same time, we observe that M/M/1/1* performs the worst in terms of value
since the dependence between service time and value causes higher value packets to be
preempted in this system, resulting in no contribution to VoI at the receiver.
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Figure 9. Average Υsum for exponentially distributed service time with constant value versus λ for
M/M/1/1, M/M/1/2, M/M/1/2* and M/M/1/1* schemes with μv = 1.5 and D = 3. (a) Dependent
Value. (b) Independent Value.

Next in Figure 9b, we show average Υsum for independent initial value and service
time under the same marginal distributions. We observe that, with independent service
time, the M/M/1/1* scheme becomes the best case while it is the worst case with dependent
service time. The other three schemes yield higher values as the adverse relation between
initial value and service rate is removed.

Finally, in Figure 10, we show E[ρ] versus deadline D for the four queuing schemes.
We observe that, as D increases, E[ρ] for all queuing schemes increases, but never reaches
threshold 1 due to the fact that some packets are discarded in the queuing phase.
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Figure 10. E[ρ] for exponentially distributed service time with constant value versus D for λ = 1.

264



Entropy 2022, 24, 449

4.3. Binary Distributed Initial Value

We finally consider binary distributed initial value for two classes of update packets.
Class 1 and class 2 packets have V0,i = V1 and V0,i = V2. Each packet is independently
chosen to be in class 1 or 2 with probability p and (1 − p), respectively. This situation
models the case when a packet of one class contains a message about an alarming event
yielding high value once received, whereas the other class of packets are assumed to be
regular status updates.

In Figure 11, we set V1 = 1.33, V2 = 0.4 and p = 0.2. We compare plots showing
average Υsum versus λ for three different service policies in an M/M/1/1 system. The first
policy serves all packets without regard to the value, the second policy involves serving
only class 1 packets, and the third policy serves only class 2 packets. Note that if the
service time is dependent on the value, class 1 packets will have exponentially distributed
service time with mean E[S] = E[V1], and similarly, class 2 packets will have exponentially
distributed service time with mean E[S] = E[V1]. If the service time is independent of the
value, both class packets will have exponentially distributed service time with μ = 1.5. Our
numerical results show that when service time is independent of value, always serving the
high-value packet will yield the highest average value. On the other hand, in the dependent
case when arrival rate becomes large, serving the packet with low value but smaller service
time and high probability will benefit the average Υsum compared to serving all the packets
or serving the high-value packets with larger service time and low probability.
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Figure 11. Exponentially distributed service time dependent on or independent of the binary value
in M/M/1/1 scheme.

5. Conclusions

Age of information (AoI) is a well-known metric that quantifies the freshness of
information at a receiver in status update systems. This metric ignores the potential dif-
ferences in the importance of various update packets. In this paper, we consider the
value of information in status update systems wherein packets have various initial values
upon generation. We investigate various queuing disciplines with initial-value-dependent
packet service times and obtain closed-form expressions for two different VoI metrics.
Our numerical results illustrate the trade-off between the two VoI metrics and the con-
trast between these two metrics. We show average sum VoI and average packet VoI for
different scenarios and the fraction of received value comparing to the inital value for
different systems.
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Appendix A. E[Υsum] and E[Υpacket] for Uniformly Distributed Initial Value with

Linear Descend Function

In uniform case, we have fV(v) = 1
u , where u = Vmax − Vmin, and we assume

g(V) = V. Thus, we have the mean service time.

E[S] = E[V] =
Vmax + Vmin

2
.

Appendix A.1. M/GI/1/1

From (10), we have the following.

pI =
1

1 + λE[S]
.

We calculate E[Vr,i] from (2) and (11) and we have the following.

E[Vr,i] = pI

∫ Ṽ

0
(v − v

D
g(v)) fV(v)dv.

Here, Ṽ = D. Define Vup = Ṽ if Ṽ < Vmax and Vup = Vmax otherwise. Then, we have
the following.

E[Vr,i] =pI

∫ Vup

Vmin

(v − v
D

g(v)) fV(v)dv

=
pI
u

∫ Vup

Vmin

(v − v2

D
)dv

=
pI
u

(
1
2
(V2

up − V2
min)−

1
3D

(V3
up − V3

min)

)
.

Then, we calculate E[Qi] from (2) and (13) and we have the following.

E[Qi] =pI

∫ Ṽ

0

∫ D

g(v)
(v − v

D
τ) fV(v)dτdv

=
pI
2

∫ Vup

Vmin

v
D
(D − v)2 fV(v)dv

=
pI

2Du

∫ Vup

Vmin

(D2v − 2Dv2 + v3)dv

=
pI

2Du

(
D2

2
(V2

up − V2
min)−

2D
3

(V3
up − V3

min)

+
1
4
(V4

up − V4
min)

)
.

Finally, we have E[Υpacket] =
1
pI
E[Vr,i] and E[Υsum] = λE[Qi].
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Appendix A.2. M/GI/1/2

From (15), we have the following.

MS(λ) =
1

uλ
(e−λVmin − e−λVmax).

Then, from (14), we have the following.

pI =
MS(λ)

MS(λ) + λE[S]
,

pB =
λE[S]

MS(λ) + λE[S]
.

From Lemma 1, we have the following.

pB1 =
1 − MS(λ)

λE[S]
pB,

P[W ′ > w] =
λ(Vmax − w) + eλ(w−Vmax) − 1

uλ(1 − MS(λ))
.

Then, from (19), we have the following.

fW ′(w) =
−1 + λeλ(w−Vmax)

uλ(MS(λ)− 1)
.

For the idle case, from (2), (16) and (18), we have the following.

E[Vr,i|I] = 1
u

(
1
2
(V2

up − V2
min)−

1
3D

(V3
up − V3

min)

)
,

E[Qi|I] = 1
2Du

(
D2

2
(V2

up − V2
min)−

2D
3

(V3
up − V3

min)

+
1
4
(V4

up − V4
min)

)
.

For the busy case, since waiting time W ′ has the same domain of definition as initial
value V0,i, there are three conditions: D < Vmax, Vmax < D < 2Vmax and D < 2Vmax. We
show the expression for the condition D < Vmax, which corresponds to our parameter
setting in numerical results. Then, from (2), (20) and (22), we have the following.

E[Vr,i|B1] =
1
u

∫ D

Vmin

∫ D−v

Vmin

(v − v
D
(v + w)) fW ′(w)dwdv

=
1

u2λ(MS(λ)− 1)

(
D2Vmin

6
− D3

24
− 5V3

min
6

+
17V4

min
24D

+ (−D2

6
+

V2
min
2

− 5V3
min

6D
+

DVmin

2

− D
2λ

+
V2

min
2Dλ

)eλ(Vmin−Vmax)

− e−Dλ(Dλ + 1)− e−λVmin(λVmin + 1)
Dλ3 eDλe−λVmax

)
,
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E[Qi|B1] =
1
u

∫ D

Vmin

∫ D−v

Vmin

v
D
(D − (v + w))2 fW ′(w)dwdv

=
1

u2λ(MS(λ)− 1)

(
D3Vmin

12
− 2DV3

min
3

− D4

60

− 2e−λVmax

λ3 +
17V4

min
12

− 49V5
min

60D
− 2e−λVmax

Dλ4

+ (−D3

12
− 5V3

min
3

− D2

3λ
+

17V4
min

12D
+

V2
min
λ

− D
λ2

+
D2Vmin

3
+

DVmin

λ
− 5V3

min
3Dλ

+
V2

min
Dλ2 )e

λ(Vmin−Vmax)

+ (
2

Dλ4 +
2Vmin

Dλ3 )eλ(D−Vmin−Vmax)

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI + E[Vr,i|B1]pB1 and E[Qi] =
E[Qi|I]pI +E[Qi|B1]pB1 .
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix A.3. M/GI/1/2*

For M/GI/1/2* system, we have the same pI , pB, E[Vr,i|I] and E[Qi|I] as in the
M/GI/1/2 system. Next, we calculate the E[Vr,i|B] and E[Qi|B]. We have the following.

fW(w) =
P[S > w]

E[S]
=

Vmax − w
uE[S]

.

Then, we consider the condition D < Vmax and from (2), (23) and (25); we have
the following.

E[Vr,i|B] = 1
u

∫ D

Vmin

∫ D−v

Vmin

(v − v
D
(v + w))e−λw fW(w)dwdv

=
1

u2E[S]

(
Vmax

λ3 − 3
λ4 +

4
Dλ5 − Vmax

Dλ4 + (
D
λ3

− D2

6λ2 +
V3

min
2λ

+
V2

min
2λ2 − V2

minVmax

2λ
− 5V4

min
6Dλ

− 4V3
min

3Dλ2 − V2
min

Dλ3 +
D(2Vmin − Vmax)

2λ2 +
DV2

min
2λ

+
D2(Vmax − Vmin)

6λ
+

5V3
minVmax

6Dλ
+

V2
minVmax

2Dλ2

− DVminVmax

2λ
)e−λVmin + (

4Vmin

Dλ4 +
Vmax

Dλ4 − V2
min

Dλ3

− VminVmax

Dλ3 −
λ4 +

Vmin

λ3 − 4
Dλ5 )e

λ(Vmin−D)

)
,
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E[Qi|B] = 1
u

∫ D

Vmin

∫ D−v

Vmin

v
D
(D − (v + w))2e−λw fW(w)dwdv

=
1

u2E[S]

(
8

λ5 − 2Vmax

λ4 − 10
Dλ6 +

2Vmax

Dλ5

(−3D
λ4 +

2D2

3λ3 − D3

12λ2 − 5V4
min

3λ
− 8V3

min
3λ2 − 2V2

min
λ3

+
5V3

minVmax

3λ
+

V2
minVmax

λ2 +
D2V2

min
3λ

+
17V5

min
12Dλ

+
37V4

min
12Dλ2 +

13V3
min

3Dλ3 +
3V2

min
Dλ4 − 3DVmin

λ3 +
DVmax

λ3

− DV2
min

λ2 +
2D2Vmin

3λ2 − D3Vmin

12λ
− D2Vmax

3λ2 +
D3Vmax

12λ

+
DVminVmax

λ2 − D2VminVmax

3λ
− 17V4

minVmax

12Dλ

− 5V3
minVmax

3Dλ2 − V2
minVmax

Dλ3 )e−λVmin + (−10Vmin

Dλ5

− 2Vmax

Dλ5 +
2V2

min
Dλ4 +

2VminVmax

Dλ4 +
2

λ5 − 2Vmin

λ4

+
10

Dλ6 )e
λ(Vmin−D)

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI + E[Vr,i|B]pB and E[Qi] =
E[Qi|I]pI +E[Qi|B]pB.

Then, E[Υpacket] =
1

pI+pB1
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix A.4. M/GI/1/1*

Since we have MS(λ) =
1

uλ (e
−λVmin − e−λVmax), from (26) we have pe = MS(λ), and

from (27), we have the following.

fS′(s) =
e−λs

uMS(λ)
.

Note that due to g(V) = V, conditional service time S′ has the same domain of
definition as the initial value V0,i. Then, we calculate E[Vr,i] from (29) and (30), and we
have the following.

E[Vr,i] = pe

∫ Vup

Vmin

(s − s
D

s) fS′(s)ds

=
pI

uMS(λ)

(
e−λVmin(λVmin + 1)

λ2 − e−λVup(λVup + 1)
λ2

− e−λVmin(λ2V2
min + 2λVmin + 2)
Dλ3

− e−λVup(λ2V2
up + 2λVup + 2)

Dλ3

)
.

From (29) and (32), we have the following.
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E[Qi] =
pe

2

∫ Vup

Vmin

s
D
(D − s)2 fS′(s)ds

=
pI

2uMS(λ)Dλ4

(
e−λVmin(D2λ3Vmin + D2λ2 − 2Dλ3Vmin

2

− 4Dλ2Vmin − 4Dλ + λ3Vmin
3 + 3λ2Vmin

2 + 6λVmin + 6)

− e−λVup(D2λ3Vup + D2λ2 − 2Dλ3Vup
2

− 4Dλ2Vup − 4Dλ + λ3Vup
3 + 3λ2Vup

2 + 6λVup + 6)
)

.

Finally, we have E[Υpacket] =
1
pe
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B. E[Υsum] and E[Υpacket] for Constant Value with Exponentially

Distributed Initial Value

For an exponentially distributed initial value, we have fV(v) = μe−μv, E[S] = E[V] =
1
μ and Ṽ = D.

Appendix B.1. M/M/1/1

From (10), we have the following.

pI =
μ

λ + μ
.

Next, we calculate E[Vr,i] from (1) and (11) and we have the following.

E[Vr,i] =pI

∫ D

0
v fV(v)dv

=pI

∫ D

0
v fV(v)dv

=pI

(
− De−μD − 1

μ
(e−μD − 1)

)
.

Then, we calculate E[Qi] from (1) and (13) and we have the following.

E[Qi] =pI

∫ D

0

∫ D

g(v)
v fV(v)dτdv

=pI

∫ D

0
v(D − v) fV(v)dv

=pI

∫ D

0
(Dv − v2) fV(v)dv

=pI

(
− D2e−μD − D

μ
(e−μD − 1) + D2e−μD

+
2
μ

De−μD +
2

μ2 (e
−μD − 1)

)
.

Finally we have E[Υpacket] =
1
pI
E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.2. M/M/1/2

From (15), we have the following.

MS(λ) =
μ

λ + μ
.
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Then, from (14), we have the following.

pI =
μ2

μ2 + μλ + λ2 ,

pB =
μλ + λ2

μ2 + μλ + λ2 .

From Lemma 1, we have the following.

pB1 =
μλ

μ2 + μλ + λ2 ,

P[W ′ > w] = e−μw.

Then, from (19), we have the following.

fW ′(w) = μe−μw.

For the idle case, from (1), (16) and (18), we have the following.

E[Vr,i|I] = −De−μD − 1
μ
(e−μD − 1),

E[Qi|I] =− D2e−μD − D
μ
(e−μD − 1) + D2e−μD

+
2
μ

De−μD +
2

μ2 (e
−μD − 1).

For the busy case, from (1), (20) and (22), we have the following.

E[Vr,i|B1] =
∫ D

0

∫ D−v

0
v fV(v) fW ′(w)dwdv

=
1
μ
− e−Dμ(Dμ + 1)

μ
− D2μe−Dμ

2
.

E[Qi|B1] =
∫ D

0

∫ D−v

0
v(D − (v + w)) fV(v) fW ′(w)dwdv

=
e−Dμ

2μ2

(
4Dμ − 6eDμ + D2μ2 + 2DμeDμ + 6

)
.

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B1]pB1 and E[Qi] = E[Qi|I]pI +
E[Qi|B1]pB1 .
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.3. M/GI/1/2*

For M/GI/1/2* system, we have the same pI , pB, E[Vr,i|I] and E[Qi|I] as in the
M/GI/1/2 system. Next, we calculate E[Vr,i|B] and E[Qi|B]. We have the following.

fW(w) =
P[S > w]

E[S]
= μe−μw.

Then, from (1), (23) and (25), we have the following.
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E[Vr,i|B] =
∫ D

0

∫ D−v

0
ve−λw fV(v) fW(w)dwdv

=
1 − e−Dμ(Dμ + 1)

λ + μ
− μ2e−Dμ

(
e−Dλ + Dλ − 1

)
λ2(λ + μ)

,

E[Qi|B] =
∫ D

0

∫ D−v

0
v(D − (v + w))e−λw fV(v) fW(w)dwdv

=
e−D(λ+μ)

λ2μ(λ + μ)2 (2λ3eDλ − μ3eDλ + μ3 + 3λ2μeDλ

− 2λ3eD(λ+μ) + Dλμ3eDλ + Dλ3μeDλ

− 3λ2μeD(λ+μ) + 2Dλ2μ2eDλ + Dλ2μ2eD(λ+μ)

+ Dλ3μeD(λ+μ)).

Finally, we have the following: E[Vr,i] = E[Vr,i|I]pI +E[Vr,i|B]pB and E[Qi] = E[Qi|I]pI +
E[Qi|B]pB.
Then, E[Υpacket] =

1
pI+pB1

E[Vr,i] and E[Υsum] = λE[Qi].

Appendix B.4. M/GI/1/1*

Since we have MS(λ) =
μ

λ+μ , from (26) we have pe = μ
λ+μ and from (27), we have

the following.

fS′(s) = (λ + μ)e−(λ+μ)s.

Note that since g(V) = V, we calculate E[Vr,i] from (29) and (30), and we have
the following.

E[Vr,i] = pe

∫ D

0
s fS′(s)ds

= pe(
1

λ + μ
− De−D(λ+μ) − e−D(λ+μ)

λ + μ
).

From (29) and (32), we have the following.

E[Qi] = pe

∫ D

0
s(D − s) fS′(s)ds

=
pe

(λ + μ)2 (e
−D(λ+μ)(Dλ + Dμ + 2) + Dλ + Dμ − 2).

Finally, we have E[Υpacket] =
1
pe
E[Vr,i] and E[Υsum] = λE[Qi].
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Abstract: Motivated by current communication networks in which users can choose different
transmission channels to operate and also by the recent growth of renewable energy sources, we
study the average Age of Information of a status update system that is formed by two parallel
homogeneous servers and such that there is an energy source that feeds the system following a
random process. An update, after getting service, is delivered to the monitor if there is energy in a
battery. However, if the battery is empty, the status update is lost. We allow preemption of updates
in service and we assume Poisson generation times of status updates and exponential service times.
We show that the average Age of Information can be characterized by solving a system with eight
linear equations. Then, we show that, when the arrival rate to both servers is large, the average
Age of Information is one divided by the sum of the service rates of the servers. We also perform a
numerical analysis to compare the performance of our model with that of a single server with energy
harvesting and to study in detail the aforementioned convergence result.

Keywords: parallel servers; energy harvesting; Age of Information

1. Introduction

1.1. Motivation

The Age of Information is a recent metric of the performance of systems and it
measures the freshness of the information that a monitor has about the status of a remote
process of interest. There is a wide range of applications in which information about a
source must be as recent as possible. An example of this is given in autonomous driving
systems since the location of the vehicles must be known as soon as possible. Or, in
other words, obsolete information about the traffic might lead to bad consequences (traffic
accidents, for instance) to the users.

Status update systems are formed by sources of generation status updates, a transmis-
sion channel and a monitor that receives the updates. The transmission channel takes care
of sending the status updates from the source to the destination. It is clear that the devices
of the transmission channel require energy to work. Therefore, it is important to consider
energy consumption in the modeling of the transmission channel. Furthermore, there has
been recently an increasing amount of different types of renewable energy sources that feed
the energy network. Some examples are solar or wind energy sources, which are clearly
very volatile. As a consequence, the randomness of the generation of energy also needs to
be taken into account in the modeling of the transmission channel.

Current communication networks are very complex and often allow users to operate
using different transmission channels. This is the case, for instance, when a user is a part
of an overlay network (i.e., when it belongs to a set of nodes that are located in different
spots over the Internet and collaborate with each other to forward data between any pair of
nodes with minimum delay). In fact, in this instance, the user can choose the transmission
channel that provides the IP protocol or through the overlay network. Therefore, in this
work, we study the average Age of Information in a status update system with energy
harvesting. That is, we consider that the transmission channel is formed by parallel servers
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that do not interchange information and a battery that can store energy that can be used to
send status updates after getting service in the servers.

1.2. Related Work

The Age of Information has been introduced in [1,2] as a metric to measure the
freshness of the information about the state of a remote system. Since its introduction,
there has been many researcher of different areas that has been interested in analyzing this
metric. In the first works following the seminal papers, the goal has been to characterize
the average Age of Information of status update systems where the transmission channel is
modeled as a single queue. For instance, the authors in [3] characterize the average Age of
Information of a single server (i.e., a queue without buffer) and a single source. Regarding
optimality, the authors in [4] show that the preemptive Last Generated First Served policy
minimizes the Age of Information. Unfortunately, the characterization of the average Age
of Information of many models is known to be an extremely difficult task. Therefore, some
authors has been interested in other similar metric of performance such as the Peak Age of
Information [5] or the Age of Incorrect Information [6]. We refer to the following surveys
on this topic for full details of these metrics and their properties [7–9].

Let us now discuss the work of some authors that have been interested in analyzing
the Age of Information of a system with energy harvesting. In [10,11] it is considered a
system with Poisson arrivals of energy and that there is no losses of packets. Their goal is to
find the optimal status updates policy such that the battery is not empty upon an arrival of
a status update. The authors in [12–14] generalize the model of [10,11] by allowing status
update losses and also focus on optimal policies for generation updates, with or without
knowledge (or feedback) whether the status updates are delivered successfully. Our model,
that has been in inspired by the Energy Packet Networks [15,16], is different from these
models for different reasons. First, we do not impose the presence of energy to receive a
status update. Another difference is that the generation of status updates follows a Poisson
process in our model, which is not the case in these works. Finally, our goal is different
since we are interested in characterizing the average Age of Information and studying its
properties and, hence, we do not aim to find the optimal policy.

1.3. Contribution

We consider a system with two parallel homogeneous servers and one battery that
stores energy packets. Energy packets model a certain amount of energy and are necessary
to send the status updates (or data packets) to the monitor after ending service. This means
that a data packet is sent to the battery when it ends service and, if the battery is empty,
the data packet is lost, whereas if battery is not empty the data packet is delivered to the
monitor and one energy packet disappears. We consider that arrivals of data packets and
energy packets follow a Poisson process and the queues that handle data packets and
energy packets do not have buffer. We allow preemption of data packets, i.e., when a data
packet arrives to a server that is busy, the incoming packet replaces the packet in service.

The first contribution of this work is to characterize the average Age of Information of
the above status update system using the Stochastic Hybrid System technique [17]. More
specifically, we show that the average Age of Information can be computed by solving a
system of 8 linear equations. We then consider the regime where the arrival rate of data
packets to both servers tends to infinity and we show that the average Age of Information
is one divided by two times the service rate of data packets.

The model we study here generalizes

• the work of Section IIIA of [18] where it is studied the Age of Information of two
parallel servers. In our work, we consider energy harvesting in their model. In fact,
when in our model the arrival rate of energy packets is very large, it coincides with
the model of [18].
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• the work of [19] where it is analyzed a system with a single server and energy har-
vesting. In our work, we consider the same energy harvesting model, but with two
parallel servers.

We go beyond the above presented analytical results with a numerical work that
we describe next. First, we aim to compare the performance of a single servers with
two parallel servers with energy harvesting. For this purpose, we consider the following
systems: (i) a single server with arrival rate λ/2 and service rate μ, (ii) a single server
with arrival rate λ and service rate 2μ and (iii) two parallel servers with service rate μ,
each of them handling an arrival rate of λ/2. Let us note that the ratio of the arrival rate
over the service rate coincide in all the servers of the systems under consideration. This
comparison has been previously done in Section IIIA of [18], but they do not consider
energy harvesting. Our first finding is that, when the arrival rate of energy packets is very
large, we obtain the plot as Figure 4 of [18] and, therefore, their conclusions follow in our
model as well (i.e., the system with double service rate and a single server minimizes the
average Age of Information). We then investigate whether the conclusions of [18] also hold
when the arrival rate of energy packets is not large. We observe that the average Age of
Information is smaller for the system with two parallel servers and this difference increases
when we decrease the arrival rate of energy packets. Finally, we study how the average
Age of Information converges, when the arrival rate to the servers increases, to the value
obtained in our analytical part. We conclude that the average Age of Information is not
monotone with respect to the arrival rate of energy packets when the arrival rate to both
servers is small. However, the average Age of Information does not depend on the arrival
rate of energy packets when the arrival rate of packets to both servers is very large.

Potential applications of this model include systems in which two different transmis-
sion channels can be chosen to send updates. This is the case, for instance, when the source
that generates status updates is part of an overlay network (i.e., when it belongs to a set
of nodes that are located in different spots over the Internet and collaborate with each
other to forward data between any pair of nodes with minimum delay) and it can choose
to send the status updates through the path the provides the IP protocol or through the
overlay routing.

1.4. Organization

The rest of the paper is organized as follows. First, in Section 2, we describe the model
we study in this article. The average Age of Information analysis of this model is presented
in Section 3. In Section 4, we focus on our numerical work and, finally, in Section 5, we
draw the main conclusions of this work.

2. Model Description

2.1. Age of Information

We study the transmission of status updates (or data packets) to a monitor. We
consider that data packet i is generated at time ti and that it is delivered to the monitor at
time t′i. We denote by N(t) the index of the last successfully delivered data packet to the
monitor at time t, i.e.,

N(t) = max{i|t′i ≤ t}.

Taking into account that the generation time of the last received data packet before
time t is tN(t), we define the Age of Information at time t as follows:

Δ(t) = t − tN(t),

that is, the Age of Information at time t is the time elapsed since the generation of the last
delivered packet to the monitor. We show in Figure 1 an example of Δ(t).
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Figure 1. An example of Δ(t).

Assuming that the updating system is stable, the average Age of Information can be
computed as the area below a “saw-tooth” shaped curve with teeth at the times at which
the data packets are delivered (see Figure 1). Hence, if we denote by Δ the average Age of
Information, we have that

Δ = lim
τ→∞

1
τ

∫ τ

0
Δ(t)dt.

In this article, we are interested in calculating the average Age of Information in an
energy harvesting model. In the following section, we describe the model we analyze.

2.2. Energy Harvesting Model

In our model, we represent energy by packets of discrete units called energy packets
that model a certain quantity of energy (energy packets) measured in Joules, whereas
the status updates of a process of interest are represented by packets that we call data
packets. We consider an energy harvesting model formed by two parallel queues that store
data packets (data queues) and a single queue that stores the energy packets. We show in
Figure 2 the model under consideration in this work.

Figure 2. The energy harvesting model with two parallel data queues and a single energy queue.
Energy packets are depicted with gray and data packets with white.

Energy packets arrive to the system according to a Poisson process of rate α and data
packets (or workload packets) with rate λ. Upon arrival, a packet is dispatched to data
queue 1 with probability p > 0 and to data queue 2 with probability 1 − p > 0. Therefore,
the arrival rate to data queue 1 is λ1 = λp and to data queue 2 is λ2 = λ(1 − p).

278



Entropy 2021, 23, 1549

Remark 1. The probability p can be seen as the willingness of a source to use an alternative path
(for instance, the path of an overlay network) rather than the usual transmission channel.

We consider that the service rate of jobs of data queue i is exponentially distributed
with rate μ, i = 1, 2

In this model, we consider that data packets, i.e., the packets of the data queues, start
the transfer to a single energy queue. This means that, when a data packet gets served (in
data queue 1 or data queue 2), it is sent to the energy queue. If the energy queue is empty
upon arrival of a data packet, the data packet is lost. However, if there are energy packets
when a data packet arrives to the energy queue, the data packet is transferred successfully
to the monitor and one energy packet disappears.

Remark 2. Our model considers a single energy queue. This models that the destination requires
energy to receive status updates. This occurs, for instance, when there is a wireless antenna in
charge of receiving the status updates at the destination (indeed, in absence of energy the antenna
cannot deliver packets to the monitor).

Here, we assume that the energy queue and the data queues do not have buffer.
Therefore, the number of packets in each queue is, at most, one. Besides, energy packets
that arrive when the energy queue is full are dropped, whereas when a data packet arrives
to a full data queue, it replaces the job in execution.

3. Average Age of Information Analysis

In this section, we aim to analyze the average Age of Information of a system formed
by two parallel queues with energy harvesting. We will use the Stochastic Hybrid System
method to characterize the average Age of Information of the system under consideration.
The Stochastic Hybrid System is formed by two values: the state of a continuous time
Markov Chain and a vector containing the generation times of all the packets in the system
as well of the current Age of Information. The Markov chain we consider is presented in
Figure A1.

Let s0 s1 . . . s7 be the solution of the following system of equations:

0 = −s0(λ + α) + s2μ + s3μ + s4μ + s5μ (1a)

0 = s0α − s1λ (1b)

0 = s0λ(1 − p)− s2(λp + μ + α) + s6μ + s7μ (1c)

0 = s1λ(1 − p) + s2α − s3(λp + μ) (1d)

0 = s0λp − s4(λ(1 − p) + α + μ) + s6μ + s7μ (1e)

0 = s1λp + s4α − s5(λ(1 − p) + μ) (1f)

0 = s2λp + s4λ(1 − p)− s6(α + 2μ) (1g)

0 = s3λp + s5λ(1 − p) + s6α − s7 2μ (1h)

that satisfies that ∑7
i=0 si = 1. As we will see in Appendix B, the solution of the above system

of equations provides the steady-state distribution of the Markov chain of Figure A1.
We also define x1, x2, . . . , x16 as the solution of the following system of equations:
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−s0 =− x1(λ + α) + μx7 + μx10 + μx3 + μx6 (2a)

−s1 =− x2(λ + α) + αx1 + αx2 (2b)

−s2 =− x3(λ + α + μ) + λ(1 − p)x1 + λ(1 − p)x3

+ μx15 (2c)

−s2 =− x4(λ + α + μ) + μx16 (2d)

−s3 =− x5(λ + α + μ) + αx3 + αx5 + λ(1 − p)x2

+ λ(1 − p)x5 (2e)

−s3 =− x6(λ + α + μ) + αx4 + αx6 (2f)

−s4 =− x7(λ + α + μ) + λpx1 + λpx7 + μx16 (2g)

−s4 =− x8(λ + α + μ) + μx15 (2h)

−s5 =− x9(λ + α + μ) + λpx2 + λpx9 + αx9 + αx7 (2i)

−s5 =− x10(λ + α + μ) + αx10 + αx8 (2j)

−s6 =− x11(λ + 2μ + α) + λpx3 + λpx11

+ λ(1 − p)x7 + λ(1 − p)x11 (2k)

−s6 =− x12(λ + 2μ + α) + λ(1 − p)x8 + λ(1 − p)x12 (2l)

−s6 =− x13(λ + 2μ + α) + λpx4 + λpx13 (2m)

−s7 =− x14(λ + 2μ) + λpx5 + λpx14 + λ(1 − p)x9

+ λ(1 − p)x14 + αx11 (2n)

−s7 =− x15(λ + 2μ) + λ(1 − p)x10 + λ(1 − p)x15

+ αx12 (2o)

−s7 =− x16(λ + 2μ) + λpx6 + λpx16 + αx13, (2p)

where s0, s1, . . . , s7 are given in Equation (1a–h). As we explain in Appendix B, the values
x1, . . . , x16 coincide with the generation time of all the packets in the system for all the
possible states of the Markov chain.

In the following result, we use the Stochastic Hybrid System technique [17] to charac-
terize the average Age of Information of this system and we show that it can be done by
solving the above system of equations.

Proposition 1. The average Age of Information of a system with two parallel servers with the
energy harvesting is given by

x1 + x2 + x3 + x5 + x7 + x9 + x11 + x14,

where x1, x2, . . . , x16 are the solution of Equation (2a–p).

Proof. See Appendix B.

In Proposition 1, we show that the computation of the average Age of Information of
the system under study requires to solve Equation (2a–p), which is a system of 16 linear
equations with 16 variables. Now, we aim to show that this system of equations has a
special structure and how it can be used to obtain a method to compute the average Age
of Information by solving a simpler system. Let us first present the following auxiliary
results.

Lemma 1. The Equation (2d,f,m,p), form a system of 4 linear equations with 4 variables (x4, x6, x13
and x16). Let

c =
λpα

λ + α + μ

(
1

λ + μ
+

1
λ(1 − p) + 2μ + α

)
. (3)

280



Entropy 2021, 23, 1549

We have that

x16 =
s7 − λps3

λ+μ − αs6
λ(1−p)+2μ+α

− c s2

cμ − (λ(1 − p) + 2μ)
, (4)

and

x4 =
μx16 + s2

λ + α + μ
. (5)

as well as

x6 =
αx4 + s3

λ + μ
. (6)

Proof. See Appendix C.

Lemma 2. The Equation (2h,j,l,o), form a system of 4 linear equations with 4 variables (x8, x10, x12
and x15). Let

d =
λ(1 − p)α
λ + α + μ

(
1

λ + μ
+

1
λp + 2μ + α

)
. (7)

We have that

x15 =
s7 − λps5

λ+μ − αs6
λ(1−p)+2μ+α

− d s4+

dμ − (λ(1 − p) + 2μ)
, (8)

and

x8 =
μx15 + s4

λ + α + μ
. (9)

as well as

x10 =
αx8 + s5

λ + μ
. (10)

Proof. The proof is symmetric to the proof of Lemma 1 and, therefore, we omit it for clarity
of the presentation.

We now writ Equation (2a–p) that have not been analyzed in the previous lemmas:

−s0 =− x1(λ + α) + μx7 + μx10 + μx3 + μx6 (11a)

−s1 =− x2λ + αx1 (11b)

−s2 =− x3(λp + α + μ) + λ(1 − p)x1 + μx15 (11c)

−s3 =− x5(λp + μ) + αx3 + λ(1 − p)x2 (11d)

−s4 =− x7(λ(1 − p) + α + μ) + λpx1 + μx16 (11e)

−s5 =− x9(λ(1 − p) + μ) + λpx2 + αx7 (11f)

−s6 =− x11(2μ + α) + λpx3 + λ(1 − p)x7 (11g)

−s7 =− x142μ + λpx5 + λ(1 − p)x9 + αx11 (11h)

which is a system of 8 equations with 12 variables (the variables are x1, x2, x3, x5, x6, x7, x8, x9,
x10, x11, x14, x15 and x16). However, an explicit expression of x6 and x16 have been obtained
in Lemma 1 and an explicit explicit expression of x10 and x15 in Lemma 2. Therefore, the
next result follows.
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Proposition 2. Let x1, x2, x3, x5, x7, x9, x11, x14 be the solution of Equation (11a–h) (recall that
x6 and x16 are given in Lemma 1 and x10 and x15 in Lemma 2). Therefore, the average Age of
Information of a two parallel servers system with energy harvesting is given by

x1 + x2 + x3 + x5 + x7 + x9 + x11 + x14.

3.1. Analysis When λ Tends to ∞

We now consider the asymptotic regime where λ → ∞ when the parameters α and μ
are finite.

We first focus on the solution of Equation (1a–h).

Lemma 3. When λ → ∞ and max(α, μ) < 0, the solution of Equation (1a–h) satisfies that
s0 = s1 = s2 = s3 = s4 = s5 = 0.

Proof. See Appendix D.

From this result, we conclude that, in the asymptotic regime under study, s6 + s7 = 1
and that Equation (11a–h) can be written as

0 =− x1(λ + α) + μx7 + μx10 + μx3 + μx6 (12a)

0 =− x2λ + αx1 (12b)

0 =− x3(λp + α + μ) + λ(1 − p)x1 + μx15 (12c)

0 =− x5(λp + μ) + αx3 + λ(1 − p)x2 (12d)

0 =− x7(λ(1 − p) + α + μ) + λpx1 + μx16 (12e)

0 =− x9(λ(1 − p) + μ) + λpx2 + αx7 (12f)

−s6 =− x11(2μ + α) + λpx3 + λ(1 − p)x7 (12g)

−s7 =− x142μ + λpx5 + λ(1 − p)x9 + αx11 (12h)

If we replace the last equation by the sum the last two equations, we get the following
equivalent system:

0 =− x1(λ + α) + μx7 + μx10 + μx3 + μx6 (13a)

0 =− x2λ + αx1 (13b)

0 =− x3(λp + α + μ) + λ(1 − p)x1 + μx15 (13c)

0 =− x5(λp + μ) + αx3 + λ(1 − p)x2 (13d)

0 =− x7(λ(1 − p) + α + μ) + λpx1 + μx16 (13e)

0 =− x9(λ(1 − p) + μ) + λpx2 + αx7 (13f)

−s6 =− x11(2μ + α) + λpx3 + λ(1 − p)x7 (13g)

−1 =− (x14 + x11)2μ + λpx5 + λ(1 − p)x9

+ λpx3 + λ(1 − p)x7 (13h)

We now analyze the solution of Equation (13a–h) for large λ.

Lemma 4. When λ → ∞ and max(α, μ) < 0, the solution of Equation (13a–h) satisfies that
x1 = x2 = x3 = x5 = x7 = x9 = 0.

Proof. The proof uses the same arguments than those of the proof of Lemma 3 and,
therefore, we omit it.

From the above results, we conclude that the average Age of Information of this
system is given by x11 + x14. Furthermore, using that x3 = x5 = x7 = x9 = 0 and from
(13h), we obtain that x11 + x14 = 1

2μ , which gives the following result:

282



Entropy 2021, 23, 1549

Proposition 3. When λ → ∞ and max(α, μ) < ∞, the average Age of Information of a two
parallel servers system with energy harvesting is given by 1

2μ .

It is important to remark that the average Age of Information of the system under
study in the considered asymptotic regime does not depend on the arrival rate of energy
packets, i.e., on α.

3.2. Limitations to Analyze More Complex Models

We have tried to extend the results presented in this section to more complex systems
and we have noticed that this task is extremely difficult. The main reason for this that
the Markov chain to be considered (and, as a consequence, the number of equations to
be solved ) increases at a very high rate with the complexity of the system. This suggests
that the analysis of the average Age of Information of more complex systems requires to
consider other techniques such as simulations or approximation techniques.

4. Performance Evaluation

In the previous section, we have obtained an explicit expression of the average Age of
Information of a system with two parallel servers and energy harvesting. Now, we aim to
evaluate the obtained expression to analyze its main properties. We have performed a large
number of simulations changing the values of the parameters and the illustrations of this
section are illustrative of the general pattern. (The plots of this section can be reproduced
using the code of https://github.com/josudoncel/AioParallelEnergy, accessed on 18
November 2021).

4.1. Parallel Servers vs. Single Server

We aim to compare the average Age of Information of the model under study in this
paper with that of a system with a single server with energy harvesting (the average Age of
Information of the latter model has been studied in [19]). For this purpose, we consider the
following systems: (i) a single server with arrival rates λ and α of data packets and energy
packets, respectively, and service rate 2μ (which is represented with a dotted line); (ii) a
single server with arrival rates λ/2 and α of data packets and energy packets, respectively,
and service rate 2μ (which is represented with a solid line); and (iii) two parallel servers
with p = 0.5, i.e., the arrival rate to each server is λ/2, the service rate is μ and the arrival
rate of energy packets is α (which is represented with a dashed line).

We first consider that the arrival rate of energy packet is very large. For this instance,
there is always energy to transmit the data packet when it ends service, or in other words,
the data packets are never lost because there is no energy. We note that, when this occurs,
the comparison study we carry out here coincides with the analysis of Section III2 of [18].
In Figure 3, we consider μ = 1 and α = 103 and we plot the evolution of the average Age
of Information of the systems under study in this section when λ varies from 0.1 to 103.
We observe that the obtained plot coincides with Figure 4 of [18]. From this illustration,
the authors in [18] conclude that some properties of the classical performance metrics
of queuing theory, such as mean delay, are verified for the average Age of Information
(the system that minimizes performance is the single server with service 2μ), but other
properties do not (the mean delay of a system with two parallel servers with arrival rate
to each equal to λ/2 is the same as that of a single server with arrival rate λ/2, but this is
not the case for the average Age of Information). This illustration shows that, as expected,
these conclusions also hold for our model when α is large.
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Figure 3. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 1000 and μ = 1.

We now aim to compare the performance of these systems when the arrival rate is not
large. Thus, we fix the parameters equal to the previous plot and we consider different
values of α. First, we consider α = 1 and in Figure 4, we observe that the average Age of
Information of all the systems do not change substantially with respect to the previous
plot when λ is small. However, as λ grows, the average Age of Information of the systems
with a single server decreases less than that of two parallel servers. We have also seen
that, when λ is large, the average Age of Information of two parallel servers is 0.5, of a
single server with double service rate 1.5 and of a single server with half traffic is 1.67. The
difference on the average Age of Information between these system is even larger if we
consider a smaller value of α. For instance, in Figure 5, we illustrate that the system with
the smallest average Age of Information is the system with two parallel servers for almost
all the values of λ we have considered.

Figure 4. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 1 and μ = 1.
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Figure 5. Average Age of Information of the three systems under comparison when λ changes from
0.1 to 103. α = 0.1 and μ = 1.

4.2. Convergence Analysis of Proposition 3

In Proposition 3, we show that, when λ → ∞, the average Age of Information tends
to 1

2μ , i.e., it does not depend on α or p. In this part of the article, we aim to study this

convergence. We consider μ = 1 and p = 0.1 and we vary α from 0.1 to 103. We plot the
evolution of the average Age of Information for different values of λ in Figure 6 and we
observe that, as λ increases, the obtained values tend to 0.5, which confirms the result of
Proposition 3. We consider p = 0.45 in Figure 7 to study how this convergence depends on
p and we observe that it seems to converge at the same rate to 0.5 than in the previous case.

From these illustrations, we also conclude that the average Age of Information is not
monotone with respect to α (note that in [19] it has been shown that the average Age of
Information of a system with a single server with energy harvesting is monotone with
respect to α). For instance, we see that, when p = 0.45 and λ = 10, the average Age of
Information increases when λ is small, then decreases and finally decreases again.

Figure 6. Average Age of Information with respect to α for different values of λ, when α varies from
0.1 to 103. μ = 1 and p = 0.1.
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Figure 7. Average Age of Information with respect to α for different values of λ, when α varies from
0.1 to 103. μ = 1 and p = 0.45.

4.3. Analysis of ther Parameter p

We now focus on the parameter p that determines the proportion of the total incoming
arrival rate is sent to each of the servers. In Figure 8, we consider α = 1 and we plot the
average Age of Information when p varies from 0.01 to 0.99 for different values of λ and
μ. We observe that, in all the considered instances, the average Age of Information first
decreases with p and then increases. This suggests that the minimum of the average Age
of Information for p is achieved when this parameter is close to 0.5, i.e., in the symmetric
case that has been studied in Section 4.1.

Figure 8. Average Age of Information with respect to p for different values of λ and μ, when p varies
from 0.01 to 0.99. α = 1.

5. Conclusions

We consider a system with two transmission channels that do not communicate
and a energy source that generates energy following a random process. We model this
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system as a system with Poisson arrivals of status updates to two parallel servers and of
energy packets to a battery. We study the average Age of Information of system using
the Stochastic Hybrid System method. We first show that the average Age of Information
of this system can be computed by solving a system of 8 linear equations (Proposition 2).
We then consider that the arrival rate tends to infinity and, in this case, we show that the
average Age of Information is equal to one divided by the sum of the service rate of the
servers. This implies that, in this regime, the average Age of Information does not depend
on the probability to dispatch jobs to the server and on the arrival rate of energy packets.
We then study numerically the performance of our model with single server systems with
energy harvesting and the same load of data packets as in our model. We conclude that,
when the arrival rate of energy packets tends to infinity, the same conclusions of [18] follow
in our model (i.e., the average Age of Information does not satisfy the same properties
that other performance measures used in queuing theory such as number of packets in the
queue). However, when the arrival rate of energy packets is not large, we conclude that the
parallel server system outperforms the single server systems.

For future work, we would like to analyze the average Age of Information with a
larger number of servers and with buffer for the energy packets and the data packets.
Furthermore, we would like to study optimality of this model for some parameters such as
p. We would also like to extend this model to include other parameters of the system such
as transmit power or channel statistics to address real-life problems. Finally, we are also
interested in exploring the performance of this model when it requires energy not only to
send a status update to the monitor after getting service, but also to receive data packets
from the source.
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Appendix A. Average Age of Information and SHS

In the SHS, the system is modeled as a hybrid state (q(t), x(t)), where q(t) a state of a
continuous time Markov Chain and x(t) is a vector whose components is the generation
time of each of the updates. We assume that in the monitor there is the update with the
latest generation time.

A link l of the Markov Chain represents a transition between two states, which occurs
with rate λl . In each transition l, the vector x changes to x′ using a transformation matrix
Al , that is, x′ = xAl . Therefore, x(t) is a piece-wise function.

For each state q of the Markov Chain, we define bq as the vector whose elements are
zero or one. One values represent the packets that are present in the system and therefore
that the time from their generation increases at unit rate. On the other hand, zero values
represent the updates that are not in the system.

We assume the Markov Chain is ergodic and we denote by πq the stationary distribu-
tion of state q. We denote by Lq the set of outgoing links of state q and L′

q the set of links
that get into state q. We now present the following theorem that will be used to characterize
the average Age of Information:
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Theorem A1 ([17], Thm 4). Let vq(i) denote the i-th element of the vector vq. For each state q, if
vq is a non-negative solution of the following system of equations

vq ∑
l∈Lq

λl = bqπq + ∑
l∈L′

q

λlvql Al , (A1)

then the average Age of Information is Δ = ∑q vq(0).

Appendix B. Proof of Proposition 1

We use the SHS technique to compute the average age of information of this system.
We denote by x = [x0(t) x1(t) x2(t)], where x0(t) represents the age of the information at
time t and xi(t) the age of information if a data packet that is getting service in data queue
i is sent successfully to the monitor, i = 1, 2.

The Markov Chain of this model is presented in Figure A1. We denote by ijk the state
where there are i data packets in data queue 1, j data packets in data queue 2 and k energy
packets in the energy queue. We now describe each of the transitions of this model.

Figure A1. The SHS Markov chain for the model with two parallel data queues and a battery.

l = 0 A data packet arrives to data queue 1 when the system is empty. Therefore, the
data packet starts getting service and the value of x1 is set to zero, that is, x′1 = 0.
The rest of values of x are not modified.

l = 1 A data packet of data queue 1 ends service when data queue 2 is empty. The data
packet is sent to the energy queue, which is empty. Hence, the data packet is lost
and the system gets empty. The vector x is not modified.

l = 2 A data packet arrives to data queue 1 when it is full. For this case, the last arrived
packet replaces the packet in service and the age of x1 changes to zero since the
last arrived packet is fresh, that is, x′1 = 0. The rest of values of x do not change.

l = 3 A data packet arrives to data queue 1 when the energy queue is full. Therefore, the
data packet starts getting service and the value of x1 is set to zero, that is, x′1 = 0.
The rest of values of x are not modified.

l = 4 An energy packet arrives to the system when data queue 1 is full and data queue 2
is empty. The arrival of an energy packet does not modify the age of the packets in
the system and of the monitor, therefore the vector x is not modified.
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l = 5 A data packet is data queue 1 ends service and it is sent to the energy queue, which
contains one energy packet. Therefore, the packet is successfully delivered and the
age of information is modified by the age of the served packet, that is, x′0 = x1.

l = 6 A data packet arrives to data queue 2 when the data queue 1 is full and the data
queue 2 and the energy queue were empty. For this case, the value of x2 is set to
zero, that is, x′2 = 0 and the rest of the values of x are not modified.

l = 7 A data packet in data queue 2 ends service when the energy queue is empty and
data queue 1 is full. Therefore, the served packet is sent to the energy queue and it
is lost. The vector x is not modified.

l = 8 A data packet in data queue 2 ends service and the system is full. Therefore, the
served packet is delivered and thus, the value of x0 is replaced by that of x2, that
is, x′0 = x2. The rest of the values of x are not modified.

l = 9 A data packet arrives to data queue 2 when the energy queue and data queue 1
are full. Therefore, all the queues are full and the value of x2 is set to zero since a
fresh packet arrived to that queue, that is, x′2 = 0. The rest of the values of x are
not modified.

l = 10 A data packet arrives to data queue 1 or there is an energy packet arrival when the
energy queue and data queue 1 are full and data queue 2 is empty. In the former
case, the value of x1 changes to zero since a fresh packet arrived to that queue, that
is, x′1 = 0 and the rest of the values of x are not modified, whereas in the later case
the vector x does not change.

With the roles of data queue 1 and data queue 2 reversed, transitions 11–21 coincide
with 0–10, respectively. Besides, transitions 21–24 represent an arrival of an energy queue,
which increases by one the number of energy packets if the energy queue is empty, but the
vector x is never modified. Finally, we focus on transitions 25 and 26:

l = 25 The data queues are full the energy queue is empty. If a data packet arrives to
data queue 1, the value of x1 changes to zero since a fresh packet arrived to that
queue, that is, x′1 = 0 and the rest of the values of x are not modified. Likewise, if a
data packet arrives to data queue 2, the value of x2 changes to zero since a fresh
packet arrived to that queue, that is, x′2 = 0 and the rest of the values of x are not
modified.

l = 26 The system is full and one of the following events occur: (i) a data packet arrives
to data queue 1, (ii) a data packet arrives to data queue 2 and (iii) an energy packet
arrives to the energy queue. For the case (i), (resp. the case (ii)) the value of x1
changes to zero (resp. x2 changes to zero) since a fresh packet arrived to that queue,
that is, x′1 = 0 (resp. x′2 = 0) and the rest of the values of x are not modified. Finally,
for the case (iii), the vector x is not modified since an arrival of an energy queue
does not change the age of the packets in the system.
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Table A1. Table of SHS transitions of Figure A1.

l ql → ql′ λl x′ = xAl v̄ql Al

0 000 → 100 λp [x0 0 0] [v000(0) 0 0]
1 100 → 000 μ [x0 0 0] [v100(0) 0 0]
2 100 → 100 λp [x0 0 0] [v100(0) 0 0]
3 001 → 101 λp [x0 0 0] [v001(0) 0 0]
4 100 → 101 α [x0 0 0] [v100(0) 0 0]
5 101 → 000 μ [x1 0 0] [v101(1) 0 0]
6 100 → 110 λ(1 − p) [x0 x1 0] [v100(0) v100(1) 0]
7 110 → 100 μ [x0 x1 0] [v110(0) v110(1) 0]
8 111 → 100 μ [x2 x1 0] [v111(2) v111(1) 0]
9 101 → 111 λ(1 − p) [x0 x1 0] [v101(0) v101(1) 0]
10 101 → 101 λp [x0 0 0] [v101(0) 0 0]

α [x0 x1 0] [v101(0) v101(1) 0]
11 000 → 010 λ(1 − p) [x0 0 0] [v000(0) 0 0]
12 010 → 000 μ [x0 0 0] [v010(0) 0 0]
13 010 → 010 λ(1 − p) [x0 0 0] [v010(0) 0 0]
14 001 → 011 λ(1 − p) [x0 0 0] [v001(0) 0 0]
15 010 → 011 α [x0 0 x2] [v010(0) 0 v010(2)]
16 011 → 000 μ [x2 0 0] [v011(2) 0 0]
17 010 → 110 λp [x0 0 x2] [v010(0) 0 v010(2)]
18 110 → 010 μ [x0 0 x2] [v110(0) 0 v110(2)]
19 111 → 010 μ [x1 0 x2] [v111(1) 0 v111(2)]
20 011 → 111 λp [x0 0 x2] [v011(0) 0 v011(2)]
21 011 → 011 λ(1 − p) [x0 0 0] [v011(0) 0 0]

α [x0 0 x2] [v011(0) 0 v011(2)]
22 000 → 001 α [x0 0 0] [v000(0) 0 0]
23 001 → 001 α [x0 0 0] [v001(0) 0 0]
24 110 → 111 α [x0 x1 x2] [v110(0) v110(1) v110(2)]
25 110 → 110 λp [x0 0 x2] [v110(0) 0 v110(2)]

λ(1 − p) [x0 x1 0] [v110(0) v110(1) 0]
26 111 → 111 λp [x0 0 x2] [v111(0) 0 v111(2)]

λ(1 − p) [x0 x1 0] [v111(0) v111(1) 0]
α [x0 x1 x2] [v111(0) v111(1) v111(2)]

We represent the evolution of x for all the above transitions in Table A1 . We now
that the information is presented in the same way as in Table A1, that is, in each row, each
transition is represented in a different row, in the second column of the table, the origin and
the destination state of the Markov Chain, in the third column the rate of each transition,
whereas in the last two columns we show the evolution of x and v̄ql Al , respectively.

Let Qp be the set of state of the Markov Chain of Figure A1. The stationary distribution
of state q ∈ Qp is denoted by πq. We now focus on the stationary distribution of the Markov
Chain of Figure A1. The balance equations are provided next:

π000(λ + α) = π101μ + π100μ + π011μ + π010μ

π001λ = π000α

π010(λp + μ + α) = π000λ(1 − p) + π110μ + π111μ

π011(λp + μ) = π010α + π001λ(1 − p)

π100(λ(1 − p) + α + μ) = π000λp + π110μ + π111μ

π101(λ(1 − p) + μ) = π001λp + π100α

π110(α + 2μ) = π010λp + π100λ(1 − p)

π1112μ = π011λp + π101λ(1 − p) + π110α
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The Markov chain under study is clearly ergodic. Therefore, there always exists a
unique solution of the above system of equations that satisfies ∑q∈Qp πq = 1.

We remark that the above system of equations coincides with Equation (1a–h).
We now define the vector bq for any q ∈ Qp. For q ∈ {000, 001}, we have that

bq = [1 0 0], whereas for q ∈ {100, 101}, bq = [1 1 0], for q ∈ {010, 011}, bq = [1 0 1] and for
q ∈ {110, 111}, bq = [1 1 1]. Besides, for all q ∈ Qp, we denote by vq(i) the i-th component
of vector vq, with i = 0, 1, 2.

We now aim to apply Theorem A1 to this model and, from (A1), it follows that

v000(λ + α) =[π000 0 0] + μ[v100(0) 0 0]

+ μ[v101(1) 0 0] + μ[v010(0) 0 0]

+ μ[v011(2) 0 0] (A2a)

v001(λ + α) =[π001 0 0] + α[v000(0) 0 0]

+ α[v001(0) 0 0] (A2b)

v010(λ + α + μ) =[π010 0 π010] + λ(1 − p)[v000(0) 0 0]

+ λ(1 − p)[v010(0) 0 0]

+ μ[v111(1) 0 v111(2)] (A2c)

v011(λ + α + μ) =[π011 0 π011] + α[v010(0) 0 v010(2)]

+ α[v011(0) 0 v011(2)]

+ λ(1 − p)[v001(0) 0 0]

+ λ(1 − p)[v011(0) 0 0] (A2d)

v100(λ + α + μ) =[π100 π100 0] + λp[v000(0) 0 0]

+ λp[v100(0) 0 0]

+ μ[v111(2) v111(1) 0] (A2e)

v101(λ + α + μ) =[π101 π101 0] + λp[v001(0) 0 0]

+ λp[v101(0) 0 0]

+ α[v101(0) v101(1) 0]

+ α[v100(0) v100(1) 0] (A2f)

v110(λ + 2μ + α) =[π110 π110 π110]

+ λp[v010(0) 0 v010(2)]

+ λp[v110(0) 0 v110(2)]

+ λ(1 − p)[v100(0) v100(1) 0]

+ λ(1 − p)[v110(0) v110(1) 0] (A2g)

v111(λ + 2μα) =[π111 π111 π111]

+ λp[v011(0) 0 v011(2)]

+ λp[v111(0) 0 v111(2)]

+ λ(1 − p)[v101(0) v101(1) 0]

+ λ(1 − p)[v111(0) v111(1) 0]

+ α[v110(0) v110(1) v110(2)]

+ α[v111(0) v111(1) v111(2)]. (A2h)

We note that the above expression is the same as Equation (2a–p) with the following
change of variable: v000(0) = x1, v001(0) = x2, . . . , v111(1) = x15, v111(2) = x16 and s0 =
π000, s1 = π001, . . . , s7 = π111. Using Theorem A1, the desired result follows.
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Appendix C. Proof of Lemma 1

We first write the Equation (2d,f,m,p), :

−s2 =− x4(λ + α + μ) + μx16 (A3a)

−s3 =− x6(λ + μ) + αx4 (A3b)

−s6 =− x13(λ(1 − p) + 2μ + α) + λpx4 (A3c)

−s7 =− x16(λ(1 − p) + 2μ) + λpx6 + αx13, (A3d)

And we observe that it is a system with 4 linear equations with 4 variables. Moreover,
from (A3b), we get

x6 =
αx4 + s3

λ + μ
,

which gives (6), whereas from (A3c) we get

x13 =
λpx4 + s6

λ(1 − p) + 2μ + α
.

Substituting these expression in Equation (A3a–d), we obtain the following system of
equations:

−s2 =− x4(λ + α + μ) + μx16 (A4a)

−s7 =− x16(λ(1 − p) + 2μ) + λp
αx4 + s3

λ + μ

+ α
λpx4 + s6

λ(1 − p) + 2μ + α
, (A4b)

From (A4a), it results that

x4(λ + α + μ) = μx16 + s2 ⇐⇒ x4 =
μx16 + s2

λ + α + μ
,

which is equal to (5) and substituting the obtained expression in (A4b) and simplifying, we
get (4). And the desired result follows.

Appendix D. Proof of Lemma 3

We first note that, from (1a), we have that

s0 =
s2μ + s3μ + s4μ + s5μ

λ + α
,

which tends to zero when λ → ∞ because si < 1 for all i and μ < ∞. From (1b), we get that

s1 =
s0α

λ
,

which, using the previous result and α < ∞, also proves that s1 tends to zero when λ → ∞
because s0 < 1. We now focus on (1c),:

s2 =
s0λ(1 − p) + s6μ + s7μ

λp + μ + α
,

and when λ → ∞, we have that s2 tends to s0(1 − p)/p and this tends to zero because s0
tends to zero. We now study (1d) and, using that αs0 = λs1 (see (1b)), we get

s3 =
s0α(1 − p) + s2α

λp + μ
,
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F which also tends to zero when λ → ∞ because s0 < 1 and α < ∞. From (1e), we obtain

s4 =
s0λp + s6μ + s7μ

λ(1 − p) + α + μ
,

and we observe that s4 tends to s0 p/(1 − p) when λ → ∞ and, since s0 tends to zero, so
does s4. Finally, we have from (1f) and using that αs0 = λs1 (see (1b)),

s5 =
s0αp + s4α

λ(1 − p) + μ
,

which also tends to zero when λ → ∞. And the desired result follows.
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Abstract: This article investigates a relay-assisted wireless powered communication network (WPCN),
where the access point (AP) inspires the auxiliary nodes to participate together in charging the sensor,
and then the sensor uses its harvested energy to send status update packets to the AP. An incentive
mechanism is designed to overcome the selfishness of the auxiliary node. In order to further improve
the system performance, we establish a Stackelberg game to model the efficient cooperation between
the AP–sensor pair and auxiliary node. Specifically, we formulate two utility functions for the
AP–sensor pair and the auxiliary node, and then formulate two maximization problems respectively.
As the former problem is non-convex, we transform it into a convex problem by introducing an
extra slack variable, and then by using the Lagrangian method, we obtain the optimal solution with
closed-form expressions. Numerical experiments show that the larger the transmit power of the
AP, the smaller the age of information (AoI) of the AP–sensor pair and the less the influence of the
location of the auxiliary node on AoI. In addition, when the distance between the AP and the sensor
node exceeds a certain threshold, employing the relay can achieve better AoI performance than
non-relaying systems.

Keywords: wireless powered communication networks; real-time state update; age of information;
utility maximization

1. Introduction

With the large-scale deployment of the Internet of things (IoT) devices in applications
such as environment surveillance and industrial control [1,2], status update systems that re-
port real-time system information become increasingly more important. In such systems, it
is required to make accurate decisions based on fresh information update and measurement
of information freshness becomes necessary. However, traditional network performance
metrics like delay and throughput cannot characterize the information freshness. Therefore,
the concept of age of information (AoI) was introduced as the time duration from the
generation time of the latest received status update packet to the current time moment [3].
For real-time update systems, the goal is to get status update information as fresh as
possible, which can be considered as the minimization of AoI.

In IoT systems, information is normally collected by the edge devices or sensors.
These sensors are generally powered by batteries of limited capacity, which require to be
replaced or recharged periodically. However, battery replacement or frequent recharging
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is labor-intensive and could be impossible, in particular in large-scale network scenarios
and harsh environments. For this, energy harvesting (EH) technology has emerged as a
promising alternative to collect energy from the external environment to power the low-
power IoT devices. It is believed that EH has great potential in the future sixth-generation
(6G) communication networks. Therefore, it is also expected to be used in future industrial
control, environment monitoring, and other real-time IoT applications.

Existing EH technologies are of two types: traditional natural energy source and
radio-frequency (RF) signal-based energy source. Compared with traditional natural
energy sources [4,5], RF signals are easy to control, can provide steady power, and have
relatively low requirements on the deployment environment [6]. Evidently, we have seen
many works on AoI-based wireless powered communication networks (WPCN) powered
by RF EH [7–13]. In [7], an optimal online state update strategy to minimize the AoI
over long-term time scale with energy constraints was studied. In [8], the performance
of AoI in WPCN was analyzed, and it proved that the smaller the probability of packet
generation, the smaller the average AoI. In [9], the emergency AoI (U-AoI) in WPCN was
minimized. In [10], the uplink AoI in two-way wireless powered networks was discussed,
where the nonlinear AoI expression was adopted. In [11], the AoI performance limit for
the actual wireless power transfer (WPT) network was explored. In [12], the trade-off
between storable energy and system AoI in the WPT network was investigated, and in [13],
the optimal design of AoI-based fog computing WPCN was studied.

The above works only considered the basic three-node network model. Recently,
researchers have extended this to the study of AoI performance in multiple-node networks.
For example, the authors of [14] minimized the AoI in large-scale WPCN with multi-
sensor nodes, and derived the solution of the average charging time of nodes in the
network. The authors of [15] studied the WPT-powered networks and explored when to
terminate energy collection and how to properly assign resources for uploading data in
order to minimize AoI. In [16], an optimal online sampling strategy for joint optimization
of update packet transmit was presented to minimize the AoI, and a deep reinforcement
learning (DRL) approach was proposed to effectively learn the optimal AoI strategy. In [17],
the AoI in WPCN with multi-user scheduling based on non-orthogonal multiple-access
(NOMA) was discussed, and the closed-form expression of AoI was derived. However,
the above work only considered the single-hop network. Due to factors such as too far or
obstructions between the sensor and the AP, the connection between them cannot always
be established. Therefore, relaying technology can be employed to help sensors transmit
information to their sink node [18–21]. Particularly, in [18], a cooperative WPCN with flat
fading was studied, in which a source and a relay collected energy from a remote power
station. In [19], the AoI in a cooperative wireless communication system with synchronous
wireless information and power transmission (SWIPT) was studied, where two protocols
were discussed.

We observe that in most of these works on AoI-based relay-assisted WPCNs, it was
assumed that the relay node (or auxiliary node) could directly participate in charging or
information transmission. As a matter of fact, this may not be realistic in real-life WPCN
because relay nodes may also have limited energy and thus are reluctant or refuse to col-
laborate in the transmission of energy and/or information. We consider this selfish nature
of the relay nodes in this article and propose to design an effective incentive mechanism to
improve the system AoI performance. In our proposed mechanism, the access point (AP)
will coordinate auxiliary nodes to charge the sensor node based on RF until a sufficient
amount of energy is harvested by the sensor node; then, the sensor node will send real-time
status update information to the AP. Unlike a similar work [22] that uses a vague incentive
mechanism and assumes the sensor node transmit packets directly to the AP, we use the
spectrum priority as the incentive for the auxiliary nodes to participate in the charging
process, and use the auxiliary node as the relay on the rout of the status update packets
from the sensor node to the AP. For such a system, utility functions are defined based on
AoI for AP and auxiliary nodes respectively, and the utility maximization problems are
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formulated. In order to achieve a win–win benefit, we apply the Stackelberg game model
to design the effective cooperation between the AP-sensor pair and auxiliary node.

We make the following key contributions in this article.
First, we extend the previous work on WPCN to the more realistic scenarios of

relay-assisted WPCN with selfish auxiliary nodes. We describe the system model and
propose a protocol to encourage the cooperation between AP and auxiliary node to keep
information fresh.

Second, we introduce utility functions for the AP-sensor pair and the auxiliary node
and then establish a Stackelberg game in order to improve the system’s performance.
To solve the non-convex utility maximization problem, we use the Lagrangian method
based on a new slack variable and are able to obtain the optimal solution in the closed form.

Third, we conduct numerical simulations to show that larger transmit power of the AP
results in smaller AoI and less dependency on the location of the auxiliary nodes. In addition,
when the distance between the AP and the sensor exceeds a certain threshold, employing the
relay can achieve better AoI performance than the current non-relaying systems.

The rest of this article is organized as follows. We elaborate the system model of relay-
assisted WPCN in the next section and then formulate the AoI-aware utility maximization
problem in Section 3. Our proposed solution to this problem is explained in detail in
Section 4. The simulation results are reported in Section 5 before we conclude the article.

2. System Model

Consider a WPT-driven network, as illustrated in Figure 1, which includes an AP,
multiple auxiliary nodes, and a sensor node with limited energy. In this system, the AP
needs to collect status update information from the sensor and this is performed in two
stages: first, the AP broadcasts the accessible bandwidth resources to the auxiliary node as
an incentive to participate in the cooperation to charge the sensor, and the auxiliary node
judges whether to participate in the power supply to the sensor according to the received
incentive. When the sensor harvests enough energy, it utilizes the accumulated energy to
send the status update to the AP. In the network, the frequency band authorized by the
AP is fixed, so multiple auxiliary nodes compete to act as the helping node and only one
auxiliary node will be selected to help charge the sensor node. The selected auxiliary node
is allowed to use the bandwidth resource and can be used as a relay.

We use k to denote the k-th auxiliary node, where k ∈ {1, . . . , K}. We use i to denote
the index of the data package, where i ∈ {1, 2, . . . , I}. We assume that the AP has steady
power supply and the energy and information is transmitted through orthogonal channels
to avoid any interference. We further assume that all wireless links expose in additive
white Gaussian noise.

AP

Auxiliary node 1

Auxiliary node 2

Auxiliary node 3

Auxiliary node K

Sensor

Motivate flow Energy flow Information flow

Figure 1. Illustration of the relay-assisted WPCN model.
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2.1. Energy Harvesting Model

Let PAP and Pk denote the transmit power of AP and the k-th auxiliary node, respec-
tively. Let ha,d(t) and hk,d(t) be the wireless channel gain between the AP and the sensor
and between the k-th auxiliary node and the sensor at time t, respectively. Let b[i] be the
time when the i-th packet starts transmission. We assume that the sensor’s battery capacity
is Bs Joule. Once the battery is fully charged, the sensor node is triggered to send a newly
generated packet with the harvested energy. It is well known that energy is the integral
of power over time. Considering the energy harvesting efficiency and our system model,
the accumulated energy by RF-based EH for data packet i can be expressed as

E[i]
h =

∫ b[i]

b[i−1]
η
(

PAP|ha,d(t)|2 + Pk|hk,d(t)|2
)

dt, (1)

where η ∈ (0, 1) denotes the energy harvesting efficiency. Note that b[i] is the time when
the battery is fully charged, therefore, we have

Bs = E[i]
h . (2)

We partition the time into I subintervals at time instants, i.e., 0 = b[0] < b[1] < ... < b[i−1]

< b[i] < ... < b[I], where the i-th subinterval [b[i−1], b[i]] is the time that the sensor harvests
energy for information packet i. The length of this subinterval is

T[i]
s = b[i] − b[i−1]. (3)

Let d[i] denote the arriving time of the i-th information packet at the AP, i.e., the
time when the packet i transmission is completed. Thus, the transmitting time of the i-th
information packet is expressed by

T[i]
t = d[i] − b[i]. (4)

Once the i-th information packet arrives at the AP, the sensor node can start generating
the (i + 1)-th packet if the status information becomes available. Therefore, we have the
following:

T[i]
t ≤ T[i+1]

s . (5)

The auxiliary relay node has a single antenna and adopts the decoding and forward-
ing relaying strategy. That is, decoding the received information before encoding and
forwarding. The relay node is installed with an information decoder, an encoder, and
energy storage. The length of the information packet is denoted by L.

Let T[i]
t1 and T[i]

t2 be the transmitting time of the i-th packet from the sensor to the
k-th auxiliary node and from the k-th auxiliary node to the AP, respectively. According to
Shannon theory, the rate can be calculated in terms of the signal-to-noise ratio (SNR) and
bandwidth, so we have the expression of transmitting time, i.e.,

T[i]
t1 =

L
W log(1 + γ1)

and T[i]
t2 =

L
W log(1 + γ2)

, (6)

where W represents the bandwidth, γ1 and γ2 are the received SNR of the two commu-
nication links, that between sensor and the k-th auxiliary node and that between the k-th
auxiliary node and the AP, respectively.

Considering the situation that the AP can collect the update packet directly from the
sensor node, we can see that the total transmitting time of the i-th update packet from the
sensor to the AP will be

T[i]
t = min

(
L

W log(1 + γ1)
+

L
W log(1 + γ2)

,
L

W log(1 + γ)

)
. (7)
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Finally, the SNRs are given by

γ =
Pd|hd,a(t)|2

N0W
, γ1 =

Pd|hd,k(t)|2
N0W

and γ2 =
Pk

′|hk,a(t)|2
N0W

, (8)

where |hd,a(t)|2, |hd,k(t)|2 and |hk,a(t)|2 denote the wireless channel power gain between
the sensor and the AP, between the sensor and the auxiliary node k, and between the
auxiliary node k and the AP, respectively. N0 represents the noise spectral density. Pd and
P′

k are the transmit power of the sensor and the k-th auxiliary node, respectively.

2.2. AoI Modeling

The current information packet’s AoI, i.e., packet i at time t, is described by

Δ[i](t) = t − U[i](t), (9)

where U[i] (t) represents the time of generating the latest update packet received by AP, i.e.,

U[i](t) = max
{

b[j]
∣∣∣d[j] ≤ t

}
. (10)

Figure 2 illustrates the evolution AoI versus time. It is seen from the figure that when
the destination node does not receive the state update packet, AoI increases linearly with
time, which shows a sawtooth shape. When the destination node receives a new data
packet, the AoI is reset to the delay that the status update experiences. In the time interval
[d[i], d[i+1]], the integral of AoI is the area under the Δ[i](t) curve. Therefore, its average
AoI is expressed by

Δ̄[i] =
1

d[i+1] − d[i]

∫ d[i+1]

d[i]
Δ[i](t)dt. (11)

Figure 2. Evolution of the AoI.

The integral term in the above formula is obtained by summing the area of Q[i],

∫ d[i+1]

d[i]
Δ[i](t)dt = Q[i], (12)

which is expressed by

Q[i] =

(
T[i]

t + T[i+1]
s + T[i+1]

t

)(
T[i+1]

s − T[i]
t + T[i+1]

t

)
2

. (13)
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Therefore, the average AoI of the i-th data packet is expressed by

Δ̄[i] =
Q[i]

d[i+1] − d[i]
=

1
2

(
T[i]

t + T[i+1]
s + T[i+1]

t

)
. (14)

The harvesting energy time and transmitting update packet time are independent, so
they could be regarded as independent and identically distributed variables. Therefore,
for the long-term running, the system will be in a quasi-stationary state, which guarantees
T[i+1]

s = T[i]
s and T[i+1]

t = T[i]
t . In consequence, the average AoI is given by

Δ̄ = Tt +
1
2

Ts. (15)

3. Problem Formulation

In the system described above, the auxiliary node may become selfish and not willing
to charge the sensor due to their own limited energy. In order to motivate them to partici-
pate in charging the sensor node, the AP may use spectrum priority access as the incentive
to encourage the auxiliary nodes. In this section, we will define the utility functions for
the AP and the auxiliary node. We design a Stackelberg game method to build an effective
cooperation between auxiliary node and AP–sensor pair. The basic idea of Stackelberg
game is that one side is the leader and the other side is the follower. The leader acts first
and the follower chooses his own action according to the leader’s strategy [23]. Their goal
is to maximize their own interests.

Specifically, first, the AP issues a certain bandwidth as the incentive for the auxiliary
nodes to participate in charging. Second, the auxiliary nodes optimize their transmit power
based on the incentive. Third, the AP optimizes its transmit power and then transfers
energy to the sensor together with the selected auxiliary node. At last, the sensor utilizes
the harvested energy to send update packets to the AP. The flow chart of the system
is illustrated in Figure 3. Energy flow is shown in green on the right; update packet
transmission flow is shown in red on the left.

Figure 3. Overview of the incentive-based update packet collection system.

3.1. Utilities of the Auxiliary Node

Let Γk(x) denote the cost of the k-th auxiliary node to transmit energy to the sensor
and information to the AP at power level x. Similar to the work in [24], we can model this
cost as

Γk(x) = akx2 − bkx + ck, (16)
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where ak, bk, and ck are predetermined parameters related to auxiliary node k. If node k
uses power level Pk and P′

k to transmit to the sensor and to the AP, respectively, the utility
of the auxiliary node k can be expressed by

Uk
(

Pk, Pk
′, Ts, Ts

′) = αB − TsΓk(Pk)− Ts
′Γk

(
Pk

′), (17)

where αB is the incentive from the AP with α as the uniform factor of bandwidth and revenue,
Ts is the energy harvesting time and T′

s is the transmitting time from node k to the AP.
For the auxiliary node, it expects to maximize its utility. Therefore, the maximization

problem Pk is expressed by

Pk : max
Pk ,Pk

′ Uk
(

Pk, Pk
′, Ts, Ts

′)
s.t. 0 < Pk, Pk

′ ≤ Pk
max,

(18)

where Pmax
k is the power threshold of the k-th auxiliary node.

3.2. Utilities of the AP

As mentioned earlier, the ratio factor of revenue to bandwidth is defined as α, and the
overhead of AP is given by

Ξ = αB. (19)

Therefore, the utility associated with the sensor-AP pair is given by

U(0)
AP = ŨAP − μΔ̄ − ωTsPAP|ha,d|2 − Ξ, (20)

where ŨAP is a constant, which is pre-defined. μ > 0, ω > 0 are the cost coefficient based
on AoI and the cost coefficient based on energy, respectively.

Then, the AoI-based utility maximization problem is formulated as

P(1)
AP : max

PAP ,Ts
U(0)

AP(B, Ts, PAP, Pk)

s.t. Bs ≤ Eh; Tt ≤ Ts; B ≥ 0; 0 ≤ PAP ≤ PAP
max,

(21)

where Pmax
AP is the maximum available power of the AP. As ŨAP is a constant, P(1)

AP can be

transformed to P(2)
AP, i.e.,

P(2)
AP : min

PAP ,Ts
UAP(B, Ts, PAP, Pk)

s.t. Bs ≤ Eh; Tt ≤ Ts; B ≥ 0; 0 ≤ PAP ≤ PAP
max,

(22)

where
UAP(B, Ts, PAP, Pk) = μΔ̄ + ωTsPAP|ha,d|2 + Ξ
= μTt +

1
2 μTs + ωTsPAP|ha,d|2 + αB.

(23)

As μ, Tt, α, and B are fixed values, the problem P(2)
AP is transformed to P(3)

AP, i.e.,

P(3)
AP : min

PAP ,Ts

1
2 μTs + ωTsPAP|ha,d|2

s.t. Bs ≤ Eh; Tt ≤ Ts; 0 ≤ PAP ≤ PAP
max.

(24)

4. Solution Method

We elaborate our proposed method and the derived solution for the above utility
optimization problem.
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4.1. Optimization of Pk and P′
k with a Given {PAP, Ts}

As mentioned above, the problem Pk is expressed by

Pk : max
Pk ,Pk

′ Uk
(

Pk, Pk
′, Ts, Ts

′)
s.t. 0 < Pk, Pk

′ ≤ Pk
max,

(25)

where
Uk

(
Pk, Pk

′, Ts, Ts
′) = αB − TsΓk(Pk)− Ts

′Γk
(

Pk
′). (26)

By substituting the cost function expression into the above problem, problem Pk can
be expressed as follows,

Pk
(1) : max

Pk ,Pk
′

{
−akTsPk

2 + bkTsPk − akTs
′Pk

′2 + bkTs
′Pk

′ + αB − ckTs − ckTs
′
}

s.t. 0 < Pk, Pk
′ ≤ Pk

max.
(27)

Lemma 1. For a given {PAP, Ts}, the optimal solution to Problem Pk is{
P∗

k = bk
2ak

,

P
′∗
k = bk

2ak
.

(28)

Proof. The objective function is about the quadratic function of two independent variables,
and the second derivative is negative, so it is a concave function. The maximum value can
be solved based on the quadratic formula directly.

4.2. Optimization of PAP and Ts with a Given {Pk, P′
k}

In problem P(3)
AP, two variables are multiple coupled, so the problem is non-convex.

To tackle it, we introduce a new slack variable, i.e., π = Ts · PAP. As a result, the problem
can be transformed into the following problem by variable substitution method:

P(4)
AP : min

Ts ,π
1
2 μTs + ω|ha,d|2π

s.t. − Ts + Tt ≤ 0
−Ts +

1
PAP

max π ≤ 0

−Ts − |ha,d |2
Pk |hk,d |2 π + Bs

ηPk |hk,d |2 ≤ 0.

(29)

As both of the objective function and the constraints of P(4)
AP are linear, it is a convex

problem, and the corresponding Lagrange function can be given by

L(Ts, π, λ) = 1
2 μTs + ω|ha,d|2π + λ1(−Ts + Tt) + λ2

(
−Ts +

1
PAP

max π
)

+λ3

(
−Ts − |ha,d |2

Pk |hk,d |2 π + Bs
ηPk |hk,d |2

)
.

(30)

The Karush–Kuhn–Tucker (KKT) condition of the problem is

1
2

μ−λ1−λ2−λ3= 0, (31a)

ω|ha,d|2+ 1
PAP

max λ2− |ha,d|2
Pk|hk,d|2

λ3= 0, (31b)

λ1(−Ts + Tt)= 0, (31c)

302



Entropy 2021, 23, 1177

λ2

(
−Ts +

1
PAP

max π

)
= 0, (31d)

λ3

(
−Ts − |ha,d|2

Pk|hk,d|2
π +

Bs

ηPk|hk,d|2
)
= 0, (31e)

λ1 ≥ 0, (31f)

λ2 ≥ 0, (31g)

λ3 ≥ 0, (31h)

−Ts + Tt ≤ 0, (31i)

−Ts +
1

PAP
max π ≤ 0, (31j)

−Ts − |ha,d|2
Pk|hk,d|2

π +
Bs

ηPk|hk,d|2
≤ 0. (31k)

According to (31b), the sum of the first two terms must be greater than 0, so λ3 �= 0.
Otherwise, (31b) will not hold.

It can be seen from (31a) and (31b) that λ1 and λ2 must not be 0 at the same time.
Otherwise, λ3 will be equal to two different values.

From (31c) and (31d), one can see that λ1 and λ2 cannot not be equal 0 at the same
time. Otherwise, Ts will be equal to two different values.

With above observations, there are two cases to analyze the solutions to the optimiza-
tion problem.

Case 1: λ1 = 0, λ2 �= 0 and λ3 �= 0, the optimal solution to P(4)
AP is⎧⎪⎪⎨⎪⎪⎩

Ts
∗ = Bs

η(Pk |hk,d |2+PAP
max|ha,d |2)

,

π∗ = BsPAP
max

η(Pk |hk,d |2+PAP
max|ha,d |2)

,

PAP
∗ = PAP

max.

(32)

Case 2: λ1 �= 0, λ2 = 0 and λ3 �= 0, the optimal solution to P(4)
AP is⎧⎪⎪⎨⎪⎪⎩

Ts
∗ = Tt,

π∗ =
(

Bs
ηPk |hk,d |2 − Tt

)
Pk |hk,d |2
|ha,d |2 ,

PAP
∗ = π∗

Tt
.

(33)

For the solutions of the two cases, it can be seen from the restrictive conditions that
when (31i) is true, the solution is the case 1. Otherwise, it is the case 2. That is to say,
the following formula is the judgment condition.

Bs

η(Pk|hk,d|2 + PAP
max|ha,d|2)

≥ Tt, (34)

where the expression of Tt is given by (7).
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Theorem 1. The optimal solution to P(4)
AP is expressed by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts
∗ =

{ Bs
η(Pk |hk,d |2+PAP

max|ha,d |2)
, i f Bs

η(Pk |hk,d |2+PAP
max|ha,d |2)

≥ Tt

Tt, otherwise

π∗ =

⎧⎨⎩
BsPAP

max

η(Pk |hk,d |2+PAP
max|ha,d |2)

, i f Bs
η(Pk |hk,d |2+PAP

max|ha,d |2)
≥ Tt(

Bs
ηPk |hk,d |2 − Tt

)
Pk |hk,d |2
|ha,d |2 , otherwise

PAP
∗ =

{
PAP

max, i f Bs
η(Pk |hk,d |2+PAP

max|ha,d |2)
≥ Tt

π∗
Tt

. otherwise

(35)

Proof. As problem P(4)
AP is convex, Theorem 1 can be proved with KKT conditions.

5. Simulation Results

Some numerical results are shown to discuss the system performance in terms of
achievable AoI, where the simulational parameters are set as follows. For clarity, the dis-
tance between the AP and the sensor is set to 6 m. The auxiliary nodes are randomly
placed between AP and sensor. Assume that the distance between all auxiliary nodes and
sensors is the same, that is, 3 m. Note that the location of the auxiliary nodes will be varied
according to the purpose of the simulation. The channel is generated according to Rayleigh
distribution. The path loss factor is set to 2. Other simulational parameters are summarized
in Table 1.

Table 1. Parameter list.

Meaning Parameter Value

noise spectral density N0 10−9 mW/Hz
bandwidth W 1 kHz

maximum transmit power of k-th node Pmax
k 100 mW

maximum transmit power of sensor Pmax
d 10 mW

maximum transmit power of AP Pmax
AP 5 W

battery capacity Bs 0.1 mj
energy harvesting efficiency η 0.8

packet length L 100 bytes
the cost coefficient based on AoI μ 1

the cost coefficient based on energy ω 104

the cost coefficient based on bandwidth α 1
predetermined parameters ak 1 × 104

predetermined parameters bk 2 × 103

bandwidth incentive B 100 Hz

Figure 4 plots the minimized average AoI versus the PAP. One can observe that the
AoI decreases gradually with the increase of PAP. The reason is that increasing the AP’s
transmit power will shorten the time for the energy harvested by the sensor to reach the
battery capacity. Thus, it improves the freshness of the information. However, beyond
a certain range, the change of AoI with transmit power is no longer significant because
the average AoI is dominated by the information packet transmission time. This figure
also shows the influence of different locations of auxiliary nodes on AoI is also different.
The closer the auxiliary node to the sensor, the shorter time it will take to charge the sensor
and the smaller the AoI.
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Figure 4. The minimized AoI versus PAP.

Figure 5 plots the minimized AoI versus the distance between the auxiliary nodes and
the sensor. It is seen that the closer the auxiliary node deployed to the sensor, the lower the
AoI. This observation is consistent with the real situation as the closer the auxiliary node
transmitting energy is to the sensor, the smaller the attenuation of electromagnetic wave
is. Therefore, the time for sensor to collect energy will be reduced, so as to improve AoI.
In addition, it is seen that the influence of the location on the AoI is different under different
PAP. The smaller the PAP, the more obvious the influence of the location of the auxiliary
node on AoI. When the PAP is small, the charging mainly depends on the auxiliary node,
and the position of the auxiliary node is more critical. When the PAP is normal or larger,
the PAP is the main factor affecting the AoI, so that the position of the auxiliary node has
no obvious effect on AoI.
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Figure 5. The minimized AoI versus Dkd.

Figure 6 plots the AP’s maximum utility value versus the transmit power of AP.
From this figure, it is seen that the larger the PAP, the greater the utility value, and finally
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tends to remain unchanged. The reason may be that in a certain range, by increasing the
PAP, although the cost of transmitting energy increases, it makes the information fresher.
The benefit of AoI is greater than the cost of transmitting energy. Therefore, the utility
value of the AP based on AoI becomes larger, and beyond a certain range, with the increase
of PAP, the impact on AoI is negligible and the increase of utility value is not obvious.
Besides, it is also seen that the auxiliary nodes in different positions also have an impact on
the utility value. The specific relationship is shown in the figure below.
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Figure 6. The AP’s utility value versus the PAP.

Figure 7 plots the utility of AP versus the distance between the auxiliary nodes and
the sensor. The shorter the distance between the auxiliary node and the sensor, the greater
the AP’s utility value, and the smaller the AP transmit power, the more obvious that effect.
The reason is similar to that associated with Figure 2.
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Figure 7. The AP’s utility value versus the Dak.
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Figure 8 plots the change of AoI versus packet length. It is seen that the larger the
length of the information packet, the larger the average AoI of the system. This may be
because the length of the packet directly affects the transmit time of the packet. The larger
the packet, the longer the transmitting time, which affects the freshness of the information.
In addition, the influence of packet length on AoI varies with the location of auxiliary
nodes. The closer the auxiliary node to the sensor, the less influence of packet length on
AoI, because in the process of the auxiliary node serving as the relay and the sensor sending
packets to the AP, the transmit power of the auxiliary node is larger than that of the sensor
node, and the same packet length change has less impact on the transmit time.
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Figure 8. The minimized AoI versus L.

Figure 9 depicts the change of AoI with the distance between the AP and the sensor.
Obviously, the farther the distance, the larger the AoI. The figure also compares the AoI in
the system with and without auxiliary node as the relay. When the distance is greater than
13 m, the information with auxiliary node as the relay is fresher when the sensor transmits
update packets to the AP. Thus, for the actual system, if the relay within 13 m can choose
not to activate them, it has important guiding significance.
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Figure 9. The minimized AoI versus Dad.
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Note that in this paper, the AoI is calculated by using the current packet’s transmit
time to approximate the transmit time of the next packet, that is, using the current channel
to approximate the channel of the next slot. Figure 10 shows the relationship between the
approximate value and the exact value of AoI. It is seen that the change of the approximate
value lags behind the exact value by one time slot. Due to the randomness of the channel,
the approximate value may be larger or smaller than the true value. If the channel of the
current time slot is better than the next time slot, the approximate value of the current AoI
is a little smaller than the true value. If the channel of the current time slot is worse than
the next time slot, the approximate value of the current AoI is larger than the real value.
However, on average, the difference between our modeling method and the real value is
very small, which indirectly proves the effectiveness of the modeling method.
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Figure 10. Accurate AoI versus approximate AoI.

6. Conclusions

In this article, we study a relay-assisted WPCN based on AoI with a focus on the
case when the auxiliary nodes are selfish. The main idea behind our proposed solution
is an incentive scheme that encourages the auxiliary nodes to collaborate. We formulate
the problem and use the Stackelberg game theory to design an effective collaboration
between AP–sensor pair and auxiliary node. More specifically, two utility functions for the
AP–sensor pair and the auxiliary node were formulated. As maximizing the utility of the
AP–sensor pair was non-convex, we transformed it into a convex problem by introducing a
new slack variable, and then solved it by the Lagrangian method to obtain optimal solutions
in the closed form. Simulation results showed that the larger the transmit power of the AP,
the smaller the AoI and the less the influence of the location of the auxiliary node on AoI.
In addition, when the distance from the AP to the sensor node exceeds a certain threshold,
employing the relay can achieve better AoI performance than non-relaying systems. These
results provide insightful and practical guidance for the design of relay-assisted WPCN in
real life.
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Abstract: Timely status updates are critical in remote control systems such as autonomous driving
and the industrial Internet of Things, where timeliness requirements are usually context dependent.
Accordingly, the Urgency of Information (UoI) has been proposed beyond the well-known Age of
Information (AoI) by further including context-aware weights which indicate whether the monitored
process is in an emergency. However, the optimal updating and scheduling strategies in terms of UoI
remain open. In this paper, we propose a UoI-optimal updating policy for timely status information
with resource constraint. We first formulate the problem in a constrained Markov decision process
and prove that the UoI-optimal policy has a threshold structure. When the context-aware weights
are known, we propose a numerical method based on linear programming. When the weights are
unknown, we further design a reinforcement learning (RL)-based scheduling policy. The simulation
reveals that the threshold of the UoI-optimal policy increases as the resource constraint tightens. In
addition, the UoI-optimal policy outperforms the AoI-optimal policy in terms of average squared
estimation error, and the proposed RL-based updating policy achieves a near-optimal performance
without the advanced knowledge of the system model.

Keywords: age of information; constrained Markov decision process; reinforcement learning; context-
awareness; timely status updates

1. Introduction

With the development of 5G and the Internet of Things (IoT), requirements for wireless
communication have shifted from merely providing communication channels to covering
the entire process of various IoT applications, e.g., autonomous vehicle [1] and virtual
reality (VR) [2], where sensing, communication, computation, and control form a closed
loop. Therefore, in addition to the communication delay, it is necessary to consider the
information delay counted from the generation of the state information to the execution,
namely the timeliness of information. For this purpose, Age of Information (AoI) has
been proposed, which is defined as the time elapsed since the generation time of the latest
received packets [3]. Due to its concise definition and clear physical meaning, AoI has been
widely used for the design of scheduling and updating policies in remote estimation [4–6]
and wireless communication networks [7–12]. Most existing works focus on optimizing
average AoI or peak age. In [13], the authors claim that minimizing average age cannot
satisfy the requirements for ultra-reliable low-latency communication (URLLC) and study
the tail distribution of AoI. The violation probability for peak age is derived in [14] and the
stationary distribution of AoI is studied in [15].

Nevertheless, the AoI still has some limitations. First, it fails to measure the nonlinear
performance degradation caused by information staleness. In [16–19], nonlinear age penalty
functions were introduced to solve this problem. Meanwhile, the Age of Synchronization
(AoS) [20] and Age of Incorrect Information (AoII) [21] are defined to associate information
freshness with the content of information. AoS is the time elapsed since the information at
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the receiver becomes desynchronized with the actual status of the monitored process. AoII
is defined as the product of an increasing time penalty function and a penalty function
of the estimation error. In addition, the status of heterogeneous data sources may change
at different rates. A fast-changing process may require information with a lower age.
However, age is independent of the changing rate and thus is not proper in the cases when
heterogeneous data sources are jointly considered. To solve this problem, weighted age
was introduced in [22,23] to distinguish important monitored processes. In [24], the metric
based on information theory is proposed as a replacement of the time-based metric, AoI,
to characterize the changing rate. In [5], the authors claim that minimizing age is not
equivalent to minimizing the estimation error in a remote estimation problem and propose
an effective age to solve this problem [25].

Practical systems (e.g., V2X-communication systems) may have different requirements
for information freshness with different contexts. The context refers to all environmental
factors that affect the requirement for information freshness. Therefore, resources should
be reserved for frequent status updates in emergency to ensure safety.

However, the timeliness metrics mentioned above pay no attention to the significance
of context information. To solve this problem, Urgency of Information (UoI) has been
proposed in [26–28] to measure the influence of inaccurate information on performance
under different contexts. To be specific, UoI uses a time-variant context-aware weight ω(t)
to distinguish different contexts. A higher ω(t) indicates that the system is in more urgent
situations (e.g., when a vehicle is approaching an intersection or overtaking) and therefore
requires frequent updates. For example, when a vehicle passes through an intersection,
the context-aware weight increases as the distance between the vehicle and the center of
the intersection decreases. Meanwhile, the estimation error Q(t) is introduced to measure
the information inaccuracy, which is defined as the difference between the actual status
and the estimated status at the receiver. The larger the absolute value of Q(t) is, the less
accurate the estimated status is. Therefore, UoI is defined as the product of context-aware
weight and a cost function of the estimation error Q(t):

F(t) = ω(t)δ(Q(t)). (1)

In discrete-time systems, the estimation error Q(t) is:

Q(t) =
t−1

∑
τ=g(t)

A(τ), (2)

where g(t) is the generation time of the latest status update at the receiver and A(t) is
the increment in estimation error in time slot t. Specifically, if the context-aware weight
is time-invariant (i.e., ω(t) = 1), and A(t) = 1 as well as δ(Q(t)) = Q(t), UoI is the same
as AoI. If the context-aware weight is process-dependent, UoI can represent weighted
age. If the cost function δ(Q(t)) is nonlinear, UoI can represent the nonlinear age penalty
function. For example, when the outdated information is worthless, e.g., the information
is about sales that expire after some time [29], then the shifted unit step cost function
δ(Q(t)) = u(Q(t)− τ), τ > 0 is recommended. For the unit step function, u(x) = 1 when
x ≥ 0 and otherwise u(x) = 0.

In this work, we considered a single-user remote monitoring system, and the objective
was to find an updating policy minimizing the average UoI over time under the constraint
on average update frequency. To solve this problem, Refs. [27,30] proposed update-index-
based adaptive schemes with Lyapunov optimization but did not conduct a theoretical
analysis of their optimality. In addition, the constrained Markov decision process (CMDP)
formulation was only used in the simulation for a numerically solved benchmark. Based on
the existing works, in this paper, we theoretically analyzed the structure of the UoI-optimal
policy and focused on how to derive an updating policy in an unknown environment.

The main contributions of this paper are summarized as follows.
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• In contrast to [27,30], we assumed that the context-aware weight is a first-order irre-
ducible positive recurrent Markov process or independent and identically distributed
(i.i.d.) over time. We formulated the updating problem as a CMDP problem and
proved the single threshold structure of the UoI-optimal policy. We then derived the
policy through LP with the threshold structure and discussed the conditions that the
monitored process needs to satisfy for the threshold structure.

• When the distributions of the context-aware weight and the increment in estimation
error were unknown, we used model-based RL method to learn the state transitions
of the whole system and derive a near-optimal RL-based updating policy.

• Simulations were conducted to verify the theoretical analysis of the threshold structure
and show the near-optimal performance of the RL-based updating policy. The results
indicate that: (i) the update thresholds decrease when the maximum average update
frequency becomes large; (ii) the update threshold for emergency can actually be larger
than that for ordinary states when the probability of transferring from emergency to
ordinary states tends to 1.

The rest of this paper is organized as follows. The system model and the problem
formulation are described in Section 2. In Section 3, we obtain the CMDP formulation of
the problem with the given distribution of context-aware weight and prove the threshold
structure of the UoI-optimal policy. The proposed model-based RL updating policy is
obtained in Section 4. In Section 5, the simulation results are shown and discussed while
the conclusions are drawn in Section 6.

2. System Model and Problem Formulation

In this paper, we considered a remote monitoring system, in which a fusion center
collects the status information (e.g., current location, velocity, information of surrounding)
from a vehicle of interest via a wireless channel with limited resources, as shown in Figure 1.
The whole system is considered as a discrete-time system and the status can be generated
at will. Due to the limitations on the wireless resources and energy supply, there is a
constraint on the average update frequency of the vehicle. The update decision in time slot
t is denoted by U(t) ∈ {0, 1}, where U(t) = 1 means that the vehicle decides to transmit
the current status to the center, and U(t) = 0 denotes that the vehicle decides to stay idle.

The wireless channel is assumed as a block fading channel with successful transmis-
sion probability ps. Let S(t) ∈ {0, 1} be the state of the channel. S(t) = 0 represents that
the channel is in deep fading, and no packet can be successfully transmitted. S(t) = 1
means the packets can be successfully transmitted to the center through the channel. If the
center receives an update, then U(t)S(t) = 1 and an ACK will be sent to the vehicle.

Let x(t) and x̂(t) denote the current status of the monitored vehicle and the estimated
status of the vehicle at the center, and Q(t) = x(t) − x̂(t) denotes the estimation error.
Similar to [26], we further assume that the time period of a packet transmission is less than
a time slot and the estimation at the center equals the latest status information received
by the center. This estimation scheme is easy to implement, theoretically tractable and
has been proven to be an optimal policy that can minimize the average squared error
of status estimation in a remote estimation system under energy constraints when the
monitored process is a Wiener process [31]. Then, the recurrence relation of the estimation
error Q(t) is:

Q(t + 1) = (1 − U(t)S(t))Q(t) + A(t). (3)

Equation (3) indicates that the estimation error will be the amount of variation of the
monitored process from the generation time of the latest received status to the current time.
The increment A(t) represents the variation of the monitored process. For example, when
A(t) follows a Gaussian distribution with a mean of zero and variance of σ2, represented
by N(0, σ2), the monitored status follows a Wiener process. When A(t) takes values
from {0, 1,−1} with a probability of {1 − 2prw, prw, prw}, where 0 < prw < 1

2 , then the
status of the monitored source will be a one-dimensional random walk. In this paper, we

313



Entropy 2021, 23, 1084

assumed that the monitored status of the vehicle is a Wiener process and A(t) is i.i.d. over
time. However, the increment in estimation error during a single slot cannot be infinite in
practical systems. Therefore, in contrast to [27,30], we assumed that increment A(t) obeys
a truncated Gaussian distribution, i.e., the probability density function (PDF) of A(t) is:

fA(t)(a) =
1
σ φ

(
a−μ

σ

)
Φ
(

Amax−μ
σ

)
− Φ

(−Amin−μ
σ

) , (4)

where μ and σ are the expectation and standard deviation of increment A(t). φ and Φ are
the PDF and the cumulative distribution function (CDF) of standard normal distribution.
We also assumed A(t) ∈ [−Amin, Amax], Amax = Amin > 0 and μ = 0.

Fusion CenterVehicle of 
Interest

Status Update
Feedback

Figure 1. Remote control and monitoring model. The vehicle of interest is shown in red.

Meanwhile, the scheduling policy of information updates should also be related to the
situation and environment of the system. For example, when the system is in an emergency,
it should be very sensitive to the accuracy and the delay of the status information, thus
the status should be updated more frequently. Therefore, our objective is to find a policy
telling the vehicle whether to transmit status information or not in each slot for a minimum
average UoI over time under the constraint:

min
U(t)

lim sup
T→∞

1
T

E

[
T−1

∑
t=0

w(t)Q(t)2

]

s.t. lim sup
T→∞

1
T

T−1

∑
t=0

E[U(t)] ≤ ρ,

(5)

where ω(t) > 0 is the context-aware weight, which is independent with Q(t). ρ ∈ (0, 1] is
the maximum average update frequency. The cost function of the estimation error used
here is δ(Q(t)) = (Q(t))2, which is inspired by the squared error of status estimation.

3. Scheduling with CMDP-Based Approach

In this section, we start by formulating problem (5) into a constrained Markov decision
process (CMDP) with assumptions on the distribution of the context-aware weight. We will
prove the threshold structure of the UoI-optimal updating policy and derive the optimal
policy through a linear programming (LP) formulation.

3.1. Constrained Markov Decision Process Formulation

In the remote monitoring system, the context may be related to the distance between
adjacent vehicles/mobile devices, the unexpected maneuver of the neighboring vehicles,
etc. In [32], the authors prove that whether the distance between two mobile wireless
devices with Ornstein–Uhlenbeck mobility is less than a certain threshold follows a first-
order Markov process. When the two devices are closer, they are more interested in
each other’s status information, communication and computing resources to facilitate
cooperation, share resources, and avoid collisions. At this time, the transmission of status
information is more urgent than when the two devices are far apart. As for the unexpected
maneuver of the neighboring vehicles, it is very challenging to find a proper formulation.
Instead, we assumed that such emergencies occur independently in each slot according
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to a certain probability. Therefore, in contrast to [27,30], we assumed that the context-
aware weight ω(t) is i.i.d. over time or a first-order irreducible positive recurrent Markov
process and formulated the problem (5) as a CMDP problem. The irreducible positive
recurrent Markov formulation guarantees the existence of the UoI-optimal policy (see
Appendix A). In this section, we will first focus on the situation where ω(t) is a first-order
Markov process:

• State space: The state of the vehicle in slot t, denoted by s(t) = (Q(t), ω(t)), includes
the current estimation error and the context-aware weight. Then, we discretize Q(t)
with the step size ΔQ > 0, i.e., the estimation error
Q(t) ∈ Q = {0,±ΔQ,±2ΔQ, · · · ,±nΔQ, · · · }. For example, when
Q(t) ∈ [nΔQ − 1

2 ΔQ, nΔQ + 1
2 ΔQ), its value will be taken as nΔQ. The smaller the

step size ΔQ, the smaller the performance degradation caused by discretization. In
addition, the value set of the context-aware weight is denoted by W. Then, the state
space S = {Q×W} is thus countable but infinite.

• Action space: At each slot, the vehicle can take two actions, namely U(t) ∈ U = {0, 1},
where U(t) = 1 denotes the vehicle deciding to transmit updates in slot t and U(t) = 0
denotes the vehicle deciding to wait.

• Probability transfer function: After taking action U at state s = (Q, ω), the next
state is denoted by s′ = (Q′, ω′). When the vehicle decides not to transmit or the
transmission fails, the probability of the estimation error transferring from Q to Q′
is written as Pr{Q′ − Q = a} = pa. Due to the discretization of the estimation error,
the increment a ∈ A = {0,±ΔQ,±2ΔQ, · · · ,±Am}, where Am = � Amax

ΔQ
�ΔQ > 0. In

addition, pa = FA(a + 1
2 ΔQ)− FA(a − 1

2 ΔQ), where FA(a) is the CDF of increment
A(t). In addition, the probability of the context-aware weight transferring from ω to
ω′ is written as Pr{ω → ω′} = pωω′ . Based on the assumption that the context-aware
weight ω(t) is independent with the estimation error Q(t), then the probability of the
state transferring from s = (Q, ω) to s′ = (Q′, ω′) given action U is:

Pr{s → s′|U} = Pr{(Q, ω) → (Q′, ω′)|U}

=

{
pωω′ pQ′−Q , U = 0,
pωω′((1 − ps)pQ′−Q + ps pQ′−0) , U = 1.

(6)

• One-step cost: The cost caused by taking action U in state (Q, ω) is:

C(Q, ω, U) = ωQ2, (7)

while the one-step updating penalty only depends on the chosen action:

D(Q, ω, U) = U. (8)

The average cost caused under a certain policy π is the average UoI, which is defined
as C̄π and the average updating penalty under π is defined as D̄π . We aimed to find
the UoI-optimal policy which minimizes the average cost under the resources constraint.
Therefore, problem (5) can be formulated into the following CMDP problem:

min
π

C̄π = lim
T→∞

1
T
Eπ

[
T

∑
t=1

C(Q(t), ω(t), U(t))

]

s.t. D̄π = lim
T→∞

1
T
Eπ

[
T

∑
t=1

D(Q(t), ω(t), U(t))

]
≤ ρ.

(9)
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3.2. Threshold Structure of the Optimal Policy

We start from some basic definitions in [33] and show the properties of problem (9).

Definition 1. A stationary deterministic policy is a policy that takes the same action whenever in
a given state s = (Q, ω), while a stationary randomized policy chooses to update or not in state s
with a certain probability.

Theorem 1. There exists an optimal stationary randomized policy for problem (9). The optimal
policy is a probabilistic combination of two stationary deterministic policies. The two deterministic
policies only differ on at most one state and each policy minimizes the unconstrained cost in (10)
with a different Lagrange multiplier λ:

Lπ
λ = lim

T→∞

1
T
Eπ

[
T

∑
t=1

[C(Q(t), ω(t), U(t)) + λD(Q(t), ω(t), U(t))]

]
. (10)

Proof of Theorem 1. The proof is shown in Appendix A.

We denote the optimal policy that minimizes the unconstrained cost in (10) with a
given λ by π� and the cost obtained under policy π� by Lπ�

λ , namely Lπ�

λ = minπ Lπ
λ . Then,

there exists a differential cost function V(Q, ω) that satisfies the Bellman Equation [34]:

V(Q, ω) + Lπ�

λ = min

{
C(Q, ω, 1) + λD(Q, ω, 1)

+ (1 − ps) ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV
(
Q + a, ω′)+ ps ∑

ω′∈W
pωω′

Am

∑
a=−Am

paV
(
a, ω′),

C(Q, ω, 0) + ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV
(
Q + a, ω′)}. (11)

To solve problem (5), we first prove that with a given λ, the optimal stationary
deterministic policy π� has a threshold structure. We then introduce a discounted problem
with a discount factor α and the discounted cost starting from state (Q, ω) under a certain
policy π is:

Jα,π(Q, ω) = lim
T→∞

Eπ

[
T

∑
t=0

αt[C(Q(t), ω(t), U(t))

+λD(Q(t), ω(t), U(t))] | (Q(0) = Q, ω(0) = ω)

]
. (12)

Denote the minimum cost starting from state (Q, ω) by Vα(Q, ω) = minπ Jα,π(Q, ω).
Then, we have:

Vα(Q, ω) =min

{
C(Q, ω, 1) + λD(Q, ω, 1) + (1 − ps)α ∑

ω′∈W
pωω′

Am

∑
a=−Am

paVα

(
Q + a, ω′)

+psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
a, ω′), C(Q, ω, 0)

+α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′)}. (13)

Define Δ(Q, ω) as the difference between the value functions by taking the two
different actions U = 0, 1, meaning that:
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Δ(Q, ω) = C(Q, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′)

−C(Q, ω, 1)− λD(Q, ω, 1)− psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
a, ω′)

−(1 − ps)α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paVα

(
Q + a, ω′)

=psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′)− Vα

(
a, ω′)}− λ. (14)

Define ∑Am
a=−Am

paVα(Q + a, ω) as a function fα(Q, ω). Then we will prove that for
∀|Q1| < |Q2|, we have fα(Q1, ω) < fα(Q2, ω). To this end, we first prove the following
Lemma 1.

Lemma 1. For a given discount factor α and a fixed context-aware weight ω, the value function
for Q equals the value function for −Q, namely:

Vα(Q, ω) = Vα(−Q, ω).

Proof of Lemma 1. The Lemma is proven by induction. Define V(k)
α (Q, ω) as the value func-

tion obtained after the kth iteration. Assume that for ∀Q, we have: V(k)
α (Q, ω) = V(k)

α (−Q, ω).
If action U is taken in the kth iteration, then the expected discounted cost is defined as
J(k)α,U(Q, ω). Therefore, V(k+1)

α (Q, ω) = minU J(k)α,U(Q, ω). We have:

J(k)α,0 (Q, ω) = C(Q, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
Q + a, ω′)

= ω(−Q)2 + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(−Q − a, ω′)
= CX(−Q, ω, 0) + α ∑

ω′∈W
pωω′

Am

∑
a=−Am

paV(k)
α

(−Q + a, ω′) = J(k)α,0 (−Q, ω). (15)

Similarly, we can further prove that J(k)α,1 (Q, ω) = J(k)α,1 (−Q, ω). Notice that the value

function obtained in (k + 1)th iteration is obtained by: V(k+1)
α (Q, ω) = minU J(k)α,U(Q, ω),

and for any action U, J(k)α,U(Q, ω) = J(k)α,U(−Q, ω). Thus, V(k+1)
α (Q, ω) = V(k+1)

α (−Q, ω). By

letting k → ∞, V(k)
α (Q, ω) → Vα(Q, ω). Hence, Vα(Q, ω) = Vα(−Q, ω).

Lemma 2. For a given discount factor α and a fixed context-aware weight ω, function fα(Q, ω) for
Q increases monotonically with the absolute value of Q, namely: for ∀|Q1| < |Q2|, fα(Q1, ω) <
fα(Q2, ω).

Proof of Lemma 2. Using the induction method, we first assume that for ∀|Q1| < |Q2|, we
have f (k)α (Q1, ω) < f (k)α (Q2, ω). Therefore:
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J(k)α,0 (Q1, ω) = C(Q1, ω, 0) + α ∑
ω′∈W

pωω′
Am

∑
a=−Am

paV(k)
α

(
Q1 + a, ω′)

= ωQ2
1 + α ∑

ω′∈W
pωω′ f (k)α (Q1, ω′)

< C(Q2, ω, 0) + α ∑
ω′∈W

pωω′ f (k)α (Q2, ω′)

= J(k)α,0 (Q2, ω). (16)

Similarly, we can obtain J(k)α,1 (Q1, ω) < J(k)α,1 (Q2, ω). Meanwhile, V(k+1)
α (Q, ω) =

minU J(k)α,U(Q, ω), then we have V(k+1)
α (Q1, ω) < V(k+1)

α (Q2, ω), for ∀|Q1| < |Q2|. Ob-
viously, if we want to use induction to complete the proof of Lemma 2, we have to prove
that: f (k+1)

α (Q1, ω) < f (k+1)
α (Q2, ω), for ∀|Q1| < |Q2|. To simplify the proof, it is assumed

that Q2 > Q1 > 0. The discussion will be divided into the following three situations.

• When Am ≤ |Q1|, then |Q1 + a| < |Q2 + a|, for ∀a ∈ [−Am, Am], we can derive that:

f (k+1)
α (Q1, ω) =

Am

∑
a=−Am

paV(k+1)
α (Q1 + a, ω)

<
Am

∑
a=−Am

paV(k+1)
α (Q2 + a, ω) = f (k+1)

α (Q2, ω). (17)

• When Am > |Q2|, there exists an increment a′ ∈ A′ = {a|a ∈ [−Am,− 1
2 (Q1 + Q2)},

such that |Q1 + a′| > |Q2 + a′|, and V(k+1)
α (Q1 + a′, ω′) > V(k+1)

α (Q2 + a′, ω′). Notice
that −Q1 − a′ ∈ ( 1

2 (Q2 − Q1), Am − Q1] and Q2 + a ∈ [−Am + Q2, Am + Q2], then

p−Q1−a′−Q2
V(k+1)

α (−Q1 − a′, ω) is a term in the summation f (k+1)
α (Q2, ω), namely

∑Am
a=−Am

paVα(Q + a, ω). Similarly, p−Q2−a′−Q1
V(k+1)

α (−Q2 − a′, ω) is a term in the

summation f (k+1)
α (Q1, ω). We further define A′′ = {a|a = −Q1 − Q2 − a′}, since

−Q1 − Q2 − a′ ∈
(
− 1

2 (Q1 + Q2), Am − Q1 − Q2

]
, then A′ ∩ A′′ = ∅.

Furthermore, the probability of the estimation error transferring from Q1 to −Q2 − a′,
i.e., p−Q2−a′−Q1

equals p−Q1−a′−Q2
, the probability of the estimation error transferring

from Q2 to −Q1 − a′. Since −a′ ∈ ( 1
2 (Q1 + Q2), Am], then |a′| > | − Q1 − Q2 − a′|.

According to our assumption of the increment, we can prove that for any a′ ∈ A′,
pa′ < p−Q1−Q2−a′ . Then, we can derive:

f (k+1)
α (Q1, ω)− f (k+1)

α (Q2, ω)

= ∑
a∈A′

paV(k+1)
α (Q1 + a, ω) + ∑

a∈A′′
paV(k+1)

α (Q1 + a, ω)

− ∑
a∈A′

paV(k+1)
α (Q2 + a, ω)− ∑

a∈A′′
paV(k+1)

α (Q2 + a, ω) + M(Q1, Q2)

= ∑
a∈A′

pa{V(k+1)
α (Q1 + a, ω)− V(k+1)

α (Q2 + a, ω)}

+ ∑
a∈A′

p−Q1−Q2−a{V(k+1)
α (Q2 + a, ω)− V(k+1)

α (Q1 + a, ω)}+ M(Q1, Q2)

= ∑
a∈A′

(
pa − p−Q1−Q2−a

){V(k+1)
α (Q1 + a, ω)− V(k+1)

α (Q2 + a, ω)}+ M(Q1, Q2) < 0, (18)

where M(Q1, Q2) = ∑a/∈A′∪A′′ pa

(
V(k+1)

α (Q1 + a, ω)− V(k+1)
α (Q2 + a, ω)

)
< 0.
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• When |Q2| > Am > |Q1|, since a′ ∈ [−Am,− 1
2 (Q1 + Q2)), we only need to consider

the case when Am > 1
2 (Q1 + Q2), in this case −Q1 − a′ > 1

2 (Q2 − Q1) > Q2 − Am.

Therefore, p−Q1−a′−Q2
V(k+1)

α (−Q1 − a′, ω) is a term in the summation f (k+1)
α (Q2, ω).

Similarly, we can also prove that f (k+1)
α (Q1, ω) < f (k+1)

α (Q2, ω)when |Q2| > Am > |Q1|.
According to Lemma 1, the conclusions above can be easily generalized to the cases

without the condition Q2 > Q1 > 0. Finally, by letting k → ∞, V(k+1)
α (Q, ω) → Vα(Q, ω),

therefore: f (k+1)
α (Q, ω) → fα(Q, ω). Hence: fα(Q1, ω) < fα(Q2, ω).

Remark 1. Lemma 2 holds when fA(a), i.e., the PDF of increment A(t) satisfies the following
conditions:

• fA(a) = fA(−a), μ = 0;
• fA(a2) ≤ fA(a1), ∀a2 ≥ a1 ≥ 0.

Then, with Lemmas 1 and 2, we can prove the threshold structure of the optimal
stationary deterministic policy which minimizes Lπ

λ in (10).

Theorem 2. For a given λ, the optimal stationary deterministic policy which minimizes Lπ
λ in (10)

has a threshold structure when the context-aware weight is a first-order irreducible positive recurrent
Markov process.

Proof of Theorem 2. Let s∗α(Q, ω) denote the optimal action which minimizes the dis-
counted cost Vα(Q, ω) at state (Q, ω). If the optimal action s∗α(Q, ω) = 1, then the vehicle
will transmit its status update to the center at state (Q, ω) and Δ(Q, ω) ≥ 0. Thus, we have:

Δ(Q, ω) = psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′)− Vα

(
a, ω′)}− λ ≥ 0. (19)

According to Lemma 2, for any |Q′| > |Q|, Δ(Q′, ω) can be lower bounded by

Δ(Q′, ω) = psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q′ + a, ω′)− Vα

(
a, ω′)}− λ

≥ psα ∑
ω′∈W

pωω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′)− Vα

(
a, ω′)}− λ ≥ 0. (20)

If Δ(Q, ω) > 0, then for any states with |Q′| > |Q|, the optimal policy is to transmit
the status to the center. If Δ(Q, ω) < 0, then for any states with |Q′| < |Q|, the optimal
action is not to transmit. In addition, the optimal policy will not be choosing to wait in all
the slots. Therefore, for each context-aware weight ω, there must be a threshold τω ≥ 0.
For any state (Q, ω) with |Q| > τω , the optimal choice is to transmit the status update. We
can then conclude that for a given weight ω, the optimal policy with a discount factor α
has a threshold structure.

Let {α1, α2, · · · , αk} denote a sequence of discount factors and αk converges to 1
when k → ∞. Then, the optimal deterministic policy for α = 1 will also converge to the
optimal policy with a discount factor which is less than 1 [35]. Similar derivation is also
applied in [12]. Therefore, we can prove the threshold structure of the optimal stationary
deterministic policy which minimizes Lπ

λ .

Similarly, when the context-aware weight is i.i.d. over time, we can obtain the follow-
ing theorem:

Theorem 3. For a given λ, the optimal stationary deterministic policy which minimizes Lπ
λ in (10)

has a threshold structure when the context-aware weight is i.i.d. over time. The thresholds are the
same for each state of the context-aware weight.
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Proof of Theorem 3. If the context-aware weight is i.i.d. over time, then we have:

Δ(Q, ω) = psα ∑
ω′∈W

pω′
Am

∑
a=−Am

pa
{

Vα

(
Q + a, ω′)− Vα

(
a, ω′)}− λ = Δ(Q), (21)

where pω is the probability of the value of the context-aware weight being in state ω.
Therefore, in this case, the state will be reduced to one dimension and the thresholds will
be the same for all the states of the context-aware weight.

According to Theorems 2 and 3, we proved the threshold structure of the two sta-
tionary deterministic policies that compose the UoI-optimal policy. Since the UoI-optimal
policy for problem (9) is a probabilistic combination of two deterministic policies with
threshold structures, we can finally draw the conclusion that the UoI-optimal policy also
has a threshold structure.

3.3. Numerical Solution of Optimal Strategy

Based on Theorem 2, we only need to consider the policy that chooses to update
with a probability of 1 in state (Q, ω), for ∀|Q| ≥ Qmax = maxω τω. Let μQ,ω denote the
probability that the state of the vehicle is (Q, ω). yQ,ω denotes the probability that the state
is (Q, ω) and the vehicle chooses to transmit an update. Therefore, we have:

Theorem 4. When the context-aware weight is a first-order irreducible positive recurrent Markov
process, the UoI-optimal policy can be derived by solving the following LP problem:

{μ∗
Q,ω, y∗Q,ω} = arg min

{μQ,ω ,yQ,ω}
∑

ω∈W

Qmax

∑
Q=−Qmax

ωQ2μQ,ω, (22a)

s.t. ∑
ω∈W

Qmax

∑
Q=−Qmax

μQ,ω = 1, (22b)

∑
ω∈W

Qmax

∑
Q=−Qmax

yQ,ω ≤ ρ, (22c)

yQ,ω ≤ μQ,ω, ∀Q, ω, (22d)

0 ≤ yQ,ω ≤ 1, 0 ≤ μQ,ω ≤ 1, ∀Q, ω, (22e)

μQ,ω = ∑
ω′∈W

Qmax

∑
Q′=−Qmax

yQ′ ,ω′ ps pQ pωω′

+ ∑
ω′∈W

Qmax

∑
Q′=−Qmax

(μQ′ ,ω′ − yQ′ ,ω′ ps)pQ′−Q pωω′ . (22f)

Proof of Theorem 4. We first derive the average UoI C̄π as a function of μQ,ω and yQ,ω.
The vehicle is in state (Q, ω) and produces a cost of C(Q, ω, u) = ωQ2 with a probability
of μQ,ω. Therefore, the average UoI is:

∑
ω∈W

Qmax

∑
Q=−Qmax

ωQ2μQ,ω. (23)

As for the constraints, (22b) means that the sum of the probabilities of all the states
should be 1. To explain (22c), we note that yQ,ω is the probability of the vehicle being
in state (Q, ω) and choosing to transmit the update, then the expectation of a one-step
updating penalty for state (Q, ω) in (8) is μQ,ω . Therefore, the constraint on average update
frequency D̄π can be illustrated by
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∑
ω∈W

Qmax

∑
Q=−Qmax

μQ,ω ≤ ρ. (24)

Then, we introduce ξQ,ω ∈ [0, 1] to represent that the probability of the vehicle
choosing to transmit updates in state (Q, ω) and (22d) can be obtained by the fact that
yQ,ω = μQ,ωξQ,ω, while (22e) is derived by the nature of probability.

The right-hand side of (22f) can be viewed as two terms. The first term is the sum of
transition probability from all the states to state (Q, ω) when the vehicle chooses to update
and the transmission of status is successful. The second term is the sum of transition
probability from all the states to state (Q, ω) when the transmission is failed or the vehicle
chooses to wait. Therefore, we can prove that the optimal solution of problem (5) equals
the solution of the LP problem.

When ω(t) is i.i.d. over time, we can also obtain the UoI-optimal policy through the
LP problem proposed in Theorem 4 and only need to use pω′ as a replacement of pωω′ .

4. Scheduling in Unknown Contexts

To make decisions, the UoI-optimal updating policy obtained in Section 3 still needs
the distributions of the context-aware weight ω(t), the increment A(t) and the successful
transmission probability, which may not be available in advance or may change over time
in most practical systems. To solve this problem, we will assume that the distribution of the
context-aware weight is not pre-determined and the vehicle has to learn it. In this section,
we use the reinforcement learning (RL) algorithm to learn the dynamic of the context and
the characteristic of the wireless channel.

To solve this problem, we turn to the model-based RL framework proposed in [36].
We only consider the cases when the UoI-optimal policy has a threshold structure. This
assumption makes the optimal policy based on the truncated state space equal the optimal
policy of the original problem.

We use the 3-tuple (s, s′, U) to formulate the proposed RL-based updating policy. The
states in the current slot and next slot are denoted by s and s′, respectively. U denotes
the action chosen in the current slot. The settings of the discretized state space and the
action space are the same as the settings proposed in Section 3.1. The smaller the step size
used in the discretization is, the closer our results are to those in continuous state space.
In addition, the selection of the step size only affects the accuracy of the update threshold.
Therefore, the performance loss caused by discretization can be reduced by choosing a
smaller step size.

We display details about the proposed RL-based updating policy in Algorithm 1. At
the beginning of episode k, we randomly decide whether to explore or exploit. l ∈ [0, 1]
represents the trade-off between exploration and exploitation during the following episode.
A larger l means a higher frequency of exploration and vice versa. If the algorithm chooses
to explore during this episode, a random policy πrand(s) will be used, i.e., we randomly
choose to update or not in each state to find more valuable actions. If the algorithm chooses
to exploit, then we have to obtain the probability transfer functions p̃k(s′|s, U) for each
state transmission pair. In Algorithm 1, N(s, U) and N(s, U, s′) represent the number
of occurrences of state–action pair s, U and state transition from s to s′ given action U,
respectively. Based on the assumption that the optimal policy has a threshold structure, the
policy π(k) which can minimize the average UoI with the estimated probability transfer
functions, can be directly solved through the LP problem proposed in Theorem 4. Then,
the vehicle will use policy πk to derive state–action pairs and the state transitions in the
following �Lk� slots. Here, L > 0 is defined to control the number of state transitions
observed in each episode. At the end of each episode, the model will be updated according
to the state–action pairs and the state transitions observed during the episode. Finally,
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after K episodes, the algorithm will output the RL-based updating policy π�(s), which is
derived based on p̃K(s′|s, U).

Algorithm 1 RL-based Updating Policy
Input: l ∈ [0, 1], L > 0, K > 0
1: for episodes k = 1, 2, . . . , K do

2: Set Lk = L
√

k, εk = l/
√

k, uniformly draw α ∈ [0, 1].
3: if α < εk then
4: Set πk(s) = πrand(s),
5: else
6: for each state s, s′ ∈ S and U ∈ U do
7: if N(s, U) > 0 then
8: Let p̃k(s′|s, U) = N(s, U, s′)/N(s, u),
9: else

10: p̃k(s′|s, U) = 1/|S|.
11: end if
12: end for
13: obtain policy πk(s) by solving the estimated CMDP
14: end if
15: Randomly choose an initial state s(1).
16: for slots t = 1, 2, . . . , �Lk� − 1 do
17: Choose action U(t) as πk(s(t)).
18: Observe the next state s(t + 1).
19: N(s(t), U(t), s(t + 1)) = N(s(t), U(t), s(t + 1)) + 1.
20: N(s(t), U(t)) = N(s(t), U(t)) + 1.
21: s(t) ← s(t + 1).
22: end for
23: end for
24: obtain policy π�(s) by solving the estimated CMDP based on p̃k(s′|s, U), s, s′ ∈ S, U ∈

U.
Output: output the RL-based updating policy π�(s)

5. Simulation Results and Discussion

5.1. Simulation Setup

To facilitate the simulation, we consider the case where the context-aware weight of
the vehicle only has two different states: the ’normal’ state and ’urgent’ state. The ’normal’
state means that the vehicle is in ordinary situations and the significance of accuracy of
status information is relatively low. We set ω(t) as 1 in ’normal’ state while ω(t) is set as a
constant much larger than 1, ωe, in ’urgent’ state to show that the vehicle is in emergencies.
Two different distributions of the context-aware weight are taken into consideration to
conform to the assumptions about ω(t) used in Section 3.1:

1. The context-aware weight ω(t) has the first-order Markov property. The state tran-
sition diagram of ω(t) is shown in Figure 2 and ω(t) is irreducible and positive
recurrent. p1 is the probability of the context-aware weight transferring from the
normal state to the urgent state, while p2 is the probability of the weight transferring
from the urgent state to the normal state;

2. The context-aware weight ω(t) is i.i.d. over time. The probability of the weight being
in the urgent state and the normal state are denoted by ph and pl , respectively.

As for the increment A(t), Amax is set to a large enough positive number to simplify
the simulations.
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Figure 2. The state transition diagram of ω(t).

5.2. Numerical Results

Figure 3 shows the structure of the UoI-optimal updating policy. For the discretization
of the estimation error, the step size used is 1. It can be seen that under the two different
distributions of the context-aware weight mentioned above, the optimal updating policies
all have threshold structures. Especially when the context-aware weight is i.i.d. over
time, Figure 3b shows that thresholds for all the states of the context-aware weight are
the same, which matches well with theoretical analysis. From Figure 3c, we can find that
the UoI-optimal policy also has threshold structure when increment A(t) obeys a uniform
distribution Uni f (−3, 3), which verifies Remark 1. We then simulate the UoI-optimal
policy under the contexts with more states to show the policy is generic. We consider a
three-state context-aware weight which takes value from ω1 = 1, ω2 = 50, ω3 = 100. The
state transition matrix P3 of the three-state context-aware weight is:

P3 =

⎡⎣0.997 0.002 0.001
0.02 0.97 0.01
0.2 0.1 0.7

⎤⎦, (25)

where the j-th element on the i-th row indicates the probability that the context transfers
from state ωi to state ωj. The numerical results (Figure 3d) show that when the context-
aware weight has more states, the UoI-optimal policy still has a threshold structure, which
verifies our theoretical results.

Figure 3. Threshold structure of the UoI-optimal updating policy when: (a) the context-aware weight is a first-order
Markov process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, σ2 = 1, ωe = 100; (b) the context-aware weight is i.i.d. over
time, ρ = 0.05, pl = 0.999, ph = 0.001, ps = 0.9, σ2 = 1, ωe = 100; (c) the context-aware weight is a first order Markov
process, ρ = 0.05, p1 = 0.001, p2 = 0.01, ps = 0.9, ωe = 100, increment in the estimation error during one slot, i.e.,
A(t) ∼ Uni f (−3, 3), for ∀t; and (d) the context-aware weight is a three-state first-order Markov process, which takes value
from ω1 = 1, ω2 = 50, ω3 = 100 and evolves according to the state transition matrix P3, ρ = 0.05, ps = 0.9, σ2 = 1.
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Then, we will focus on the results obtained when the context-aware weight is a
first-order irreducible positive recurrent Markov process, as shown in Figure 2. Figure 4
shows the average UoI of the UoI-optimal policy, the AoI-optimal policy derived by CMDP,
the RL-based updating policy, and the update-index-based adaptive scheme [27]. In the
RL-based updating policy, L = 8000, l = 1 and K = 50. All the numerical results of the
RL-based policy are averaged over 100 runs.

First of all, the UoI-optimal policy can only be obtained based on advanced information
about the system dynamics. However, the RL-based policy achieves near-optimal without
knowing the system dynamics, which indicates that Algorithm 1 learns relatively accurate
probability transfer functions from the observed state–action pairs and state transitions
during the training.

Secondly, according to Figure 4, the AoI-optimal policy yields a much higher UoI than
the three UoI-based policies, namely the UoI-optimal policy, the RL-based updating policy,
and the update-index-based adaptive scheme. On the one hand, AoI is one special case
of UoI. When the context-aware weight ω(t) = 1, the increment A(t) = 1, and the cost
function δ(Q(t)) = Q(t), then UoI equals AoI. Therefore, the AoI-optimal policy ignores
the fact that different contexts have different requirements for information freshness. In
the proposed UoI-based updating policies, different contexts have different policies and
update thresholds, while the AoI-optimal updating policies for different contexts are the
same. On the other hand, Figure 5 reveals that the AoI-optimal policy leads to a much
higher estimation error, which results in worse performance in terms of UoI. The AoI-
optimal policy is an oblivious policy, which is independent of the monitored process. Since
AoI increases linearly with time, the AoI-optimal policy can only minimize the linear
performance degradation in terms of time. However, the UoI-based policies (the cost
function δ(Q(t)) = (Q(t))2) considered in this paper are process-dependent, which are
called non-oblivious policies, and can benefit from both age and process realization [37].
These policies can directly minimize the nonlinear impact exerted by information staleness
and the gap between the actual status and the estimated status.

Thirdly, our updating policies outperform the update-index-based adaptive
scheme [27] in terms of UoI. Under the adaptive scheme, the vehicle will derive an update
index as a function of the current estimation error and the context-aware weight for the next
slot. If the index is larger than the adaptive update threshold, then the vehicle is supposed
to transmit its status information to the center. If the vehicle transmits an update in slot t,
then the adaptive threshold will increase in the next slot; otherwise, the adaptive threshold
will decrease. The adaptive scheme will cause an overuse of the resource in ‘urgent’ states
and lead to the fact that the vehicles cannot receive resources in ‘normal’ states. However,
the UoI-optimal policy and the trained RL-updating policy are fixed schemes, which can
avoid the extremely unbalanced resource allocation between the two contexts and achieve
better performance.

Figure 6 shows the influence of the maximum average update frequency ρ and the
context weight for emergency, ωe, on update threshold of UoI-optimal policy. In order to
obtain more accurate results, the step size used here is 0.25. The solid curves show update
thresholds for the normal state while the dashed curves show update thresholds for the
urgent state. When the constraint on update resources is strict, the update thresholds fall
faster. Furthermore, a larger ωe results in a lower update threshold for the urgent state and
a higher threshold for the normal state. This phenomenon indicates that the value of ωe
means the tolerance of estimation error in the emergency. When ρ < 0.1, the influence of
ωe on the update threshold for the normal state is larger than the urgent state. For the cases
where the maximum average update frequency is relatively large, ωe has little effect on
update thresholds for both normal state and urgent state.

Figure 7 shows that the update thresholds also depend on the dynamic of context-
aware weight when the weight has first-order Markov property. When p2 is approaching
1− p1, the gap between update thresholds for the urgent state and the normal state becomes
smaller for the context-aware weight which tends to be i.i.d. over time. When p2 = 1, the
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update threshold for the urgent state exceeds the threshold for the normal state. Therefore,
the update threshold for the urgent state is not necessarily lower than the update threshold
for the normal state.
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Figure 4. Average UoI of the UoI-optimal updating policy, the RL-based updating policy, the
update-index-based adaptive scheme [27], and the AoI-optimal updating policy when p1 = 0.001,
p2 = 0.01, ps = 0.9, σ2 = 1, ωe = 100.
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Figure 5. Average squared estimation error of the UoI-optimal updating policy and the AoI-optimal
updating policy when p1 = 0.001, p2 = 0.01, σ2 = 1, ωe = 100.
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Figure 6. Update thresholds of the UoI-optimal updating policy with different values of ωe when
p1 = 0.001, p2 = 0.01, ps = 0.9, σ2 = 1.
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Figure 7. Update thresholds of the UoI-optimal updating policy with different values of p2 when
p1 = 0.01, ps = 0.9, σ2 = 1, ωe = 100.

Figure 8 shows the performance of the RL-based updating policy with different values
of L. According to Algorithm 1, the number of state transitions observed in episode
k is �L

√
k�. Therefore, L denotes the number of state transitions observed during the

whole learning process. Generally speaking, a larger L reduces the randomness of the
performance and achieves a better UoI. The performance of the RL-based updating policy
depends on the accuracy of the model obtained through training, namely whether the
estimated probability transfer function of the system is accurate. A larger L means that the
algorithm can collect more data or state transitions and obtain a more accurate model.

Figure 9 shows the influence of the number of episodes, i.e., K, on the performance
of the RL-based updating policy. A larger K leads to a lower average UoI and smaller
randomness over 100 runs. On the one hand, the more episodes and the more data
the algorithm observes, the more accurate the model obtained will be and the better the
performance of the updating policy will be. On the other hand, the value of K is the number
of iterations for the policy obtained through the estimated CMDP. The policy πk(s) used in
episode k is derived based on the state–action pairs and the state transitions observed in
the previous k − 1 episodes. Therefore, more frequent iterations of the updating policy can
obtain more valuable state–action pairs and better performance.
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Figure 8. Average UoI of the RL-based updating policy with different values of L when
p1 = 0.001, p2 = 0.01, σ2 = 1, ωe = 100.

Figure 9. Average UoI of the RL-based updating policy with different values of K when
p1 = 0.001, p2 = 0.01, σ2 = 1, ωe = 100.

6. Conclusions

In this work, we studied how to minimize the performance degradation caused by
outdated information in terms of UoI, which is a new metric jointly considering context and
information freshness. We proved that the UoI-optimal updating policy for the considered
single-user remote monitoring system has a single threshold structure. Then, the policy
was obtained through linear programming by assuming that the state transition probability
of the system is known in advance. In unknown contexts, we further used a reinforcement
learning algorithm to learn the dynamics of the system. Simulations verified the threshold
structure of the UoI-optimal policies and showed that the update thresholds decrease as
the maximum average update frequency increases. In addition, a larger context-aware
weight in emergencies resulted in a lower update threshold for urgent states. However,
since the state transition probability also influenced the update thresholds, the update
threshold for emergencies was not necessarily higher than the update threshold for normal
states, especially when the probability of transferring from urgent states to normal states
tended towards 1. Furthermore, the numerical results showed that the proposed RL-based
updating policy achieved a near-optimal performance without advanced knowledge of the
system model.
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In fact, determining the context-aware weight in practical systems, where the models
of the context are often very complicated and difficult to obtain in advance, remains open.
As for future work, we plan to use deep RL algorithms to learn the models of the context
variation. We believe that UoI can provide a new performance metric for information
timeliness measurement in the future V2X scenario. In addition, we believe the proposed
UoI metric and the context-aware scheduling policy can shed some light on low-latency
and ultra-reliable wireless communication in the future 5G/6G systems.
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Abbreviations

The following abbreviations are used in this manuscript:

AoI Age of Information
AoII Age of Incorrect Information
AoS Age of Synchronization
CDF Cumulative Distribution Function
CMDP Constrained Markov Decision Process
CoUD Cost of Update Delay
i.i.d. Independent and Identically Distributed
IoT Internet of Things
LP Linear Programming
PDF Probability Density Function
RL Reinforcement Learning
UoI Urgency of Information
URLLC Ultra-Reliable Low-Latency Communication
VR Virtual Reality
V2X Vehicle to Everything

Appendix A. Proof of Theorem 1

Given a state s = (Q, ω) ∈ S and a nonempty subset of the state space, G ⊂ S,
let R(s,G) denote the class of policies θ such that the probability Pθ(s(t) ∈ G for some
t ≥ 1|s(0) = s) = 1 and the expected time ms,G(θ) of the first passage from s to G under
policy θ is finite. Then, let R�(s,G) denote the class of policies θ such that the expected
average UoI cs,G(θ) and the expected transmission cost ds,G(θ) of the first passage from s to
G are finite and θ ∈ R(s,G). To prove Theorem 1, we then introduce Assumptions A1–A5
in [33]:

Assumption A1. For all b > 0, the set G(b) � {s| there exists an action U such that
C(s, U) + D(s, U) ≤ b} is finite.

Assumption A2. There exists a stationary deterministic policy π that induces a Markov chain
with the following properties: the state space consists of a single (nonempty) positive recurrent class
Rπ and a set Tπ of transient states such that π ∈ R�(s,Rπ), for any s ∈ Tπ , and both the average
UoI C̄π and the average transmission cost D̄π on Rπ are finite.
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Assumption A3. Given any two states s, s′ ∈ S and s �= s′, there exists a policy π (a function of
s and s′) such that π ∈ R�(s, {s′}).

Assumption A4. If a stationary deterministic policy has at least one positive recurrent state, then
it has a single positive recurrent class, and this class contains the state (Q, ω) with Q = 0.

Assumption A5. There exists a policy π such that the average UoI C̄π < ∞ and average trans-
mission cost D̄π < ρ.

Furthermore, the problem (9) has the following property:

Lemma A1. Assumptions A1–A5 hold for problem (9).

Proof of Lemma A1. First of all, we focus on the cases where the context-aware weight is
assumed as a first-order irreducible positive recurrent Markov process:

• Assumption A1: In this problem, C(s, U) is the UoI at state s, namely C(Q, ω, U) =

ωQ2. D(s, U) is 1 if the vehicle chooses to transmit its status and D(s, U) is 0 otherwise,
namely D(Q, ω, U) = U. Therefore, Assumption A1 holds, for any b > 0, the number
of states (Q, ω) with ωQ2 ≤ b is finite.

• Assumption A2: Due to the current high-level wireless communication technology, we
reasonably assumed that the successful transmission probability ps is relatively close
to 1. Based on the assumptions mentioned above, the Markov chain of context-aware
weight obviously satisfies Assumption A2. Define the probability of the context-aware
weight transferring from ω to ω′ in k steps for the first time as Pω,ω′ ,k. Then, we
consider the policy π(Q, ω) = 1 for all (Q, ω) ∈ S, namely this policy chooses to
transmit in all the states.
Since the evolution of the context-aware weight is independent with the evolution
of the estimation error and the updating policy. Therefore, we first focused on the
estimation error, which can be formulated as a one-dimensional irreducible Markov
chain with state space Q = {0,±ΔQ,±2ΔQ, · · · ,±nΔQ, · · · }. We denote the set of
states which can transfer to state Q in a single step by ZQ. The probability of the
estimation error transferring from state Q to state Q′ at the k-th step without an arrival
to state Q = 0 is defined as P′

Q,Q′ ,k. Obviously, ∑Q′∈Q P′
Q,Q′ ,k < (1 − ps)k. Then,

the probability of the first passage from state Q(Q �= 0) to 0 taking k + 1 steps is
∑Q′/∈Z0

P′
Q,Q′ ,k ps + ∑Q′∈Z0

P′
Q,Q′ ,k(ps + (1− ps)p0−Q′) < (1− ps)k, where p0−Q′ is the

probability that the increment in estimation error is −Q′. Therefore, the expected time
of the first passage from Q(Q �= 0) to 0 is finite.
For state Q = 0, the estimation error will stay in this state in the next step with a
probability of ps + p0−0 and will first return to state Q = 0 in the second transition
with a probability smaller than (1 − ps − p0−0). Then, starting from state Q = 0, the
estimation error will first return to state Q = 0 in the k + 1-th (k > 2) step will be
smaller than (1 − ps − p0−0)(1 − ps)k−1. Therefore, we can prove that state Q = 0 is a
positive recurrent state, and Rπ

Q = {Q = 0} is a positive recurrent class of the induced
Markov chain of the estimation error. Furthermore, for any states in Tπ

Q = Q\Rπ
Q, the

expected time of the first passage from the state in Tπ
Q to state Q = 0 under π is finite

and the probability of the states in Tπ
Q not getting to state Q = 0 in k steps is smaller

than (1 − ps)k.
Define the probability of state Q transferring to state Q′ in k steps for the first time
as PQ,Q′ ,k. Then, the probability of state (Q, ω) transferring to state (Q′, ω′) in k steps
for the first time is PQ,Q′ ,kPω,ω′ ,k. Since ∑∞

k=1 PQ,Q′ ,kk < ∞ and ∑∞
k=1 Pω,ω′ ,kk < ∞, then

∑∞
k=1 PQ,Q′ ,kPω,ω′ ,kk < ∞. Therefore, the set of states Rπ = {(Q, ω)|Q ∈ Rπ

Q, ω ∈ W}
is a positive recurrent class. Similarly, we can prove that Tπ = S\Rπ satisfies
Assumption A2. Finally, D̄π = 1 < ∞, C̄π = E[ω] 1

ps
σ2 < ∞.
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• Assumption A3: Define PQ,min = minQ′ pQ−Q′ , PQ,max = maxQ′ pQ−Q′ . Consider the
policy π′(Q, ω) = 0 for all states (Q, ω) ∈ S, notably that this policy chooses not to
transmit in any states. Similarly, we first focus on the Markov chain of estimation error.
Starting from state Q, the probability of transferring to state Q′ in k + 1-th (k ≥ 2)
steps for the first time is smaller than (1 − pQ′−Q)PQ′ ,max(1 − PQ′ ,min)

k−1. Then, the
expected time of the first passage from state Q to state Q′ under policy π′ is finite.
Similarly, since the Markov chain of context-aware weight is irreducible positive
recurrent and independent with the updating policy, we can therefore prove that the
expected time of the first passage from state (Q, ω) to state (Q′, ω′) under policy π′
is finite.

• Assumption A4: For the Markov chain of the estimation error, any state will return to
state Q = 0 if a successful transmission occurs. For the policy without transmission,
namely π′(Q, ω) = 0, state Q = 0 still exists in only one positive recurrent class. For
each positive recurrent class containing state Q = 0, we can prove that there is only
one positive recurrent class. Since the Markov chain of the context-aware weight is
irreducible positive recurrent, we can similarly prove Assumption A4 .

• Assumption A5: The policy πρ that updates the status with a probability of ρ − δ
satisfies Assumption A5. Here, δ is a small positive number. Under this policy,
D̄π = ρ − δ < ρ and C̄π = E[ω] 1

ps(ρ−δ)
σ2 < ∞.

Similarly, we can prove that Assumptions A1–A5 also holds for problem (9) when the
context-aware weight is i.i.d. over time.

Since Assumptions A1–A5 hold for problem (9), then according to Theorem 2.5 in [33],
there exists an optimal stationary randomized policy for problem (9). Meanwhile, the
optimal policy is a probabilistic combination of two stationary deterministic policies which
only differ on at most one state.

Furthermore, according to Lemma 3.9 in [33], the two stationary deterministic policies
each optimize the unconstrained cost in (10) with a different λ.

References

1. Talak, R.; Karaman, S.; Modiano, E. Speed limits in autonomous vehicular networks due to communication constraints.
In Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC), Las Vegas, NV, USA, 12–14 December 2016;
pp. 4998–5003.

2. Hou, I.H.; Naghsh, N.Z.; Paul, S.; Hu, Y.C.; Eryilmaz, A. Predictive Scheduling for Virtual Reality. In Proceedings of the IEEE
INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1349–1358.

3. Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the 2012 Proceedings IEEE
INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735.

4. Sun, Y.; Polyanskiy, Y.; Uysal-Biyikoglu, E. Remote estimation of the Wiener process over a channel with random delay.
In Proceedings of the 2017 IEEE International Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017;
pp. 321–325.

5. Sun, Y.; Polyanskiy, Y.; Uysal, E. Sampling of the wiener process for remote estimation over a channel with random delay.
IEEE Trans. Inf. Theory 2019, 66, 1118–1135. [CrossRef]

6. Jiang, Z.; Zhou, S. Status from a random field: How densely should one update? In Proceedings of the 2019 IEEE International
Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019; pp. 1037–1041.

7. Bedewy, A.M.; Sun, Y.; Singh, R.; Shroff, N.B. Optimizing information freshness using low-power status updates via sleep-wake
scheduling. In Proceedings of the Twenty-First International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, New York, NY, USA, 11–14 October 2020; pp. 51–60.

8. Ceran, E.T.; Gündüz, D.; György, A. Average age of information with hybrid ARQ under a resource constraint. IEEE Trans.
Wirel. Commun. 2019, 18, 1900–1913. [CrossRef]

9. Sun, J.; Jiang, Z.; Krishnamachari, B.; Zhou, S.; Niu, Z. Closed-form Whittle’s index-enabled random access for timely status
update. IEEE Trans. Commun. 2019, 68, 1538–1551. [CrossRef]

10. Yates, R.D.; Kaul, S.K. Status updates over unreliable multiaccess channels. In Proceedings of the 2017 IEEE International
Symposium on Information Theory (ISIT), Aachen, Germany, 25–30 June 2017; pp. 331–335.

11. Sun, J.; Wang, L.; Jiang, Z.; Zhou, S.; Niu, Z. Age-Optimal Scheduling for Heterogeneous Traffic with Timely Throughput
Constraints. IEEE J. Sel. Areas Commun. 2021, 39, 1485–1498. [CrossRef]

12. Tang, H.; Wang, J.; Song, L.; Song, J. Minimizing age of information with power constraints: Multi-user opportunistic scheduling
in multi-state time-varying channels. IEEE J. Sel. Areas Commun. 2020, 38, 854–868. [CrossRef]

330



Entropy 2021, 23, 1084

13. Abdel-Aziz, M.K.; Samarakoon, S.; Liu, C.F.; Bennis, M.; Saad, W. Optimized age of information tail for ultra-reliable low-latency
communications in vehicular networks. IEEE Trans. Commun. 2019, 68, 1911–1924. [CrossRef]

14. Devassy, R.; Durisi, G.; Ferrante, G.C.; Simeone, O.; Uysal-Biyikoglu, E. Delay and peak-age violation probability in short-packet
transmissions. In Proceedings of the 2018 IEEE International Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22
June 2018; pp. 2471–2475.

15. Inoue, Y.; Masuyama, H.; Takine, T.; Tanaka, T. A general formula for the stationary distribution of the age of information and its
application to single-server queues. IEEE Trans. Inf. Theory 2019, 65, 8305–8324. [CrossRef]

16. Sun, Y.; Uysal-Biyikoglu, E.; Yates, R.D.; Koksal, C.E.; Shroff, N.B. Update or wait: How to keep your data fresh. IEEE Trans.
Inf. Theory 2017, 63, 7492–7508. [CrossRef]

17. Zheng, X.; Zhou, S.; Jiang, Z.; Niu, Z. Closed-form analysis of non-linear age of information in status updates with an energy
harvesting transmitter. IEEE Trans. Wirel. Commun. 2019, 18, 4129–4142. [CrossRef]

18. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. Non-linear age of information in a discrete time queue: Stationary
distribution and average performance analysis. In Proceedings of the ICC 2020—2020 IEEE International Conference on
Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

19. Kosta, A.; Pappas, N.; Ephremides, A.; Angelakis, V. The cost of delay in status updates and their value: Non-linear ageing.
IEEE Trans. Commun. 2020, 68, 4905–4918. [CrossRef]

20. Zhong, J.; Yates, R.D.; Soljanin, E. Two freshness metrics for local cache refresh. In Proceedings of the 2018 IEEE International
Symposium on Information Theory (ISIT), Vail, CO, USA, 17–22 June 2018; pp. 1924–1928.

21. Maatouk, A.; Kriouile, S.; Assaad, M.; Ephremides, A. The age of incorrect information: A new performance metric for status
updates. IEEE/ACM Trans. Netw. 2020, 28, 2215–2228. [CrossRef]

22. Kadota, I.; Sinha, A.; Uysal-Biyikoglu, E.; Singh, R.; Modiano, E. Scheduling policies for minimizing age of information in
broadcast wireless networks. IEEE/ACM Trans. Netw. 2018, 26, 2637–2650. [CrossRef]

23. Song, J.; Gunduz, D.; Choi, W. Optimal scheduling policy for minimizing age of information with a relay. arXiv 2020,
arXiv:2009.02716.

24. Sun, Y.; Cyr, B. Information aging through queues: A mutual information perspective. In Proceedings of the 2018 IEEE 19th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June
2018; pp. 1–5.

25. Kam, C.; Kompella, S.; Nguyen, G.D.; Wieselthier, J.E.; Ephremides, A. Towards an effective age of information: Remote
estimation of a markov source. In Proceedings of the IEEE INFOCOM 2018—IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 367–372.

26. Zheng, X.; Zhou, S.; Niu, Z. Context-aware information lapse for timely status updates in remote control systems. In Proceedings
of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019; pp. 1–6.

27. Zheng, X.; Zhou, S.; Niu, Z. Beyond age: Urgency of information for timeliness guarantee in status update systems.
In Proceedings of the 2020 2nd IEEE 6G Wireless Summit (6G SUMMIT), Levi, Finland, 17–20 March 2020; pp. 1–5.

28. Zheng, X.; Zhou, S.; Niu, Z. Urgency of Information for Context-Aware Timely Status Updates in Remote Control Systems.
IEEE Trans. Wirel. Commun. 2020, 19, 7237–7250. [CrossRef]

29. Ioannidis, S.; Chaintreau, A.; Massoulié, L. Optimal and scalable distribution of content updates over a mobile social network.
In Proceedings of the IEEE INFOCOM 2009, Rio de Janeiro, Brazil, 19–25 April 2009; pp. 1422–1430.

30. Wang, L.; Sun, J.; Zhou, S.; Niu, Z. Timely Status Update Based on Urgency of Information with Statistical Context. In Proceedings
of the 2020 32nd IEEE International Teletraffic Congress (ITC 32), Osaka, Japan, 22–24 September 2020; pp. 90–96.
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Abstract: The age of information (AoI) has been widely used to quantify the information freshness in
real-time status update systems. As the AoI is independent of the inherent property of the source
data and the context, we introduce a mutual information-based value of information (VoI) framework
for hidden Markov models. In this paper, we investigate the VoI and its relationship to the AoI for
a noisy Ornstein–Uhlenbeck (OU) process. We explore the effects of correlation and noise on their
relationship, and find logarithmic, exponential and linear dependencies between the two in three
different regimes. This gives the formal justification for the selection of non-linear AoI functions
previously reported in other works. Moreover, we study the statistical properties of the VoI in the
example of a queue model, deriving its distribution functions and moments. The lower and upper
bounds of the average VoI are also analysed, which can be used for the design and optimisation of
freshness-aware networks. Numerical results are presented and further show that, compared with
the traditional linear age and some basic non-linear age functions, the proposed VoI framework is
more general and suitable for various contexts.

Keywords: value of information; age of information; noisy Ornstein–Uhlenbeck process

1. Introduction

Nowadays, there are more and more real-time monitoring and control applications,
such as industrial control, Internet of Things, autonomous driving and so on. Such applica-
tions are modelled as status update systems in which sensors need to continuously monitor
a targeted random process, and the sampled status updates are required to be transmit-
ted through the communication network to a remote destination in a timely manner to
enable precise control and management. Therefore, the freshness of data has emerged as
an important part of network research.

The age of information (AoI) is proposed as a novel end-to-end metric in [1,2] to
evaluate the timeliness of status updates from the receiver’s perspective. The AoI is defined
as the time difference between the current time and the generation time of the last received
status update. The AoI and its variants (e.g., the average AoI and the peak AoI) are widely
used as tools to improve the system-level data freshness by optimising the sampling and
link scheduling in a variety of emerging networks [3–8]. Moreover, there are many works
exploring the AoI in the context of different queue systems. General expressions of the
average AoI were derived in [1], and the stationary distribution of the AoI was studied
in [9,10] for first-come-first-serve (FCFS) M/M/1, M/D/1 and D/M/1 queue disciplines.
The statistical characterisation and violation probability of the AoI were treated in [11,12]
for last-come-first-serve (LCFS) queue disciplines. The influence of the queue’s buffer
size, packet management and service pre-emption on the AoI and its distribution was
investigated in [13–15].

However, the basic notion of the AoI grows linearly with a unit slope as time goes by,
and it is independent of the context and the inherent characterisation of the targeted random
process (e.g., the correlation property of the underlying source data). In light of these issues,
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the concept of the value of information (VoI) has begun to be studied, which emphasises the
idea that in some cases, old information may still have value while even fresh information
may hold little value, as different sources require different update frequency.

The idea of a non-linear age has become a common approach to evaluate information
value [16]. The concept of the “age penalty” was proposed in [17], where it was assumed
to be a non-decreasing function of the AoI and provided a general way to measure the
dissatisfaction of the staleness of information. Closed-form expressions of the general
penalty functions were studied in energy harvesting networks in [18]. In [19–21], three
specific penalty functions (exponential, linear and logarithmic functions) and their sta-
tistical characterisations were further investigated. Moreover, the connection of the AoI
with signal processing and information theory has received much attention, as it can
provide a theoretical basis for non-linear age functions. The mean square error (MSE)
for remote estimation can add non-linearity, and it was used to evaluate the information
value in [22–25]. The relationship between the AoI and the MSE was studied in the Wiener
process [22] and the Ornstein–Uhlenbeck (OU) process [23]. It is interesting to note that
the age-optimal sampling policy was not equivalent to the MSE-optimal sampling. The
mutual information was utilised in [26] to quantify the timeliness of data, and the optimal
sampling policy was explored for a Markov source. In [26], the samples were assumed to
be directly observable when they were received. In practice, samples at the source can be
corrupted by noise, errors or measurements, and thus, they may be latent at the receiver.
However, properties of the information value in hidden Markov models have not been
explicitly studied. Furthermore, the authors in [20] proposed that age penalty functions can
be chosen and adjusted, according to the autocorrelation of the underlying random process,
but theoretical interpretation or formal justification for how to choose non-linear functions
and how they relate to the correlation of the underlying process were not provided.

In our previous work [27], we proposed a mutual information-based value of infor-
mation framework for hidden Markov models and started to explore it in the context of
a noisy OU process. We obtained the closed-form expression of the VoI, which relates
to the correlation of the process under observation at the source and the noise in the
transmission environment, but we did not investigate its relationship to the AoI and its
statistical characterisations in more depth. In this paper, the connection of the proposed
VoI with the AoI is studied for a noisy OU process. The OU process is considered, as it is
an important continuous-time, stationary, Markov and Gaussian random process, which
is practical to represent many real-world applications [28]. For example, it can be used to
model the mobility of a drone that moves towards a target point but experiences positional
fluctuations in unmanned aerial vehicle (UAV) networks. In this work, we give the formal
justification for how the correlation and the noise in the context affect the VoI and its
relationship to AoI, and obtain the functional dependency between them. We show that
the proposed VoI framework is a general one that includes the special sample cases given
in [20], and it is suitable to be applied in different network settings. Moreover, we study
the VoI in a FCFS M/M/1 queue model, deriving the probability density function (PDF),
cumulative distribution function (CDF), average VoI and moment-generating function
(MGF). We also derive the upper and lower bounds of the average VoI, which are tractable
and useful for the design and optimisation of freshness-aware applications. Through all
of these results, we provide a clear statistical framework linking the VoI to the AoI and a
formal justification for the selection of non-linear age functions.

The rest of this paper is organised as follows. The VoI formalism in the noisy OU
process model is introduced in Section 2. Relationships between the VoI and the AoI for
different network settings are investigated in Section 3. The statistical characterisation
of the VoI in the FCFS M/M/1 queue model is given in Section 4. Numerical results are
provided in Section 5. Conclusions are drawn in Section 6.
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2. VoI with Application to OU Processes

Here, we provide a brief introduction to the VoI framework that is used in this paper,
and we recount key results reported in [27] that will be used later in the paper.

2.1. VoI Definition

We consider a real-time status update system with a pair of transmitter and receiver
nodes. The source samples the data of a targeted random process {Xt} and sends status
updates to the receiver node for further analysis. Denote Xti as the i-th status update of
the underlying random process. Denote Yt′i

as the corresponding observation which is
captured in the observed random process {Yt}. Here, ti represents the sampling time of
the i-th sample, and t′i represents its receiving time. We consider a latent variable model in
which the observation Yt′i

may be different from the initial value, as the update Xti can be
negatively affected by the transmission noise, error or measurement when it is received by
the destination in the real world.

In this paper, the notion of the value of information is defined as the mutual informa-
tion between the current status of the process under observation at the transmitter and a
sequence of noisy measurements recorded by the receiver. Specifically, the VoI at the time t
is given as the following:

v(t) = I(Xt; Yt′n , . . . , Yt′n−m+1
), t > t′n. (1)

Here, n is denoted as the index of the last received update during the period (0, t). We look
back in time, and the most recent m of n noisy observations (m ≤ n) are utilised to evaluate
the information value. This definition gives the interpretation of the reduction in the
uncertainty of the current hidden status, given that we have some past noisy measurements.

2.2. Noisy OU Process Model

We assume the random process {Xt} under observation is an Ornstein–Uhlenbeck
process, which can be used to represent the mean reversion behaviour in practice. The
underlying OU process satisfies the following stochastic differential equation:

dXt = κ(θ − Xt)dt + σ dWt. (2)

Here, κ (κ > 0) is the rate of mean reversion, which can be used to represent the correlation
property of status updates, θ is the long-term mean, σ is the volatility of the random
fluctuation, and {Wt} is the Wiener process. We assume that the initial value X0 is a
Gaussian variable with mean θ and variance σ2

2κ .
We assume this OU process {Xt} is observed through an additive noise channel,

and the corresponding noisy observation is defined as the following:

Yt′i
= Xti + Nt′i

, (3)

where Nt′i
is the sample of the noise process taken by the receiver at t′i. Here, the samples

{Nt′i
} are assumed to be independent Gaussian variables with zero mean and constant

variance σ2
n . In reality, it can represent the measurement or error that undermines the status

update Xti of the underlying OU process.

2.3. VoI for the Noisy OU Process

Based on the model we described, the samples of the underlying OU process are
jointly Gaussian and the noise samples are also Gaussian variables, which allow us to
calculate the VoI in our previous work [27]. The VoI for the noisy OU process is given
as follows:

v(t) = −1
2

log
(

1 − e−2κ(t−tn) + e−2κ(t−tn) det(Amm)

γ det(A)

)
, t > t′n. (4)
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Here, A = σ2
nΣ−1

X + I where Σ−1
X represents the covariance matrix of the vector X =

[Xtn−m+1 , . . . , Xtn ]
T, and I represents the identity matrix of size m. Aij represents the (m −

1)× (m − 1) matrix constructed by deleting the ith row and the jth column of the matrix
A, and γ is denoted as the ratio of the variance of the OU process and the variance of the
noise, i.e., the following:

γ =
Var[Xti ]

Var[Nt′i
]
=

σ2

2κσ2
n

. (5)

The parameter γ is similar to the concept of the signal-to-noise ratio (SNR) in a communica-
tion system. In the following, the concept “SNR” refers to this parameter, which is used to
compare the randomness in the OU process and the noise in the communication channel.

3. Relationship between VoI and AoI

The result given in (4) shows the general expression of the VoI in the noisy OU process.
In this section, we consider a special case with a single observation (m = 1) and explore the
relationship between the proposed VoI and the AoI. In the definition of the AoI, we consider
that the time instant tn is fixed, i.e., we view the AoI as deterministic. What we do here is
to create a relationship between the VoI and the conditional AoI (i.e., the AoI conditioned
on the most recent sample time).

The concept of the AoI is given as follows [1]:

A(t) = t − tn, t > t′n. (6)

In the noisy OU process, when m = 1, the VoI in (4) can be simplified as follows:

v(t) = −1
2

log
(

1 − γ

1 + γ
e−2κ(t−tn)

)
, t > t′n, (7)

which is supported by the following:

0 ≤ v ≤ 1
2

log(1 + γ). (8)

Therefore, the VoI is further written as a function of the AoI. Let a = A(t); then, the VoI
can be written as follows:

V(a) = −1
2

log
(

1 − γ

1 + γ
e−2κa

)
. (9)

The VoI in (9) and its relationship to the AoI can be largely affected by system pa-
rameters. Fixing the random fluctuation parameter σ2 of the OU process, the SNR γ
relates to two parameters, κ and σ2

n . κ can be used to represent the correlation property
of the underlying OU process. If κ is small, the status updates are highly correlated; as κ
increases, they become less correlated. σ2

n represents the noise level in the transmission
environment. If σ2

n is small, the underlying hidden Markov process is dominant, and the
VoI approaches its Markov counterpart in the OU model; otherwise, the noise process is
dominant. In the following part, the relationship between the VoI and AoI in different SNR
regimes is investigated, and we have the following corollaries.

Corollary 1. In the low SNR regime, the VoI can be approximated as an exponential function of
the AoI, which is given by the following:

V(a) ≈ γ

2(1 + γ)
e−2κa. (10)
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Proof. In the low SNR regime (small γ), large κ and σ2
n > 0 (or large σ2

n and κ > 0) can
lead to small SNR in (5). When γ approaches 0, the term γ

1+γ e−2κa in (9) is small. For small
x, we have log(1 + x) ≈ x, thus the result in (10) is obtained.

In the low SNR regime, the dependency between the VoI and AoI is exponential.
Less correlated samples or large noise can negatively affect the VoI at the receiver, thus the
approximated VoI decreases faster as the AoI increases. For a less correlated data source,
even fresh updates may contain little valuable information about the underlying OU pro-
cess. For a high level of noise, status updates are corrupted, due to the indirect observation.

Corollary 2. In the high SNR regime resulting from high correlation, the VoI can be approximated
as a logarithmic function of the AoI, which is given by the following:

V(a) ≈ −1
2

log(2κγa + 1) +
1
2

log(1 + γ). (11)

Proof. For small x, we have ex ≈ 1 + x. Therefore, when κ → 0 in (9), e−2κa ≈ 1 − 2κa.

For highly correlated status updates, the VoI is expressed as a logarithmic function,
and this means that the VoI decreases slower as the AoI increases. In this case, correlated
updates can be transmitted under good channel conditions, thus old samples may still
hold enough valuable information.

Corollary 3. In the intermediate SNR regime where κ → 0, σ2
n → ∞ with κσ2

n being constant,
the VoI can be approximated as a linear function of the AoI, which is given by the following:

V(a) ≈ −κγa +
1
2

log(1 + γ). (12)

In the intermediate SNR regime where κ → ∞, σ2
n → 0 with κσ2

n being constant, the VoI can
be approximated as an exponential function of the AoI, which is given by the following:

V(a) ≈ γ

2(1 + γ)
e−2κa. (13)

Proof. The result in (12) can be derived from Corollary 2 directly. When σ2
n → ∞, the term

2κγa in (11) is small. Therefore, we have log(2κγa + 1) ≈ 2κγa. The result in (13) matches
Corollary 1. When κ → ∞, the term e−2κa in (9) is small. For small x, we have log(1 + x) ≈
x, thus the result in (13) is obtained.

The three corollaries stated above provide the compelling insight into the adoption of
non-linear AoI functions. In some existing works, exponential and logarithmic non-linear
age functions are widely utilised to measure the information value, but they do not give
the formal justification for why these functions are selected. Corollaries 1 to 3 provide
a theoretic interpretation and explain how the correlation, noise and SNR affect the VoI
and its relationship to the AoI in the noisy OU process. Generally, low SNR and high
SNR conditions yield exponential and logarithmic relationships. The intermediate SNR
regime yields an exponential or linear relationship, which depends on the value of noise
and correlation. Therefore, the proposed VoI framework is more complete, general and
appropriate to measure the timeliness of information in different SNR regimes.

4. Statistical Properties of the VoI in the M/M/1 Queue Model

Equations (10)–(13) show general relationships between the VoI and the AoI in the
noisy OU process. In this section, we relax the “fixed time instants” restriction given
in Section 3 and view the AoI as a random variable to study the distribution of the VoI.
We explore the VoI in a specific FCFS M/M/1 queue system and derive its statistical
properties (including the PDF, CDF, expectation value and MGF).
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4.1. Distribution of the VoI

We assume that status updates of the underlying OU process are transmitted through
a FCFS M/M/1 queue in which they are sampled as a rate λ Poisson process, and the
service time is a rate μ exponential process (λ < μ). Let random variables Si = ti − ti−1
(2 ≤ i ≤ n) be the sampling interval of two packets, which are independent and identically
distributed (i.i.d.) exponential random variables with E[S] = 1

λ . Similarly, service times of
status updates are also i.i.d. exponential random variables with mean 1

μ . In the example of
the M/M/1 queue, the stationary distribution of the AoI was studied in [11] and the PDF
and CDF of the AoI are given as follows:

fA(a) = μ

[
μ − λ

μ
e−(μ−λ)a −

(
μ

μ − λ
+ λa − λ

μ

)
e−μa +

λ

μ − λ
e−λa

]
, (14)

FA(a) = 1 − e−(μ−λ)a +

(
μ

μ − λ
+ λa

)
e−μa − μ

μ − λ
e−λa. (15)

It can be seen that the distribution of the AoI only relates to the queue discipline, which
means that it is independent of the inherent statistical characterisations of the underlying
random process. As for the distribution of the VoI of a latent OU process with a single
observation, we can state the following propositions.

Proposition 1. In the M/M/1 queue model, the PDF of the VoI for the noisy OU process is given by
the following:

fV(v) =
μe−2v

κ(1 − e−2v)

[
μ − λ

μ
r(v)

μ−λ
2κ −

(
μ

μ − λ
− λ

μ
− λ

2κ
log r(v)

)
r(v)

μ
2κ

+
λ

μ − λ
r(v)

λ
2κ

]
, (16)

where r(v) is denoted as follows:

r(v) =
(1 + γ)(1 − e−2v)

γ
. (17)

Proof. Since (9) is a monotonically decreasing function, the PDF of the VoI can be calcu-
lated by the following:

fV(v) = fA(V−1(v))
∣∣∣∣ d
dv

(
V−1(v)

)∣∣∣∣. (18)

Here, V−1 denotes the inverse function of the VoI given in (9), which can be written as
follows:

V−1(v) = − 1
2κ

log
(
(1 + γ)(1 − e−2v)

γ

)
, (19)

and we have the following:

d
dv

(
V−1(v)

)
= − e−2v

κ(1 − e−2v)
. (20)

Therefore, the PDF of the VoI given in (16) is obtained by substituting (19), (14) and (20)
into (18).

Proposition 2. In the M/M/1 queue model, the CDF of the VoI for the noisy OU process is given
as follows:

FV(v) = r(v)
μ−λ

2κ −
(

μ

μ − λ
− λ

2κ
log r(v)

)
r(v)

μ
2κ +

μ

μ − λ
r(v)

λ
2κ . (21)
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Proof. The CDF is obtained directly by the integral of the PDF, i.e., FV(v) = P(V ≤ v) =∫ v
0 fV(x)dx.

Propositions 1 and 2 show that the distribution of the VoI relates to the sampling rate
λ, service rate μ, correlation parameter κ and noise parameter σ2

n , while the AoI distribution
only relates to parameters λ and μ for the M/M/1 queue system.

The CDF of the VoI given in Proposition 2 can be interpreted as the “VoI outage
probability”, i.e., the probability that the VoI is smaller than a given threshold. It is interest-
ing to note that Proposition 2 implies that the VoI outage probability is a monotonically
decreasing function of the service rate μ, and it converges to r(v)

λ
2κ as μ goes to infinity.

The proof of this is given in Appendix A.1. The reason for this decreasing nature of the
VoI with μ is predictable because one would expect the information value to increase if the
service time in the queue reduces.

Proposition 2 also implies that the VoI outage probability first decreases and
then increases as the sampling rate λ increases. The optimal sampling rate λ∗ satisfies
∂ P(V≤v)

∂λ |λ=λ∗ = 0. The proof of this is provided in Appendix A.2. It is not surprising that
small sampling rate λ can lead to high outage, due to the lack of fresh updates at the source.
It is interesting to find that large sampling rate can also lead to high outage probability, due
to the traffic congestion in the queue.

4.2. Moments and Bounds

In this subsection, we derive the expectation and two bounds of the VoI with a single
observation, and calculate the moment-generating function of the VoI. We can state the
following two propositions.

Proposition 3. In the M/M/1 queue model, the average VoI for the noisy OU process is given as
the following:

E[V] =
1
2

[
log(1 + γ)− g1

(
γ

1 + γ
,

μ − λ

2κ

)
− μ

μ − λ
g1

(
γ

1 + γ
,

λ

2κ

)
+

(
μ

μ − λ
+

λ

2κ
log

γ

1 + γ

)
g1

(
γ

1 + γ
,

μ

2κ

)
− λ

2κ
g2

(
γ

1 + γ
,

μ

2κ

)]
, (22)

where two functions g1(x, y) and g2(x, y) are defined for x > 0 and y > 0 with the following:

g1(x, y) =
1
xy

∫ x

0

zy

1 − z
dz, (23)

g2(x, y) =
1
xy

∫ x

0

zy log z
1 − z

dz. (24)

Moreover, the average VoI is lower bounded by the following:

E[V] ≥ −1
2

log
[

1 − γ

1 + γ

( μ−λ
2κ

μ−λ
2κ + 1

−
μ−λ

2κ ( μ+λ
2κ + 1)

( μ
2κ + 1)2

( λ
2κ + 1)

)]
, (25)

and it is upper bounded by the following:

E[V] ≤ 1
2

[
H
(

μ − λ

2κ

)
+

μ

μ − λ
H
(

λ

2κ

)
− μ

μ − λ
H
(

μ

2κ

)
+

λ

2κ
ψ(1)

(
1 +

μ

2κ

)]
. (26)

Here, H(·) represents the harmonic number and the integral representation is given
by the following: H(x) =

∫ 1
0

1−zx

1−z dz [29]. ψ(1)(·) represents the first order polygamma

function which is given by ψ(1)(x) = − ∫ 1
0

zx−1log z
1−z dz [30].
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Proof. See Appendix B.

This proposition gives two bounds of the average VoI in the noisy OU process. Com-
pared with the general average VoI, the bounds are more tractable and may be useful for
network design and optimisation. The details of the bounds are given in Appendix B as
stated above.

The lower bound is based on Jensen’s inequality. The equality holds if the VoI is a
linear function on the Laplace transform of the AoI (E[e−2κa]). In Corollary 1, we show that
the dependence between the VoI and E[e−2κa] is approximately linear under the low SNR
condition. Therefore, the average VoI approaches this lower bound in the low SNR regime.
Moreover, as stated in Appendix B, the upper bound is based on the average VoI in the
Markov model. Hence, in the high SNR regime, the upper bound is tight.

Proposition 4. In the M/M/1 queue, the MGF of the VoI for the noisy OU process is given
as follows:

Mv(t) = 2F1

(
μ − λ

2κ
,

t
2

;
μ − λ

2κ
+ 1;

γ

1 + γ

)
+

μ

μ − λ 2F1

(
λ

2κ
,

t
2

;
λ

2κ
+ 1;

γ

1 + γ

)
−

(
μ

μ − λ
− λ

μ

)
2F1

(
μ

2κ
,

t
2

;
μ

2κ
+ 1;

γ

1 + γ

)
− λ

μ 3F2

(
μ

2κ
,

μ

2κ
,

t
2

;
μ

2κ
+ 1,

μ

2κ
+ 1;

γ

1 + γ

)
. (27)

Here, pFq(a1, . . . , ap; b1, . . . , bq; z) represents the generalised hypergeometric function
which is given by the following series:

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∞

∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

zn

n!
. (28)

where (·)n represents the Pochhammer symbol, which is given as follows:

(x)n =

⎧⎨⎩
1 n = 0

n−1
∏
i=0

(x − i) n ≥ 1
. (29)

Proof. See Appendix C.

Moments of the VoI can be obtained by derivatives of the MGF at t = 0. The average
VoI given in Proposition 3 is the first-order moment and can be derived from the MGF
directly. Using this MGF, higher order moments can also be used for the system design
and optimisation instead of just utilising the average value.

5. Numerical Results

In this section, the relationship between the VoI and AoI and the distribution of the
VoI are investigated through Monte Carlo simulations. In the simulation, the volatility
parameter σ2 of the OU model is fixed and set as 1. The sampling times {ti} are randomly
generated by the rate λ Poisson process. The service times of each sample are randomly
generated by the rate μ exponential process. We set time t = 100. For each running round,
we record the sampling time of the most recent received update as tn, and the AoI and the
VoI are calculated by (6) and (7), respectively.

Figures 1–3 show the non-linear relationships between the VoI and the AoI under low,
high and intermediate SNR conditions, respectively. Figures 4–7 illustrate the distribution
of the VoI, including the PDF, CDF and the outage probability. Figures 8–11 provide the
numerical results about the VoI expectation and bounds.
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Figure 1. Low SNR regime: Comparison of the exact VoI and the exponential VoI versus κ for
σ2

n ∈ {10, 30} at t = 100, sampling rate λ = 0.5 and service rate μ = 1.
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Figure 2. High SNR regime: Comparison of the exact VoI and the logarithmic VoI versus κ for
σ2

n ∈ {1, 5} at t = 100, sampling rate λ = 0.5 and service rate μ = 1.
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Figure 3. Intermediate SNR regime: Comparison of the exact VoI and the linear VoI versus κ for
σ2

n ∈ {10, 30} at t = 100, sampling rate λ = 0.5 and service rate μ = 1.
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v

0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n
F
u
n
ct
io
n
F
V
(v
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

κ = 0.05,σ2
n
= 0.5

κ = 0.05,σ2
n
= 1

κ = 0.1, σ
2
n
= 0.5

κ = 0.1, σ
2
n
= 1

κ = 0.2, σ
2
n
= 0.5

κ = 0.2, σ
2
n
= 1
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{0.05, 0.1, 0.2}; sampling rate λ = 0.5 and service rate μ = 1.
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Figure 6. The VoI outage probability versus λ for κ ∈ {0.05, 0.1, 0.2}; threshold v = 0.4, noise
parameter σ2

n = 0.5 and service rate μ = 1.
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Figure 7. The VoI outage probability versus μ for κ ∈ {0.05, 0.1, 0.2}; threshold v = 0.4, noise
parameter σ2

n = 0.5 and sampling rate λ = 0.2.

λ

0.2 0.3 0.4 0.5 0.6 0.7 0.8

A
v
er
a
g
e
V
o
I

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Simulation
Theory
Upper bound
Lower bound

Figure 8. The average VoI and its bounds versus the sampling rate λ; correlation parameter κ = 0.1,
noise parameter σ2

n = 0.5 and service rate μ = 1.
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Figure 9. The average VoI and its bounds versus the service rate μ; correlation parameter κ = 0.1,
noise parameter σ2

n = 0.5 and sampling rate λ = 0.2.
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Figure 10. The average VoI and the lower bound versus κ for σ2
n ∈ {1, 5}; sampling rate λ = 0.5 and

service rate μ = 1.
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Figure 11. The average VoI and the upper bound versus κ for σ2
n ∈ {0.1, 0.5, 1}; sampling rate λ = 0.5

and service rate μ = 1.

Figures 1–3 compare the exact VoI in (7) and the approximated VoI for different SNR
regimes which are given in (10) to (12). Figure 1 shows that the exponential approximation
is suitable when updates are less correlated and the noise is large. Figure 2 shows the
opposite behaviour. The logarithmic approximation is more accurate when κ and σ2

n are
small. Figure 3 shows that the linear approximation is accurate when κ is small but σ2

n is
large. These results verify the functional dependencies between VoI and the AoI, which
are discussed in Corollaries 1–3, illustrating that the low, high and intermediate SNR
conditions yield exponential, logarithmic and linear relationships.

Figure 4 gives the numerical validation of the theoretical PDF given in Proposition 1
and the density of the discrete path of the VoI obtained from the Monte Carlo simulations.
Figures 5–7 show the VoI outage probability given in Proposition 2 for different system
parameters. In Figure 5, the VoI outage probability is high when the status updates are
less correlated or when the system experiences large noise. For a particular threshold v,
Figure 6 shows that either a too-small or too-large sampling rate can lead to a large VoI
outage probability. Fixing μ, small λ means that we do not have sufficient newly generated
status updates about the underlying OU process for prediction. Large λ means that enough
newly generated updates have been sampled at the source, but they have to wait for a
longer time, due to the packet congestion in the FCFS queue. Figure 7 shows that VoI
outage probability decreases as the service rate μ increases. In the M/M/1 model, λ is
smaller than μ. Fixing λ, large μ means that status updates can be served and transmitted
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more quickly, thus the receiver can hold more valuable information about the underlying
process. These two figures verify the discussion given in Proposition 2.

Figures 8 and 9 show the effect of the sampling rate and service rate on the average
VoI and its bounds given in Proposition 3. The average VoI and its bounds first increase
and then decrease as λ increases, and they increase as μ increases. This behaviour is similar
to the VoI outage and can be explained similar to Figures 6 and 7. Moreover, it can be
seen that the theoretical average VoI is consistent with the result obtained from the Monte
Carlo simulations.

Figures 10 and 11 plot the theoretical average VoI in (22) and the lower and upper
bounds in (25) and (26) for different κ and σ2

n . Small noise σ2
n and small κ can lead to large

average VoI. In Figure 10, the gap between the exact value and the lower bound is small
for large σ2

n , and it decreases as κ increases. The gap between the exact value and the upper
bound in Figure 11 shows the opposite behaviour; the gap narrows as σ2

n decreases. These
two figures verify the discussion given in Proposition 3, illustrating that the average VoI
approaches lower and upper bounds in low and high SNR regimes, respectively.

6. Conclusions

In this paper, we investigated the dependency between the proposed VoI and the
AoI in a noisy OU process. The VoI is defined as the mutual information between the
current status of the underlying random process and noisy observations captured by the
receiver. Functional relationships between the VoI and the AoI were obtained in low,
intermediate and high SNR regimes. Moreover, the distribution and moments of the VoI
were investigated in the example of the M/M/1 queue model. Finally, we performed Monte
Carlo simulations to obtain numerical validation of the theoretical analysis. The results
presented in this paper provide insight into how the correlation and noise in a latent
OU process influence the VoI of the observations of that process. We also elucidated the
relationship between the VoI and the AoI. Our work has given a mathematical justification
for selecting certain non-linear age functions. Future work can be focused on exploring the
effect of multiple observations on the VoI and AoI relationship and on estimating the value
of the status of the underlying process with multiple observations.
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Appendix A

Appendix A.1. Proof of Monotonicity in μ

First, we prove the monotonicity in μ. For any particular VoI threshold v, the derivative
of the VoI outage is given as follows:

∂ P(V ≤ v)
∂μ

=
log r(v)

2κ

[
r(v)

μ−λ
2κ −

(
μ

μ − λ
− λ

2κ
log r(v)

)
r(v)

μ
2κ

]
+

λ

(μ − λ)2

(
r(v)

μ
2κ − r(v)

λ
2κ

)
. (A1)
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For simplicity, let x1 = λ
2κ log r(v) and x2 = μ

2κ log r(v). Then, (A1) can be written as
follows:

∂ P(V ≤ v)
∂μ

=
log r(v)

2κ

[
ex2−x1 +

(
x1 − x2

x2 − x1

)
ex2

]
+

log r(v)
2κ

x1

(x2 − x1)
2

(
ex2 − ex1

)
=

log r(v)
2κ

ex2

[
e−x1 + x1 − x2

x2 − x1
+

x1(1 − ex1−x2)

(x2 − x1)
2

]
. (A2)

Since λ < μ and 0 < r(v) < 1, thus x2 < x1 < 0 and log r(v) < 0. Moreover, for any x,
we have ex ≥ 1 + x. Therefore, (A2) can be further given as follows:

∂ P(V ≤ v)
∂μ

≤ log r(v)
2κ

ex2

[
1 − x2

x2 − x1
+

x1(x2 − x1)

(x2 − x1)
2

]
= 0.

(A3)

As the derivative is non-positive, the VoI outage is a monotonic function of μ.

Appendix A.2. Proof of Optimal λ Exists

Next, we prove that the optimal sampling rate exists. The derivative of the VoI outage
with respect to λ is given as follows:

∂ P(V ≤ v)
∂λ

= − log r(v)
2κ

(
r(v)

μ−λ
2κ − r(v)

μ
2κ − μ

μ − λ
r(v)

λ
2κ

)
− μ

(μ − λ)2

(
r(v)

μ
2κ − r(v)

λ
2κ

)
= − log r(v)

2κ

[
ex2−x1 − ex2 − x2ex1

x2 − x1
+

x2(ex2 − ex1)

(x2 − x1)
2

]
. (A4)

When λ approaches 0, we can write the following:

lim
x1→0

∂ P(V ≤ v)
∂λ

= − log r(v)
2κ

(
ex2 − 1

x2
− 1

)
≤ 0. (A5)

When λ approaches μ, we have the following:

lim
x1→x2

∂ P(V ≤ v)
∂λ

= − log r(v)
2κ

[
1 − ex2

(
1 − x2

2

)]
≥ − log r(v)

2κ

(
1 − e

x2
2

)
≥ 0. (A6)

We show that the VoI outage probability decreases with λ when λ is small, and increases
when λ is large. Therefore, there exists the optimal sampling rate λ∗, and the minimum
outage probability is achieved when the derivative in (A4) is 0.

Appendix B. Proof of Proposition 3

The average VoI can be obtained directly by the following:

E[V] =
∫ 1

2 log(1+γ)

0
v fV(v)dv = − μ

4κ

∫ 1

0
log

(
1 − γ

1 + γ
r
)[

μ − λ

μ
r

μ−λ
2κ −1

+
λ

μ − λ
r

λ
2κ −1 −

(
μ

μ − λ
− λ

μ
− λ

2κ
log r

)
r

μ
2κ −1

]
dr. (A7)

Here, for the given x and y, we have the following:
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∫ 1

0
log(1 − xr) · ry−1 dr =

1
xy

∫ x

0
log(1 − z) · zy−1 dz

=
1
xy

zy

y
log(1 − z)

∣∣∣∣z=x

z=0
+

1
yxy

∫ x

0

zy

1 − z
dz

=
1
y

[
log(1 − x) + g1(x, y)

]
,

(A8)

and

∫ 1

0
log r log(1 − xr) · ry−1 dr

=
1
xy

( ∫ x

0
log z · log(1 − z) · zy−1 dz − log x

∫ x

0
log(1 − z) · zy−1 dz

)
=

1
xy

zy

y
log(1 − z) · log z

∣∣∣∣z=x

z=0
− log x

xy

∫ x

0
log(1 − z) · zy−1d dz

− 1
yxy

∫ x

0
zy
(

log(1 − z)
z

− log z
1 − z

)
dz

=
log(1 − x) · log x

y
−

(
1

yxy +
log x

xy

) ∫ x

0
log(1 − z) · zy−1 dz +

1
yxy

∫ x

0

zy log z
1 − z

dz

= − log(1 − x)
y2 −

(
1
y2 +

log x
y

)
g1(x, y) +

g2(x, y)
y

. (A9)

Therefore, the average VoI is derived by substituting (A8) and (A9) into (A7).
The lower bound in (25) is obtained by applying Jensen’s inequality, i.e., the following:

E[V] = E
[
− 1

2
log

(
1 − γ

1 + γ
e−2κa

)]
≥ −1

2
log

(
1 − γ

1 + γ
E[e−2κa]

)
,

(A10)

where

E[e−2κa] =
∫ +∞

0
e−2κa fA(a)da

=
μ−λ

2κ
μ−λ

2κ + 1
−

μ−λ
2κ ( μ+λ

2κ + 1)

( μ
2κ + 1)2

( λ
2κ + 1)

.
(A11)

The upper bound in (26) is the average VoI in the Markov OU process. In the hidden
Markov model, we can write the following [31]:

v(t) = h(Xt)− h(Xt|Yt′n , . . . , Yt′n−m+1
)

≤ h(Xt)− h(Xt|Yt′n , . . . , Yt′n−m+1
, Xtn)

= h(Xt)− h(Xt|Xtn)

= I(Xt; Xtn).

(A12)

Therefore, the VoI in the Markov model can be regarded as the upper bound of the VoI in
the hidden Markov model. Denote vOU(t) = I(Xt; Xtn) as the VoI in the underlying OU
process. Then, the result in (26) follows from the following calculation:

E[V] ≤ E[VOU] = E
[
− 1

2
log

(
1 − e−2κa

)]
= − μ

4κ

∫ 1

0
log(1 − r)

[
μ − λ

μ
r

μ−λ
2κ −1 +

λ

μ − λ
r

λ
2κ −1 −

(
μ

μ − λ
− λ

μ
− λ

2κ
log r

)
r

μ
2κ −1

]
dr. (A13)
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Similar to the calculation given in (A8) and (A9), for the given y, we have the following:

∫ 1

0
log(1 − r) · ry−1 dr = −1

y
H(y),∫ 1

0
log r · log(1 − r) · ry−1 dr =

1
y2 H(y)− 1

y
ϕ(1)(y).

(A14)

Therefore, the upper bound of the average VoI is derived by substituting (A14) into (A13).

Appendix C. Proof of Proposition 4

The MGF of the VoI is obtained directly by the following:

Mv(t) =
∫ 1

2 log(1+γ)

0
etv fV(v)dv =

μ

2κ

∫ 1

0

(
1 − γ

1 + γ
r
)− t

2
[

μ − λ

μ
r

μ−λ
2κ −1

+
λ

μ − λ
r

λ
2κ −1 −

(
μ

μ − λ
− λ

μ
− λ

2κ
log r

)
r

μ
2κ −1

]
dr. (A15)

Here, for the given x, y and t, we have the following [30]:

∫ 1

0
(1 − xr)−

t
2 · ry−1 dr =

1
y 2F1

(
y,

t
2

; y + 1; x
)

, (A16)

and ∫ 1

0
log r · (1 − xr)−

t
2 · ry−1 dr = − 1

y2 3F2

(
y, y,

t
2

; y + 1, y + 1; x
)

. (A17)

Therefore, the MGF of VoI is derived by substituting (A16) and (A17) into (A15).
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Abstract: This paper investigates the status updating policy for information freshness in Internet
of things (IoT) systems, where the channel quality is fed back to the sensor at the beginning of
each time slot. Based on the channel quality, we aim to strike a balance between the information
freshness and the update cost by minimizing the weighted sum of the age of information (AoI) and
the energy consumption. The optimal status updating problem is formulated as a Markov decision
process (MDP), and the structure of the optimal updating policy is investigated. We prove that, given
the channel quality, the optimal policy is of a threshold type with respect to the AoI. In particular,
the sensor remains idle when the AoI is smaller than the threshold, while the sensor transmits the
update packet when the AoI is greater than the threshold. Moreover, the threshold is proven to be
a non-increasing function of channel state. A numerical-based algorithm for efficiently computing
the optimal thresholds is proposed for a special case where the channel is quantized into two states.
Simulation results show that our proposed policy performs better than two baseline policies.

Keywords: age of information; status update; channel quality

1. Introduction

Recently, the Internet of things (IoT) has been widely used in the field of industrial
manufacturing, environment monitoring, and home automation. In these applications, the
sensors generate and transmit new status updates to the destination, where the freshness of
the status updates is crucial for the destination to track the state of the environment and to
make decisions. Thus, a new information freshness metric, namely age of information (AoI),
was proposed in [1] to measure the freshness of updates from the receiver’s perspective.
There are two widely used metrics, i.e., the average peak AoI [2] and the average AoI [3].
In general, the smaller the AoI is, the fresher the received updates are.

AoI was originally investigated in [1] for updating the status in vehicular networks.
Considering the impact of the queueing system, the authors in [4] investigated the system
performance under the M/M/1 and M/M/1/2 queueing systems with a first-come-first-
served (FCFS) policy. Furthermore, the work of [5] studied how to keep the updates fresh
by analyzing some general update policies, such as the zero-wait policy. The authors of [6]
considered the optimal schedule problem for a more general cost that is the weighted sum
of the transmission cost and the tracking inaccuracy for the information source. However,
these works assumed that the communication channel is not error-prone. In practice, status
updates are delivered through an erroneous wireless channel, which suffers from fading,
interference, and noises. Therefore, the received updates may not be decoded correctly,
which induces information aging and energy consumption.

There are several works that considered the erroneous channel [7,8]. The authors
in [9] considered multiple communication channels and investigated the optimal coding
and decoding schemes. The channel with an independent and identical packet error rate
over time was considered in [10,11]. The work of [12] considered the impact of fading
channels in packet transmission. A Markov channel was investigated in [13], where
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threshold policy was proven to be optimal, and a simulation-based approach was proposed
to compute the corresponding threshold. However, how the information of channel quality
should be exploited to improve system performance in information freshness remains to
be investigated.

Channel quality indicator (CQI) feedback is commonly used in wireless communica-
tion systems [14]. In block fading channels, the channel quality, generally reported by the
terminal, is highly relevant to the packet error rate (PER) [15] or, namely, the block error
rate (BLER). It is probable that a received packet fails to be decoded when the channel
suffers from a poor condition. However, a transmitter with the channel quality information
is able to keep idle when there is deep fading, thereby saving energy. The channel quan-
tization was also considered in [12,13], where the channel was quantized into multiple
states. However, the decision making was not dependent on the channel state in [12],
while [13] did not consider the freshness of information. These motivate us to introduce
the information of channel quality into the design of the updating policy.

In this paper, a status update system with channel quality feedback is considered. In
particular, the channel condition is quantized into multiple states, and the destination feeds
the channel quality back to the sensor before the sensor updates the status. Our problem is
to investigate the channel quality-based optimal status update policy, which minimizes
the weighted sum of the AoI and the energy consumption. Our key contributions are
summarized as follows:

• An average cost Markov decision process (MDP) is formulated to model this problem.
Due to the infinite countable states and unbounded cost of the MDP, which makes
analysis difficult, the discounted version of the original problem is first investigated,
and the existence of the stationary and deterministic policy to the original problem is
then proven. Furthermore, it is proven that the optimal policy is a threshold structure
policy with respect to the AoI for each channel state by showing the monotonic
property of the value function. We also prove that the threshold is a non-increasing
function of channel state.

• By utilizing the threshold structure, a structure-aware policy iteration algorithm is
proposed to efficiently obtain the optimal updating policy. Nevertheless, a numerical-
based algorithm which directly computes the thresholds by non-linear fractional
programming is also derived. Simulation results reveal the effects of system parame-
ters and show that our proposed policy performs better than the zero-wait policy and
periodic policy.

The rest of this paper is organized as follows. In Section 2, the system model is
presented and the optimal updating problem is formulated. In Section 3, the optimal
updating policy is proven to be of a threshold structure, and a threshold-based policy
iteration algorithm is proposed to find the optimal policy. Section 4 presents the simulation
results. Finally, we summarize our conclusions in Section 5.

2. System Model and Problem Formulation

2.1. System Description

In this paper, we consider a status update system that consists of a sensor and a
destination, as shown in Figure 1. Time is divided into slots. Without loss of generality,
we assume that each time slot has an equal length, which is normalized to unity. At
the beginning of each slot, the destination feeds the CQI back to the sensor. It is worth
noting that the PER is different for different CQIs. Based on the CQI, the sensor decides in
each time slot whether it should generate and transmit a new update to the destination
via a wireless channel or keep idle for saving energy. These updates are crucial for the
destination to estimate the states of the surrounding environment of the sensor and to
make in-time decisions. Let at, which takes value from the action set A = {0, 1}, denote
the action that the sensor performs in slot t, where at = 1 means that the sensor generates
and transmits a new update to the destination, and at = 0 represents that the sensor is
idle. If the sensor transmits an update packet in slot t, an acknowledgment will be fed
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back at the end of this time slot. In particular, an ACK is fed back when the destination
successfully receives the update packet, and a NACK otherwise.

Figure 1. System model.

2.2. Channel Model

Suppose that the wireless channel is a block fading channel where the channel gain
remains constant in each slot and varies independently over different slots. Let zt denote
the channel gain in slot t which takes value from [0,+∞). We quantize the channel gain
into N + 1 levels which are denoted as (z0, z1, ..., zi, ..., zN). The quantization levels are
arranged in an increasing order where z0 = 0 and zN = ∞. Hence, the channel is said to be
in state i if the channel gain zt belongs to the interval [zi, zi+1). We denote by ht the state
of the channel in slot t, where ht ∈ H � {0, 1, 2..., N − 1}. With the aid of CQI fed back
from the destination, the sensor has knowledge of the channel state at the beginning of
each time slot.

Let pz(z) denote the distribution of the channel gain. Then, the probability of the
channel being in state i is

pi =
∫ zi+1

zi

pz(z)dz. (1)

We assume that the signal-to-noise ratio (SNR) per information bit during the trans-
mission remains constant. Then, the PER depends only on the channel gain. In particular,
the PER for channel state i is given by

gi =
∫ zi+1

zi

PPER(z)pz(z|i)dz, (2)

where PPER(z) is the PER of a packet with respect to the channel gain. The success proba-
bility qi of a packet transmitted over channel state i is qi = 1 − gi. According to [15], the
success probability is a non-decreasing function of the channel state.

2.3. Age of Information

This paper uses the AoI as the freshness metric, which is defined as the time elapsed
since the generation time of the latest update packet that is successfully received by the
destination [1]. Let Gi be the generation time of the ith successfully received update packet.
Then, the AoI in time slot t, Δt, is defined as

Δt = t − max{Gi : Gi ≤ t}. (3)

In particular, if an update packet is successfully received, the AoI decreases to one.
Otherwise, the AoI increases by one. Altogether, the evolution of the AoI is expressed by

Δt+1 =

{
1, if the transmission is successful,
Δt + 1, otherwise.

(4)

An example of the AoI evolution is shown in Figure 2, where the gray rectangle
represents a successful reception of an update packet, and the mesh rectangle represents a
transmission failure.
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Figure 2. An example of the AoI evolution with the channel state ht, the action at, and the acknowl-
edgment ACKt. The asterisk stands for no acknowledgment from destination when the sensor
keeps idle.

2.4. Problem Formulation

The objective of this paper is to find an optimal updating policy that minimizes the
long-term average of the weighted sum of AoI and energy consumption. A policy π can
be represented by the sequence of actions, i.e., π = (a0, a1, . . . , at, . . .). Let Π be a set of
stationary and deterministic policies. Then, the optimal updating problem is given by

min
π∈Π

lim sup
T→∞

1
T

T

∑
t=0

E[Δt + ωatCe], (5)

where Ce is the energy consumption, and ω is the weighting factor.

3. Optimal Updating Policy

This section aims to investigate the optimal updating policy for the problem formu-
lated in above section. In this section, our investigating problem is first formulated into
an infinite horizon average cost MDP, and the existence of a stationary and deterministic
policy that minimizes the average cost is proven. Then, the non-decreasing property of
the value function is derived. Based on this property, we prove that the optimal update
policy is of a threshold structure with respect to AoI, and the optimal threshold is a non-
increasing function of the channel state. Aiming to reduce the computational complexity, a
structure-aware policy iteration algorithm is proposed to find the optimal policy. Moreover,
non-linear fractional programming is employed to directly compute the optimal thresholds
in a special case where the channel is quantized into two states.

3.1. MDP Formulation

The Markov decision process (MDP) is typically applied to address the optimal
decision problem when the investigation problem can be characterized by the evolution
of the system state and the cost is per-stage. The optimization problem in (5) can be
formulated as an infinite horizon average cost MDP, which is elaborated in the following.

• States: The state of the MDP in slot t is defined as xt = (Δt, ht), which takes values in
Z+ ×H. Hence, the state space S is countable and infinite.

• Actions: The set of actions at chosen in slot t is A = {0, 1}.
• Transition Probability: Let Pr(xt+1|xt, at) be the transition probability that the state xt

in slot t transits to xt+1 in slot t + 1 after taking action at. According to the evolution
of AoI in (4), the transition probability is given by⎧⎪⎪⎨⎪⎪⎩

Pr(xt+1 = (Δ + 1, j)|xt = (Δ, i), at = 0) = pj,

Pr(xt+1 = (1, j)|xt = (Δ, i), at = 1) = qi pj,

Pr(xt+1 = (Δ + 1, j)|xt = (Δ, i), at = 1) = gi pj.

(6)
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• Cost: The instantaneous cost C(xt, at) at state xt given action at in slot t is

C(xt, at) = Δt + ωatCe. (7)

For an MDP with infinite states and unbounded cost, it is not guaranteed to have
a stationary and deterministic policy that attains the minimum average cost in general.
Fortunately, we can prove the existence of stationary and deterministic policy in next
sub-section.

3.2. The Existence of Stationary and Deterministic Policy

For rigorous mathematical analysis, this section is purposed to prove the existence
of a stationary and deterministic optimal policy. According to [16], we first analyze the
associated discounted cost problem of the original MDP. The expectation of discount cost
with respect to discounted factor γ and initial state x̂ under a policy π is given by

Vπ,γ(x̂) = Eπ

[
∞

∑
t=0

γtC(xt, at)|x0 = x̂

]
, (8)

where at is the decision made in state x̂ under policy π, and γ ∈ (0, 1) is the discounted
factor. We first verify that Vπ,γ(x̂) is finite for any policy and all x̂ ∈ S .

Lemma 1. Given γ ∈ (0, 1), for any policy π and all x̂ = (x̂, ĥ) ∈ S , we have

Vπ,γ(x̂) = Eπ

[
∞

∑
t=0

γtC(xt, at)|x0 = x̂

]
< ∞. (9)

Proof. By definition, the instantaneous cost in state xt = (Δt, ht) given action at is

C(xt, at) =

{
Δt, if at = 0,

Δt + ωCe, if at = 1.
(10)

Therefore, C(xt, at) ≤ Δt + ωCe holds. Combined with the fact that the AoI increases,
at most, linearly at each slot for any policy, we have

∞

∑
t=0

γtC(xt, at|x0 = (Δ̂, ĥ))

≤
∞

∑
t=0

γt(Δ̂ + t + ωCe)

=
1

1 − γ

(
Δ̂ +

γ

1 − γ
+ ω

)
< ∞, (11)

which completes the proof.

Let Vγ(x̂) = minπ Vπ,γ(x̂) denote the minimum expected discounted cost. By Lemma 1,
Vγ(x̂) = minπ Vπ,γ(x̂) < ∞ holds for every x̂ and γ ∈ (0, 1).

According to [16] (Proposition 1), we have

Vγ(x̂) = min
a∈A

{
C(x̂, a) + γ ∑

x′∈S
Pr(x′|x̂, a)Vγ(x

′)
}

, (12)

which implies that Vγ(x̂) satisfies the Bellman equation. Vγ(x̂) can be solved via a value
iteration algorithm. In particular, we define Vγ,0(x̂) = 0, and for all n ≥ 1, we have

Vγ,n(x̂) = min
a∈A

Qγ,n(x̂, a), (13)

355



Entropy 2021, 23, 912

where

Qγ,n(x̂, a) = min
a∈A

{
C(x̂, a) + γ ∑

x′∈S
Pr(x′|x̂, a)Vγ,n−1(x

′)
}

(14)

is related to the right-hand-side (RHS) of the discounted cost optimality equation. Then,
limn→∞ Vγ,n(x̂) = Vγ(x̂) for every x̂ and γ.

Now, we can use the value iteration algorithm to establish the monotonic properties
of Vγ(x̂)

Lemma 2. For all Δ and i, we have

Vγ(Δ, N − 1) ≤ Vγ(Δ, i), (15)

and for all Δ1 ≤ Δ2 and i, we have

Vγ(Δ1, i) ≤ Vγ(Δ2, i). (16)

Proof. See Appendix A.

Based on Lemmas 1 and 2, we are ready to show that the MDP has a stationary and
deterministic optimal policy in the following theorem.

Theorem 1. For the MDP in (5), there exists a stationary and deterministic optimal policy
π∗ that minimizes the long-term average cost. Moreover, there exists a finite constant λ =
limγ→1(1 − γ)Vγ(x) for all states x, where λ is independent of the initial state, and a value
function V(x), such that

λ + V(x) = min
a∈A

{
C(x, a) + ∑

x′∈S
Pr(x′|x, a)V(x′)

}
(17)

holds for all x.

Proof. See Appendix B.

3.3. Structural Analysis

According to Theorem 1, the optimal policy for the average cost problem satisfies the
following equation

π∗(x) = arg min
a∈A

Q(x, a), (18)

where
Q(x, a) = C(x, a) + ∑

x′∈S
Pr(x′|x, a)V(x′). (19)

Similar to Lemma 2, the monotonic property of the value function V(x) is given in the
following lemma.

Lemma 3. Given the channel state i, for any Δ2 ≥ Δ1, we have

V(Δ2, i) ≥ V(Δ1, i). (20)

Proof. This proof follows the same procedure of Lemma 2, with one exception being that
the value iteration algorithm is based on Equation (17).

Moreover, based on Lemma 3, the property of the increment of the value function is
established in following lemma.
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Lemma 4. Given the channel state i, for any Δ2 ≥ Δ1, we have

V(Δ2, i)− V(Δ1, i) ≥ Δ2 − Δ1. (21)

Proof. We first examine the relation between the state-action value functions, i.e., Q(Δ2, i, a)
and Q(Δ1, i, a). Specifically, based on Lemma 3, we have

Q(Δ2, i, 0)− (Δ2 − Δ1) = Δ1 +
N−1

∑
j=0

pjV(Δ2 + 1, j)

≥Δ1 +
N−1

∑
j=0

pjV(Δ1 + 1, j) = Q(Δ1, i, 0), (22)

and

Q(Δ2, i, 1)− (Δ2 − Δ1)

=Δ1 + ωCe + qi

N−1

∑
j=0

pjV(1, j) + gi

N−1

∑
j=0

pjV(Δ2 + 1, j)

≥Δ1 + ωCe + qi

N−1

∑
j=0

pjV(1, j) + gi

N−1

∑
j=0

pjV(Δ1 + 1, j)

=Q(Δ1, i, 1). (23)

Since V(x) = min
a∈A

Q(x, a), we complete the proof.

Our main result is presented in the following theorem.

Theorem 2. For any given channel state i, there exists a threshold βi, such that when Δ ≥ βi,
the optimal action is to generate and transmit a new update, i.e., π∗(Δ, i) = 1, and when Δ < βi,
the optimal action is to remain idle, i.e., π∗(Δ, i) = 0. Moreover, the optimal threshold βi is a
non-increasing function of channel state i, i.e., βi ≥ β j holds for all i, j ∈ H and i ≤ j.

Proof. See Appendix C.

According to Theorem 2, the sensor will not update the status until the AoI exceeds the
threshold. Moreover, if the channel condition is not good, i.e., channel state i is small, the
sensor will wait for a longer time before it samples and transmits the status update packet
so as to reduce the energy consumption because of a higher probability of transmission
failure.

Based on the threshold structure, we can reduce the computational complexity of
the policy iteration algorithm to find the optimal policy. The details of the algorithm are
presented in Algorithm 1.

3.4. Computing the Thresholds for a Special Case

In the above section, we have proven that the optimal policy has a threshold structure.
Given the thresholds (β0, β1, ..., βN−1), a Markov chain can be induced by the threshold
policy. A special Markov chain is depicted in Figure 3, where the channel has two states.
By leveraging the Markov chain, we first derive the average cost of the special case, which
is summarized in the following theorem.
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Algorithm 1 Policy iteration algorithm (PIA) based on the threshold structure.

1: Initialization: Set k = 0, iteration threshold ε, and initialize the value function V0(x) = 0
and policy π(x) = 0 for all state x ∈ S

2: repeat
3: k ← k + 1.
4: Based on last iterative value function Vk−1(x), compute the current value function

Vk(x) by calculating the following equations.

5: Vk(x) = min
a∈A

{
C(x, a) + ∑

x′∈S
Pr(x′|x, a)Vk−1(x

′)
}

6: until |Vk(x)− Vk−1(x)| ≤ ε for all x ∈ S
7: for x = (Δ, i) ∈ S do
8: if x′ = (Δ − 1, i) ∈ S and π(x′) = 1 then
9: π(x) ← 1.

10: else

11: π(x) ← arg min
a∈A

{
C(x, a) + Pr

x′∈S
(x′|x, a)V(x′)

}
12: end if
13: end for
14: π∗ ← π
15: return the optimal policy π∗

Figure 3. An illustration of established Markov chain with two channel states.

Theorem 3. Let ϕ(x) be the steady state probability of state x of the corresponding Markov chain
with two states and β0, β1 be the threshold with respect to the channel state, respectively. The steady
state probability is given by

ϕ(i, j) =

⎧⎪⎨⎪⎩
pj ϕ1, if 1 ≤ i ≤ β1,

pjs
i−β1
0 ϕ1, if β1 < i ≤ β0,

pjs
β0−β1
0 si−β1

1 ϕ1, if i > β0,

(24)

where ϕ1 = ϕ(1, 0) + ϕ(1, 1), s0 = 1 − p1q1, s1 = 1 − p0q0 − p1q1, and ϕ1 satisfies follow-
ing equation:
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ϕ1 =
1

β1 +
s0−s

β0−β1
0

1−s0
+ sβ0−β1

0
s1

1−s1

. (25)

The average cost then is given by

Cmc(β0, ..., βN−1)

=ϕ1(
β1(β1 + 1)

2
+ A + B + ωCeE), (26)

where

A =
s0((β1 + 1)− β0sβ0−β1

0 )

1 − s0
+

s3
0 − sβ0−β1+1

0
(1 − s0)2 , (27)

B =
(β0 + 1)s1

1 − s1
+

s3
1

1 − s1
, (28)

and

E =

(
sβ0−β1

0
1

1 − s1
+ p1

1 − sβ0−β1
0

1 − s0

)
. (29)

Proof. See Appendix D.

Therefore, the closed form of the average cost is a function of thresholds. By linear
search or gradient descent algorithm, the numerical solution of optimal thresholds can be
obtained. However, computing its gradient directly requires a large amount of computation
till convergence. Here, a nonlinear fractional programming (NLP) [17] based algorithm
which can efficiently obtain the numerical solution is proposed.

Let x = (β0, β1). We can rewrite the cost function as a fractional form, where the
numerator is denoted as N(x) = −Cmc(x)/ϕ1, and the denominator term is N(x) = 1/ϕ1.
The solution to an NLP problem with the form in the following

max
{

N(x)

D(x)
|x ∈ A

}
(30)

is related to the optimization problem (31)

max{N(x)− qD(x)|(x ∈ A}, for q ∈ R, (31)

where the following assumption should also be satisfied:

D(x) > 0, for all x ∈ A. (32)

Define the function F(q) with variable q as

F(q) = max{N(x)− qD(x)|x ∈ A}, for q ∈ R. (33)

According to [17], F(q) is a strictly monotonic decreasing function and is convex over R.
Furthermore, we have q0 = N(x0)/D(x0) = max{N(x)− qD(x)|x ∈ A} if, and only if,

F(q0) = max{N(x)− q0D(x)|x ∈ A} = 0. (34)

Then, the algorithm can be described by two steps. The first step is to solve a convex
optimization problem with a one dimensional parameter by a bisection method. The second
step is to solve a high dimensional optimization problem by a gradient descent method.
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According to [17], a bisection method can be used to solve the optimal q0, under
the assumption that the value of function F(q) can be obtained exactly for given q. We
will actually use the gradient descent algorithm to obtain the numerical solution of F(q)
since the global search method may not perform in polynomial time. As a trick, we
alternate the optimization variables of thresholds (β0, β1) by the variables of the decrement
of thresholds, i.e., x = (β0 − β1, β1). To summarize, the numerical-based method for
computing the optimal thresholds is given by Algorithm 2.

Algorithm 2 Numerical computation of the optimal thresholds.

Input: Iteration time k, error threshold δ
Output: Numerical result x∗

1: Let N(x) = −Cmc(x)/ϕ1, and D(x) = 1/ϕ1. Define F(q) = max{N(x)− qD(x)|x ≥
0}

2: Let the iteration starts with i = 1, search range [a, b] of q.
3: while i ≤ k do
4: m = a+b

2 ;
5: if F(m) ∗ F(a) < 0 then
6: b = m;
7: else
8: a = m;
9: end if

10: if b−a
2 < δ then

11: x∗ = arg minx F(m)
12: break;
13: end if
14: i = i + 1;
15: end while

4. Simulation Results and Discussions

In this section, the simulation results are presented to investigate the impacts of the
system parameters. We also compare the optimal policy with the zero-wait policy and
periodic policy, where the zero-wait policy immediately generates an update at each time
slot and the periodic policy keeps a constant interval between two updates.

Figure 4 depicts the optimal policy for different AoI and channel states, where the
number of channel states is 5. It can be seen that, for each channel state, the optimal policy
has a threshold structure with respect to the AoI. In particular, when the AoI is small, it
is not beneficial for the sensor to generate and transmit a new update because the energy
consumption dominates the total cost. We can also see that the threshold is non-increasing
with the channel state. In other words, if the channel condition is better, the threshold is
smaller. This is because the success probability of packet transmission increases with the
channel state.

Figure 5 illustrates the thresholds for the MDP with two channel states with respect to
the weighting factor ω, in which the two dashed lines are obtained by PIA and the other
two solid lines are obtained by the proposed numerical algorithm. Both of the thresholds
grow with the increasing of ω. Since the energy consumption has more weight, it is not
efficient to update when the AoI is small. On the contrary, when ω decreases, the AoI
dominates and the thresholds decline. In particular, both of the thresholds equal 1 when
ω = 0. In this case, the optimal policy reduces to the zero-wait policy. We can also see
that the value of the threshold for channel state 1 of the numerical algorithm is close to
the optimal solution. In contrast, the value of the threshold for channel state 0 gradually
deviates from the optimal value.
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Figure 4. Optimal policy for different AoI and channel states (q0 = 0.1, q1 = 0.2, q2 = 0.3,
q3 = 0.4, q4 = 0.5, p0 = 0.1, p1 = 0.1, p2 = 0.3, p3 = 0.3, p4 = 0.2, ω = 10, Ce = 1).

Figure 5. Optimal thresholds for two different channel states versus ω (p0 = 0.2, p1 = 0.8,
q0 = 0.2, q1 = 0.5, Ce = 1).

Figure 6 illustrates the performance comparison of four policies, i.e., the zero-wait
policy, the periodic policy, the numerical-based policy, and the optimal policy, with respect
to the weighting factor ω. It is easy to see that the optimal policy has the lowest average
cost. As we see in Figure 6, the zero-wait policy has the same performance with the optimal
policy when ω = 0. As ω increases, the average cost of all three policies increases. However,
the increment of the zero-wait policy is larger than the periodic policy and the optimal
policy due to the frequent transmission in the zero-wait policy. Although the thresholds
obtained by the PIA and the numerical algorithm are not exactly the same as shown in
Figure 5, the performance of the numerical-based algorithm also coincides with the optimal
policy. This is because the threshold for channel state 1 exists in the quadratic term of the
cost function, while the threshold for channel state 0 exists in the negative exponential
term of the cost function. As a result, the threshold for channel state 1 has a much more
significant effect on the system performance.

361



Entropy 2021, 23, 912

Figure 6. Comparison of the zero-wait policy, the periodic policy with period being 5, the numerical-
based policy, and the optimal policy with respect to the weighting factor ω (p0 = 0.2, p1 = 0.8,
q0 = 0.2, q1 = 0.5, Ce = 1).

Figure 7 compares the three policies with respect to the probability p1 of the channel
being in state 1. Since there is a higher probability that the channel has a good quality as p1
increases, the average cost of all three policies decreases. We can see that, in the regime of
p1, the optimal policy has the lowest average cost, because it can achieve a good balance
between the AoI and the energy consumption. We can also see that the cost of the periodic
policy is greater than the zero-wait policy first, and smaller later. To further demonstrate
these curves, we separate the energy consumption term and AoI term into different figures,
i.e., Figures 8 and 9. We see that the update cost of the zero-wait policy is smaller than
that of the periodic policy, but the AoI of the zero-wait policy has a smaller decrease with
respect to p1 than the periodic policy.

Figure 7. Comparison of the zero-wait policy, the periodic policy with period being 5, and the optimal
policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).
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Figure 8. AoI comparison of the zero-wait policy, the periodic policy with period being 5, and the
optimal policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).

Figure 9. Energy consumption comparison of the zero-wait policy, the periodic policy with period
being 5, and the optimal policy with respect to p1 (q0 = 0.2, q1 = 0.5, ω = 10, Ce = 1).

5. Conclusions

In this paper, we have studied the optimal updating policy in an IoT system, where
the channel gain is quantized into multiple states and the channel state is fed back to the
sensor before the decision making. The status update problem has been formulated as an
MDP to minimize the long-term average of the weighted sum of the AoI and the energy
consumption. By investigating the properties of the value function, it is proven that the
optimal policy has a threshold structure with respect to AoI for any given channel state.
We have also proven that the threshold is a non-increasing function of the channel state.
Simulation results show the impacts of system parameters on the optimal thresholds and
the average cost. Through comparisons, we have also shown that our proposed policy
outperforms the zero-wait policy and the periodic policy. In our future research, the time-
varying channel model will be further involved for guiding the future design of realistic
IoT systems.
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Appendix A. Proof of Lemma 2

Based on the value iteration algorithm, the induction method can be employed in
following proof. Firstly, we initial that Vγ,0(x) = 0, where both Equations (15) and (16)
hold for all x ∈ S .

Appendix A.1. Proof of Equation (16)

When n = 1,

Qγ,1(Δ1, i, 0)− Qγ,1(Δ2, i, 0) = Δ1 − Δ2 ≤ 0, (A1)

and

Qγ,1(Δ1, i, 1)− Qγ,1(Δ2, i, 1) = Δ1 + ωCe − (Δ2 + ωCe) ≤ 0, (A2)

hold due to Δ1 ≤ Δ2, and we have Vγ,1(Δ1, i) ≤ Vγ,1(Δ2, i).
Suppose that Vγ,K(Δ1, i) ≤ Vγ,K(Δ2, i) holds for k ≤ K. Considering the case of

k = K + 1,

Qγ,K+1(Δ1, i, 0)− Qγ,K+1(Δ2, i, 0) = Δ1 − Δ2 ≤ 0, (A3)

and

Qγ,K+1(Δ1, i, 1)− Qγ,K+1(Δ2, i, 1)

=(Δ1 − Δ2) + γ ∑
j∈H

pjgi
(
Vγ,K(Δ1 + 1, j)− Vγ,K(Δ2 + 1, j)

)
≤0, (A4)

hold for all i according to Δ1 ≤ Δ2. Therefore, we have Vγ,K+1(Δ1, i) ≤ Vγ,K+1(Δ2, i). Since
limn→∞ Vγ,n = Vγ, we have Vγ(Δ1, i) ≤ Vγ(Δ2, i).

Appendix A.2. Proof of Equation (15)

By the definition of function Qγ(x, a), we have

Qγ(Δ, i, 0) = Δ + γ ∑
j∈H

pjVγ(Δ + 1, j), (A5)

and

Qγ(Δ, i, 1) = Δ + ωCe + γ

(
∑
j∈H

pj(giVγ(Δ + 1, j) + qiVγ(1, j))

)
. (A6)
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Therefore,

Qγ(Δ, N − 1, 0)− Qγ(Δ, i, 0) ≤ 0, (A7)

and

Qγ(Δ, N − 1, 1)− Qγ(Δ, i, 1)
(a)
=γ ∑

j∈H
pj(qN−1 − qi)(Vγ(1, j)− Vγ(Δ + 1, j)) ≤ 0, (A8)

hold for all i, where step (a) is due to Equation (16). Hence, we have Vγ(Δ, N − 1) ≤
Vγ(Δ, i). This completes the whole proof.

Appendix B. Proof of Theorem 1

Theorem 1 can be proven by verifying the conditions given in [16]. The conditions are
listed as follows:

• (1): For every state x and discount factor γ, the discount value function Vγ(x) is finite.
• (2): There exists a non-negative value L such that −L ≤ hγ(x) for all x and γ, where

hγ(x) = Vγ(x)− Vγ(x̂), and x̂ is a reference state.
• (3): There exists a non-negative value Mx, such that hγ(x) ≤ Mx for every x and γ.

For every x, there exists an action ax such that ∑x′ Pr(x′|x, ax)Mx′ < ∞.
• (4): The inequality ∑x′ Pr(x′|x, a)Mx′ < ∞ holds for all x and a.

By Lemma 1, Vγ(x̂) = minπ Vπ,γ(x̂) < ∞ holds for every x̂ and γ. Hence, condition
(1) holds. According to Lemma 2, by letting x̂ = (1, N − 1) and L = 0, we have hγ(x) ≥ 0,
which verifies condition (2).

Before verifying condition (3), a lemma is given as follows:

Lemma A1. Let us denote x̂ = (1, N − 1) as the reference state and define the first time that an
initial state x transits to x̂ as K = min{k : k ≤ 1, xk = x̂}. Then, the expectation cost under the
always-transmitting policy πa, i.e., the sensor generates and transmits a new update in each slot, is

Cx,x̂(πa) =Eπa

[
K−1

∑
t=0

γtC(xt, at)|x
]

, (A9)

where Cx,x̂(πa) < ∞ holds for all x.

Proof. Since at = 1 for all t, the probability that the state returns to x̂ from x after exactly K
slot is given by

Pr(K = k|x = (Δ, j)) =

{
pN−1qj, if k = 1,
pN−1gj(1 − ∑i∈H piqi)

k−2(∑i∈H piqi), otherwise.
(A10)
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Then, the expectation return cost from x to x̂ is expressed as

Cx,x̂(πa)

=E

[
K−1

∑
t=0

γtC(xt, at)|x
]

(a)
≤

∞

∑
k=1

Pr(K = k|x = (Δ, j))

[
k−1

∑
m=0

(Δ + m + ωCe)

]
<∞, (A11)

where step (a) is due to the fact that C(xt, at) ≤ Δt + ωCe.

Considering a mixture policy π, in which it performs the always-transmitting policy
πa from initial state x until it enters the reference state x̂, it later performs the optimal policy
πγ that minimizes the discounted cost. Therefore, we have

Vγ(x)

≤Eπa

[
K−1

∑
t=0

γtC(xt, at)|x
]
+Eπb

[
∞

∑
t=K

γtC(xt, at)|x̂
]

≤Cx,x̂(πa) +Eπ

[
γKVγ(x̂)

]
≤Cx,x̂(πa) + Vγ(x̂), (A12)

which implies that hγ(x) ≤ Cx,x̂(πa). Hence, let x̂ = (1, N − 1) and Mx = Cx,x̂(πa);
condition (3) is verified.

On the other hand, Mx < ∞ holds for all x. The states that transit from x are finite.
Thus, the weighted sum of finite Mx is also finite, i.e., ∑x′ P(x′|x, a)Mx′ < ∞ holds for all x

and a, which verifies condition (4). This completes the whole verification.

Appendix C. Proof of Theorem 2

Based on the definition of Q(Δ, i, a), we can obtain the difference between the state-
action value function as follows:

Q(Δ, i, 0)− Q(Δ, i, 1)

=
N−1

∑
j=0

pjV(Δ + 1, j)− qi

N−1

∑
j=0

pjV(1, j)− gi

N−1

∑
j=0

pjV(Δ + 1, j)− ωCe

=qi

N−1

∑
j=0

pj(V(Δ + 1, j)− V(1, j))− ωCe

(a)
≥qiΔ − ωCe. (A13)

where (a) is due to the property of the value function given in Lemma 4. We then discuss
the difference between the state-action value function in two cases.

Case 1: ω = 0.
In this case, Q(Δ, i, 0)− Q(Δ, i, 1) ≥ 0 holds for any Δ and i. Therefore, the optimal

policy is to update at each slot in spite of the channel state. In other words, the optimal
thresholds are all equal to 1.

Case 2: ω > 0.
We note that, given i, qiΔ−ωCe increases linearly with Δ. Hence, there exists a positive

integer β̂i, such that β̂i is the minimum value that satisfies qi β̂i − ωCe ≥ 0. Therefore, if
Δ ≥ β̂i, Q(Δ, i, 0)− Q(Δ, i, 1) ≥ qi β̂i − ωCe ≥ 0 holds. This implies that there must exist a
threshold βi satisfying 1 ≤ βi ≤ β̂i. If Δ ≥ βi, we have Q(Δ, i, 0)− Q(Δ, i, 1) ≥ 0.
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Altogether, the optimal policy has a threshold structure for ω ≥ 0. Then, we examine
the non-increasing property of the thresholds. Firstly, we show that the difference between
the state-action value function is monotonic with respect to the channel state by fixing the
AoI. Assuming that i, j ∈ H and i ≤ j, it is easy to obtain that

Q(Δ, j, 0)− Q(Δ, j, 1)− (Q(Δ, i, 0)− Q(Δ, i, 1))

=(qj − qi)
N−1

∑
l=0

pl(V(Δ + 1, l)− V(1, l)) ≥ 0. (A14)

Since Q(Δ, i, 0) − Q(Δ, i, 1) ≥ 0 when Δ ≥ βi, we have Q(Δ, j, 0) − Q(Δ, j, 1) ≥ 0
according to (A14). This implies that the optimal threshold β j corresponding to channel
state j is no greater than βi, i.e., β j ≤ βi. This completes the whole proof.

Appendix D. Proof of Theorem 3

Assume that ϕ(x) is the steady probability of state x in a Markov chain. The steady
state probability ϕ(x) satisfies the following global balance equation [18], i.e.,

ϕ(x) = ∑
x′∈S

ϕ(x′)Pr(x|x′). (A15)

Let ϕ1 = ϕ(1, 0) + ϕ(1, 1). We prove Equation (A23) by discussing three cases via
mathematical induction.

Case 1: 1 < i ≤ β1
Based on Equation (A15), we have

ϕ(2, j) =ϕ(1, 0)pj + ϕ(1, 1)pj

=pj ϕ1. (A16)

Assuming that ϕ(i, j) = pj ϕ1 holds for all i ≤ k < β1, we examine ϕ(k+ 1, j). We have

ϕ(k + 1, j) =ϕ(k, 0)pj + ϕ(k, 1)pj

=pj p0 ϕ1 + pj p1 ϕ1

=pj ϕ1, (A17)

which completes this segment of the proof.
Case 2: β1 < i ≤ β0
Similarly, we have

ϕ(β1 + 1, j) =pj(1 − q1)ϕ(β1, 1) + pj ϕ(β1, 0)

=pj ϕ1((1 − q1)p1 + p0)

=pj ϕ1s0, (A18)

where s0 = 1 − p1q1. Assuming that ϕ(i, j) = pj ϕ1si−β1
0 holds for all β1 < i ≤ k < β0, we

examine ϕ(k + 1, j). We have

ϕ(k + 1, j) =pj(1 − q1)ϕ(k, 1) + pj ϕ(k, 0)

=pj ϕ1((1 − q1)p1 + p0)s
k−β1
0

=pj ϕ1sk+1−β1
0 , (A19)

which completes this segment of the proof.
Case 3: i > β0
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Follow above discussion, we have

ϕ(β0 + 1, j) =pj(1 − q1)ϕ(β0, 1) + pj(1 − q0)ϕ(β0, 0)

=pj ϕ1sβ0−β1
0 ((1 − q1)p1 + (1 − q0)p0)

=pj ϕ1sβ0−β1
0 s1, (A20)

where s1 = 1− p0q0 − p1q1. Assuming that ϕ(i, j) = pj ϕ1sβ0−β1
0 si−β0

1 holds for all β0 < i ≤
k, we examine ϕ(k + 1, j). We have

ϕ(k + 1, j)

=pj(1 − q1)ϕ(k, 1) + pj(1 − q0)ϕ(k, 0)

=pj ϕ1sβ0−β1
0 ((1 − q1)p1 + (1 − q0)p0)s

k−β0
1

=pj ϕ1sβ0−β1
0 sk+1−β0

1 . (A21)

Altogether, we obtain the steady state probability with respect to an unknown param-
eter ϕ1. According to the fact that ∑∞

i=1 ∑N−1
j=0 ϕ(i, j) = 1, we formulate an equation:

∞

∑
i=1

N−1

∑
j=0

ϕ(i, j)

=ϕ1

{
β1 +

β0

∑
i=β1+1

si−β1
0 +

∞

∑
i=β0+1

sβ0−β1
0 si−β0

1

}

=ϕ1

{
β1 +

s0 − sβ1−β0
0

1 − s0
+ sβ1−β0

0
s1

1 − s1

}
=1, (A22)

where the expression of ϕ1 is obtained.
The average cost of a Markov chain is given by

Cmc = ∑
x∈S

ϕ(x)C(x, π∗(x)). (A23)

Substituting (24) into (A23), we have

Cmc(β0, β1)

=
∞

∑
i=1

i
1

∑
j=0

ϕ(i, j) +
∞

∑
i=β0

ωCe ϕ(i, 0) +
∞

∑
i=β1

ωCe ϕ(i, 1).

Furthermore, the first term is given by

∞

∑
i=1

i
1

∑
j=0

ϕ(i, j)

=
β1

∑
i=1

iϕi +
β0

∑
i=β1+1

isi−β1
0 + sβ0−β1

0

∞

∑
i=β0+1

isi−β0
1

=
ϕ1β1(β1 + 1)

2
+ ϕ1 A + ϕ1B, (A24)

where

A =
s0((β1 + 1)− β0sβ0−β1

0 )

1 − s0
+

s3
0 − sβ0−β1+1

0
(1 − s0)2 , (A25)
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and

B =
(β0 + 1)s1

1 − s1
+

s3
1

1 − s1
. (A26)

Furthermore, the sum of last two terms is given by

∞

∑
i=β0

ωCe ϕ(i, 0) +
∞

∑
i=β1

ωCe ϕ(i, 1)

=ϕ1ωCe

(
sβ0−β1

0

∞

∑
i=β0

si−β0
1 + p1

β0−1

∑
i=β1

si−β1
0

)

=ϕ1ωCe

(
sβ0−β1

0
1

1 − s1
+ p1

1 − sβ0−β1
0

1 − s0

)
. (A27)

This completes the proof.
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Abstract: Cyber–physical systems (CPS) have been widely employed as wireless control networks.
There is a special type of CPS which is developed from the wireless networked control systems
(WNCS). They usually include two communication links: Uplink transmission and downlink trans-
mission. Those two links form a closed-loop. When such CPS are deployed for time-sensitive
applications such as remote control, the uplink and downlink propagation delay are non-negligible.
However, existing studies on CPS/WNCS usually ignore the propagation delay of the uplink and
downlink channels. In order to achieve the best balance between uplink and downlink transmissions
under such circumstances, we propose a heuristic framework to obtain the optimal scheduling
strategy that can minimize the long-term average control cost. We model the optimization problem
as a Markov decision process (MDP), and then give the sufficient conditions for the existence of the
optimal scheduling strategy. We propose the semi-predictive framework to eliminate the impact
of the coupling characteristic between the uplink and downlink data packets. Then we obtain the
lookup table-based optimal offline strategy and the neural network-based suboptimal online strategy.
Numerical simulation shows that the scheduling strategies obtained by this framework can bring
significant performance improvements over the existing strategies.

Keywords: cyber–physical system; wireless networked control system; remote control; communica-
tion control co-design; age of information

1. Introduction

In the recent past, applications of the wireless control networks have become more and
more extensive, such as drone formations, autonomous vehicles, automatic factories, etc.
Some of those scenarios implicate new requirements for remote control technology, which
is a sub-topic of communication control co-design. Remote control technology originates
from wireless control systems with long propagation delay such as far-sea monitoring and
high-efficiency satellite IoT. The main cause of long propagation delay is the large-scale
geographic distance. This feature makes it extremely challenging to design CPS under this
scenario. In order to meet the need of remote control with propagation delay, that is, to
maintain stable closed-loop control and reduce control costs, we propose a new framework
to design uplink and downlink scheduling strategies.

As show in Figure 1, a typical CPS deployed under the single closed-loop control
scenario contains a control system and a communication system. In the rest of this article,
we use single-loop CPS to refer to this specific type of CPS. The communication process
of a typical single-loop CPS can be divided into two parts: Uplink sensor transmission
and downlink controller transmission. The uplink transmission is initiated by the sensor
and sends the state update packet from the plant to the controller. The controller first
uses this data to obtain a more accurate estimate of the factory status. Then the downlink
transmission is initiated to send command information from the controller to the actuator
located at the factory. The actuator acts on the factory to maintain the factory’s stability.

Entropy 2021, 23, 714. https://doi.org/10.3390/e23060714 https://www.mdpi.com/journal/entropy371
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Taking into account the characteristics of a control system, the command can only be
generated with an accurate estimation, which means the downlink transmission must
occur after a successful uplink transmission . Because of this fixed timing relationship,
CPS has to work in half-duplex in most cases: namely, only one of the uplink sensor
transmission and the downlink controller transmission can be activated to send a data
packet in the same time slot. That means there is a problem of how to design a scheduling
strategy between those two transmissions. Note that the uplink and downlink channels
here are not just a single wireless channel, but a simplified modeling of a fixed routing
link with multiple relays. This scenario is for some special remote control systems that
use satellites as relays. Therefore, the propagation delay in our paper is essentially a
collection of various delays contained in the entire relay link, including processing delay,
transmission delay, propagation delay, etc. This unified modeling is used because the link
characteristics of a fixed routing multi-relay link can be described by an equivalent link
with a specific code error rate and propagation delay.

There are many related works about WNCS and CPS [1–4]. Focusing on the conflict
of the accuracy requirements of control systems and the limited quantization level [5],
proposed the application of dynamic quantization technology in the communication control
co-design. Some works designed CPS with the limitation of wireless coding process,
such as code length allocation [6,7], code length design [8,9] and adaptive code length
adjustment [10]. Considering the fading characteristics of transmission channels, studies
of adaptive transmit power adjustment technology by predicting the fast or slow fading
of transmission channels are proposed in [11,12]. Some of the above studies include the
idea of designing CPS for time-sensitive applications. Nowadays, the most widely used
measure of timeliness is Age of Information (AoI) [13], which is defined as the time elapsed
since a certain data packet was generated:

Δ(t) = t − t′ (1)

where t represents the current time, t′ represents the time when the packet was generated.
It used to be very difficult to express the control performance measurement, that is, the
system state mean square error (MSE) [14] when the control system and the communication
system are combined. The proposal of AoI changed this situation. For example, the system
state MSE of a linear time invariant system (LTI) can be simply expressed as a function
of AoI. This improvement greatly reduces the difficulty of describing the overall system
performance in the communication control co-design scenario [15,16].

Figure 1. Cyber–physical system deployed under the single closed-loop control scenario.

Based on AoI, many related studies have been derived, such as the application of
the HARQ mechanism for single-loop CPS to improve the overall timeliness [17,18], and
the scheduling strategy aiming to minimize the long-term average MSE for single-loop
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CPS without transmission delay [19]. Some studies about the multi-loop scheduling
strategy design aiming at optimizing timeliness have also been proposed. Reference [20]
focuses on the design of the data inter-arrival rate and code length allocation strategy.
References [21,22] proposed the uplink scheduling strategy of multi-loop WNCS under the
ideal assumption of downlink transmission. Furthermore, the authors of [23,24] discuss
the application of data packet transmission result prediction technology in WNCS design.

The scenarios studied above concern mainly short-distance Industrial Internet of
Things (IIoT), so the impact of uplink and downlink propagation delay on the closed-loop
control performance of a CPS is generally ignored. Besides, the above studies only consider
one of the two code error rates of the uplink and the downlink transmission. Under the
remote control scenario, the code error rates and propagation delay of both links are not
only non-negligible, but also have a huge impact on the overall performance of the single-
loop CPS. Some works have studied the design of WNCS optimal control strategy under
time-delay scenarios [25–27]. However, they do not consider the impact of the code error
rate and the scheduling strategy which are issues that cannot be ignored in the design
of communication systems in the field of communication engineering. To this end, we
propose a new framework to obtain the optimal scheduling strategy while considering
both the code error rates and propagation delay. This strategy can minimize the long-term
average control cost.

Firstly, we model the single-loop CPS as an MDP problem and give the sufficient con-
ditions for the stability of CPS. Secondly, we propose a heuristic semi-predictive framework
to eliminate the impact of the coupling characteristic between the uplink and downlink data
packets. Finally, we obtain the lookup table-based optimal offline strategy and the neural
network-based suboptimal online strategy for the single-loop CPS. The whole process can
be expanded according to actual deployment requirements with any fixed propagation
delay as long as the sufficient condition is satisfied.

The rest of this paper is organized as follows: In Section 2, we provide the system
model and formulate the optimization problem. In Section 3, we introduce the semi-
predictive framework and transform the optimization problem into an MDP problem.
In Section 4, we obtain the optimal offline strategy and the suboptimal online strategy.
In Section 5, we show the numerical simulation results. We conclude this work in Section 6.

2. System Model

2.1. The Plant of the Single-Loop CPS

First, we model the plant in the single-loop CPS as a discrete-time LTI system:

Xk+1 = AXk + BUk + Zk, ∀k (2)

where k represents the k-th time slot, Xk ∈ R represents the state of the plant at time slot
k, Uk ∈ R represents the executed control command, Zk ∈ R represents the normally
distributed plant noise whose mean and variance are z̄ and R, respectively. A ∈ R

represents the state transition coefficient, B ∈ R represents the command control coefficient.
We assume that the plant state remains unchanged within a single time slot. The goal of
CPS is to maintain X around 0.

2.2. The Communication Process of the Single-Loop CPS

In the previous subsection, we explained that the entire single-loop CPS works in the
half-duplex mode. Now we will explain the communication process of the single-loop CPS.
The entire system adopts a centralized scheduling scheme because this scheme is more
suitable for single-loop CPS. Under this scheme, the scheduling decision of uplink and
downlink transmission is completely determined by the remote controller. We use ak to
represent the scheduling decision made by the controller in the time slot k. If the controller
schedules uplink transmission in the slot k, ak = 1. If the controller schedules downlink
transmission in the slot k, ak = 2. We assume that the code error rate of the uplink and
downlink transmission channels are ps, pc ∈ (0, 1), respectively. Both code error rates are
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constant which means the uplink and downlink transmission fails with probability (ps, pc)
in any time slot, respectively. Then we use δk to represent the transmission result of the
packet sent in the time slot k. No matter which transmission is scheduled, if it succeeds,
then δk = 1. Otherwise, δk = 0. Since the processing procedures of most actual CPS are
digital, the packets that have experienced a certain delay will start to be processed in the
next processing cycle after it is received; we model the propagation delay of the uplink and
downlink channel integer time slots dup, ddown ∈ R, respectively. To simplify the analysis,
we assume that the transmission of scheduling instructions and feedback information
is ideal.

In addition to the variables described above, we define the following two parameters
to describe the status of each part in a single-loop CPS:

(1) State Estimation Age τk: This is defined as the age of the latest valid uplink state
update packet successfully received by the controller at the end of the time slot k. τk reflects
the accuracy of the estimation maintained by the remote controller. Because of the uplink
propagation delay, the minimum value of state estimation age is dup. When the specific
time slot is not considered, it is abbreviated as τ. Its update rule is as follows:

τk+1 =

{
dup if (aj = 1)& (δj = 1)
τk + 1 otherwise

(3)

where j = k − dup + 1.
(2) State Control Age ϕk: This is defined as the age of the uplink packet used to

generate the latest successfully received downlink packet by the actuator at the end of the
time slot k. This parameter represents the total time it takes for the entire CPS to complete a
closed-loop control process. It reflects the degree of divergence of the plant’s state. Because
of the uplink and downlink propagation delay, the minimum value of the state control
age is dup + ddown. When the specific time slot is not considered, it is abbreviated as ϕ. Its
update rule is as follows:

ϕk+1 =

{
τq + ddown if (aq = 2)& (δq = 1)
ϕk + 1 otherwise

(4)

where q = k − ddown + 1. The abbreviations j and q will be used in the rest of this paper.
Note that we set the initial values of τ0 and ϕ0 to be 2. These values can be arbitrarily
selected within a reasonable range. This is because the long-term average cost we focus on
is not affected by those initial values.

2.3. The Control Process of the Single-Loop CPS

In this subsection, we will explain the control process of the single-loop CPS in detail,
which is mainly completed by the remote controller and the actuator. The task of the remote
controller can be divided into three parts: Maintaining state estimation, generating control
commands, and scheduling uplink and downlink transmissions, while the actuator has
only one task: Executing the received control commands.

(1) Maintaining State Estimation: We assume that the sensor can sample the state of
the plant without distortion. The uplink transmission cannot be scheduled in every time
slot. What is more, the scheduled transmission can fail because of the code error occurring
during its propagation process. So the remote controller cannot receive a new state update
packet in every time slot. Under these circumstances, the remote controller has to update
the estimation X̃k of the plant state Xk through the following process:

X̃k + 1 =

{
gdup(Xj, k) if (aj = 1)& (δj = 1)
AX̃k + BUk otherwise

(5)

where g(X, k) = AX + BUk, gn(X, k) = g(gn−1(X, k − 1), k) ∀n > 1, and g1(X, k) =
g(X, k). In this scenario, this estimation method has been proven to be optimal [28].
When a certain uplink transmission is successful, the remote controller can use the plant
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state Xk−dup+1, which is the exact value for dup − 1 time slots before, to obtain the state
estimation X̃k + 1 of the next time slot. When the current time slot has no successful uplink
transmission, the controller can only update X̃k + 1 with X̃k. According to this process, we
can derive the state estimation MSE of the remote controller as Q̃k:

Q̃k = E[(X̃k − Xk)
2] (6)

Note that the state estimation error of the remote controller is entirely caused by the noise
Zk. By using the state estimation age τk, we can rewrite the state estimation MSE as a
recursive function of the noise variance R:

Q̃k+1 =
{

f (dup) if (aj = 1)& (δj = 1)
f (τk + 1) otherwise

(7)

where f (x) = ∑x
i=1 (A2)

i - 1R. Equation (6) uses the definition of AoI to derive the MSE
of the estimation. This representation greatly reduces the difficulty of calculation. In the
following part, we will use the same idea to derive the single-loop CPS control perfor-
mance metrics.

(2) Control Command Generation and Execution: In each time slot, while the remote
controller maintains the state estimation, it also uses the estimation to generate a control
command Ũk:

Ũk = KX̃k (8)

where K is the command generation coefficient. The goal of this control process is to
maintain the state around 0. Since the downlink transmission has a propagation delay
of ddown time slots, we must ensure BK = −Addown . To simplify the analysis, we set
B = −Addown , K = 1. Due to the code error rate and scheduling decisions, not every
control command Ũ can be received by the actuator. Only those scheduled and successfully
transmitted can be used by the actuator. Therefore, the control command executed by the
actuator is Uk+1:

Uk+1 =

{
Ũq if (aq = 2)& (δq = 1)
0 otherwise

(9)

where q = k − ddown + 1. This control method shown by (8) and (9) is called single-step
control, which is a common form in the field of classic cybernetics. Using this method,
when a control command is successfully delivered to the actuator, the actual state value
will return to a value as close to 0 as possible at one time. Such a process can maximize the
effect of a single instruction.

(3) Single-Loop CPS Control Performance Metrics: Consistent with the estimation
performance metrics, the control performance metrics is defined as the state MSE of the
plant Qk:

Qk = E[X2
k ] (10)

Similar to Q̃k, we can rewrite Qk as a function of noise variance R and state control age ϕ:

Qk+1 =
{

f (τq + ddown) if (aq = 2)&(δq = 1)
f (ϕk + 1) otherwise

(11)

According to the control cost given by Equation (11), we can obtain the long-term average
control cost, that is, the long-term average plant state MSE:

J = lim
K→∞

1
K

K

∑
k=0

Qk (12)
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Equation (12) reflects the state deviation in the field of classic cybernetics which is the core
cost metrics we care about. Please note that this parameter used to be very difficult to
quantify without the introduction of AoI. Under certain conditions, the limit contained
in Equation (12) may not exist, and the problem is unsolvable. In order to prevent such
situations, the sufficient condition for the stability of WNCS with propagation delay will
be given later, namely equation (19). In this paper, the scheduling strategy will be designed
on the premise that equation (19) is satisfied.

(3) Uplink and Downlink Scheduling Process: In the previous subsection, we intro-
duced the control performance measurement of a single-loop CPS. Now we will describe
the scheduling process in detail. It has been explained that a single-loop CPS has two
communication scenarios—the uplink transmission and the downlink transmission—and
we can only choose one of them in each time slot under half-duplex mode. According to
the previous definition, the scheduling decision of time slot k is recorded as ak. The set of
scheduling decisions of all time slots is called a scheduling strategy:

π � (a1, a2, . . . , ak, . . .) ∈ Π (13)

where Π represents the set of all scheduling strategies. Different scheduling strategies can
significantly affect the control performance of a single-loop CPS. Every scheduling strategy
π has its corresponding long-term average control cost Jπ . Among all scheduling strategies,
there is an optimal strategy π∗ ∈ Π, which satisfies:

Jπ∗ � Jπ , ∀π ∈ Π (14)

Therefore, we can construct the following optimization problem. The goal of this
problem is to minimize the long-term average plant state MSE to obtain the optimal
scheduling strategy while taking transmission propagation delay and code error rates of
two wireless channels into account, namely

min
π

lim
K→∞

1
K

K

∑
k=0

Qk (15)

3. Semi-Predictive Framework and MDP Modeling

In this section, we will introduce the coupling characteristic between the uplink and
downlink data packets which is caused by their propagation delay. In the following paper,
we will use the coupling characteristic to refer to the coupling characteristic between the
uplink and downlink data packets to save space. We propose a semi-predictive framework
to eliminate the effect of the coupling characteristics on the solution of optimization
problem (15). Based on this framework, we remodel this optimization problem to an MDP
problem. Note that the semi-predictive framework we proposed is suitable for any value of
the uplink and downlink propagation delay. For the generality, we use dup = ddown = 1 as
an example to illustrate the scheduling strategy design process. In the actual applications
with different propagation delay, we only need to modify the value of dup, ddown and adjust
some parameters in the following modeling step to meet specific design requirements.

3.1. The Packet Outdate Problem

Section 2 introduced the control mechanism of a single-loop CPS. Through the above
analysis, it is easy to see that state update packets and control command packets have
strong coupling characteristic for single-step control methods. Actually, such a coupling
characteristic exists in any closed-loop control scenario as long as there exists propaga-
tion delay. This characteristic will cause some successfully delivered packets to become
outdated. As shown in Figure 2, the green and red arrows represent state update packets
up1 (left green arrow), up2 (left red arrow) and the control command packets down1 (right
green arrow), down2 (right red arrow), respectively. The command down1 is generated by
the controller using up1, while down2 is generated by the controller using up2. During the
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period from the slot up2 sent to the slot down2 executed, if down1 is executed successfully,
both up2 and down2 become invalid. In time slot 4, down1 is executed; the result is that the
real state of the plant was returned to a value around 0. This process causes an interruption
in the state estimation process which means the estimation updated by up2 is no longer
accurate, so up2 is outdated. Since up2 is outdated, the control command down2 which
was generated from it is also outdated. This is the main effect of the coupling characteristic
and we named it the packet outdate problem.

As we can see, this problem is mainly caused by the discontinuity in the dynamic
process of the plant. The discontinuity only occurs when a downlink control command is
executed, which means the uplink state update packet will not cause this problem. When
this happens, the outdated uplink and downlink data packets require different processing
methods. For an outdated downlink packet, it only needs to be discarded. However, for
an outdated uplink packet, we have to backtrack the state estimation before this outdated
packet is used. We show the evolution of the state estimation age and state control age in
Figure 2. It can be seen that the state estimation age has been backtracked by changing
from τ(3) = 2 to τ(4) = 4. The state control age will not be updated like this.

Figure 2. Analysis of Packet Outdated Phenomenon.

3.2. Main Idea of the Semi-Predictive Framework

In the previous subsection, we explained that the packet outdate problem has an
impact on the update of the state estimation age, but this problem does not affect the
update of the state control age. Therefore, when we try to construct a theoretical analysis
framework, as long as the state control age is correct, the final analysis result can be
guaranteed to be correct. In other words, the state estimation age of some time slots is
allowed to deviate from the actual physical process. As long as it can be ensured that the
state estimation age is accurate when the downlink data packet arrives at the actuator, the
correct theoretical analysis can be guaranteed. It can be seen that it is possible to skip the
state estimation age backtracking process in the theoretical analysis by using this feature.
This is the main idea of the semi-predictive framework.

In the normal communication process, the decoding result of a data packet can only
be determined after it arrives at the destination. For an uplink data packet, only after
it arrives at the controller can it be known whether the data packet can be successfully
decoded, while for a downlink packet, only after it arrives at the actuator can it be known
whether the data packet can be successfully decoded. However, under the semi-predictive
framework, we assume that the transmission result of a downlink packet is known as soon
as the downlink packet is sent. Note that we do not predict the result of an uplink packet.
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This is because the execution of the downlink command is the root cause of the packet
outdated problem.

Take the case of Figure 2 as an example again; if we can foresee that the downlink
control command packet down1 can be successfully decoded and is not outdated, then
during the period from its sending to its arrival, any packets sent or arrived can be directly
discarded since they will be outdated by down1. Through this process, the impact of the
packet outdated problem is eliminated and state estimation age backtracking is avoided.

While the update process of the state estimation age under the semi-predictive frame-
work is different from the actual physical process, the scheduling strategy obtained based
on this framework can still be directly applied to an actual physical process. In the actual
physical process, if a downlink data packet arrives at the actuator successfully and is not
outdated, then the uplink and downlink transmissions scheduled during its transmission
must be outdated. In other words, no matter what scheduling decision the controller made,
those packets sent during this period will be outdated. In other words, those scheduling
decisions can be arbitrary since they do not affect the final result. Assuming that the
downlink control command packet down1 in Figure 2 can be successfully decoded and not
outdated, we will explain both age update processes under the semi-predictive framework
and the actual physical process in detail.

(1) Semi-Predictive Framework: If down1 can be successfully decoded and not out-
dated, then the controller knows that it does not matter whether it chooses uplink or
downlink during the transmission of down1 because those scheduled packets will be out-
dated anyway. Under these circumstance, a reasonable scheduling strategy is to regularly
schedule one of the uplink and downlink transmissions during this period to consume time.

(2) Non-Predictive Framework (Actual Physical Process): In the actual physical pro-
cess, during the transmission of down1 , the controller continues to schedule uplink or
downlink transmissions according to a certain strategy. However, when down1 is received
and decoded successfully, the previous scheduled transmissions of the controller are all
outdated. So in the end, the scheduled transmissions during this period only consume
time and have no practical effect.

It can be observed that, under the semi-predictive framework and the actual non-
predictive scheduling, the single-loop CPS transmission results are uniform; that is, it is
accurate to use the semi-predictive framework in the theoretical design and directly apply
the results to the real applications. This subsection qualitatively analyzes the unity of the
semi-predictive framework and the actual physical process. In the next subsection, we
will quantitatively illustrate how this framework corresponds to actual physical processes
through MDP modeling.

3.3. MDP Modeling of the Semi-Predictive Framework

Based on the semi-predictive framework, we model the single-loop CPS with uplink
and downlink propagation delay as an MDP process with the following four elements:

(1) State Space: The state space of this MDP is

S � {a′(−dmax + 1), . . . , a′(−1), a′(0), D(0), τ(0), ϕ(0)} (16)

where dmax = max{dup, ddown}, D(n) ∈ {0, 1, · · ·, ddown + 1}. a(n) represents the schedul-
ing decision made in the time slot n. D(n) represents the time interval between the time
slot when the latest valid downlink command packet (successfully transmitted and not
outdated) in the time slot n was generated and the current time slot n. τ(n) and ϕ(n) rep-
resent the state estimation age and the state control age at the time slot n, respectively. The
time slot n is based on the current time slot: The time slot for which scheduling decisions
are being made. Taking a′(−1) as an example: It represents the transmission action taken
in the previous time slot of the current time slot. We set both the uplink and downlink
propagation delay to be 1 for illustration in the rest of this paper, so the corresponding state
space is: S � {a′(0), D(0), τ(0), ϕ(0)}. In the subsequent sections of this paper, the state
space is abbreviated as S � {a′, D, τ, ϕ} to save space.
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(2) Action Space: The action space is A � {0, 1}. This action space corresponds to the
scheduling action ak. If the controller schedules uplink transmission in the slot k, ak = 1. If
the controller schedules downlink transmission in the slot k, ak = 2.

(3) State Transition Probability Matrix: The transition matrix is P(s′|s, a). The state
transition probability is the probability that the next state is s′ by taking action a in the
current state s. The transition probability is determined by the channel code error rate.
According to the different parameter pairs: (a′, D) in the state S, the state transition matrix
can be divided into five parts: (a′, D) = [(1, 1), (1, 2), (2, 0), (2, 1), (2, 2)]. The complete
construction rules are given in Appendix A.

(4) Cost Function: It can be seen from (4) and (11) that the cost function in a specific
state is independent of the action. The cost function can be expressed as a function of the
state control age ϕk:

C(s, a) = Qk(s) = f (ϕk) (17)

In the MDP modeling of the semi-predictive framework, the core parameter is D(n).
We limit its maximum value to ddown + 1 because we only need to track the downlink
transmissions in the past ddown time slots to ensure that we do not miss any possible packet
outdated problems. Besides, such process can help to reduce the scale of the state space.
The update rule of D(n) is as follows:

Dk+1 =

{
0 if (ak = 2)& (δk = 1)
max(ddown + 1, Dk + 1) otherwise

(18)

This updated process reflects the main idea of the semi-predictive framework and guaran-
tees that it will not cause any differences between the state control ages of the theoretical
analysis and the actual physical processes. In the next section, we will use the semi-
predictive framework to design the optimal scheduling strategy.

4. Online and Offline Scheduling Strategies

In this section, we first give the sufficient condition for the existence of the optimal
scheduling strategy. Then we use the relative value iteration algorithm to obtain the
lookup table-based optimal offline strategy. Aiming at reducing the space complexity of
the algorithm and saving space for storing the optimal offline strategy, we further propose
a neural network-based suboptimal online strategy. For different uplink and downlink
propagation delay, the acquisition process of both strategies is universal, which means that
the semi-predictive framework has high practical application value.

4.1. Sufficient Conditions for the Strategies’ Existence

Theorem 1. (Sufficient conditions for the stability of multi-loop half-duplex CPS with fixed uplink
and downlink propagation delay.) Assuming there are K single-loop CPS, all of them share the same
controller and form up a multi-loop CPS. If the controller can only schedule L uplink transmissions
or L downlink transmissions in each time slot, then for each single-loop CPS i, if the code error
probability of its corresponding uplink and downlink channels satisfies

max
{

pi,up, pi,down
}
<

(
1

(Ai)
2

)�K/L�
, i ∈ {1, 2, . . . , K} (19)

then there must exist a stationary deterministic scheduling strategy that can stabilize the multi-loop
CPS. This stability remains as long as the uplink and downlink propagation delay are fixed, but the
long term control performance metrics converge to a larger value with the increase of the propagation
delay. When K = 1, L = 1 the above multi-loop CPS is just a single-loop CPS.The proof is given in
Appendix B.

The essence of this sufficient condition is to link the instability of the control system
with the reliability of the communication system. When the reliability of the communication
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system is higher than the instability of the control system, an optimal scheduling strategy
can be found for the communication system to meet the needs of the control system. This
condition can effectively guide the design of single- and multi-loop CPS.

4.2. Lookup Table-Based Optimal Offline Strategy

Since there is no theoretical upper limitation for the state estimation age and the state
control age, the scale of the MDP state space is infinite, so it must be truncated before
solving. We select N = max{τ, ϕ} as the truncation condition, and use the relative value
iteration algorithm to solve the MDP problem. When the value of N is appropriate, this
truncation will have no effect on the control performance. Such a suitable N can be obtained
by conducting Monte Carlo experiments. In this section, we take N = 10 as an example to
show the resulting scheduling strategy in Figure 3.

Figure 3. Optimal Off-line Policy with N = 10. Red squares represent action a = 1; yellow squares
represent action a = 2.

In Figure 3, those red squares represent that the controller schedules uplink trans-
mission in the corresponding state, and the yellow squares represent that the controller
schedules downlink transmission in the corresponding state. As shown in Figure 3a,c,d, if
D = {0, 1}, no matter which transmission is scheduled, the related packet will be outdated.
So under this circumstance, the scheduling strategy can choose any action arbitrarily. Since
we chose the relative value iterative algorithm to solve the MDP problem, the strategy
we obtained chooses to use uplink transmission to fill these unnecessary transmissions.
Note that this part corresponds to the description of Section 3 part C. We take down1 as
an example again: In the actual physical process, it is not known that the next two trans-
missions are unnecessary transmissions after down1 is sent. The controller does not know
that D = {0, 1}. Instead, it thinks that D is still equal to 2 at those time slots. Therefore,
the controller continues to schedule according to the scheduling strategy. However, down1
makes those two packets outdated when it is executed, while for those states whose D = 2,
the controller can make a scheduling decision with the right state information. The entire
process makes sure that the actual process is consistent with the theoretical process.

After obtaining this scheduling strategy, it is stored as a lookup table by the controller
and does not require any extra calculation ability from the controller, so we call it an
offline strategy. However, since the iterative algorithm is a model-based algorithm, as
N gradually increases, the scale of the state space NS = 2 · 3 · N · N = 6N2 in the MDP
modeling increases exponentially. This leads to a sharp increase in the space complexity
of the solving process and the lookup table could be too large to be stored. In order to
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solve these problems, we propose an improved scheme based on neural network in the
next subsection.

4.3. Neural Network-Based Suboptimal Online Strategy

In Section 3, we remodeled the optimization problem to an MDP problem, and solved
it to obtain the optimal offline strategy in the previous subsection. The optimal offline
scheduling strategy based on the lookup table has two obvious shortcomings: The size of
the lookup table increases linearly as the total number of states in the state space increases
and the space complexity required in the calculation process increases exponentially as the
total number of states increases. When the optimal offline strategy is actually deployed,
there is no guarantee that the central controller has enough storage space to store the
entire lookup table. It may even be impossible to perform calculations because the state
space is too large. Therefore, here we design a new suboptimal online scheduling strategy
based on neural network. The idea of this strategy is to replace the lookup table in the
previous strategy with a neural network to save storage space. Neural network is a very
ideal approximation function of lookup table, theoretically it can be approximated without
error. That means in the theory of reinforcement learning, this strategy can achieve the
performance of the optimal strategy. We will show that the performance of this suboptimal
online strategy is very close to the performance of the optimal offline strategy in the
next section.

In order to obtain this neural network, we use a the model-free algorithm called
Deep Q Network (DQN). The algorithm continuously learns the hidden laws of the MDP
problem by interacting with the environment and continuously trains the neural network to
obtain better performance. We show the detailed process of the algorithm in Algorithm 1.

Algorithm 1: Deep Q Network Algorithm.

Data: State: S � {a′, D, τ, ϕ}
Result: Action values: A(s, a)
initialization;
Initialize data set M;
Initialize evaluation network Q with random weights: θ;
Initialize target network Q̂ with random weights: θ′;
for E = 1 : 2000 do

Initialize the environment;
Set the origin state s1 ∈ S randomly;
for t = 1 : 1000 do

Choose a random at with probability 1 − ε;
Otherwise choose at = arg maxaQ(s, at−1; θ);
Execute at in the environment;
Observe reward rt and get new state st+1;
Store transition data (st, at, rt, st+1) in M;
Sample random mini batch of transitions (sj, aj, rj, sj+1) from M;

Set yj =

{
rj if episode ends at step j + 1

rj + γmaxa′ Q̂(sj+1, a′; θ′) otherwise
;

Perform RMSprop on (yj − Q(sj, aj; θ))2 with θ;
Every 100 steps, set Q̂ = Q

end

end

The structure of the neural network we obtained is shown in Figure 4: Four neurons in
the input layer, fifty neurons in the hidden layer, and two neurons in the output layer. This
neural network-based scheduling strategy is an online strategy which means that, in order
to use this strategy, the current state s must be input to the neural network first. Then the
controller needs to run real-time calculations to obtain the action values A(s, a) for taking
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different actions in the current state. The action value represents how much reward can
be obtained by taking the action, so the scheduling strategy is to select the action with the
largest A(s, a) among all actions.

DQN is a relatively mature reinforcement learning algorithm, so we only give the
parameter settings of this algorithm and briefly introduce its training process. We run
E = 2000 episodes, and each episode contains 1000 steps. In each step, this algorithm
executes the greedy strategy with a probability of ε = 0.7, and the random strategy with a
probability of 1 − ε = 0.3. After each step, one state transition datum is stored in the data
set. The scale of this data set is M = 2048, and it is updated in a loop covering manner. A
new episode is automatically initialized every 1000 steps. In the meantime, the training
process is performed every T = 256 steps, the algorithm selects B = 512 data from the data
set for training. The optimizer we used is the Root Mean Square prop optimizer (RMSprop).

With the help of the DQN algorithm, we can obtain the neural network-based subopti-
mal online strategy. The controller only needs to store the node value of this network, and
then calculates the action value in real time according to the current state in each time slot.
In other words, this strategy saves a lot of storage space by consuming a small amount of
computing ability of the controller. Such an advantage makes this strategy very meaningful
in practical applications.

Figure 4. Neural Network Structure.

5. Numerical Simulation

In this section, we run the numerical simulation on those strategies we proposed
and some existing strategies. We illustrate the advantages of the proposed strategies
through comparison. First we introduce two benchmark strategies. The first is the switch
scheduling strategy, that is, alternate uplink and downlink transmissions between each
time slot; the second is the insist scheduling strategy, that is, continuous scheduling of
uplink or downlink transmissions until success, then the transmission is exchanged.

The parameter settings in the numerical simulation are as follows: The state transition
coefficient is A = [1.1, 1.3], the code error rates of the uplink and downlink channels
are ps = pc = [0.1, 0.2], the specific values are marked on the curve obtained from the
simulation. The initial state of the plant is X0 = 1. The noise distribution is N (z̄ = 0,
R = 1). The command control coefficient is B = −A. The initial state control variable is
s0 = (a0, D0, τ0, ϕ0) = (1, 1, 2, 2). The corresponding initial scheduling action is a0 = 1.
The initial state of the controller estimation is X̃o = 1. The range of truncated state space is
N = max{τ, ϕ} = 20. The plant noise follows normal distribution N (z̄ = 0, R = 1). Each
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strategy runs 500 episodes with 10,000 time slots each episode. The final long-term average
plant state MSE is the average of the results of 500 episodes.

Figure 5 show the long-term average MSE of four strategies with A = 1.3 and
ps = pc = [0.1, 0.2]. It can be seen that the MDP strategy, that is, the optimal offline
strategy, has the best performance among all strategies, which also is the best performance
that all possible scheduling strategies can achieve. While the performance of the neural
network-based online strategy has slightly decreased, it is still significantly ahead of the
existing strategies, and the performance gap between the optimal offline strategy and the
suboptimal online strategy is very small. This gap can be eliminated in theory, but due to
the limitations of deep reinforcement learning technology, it is currently difficult to fully
achieve the optimal performance. It is relatively simple to obtain a suboptimal strategy
with very close performance.
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Figure 5. Long-term average plant state MSE of four policies with A = 1.3 and ps = pc = [0.1, 0.2].

Figure 6 show the performance comparison between the optimal offline strategy and
the two existing strategies under different state transition coefficient A. The suboptimal
online strategy is not shown because it has been explained that the suboptimal strategy
can theoretically approach the optimal. The state transition coefficient and the channel
code error rates both reflect the instability of the control system and the reliability of the
communication system in Equation (19). Combined with Figure 5, it can be seen that their
influence on CPS is the same. A larger state transition coefficient or a higher channel code
error rate lead to an increase in the long-term average plant state MSE, and when they
exceed a certain limit and no longer satisfy Equation (19), the long-term average MSE of
the CPS no longer converges, which means the single-loop CPS is unstable.
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Figure 6. Long-term average plant state MSE of three policies with ps = pc = 0.2 and A = {1.1, 1.2}.

6. Conclusions

We proposed the semi-predictive framework to design scheduling strategies for single-
loop CPS with uplink and downlink propagation delay. This framework can obtain the
optimal offline strategy which is the upper bound on the performance among all strategies
and a suboptimal online strategy with more practical application value. By adjusting the
parameters, the semi-predictive framework can meet the need of any practical applications.
We introduced the complete process of designing scheduling strategies under this frame-
work by taking a specific situation as an example. The numerical simulation proved that
the obtained strategies can effectively improve the performance of the existing strategies.
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Appendix A. Construction Rules of the State Transition Probability Matrix

Here we give the complete construction rules of the state transition matrix. Firstly, we
give all the possible new states after a state transition as follows:
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s′1 = (1, 2, τ + 1, ϕ + 1) (A1)

s′2 = (2, 2, τ + 1, ϕ + 1) (A2)

s′3 = (2, 0, τ + 1, ϕ + 1) (A3)

s′4 = (1, 2, 1, ϕ + 1) (A4)

s′5 = (2, 2, 1, ϕ + 1) (A5)

s′6 = (2, 0, 1, ϕ + 1) (A6)

s′7 = (1, 1, τ + 1, τ + 1) (A7)

s′8 = (2, 1, τ + 1, τ + 1) (A8)

Secondly, we use R and R′ to mark the transmission results. R represents the result of
the downlink transmission scheduled in the next time slot. R′ represents the result of the
uplink transmission arrived in the next time slot. Note that R is known by prediction while
R′ is known by normal communication process. These abbreviations can help to simplify
the expression of the rules.

We will give the construction rules in the form of P[s′|s, c] = p which means that
when the condition c is satisfied, the previous state s transfers to the new state s′ with a
probability of p.

When s = (1, 1, τ, ϕ):
P[s′1|s, a = 1] = 1
P[s′2|s, a = 2] = 1

(A9)

When s = (2, 0, τ, ϕ):
P[s′7|s, a = 1] = 1
P[s′8|s, a = 2] = 1

(A10)

When s = (2, 1, τ, ϕ):
P[s′1|s, a = 1] = 1
P[s′2|s, a = 2] = 1

(A11)

When s = (2, 2, τ, ϕ):

P[s′1|s, a = 1] = 1
P[s′2|s, a = 2, R = 0] = pc
P[s′2|s, a = 2, R = 1, τ = ϕ] = ps · (1 − pc)
P[s′3|s, a = 2, R = 1, τ �= ϕ] = ps · (1 − pc)

(A12)

When s = (1, 2, τ, ϕ):

P[s′1|s, a = 1] = ps
P[s′2|s, a = 2, R′ = 0, R = 0] = ps · pc
P[s′2|s, a = 2, R′ = 0, R = 1, τ = ϕ] = ps · (1 − pc)
P[s′3|s, a = 2, R′ = 0, R = 1, τ �= ϕ] = ps · (1 − pc)
P[s′4|s, a = 1, R′ = 1] = 1 − ps
P[s′5|s, a = 2, R′ = 1, R = 0] = (1 − ps) · pc
P[s′6|s, a = 2, R′ = 1, R = 1] = (1 − ps) · (1 − pc)

(A13)

Appendix B. Proof of Theorem 1

Appendix B.1. Scheduling 1 Subsystem per Time Slot without Delay

To prove sufficient conditions, we only need to prove that there exists a stationary
deterministic strategy that can make multi-loop CPS stable. Here we prove that the round-
robin insist scheduling strategy can keep the system stable. We first prove the case of L = 1.
Round-robin means that in every K time slots, the controller schedules each subsystem
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once in turn, and the scheduling sequence is fixed from i = 1 to i = K. Insist refers to when
scheduling each subsystem, continuously scheduling uplink or downlink transmission
until it succeeds, then switch to another transmission. Therefore, the actions of a single
subsystem under the round-robin insist scheduling strategy can be given in the form of the
following time axis:

The time axis between two consecutive successful downlink scheduling is recorded
as a control loop. It can be seen that the AoI evolution process of each control loop of one
subsystem is:

(1) The initial estimation age is equal to the control age: n′K
(2) The current subsystem waits for the completion of the scheduling of other subsystems,

that is, silence (k − 1) time slots, and then schedules the uplink transmission when it
is scheduled again. If the uplink transmission fails, the subsystem waits another (k-1)
time slots and tries again until the uplink transmission is successful. This step takes
mK time slots. At the end of this step, the estimated age is 0, and the control age is
(n′ + m)K;

(3) After the current subsystem silences for (K − 1) time slots, it switches to schedule
downlink transmission continuously until it succeeds. This step takes nK time slots.
At the end of this step, the estimated age is equal to the control age: nK. Then it
finishes a close control loop.

Note that the time slots included in a complete control loop are the time slots marked
in red on the coordinate axis in Figure A1, that is, the control age ranges from n′K to
(n′ + m + n)K. Each control loop has repeatability, so we only need to prove that the
long-term average cost within the range of one control loop converges.

Figure A1. The round-robin insist scheduling strategy.

According to the channel error probability, the M uplink transmissions and N down-
link transmissions in each control loop can be modeled as a geometric distribution with
the probability of success being (1 − ps) and (1 − pc) respectively. M and N are different
in each control loop, N′ Represents the number of downlink transmissions in the previ-
ous loop of the current control loop. (n′, m, n) are their specific observations. Ci and Ti
represent the total cost and total time of the i-th control loop of the current subsystem
respectively:

Ci =
(m+n)K−1

∑
q=0

f (n′K + q) =
(m+n)K

∑
q=1

f (n′K + q − 1) (A14)

Ti = (m + n)K (A15)

where f (ϕ) = ∑
ϕ
i=1 (A2)

i−1. Next, we can express the long-term average cost as:

J = lim
t→∞

C1 + C2 + · · ·+ Ct

T1 + T2 + · · ·+ Tt
=

E[C]
E[T]

(A16)

E[C] =
∞

∑
n′

∞

∑
m

∞

∑
n

(
E[C|N′ = n′, M = m, N = n]

· P[N′ = n′, M = m, N = n]

)
(A17)

E[L] =
∞

∑
n′

∞

∑
m

∞

∑
n

(
(m + n) · K · P[N′ = n′, M = m, N = n]

)
(A18)
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It can be seen that if E[C] is bounded, then J is bounded. According to the definition
of Ci and the three geometrical distributions (N′, M, N), which are independent of each
other, we have:

E[C|N′ = n′, M = m, N = n] =
(m+n)K−1

∑
q=0

f (n′K + q) =
(m+n)K

∑
q=1

f (n′K + q − 1) (A19)

P[N′ = n′, M = m, N = n]

= P[N′ = n′] · P[M = m] · P[N = n]

= (1 − pc)pc
n′−1(1 − ps)ps

m−1(1 − pc)pc
n−1

(A20)

Choose pmax = max{ps, pc}, we can derive that:

E[C] � α1 ·
∞

∑
n′

∞

∑
m

∞

∑
n

(
(m+n)K

∑
q=1

f (n′K + q − 1) · pmax
n′+m+n

)
(A21)

where α1 = (1 − pc)pc
−1(1 − ps)ps

−1(1 − pc)pc
−1. Since f (·) is a strictly increasing func-

tion and (n′, m, n) are all greater than 0, we can derive that:

E[C] < α2 ·
∞

∑
n′

∞

∑
m

∞

∑
n

(
(n′ + m + n) · f (n′K + mK + nK) · pmax

n′+m+n
)

(A22)

where α2 = K(1 − pc)pc
−1(1 − ps)ps

−1(1 − pc)pc
−1. We abbreviate n′ + m + n as i, that

is, i = n′ + m + n. Considering i � 3, and when i = n′ + m + n is a fixed value, the
possible combinations of (n′, m, n) � 1 satisfy the mathematical relationship of ∑

n′
∑
m

∑
n
(1) <

(n′ + m + n)3, namely:

∑
n′

∑
m

∑
n
(n′ + m + n) < (n′ + m + n)3 · (n′ + m + n) (A23)

∑
n′

∑
m

∑
n
(i) < (i)4 (A24)

We can derive that:

E[C] < α2 ·
∞

∑
i

(
i4 · f (iK) · pmax

i
)

(A25)

Since there are always exist p > pmax and n < ∞, satisfying i4 pmax
i < pi, ∀i > n. So

we have:

∞

∑
i

(
i4 · f (iK) · pmax

i
)
<

∞

∑
i

(
f (iK) · pi

)
(A26)

So if
∞
∑
i

(
f (iK) · pi) < ∞, then

∞
∑
i

(
i4 · f (iK) · pmax

i) < ∞. Now seeking the conditions for

the stability of the multi-loop CPS subsystem is transformed into seeking the conditions

for the establishment of
∞
∑
i

(
f (iK) · pi) < ∞. For f (iK), we have:

f (iK) =
iK

∑
q=1

(A2)
q−1

= 1 + A2 + A4 + · · ·+ A2(iK−1) =
1 − (A2)

iK

1 − A2 (A27)

For
∞
∑
i

(
f (iK) · pi), we have:
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∞

∑
i

(
f (iK) · pi

)
=

∞

∑
i

(
1 − (A2)

iK

1 − A2 · pi

)
=

1
1 − A2

∞

∑
i

(
(1 − (A2)

iK
) · pi

)
=

1
1 − A2

(
∞

∑
i

(
pi − (A2)

iK
pi
))

=
1

1 − A2

(
∞

∑
i

(
pi
)
−

∞

∑
i

(
(A2)

iK
pi
)) (A28)

So in order to ensure that 1
1−A2

(
∞
∑
i

(
pi)− ∞

∑
i

(
(A2)

iK pi
))

< ∞ is satisfied, it is obvious

that p < 1 and A2K p < 1 must stand, that is, p <
(

1
A2

)K
. This completes the proof.

Appendix B.2. Scheduling L Subsystems per Time Slot without Delay

When each time slot can schedule L subsystems, the corresponding strategy can be
set to multiple independent round-robin insist scheduling strategies. It can be ensured that
the round-robin cycle of each subsystem does not exceed �K/L�, and the follow-up proof
is consistent with Appendix B.1.

Appendix B.3. Scheduling L Subsystems per Time Slot with Delay

For a specific subsystem, we assume that the fixed delay for each transmission is Di
frames, which is equivalent to the uplink and downlink scheduling in the control lcfoop
must be delayed by DiK time slots for AA reception, so the formula (A19) is modified
as follows :

E[C|N′ = n′, M = m, N = n]

=
(m+n + 2D)K−1

∑
q=0

f (n′K + DK + q)

=
(m+n + 2D)K

∑
q=1

f (n′K + DK + q − 1)

(A29)

Since E[D] = E[Di] = D is a constant which has no effect on the subsequent proof, the
proof process is consistent with Appendix B.1.
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