
Edited by

Logic and Computation

Răzvan Diaconescu

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Logic and Computation

Logic and Computation

Editor

Răzvan Diaconescu

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade •Manchester • Tokyo • Cluj • Tianjin

Editor

Răzvan Diaconescu

Simion Stoilow Institute of

Mathematics of the Romanian

Academy

Romania

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access

journal Mathematics (ISSN 2227-7390) (available at: https://www.mdpi.com/si/mathematics/Log

Comput).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-7376-2 (Hbk)

ISBN 978-3-0365-7377-9 (PDF)

© 2023 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Editor . vii

Preface to ”Logic and Computation” . ix

Liping Xiong and Sumei Guo

Representation and Reasoning about Strategic Abilities with ω-Regular Properties
Reprinted from: Mathematics 2021, 9, 3052, doi:10.3390/math9233052 1

Mohd Shareduwan Mohd Kasihmuddin, Siti Zulaikha Mohd Jamaludin,
Mohd. Asyraf Mansor, Habibah A. Wahab and Siti Maisharah Sheikh Ghadzi

Supervised Learning Perspective in Logic Mining
Reprinted from: Mathematics 2022, 10, 915, doi:10.3390/math10060915 25

Uwe Wolter

Logics of Statements in Context-Category Independent Basics
Reprinted from: Mathematics 2022, 10, 1085, doi:10.3390/math10071085 61

Răzvan Diaconescu

Representing 3/2-Institutions as Stratified Institutions
Reprinted from: Mathematics 2022, 10, 1507, doi:10.3390/math10091507 127

Răzvan Diaconescu

The Axiomatic Approach to Non-Classical Model Theory
Reprinted from: Mathematics 2022, 10, 3428, doi:10.3390/math10193428 149

v

About the Editor

Răzvan Diaconescu

Răzvan Diaconescu is a Research Professor at Simion Stoilow Institute of Mathematics of the

Romanian Academy. His research revolves around the categorical abstract model theory (i.e.,

the institution theory) and its applications to logic-based computing science, especially formal

specification and declarative programming. Using the model theory methods, he designed three

formal specification and verification languages, namely, CafeOBJ, H and COMP. All these have

been implemented as actual software systems. Dr. Diaconescu is the author of two books and of

many papers scattered over 29 different international journals. His publications have received nearly

4000 citations on Google Scholar, while his book “Institution-independent Model Theory” is widely

considered as the authoritative monograph in the respective area.

vii

Preface to ”Logic and Computation”

Logic and computation are highly interdependent areas of research. On the one hand, logic

plays an important role in computation both at the foundational and applied levels. For instance,

several well-known programming and specification languages and systems have been developed

as computational implementations of logical systems. Computing paradigms, such as declarative

programming or formal specification and verification, owe much to logic. On the other hand, there

are lots of computing-driven studies on logic.

The present book contains five articles accepted for publication and submitted to the Special

Issue “Logic and Computation” of the MDPI “Mathematics” journal. These appeared in Volumes 9

(2021) and 10 (2022). They cover topics such as the model theory for formal logic-based formal

specification and programming, logic mining and logic for games. It is hoped that the book will

be interesting and useful for those working in the area of applying logic to computing.

As the Guest Editor of the Special Issue, I am grateful to the authors of the papers for their

quality contributions, to the reviewers for their valuable comments towards the improvement in the

submitted works and to the administrative staff of MDPI for their support in completing this project.

Special thanks are due to the Managing Editor of the Special Issue, Dr. Syna Mu, for his excellent

collaboration, encouragement and valuable assistance.

Răzvan Diaconescu

Editor

ix

mathematics

Article

Representation and Reasoning about Strategic Abilities with
ω-Regular Properties

Liping Xiong 1,* and Sumei Guo 2,*

Citation: Xiong, L.; Guo, S.

Representation and Reasoning about

Strategic Abilities with ω-Regular

Properties. Mathematics 2021, 9, 3052.

https://doi.org/10.3390/math9233052

Academic Editor: Răzvan Diaconescu

Received: 22 September 2021

Accepted: 24 November 2021

Published: 27 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer, South China Normal University, Guangzhou 510631, China
2 School of Computer Technology, Beijing Institute of Technology, Zhuhai, Zhuhai 519000, China
* Correspondence: xiongliping@scnu.edu.cn (L.X.); guo_sm@bitzh.edu.cn (S.G.)

Abstract: Specification and verification of coalitional strategic abilities have been an active research
area in multi-agent systems, artificial intelligence, and game theory. Recently, many strategic logics,
e.g., Strategy Logic (SL) and alternating-time temporal logic (ATL∗), have been proposed based on
classical temporal logics, e.g., linear-time temporal logic (LTL) and computational tree logic (CTL∗),
respectively. However, these logics cannot express general ω-regular properties, the need for which
are considered compelling from practical applications, especially in industry. To remedy this problem,
in this paper, based on linear dynamic logic (LDL), proposed by Moshe Y. Vardi, we propose LDL-
based Strategy Logic (LDL-SL). Interpreted on concurrent game structures, LDL-SL extends SL, which
contains existential/universal quantification operators about regular expressions. Here we adopt
a branching-time version. This logic can express general ω-regular properties and describe more
programmed constraints about individual/group strategies. Then we study three types of fragments
(i.e., one-goal, ATL-like, star-free) of LDL-SL. Furthermore, we show that prevalent strategic logics
based on LTL/CTL∗, such as SL/ATL∗, are exactly equivalent with those corresponding star-free
strategic logics, where only star-free regular expressions are considered. Moreover, results show that
reasoning complexity about the model-checking problems for these new logics, including one-goal
and ATL-like fragments, is not harder than those of corresponding SL or ATL∗.

Keywords: strategic abilities; ω-regular properties; linear dynamic logic; strategic logics; model
checking; concurrent game structure

1. Introduction

For the specification of ongoing behaviours of reactive systems, the use of temporal
logics has become one of the significant developments in formal reasoning [1–3]. However,
interpreted over Kripke structures, traditional temporal logics can only quantify the com-
putations of the closed systems in a universal/existential manner. In order to reason in
multi-agent systems, we need to specify the ongoing strategic behaviours [4].

Since Alur and Henzinger [5] proposed alternating-time temporal logic (ATL/ATL∗)
in 2002, strategy specification and verification has been an active research area in multi-
agent systems, artificial intelligence, and game theory. In recent years, there have been
many extensions or variants of strategic logics proposed to reason about coalitional strate-
gic abilities. For instance, in [6], Chatterjee et al. proposed strategy logic, which treats
strategies as explicit first-order objects in turn-based games with only two agents; Mo-
gavero et al. extended this logic with explicit strategy quantifications and agent bindings in
multi-agent concurrent systems [7]; in order to reason about uniqueness of Nash Equilibria,
Aminof et al. introduced a graded strategic logic [8]; in [9], Bozzelli et al. considered
strategic reasoning with linear past in alternating-time temporal logic; and in [10], Belar-
dinelli et al. studied strategic reasoning with knowledge. These logics are interpreted over
concurrent game structures, in which agents act concurrently and instantaneously. Each
agent acts independently and interacts with other agents. Formulas of these logics are used
to specify an individual’s or a group’s strategic abilities.

1

Mathematics 2021, 9, 3052

In ATL/ATL∗, strategic abilities for coalition A (i.e., a set of agents) are expressed as
〈〈A〉〉ψ, representing that coalition A has a group strategy to make sure that goal ψ holds,
no matter which strategies are chosen by other agents outside of A, here ψ can be any
temporal formula. A much more expressive strategic logic is Strategy Logic (SL) [6,7],
which is a multi-agent extension of linear-time temporal logic (LTL) [11] with the concepts
of agent bindings and strategy quantification. In SL, we can explicitly reason about the
agent’s strategy itself, allow different agents to share the same strategy, and also represent
the existence of deterministic multi-player Nash equilibria.

However, on one hand, existing strategic logics are mainly based on the classical
temporal logics. For instance, the underlying logics of ATL, ATL∗, alternating-time mu-
calculus (AMC) [5], and SL are temporal logic computational tree logic CTL [12], CTL∗ [3],
μ-calculus [13], and LTL, respectively. However, they cannot express general ω-regular
properties, such as “property p holds in any even steps in an infinite sequence, and holds
in odd steps or not” [14].

On the other hand, the need of a declarative and convenient temporal logic, which
can express any general ω-regular expression, is considered compelling from a practical
viewpoint in industry [15]. In some papers, e.g., [16], the authors introduce regular expres-
sions or automaton directly into LTL to express ω-regular properties. However, regular
expressions or automaton are all too low level as a formalism for expressing temporal
specifications. In 2011, Moshe Y. Vardi proposes a novel logic, named linear dynamic logic
(LDL) [17], which merges LTL with regular expression in a very natural way and adopts
exactly the syntax of propositional dynamic logic (PDL) [18]. LDL has three advantages:

(1) It has the same expressive power as ω-regular expression, which is also equivalent
with monadic second-order logic over infinite traces [19];

(2) It retains the declarative nature and intuitive appeal of LTL [20];
(3) The model checking complexity of LDL is PSPACE-complete [17,21], which is the

same as that of LTL.

In order to express any ω-regular properties in strategic logic, in [22], Liu et al. propose
a logic JAADL to specify joint abilities of coalitions, which combines alternating-time
temporal logic with LDL. However, in JAADL, the authors consider a very complex
semantics and study the model checking complexity with imperfect recall for JAADL.

Similarly, to remedy the inability to express any general ω-regular temporal goal in
strategic abilities in SL, we propose a novel strategic logic, called LDL-based Strategy Logic,
abbreviated as LDL-SL. It can explicitly represent and reason about strategies and specify
expressive strategic abilities for coalitions about more representative temporal goals, which
can be general ω-regular properties. By combining LDL and SL, LDL-SL becomes a natural
and intuitive strategic logic to specify more expressive properties. (In [23], the authors
propose a strategy logic based on LDL interpreted over interpreted systems with bounded
private actions.).

In this paper, we show that LDL-SL is much more expressive than SL and LDL
and prove that the model checking complexity of LDL-SL is nonelementary-hard [24].
Moreover, we study fragments of LDL-SL and their model-checking complexities, and we
define three types of strategic logics: ATL-like, one-goal, and star-free. The former two,
which are fragments for LDL-SL, have the same expressivity as those based on LTL or CTL∗,
and the model-checking problems are also the same. As for the last, firstly, we formally
define the star-free LDL logic and prove it is equivalent with LTL. By this, we know that
the corresponding star-free strategic logics are equivalent with those based on LTL/CTL∗.
Furthermore, the model-checking problems of these new logics, based on LDL, are the same
as those based on LTL/CTL∗. Furthermore, we show that the model-checking problem
complexities of these logics are either 2EXPTIME-complete or nonelementary-hard.

Therefore, in any case, LDL can be viewed as a good and natural underlying temporal
logic of strategic logics.

2

Mathematics 2021, 9, 3052

The paper is organized as follows. Section 2 introduces LDL, and its classical temporal
logic fragments and then introduces the syntax and semantics of strategic logics. Section 3
indicates that LTL is equivalent with star-free fragment of LDL. In the next section, we
propose the LDL-based strategy logic (LDL-SL) and give fragments of LDL-SL. Further-
more, we present the relations for expressivity among strategic logics. Moreover, the model
checking problems for these new proposed strategic logics are considered. Finally, we
present conclusions and future work.

2. Preliminaries

In this section, firstly, we introduce temporal logics including such as CDL∗ and its
fragments LDL, LTL, and CTL∗. Then we introduce strategic logics whose underlying
logics are LTL and CTL∗.

In this paper, we fix two non-empty finite sets, which are atomic proposition set AP,
agent set Ag, and one nonempty countable set of strategy variable Var. By L(AP), we
denote the set of propositional formulas over AP. In this paper, we use true (resp. f alse) to
refer to valid (resp. contradiction) formula.

2.1. Temporal Logics

Computational-tree dynamic logic (CDL∗) [25] is a branching-time extension of LDL,
which adopts the syntax from propositional dynamic logic (PDL).

Definition 1 (Syntax of CDL∗). The syntax of is defined inductively by:

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ
Path expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ∗

where, p ∈ AP, and Φ ∈ L(AP).

Intuitively, the path formula 〈ρ〉ψ means that from the current instant, there exists
an execution satisfying the path expression ρ s.t. Its last instant satisfies ψ, and the state
formula Eψ means that there exists a reachable path that makes the path formula ψ hold.

Let A define the dual of E, i.e., A = ¬E¬, and let [ρ] define the dual of 〈ρ〉, i.e.,
[ρ] = ¬〈ρ〉¬.

LDL is a linear-time fragment of CDL∗, just as LTL is a fragment of CTL∗ The syntax
of LDL is

ψ ::= p | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ, and ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ∗. (1)

Furthermore, CTL∗(resp. LTL) is a fragment of CDL∗(resp. LDL), where 〈ρ〉 is replaced
by next-time©, eventuality ♦, and until U , three temporal operators.

Any LTL formula can be linearly expressed in LDL, for instance, ©p .
= 〈true〉p,

♦p .
= 〈true∗〉p, and pUq .

= 〈(p; true)∗〉q, when p, q ∈ L(AP).

Definition 2 (Kripke Model). A Kripke model M is a tuple (W, R, V), where W is a finite
non-empty set of possible worlds; R ⊆ W ×W, which is a left-total relation over W, i.e., for any
w ∈ W, there exists a w′ ∈ W s.t., w R w′; and V : W → 2AP is a valuation function.

In a Kripke model M = (W, R, V), by Path(w) we denote the set of infinite reachable
sequences (i.e., path) π = w0w1 · · · from w, where w0 = w and wi R wi+1 for all i ∈ N. Let
πi denote the i-th element wi in π, and π≥i denote the suffix of π, i.e., π≥i = wiwi+1 · · · ,
and let π≤i denote the prefix of π, i.e., π≤i = w0w1 · · ·wi.

The semantics of CDL∗ is defined inductively as follows.

3

Mathematics 2021, 9, 3052

Given a CDL∗ state formula ϕ, a Kripke model M and a state w in M, the relation
M, w |= ϕ is defined as follows.

• M, w |= p iff p ∈ V(w), here p ∈ AP;
• M, w |= ¬ϕ iff M, w
|= ¬ϕ;
• M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 and M, w |= ϕ2;
• M, w |= Eψ iff there exists π ∈ Path(w) s.t. π, 0 |= ψ.

Given a CDL∗ path formula ψ, a path π in M, and i ∈ N, the relation π, i |= ψ is
defined as follows.

• π, i |= ϕ iff M, πi |= ϕ, here ϕ is a CDL∗ state formula;
• π, i |= ¬ψ iff π, i
|= ψ;
• π, i |= ψ1 ∧ ψ2 iff π, i |= ψ1 and π, i |= ψ2;
• π, i |= 〈ρ〉ψ iff there exists j such that (i, j) ∈ R(ρ, π) and π, j |= ψ.

Given a path expression ρ and a path π in M, for i, j ∈ N, the relation (i, j) ∈ R(ρ, π)
is defined as follows:

• (i, j) ∈ R(Φ, π) iff j = i + 1, and π, i |= Φ, here Φ ∈ L(AP);
• (i, j) ∈ R(ψ?, π) iff j = i, and π, j |= ψ;
• (i, j) ∈ R(ρ1 + ρ2, π) iff (i, j) ∈ R(ρ1, π) or (i, j) ∈ R(ρ2, π);
• (i, j) ∈ R(ρ1; ρ2, π) iff there exists k ∈ N, i ≤ k ≤ j, satisfying that

(i, k) ∈ R(ρ1, π) and (k, j) ∈ R(ρ2, π);
• (i, j) ∈ R(ρ∗, π) iff j = i, or (i, j) ∈ R(ρ; ρ∗, π).

2.2. Strategic Logics Based on Classical Temporal Logics

SL [24] is an expressive logic, which can explicitly reason about agents’ strategies in
multi-agent concurrent systems. In [26], Knight and Maubert propose a branching-time
version BSL of SL, which is equivalent to SL. Here we introduce BSL with some minor
changes, still equivalent with SL.

Definition 3 (BSL Formula). BSL formulas are defined inductively by:

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | (a, x)ϕ | 〈〈x〉〉ϕ | Eψ

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ©ψ | ♦ψ | ψ U ψ,

here p ∈ AP, a ∈ Ag, and x ∈ Var.

Syntactically, BSL extends linear-time temporal logic LTL with two operators. Intu-
itively, 〈〈x〉〉 (resp. (a, x)) means “there exists a strategy x" (resp. “bind agent a to the strategy
associated with variable x"). Here, let [[x]] = ¬〈〈x〉〉¬, which means “for all strategies x”.

For a BSL formula ϕ, let f ree(ϕ) ⊆ Var ∪ Ag denote the set of free strategy variables and
agents of ϕ. Informally, f ree(ϕ) contains all strategy variables (resp. agents) for which there
exists an agent binding but no quantifications (resp. no agent binding after the occurrence
of a temporal operator). Here the formal definition refers to [24].

Since CTL∗ (resp. ATL∗) is a fragment of ATL∗ [5] (resp. SL [24]), and BSL is equivalent
with SL [26], then both CTL∗ and ATL∗ are fragments of BSL.

Now we introduce the semantics model of BSL based on the notion of concurrent game
structure [5].

Definition 4 (Concurrent Game Structure). A concurrent game structure (CGS) G has five
components 〈Act, W, λ, τ, w0〉:
• Act (resp. W) is a non-empty finite sets of actions (resp. states);
• w0 is an initial state in W;
• λ : W → 2AP is a valuation function;
• transition function τ : W × ActAg → W maps a state and a decision to next state.

4

Mathematics 2021, 9, 3052

A decision is a function from Ag to Act, by ActAg we denote Dc.

In fact, a concurrent game structure can be viewed as a multi-player game, in which
all agents strategically perform joint actions. Before defining the semantics of BSL, first
we present relevant notations and definitions, namely track, strategy, strategy assignment,
and outcome.

Definition 5 (Track). In a CGS G = 〈Act, W, λ, τ, w0〉, a finite state sequence h = w0w1...wk is
called a track in G if, for each i with 0 ≤ i < k, there exists d ∈ Dc s.t. wi+1 = τ(wi, d).

Given a track h = w0w1...wk, let len(h) denote the length k + 1 of h, and lst(h) denote
the last state wk of h.

Definition 6 (Strategy). In a CGS G = 〈Act, W, λ, τ, w0〉, a strategy in G is a function mapping
a track in G into an action.

Intuitively, a strategy of one agent can be viewed as a plan for this agent, which
contains the unique choice of action for each track in G.

For brevity, let Trk(G) (resp. Str(G)) denote the set of all tracks (strategies) in a CGS
G, and let Trk(G, w) denote the set of all tracks starting with w.

Like the definition of variable assignment in first-order logic, a partial function χ :
Var ∪ Ag ⇀ Str(G) is called a strategy assignment or just assignment in G, which maps a
variable or an agent to a strategy. Let Asg(G) denote the set of all strategy assignments
in CGS G. If Ag ⊆ dom(χ), χ is called complete, here dom(χ) is the domain of χ. For each
agent a, χ is called w-total, if Track(G, w) ⊆ dom(χ(a)). Let Asg(G, w) denote the set of all
w-total assignments in G. Let χ[x �→ g] denote a new strategy assignment almost like χ,
where the only difference is that it maps x into g.

Let out(G, χ, w) denote the set of outcomes (or paths) from w, which is determined by
χ. If G is explicit, we omit the G in out(G, χ, w).

Definition 7 (Outcome). For any π = w0w1..., π ∈ out(G, χ, w) iff w0 = w, for any i ∈ N,
there exists a joint action d, such that τ(wi, d) = wi+1, satisfying d(a) = χ(a)(π≤i) for each
a ∈ dom(χ) ∩ Ag.

Given a collective strategy gA of A, i.e., {ga : a ∈ A}, by out(w, gA) we denote the set
of legal executions from w where agents in A perform actions according to gA. Formally,

out(w, gA) = {π|π(0) = w ∧ ∃d ∈ DC.d(A) = gA(π≤k) ∧ τ(πk, d) = πk+1, ∀ k.} (2)

When χ is complete and w-total, there exists just one path in out(w, χ(Ag)), which we
call (χ, w)-play.

Given a CGS G = 〈Ac, W, λ, τ, w0〉, a BSL state formula ϕ, an assignment χ, and a
state w, the relation G, χ, w |= ϕ is inductively defined as follows.

• G, χ, w |= p if and only if p ∈ λ(w);
• G, χ, w |= ¬ϕ if and only if G, χ, w
|= ϕ;
• G, χ, w |= ϕ1 ∧ ϕ2 if and only if G, χ, w |= ϕ1 and G, χ, w |= ϕ2;
• G, χ, w |= (a, x)ϕ if and only if G, χ[x �→ χ(a)], w |= ϕ;
• G, χ, w |= 〈〈x〉〉ϕ if and only if there exists g ∈ Str(G), s.t., G, χ[x �→ g], w |= ϕ;
• G, χ, w |= Eψ if and only if there exists π ∈ out(G, χ, w), s.t., G, χ, π, 0 |= ψ.

Given a path formula ψ in BSL, i ∈ N, and a path π, the relation G, χ, π, i |= ψ is
defined by:

• G, χ, π, i |=©ψ if and only if G, χ, π, i + 1 |= ψ;
• G, χ, π, i |= ♦ψ if and only if ∃j with i ≤ j, satisfying that G, χ, π, j |= ψ;

5

Mathematics 2021, 9, 3052

• G, χ, π, i |= ψ1Uψ2 if and only if ∃j ∈ N with i ≤ j, such that for each k, i ≤ k < j
satisfying that G, χ, π, k |= ψ1, and G, χ, π, j |= ψ2.

BSL state formula ϕ is called a sentence if f ree(ϕ) = ∅. Clearly, G, χ, w |= ϕ does not
depend on χ; hence, we can omit χ without confusion.

In order to define the syntax of BSL[1G], we introduce the notions of quantification
prefix and binding prefix [24]. A sequence ℘ = ((x1))((x2)) · · · ((xn)) is called quantification
prefix, if ((xi)) ∈ {〈〈xi〉〉, [[xi]]} is either an existential or universal quantification. Given
a fixed set of agents Ag = {a1, · · · , am}, a sequence � = (a1, x1), · · · , (am, xm) is called a
binding prefix if every agent in Ag occurs exactly once. A combination ℘� is closed if every
variable occurring in � occurs in some quantifier of ℘.

Now the syntax of one-goal fragment BSL[1G] of BSL is defined as follows.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ | ℘�ϕ, and ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ©ψ | ♦ψ | ψUψ, (3)

where ℘� is a closed combination of a quantification/binding prefix [24].
ATL∗, whose underlying logic is CTL∗, is a fragment of BSL[1G] [24]. Its syntax is

defined by (A ⊆ Ag)

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | ©ψ | ♦ψ | ψUψ.

For details about the semantics of ATL∗ and BSL[1G], see [5,24].
Here, consider the semantics of the case ϕ = 〈〈A〉〉ψ: given a CGS G and a state w,

G, w |= 〈〈A〉〉ψ iff there exist gA, s.t., ∀π ∈ out(w, gA),G, π, 0 |= ψ. (4)

3. Star-Free Logic of LDL

In this section, we first define star-free logic LDLs f (resp. CDL∗s f) of LDL (resp. CDL∗),
and then show that their expressive abilities are equivalent with LTL (resp. CTL∗).

We conjecture that if regular expressions are replaced by star-free regular expressions
in LDL, then the expressivity of this new temporal logic is equivalent with that of LTL.
In fact, in this section, we show that it is indeed true by Theorem 1.

Definition 8 (Star-free Logic LDLs f). The star-free logic LDLs f is defined inductively by:

LDLs f formula ψ ::= p | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ

Star-free path expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ

where p ∈ AP and Φ ∈ L(AP).

Here ρ is the complement of ρ. In the star-free logic CDL∗s f of CDL∗, the path expres-
sions in CDL∗ are just replaced by star-free path expressions as follows:

Star-free path expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ (5)

In a Kripke model M, given a path π and path expression ρ, for any i ≥ j, define

(i, j) ∈ R(ρ, π) if and only if (i, j) /∈ R(ρ, π). (6)

Easily, the following simple property holds.

Lemma 1. For any path π in a Kripke model, the following holds,

R(f alse, π) = R(true∗, π) = {(i, j) : j ≥ i, i, j ∈ N}. (7)

6

Mathematics 2021, 9, 3052

Proof. Firstly, (i, j) ∈ R(f alse, π) iff (i, j) /∈ R(f alse, π) iff j ≥ i; secondly, (i, j) ∈ R(true∗)
iff j ≥ i.

Hence, the following two equivalent results are correct.

Corollary 1. Given an LDL formula ψ, the following are valid

〈true∗〉ψ ≡ 〈 f alse〉ψ and [true∗]ψ ≡ [f alse]ψ. (8)

Since first-order logic (FO) over naturals has the expressive power of star-free regular
expressions [27], and LTL over the naturals has precisely the expressive power of FO [28],
then LTL over naturals has the same expressivity as star-free regular expression. Now we
consider the relation between LTL and LDLs f .

In fact, for each LTL formula ψ, we can translate it into a star-free LDL formula SF(ψ)
by function SF : LTL → LDLs f as follows:

• SF(p) = p SF(¬ψ) = ¬SF(ψ)
• SF(ψ ∧ ψ′) = SF(ψ) ∧ SF(ψ′)
• SF(©ψ) = 〈true〉SF(ψ) SF(♦ψ) = 〈 f alse〉SF(ψ)

• SF(ψUψ′)=SF(ψ′)∨〈 f alse;¬SF(ψ)?; f alse; true〉SF(ψ′)

Obviously, the function SF is well-defined; i.e., for any ψ in LTL, SF(ψ) ∈ LDLs f .
Then the following result holds.

Lemma 2. In a Kripke model M, for any LTL formula ψ, a path π, and i ∈ N,

π, i |= ψ if and only if π, i |= SF(ψ). (9)

Proof. We show this lemma inductively as follows. Here we just consider the following
cases; the others are routine.

For case©ψ: π, i |= SF(©ψ) iff π, i |= 〈true〉SF(ψ) iff π, i+ 1 |= SF(ψ) iff π, i + 1 |= ψ
(by induction) iff π, i |=©ψ.

For case ♦ψ: π, i |= SF(♦ψ) iff π, i |= 〈 f alse〉SF(ψ) iff ∃j. (i, j) ∈ R(f alse, π), s.t.,
π, j |= SF(ψ) iff ∃j.i ≤ j and π, j |= SF(ψ) (by Lemma 1) iff ∃j.i ≤ j and π, j |= ψ (by
induction) iff π, i |= ♦ψ.

For case ψ1Uψ2:

π, i |= SF(ψ1Uψ2) iff
π, i |= SF(ψ2) ∨ 〈 f alse;¬SF(ψ1)?; f alse; true〉SF(ψ2) iff
π, i |= SF(ψ2) or 〈 f alse;¬SF(ψ1)?; f alse; true〉SF(ψ2).

For the latter,

π, i |= 〈 f alse;¬SF(ψ1)?; f alse; true〉SF(ψ2) iff
∃j.(i, j) ∈ R(f alse;¬SF(ψ1)?; f alse; true, π) and π, j |= ψ2 iff
∃j.∃k.i ≤ k ≤ j, s.t., (i, k) ∈ R(f alse;¬SF(ψ1)?; f alse, π)

and (k, j) ∈ R(true, π), and π, j |= SF(ψ2) iff
∃j.(i, j− 1) ∈ R(f alse;¬SF(ψ1)?; f alse, π) and π, j |= SF(ψ2).

Then we show that

7

Mathematics 2021, 9, 3052

(i, j− 1) ∈ R(f alse;¬SF(ψ1)?; f alse, π) iff
(i, j− 1) /∈ R(f alse;¬SF(ψ1)?; f alse, π) iff
∀k.(i ≤ k ≤ j− 1 → (i, k) /∈ R(f alse) ∨

(k, j− 1) /∈ R(¬SF(ψ1)?; f alse, π)) iff
∀k.(i ≤ k ≤ j− 1 → (k, j− 1) /∈ R(¬SF(ψ1)?; f alse, π)) iff
∀k.(i ≤ k ≤ j− 1 → ∀k′.(k ≤ k′ ≤ j− 1 → (k, k′) /∈

R(¬SF(ψ1)?, π) ∨ (k′, j− 1) /∈ R(f alse, π))) iff
∀k.(i ≤ k ≤ j− 1 → π, k |= SF(ψ1)).

Therefore, we have that π, i |= SF(ψ1Uψ2) iff π, i |= SF(ψ2) or there exists j,
∀k.(i ≤ k ≤ j − 1 → π, k |= SF(ψ1)) and π, j |= SF(ψ2) iff there exists j, such that
for all k.i ≤ k < j s.t. π, k |= ψ1 and π, j |= ψ2 (by induction) iff π, i |= ψ1Uψ2.

By this lemma, LTL can be linearly embeded into LDLs f . Conversely, in order to
express an LDLs f formula ψ by an LTL formula, we first express ψ by a first-order logic
FO(AP) formula under linear order over natural numbers N [16]. In FO(AP), the language
is formed by the binary predicate <, a unary predicate for each symbol in AP.

The first order logic FO(AP) interpretation is the form I = (ΔI , ·I), where the inter-
pretation of the following binary predicates and the constant are fixed,

• ΔI = N; 0I = 0
• <I= {(i, j) : i, j ∈ N, i < j};
• succI = {(i, i + 1) : i ∈ N};
• =I= {(i, i) : i ∈ N}.

In fact, the following properties hold.

• succ(x, y) .
= (x < y) ∧ (¬∃z.x < z < y)

• x = y .
= ∀z.x < z ≡ y < z

• x ≤ y .
= x < y ∨ x = y

• 0 can be defined as one x, which satisfies that ¬∃y.succ(y, x) or ∀y.x ≤ y.

Intuitively, succ(x, y) means that y is an immediate successor of x.
Given a path π in a Kripke model M = (W, R, V), we define a corresponding first

order logic interpretation Iπ with that for each p ∈ AP,

pIπ
= {k|p ∈ V(πk)} (10)

and interpretations of the other predicates or constant are fixed.
Now we define two functions FO and G, which translate an LDLs f formula into a

first-order logic FO(AP) formula by induction.

• FO(p, x) = p(x), p ∈ AP;
• FO(¬ψ, x) = ¬FO(ψ, x);
• FO(ψ1 ∧ ψ2, x) = FO(ψ1, x) ∧ FO(ψ2, x);
• FO(〈ρ〉ψ, x) = ∃y.(G(ρ, x, y) ∧ FO(ψ, y));
• G(Φ, x, y) = succ(x, y) ∧ FO(Φ, x), here Φ ∈ L(AP);
• G(ψ?, x, y) = (y = x) ∧ FO(ψ, x);
• G(ρ1 + ρ2, x, y) = G(ρ1, x, y) ∨ G(ρ2, x, y);
• G(ρ1; ρ2, x, y) = ∃z.(x ≤ z ∧ z ≤ y ∧ G(ρ1, x, z) ∧ G(ρ2, z, y));
• G(ρ, x, y) = x ≤ y ∧ ¬G(ρ, x, y).

The function FO(ψ, x) and auxiliary function G(ρ, x, y) are well-defined. Intuitively,
here the function G is used to specify the relationR(ρ, π) by formulas in FO(AP).

It is shown that the following lemma holds by induction of structures about LDLs f formula.

Lemma 3. For any path π in a Kripke model M and i ∈ N, given an LDLs f formula ψ, we have

π, i |= ψ if and only if Iπ(i �→ x) |= FO(ψ, x), (11)

8

Mathematics 2021, 9, 3052

where Iπ is the corresponding first order interpretation of path π.

Proof. By induction of the formula LDLs f formula ψ, we can show this lemma.
For case ψ = p: π, i |= p iff p ∈ V(πi) (by semantics) iff i ∈ pI

π
iff Iπ |= p(i) iff

Iπ(i �→ x) |= FO(p, x) iff Iπ(i �→ x) |= FO(ψ, x);
for case ψ = ¬ψ1: π, i |= ¬ψ1 iff π, i |= ψ1 does not hold iff Iπ(i �→ x) |= FO(ψ1, x)

does not hold (by induction) iff Iπ(i �→ x) |= ¬FO(ψ1, x) iff Iπ(i �→ x) |= FO(¬ψ1, x);
for case ψ = ψ1 ∧ ψ2: π, i |= ψ1 ∧ ψ2 iff π, i |= ψ1 and π, i |= ψ2 iff Iπ(i �→ x) |=

FO(ψ1, x) and Iπ(i �→ x) |= FO(ψ2, x) (by induction) iff Iπ(i �→ x) |= FO(ψ1 ∧ ψ2, x);
In order to show the case ψ = 〈ρ〉ψ1, we should show the following mutually with

the above (11) by induction.

Iπ(i �→ x, j �→ y) |= G(ρ, x, y) if and only if (i, j) ∈ R(ρ, π). (12)

For case ρ = Φ: Iπ(i �→ x, j �→ y) |= G(Φ, x, y) iff Iπ(i �→ x, j �→ y) |= succ(x, y) ∧
FO(Φ, x) iff j = i + 1 and π, i |= Φ iff (i, j) ∈ R(Φ, π).

For case ρ = ψ?: Iπ(i �→ x, j �→ y) |= G(ψ?, x, y) iff j = i and Iπ(i �→ x) |= FO(ψ, x)
iff j = i and π, i |= ψ by induction iff (i, j) ∈ R(ψ?, π).

For case ρ = ρ1 + ρ2: Iπ(i �→ x, j �→ y) |= G(ρ1 + ρ2, x, y) iff Iπ(i �→ x, j �→ y) |=
G(ρ1, x, y) ∨ G(ρ2, x, y) iff (i, j) ∈ R(ρ1, π) or (i, j) ∈ R(ρ2, π). The last is because by
induction, we have Iπ(i �→ x, j �→ y) |= G(ρ1, x, y) iff (i, j) ∈ R(ρ1, π), and Iπ(i �→ x, j �→
y) |= G(ρ2, x, y) iff (i, j) ∈ R(ρ2, π).

For case ρ = ρ1; ρ2: Iπ(i �→ x, j �→ y) |= G(ρ1; ρ2, x, y) iff Iπ(i �→ x, j �→ y) |=
∃z(x ≤ z ∧ z ≤ y ∧ G(ρ1, x, z) ∧ G(ρ2, z, y)) iff there exists k, with i ≤ k ≤ j, satisfying that
(i, k) ∈ R(ρ1, π) and (k, j) ∈ R(ρ2, π) by induction iff (i, j) ∈ R(ρ1; ρ2, π).

For case ρ = ρ1: Iπ(i �→ x, j �→ y) |= G(ρ1, x, y) iff Iπ(i �→ x, j �→ y) |= x ≤
y ∧ ¬G(ρ1, x, y) iff i ≤ j and Iπ(i �→ x, j �→ y) |= ¬G(ρ1, x, y) iff i ≤ j and (i, j) /∈ R(ρ1, χ)
iff (i, j) ∈ R(ρ1, χ).

Now we show the case ψ = 〈ρ〉ψ1: π, i |= 〈ρ〉ψ1 iff there exists j, (i, j) ∈ R(ρ, π)
satisfying that π, j |= ψ1 iff there exists j, Iπ(i �→ x, j �→ y) |= G(ρ, x, y) and Iπ(j �→ y) |=
FO(ψ1, j) by induction iff Iπ(i �→ x) |= FO(〈ρ〉ψ1, x) by definition.

In [28], Gabbay et al. have shown that first-order logic FO for linear order over natural
numbers is equivalent with LTL over infinite traces. In addition, one of the most familiar
LDL formulas is [(true; true)∗]p, which cannot be expressed in LTL [14]. Therefore, with the
addition of Lemma 2 and 3, the following result holds.

Theorem 1. LTL has exactly the same expressive power as the star-free logic LDLs f , and strictly
less expressive than LDL.

Moreover, LTL formulas can be linearly translated into LDLs f formulas, but the
converse procedure is not. Some star-free LDL formulas are hard to encode by LTL
formulas, even by LDL formulas.

4. Strategic Logics Based on LDL/LDLs f

In this section, we introduce two new classes of expressive strategic logics, whose un-
derlying logic is LDL and LDLs f , respectively. The former can express ω-regular properties,
and the latter has the same expressivity as star-free regular properties. Firstly, LDL-based
Strategy Logic (abbr. LDL-SL) is introduced.

4.1. LDL/LDLs f -Based Strategic Logics

Definition 9 (LDL-SL Formula). LDL-SL formulas are defined inductively as follows.

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | (a, x)ϕ | 〈〈x〉〉ϕ | Eψ;

9

Mathematics 2021, 9, 3052

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ;

Path expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ∗,

where a ∈ Ag, x ∈ Var, p ∈ AP, and Φ ∈ L(AP).

In fact, LDL-SL is a logic that combines BSL with LDL. LDL-SL formula is defined
recursively by three components: state formula, path formula, and path expression. Now
we present the complete definition about the semantics of LDL-SL formula.

Given a CGS G, a state formula ϕ, a strategy assignment χ, and a state w, the relation
G, χ, w |= ϕ is defined as follows.

• G, χ, w |= p if and only if p ∈ λ(w);
• G, χ, w |= ¬ϕ if and only if G, χ, w
|= ϕ;
• G, χ, w |= ϕ1 ∧ ϕ2 if and only if G, χ, w |= ϕ1 and G, χ, w |= ϕ2;
• G, χ, w |= (a, x)ϕ if and only if G, χ[a �→ χ(x)], w |= ϕ;
• G, χ, w |= 〈〈x〉〉ϕ if and only if ∃g ∈ Str(G) s.t., G, χ[x �→ g], w |= ϕ;
• G, χ, w |= Eψ if and only if ∃π ∈ out(G, χ, w) s.t., G, χ, π, 0 |= ψ.

Given a CGS G, a path formula ψ, a strategy assignment χ, a path π and some i ∈ N,
the relation G, χ, π, i |= ψ is defined as follows.

• G, χ, π, i |= ϕ if and only if G, χ, w |= ϕ, here w = πi;
• G, χ, π, i |= ¬ψ if and only if G, χ, π, i
|= ψ;
• G, χ, π, i |= ψ1 ∧ ψ2 if and only if G, χ, π, i |= ψ1 and G, χ, π, i |= ψ2;
• G, χ, π, i |= 〈ρ〉ψ if and only if ∃j.(i, j) ∈ R(G, ρ, π, χ) and G, χ, π, j |= ψ.

The relation (i, j) ∈ R(G, ρ, π, χ) is defined as follows:

• (i, j) ∈ R(G, Φ, π, χ) if and only if j = i + 1 and G, χ, π, i |= Φ;
• (i, j) ∈ R(G, ψ?, π, χ) if and only if j = i and G, χ, π, j |= ψ;
• (i, j) ∈ R(G, ρ1 + ρ2, π, χ) if and only if (i, j) ∈ R(G, ρ1, π, χ) orR(G, ρ2, π, χ);
• (i, j) ∈ R(G, ρ1; ρ2, π, χ) if and only if there exists k, i ≤ k ≤ j, satisfying

(i, k) ∈ R(G, ρ1, π, χ) and (k, j) ∈ R(G, ρ2, π, χ);
• (i, j) ∈ R(G, ρ∗, π, χ) if and only if j = i, or (i, j) ∈ R(G, ρ; ρ∗, π, χ).

In the above, we omit G in R(G, ρ, π, χ) when there is no confusion. Intuitively,
(i, j) ∈ R(G, ρ, π, χ) means that the sequence πi...πj is a legal execution of ρ under assign-
ment χ in CGS G.

For two special path expressions, ψ?; true and its nondeterministic iteration (ψ?; true)∗,
the following properties hold, where ψ is an LDL-SL path formula.

Lemma 4. Given a CGS G, a path formula ψ, a path π, a strategy assignment χ, and i, j ∈ N,

(i, j) ∈ R(G, ψ?; true, π, χ) if and only if j = i + 1 and G, χ, π, i |= ψ. (13)

Proof. (i, j) ∈ R(G, ψ?; true, π, χ) iff there exists k with i ≤ k ≤ j such that
(i, k) ∈ R(G, ψ?, π, χ) and (k, j) ∈ R(G, true, π, χ) iff there exists k with i ≤ k ≤ j such that
k = i and G, χ, π, k |= ψ and j = k + 1 iff j = i + 1 and G, χ, π, i |= ψ.

Corollary 2. Given a CGS G, a path formula ψ, a path π, a strategy assignment χ, and i, j ∈ N,

(i, j) ∈ R(G, (ψ?; true)∗, π, χ) if and only if j = i or (∀k.i ≤ k < j,G, χ, π, k |= ψ). (14)

Proof. (i, j) ∈ R(G, (ψ?; true)∗, π, χ) iff j = i or there exists k (i ≤ k ≤ j) s.t. (i, k) ∈
R(G, (ψ?; true), π, χ) and (k, j) ∈ R(G, (ψ?; true)∗, π, χ) iff j = i or (G, χ, π, i |= ψ and
(i + 1, j) ∈ R(G, (ψ?; true)∗, π, χ)) by Lemma 4 iff j = i or (G , χ, π, i |= ψ, G , χ, π, i + 1 |= ψ
and (i + 2, j) ∈ R(G, (ψ?; true)∗, π, χ)) iff j = i or (G, χ, π, i |= ψ, G, χ, π, i + 1 |= ψ,...,
and (j − 1, j) ∈ R(G, (ψ?; true)∗, π, χ)) iff j = i or (G, χ, π, i |= ψ, G, χ, π, i + 1 |= ψ,...,
and G, χ, π, j− 1 |= ψ) repeatedly iff j = i or (∀k.i ≤ k < j,G, χ, π, k |= ψ).

10

Mathematics 2021, 9, 3052

Secondly, LDLs f -based Strategy Logic (abbr. LDL-SLs f is introduced).

Definition 10 (LDL-SLs f Formula). The LDL-SLs f formulas are defined as follows:

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈x〉〉ϕ | (a, x)ϕ | Eψ

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ
Star-free path expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ

where a ∈ Ag, x ∈ Var, p ∈ AP, and Φ ∈ L(AP).

For the semantics of star-free fragment, given a CGS G, a star-free path expression ρ,
and a strategy assignment χ, for any i ≤ j,

(i, j) ∈ R(G, ρ, π, χ) if and only if (i, j) /∈ R(G, ρ, π, χ). (15)

4.2. Fragments of LDL-SL and LDL-SLs f

In this subsection, we consider fragments for both LDL-SL and LDL-SLs f , including
SL-like, one-goal fragments, and ATL-like fragments.

Firstly, we consider the SL-like fragment BSL of LDL-SL.
Since LTL is a sublogic of LDL, then by Corollary 2 it is easily shown that BSL is a

fragment of LDL-SL by induction and semantics definition. In the following, suppose a
logic L ∈ {BSL, LDL-SL, ATL∗, ADL∗}, let Ls (resp, Lp) denote all the set of state (resp.
path) formulas in L.

Theorem 2. LDL-SL is strictly more expressive than BSL.

Proof. Firstly, we define two functions Ts : BSLs → LDL− SLs and Tp : BSLp → LDL−
SLp by induction of structures of state formulas and path formulas.

• Ts(p) = p; Ts(¬ϕ) = ¬Ts(ϕ); Ts(ϕ1 ∧ ϕ2) = Ts(ϕ1) ∧ Ts(ϕ2);
• Ts((a, x)ϕ) = (a, x)Ts(ϕ); Ts(〈〈x〉〉ϕ) = 〈〈x〉〉Ts(ϕ); Ts(Eψ) = E(Tp(ψ)).
• Tp(ϕ) = Ts(ϕ); Tp(¬ψ) = ¬Tp(ψ); Tp(ψ1 ∧ ψ2) = Tp(ψ1) ∧ Tp(ψ2);
• Tp(©ψ) = 〈true〉Tp(ψ); Tp(�ψ) = 〈true∗〉Tp(ψ);
• Tp(ψ1Uψ2) = 〈(Tp(ψ1)?; true)∗〉Tp(ψ2).

By induction, both Ts and Tp are well-defined; i.e., for any ϕ ∈ BSLs and ψ ∈ BSLp,
Ts(ϕ) ∈ LDL-SLs and Tp(ψ) ∈ LDL-SLp.

Moreover, for any CGS G, a BSL state formula ϕ, a strategy assignment χ, and a state
w, the following holds:

G, χ, w |= ϕ if and only if G, χ, w |= Ts(ϕ). (16)

For any CGS G, a BSL path formula ψ, a strategy assignment χ, a path π, and some
i ∈ N, the following holds:

G, χ, π, i |= ψ if and only if G, χ, π, i |= Tp(ψ). (17)

We can show the above two mutually by induction.
It is easy to see that for the Boolean cases, the above two are obvious.
For case ϕ = (a, x)ϕ′: G, χ, w |= Ts((a, x)ϕ′) iff G, χ, w |= (a, x)Ts(ϕ′) by definition

of Ts iff G, χ[a �→ χ(x)], w |= Ts(ϕ′) by semantics definition iff G, χ[a �→ χ(x)], w |= ϕ′ by
induction iff G, χ, w |= (a, x)ϕ′ by semantics definition.

For case ϕ = 〈〈x〉〉ϕ′: G, χ, w |= Ts(〈〈x〉〉ϕ′) iff G, χ, w |= 〈〈x〉〉Ts(ϕ′) by definition
of Ts iff ∃g ∈ Str(G), G, χ[x �→ g], w |= Ts(ϕ′) iff ∃g ∈ Str(G), G, χ[x �→ g], w |= ϕ′ iff
G, χ, w |= 〈〈x〉〉ϕ′.

11

Mathematics 2021, 9, 3052

For case ϕ = Eψ: G, χ, w |= Ts(Eψ) iff G, χ, w |= E(Tp(ψ)) by definition of Ts iff
∃π ∈ out(G, χ, w) s.t. G, χ, π, 0 |= Tp(ψ) iff ∃π ∈ out(G, χ, w) s.t. G, χ, π, 0 |= ψ iff
G, χ, w |= Eψ.

For case ψ = ϕ ∈ BSLs: G, χ, π, i |= Tp(ϕ) iff G, χ, π, i |= Ts(ϕ) by definition of Tp iff
G, χ, πi |= Ts(ϕ) iff G, χ, π(i) |= ϕ iff G, χ, π, i |= ϕ.

For case ψ =©ψ′: G, χ, π, i |= Tp(©ψ′) iff G, χ, π, i |= 〈true〉Tp(ψ′) by definition of
Tp iff G, χ, π, i + 1 |= Tp(ψ′) iff G, χ, π, i + 1 |= ψ′ iff G, χ, π, i |=©ψ′.

For case ψ = �ψ′: G, χ, π, i |= Tp(�ψ′) iff G, χ, π, i |= 〈true∗〉Tp(ψ′) by definition
of Tp iff there exists j ≥ i, G, χ, π, j |= Tp(ψ′) iff there exists j ≥ i, G, χ, π, j |= ψ′ iff
G, χ, π, i |= �ψ′.

For case ψ = ψ1Uψ2: G, χ, π, i |= Tp(ψ1Uψ2) iff G, χ, π, i |= 〈(Tp(ψ1)?; true)∗〉Tp(ψ2)
by definition of Tp iff there exists j with (i, j) ∈ R(G, (Tp(ψ1)?; true)∗, π, χ), such that
G, χ, π, i |= Tp(ψ2) iff there exists j with j = i or (∀k, i ≤ k < j, satisfying that G, χ, π, k |=
Tp(ψ1)), such that G, χ, π, i |= Tp(ψ2) by semantics definition and Corollary 2 iff there
exists j with j = i or (∀k, i ≤ k < j, satisfying that G, χ, π, k |= ψ1), such that G, χ, π, i |= ψ2
by induction iff G, χ, π, i |= ψ1Uψ2.

Secondly, according to a well-known property even(q) “a proposition q has to be
true in each even state of one sequence” cannot be expressed in LTL [14], which can be
expressed in LDL by [(true; true)∗]q. Considering those CGSs with only one agent, LDL-SL
formula 〈〈x〉〉(a, x)E[(true; true)∗]q cannot be expressed by any BSL formula.

Hence we have shown that LDL-SL is more expressively than BSL.

Secondly, we consider a one-goal fragment LDL-SL[1G] and an ATL-like fragment
ADL∗ of LDL-SL.

The syntax of LDL-SL[1G] is the same as that of LDL-SL, except for state formulas:

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Eψ | ℘�ϕ, (18)

where p ∈ AP, and ℘� is a closed combination of a quantification/binding prefix.
The following is ATL-like fragment ADL∗ of LDL-SL, of which the path formulas are

different from those of ATL∗.

Definition 11 (ADL∗ Syntax). The syntax of ADL∗ is defined as follows:

State formula ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ψ

Path formula ψ ::= ϕ | ¬ψ | ψ ∧ ψ | 〈ρ〉ψ
Regular expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ∗,

where p ∈ AP, A ⊆ Ag, and Φ ∈ L(AP).

By the following lemma, any ATL∗ formula can be expressed in ADL∗.

Lemma 5. Any ATL∗ formula can be linearly encoded by one ADL∗ formula.

Proof. Define two translation functions Ts : ATL∗s → ADL∗s, Tp : ATL∗p → ADL∗p:

• Ts(p) = p; Ts(¬ϕ) = ¬Ts(ϕ); Ts(ϕ1 ∧ ϕ2) = Ts(ϕ1) ∧s (ϕ2);
• Ts(〈〈A〉〉ψ) = 〈〈A〉〉Tp(ψ).
• Tp(ϕ) = Ts(ϕ); Tp(¬ψ) = ¬Tp(ψ); Tp(ψ1 ∧ ψ2) = Tp(ψ1) ∧ Tp(ψ2);
• Tp(©ψ) = 〈true〉Tp(ψ); Tp(�ψ) = 〈true∗〉Tp(ψ);
• Tp(ψ1Uψ2) = 〈(Tp(ψ1)?; true)∗〉Tp(ψ2).

Here to show this lemma, similarly with those in Theorem 2, the only different case is
ϕ = 〈〈A〉〉ψ. Given a CGS G, a state w, a state formula ϕ,

• for the case ϕ = 〈〈A〉〉ψ: G, w |= Ts(〈〈A〉〉ψ) iff G, w |= 〈〈A〉〉Tp(ψ) by definition of Ts

iff there exist collective strategies gA s.t. for each π ∈ out(w, gA), G, π, 0 |= Tp(ψ)

12

Mathematics 2021, 9, 3052

by semantics iff there exist collective strategies gA s.t. for each π ∈ out(w, gA),
G, π, 0 |= ψ by induction iff G, w |= 〈〈A〉〉ψ by semantics.

Obviously, for any ϕ ∈ ATL∗s, the size of Ts(ϕ) is O(|ϕ|).

Thirdly, we consider one-goal fragment LDL-SL[1G]s f and ATL-like fragment ADL∗s f
of LDL-SLs f . The syntax of LDL-SL[1G]s f is the same as that of LDL-SL[1G] except for
regular expressions:

Regular expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ, (19)

where Φ ∈ L(AP), and ψ is a path formula in LDL-SL[1G]s f .
The syntax of ADL∗s f is the same that of ADL∗ except for regular expressions,

Regular expression ρ ::= Φ | ψ? | ρ + ρ | ρ; ρ | ρ, (20)

where Φ ∈ L(AP) and ψ is a path formula in ADL∗s f .
Here we consider three kinds of fragments of LDL-SL: one-goal fragment, star-free,

and ATL-like. The semantics of these logics are the same as those of LDL-SL and LDL-SLs f ,
respectively.

5. Expressivity Relations among Fragments of LDL-SL and LDL-SLs f

In this section, we study the expressivity relations among mentioned fragments of
LDL-SL and LDL-SLs f . Firstly, we give the following definitions about the expressive
power between two logics.

Logic L1 is at least as expressive as logic L2, denoted as L2 ⊆ L1, if given a model M,
for any formula ϕ in L2, there exists a formula ϕ′ in L1, satisfying that M |= ϕ iff M |= ϕ′.
L1 is strictly more expressive than L2, denoted as L2 � L1, if L2 ⊆ L1, but L1 ⊆ L2 does not
hold. L1 has the same expressive power as L2, denoted as L1 ≡ L2, if L1 ⊆ L2 and L2 ⊆ L1. L1
and L2 are incomparable if neither L2 ⊆ L1 nor L1 ⊆ L2.

According to Theorem 1, star-free type strategic logics have the same expressive power
as their corresponding strategic logics based on LTL or CTL∗.

Theorem 3. Star-free strategic logics have the same expressive power as their corresponding
strategic logics whose underlying logic is LTL or ATL∗.

1. ADL∗s f ≡ ATL∗;
2. LDL-SLs f ≡ BSL;
3. LDL-SL[1G]s f ≡ BSL[1G].

Proof. By applying Lemma 2 that LDLs f is equivalent with LTL, these results can be shown
by induction of the structures of formulas similarly. Here, we just sketch the ideas of proofs
as follows.

In order to show that ADL∗s f ⊆ ATL∗, by induction hypothesis, we just consider the
case ϕ = 〈〈A〉〉ψ, which is an ADL∗s f formula. Suppose for each maximal state subformulas
ϕ′ in ϕ, by induction, there is an ATL∗ formula equivalent with ϕ′. If we use a new atom
pϕ′ to replace it, then make ψ be equivalent with a pure LDL formula. By Lemma 2, replace
ψ with one LTL formula; and further replace those new atoms pϕ′ with original ATL∗ state
formulas. Hence the resulting formula is an ATL∗ state formula, equivalent with ϕ.

Similarly, we can show that LDL-SLs f ⊆ BSL and LDL-SL[1G]s f ⊆ BSL[1G].
For item 1: In order to show ATL∗ ⊆ ADL∗s f , define two functions Ts and Tp similarly

with those in Lemma 5 except the following two cases in Tp.

Tp(�ψ) = 〈 f alse〉Tp(ψ), Tp(ψ1Uψ2)=Tp(ψ2)∨〈 f alse;¬Tp(ψ1)?; f alse; true〉Tp(ψ2) (21)

13

Mathematics 2021, 9, 3052

Here, the proof for case ψ = �ψ1 or ψ = ψ1Uψ2 about G, π, i |= Tp(ψ) iff G, π, i |= ψ
is the same as that of Lemma 2.

Similarly to Item 1, and by Theorem 2, BSL ⊆ LDL-SLs f and BSL[1G] ⊆ LDL-SL[1G]s f
can be shown.

Theorem 4. The following fragments are incomparable.

1. BSL and LDL-SL[1G] are incomparable.
2. BSL[1G] and ADL∗ are incomparable.

Proof. Here, we just sketch the ideas of proofs.
For item (1), we consider the following formulas:

• ϕ1 = 〈〈x〉〉[[y]]〈〈z〉〉((a, x)(b, y)E© p ∨ (a, y)(b, z)E©¬p)
• ϕ2 = 〈〈x〉〉(a, x)(E[(true; true)∗]p)

where ϕ1 is a BSL formula, but it cannot be expressed in LDL-SL[1G]; = conversely, ϕ2 is a
LDL-SL[1G] formula, but it cannot be expressed in BSL.

In order to show that ϕ2 cannot be expressed in BSL, we consider all the CGSs with
just one agent and an action. So in these CGSs, each BSL sentence is equivalent with one
CTL∗ state formula. Suppose ϕ is a CTL∗ state formula with m© temporal operators; then,
consider the following two CGSs with just one agent and an action—see Figure 1. In G1,
p holds in all states, and in G2, p does not hold only in state w2m+1. Due to unique path
starting from the initial state, we can see that ϕ is equivalent with an LTL formula ψ under
each Gi, i ∈ {1, 2}. Then by the following theorem given by Wolper,

Theorem 4.1 ([14]) Given an atomic proposition q, any LTL formula f (q) containing m
© temporal operators has the same truth value on all sequences such as qk(¬q)qω , here
k > m and f (q) is a LTL formula containing only atomic q.

It holds that G1 |= ψ iff G2 |= ψ. However, G1 |= ϕ2, but G2
|= ϕ2. Therefore, ϕ2
cannot be expressed in BSL.

Figure 1. Two CGSs for ϕ2: the top is G1 and the bottom is G2.

For item (2), we consider the following two formulas:

• ϕ3 = [[x]]〈〈y〉〉[[z]](a, x)(b, y)(c, z)E© p
• ϕ4 = 〈〈{a}〉〉([(true; true)∗]p)

Here, ϕ3 is a BSL[1G] formula, but it cannot be expressed in ADL∗; conversely, ϕ4 is a
ADL∗ formula, but cannot be expressed in BSL[1G].

Like in [24], consider two concurrent game structures CGSs with AP = {p} and
Ag = {a, b, c}, G1 = 〈Ac1, W1, λ1, τ1, w0〉, and G2 = 〈Ac2, W2, λ2, τ2, w0〉, where
Ac1 = {0, 1}, Ac2 = {0, 1, 2}, W1 = W2 = {w0, w1, w2}, λ1 = λ2, and D1 = {00∗, 11∗},
D2 = {211, 202, 200, 00∗, 11∗, 12∗}. λ1(w0) = λ1(w2) = ∅, λ1(w1) = {p}. ∀d ∈ Di,
τi(w0, d) = w1; ∀d ∈ Dci \ Di, τ(w0, d) = w2; ∀d ∈ Dci, w ∈ {w1, w2}, τi(w, d) = w, here
i ∈ {1, 2} and Dci = AcAg

i . We can show that G1 |= ϕ3, but G2
|= ϕ3. Inspired by the
approach in [24], it can be shown that any ADL∗ formula cannot distinguish between G1
and G2.

14

Mathematics 2021, 9, 3052

In order to show that ϕ1 cannot be expressed in LDL-SL[1G], we can adopt the same
two CGSs like for ϕ3 here. The proof that ϕ4 cannot be expressed in BSL[1G] is similar with
that for ϕ2.

Theorem 5. Inclusion relations among existing strategic logics:

1. ADL∗s f � ADL∗ � LDL-SL[1G] � LDL-SL;
2. LDL-SL[1G]s f � LDL-SL[1G];
3. BSL � LDL-SL.

Proof. By Lemma 1, the star-free logic ADL∗s f (resp. LDL-SL[1G]s f) is less expressive than
ADL∗. (resp. LDL-SL[1G]). One-goal fragment LDL-SL[1G] is obviously less expressive
than LDL-SL, due to the restriction about the alternations about strategy variables and
agent bindings. Furthermore, the ATL-like fragment ADL∗ of LDL-SL is less than one-goal
fragment LDL-SL[1G] of LDL-SL, since the coalition operators 〈〈A〉〉 can be specified by the
℘� prefix.

According to Theorems 3–5, as well as CL � ATL � ATL∗ � BSL[1G] � SL, we can
obtain an expressivity graph; see Figure 2.

LDL-SL

LDL-SLs fBSL LDL-SL[1G]

LDL-SL[1G]s f ADL∗

ADL∗s f

BSL[1G]

ATL∗

ATL

CL

Figure 2. Expressivity Graph.

Here, coalition logic (CL) [29] is a logic, which just has coalition operators without
temporal operators.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉ϕ. (22)

6. Positive and Negative Properties for LDL-SL

In this section, similar with those results about BSL in [30], we state negative/positive
results about LDL-SL.

Firstly, as in [30], for LDL-SL, we introduce four basic definitions, including bisim-
ilarity between two CGSs, local isomorphism between two CGSs, state-unwinding, and
decision-unwinding.

Definition 12 ([30]). CGSs G1 = 〈Act1, W1, λ1, τ1, w0
1〉 and G2 = 〈Act2, W1, λ2, τ2, w0

2〉 are
called bisimilar, denoted as G1 ∼ G2, if and only if (1) there exists one relation ∼ ⊆ W1 ×W2,
named as bisimulation relation, and (2) there exists a function f : ∼ → 2Act1×Act2 , named as
bisimulation function, satisfying that:

1. w0
1 ∼ w0

1;
2. for each state pair (w1, w2) ∈ W1 ×W2, if w1 ∼ w2 then

(a) λ1(w1) = λ2(w2);
(b) for each ac1 ∈ Act1, there exists ac2 ∈ Act2 satisfying (ac1, ac2) ∈ f (w1, w2);
(c) for each ac2 ∈ Act2, there exists ac1 ∈ Act1 satisfying (ac1, ac2) ∈ f (w1, w2);

15

Mathematics 2021, 9, 3052

(d) for each decision pair (d1, d2) ∈ f̂ (w1, w2), it holds that τ1(w1, d1) ∼ τ(w2, d2).

Here, f̂ : ∼→ 2Dc1×Dc2 is the lifting of function f from actions to decisions, satisfying

(d1, d2) ∈ f̂ (w1, w2) iff it holds that (d1(a), d2(a)) ∈ f (w1, w2), ∀a ∈ Ag. (23)

Obviously, according to the definition of bisimulation relation, the bisimulation of two
CGSs can imply the existence of a bismulation between two decisions in them.

Proposition 1. Suppose that two concurrent game structures G1 = 〈Act1, W1, λ1, τ1, w0
1〉 and

G2 = 〈Act2, W1, λ2, τ2, w0
2〉 are bisimilar with a bisimulation relation∼ and a bisimulation relation

f , for each state pair (w1, w2) ∈ W1 ×W2 with w1 ∼ w2, it holds that:

1. for each d1 ∈ Dc1, there exists d2 ∈ Dc2 satisfying that (d1, d2) ∈ f̂ (w1, w2);
2. for each d2 ∈ Dc2, there exists d1 ∈ Dc1 satisfying that (d1, d2) ∈ f̂ (w1, w2).

Next, we define the notion of local isomorphism relation between two CGSs.

Definition 13 ([30]). Two CGSs G1 = 〈Act1, W1, λ1, τ1, w0
1〉 and G2 = 〈Act2, W1, λ2, τ2, w0

2〉
are locally isomorphic, denoted as G1

∼= G2, if and only if there exists a bisimulation relation
∼ ⊆ W1 ×W2 between these two CGSs, satisfying that, for each state pair (w1, w2) ∈ W1 ×W2
with w1 ∼ w2

∼ ∩ ({τ1(w1, d) : d ∈ Dc1} × {τ2(w2, d) : d ∈ Dc2}) (24)

is bijective between the successors of w1 and those of w2.

Now we extend the definition of locally isomorphic to tracks, paths, strategies, and as-
signments as follows.

Definition 14. Let ∼ (resp. f) be a bisimulation relation (resp. function) between two CGSs
G1 = 〈Act1, W1, λ1, τ1, w0

1〉 and G2 = 〈Act2, W1, λ2, τ2, w0
2〉.

• Two tracks h1 ∈ Trk(G1) and h2 ∈ Trk(G2) are locally isomophic, denoted as h1 ∼ h2, if (1)
len(h1) = len(h2); (2) ∀i.0 ≤ i < len(h1), (h1)i ∼ (h2)i holds.

• Two paths π1 ∈ Path(G1) and π2 ∈ Trk(G2) are locally isomophic, denoted as π1 ∼ π2,
if ∀i ∈ N, (π1)i ∼ (π2)i holds.

• Two strategies g1 ∈ Str(G1) and g2 ∈ Str(G2) are locally isomophic, denoted as g1 ∼ g2,
if ∀k ∈ {1, 2} and hk ∈ dom(gk), there exists h3−k ∈ dom(g3−k) with π1 ∼ π2 satisfying
(g1(h1), g2(h2)) ∈ f (lst(h1), lst(h2)).

• Two assignments χ1 ∈ Asg(G1) and χ2 ∈ Asg(G2) are locally isomorphic, denoted as
χ1 ∼ χ2, if (1) dom(χ1) = dom(χ2) and (2) χ1(h) ∼ χ2(h), ∀h ∈ dom(χ2).

In Definition 14, obviously, if χ1 ∼ χ2 and g1 ∼ g2, then χ1[x �→ g1] ∼ χ2[x �→ g2].
Further, if ∀i ∈ {1, 2}, χi is a complete wi-total assignment, and w1 ∼ w2, then it holds that
π1 ∼ π2 and (χ1)(π1)≤k

∼ (χ2)(π2)≤k
, ∀k ∈ N, where πi is the (χi, wi)-play.

To show whether LDL-SL has tree model properties, consider two unwinding forms of
concurrent game structures; one is about state-unwinding, and another is about
decision-unwinding.

Definition 15 ([30]). Given a CGS G = 〈Act, W, λ, τ, w0〉, the state-unwinding of G is the new
CGS Gsu = 〈Ac, Wsu, λsu, τsu, ε〉, where

• Wsu = {h≥1 ∈ W∗ : h ∈ Trk(G, w0)};
• τsu(h, d) = h · τ(last(w0 · h), d), here d ∈ Dc;
• there exists a surjective function surj : Wsu → W, satisfying that for each h ∈ Wsu and

d ∈ Dc, (1) surj(h) = last(w0 · h); (2) λsu(h) = λ(surj(h)).

16

Mathematics 2021, 9, 3052

From Definition 15, the state-unwinding Gsu of a CGS G = 〈Act, W, λ, τ, w0〉 is a tree,
whose direction set is just the set W of states in G.

Definition 16 ([30]). Given a CGS G = 〈Act, W, λ, τ, w0〉, the decision-unwinding of G is the
new CGS Gdu = 〈Act, Wdu, λdu, τdu, ε〉, where

• Wdu = Dc∗ and τdu(h, d) = h · d;
• there exists a surjective function surj : Wdu → W, satisfying that for each h ∈ Wdu and

d ∈ Dc, (1) surj(ε) = w0; (2) surj(τdu((h, d)) = τ(surj(h), d); (3) λdu(h) = λ(surj(h)).

From Definition 16, the decision-unwinding Gdu of a CGS G = 〈Act, W, λ, τ, w0〉 is a
tree, whose direction set is just the set Dc (i.e., ActAg) in G.

Theorem 6 ([30]). Given a CGS G, the following properties hold:

1. G and its state-unwinding Gsu are locally isomorphic;
2. G and decision-unwinding Gdu are bisimilar;
3. there exists a CGS G′, satisfying that G′ and G′du are not locally isomorphic.

We note that any CGS G just has a unique associated state-unwinding Gsu and a unique
associated decision-unwinding Gdu.

For BSL logic, the following negative properties hold.

Theorem 7 ([30]). Four negative properties for BSL:

• it holds that BSL is not decision-unwinding invariant;
• it holds that BSL does not have the bounded tree model property;
• it holds that BSL does not have the finite model property;
• it holds that BSL is not bisimulation invariant.

These negative results can be extended into LDL-SL.

Theorem 8. Four negative properties for LDL-SL:

• it holds that LDL-SL is not decision-unwinding invariant;
• it holds that LDL-SL does not have the bounded tree model property;
• it holds that LDL-SL does not have the finite model property;
• it holds that LDL-SL is not bisimulation invariant.

Proof. By Theorems 2 and 7, these results are the same as those for BSL.

Similar with those positive properties for BSL [30], the following properties also hold
for LDL-SL.

Theorem 9. Three positive properties for LDL-SL:

1. it holds that LDL-SL is local isomorphism invariant;
2. it holds that LDL-SL is state-unwinding invariant;
3. it holds that LDL-SL has the unbounded tree model property.

Proof. For item 1:
For any LDL-SL formula ϕ, given any two CGSs G1 and G2 with G1

∼= G2, two
states w1 ∈ W1 and w2 ∈ W2 with w1 ∼ w2, two assignments χ1 ∈ Asg(G1, w1), and
χ2 ∈ Asg(G, w2) with χ1 ∼ χ2, here f ree(ϕ) ⊆ dom(χ1) = dom(χ2), we inductively
show that

G1, χ1, w1 |= ϕ if and only if G2, χ2, w2 |= ϕ. (25)

From the bisimulation definition and the inductive hypothesis, the cases of atoms and
Boolean connectives are easy. As for the cases of existential quantification 〈〈x〉〉 and agent
binding (a, x), the proofs are the same as those in [30]. Here we just show the case of Eψ,

17

Mathematics 2021, 9, 3052

here ψ is a path formula. G1, χ1, w1 |= Eψ iff there exists a π ∈ out(G1, χ1, w1) such that
G1, χ1, π1, 0 |= ψ.

That means we should mutually show with state formulas by induction, i.e.,

G1, χ1, π1, i |= ψ if and only if G2, χ2, π2, i |= ψ. (26)

For the case ψ = ϕ′: G1, χ1, π1, i |= ϕ′ iff G1, χ1, (π1)i |= ϕ′ iff G2, χ2, (π2)i |= ϕ2 by
induction iff G2, χ2, π2, i |= ϕ′.

For the cases of Boolean connectives, these are easy from the definitions and the
inductive hypothesis.

For the case ψ = 〈ρ〉ψ′: we need to show the following by induction,

(i, j) ∈ R(G1, ρ, π1, χ1) if and only if (i, j) ∈ R(G2, ρ, π2, χ2). (27)

For case ρ = Φ: (i, j) ∈ R(G1, Φ, π1, χ1) iff j = i + 1 and G1, χ1, π1, i |= Φ by definition
iff j = i + 1 and G2, χ2, π2, i |= Φ.

For case ρ = ψ?: (i, j) ∈ R(G1, ψ?, π1, χ1) iff j = i and G1, χ1, π1, i |= ψ by definition
iff j = i and G2, χ2, π2, i |= ψ by induction.

For case ρ = ρ1 + ρ2: (i, j) ∈ R(G1, ρ1 + ρ2, π1, χ1) iff (i, j) ∈ R(G1, ρ1, π1, χ1) or
(i, j) ∈ R(G1, ρ2, π1, χ1) iff (i, j) ∈ R(G2, ρ1, π2, χ2) or (i, j) ∈ R(G2, ρ2, π2, χ2) by induc-
tion iff (i, j) ∈ R(G2, ρ1 + ρ2, π2, χ2).

For case ρ = ρ1; ρ2: (i, j) ∈ R(G1, ρ1; ρ2, π1, χ1) iff there exists k, i ≤ k ≤ j, satisfying
that (i, k) ∈ R(G1, ρ1, π1, χ1) and (k, j) ∈ R(G1, ρ2, π1, χ1) iff there exists k, i ≤ k ≤ j,
satisfying that (i, k) ∈ R(G2, ρ1, π2, χ2) and (k, j) ∈ R(G2, ρ2, π2, χ2) by induction iff
(i, j) ∈ R(G2, ρ1; ρ2, π2, χ2).

For case ρ = ρ∗1: (i, j) ∈ R(G1, ρ∗1, π1, χ1) iff j = i or (i, j) ∈ R(G1, ρ1; ρ∗1, π1, χ1) iff
j = i or (i, j) ∈ R(G2, ρ2; ρ∗2, π1, χ1) by induction iff (i, j) ∈ R(G2, ρ∗1, π2, χ2).

Therefore, it implies that LDL-SL is indeed invariant under local isomorphism.
For item 2: by item 1 in Theorem 6, for any CGS G, it holds that G ∼= Gsu. So by item 1,

each LDL-SL sentence ϕ is an invariant for CGS G and its state-unwinding Gsu.
For item 3: let the LDL-SL sentence ϕ be satisfiable. Therefore, there exists one CGS

G |= ϕ, and by item 2, it holds that Gsu |= ϕ. Since Gsu is a tree model, this means that
LDL-SL has the (unbounded) tree model property.

7. Complexities of Model Checking

In this section, we analyse the computational complexities of the model checking
problems for these strategic logics. Firstly, we present the definition about the model
checking problem. Secondly, we study the model-checking complexities for ADL∗, LDL-
SL[1G], and LDL-SL. Then we apply expressivity results to infer other logics’ model-
checking complexities. Due to space restriction, we omit the introduction about automaton
theory; please refer to, e.g., [31].

Let |G| (resp. |ϕ|) denote the number of transitions in G (resp. the length of ϕ).

Problem 1 (Model-Checking Problem (MCP) for Strategic Logic)). given a concurrent game
structure CGS G, a sentence ϕ in strategic logic L, and a state w, decide whether G, w |= ϕ.

7.1. Model-Checking for ADL∗

Before considering the MCP for ADL∗, remember that a state formula in a test in a
ADL∗ state formula ϕ is also a state subformula of ϕ.

Theorem 10. The computational complexity of model-checking for ADL∗ is 2EXPTIME-complete,
in time polynomial w.r.t. the size of CGS model and double exponential in the size of ADL∗ formula.

18

Mathematics 2021, 9, 3052

Proof. Firstly, because the MCP for ATL∗ is 2EXPTIME-complete [5], which can be linearly
encoded by that for ADL∗ by Lemma 5, then the MCP for ADL∗ is 2EXPTIME-hard. Next
we show that the complexity of model checking for ADL∗ is in 2EXPTIME.

Given a CGS model G= 〈Ac, W, λ, τ, w0〉 and an ADL∗ formula ϕ, as in the model-
checking algorithm for CTL, we adopt the labelling algorithm, in a bottom-up fashion,
starting from the innermost state subformulas of ϕ. We label each state w of G by all
state subformulas of ϕ that are satisfied in w. To give this algorithm, we only consider
the case ϕ = 〈〈A〉〉ψ, for each subformula ϕ′ such as 〈〈B〉〉ψ′ in ψ, introduce a new atomic
proposition pϕ′ in G, where for each state w, pϕ′ ∈ λ(w) iff G, w |= ϕ′. Therefore, assume
that ψ is just an LDL formula.

Now we mainly consider ϕ = 〈〈A〉〉ψ, where ψ is an LDL formula.

1. Construct a Büchi tree automaton AG,w,A as in [5].
Here, AG,w,A accepts exactly the (w, A)-execution trees, which are trees induced by
out(w, gA), where gA is a collective strategy of A. Automaton AG,w,A is bounded by
O(| G |).

2. Construct a Rabin tree automaton AAψ.

Here, AAψ accepts all trees that satisfy the CDL∗ formula Aψ. Aψ has 22O(|ψ|)
states

and 2O(|ψ|) Rabin pairs.

• For LDL formula ψ, construct an alternating Büchi automaton (ABA) Aψ with
linearly many states in ψ [21].

• Turn automaton Aψ into a nondeterministic Büchi automaton (NBA) A′
ψ of

exponential size of |ψ| [32].
• Turn automaton A′

ψ into a deterministic Rabin automaton A′′
ψ (DRA) of double-

exponential size of |ψ| [33].
• According to automaton A′′

ψ, build the Rabin tree automaton AAψ for Aψ in a
relatively obvious method; this tree automaton is designed to simply run the
deterministic string automaton for ψ down every path from the root.

3. Construct product automaton A = AAψ ×AG,w,A, which is a Rabin tree automaton
with n = O(|AAψ | · |AG,w,A |) many states and r = 2O(|ψ|) many Rabin pairs.
The decidable problem is to determine whether L(A)
= ∅ can be done in time
O(n · r)3r [34,35].
The automata A is a Rabin tree automaton that accepts precisely the (w, A)-execution
trees that satisfy Aψ.

Since G, w |= 〈〈A〉〉ψ iff there is a collective strategy gA so that all w-computations in
out(w, gA) satisfy ψ. Since each 〈w, A〉-execution tree corresponds to a set gA of strategies,
it follows that G, w |= 〈〈A〉〉ψ iff the product automaton is nonempty. According to the
above steps, the whole algorithm runs in polynomial time in the size of model and double
exponential time in the size of formula.

In fact, according to the above algorithm, since both CTL∗ satisfiability-checking [36]
and module-checking [37] problems are 2EXPTIME-complete, then CDL∗ satisfiability and
module checking problems are also 2EXPTIME-complete.

7.2. Model-Checking for LDL-SL[1G]

To give a model-checking algorithm for LDL-SL[1G], we adopt a similar approach pro-
posed in [4], which is used to show that SL1G[F] model checking is 2EXPTIME-complete.

First, we introduce the concept of concurrent multi-player parity game (CMPG)
P = (Ag, Ac, S, s0, p, Δ) [38], here Ag = {1, · · · , n}, Δ is a transition function, and
p : S → N is a priority function. In a CMPG P , there are n agents playing concur-
rently with infinite rounds. Informally, in a CMPG, if there exists one strategy for agent 0,
s.t., for any strategy for agent 1, there exists one strategy for agent 2, and so forth, which
make all the induced plays satisfy the parity condition, and then the existential coalition
wins; otherwise, the universal coalition wins.

19

Mathematics 2021, 9, 3052

In a CMPG, P = (Ag, Ac, S, s0, p, Δ), the winners of which can be determined in
polynomial-time with respect to |S| and |Ac| and exponential-time with respect to |Ag|
and max p [38].

Theorem 11. The MCP for LDL-SL[1G] is 2EXPTIME-complete.

Proof. Firstly, Hardness follows from the fact that the MCP for BSL[1G] is 2EXPTIME-
complete [24]. Then, we consider the lower bound of LDL-SL[1G].

Consider a CGS G = 〈Ac, W, λ, τ, w0〉 and a LDL-SL[1G] sentence ϕ. As in ADL∗, we
present a labelling algorithm to solve LDL-SL[1G] model checking. Like in [4], here we just
consider the case sentence ℘�ψ, where quantifiers perfectly alternate between existential
and universal 〈〈x1〉〉[[x2]] · · · [[xn]], and ψ is an LDL formula. Now ψ can be interpreted
over paths of the pointed Kripke model M = (W, R, λ, w0), where R = {(w1, w2)|∃d ∈
AcAg, w2 = τ(w1, d)}.

In [21], for LDL formula ψ, construct an ABA Bψ with linearly many states in ψ, and
then turn Bψ into an NBA Aψ of exponential size of |ψ| [32]. Combining Aψ with Kripke
model M, we get a new NBA AM,ψ, which accepts exactly all the infinite paths π of M s.t.
π, 0 |= ψ. Then, by [39], we convert AM,ψ into a deterministic parity automaton (DPA)

AM,ψ = (W, Q, q0, δ, p) of size in 22O(|ψ|)
and index bounded by 2O(|ψ|).

Now as in [4], combining CGS G with AM,ψ, we use the same approach to define the
following CMPG P = (Ag′, Ac, S, s0, p, Δ′), where Ag′ is a set of agents, one for every
variable occurring in ℘; S = W × Q. Firstly, game P emulates a path π generated in G;
secondly, if the generated path π in G is read, then the game emulates the execution of
AM,ψ. Hence, each execution (π, l) ∈ Wω × Qω in game P satisfies the parity condition
determined by the p′ in G iff π, 0 |= ψ. In addition, because AM,ψ is deterministic, for each
possible track h ∈ Trk(G), there is one unique partial path lh that makes the partial
execution (h, lh) possible in P . This makes the strategies from w0 in Str(G) one-to-one with
the strategies from s0 in Str(P). Then P has a winning strategy if and only if G, w0 |= ℘�ψ.

As for complexity, the size of P is O(|W| · |Q|), where W is the state space of G
and |Q| = 22O(|ψ|)

, i.e., doubly exponential in the size of ψ. Since AM,ψ results from
one NGBW BM,ψ, whose size is 2O(|ψ|), transformed into a DPW, which needs another
exponential in ψ. Moreover, since the transformation from an NGBW to a DPW just needs
2O(|ψ|) priorities, so the number of priorities in P is 2O(|ψ|). Hence, the constructed CMPG
P can be solved in time polynomial with respect to the size of the CGS model G and double
exponential in formula |ψ|.

In fact, according to Theorem 11, since ADL∗ and BSL[1G] can both be linearly
embedded into LDL-SL[1G], then the MCPs for both logics are in 2EXPTIME.

7.3. Model-Checking for LDL-SL

Since the MCP for BSL is non-elementary-complete [24], in addition to Theorem 2,
then the lower bound of the MCP for LDL-SL is non-elementary.

Theorem 12. The MCP for LDL-SL is non-elementary-hard.

As for the upper bound of MCP for LDL-SL, we conjecture that we could reduce
the MCP for LDL-SL into that for QCTL∗ under the tree semantics [40], inspired by the
approach proposed in [41].

Conjecture 1. The MCP for LDL-SL is non-elementary-complete.

In addition, since ATL∗, BSL, and BSL[1G] can be linearly embedded into their cor-
responding star-free strategic logics ADL∗s f , LDL-SLs f , and LDL-SL[1G]s f , respectively,

20

Mathematics 2021, 9, 3052

MCPs for ATL∗ [5] and BSL[1G] [24] are 2EXPTIME-complete, and MCP for BSL is non-
elementary-complete [24], then the following holds.

Corollary 3. The MCPs for both ADL∗s f and LDL-SL[1G]s f are 2EXPTIME-hard. The MCP for
LDL-SLs f is non-elementary-hard.

Although similar expressive power by Theorem 3, we do not know how to linearly
translate star-free logics to the corresponding logics. For the time being, the upper bounds
of these star-free strategic logics are not known.

The main complexity results about the MCPs are given in Table 1.

Table 1. Complexity of Model Checking for Strategic Logics.

Strategic Logics Complexity of Model-Checking

CL PTIME-complete [42]

ATL PTIME-complete [5]

ATL∗ 2EXPTIME-complete [5]

ADL∗s f 2EXPTIME-hard (Corollary 3)

ADL∗ 2EXPTIME-complete (Theorem 10)

BSL[1G] 2EXPTIME-complete ([24])

BSL non-elementary-complete ([24])

LDL-SLs f [1G] 2EXPTIME-hard (Corollar 3)

LDL-SLs f non-elementary-hard (Corollary 3)

LDL-SL[1G] 2EXPTIME-complete (Theorem 11)

LDL-SL non-elementary-hard (Theorem 12)

8. Conclusions and Future Work

In this paper, we propose logic LDL-SL, an expressive new strategic logic based
on linear dynamic logic, which can naturally express ω-regular properties. This logic
is a branching-time extension of SL based on linear-time temporal logic. We show that
LDL-SL is more expressive than SL, whose model-checking complexity is non-elementary-
complete. Moreover, based on LDL, we define similar fragments of LDL-SL, which are
more expressive than corresponding strategic logics based on LTL. However, all these
fragments have the same model checking complexity, i.e., are 2EXPTIME-complete. At the
same time, we define star-free-like strategic logics, based on star-free regular expressions.
We show that these logics have the same expressivity as those corresponding strategic
logics based on LTL or CTL∗.

In short, based on LDL, we propose a new class of strategic logics. These logics
have the same model-checking complexities as, but more expressivity than, current main-
stream strategic logics. Furthermore, these logics can extend the application areas in
multi-agent systems.

However, until now, the upper bounds of LDL-SL and its star-free fragments (ADL∗s f ,
LDL-SL[1G]s f , and LDL-SLs f) are not known. In future, we will study the compact bounds
of these logics. As in [43,44], we will consider concrete implementations about these
model checking problems. In addition, here we just consider perfect recall strategies in
multi-agent concurrent games with complete information. Next, we will further study
these new proposed strategic logics under incomplete information [45–47], where the
strategies of agents maybe memoryless or perfect recall [48]. In this paper, we present
formal frameworks and show technical results; in the future, we will also present case
studies or practical applications to illustrate these theories, such as information security [49],
solving winning strategies [50], and voting protocol [51].

21

Mathematics 2021, 9, 3052

Author Contributions: Conceptualization, L.X. and S.G.; methodology, L.X. and S.G; validation, L.X.
and S.G.; formal analysis, L.X.; investigation, L.X.; resources, L.X.; writing—original draft preparation,
L.X.; writing—review and editing, L.X. and S.G.; project administration, S.G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Our deepest gratitude goes to the anonymous reviewers for their careful work
and thoughtful suggestions that have helped improve this paper substantially.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ADL∗ Alternating-time dynamic strategic logic
AMC Alternating-time mu-calculus
ATL/ATL∗ (Flat) alternating-time temporal logic
BSL Branching version of Strategy Logic
CDL∗ Computational-tree dynamic logic
CGS Concurrent game structure
CL Coalition logic
CMPG Concurrent multi-player parity game
CTL/CTL∗ (Flat) computational tree logic
LDL Linear dynamic logic
LDL-SL LDL-based Strategy Logic
LTL Linear-time temporal logic
MCP Model checking problem
PDL Propositional Dynamic Logic
QCTL∗ Quantified computational tree logic
sf Star-free
SL Strategy Logic

References

1. Pnueli, A. The temporal semantics of concurrent programs. Theor. Comput. Sci. 1981, 13, 45–60. [CrossRef]
2. Clarke, E.M.; Emerson, A. Design and Synthesis of Synchronization Skeletons Using Branching-time Temporal Logic. In Logic of

Programs: Workshop on Logic of Programs; Kozen, D.C., Ed.; Springer: Berlin/Heidelberg, Germany, 1982; Volume 131, pp. 45–60.
3. Emerson, E.A.; Halpern, J.Y. “Sometimes” and “Not Never” revisited: On branching versus linear time temporal logic. J. ACM

1986, 33, 1, 151–178. [CrossRef]
4. Bouyer, P.; Kupferman, O.; Markey, N.; Maubert, B.; Murano, A.; Perelli, G. Reasoning about Quality and Fuzziness of Strategic

Behaviours. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence Main Track, Macao,
China, 10–16 August 2019; pp. 1588–1594.

5. Alur, R.; Henzinger, T.A. Alternating-time temporal logic. J. ACM 2002, 49, 5, 672–713. [CrossRef]
6. Chatterjee, K.; Henzinger, T.A.; Piterman, N. Strategy logic. Inf. Comput. 2010, 208, 6, 677–693. [CrossRef]
7. Mogavero, F.; Murano, A.; Vardi, M.Y. Reasoning About Strategies. In Proceedings of the IARCS Annual Conference on

Foundations of Software Technology and Theoretical Computer Science, (FSTTCS-2010), Chennai, India, 15–18 December 2010;
pp. 133–144.

8. Aminof, B.; Malvone, V.; Murano, A.; Rubin, S. Graded Strategy Logic: Reasoning about Uniqueness of Nash Equilibria. In
Proceedings of the AAMAS 2016, Singapore, 9–13 May 2016; pp. 133–144.

9. Bozzelli, L.; Murano, A.; Sorrentino, L. Alternating-time temporal logics with linear past. Theor. Comput. Sci. 2020, 813, 199–217.
[CrossRef]

10. Belardinelli, F.; Knight, S.; Lomuscio, A.; Maubert, B.; Murano, A.; Rubin, S. Reasoning About Agents That May Know Other
Agents’ Strategies. In Proceedings of the IJCAI 2021, Montreal, QC, Canada, 19–27 August 2021; pp. 1787–1793.

11. Pnueli, A. The Temporal Logic of Programs. In Proceedings of 18th Annual Symposium on Foundations of Computer Science ,
Providence, RI, USA, 31 October–1 November 1977; pp. 46–57.

22

Mathematics 2021, 9, 3052

12. Emerson, E.A.; Halpern, J.Y. Decision Procedures and Expressiveness in the Temporal Logic of Branching Time. In Proceedings of
the 14th Annual ACM Symposium on Theory of Computing, San Francisco, CA, USA, 5–7 May 1982; pp. 169–180.

13. Kozen, D. Results on the propositional mu-calculus. Theor. Comput. Sci. 1983, 27, 333–354. [CrossRef]
14. Wolper, P. Temporal logic can be more expressive. Inf. Control 1983, 56, 72–99. [CrossRef]
15. Armoni, R; Fix, L.; Flaisher, A.; Gerth, R.; Ginsburg, B.; Kanza, T.; Landver, A.; Mador-Haim, S.; Singerman, E.; Tiemeyer, A.; et al.

The ForSpec Temporal Logic: A New Temporal Property-Specification Language. In Tools and Algorithms for the Construction and
Analysis of Systems, Proceedings of the 8th International Conference, TACAS 2002, Held as Part of the Joint European Conference on Theory
and Practice of Software, ETAPS 2002, Grenoble, France, 8–12 April 2002; Springer: Berlin, Heidelberg, 2002; pp. 296–211.

16. Henriksen, J.G.; Thiagarajan, P.S. Dynamic linear time temporal logic. Ann. Pure Appl. Logic 1999, 96, 187–207. [CrossRef]
17. Vardi, M.Y. The Rise and Fall of Linear Time Logic. In Proceedings of the Second International Symposium on Games, Automata,

Logics and Formal Verification, GandALF 2011, Minori, Italy, 15–17 June 2011.
18. Fischer, M.J.; Ladner, R.E. Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 1979, 18, 194–211. [CrossRef]
19. Büchi, J.R.; Landweber, L.H. Definability in the monadic second-order theory of successor. J. Symb. Log. 1969, 34, 166–170.

[CrossRef]
20. De Giacomo, G.; Vardi, M.Y. Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In Proceedings of the IJCAI,

Beijing, China, 3–9 August 2013; pp. 854–860.
21. Faymonville, P.; Zimmermann, M. Parametric linear dynamic logic. Inf. Comput. 2017, 253, 237–256. [CrossRef]
22. Liu, Z.; Xiong, L.; Liu, Y.; Lespérance, Y.; Xu, R.; Shi, H. A Modal Logic for Joint Abilities under Strategy Commitments. In

Proceedings of IJCAI, Yokohama, Japan, 7–15 January 2020; pp. 1805–1812.
23. Belardinelli, F.; Lomuscio, A.; Murano, A.; Rubin, S. Decidable Verification of Multi-agent Systems with Bounded Private Actions.

In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS, Stockholm,
Sweden, 10–15 July 2018; pp. 1865–1867.

24. Mogavero, F.; Murano, A.; Perelli, G.; Vardi, M.Y. Reasoning about strategies: On the model-checking problem. ACM Trans.
Comput. Log. 2014, 34, 1–47. [CrossRef]

25. Kong, J. MCMAS-Dynamic: Symbolic Model Checking for Linear Dynamic Logic and Several Temporal and Epistemic Extensions.
Ph.D. Thesis, Imperial College London, London, UK, 2016.

26. Knight, S.; Maubert, B. Dealing with Imperfect Information in Strategy Logic. Available online: https://arxiv.org/abs/1908.02488
(accessed on 7 August 2019).

27. Thomas, W. Star-free regular sets of ω-sequences. Inf. Control 1979, 42, 148–156. [CrossRef]
28. Gabbay, D.M.; Pnueli, A.; Shelaho, S.; Shelah, J. On the Temporal Basis of Fairness. In Proceedings of the Conference Record

of the Seventh Annual ACM Symposium on Principles of Programming Languages, Las Vegas, NV, USA, 28–30 January 1980;
pp. 163–173.

29. Pauly, M. A modal logic for coalitional power in games. J. Log. Comput. 2002, 12, 149–166. [CrossRef]
30. Mogavero, F. Logics in Computer Science—A Study on Extensions of Temporal and Strategic Logics; Atlantis Studies in Computing 3;

Atlantis Press: Paris, France, 2013; pp. 85–101.
31. Thomas, W. Automata on infinite objects. In Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics; MIT

Press: Cambridge, MA, USA, 1990; pp. 133–191.
32. Miyano, S.; Hayashi, T. Alternating finite automata on omega-words. Theor. Comput. Sci. 1984, 32, 321–330. [CrossRef]
33. Schewe, S. Tighter Bounds for the Determinisation of Büchi Automata. In Proceedings of the Foundations of Software Science

and Computational Structures, 12th International Conference, York, UK, 22–29 March 2009; pp. 167–181.
34. Emerson, E.A.; Jutla, C.S. The Complexity of Tree Automata and Logics of Programs (Extended Abstract). In Proceedings of

the 29th Annual Symposium on Foundations of Computer Science, White Plains, New York, NY, USA, 24–26 October 1988;
pp. 328–337.

35. Pnueli, A.; Rosner, R. On the Synthesis of a Reactive Module. In Proceedings of the Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, Austin, TX, USA, 11–13 January 1989; pp. 179–190.

36. Emerson, E.A. Temporal and modal logic. In Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics; MIT
Press: Cambridge, MA, USA, 1990; pp. 995–1072.

37. Kupferman, O.; Vardi, M.Y.; Wolper, W. Module checking. Inf. Comput. 2001, 164, 2, 322–344. [CrossRef]
38. Malvone, V.; Murano, A.; Sorrentino, L. Concurrent Multi-Player Parity Games. In Proceedings of the 2016 International

Conference on Autonomous Agents & Multiagent Systems, Singapore, 9–13 May 2016; pp. 689–697.
39. Piterman, N. From nondeterministic Büchi and Streett automata to deterministic parity automata. Log. Methods Comput. Sci. 2007,

3, 1–21. [CrossRef]
40. Laroussinie, F.; Markey, N. Quantified CTL: Expressiveness and complexity. Log. Methods Comput. Sci. 2014, 10, 1–45.
41. Laroussinie, F.; Markey, N. Augmenting ATL with strategy contexts. Inf. Comput. 2015, 245, 98–123. [CrossRef]
42. Bulling, N.; Dix, J.; Jamroga W. Model checking logics of strategic ability: Complexity. In Specification and Verification of Multi-Agent

Systems; Springer: Berlin, Heidelberg, 2010; pp. 125–159.
43. Alur, R.; Henzinger, T.A.; Mang, F.Y.C.; Qadeer, S.; Rajamani, S.; Tasiran, S. MOCHA: Modularity in Model Checking. In

Computer Aided Verification. In Proceedings of CAV, Vancouver, BC, Canada, 28 June–2 July 1998; pp. 521–525.

23

Mathematics 2021, 9, 3052

44. Lomuscio, A.; Qu, H.; Raimondi, F. MCMAS: An open-source model checker for the verification of multi-agent systems. Int. J.
Softw. Tools Technol. Transf. 2017, 19, 9–30. [CrossRef]

45. van der Hoek, W.; Wooldridge, M.J. Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its
applications. Stud. Log. 2003, 75, 125–157. [CrossRef]

46. Jamroga, W.; Ågotnes, T. What Agents Can Achieve Under Incomplete Information. In Proceedings of the AAMAS, Hakodate,
Japan, 8–12 May 2006; pp. 232–234.

47. Belardinelli, F.; Lomuscio, A.; Malvone, V. An Abstraction-Based Method for Verifying Strategic Properties in Multi-Agent
Systems with Imperfect Information. In Proceedings of the AAAI, Honolulu, HI, USA, 27 January–1 February 2019; pp. 6030–6037.

48. Xiong, L.; Guo, S. Model Checking Dynamic Strategy Logic with Memoryless Strategies. In Proceedings of the CSAE 2020, Sanya,
China, 20–22 October 2020; pp. 68:1–68:5.

49. Jamroga, W.; Tabatabaei, M. Information Security as Strategic (In)effectivity. In Proceedings of the STM 2016, Heraklion, Greece,
l26–27 September 2016; pp. 154–169.

50. Wu, K.; Fang, L.; Xiong, L.; Lai, Z.; Qiao, Y.; Rong, F. Automatic Synthesis of Generalized Winning Strategies of Impartial
Combinatorial Games Using SMT Solvers. In Proceedings of the IJCAI, Yokohama, Japan, 7–15 January 2020; pp. 1703–1711.

51. Belardinelli, F.; Condurache, R.; Dima, C.; Jamroga, W.; Knapik, M. Bisimulations for verifying strategic abilities with an
application to the ThreeBallot voting protocol. Inf. Comput. 2021, 276, 104552. [CrossRef]

24

Citation: Kasihmuddin, M.S.M.;

Jamaludin, S.Z.M.; Mansor, M.A.;

Wahab, H.A.; Ghadzi, S.M.S.

Supervised Learning Perspective in

Logic Mining. Mathematics 2022, 10,

915. https://doi.org/10.3390/

math10060915

Academic Editor: Liangxiao Jiang

Received: 15 January 2022

Accepted: 30 January 2022

Published: 13 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Supervised Learning Perspective in Logic Mining

Mohd Shareduwan Mohd Kasihmuddin 1, Siti Zulaikha Mohd Jamaludin 1, Mohd. Asyraf Mansor 2,*, Habibah

A. Wahab 3 and Siti Maisharah Sheikh Ghadzi 3

1 School of Mathematical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;
shareduwan@usm.my (M.S.M.K.); szulaikha.szmj@usm.my (S.Z.M.J.)

2 School of Distance Education, Universiti Sains Malaysia, George Town 11800, Malaysia
3 School of Pharmaceutical Sciences, Universiti Sains Malaysia, George Town 11800, Malaysia;

habibahw@usm.my (H.A.W.); maisharah@usm.my (S.M.S.G.)
* Correspondence: asyrafman@usm.my; Tel.: +60-4-6533-935

Abstract: Creating optimal logic mining is strongly dependent on how the learning data are struc-
tured. Without optimal data structure, intelligence systems integrated into logic mining, such as
an artificial neural network, tend to converge to suboptimal solution. This paper proposed a novel
logic mining that integrates supervised learning via association analysis to identify the most optimal
arrangement with respect to the given logical rule. By utilizing Hopfield neural network as an asso-
ciative memory to store information of the logical rule, the optimal logical rule from the correlation
analysis will be learned and the corresponding optimal induced logical rule can be obtained. In
other words, the optimal logical rule increases the chances for the logic mining to locate the optimal
induced logic that generalize the datasets. The proposed work is extensively tested on a variety
of benchmark datasets with various performance metrics. Based on the experimental results, the
proposed supervised logic mining demonstrated superiority and the least competitiveness compared
to the existing method.

Keywords: supervised learning; Hopfield neural network; logic mining; artificial neural network

MSC: 68T07

1. Introduction

In the area of artificial intelligence (AI), two important perspectives stand out. The
first is the applied rule that represents the given problem. The applied rule is vital in
decision making in order to explain the nature of the problem. The second perspective
is the automation process based on the rule which leads to neuro symbolic integration.
These two perspectives rely heavily on the practicality of the symbolic rule that governs the
AI system. The use of a satisfiability (SAT) perspective in software and hardware system
theories is currently one of the most effective methods in bridging the two perspectives.
SAT offers the promise, and often even the reality, that the model checks efforts with
feasible industrial application. There were several practical applications of SAT that can
be mentioned in this section. Ref. [1] utilized Boolean SAT by integrating satisfiability
modulo theories (SMT) in tackling the scheduling problem. The proposed SMT method was
reported to outperform other existing methods. Ref. [2] discovered vesicle traffic network
by model checking that incorporates Boolean SAT. The proposed SAT model established a
connection between vesicle transport graph connectedness and underlying rules of SNARE
protein. In another development, [3] developed several SAT formulations to deal with
the resource-constrained project scheduling problem (RCPSP). The proposed method is
reported to solve various benchmark instances and outperform the existing work in terms
of computation time and optimality. SAT formulation is a dynamic language that can be
used in representing problem in hand. Ref. [4] proposed a special SAT in modelling the

Mathematics 2022, 10, 915. https://doi.org/10.3390/math10060915 https://www.mdpi.com/journal/mathematics25

Mathematics 2022, 10, 915

circuit. The proposed method reconstructed the accurate circuit configuration up to 90%.
The application of SAT in very-large-scale integration (VLSI) inspires the authors to extend
the application of SAT into pattern reconstruction [5] where they used the variable in SAT
as a building block of the desired pattern. The practicality of SAT motivates researchers to
implement SAT in navigating the structure in an artificial neural network (ANN).

Logic programming in ANN has been initially proposed by [6]. In his work, logic
programming can be embedded into the Hopfield neural network (HNN) by minimizing
the logical inconsistencies. This is also a pioneer to the Wan Abdullah method which obtains
the synaptic weight by comparing cost function with Lyapunov energy function. Ref. [7]
further developed the idea of the logic programming in HNN by implementing Horn
satisfiability (HornSAT) as a logical structure of HNN. The proposed network achieved
more than 80% global minima ratio but high computation time due to the complexity of the
learning phase. Since then, logic programming in ANN was extended to another type of
ANN. Ref. [8] initially proposed logic programming in radial basis function neural network
(RBFNN) by calculating the centre and width of the hidden neurons that corresponds
to the logical rule. In the proposed method, the dimensionality of the logical rule from
input to output can be reduced by implementing Gaussian activation function. The further
development of logic programming in RBFNN were proposed in [9] where the centre
and the width of the RBFNN are systematically calculated. In another development, [10]
proposed a systematic logical rule by implementing a 2-satisfiability logical rule (2SAT) in
HNN. The proposed hybrid network is incorporated with effective learning methods, such
as genetic algorithm [11] and artificial bee colony [12]. The proposed network managed to
achieve more than 95% of global minima ratio and can sustain a high number of neurons. In
another development, [13] proposed the higher order non-systematic logical rule, namely
random k satisfiability (RANkSAT) that consists of random first-, second-, and third-order
logical rule. The proposed works run a critical comparison among a combination of
RANkSAT and demonstrate the capability of non-systematic logical rule to achieve optimal
final state. The practicality of the SAT in HNN was explored in pattern satisfiability [5]
and circuit satisfiability [4] where the user can capture the visual interpretation of logic
programming in HNN. However, up to this point, the choice of SAT structure in HNN has
received very little research attention, despite its practical importance.

Current data mining were reported to achieve good accuracy but the interpretability
of the output is poorly understood due to emphasize of the black box model. In other
words, the output makes sense for the AI but not for the user. One of the most useful
applications of logic programming in HNN is logic mining. Logic mining is a relatively
new perspective in extracting the behaviour of the dataset via logical rule. This method is a
pioneer work of [14]. In this work, the proposed RA extracted individual logical rule that
represents the performance of the students. The logical rule extracted from the datasets
is based on the number of induced Horn logics produced by HNN. Thus, there is very
limited effort to identify the “best” induced logical rule that represent the datasets. To
complement the limitation of the previous RA, several studies include specific SAT logical
rules to be embedded into HNN. Ref. [15] introduced 3-satisfiability (3SAT) as a logical rule
in HNN, thus creating the first systematic logic mining technique, i.e., the k satisfiability
reverse analysis method (kSATRA). The proposed hybrid logic mining is used to extract
logical rule in several fields of studies, such as social media analysis [15] and cardiovascular
disease [16]. In another development, different types of logical rule (2SAT) have been
implemented by [17]. They proposed 2SATRA by incorporating the 2SAT logical rule in
extracting a diabetes dataset [17] and student’s performance dataset [18]. Ref. [19] utilized
2SATRA by extracting logical rule for football datasets in several established football league
in the world. Pursuing that, the ability of 2SATRA is further tested when the proposed
method is implemented in e-games. The 2SATRA has been proposed to extract the logical
rule that explains the simulation game of the League of Legend (LOL) [20]. The proposed
method achieved an acceptable range of logical accuracy. The application of logic mining
was extended to several prominent areas, such as extracting the price information from

26

Mathematics 2022, 10, 915

commodities [21]. Another interesting development for kSATRA is by incorporating energy
in induced logic. Ref. [22] proposed an energy-based 2-satisfiability-based reverse analysis
method (E2SATRA) for e-recruitment. The proposed method reduced the suboptimal
induced logic and increased the classification accuracy of the network. Despite the increase
in application in data mining, the existing logic mining endured a significant drawback.
The induced logic produced by the proposed method suffers from a limited amount of
search space. This is due to the positioning of the neurons in kSAT formulation which
affects the classification ability of 2SATRA. In this case, the optimal choice of the neuron
pair in the kSAT clause in logic mining is crucial to avoid possible overfitting.

There were various studies that implemented regression analysis in ANN. Standalone
regression analysis was prone to data overfitting [23], easily affected by outlier [24], and
mostly limited to a linear relationship [25]. Due to the above weaknesses, regression
analysis was implemented to complement the intelligent system. In most studies, regression
analysis will be utilized in the pre-processing layer before it can be processed by the ANN.
Ref. [26] proposed a combination of regression analysis with a RBFNN. The proposed
method formed a prediction model for national economic data. Ref. [27] proposed an
ANN that combines with regression analysis via a mean impact value. The proposed
hybrid network identifies and extracts input variables that deal with irregularity and
vitality of Beijing International Airport’s passenger flow dataset. In [28], ANN is used
to predict the water turbidity level by using optical tomography. The proposed ANN
utilized the regression analysis value as an objective function of the network. Ref. [29] fully
utilized logistic regression to identify significant microseismic parameters. The significant
parameters will be trained by a simple neural network which results in the highly accurate
seismic model. By nature, ANN is purely unsupervised learning and logistic regression
analysis displays a major improvement to the overall performance. Although there were
many studies conducted to confirm the benefit logistic regression analysis in classification
and prediction paradigm, regression analysis has never been implemented in classifying
the SAT logical rule. Regression analysis has the ability to restructure the logical rule based
on the strength of relationship for each k variables in the kSAT clause. In that regard, the
ANN will learn the correct logical structure and the probability to achieve highly accurate
induced logical rule will increase dramatically. In that regard, relatively few studies have
examined the effectiveness of regression in analysing data features that correspond to the
kSAT. The choice of variable pair in the 2SAT clause can be made optimally by implementing
regression analysis without interrupting the value of the cost function.

Unfortunately, there is no recent effort to discover the optimal choice that leads to
the true outcome of the kSAT. The closest work that addresses this issue is shown by [30].
This work [30] utilized neuron permutation to obtain the most accurate induced logical
rule by considering n(n− 1)! neuron arrangement in kSAT. Hence, the aim of this paper
is to effectively explore the various possible logical structures in 2SATRA. The proposed
logic mining model identifies the optimal neuron pair for 2SAT clause forming a new
logical formula. Pearson chi-square association analysis will be conducted to examine
the connectedness of the neuron with respect to the outcome. By doing so, the new 2SAT
formula learned by HNN as an input logic and the new induced logical rule can be obtained.
Thus, the contributions of this paper are:

(a) To formulate a novel supervised learning that capitalize correlation filter among
variables in the logical rule with respect to the logical outcome;

(b) To implement the obtained supervised logical rule into HNN by minimizing the cost
function which minimizes the final energy;

(c) To develop a novel logic mining based on the hybrid HNN integrated with the
2-satisfiability logical rule;

(d) To construct the extensive analysis for the proposed logic mining in doing various
datasets. The proposed logic mining will be compared to the existing state of the art
logic mining.

27

Mathematics 2022, 10, 915

An effective 2SATRA model incorporating a new supervised model will be compared
with the existing 2SATRA model for several established datasets. In Section 2, we describe
satisfiability programming in HNN in detail. In Section 3, we describe some simulation of
HNN by using simulated result. Discussion follows in Section 4. The concluding remarks
in Section 5 complete the paper.

2. Motivation

2.1. Optimal Attribute Selection Strategy

Optimal attribute selection is vital to ensure HNN learn the correct logical rule dur-
ing the learning phase. Ref. [30] proposed logic mining that capitalize random attribute
combination that leads to creation of 2SAT logic. In this study, the synaptic weight con-
nection obtained from 2SAT is purely based on the most frequent logical incidence in the
datasets. The main question to ask: what happen if the 2SAT logical rule selected the wrong
attribute? Hence, there is a huge possibility of the logic mining to learn the wrong synaptic
which leads to suboptimal induced logic. A similar observation was made in the study
by [31] which proposed 3SAT for induced logic, with a heavy focus on the random attribute
selection. It is agreeable that the induced logic might produce accurate induced logic, but
this issue leads logic mining to choose the random attributes that reduce the interpretability
of induced logic. To solve this issue, the latest study by [30] proposed permutation operator
to optimize the random selection proposed by [20]. The permutation operator will increase
the accuracy of the induced logic when we change the attribute in the logical formula.
Despite the increase in the accuracy and other metrics, the interpretability issue remains
unsolvable. This is due to the random selection that contributes to a lack of interpretability
of the learned logic in HNN. In this paper, we capitalize the work of [20,30] by constructing
the dataset in the form of 2SAT logical rule and permutation operator. By selecting the
optimal attribute combination of 2SAT, we can obtain more search space which leads to
optimal induced logic.

2.2. Energy Optimization Strategy

Energy optimization in HNN is vital to ensure that every induced logic produced
during retrieval phase is always achieved by global minimum energy. This creates an
important question is: why HNN must achieve global minimum energy? Global minimum
energy indicates a good agreement between the learned logic during pre-processing stage
with the induced logic during retrieval phase. Induced logic that achieved global minimum
energy can be interpreted. In contrast, induced logic that can achieve local minimum energy
might achieve good accuracy, but this is difficult to interpret. In [22], the proposed logic
mining is mainly the focus on the energy stability. The main issue when the induced logic is
solely focusing on global minimum energy is limit on the possible search space of the HNN.
The proposed HNN tends to overfit and produce more redundant induced logic. This will
worsen when the proposed HNN selects the wrong attribute to learn. Non-optimal induced
logic obtained a lack of interpretability and generalization during the retrieval phase. We
tend to achieve similar induced logic which will lead to lower accuracy. Another factor
that might affect overfitting of the induced logic structure is the monotonous behaviour of
HNN that always converges to the nearest minimum energy. Hence, the feature of energy
optimization with the optimal attributes selection will lead to a result that is optimal and
easy to interpret.

2.3. Lack of Effective Metric to Assess the Performance of Logic Mining

Effective metric in logic mining is crucial to ensure the actual performance of the
induced logic in doing clustering and classification. According to the previous studies,
the point of assessment and type of metric are still shallow and do not represent the
performance of the logic mining. For instance, the work of [21] reported the error analysis
learning phase of HNN but a failure to provide metrics that are related to the contingency
table. As a result, the actual performance of the induced logic is still not well understood.

28

Mathematics 2022, 10, 915

Similar limitation reported in [14] where only metric of global minima ratio is used to
demonstrate the connection between neurons. The local minimum solution signifies the
induced logic rule does not correspond to the learned logic which contribute to the lack
of generalization capability. In this case, if the measurement is solely based on the energy
metric, then quantifying each element, in terms of confusion metric, is necessary so that
the induced logic can carry out the classification task. In addition, the building block that
leads to intermediate logics is solely based on the obtained synaptic weight. In this context,
without synaptic weight analysis, the connection of the induced logic is poorly understood.
For instance, logic mining [20] does not report the result of the strength of connection
between variables in the induced logic. As a result, there is no method to assess the logical
pattern stored in the content addressable memory (CAM). In this paper, comprehensive
analysis, such as error analysis, synaptic weight analysis, and statistical analysis will be
employed to get an overall view on the actual performance of all the logic mining models.

3. Satisfiability Representation

SAT is a representation of determining the interpretation that satisfies the given
Boolean formula. According to [32], SAT is proven to be an NP-complete problem and is
included to cover wide range of optimization problem. Extensive research on SAT leads
to the creation of variant SAT which is 2SAT. In this paper, the choice of k = 2 is due to
the two-dimensional decision-making system. Generally, 2SAT consist of the following
properties [19]:

(a) A set of defined x variables, q1, q2, q3, . . . , qx where qi ∈ {−1, 1} that exemplify false
and true, respectively.

(b) A set of literals. A literal can be variable or the negation of variable such that
qi ∈ {qi,¬qi}.

(c) A set of x definite clauses, C1, C2, C3, . . . , Cy. Every consecutive Ci is connected to
logical AND (∧). Each two literals in (b) are connected by logical OR (∨).
By taking property (a) into account until (c), one can define the explicit definition of

Q2SAT as follows:

Q2SAT =
y
∧

i=1
Ci (1)

where Ci is a list of clause with two variables each

Ci =
x∨

i=1
(mi, ni) (2)

By considering the Equations (1) and (2), a simple example of Q2SAT can be written as

Q2SAT = (A ∨ ¬B) ∧ (¬M ∨ D) ∧ (¬E ∨ ¬F) (3)

where the clauses in Equation (3) are C1 = (A ∨ ¬B), C2 = (¬M ∨ D), and C3 = (¬E ∨ ¬F).
Note that each clauses mentioned above must be satisfied with specific interpretations [10].
For example, if the interpretation reads (M, D) = (1,−1), Q2SAT will evaluate false or
−1. Since Q2SAT contains an information storage mechanism and is easy to classify, we
implemented Q2SAT into ANN as a logical system.

4. Satisfiability in Discrete Hopfield Neural Network

HNN [33] consists of interconnected neurons without a hidden layer. Each neuron in
HNN is defined in bipolar state Si ∈ {1,−1} that represents true and false, respectively.
An interesting feature about HNN is the ability to restructure the neuron state until the
network reached its minimum state. Hence, the proposed HNN achieved the optimal final

29

Mathematics 2022, 10, 915

state if the collection of neurons in the network reached the lowest value of the minimum
energy. The general definition of HNN with the i-th activation is given as follows

Si =

⎧⎨⎩ 1 , i f
N
∑

i=0
WijSj ≥ θ

−1 , otherwise
(4)

where θ and Wij represent a threshold and synaptic weight of the network, respectively.
Without compromising the generality of HNN, some study used θ = 0 as the threshold
value. Note that N is the number of 2SAT variables. Wij is also defined as the connection
between neuron Si and Sj. The idea of implementing Q2SAT in HNN (HNN-2SAT) is due
to the need of some symbolic rule that can govern the output of the network. The cost
function EQ2SAT of the proposed Q2SAT in HNN is given as follows:

EQ2SAT =
NC

∑
i=1

2

∏
j=1

Mij (5)

where NC is the number of EQ2SAT clause. The definition of the clause Mij is given as
follows [9]

Mij =

{ 1
2
(
1− Sy

)
, i f ¬y

1
2
(
1 + Sy

)
, otherwise

(6)

where y is the negation of literal in Q2SAT . It is also worth mentioning that EQ2SAT = 0 if
the 1

4
(
1± Sy

)
= 0 is because the neuron state Sy associated to Q2SAT is fully satisfied. Each

variable inside a particular Mij will be connected by Wij. Structurally, the synaptic weight
of Q2SAT is always symmetrical for both the second- and third-order logical rule:

W(2)
AB = W(2)

BA (7)

with no self-connection between neurons:

W(2)
AA = W(2)

BB = 0 (8)

Note that Equations (5)–(8) only account for a non-redundant logical rule because the
logical redundancies will result in the diminishing effect of the synaptic weight. The goal
of the learning in HNN is to minimize the logical inconsistency that leads to Q2SAT = −1
or ¬Q2SAT = 1. Although synaptic weight of the HNN can be properly trained by us-
ing conventional method, such as Hebbian learning [33], ref. [14] demonstrated that the
Wan Abdullah method can obtain the optimal synaptic weight with minimal neuron os-
cillation compared to Hebbian learning. For example, if the embedded logical clause is
C1 = (A ∨ ¬B), the synaptic weights will read (WA, WB,WAB) = (0.25, 0.25,−0.25). Dur-
ing retrieval phase of HNN-2SAT, the neuron state will be updated asynchronously based
on the following equation.

Si =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 ,

N
∑

j=1,i
=j
W(2)

ij Sj + W(1)
i ≥ ξ

−1 ,
N
∑

j=1,i
=j
W(2)

ij Sj + W(1)
i < ξ

(9)

where Si is a final neuron state with pre-defined threshold ξ. In terms of output squashing,
the Sigmoid function can be used to provide non-linearity effects during neuron classi-
fication. Potentially, the final state of the neuron must contain information that lead to

30

Mathematics 2022, 10, 915

EQ2SAT = 0, and the quality of the obtained state can be computed by using Lyapunov
energy function:

HQ2SAT = −1
2

N

∑
i=0,i
=j

N

∑
j=0,j
=i

W(2)
ij SiSj −

N

∑
i=0

W(1)
i Si (10)

According to [33], the symmetry of the synaptic weight is sufficient condition for the
existence of the Lyapunov function. Hence, the value of HQ2SAT in Equation (10) decreases
monotonically with network. The absolute minimum energy H min

Q2SAT
can pre-determined

by substituting interpretation that leads to EQ2SAT = 0. In this case, if the obtained neuron

state can satisfy
∣∣∣HQ2SAT − H min

Q2SAT

∣∣∣ ≤ Tol, the final neuron state achieved global minimum
energy. Note that the current conventions of Si ∈ {1,−1} can be converted to binary by
implementing different a Lyapunov function coined by [6].

5. Proposed Method

2SATRA is a logic mining method that can extract a logical rule from the dataset. The
philosophy of the 2SATRA is to find the most optimal logical rule of Equation (1), which
corresponds to the dynamic system of Equation (9). In the conventional 2SATRA proposed
by [20], the choice of variable in 2SATRA will be determined randomly which leads to
poor quality of the induced logic. The choices of the neurons are arranged randomly
before the learning of HNN can take place. In this section, chi-square analysis will be used
during the pre-processing stage. The aim of the association method is to assign the two
best neurons/clauses that correspond to the outcome Q2SAT . These neurons will take part
during the learning phase of HNN-2SAT which leads to better induced logic. In other
words, the additional optimization layer is added to reduce the pre-training effort for
2SATRA to find the best logical rule.

Let N the number of neurons represent the attribute of the datasets Si = (S1, S2, S3, . . . , SN)
where each neuron is converted into bipolar interpretation Si = {−1, 1}. Necessarily,
2SATRA is required to select d neurons that will be learned by HNN-2SAT. In this case, the
number of possible neuron permutation after considering the learning logic Ql

i structure is
N!

2(N−d)! . By considering the relationship between Ql
i and neuron Si, we can optimally select

the pair of Si for each clause Ci. The Si selection for each Ci is given as follows:

Ql
i =

NC∧
i=0,i
=j

(
Smin|Pi |

i ∨ S
min|Pj |
i

)
, i
= j, 0 ≤ Pi ≤ α, 0 ≤ Pj ≤ α (11)

where Pi is the P value between Ql
i and the neuron Si. min|Pi| signifies the minimized value

of Pi recorded between Ql
i and Si, and the value of α is pre-defined by the network. Note that

i
= j does not significy a self-connection between the same neurons. By considering the best-
and worst-case scenario, the neuron will be chosen at random if min|Pi| = min

∣∣Pj
∣∣. If the

examined neurons do not achieve the pre-determined association, HNN-2SAT will reset the
search space, which fulfils the threshold association value. Hence, by using Equation (11),
the proposed 2SATRA is able to learn the early feature of the dataset. After obtaining the
right set of neurons for Ql

i , the dataset will be converted into bipolar representation:

Si =

{
1 , Si = 1
−1 , otherwise

(12)

Note that we only consider the second-order clause or C(2)
i for each clause in Ql

i .
Hence, the collection of Si that leads to positive outcome of the learning data or Ql

i = 1 will

be segregated. By calculating the collection of C(2)
i that leads to Ql

i = 1, the optimum logic
Qbest is given as follows:

Qbest = max
[
n
(

C(2)
i

)]
, Ql

i = 1 (13)

31

Mathematics 2022, 10, 915

where n
(

C(2)
i

)
is the number of Ql

i that leads to Ql
i = 1. Hence, the logical feature of the

Qbest can be learned by obtaining the synaptic weight of the HNN. In this case, the cost
function in Equation (11) which corresponds to Qbest will be compared to Equation (5). By
using Equation (9), we obtain the final neuron state SB

i .

Sinduced
i =

{
Si , SB

i = 1
¬Si , SB

i = −1
(14)

Since the proposed HNN-2SAT only allows an optimal final neuron state, the quality
of the SB

i will be verified by using
∣∣∣HQ2SAT − Hmin

Q2SAT

∣∣∣ ≤ Tol. In this case, SB
i that leads

to local minima will not be considered. Hence, the classification of the induced QB
i is

as follows:

QB
i =

⎧⎨⎩ QB
i ,

∣∣∣∣HQB
i
− Hmin

QB
i

∣∣∣∣ ≤ ∂

0 , otherwise
(15)

where Hmin
QB

i
can be obtained from Equation (10). It is worth mentioning that if the two

neurons do not have the strong association, the neurons will not be considered. Thus, if
the association value for all neurons does not achieve the threshold variable 0 ≤ ρi ≤ α,
the proposed network will be reduced to conventional kSATRA proposed by [21,31].
Figure 1 shows the implementation of the proposed supervised logic mining or (S2SATRA).
Algorithm 1 shows Pseudo code of the Proposed S2SATRA.

Algorithm 1. Pseudo code of the Proposed S2SATRA.

Input: Set all attributes A1, A2, A3, . . . , AN with respect to Qlearn.
Output: The best induced logic QB

i .
1 Begin

2 Initialize algorithm parameters;
3 Define the Attribute for A1, A2, A3, . . . , AN with respect to Ql

i ;
4 Find the correlation value between Ai with Ql

i ;
5 for

(
Ql

i ≤ Ql
Ndata

)
do

6 if Equation (11) is satisfied then

7 Assign Ai as Si, and continue;
8 while (i ≤ Per) do

9 Using the found attributes, find Qbest using Equation (13);
10 Check the clause satisfaction for Qbest;
11 Compute Hmin

Qbest
using Equation (10);

12
Compute the synaptic weight associated with Qbest using the WA
method;

13 Initialize the neuron state;
14 for (g ≤ trial)
15 Compute hi using Equation (9);
16 Convert SB

i to the logical form using Equation (14);
17 Evaluate the HQB

i
by using Equation (10);

18 If Condition (15) is satisfied then

19 Convert to induced logic QB
i ;

20
Compare the outcome of the QB

i with
Qtest and continue;

21 g ← g + 1 ;
22 end for

23 i ← i + 1 ;
24 end while

25 end for

26 End

32

Mathematics 2022, 10, 915

Figure 1. The implementation of the proposed S2SATRA.

6. Experiment and Discussion

6.1. Experiment Setup

In this section, we describe the components of the experiments carried out here. The
purpose of this experiment is to elucidate the different logic mining mechanism that leads to
Qbest before it can be learned by HNN. To guarantee the reproducibility of the experiment,
we set up our experiment as follows.

6.1.1. Benchmark Datasets

In this experiment, 12 publicly available datasets are obtained from UCI repository
https://archive.ics.uci.edu/mL/datasets.php (accessed on 10 December 2021). These
datasets are widely used in the classification field and are representative of practical
classification problem. The details of the datasets are summarized in Table 1.

Table 1. List of datasets.

ID Data Instances Attributes Area Outcome Qki
2SAT

F1 Pageblocks 5473 10 Computer Class
F2 Australian 690 14 Financial Class
F3 Zoo 101 17 Life Class
F4 Wisconsin 569 32 Life Class
F5 Speaker 329 12 Social Language
F6 Shuttle 58,000 9 Physical Class
F7 Facebook 500 19 Business Status
F8 Wine 178 13 Physical Class
F9 Computer 209 9 Computer ERP

F10 Energy Y1 768 8 Computer Heating Load
F11 Ionosphere 351 34 Physical Class
F12 Energy Y2 768 8 Computer Cooling Load

33

Mathematics 2022, 10, 915

To avoid possible field bias, the area of interest in the dataset varies from science
to social datasets. The choice of datasets is based on two aspects. First, we only select
a dataset that contains more than 100 instances to preserve the statistical property of a
distribution. For example, we avoid choosing balloon datasets because the number of
instances is statistically too small to assess the capability learning phase of the proposed
model. Second, we only select a dataset that contains more than six attributes. The choice
of having more than six attributes is to check the effectiveness of the proposed model in
adapting the concept of an optimal attribute selection. In other words, this experiment is
unable to assess the effectiveness of the proposed model using association analysis and
permutation if the number of attributes is low. Note that the state of the data will be stored
in neuron by using bipolar representation Si ∈ {−1, 1} and each state can represent the
behaviour of the dataset with respect to Qbest. In terms of data normalization, k-mean
clustering [34] will be used to normalize the continuous datasets into 1 and −1. For a
dataset that contains categorical data, the proposed model and the existing model will
randomly select Q ki

2SAT . Since the number of missing values for all datasets is very small
and negligible, we replaced the missing value with a random neuron state. The experiment
employs a train-split method where 60% of the dataset will be trained and 40% of the
dataset will be tested [31]. Note that multi-fold validation was not implemented in this
paper because we wanted to ensure that Qbest learned by HNN has a similar starting point
for all logic mining models. A multi-fold validation method will eliminate the original
point of assessment during the training phase of logic mining. Hence, the comparison
among logic mining is not possible.

6.1.2. Performance Metrics

In terms of metric evaluation performance, several performance metrics were selected
to measure the robustness of the proposed method compared to the other existing work.
We divided performance metrics into a few parts. Error evaluations consist of a standard
error metric, such as a root mean square error (RMSE) and a mean absolute error (MAE).
The formulation for both errors are as follows:

RMSE =
n

∑
i=1

1
n

(
Qtest

i −QB
i

)2
(16)

MAE =
n

∑
i=1

1
n

∣∣∣Qtest
i −QB

i

∣∣∣ (17)

where Qtest
i is the state of the data Qtest

i ∈ {−1, 1}. In detail, the best logic mining model
will produce the QB

i with the lowest error evaluation. Next, standard classification metrics,
such as accuracy, F-score, precision, and sensitivity will be utilized in the experiment.
According to [35], the sensitivity metric Se analyses how well a case correctly produces a
positive result for an instance that has a specific condition. Note that, TP (true positive) is
the number of positive instances that correctly classified, FN (false negative) is the number
of positive instances that incorrectly classified, TN (true negative) is the number of negative
instances that correctly classified, and FP (false positive) is the number of incorrectly
classified positive instances.

Se =
TP

TP + FN
(18)

Meanwhile, precision is utilized to measure the algorithm’s predictive ability. Precision
refers to how precise the prediction is from those positively predicted with how many of
them are actually positive. The calculation for precision (Pr) is defined as follows:

Pr =
TP

TP + FP
(19)

34

Mathematics 2022, 10, 915

Accuracy (Acc) is generally the common metric for determining the performance of
the classification. This metric measures the percentage of instances categorized correctly:

Acc =
TP + TN

TP + TN + FP + FN
(20)

As stated by [36], F-score is a significant necessity that reflects the highest probability of
correct result, explicitly representing the ability of the algorithm. Additionally, F1-score is
described as the harmonic mean of precision and sensitivity. Next, the Matthews correlation
coefficient (MCC) will be used to examine the performance of the logic mining based on the
eight major derived ratios from the combination of all components of a confusion matrix.
MCC is regarded as a good metric that represents the global model quality and can be used
for classes of a different size [37].

F Score =
2TP

2TP + FP + FN
(21)

MCC =
TP TN − FP FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(22)

It is worth mentioning that this is our first encounter to approach logic mining with
various performance metrics. In [20,22], the only metric used is only accuracy and test-
ing error.

6.1.3. Baseline Methods

Since the main focus of this paper is to examine the performance of the induced logic
produced by S2SATRA, we limit our comparison to only method that produce induced
logic. Despite the fact that we respect the capability of the existing model in classifying
the dataset, we will not compare S2SATRA with the existing classification model, such as
random forest, decision tree, etc., because these models do not produce any logical rule
that classifies the dataset. For consistency purposes, all the experiments will employ the
same type of logical rule, i.e., Q2SAT . For comparison purposes, the proposed S2SATRA
will be compared with all the existing logic mining models, such as 2SATRA [20], the
energy-based 2-satisfiability reverse analysis method (E2SATRA) [22], the 2-satisfiability
reverse analysis method with permutation element (P2SATRA) [30], and the state-of-the-art
reverse analysis method (RA) [14]. This section will discuss the implementation of each
logic mining models.

(a) The conventional 2SATRA model proposed by [20] utilizes Q2SAT integrated with
the Wan Abdullah method. The determination of Qbest follows the Equation (13)
and the selected attributes are randomized. During the retrieval phase, HNN-2SAT
will retrieve the optimal SB

i that leads to optimal induced logic which then leads to
the potential generalization of the datasets. There is no layer of verification around
whether the final state SB

i produced is the global minimum energy.
(b) In E2SATRA [22], Lyapunov energy function in Equation (10) will be used to verify

the QB
i . The final state of the HNN will converge to the nearest minimum solution. In

this case, QB
i that achieve local minimum energy will be filtered out during retrieval

phase of HNN-2SAT. The dataset generalization of E2SATRA does not consider the
optimal attribute selection.

(c) In P2SATRA [30], the permutation operator will be used to permutate the attribute in

C(2)
i . The permutation operator will explore the possibility of search space related to

the chosen attributes. Note that redundant permutation will not be considered during
the attribute selection. The retrieval property of the P2SATRA will have the same
property as conventional 2SATRA.

(d) As for RA proposed by [14], we introduced RA that can only produce HornSAT prop-

erty [7] while still maintaining the two attributes per C(2)
i . To make the proposed RA

35

Mathematics 2022, 10, 915

comparable with our proposed method, calibration is required. The main calibration
from the previous RA is the number of QB

i produced by the datasets. Instead of as-
signing neuron for each instance, we assign each neuron with attributes. The neuron
redundancy is also introduced to avoid the net-zero effect of the synaptic weight.

During the learning phase, learning optimization is implemented to ensure that the
synaptic weight obtained is purely due to the HNN. Note that the effective synaptic weight
management will change the final state of HNN, leading to different QB

i . Since the HNN
has a recurrent learning property [33], the neuron will change states until Qlearn

i = 1 and
until the learning threshold NH is reached. According to [14], if the learning of Q2SAT
exceeds the proposed NH, the HNN will use the current optimal synaptic weight for
the retrieval phase. During the retrieval phase of HNN, the neuron state will be initially
randomized to reduce the possible bias. Noise function is not added, such as in [22,31],
because the main objective of this experiment is to investigate the type of attributes that
retrieve the most optimal final QB

i . To obtain consistent results throughout all 2SATRA
models, the only squashing function employed by the neurons in 2SATRA models is the
hyperbolic activation function in [38]. By considering only one fixed learning rule, we can
examine the effect of supervised learning towards the 2SATRA model. Tables 1–5 illustrate
the list of parameters involved in the experiment.

Table 2. List of parameters in S2SATRA.

Parameter Parameter Value

Neuron Combination 100
Number of Trial 100

Number of Learning (Ω) 100
P-Value (P) 0.05
Logical Rule Q2SAT

Tolerance Value (∂) 0.001
No_Neuron String 100

Maximum Permutation (Per) 100

Table 3. List of parameters in E2SATRA [22].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

Tolerance Value (∂) 0.001
No_Neuron String 100

Selection_Rate 0.1
Neuron Combination 100

Table 4. List of parameters in 2SATRA [20].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

No_Neuron String 100
Selection_Rate 0.1

36

Mathematics 2022, 10, 915

Table 5. List of parameters in P2SATRA [30].

Parameter Parameter Value

Neuron Combination 100
Attribute Selection Random

Number of Learning (Ω) 100
Logical Rule Q2SAT

No_Neuron String 100
Selection_Rate 0.1

Maximum Permutation 100

6.1.4. Experimental Design

The simulations were all implemented using Dev C++ Version 5.11 (manufactured by
Bloodshed Company from USA) for Windows 10 (Microsoft from USA) in 2 GB RAM with
Intel Core I3 (Intel from USA) as a workstation. As for association analysis, Qbest will be
obtained by using IBM SPSS Statistics Version 27 (manufactured by IBM from New York,
NY, USA). All the experiments were implemented in the same device to avoid a possibly
bad sector during the simulation. Each 2SATRA model will undergo 10 independent runs
to reduce the impact of bias caused by the random initialization of a neuron state.

7. Results and Discussion

7.1. Synaptic Weight Analysis

Figure 1 demonstrates that the optimal 2SATRA model requires pre-processing struc-
ture for neurons before the Qbest can be learned by HNN. The currently available 2SATRA
model specifically optimizes the logic extraction from the dataset without considering the
optimal Qbest. Hence, the mechanism that optimizes the optimal neuron relationship before
the learning can occur remains unclear. Identifying a specific pair of neurons for Q2SAT
will facilitate the logic mining to obtain the optimal induced logic.

Figures 2–13 demonstrate the synaptic weight for all logic mining models in extracting
logical information for F1–F12. Note that W(1)

i and W(2)
ij represent the first- and second-

order connection in the C(2)
i clause. In this section, we will check the optimality of the

synaptic weight with respect to the obtained accuracy value. Several interesting points can
be made from Figures 2–13.

(a) Despite different attribute selection for S2SATRA compared to the other logic mining
model, the induced logic for S2SATRA shows more logical variation compared to
other existing work. For instance, the synaptic weight for S2SATRA has a bias towards
a positive literal for only four datasets while maintaining high accuracy.

(b) RA demonstrates logical rigidness because the synaptic weight must produce a final
state with at least one positive literal. According to Figures 2–13, the induced logic
tends to overfit with the datasets. The structure of the induced logic obtained in RA
might exhibit some diversity compared to S2SATRA but remains suboptimal, leading
to a lower accuracy value. Hence, great diversity with wrong attribute selection
reduces the effectiveness of logic mining model.

(c) In terms of energy optimization strategy, the energy filter in S2SATRA is able to re-
trieve global induced logic that contains more negated neurons compared to E2SATRA.
This shows that the choice of attribute will definitely influence the choice of synap-
tic weight learning. For example, E2SATRA managed to achieve 10 similar global
induced logic as an optimal logic for F1, F2, F3, F4, F5, F6, F7, F9, F10, and F12
compared to S2SATRA which can only retrieve 4 similar induced logic for F3, F4, F8,
and F9. Despite having similar global induced logic, S2SATRA can still obtain a high
accuracy level.

(d) Another interesting insight is that permutation operators improve P2SATRA in learn-
ing optimal synaptic weight, but the improvement seems more obvious in S2SATRA.
For instance, with the same synaptic weight for neuron A and D but a different

37

Mathematics 2022, 10, 915

attribute representation, S2SATRA is able to achieve higher accuracy. A similar obser-
vation is made for other neurons from A to E. This implies the need of the optimal
attribute selection before learning of HNN can take place.

7.2. Correlation Analysis for S2SATRA

Tables 6 and 7 demonstrate the correlation value between the attribute Ai for F1 until
F12 with respect to Q ki

2SAT . For a clear illustration, H0 signifies that there is no correlation

between the attribute Ai with Q ki
2SAT . Hence, if the correlation exists between the attributes

and the outcome, we will “reject” the decision of H0 and the connotation of “Accept”
means the otherwise [39]. In other words, the aim of this analysis is to verify which Ai will
be chosen to represent the Ci in Q ki

2SAT . Based on Table 8, most of the attributes selected

in S2SATRA have a high correlation with Q ki
2SAT . The non-correlated attributes will be

disregarded in the right way before it can be introduced in the learning phase of HNN.
The main concern in the conventional logic mining model is the possible choice of Ai that
construct Ci purely based on the random selection. For example, in F12, the logic mining
model without a supervised layer might choose A6 and A8 to construct Ci and will have to
learn unnecessary attributes that lead to Q ki

2SAT = 1. In this context, HNN-2SAT will learn

non-optimal Q ki
2SAT that corresponds to the datasets which has no correlation with the final

outcome. Hence, the effectiveness of knowledge extraction for logic mining will be reduced
dramatically because one of the Ci is not correlated to the desired outcome. Based on the
result, the correlation layer is vital to avoid S2SATRA from choosing the wrong attributes.

Figure 2. Synaptic weight analysis for F1: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

38

Mathematics 2022, 10, 915

Figure 3. Synaptic weight analysis for F2: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 4. Synaptic weight analysis for F3: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

39

Mathematics 2022, 10, 915

Figure 5. Synaptic weight analysis for F4: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 6. Synaptic weight analysis for F5: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

40

Mathematics 2022, 10, 915

Figure 7. Synaptic weight analysis for F6: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 8. Synaptic weight analysis for F7: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

41

Mathematics 2022, 10, 915

Figure 9. Synaptic weight analysis for F8: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 10. Synaptic weight analysis for F9: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

42

Mathematics 2022, 10, 915

Figure 11. Synaptic weight analysis for F10: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

Figure 12. Synaptic weight analysis for F11: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

43

Mathematics 2022, 10, 915

Figure 13. Synaptic weight analysis for F13: (a) C(1)
i ; (b) C(2)

i and (c) C(3)
i .

(a) According to Tables 7 and 8, the worst performing correlation values which account
for most of the weakly correlated values are F1, F5, F7, and F11. The weak correlation
is determined after considering the absolute value of the correlation. Despite the low
correlation value, S2SATRA is still able to avoid attributes with no correlation at all.

(b) The best performing correlation datasets are F4, F9, F10, and F12 where all the at-
tributes of interest are selected for learning. The optimal selection by S2SATRA has
a good agreement with high accuracy of the induced logic compared to the exist-
ing model.

(c) F6 and F8 are the only datasets that partially achieve the optimal number of attributes

with a high correlation with Q ki
2SAT . These datasets are reported to be highly correlated

and the results have slightly low accuracy in terms of induced logic.
(d) Overall, we can also conclude that S2SATRA does not require any randomized at-

tribute selection because all correlation values agree with the association thresh-
old value.

7.3. Error Analysis

Tables 9 and 10 demonstrate the error evaluation for all the logic mining models. The
S2SATRA model outperforms all logic mining models in terms of RMSE and MAE. Note
that the improvement ratio is considered by taking into account the differences between
the error value divided with the error produced by logic mining.

44

Mathematics 2022, 10, 915

Table 6. Correlation analysis (ρ) for 8 sampled attributes for F1–F6.

A1 A2 A3 A4 A5 A6 A7 A8

F1
Correlation 0.352 −0.004 0.335 0.097 0.211 −0.178 0.166 0.157

P 5.4 × 10−159 7.7 × 10−1 2.1 × 10−69 7.8 × 10−13 4.3 × 10−56 2.7 × 10−40 3.9 × 10−35 1.6 × 10−31

Decision H0 Reject Accept Reject Reject Reject Reject Reject Reject
F2

Correlation −0.014 0.374 0.247 0.720 0.458 0.406 0.032 0.115
P 7.2 × 10−1 2.7 × 10−24 5.1 × 10−11 1.9 × 10−111 3.9 × 10−37 7.9 × 10−29 4.1 × 10−1 2.0 × 10−3

Decision H0 Accept Reject Reject Reject Reject Reject Accept Reject
F3

Correlation 0.366 0.202 0.344 0.230 0.376 0.581 −0.338 0.432
P 2.0 × 10−3 1.0 × 10−1 4.0 × 10−3 6.2 × 10−2 2.0 × 10−3 2.4 × 10−7 5.0 × 10−3 3.0 × 10−4

Decision H0 Reject Accept Reject Accept Reject Reject Reject Reject
F4

Correlation 0.687 0.678 0.686 0.580 0.752 0.636 0.604 0.284
P 9.3 × 10−99 4.2 × 10−95 2.3 × 10−98 5.4 × 10−64 1 × 10−127 1.4 × 10−80 1.1 × 10−70 2.1 × 10−14

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F5

Correlation 0.081 −0.278 0.250 0.269 0.077 0.189 −0.271 0.214
P 1.4 × 10−1 2.8 × 10−7 4.4 × 10−6 7.5 × 10−7 1.6 × 10−1 5 × 10−4 5.8 × 10−7 0.0 × 10−1

Decision H0 Accept Reject Reject Reject Accept Reject Reject Reject
F6

Correlation 0.737 0.144 −0.010 −0.447 −0.016 −0.595 0.521 0.735
P 0.0 × 10−1 8.8 × 10−68 2.3 × 10−1 0.0 × 10−1 5.5 × 10−2 0.0 × 10−1 0.0 × 10−1 0.0 × 10−1

Decision H0 Reject Reject Accept Reject Accept Reject Reject Reject

Table 7. Correlation analysis (ρ) for 8 sampled attributes for F7–F12.

A1 A2 A3 A4 A5 A6 A7 A8

F7
Correlation −0.086 −0.0324 −0.397 0.393 −0.091 −0.180 −0.072 −0.133

P 4.1 × 10−13 7.9 × 10−172 2.0 × 10−264 4.3 × 10−259 2.7 × 10−14 1.4 × 10−52 1.8 × 10−9 5.4 × 10−29

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F8

Correlation 0.518 −0.847 0.489 −0.499 0.266 −0.617 −0.788 −0.634
P 1.3 × 10−13 2.7 × 10−50 4.3 × 10−12 1.3 × 10−12 3.0 × 10−4 4.4 × 10−20 5.9 × 10−39 2.2 × 10−21

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F9

Correlation 0.178 0.009 0.819 0.901 0.649 0.611 0.592 0.966
P 1.0 × 10−2 8.9 × 10−1 6.7 × 10−52 4.2 × 10−77 2.5 × 10−26 9.7 × 10−23 3.6 × 10−21 3.4 × 10−124

Decision H0 Reject Accept Reject Reject Reject Reject Reject Reject
F10

Correlation 0.671 −0.704 0.473 −0.914 0.933 0.995 0.156 −0.055
P 4.4 × 10−50 4.2 × 10−57 3.3 × 10−22 3.8 × 10−147 2.2 × 10−166 0.0 × 10−1 3.0 × 10−3 2.9 × 10−1

Decision H0 Reject Reject Reject Reject Reject Reject Reject Reject
F11

Correlation 0.011 0.072 0.310 0.315 0.345 0.581 0.336 0.306
P 8.4 × 10−1 1.8 × 10−1 3.0 × 10−9 1.6 × 10−9 3.1 × 10−11 5.0 × 10−33 9.9 × 10−11 4.9 × 10−9

Decision H0 Accept Accept Reject Reject Reject Reject Reject Reject
F12

Correlation 0.674 −0.710 0.435 −0.900 0.924 0.022 0.136 −0.051
P 8.4 × 10−51 2.1 × 10−58 1.2 × 10−18 3.7 × 10−136 6.2 × 10−157 6.8 × 10−1 9.0 × 10−3 3.3 × 10−1

Decision H0 Reject Reject Reject Reject Reject Accept Reject Accept

Table 8. Improved RA [14].

Parameter Parameter Value

Neuron Combination 100
Number of Learning (Ω) 100

Logical Rule Q2SAT
No_Neuron String 100

Selection_Rate 0.1

45

Mathematics 2022, 10, 915

Table 9. RMSE for all logic mining models. The bracket indicates the ratio of improvement and
* indicates division by zero. A negative ratio implies the method outperform the proposed method. P
is obtained from the paired Wilcoxon rank test and ** indicates the model with significant inferiority
compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 18.125 18.125 (0) 31.034 (0.416) 31.034 (0.416) 676.174 (0.973)
F2 5.417 15.289 (0.646) 17.215 (0.685) 15.891 (0.659) 76.601 (0.929)
F3 0.000 0.920 (1.000) 3.849 (1.000) 0.770 (1.000) 49.267 (1.000)
F4 0.569 3.695 (0.846) 1.563 (0.636) 0.569 (0.000) 1.563 (0.636)
F5 1.572 11.708 (0.866) 14.329 (0.890) 7.514 (0.791) 20.794 (0.9244)
F6 25.134 32.199 (0.219) 106.945 (0.765) 30.124 (0.166) 958.121 (0.974)
F7 18.839 34.874 (0.460) 46.760 (0.597) 20.745 (0.092) 98.791 (0.809)
F8 1.179 10.371 (0.886) 11.078 (0.894) 1.414 (0.166) 10.371 (0.886)
F9 0.655 2.619 (0.749) 8.510 (0.923) 0.655 (0.000) 12.001 (0.945)
F10 0.000 3.932 (1.000) 24.413 (1.000) 0.000 (*) 54.367 (1.000)
F11 2.556 5.112 (0.500) 19.369 (0.868) 2.695 (0.052) 59.337 (0.957)
F12 0.000 0.000 (*) 10.650 (1.000) 0.000 (*) 7.865(1.000)

(+/=/−) - 11/1/0 12/0/0 8/4/0 12/0/0
Avg 6.170 11.814 24.643 9.284 168.761
Std 9.039 11.528 28.760 12.008 4.662
min 0.000 0.000 1.563 0.000 1.563
max 18.839 34.874 106.945 31.034 958.121
Avg
Rank 1.250 2.917 4.083 2.083 4.667

P 0.005 ** 0.002 ** 0.012 ** 0.002 **

Table 10. MAE for all logic mining models. The bracket indicates the ratio of improvement and
* indicates division by zero. A negative ratio implies the method outperform the proposed method. P
is obtained from the paired Wilcoxon rank test and ** indicates the model with significant inferiority
compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.387 0.387 (0.000) 0.663 (0.416) 0.663 (0.416) 12.452 (0.973)
F2 0.326 0.920 (0.646) 1.109 (0.706) 0.957 (0.659) 4.601 (0.929)
F3 0.000 0.741 (1.000) 0.741 (1.000) 0.148 (1.000) 9.481 (1.000)
F4 0.040 0.263 (0.848) 0.111 (0.640) 0.040 (0.000) 0.111 (0.640)
F5 0.137 1.023 (0.866) 1.252 (0.891) 0.656 (0.791) 1.817 (0.925)
F6 0.330 0.423 (0.220) 1.404 (0.765) 0.396 (0.167) 12.582 (0.974)
F7 0.352 0.652 (0.460) 0.874 (0.597) 0.388 (0.093) 1.846 (0.809)
F8 0.139 1.222 (0.886) 1.306 (0.894) 0.167 (0.168) 1.222 (0.886)
F9 0.071 0.286 (0.752) 0.929 (0.924) 0.071 (0.000) 1.310 (0.946)

F10 0.000 0.322 (1.000) 2.000 (1.000) 0.000 (*) 4.456 (1.000)
F11 0.233 0.467 (0.501) 1.631 (0.857) 0.227 (−0.026) 5.417 (0.957)
F12 0.000 0.000 (*) 0.872 (1.000) 0.000 (*) 0.644 (1.000)

(+/=/−) - 10/2/0 12/0/0 7/4/1 12/0/0
Avg 0.168 0.559 1.074 0.309 310.235
Std 0.151 0.359 0.493 0.309 4.505
min 0.000 0.000 0.111 0.000 0.111
max 0.387 1.222 2.000 0.957 12.582

Avg Rank 1.333 2.958 4.041 2.000 4.667
P 0.002 ** 0.002 ** 0.003 ** 0.003 **

A high value of RMSE demonstrates the high deviation of the error compared with
the Q ki

2SAT . S2SATRA ranks first on 12 datasets. The “+”, “−“, and “=” in the results
column indicate that S2SATRA is superior, inferior, and equal to the comparison algorithm,
respectively. The “Avg” indicates the corresponding algorithm’s average of the Friedman
test for 12 datasets. The rank represents the ranking of the “Avg Rank”. Although the
value S2SATRA is the lowest compared to other logic mining model, the RMSE value is

46

Mathematics 2022, 10, 915

high, which shows that the error is deviated from the mean of the error for the whole Q ki
2SAT.

According to Tables 9 and 10, there are several winning points for S2SATRA, which are
as follows.

(a) In terms of individual RMSE and MAE, S2SATRA outperforms all the existing logic
mining models which extract the logical rule from the datasets.

(b) There were several datasets that recorded zero error, such as in F3 and F10. In terms of
MAE, S2SATRA achieved less than 0.5 for all the datasets, resulting in a lower mean
MAE (0.168).

(c) Despite showing the best performance compared to all existing methods, the RMSE
value for S2SATRA is still high for several datasets, such as in F1, F6, and F7. Although
a high value of RMSE is recorded, the value is much lower compared to the other
existing work.

(d) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P for both RMSE and MAE are 1.27 × 10−7 (

χ2 = 37.33
)

and 2.09 × 10−7 (
χ2 = 36.68

)
, respectively. Hence, the null hypothesis of equal per-

formance for all the logic mining models is rejected. According to Tables 9 and 10
for all the datasets, S2SATRA has an average rank of 1.25 and 1.333 for RMSE, re-
spectively, which is highest compared to other existing methods. The closest method
that competes with S2SATRA is P2SATRA with an average rank of 2.083 and 2.000,
respectively.

(e) Overall, the average RMSE and MAE for S2SATRA shows an improvement by 83.9%
compared to the second best method which is P2SATRA. In this case, the optimal
attribute selection contributes towards a lower value of RMSE and MAE.

(f) In addition, the Wilcoxon rank test is conducted to statistically validate the superiority
of S2SATRA [40]. From the table, we observe that S2SATRA is the top-ranked logic
mining model in terms of error analysis followed by P2SATRA, E2SATRA, 2SATRA,
and RA.

P2SATRA is observed to achieve a competitive result where the 5 out of 12 datasets
have the same error during the retrieval phase. This indicates that the conventional 2SATRA
model can be further improved with a permutation operator. Despite the high permutation
value (up to 1000 permutation/run) implemented in each dataset, most of the attributes in
the P2SATRA are insignificant with respect to the final output. Hence, the accumulated
testing error will be higher than the proposed S2SATRA. It is also worth noting that
implementation of the permutation operator from P2SATRA benefits S2SATRA in terms
of search space. In another perspective, an energy-based approach, E2SATRA, is able to
obtain Q ki

2SAT which can achieve the global minima energy but tends to get trapped in
suboptimal solution. According to Tables 9 and 10, E2SATRA showed improvement in
terms of error compared to the conventional 2SATRA but the induced logic only explores a
limited search space. For example, the high accumulation error in F2–F8 were due to small
number of Q ki

2SAT produced by E2SATRA. The only advantage for E2SATRA compared to

RA is the stability of the Q ki
2SAT in finding the correction dataset generalisation. E2SATRA

is reported to be slightly worse compared to P2SATRA, except for F8 and F10 where the
error difference is 86.3% and 47.2%, respectively. Conventional 2SATRA and RA were
reported to produce Q ki

2SAT with the worst quality due to the wrong choice of attribute
selection. Another interesting insight is that the modified RA from [14] tends to overlearn,
which results in an accumulation of error. For instance, RA accumulates a large RMSE
value in F1, F6, and F7, due to the rigid structure of Q ki

2SAT during the learning phase

and the testing phase of RA. Additionally, the rigid structure for Q ki
2SAT in RA does not

contribute to effective attribute representation. Overall, it can be seen that, compared with
each comparison algorithm, S2SATRA has the greatest advantages on more than 10 datasets
in terms of RMSE and MAE.

47

Mathematics 2022, 10, 915

7.4. Accuracy, Precision, Sensitivity, F1-Score, and MCC

Figures 14 and 15 demonstrate the result for F-score and Acc for all the logic mining
models. There are several winning points for S2SATRA according to both figures, which
are as follows.

(a) In terms of Acc, S2SATRA achieved the highest Acc value in 11 out of 12 datasets. The
closest model that competes with S2SATRA is P2SATRA. A similar observation in
F-score is that S2SATRA achieves the highest value in 8 out of 12 datasets, while the
closest model that competes with S2SATRA is P2SATRA.

(b) There were three datasets (F3, F10, and F12) that achieve Acc = 1, which means
that S2SATRA can correctly predict the Qtest = 1 for all values of TP and TN. For
the F-score value, there were three datasets that achieved F = 1 value, meaning that
S2SATRA can correctly produce TP during the retrieval phase of HNN. In this context,
F = 1 indicates the perfect precision and recall.

(c) There is no value for F-score for F5 for all the logic mining models because there is no
TP in the testing data.

(d) According to the Figures 14 and 15, no value for Acc < 0.8 is reported and only F11
reports the lowest value of F-score. No F-score value in F5 indicates that there is no
value of TP during the testing data. This justifies the superiority of the S2SATRA in
differentiating TP and TN cases which is very crucial in logic mining.

(e) S2SATRA shows an average improvement in the Acc value ranging from 27.1% to
97.9%. This shows that the clustering capability of S2SATRA significantly improved
while the error value remains low (refer Table 7 (A)). A similar observation is reported
in F-score. S2SATRA shows an average improvement ranging from 30.1% until 75.7%.
This also shows that the clustering capability of S2SATRA significantly improved
while the error value remains low.

(f) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P both for Acc and F-score are 4.26 × 10−7 (

χ2 = 35.18
)

and 8.00 × 10−6 (
χ2 = 29.03

)
, respectively. Hence, the null hypothesis of equal

performance for all the logic mining models is rejected. S2SATRA has an average rank
of 1.375 which is the highest compared to other existing method for Acc. The closest
method that competes with S2SATRA is P2SATRA with an average rank of 2.083. On
the other hand, S2SATRA has an average rank of 1.458 which is the highest compared
to other existing logic mining models for F-score. The closest method that competes
with S2SATRA is P2SATRA with an average rank of 2.333. Both results statistically
validate the superiority of S2SATRA compared to the existing work.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the su-
periority of the S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of Acc and F-score followed by P2SATRA, E2SATRA,
2SATRA, and RA.

Tables 11 and 12 demonstrate the result for Pr and Se for all the 2SATRA models. Ac-
cording to Table 7 (A), there are several winning points for S2SATRA, which are as follows.

(a) In terms of Pr, S2SATRA outperforms other logic mining model in 6 out of 12 datasets.
The closest model that competes with S2SATRA is P2SATRA. For Se, S2SATRA out-
performs other 2SATRA models in 7 out of 12 datasets. Similar to the Pr value, the
closest model that competes with S2SATRA is P2SATRA.

(b) There were three datasets that achieve Pr = 1 value, which means that S2SATRA can
correctly predict the Qtest = 1 in comparison with all the positive outcomes. For the
Se value, four datasets achieved an Se = 1 value, which means that S2SATRA can
correctly produce a positive result during the retrieval phase of HNN.

(c) No value for both Pr and Se is reported for F5 because there is no positive outcome
for these datasets.

(d) The only datasets that achieved Pr < 0.8 were F8 and F11. This shows that 2SATRA
has good capability in differentiating a positive result with a negative result. A similar

48

Mathematics 2022, 10, 915

observation is reported in Se where the only datasets that achieved Se < 0.8 were F8
and F11. Hence, S2SATRA has a competitive capability to produce a positive result
Qtest = 1 compared to other existing 2SATRA model.

(e) S2SATRA shows an average improvement in the Pr value, ranging from 12.3% to
61.2%. This shows that the clustering capability of S2SATRA significantly improved
while the error value remained low (refer Table 11). A similar observation is reported
in the Se result. S2SATRA shows an average improvement ranging from 1.8% to 63.9%.
This also shows that the clustering capability of S2SATRA significantly improved
while the error value remained low.

(f) According to the Friedman test rank for all the datasets, S2SATRA has an average rank
of 1.458 which is the highest compared to other existing methods for Pr. The closest
method that competes with S2SATRA is P2SATRA, with an average rank of 2.333. On
the other hand, S2SATRA has an average rank of 1.375 which is the highest compared
to other existing method for Se. The closest method that competes with S2SATRA
is P2SATRA, with an average rank of 2.083. Both results statistically validate the
superiority of S2SATRA compared to the other logic mining.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the
superiority of S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of Pr and Se, as compared to most of the existing work.

Figure 14. F-score for all logic mining models.

49

Mathematics 2022, 10, 915

Figure 15. Accuracy for all the logic mining models.

Table 11. Precision (Pr) for all models. The bracket indicates the ratio of improvement and * indicates
division by zero. A negative ratio implies the method outperform the proposed method. P is obtained
from the paired Wilcoxon rank test and ** indicates the model with significant inferiority compared
to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.826 0.826 (0) 0.685 (0.205) 0.685 (0.206) 0.826 (0)
F2 0.934 0.984 (−0.051) 0.443 (1.108) 0.385 (1.426) 0.902 (0.035)
F3 1.000 0.600 (0.667) 0.6 (0.667) 1.000 (0) 0.960 (0.042)
F4 0.942 0.519 (0.815) 0.923 (0.021) 0.942 (0) 0.923 (0.021)
F5 - - - - -

F6 0.854 0.737 (0.159) 0.330 (1.588) 0.922
(−0.074)

0.875
(−0.024)

F7 0.992 0.980 (0.012) 0.850 (0.167) 0.979 (0.013) 0.880 (0.127)
F8 0.792 0.875 (−0.095) 0.500 (0.584) 0.750 (0.056) 0.875 (0.095)
F9 0.966 0.983 (−0.017) 0.500 (0.932) 0.966 (0) 0.948 (0.019)
F10 1.000 1.000 (0) 0.000 (*) 1.000 (0) 0.000 (*)
F11 0.696 0.000 (-) 0.909 (−0.2343) 0.273 (1.549) 0.261 (1.667)
F12 1.000 1.000 (0) 0.468 (1.137) 1.000 (0) 1.000 (0)

(+/=/−) - 6/5/2 10/1/1 5/6/1 7/4/1
Avg 0.909 0.773 (0.175) 0.564 (0.612) 0.809 (0.123) 0.765 (0.188)
Std 0.103 0.307 0.274 0.261 0.324
Min 0.696 0.000 0.000 0.273 0.000
Max 1.000 1.000 0.923 1.000 1.000

Avg Rank 1.458 3.417 4.417 2.333 3.375
P 0.003 ** 0.003 ** 0.003 ** 0.003 **

50

Mathematics 2022, 10, 915

Table 12. Sensitivity (Se) for all logic mining models. The bracket indicates the ratio of improvement
and * indicates division by zero. A negative ratio implies the method that outperforms the proposed
method. ** due to no positive outcome in the dataset. P is obtained from the paired Wilcoxon rank
test and ** indicates a model with significant inferiority compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 0.971 0.971 (0) 0.966 (0.0052) 0.966 (0.005) 0.971 (0)

F2 0.755 0.490 (0.541) 0.388 (0.946) 0.452 (0.670) 0.449
(−0.682)

F3 1.000 1.000 (0) 1.000 (0) 0.926 (0.080) 0.923 (0.083)
F4 0.980 0.964 (0.017) 0.8723 (0.123) 0.980 (0) 0.873 (0.123)
F5 0.000 ** 0.000 (**) 0.000 (**) 0.000 (**) 0.000 (**)
F6 0.934 0.997 (−0.063) 0.611 (0.528) 0.844 (0.107) 0.867 (0.078)
F7 0.755 0.624 (0.210) 0.560 (0.348) 0.741 (0.019) 0.592 (0.275)
F8 1.000 0.339 (1.950) 0.255 (2.922) 1.000 (0) 0.339 (1.950)
F9 0.982 0.838 (0.171) 0.744 (0.320) 0.982 (0) 0.679 (0.446)

F10 1.000 0.762 (0.312) 0.000 (*) 1.000 (0) 0.000 (*)
F11 0.696 0.000 (*) 0.150 (3.64) 1.000 (−0.304) 0.073 (8.534)
F12 1.000 1.000 (0) 0.600 (0.667) 1.000 (0) 0.616 (0.6234)

(+/=/−) 7/4/1 10/2/0 5/6/1 10/2/0
Avg 0.839 0.666 0.512 0.824 0.532
Std 0.287 0.379 0.355 0.306 0.360
Min 0.000 ** 0.000 ** 0.000 ** 0.000 ** 0.000 **
Max 1.000 1.000 1.000 1.000 0.923

Avg Rank 1.375 3.167 4.708 2.083 3.667
P 0.612 0.086 0.003 ** 0.084

Table 13 demonstrates MCC analysis for all logic mining models. According to Table 13,
several winning points for S2SATRA are as follows.

(a) In terms of MCC, S2SATRA achieved the most optimal MCC value for 7 out of 12
datasets. The closest model that competes with S2SATRA is P2SATRA. On average,
the logic mining model is reported to obtain the worst result where the MCC value
approaches zero.

(b) There were three datasets (F3, F10, and F12) that achieve an MCC = 1 value which
means that S2SATRA which produced Qtest represents perfect prediction.

(c) No value for MCC is reported for F5 because there is no positive outcome for
this dataset.

(d) The only dataset that approaches zero MCC is F1. This shows that S2SATRA has good
capability in differentiating all domain of the confusion matrix (TP, FP, TN, and FN).

(e) By taking into account the absolute value of MCC, S2SATRA shows an average
improvement in the MCC value ranging from 35.9% until 3839%. This shows that
the clustering capability of S2SATRA significantly improved while the error value
remained low (refer Table 13).

(f) The Friedman test rank is conducted for all the datasets with α = 0.05 and a degree
of freedom of d f = 4. The P for MCC is 1.09 × 10−11(χ2 = 57.26

)
. Hence, the

null hypothesis of equal performance for all the logic mining models was rejected.
S2SATRA has an average rank of 1.363 which is the highest compared to other existing
logic mining for MCC. The closest method that competes with S2SATRA is P2SATRA
with an average rank of 2.955. This result statistically validates the superiority of
S2SATRA compared to the existing work.

(g) In addition, the paired Wilcoxon rank test is conducted to statistically validate the
superiority of S2SATRA. From the table, we observed that S2SATRA is the top-ranked
logic mining model in terms of MCC compared to most existing work.

51

Mathematics 2022, 10, 915

Table 13. MCC for all logic mining models. P is obtained from the paired Wilcoxon rank test and **
indicates the models with significant inferiority compared to the superiority model.

Dataset S2SATRA E2SATRA 2SATRA P2SATRA RA

F1 −0.070 −0.071 −0.104 −0.104 −0.071
F2 0.693 0.270 −0.109 0.015 0.039
F3 1.000 0.316 0.316 - −0.055
F4 0.948 0.647 0.860 0.948 0.859
F5 - - - - -
F6 0.556 0.595 −0.406 0.301 0.489
F7 0.679 0.411 0.106 0.642 0.226
F8 0.847 0.028 0.365 0.816 0.028
F9 0.918 0.659 0.107 0.918 −0.129
F10 1.000 0.713 −1.000 1.000 −0.453
F11 0.623 −0.101 −0.064 0.490 −0.442
F12 1.000 1.000 0.137 1.000 0.453

Avg Rank 1.363 3.045 3.818 2.955 3.818
Mean 0.745 0.406 0.019 0.548 0.086

Std 0.316 0.355 0.469 0.412 0.397
(+/=/−) 9/2/1 10/1/1 6/5/1 10/1/1

P 0.011 ** 0.003 ** 0.018 ** 0.005 **

7.5. McNemar’s Statistical Test

To evaluate whether there is any significant difference between the performance of
the two logic mining models, McNemar’s test is performed. According to [38], McNemar
is the only test that has acceptable Type 1 error and can validate the performance of the
2SATRA model. The normal test statistics are as follows:

Zij =
fij − f ji√

fij + f ji

(23)

where Zij is a measure of significance of the accuracy obtained by model i and j, while fij is
the number of cases where logic mining is correctly classified by model i but incorrectly
classified by model j. A similar description is given for the notation fij. In this experiment,
a 5% level of significance is used. The null hypothesis dictates a pair from the logic mining
model with no difference in disagreement. The performance of classification accuracy is
said to differ significantly if

∣∣Zij
∣∣ > 1.96. Note that, a positive value of Zij means the model

i performs better than model j. Tables 14 and 15 presents the result of the McNemar’s test
for all the logic mining models. Several winning points for S2SATRA are discussed below.

(a) S2SATRA is reported to be statistically significant (in bold) in more than half of the
datasets. The only dataset that has no statistical significance is F4 where S2SATRA
only significantly differs with E2SATRA.

(b) In terms of statistical performance, S2SATRA is shown to be significantly better
compared to other logic mining model. For instance, there is no negative test regarding
the statistics found for S2SATRA (refer row) in comparison to the other 2SATRA model.
The lowest test statistics value for S2SATRA is zero.

(c) The best statistical performance for S2SATRA is in F2, F5, and F6 where all the existing
methods are significantly different and worse (indicated in the positive value). The
second best statistical performances are F7 and F8 where at least one logic mining
model is statistically insignificant but with a statistically better result.

(d) In addition, results from the McNemar test indicates the superiority of S2SATRA in
distinguishing both correct and incorrect outcomes compared to the existing method.

52

Mathematics 2022, 10, 915

Table 14. McNemar’s statistical test for F1–F5.

S2SATRA E2SATRA 2SATRA P2SATRA RA

F1

S2SATRA - 0.000 9.128 9.128 0.000
ES2SATRA - 9.128 9.128 0.000

2SATRA - 0.000 −9.128
P2SATRA - −9.128

RA -

F2

S2SATRA - 6.980 9.194 7.406 −23.263
ES2SATRA - 2.213 0.426 −26.567

2SATRA - −15.449 78.536
P2SATRA - 1.277

RA -

F3

S2SATRA - 3.051 2.722 0.544 0.816
ES2SATRA - −0.278 −2.496 −2.219

2SATRA - −2.177 −1.905
P2SATRA - 0.272

RA -

F4

S2SATRA - 2.211 0.704 0.000 0.704
ES2SATRA - −1.508 −2.211 −1.508

2SATRA - −0.704 0.000
P2SATRA - 0.704

RA -

F5

S2SATRA - 7.264 9.020 4.201 13.592
ES2SATRA - 1.723 −3.077 6.278

2SATRA - −4.819 4.572
P2SATRA - 9.391

RA -

Table 15. McNemar’s statistical test for F6–F11.

S2SATRA E2SATRA 2SATRA P2SATRA RA

F6

S2SATRA - 4.996 57.849 3.529 4.457
ES2SATRA - 52.853 −1.467 −0.539

2SATRA - −54.321 −53.392
P2SATRA - 0.929

RA -

F7

S2SATRA - 11.339 19.744 1.348 16.070
ES2SATRA - 8.405 −9.991 4.731

2SATRA - −18.396 −3.674
P2SATRA - 14.722

RA -

F8

S2SATRA - 6.500 7.000 0.167 6.500
ES2SATRA - −0.500 −6.333 0.000

2SATRA - −6.833 −4.157
P2SATRA - 6.333

RA -

F9

S2SATRA - 1.389 5.555 0.000 4.012
ES2SATRA - 4.166 −1.389 2.623

2SATRA - −5.555 −1.543
P2SATRA - 4.012

RA -

F10

S2SATRA - 2.781 17.263 0.000 11.702
ES2SATRA - 14.482 −2.781 8.921

2SATRA - −17.263 −5.561
P2SATRA - 11.702

RA -

F11

S2SATRA - 1.807 11.204 −1.052 10.199
ES2SATRA - 9.470 −2.785 8.391

2SATRA - −11.791 −1.424
P2SATRA - 10.832

RA -

F12

S2SATRA - 0.000 7.531 0.000 5.561
ES2SATRA - 7.531 0.000 5.561

2SATRA - −7.531 −1.970
P2SATRA - 5.561

RA -

53

Mathematics 2022, 10, 915

8. Discussion

The optimal logic mining model requires pre-processing structures for neurons before
the Qbest can be learned by HNN. Currently, the logic mining model specifically optimizes
the logic extraction from the dataset without considering the optimal Qbest. The mechanism
that optimizes the optimal neuron relationship before the learning can occur is remain
unclear. In this sense, identifying a specific pair of neurons for Qbest will facilitate the
dataset generalization and reduce computational burden.

As mentioned in the theory section, S2SATRA is not merely a modification of a conven-
tional logic mining model, but rather it is a generalization that absorbs all the conventional
models. Thus, S2SATRA not only inherits many properties from a conventional logic min-
ing model but it adds supervised property that reduces the search space of the optimal QB

i .
The question that we should ponder is: what is the optimal Qbest for the logic mining model?
Therefore, it is important to discuss the properties of S2SATRA against the conventional
logic mining model in extracting optimal logical rule from the dataset. According to the
previous logic mining model, such as [20,21,31], the quality of attributes is not well assessed
since the attributes were randomly assigned. For instance, [21] achieved high accuracy for
specific combination of attributes but the quality of different combination of the attributes
will result in low accuracy due to a high local minima solution. A similar neuron structure
can be observed in E2SATRA, as proposed by [24], because the choice of neurons is similar
during the learning phase. Practically speaking, this learning mechanism [20–22,31] is
natural in real life because the neuron assignment is based on trial and error. However, the
2SATRA model needs to sacrifice the accuracy if there is no optimum neuron assignment.
By adding permutation property, as carried out in Kasihmuddin et al. [30], P2SATRA is able
to increase the search space of the model in the expense of higher computational complexity.
To put things into perspective, 10 neurons require learning 18,900 of Qbest learning for each
neuron combination before the model can arrive to the optimal result. Unlike our proposed
model, S2SATRA can narrow down the search space by checking the degree of association
among the neurons before permutation property can take place. Supervised features of
S2SATRA recognized the pattern produced by the neurons and align it with the Qbest clause.
Thus, the mutual interaction between association and permutation will optimally select the
best neuron combination.

As reported in Tables 7 and 8, the number of associations for analysis required for n
attributes to create optimal Qbest was reduced by 1

n
nC6. In other words, the probability of

P2SATRA to extract optimal Qbest is lower compared to the S2SATRA. As the Qbest supplied
to the network has changed, the retrieval property of the S2SATRA model will improve.
The best logic mining model demonstrates a high value of TP and TP with a minimized
value of FP and FN. P2SATRA is observed to outperform the conventional logic mining in
terms of performance metrics because P2SATRA can utilize the permutation attributes. In
this case, the higher the number of permutations, the higher probability for the P2SATRA
to achieve correct TP and TN. Despite a robust permutation feature, P2SATRA failed
to disregard the non-significant attributes which leads to Qlearn

i = 1. Despite achieving
high accuracy, the retrieved final neuron state is not interpretable. E2SATRA is observed
to outperform 2SATRA in terms of accuracy because the induced logic in E2SATRA is
the only amount in the final state that reached global minimum energy. The dynamic of
the induced logic in E2SATRA follows the convergence of the final state proposed in [22]
where the final state will converge to the nearest minima. Although all the final state in
E2SATRA is guaranteed to achieve global minimum energy, the choice of attribute that
is embedded to the logic mining model is not well structured. Similar to 2SATRA and
P2SATRA, the interpretation of the final attribute will be difficult to design. In another
development, 2SATRA is observed to outperform the RA proposed by [14] in terms of all
performance metric. Although the structure of RA is not similar to 2SATRA in creating the
Qlearn

i , the induced logic QB
i has a general property of QHORNSAT . In this case, QHORNSAT

is observed to create a rigid induced logic (at most 1 positive literal) and can reduce the

54

Mathematics 2022, 10, 915

possible solution space of the RA. In this case, we only consider the dataset that satisfies
the QHORNSAT that will lead to Qtest = 1.

In contrast, S2SATRA employs a flexible Q2SAT logic which accounts for both positive
and negative literal. This structure is the main advantage over the traditional RA proposed
by [14]. S2ATRA is observed to outperform the rest of the logic mining model due the
optimal choice of attributes. In terms of feature, S2SATRA can capitalize the energy feature
of E2SATRA and the permutation feature of P2SATRA. Hence, the induced logic obtained
will always achieve global minimum energy and only relevant attribute ρ < α will be
chosen to be learned in HNN. Another way to explain the effectiveness of logic mining is
the ability to consistently find the correct logical rule to be learned by HNN. Initially, all
logic mining models begin with HNN which has too many ineffective synaptic weights
due to suboptimal features. In this case, S2SATRA can reduce the inconsistent logical rule
that leads to suboptimal synaptic weight.

S2SATRA is reported to outperform almost all the existing logic mining models
in terms of all performance metrics. S2SATRA has the capability to differentiate be-
tween TP

(
QB

i = 1
)

and TP
(
QB

i = −1
)
, which leads to high Acc and F-score values. Since

S2SATRA is able to obtain more TP
(
QB

i = 1
)
, the Pr and Sen will increase compared to

the other existing methods. In terms of Pr and Sen, S2SATRA is reported to succesfully
predict QB

i = 1 during the retrieval phase. In other words, the existing 2SATRA model is
less sensitive to the positive outcome which leads to a lower value of Pr and Se. It is worth
mentioning that the overfitting nature of the retrieval phase will lead to QB

i which can
only produce more positive neuron states. This phenomenon was obvious in the existing
method where the HNN tends to converge to only a few final states. This result has a
good agreement with the McNemar’s test where the performance of S2SATRA is signif-
icantly different from the existing method. The optimal arrangement of the QB

i signifies
the importance of the association among the attributes towards the retrieval capability of
the S2SATRA. Without proper arrangement, the obtained QB

i tends to overfit which leads
to a high classification error. S2SATRA can only utilize correlation analysis during the
pre-processing stage because correlation analysis provides preliminary connection between
the attribute and Qlearn

i .
It is worth noting that although there are many developments of the supervised

learning method, such as a decision tree, a support vector machine, etc., none of these
methods can provide the best approximation to the logical rule. Most of the mentioned
methods are numerically compatible as an individual classification task, but not as a
classification via a logical rule. For instance, a decision tree is effective in classifying the
outcome of the dataset but S2SATRA is more effective in generalizing the datasets in the
form of induced logics. The obtained induced logic can be utilized for a similar classification
task. In term of parameter settings, S2SATRA is not dependent on any free parameter.
The only parameter that can improve S2SATRA is the number of Trial. Increasing the
number of trials will increase the number of the final state that corresponds to the QB

i . The
main problem with this modification is that increasing the number of trials will lead to an
unnecessary high computation time. Hence, in this experiment, the number of Trial still
follows the conventional settings in [38]. It is worth noting that S2SATRA achieved the
lowest accuracy for F1. This is due to imbalanced data, which leads to non-optimal induced
logic. Correlation analysis cannot discriminate the correct relationship between variables
and Qlearn

i . Generally, S2SATRA improved the pre-processing phase of the logic mining
which leads to an improved learning phase due to the correct combination of Qbest

i . The
correct combination of Qbest

i will lead to optimal QB
i which can generalize the dataset.

Finally, we would like to discuss the limitations of the study. The limitation of the
S2SATRA is the computation time due to the complexity of the learning phase. Since
all logic mining models utilized the same learning model to maximize the fitness of the
solution, computation time is not considered as a significant factor. As the number of
attribute or clausal noise increases, the learning error will exponentially increase. Hence,
metaheuristics and accelerating algorithms, such as in [41], are required to effectively

55

Mathematics 2022, 10, 915

minimize the cost function in Equation (5) within a shorter computational time. This
phenomenon can be shown when the number of neurons NN ≥ 20 in the logic mining
model is trapped in a trial-and-error state. In terms of satisfiability, all the proposed 2SATRA
models do not consider non-satisfiable logical structure or EQ2SAT
= 0, such as maximum
satisfiability [42] and minimum satisfiability [43]. This is due to the nature of 2SATRA that
only consider data point that leads to positive outcome or Qlearn = 1. In terms of network,
HNN is chosen compared to other ANN structures, such as feedforward because feedback
to the input is compatible to the cost function EQ2SAT . Another problem that might arise for
feedforward ANN, such as within the radial basis function neural network (RBFNN), is the
training choice. For instance, the work of [9,44] can produce a single induced logic due to
the RBFNN structure. This will reduce the accuracy of the S2SATRA model. A convolution
neural network (CNN) is not favoured because propositional logic only deals with bipolar
representation and multiple layers only increase the computational cost for the S2SATRA. In
another perspective, weighted satisfiability that randomly assign the negation of the neuron
will reduce the generality of the induced logic. In this case, 2SATRA model must add one
additional layer during the retrieval phase to obtain which logical weight yields the best
accuracy. Unlike several learning environments in HNN-2SAT [45], learning iteration will
not be restricted and will be terminated when fi = fNC. A restricted value of the learning
iteration will lead to more induced logic trapped in local minimum energy. As a worst-case
scenario, a logic mining model, such as E2SATRA, will not produce any induced logic in
restricted learning environment. Hence, all the 2SATRA models exhibit the same learning
rule via the Wan Abdullah method [6]. In addition, all the logic mining models, except for

RA and conventional logic mining, follow the condition of
∣∣∣∣HP

Sinduced
i

− Hmin
P

Sinduced
i

∣∣∣∣ ≤ ∂. In

this case, only induced logic that can achieve global minimum energy will be considered
during the retrieval phase. This is supported by [33] where the final state of neuron that
represents the induced logic will always converge to the nearest minimum. By employing
the Wan Abdullah method and HTAF [4], the number of solutions that corresponds to the
local minimum solution will reduce dramatically. The neuron combination is limited to
only COMBAX = 100 because the higher the value of COMBAX, the higher the learning
error and HNN tends to be trapped in a trial-and-error state.

The experimental results presented above indicate that the S2SATRA improved the
classification performance more than other existing logic mining model and created more
solution variation. Another interesting phenomenon we discovered is that supervised learn-
ing features in S2SATRA reduce the permutation effort in finding the optimal Qlearn

i . As a
result, HNN can retrieve the logical rule to do with acquiring higher accuracy. Additionally,
we observed that when a number of clausal noise was added, S2SATRA shows a better
result compared to the existing model. It is expected that our work can give inspiration
to other logic mining models, such as [20,21], to extract the logical rule effectively. The
robust architecture of S2SATRA provides a good platform for the application of real-life
bioinformatics. For instance, the proposed S2SATRA can extract the best logical rule that
classifies single-nucleotide polymorphisms (SNPs) inside known genes associated with
Alzheimer’s disease. This can lead to large-scale S2SATRA design, which has the ability to
classify and predict.

9. Conclusions and Future Work

In this paper, we proposed a new perspective in obtaining the best induced logic from
real-life datasets. As in a standard logic mining model, the attribute selection was chosen
randomly which leads to non-essential attributes and reduces the capability of the HNN
to represent the dataset. To address the issue of randomness, a novel supervised learning
(S2SATRA) capitalized the correlation filter among variables in the logical rule with respect
to the logical outcome. In this case, the only attribute that has the best association value
will be chosen during the pre-processing stage of S2SATRA. After obtaining the optimal
Qbest, HNN can obtain the synaptic weight associated with the Qbest which minimizes the

56

Mathematics 2022, 10, 915

cost function of the network. During the retrieval phase, the best combination of QB
i will

be generated, thus creating the best QB
i that generalizes the logical rule of the datasets. The

effectiveness of the proposed S2SATRA is illustrated by extensive experimental analysis
that compares S2SATRA with several state-of-the-art logic mining methods. Experimental
results demonstrate that S2SATRA can effectively produce more optimal Qbest which leads
to the improved QB

i . In this case, S2SATRA was reported to outperform all the existing logic
mining models in most of the performance metrics. Given the simplicity and flexibility
of the S2SATRA, it is also worth implim3n5int other logical dimensions. For instance, it
will be interesting to investigate the implementation of random k satisfiability proposed
by [13,41] into the supervised learning-based reverse analysis method. By implementing
the flexible logical rules, the generalization of the dataset will improve dramatically.

Author Contributions: Investigation, resources, funding acquisition, M.S.M.K.; conceptualization,
methodology, writing—original draft preparation, S.Z.M.J.; formal analysis, writing—review and
editing, M.A.M.; visualization, project administration, H.A.W.; theory analytical, validation, S.M.S.G.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Ministry of Higher Education Malaysia for Transdisci-
plinary Research Grant Scheme (TRGS) with Project Code: TRGS/1/2020/USM/02/3/2.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to express special dedication to all of the researchers
from AI Research Development Group (AIRDG) for the continuous support.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Malik, A.; Walker, C.; O’Sullivan, M.; Sinnen, O. Satisfiability modulo theory (smt) formulation for optimal scheduling of task
graphs with communication delay. Comput. Oper. Res. 2018, 89, 113–126. [CrossRef]

2. Shukla, A.; Bhattacharyya, A.; Kuppusamy, L.; Srivas, M.; Thattai, M. Discovering vesicle traffic network constraints by model
checking. PLoS ONE 2017, 12, e0180692. [CrossRef] [PubMed]

3. de Azevedo, G.H.I.; Pessoa, A.A.; Subramanian, A. A satisfiability and workload-based exact method for the resource constrained
project scheduling problem with generalized precedence constraints. Eur. J. Oper. Res. 2021, 289, 809–824. [CrossRef]

4. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. VLSI circuit configuration using satisfiability logic in Hopfield network. Int.
J. Intell. Syst. Appl. 2016, 8, 22–29. [CrossRef]

5. Mansor, M.A.; Kasihmuddin, M.S.M.; Sathasivam, S. Enhanced Hopfield network for pattern satisfiability optimization. Int. J.
Intell. Syst. Appl. 2016, 8, 27–33. [CrossRef]

6. Abdullah, W.A.T.W. Logic programming on a neural network. Int. J. Intell. Syst. 1992, 7, 513–519. [CrossRef]
7. Sathasivam, S. Upgrading logic programming in Hopfield network. Sains Malays. 2010, 39, 115–118.
8. Hamadneh, N.; Sathasivam, S.; Tilahun, S.L.; Choon, O.H. Learning logic programming in radial basis function network via

genetic algorithm. J. Appl. Sci. 2012, 12, 840–847. [CrossRef]
9. Mansor, M.; Mohd Jamaludin, S.Z.; Mohd Kasihmuddin, M.S.; Alzaeemi, S.A.; Md Basir, M.F.; Sathasivam, S. Systematic boolean

satisfiability programming in radial basis function neural network. Processes 2020, 8, 214. [CrossRef]
10. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Hybrid genetic algorithm in the Hopfield network for logic satisfiability

problem. Pertanika J. Sci. Technol. 2017, 25, 139–151.
11. Bin Mohd Kasihmuddin, M.S.; Bin Mansor, M.A.; Sathasivam, S. Genetic algorithm for restricted maximum k-satisfiability in the

Hopfield network. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 52–60.
12. Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Robust Artificial Bee Colony in the Hopfield network for 2-satisfiability

problem. Pertanika J. Sci. Technol. 2017, 25, 453–468.
13. Karim, S.A.; Zamri, N.E.; Alway, A.; Kasihmuddin, M.S.M.; Ismail, A.I.M.; Mansor, M.A.; Hassan, N.F.A. Random satisfiability: A

higher-order logical approach in discrete Hopfield neural network. IEEE Access 2021, 9, 50831–50845. [CrossRef]
14. Sathasivam, S.; Abdullah, W.A.T.W. Logic mining in neural network: Reverse analysis method. Computing 2011, 91, 119–133.
15. Mansor, M.A.; Sathasivam, S.; Kasihmuddin, M.S.M. Artificial immune system algorithm with neural network approach for social

media performance metrics. In Proceedings of the 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical
Sciences as the Core of Intellectual Excellence, Pahang, Malaysia, 27–29 August 2017.

57

Mathematics 2022, 10, 915

16. Mansor, M.A.; Sathasivam, S.; Kasihmuddin, M.S.M. 3-satisfiability logic programming approach for cardiovascular diseases
diagnosis. In Proceedings of the 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the
Core of Intellectual Excellence, Pahang, Malaysia, 27–29 August 2017.

17. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Satisfiability based reverse analysis method in diabetes detection. In
Proceedings of the 25th National Symposium on Mathematical Sciences (SKSM25): Mathematical Sciences as the Core of
Intellectual Excellence, Pahang, Malaysia, 27–29 August 2017.

18. Kasihmuddin, M.S.M.; Mansor, M.A.; Sathasivam, S. Students’ performance via satisfiability reverse analysis method with
Hopfield Neural Network. In Proceedings of the International Conference on Mathematical Sciences and Technology 2018
(MATHTECH2018): Innovative Technologies for Mathematics & Mathematics for Technological Innovation, Penang, Malaysia,
10–12 December 2018.

19. Kho, L.C.; Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Logic mining in football. Indones. J. Electr. Eng. Comput. Sci. 2020,
17, 1074–1083.

20. Kho, L.C.; Kasihmuddin, M.S.M.; Mansor, M.; Sathasivam, S. Logic mining in league of legends. Pertanika J. Sci. Technol. 2020, 28,
211–225.

21. Alway, A.; Zamri, N.E.; Mohd Kasihmuddin, M.S.; Mansor, A.; Sathasivam, S. Palm oil trend analysis via logic mining with
discrete Hopfield neural network. Pertanika J. Sci. Technol. 2020, 28, 967–981.

22. Mohd Jamaludin, S.Z.; Mohd Kasihmuddin, M.S.; Md Ismail, A.I.; Mansor, M.; Md Basir, M.F. Energy based logic mining analysis
with Hopfield neural network for recruitment evaluation. Entropy 2021, 23, 40.

23. Peng, Y.L.; Lee, W.P. Data selection to avoid overfitting for foreign exchange intraday trading with machine learning. Appl. Soft
Comput. 2021, 108, 107461.

24. Bottmer, L.; Croux, C.; Wilms, I. Sparse regression for large data sets with outliers. Eur. J. Oper. Res. 2022, 297, 782–794.
25. Tripepi, G.; Jager, K.J.; Dekker, F.W.; Zoccali, C. Linear and logistic regression analysis. Kidney Int. 2008, 73, 806–810. [CrossRef]

[PubMed]
26. Yan, X.; Zhao, J. Application of Neural Network in National Economic Forecast. In Proceedings of the 2018 IEEE 3rd International

Conference on Image, Vision and Computing (ICIVC), Chongqing, China, 27–29 June 2018.
27. Sun, S.; Lu, H.; Tsui, K.L.; Wang, S. Nonlinear vector auto-regression neural network for forecasting air passenger flow. J. Air

Transp. Manag. 2019, 78, 54–62. [CrossRef]
28. Khairi, M.T.M.; Ibrahim, S.; Yunus, M.A.M.; Faramarzi, M.; Yusuf, Z. Artificial neural network approach for predicting the water

turbidity level using optical tomography. Arab. J. Sci. Eng. 2016, 41, 3369–3379. [CrossRef]
29. Vallejos, J.A.; McKinnon, S.D. Logistic regression and neural network classification of seismic records. Int. J. Rock Mech. Min. Sci.

2013, 62, 86–95. [CrossRef]
30. Kasihmuddin, M.S.M.; Mansor, M.A.; Basir, M.F.M.; Jamaludin, S.Z.M.; Sathasivam, S. The Effect of logical Permutation in

2 Satisfiability Reverse Analysis Method. In Proceedings of the 27th National Symposium on Mathematical Sciences (SKSM27),
Bangi, Malaysia, 26–27 November 2019.

31. Zamri, N.E.; Mansor, M.; Mohd Kasihmuddin, M.S.; Alway, A.; Mohd Jamaludin, S.Z.; Alzaeemi, S.A. Amazon employees
resources access data extraction via clonal selection algorithm and logic mining approach. Entropy 2020, 22, 596. [CrossRef]

32. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Raymond, E.M., James, W.T.,
Jean, D.B., Eds.; Springer: Boston, MA, USA, 1972; pp. 85–103.

33. Hopfield, J.J.; Tank, D.W. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [CrossRef]
[PubMed]

34. Sejnowski, T.J.; Tesauro, G. The Hebb rule for synaptic plasticity: Algorithms and implementations. In Neural Models of Plasticity;
Academic Press: Cambridge, MA, USA, 1989; pp. 94–103.

35. Jha, K.; Saha, S. Incorporation of multimodal multiobjective optimization in designing a filter based feature selection technique.
Appl. Soft Comput. 2021, 98, 106823. [CrossRef]

36. Singh, N.; Singh, P. A hybrid ensemble-filter wrapper feature selection approach for medical data classification. Chemom. Intell.
Lab. Syst. 2021, 217, 104396. [CrossRef]

37. Zhu, Q. On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset. Pattern Recognit. Lett. 2020, 136,
71–80. [CrossRef]

38. Mohd Kasihmuddin, M.S.; Mansor, M.; Md Basir, M.F.; Sathasivam, S. Discrete mutation Hopfield neural network in propositional
satisfiability. Mathematics 2019, 7, 1133. [CrossRef]

39. Dietterich, T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 1998, 10,
1895–1923. [CrossRef] [PubMed]

40. Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30.
41. Bazuhair, M.M.; Jamaludin, S.Z.M.; Zamri, N.E.; Kasihmuddin, M.S.M.; Mansor, M.; Alway, A.; Karim, S.A. Novel Hopfield

neural network model with election algorithm for random 3 satisfiability. Processes 2021, 9, 1292. [CrossRef]
42. Bonet, M.L.; Buss, S.; Ignatiev, A.; Morgado, A.; Marques-Silva, J. Propositional proof systems based on maximum satisfiability.

Artif. Intell. 2021, 300, 103552. [CrossRef]
43. Li, C.M.; Zhu, Z.; Manyà, F.; Simon, L. Optimizing with minimum satisfiability. Artif. Intell. 2012, 190, 32–44. [CrossRef]

58

Mathematics 2022, 10, 915

44. Alzaeemi, S.A.S.; Sathasivam, S. Examining the forecasting movement of palm oil price using RBFNN-2SATRA Metaheuristic
algorithms for logic mining. IEEE Access 2021, 9, 22542–22557. [CrossRef]

45. Sathasivam, S.; Mamat, M.; Kasihmuddin, M.S.M.; Mansor, M.A. Metaheuristics approach for maximum k satisfiability in
restricted neural symbolic integration. Pertanika J. Sci. Technol. 2020, 28, 545–564.

59

Citation: Wolter, U. Logics of

Statements in Context-Category

Independent Basics. Mathematics

2022, 10, 1085. https://doi.org/

10.3390/math10071085

Academic Editor: Răzvan Diaconescu

Received: 1 February 2022

Accepted: 18 March 2022

Published: 28 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Logics of Statements in Context-Category Independent Basics

Uwe Wolter

Department of Informatics, University of Bergen, 5020 Bergen, Norway; uwe.wolter@uib.no

Abstract: Based on a formalization of open formulas as statements in context, the paper presents
a freshly new and abstract view of logics and specification formalisms. Generalizing concepts
like sets of generators in Group Theory, underlying graph of a sketch in Category Theory, sets of
individual names in Description Logic and underlying graph-based structure of a software model in
Software Engineering, we coin an abstract concept of context. We show how to define, in a category
independent way, arbitrary first-order statements in arbitrary contexts. Examples of those statements
are defining relations in Group Theory, commutative, limit and colimit diagrams in Category Theory,
assertional axioms in Description Logic and constraints in Software Engineering. To validate the
appropriateness of the newly proposed abstract framework, we prove that our category independent
definitions and constructions give us a very broad spectrum of Institutions of Statements at hand.
For any Institution of Statements, a specification (presentation) is given by a context together with a
set of first-order statements in that context. Since many of our motivating examples are variants of
sketches, we will simply use the term sketch for those specifications. We investigate exhaustively
different kinds of arrows between sketches and their interrelations. To pave the way for a future
development of category independent deduction calculi for sketches, we define arbitrary first-order
sketch conditions and corresponding sketch constraints as a generalization of graph conditions and
graph constraints, respectively. Sketch constraints are the crucial conceptual tool to describe and
reason about the structure of sketches. We close the paper with some vital observations, insights
and ideas related to future deduction calculi for sketches. Moreover, we outline that our universal
method to define sketch constraints enables us to establish and to work with conceptual hierarchies
of sketches.

Keywords: first-order logic; abstract model theory; institution; sketch; algebraic specification;
description logic; graph conditions; graph constraints; diagram predicate framework

MSC: 03B70; 03C95; 18C30; 68N30; 68Q65

1. Introduction

The impetus towards abstraction is often triggered by the feeling that we do, again
and again, the “same thing”—that there are structural similarities between concepts
and problems in various areas and on different conceptual levels. We experience fac-
ing “similar patterns” when formalizing and reasoning about certain kinds of concepts
and problems.

Once we obtain the strong impression that concepts, constructions, proofs and results
in various areas and on different conceptual levels are somehow related, we may feel the
urge to find out what the commonalities really are and to formalize them in an adequate
mathematical language. Naturally, such a formalization will be a pretty abstract one if it
should cover a broader range of areas.

In light of these remarks, the paper presents the first stage of expansion of a conceptual
framework intended to provide a unified view to a broad range of concepts, constructions
and problems we dealt with in our long-standing research in various areas and on different
conceptual levels in formal specification. The framework should enable us to describe a

Mathematics 2022, 10, 1085. https://doi.org/10.3390/math10071085 https://www.mdpi.com/journal/mathematics61

Mathematics 2022, 10, 1085

wide range of specification formalisms (modelling techniques) in a uniform way and thus
to relate them. Since category theory is the mathematical language of choice to describe
and study relations between structures and constructions, we utilize categorical concepts
to describe our framework.

1.1. Background, Motivations, Challenges and Principles

In this subsection, we outline different lines of motivation and challenges encouraging
us to develop our abstract conceptual framework. In particular, we discuss and try to justify
the methodological principles upon which the development of the framework is based.

1.1.1. Universal Algebra and Algebraic Specifications:

We consider a morphism ϕ : (Σ, E)→ (Σ′, E′) between two equational specifications,
i.e., a signature morphism ϕ : Σ → Σ′ such that the set E′ of Σ′-equations entails the set
ϕ(E) of translated Σ-equations. For any (Σ, E)-algebra A there is a (Σ′, E′)-algebra Fϕ(A)
freely generated by A along ϕ. The construction of Fϕ(A) can be described in four steps:
(1) Construct a “syntactic encoding” of A; (2) Translate this syntactic encoding along the
signature morphism ϕ; (3) Use semantic entailment or a deduction calculus to extend the
translated encoding of A to a syntactic encoding of a (Σ′, E′)-algebra; and (4) Transform
the extended encoding into a (Σ′, E′)-algebra Fϕ(A).

There is a widely-used technique to encode a Σ-algebra A syntactically (see, for
example, [1]): The elements of the carrier A of A are added as auxiliary constants to
the signature Σ and the complete behaviour of the operations in A is encoded by a
set RA of ground (Σ + A)-equations. To make the construction of free algebras work,
we have to extend (Σ′, E′) and ϕ, in such a way that we obtain a signature morphisms
ϕA : (Σ + A, E + RA)→ (Σ′ + ϕ(A), E′ + ϕ(RA)) and Fϕ(A) is constructed as a quotient
of the ground (Σ′ + ϕ(A))-term algebra TΣ′+ϕ(A)(∅).

In abstract model theory, this technique is reflected by the idea to define variables by
means of signature extensions. (In this paper, we use the term “model” in two conflicting
meanings: A “software model”, e.g., is a syntactic representation of (certain properties)
of a software system (semantic structure) while a “model” in logic is a semantic structure
conforming to a formal syntactic description). This is the traditional approach in the
theory of institutions (compare [2]). Note that this only works if the signatures in question
comprise the concept of operation!

We perceive the above outlined technique in Universal Algebra as not fully adequate.
The construction of free algebras becomes unnecessarily involved and we are, unfortunately,
forced to work with infinite signatures since there is a kind of circularity in the sense that
signatures have to be defined in such a way that the carrier of any potential Σ-algebra
for any signature Σ can be encoded by a signature extension of Σ. Somehow, the concept
of signature is not a “syntactic” one anymore. In our humble opinion, signatures are (or
should be) located on a conceptual level above carriers of algebras. Following the principle
of separation of concerns, we would therefore formulate the following first requirement for
our framework.

Requirement 1: Define signatures independent of and prior to carriers of algebras.

Adhering to Requirement 1, we will be allowed, for example, to base a specification
formalism on finite or enumerable signatures only! Another observation is that signatures
are always given by sets, thus we have to adhere to Requirement 1 if we want to work with
algebras where the carriers are graphs instead of sets, for example [3].

Generalizing the concept of a group generated by a set of generators and a set of
defining relations the small school on Partial Algebraic Specifications in former East-
Germany [4–7] developed the concept of a partial (Σ, CEE)-algebra F (Σ, CEE, X, R) freely
generated by a set X of variables (generators) and a set R of Σ-equations on X where CEE
is a set of conditional existence Σ-equations. Based on this concept, a fully-fledged theory

62

Mathematics 2022, 10, 1085

of Partial Algebraic Specifications, including free functor semantics as well as limits and
colimits of signatures, specifications and partial algebras, resp., has been developed [6].

We consider here the case of total algebras. Any (Σ, CE)-algebra A is isomorphic
to F (Σ, CE, A, RA), which, in turn, is isomorphic to F (Σ, ∅, A, RA) since RA also en-
codes the fact that A satisfies all the conditional equations in CE. However, there may
be other, hopefully finite, sets X and R such that A ∼= F (Σ, CE, X, R). For any such
syntactic representation (X, R) of a (Σ, CE)-algebra A and any specification morphism
ϕ : (Σ, CE) → (Σ′, CE′), we can construct the free algebra Fϕ(A) as the Σ′-algebra
F (Σ′, CE′, ϕ(X), ϕ(R)), which is a quotient of the Σ′-term algebra TΣ′(ϕ(X)).

Freely generated algebras also play a crucial role in proving the completeness of the
deduction calculus for conditional equations [6,7]: A deduction rule generates new equations
from a set of given equations. Any conditional equation can be transformed into a deduction
rule and vice versa. Given (X, R), the deduction calculus generates the smallest Σ-congruence
C(Σ, CE, X, R) in TΣ(X) which contains (X, R) and is closed w.r.t. the rules arising from CE.
We consider the quotient Σ-term algebra F (Σ, CE, X, R) = TΣ(X)/C(Σ, CE, X, R). For any
Σ-algebra A we have A ∼= TΣ(A)/ker(id∗A) for the Σ-homomorphism id∗A : TΣ(A) → A,
and it can be shown that A satisfies a set CE of conditional equations if, and only if, the
kernel ker(id∗A) is closed under the deduction rules arising from CE. This insures that
F (Σ, CE, X, R) is a (Σ, CE)-algebra. To show the completeness of the deduction calculus, we
only have to prove that F (Σ, CE, X, R) is indeed freely generated by (X, R). Note that we
work here with a kind of semantic deduction theorem: A set CE of conditional equations
entails a conditional equation (X : R → t = t′) if, and only if, (t, t′) ∈ C(Σ, CE, X, R).

In the East-German school of Algebraic Specifications, we do have syntactic repre-
sentations (A, RA), (X, R) of Σ-algebras which are well distinguished from signatures
and algebras, respectively. At the same time, deduction means the step-wise generation
of the congruence relations C(Σ, CE, X, R) starting with (X, R). In [7], we describe these
congruence relations, for example, as fixed points of so-called derivation operators de-
scribing the effect of parallel one-step applications of deduction rules. We are convinced
that the definition of any specification formalism would benefit if it includes a separated
“technological layer” where the syntactic representations of semantic structures live and
where we can describe the effects of deduction explicitly and in detail.

Requirement 2: Define a separated technological layer where the syntactic repre-
sentations of semantic structures live and where deduction takes place.

Looking back, we have been left, after all the years, with two related questions:

Question 1: Is there a general principle behind the one-to-one correspondence
between conditional equations and deduction rules?

Question 2: Is there indeed a kind of general semantic deduction theorem behind
the equivalence between entailment of conditional equations and entailment of
equations?

We hope that our framework will enable us to give satisfactory answers.

1.1.2. Categorical Algebra

Due to Lawvere [8], one can construct for any specification (Σ, E) with E a set of
Σ-equations a category FP(Σ,E) with finite products such that the category of all
(Σ, E)-algebras is equivalent to the category of all product preserving functors from FP(Σ,E)
into Set. Analogously, one can construct for any specification (Σ, CE) with CE a set of
conditional Σ-equations a category FL(Σ,CE) with finite limits such that the category of all
(Σ, CE)-algebras is equivalent to the category of all finite limit preserving functors from
FL(Σ,CE) into Set.

63

Mathematics 2022, 10, 1085

In [9], we generalized this result to many-sorted signatures and partial algebras. We
showed how to construct for any specification (Σ, CEE), with Σ a many-sorted signature
and CEE a set of conditional existence Σ-equations, a category FL(Σ,CEE) with finite limits
such that the category of all partial (Σ, CEE)-algebras is equivalent to the category of
all limit preserving functors from FL(Σ,CEE) into the functor category SetS with S the
corresponding discrete category, i.e., set, of sorts declared in Σ.

The construction of those syntactic categories starts by introducing objects that corre-
spond to declarations of finite sets of variables. After adding for each operation symbol
in Σ a morphism between the appropriate objects, one continues by constructing new
morphisms and an equivalence relation between morphisms. In case of finite product
categories FP(Σ,E), no other objects are generated while in case of the finite limit cate-
gories FL(Σ,CE) and FL(Σ,CEE), resp., we have to introduce new objects (X, R) representing
the set of “solutions” of the set R of (existential) Σ-equations on X, i.e., a corresponding
equalizer. Triggered by this example and supported by later experiences, especially with
diagrammatic specification techniques, we vote for:

Requirement 3: Define variables prior to operation and predicate symbols
and use variables to define the arities of operations and predicates.

In [9], we specified finite limit categories as partial ΣFL-algebras (with ΣFL a signature
declaring two sorts Ob, Mor and operations like source, target, composition, product,
equalizer, subobject, . . .) satisfying a corresponding set CEEFL of conditional existence
equations. The category FL(Σ,CEE) was then constructed as the freely generated partial
(ΣFL, CEEFL)-algebra F (ΣFL, CEEFL, OP + CEE, R) with OP + CEE declaring one variable
of sort Mor for each operation symbol in Σ and one variable of sort Mor for each conditional
existence equation in CEE. R describes source and target of the variables in OP + CEE as
well as the subobject property of the variables in CEE.

Thus, what we did is to reuse the formalism of partial algebras and conditional
existence equations on the higher conceptual level of formalisms to coin a (meta) spec-
ification of the specification formalism “finite limits”. In the process, we downgraded
operations and conditional equations, playing the leading part in Section 1.1.1, to sim-
ple variables (generators). It seems quite natural to require a similar flexibility from our
conceptual framework:

Objective 1: The framework should enable us to describe and to work with
specification formalisms on different conceptual levels in a uniform way.

1.1.3. Sketches in Category Theory

Categories are graphs equipped with identities and composition; thus, a string-based
formalism like algebraic specifications, for example, may be not always the most adequate
tool to describe and reason about categorical structures.

In the 1960s, Charles Ehresmann invented a graph-based specification formalism–the
so-called sketches. Later sketches were promoted for applications in computer science by
Barr and Wells [10] and applied to data modeling problems by Johnson and Rosebrugh [11]
(see [12] for a survey).

A sketch S = (G, D, L, K) consists of a graph G and sets D, L and K of diagrams in
G. In Category Theory, a diagram in a graph G of shape I is a graph homomorphism
δ : I → G. A modelM of a sketch S in a category C is a graph homomorphism from G to
the underlying graph of C that takes every diagram in D to a commutative diagram, every
diagram in L to a limit diagram and every diagram in K to a colimit diagram [10].

We use in this paper the term “diagrammatic” as a synonym for “graph-based” in
a broad sense. We consider, for example, any functor (presheaf) F : C → Set with C a
small category as a “graph-based” structure. Sketches give us a diagrammatic pendant
to algebraic specifications at hand and are, at the same time, more expressive. Equational
specifications can be equivalently described by finite product sketches, i.e., sketches where

64

Mathematics 2022, 10, 1085

K is empty and L contains only finite product diagrams, while algebraic specification with
conditional equations can be transformed into equivalent finite limit sketches with K empty
and L containing only finite limit diagrams.

Analogous to Section 1.1.2, we can construct for any finite product sketch
S = (G, D, L), for example, a corresponding finite product category freely generated
by S. The methodologically important observation is that the items in the graph G
now play the role of “variables (generators)” while the diagrams in D and L are the
“defining relations”.

1.1.4. Generalized Sketches

Sketches are a very expressive specification formalism but reveal some essential
deficiencies when it comes to the formalization of diagrammatic specification techniques in
Software Engineering, for example (see the discussion in [13]).

We have to deal with other properties than just commutativity, limit or colimit. In addi-
tion, we meet structures that go beyond plain graphs like typed graphs or
E-graphs [14], for example.

Extending the sketch formalism along the two dimensions–properties and/or
structures–we arrive at generalized sketches. Generalized sketches were developed in
the 1990s independently by Makkai, motivated by his work on an abstract formulation of
Completeness Theorems in Logic [15], and a group in Latvia around Diskin, triggered by
their work on data modeling [16,17].

To define a certain generalized sketch formalism, we chose a category Base which
may differ from the category Graph of graphs. We coin for each property we want to deal
with in our formalism a predicate symbol P and define, analogous to the shape graphs
in traditional sketches, the arity of this predicate by an object αP in Base. Analogous to a
diagram in a sketch, we define an atomic statement about an object K in Base by a morphism
δ : αP → K in Base. A generalized sketch K = (K, StK) is then nothing but an object K in
Base together with a set StK of atomic statements about K (see [13]).

1.1.5. Diagram Predicate Framework (DPF)

Software models and a plethora of modeling artifacts in various scientific and indus-
trial areas are essentially diagrammatic. Traditional string-based formalisms turn out to
be unwieldy and inadequate to define syntax and semantics of diagrammatic modeling
techniques and to formalize diagrammatic reasoning. Instead of trying to emulate diagram-
matic models and reasoning by means of traditional string-based formalisms, we adapted
therefore generalized sketches when we started, around fifteen years ago, to work with
Model Driven Software Engineering (MDSE).

Software models are (or, at least, appear as) graph-based structures complemented
with constraints the modeled software system has to comply with. For us, it was striking
that generalized sketches are the most adequate concept to formalize those artifacts. A
software model can be formalized as a generalized sketch K = (K, StK), where K represents
the underlying graph-based structure of the model and StK the set of constraints in the
model. We further developed the generalized sketch approach as a theoretical foundation
of MDSE [13,18–20] and called it, after a while, the Diagram Predicate Framework (DPF)
since it turned out to be nearly impossible to convince software engineers that a “sketch”
is something precise with a well-defined syntax and semantics. For the same reason,
generalized sketches are called diagrammatic specifications in DPF.

DPF has been applied to a wide range of problems in MDSE with a special focus on
model transformations and meta-modeling [18,21]. Thereby, we restricted ourselves to
categories of graphs or typed graphs, respectively, as the base categories. (To reduce self
citation, we followed the suggestion of the editors and dropped all references to papers
just illustrating applications of DPF but not being relevant for the content of the paper).

While sketches and companions are relegated to a niche existence in all the traditional
formalisms we discussed so far, they take center stage in DPF. The framework, presented

65

Mathematics 2022, 10, 1085

in this paper, arose to a big extent from the attempt to lift ideas and insights from the
development of the theoretical foundations of DPF to a more general level.

Objective 2: The framework provides a formalization of the general idea of
sketches as syntactic descriptions and/or representations of semantic entities.

Our hope is that this sketch-centered approach enables us to achieve another goal.

Objective 3: The framework allows us to describe, in a uniform way, not only
string-based formalisms, like Algebraic Specifications and First-Order Logic, but
also a wide variety of diagrammatic specification formalisms/techniques.

At present, DPF does have some deficiencies that we will discuss shortly.

Expressiveness of Statements

We utilize in DPF only atomic statements, called “atomic constraints”, i.e., statements
like parent(Anna, Uwe, Gabi) in predicate logic stating that Uwe and Gabi are the parents
of Anna. With those statements, we can not express all relevant constraints for software
systems. String-based languages like the Object Constraint Language (OCL), for example,
are traditionally used to express those constraints. OCL is built upon a fragment of first-
order predicate logic and we want to extend the diagrammatic language of sketches in such
a way that we can work with statements incorporating the usual logical connectives as well
as universal and existential quantification. We want to be able to formulate statements like
(∃x1∃x2∃x3 : parent(Anna, x2, x3) ∧ parent(x1, x2, x3)) in traditional first-order predicate
logic stating that Anna is the sibling of someone.

Our framework obtained its abstract appearance after we realized that our initial ideas
to define such an extension for graph-based sketches would work in arbitrary categories!

Structure of Software Models

There are plenty of different kinds of software models. For each kind, there is a
corresponding description of the required structure of software models of this kind. Those
descriptions are often called meta-models. Adapting the concepts sketch-axiom [15] and
graph constraint [14], we introduced “universal constraints” and “negative universal
constraints”, respectively, to specify the structure of software models (sketches) [18,21].

Universal constraints are, however, not expressive enough to specify all the restric-
tions we want or have to impose on software models. Analogous to arbitrary first-order
statements, to be used as components of sketches, we want to also define therefore arbitrary
first-order sketch constraints to be used to specify the structure of sketches.

To achieve this goal, we have been choosing a more unconventional approach. We
neither wanted to encode traditional first-order logic of binary predicates by graphs [22]
nor to emulate nested graph conditions by traditional first-order formulas [23]. We instead
developed a method to define, in a conservative way, first-order constraints in arbitrary
categories of sketches. By conservative, we mean that the application of our universal
method to different categories of graphs, as in [22–25], for example, allows us to describe
the various corresponding variants of (nested) graph constraints.

To validate the use of the term “first-order”, we have to ensure, in addition, that the
application of our method to the category Set results in constraints comprising essential
features of traditional first-order predicate logic.

Semantics of Diagrammatic Predicates

The advantage of the traditional Ehresmann sketches in Category Theory is that there
are fixed universal definitions (formulated in a language based on the concepts graph,
composition and identity) of the properties commutative, limit and colimit, respectively.
Since these definitions axiomatize the concepts limit and colimit “up to isomorphism”,
we can presuppose a fixed semantics of all corresponding diagrammatic predicates in any
category, i.e., for any fixed interpretation of the concepts graph, composition and identity
complying to the axioms of a category.

66

Mathematics 2022, 10, 1085

A price we have to pay, moving from Ehresmann sketches to generalized sketches,
is that we have to describe the intended semantics of the predicates we want to include
in a formalism on our own. In some cases, a complete axiomatization of the semantics of
predicates will be not feasible but we should provide, at least, a partial axiomatization.

At present, we do have in DPF only the very simple notion of sketch entailment at
hand to express properties of predicates. We have to extend this notion or find other notions
of “arrows” between sketches that provide more appropriate tools for the axiomatization
of the semantics of predicates.

On the other side, if we find a way to define arbitrary first-order diagrammatic state-
ments, we will also have closed formulas, like (∀x1∃x2∃x3 : parent(x1, x2, x3)), available
for axiomatization purposes.

We intend to develop necessary tools to describe the semantics of diagrammatic
predicates. We want to understand how these tools are related and, especially, find an
answer to the question:

Question 3: How are the concepts specification morphism, universal
constraint and specification entailment in DPF actually related?

Operations and Substitutions

One of the crucial motivations to write this paper was to find an answer to the:

General Question: What mathematical infrastructure we need to
define a formalism enabling us to specify semantic structures with
the full expressive power of first-order predicate logic?

Our answer will be: We need nothing but a category!
We are able to give such a general answer since we use only predicate symbols and

no operation symbols to construct first-order statements in context. This restriction allows
us to realize the translation of first-order statements along context morphisms by simple
composition. In particular, there is no need for any kind of “substitution” to define those
translations and thus to construct first-order formalisms for specification purposes.

For a future development of reasonable deduction calculi within our framework, we
have to rely, however, on “substitutions” and, to have substitutions at hand, we need more
infrastructure than just a simple category. In particular, we will need well-behaved pushout
constructions as it will be shortly demonstrated in the paper.

Makkai’s work [15,26] exemplifies that predicates may be, in principal, quite sufficient
to build reasonable specification formalisms.

However, for applications in Software Engineering, for example, operations are sadly
missed. Therefore, we are also interested in finding out if and how we can define oper-
ations in arbitrary categories. As an initial step, we started to develop a theory of graph
operations [3]. It turns out that the step from traditional set operations to graph operations
is not trivial at all. We are, however, optimistic that it will be possible to lift the concepts
and results of a future comprehensive theory of graph operations, at least, to the level of
arbitrary presheaf topoi.

Deduction

To keep software models readable and feasible, we should not overload them with
unnecessary items and/or information. In particular, we should drop information that can
be derived from the already given information.

To put this principle into practice, we have, however, to rely on mechanisms to derive
information. Applied to DPF, this means, especially, that we need rules enabling us to
deduce statements from given statements and those deduction rules should be sound.

In the paper, we introduce the concept sketch arrow and discuss the utilization of
sketch arrows as deduction rules. The development of a fully fledged deduction calculus
for Logics of Statements has, however, to be left as a topic of future research. We will,

67

Mathematics 2022, 10, 1085

nevertheless, present and discuss some vital observations, insights and ideas for this future
expansion of our framework.

Category Theory can be seen as a diagrammatic specification formalism since it is
based on the concepts graph, composition and identity. The development of our abstract
framework is also triggered and guided by the quest to put this understanding on a precise
formal ground and to develop a purely diagrammatic presentation of Category Theory
where the properties commutative, limit and colimit are described by first-order statements
on graphs. Most of the diagrammatic pictures in textbooks on Category Theory are nothing
but sketches. The vision is to define concepts and to prove results in Category Theory based
on pure “diagrammatic reasoning”–or, to formulate it differently: Let us present Category
Theory in such a way that “diagram chasing” becomes a precise and well-founded proof
technique. As result of such a project, one would probably end up with something very
much related to the language of diagrams introduced in [27] and used in [28] to present and
define categorical concepts and carry out proofs in a diagrammatic manner. We became
acquainted with this language only in the final stage of writing this paper and will include a
discussion of this language in the future development of a fully fledged deduction calculus
for Logics of Statements.

Meta-Modeling

In DPF, we utilize categories of typed graphs, i.e., slice categories, to define the
semantics of sketches. This enabled us to formalize arbitrary deep modeling hierarchies
in a quite straightforward way. In this paper, we follow the tradition in logic and work
with a Tarskian semantics of sketches, i.e., we work with functor categories instead of slice
categories. This makes the formalization of modeling hierarchies rather involved.

Meta-modeling is a big topic on its own and, at the present stage, we are not capable
of providing a detailed analysis and treatment of meta-modeling in Logics of Statements.
The examples are, however, designed in such a way that we can, at least, point at the
meta-modeling issue. We have to include, nevertheless, meta-modeling is an important
item on our overall wish list:

Objective 4: The framework enables us to address and formalize meta-modeling.

1.1.6. Abstract Model Theory

From our various studies in Abstract Model Theory, the technical report [29] is particu-
larly relevant for the present paper. That time, we proved in detail and in a systematic way
that four specification formalisms are indeed institutions. Our main finding was that the
proof of the satisfaction condition always boiled down to the existence of what we called
corresponding assignments and corresponding evaluations, respectively. This finding has
been integrated later by Pawlowski in his concept of context institutions [30]. One of the
main motivations for context institutions was to incorporate open formulas in the abstract
description of specification formalisms and the term context has been coined as an abstract
pendant for a “set of variables”.

What we call feature expressions in our framework are nothing but a generalization
of open formulas. We differentiate, however, conceptually between variable declarations
and contexts. In some specification formalisms, both concepts may denote the same thing.
In other formalisms, any variable declaration will be also a context but not vice versa. In
addition, there can be formalisms where variable declarations and contexts are kept apart,
as in Description Logic for example. We use the term context as an abstract pendant for
things like a set of generators in Group Theory, an underlying graph of a sketch in Category
Theory, an underlying graph of a software model in Software Engineering, a set of literals
(atomic values) in Logic Programming and a set of individual names in Description Logic,
for example.

68

Mathematics 2022, 10, 1085

1.2. Content and Structure of the Paper

Section 2 recapitulates some basic concepts and corresponding notational conventions.
We include a short discussion concerning foundations and outline how the tuple notation
is used in this paper to represent (partial) finite maps.

In Section 3, we present a universal mechanism to define first-order statements and
their semantics in arbitrary categories. We show that any choice of the seven parameters we
are going to introduce (see Figure 1) gives us a corresponding Institution of Statements at
hand. The concept of institution [2,31] is a very simple one and lives on the same abstraction
level as categories and functors. We utilize institutions as a very convenient guideline to
present logical formalisms in a uniform and well-organized way. The satisfaction condition
is the only more complicated thing and simply tells us that we designed syntax and
semantics compatible in the way that the translation of sentences corresponds exactly to
model extensions (see [32–34]). Thus, validating the satisfaction condition is a kind of
sanity check for the design of our formalism. At the beginning of the section, we introduce
the five running examples we have chosen to illustrate and validate our definitions and
constructions.

At the present stage, Institutions of Statements do not incorporate operations since we
have not found yet a way to define operations in arbitrary categories. To close, nevertheless,
the circle to the ideas and motivations discussed in the Introduction Section 1.1.1, we
recapitulate in Section 4 the traditional concepts of operations on sets and many-sorted
equations. We show that the procedure we developed in Section 3 to construct Institutions of
Statements enables us also to construct corresponding Institutions of Equational Statements.
Substitutions play a central role in Universal Algebra, and this section may also provide
some hints and guidelines for the future development of a more abstract and general
account of substitutions in Logics of Statements.

Any institution gives us a corresponding category of presentations and an extension of
the model functor of the institution to the category of presentations at hand [2,31]. In
Section 5, we outline this construction for Institutions of Statements and Institutions
of Equations, respectively. To distinguish presentations for Institutions of Statements
(Equations) from presentations in general, we will use the term sketch for these specific
presentations. The general theory of institutions [2,31] also provides us with a standard
notion of morphism between sketches (presentations). Those morphisms are of minor
importance in this paper. We introduce and investigate, in addition, sketch arrows and
sketch implications as well as the relationships between these three concepts. As a pendant
to elementary diagrams in traditional first-order logic, we define sketch encodings of
semantic structures and will give a kind of positive answer to Question 4 (p. 39): Is there
any justification to ignore completely the concept of semantic structure (model)?

To describe the syntactic structure of software models and, more generally, the struc-
ture of sketch encodings of semantic structures, we introduce and study in Section 6
arbitrary first-order sketch conditions and sketch constraints, thereby unifying and general-
izing the different concepts of graph conditions and graph constraints in the area of Graph
Transformations. We outline that we can, analogous to the hierarchy of generalized sketches
in [15], also establish a conceptual hierarchy of sketches and sketch constraints. Moreover,
we present some vital observations, insights, concepts and ideas to establish a basis for the
future development of deduction calculi for Institutions of Statements.

We conclude the paper with a discussion of the results, findings and shortcomings of
the paper and highlight future research directions.

The only categorical concepts we actually use in this paper are category, functor,
product, functor category and slice category, and a basic understanding of these concepts is
recommended. Looking up the definition of institutions may not be necessary but helpful.

2. Notations and Preliminaries

CObj denotes the collection of objects of a category C and CMor the collection of mor-
phisms of C, respectively. C(a, b) is the collection of all morphisms from object a to object

69

Mathematics 2022, 10, 1085

b in C. We use the diagrammatic notation f ; g : a → c for the composition of morphisms
f : a → b and g : b → c in C. C � D states that category C is a subcategory of category D. A
category C is small if the collection CMor, and thus also the collection CObj, is a set. Cat is
the category of all small categories. Set denotes the category of all sets and all (total) maps,
while Par is the category of all sets and partial maps. We consider Set as a subcategory of
Par. Cat, Set and Par are not small!

A (directed multi) graph G = (GV , GE, scG, tgG) is given by a collection GV of vertices,
a collection GE of edges and maps scG : GE → GV , tgG : GE → GV assigning to each edge
its source and target vertex, respectively. gr(C) denotes the underlying graph of a category
C, i.e., we have gr(C)V := CObj and gr(C)E := CMor. A graph G is small if GV and GE
are sets. A homomorphism ϕ : G → H between two graphs is given by a pair of maps
ϕV : GV → HV , ϕE : GE → HE such that scG; ϕV = ϕE; scH and tgG; ϕV = ϕE; tgH . Graph
is the category of all small graphs and all graph homomorphims between them.

The category comprising as well finite and small graphs as the underlying graphs of
categories like Cat, Set, Par and Graph, for example, is denoted by GRAPH, while SET is the
category containing all the corresponding collections of vertices and edges, respectively.
Correspondingly, we denote the category with all small categories and categories like Cat,
Set, Par and Graph as objects by CAT.

Remark 1 (Foundations). We rely on Tarski–Grothendieck set theory, which is based on the
concept of Grothendieck universes. That is, we allow ourselves to work, in principal, with open
hierarchies of sets, graphs and categories, respectively. In contrast, many expositions of set theory
and category theory, respectively, rely on a strict two level approach. We cite from [35], page 5:

Is CAT a category in itself? Our answer here is to treat CAT as a regulative idea; which is
an inevitable way of thinking about categories and functors, but not a strictly legitimate
entity. (Compare the self, the universe, and God in Kant “Kritik der Reinen Vernunft”.)

Here, we work with a three-level hierarchy. That is, we also consider SET, GRAPH and CAT
as legitimate entities but take the level above as a “regulative level”.

In view of CAT the category Cat appears in two different roles: First, Cat is an object in
CAT. Second, Cat is a subcategory of CAT. We consider the inclusion functor Cat � CAT as an
anonymous coercion functor which embeds any object C in Cat into the bigger context of CAT
where we can even consider functors between C and Cat, for example. (We use the term coercion
analogous to programming languages where coercion describes the implicit conversion of a value
into another equivalent value of a different data type). If necessary, we will indicate in what role a
small category C appears in a certain situation in CAT, namely as an object in Cat ∈ CATObj (the
default case) or as an element in CATObj, respectively.

Analogously, we assume corresponding anonymous coercion functors Set � SET and Graph �
GRAPH, respectively. Note that the isomorphisms between small categories C and the corresponding
objects in CAT as well as the anonymous coercion functors are not living in CAT! They are located
on our third regulative level. Finally, we assume also implicit coercion from the categories SET,
GRAPH and CAT, respectively, to the regulative level.

In other words, we comply with the following principles: (1) Any item on a certain level of the
hierarchy can be used at any level above but it can not be used at any level below the level where it
has been declared or constructed. (2) Located on a certain level of the hierarchy, we can see, declare
and construct items on this level and on all levels below. (3) We are, however, not allowed to push
an item to a lower level! Instead, we have to declare or construct a “new” item on the lower level
and establish an isomorphism between the given item and the new item. The lowest level, where the
isomorphism could be established, is the level of the given item but sometimes we will be only able to
establish the isomorphism on an even higher level.

To achieve Objective 3 (p. 6), we have to pay a small price. In addition to the conven-
tional interpretation of an n-tuple (a1, . . . , an) as a “list of values of length n”, we will also
work with a more unconventional interpretation. We interpret an n-tuple a = (a1, . . . , an)
with n ≥ 1 and a1, . . . , an ∈ A as a convenient shorthand notation for an “indexed array” of

70

Mathematics 2022, 10, 1085

length n, i.e., for a set of assignments {1 �→ a1, . . . , n �→ an} representing a map a : [n]→ A
with [n] := {1, . . . , n} and a(i) = ai. That is, the numbers in [n] indicate the corresponding
position in the tuple. The empty tuple () represents, in such a way, the only map from
[0] := ∅ into A.

Given an [n]-indexed family A1, . . . , An, n ≥ 1 of sets, i.e., a map A : [n]→ SetObj, we
denote the set of all maps a : [n]→ ⋃

i∈[n] Ai with a(i) ∈ Ai for all i ∈ [n] by A1 ⊗ . . .⊗ An,⊗
i∈[n] Ai or simply

⊗
A, respectively. Relying on the assumption that [n] is (implicitly)

equipped with the total irreflexive order 1 < 2 < . . . < n, we can still use the traditional
tuple notation to represent those maps, as discussed in the last paragraph. The traditional
Cartesian product A1 × . . .× An and

⊗
A are isomorphic and both give us a categorical

product of the family A1, . . . , An of objects in Set at hand. If necessary, we will use the
term traditional tuple to indicate the traditional interpretation of a tuple as a simple “list
of values”.

To describe, for example, the concept of a row in Relational Databases (see
Section 3.1.5), we also take the step from indexed arrays to “associative arrays”.

Instead of the standard sets [n] of indexes, we consider arbitrary finite sets I of indexes
(identifiers, names) with n elements. For an I-indexed set A = (A(i) | i ∈ I), i.e., a map
A : I → SetObj, we denote by

⊗
i∈I A(i), or simply

⊗
A, the set of all maps a : I → ⋃

i∈I A(i)
with a(i) ∈ A(i) for all i ∈ I.

⊗
A is a categorical product of the I-indexed family A of

objects in Set where for any i ∈ I the corresponding projection map πi :
⊗

A → A(i) is
simply defined by πi(a) := a(i) for all a ∈ ⊗

A.
Each element a in

⊗
A can be represented by a corresponding associative array, i.e., by

the set {i �→ a(i) | i ∈ I} of assignments. To be able, however, to utilize the tuple notation
to represent the elements in

⊗
A, we have to equip the set I, explicitly, with a fixed (!) total

order i1 < i2 < . . . < in. Under this assumption, we can then represent each a in
⊗

A by
the tuple (a1, . . . , an) with aj = a(ij) for all 1 ≤ j ≤ n.

In practice, it is often more convenient to work with interpretation categories instead of
functor categories. An interpretation of a graph G in a category C is a graph homomorphism
ϕ from G to gr(C) denoted by ϕ : G → C. A natural transformation μ : ϕ ⇒ ψ between
two interpretations ϕ : G → C and ψ : G → C is a family μv : ϕV(v) → ψV(v), v ∈ GV
of morphism in C such that ϕE(f); μu = μv; ψE(f) for all edges f : v → u in G. All
interpretations of G in C and all natural transformations between them constitute the
interpretation category [G → C] with composition–the vertical composition of natural
transformations. (In [10], interpretations ϕ : G → C are called “models of G in C”, and the
notation Mod(G,C) is used instead of [G → C]. For our purposes, the more neutral and
general term “interpretation” is more convenient, and we do not want to overload the term
“model” too heavily). For convenience and uniformity reasons, we will often consider a set
A as a graph without edges and use the interpretation category [A → C] to represent all
maps from A into CObj. Moreover, we will also use the more compact notations CG and CA

instead of [G → C] or [A → C], respectively.

3. Institutions of Statements

Before we are going to define Institutions of Statements, we outline the running
examples we have chosen to illustrate and validate our definitions. The reader should
be aware that our framework is very abstract and thus also very flexible. It enables us to
present one and the same specification formalism in various ways. Thus, the way we have
chosen for each single sample formalism may be not the most adequate one and, especially,
not the one preferred by the reader.

3.1. Examples
3.1.1. First-Order Predicate Logic (FOL)

Our category independent framework does not incorporate operations. Therefore,
we examine many-sorted first-order predicate logic without functions. We consider many-
sorted signatures Σ = (S, P, ar : P → S∗) with S a set of sort symbols, P a set of predicate

71

Mathematics 2022, 10, 1085

symbols and a map ar : P → S∗ assigning to each predicate symbol its arity. We may
sometimes omit the word ‘symbol’ and simply refer to sort symbols as sorts and to predicate
symbols as predicates. We show that any many-sorted signature can be represented
quite naturally within our framework and therefore gives rise to different institutions of
statements. We will demonstrate this by means of a sample signature.

3.1.2. Description Logic (ALC)

Description logics are a family of formal knowledge representation languages. We
discuss the prototypical description logic Attributive Concept Language with Complements
(ALC) which can be seen as a fragment of unsorted FOL without functions
(see [36]). We include this non-classical example to illustrate that our framework may
be indeed suitable to describe a wide variety of specification formalisms.

This adaption of First-Order Logic to deal with the practical problem of knowledge
representation and the example of DPF demonstrate that contexts and sketches, as they are
defined in our framework, appear quite natural as conceptual building blocks in practical
specification formalisms.

3.1.3. The Formalism “First-Order Predicate Logic” (mFOL)

This example is meant to provide some evidence that our framework lives up to
Objective 1 (p. 4). In the FOL-example, we work within the formalism many-sorted first-
order logic without functions. Here, we move one abstraction level up and intend to
describe this formalism as such. The “m” in “mFOL” stands for meta.

The sketches in the FOL-example are related to concepts like generators and defining
relations in Group Theory and literals and facts in Logic Programming but are not a
common ingredient in traditional expositions of First-Order Logic. The sketches that
appear in this example, however, reconstruct the concept many-sorted signature as we
meet it in the FOL-example. As an example, we reconstruct the sample signature we will
work with in the FOL-example. Thus, the FOL-example and the mFOL-example together
exemplify the topic of meta-modeling.

3.1.4. Category Theory (CT)

Together with the DPF-example, this example should demonstrate the potential
of our framework to support a shift of paradigm from string-based to diagrammatic
specification formalisms.

Located on the same abstraction (modeling) level as the examples FOL and ALC
and reflecting the viewpoint that a category is a graph equipped with composition and
identities, we outline a diagrammatic version of the theory of small categories.

In fact, we take a step back from Ehresmann’s sketches. We restrict ourselves to the
language of graphs, composition and identities and reconstruct the concepts commutative
diagram, limit and colimit, respectively, by means of diagrammatic first-order statements
formulated in this restricted language. The universal properties defining the different
kinds of limits and colimits, respectively, do have a uniform and very simple logical
structure; thus, we need only a very restricted form of first-order statements to express
them. In the light of this observation, our envisioned diagrammatic version of the theory of
small categories goes beyond Ehresmann’s sketches in the sense that we allow for utilizing
arbitrary first-order statements. Even if we do not need the full “first-order power” to define
limits and colimits, this power will be probably useful (or even necessary) to formulate
category theoretic statements and to prove them.

3.1.5. Diagram Predicate Framework (DPF)

Now, we arrive indeed at generalized sketches since we will utilize typed graphs
instead of just plain graphs as in the CT-example. We are on the same abstraction level as
the mFOL-example.

72

Mathematics 2022, 10, 1085

DPF has been developed to describe and relate, in a uniform and precise formal
way, a wide variety of diagrammatic modeling techniques in Software Engineering. Each
diagrammatic modeling technique, like database schemata, ER diagrams, class diagrams,
workflow diagrams, for example, is characterized by a certain footprint. A sketch for such
a footprint formalizes then nothing but a single software model. As an example, we outline
in this paper a revised and extended version of our diagrammatic Relational Data Model
(RM) [18,21].

In Relational Databases, we do have data types and tables with rows and columns.
In addition, we can declare different kinds of constraints. A table is identified by a name,
and each table has a fixed non-empty set of columns. All columns in a certain table are
identified by a unique name; thus, the order of columns is immaterial. It is allowed to
use the same column name in different tables. All values in a certain column have to
be of the same data type. A table is considered as a set of rows with one cell for each
column. In some cells of a table, there may be no values. A row with no values at all is
not allowed! Let us declare a table with name T, a corresponding set C = {cn1, . . . , cnm}
of column names and a declaration of a data type name dnj for each column name cnj.

T
cn1

��

cnm

��
dn1 · · · dnm

We represent this declaration by the graph shown above. To define the semantics
of table T, we first have to fix the semantics of the data type names dnj by assigning to
each data type name dnj a fixed set Ddnj

of data values. This gives us an C-indexed set
D = (Ddnj

| cnj ∈ C) at hand.
Since there may be no values in some of the cells in a row, we generalize the definitions

in Section 2 and describe a row r in table T as a partial map r : C ◦−→ ⋃
D with r(cnj) ∈ Ddnj

as long as r(cnj) is defined. We denote by
⊗p

j∈I Ddnj
, or simply ⊗pD, the set of all those

partial maps except the completely undefined map (empty row). For any cnj ∈ C, we
obtain as projection a partial map πcnj :

⊗p D ◦−→Ddnj
defined for all r ∈ ⊗p D by

πcnj(r) := r(cnj) if r(cnj) is defined. These projections turn
⊗p D into a categorical product

of the C-indexed set D = (Ddnj
| cnj ∈ C) in the category Par of all sets and partial maps.

Reflecting the idea of a row in a table, we can still utilize the tuple notation, discussed
in Section 2, to denote the elements in

⊗p D. We fix a total order cn1 < cn2 < . . . < cnn
on C and represent a partial map r : C ◦−→ ⋃

D by the tuple (r1, . . . , rn) with rj = r(cnj) if
r(cnj) is defined and rj an anonymous indicator “ ” for nothing in all other cases.

The content of table T may change. At any point in time, however, the content
(semantics) of table T is a finite subset of

⊗p D and the semantics of the edges cnj are the
corresponding restrictions of the projections πcnj :

⊗p D ◦−→Ddnj
.

Empl

eid
��

ssn∗

��

name

��

Addr

town
��

street
��

ssn

��
Int String

To discuss constraints, let us consider a database schema declaring two data types
Int(eger), String and two tables Empl(oyee), Addr(ess) with columns as depicted in the
diagram above.

Since a table is a set (!) of rows, we need a mechanism to identify rows uniquely. These
are the so-called primary keys (pk). For each table, one of the columns has to be declared
as a primary key. In the example, we declare the primary keys eid (employee identity) in
table Empl and ssn (social security number) in table Addr indicated by underlined names.
All values in a primary key have to be distinct and empty cells are not allowed. This means
that the corresponding projection has to be injective and total. To require only injectivity,
we declare a unique constraint and a not null constraint will enforce a total projection. We

73

Mathematics 2022, 10, 1085

may put both constraints on the column ssn in Empl. This will, however, not turn ssn into
a primary key but only into a candidate key. A primary key is the one of the candidate keys
we have chosen to serve as a primary key!

To store and retrieve information, the tables in a database have to be somehow con-
nected. To find, for example, the address of an employee, we have to consult Table Addr.
Foreign key (fk) constraints are the mechanism to connect tables. In the example, we declare
a foreign key from column ssn in Empl to column ssn in Addr indicated by a star ssn∗. A
column declared as a foreign key may contain empty cells but any value appearing in this
column has to also appear in the column the key refers to. This means, especially, that both
columns are required to have the same data type!

The Blueprint for Constructing Institutions of Statements

In the following subsections, we define Institutions of Statements (IoS). Each Institution
of Statements is characterized by seven parameters that we will introduce step by step. The
reader can keep track of the development consulting the scheme in Figure 1.

(2) Var
constr.+

choice
�� (3) Ξ

constr.+

choice
��

		

(6) XE(Ξ) �� Stm(K)

|=Kconstr.

		

• choice �� (1) Base

choice

��

choice ��

choice ��

(7) Cxt
varies �� K

��
(4) Carr �� Str(Ξ)

choice �� (5) Sem(Ξ) �� Int(K)

constr.

constr.

constr.

Figure 1. Stepwise construction of an Institution of Statements (IoS).

3.2. Base Category

To define a certain Institution of Statements, we first have to choose a base category
comprising as well the basic syntactic entities as the semantic domains. The base category
fixes, somehow, the linguistic and conceptual universe we intend to work within.

Definition 1 (First parameter: Base Category). The first parameter of an Institution of State-
ments is a chosen base category Base.

Remark 2 (Uniformity). All components of a logic are related with each other; thus, it seems to
be natural to require that they all live in the same category (universe). It turns out, however, that
this uniformity requirement is not as trivial, as it looks like at a first glance. Some effort may be
needed to present known logic’s and formalisms in such a uniform way. One underlying cause
for this kind of additional effort is that we follow the tradition in logic and work here with the
semantics-as-interpretation paradigm (Tarskian semantics) (see Section 3.3.2).

One problem could be that we become obliged to reflect a distinction between different syntactic
entities, like predicate symbols and sort symbols, for example, already on the semantic level. In the
more practical relational data model example, this is quite appropriate while it needs getting used to
in the mFOL-example.

In other words: We take the chance to present the mFOL-example in a more unconventional
way also with the intention to illustrate the flexibility of our framework.

Example 1 (FOL: Base category). There is a particular dependency in many-sorted first-order
signatures. We have first to establish a set of sort symbols before we can define the arity of predicates
(compare Chapter 12 in [2]). We fix a set S ∈ SetObj of sort symbols and consider S as a graph
(without edges) in Graph. Relying on the coercion Graph � GRAPH (see Remark 1), we choose the
interpretation category SetS = [S → Set] in CAT as base category BaseFOL. We call the objects in
[S → Set] S-sets and the morphisms S-maps, respectively.

74

Mathematics 2022, 10, 1085

Example 2 (ALC: Base category). The prototypical description logic Attributive Concept
Language with Complements (ALC) can be seen as a fragment of unsorted FOL without
functions [36], thus the category BaseALC := Set in CAT is our base category of choice.

Example 3 (mFOL: Base category). In this example, we describe the traditional formalism
many-sorted first-order logic without functions as such.

In this formalism, sorts and predicates are the only concepts. Therefore, we use the set
MmF := {S, P} ∈ SetObj of concept symbols. Relying on coercion Set � SET, we define the
base category as a slice category BasemF := SET/MmF. (For any category C and any object T in C
we can define the slice category C/T with objects all pairs (A, ϕ) of an object A and a morphism
ϕ : A → T in C and morphisms f : (A, ϕ) → (B, ψ) given by morphisms f : A → B in C
satisfying the condition ϕ = f ; ψ.) We use the term MmF-typed set for the objects in SET/MmF,
i.e., for pairs (A, τA) of a set A and a typing map τA : A → MmF.

Example 4 (CT: Base category). Located on the same abstraction (modeling) level as the examples
FOL and ALC and reflecting the viewpoint that a category is a graph equipped with composition
and identities, we outline a diagrammatic version of the theory of small categories; thus, the category
Graph of small graphs is chosen as the base category BaseCT. Note that Graph is isomorphic to the

interpretation category [MCT → Set] with MCT the graph E
sc

��tg �� V thus we follow somehow
the same pattern as in example FOL.

Example 5 (RM: Base category). The relational data model relies on the concepts table, column

and datatype. Analogously to example mFOL, we use a graph MRM := (T c �� D) ∈ GraphObj
of concept symbols and define the base category as a slice category BaseRM := GRAPH/MRM
relying on the coercion Graph � GRAPH. We use the term MRM-typed graph for the objects in
GRAPH/MRM, i.e., for pairs (G, τG) of a graph G and a typing morphism τG : G → MRM.

3.3. Variables, Features and Footprints
3.3.1. Variables, Features and Footprints: Syntax

Traditionally, the construction of syntactic entities in logic, like terms, expressions and
formulas, starts by declaring what variables can be used in the language of a certain logic.
Often, we assume an enumerable set of variables and then any term, expression or formula
is based upon a chosen finite subset of this enumerable set of variables. Moreover, variable
translations can be described by maps between finite sets of variables. Generalizing this
traditional approach, we announce what kind of variables we want to use in our institution.

Definition 2 (Second parameter: Variables). As the second parameter of an Institution of
Statements, we choose a subcategory Var of the base category Base. We refer to the objects in Var as
variable declarations while the morphisms in Var will be called variable translations.

If Base has initial objects, we assume that Var contains exactly one of them denoted by 0.

This is a completely different view on variables compared to the tradition in the theory
of institutions [2], where variables generally depend on the notion of signature.

Example 6 (FOL: Variables). Variable declarations are traditionally just finite S-sets of variables.
We take VarFOL to be the full subcategory of BaseFOL = [S → Set] given by all finite and disjoint
S-sets X = (Xs | s ∈ S) with Xs a subset of the set {x, x1, x2, . . . , y, y1, y2, . . .} for all s ∈ S.

Example 7 (ALC: Variables). Officially, there are no variables in ALC. To describe ALC as a
fragment of FOL we need, however, variables. As VarALC, we take the subcategory of Set with
objects all finite subsets of the set {x, x1, x2, . . . , y, y1, y2, . . .} and morphisms all injective maps.

75

Mathematics 2022, 10, 1085

Example 8 (mFOL: Variables). We choose as VarmF the full subcategory of Set/MmF �
BasemF = SET/MmF given by all finite MmF-typed sets (X, τX : X → MmF) such that the
pre-image τ−1

X (S) is a subset of the set {xs, xs1, xs2, . . . , ys, ys1, ys2, . . .} and τ−1
X (P) = {xp}.

Example 9 (CT: Variables). The variable declarations are graphs of variables, i.e., we work
with two kinds of variables: vertex variables and edge variables that are connecting vertex
variables. We choose VarCT to be the full subcategory of BaseCT = Graph given by all finite graphs
X = (XV , XE, scX , tgX) with XV a finite subset of the set {xv, xv1, xv2, . . . , yv, yv1, yv2, . . .} and
XE a finite subset of the set {xe, xe1, xe2, . . . , ye, ye1, ye2, . . .}. “e” stands for edge while “v” refers
to vertex.

Example 10 (RM: Variables). As VarRM, we choose the full subcategory of
Graph/MRM � BaseRM = GRAPH/MRM given by all finite MRM-typed graphs
(X, τX : X → MRM) such that the pre-image τ−1

X (T) is a finite subset of the set
{xt, xt1, xt2, . . . , yt, yt1, yt2, . . .}, τ−1

X (D) is a finite subset of {xd, xd1, xd2, . . . , yd, yd1, yd2, . . .}
and τ−1

X (c) is a finite subset of {xc, xc1, xc2, . . . , yc, yc1, yc2, . . .}, respectively.

Guided by Requirement 3 (p. 4), we introduced variables first and can utilize them
now to define arities.

Definition 3 (Third parameter: Footprint). The third parameter of an Institution of Statements
is a footprint Ξ = (Φ, α) over Var given by a set Φ of feature symbols and a map α : Φ → VarObj.
For any feature symbol F ∈ Φ, the variable declaration α(F) is called the arity of F. We will often
write αF for α(F).

Remark 3 (Terminology: Footprint vs. signature). In most of our applications of DPF, footprints
occur as meta-signatures, in the sense that each specification formalism (modeling technique) is
characterized by a certain footprint. Each of the formalisms Universal Algebra, Category Theory,
First-Order Logic, ER diagrams, class diagrams is characterized by a certain footprint. The sketch
data model in [11] corresponds to a certain footprint and so on. For the footprint of the modeling
technique class diagrams, we refer to [18,21].

Until today, we used in all our DPF papers the terms signature instead of footprint and
predicate symbol instead of feature symbol (compare [13,21]). This turned out to be a source for
serious misunderstandings and misleading perceptions; thus, we decided to coin new terms.

Remark 4 (Dependencies between features). Extending Makkai’s approach [15], we worked
in [13] with categories ΦΦΦ of feature symbols, instead of just sets of feature symbols, and with arity
functors α : ΦΦΦ → Var, instead of just arity maps. Arrows between feature symbols represent
dependencies between features. This allows us to reflect, already on the level of feature symbols
and thus prior to arities and semantics of features that certain features depend on (are based upon)
other features. As examples, one may express that both concepts pullback and pushout are based
upon the concept commutative square and that the categorical concept inverse image depends on the
concept monomorphism.

Any semantics of feature symbols then has to respect those dependencies. Dependency arrows
are a tool to represent knowledge about and requirements on features prior to and independent of any
kind of logic. Dependency arrows somehow make the framework of generalized sketches conceptual
and structural round.

It may be worth mentioning that the concept of order-sorted algebra is somehow related to
our idea of dependencies since it works with arrows between sort symbols [37].

In this first paper about Logics of Statements, we drop dependency arrows due to, at least,
three reasons: (1) We do not want to deviate too much from the traditional first-order logic setting.
(2) Dependencies trigger an additional theoretical overhead that may be not worth it at the moment.
If we introduce dependencies between feature symbols, we should consequently describe, for example,
to what extent and how they generate dependencies between feature expressions (introduced in

76

Mathematics 2022, 10, 1085

Section 3.4). On one side, this is technically not fully trivial, if possible at all. On the other side,
such an effort has no relevance for our applications. (3) The requirements expressed by dependency
arrows can be mimicked by the logical tools we are going to introduce later.

Example 11 (FOL: Footprint). We show, first, how an arbitrary traditional many-sorted signature
Σ = (S, P, ar : P → S∗) can be transformed into a footprint ΞΣ = (ΦΣ, αΣ) and then we present
a sample FOL-footprint to be used in the forthcoming parts of this example.

The set S of sort symbols has been already transformed into the IoS-setting by choosing the base
category [S → Set]. The set ΦΣ of feature symbols is nothing but the set P of predicate symbols.
Thus, it remains to transform each w ∈ S∗ into a corresponding S-set Xw of variables.

The empty sequence ε ∈ S∗ is simply transformed into the empty S-set Xε := (∅ | s ∈ S).
A non-empty sequence w = s1s2 . . . sn gives rise to a list [x1: s1, x2: s2, . . . , xn: sn] of variable
declarations, i.e., to a canonical set {x1, x2, . . . , xn} of variables, equipped with a canonical total
order x1 < x2 < . . . < xn, together with a map from {x1, x2, . . . , xn} into S. Xw is defined by
Xw

s := {xi | si = s} for all s ∈ S. In the examples, we will use lists of variable declarations to
represent S-sets of variables.

To complete the definition of ΞΣ, we simply set αΣ(p) := Xar(p) for all p ∈ ΦΣ = P.
As an example for a FOL-footprint, we chose S = {prs, nat} with sort symbols “prs” for

person and “nat” for natural number, respectively. The sample footprint ΞFOL = (ΦFOL, αFOL)
is then defined by the feature symbols ΦFOL := {parent, male, age, less} with the following
S-sets as arities: αFOL(parent) := ({x1, x2, x3}, ∅) represented by [x1: prs, x2: prs, x3: prs],
αFOL(male) := ({x}, ∅) represented by [x: prs], αFOL(age) := ({x1}, {x2}) represented by
[x1: prs, x2: nat] and αFOL(less) := (∅, {x1, x2}) represented by [x1: nat, x2: nat].

Example 12 (ALC: Footprint). A signature in ALC declares a set NC of concept names
and a disjoint set NR of role names. In view of Definition 3, this means defining a footprint
ΞALC = (ΦALC, αALC) with ΦALC = NC ∪ NR, αALC(F) = {x} for all F ∈ NC and
αALC(F) = {x1, x2} for all F ∈ NR.

A signature in ALC also declares a set NO of individual names (nominals, objects). In our
framework, those sets of individual names are considered as contexts (see Definition 11).

Example 13 (mFOL: Footprint). An mFOL-footprint describes which one of the enumerable many
formal tools n-ary many-sorted predicates we will have at hand. As an example, we consider
an mFOL-footprint ΞmF = (ΦmF, αmF) providing the formal tools unary many-sorted predicates,
binary many-sorted predicates and tertiary many-sorted predicates, respectively.

We have ΦmF := {un, bin, trt} with αmF(un) = (Xun, τXun
: Xun → MmF) given by

Xun := {xp, xs} and τXun
(xp) := P, τXun

(xs) := S. Analogously to Example 11, we represent the
MmF-typed set (Xun, τXun

) by the list [xp: P, xs: S] of variable declarations. (Xbin, τXbin
) is defined

by [xp: P, xs1: S, xs2: S] while (Xtrt, τXtrt
) is given by [xp: P, xs1: S, xs2: S, xs3: S], respectively.

Keep in mind that, for any set M in Set the interpretation category [M → Set] and the slice
category Set/M are equivalent.

Example 14 (CT: Footprint). Category Theory relies on a language based upon the concepts
object (vertex), morphism (arrow, edge), composition and identity. The concept graph
comprises already the concepts object (vertex) and morphism (arrow, edge); thus, a footprint for our
diagrammatic reconstruction of the theory of small categories only needs to take care of composition
and identity.

We do not have operations in footprints; thus, we have to formalize composition and identity
by means of features (predicates). Therefore, the footprint ΞCT for the formalism Category Theory
declares two feature symbols cmp and id. The arities of the feature symbols in ΦCT := {cmp, id}
are described in Table 1:

77

Mathematics 2022, 10, 1085

Table 1. CT Footprint.

F Arity αCT(F) F Arity αCT(F)

cmp xv1
xe1 ��

xe3

��xv2
xe2 �� xv3 id xv

xe
��

Example 15 (RM: Footprint). The footprint ΞRM = (ΦRM, αRM) declares features ΦRM :=
{tb(n), pk, fk, tot, inj} for the concepts table with n columns, primary key, foreign key, not
null (total) and unique (injective), respectively. We discussed these concepts in Section 3.1.5 where
we introduced the relational data model example. The arities of the feature symbols in ΦRM are
MRM-typed graphs (G, τG) and are described in Table 2. Analogously to Example 13, we use the
colon-notation “_ : _” to represent the typing morphisms τG : G → MRM.

Table 2. RM Footprint.

F Arity αRM(F)

tb(n)
xt: T

xc1: c

��

xcn: c

��
xd1: D • • • xdn: D

fk xt1: T
xc1: c �� xd: D �� xc2: c

xt2: T

pk xt: T
xc: c �� xd: D

inj xt: T
xc: c �� xd: D

tot xt: T
xc: c �� xd: D

Remark 5 (Category of footprints). We indicated the arrow from (2) to (3) in Figure 1 as
construction+choice since we could straightforwardly define a category of footprints on Var while
we decided to consider only one footprint. To also explore categories of footprints goes simply beyond
the scope of this first paper on Logics of Statements. In Remark 20, we will, however, outline, what
has to be done if we want or need to work with a category of footprints.

3.3.2. Variables, Features and Footprints: Semantics

To make things not too complicated and to deviate not too far from traditional logic, we
work here with the semantics-as-interpretation paradigm, also called indexed or Tarskian
semantics. In contrast, we spelled out in [13] the semantics-as-instance paradigm, also
called fibred semantics. To define the semantics of variables and features, we first have to
decide for (potential) carriers of structures.

Definition 4 (Fourth parameter: Carriers). As the fourth parameter of an Institution of State-
ments, we choose a subcategory Carr of Base of (potential) carriers of Ξ-structures.

Example 16 (FOL: Carriers). In this example, we follow the traditional approach and choose
simply CarrFOL := BaseFOL = SetS = [S → Set].

Example 17 (ALC: Carriers). ALC considers only non-empty sets as potential carriers and
calls them domains (of an interpretation). Thus, we take as CarrALC the full subcategory of
BaseALC = Set given by all non-empty sets.

Example 18 (mFOL: Carriers). A potential carrier of a ΞmF-structure should provide a family
of sets to define the semantics of sort symbols as well as a family of sets to define the semantics of

78

Mathematics 2022, 10, 1085

predicate symbols. As CarrmF, we choose therefore the full subcategory of BasemF = SET/MmF
given by all MmF-typed sets (C, τC) with C ⊆ SetObj. Note that we consider here SetObj (and thus
also C) as an element in SETObj and not as a subset of SETObj (compare Remark 1).

Example 19 (CT: Carriers). We could choose only those graphs that appear as underlying graphs
of small categories. We will, however, not restrict ourselves and choose, analogous to Example 16,
CarrCT := BaseCT = Graph.

Example 20 (RM: Carriers). Tables are sets of rows and data types are sets of data values while
columns can be formalized as maps assigning to each row in a table the value in the corresponding
column. As discussed in Section 3.1.5, these maps can be partial since there may be no values in
some cells of a table.

Analogous to Example 18, we choose therefore as CarrRM the full subcategory of
BaseRM = GRAPH/MRM given by all MRM-typed graphs (G, τG : G → MRM) with G a
subgraph of gr(Par). We consider here gr(Par) (and thus also G) as an element in GRAPHObj and
not as a subgraph of gr(GRAPH) (compare Remark 1). Be aware that we can have in G only maps
from sets in τ−1

G (T) to sets in τ−1
G (D) since c is the only edge in MRM!

The semantics of a variable declaration X ∈ VarObj relative to a chosen carrier U ∈
Carr is simply the set of all variable assignments (keep in mind that Var � Base and
Carr � Base):

[[X]]U := Base(X, U). (1)

Structures for footprints are defined in full analogy to the definition of structures for
signatures in traditional first-order logic.

Definition 5 (Structures). A Ξ-structure U = (U, ΦU) is given by an object U in Carr, the
carrier of U , and a family ΦU = {[[F]]U | F ∈ Φ} of sets [[F]]U ⊆ Base(αF, U) of valid
interpretations of feature symbols F in U.

Homomorphisms are also defined in the usual way that “truth is preserved”.

Definition 6 (Homomorphisms). A homomorphism ς : U → V between Ξ-structures is given
by a morphism ς : U → V in Carr such that ι ∈ [[F]]U implies ι; ς ∈ [[F]]V for all feature symbols
F in Φ and all interpretations ι : αF → U.

αF
ι∈[[F]]U

��

ι;ς∈[[F]]V

��
⇒

U
ς �� V

Identities of carriers define identity homomorphisms and composition of homomor-
phisms is inherited from composition in Carr. In such a way, we obtain a category Str(Ξ)
of all available Ξ-structures. We are, however, free to choose only those structures we are
interested in (see Figure 1).

Definition 7 (Fifth parameter: Semantics). As the fifth parameter of an Institution of Statements,
we choose a certain subcategory Sem(Ξ) of the category Str(Ξ) of all Ξ-structures.

Example 21 (FOL: Semantics). In accordance with the traditional approach
Sem(ΞFOL) := Str(ΞFOL) comprises all ΞFOL-structures U , given by an arbitrary S-set U, where
S = {prs, nat} as in Example 11, together with arbitrary subsets
[[parent]]U ⊆ SetS(({x1, x2, x3}, ∅), U), [[male]]U ⊆ SetS(({x}, ∅), U),
[[age]]U ⊆ SetS(({x1}, {x2}), U) and [[less]]U ⊆ SetS((∅, {x1, x2}), U), as well as all ho-
momorphisms between those ΞFOL-structures.

79

Mathematics 2022, 10, 1085

Example 22 (ALC: Semantics). Any terminological interpretation I in ALC includes the
choice of a non-empty set ΔI , called domain, an interpretation of each concept name in NC
as a subset of ΔI ∼= Set({x}, ΔI) and an interpretation of each role name in NR as a subset
of ΔI × ΔI ∼= Set({x1, x2}, ΔI). Obviously, there is a one-to-one correspondence between a
terminological interpretation and a ΞFOL-structure in the sense of Definition 5. Homomorphisms
are not considered in ALC; thus, Sem(ΞALC) := Str(ΞALC) is a discrete category.

Example 23 (mFOL: Semantics). In contrast to the Examples 21 and 22, we transform any carrier
(U, τU) in CarrmF (see Example 18) into exactly one corresponding ΞmF-structure U with:

[[un]]U := {ι : (Xun, τXun
)→ (U, τU) | ι(xp) ⊆ ι(xs) }

[[bin]]U := {ι : (Xbin, τXbin
)→ (U, τU) | ι(xp) ⊆ ι(xs1)⊗ ι(xs2) }

[[trt]]U := {ι : (Xtrt, τXtrt
)→ (U, τU) | ι(xp) ⊆ ι(xs1)⊗ ι(xs2)⊗ ι(xs3) }

Str(ΞmF) is given by all these ΞmF-structures and all homomorphims between them according
to Definition 6. Note that the homomorphisms in Str(ΞmF) resemble the idea of functors that
preserve finite products and monomorphisms (inclusions).

To cover the traditional approach that a predicate in a first-order structure can be an arbitrary
subset of a corresponding Cartesian product of sorts (compare Example 21), we choose as Sem(ΞmF)
the full subcategory of Str(ΞmF) given by all ΞmF-structures U = ((U, τU), ΦUmF) such that
τ−1

U (P) is the union of all power sets ℘(A), ℘(A⊗ B), ℘(A⊗ B⊗ C) with A, B, C ranging over
all the sets in τ−1

U (S).

Example 24 (Category Theory: Semantics). Analogously to Example 21, Sem(ΞCT) := Str(ΞCT)
comprises all ΞCT-structures U = (U, ΦUCT) given by an arbitrary small graph U together with arbi-
trary subsets [[id]]U ⊆ Graph(αCT(id), U), [[cmp]]U ⊆ Graph(αCT(cmp), U),
[[mon]]U ⊆ Graph(αCT(mon), U) and [[fnl]]U ⊆ Graph(αCT(fnl), U). That is, we also in-
clude structures like categories without identities, categories with partial composition and so on.
Moreover, Sem(ΞCT) includes all homomorphisms between those ΞCT-structures.

Example 25 (RM: Semantics). Analogous to Example 23, we transform any carrier (U, τU) in
CarrRM into exactly one corresponding ΞRM-structure U . We take, however, into account that
tables do have only finitely many rows:

[[tb(n)]]U is the set of all MRM-typed graph homomorphisms ι : αRM(tb(n)) → (U, τU)
such that ι(xt) is a finite (!) subset of

⊗p(ι(xdi) | 1 ≤ i ≤ n) and the partial maps
ι(xci) : ι(xt) ◦−→ ι(xdi) are exactly the corresponding restricted projections.

Reflecting the usual definition of foreign keys, we define [[fk]]U as the set of all MRM-typed
graph homomorphisms ι : αRM(fk) → (U, τU) such that ι(xc1)(ι(xt1)) ⊆ ι(xc2)(ι(xt2)), i.e.,
each value in row xc1 in table xt1 has to appear in row xc2 in table xt2.

[[tot]]U is the set of all ι : αRM(tot) → (U, τU) such that ι(xc) : ι(xt) ◦−→ ι(xd) is total.
[[inj]]U comprises, correspondingly, all cases where ι(xc) is injective and [[pk]]U all cases where
ι(xc) is as well total as injective.

As Sem(ΞRM), we can choose the full subcategory of Str(ΞRM) given by all ΞRM-structures
U = ((U, τU), ΦURM) such that τ−1

U (T) is the union of all power sets ℘ f in(
⊗p(Ai | 1 ≤ i ≤ n)

with 1 ≤ n and the Ai’s ranging over all the sets in τ−1
U (D). We could require, in addition,

that the sets in τ−1
U (D) are restricted to those data types that appear in a certain version of SQL,

for example.

3.4. First-Order Feature Expressions
3.4.1. Syntax of Feature Expressions

By a feature expression, we mean something like a “formula with free variables” in
traditional FOL. However, we do not consider them as formulas, but rather as derived
anonymous features. For us, a formula is, semantically seen, the subject of being “valid or

80

Mathematics 2022, 10, 1085

not valid” in a given structure, while the semantics of a feature expression, with respect to
a given structure, is the set of all its solutions, i.e., the set of all valid interpretations of the
derived feature in this structure. We experience this perspective as the most adequate one
when formalizing and working with constraints in Model Driven Software Engineering.
Sets of solutions have also been utilized to define the validity of conditional existence
equations in [7,9], for example.

Definition 8 (Feature expressions: Syntax). For a footprint Ξ = (Φ, α) over Var we define
inductively and in parallel a family FE(Ξ) of sets FE(Ξ, X) of (first-order) feature Ξ-expressions
Ex on X, X � Ex in symbols, where X varies over all the objects in Var:

1. Atomic expressions: X � F(β) for any F ∈ Φ and any morphism β : αF → X in Var.
2. Everything: X �� for any object X in Var.
3. Void: X �⊥ for any object X in Var.
4. Conjunction: X � (Ex1 ∧ Ex2) for any expressions X � Ex1 and X � Ex2.
5. Disjunction: X � (Ex1 ∨ Ex2) for any expressions X � Ex1 and X � Ex2.
6. Implication: X � (Ex1 → Ex2) for any expressions X � Ex1 and X � Ex2.
7. Negation: X � ¬Ex for any expression X � Ex.
8. Quantification: X � ∃(ϕ, Y : Ex) and X � ∀(ϕ, Y : Ex) for any expression Y � Ex and any

morphism ϕ : X → Y in Var that is not an isomorphism.

Remark 6 (Notation for expressions). In traditional FOL, X and Y are sets of variables and,
instead of arbitrary maps ϕ : X → Y, only inclusion maps ϕ = inX,Y : X ↪→ Y are considered.
Moreover, only the quantified variables Y \ X are recorded while Y has to be (re)constructed as
the union X ∪ (Y \ X). In other words, our Y lists all (!) variables that are allowed to appear
as free variables in Ex! We record the whole Y for three reasons: (1) Already in Graph (not to
talk about arbitrary presheaf topoi), we do not have complements; (2) We quantify actually over
morphisms with source Y when we define the semantics of quantifications (compare Definition 10);
(3) In contrast to traditional FOL, ϕ : X → Y is allowed to be non-monic.

We allow non-monic morphims ϕ : X → Y to express identifications. In such a way, we can
survive, for the moment, without explicit equations even in cases where Var is a subcategory of a
set-based category. We illustrate this mechanism in the Examples 26 and 29.

If Var is a subcategory of a set-based category, like Set, [S → Set], Set/MmF, Graph or
Graph/MRM, for example, variable declarations X are constituted by single entities; thus, we can
talk about individual "variables". Moreover, inclusions of sets give us corresponding inclusion
morphisms at hand. In case, ϕ = inX,Y : X ↪→ Y is such an inclusion morphism we will drop ϕ
(see Examples 26, 28 and 29).

If ϕ : X → Y is an isomorphism, quantification is obsolete; thus, we excluded those cases.

Remark 7 (Everything and Void). For the definition of sketch conditions in Section 6, we need
another pair of symbols for “true” and “false”; thus, we decided to use for feature expressions the
symbols � and ⊥, respectively.

We consider � and ⊥ not as logical constants but as special feature symbols, inbuilt in
any Institution of Statements (analogously to the equation symbol in Universal Algebra).

To make this statement fully precise, we have to assume that Base, and thus also Var, has
an initial object 0. 0 is then the arity of � and ⊥, while the fixed semantics for any carrier U is
given by the two subsets of the singleton Base(0, U) = {!U : 0 → U}, namely [[⊥]]U = ∅ and
[[�]]U = {!U}. Consequently, we could use then the same notation as for atomic expressions,
namely X ��(!X) and X �⊥(!X) where !X : 0 → X is the unique initial morphism into X.

Remark 8 (Closed expressions: Syntax). If Base has an initial object 0, feature expressions of
the form 0 � Ex will be called closed expressions. Note that quantification will generate closed
expressions only in case X = 0 where ϕ = !Y : 0 → Y is the only choice for ϕ, in this case.

81

Mathematics 2022, 10, 1085

Example 26 (FOL: Expressions). We intend to illustrate that and how traditional first-order
formulas appear in our framework. First, we consider only those cases where the morphism ϕ in
quantifications is an inclusion morphisms and will be therefore dropped.

In Example 11, we proposed to represent finite S-sorted sets by lists of variable declarations.
The arity αFOL(parent) := ({x1, x2, x3}, ∅) for the feature symbol parent ∈ ΦFOL, for example,
is represented by [x1: prs, x2: prs, x3: prs]. Pursuing the idea to consider a tuple as a convenient
notation for an “associative array”, we can denote the atomic expression parent(β), with β :
αFOL(parent)→ Y an {prs, nat}-map, simply as parent(β(x1), β(x2), β(x3)).

Relying on this notational convention, we obtain, for example, the closed ΞFOL-expression
0 � ∀([x1 : prs, x2 : prs, x3 : prs, y1 : nat, y2 : nat] :

((parent(x1, x2, x3) ∧ age(x1, y1)) ∧ age(x2, y2)) −→ less(y1, y2))
(with 0 the empty S-set) expressing that a child is always younger than a parent.

Our main point, however, is to consider feature expressions as derived features enabling us
to denote properties in an anonymous way. The following feature ΞFOL-expression younger, for
example, gives us the property younger than at hand by hiding the exact age of a person:

[y : prs, x : nat] � ∃([y : prs, x : nat, x1 : nat] : (less(x, x1) ∧ age(y, x1)))

The next feature ΞFOL-expression sbl provides the property being a sibling of someone:

[y : prs] � ∃([y : prs, x1 : prs, x2 : prs, x3 : prs] :
parent(y, x2, x3) ∧ parent(x1, x2, x3) ∧ ¬∃(ϕ, [x : prs, x2 : prs, x3 : prs] : �))

with ϕ : [y : prs, x1 : prs, x2 : prs, x3 : prs]→ [x : prs, x2 : prs, x3 : prs] defined by the assign-
ments y, x1 �→ x; x2 �→ x2; x3 �→ x3. Note that the ΞFOL-expression
¬∃(ϕ, [x : prs, x2 : prs, x3 : prs] : �) on [y : prs, x1 : prs, x2 : prs, x3 : prs] encodes the
inequality ¬(y = x1).

For convenience, we could introduce an auxiliary feature symbol sibling with arity [y : prs]
and use sibling(y) as a shorthand (macro) for this derived feature expression. The conjunction
(male(y) ∧ sibling(y)) would then represent a unary property being brother of someone. To
ensure that then any feature expression X � Ex, containing the auxiliary feature symbol sibling,
can be expanded into an equivalent feature expression X � Ex′, containing only the original feature
symbols male and parent, we need a corresponding substitution mechanism.

Remark 9 (Substitution). Fortunately, we do not need substitution mechanisms to define Insti-
tutions of Statements and to utilize them for specifications purposes. We need, essentially, only a
category as we show and demonstrate it in this paper. To develop, however, fully fledged and practical
Logics of Statements and, especially, corresponding deduction calculi, we will need appropriate
substitution mechanisms.

An exhaustive and systematic study on what additional categorical infrastructure we have
to presuppose to have handy substitution mechanisms at hand is out of range for this paper. In
Appendix A, we present, nevertheless, some first observations, definitions and constructions.

Example 27 (ALC: Expressions). ALC focuses on derived concepts, i.e., in our view, on feature
expressions with X a singleton. To describe, however, all derived concepts as feature expressions,
we have to use arbitrary finite sets of variables and inclusions between them. We outline the
standard encoding of ALC in FOL. Using our notational conventions, the ALC construct “universal
restriction ∀R.C for any role R ∈ NR, any (derived) concept C”, can be described as follows: For
any role R in NR, any expression {y} � C and any variables x1, x2, not appearing in C, we have:
{x1} � ∀({x1, x2} : R(x1, x2) → Cψ(x2)) where ψ : {y} → {x1, x2} is given by ψ(y) = x2 and
the expression {x1, x2} � Cψ(x2) is obtained by substituting each occurrence of y in C by x2 and
by extending each variable declaration Y in C by the “fresh variable” x1 (compare Appendix A).
Analogously, the ALC construct “the existential restriction ∃R.C of a concept C by a role R ∈ NR”
can be described by existential quantification: For any role R in NR, any expression {y} � C and any
variables x1, x2, not appearing in C, we have: {x1} � ∃({x1, x2} : R(x1, x2) ∧ Cψ(x2)).

82

Mathematics 2022, 10, 1085

Example 28 (mFOL: Expressions). This is an example where we do not need the full first-order
power. Actually, we only need atomic feature ΞmF-expressions to state that a set is the subset of a
unary, binary or tertiary product of other sets.

Example 29 (CT: Expressions). To support the shift of paradigm from string-based to diagram-
matic logic was one of our main motivations to develop our framework. Therefore, we will spend a
bit more space and put some more effort on this example.

Representation and visualization of graph homomorphisms: For a finite graph A, we can
represent and visualize a graph homomorphism ϕ : A → B by means of the corresponding
graph of assignments Aϕ = (Aϕ

V , Aϕ
E, scAϕ

, tgAϕ
) with Aϕ

V := {(v, ϕV(v)) | v ∈ AV},
Aϕ

E := {(e, ϕE(e)) | e ∈ AE} where scAϕ
and tgAϕ

are defined for all e ∈ AE by
scAϕ

(e, ϕE(e)) = (scA(e), ϕV(scA(e))) and tgAϕ
(e, ϕE(e)) = (tgA(e), ϕV(tgA(e))), respec-

tively. The graphs A and Aϕ are isomorphic by construction. Note that we actually simply lift the
idea of “tuples as associative arrays” to graphs instead of sets of indexes.

We consider the graph Y, visualized below on the left. For the graph morphism
ϕ : α(cmp) → Y, defined by the assignments xv1 �→ yv3, xv2 �→ yv2, xv3 �→ yv4, xe1 �→ ye5,
xe2 �→ ye4, xe3 �→ ye3, the corresponding graph of assignments α(cmp)ϕ is visualized below in the
middle. In many cases, we can fortunately use for α(cmp)ϕ the shorthand graph, on the right,
without causing unambiguities.

yv1
ye1 ��

ye2

		

yv2

ye4

		
yv3

ye3 ��

ye5
��

yv4

(xv2, yv2)

(xe2,ye4)

		
(xv1, yv3)

(xe3,ye3)��

(xe1,ye5)

(xv3, yv4)

yv2

ye4

		
yv3

ye3 ��

ye5
��

yv4

As proposed in [3], we can also work with a sequential representation of the shorthand graph
(compare also Example 26): We can represent finite graphs by a list of edges plus a list of vertexes,
respectively. Pursuing the idea of tuples as associative arrays, a graph homomorphism ϕ : A → B
is then denoted by a list of image edges and a list of image vertexes in graph B.

yv2

ye4

		
yv3

ye3 ��

ye5
��

cmp

yv4

In such a way, we can visualize the atomic ΞCT-expression cmp(ϕ) by the graph above
and represent it also by the string cmp(ye5, ye4, ye3; yv3, yv2, yv4). Since α(cmp) has no isolated
vertexes, ϕ : α(cmp)→ Y is uniquely determined by the edge-assignments; thus, we could even use
the shorthand notation cmp(ye5, ye4, ye3) instead.

ΞCT-Expressions: The local property composition is defined for a certain pair of edges
can be formalized by the following feature ΞCT-expression:

lec = xv2
xe2

��
xv1

xe1

xv3

� ∃(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: xv2
xe2

��
cmp

xv1
xe3 ��

xe1

xv3

)

Universal quantification transforms this property into a general property composition is
always defined formalized by the following feature ΞCT-expression, where 0 is the empty graph:

gec = 0 � ∀(xv2
xe2

��
xv1

xe1

xv3

: ∃(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: xv2
xe2

��
cmp

xv1
xe3 ��

xe1

xv3

))

The general property composition is always unique is given by the expression guc:

83

Mathematics 2022, 10, 1085

guc = 0 � ∀(xv2
xe2

��
xv1 xe4

��
xe3 ��

xe1

xv3

: (xv2
xe2

��
cmp

xv1
xe3 ��

xe1

xv3

∧ xv2
xe2

��
cmp

xv1
xe4 ��

xe1

xv3

→ ∃(ϕ, xv2
xe2

��

: �

xv1
xe ��

xe1

xv3

)))

where ϕ simply maps xe3 and xe4 to xe. Analogously, we can also represent the other axioms of
categories–existence and uniqueness of identity morphisms, both identity laws and the associativity
law–by means of feature ΞCT-expressions. In addition, feature expressions are a handy tool to hide
auxiliary items in diagrammatic specifications. The property commutative square, for example,
is given by the feature ΞCT-expression csq, where we hide the diagonal:

csq = xv2
xe3 �� xv4

xv1

xe1

xe2 �� xv3

xe4

 � ∃(xv2
xe3 �� xv4

xv1

xe1

xe2 ��

xe5
��

xv3

xe4

 : xv2
xe3 �� xv4

xv1

xe1

xe5

��
cmp

∧ xv4

xv1
xe2 ��

xe5
��

cmp

xv3

xe4

)

That concepts and constructions are defined by universal properties is the crucial character-
istic of Category Theory as a modeling technique. The concept monomorphism, for example, is
defined by the feature ΞCT-expression mon:

mon = xv1

xe
		

xv2

� ∀(xv1

xe
		

xv3
xe3 ��

xe2

��
xe1

��

xv2

: xv1

xe
		

cmp

xv3
xe3 ��

xe1

��

xv2

∧ xv1

xe
		

cmp

xv3
xe3 ��

xe2

��

xv2

→ ∃(ϕ, xv1

xe
		

xv3
xe3 ��

xe4

��

xv2

: �))

where ϕ maps xe1 and xe2 to xe4. In most cases, however, a universal property is the conjunction of
a universally quantified existence assertion and a universally quantified uniqueness assertion (see
Remark 10). The concept final object, for example, is defined by the feature ΞCT-expression f nl
where ϕ maps xe1 and xe2 to xe:

f nl = xv � ∀(xv1 xv : ∃(xv1
xe−→ xv : �)) ∧ ∀(xv1 xe2

��
xe1 �� xv : ∃(ϕ, xv1

xe−→ xv : �))

In case, we want to work with an explicit property two parallel morphisms are equal, we
are free to utilize the ΞCT-expression [=] where ϕ maps xe1 and xe2 to xe:

[=] = xv1 xe2
��

xe1 �� xv2 � ∃(ϕ, xv1
xe−→ xv2 : �)

Remark 10 (Limits and Colimits). The fact that the universal properties in Category Theory do
have a uniform and relatively simple logical structure shaped the theory of generalized sketches
in [15]. The main ingredients of the definition of (co)limits are categorical diagrams, i.e., graph
homomorphisms, thus we can beneficially use feature ΞCT-expressions to characterize the logical
structure of the concept (co)limit.

The universal property, defining a finite (co)limit, is a conjunction of two assertions–existence of
mediators and uniqueness of mediators. We can express those assertions by feature ΞCT-expressions
with the following structure (compare the definition of the concept final object in Example 29):

existI := CI � ∀(CI + C′I : Ex1 −→ ∃(CI
→
+ C′I : Ex2))

uniqueI := CI � ∀(CI
⇒
+ C′I : Ex3 −→ ∃(ϕ, CI

→
+ C′I : �))

I is the shape graph of the (co)limit, i.e., the empty graph in the case of final objects. CI adds to I the
shape of a (co)cone with base I while CI + C′I extends CI with the shape of a second (co)cone with
base I. Ex1 is the conjunction of all atomic cmp-expressions on CI + C′I turning both (co)cones into

commutative ones. CI
→
+ C′I extends CI + C′I by a single mediator while Ex2 is the conjunction

of all atomic cmp-expressions on CI
→
+ C′I expressing the commutativity requirements for the

mediator. CI
⇒
+ C′I extends CI + C′I by two parallel mediators and Ex3 is the conjunction of all

atomic cmp-expressions on CI
⇒
+ C′I expressing the commutativity requirements for both mediators.

ϕ : CI
⇒
+ C′I −→ CI

→
+ C′I simply identifies the two mediators in CI

⇒
+ C′I .

84

Mathematics 2022, 10, 1085

Example 30 (RM: Expressions). To formalize declarations of tables and data base schemes, re-
spectively, we need only atomic feature ΞRM-expressions; thus, we consider in this example only
atomic ΞRM-expressions. To deal also with so-called business rules, we would need, however, the
full spectrum of first-order ΞRM-expressions.

As seen in the examples, there are cases where we need only a restricted selection of
first-order feature expressions. The freedom to select only the feature expressions we are
interested in establishes a new parameter (see Figure 1).

Definition 9 (Sixth parameter: Choice of expressions). As the sixth parameter of an Institution
of Statements, we choose an VarObj-indexed family XE(Ξ) of subsets XE(Ξ, X) ⊆ FE(Ξ, X) of
first-order Ξ-expressions on X ∈ VarObj.

Despite the fact that the family FE(Ξ, X), X ∈ VarObj of sets of first-order feature
expressions is defined by mutual induction, there is no explicit relationship between the
different sets FE(Ξ, X) since we do not base the definition of our framework on transla-
tion maps induced by variables translations, i.e., morphisms in Var (see Definition A1 in
Appendix A). Therefore, the choice of XE(Ξ, X) for a certain X can be made independently
from all the other choices! However, if we also incorporate later translation maps, it will
be reasonable to require that the choices of the different XE(Ξ, X) are compatible with
translation maps!

What are natural choices? We could simply choose all first-order feature expressions,
i.e., XE(Ξ, X) = FE(Ξ, X) for all X ∈ VarObj, as we will do it in the FOL-example as well as
in the CT-example. The other extreme case is to forget about “first-order” and to restrict
ourselves to atomic feature expressions. This we have done in [13] and in DPF [18,21] since
first-order feature expressions have not been available. For the mFOL-example and the
RM-example, it is sufficient to use atomic expressions only.

Besides these two extreme cases, we could, for example, exclude negation or we could
choose a minimal set of logical connectives and so on. In the ALC-example, we choose only
the first-order feature expressions necessary to encode ALC in first-order logic (compare
Example 27).

If Base has an initial object, we could restrict ourselves to closed expressions only (see
Remark 8). In this case, we are back to traditional institutions since we do not need contexts
to utilize closed formulas for specification purposes. The definition of closed formulas and
of the satisfaction relation for closed formulas goes, however, always via open formulas
and therefore any deduction calculus for closed formulas is based on a manipulation of
open formulas. In other words: We are convinced that the concept of a context, defined in
Definition 11, is relevant and beneficial for any logic beyond propositional logic even for
traditional first-order predicate logic!

3.4.2. Semantics of Feature Expressions

Due to Definition 5, a Ξ-structure U = (U, ΦU) fixes for each feature symbol F ∈ Φ its
semantics in U as a set [[F]]U ⊆ Base(αF, U) of all valid interpretations of F in U.

Relying on the inductive definition of first-order feature expressions, we can extend
the semantics of feature symbols and define the semantics of a feature expression X � Ex
in a Ξ-structure U as a set [[Ex]]UX of all valid interpretations (solutions) of X � Ex in U .
This semantics is a restriction of the semantics of X relative to the carrier U as defined by
Equation (1), i.e., [[Ex]]UX ⊆ [[X]]U = Base(X, U). For interpretations ι : X → U, we will
use, instead of ι ∈ [[Ex]]UX , also the more traditional notation ι |=U X � Ex .

Given a morphism ϕ : X → Y in Var, we say that an interpretation � : Y → U is an
expansion of an interpretation ι : X → U via ϕ if, and only if, ϕ; � = ι.

85

Mathematics 2022, 10, 1085

X
ϕ ��

ι
��

=

Y

�
��

U

Definition 10 (Feature expressions: Semantics). The semantics of feature Ξ-expressions in an
arbitrary, but fixed, Ξ-structure U = (U, ΦU) is defined inductively:

1. Atomic expressions: ι ∈ [[F(β)]]UX iff β; ι ∈ [[F]]U

αF
β ��

β;ι
��

=

X

ι
��

U
2. Everything: [[�]]UX := [[X]]U = Base(X, U)

3. Void: [[⊥]]UX := ∅
4. Conjunction: [[(Ex1 ∧ Ex2)]]

U
X := [[Ex1]]

U
X ∩ [[Ex2]]

U
X

5. Disjunction: [[(Ex1 ∨ Ex2)]]
U
X := [[Ex1]]

U
X ∪ [[Ex2]]

U
X

6. Implication: ι ∈ [[Ex1 → Ex2]]
U
X iff ι ∈ [[Ex1]]

U
X implies ι ∈ [[Ex2]]

U
X

7. Negation: [[¬Ex]]UX := Base(X, U) \ [[Ex]]UX
8. Existential quantification: ι ∈ [[∃(ϕ, Y : Ex)]]UX iff there exists an expansion � of ι via ϕ

such that � ∈ [[Ex]]UY .

X
ϕ ��

ι
��

=

Y

� |=UY�Ex
��

U
Universal quantification: ι ∈ [[∀(ϕ, Y : Ex)]]UX iff for all expansions � of ι via ϕ we have
� ∈ [[Ex]]UY .

Remark 11 (Feature expressions: Semantics). Every feature symbol F in Φ reappears as the
Ξ-expression αF � F(idαF) and Definition 10 ensures [[F(idαF)]]

U
αF = [[F]]U .

The universal quantification X � ∀(ϕ, Y : Ex) is trivially valid if there is no expansion of ι via
ϕ at all, while the existential quantification X � ∃(ϕ, Y : Ex) is not valid, in this case.

Two expressions X � Ex1 and X � Ex2 are semantical equivalent, X � Ex1 ≡ Ex2 in
symbols, if, and only if, [[Ex2]]

U
X = [[Ex2]]

U
X for all Ξ-structures U in Sem(Ξ). Definition 10

ensures that we do have the usual semantic equivalences available. In particular, conjunction and
disjunction are associative; thus we can drop, for convenience, the corresponding parenthesis as we
have done already at some places in the examples.

Remark 12 (Closed expressions: Semantics). For a closed expression 0 � Ex (see Remark 8),
[[0]]U = Base(0, U) is a singleton with the initial morphism !U : 0 → U as the only element. In
such a way, we have either [[Ex]]U0 = [[�]]U0 = {!U}, i.e., !U |=U 0 � Ex, or [[Ex]]U0 = [[⊥]]U0 = ∅,
i.e., !U �U 0 � Ex.

3.5. Institutions of Statements

Generalizing concepts like set of generators in Group Theory, underlying graph of a
sketch in Category Theory, set of individual names in Description Logics and underlying
graph of a model in Software Engineering, we introduce in this section the concept of
a context as one of our main conceptual and methodological proposals. Furthermore,
we introduce the concept statement (in a context) in generalizing the corresponding con-
cepts defining relation in Group Theory, diagram in a sketch in Category Theory, con-
cept/role assertion in Description Logic and constraint in Software Engineering. We use
institutions [2,31] as a methodological guideline to define and present the formalisms build
upon these new concepts.

86

Mathematics 2022, 10, 1085

3.5.1. Category of Contexts and Sentence Functor

As abstract signatures in an Institution of Statements, we introduce contexts.

Definition 11 (Seventh parameter: Contexts). As the seventh parameter of an Institution of
Statements, we choose another subcategory Cxt of Base. The objects in Cxt are called contexts
while we refer to the morphisms in Cxt as context morphisms.

If Base has initial objects, we assume that Cxt contains, at least, one of them denoted by 0.

Even if Cxt is called the “seventh parameter”, the choice of Cxt relies only on the
chosen Base and does not depend on all the other parameters we introduced (see Figure 1)!

Remark 13 (Variables vs. context vs. carrier). Introducing contexts, we establish a technological
layer independent of “pure syntax” (variables) and “pure semantics” (carriers of structures) as we
postulated it in Requirement 2 (p. 3). We prefer to consider variable declarations as something finite
or enumerable while contexts can be arbitrary.

In case Var is a subcategory of Cxt, we perceive the inclusion Var � Cxt as a change of roles:
Variables are essentially syntactic items but can also serve as generators of structures, like groups
and (term) algebras, for example.

If we are interested in completeness proofs and corresponding freely generated structures, we
have to suppose Carr � Cxt. Coming back to the discussion in Section 1.1.1, the introduction of
contexts allows us to keep syntax and semantics separated and to avoid, in such a way, certain kinds
of circularity in the definition of formalisms.

Example 31 (FOL: Context). PROLOG distinguishes between atomic values (literals) and
(logical) variables. Literals can be either number literals or symbolic literals.

Our choice of contexts reflects this line of tradition. We define CxtFOL as the subcategory of
CarrFOL = BaseFOL = SetS given by all S-sets K = (Ks | s ∈ S) with Ks a finite set of literals
and logical variables for all s ∈ S.

For the sample footprint ΞFOL = (ΦFOL, αFOL) with S = {prs, nat} (see Example 11),
we consider a sample context K with Knat the set of all natural numbers from 0 to 200 and
Kprs = {Anna, Michael, Dora, Heinz, Sorin, Gabi, Uwe}.

Example 32 (ALC: Context). This example has been chosen since it works explicitly with contexts
in our sense. ALC uses the term individual name instead of symbolic literal and contexts in
ALC are sets NO of individual names.

Example 33 (mFOL: Context). In this example, we describe the traditional formalism many-
sorted first-order logic without functions as such; thus, a context should declare finite sets of
sort and predicate symbols, respectively.

Analogously to the definition of VarmF in Example 8, we assume an enumerable set PSym
of admissible predicate symbols and an enumerable set SSym of admissible sort symbols. CxtmF
is then the full subcategory of Set/MmF given by all finite MmF-typed sets (K, τK : K → MmF)
such that τ−1

K (S) ⊆ SSym and τ−1
K (P) ⊆ PSym.

To be able to reconstruct the sample FOL-footprint ΞFOL = (ΦFOL, αFOL) (see Example 11),
we choose for the sample mFOL-footprint ΞmF = (ΦmF, αmF) in Example 13 the sample context
(K, τK : K → MmF) with τ−1

K (S) := {prs, nat} and τ−1
K (P) := {parent, male, age, less}.

Example 34 (CT: Context). We simply choose CxtCT := CarrCT = BaseCT = Graph. As an
example, we consider the following finite graph G.

2
b

��

4
d

��
1

a
��

e
��f �� 3

c
��

g �� 5

87

Mathematics 2022, 10, 1085

Example 35 (RM: Context). A context in this example declares the items in a database schema,
i.e., a finite graph with table identifiers, datatype identifiers, and column identifiers, respectively.
Analogously to Example 33, we assume an enumerable sets TId of admissible table identifiers, DId
of admissible datatype identifiers and CId of admissible column identifiers, respectively.

As CxtRM, we choose the full subcategory of Graph/MRM given by all finite MRM-typed
graphs (K, τK : K → MRM) such that τ−1

K (T) ⊆ TId, τ−1
K (D) ⊆ DId and τ−1

K (c) ⊆ CId.
We intend to formalize the database schema, discussed in Section 3.1.5, and consider the sample
RM-context (K, τK) as depicted in the following diagram.

Empl : T

eid:c
��

E.ssn:c
��

name:c

Addr : T

town:c
��

street:c
��

A.ssn:c

!!
Int : D String : D

Note that both tables do have a column with name ssn; thus, we distinguish between them by
means of the table identifiers.

Feature expressions can be utilized to make statements in a certain context. Those
statements in context are the sentences in an Institution of Statements.

Definition 12 (Statement). An XE(Ξ)-statement (X, Ex, γ) in context K ∈ CxtObj is given by
a feature Ξ-expression X � Ex in XE(Ξ, X) and a binding morphism γ : X → K in Base.

By Stm(K), we denote the set of all XE(Ξ)-statements in K.

Statements are part of sketches and examples of sketches are presented in Section 5.

Remark 14 (Atomic statements). For a feature symbol F ∈ Φ and a context K there can be
different variable declarations X, X′, morphisms β : αF → X, β′ : αF → X′ and binding
morphisms γ : X → K, γ′ : X′ → K such that β; γ = β′; γ′. That is, the distinct statement
expressions (X, F(β), γ) and (X′, F(β′), γ′) represent somehow the “same statement” in K.

We choose therefore a kind of normal form to define the concept atomic statement: Atomic
statements in context K are statements of the form (αF, F(idαF), γ), γ : αF → K. For any context
K we denote by At(K) the set of all atomic statements in K.

In abuse of notation, we will sometimes use for atomic statements the same notation F(γ) as
for atomic expressions. Thus, we can, in the examples, take advantage of our notational conventions
based on the idea of “associative arrays”.

Remark 15 (General statements and closed formulas). If Base has an initial object 0, there is
for any closed expression 0 � Ex (see Remarks 8 and 12) a unique initial morphism γ =!K : 0 → K;
thus, we have (0, Ex, !K) ∈ Stm(K) for any context K and all the closed expressions 0 � Ex in
XE(Ξ, 0). We call (0, Ex, !K) a general statement in K.

The general statements in Stm(0), i.e., statements of the form (0, Ex, id0) are the precise formal
counterpart of traditional closed formulas within our framework. Be aware that there may be
statements (X, Ex, γ : X → 0) in Stm(0) with X non-initial.

Remark 16 (Expression vs. statement). The idea behind our definition of statements is to en-
capsulate the relatively intricate construction of first-order syntactic entities and do it once and
for all. In such a way, we achieve the following objectives: (1) There is no need to lift arbitrary
“semantic entities”, like elements in the carrier of a structure, to the syntactic level. (2) We can
define and work with first-order statements in arbitrary base categories. (3) We do not depend
on translation maps (compare Definition A1 in Appendix A) to translate first-order statements.
(4) The translation of first-order statements is simply performed by composition in the
category Base!

This encapsulation trick we have seen in [31] where it is used for “initial/free constraints”.

88

Mathematics 2022, 10, 1085

Any morphism ϕ : K → G in Cxt induces a map Stm(ϕ) : Stm(K) → Stm(G) defined
by simple post-composition for all statements (X, Ex, γ) in K:

Stm(ϕ)(X, Ex, γ) := (X, Ex, γ; ϕ) (2)

X � Ex
γ

""

γ;ϕ

##
K

ϕ
�� G

� $$

It is easy to show that the assignments K �→ Stm(K) and ϕ �→ Stm(ϕ) provide a functor
Stm : Cxt→ Set. This is the sentence functor of an Institution of Statements.

3.5.2. Model Functor

Interpretations of contexts are the models in an Institution of Statements.

Definition 13 (Context interpretations). An interpretation (ι,U) of a context K ∈ CxtObj is
given by a Ξ-structure U = (U, ΦU) in Sem(Ξ) and a morphism ι : K → U in Base.

A morphism ς : (ι,U) → (�,V) between two interpretations of K is given by a morphism
ς : U → V in Sem(Ξ) such that ι; ς = � for the underlying morphism ς : U → V in Carr.

K
ι

��

�

��
=

U
ς �� V

For any context K in Cxt we denote by Int(K) the category of all interpretations of K and all
morphisms between them and by ΠK : Int(K)→ Sem(Ξ) the obvious projection functor.

Note that, for an initial object K = 0, the projection functor Π0 : Int(0)→ Sem(Ξ) is
an isomorphism.

For any Ξ-structure U in Sem(Ξ), the corresponding fiber over U , i.e., the subcategory
of Int(K) given by all interpretations of K in U , is a discrete category representing the
hom-set Base(K, U).

Remark 17 (Functorial semantics). We present in this paper an abstract and general definition of
Institutions of Statements covering a brought range of applications. Therefore, we are not assuming
any structure on the hom-sets Base(K, U).

In examples, following the path of Functorial Semantics, Sem(Ξ) will be constituted by Ξ-
structures U = (U, ΦU) where U is provided by a category like Set or Par, for example. In those
cases, Base(K, U) will be a category with morphisms reflecting the idea of natural transformations.

For those special cases, we can vary Definition 13 in such a way that a morphism between the
two interpretations of K is given by a morphism ς : U → V in Carr and a morphism in Base(K, V)
from ι; ς to �. We are convinced that all the following constructions and results can be transferred,
more or less straightforwardly, to this extended version of morphisms between interpretations. We
let this as a topic of future research.

Any context morphism ϕ : K → G induces a functor Int(ϕ) : Int(G)→ Int(K) with:

Int(ϕ); ΠK = ΠG : Int(G)→ Sem(Ξ) (3)

defined by simple pre-composition: Int(ϕ)(�,V) := (ϕ; �,V) for all interpretations (�,V)
of G, and for any morphism ς : (ι,U) → (�,V) between two interpretations of G the
same underlying morphism ς : U → V in Carr establishes a morphism Int(ϕ)(ς) := ς :
(ϕ; ι,U)→ (ϕ; �,V) between the corresponding two interpretations of K.

89

Mathematics 2022, 10, 1085

K
ϕ ��

ϕ;�
��

G

�
%%

K
ϕ ��

ϕ;ι

		
ϕ;�

��

G

�

		
ι

&&

Int(K)

ΠK ��

=

Int(G)
Int(ϕ)��

ΠG&&
V U

ς �� V Sem(Ξ)

�''

It is straightforward to validate that the assignments K �→ Int(K) and ϕ �→ Int(ϕ) de-
fine a functor Int : Cxtop → Cat. This is the model functor of an Institution of Statements.

3.5.3. Satisfaction Relation and Satisfaction Condition

The last two steps, in establishing an institution, are the definition of satisfaction
relations and the proof of the so-called satisfaction condition. The satisfaction relations are
simply given by the semantics of features expressions, as described in Definition 10.

Definition 14 (Satisfaction relation). For any context K ∈ Cxt, any XE(Ξ)-statement (X, Ex, γ)
in K and any interpretation (ι,U) of context K we define:

(ι,U) |=K (X, Ex, γ) iff γ; ι |=U X � Ex (i.e. γ; ι ∈ [[Ex]]UX) (4)

K
ι

��
U X � Ex

γ
((

γ;ι
��

Remark 18 (Validity of Closed Formulas). In case X = K = 0, we do have for any Ξ-structure
U = (U, ΦU) in Sem(Ξ) exactly one interpretation (!U ,U) thus for any closed formula (0, Ex, id0)
(see Remark 15) (!U ,U) |=0 (0, Ex, id0) means nothing but that the closed formula (0, Ex, id0)
is valid in U in the traditional sense. Therefore, we will also write U |= (0, Ex, id0) instead of
(!U ,U) |=0 (0, Ex, id0).

Moreover, the validity of closed formulas is context independent in the following sense: For
any context K and any closed expressions 0 � Ex, we have:

(ι,U) |=K (0, Ex, !K) iff !K; ι =!U |=U 0 � Ex iff [[Ex]]U0 = {!U} iff U |= (0, Ex, id0)

After we developed everything in a systematic modular way, we obtain the satisfaction
condition nearly “for free”.

Corollary 1 (Satisfaction condition). For any morphism ϕ : K → G in Cxt, any XE(Ξ)-statement
(X, Ex, γ) in K and any interpretation (�,U) of context G we have:

Int(ϕ)(�,U) |=K (X, Ex, γ) iff (�,U) |=G Stm(ϕ)(X, Ex, γ). (5)

K

ϕ

		

(ϕ; �,U) |=K (X, Ex, γ)
�

Stm(ϕ)

		

K

ϕ

		

ϕ;�

��
U X � Ex

γ
))

γ;ϕ
**

G (�,U) |=G

�

Int(ϕ)

(X, Ex, γ; ϕ) G
�

++

Proof. Due to the definition of the functors Int : Cxtop → Cat and Stm : Cxt → Set, we
obtain the commutative diagram, above on the right, thus the satisfaction condition follows
immediately from Definition 14.

90

Mathematics 2022, 10, 1085

Remark 19 (Satisfaction Condition). As mentioned in the introductory Section 1.1.6, the finding
of corresponding assignments and corresponding evaluations enabled us to prove in [29] the
satisfaction condition for four formalisms in a systematic, uniform and straightforward way. The
proof of Corollary 1 mirrors the essence of this uniform and straightforward way at a very high
abstraction level.

Summarizing all definitions and results, we obtain the main result of this section:

Theorem 1 (Institution of Statements). Any choice of a category Base, of subcategories Var,
Cxt, Carr of Base, of a footprint Ξ over Var, of a category Sem(Ξ) of Ξ-structures and of an
VarObj-indexed family XE(Ξ) of first-order Ξ-expressions establishes a corresponding Institution
of Statements IS = (Cxt, Stm, Int, |=).

Remark 20 (Indexed institutions). We come back to the discussion in Remark 5. If we consider a
category of footprints over Var we will obtain, due to Theorem 1, for each footprint a corresponding
institution of statements. To lift morphisms between footprints to corresponding morphisms between
institutions of statements, we have, however, to coordinate somehow the construction of the different
institutions (consult Figure 1).

All institutions should share, besides Base and Var also the same categories Carr and Cxt.
We have to show that this assumption ensures that the assignments Ξ �→ Str(Ξ) can be lifted to a
functor Str. Analogously, the assignments Ξ �→ FE(Ξ) should also provide a functor FE. Finally,
the choices of Sem(Ξ) and XE(Ξ) have to be aligned in such a way that we obtain corresponding
restrictions of the functors Str and FE, respectively.

Under these assumptions, we will hopefully be able to establish a category of institutions of
statements indexed by the category of footprints; thus, we can benefit from all the nice results and
constructions in [2]. In particular, the construction of the corresponding Grothendieck institution
will surely become relevant.

4. Institutions of Equations

With this section about Institutions of Equational Statements, or short Institutions
of Equations, we start to close the circle to the ideas and motivations discussed in the
introductory Section 1.1.1 Universal Algebra and Algebraic Specifications. In these areas,
substitutions play a central role and, analyzing the situation in these areas, we may obtain
also some hints and guidelines for the future development of a more abstract and general
account of substitutions in Logics of Statements.

Equations are the main conceptual tool in Universal Algebra. To define equational
statements, we could again apply the encapsulation trick we have used in the last sub-
sections to define statements for footprints with feature symbols only. That is, we could
introduce atomic equations X � t1 = t2, define atomic equational statements (X, t1 = t2, γ)
in contexts K with γ : X → K and translate atomic equational statements along context
morphisms by simple post-composition.

This idea works fine as long as we are only interested in formalisms to describe and
specify algebraic structures. The encapsulation approach seems to be not appropriate,
however, to describe and work with instances of equations w.r.t. substitutions of variables
by terms. The construction of those instances is a crucial tool in any deduction calculus in
Universal Algebra; thus, we decided to work instead of the encapsulation-based two-step
approach with a one-step approach defining directly equations K � t1 = t2 in contexts K.

This means that we adapt for Institutions of Equations the construction scheme in
Figure 1 in the following way: We have Str(Ξ) = Sem(Ξ). Step (6) is dropped and
we construct directly Stm(K) as a set of equations in context K. Correspondingly, the
satisfaction relations |=K are defined by means of the evaluation of terms in algebras.

As a complement to the FOL-example, we consider many-sorted total algebras and
conditional equations. In this section, we define corresponding Institutions of Equations
while conditional equations are formalized and discussed in Section 5.3.

91

Mathematics 2022, 10, 1085

In accordance with the FOL-example, we fix a finite set S ∈ SetObj of sort symbols
and choose as BaseEQ the interpretation category SetS = [S → Set]. VarEQ is the full
subcategory of BaseEQ given by all finite and disjoint S-sets X = (Xs | s ∈ S) with Xs a
subset of the set {x, x1, x2, . . . , y, y1, y2, . . .} for all s ∈ S.

4.1. Signatures, Algebras and Contexts

Signatures Σ = (Ω, in, out) correspond to traditional many-sorted algebraic signatures
and are given by a set Ω of operation symbols, a map in assigning to each operation symbol
ω ∈ Ω an object in(ω) in VarEQ, its arity, and a map out : Ω → S. For convenience,
we assume that

⋃
in(ω) = {x1, x2, . . . , xn}, n ≥ 0; thus, we can represent in(ω) as a list

[x1: s1, x2: s2, . . . , xn: sn] of variable declarations (compare Example 11).
We have CarrEQ := BaseEQ. As structures, we consider Σ- algebrasA = (A, ΩA) with

an S-set A = (As | s ∈ S) and a family ΩA of operations ωA : Ain(ω) → Aout(ω), ω ∈ Ω,
where Ain(ω) is a shorthand for the set SetS(in(ω), A) of all S-maps from in(ω) into A.

A homomorphism ς : A → B between Σ-algebras A and B is given by an S-map
ς = (ςs | s ∈ S) : A → B such that ωA; ςs = ςin(ω); ωB for all ω ∈ Ω where the map
ςin(ω) : Ain(ω) → Bin(ω) is defined by ςin(ω)(τ) := τ; ς for all S-maps τ ∈ Ain(ω).

Ain(ω)

ςin(ω)

		

ωA ��

=

As

ςs

		
Bin(ω) ωA �� Bs

Alg(Σ) is the category of all Σ-algebras and all homomorphisms between them.
We choose CxtEQ := CarrEQ = BaseEQ = SetS. The model functor of an Institution of

Equations is defined in full analogy to Institutions of Statements.
An interpretation (ι,A) of a context K in CxtEQ, i.e., of an S-set K, is given by a

Σ-algebra A = (A, ΩA) and an S-map ι : K → A.
A morphism ς : (ι,A) → (�,B) between two interpretations of K is given by a

homomorphism ς : A → B such that ι; ς = � for the underlying S-map ς : A → B.

K
ι

��

�

��
=

A
ς �� B

For any context K in CxtEQ, Int(K) denotes the category of all interpretations of K and
all morphisms between them and ΠK : Int(K)→ Alg(Σ) is the corresponding projection
functor. The fiber over a Σ-algebra A represents the semantics of a context K in A, i.e., the
set AK := SetS(K, A) of all S-maps from K into the carrier of A.

Note that, in the case of the empty S-set K = 0 = (∅ | s ∈ S) the projection functor
Π0 : Int(0)→ Alg(Σ) is an isomorphism.

Any S-map ϕ : K → G induces a functor Int(ϕ) : Int(G)→ Int(K) with:

Int(ϕ); ΠK = ΠG : Int(G)→ Alg(Σ) (6)

defined by simple pre-composition: Int(ϕ)(�,B) := (ϕ; �,B) for all interpretations (�,B)
of G, and for any morphism ς : (ι,A)→ (�,B) between two interpretations of G the same
underlying S-map ς : A → B establishes a morphism Int(ϕ)(ς) := ς : (ϕ; ι,A)→ (ϕ; �,B)
between the corresponding two interpretations of K.

K
ϕ ��

ϕ;�
��

G

�
%%

K
ϕ ��

ϕ;ι

		
ϕ;�

��

G

�

		
ι

&&

Int(K)

ΠK ��

=

Int(G)
Int(ϕ)��

ΠG��
B A

ς �� B Alg(Σ)

�''

92

Mathematics 2022, 10, 1085

The assignments K �→ Int(K) and ϕ �→ Int(ϕ) define a functor Int : Cxtop
EQ → Cat.

This is the model functor of an Institution of Equations.

4.2. Terms and Equations

To define equations, we need terms! For any S-set K the S-set TΣ(K) of all Σ-terms on

K is defined inductively as the smallest S-set such that:

1. K ⊆ TΣ(K)
2. ω〈〉 ∈ TΣ(K)out(ω) for all ω ∈ Ω with in(ω) the empty S-set 0 = (∅ | s ∈ S).
3. ω〈τs1(x1), . . . , τsn(xn)〉 ∈ TΣ(K)out(ω) for all ω ∈ Ω with in(ω) non-empty and all

S-maps τ : in(ω)→ TΣ(K) where [x1: s1, x2: s2, . . . , xn: sn] is the assumed representa-
tion of in(ω) as a list of variable declarations.

A Σ-equation (K, t1 = t2) in K is given by two Σ-terms t1, t2 ∈ TΣ(K)s for some
s ∈ S and Eq(K) denotes the set of all Σ-equations (K, t1 = t2) in K. In the usual way, the
inductive definition of Σ-terms allows us to extend any S-map ϕ : K → G between S-sets
to an S-map ϕ∗ : TΣ(K) → TΣ(G) such that ⊆; ϕ∗ = ϕ;⊆ thus ϕ : K → G induces a map
Eq(ϕ) : Eq(K)→ Eq(G) with:

Eq(ϕ)(K, t1 = t2) := (G, ϕ∗(t1) = ϕ∗(t2)) (7)

for all Σ-equations (K, t1 = t2) in K.

TΣ(K)
ϕ∗ �� TΣ(G)

K
ϕ ��

⊆

G

⊆

Since id∗K = idTΣ(K) and (ϕ; ψ)∗ = ϕ∗; ψ∗ for all ϕ : K → G, ψ : G → H, the assignments
K �→ Eq(K) and ϕ �→ Eq(ϕ) define a functor Eq : CxtEQ → Set. This is the sentence functor

of an Institution of Equations.
The semantics of terms is based on the evaluation of terms in algebras: Due to the

inductive definition of Σ-terms, we can extend any interpretation ι : K → A of a context K
in a Σ-algebra A = (A, ΩA) to an S-map ι◦ : TΣ(K)→ A such that:

⊆; ι◦ = ι. (8)

K
⊆ ��

ι
��

TΣ(K)

ι◦

		
A

In such a way, we can define the semantics tA of a Σ-term t ∈ TΣ(K), s ∈ S in a Σ-algebraA
as a map tA : AK → As defined by tA(ι) := ι◦(t) for all ι : K → A. Thus, feature expressions
represent derived properties while terms represent derived operations!

4.3. Satisfaction Relation and Satisfaction Condition

Definition 15 (Satisfaction relation for equations). For any context K ∈ CxtEQ, any
Σ-equation (K, t1 = t2) in K and any interpretation (ι,A) of context K in a Σ-algebra A =
(A, ΩA), we define:

(ι,A) |=K (K, t1 = t2) iff ι◦(t1) = ι◦(t2) (i.e. tA1 (ι) = tA2 (ι)) (9)

K
ι

%%

⊆ �� TΣ(K)

ι◦
��A

93

Mathematics 2022, 10, 1085

The satisfaction condition is ensured by the well-behaved interplay of translations of
terms along context morphisms and evaluations of terms.

Proposition 1 (Satisfaction condition for equations). For any morphism ϕ : K → G in CxtEQ,
any Σ-equation (K, t1 = t2) in K and any interpretation (�,A) of context G in a Σ-algebra
A = (A, ΩA), we have:

Int(ϕ)(�,A) |=K (K, t1 = t2) iff (�,A) |=G Eq(ϕ)(K, t1 = t2). (10)

K

ϕ

		

(ϕ; �,A) |=K (K, t1 = t2)�

Eq(ϕ)

		

K

ϕ

		

ϕ;�

��

⊆ �� TΣ(K)

(ϕ;�)◦

��
ϕ∗

		

A

G (�,A) |=G

�

Int(ϕ)

(G, ϕ∗(t1) = ϕ∗(t2)) G
�

++

⊆ �� TΣ(G)

�◦

,,

Proof. Due to the definition of the functors Int : Cxtop
EQ → Cat, Eq : CxtEQ → Set and the

fact that (ϕ; �)◦ = ϕ∗; �◦, we obtain the commutative diagram, above on the right, thus the
satisfaction condition follows immediately from Definition 15.

Summarizing all definitions and results, we obtain the main result in this section:

Proposition 2 (Institution of Equations). Any choice of a finite set S and a signature
Σ = (Ω, in, out) establishes a corresponding Institution of Equations IE = (CxtEQ, Eq, Int, |=).

5. Sketches

Any institution gives us a corresponding category of presentations and an extension
of the model functor of the institution to the category of presentations at hand [2,31]. We
outline this construction for Institutions of Statements and Institutions of Equations.

We would like to use a specific term to distinguish presentations for Institutions of
Statements or Equations, resp., from presentations in general. Since many of our motivating
examples are variants of sketches, we will simply use the term sketch. In Sections 5.1 and 5.2,
we concentrate on sketches for Institutions of Statements while Section 5.3 outlines the
corresponding variations for Institutions of Equations.

5.1. Sketches of Statements: Syntax and Semantics

To be prepared for the topics in Section 6, we introduce a very abstract and semantics-
independent concept of sketch.

Definition 16 (Sketch). Let us have a category Ct of contexts and a functor St : Ct → Set,
assigning to each K ∈ CtObj a set St(K) of all statements in context K.

An St- sketch K = (K, StK) is given by a context K ∈ CtObj and a set StK ⊆ St(K) of
statements in context K.

In this subsection, we consider the case Ct = Cxt, St = Stm with IS = (Cxt, Stm, Int, |=)
an arbitrary Institution of Statements according to Theorem 1.

All definitions and constructions are, however, institution-independent; thus, they
apply analogously to the case Ct = CxtEQ, St = Eq with IE = (CxtEQ, Eq, Int, |=) an
arbitrary Institution of Equations according to Proposition 2.

Example 36 (FOL: Sketches). We extend the sample context K in Example 31 to an StmFOL-sketch
K with the atomic statements (facts) parent(Anna, Uwe, Gabi), parent(Uwe, Heinz, Dora),
male(Michael) and the proper first-order statements ([y : prs], sbl, (y �→ Michael)),

94

Mathematics 2022, 10, 1085

([y : prs], sbl, (y �→ Uwe)), ([y : prs, x : nat], younger, (y �→ Michael, x �→ 12)),
([y : prs], sbl, (y �→ Gabi)). The expression [y : prs] � sbl, representing the property being
sibling of someone, and the expression [y : prs, x : nat] � younger, representing the property
younger than, are defined in Example 26.

Example 37 (ALC: Sketches). Contexts in ALC are sets NO of individual names as already
mentioned in Example 32. A concept assertion in ALC, i.e., a statement of the form a : C with
a ∈ NO and C a (derived) concept, can be seen as a statement ({x1}, C(x1), (x1 �→ a)) in NO where
the assignment (x1 �→ a) defines a binding β : {x1} → NO with β(x1) = a.

A role assertion, i.e., a statement of the form (a, b) : R where a, b ∈ NO and R is a role, can be
seen as a statement ({x1, x2}, R(x1, x2), (x1 �→ a, x2 �→ b)) in NO. An ABox in ALC is a finite
set of assertional axioms. Thus, a pair (NO,A) of a set NO of individual names and an ABox
A of assertional axioms in NO is just an StmALC-sketch in our sense.

Example 38 (mFOL: Sketches). We extend the context (K, τK : K → MmF) in Example 33 to
an StmmF-sketch with the atomic statements un(male : P, prs : S), bin(less : P, nat : S, nat : S),
bin(age : P, prs : S, nat : S) and trt(parent : P, prs : S, prs : S, prs : S).

Obviously, this StmmF-sketch describes exactly the sample footprint ΞFOL in Example 11!
Actually, we can describe all FOL-footprints, declaring only unary, binary or tertiary predicate
symbols, as StmmF-sketches. This fact confirms that the mFOL-example establishes indeed a meta-
level for the FOL-example.

We have to be aware, however, that not all StmmF-sketches correspond to FOL-footprints. For
each predicate symbol in a FOL-footprint, we have to declare an arity, and this arity should be
unique! Therefore, only those StmmF-sketches, with exactly one atomic statement for each element
in τ−1

K (P) correspond to FOL-footprints. To describe those requirements concerning the structure
of sketches, we can utilize sketch implications, introduced in the next subsection, and/or sketch
constraints introduced in Section 6.

Example 39 (CT: Sketches). These are just the sketches, as we know them from Category Theory,
with the essential difference that we are not restricting ourselves to commutative, limit and colimit
statements only. We do not need to encode, for example, the concept monomorphism by means of
pullbacks but can define it directly as a property of edges utilizing the ΞCT-expressions we discussed
in Example 29.

2

b
��

mon

2×cmp

4
d

��
cmp

1

a
��

e
��

f
�� 3

c
��

g mon ��
f nl

5

As an example, we consider the context G from Example 34 and extend it to an StmCT-sketch
G = (G, StG) visualized above. StG contains the atomic statements cmp(a, b, e), cmp(a, b, f),
cmp(c, d, g) and the proper first-order statements:

(xv, f nl, (xv �→ 3)), (xv1
xe→ xv2, mon, (xe �→ b)), (xv1

xe→ xv2, mon, (xe �→ g)).

Example 40 (RM: Sketches). We extend the sample context (K, τK) from Example 35 to an
StmRM-sketch K = (K, StK). First, we declare two tables, i.e., StK contains two atomic statements
tb(3)(γ1), tb(3)(γ2) with bindings γ1 and γ2 visualized by the following typed graphs:

Empl: T
eid: c

��
E.ssn: c
		

name: c

��
Int: D Int: D String: D

Addr: T
A.ssn: c
&&

town: c
		

street: c
��

Int: D String: D String: D

95

Mathematics 2022, 10, 1085

Then, we declare for each table a primary key, i.e., we add two atomic statements pk(γ3), pk(γ4)

with bindings γ3, γ4 given by Empl: T eid: c �� Int: D and Addr: T A.ssn: c�� Int: D . Moreover, we

declare a foreign key fk(γ5) with γ5 depicted by Empl: T E.ssn: c�� Int: D ��A.ssn: cxt2: T .
We could also require that each employee has a name and add an atomic statement tot(γ6)

with γ6 given by Empl: T name: c�� String: D .
Analogously to the requirements in Example 38, we do have the requirement that a table

identifier can only appear once in a tb(n)-statement. There are, however, other database specific
requirements: Any table should have exactly one primary key, a foreign key has to refer to a primary
key, and others. As said before, to describe those kinds of structural requirements, we need sketch
implications and/or sketch constraints.

For any context K in Cxt, any set S ⊆ Stm(K) of statements in K and any interpretation
(ι,U) of context K in a Ξ-structure U we define, relying on Definition 14:

(ι,U) |=K S iff (ι,U) |=K (X, Ex, γ) for all (X, Ex, γ) ∈ S. (11)

Be aware that the statements in S may have different variable declarations X.

Definition 17 (Interpretation of sketch). A valid interpretation (model) of an Stm-sketch
K = (K, StK) is an interpretation (ι,U) of context K such that (ι,U) |=K StK.

We denote by Int(K) the full subcategory of Int(K) determined by all valid interpretations
of K and by ΠK : Int(K) → Sem(Ξ) we denote the corresponding restriction of the projection
functor ΠK : Int(K)→ Sem(Ξ).

Remark 21 (Traditional presentations). If Base has an initial object 0, we can consider sketches
(0, St) with St only containing closed formulas, i.e., statements of the form (0, Ex, id0) (see
Remark 15). As discussed before, the projection functor Π0 : Int(0) → Sem(Ξ), due to
Definition 13, is an isomorphism. In such a way, (0, St) is not only determining the interpre-
tation subcategory Int(0, St) � Int(0) but can also be seen as a presentation (specification) of
the corresponding full subcategory Sem(Ξ, (0, St)) := Π0(Int(0, St)) of Sem(Ξ) isomorphic to
Int(0, St).

In other words: due to Remark 18, we can describe Sem(Ξ, (0, St)) as the full subcategory
of Sem(Ξ) given by all Ξ-structures U = (U, ΦU) in Sem(Ξ) such that U |= (0, Ex, id0) for all
closed formulas (0, Ex, id0) in St.

Example 41 (FOL: Interpretations). If we interpret the symbolic literals in Kprs = {Anna,
Michael, Dora, Heinz, Sorin, Gabi, Uwe} by the real persons in our family in December 2021, we
will not obtain a valid interpretation of the StmFOL-sketch K in Example 36 since the statement
([y : prs], sbl, (y �→ Gabi)) is not satisfied by this interpretation. If we use, however, the statement
([y : prs],¬sbl, (y �→ Gabi)) instead, the interpretation becomes valid.

Note that the statement ([y : prs], sbl, (y �→ Uwe)) is satisfied by the interpretation even if
there is no witness for this statement in the context. Uwe’s only sister Brita is not present in the
context K!

Example 42 (mFOL: Interpretations). An interpretation of the sample context (K, τK) assigns to
each element in τ−1

K (S) := {prs, nat} and τ−1
K (P) := {parent, male, age, less}, respectively,

a set. Since BasemF is the slice category SET/MmF, a certain set can either serve as a sort or as
a predicate.

Our choice of Sem(ΞmF) in Example 23 ensures, in addition, that the valid interpretations of
the sample StmmF-sketch from Example 38 are in one-to-one correspondence to the ΞFOL-structures
in Sem(ΞFOL) = Str(ΞFOL). We do have such a semantical one-to-one correspondence for any
FOL-footprint, declaring only unary, binary or tertiary predicate symbols, and the corresponding

96

Mathematics 2022, 10, 1085

StmmF-sketch. This confirms that the mFOL-example establishes a meta-level for the FOL-example
also w.r.t. semantics.

It is maybe worth mentioning that any StmmF-sketch with two different atomic statements for,
at least, one element in τ−1

K (P) has no valid interpretation at all in Sem(ΞmF).

Example 43 (Category Theory: Interpretations). Since we defined in Example 24 a very lib-
eral semantics, we do have interpretations (ι,U), U = (U, ΦUCT) of the sample StmCT-sketch
G = (G, StG) in Example 39, where the graph homomorphism ι : G → U maps the edges e and f
to different edges in U even if both are declared as the composition of a and b.

If we would have also included into the sketch G the general statement (0, guc, !G) with
the closed expression 0 � guc expressing the property composititon is always unique (see
Example 29), (ι,U) could be only a valid interpretation of G if ι identifies e and f .

Example 44 (RM: Interpretations). Analogously to Example 42, our choice of Sem(ΞRM) in
Example 25 ensures that the valid interpretations of “well-formed” StmRM-sketches, i.e., StmRM-
sketches representing database schemata, formalize exactly the traditional semantics of database
schemata as outlined in Subsection 3.1.5.

Morphisms between sketches are defined by means of semantic entailment in a certain
Institution of Statements IS = (Cxt, Stm, Int, |=).

Definition 18 (Statement entailment). For any context K in Cxt and any sets S, T ⊆ Stm(K) of
statements in K, we say that S entails T in a Ξ- structure U , S �UK T in symbols, if, and only if,
for all interpretations (ι,U) of K in U : (ι,U) |=K S implies (ι,U) |=K T.

S entails T, S �K T in symbols, if, and only if, S �UK T for all Ξ-structures U in Sem(Ξ).

Definition 19 (Sketch morphism). An IS-morphism ϕ : K ��� G between two Stm-sketches
K = (K, StK), G = (G, StG) is a morphism ϕ : K → G in Cxt such that StG �G Stm(ϕ)(StK).
An IS-morphism ϕ : K ��� G is called strict if StG ⊇ Stm(ϕ)(StK).

Sk(IS)m denotes the category of all Stm-sketches and all IS-morphisms between them. Its
subcategory of all Stm-sketches and all strict IS-morphisms is denoted by Sk(IS)m

s .

We will consider three different kinds of directed relationships between sketches
distinguished by three different kinds of arrow-symbols. We choose the arrow-symbol
“���” for sketch morphisms since it is the kind of directed relationship we will mention the
least.

If IS is clear from the context, we will also use the shorthand notations Skm and Skm
s

instead of Sk(IS)m and Sk(IS)m
s , respectively.

IS-morphisms ϕ : K ��� G with K = G and ϕ = idK simply reflect statement
entailments. For any IS-morphism ϕ : K ��� G, the condition StG �G Stm(ϕ)(StK)
ensures, due to the satisfaction condition that the functor Int(ϕ) : Int(G) → Int(K)
restricts to a functor from Int(G) into Int(K). In such a way, the assignments K �→ Int(K)
extend to a functor IntSk : (Skm)op → Cat.

According to well-known general results (see Corollary 4.3 in [2]), we know that Skm

has whatever limits or colimits the category Cxt has since limits and colimits in the category
Skm of Stm-sketches and IS-morphisms are constructed by means of limits and colimits
in the category Cxt, respectively (compare Propositions 5 and 6). This ensures also that
we do have amalgamation [1,2,38]: IntSk : (Skm)op → Cat maps all colimits in Cxt that are
preserved by the inclusion Cxt � Base, to limits in Cat.

The Theory of Institutions gives us “for free” Stm-sketches, IS-morphisms, the cate-
gory Skm as well as the extended model functor IntSk : (Skm)op → Cat.

However, to employ sketches as a specification formalism and to develop deduction
calculi for sketches, we need a number of other concepts, constructions and results.

97

Mathematics 2022, 10, 1085

5.2. Sketches of Statements vs. Structures

In the Introduction, we discussed, among other things, two central motivations for the
development of our framework: (1) We want to be able to give a general abstract account
of the concept of free structures generalizing concepts like a group generated by a set of
generators and a set of defining relations. (2) We want to provide an alternative general
mechanism to encode structures “syntactically” that avoids the kind of circularity inherent
to the technique of “signature extensions”.

In the remaining part of this section, we outline proposals to meet these objectives.

5.2.1. Freely Generated Structures

To reconstruct the concept of a group generated by a set of generators and a set of
defining relations, we need operations only. Those cases of free algebras are discussed in
Section 5.3.1.

First, We Consider Structures Freely Generated in Sem(Ξ)

A Ξ-structure F = (F, ΦF) is freely generated in Sem(Ξ) by an Stm-sketch G =
(G, StG) if, and only if, F is in Sem(Ξ) and there is a valid interpretation (ηG,F) of G in F
that is universal relative to Sem(Ξ). That is, for all Ξ-structures U = (U, ΦU) in Sem(Ξ) and
all valid interpretations (ι,U) of G in U there exists a unique morphism ι∗ : F → U in
Sem(Ξ) such that ηG; ι∗ = ι in Base, i.e., such that ι∗ establishes an interpretation morphism
ι∗ : (ηG,F)→ (ι,U) in Int(G) � Int(G) according to Definition 13.

Int(G) G
(ηG,F)|=GStG ��

(ι,U)|=GStG
��

F

ι∗

		

F = (F, ΦF)

ι∗
		

Sem(Ξ)

U U = (U, ΦU)

A Ξ-structure, freely generated in Sem(Ξ) by an Stm-sketch G = (G, StG), is obviously
uniquely determined “up to isomorphism in Sem(Ξ)” if it exists.

The universal property of (ηG,F) entails that (ηG,F) is initial in Int(G), thus the
projection functor ΠG : Int(G) → Sem(Ξ) establishes a functor from Int(G) into the
co-slice category F/Sem(Ξ).

In the case that StG contains only atomic statements, the definition of morphisms
between Ξ-structures ensures (ηG; �,U) |=G StG for any morphism � : F → U in Sem(Ξ);
thus, the assignments (� : F → U) �→ (ηG; �,U) establish a functor from F/Sem(Ξ) into
Int(G). Due to the universal property of (ηG,F), we obtain (ηG; �)∗ = �. Together with
the equation ηG; ι∗ = ι, this ensures that the two functors establish an isomorphism between
Int(G) and F/Sem(Ξ) (compare Proposition 4.10 in [2]). This justifies that we can call, in
this atomic case, the pair (G, ηG) a sketch representation of F .

Note that the Ξ-structure (G, Φ∅) with Φ∅ a Φ-indexed family of empty sets is trivially
freely generated in Sem(Ξ) by G = (G, ∅).

Second, We Consider Structures Freely Generated Relative to a Subcategory D:

Let D be an arbitrary full subcategory of Sem(Ξ). A Ξ-structure F = (F, ΦF) is freely
generated in D by an Stm-sketch G = (G, StG) if, and only if, F is an object in D and there
is a valid interpretation (ηG,F) of G in F that is universal relative to D. That is, for all
Ξ-structures U = (U, ΦU) in D and all valid interpretations (ι,U) of G in U there exists a
unique morphism ι∗ : F → U in D such that ηG; ι∗ = ι in Base, i.e., such that ι∗ establishes
an interpretation morphism ι∗ : (ηG,F)→ (ι,U) in Int(G) � Int(G).

Int(G) ↓ D G
(ηG,F)|=GStG ��

(ι,U)|=GStG
��

F

ι∗

		

F = (F, ΦF)

ι∗
		

D

U U = (U, ΦU)

98

Mathematics 2022, 10, 1085

A Ξ-structure, freely generated in D by an Stm-sketch G = (G, StG) is, obviously,
uniquely determined “up to isomorphism in D” if it exists. In this case, the universal
property of (ηG,F) entails that (ηG,F) is initial in the subcategory Int(G) ↓ D := Π−1

G (D)
of all valid interpretations of G in Ξ-structures in D. Analogous to the case D = Sem(Ξ),
we obtain, moreover, an isomorphism between Int(G) ↓ D and the co-slice category F/D
if StG contains only atomic statements.

Third, We Consider Subcategories Described by Logical Means

One logical means to describe subcategories of Sem(Ξ) are Stm-sketches (0, St) with
St only containing closed formulas, i.e., statements of the form (0, Ex, id0). As discussed
in Remark 21, those sketches can be seen as presentations in the traditional sense of the
Theory of Institutions specifying subcategories Sem(Ξ, (0, St)) of Sem(Ξ).

As another logical means to describe subcategories of Sem(Ξ), we will introduce
sketch implications in Section 5.2.3 (see Remark 27).

5.2.2. Elementary Diagrams

To establish sketch-based mechanisms to encode structures “syntactically”, we have
to assume an Institution of Statements IS = (Cxt, Stm, Int, |=) with Carr � Cxt and
At(K) ⊆ Stm(K) for all contexts K in Cxt, i.e., Stm(K) contains all atomic statements in K.

There are two canonical ways to transform a Ξ-structure U = (U, ΦU) into an
Stm-sketch. The atomic variant SUΦ = (U, StUΦ) encodes only the semantics of feature
symbols and uses therefore only atomic statements:

StUΦ := {(αF, F(idαF), γ) | F ∈ Φ, γ ∈ [[F]]U} ⊆ At(U). (12)

The full variant SU = (U, StU) is available if XE(Ξ, X) = FE(Ξ, X) for all X ∈ VarObj
and encodes the semantics of all feature expressions:

StU := {(X, Ex, γ) | X ∈ VarObj, Ex ∈ FE(Ξ, X), γ ∈ [[Ex]]UX} ⊆ Stm(U). (13)

We obviously have StUΦ ⊂ StU . For any statement (X, Ex, γ) in U we obtain, according
to (13) and the definition of satisfaction relations in Definition 14,

(X, Ex, γ) ∈ StU iff γ; idU = γ ∈ [[Ex]]UX iff (idU ,U) |=U (X, Ex, γ). (14)

thus (idU ,U) is a valid interpretation of SUΦ as well as of SU .
In traditional First-Order Logic, we meet the full variant in the form of elementary

diagrams [39]. The difference to our encoding is that the carrier of a first-order structure is
not considered as a context. Instead, each element of the carrier is added as a constant to
the signature. The encoding of structures as sketches avoids this kind of circularity. The
“signature extension trick” works only for first-order signatures with constants symbols
and, more critically, it requires that the carriers of first-order structures are sets! It looks
like the sketch encoding mechanism is much more flexible and general.

The elementary diagrams in [2] give an abstract account of the signature extension
approach but are based on an atomic variant of encoding.

There are no structures at all in [15] only atomic sketches! In [13], we followed Makkai
and have not considered structures either. Instead, we worked, directly, with the atomic
sketch encodings SUΦ of structures.

To validate, in retrospective, the approaches in [13,15], a noticeable portion of the
remaining part of the paper, will be spent to answer the following question:

Question 4: Is there any justification to ignore completely
the concept of semantic structure (model)?

By construction, any Ξ-structure U = (U, ΦU) in Sem(Ξ) is freely generated in Sem(Ξ) by
the Stm-sketch SUΦ = (U, StUΦ) with the universal interpretation (idU ,U). StUΦ contains only

99

Mathematics 2022, 10, 1085

atomic statements thus (SUΦ, idU) becomes a sketch representation of U in the sense of the
last subsection. In particular, there is an isomorphism between Int(SUΦ) and U/Sem(Ξ).

The crucial observation is, however, that the assignments U �→ SUΦ define an embed-
ding Enc : Str(Ξ)→ Sk(Stm)a of Str(Ξ) into the category Sk(Stm)a of all Stm-sketches and
all Stm-sketch arrows defined in the next subsection in Definition 20. This embedding
establishes, moreover, an isomorphism between Str(Ξ) and the subcategory atSk(Stm)a

s of
Sk(Stm)a given by all atomic Stm-sketches and all strict Stm-sketch arrows between them.
An Stm-sketch K = (K, StK) is atomic if StK ⊆ At(K) (see Remark 14).

The concepts (atomic) Stm-sketch and (strict) Stm-sketch arrow concern only the
“structure” of sketches and are completely semantics-independent. That is, the transi-
tion along the encoding functor Enc from the category Str(Ξ) to the isomorphic category
atSk(Stm)a

s implements an abstraction from the concept semantic structure (model) to
the concept atomic sketch. In case Sem(Ξ) = Str(Ξ), this abstraction is exhaustive. In
case Sem(Ξ)Obj � Str(Ξ)Obj, however, we need an additional semantics-independent,
purely structural characterization identifying exactly all those atomic Stm-sketches SUΦ in
atSk(Stm)a

s with U in Sem(Ξ), to make the abstraction complete (see Remark 29).
A sketch is constituted by a context and a set of statements. The informal term

“structure of a sketch” takes into account the context; for each statement, the syntactic
structure of the corresponding expression and its “location”, i.e., its binding morphism, the
set of statements as such and the “distribution” of the statements over the context.

5.2.3. Sketch Arrows and Sketch Implications

We can not only transform Ξ-structures U into the Stm-sketches SUΦ and SU . We can
even encode the validity of certain classes of “closed formulas” in U by means of semantics-
independent, pure structural closedness properties of SUΦ or SU , respectively. To see this,
we need some preparations.

First, we have to take a step back and consider a very simple, semantics-independent
relationship between sketches. To be prepared for Section 6, we define this relationship on
the same level of abstraction as Definition 16 (Sketch).

Definition 20 (Sketch Arrow). Let us be given a category Ct and a functor St : Ct→ Set. An
arrow ϕ : K → G between two St-sketches K = (K, StK), G = (G, StG) is given by a context
morphism ϕ : K → G. ϕ : K→ G is called strict if StG ⊇ St(ϕ)(StK).

Sk(St)a denotes the category of all St-sketches and all St-sketch arrows between them. Its
subcategory of all St-sketches and all strict St-sketch arrows is denoted by Sk(St)a

s .

If St is clear from the context, we will also use the shorthand notations Ska and Ska
s

instead of Sk(St)a and Sk(St)a
s , respectively. If K = G and ϕ = idK, we will also just

write K → G instead of ϕ : K → G. We consider the case Ct = Cxt, St = Stm with
IS = (Cxt, Stm, Int, |=) an Institution of Statements.

Remark 22 (Sketch Morphisms vs. Sketch Arrows). An IS-morphism ϕ : K ��� G is a Stm-
sketch arrow ϕ : K→ G satisfying the semantical morphism condition StG �G Stm(ϕ)(StK).
Not every Stm-sketch arrow ϕ : K → G provides an IS-morphism ϕ : K ��� G, but each
IS-morphism ϕ : K ��� G has an underlying Stm-sketch arrow ϕ : K→ G.

Any strict Stm-sketch arrow ϕ : K → G satisfies, trivially, the morphism condition and
provides, in such a way, a strict IS-morphism ϕ : K ��� G due to Definition 19.

There is, however, another semantical condition that is kind of dual to the morphism
condition. We call this condition the implication condition and, as a “terminological sleight
of hand”, we introduce the concept of a “sketch implication”, simply indicating that a
sketch arrow is intended to be the subject of this dual semantical condition.

100

Mathematics 2022, 10, 1085

Definition 21 (Sketch implication). An IS- implication P
ϕ⇒ C is given by two Stm-sketches

P = (P, StP), C = (C, StC) and a context morphism ϕ : P → C.
An IS-implication P

ϕ⇒ C is called strict if StC ⊇ Stm(ϕ)(StP).
Sk(IS)i denotes the category of all Stm-sketches and all IS-implications between them. Its

subcategory of all Stm-sketches and all strict IS-implications is denoted by Sk(IS)i
s.

If IS is clear from the context, we will also use the shorthand notations Ski and Ski
s

instead of Sk(IS)i and Sk(IS)i
s, respectively. If P = C and ϕ = idP, we will also simply

write P⇒ C instead of P
idP=⇒ C.

What we call the implication condition is nothing but the usual condition that an
implication is valid if each “solution” of the premise gives rise to a “solution” of the
conclusion.

Definition 22 (Validity of Sketch Implications). Let us be given an IS-implication P
ϕ⇒ C

between two Stm-sketches P = (P, StP) and C = (C, StC).
An interpretation (ι,U) of context P in a Ξ-structure U satisfies P

ϕ⇒ C, (ι,U) |= P
ϕ⇒ C

in symbols, if, and only if, (ι,U) |=P StP implies that there exists an interpretation (�,U) of context
C in U with ϕ; � = ι such that (�,U) |=C StC.

P
ϕ⇒ C is valid in a Ξ- structure U , U |= P

ϕ⇒ C in symbols, if, and only if, we have
(ι,U) |= P

ϕ⇒ C for all interpretations (ι,U) of P in U .

P
ϕ ��

(ι,U)|=PStP
��

=

C

∃(�,U)|=CStC
��

U
P

ϕ⇒ C is valid (in IS), |= P
ϕ⇒ C in symbols, if, and only if, U |= P

ϕ⇒ C for all
Ξ-structures U in Sem(Ξ).

Remark 23 (Subcategories of valid Sketch Implications). For any Ξ-structure U and any Stm-

sketch P we have U |= P
idP⇒ P. Moreover, U |= A

ϕ⇒ B and U |= B
ψ⇒ C implies U |= A

ϕ;ψ
=⇒ C.

In such a way, the collection of all IS-implications, valid in a Ξ-structure U , defines a corresponding
subcategory of Ski with the same objects as Ski.

Intersecting all those subcategories for all Ξ-structures U in Sem(Ξ), we obtain the subcategory
Ski(Sem(Ξ)) of Ski given by all IS-implications valid in IS .

Remark 24 (Sketch Implications vs. Sketch Arrows). An IS-implication P
ϕ⇒ C is simply

another notation for a Stm-sketch arrow ϕ : P→ C. The only difference is that we allow P
ϕ⇒ C to

be the subject of semantical implication conditions, like U |= P
ϕ⇒ C, while the corresponding

Stm-sketch arrow ϕ : P → C is considered as a pure structural entity without any semantical
significance.

In contrast to IS-morphisms (compare Remark 22), a strict Stm-sketch arrow ϕ : P→ C does
not give, trivially, rise to an IS-implication P

ϕ⇒ C satisfying semantical implication conditions.
For any Stm-sketch arrow ϕ : P→ C, we can construct a respective strict Stm-sketch arrow

ϕ : P → Cϕ with Cϕ := (C, StC ∪ Stm(ϕ)(StP)). The satisfaction condition ensures that the
corresponding IS-implications P

ϕ⇒ C and P
ϕ⇒ Cϕ are semantically equivalent: U |= P

ϕ⇒ C if,
and only if, U |= P

ϕ⇒ Cϕ for all Ξ-structures U .

Remark 25 (Sketch Implications vs. Sketch Morphisms). The concepts sketch morphism and
sketch implication are skewed but kind of dual. Sketch morphisms talk about “reducts of models”
while sketch implications state the existence of “model extensions”.

101

Mathematics 2022, 10, 1085

In case P = C and ϕ = idP, a Stm-sketch arrow ϕ : P → C provides an IS-morphism
idP : P ��� C if, and only if, StC �P StP while the validity in IS of the corresponding
IS-implication P⇒ C means semantic entailment exactly in the opposite direction StP �P StC!

Remark 26 (Deduction Rules). Attention, the exposition in the following remarks and examples,
relies implicitly on the observation that sketch arrows can be utilized as deduction rules. A
deduction rule, given by a Stm-sketch arrow ϕ : P → C, is sound for a certain Institution of
Statements IS = (Cxt, Stm, Int, |=) if, and only if, the respective IS-implication P

ϕ⇒ C is valid
in IS!

The utilization of sketch arrows as deduction rules is triggered by Definition 23 as well
as Proposition 3 and Corollary 2 at the end of this subsection and will be discussed shortly in
Remark 32.

Remark 27 (Valid Sketch Implications and Axioms). There are IS-implications (or, more pre-
cisely, IS-implication schemata) that are universal in the sense that they are valid in any Institu-
tion of Statements IS = (Cxt, Stm, Int, |=), since they reflect the structure and semantics of feature
expressions. In particular, the introduction and elimination rules for logical connectives can be de-
scribed by those universal sketch implications. In case of conjunction ∧, for example, we do have the
two Stm-sketches L = (X, {(X, Ex1 ∧ Ex2, idX)}) and R = (X, {(X, Ex1, idX), (X, Ex2, idX)}).
In addition, the “elimination rule” L ⇒ R as the “introduction rule” R ⇒ L are universal
sketch implications.

For existential quantification, we do also have a kind of modus ponens at hand described
by the following universal sketch implication:

(X, {(X, Ex1, idX), (X, Ex1 → ∃(ϕ, Y : Ex), idX)})
ϕ

=⇒ (Y, {(Y, Ex2, idY)}). (15)

The validity of other IS-implications may only depend on the chosen base category Base of
an Institution of Statements. As long as Base is a presheaf topos, we do have, for example, IS-
implications at hand expressing reflexivity, symmetry and transitivity of equality, i.e., reflecting
the properties of identifications of entities by means of maps (compare the definition of the ΞCT-
expression [=] in Example 29).

Besides universal IS-implications, we do also have IS-implications that are valid in all
Ξ-structures U , and we have chosen to be in Sem(Ξ). In case Sem(Ξ)Obj � Str(Ξ)Obj, we may
be able to axiomatize Sem(Ξ) in the sense that there is a set SEM of IS-implications such that
Sem(Ξ) = Str(Ξ, SEM) where Str(Ξ, SEM) is the full subcategory of Str(Ξ) given by all those
Ξ-structures U such that U |= P

ϕ⇒ C for all IS-implications P
ϕ⇒ C in SEM.

In the same way, we can utilize any set IMP of IS-implications as a set of axioms describing
the full subcategory Sem(Ξ, IMP) of Sem(Ξ) given by all those Ξ-structures U in Sem(Ξ) such
that U |= P

ϕ⇒ C for all IS-implications P
ϕ⇒ C in IMP.

At the end of Section 5.2.1, we described a mechanism to define subcategories of Sem(Ξ) by
means of axioms in the traditional Hilbert-style, i.e., by Stm-sketches (0, St) with St only containing
closed formulas, i.e., statements of the form (0, Ex, id0). This mechanism can be integrated in the
sketch implication based axiomatization mechanism, in a trivial way, by simply adding to IMP a
corresponding introduction rule (0, ∅) ⇒ (0, St). For certain classes of closed formulas, there
exist more elaborated transformations of Hilbert-style axioms into sketch implication based axioms,
as discussed in Section 5.2.4.

Example 45 (FOL: Sketch implications). Horn clauses are defined and utilized in PROLOG,
in a way that it seems to be appropriate to consider them as sketch implications rather than
universally quantified implications. That is, we consider a Horn clause not as a closed formula
(0, ∀(X : Ex → Ex′), id0) with Ex a finite conjunction of atomic expressions
X � Fi(βi), βi : αFi → X with 1 ≤ i ≤ n and an atomic expression X � Ex′ = F(β),
β : αF → X, but rather as the corresponding IS-implication P ⇒ C with P = (X, StP),
StP = {(αFi, Fi(idαFi), βi) | 1 ≤ i ≤ n} and C = (X, StC), StC = {(αFi, F(idαF), β)}.

102

Mathematics 2022, 10, 1085

Example 46 (ALC: Sketch implications). A so-called TBox in ALC is a finite set of termino-
logical axioms, i.e., of general concept inclusions C � D. For the way the semantics of general
concept inclusions is defined in ALC, they correspond, analogous to Horn clauses, rather to sketch
implications (than to closed formulas):

({p1}, {({p1}, C(p1), id{p1})}) =⇒ ({p1}, {({p1}, D(p1), id{p1})})

Example 47 (Category Theory: Sketch implications). There are, at least, three ways to axioma-
tize that all vertices do have an identity. First, we can require, due to Remark 18:

U |= (0, ∀(X : ∃(in, αCT(id) : id(idαCT(id)
))), id0)

where graph X consists only of a vertex xv and in : X → αCT(id) is the inclusion of X into
αCT(id) (see Examples 14 and 29). As proposed in Remark 27, we can equivalently add the
introduction rule:

(0, ∅) =⇒ (0, {(0, ∀(X : ∃(in, αCT(id) : id(idαCT(id)
))), id0)})

to our axioms. According to a general pattern, discussed in the next Section 5.2.4, we can use,
instead, the equivalent rule:

(X, ∅) =⇒ (X, {(X, ∃(in, αCT(id) : id(idαCT(id)
)), idX)}).

In turn, this second rule can be composed with a simple variant of the modus ponens rule (15), and
we obtain a third equivalent rule:

(X, ∅)
in
=⇒ (αCT(id), {(αCT(id), id(idαCT(id)

)), idαCT(id)
)})

Example 48 (RM: Sketch implication). In DPF, we worked, until now, only with atomic state-
ments and atomic sketch implications called universal constraint. In [18,21], the reader can find
many examples of those sketch implications expressing properties like: any table should have exactly
one primary key, a foreign key has to refer to a primary key, and many, many others. In Remark 28,
we will relate the present DPF-terminology to the concepts introduced in this paper.

In the remaining part of the subsection, we demonstrate how to encode the validity of
sketch implications by a semantics-independent, pure structural closedness property of the
sketch encodings SU = (U, StU) of Ξ-structures U as defined in (13).

For any context P any statement (X, Ex, β) in P and any interpretation (ι,U) of P in
a Ξ-structure U , we have Stm(ι)(X, Ex, β) = (X, Ex, β; ι), due to (2), thus the satisfaction
condition and the equivalences in (14) provide the following equivalence of statements:

(ι,U) |=P (X, Ex, β) iff (idU ,U) |=U (X, Ex, β; ι) iff Stm(ι)(X, Ex, β) ∈ StU (16)

P

ι

		

ι

��
U X � Ex

β
((

β;ι""
U

idU

++

To be prepared for Section 6, we define the closedness property on the same level of
abstraction as Definition 16 (Sketch) and Definition 20 (Sketch Arrow).

Definition 23 (Closedness). Let us be given a category Ct and a functor St : Ct → Set. A
St-sketch K = (K, StK) is closed w.r.t. a St- sketch arrow ϕ : P → C relative to a strict

103

Mathematics 2022, 10, 1085

St- sketch arrow ι : P→ K if, and only if, there exists a strict St-sketch arrow � : C→ K such
that ι = ϕ; �.

P
ϕ ��

ι : St(ι)(StP)⊆StK

��

=

C

∃� : St(�)(StC)⊆StK

��
K

A St-sketch K is closed w.r.t. a St- sketch arrow ϕ : P → C if, and only if, it is closed
w.r.t. ϕ : P→ C relative to each strict St-sketch arrow ι : P→ K.

We consider the case Ct = Cxt, St = Stm with IS = (Cxt, Stm, Int, |=) an Institution
of Statements. From Definition 22, Definition 23 and Equation (16), we obtain immediately:

Proposition 3 (Validity ∼= Closedness). For any Stm-sketch arrow ϕ : P → C, the following
two statements are equivalent for any Ξ-structure U :

1. The corresponding IS-implication P
ϕ⇒ C is valid in U , i.e., U |= P

ϕ⇒ C.
2. The Stm-sketch SU = (U, StU), defined by (13), is closed w.r.t. ϕ : P→ C.

P
ϕ ��

(ι,U)|=PStP
��

=

C

∃(�,U)|=CStC
��

U

P
ϕ ��

ι : Stm(ι)(StP)⊆StU
��

=

C

∃� : Stm(�)(StC)⊆StU
��

U

In case of arrows between atomic sketches, we can obviously replace SU by SUΦ.

Corollary 2 (Validity ∼= Closedness). For any Stm-sketch arrow ϕ : P → C with P and C

atomic, the following two statements are equivalent for any Ξ-structure U :

1. The corresponding IS-implication P
ϕ⇒ C is valid in U , i.e., U |= P

ϕ⇒ C.
2. The atomic Stm-sketch SUΦ = (U, StU), defined by Equation (13), is closed w.r.t. ϕ : P→ C.

Remark 28 (DPF–Answer to Question 3). In DPF, we worked, until now, only with atomic
statements and we have not considered sketch arrows [18,21]. Having now the concept sketch
arrow explicitly at hand, we can gain a better understanding of the present situation in DPF and
are able to answer Question 3 (p. 7).

The “specification morphisms” in DPF are strict sketch morphisms in the sense of
Definition 19. “Specification entailments” in DPF are sketch implications in the sense of Def-

inition 21 but only of the special kind P
idP=⇒ C, i.e., we have, especially, P = C. The valid-

ity of specification entailments is defined analogously to the validity of sketch implications in
Definition 22.

“Universal constraints” in DPF correspond to strict sketch arrows in the sense of
Definition 20, and we defined the semantics of universal constraints in accordance with
Definition 23. The crucial flaw is that we used, unfortunately and inadequately, the concept
specification morphism to define universal constraints and the closedness property. Effectively,
we utilized only the pure structural “strict sketch arrow feature” of DPF specification morphisms for
this purpose. However, because of the semantic denotation of the concept specification morphism,
this was wrong and caused confusion.

We touched upon the construction of strict sketch arrows ϕ : P → Cϕ, as discussed in
Remark 24, but only in the skewed understanding that “each specification entailment gives rise to
a universal constraint”. Besides this, we have been aware and utilized the observation that “each
universal constraint gives rise to a transformation rule” (compare Remarks 26 and 32).

5.2.4. Sketch Implications, Closed Formulas and Makkai’s Generalized Sketches

A closer look at the definition of validity of sketch implications in Definition 22 and at
the definition of the semantics of feature expressions in Definition 10 makes, straightfor-

104

Mathematics 2022, 10, 1085

wardly, it apparent that the definition of the satisfaction relation in Definition 14 establishes
an equivalence between finite sketch implications and universally quantified conditional
existence statements (see also Remark 18).

Proposition 4 (Sketch Implications ∼= Closed Formulas). For any Ξ-structure U and any
closed expression 0 � ∀(X : Ex → ∃(ϕ, Y : Ex′)), the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(X, Ex, idX)})
ϕ

=⇒ (Y, {(Y, Ex′, idY)})

In the case that Ex and Ex′ are conjunctions, we can be even more specific.

Corollary 3 (Sketch Implications ∼= Closed Formulas). For any Ξ-structure U and any
closed expression 0 � ∀(X : Ex → ∃(ϕ, Y : Ex′)) with Ex = Ex1 ∧ . . . ∧ Exn 1 ≤ n and
Ex′ = Ex′1 ∧ . . . ∧ Ex′m 1 ≤ m, the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(X, Ex1, idX), . . . , (X, Exn, idX)})
ϕ

=⇒ (Y, {(Y, Ex′1, idY), . . . , (X, Ex′m, idX)})

Finally, we can specialize the equivalence to conjunctions of atomic statements.

Corollary 4 (Sketch Implications ∼= Closed Formulas: Atomic-case). For any Ξ-structure U
and any closed expression 0 � ∀(X : Ex → ∃(ϕ, Y : Ex′)) with Ex a finite conjunction of atomic
expressions X � Fi(βi), βi : αFi → X, 1 ≤ i ≤ n and Ex′ a finite conjunction of atomic expressions
Y � F′i (β′i), β′i : αF′i → Y, 1 ≤ i ≤ m, the following two statements are equivalent:

1. U |= (0, ∀(X : Ex → ∃(ϕ, Y : Ex′)), id0)

2. U |= (X, {(αFi, Fi(idαFi), βi) | 1 ≤ i ≤ n}) ϕ
=⇒ (Y, {(αF′i , F′i (idαF′i

), β′i) | 1 ≤ i ≤ m})

Now we are sufficiently prepared to give a reasonable answer to Question 4 (p. 39).

Remark 29 (Answer to Question 4). We discussed in Section 5.2.2 that the assignments U �→ SUΦ
establish an isomorphism between Str(Ξ) and the subcategory atSk(Stm)a

s of Sk(Stm)a given by all
atomic Stm-sketches and all strict Stm-sketch arrows between them.

A sufficient condition to complete the abstraction from structures to atomic sketches is the
existence of a set SEM of atomic (!) IS-implications such that Sem(Ξ) = Str(Ξ, SEM) (see
Remark 27). The “purely structural characterization of exactly all those atomic Stm-sketches SUΦ
in atSk(Stm)a

s with U in Sem(Ξ)”, we have been asking for in Section 5.2.2, is then provided by
Corollary 2 and is nothing but the closedness of an atomic Stm-sketch w.r.t. all the Stm-sketch arrows
underlying the atomic IS-implications in SEM.

If we are only interested in those subcategories Sem(Ξ, IMP) = Str(Ξ, SEM ∪ IMP) of
Sem(Ξ) which can be axiomatized by a set IMP of atomic (!) IS-implications, we can indeed
completely forget about structures and can be content with the “universe of atomic sketches”.

This is exactly Makkai’s approach in [15]. He does not consider Ξ-structures at all. He relies,
instead, on categories atSk(Stm)a

s of atomic Stm-sketches and strict Stm-sketch arrows between
them. He uses the term sketch entailment for those strict sketch arrows which are utilized
for specification purposes. Note that the restriction to strict sketch arrows means that he works
exclusively with sketch entailments of the form ϕ : P→ Cϕ (see Remark 24).

In the terminology of Institutions of Statements, Makkai’s approach can be characterized by the
choices Base = Var = Cxt and Stm(K) = At(K) for all objects K in Cxt. In particular, he focuses
on presheaf topoi, i.e., functor categories Base = [C→ Set], as base categories.

The structure of limit and colimit statements (see Remark 10) is strongly related to the
structure of those closed formulas that can be equivalently described by atomic sketch implications
(see Corollary 4). We guess that this is one of the underlying reasons that Makkai contents himself
with atomic sketches and sketch arrows between them?

105

Mathematics 2022, 10, 1085

We should mention, however, that Makkai uses an additional mechanism to be able to reside in
the “universe of atomic sketches”. This mechanism (also known in Category Theory as the collage
or the cograph of a distributor/profunctor) transforms atomic multi sketches for a presheaf topos
Base = [C→ Set] and a certain footprint Ξ = (Φ, α) on Base into plain contexts, i.e., into objects
in another presheaf topos Base’=Cxt’=[Φ�αC→ Set] with Φ�αC a category constructed out of C and
Ξ. We explain and exemplify this construction in Remark 41 in Section 6.

In cases where atomic sketch implications (and thus the corresponding universally quantified
conditional existence statements in Corollary 3) are not expressive enough to axiomatize the
structures U , we are interested in, and where we need more expressive first-order statements, to do
the job, we can utilize the general first-order sketch constraints, introduced in Section 6, for a pure
structural characterization of the respective atomic sketch encodings SUΦ (see Corollary 7).

5.2.5. A Semantic Deduction Theorem

We consider semantic entailment between sketch implications.

Definition 24 (Entailment of Sketch Implications). A set IMP of IS-implications entails

an IS- implication P
ϕ⇒ C semantically, IMP � P

ϕ⇒ C in symbols, if, and only if, for all
Ξ-structures U in Sem(Ξ), it holds that U |= IMP, i.e., U |= K

ϕ⇒ G for all K
ϕ⇒ G in IMP,

implies U |= P
ϕ⇒ C.

Any Stm-sketch arrow ϕ : P→ C can be factorized, i.e., can be obtained by composing
the Stm-sketch arrows ϕ : P→ Cϕ and idC : Cϕ → C, where Cϕ := (C, Stm(ϕ)(StP)).

Due to Definition 22, for any interpretation (ι,U) of context P in a Ξ-structure U
the statement (ι,U) |= P

ϕ⇒ Cϕ means nothing but simply the existence of a morphism

� : C → U in Base such that ϕ; � = ι. That is, we have, especially, IMP � P
ϕ⇒ Cϕ if, and

only if, ∅ � P
ϕ⇒ Cϕ if, and only if, |= P

ϕ⇒ Cϕ. Moreover, this allows for reformulating the
validity of sketch implications.

Lemma 1 (Factorization of Sketch Implications). For any set IMP of IS-implications and any
IS-implication P

ϕ⇒ C, the following two statements are equivalent:

1. IMP � P
ϕ⇒ C

2. ∅ � P
ϕ⇒ Cϕ and IMP � Cϕ ⇒ C

Lemma 1 means, in practice, that we can restrict ourselves to IS- implications of the
form K⇒ G to specify (axiomatize) subcategories Sem(Ξ, IMP) of Sem(Ξ). By coincidence,
we even have a semantic deduction theorem available for those special kinds of sketch
implications.

Theorem 2 (Semantic Deduction Theorm). For any set IMP of IS-implications of the form
K⇒ G and any IS-implication P⇒ C, the following two statements are equivalent:

1. IMP � P⇒ C

2. For all Ξ-structures U in Sem(Ξ) and all interpretations (ι,U) of context P = C in U :
U |= IMP and (ι,U) |=P StP implies (ι,U) |=P StC.

Theorem 2 guarantees that it is a reasonable idea to describe the deduction of sketch
implications, which are semantically entailed by a given set IMP of sketch implications, by
means of deduction calculi generating new sketches (P, StC) from a given sketch (P, StP)
based on a utilization of the sketch implications in IMP as deduction rules. To deduce all
(!) semantically entailed sketch implications, it may be necessary to also include deduction
rules related to a set SEM of sketch implications representing the choice of Base, Ξ and
Sem(Ξ), respectively (compare Remarks 27 and 29). This is exactly the approach in [6,7].

106

Mathematics 2022, 10, 1085

In [7], we also presented a deduction calculus which constructs directly sketch implica-
tions from a set of given sketch implications. Besides the composition of sketch implications,
as mentioned in Remark 23, we could choose parallel composition and instantiation as the
other basic constructions for such a deduction calculus:

• Parallel composition: IMP � (P, St1)⇒ (P, St′1) and IMP � (P, St2)⇒ (P, St′2) implies
IMP � (P, St1 ∪ St2)⇒ (P, St′1 ∪ St′2)

• Instantiation: For any context morphism μ : P → R: IMP � (P, St)⇒ (P, St′) implies
IMP � (R, Stm(μ)(St))⇒ (R, Stm(μ)(St′)) .

Of course, we could also use, instead, more specialized and sophisticated constructions
analogously to resolution in PROLOG or parallel resolution in [7], for example.

Remark 30 (Resolution in PROLOG). In Example 45, we argued that Horn clauses in PROLOG
should be rather considered as sketch implications than universally quantified implications.

Concerning resolution, there is also a discrepancy between the theoretical justification and the
actual effect of the resolution procedure in PROLOG. Resolution is explained as a special case of
the general principle of “proof by refutation” [40]. Actually, PROLOG computes, however, (in a
constructive way!) a Horn clause that is semantically entailed by the Horn clauses and the facts in
the given PROLOG program (compare the Semantic Deduction Theorem 2).

5.3. Sketches of Equations

For an Institutions of Equations IE = (CxtEQ, Eq, Int, |=) an Eq-sketch E = (X, E)
is given by a context X in CxtEQ, i.e., an S-set X, and a set E of Σ-equations in X. A
valid interpretation of E = (X, E) is an interpretation (ι,A) of context X in a Σ-algebra
A = (A, ΩA) such that (ι,A) |=X E, i.e., (ι,A) |=X (X, t1 = t2) for all Σ-equations
(X, t1 = t2) in E according to (9).

Based on these definitions, we can define IE -morphisms, Eq-sketch arrows and IE -
implications, respectively, exactly in the same way as we have done it for Institutions of
Statements IS = (Cxt, Stm, Int, |=) in Sections 5.1 and 5.2. Moreover, we have, obviously,
for Institutions of Equations also corresponding variants of Definition 22 (Validity of Sketch
Implications), Definition 24 (Entailment of Sketch Implications), Lemma 1 (Factorization of
Sketch Implications) and Theorem 2 (Semantic Deduction Theorem) available.

Abstract and Universal Algebra have been developed independent of First-Order
Logic and conditional Σ-equations are usually not introduced as “universally quantified
implications”. They are rather described as IE -implications (Y, Prem) ⇒ (Y, Conc), in
the sense of Definition 21 where Prem represents the set of equations in the premise of a
conditional Σ-equation and Conc the single equation in the conclusion. In particular, the
validity of conditional Σ-equations in Σ-algebras A is defined in perfect accordance with
Definition 22 (Validity of Sketch Implications) (compare [6,7,41]). Therefore, we will also
use the term conditional Σ-equation for IE -implications (Y, Prem) ⇒ (Y, Conc) with Y,
Prem finite and Conc a singleton.

Finally, we reached the point where we can give an answer to Question 2 (p. 3): Yes,
Theorem 2 is the general Semantic Deduction Theorem, we have been looking for and the
equivalence, mentioned in the question, corresponds to the specialization of the general
Semantic Deduction Theorem for conditional Σ-equations.

5.3.1. Freely Generated Algebras

The footprints in Institutions of Equations are algebraic signatures Σ = (Ω, in, out)
and we have Str(Σ) = Sem(Σ) := Alg(Σ). Conditional Σ-equations are the traditional
means to specify subcategories of Alg(Σ). Given a set CE of Conditional Σ-equations, we
denote by Alg(Σ, CE) the subcategory of Alg(Σ) given by all those Σ-algebras A such that
A |= CE, i.e., A |= P ⇒ C (as defined in Definition 22) for all conditional Σ-equations
P⇒ C in CE (compare Remark 27).

In case P = (Y, ∅), we may call P ⇒ C a conditional Σ-equation with an empty
premise. Note that there is a simply but crucial conceptual difference between a Σ-equation

107

Mathematics 2022, 10, 1085

(Y, t1 = t2) and the corresponding conditional Σ-equation (Y, ∅) ⇒ (Y, {(Y, t1 = t2)})
with an empty premise. (Y, t1 = t2) is just a simple statement in context Y while (Y, ∅)⇒
(Y, {(Y, t1 = t2)}) is a tool to make statements about Σ-algebras. Being not aware of this
difference is often a source of confusion!

First, We Consider Σ-Algebras Freely Generated in Alg(Σ)

A Σ-algebra F = (F, ΩF) is freely generated by an Eq-sketch G = (X, R) if, and only
if, there is a valid interpretation (ηG,F) of G in F that is universal relative to Alg(Σ). That
is, for all Σ-algebras A = (A, ΩA) and all valid interpretations (ι,A) of G in A there exists
a unique morphism ι◦ : F → A such that ηG; ι◦ = ι in BaseEQ, i.e., such that ι◦ establishes
an interpretation morphism ι◦ : (ηG,F)→ (ι,A) in Int(G) � Int(X) (see Section 4.1).

Int(G) X
(ηG,F)|=X R ��

(ι,A)|=X R
��

F

ι◦

		

F = (F, ΩF)

ι◦
		

Alg(Σ)

A A = (A, ΩA)

The universal property of (ηG,F) entails that (ηG,F) is initial in Int(G), thus the
projection functor ΠG : Int(G)→ Alg(Σ) establishes a functor from Int(G) into the co-slice
category F/Alg(Σ).

In contrast to Institutions of Statements, we have for arbitrary (!)
Eq-sketches G = (X, R) (and not only for atomic Eq-sketches) that the definition of ho-
momorphisms between Σ-algebras ensures (ηG; �,A) |=X R for any homomorphism
� : F → A in Alg(Σ) thus the assignments (� : F → A) �→ (ηG; �,A) establish a func-
tor from F/Alg(Σ) into Int(G). Due to the universal property of (ηG,F), we obtain
(ηG; �)◦ = �. Together with the equation ηG; ι◦ = ι, this ensures that the two functors
establish an isomorphism between Int(G) and F/Alg(Σ) (compare Proposition 4.10 in [2]).
This justifies that we can call the pair (G, ηG) = ((X, R), ηG) a sketch representation of F .

For arbitrary Eq-sketches G = (X, R), a Σ-algebra F , freely generated by G, exists and
is uniquely determined “up to isomorphism”. In the introductory Subsection 1.1.1, we
used the notation F (Σ, ∅, X, R) to denote those freely generated Σ-algebras.

The Σ-algebra, freely generated by (X, ∅) is nothing but the Σ-term algebra TΣ(X) =
F (Σ, ∅, X, ∅) on X and the unique morphism ι◦ : TΣ(X) → A is simply the evaluation
of terms (see Equation (8)). In general, F (Σ, ∅, X, R) can be constructed as a quotient of
TΣ(X).

Second, We Consider Σ-Algebras Freely Generated Relative to a Subcategory Alg(Σ, CE)

Let CE be a set of conditional Σ-equations. A Σ-algebra F = (F, ΩF) is freely gen-
erated in Alg(Σ, CE) by an Eq-sketch G = (X, R) if, and only if, F |= CE, and there is a
valid interpretation (ηG,F) of G in F that is universal relative to Alg(Σ, CE). That is, for
all Σ-algebras A = (A, ΩA) in Alg(Σ, CE) and all valid interpretations (ι,A) of G in A
there exists a unique morphism ι◦ : F → A such that ηG; ι◦ = ι in BaseEQ, i.e., such that ι◦

establishes an interpretation morphism ι◦ : (ηG,F)→ (ι,A) in Int(G) � Int(X).

Int(G) ↓ Alg(Σ, CE) X
(ηG,F)|=X R ��

(ι,A)|=X R
��

F

ι◦

		

F = (F, ΩF)

ι◦
		

Alg(Σ, CE)

A A = (A, ΩA)

In this case, the universal property of (ηG,F) entails that (ηG,F) is initial in the
subcategory Int(G) ↓ Alg(Σ, CE) = Π−1

G (Alg(Σ, CE)) of Int(G) given by all valid inter-
pretations of G in Σ-algebras in Alg(Σ, CE). Moreover, we obtain an isomorphism between
Int(G) ↓ Alg(Σ, CE) and the co-slice category F/Alg(Σ, CE).

For arbitrary sets CE of conditional Σ-equations and arbitrary Eq-sketches G = (X, R),
a Σ-algebra F , freely generated by G in Alg(Σ, CE), exists and is uniquely determined “up

108

Mathematics 2022, 10, 1085

to isomorphism”. In the introductory Section 1.1.1, we used the notation F (Σ, CE, X, R) to
denote those freely generated Σ-algebras. F (Σ, CE, X, R) can be constructed as a quotient
of TΣ(X).

In case of groups, CE is a set of conditional Σ-equations with an empty premise,
representing the group axioms, and F (Σ, CE, X, R) is called the group freely generated by
the set of generators X and the set R of defining relations.

5.3.2. Elementary Diagrams for Algebras

For Institutions of Equations, we have chosen CxtEQ = CarrEQ = BaseEQ = SetS. An
atomic Σ-equation in a context K is a Σ-equation of the form:

(K, ω〈k1, . . . , kn〉 = k) with ω ∈ Ω, ki ∈ Ksi , 1 ≤ i ≤ n and k ∈ Kout(ω) (17)

where [x1: s1, x2: s2, . . . , xn: sn] is the assumed representation of in(ω) as a list of vari-
able declarations (see Section 4.2). Note that the usual encoding of n-ary operations by
(n + 1)-ary predicates establishes a one-to-one correlation between the corresponding atomic
equations and atomic statements, respectively.

By At(K), we denote the subset of Eq(K) of all atomic Σ-equation in a context K. The
assignments K �→ At(K) extend to a functor At : CxtEQ → Set.

In full analogy to Institutions of Statements, there are two canonical ways to transform
a Σ-algebra A = (A, ΩA) into an Eq-sketch. The atomic variant EAΩ = (A, EqAΩ) encodes
only the semantics of the operations in ΩA:

EqAΩ := {(A, ω〈a1, . . . , an〉 = ωA(a1, . . . , an)) | ω ∈ Ω, ai ∈ Asi , 1 ≤ i ≤ n} (18)

The full variant EA = (A, EqA) encodes the semantics of all terms (derived operations):

EqA := {(A, t1 = t2) | t1, t2 ∈ TΣ(A)s, s ∈ S, tA1 (idA) = tA2 (idA)} ⊆ Eq(A). (19)

We have obviously EqAΩ ⊂ EqA and (idA,A) is a valid interpretation of EAΩ as well
as of EA. Any Σ-algebra A = (A, ΩA) is freely generated by the Eq-sketch EAΩ =
(A, EqAΩ) as well as by the Eq-sketch EA = (A, EqA) with the universal interpretation
(idA,A). That is, (EAΩ, idA) as (EA, idA) are sketch representations of A in the sense of the
last subsection.

Conditional Σ-equations are not atomic; thus, we have to rely on the full encodings
of Σ-algebras to have a chance to express the validity of conditional Σ-equations by a
closedness property analogously to Proposition 3.

Fortunately, the assignments A �→ EA define an embedding of Alg(Σ) into the cate-
gory Sk(Eq)a of all Eq-sketches and all Eq-sketch arrows transforming each homomorphism
between Σ-algebras into a strict Eq-sketch arrow.

5.3.3. Generalized Sketch Arrows and Sketch Implications

To be able to formulate a characterization of the validity of conditional Σ-equations by
means of a closedness property, in the sense of Proposition 3, we have to consider more
general sketch arrows based on the substitution of variables by terms. First, we extend the
category CxtEQ by Kleisli morphisms.

Definition 25 (Generalized Context Morphisms). We consider an Institution of Equations
IE = (CxtEQ, Eq, Int, |=) and a signature Σ = (Ω, in, out) . A Σ- context morphism
ϕ : K → G is given by an S-map ϕ : K → TΣ(G). The composition ϕ; ψ : K → H of two
Σ-context morphisms ϕ : K → G, ψ : G → H is given by the S-map ϕ; ψ∗ : K → TΣ(H)
where ψ∗ : TΣ(G) → TΣ(H) is the usual translation of Σ-terms induced by the substitution
ψ : G → TΣ(H). CxtΣ

EQ denotes the category of all contexts and all Σ-context morphisms.

109

Mathematics 2022, 10, 1085

By construction, CxtEQ is a subcategory of CxtΣ
EQ for any signature Σ. Second, the

sentence functor Eq : CxtEQ → Set extends to a functor EqΣ : CxtΣ
EQ → Set with:

EqΣ(ϕ)(K, t1 = t2) := (G, ϕ∗(t1) = ϕ∗(t2)) (20)

for all Σ-context morphisms ϕ : K → G, i.e., for all S-maps ϕ : K → TΣ(G), and all
Σ-equations (K, t1 = t2) in K. Since id∗K = idTΣ(K) and (ϕ; ψ∗)∗ = ϕ∗; ψ∗ for all S-maps
ϕ : K → TΣ(G), ψ : G → TΣ(H), this defines indeed a functor.

Remark 31 (Generalized Sketch Implications). We will use, implicitly, strict EqΣ-sketch arrows
to formulate a characterization of the validity of conditional Σ-equations by means of a closedness
property in the sense of Proposition 3.

Besides this, it is very tempting to consider also “generalized sketch implications”, defined by
EqΣ-sketch arrows, and to study validity, entailment and factorization for those generalized sketch
implications. In particular, it would be interesting to clarify the relation between those generalized
sketch implications and the morphisms in the Lawvere theories for partial algebraic specifications we
studied in [9].

For now, we overcome this temptation and postpone the study of generalized sketch impli-
cations to a following paper. We will concentrate on conditional Σ-equations and corresponding
constructions and results.

Before this, we would like to add a short side note: Σ-terms appear on an “internal level”
as constituents of Σ-equations and on an “external level” as constituents of generalized context
morphisms. Our ongoing studies around graph algebras indicate that we will probably need closely
related, but different, concepts for these distinct levels if we want to generalize the idea of operations
to graphs (and other kinds of presheaves).

To avoid headaches, we formulate explicitly the respective instance of Definition 23
for conditional Σ-equations (compare [7]).

Definition 26 (Closedness for Conditional Equations). An Eq-sketch E = (X, E) is closed
w.r.t. the underlying Eq-sketch arrow (Y, Prem) → (Y, Conc) of a conditional Σ-equation
(Y, Prem)⇒ (Y, Conc) if, and only if, for all Σ-context morphisms ι : Y → X, i.e., all substitu-
tions ι : Y → TΣ(X), it holds that ι∗(Prem) ⊆ E implies ι∗(Conc) ⊆ E.

In addition, here is the respective specialized instance of Proposition 3.

Corollary 5 (Validity ∼= Closedness for Conditional Equations). For any Eq-sketch arrow
(Y, Prem)→ (Y, Conc), the following two statements are equivalent for any Σ-algebra A:

1. The corresponding conditional Σ-equation (Y, Prem)⇒ (Y, Conc) is valid in A, i.e., A |=
(Y, Prem)⇒ (Y, Conc).

2. The Eq-sketch EA = (A, EqA), defined by Equation (19), is closed w.r.t. the Eq-sketch arrow
(Y, Prem)→ (Y, Conc) according to Definition 26.

Remark 32 (Sketch Arrows as Deduction Rules). The most natural thing to do, if a structure is
not closed w.r.t. a certain construction, is to repair this flaw by simply adding the missing parts.
Applying this universal “repairing principle” to the closedness property in Definition 26, means
nothing but to add new Σ-equations to a given set of Σ-equations by deploying Eq-sketch arrows as
deduction rules.

To apply an Eq-sketch arrow (Y, Prem) → (Y, Conc) as a deduction rule, we have, first,
to find a match of the left-hand side (Y, Prem) of the rule in an Eq-sketch E = (X, E), i.e., a
substitution ι : Y → TΣ(X) such that ι∗(Prem) ⊆ E. Second, we apply the rule for this match and
generate the Eq-sketch (X, E ∪ ι∗(Conc)). The resulting commutative square becomes a pushout in
the category of all strict EqΣ-sketch arrows if E ∩ ι∗(Conc \ Prem) = ∅.

110

Mathematics 2022, 10, 1085

(Y, Prem)
idY ��

ι

		
=

(Y, Conc)

τ∗

		
(X, E)

idX �� (X, E ∪ ι∗(Conc))

Remark 33 (Answer to Question 1). Based on the concepts sketch, sketch implication, sketch
arrow and the related general definitions and results, we presented so far, we can give a kind of
reasonable answer to Question 1 (p.3):

Each sketch implication has an underlying sketch arrow and, the other way around, each sketch
arrow gives rise to a sketch implication. Due to Proposition 3 (Validity∼= Closedness), the validity of
sketch implications in semantic structures can be, moreover, equivalently expressed by a closedness
property of sketch encodings of semantic structures w.r.t. sketch arrows.

Each sketch arrow of the form P → C can be utilized as a rule allowing us to deduce new
sketches from given sketches (as exemplified in Remark 32). Proposition 3 and Theorem 2 (Semantic
Deduction Theorem) ensure that those deductions are sound and that they allow us, moreover, to
deduce sketch implications semantically entailed by a given set of sketch implications.

6. Sketch Conditions and Constraints

In the preceding sections, we identified two main motivations to develop concepts and
tools, deploying the expressiveness of first-order logic, to describe and reason about the
structure of sketches. First, there is the need for those tools to specify the syntactic structure
of software models. The second, more general, motivation concerns the structure of sketch
encodings of semantic structures. If we use first-order tools to axiomatize the semantic
structures we are interested in, it would be good to have corresponding first-order tools to
axiomatize and reason about the sketch encodings of those semantic structures.

Software models are usually graph-based structures, thus we should not ignore the
concepts and tools, developed in the area of Graph Transformations, to describe and axiom-
atize the structure of graphs. Therefore, we discuss in this section also four representative
first-order based approaches to describe and axiomatize the structure of (different kinds of)
graphs [22–25] . We will present a universal and fully first-order mechanism to describe
the structure of sketches which unifies and generalizes all these approaches.

6.1. Abstract Sketches

In this section, we consider sketches independent of Institutions of Statements or
Institutions of Equations, respectively. That is, we rely on Definition 16 (Sketch) and
assume a category Ct of contexts and a functor St : Ct→ Set assigning to each K ∈ CtObj a
set St(K) of all statements in context K. An St-sketch K = (K, StK) is given by a context K
in Ct and a set StK ⊆ St(K) of statements in context K. For any statement st ∈ St(K), we
will denote the image St(ϕ)(st) ∈ St(G) also simply by ϕ(st).

Guided by Definition 23 (Closedness) and Proposition 3 (Validity ∼= Closedness), we
focus on the category Ska

s of all strict St-sketch arrows according to Definition 20 (Sketch
Arrow). Generalizing the constructions and results in [19], one can prove that Ska

s has
pushouts and pullbacks as long as Ct does.

Proposition 5 (Pushouts). Let B C
μ�� � �� A be a span of strict St-sketch morphisms. If

there exists a pushout B
�∗ �� D A

μ∗�� of the span B C
μ�� � �� A of morphisms in Ct,

then the diagram, below on the left, is a pushout in Ska
s , where:

D := (D, μ∗(StA) ∪ �∗(StB)) (21)
C

� ��

μ

		
PO

A

μ∗

		
B

�∗ �� D

D
μ∗ ��

�∗

		
PB

A

�

		
B

μ �� C

111

Mathematics 2022, 10, 1085

Proposition 6 (Pullbacks). Let B
μ �� C A

��� be a cospan of strict St-sketch morphisms.

If there exists a pullback B D
�∗�� μ∗ �� A of the cospan B

μ �� C A
��� of morphisms

in Ct, then the diagram, above on the right, is a pullback in Ska
s where:

D := (D, {st ∈ St(D) | μ∗(st) ∈ StA, �∗(st) ∈ StB}) (22)

Remark 34 (Adhesiveness). The concept of Adhesive Category has been introduced by Lack
and Sobociński [42] and is based on the so-called Van-Kampen squares (see [14,20,43]). Adhesive
categories are intensively used to present, systematize and generalize concepts, constructions and
results in the area of Graph transformations [14]; thus, it seems to be worth including this remark.

The category Ska
s will be, in general, not adhesive, even if Ct is adhesive, since StD in

Proposition 5 is not constructed by a pushout in Set and in Proposition 6 not by a pullback
in Set either.

To repair this deficiency, we can work with “multi sketches” where statements do have their own
identity. A multi St- sketch K = (K, IK, stK) is given by a context K, a set IK of identifiers and a
map stK : IK → St(K). A strict arrow (ϕ, f) : K→ G between two multi St-sketches K and G

is given by a morphism ϕ : K → G in Ct and a map f : IK → IG such that ϕ(stK(i)) = stG(f (i))
for all i ∈ IK. Pushouts in the category mSka

s of multi St-sketches and strict arrows can always be
constructed by componentwise pushouts of contexts in Ct and of sets of identifiers in Set, respectively.
To ensure that componentwise pullbacks in Ct and Set, respectively, give us a pullback in mSka

s , we
have to assume, however, that the functor St : Ct→ Set preserves pullbacks.

This is the case for the sentence functor Stm : Cxt→ Set in any Institution of Statements as
well as the sentence functor Eq : CxtEQ → Set in any Institution of Equations.

If St preserves pullbacks, the monomorphisms in mSka
s are exactly the componentwise monomor-

phisms and mSka
s becomes adhesive if Ct is adhesive. Note that any topos is adhesive [44], thus

especially the categories CxtEQ = SetS in Institutions of Equations are adhesive.

Example 49 (Category Theory: Sketches (modified)). For didactic reasons, we need for this
section an example of an atomic sketch. We modify therefore the Category Theory example: We

add to ΞCT in Example 14 the feature symbols mon with arity xv1
xe �� xv2 and fnl with arity

xv. Correspondingly, we vary the sample StmCT-sketch G = (G, StG) in Example 39 by dropping
the statement (xv, f nl, (xv �→ 3)) and replacing the statements (xv1

xe→ xv2, mon, (xe �→ b)),
(xv1

xe→ xv2, mon, (xe �→ g)) by corresponding atomic statements mon(b) and mon(g), respec-
tively.

2

b
��

mon

2×cmp

4
d

��
cmp

1

a
��

e
��

f
�� 3

c
��

g mon �� 5

Example 50 (GraTra: Sketches). Traditionally, there is no explicit use of “statements” in the area
of Graph Transformations; thus sketches, in our sense, are just plain contexts where different kinds
of graphs are chosen as contexts in the different approaches.

In [23], Cxt is a category of directed, labeled multi graphs and Ref. [24] restricts Cxt to a
category of finite directed, labeled multi graphs. In contrast, Ref. [22] works with directed, labeled
simple graphs in the sense that parallel edges with the same label are not allowed. Ref. [25] uses as
Cxt a category GraphTG of directed, labeled multi graphs typed over a graph TG.

To a certain extent, we can, however, interpret the transition from graphs to labeled/typed
graphs as the utilization of rudimentary forms of “statements”, in our sense, where the choice
of label alphabets or type graphs TG, respectively, corresponds to the choice of footprints. The
encoding of binary relations by means of labeled edges in [22] makes this analogy apparent. In
view of Institutions of Statements, we can reconstruct the concept of graph in [22] in the following
way: Cxt is the subcategory of Set given by all subsets of a “countable universe of nodes Node”

112

Mathematics 2022, 10, 1085

and Var � Cxt has a two-element set {x1, x2} ⊂ Node as its only object. The footprint ΞR is
given by a “countable universe Rel” of predicate symbols with α(P) = {x1, x2} for all P ∈ Rel.
An atomic ΞR-statement P(β) in context K ⊆ Node is, in such a way, given by a P ∈ Rel and
a binding β : {x1, x2} → K (see Remark 14 (Atomic Statements)). Relying on the isomorphism
between the Cartesian product K × K and the set K{x1,x2} of maps, it is easy to check that the
category Graph in [22] is isomorphic to the non-adhesive (!) category of all ΞR-sketches and all strict
sketch arrows.

6.2. First-Order Sketch Conditions and Constraints

Generalizing different variants of graph conditions [14,22–25] as well as universal
conditions and negative universal conditions in DPF [18,21], we define general first-order
sketch conditions, which are redundant in the sense that we introduce, for example, as
well existential as universal quantification and as well a symbol T for “true” as the the
empty conjunction

∧
∅. We define fully fledged first-order conditions and do not restrict

ourselves to the traditional approach in Graph Transformations to define tree-like first-order
conditions only (even if we see the practical relevance of those tree-like conditions). We
define first-order sketch conditions in full analogy to the Definition 8 of first-order feature
expressions. We underline, however, that feature expressions are “finitary syntactic entities”
while sketch conditions have rather the flavor of sets of structural requirements!

Definition 27 (Sketch conditions: Syntax). For a category Ct and a functor St : Ct→ Set, we
define inductively and in parallel a family ST(K) of sets of first-order St- sketch conditions in
context K, c ∈ ST(K) or K � c in symbols, where K varies over all objects in Ct:

1. Statements: St(K) ⊂ ST(K) for any context K.
2. True: K � T for any context K.
3. False: K � F for any context K.
4. Conjunction: K � ∧

C for any set C ⊂ ST(K) of conditions in K.
5. Disjunction: K � ∨

C for any set C ⊂ ST(K) of conditions in K.
6. Implication: K � (c1 → c2) for any conditions K � c1 and K � c2.
7. Negation: K � ¬c for any condition K � c.
8. Quantification: K � ∃(ϕ, M : c) and K � ∀(ϕ, M : c) for any condition M � c and any

morphism ϕ : K → M in Ct that is not an isomorphism.

Remark 35 (Sketch conditions: Syntax). Non-monic morphisms ϕ : K → M are also used
in [22–24] to express identifications.

For sketch conditions, we apply the same notational conventions as described in Remark 6 for
feature expressions.

If 0 is an initial object in Ct, we call 0 � c a closed St- sketch condition.

Remark 36 (GraTra: Conditions). If we drop in Definition 27 the “Implication” rule, we would
obtain tree-like conditions analogously to the conditions in [23–25], where the tree structure is
established by the context morphisms in the “Quantification” rule and the choice of the sets C in the

“Conjunction” and/or “Disjunction” rule, respectively.
To cover also the tree-like conditions in [22], we have, in addition, to replace the “Quantification”

rule by a rule like:

Guarded quantification: K � (c1 → Q(ϕ, M : c2)) for Q ∈ {∃, ∀}, any quantifier free
condition K � c1, any condition M � c2 and any morphism ϕ : K → M in Ct.

Those tree-like conditions can be seen as a generalizing modification of the Q(uantifier)-trees
of the language of diagrams in [28].

In [23,25], only existential quantification ∃(ϕ, M : c) is used and ∀(ϕ, M : c) is encoded by
¬∃(ϕ, M : ¬c). In [24], the symbols “∃” and “∀” are used in a bit unconventional, but consistent,
way: In view of Definition 27, the symbol “∃” in [24] combines “disjunction and existential
quantification” while “∀” combines conjunction and universal quantification. The conditions
in [24] correspond to sketch conditions that can be generated by a single rule like:

113

Mathematics 2022, 10, 1085

∨
{∃(ϕi, Mi : ci) | i ∈ I},

∧
{∀(ϕi, Mi : ci) | i ∈ I} ∈ ST(K)

for any family {ϕi : K → Mi | i ∈ I} of context morphisms and any conditions ci ∈ ST(Mi),
i ∈ I. T is encoded in [24] by the empty conjunction

∧
∅ and F by the empty disjunction∨

∅, respectively.

Generalizing the traditional approaches [14,22–25] to define a satisfaction relation
between graph morphisms and graph conditions, we can define a satisfaction relation
between context morphisms and sketch conditions.

More precisely, we consider interpretations (τ : K → G,G) of contexts K in St-sketches
G = (G, StG) and define valid interpretations of St-sketch conditions in K.

Definition 28 (Sketch conditions: Satisfaction). We define inductively and in parallel a family
|=K of satisfaction relations between interpretations (τ,G) of contexts K in St-sketches
G = (G, StG) and St-sketch conditions c ∈ ST(K) on K:

1. Statement: For all st ∈ St(K) ⊂ ST(K): (τ,G) |=K st iff St(τ)(st) ∈ StG.
2. True: (τ,G) |=K T
3. False: (τ,G)
|=K F
4. Conjunction: (τ,G) |=K

∧
C iff (τ,G) |=K c for every c ∈ C.

5. Disjunction: (τ,G) |=K
∨

C iff (τ,G) |=K c for some c ∈ C.
6. Implication: (τ,G) |=K (c1 → c2) iff (τ,G) |=K c1 implies (τ,G) |=K c2
7. Negation: (τ,G) |=K ¬c iff (τ,G)
|=K c.
8. Existential quantification: (τ,G) |=K ∃(ϕ, M : c) iff there exists a � : Y → G with

ϕ; � = τ and (�,G) |=M c

K
ϕ ��

τ
��

=

M

(�,G)|=Mc
��

G
Universal quantification: (τ,G) |=K ∀(ϕ, M : c) iff for all � : Y → G with ϕ; � = τ we
have (�,G) |=M c

The satisfaction of graph/sketch conditions by a graph/context morphism is a pow-
erful and practical useful tool to control the application of transformation rules. This
is extensively demonstrated and validated in the Graph Transformation literature as
in [14,22–25], for example. In DPF, we used until now only non-nested negative ap-
plication conditions to control the application of non-deleting model transformation
rules [18,21]. The paper paves the way for utilizing arbitrary first-order conditions to
control model transformations in DPF. In this paper, we will, however, not explore this
promising direction of applying first-order sketch conditions. We rather concentrate on two
other aspects of diagrammatic modeling techniques–namely “syntactic structure” of models
and “deducing information from and reason about models” in a diagrammatic manner.

Developing and applying DPF, we realized that typing mechanisms are not powerful
enough to formalize all relevant restrictions concerning the syntactic structure of models.
To overcome this deficiency, we introduced “universal constraints” and “negative universal
constraints” [18,21] analogous to the non-nested graph constraints in [14].

Fortunately, sketch conditions and their satisfaction, as defined in Definition 28, now
give us also more powerful general first-order sketch constraints at hand to describe the
syntactic structure of models. The simple, but crucial, observation is that an assertion
(τ,G) |=K c can be interpreted as well as an assertion concerning the structure of G.

Definition 29 (Sketch constraints). An St- sketch K- constraint (c, τ) on context G is given
by a context K, a sketch condition K � c in context K and a context morphism τ : K → G.

114

Mathematics 2022, 10, 1085

An St-sketch G = (G, StG) satisfies the K-constraint (c, τ), G |=K (c, τ) in symbols, if,
and only if, (τ,G) |=K c.

Remark 37 (Attached Statements). Only at this point and a few days before the paper deadline,
we realized that it may be beneficial to apply the “reinterpretation principle” in Definition 29 also
to structures. That is, for any Ξ-structure U = (U, ΦU), context K, morphism ι : K → U and
statement (X, Ex, γ) in K we can define:

U |=K ((X, Ex, γ), ι) iff (ι,U) |=K (X, Ex, γ) (23)

and may call the pair ((X, Ex, γ), ι) a statement attached to U or a statement about U .
To realize this idea, would, however, require a major revision of the paper.

If the sketch condition c does not contain any statements, as it usually the case in the
area of Graph Transformations (compare Example 50), G |=K (c, τ) is just an assertion
about the structure of the context G. In all other cases, G |=K (c, τ) tells us also something
about the presence or non-presence of statements as well as the relations between the
statements in G.

Due to rule “Statement”, all statements reappear as conditions. The following simple
corollary illustrates that the requirement for strict sketch arrows to preserve statements “on
the nose” encodes a structural constraint on the target.

Corollary 6 (Strict Sketch Arrow vs. Sketch Constraint). A context morphism ϕ : K → G
constitutes a strict St-sketch arrow ϕ : K → G between two St-sketches K = (K, StK) and
G = (G, StG) if, and only if, G |=K (

∧
StK, ϕ).

Remark 38 (General constraints). A K-constraint (c, τ) is, in general, only a local constraint,
in the sense that it constrains the structure of G “around the image” of K w.r.t. τ. Thus, in case
K = G and τ = idG, (c, idG) is an assertion about the structure of G as such.

If Ct has an initial object 0, any closed condition 0 � c gives rise to a sketch constraint (c, !G)
with !G : 0 → G the initial morphism into G. (c, !G) is a general constraint, in the sense that
the statement G |=0 (c, !G) can be seen as a characterization of the overall structure of G. In the
Graph Transformation literature, only general constraints have been considered [23,25].

6.3. Statements and Sketch Constraints

In this subsection, we outline that first-order sketch constraints give us indeed the
means at hand to express the validity of statements in semantic structures, in an equiv-
alent way, by structural properties of sketch encodings of those semantic structures
(see Remark 29). In particular, we are interested to extend Makkai’s approach and to
encode the validity of arbitrary first-order statements in semantic structures by structural
properties of atomic sketch encodings.

Thus, we go back to the setting in Section 5.2.2 and assume an Institution of Statements
IS = (Cxt, Stm, Int, |=) with Carr � Cxt, XE(Ξ) = FE(Ξ) and thus At(K) ⊂ Stm(K) for all
contexts K in Cxt, i.e., Stm(K) contains all atomic statements in K.

We consider the instances of Definition 27 and Definition 28, respectively, for the
category Cxt of contexts and the functor At : Cxt→ Set assigning to each context K the set
At(K) of all atomic statements in K as described in Remark 14.

Definition 27 of the syntax of sketch conditions follows exactly the same pattern as
Definition 8 of the syntax of feature expression; thus, it should be possible to translate, for
any context K, the statements in K into At-sketch conditions on K. This is indeed possible!
However, to be able to translate quantifications, we have to assume that Cxt has pushouts
(compare Appendix A).

Definition 30 (From Statements to Sketch conditions). We assume that Cxt has pushouts.
For an arbitrary but fixed choice of pushouts in Cxt we construct inductively and in parallel a

115

Mathematics 2022, 10, 1085

family of maps trK : Stm(K)→ AT(K), where K varies over all objects in Ct: For arbitry variable
declarations X and arbitrary binding morphism γ : X → K, we define

1. Atomic expr.: trK(X, F(β), γ) := F(β; γ) = (αF, F(idαF), β; γ) ∈ At(K) ⊂ AT(K)
2. Everything: trK(X,�, γ) := T ∈ AT(K)
3. Void: trK(X,⊥, γ) := F ∈ AT(K)
4. Conjunction: trK(X, (Ex1 ∧ Ex2), γ) :=

∧{trK(X, Ex1, γ), trK(X, Ex2, γ)} ∈ AT(K)
5. Disjunction: trK(X, (Ex1 ∨ Ex2), γ) :=

∨{trK(X, Ex1, γ), trK(X, Ex2, γ)} ∈ AT(K)
6. Implication: trK(X, (Ex1 → Ex2), γ) := (trK(X, Ex1, γ)→ trK(X, Ex2, γ)) ∈ AT(K)
7. Negation: trK(X,¬Ex, γ) := ¬ trK(X, Ex, γ) ∈ AT(K)
8. Quantification: trK(X, Q(ϕ, Y : Ex), γ) := Q(ϕ∗, Kϕ

γ : trKϕ
γ
(Ex)) ∈ AT(K)

for Q ∈ {∃, ∀} where K
ϕ∗→ Kϕ

γ
γ∗← Y is the chosen pushout of K

γ← X
ϕ→ Y.

Remark 39 (Translation of Feature Expressions). Every feature expression X � Ex reappears
as the statement (X, Ex, idX), thus we can consider X � trX(X, Ex, idX) as the translation of the
feature expression X � Ex into a At-sketch condition.

Besides syntax, also Definition 10 of the semantics of feature expressions (and thus
Definition 14 of satisfaction of statements) and Definition 28 of satisfaction of sketch
conditions (and thus Definition 29 of satisfaction of sketch constraints) follow exactly the
same pattern. This enables us to prove straightforwardly that the family of translation
maps trK : Stm(K)→ AT(K) establishes an equivalence between first-order statements and
first-order At-sketch conditions. Note that the proposal in Remark 37 would make the
statement in the following proposition even more catchy.

Proposition 7 (Statements ∼= Sketch Constraints). For any Ξ-structure U = (U, ΦU), context
K, morphism ι : K → U and statement (X, Ex, γ) in K we have:

(ι,U) |=K (X, Ex, γ) iff SUΦ |=K (trK(X, Ex, γ), ι),

where SUΦ = (U, StUΦ) is the atomic sketch encoding of structure U as defined by (12).

Instantiating this equivalence for the identity on U gives us exactly what we have
been looking for, namely that the atomic sketch encoding of structures in an Institution of
Statements encodes likewise all properties of structures that can be expressed by first-order
statements and formulas.

Corollary 7 (Statements ∼= Sketch Constraints). For any Ξ-structure U = (U, ΦU) and any
statement (X, Ex, γ) in U we have:

(idU ,U) |=U (X, Ex, γ) iff SUΦ |=K (trK(X, Ex, γ), idU),

where SUΦ = (U, StUΦ) is the atomic sketch encoding of structure U as defined by (12).

The case X = 0, and thus γ =!U , corresponds to closed formulas and, due to
Remark 18 (Validity of Closed Formulas), Corollary 7 ensures that we can detect all closed
formulas that are valid in U , by inspecting the atomic sketch encoding SUΦ.

Proposition 7 and Corollary 7 are very good news for DPF and any other diagrammatic
approach to Software Engineering. They ensure that we can describe both structure and
constraints in the same diagrammatic, modelcentric format. There is, in principle, no need
to combine diagrammatic models with dissimilar descriptions, like OCL code, for example,
even if it comes to first-order properties. We can reason about and deal with a real system
at a higher level of abstraction within one and the same diagrammatic paradigm!

Example 51 (CT: Sketch constraints). Relying on Definition 30 and Remark 39, we can translate
all the sample ΞCT-expressions in Example 29 into corresponding sketch conditions. Concerning the

116

Mathematics 2022, 10, 1085

visual representation, there is no essential difference between a ΞCT-expression and the corresponding
sketch condition: We replace � by � and � by T . We rewrite (_∧ _) to

∧{_ , _} and so on.
The ΞCT-expressions lec in Example 29 is transformed into the sketch condition

lec = xv2
xe2

��
xv1

xe1

xv3

� ∃(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: xv2
xe2

��
cmp

xv1
xe3 ��

xe1

xv3

)

and the ΞCT-expressions gec, representing the property composition is always defined, is trans-
formed into the sketch condition:

gec = 0 � ∀(xv2
xe2

��
xv1

xe1

xv3

: ∃(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: xv2
xe2

��
cmp

xv1
xe3 ��

xe1

xv3

))

For the sample sketch G = (G, StG) in Example 49, we do have G |= (lec, τ1), with τ1 given
by the assignments xe1 �→ a, xe2 �→ b, but G
|= (lec, τ2), with τ2 given by xe1 �→ b, xe2 �→ c,
thus G
|= (gec, !G). General constraints imposing uniqueness of composition, independent of
the existence of composition, can be formulated by the closed condition guc:

0 � ∀(xv2
xe2

��
xv1 xe4

��
xe3 ��

xe1

xv3

: (
∧{ xv2

xe2

��
cmp

xv1
xe3 ��

xe1

xv3

, xv2
xe2

��
cmp

xv1
xe4 ��

xe1

xv3

} → ∃(ϕ, xv2
xe2

��

: T

xv1
e ��

xe1

xv3

)))

ϕ simply maps xe3 and xe4 to xe. G does not satisfy the constraint (guc, !G) but would satisfy
it if we delete the edge " f ", for example. The remaining requirements–existence and uniqueness of
identities, identity laws and associativity law–can be expressed analogously.

Besides formalizing the "laws of a category", we can also take advantage of our knowledge
about the properties of the features in ΞCT–or to put it the other way around: We can formulate
requirements that any intended semantics of the feature symbols in ΞCT has to comply with. For
example, we can require that, for a final object, all outgoing morphisms are monic:

ct1 := 0 � ∀(xv : (xvfnl −→ ∀(xv xe−→ xv1 : xv e
mon

�� xv1)))

We can require that monomorphisms are closed under composition:

ct2 := 0 � ∀(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: (
∧{ xv2

xe2

��
cmp mon

xv1
xe3 ��

xe1

mon

xv3

} −→ xv2
xe2

��
xv1

xe3 ��
mon

xe1

xv3

))

Note that we use
∧{· · · } because the single triangle between the curly brackets visualizes, actu-

ally, three atomic ΞCT-statements! We can also express our knowledge concerning the decomposition
of monomorphisms:

ct3 := 0 � ∀(xv2
xe2

��
xv1

xe3 ��

xe1

xv3

: (
∧{ xv2

xe2

��
cmp

xv1
xe3 ��
mon

xe1

xv3

} −→ xv2
xe2

��
xv1

xe3 ��

xe1

mon

xv3

))

G |= (ct2, !G) simply because there is no match in G of the triangular context in ct2 satisfying
the premise of the implication in ct2. In contrast, G
|= (ct3, !G) with the only counterexample
given by the assignments xe1 �→ c, xe2 �→ d, xe3 �→ g.

To be prepared for discussions, later in this section, we consider also the sketch condition mon
defining the concept monomorphism and obtained by transforming the ΞCT-expressions mon in
Example 29:

117

Mathematics 2022, 10, 1085

mon = xv1

xe
		

xv2

� ∀(xv1

xe
		

xv3
xe3 ��

xe2

--
xe1

xv2

:(
∧{ xv1

xe
		

cmp

xv3
xe3 ��

xe1

��

xv2

, xv1

xe
		

cmp

xv3
xe3 ��

xe2

��

xv2

} → ∃(ϕ, xv1

xe
		

xv3
xe3 ��

xe4

��

xv2

: T)))

where ϕ maps xe1 and xe2 to xe4.

6.4. Sketch Arrows, Constraints, Deduction, Meta-Modeling

In this subsection, we present vital observations, insights, concepts and ideas to
establish a basis for the future further development of the “logic dimension” of Institutions
of Statements and, especially of DPF, based on the new concepts and results presented in
this paper.

Constraints in DPF at Present

Following [15] and analogous to [14], we use in DPF until now, instead of sketch
constraints in the sense of Definition 29, only plain sketch arrows ϕ : L→ R and call them
(positive) universal constraints or negative universal constraints, respectively [18,21]. We
define the satisfaction of universal constraints in DPF by means of the closedness property
in Definition 23. That is, a sketch G satisfies the “universal constraint” ϕ : L→ R if, and
only if, for any strict sketch arrow τ : L→ G there is a strict sketch arrow � : R→ G such
that ϕ; � = τ.

By Proposition 7, we can transfer many findings in Sections 5.2.3 and 5.2.4 into the
sketch constraints setting. Corollary 6 and Definition 28 ensure that the satisfaction of a
universal constraint ϕ : L→ R in a sketch G can be equivalently expressed by the assertion
that G satisfies the general constraint (uc, !G) with (compare Corollary 3):

gc := 0 � ∀(L : (
∧

StL → ∃(ϕ, R :
∧

StR))).

Be aware that the identifier ϕ in gc does not refer to the sketch arrow ϕ : L→ R but
to the underlying context morphism ϕ : L → R. Note further that we can replace StR by
(StR \ ϕ(StL)) without losing the equivalence!

Furthermore, we say that a sketch G satisfies the "negative universal constraint"
ϕ : L→ R if, and only if, for any strict sketch arrow τ : L→ G, there does not exist a strict
sketch arrow � : R→ G such that ϕ; � = τ. This requirement is equivalent to the statement
that G satisfies the general constraint (ngc, !G) with:

ngc := 0 � ∀(L : (
∧

StL → ¬∃(ϕ, R :
∧

StR)))

What can we do if a sketch G does not satisfy a general constraint (c, !G) for a simple
condition of the form c = 0 � ∀(L : (

∧
St1 → ∃(ϕ, R :

∧
St2))) where St1 is a set of

statements in L and St2 a set of statements in R, respectively?
We can repair this flaw by applying the sketch arrow ϕ : (L, St1)→ (R, St2 ∪ ϕ(St1))

as a transformation rule for all sketch morphisms τ : (L, St1) → G not satisfying the
conclusion in condition c. In other words, a match of the transformation rule is given by
a context morphism τ : L → G such that G |= (

∧
St1, τ) and G |= (¬∃(ϕ, R :

∧
St2), τ).

Note that the negative application condition G |= (¬∃(ϕ, R :
∧

St2), τ) ensures that we do
not apply the rule twice for the same match τ : (L, St1)→ G. Applying the rule ϕ via the
match τ means nothing but to construct a pushout in the category Ska

s of sketches and strict
sketch arrows (compare Remark 32).

(L, St1)
ϕ ��

τ

		
PO

(R, St2 ∪ ϕ(St1))

τ∗

		
G

ϕ∗ �� H
Depending on the properties of the context morphism ϕ : L → R the pushout con-

struction may have different effects. The context G can be extended and/or factorized and,
if St2
= ∅, we will add new statements to the statements originating from G.

118

Mathematics 2022, 10, 1085

In terms of sketch constraints, we can describe the crucial effect of the rule application
as follows: H satisfies the constraint (

∧
St2, τ∗) in addition to the constraint (

∧
St1, τ; ϕ∗)

inherited from G.

Example 52 (Repairing StmCT-sketches). As discussed in Example 51, there is one violation of
the general constraints (guc, !G) uniqueness of composition by the StmCT-sketch G = (G, StG)
in Example 49 and one violation of (ct3, !G) decomposition of monomorphisms. Repairing these
two violations by pushout constructions, as described above, will result in a StmCT-sketch H like the
one visualized below.

2

b
��

cmp

mon
4

d

��
cmp

1

a
��

{e, f } �� 3

c

��mon

g
mon

�� 5

G also does not satisfy the general constraint (gec, !G) definedness of composition and the
general constraint existence of identities that has not been formalized in Example 51. We do not
want to require that any StmCT-sketch satisfies these two general constraints since we do not intend
to use StmCT-sketches just as encodings of categories but rather as (hopefully finite) representations
of (possibly infinite) categories. This is the original purpose of sketches in category theory. See also
the later discussion in Remark 40.

Deduction

Generating new statements from given statements by means of rules is the essence of
deduction in logic. An interesting observation is that the “repairing procedure”, discussed
in the last paragraph, can be also described as a procedure deducing new sketch constraints
from given sketch constraints.

We consider a sketch G together with a set CG of sketch constraints on G. If CG

contains a general constraint (c, !G) with c = 0 � ∀(L : (
∧

St1 → ∃(ϕ, R :
∧

St2))), we
can deduce a local sketch constraint ((

∧
St1 → ∃(ϕ, R :

∧
St2)), τ) on G for any context

morphism τ : L → G. This step corresponds to the universal elimination rule in classical
first-order logic.

We do have a sound “quasi-propositional” modus ponens rule schemata for sketch
constraints at hand: For all contexts X, all sketch conditions X � c1, X � (c1 → c2) and all
context morphisms μ : X → Y, the sketch constraints (c1, μ) and ((c1 → c2), μ) imply the
sketch constraint (c2, μ).

If there is a constraint (
∧

St1, τ) ∈ CG, we can apply this modus ponens rule and
deduce the sketch constraint (∃(ϕ, R :

∧
St2), τ) on G. Keep in mind that L � ∃(ϕ, R :∧

St2)! The pushout construction generates, finally, the constraint (
∧

St2, τ∗ : R → H) on
H. This looks very much like an analogon to Skolemization in classical first-order logic.
More precisely, we can consider this pushout construction as a pendant to the introduction
of Skolem constants. This is quite in accordance with the characterization of operations in
graph term algebras by pushouts in [3].

As another example, motivating the use of sketch constraints as “first class citizens”,
we discuss atomic ΞCT-statements, as introduced and discussed in the Examples 39 and 49:
We included now the feature symbols mon and fnl in our sample footprint ΞCT to exemplify,
in a more appropriate way, the use of feature symbols in diagrammatic specifications
in general. In Example 51, we discussed, first, that we can specify known or desired
properties of features by means of sketch conditions. Later, we have shown that we can
even express the universal properties, defining the concepts “monomorphism” and “final
object”, respectively, by means of sketch conditions.

Given a StmCT-sketch G = (G, StG), the sketch condition mon, defining the concept
monomorphism, may help us to deduce from the cmp-statements, present in StGthat two
parallel edges in G have to be identified. We need just a rule which generates for each
atomic ΞCT-statement (α(mon), mon(idα(mon)), β : α(mon) → G) in StG a corresponding
sketch constraint (mon, β) on G. This works so easy, since we designed our examples

119

Mathematics 2022, 10, 1085

in such a way that the context of mon is just α(mon). In general, any atomic Ξ-statement
(α(mon), mon(idα(mon)), β) (α(P), P(idα(P)), β : α(P) → G) and any condition K � c may
generate a sketch constraint (c, γ; β) for any context morphism γ : K → α(P). Since β binds
all “free variables” in mon, we just need to adapt the three steps (1) universal elimination,
(2) modus ponens and (3) Skolemization, as discussed above for general constraints, to
deduce identifications of parallel edges in G.

To keep ΞCT as small as possible, we have not included in ΞCT feature symbols for
other limits and colimits like equ, pb, po, prod, for example. Employing sketch constraints
we can even avoid to do this! As discussed in Remark 10, any (co)limit of shape I is
axiomatized by the feature ΞCT-expressions existsI and uniqueI .

Analogous to “anonymous functions” in programming, we can use the sketch con-
dition CI � ∧{trCI (existsI), trCI (uniqueI)} as an anonymous feature representing the
(co)limit concept that corresponds to the shape graph I. With anonymous features, we can
not formulate statements, i.e., entities within a sketch G, but constraints,
like (

∧{trCI (existsI), trCI (uniqueI)}, β : CI → G) on the sketch G.
There should be now sufficient evidence that it will be beneficial to work in future

DPF with sketch constraints as first class citizens and our discussion suggests, espe-
cially, to employ pairs of a sketch G = (G, StG) and a set CG of sketch constraints on
G as an appropriate formalization of software models. We call those pairs ((G, StG), CG)
constrained sketches.

Remark 40 (Constrained sketches in MDE). Our approach to use and develop DPF as a theoreti-
cal foundation of MDE is based on the idea that any diagrammatic specification formalism/technique
is characterized by a certain choice of a category Cxt and a footprint Ξ where the corresponding
diagrams/models can be described as Stm-sketches. Sketch conditions and sketch constraints have
been developed to provide the necessary additional means to describe/constrain the syntactic struc-
ture of diagrams/models. In such a way, we can characterize now a diagrammatic specification
formalism not only by a certain category Cxt and a certain footprint Ξ but also by an additional set
of Stm-sketch conditions.

We should, however, distinguish between two kinds of Stm-sketch conditions: The first kind
of conditions is used to formulate those constraints on Stm-sketches G that can be legally used as
elements in CG. For a constrained Stm-sketch (G, CG), the occurrence of a constraint (c, τ) in CG

will certify that G |= (c, τ). Requirements for the relational data model [18,21] like “every table
must have a primary key” and “a foreign key should only refer to a primary key” will be formalized
by conditions of this kind.

Conditions formalizing requirements like “inheritance is transitive” or “a subclass inherits
all attributes of all its superclasses”, however, should not be included in any CG to avoid dia-
grams/models becoming too polluted with redundant information. Those additional conditions are
part of the formalism as a whole and represent the background knowledge and rules that can be
used to deduce for any constrained sketch information from the information given in StG and CG,
respectively, and to repair violations of the constraints in CG.

Conceptual Hierarchy

Introducing constrained sketches teleports us “back to start” but on a higher concep-
tual level: We do have a category Ska

s of sketches. To any sketch G = (G, StG), we can assign
the set Cstr(G) of all sketch constraints (c, τ : K → G) on context G with c a first-order
sketch condition in SC(K) according to Definition 27. Analogously to the translation of
statements in Institutions of Statements, we can define for any sketch morphism ϕ : G→ H

a map Cstr(ϕ) : Cstr(G) → Cstr(H) by simple post-composition with the underlying
context morphism ϕ : G → H: Cstr(ϕ)(c, τ) := (c, τ; ϕ) for all (c, τ) ∈ Cstr(G). This
gives us trivially a functor Cstr : Ska

s → Set at hand.
This situation is, however, just an instance of the abstract pattern we started with in this

section: The category Ska
s can be taken as an instance of Ct and the functor Cstr : Ska

s → Set
as an instance of St : Ct→ Set, respectively. The constrained sketches are then nothing but

120

Mathematics 2022, 10, 1085

the “abstract sketches” for this instance! We can now consider first-order sketch conditions
and sketch constraints for this new instance and will finally obtain a further instance of the
“abstract pattern”. Potentially, we can even iterate this procedure ad infinitum.

Iterating this procedure is maybe not that relevant for DPF at the moment. We take
it, however, as a good sign that our category independent approach allows us to move
in and furnish the next higher level in the conceptual hierarchy whenever it is necessary
and/or opportune.

Remark 41 (Makkai’s Hierarchy of Sketches). We continue the discussion in Remark 29 and
rise the question: How is our conceptual hierarchy related to the “hierarchy of sketches” in [15]?

Makkai considers only atomic statements and starts with a presheaf topos, i.e., a functor
category Base = Var = Cxt = [C→ Set]. Note that topoi are adhesive [44]! As an example, we
consider the presheaf topos:

Graph ∼= [EidE ��

s
��

t �� V idV.. −→ Set].

Then, he describes an instance of a general construction in Category Theory: For any footprint
Ξ = (Φ, α), α : Φ → [C→ Set]Obj, there is a category Φ�αC such that the category mSka

s of multi
At-sketches (see Remark 34) is isomorphic to the presheaf topos [Φ�αC→ Set].

Φ�αC can be constructed as follows: We take the disjoint union of Φ (as a discrete category)
and C. For any feature symbol P ∈ Φ, any object C in C, and any c ∈ α(P)(C), we add an arrow
(P, c, C) : P → C. Finally, we define the composition for the new pairs of composable arrows:
(P, c, C); f := (P, α(P)(f)(c), C′) for all f : C → C′ in C.

As an example, we take Φ = {mon, fnl} with arities as in Example 49. The category Φ�αGraph
is visualized below. Composition in Φ�αGraph is defined by the equations xe; s = xv1, xe; t = xv2

and these equations encode the arity xv1
xe→ xv2 of mon! The isomorphism transforms any multi

At-sketch K = (K, IK, stK) into a corresponding functor K : Φ�αGraph→ Set.

mon

xe
		

xv1

//
xv2

��

fnl

xv
		

E
s 00
t

11 V

K(E
s 00
t

11 V) represents the graph K. The set K(mon) holds all the identifiers i ∈ IK with

stK(i) = (α(mon), mon(idα(mon)), β) while the maps K(xe), K(xv1), K(xv2) encode all the corre-
sponding bindings β : α(mon) → K. Morphisms in [Φ�αC → Set], i.e., natural transformations,
encode strict At-sketch arrows between multi At-sketches K = (K, IK, stK).

After transforming mSka
s into [Φ�αC→ Set], we can define another footprint Ξ′ = (Φ′, α′),

α′ : Φ′ → [Φ�αC → Set]Obj on this next level of the hierarchy and start again but this time with
atomic Ξ′-statements.

There are no sketch conditions in [15] but any multi At-sketch K = (K, IK, stK) corresponds
to the At-sketch condition K � ∧{stK(i) | i ∈ IK} and any strict At-sketch arrow ϕ : L → R

corresponds to a At-sketch condition of the form 0 � ∀(L : (
∧

StL → ∃(ϕ, R :
∧

StR))). As
we have seen, sketch conditions of this special form, and thus strict At-sketch arrows, allow us to
axiomatize arbitrary limits or colimits, respectively.

In such a way, all the arities α′(P′) in the footprint Ξ′ correspond to very simple At-sketch
conditions that are just conjunctions of At-statements and atomic At′-statements are simply con-
junctions of those conjunctions of At-statements, which are introduced by the arities α′(P′) and
obtained the “label” P’.

As an example, we consider the footprint Ξ = (Φ, α), α : Φ → GraphObj with Φ = {cmp, id}
and arities as in Example 14. For the footprint Ξ′ = (Φ′, α′), α′ : Φ′ → [Φ�αGraph→ Set]Obj, we
assume that, for any P′ ∈ Φ′, the arity α′(P′) corresponds to an At-sketch that represents one of
the commutative (co)cones described in Remark 10. In such a way, an atomic At’-sketch represents
a graph with a set of commutative (co)cones labelled by feature symbols from Φ’. Strict atomic

121

Mathematics 2022, 10, 1085

At’-sketch arrows should allow us then to formulate propositions like: If we have binary products
and equalizers, do we also have pullbacks!?

We close this remark with a revision of the concept of graph in [22]: For the footprint ΞR =
(Rel, α) in Example 50, we can consider α as a map α : Rel→ [1→ Set]Obj with V the only object
in 1 and α(P)(V) = {x1, x2} for all P ∈ Rel. Φ�α1 contains then for each P ∈ Rel:

· · · P
(P,x1) 00

(P,x2)

11 V

an “edge sort” P and [Φ�α1 → Set] is the category of graphs with an Rel-indexed family of
edges. This category is adhesive in contrast to the category of Rel-labelled graphs in [22]!

7. Conclusions

The paper presents an abstract framework allowing us to construct, in a uniform
and universal way, specification formalisms in arbitrary categories enabling us to specify
semantic structures while employing the full expressive power of first-order logic.

The framework is based upon a formalization of “open formulas” as statements in
contexts and offers a freshly new and abstract view of logics and specification formalisms.

Relying on the new framework, we present a general and universal account of “syn-
tactic” encodings and representations of semantic structures generalizing the idea of ele-
mentary diagrams in traditional first-order logic.

Guided by the top-down principle, we consider at this first stage of extension of
our framework just simple categories. To extend a specification formalism to a proper
logic, we also have to develop, however, appropriate deduction calculi. To establish those
deduction calculi, we should have features, like the translation of statements along variable
substitutions, for example, at hand. As exemplified in the paper, we have to assume at least
the existence of pushouts to support those features. We are not logicians, but the extension
of our framework by general deduction calculi will be one of the main topics in our
future work.

Another main topic will be operations. At the present stage, our abstract framework
does not comprise operations since it is not clear for us how to generalize the concept of
operation from set-based structures to semantic structures defined in an arbitrary category.
Already, the step from operations on sets to operations on graphs is not that trivial, and
even the concepts, constructions and results we developed for graph operations in [3] are
not fully satisfactory yet.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: I want to thank the guest editor of this special volume for encouraging me to
write this paper.

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Translation of Feature Expressions

For a footprint Ξ and an object X in Var we denote by FE(Ξ, X) the set of all feature Ξ-
expressions on X. In Example 26, we discussed the replacement of auxiliary feature symbols
by feature expressions. To formalize those replacements, we consider footprint morphisms.
A morphism η : Ξ → Ξ′ between two footprints over the same category Var is given by a
map η assigning to each feature symbol F ∈ Φ a feature Ξ′-expression η(F) ∈ FE(Ξ′, α(F)).
η is called simple if η(F) = F′(idα(F)), with F′ ∈ Φ′ and α′(F′) = α(F), for all F ∈ Φ.

Any footprint morphism η : Ξ → Ξ′ induces an VarObj-indexed family of maps
ηX : FE(Ξ, X) → FE(Ξ′, X). To define these maps for non-simple footprint morphisms,
we have to rely, however, on a mechanism translating feature expressions along variable

122

Mathematics 2022, 10, 1085

translations. Fortunately, we can establish such a mechanism, if Var has pushouts, and we
fix a choice of pushouts in Var.

Definition A1 (Translation maps). We define inductively and in parallel a family of translation
maps ψΞ : FE(Ξ, X)→ FE(Ξ, Z) with ψ ranging over all variable translations ψ : X → Z:

1. Atomic: ψΞ(X � F(β)) := Z � F(β; ψ).
2. Everything: ψΞ(X ��) := Z ��.
3. Void: ψΞ(X �⊥) := Z �⊥.
4. Conjunction: ψΞ(X � (Ex1 ∧ Ex2)) := Z � (ψΞ(Ex1) ∧ ψΞ(Ex2)).
5. Disjunction: ψΞ(X � (Ex1 ∨ Ex2)) := Z � (ψΞ(Ex1) ∨ ψΞ(Ex2)).
6. Implication: ψΞ(X � (Ex1 → Ex2)) := Z � (ψΞ(Ex1)→ ψΞ(Ex2))
7. Negation: ψΞ(X � ¬Ex) := Z � ¬ψΞ(Ex).
8. Quantification: ψΞ(X � Q(ϕ, Y : Ex)) := Z � Q(ϕ∗, Yϕ

ψ : ψ∗Ξ(Ex))

for Q ∈ {∃, ∀} where Z
ϕ∗→ Yϕ

ψ

ψ∗← Y is the chosen pushout of Z
ψ← X

ϕ→ Y:

Note that the pushout construction formalizes and generalizes the “introduction of

fresh variables” in traditional FOL! If we choose the cospan Z
ψ−1;ϕ−→ Y

idY←− Y, whenever ψ is
an isomorphism, we ensure, especially, that (idX)Ξ becomes the identity map on FE(Ξ, X).
Since the composition of chosen pushouts does not result, in general, in a chosen pushout,
the assignments ψ �→ ψΞ constitute only a pseudo functor from Var into Set. This may be
a hint to develop future deduction calculi for Institutions of Statements rather in a fibred
setting (compare [45])?

The translation ψΞCT (mon) of the universal property mon of monomorphisms in Ex-
ample 29 along the unique graph morphism ψ : (xv1

xe−→ xv2) → xv xe
.. gives us, for

example, a definition of monic loops at hand.
For any footprint morphism η : Ξ → Ξ′, we can define inductively and in parallel for

all variable declarations X a substitution map ηX : FE(Ξ, X)→ FE(Ξ′, X) where the only
non-trivial case is the base case :

1. Atomic: ηX(F(β)) := βΞ′(η(F)) for any F ∈ Φ and β : αF → X in Var.

If η is simple, this base case degenerates, according to Definition A1, to a simple
replacement of feature symbols:

1’. Atomic’: ηX(F(β)) := βΞ′(F′(idα(F))) = F′(idα(F); β) = F′(β).

Thus, we do not need to employ translation maps to define substitution maps in case of
simple footprint morphisms!

References

1. Ehrig, H.; Mahr, B. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics; EATCS Monographs on Theoretical
Computer Science; Springer: Berlin, Germany, 1985; Volume 6.

2. Diaconescu, R. Institution-Independent Model Theory; Studies in Universal Logic: Basel, Switzerland, 2008. [CrossRef]
3. Wolter, U.; Diskin, Z.; König, H. Graph Operations and Free Graph Algebras. In Graph Transformation, Specifications, and Nets—In

Memory of Hartmut Ehrig; Springer: Cham, Switzerland, 2018; Volume 10800, pp. 313–331. [CrossRef]
4. Kaphengst, H.; Reichel, H. Algebraische Algorithmentheorie; WIB 1; VEB Robotron, Zentrum für Forschung und Technik: Dresden,

Germany, 1971.
5. Reichel, H.; Hupbach, U.R.; Kaphengst, H. Initial Algebraic Specification of Data Types, Parameterized Data Types, and Algorithms;

Technical Report 15; VEB Robotron, Zentrum für Forschung und Technik, Dresden: Dresden, Germany, 1980.
6. Reichel, H. Initial Computability, Algebraic Specifications, and Partial Algebras; Oxford University Press: Oxford, UK, 1987.
7. Wolter, U. An Algebraic Approach to Deduction in Equational Partial Horn Theories. J. Inf. Process. Cybern. 1990, 27, 85–128.
8. Lawvere, F.W. Functorial Semantics of Algebraic Theories. Proc. Natl. Acad. Sci. USA 1963, 50, 869–872. [CrossRef] [PubMed]
9. Claßen, I.; Große-Rhode, M.; Wolter, U. Categorical concepts for parameterized partial specifications. Math. Struct. in Comp.

Science 1995, 5, 153–188. [CrossRef]
10. Barr, M.; Wells, C. Category Theory for Computing Science; Series in Computer Science; Prentice Hall International: London,

UK, 1990.
11. Johnson, M.; Rosebrugh, R.; Wood, R. Entity-relationship-attribute designs and sketches. Theory Appl. Categ. 2002, 10, 94–112.

123

Mathematics 2022, 10, 1085

12. Wells, C. Sketches: Outline with References; Addendum 2009; Department of Mathematics, Case Western Reserve University:
Cleveland, UH, USA, 1993.

13. Diskin, Z.; Wolter, U. A Diagrammatic Logic for Object-Oriented Visual Modeling. Electron. Notes Theor. Comput. Sci. 2008,
203/6, 19–41. [CrossRef]

14. Ehrig, H.; Ehrig, K.; Prange, U.; Taentzer, G. Fundamentals of Algebraic Graph Transformations; EATCS Monographs on Theoretical
Computer Science; Springer: Berlin/Heidelberg, Germany, 2006. [CrossRef]

15. Makkai, M. Generalized Sketches as a Framework for Completeness Theorems. J. Pure Appl. Algebra 1997, 115, 49274. [CrossRef]
16. Cadish, B.; Diskin, Z. Heterogeneous view integration via sketches and equations. In Proceedigs of the 9th International

Symposium on Methodologies for Intelligent Systems, Zakopane, Poland, 9–13 June 1996; Springer: Berlin/Heidelberg, Germany,
1996; pp. 603–612. [CrossRef]

17. Diskin, Z. Towards algebraic graph-based model theory for computer science. Bull. Symb. Log. 1997, 3, 144–145.
18. Rutle, A. Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. Thesis, Department of Informatics, University of

Bergen, Bergen, Norway, 2010.
19. Wolter, U.; Mantz, F. The Diagram Predicate Framework in View of Adhesive Categories; Technical Report 358; Department of

Informatics, University of Bergen: Bergen, Norway, 2013.
20. König, H.; Wolter, U. Van Kampen Colimits and Path Uniqueness. Log. Methods Comput. Sci. 2018, 14, 1–27. [CrossRef]
21. Rutle, A.; Rossini, A.; Lamo, Y.; Wolter, U. A formal approach to the specification and transformation of constraints in MDE.

J. Log. Algebr. Program. 2012, 81/4, 422–457. [CrossRef]
22. Rensink, A. Representing first-order logic using graphs. In Proceedings of the Graph Transformations, Second International

Conference, ICGT 2004, Rome, Italy, 28 September–2 October 2004; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3256,
pp. 319–335. [CrossRef]

23. Habel, A.; Pennemann, K. Correctness of high-level transformation systems relative to nested conditions. Math. Struct. Comput.
Sci. 2009, 19, 245–296. [CrossRef]

24. Bruggink, H.J.S.; Cauderlier, R.; Hülsbusch, M.; König, B. Conditional reactive systems. In Proceeding of the IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2011, Mumbai, India, 12–14
December 2011; Schloss Dagstuhl–Leibniz-Zentrum für Informatik: Wadern, Germany, 2011, Volume 13, pp. 191–203. [CrossRef]

25. Kosiol, J.; Strüber, D.; Taentzer, G.; Zschaler, S. Graph consistency as a graduated property–consistency–sustaining and-improving
graph transformations. In Proceedings of the 13th International Conference, ICGT 2020, Bergen, Norway, 25–26 June 2020;
Springer: Cham, Switzerland, 2020; Volume 12150, pp. 239–256. [CrossRef]

26. Makkai, M. First Order Logic with Dependent Sorts, with Applications to Category Theory. Available online: http://www.math.
mcgill.ca/makkai/ (accessed on 31 January 2022).

27. Freyd, P.J. Properties invariant within equivalence types of categories. In Algebra, Topology and Category Theory: A Collection of
Papers in Honour of Samuel Eilenberg; Heller, A., Tierney, M., Eds.; Academic Press: Cambridge, MA, USA, 1976; pp. 55–61.

28. Freyd, P.J.; Scedrov, A. Categories, Allegories; North-Holland Mathematical Library; North-Holland: Amsterdam, The Netherlands,
1990; Volume 39.

29. Wolter, U.; Klar, M.; Wessäly, R.; Cornelius, F. Four Institutions—A Unified Presentation of Logical Systems for Specification; Technical
Report Bericht-Nr. 94-24; Fachbereich Informatik: Berlin, Germany, 1994.

30. Pawlowski, W. Context institutions. In Proceedings of the 11th COMPASS/ADT Workshop on Specification of Abstract Data
Types Joint with the 8th COMPASS Workshop, Oslo, Norway, 19–23 September 1995; Springer: Cham, Switzerland, 1995;
Volume 1130, pp. 436–457.

31. Goguen, J.A.; Burstall, R.M. Institutions: Abstract Model Theory for Specification and Programming. J. ACM 1992, 39, 95–146.
[CrossRef]

32. Wolter, U. Institutional frames. In Proceedings of the 10th Workshop on Specification of Abstract Data Types Joint with the
5th COMPASS Workshop, Santa Margherita Ligure, Italy, 30 May–3 June1994; Springer: Cham, Switzerland, 1995; Volume 906,
pp. 469–482. [CrossRef]

33. Martini, A.; Wolter, U.; Haeusler, E.H. Fibred and Indexed Categories for Abstract Model Theory. Log. J. IGPL 2007, 15, 707–739.
[CrossRef]

34. Wolter, U.; Martini, A.; Haeusler, E.H. Towards a uniform presentation of logical systems by indexed categories and adjoint
situations. J. Log. Comput. Oxf. Univ. Press 2015, 25, 57–93. [CrossRef]

35. McLarty, C. Elementary Categories, Elementary Toposes; Oxford Logic Guides (Book 21); Clarendon Press: Oxford, UK, 1991.
36. Baader, F.; Horrocks, I.; Sattler, U. Chapter 3. Description logics. In Handbook of Knowledge Representation; Elsevier: Amsterdam,

The Netherland, 2007.
37. Goguen, J.A.; Meseguer, J. Order-sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and

Partial Operations. Theor. Comput. Sci. 1992, 105, 217–273. [CrossRef]
38. Ehrig, H.; Große-Rhode, M.; Wolter, U. Applications of Category Theory to the Area of Algebraic Specification in Computer

Science. Appl. Categ. Struct. 1998, 6, 1–35. [CrossRef]
39. Chang, C.C.; Keisler, H.J. Model Theory; Studies in Logic and the Foundations of Mathematics; Elsevier: Amsterdam,

The Netherland, 1990.
40. Lloyd, J.W. Foundations of Logic Programming, 2nd ed.; Springer: Cham, Switzerland, 1987.

124

Mathematics 2022, 10, 1085

41. Wechler, W. Universal Algebra for Computer Scientists; EATCS Monographs on Theoretical Computer Science; Springer: Berlin,
Germany, 1992; Volume 25.

42. Lack, S.; Sobociński, P. Adhesive categories. In Proceedings of the FOSSACS 2004 International Conference on Foundations of
Software Science and Computation Structures, Barcelona, Spain, 29 March–2 April 2004; Volume 2987, pp. 273–288.

43. Wolter, U. Indexed vs. fibred structures—A field report. Rom. J. Pure Appl. Math. 2020, 66, 813–830.
44. Lack, S.; Sobocinski, P. Toposes are adhesive. In Proceedings of the Third International Conference, ICGT 2006, Natal, Rio Grande

do Norte, Brazil, 17–23 September 2006; Springer: Cham, Switzerland, 2006; Volume 4178, pp. 184–198. [CrossRef]
45. Wolter, U.; Martini, A.R.; Haeusler, E.H. Indexed and fibred structures for hoare logic. In Electronic Notes in Theoretical Computer

Science; Elsevier: Amsterdam, The Netherland, 2020; pp. 125–145. [CrossRef]

125

Citation: Diaconescu, R.

Representing 3/2-Institutions as

Stratified Institutions. Mathematics

2022, 10, 1507. https://doi.org/

10.3390/math10091507

Academic Editor: Gabriel Ciobanu

Received: 26 February 2022

Accepted: 28 April 2022

Published: 1 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Representing 3/2-Institutions as Stratified Institutions

Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania;
razvansdiaconescu@gmail.com

Abstract: On the one hand, the extension of ordinary institution theory, known as the theory of
stratified institutions, is a general axiomatic approach to model theories where the satisfaction is
parameterized by states of the models. On the other hand, the theory of 3/2-institutions is an
extension of ordinary institution theory that accommodates the partiality of the signature morphisms
and its syntactic and semantic effects. The latter extension is motivated by applications to conceptual
blending and software evolution. In this paper, we develop a general representation theorem of
3/2-institutions as stratified institutions. This enables a transfer of conceptual infrastructure from
stratified to 3/2-institutions. We provide some examples in this direction.

Keywords: institution theory; category theory; stratified institutions; 3/2-institutions; categorical
model theory

MSC: 18N10; 03C95; 68Q65; 68T27

1. Introduction

1.1. Stratified Institutions

Institution theory is a general axiomatic approach to model theory that was originally
introduced in computing science by Goguen and Burstall [1]. In institution theory, all three
components of logical systems—namely the syntax, the semantics, and the satisfaction
relation between them—are treated fully abstractly by relying heavily on category theory.
This approach has impacted significantly both theoretical computing science [2] and model
theory as such [3] (Both mentioned monographs rather reflect the stage of development of
institution theory and its applications at the moment they were published or even before
that. In the meantime, a lot of additional important developments have already taken place.
At this moment, the literature on institution theory and that around it has been developed
over the course of four decades or so and is rather vast.) In computing science, the concept
of institution has emerged as the most fundamental mathematical structure of logic-based
formal specifications, a great deal of theory being developed at the general level of abstract
institutions. In model theory, the institution theoretic approach meant an axiomatic-driven
redesign of core parts of model theory at a new level of generality—namely that of abstract
institutions—independent of any concrete logical system. institution theoretic approach
Moreover, there is a strong interdependency between the two lines of developments.

The institution theoretic approach to model theory has also been refined in order to
address directly some important nonclassical model theoretic aspects. One such direction
is motivated by models with states, appear in myriad forms in computing science and logic.
A typical important class of examples is given by the Kripke semantics (of modal logics),
which itself comes in a wide variety of forms. Moreover, the concept of model with states
goes beyond Kripke semantics, at least in its conventional acceptations. For instance, vari-
ous automata theories provide another important class of examples. The institution theory
answer to “models with states” is given by the theory of stratified institutions introduced
in [4,5] and further developed or invoked in works such as [6–8], etc.

Mathematics 2022, 10, 1507. https://doi.org/10.3390/math10091507 https://www.mdpi.com/journal/mathematics127

Mathematics 2022, 10, 1507

1.2. 3/2-Institutions

Although in mainstream institution theory signature morphisms are considered in
their full generality, they are always implicitly assumed to be total. However, there are few
contexts that on the one hand require partial translations between signatures, and on the
other hand require an institution theoretic treatment. Two such contexts are conceptual
blending [9–11] and software evolution [12]. In [13], we have developed an extension
of the ordinary concept of institution [1,3] that accommodates implicitly partiality of
the signature morphisms in order to constitute foundations for the above-mentioned
application domains. This new structure is called 3/2-institution, and mathematically, is
significantly more complex than ordinary institutions. One way to develop the theory of
3/2-institutions is by representing them in another institution theory that enjoys a higher
level of development, and through such a representation to import concepts and results
from there. With this paper, we take a few steps in this direction.

The semantic effect of the (implicit) partiality of the signature morphisms in 3/2-
institutions is that the reduct of a model with respect to a given signature morphism is a
set of models rather than a single model. This goes at the heart of our representation of
3/2-institutions as stratified institutions: in the representation the states of a model consists
of the set of its reducts (with respect to a given signature morphism).

1.3. Summary and Contributions

• In a preliminary section, we review (1) the category theory required by our work,
(2) the concept of institution, (3) the concept of stratified institution, and (4) the concept
of 3/2-institution. Examples are also discussed briefly.

• The main section of the paper defines a representation of 3/2-institutions as stratified
institutions. We prove the correctness of this representation, i.e., that it satisfies the
axioms of a stratified institution.

• One consequence is a further representation to ordinary institution theory via the
adjunction from stratified institutions to ordinary institutions defined in [14] (formerly
presented as a mere representation in [6]). Another consequence is the import of
concepts of semantic connectives. The last consequence that we develop is about the
relationship between model amalgamation properties in the representation and in the
original 3/2-institution.

2. Preliminaries

2.1. Categories

In general, we stick to the established category theoretic terminology and notations,
such as in [15]. However, unlike there, we prefer to use the diagrammatic notation for
compositions of arrows in categories, i.e., if f : A → B and g : B → C are arrows, then f ; g
denotes their composition. The domain of an arrow/morphism f is denoted by � f while
its codomain is denoted by f�. Set denotes the category of sets and functions and CAT the
“quasi-category” of categories and functors (this means it is bigger than a category since the
hom-sets are classes rather than sets). The class of objects of a category C is denoted by |C|,
and its class of arrows simply by C (so by f ∈ C we mean that f is an arrow in C).

The dual of a category C (obtained by formally reversing its arrows) is denoted by C�.
The following functor from [13] extends the well-known power-set construction from

sets to categories. Given a category C, the power-set category PC is defined as follows:

• |PC| = {A | A ⊆ |C|} and PC(A, B) = {H ⊆ C | �h ∈ A, h� ∈ B for each h ∈ H};
• Composition is defined by H1; H2 = {h1; h2 | h1 ∈ H1, h2 ∈ H2, h1� = �h2}; then

1A = {1a | a ∈ A} are the identities.

A partial function f : A �→ B is a binary relation f ⊆ A× B such that (a, b), (a, b′) ∈ f
implies b = b′. The definition domain of f , denoted dom(f) is the set {a ∈ A | ∃b (a, b) ∈ f }.
A partial function f : A �→ B is called total when dom(f) = A. We denote by f 0 the
restriction of f to dom(f)× B; this is a total function. Partial functions yield a subcategory
of the category of binary relations, denoted Pfn. Note that dom(f ; g) = {a ∈ dom(f) |

128

Mathematics 2022, 10, 1507

f 0(a) ∈ dom(g)}. If A′ ⊆ A by f (A′), we denote the set {b | ∃a ∈ A′, (a, b) ∈ f }. Then,
f (A) is denoted by Im(f). It is easy to check the following (though not as immediate as
in the case of the total functions): given partial functions f : A �→ B and g : B �→ C and
A′ ⊆ A, we have that (f ; g)(A′) = g(f (A′)).

A 3/2-category is just a category such that its hom-sets are partial orders, and the
composition preserves these partial orders. In the literature, 3/2-categories are also called
ordered categories or locally ordered categories. In terms of enriched category theory [16],
3/2-category are just categories enriched by the monoidal category of partially ordered sets.

Given a 3/2-category C by C�, we denote its “vertical” dual which reverses the partial
orders, and by C� its double dual C��. Given 3/2-categories C and C′, a strict 3/2-functor
F : C → C′ is a functor C → C′ that preserves the partial orders on the hom-sets. Lax
functors relax the functoriality conditions F(h); F(h′) = F(h; h′) to F(h); F(h′) ≤ F(h; h′)
(when h� = �h′) and F(1A) = 1F(A) to 1F(A) ≤ F(1A). If these inequalities are reversed,
then F is an oplax functor. This terminology complies to [17] and to more recent literature,
but in earlier literature [18,19] this is reversed. Note that oplax + lax = strict. In what
follows, whenever we say “3/2-functor” without the qualification “lax” or “oplax” we
mean a functor which is either lax or oplax.

Lax functors can be composed like ordinary functors; we denote by 3/2CAT the
category of 3/2-categories and lax functors.

Most typical examples of a 3/2-category are Pfn—the category of partial functions in
which the ordering between partial functions A �→ B is given by the inclusion relation
on the binary relations A → B and PoSET—the category of partially ordered sets (with
monotonic mappings as arrows) with orderings between monotonic functions being defined
point-wise (f ≤ g if and only if f (p) ≤ g(p) for all p).

The following 3/2-category of [13] is instrumental for the concept of 3/2-institution.
The category CATP has categories as objects and has arrows/morphisms C → C′ as map-
pings C → PC′. The composition in CATP is defined as follows: given F : C → C′ and
F′ : C′ → C′′ in CATP , then their composition is the mapping C → PC′′ that maps each
arrow f ∈ C to the set

⋃
f ′∈F f F′ f ′.

By considering the point-wise partial order on the class of the mappings C → PC′,
we obtain a 3/2-category denoted 3/2(CATP). Note that in the above definition, we do
not require that the mappings C → PC′ are functors of any kind, not even morphisms of
graphs, they are just mappings between classes of arrows. In fact, the above composition in
general does not preserve functoriality properties.

2.2. Institutions

The original standard reference for institution theory is [1]. An institution

I = (SignI , SenI , ModI , |=I)

consists of:

• A category SignI whose objects are called signatures.
• A sentence functor SenI : SignI → Set defining for each signature a set whose

elements are called sentences over that signature and defining for each signature
morphism a sentence translation function.

• A model functor ModI : (SignI)� → CAT defining for each signature Σ the category
ModI (Σ) of Σ-models and Σ-model homomorphisms, and for each signature morphism
ϕ the reduct functor ModI (ϕ).

• For every signature Σ, a binary Σ-satisfaction relation |=IΣ⊆ |ModI (Σ)| × SenI (Σ).

Such that for each morphism ϕ, the satisfaction condition

M′ |=IΣ′ SenI (ϕ)ρ if and only if ModI (ϕ)M′ |=IΣ ρ (1)

129

Mathematics 2022, 10, 1507

holds for each M′ ∈ |ModI (ϕ�)| and ρ ∈ SenI (�ϕ). This can be expressed as the satisfac-
tion relation |= being a natural transformation:

�ϕ

ϕ

		

SenI (�ϕ)
|=I�ϕ ��

SenI (ϕ)
		

[|ModI (�ϕ)| → 2]

ϕ� SenI (ϕ�)
|=Iϕ�

�� [|ModI (ϕ�)| → 2]

ModI (ϕ)

([|Mod(Σ)| → 2] represents the “set” of the “subsets” of |Mod(Σ)|).
We may omit the superscripts or subscripts from the notations of the components of

institutions when there is no risk of ambiguity. For example, if the considered institution
and signature are clear, we may denote |=IΣ just by |=. For M = Mod(ϕ)M′, we say that M
is the ϕ-reduct of M′. The institution is called discrete when the model categories Mod(Σ)
are discrete (i.e., do not posses nonidentity arrows).

The literature (e.g., [2,3]) shows myriads of logical systems from computing or from
mathematical logic captured as institutions. In fact, an informal thesis underlying institu-
tion theory is that any “logic” may be captured by the above definition. While this should
be taken with a grain of salt, it certainly applies to any logical system based on satisfaction
between sentences and models of any kind.

2.3. Stratified Institutions

Informally, the main idea behind the concept of stratified institution, as introduced
in [5], is to enhance the concept of institution with “states” for the models. Thus, each
model M comes equipped with a set [[M]] that has to satisfy some structural axioms. The
following definition has been given in [6] and represents an important upgrade of the
original definition from [5], the main reason being to make the definition of stratified
institutions really usable for doing in-depth model theory. The latter has suffered another
different upgrade in [7], which is, however, strongly convergent to the upgrade proposed
in [6].

A stratified institution S is a tuple

(SignS , SenS , ModS , [[_]]S , |=S)

consisting of:

• Category SignS of signatures;
• A sentence functor SenS : SignS → Set;
• A model functor ModS : (SignS)� → CAT;
• A “stratification” lax natural transformation [[_]]S : ModS ⇒ SET, where SET : SignS →

CAT is a functor mapping each signature to Set;
• A satisfaction relation between models and sentences which is parameterized by model

states, M (|=S)w
Σ ρ, where w ∈ [[M]]SΣ such that the following satisfaction condition

ModS (ϕ)M′ (|=S)[[M
′]]ϕw

Σ ρ if and only if M′ (|=S)w
Σ′ SenS (ϕ)ρ (2)

holds for any signature morphism ϕ, M′ ∈ |ModS (ϕ�)|, w ∈ [[M′]]Sϕ�, ρ ∈ SenS (�ϕ).

Like for ordinary institutions, when appropriate, we also use simplified notations without
superscripts or subscripts that are clear from the context.

The lax natural transformation property of [[_]] is depicted in the diagram below

130

Mathematics 2022, 10, 1507

Σ′′ Mod(Σ′′)
[[_]]Σ′′ ��

Mod(ϕ′)
		 22

00

Set

[[_]]ϕ′
3" =

		
Σ′

ϕ′

Mod(Σ′)

Mod(ϕ)

		

[[_]]Σ′ ��

43
00

Set

=

		[[_]]ϕ
3"

Σ

ϕ

Mod(Σ)
[[_]]Σ

�� Set

with the following compositionality property for each Σ′′-model M′′:

[[M′′]](ϕ;ϕ′) = [[M′′]]ϕ′ ; [[Mod(ϕ′)M′′]]ϕ. (3)

Moreover, the natural transformation property of each [[_]]ϕ is given by the commuta-
tivity of the following diagram:

M′

h′
		

[[M′]]Σ′
[[M′]]ϕ ��

[[h′]]Σ′
		

[[Mod(ϕ)M′]]Σ

[[Mod(ϕ)h′]]Σ
		

N′ [[N′]]Σ′
[[N′]]ϕ

�� [[Mod(ϕ)N′]]Σ

(4)

The satisfaction relation can be presented as a natural transformation |= : Sen ⇒
[[Mod(_)→ Set]], where the functor [[Mod(_)→ Set]] : Sign → Set is defined by

– For each signature Σ ∈ |Sign|, [[Mod(Σ) → Set]] denotes the set of all the mappings
f : |Mod(Σ)| → Set such that f (M) ⊆ [[M]]Σ;

– For each signature morphism ϕ : Σ → Σ′

[[Mod(ϕ)→ Set]](f)(M′) = [[M′]]−1
ϕ (f (Mod(ϕ)(M′))).

A straightforward check reveals that the satisfaction condition (2) appears exactly as
the naturality property of |=:

Σ

ϕ

		

Sen(Σ)
|=Σ ��

Sen(ϕ)
		

[[Mod(Σ)→ Set]]

[[Mod(ϕ)→Set]]
		

Σ′ Sen(Σ′)
|=Σ′

�� [[Mod(Σ′)→ Set]]

Ordinary institutions are the stratified institutions for which [[M]]Σ is always a single-
ton set. In the upgraded definition, we have removed the surjectivity condition on [[M′]]ϕ
from the definition of the stratified institutions of [5] and rather make it explicit when
necessary. This is motivated by the fact that most of the results developed do not depend
upon this condition which, however, holds in all examples known by us. On the one hand,
when modelling Kripke semantics abstractly, [[M′]]ϕ are even identities, which makes [[_]]
a strict rather than a lax natural transformation. However, on the other hand, there are
interesting examples when the stratification is properly lax. One such example is provided
by the representation result of this paper.

The following very expected property does not follow from the axioms of stratified
institutions, hence we impose it explicitly.

131

Mathematics 2022, 10, 1507

Assumption 1. In all considered stratified institutions, the satisfaction is preserved by model
isomorphisms, i.e., for each Σ-model isomorphism h : M → N, each w ∈ [[M]]Σ, and each
Σ-sentence ρ,

M |=w ρ if and only if N |=[[h]]w ρ.

The literature on stratified institutions shows many model theories that are captured
as stratified institutions. Here, we recall some of them in a very succinct form; in a more
detailed form, one may find them in [6,14].

1. In modal propositional logic (MPL), the category of the signatures is Set; Sen(P) is the
set of the usual modal sentences formed with the atomic propositions from P, and
the P-models are the Kripke structures (W, M), where W = (|W|, Wλ) consists of
a set of “possible worlds” |W| and an accessibility relation Wλ ⊆ |W| × |W|, and
M : |W| → 2P. The stratification is given by [[(W, M)]] = |W|.

2. In first-order modal logic (MFOL), the signatures are first-order logic (FOL) signatures
consisting of sets of operation and relation symbols structured by their arities. The
sentences extend the usual construction of FOL sentences with the modal connectives
� and �. The models for a signature Σ are Kripke structures (W, M), where W is like
in MPL but M : |W| → |ModFOL(Σ)| subject to the constraint that the carrier sets
and the interpretations of the constants are shared across the possible worlds. The
stratification is like inMPL.

3. Hybrid logics refine modal logics by adding explicit syntax for the possible worlds
such as nominals and @. Institutions of hybrid logics upgrade the syntactic and the
semantic components of the institutions of modal logics accordingly.

4. Multimodal logics exhibit several modalities instead of only the traditional � and �

and, moreover, these may have various arities. If one considers the sets of modalities
to be variable, then they have to be considered as part of the signatures. Each of the
stratified institutions discussed in the previous examples admit an upgrade to the
multimodal case.

5. In a series of works on modalization of institutions, Refs. [20–22] modal logic and Kripke
semantics are developed by abstracting away details that do not belong to modality,
such as sorts, functions, predicates, etc. This is achieved by extensions of abstract
institutions (in the standard situations meant in principle to encapsulate the atomic
part of the logics) with the essential ingredients of modal logic and Kripke semantics.
The result of this process, when instantiated to various concrete logics (or to their
atomic parts only), generates uniformly a wide range of hierarchical combinations
between various flavors of modal logic and various other logics. Concrete examples
discussed in [20–22] include various modal logics over nonconventional structures
of relevance in computing science, such as partial algebra, preordered algebra, etc.
Various constraints on the respective Kripke models, many of them having to do
with the underlying nonmodal structures, have also been considered. All these arise
as examples of stratified institutions, such as the examples presented above in the
paper. An interesting class of examples that has emerged quite smoothly out of the
general works on hybridization (i.e., modalization including also hybrid logic features)
of institutions is that of multilayered hybrid logics that provide a logical base for
specifying hierarchical transition systems (see [23]).

6. Open first order logic (OFOL). This is a FOL instance of St(I), the “internal stratifica-
tion” abstract example developed in [5]. AnOFOL signature is a pair (Σ, X) consisting
of FOL signature Σ and a finite block of variables. To any OFOL signature (Σ, X),
there corresponds a FOL signature Σ + X that adjoins X to Σ as new constants. Then,
SenOFOL(Σ, X) = SenFOL(Σ + X), ModOFOL(Σ, X) = ModFOL(Σ), [[M]]Σ,X = MX , i.e.,
the set of the “valuations” of X to Mand for each (Σ, X)-model M, each w ∈ MX,
and each (Σ, X)-sentence ρ, we define (M(|=OFOLΣ,X)wρ) = (Mw |=FOLΣ+X ρ), where Mw

is the expansion of M to Σ + X such that Mw
X = w (i.e., the new constants of X are

interpreted in Mw according to the “valuation” w).

132

Mathematics 2022, 10, 1507

7. Various kinds of automata theories can be presented as stratified institutions. For
instance, the deterministic automata (for regular languages) have the set of the input
symbols as signatures, the automata A are the models and the words are the sentences.
Then, [[A]] is the set of the states of A and A |=s α if and only if α is recognized by A
from the states s.

2.4. 3/2-Institutions

The concept of 3/2-institution has been introduced in [13]. Our presentation of 3/2-
institutions follows that paper. A 3/2-institution I = (SignI , SenI , ModI , |=I) consists of

• A 3/2-category SignI—called the category of the signatures;
• A 3/2-functor SenI : SignI → Pfn—called the sentence functor;
• A lax 3/2-functor ModI : (SignI)� → 3/2(CATP) — called the model functor, such that

Mod(ϕ) is a lax functor for each signature morphism ϕ;
• For each signature Σ ∈ |SignI |, a satisfaction relation |=IΣ ⊆ |ModI (Σ)| × SenI (Σ).

Such that for each morphism ϕ ∈ SignI , the satisfaction condition

M′ |=Iϕ� SenI (ϕ)ρ if and only if M |=I�ϕ ρ (5)

holds for each M′ ∈ |ModI (ϕ�)|, each M ∈ |ModI (ϕ)M′|, and each ρ ∈ dom(SenI (ϕ)).
The difference between 3/2-institutions and ordinary institutions, from now on called

1-institutions, is determined by the 3/2-categorical structure of the signature morphisms
which propagates to the sentence and to the model functors. Consequently, the satisfaction
condition (5) takes an appropriate format. Thus, for each signature morphism ϕ, its
corresponding sentence translation Sen(ϕ) is a partial function Sen(�ϕ) �→ Sen(ϕ�) and,
moreover, whenever ϕ ≤ θ, we have that Sen(ϕ) ⊆ Sen(θ). The sentence functor Sen can be
either lax or oplax, and depending on how this is, we may call the respective 3/2-institution
a lax or oplax 3/2-institution. In many concrete situations, it happens that Sen is strict, while
some general results require it to be either lax, oplax or strict.

The model reduct Mod(ϕ) is a lax functor Mod(ϕ�)→ PMod(�ϕ), implying that for
each Σ′-model M′ we have a class of reducts M rather than a single reduct. In concrete
examples, this is a direct consequence of the partiality of ϕ: in the reducts, the interpretation
of the symbols on which ϕ is not defined is unconstrained, therefore there may be many
possibilities for their interpretations. “Many” here includes also the case when there is
no interpretation.

– The fact that Mod is a 3/2-functor implies also that whenever ϕ ≤ θ we have
Mod(θ) ≤ Mod(ϕ), i.e., Mod(θ)M′ ⊆ Mod(ϕ)M′, etc.

– The lax aspect of Mod means that for signature morphisms ϕ and ϕ′, such that
ϕ� = �ϕ′, and for any ϕ′�-model M′′, we have that

Mod(ϕ)(Mod(ϕ′)M′′) ⊆ Mod(ϕ; ϕ′)M′′

and for each signature Σ and for each Σ-model M that

M ∈ Mod(1Σ)M.

– The lax aspect of the reduct functors Mod(ϕ) means that for model homomorphisms
h1, h2, such that h1� = �h2, we have that

Mod(ϕ)(h1); Mod(ϕ)(h2) ⊆ Mod(ϕ)(h1; h2)

and for each M′ ∈ Mod(ϕ�) and each M ∈ Mod(ϕ)M′ that

1M ∈ Mod(ϕ)1M′ .

133

Mathematics 2022, 10, 1507

The model homomorphisms do not yet play any role in conceptual blending or in
other envisaged applications of 3/2-institutions. Hence, the lax aspect of model functors
is for the moment a purely theoretical feature which is, however, supported naturally by
all examples. Another technical note: according to the definition of 3/2-institutions. At
the abstract level, there are several implicit ways to consider the “totality” of signature
morphisms in terms of their syntactic and semantic effects. The following concepts have
been introduced in [13]. A signature morphism ϕ in a 3/2-institution

• Is Sen-maximal when Sen(ϕ) is total;
• Is Mod-maximal when for each ϕ�-model M′, Mod(ϕ)M′ is a singleton;
• Is total when it is both Sen-maximal and Mod-maximal;
• Is Mod-strict when for each signature morphism θ, such that θ� = �ϕ, we have that

Mod(ϕ); Mod(θ) = Mod(θ; ϕ).

In general, in many concrete situations of interest, a signature morphism is Mod-strict
whenever it is total. In [13], there is even a result of a general nature that supports this fact.

The seminal paper [13] presents in detail a series of examples of 3/2-institutions. Here,
we recall from there three classes of examples in a very succinct form.

1. Common examples of institutions can be turned into 3/2-institutions by introducing
explicit partiality at the level of the signature morphisms. This means that certain
sort/operation/relation symbols are skipped by the respective (partial) signature
morphism. This induces a further partiality on the sentence translations as only the
sentences that does not contain “skipped” symbols can be translated. The model
reducts may interpret freely the “skipped” symbols, hence in principle one model
may have several reducts along the same signature morphisms. In [13], this procedure
was illustrated on the institutions of propositional logic (hence 3/2PL) and of many-
sorted algebra (hence 3/2MSA). In the latter case, several degrees of partiality can
be introduced.

2. The 3/2-institutional seeds of [13] provide a generic way to define 3/2-institutions. Some
of the 3/2-institution that are based on some form of explicit partiality can also be
presented in this way.

3. We may turn any abstract institution into a proper 3/2-institution by adding weights
to the signature morphisms, which means that the signature morphisms come as
pairs (ϕ, k) (in [13] denoted ϕ • k), where ϕ is a signature morphism of the ordinary
institution and k ∈ {0, 1}. The signatures stay the same. This construction is extended
to sentences and models in a way that yields the sentence and the model functors
proper lax functors. Although this is a mere technical construction without any known
applications, it has an important theoretical significance because it provides a class of
examples where the 3/2-categorical structures involved have nothing to do with any
form of partiality.

3. The Canonical Stratified Institution Associated to a 3/2-Institution

The representation of 3/2-institutions as stratified institutions is in general partial in
the sense that the signature morphisms that are subject to the representation have to satisfy
certain technical conditions. Two of these are defined below. The second one appears as a
3/2-institution theoretic replica of a property from ordinary institution theory [3] with the
same name but in a somewhat reverse form. While the former concept is a lifting concept,
the 3/2-institution theoretic one may have an opposite appearance because it goes along
the direction of the model reduct. However, this is misleading because in 3/2-institutions,
due to the implicit partiality of the signature morphisms, reducts also have a nature of
expansion. Towards the end of this section, we discuss what these two properties mean
in concrete situations. The constructions and the results in this section are developed at
the abstract level. It would be helpful if the reader would interpret them in the context
of the examples of 3/2-institutions listed above. This should be a rather straightforward

134

Mathematics 2022, 10, 1507

exercise, especially if one considers the discussion on the technical conditions at the end of
this section.

Definition 1. In any 3/2-institution, a signature morphism χ

• Is fiber-small when for each χ�-model M we have that Mod(χ)M is a set;
• Is quasi-representable when for each χ�-model homomorphism h : M → M0, and for each

N ∈ Mod(χ)M there exists and unique model homomorphism hN ∈ Mod(χ)h, such that
�hN = N.

We now fix a 3/2-institution I = (Sign, Sen, Mod, |=) and gradually build the entities
that define its associated stratified institution Is = (Signs, Sens, Mods, [[_]], |=s). The main
idea of this representation is that the reducts of a model M are considered to be its states.
In order to make precise sense of this idea, we have to change the concept of signature: in
the stratified institution, a signature is a certain signature morphism χ in I , such that M
is a χ�-model. It is the abstract nature of the concept of institution that allows for such a
conceptual twist.

Definition 2 (The category of the signatures). The category Signs has the objects the fiber-small
quasi-representable signature morphisms χ of Sign. The arrows χ → χ′ in Signs are pairs of
signature morphisms (ϕ, θ), such that

• Both ϕ and θ are total and Mod-strict;
• χ; θ ≤ ϕ; χ′.

Σ
ϕ ��

χ

		 43
≤

00

Σ′

χ′
		

Ω
θ

�� Ω′

(6)

The composition in Signs is defined as pairwise composition in Sign, i.e., (ϕ, θ); (ϕ′, θ′) =
(ϕ; ϕ′, θ; θ′), as shown in the following diagram:

Σ
ϕ ��

χ

		 43
≤

00

Σ′

χ′
		

ϕ′ ��

43
≤

00

Σ′′

χ′′
		

Ω
θ

�� Ω′
θ′

�� Ω′′

(7)

An arrow (ϕ, θ) : χ → χ′ is strict when χ; θ = ϕ; χ′.

We have the correctness of definition 1:

Proposition 1. Signs is a category.

Proof. We have to prove that the composition preserves the preorder property. This follows
from the monotonicity of the composition in Sign (we use the notations from (7)):

χ; θ; θ′ ≤ ϕ; χ′; θ′ ≤ ϕ; ϕ′; χ′.

It remains to note that totality and Mod-strictness when considered together are
preserved by the composition of the signature morphisms. (Mod-strictness supports the
preservation of Mod-maximality by the composition of signature morphisms.)

Definition 3 (The sentence translation functor). For any Signs signature χ, we define Sens(χ) =
Sen(�χ) and for any Signs-morphism (ϕ, θ), we define Sens(ϕ, θ) = Sen(ϕ).

135

Mathematics 2022, 10, 1507

Proposition 2. Sens is a functor Signs → Set.

Proof. This is an immediate consequence of the functoriality of Sen and of the totality
hypothesis, which guarantees that Sen(ϕ) is indeed a total function.

Definition 4 (The model reduct functor). For any Signs signature χ, we define Mods(χ) =
Mod(χ�) and for any Signs-morphism (ϕ, θ) we define Mods(ϕ, θ) = Mod(θ).

Proposition 3. Mods is a functor (Signs)� → CAT.

Proof. This is an immediate consequence of the functoriality of Mod and of the Mod-
maximality and Mod-strictness hypothesis (on θ).

Definition 5 (The stratification). For any Signs signature χ, we define

• [[M]]χ = Mod(χ)M for any M ∈ |Mods(χ)|(= |Mod(χ�)|);
• [[h]]χN = hN� for any χ�-model homomorphism h ∈ Mods(χ)(= |Mod(χ�)|) and �χ-

model N ∈ Mod(χ)(�h).

For each signature morphism (ϕ, θ) : χ → χ′ in Signs, we define:

• [[M′]](ϕ,θ)N′ = Mod(ϕ)N′ for any M′ ∈ |Mods(χ′)| and any N′ ∈ [[M′]]χ′ .

Proposition 4. [[_]] is a lax natural transformation Mods ⇒ SET.

Proof. The correctness of definition 5 is justified as follows:

• [[M]]χ is a set by the fiber-small assumption on χ.
• The definition of [[h]]χN relies on the quasi-representability assumption on χ.
• [[M′]](ϕ,θ)N′ represents a single model because ϕ is Mod-maximal.
• That [[M′]](ϕ,θ)([[M′]]χ′) ⊆ [[Mods(ϕ, θ)M′]]χ is shown as follows:

[[M′]](ϕ,θ)([[M′]]χ′) = Mod(ϕ)(Mod(χ′)M′) definition of [[_]]

⊆ Mod(ϕ; χ′)M′ Mod lax

⊆ Mod(χ; θ)M′ χ; θ ≤ ϕ; χ′, Mod monotone

= Mod(χ)(Mod(θ)M′) θ Mod-strict

= [[Mod(θ)M′]]χ definition of [[_]]χ, θ Mod-maximal

= [[Mods(ϕ, θ)M′]]χ definition of Mods.

The functoriality of [[_]]χ : Mods(χ)→ Set means two things:

• That [[1M]]χN = N for each χ�-model M and each N ∈ Mod(χ)M. This is shown by
the following argument. Since Mod(χ) is lax, it follows that 1N ∈ Mod(χ)1M, which by
the uniqueness aspect of the quasi-representability property implies that 1N = (1M)N .
Since 1N� = N, the conclusion follows.

• That [[h; h0]]χ = [[h]]χ; [[h0]]χ for any χ�-model homomorphisms h : M → M0 and
h0 : M0 → M1. In order to show that, we consider any model N ∈ Mod(χ)M and
denote by N0 = hN�. We have that:

hN ; hN0
0 ∈ Mod(χ)h ; Mod(χ)h0 definitions of hN

0 , hN0
0

⊆ Mod(χ)(h; h0) Mod(χ) lax.

From the uniqueness aspect of the quasi-representability property of χ, it follows that

hN ; hN0
0 = (h; h0)

N . (8)

136

Mathematics 2022, 10, 1507

Hence,

[[h; h0]]χN = (h; h0)
N� definition of [[h; h0]]χN

= (hN ; hN0
0)� (8)

= hN0
0 �

= [[h0]]χ([[h]]χN) definitions of N0, [[h0]]χN0, [[h]]χN.

For proving the lax natural transformation property of [[_]] (relation ((3))), we consider a
composition of signature morphisms in Signs such as in diagrams (7), an Ω′′-model M′′,
and N′′ ∈ [[M′′]]χ′′ = Mod(χ′′)M′′. Note that since N′′ ∈ [[M′′]]χ′′ , we have that

Mod(ϕ′)N′′ = [[M′′]](ϕ′ ,θ′)N′′ ∈ [[Mods(ϕ′, θ′)M′′]]χ′ = [[Mod(θ′)M′′]]χ′ (9)

Then, we have:

[[M′′]](ϕ,θ);(ϕ′ ,θ′)N′′ =

= [[M′′]](ϕ;ϕ′ ,θ;θ′)N′′ definition of Signs

= Mod(ϕ; ϕ′)N′′ definition of [[_]]

= Mod(ϕ)(Mod(ϕ′)N′′) Mod functor, ϕ Mod-strict

= [[Mod(θ′)M′′]](ϕ,θ)(Mod(ϕ′)N′′) (9), definition of [[_]]

= [[Mods(ϕ′, θ′)M′′]](ϕ,θ)(Mod(ϕ′)N′′) definition of Mods

= [[Mods(ϕ′, θ′)M′′]](ϕ,θ)([[M′′]](ϕ′ ,θ′)N′′) definition of [[_]].

For proving the natural transformation property of [[_]](ϕ,θ), under the notations from
diagrams (7) by considering an Ω′-model homomorphism h′ : M′ → M′

0, we have to show
that the diagram below commutes:

M′

h′
		

Mod(χ′)M′ [[M′]](ϕ,θ) ��

[[h′]]χ′
		

Mod(χ)(Mod(θ)M′)

[[Mod(θ)h′]]χ
		

M′
0 Mod(χ′)M′

0 [[M′
0]](ϕ,θ)

�� Mod(χ)(Mod(θ)M′
0)

(10)

Let N′ ∈ Mod(χ′)M′, and let us denote N = Mod(ϕ)N′ and h = Mod(θ)h′. Let us first
prove that

Mod(ϕ)h′N
′
= hN . (11)

On the one hand, we have:

Mod(ϕ)h′N
′ ∈ Mod(ϕ)(Mod(χ′)h′) definition of h′N

′

⊆ Mod(ϕ; χ′)h′ Mod lax
⊆ Mod(χ; θ)h′ Mod monotone, χ; θ ≤ ϕ; χ′

= Mod(χ)(Mod(θ)h′) θ Mod-strict

= Mod(χ)h.

On the other hand, we have:

�Mod(ϕ)h′N
′
= Mod(ϕ)(�h′N

′
) = Mod(ϕ)N′ = N.

137

Mathematics 2022, 10, 1507

Then, (11) follows from Mod(ϕ)h′N
′ ∈ Mod(χ)h and �Mod(ϕ)h′N

′
= N and from the

uniqueness aspect of the quasi-representability property of χ. Now, the following argument
completes the proof of the natural transformation property of [[_]](ϕ,θ):

[[Mod(θ)h′]]χ([[M′]](ϕ,θ)N′) = [[Mod(θ)h′]]χ(Mod(ϕ)N′) definition of [[M′]](ϕ,θ)

= hN� definition of [[Mod(θ)h′]]χ = [[h]]χ
= (Mod(ϕ)h′N

′
)� (11)

= Mod(ϕ)(h′N
′
�) Mod(ϕ) functor

= [[M′
0]](ϕ,θ)(h′N

′
�) definition of [[M′

0]](ϕ,θ)

= [[M′
0]](ϕ,θ)([[h′]]χ′N′) definition of [[h′]]χ′ .

Definition 6 (The satisfaction relation). For each signature χ in Signs, each χ�-model M, each
�χ-model N ∈ [[M]]χ, and each �χ-sentence ρ,

M(|=s)N
χ ρ if and only if N |=�χ ρ.

Proposition 5. For any signature morphism (ϕ, θ) : χ → χ′ in Signs, any χ′-model M′, any
N′ ∈ [[M′]]χ′ , and any χ-sentence ρ:

M′ |=N′
χ′ Sens(ϕ, θ)ρ if and only if Mods(ϕ, θ)M′ |=χ ρ.

Proof. By similarity to (9), we have that:

Mod(ϕ)N′ ∈ [[Mod(θ)M′]]χ (12)

Then, we have:

M′(|=s)N′
χ′ Sens(ϕ, θ)ρ ⇔ N′ |=�χ′ Sen(ϕ)ρ definition of |=s

⇔ Mod(ϕ)N′ |=�χ ρ Satisfaction Condition of I
⇔ Mod(θ)M′(|=s)

Mod(ϕ)N′
χ ρ (12), definition of |=s

⇔ Mod(θ)M′(|=s)
[[M′]](ϕ,θ)N′
χ definition of [[_]]

⇔ Mods(ϕ, θ)M′(|=s)
[[M′]](ϕ,θ)N′
χ definition of Mods.

By putting together propositions 1–5, we obtain:

Corollary 1. Is = (Signs, Sens, Mods, [[_]], |=s) is a stratified institution.

The technical conditions underlying the construction of Is imposes some restriction
both on the I signature morphisms χ that play the role of Signs-signatures and on the I
signature morphisms that make up the Signs morphisms. Let us see their significance and
what they might mean in concrete situations.

• The I signature morphisms that stand as Signs signatures implicitly represent genuine
partiality. By contrast, the I signature morphisms used for the Signs morphisms
implicitly represent genuine totality, the reason being that we want to achieve to-
tality for the syntactic and of the semantic translations at the level of the resultant
stratified institution.

• The I signature morphisms standing as Signs signatures have to be fiber-small and
quasi-representable. The former condition is necessary for the stratifications to be
sets, and in the concrete situations is very mild. Only when we are in a many-sorted

138

Mathematics 2022, 10, 1507

context doe it amount to a certain restriction, namely that there is no partiality of the
translation of the sorts.

• In the applications, the quasi-representability condition on a signature morphism χ is
less stringent than how it appears in principle.

– As it is about (proper) model homomorphisms, it holds trivially in their absence.
This degenerated situation is in fact the norm in the applications of the 3/2-
institutions, as until now there are not known applications that involve proper
model homomorphisms.

– When χ admits partiality only on the constants, then the quasi-representable holds.
– When χ admits partiality only on the relation symbols and the model homomor-

phisms are “strong” (in the sense of [3]), then χ is quasi-representable, too.

• As an example that puts together some of the situations discussed above, if we
consider the 3/2-institution of many sorted first-order logics with “strong” model
homomorphisms, then any signature morphism that is total on the sorts and on
nonconstant operation symbols qualifies as a Signs signature.

4. Consequences of the Representation

4.1. Representing 3/2-Institutions as Ordinary Institutions

In [6], a general representation of stratified institutions as ordinary institutions was
developed. In [14], it is shown that this constitutes a left adjoint functor from the cate-
gory SINS of stratified institution morphisms to the category INS of ordinary institution
morphisms. Let us recall this representation from either [6] or [14]. Given a stratified insti-
tution S = (Sign, Sen, Mod, [[_]], |=), the following institution S 	 = (Sign, Sen, Mod	, |=) is
defined by

• The objects of Mod	(Σ) are the pairs (M, w), such that M ∈ |Mod(Σ)| and w ∈ [[M]]Σ;
• The Σ-homomorphisms (M, w) → (N, v) are the pairs (h, w), such that h : M → N

and [[h]]Σw = v;
• For any signature morphism ϕ : Σ → Σ′ and any Σ′-model (M′, w′)

Mod	(ϕ)(M′, w′) = (Mod(ϕ)M′, [[M′]]ϕw′);

• For each Σ-model M, each w ∈ [[M]]Σ, and each ρ ∈ Sen(Σ)

((M, w) |=	
Σ ρ) = (M |=w

Σ ρ). (13)

By “composing” the representation of 3/2-institutions as stratified institutions with
the representation of stratified institutions as ordinary institutions, we obtain the following
representation of 3/2-institutions as ordinary institutions.

Corollary 2. Let I = (Sign, Sen, Mod, |=) be a 3/2-institution. Then,

(Is)	 = (Signs, Sens, (Mods)	, |=)

defines an ordinary institution where

• Signs and Sens are given by definitions 2 and 3, respectively.
• For each χ ∈ |Signs|:

– A (Mods)	 χ-model is pair (M, N) such that M ∈ |Mod(χ�)|, N ∈ Mod(χ)M;
– A χ-model homomorphism (M, N)→ (M0, N0) is a model homomorphism h : M →

M0, such that N0 = hN�.

• For each (ϕ, θ) : χ → χ′ and any (Mods)	 χ′-model (M′, N′)

(Mods)	(ϕ, θ)(M′, N′) = (Mod(θ)M′, Mod(ϕ)N′).

139

Mathematics 2022, 10, 1507

• For each (Mods)	 χ-model (M, N) and each Sens χ-sentence ρ

(M, N) |=	
χ ρ if and only if N |=I�χ ρ.

4.2. Semantic Connectives

Institution theory has developed its own general approach to logical connectives [3,24,25].
This was refined in [6] to stratified institution theory. With 3/2-institutions, there are two
ways to approach this issue.

1. The straightforward way that mimics the semantic treatment of connectives from
ordinary institution theory.

2. By using the stratified institution theoretic approach via the representation result
given by corollary 1.

We argue that the straightforward approach does not work, which means that in order
to have sound semantic connectives, we have to rely on the representation result. Our
argument is based on an important property of the semantic connectives, namely that
they should be preserved by the translations along signature morphisms. For instance, for
a signature morphism ϕ, if ρ is a semantic disjunction of ρ1 and ρ2 in the signature �ϕ,
then Sen(ϕ)ρ should be a semantic disjunction of Sen(ϕ)ρ1 and Sen(ϕ)ρ2 in ϕ�. This holds
naturally in ordinary institution theory as well as in stratified institution theory, the proof
of this relying on the satisfaction condition. In fact, in the stratified institutions case, this
property can be established from the corresponding ordinary institution theory property
via the S 	 representation, since as noticed in [6], the common propositional connectives
and the quantification connectives do coincide in S and in S 	.

In order to understand what is wrong with the straightforward approach to the seman-
tic connectives in 3/2-institutions, let us attempt to establish the preservation property for
the semantic disjunction. Let ϕ be a signature morphism and assume that ρ is a semantic
disjunction of ρ1 and ρ2 in �ϕ, which means that for each �ϕ-model M, M |= ρ if and
only if M |= ρk for some k ∈ {1, 2}. We have to establish the same property for Sen(ϕ)ρ,
Sen(ϕ)ρ1, and Sen(ϕ)ρ2. A first issue with this is the existence of these translations. We can
overcome this by requiring that Sen(ϕ)ρ is a semantic disjunction of Sen(ϕ)ρ1 and Sen(ϕ)ρ2
when all three translations do exist. Let us attempt to prove the property under this new
formulation. We have to prove that for any ϕ�-model M′,

M |= Sen(ϕ)ρ if and only if M′ |= Sen(ϕ)ρk for some k ∈ {1, 2}.

However, M′ |= Sen(ϕ)ρ means M |= ρ for all M ∈ Mod(ϕ)M′. Since ρ is the semantic
disjunction of ρ1 and ρ2, this further means that for each M ∈ Mod(ϕ)M′, there exists
k ∈ {1, 2}, such that M |= ρk. At this point, we have to get back to ϕ�, i.e., to establish that
there exists k ∈ {1, 2} such that M′ |= Sen(ϕ)ρk, which means that for all M ∈ Mod(ϕ)M′,
M |= ρk for the same k. This is a gap because for one M we may have M |= ρ1 and for
another M we may have M |= ρ2. So, the property cannot be established.

This failure to prove the preservation of semantic disjunctions along signature mor-
phisms also tells us about the crucial role played by the reducts; that in fact the satisfaction
in 3/2-institutions has the reducts as an implicit parameter. This perspective provides
a solution to our problem. Additionally, here we are; this situation calls for a stratified
institution approach. In the particular case of the semantic disjunctions, this means that,
under the representation given by corollary 1, we should define ρ as a semantic disjunction
of ρ1 and ρ2, when for each χ-model M:

{N ∈ [[M]]χ | N |= ρ} = {N ∈ [[M]]χ | N |= ρ1} ∪ {N ∈ [[M]]χ | N |= ρ2}.

Similar definitions can be derived in the case of the other semantic connectives by
following the stratified institutions approach [6].

140

Mathematics 2022, 10, 1507

4.3. Model Amalgamation

Model amalgamation is one of the most important concepts/properties in institution
theory. The institution theory literature contains numerous works where model amalgama-
tion is used decisively. Refs. [2,26], etc., are representative for computing science-oriented
works, especially in the area of software modularisation, while in [3] and many other arti-
cles, one may find an abundance of uses of model amalgamation in institution-independent
model theory. Regarding its role in 3/2-institution theory and applications, in [13], it is
argued that model amalgamation squares in 3/2-institutions constitute a superior approach
to the categorical modeling of conceptual blending than 3/2 or lax colimits.

The most notorious form of model amalgamation comes from ordinary institution
theory. Given a diagram of signature morphisms, a model of that is a family (Mi)i∈I of
models, indexed by the nodes of the diagram, such that Mi is a Σi-model, where Σi is the
signature at node i, and such that for each signature morphism ϕ : Σi → Σj in the diagram,
Mi = Mod(ϕ)Mj. A cocone μ of the diagram has the model amalgamation property when
for each model (Mi)i∈I of the diagram there exists an unique model M of the vertex of the
colimit, such that Mod(μi)M = Mi, i ∈ I. Then M is called the amalgamation of (Mi)i∈I .

The most frequent use of model amalgamation is for cocones of spans of signature
morphisms (which are in fact commutative squares of signature morphisms). There are also
variations of the concept of model amalgamation: when we do not require the uniqueness
of the amalgamation M (called weak model amalgamation), or when we refer only to
colimits (called exactness) or even to particular colimits such as pushout squares (called
semiexactness).

In stratified institution theory, there is a specific concept of model amalgamation called
stratified model amalgamation, which corresponds to model amalgamation in the flattening S 	

of the respective stratified institution S . This has been introduced in [14]. When the stratified
institution is strict, stratified model amalgamation collapses to ordinary model amalgamation.
Though in our context, this does not happen because the stratifications of the representations
of 3/2-institutions as stratified institutions are proper lax natural transformations.

The 3/2-institution theoretic concept of model amalgamation [13] represents another
refinement of the ordinary concept of model amalgamation. Its definition just replaces the
ordinary definition of model amalgamation equalities relations with membership relations
(for instance Mi = Mod(ϕ)Mj becomes Mi ∈ Mod(ϕ)Mj) and strict commutativity with lax
commutativity. 3/2-institutional model amalgamation goes at the heart of the applications
of 3/2-institutions because the 3/2-institution theoretic approach to conceptual blending
comes with the proposal [13] to replace the original approach based on 3/2-categorical
colimits [10,11] with model amalgamation cocones.

The following result establishes an equivalence relationship between stratified model
amalgamation in I s and 3/2-model amalgamation in I .

Proposition 6. Let I = (Sign, Sen, Mod, |=) be a stratified institution and let
Is = (Signs, Sens, Mods, [[_]], |=s) be its representation as a stratified institution. Let the left
hand square below represent a commutative diagram in Signs, such that its projection on the first
component (the right hand side square below) is a model amalgamation square in I .

χ
(ϕ,θ) ��

(ζ,η)

		

χ′

(ζ ′ ,η′)
		

Σ
ϕ ��

ζ

		

Σ′

ζ ′

		
χ1

(ϕ1,θ1)
�� χ′1 Σ1 ϕ1

�� Σ′1

(14)

141

Mathematics 2022, 10, 1507

Then, the square of Is-signature morphisms is a stratified model amalgamation square if and
only if the following lax cocone of I-signature morphisms has the model amalgamation property.

Ω θ ��

η

		

≤

Ω′

η′

		

Σ
χ

54

ϕ
��

ζ
		

≤

Σ′

ζ ′
		

χ′
65

ζ ′ ;χ′1

76

≥

Σ1
χ1

��

ϕ1 ��

ϕ1;χ′1 87
≤

Σ′1
χ′1

��
Ω1

θ1

�� Ω′
1

(15)

Proof. In this proof, we rely on the fact that stratified model amalgamation in Is is the
same as model amalgamation in (Is)	. First, we show that the model amalgamation in I
implies that in (Is)	.

In (Is)	, we consider a χ′-model (M′, N′) and a χ1-model (M1, N1), such that

(Mods)	(ζ, η)(M1, N1) = (M, N) and (Mods)	(ζ ′, η′)(M′, N′) = (M, N). (16)

Let the Σ′1-model N′1 be the unique amalgamation of N′ and N1. Then, (M1, M, M′, N1,
N, N′, N′1) is a model for the Signs diagram with 7 vertices and 9 (full) arrows in (15). Let
M′

1 be the Ω′
1-model that is the unique amalgamation of (M1, M, M′, N1, N, N′, N′1). We

have that (M′
1, N′1) is a χ′1-model and that:

(Mods)	(ϕ1, θ1)(M′
1, N′1) = (M1, N1) and (Mods)	(ζ ′, η′)(M′

1, N′1) = (M′, N′).

The uniqueness of the amalgamation (M′
1, N′1) follows from the uniquenesses of the

amalgamations N′1 and M′
1.

Conversely, we now assume the amalgamation property in Is and prove it at the level
of I . Any model (M1, M, M′, N1, N, N′, N′1) for the Signs diagram with 7 vertices and 9
arrows determines two (Is)	 models: an χ′-model (M′, N′) and an χ1-model (M1, N1),
such that (16) holds. By the stratified model amalgamation property in Is, interpreted in
(Is)	, there exists an unique amalgamation (M′

1, N′′1) of (M′, N′) and of (M1, N1). Since
Mod(η)N1 = Mod(θ)N′, Mod(θ1)N′1 = N1, Mod(η′)N′1 = N′, and because the same holds
for N′′1 in the place of N′1 by the uniqueness property of the I-model amalgamation
square (14), we have that N′′1 = N′1.

Now, we show that M′
1 is the amalgamation of (M1, M, M′, N1, N, N′, N′1).

• N′1 ∈ Mod(χ′1)M′
1 holds by the definition of (Mods)	 because (M′

1, N′1) is an (Is)	

χ′1-model.
• Since (M′

1, N′1) is the amalgamation of (M1, N1) and (M′, N′), it follows that
Mod(θ1)M′

1 = M1 and Mod(η′)M′
1 = M′. It further follows that Mod(η; θ1)M′

1 =
Mod(θ; η′)M′

1 = M.
• We also have that:

N′ = Mod(ζ ′)N′1 definition of N′1
∈ Mod(ζ ′)(Mod(χ′1)M′

1) N′1 ∈ Mod(χ′1)M′
1

⊆ Mod(ζ ′; χ′1)M′
1 Mod lax.

• By a similar argument to the above one, we establish that N1 ∈ Mod(ϕ1; χ′1)M′
1.

142

Mathematics 2022, 10, 1507

• Finally,

N = Mod(ζ; ϕ1)N′1 N = Mod(ζ)N1, N1 = Mod(ϕ1)N′1
∈ Mod(ζ; ϕ1)(Mod(χ′1)M′

1) N′1 ∈ Mod(χ′1)M′
1

⊆ Mod(ζ; ϕ1; χ′1)M′
1 Mod lax

⊆ Mod(ζ; χ1; θ1)M′
1 χ1; θ1 ≤ ϕ1; χ′1, Mod 3/2-functor

⊆ Mod(χ; η; θ1)M′
1 χ; η ≤ ζ; χ1, Mod 3/2-functor.

The uniqueness of M′
1 follows from the uniqueness of the amalgamation (M′

1, N′1) by
relying on the first implication of the proposition.

In the context of proposition 6, the following general result provides a sufficient
condition for the lax cocone of I-signature morphisms to have the model amalgamation
property. Then, by the conclusion of proposition 6, this leads to the left-hand side square of
diagrams (14) to be a stratified model amalgamation square. We need to recall from [13]
two concepts as follows:

• In any 3/2-category, a strict commutative square

Σ
ϕ1 ��

ϕ2

		

A1

θ1
		

A2
θ2

�� B

is a 3/2-pushout when for any strict cocones (θ′1, θ′2) and (θ′′1 , θ′′2) over the span (ϕ1, ϕ2),
if θ′k ≤ θ′′k , k = 1, 2, there exists unique mediating arrows μ′ ≤ μ′′, such that θk; μ′ = θ′k
and θ′′k ; μ′′ = θ′′k , k = 1, 2. Note that 3/2-pushouts are stronger than ordinary pushouts.

• 3/2-institutional seeds were mentioned above when we discussed examples of 3/2-
institutions. For the full definition, see [13]. For the purpose of proposition 7 below,
we only need the property that there exists a signature Π, such that for each signature Σ

|Mod(Σ)| = {M : Σ → Π | Sen(M) total}

and for each signature morphism ϕ and for each ϕ�-model M′,

Mod(ϕ)M′ = {M ∈ |Mod(�ϕ)| | ϕ; M′ ≤ M}.

Proposition 7. Let us assume a 3/2-institution I , such that when we remove its model homo-
morphisms it is generated by a 3/2-institutional seed. Let us consider a lax cocone of I signature
morphisms such as in diagrams (15) with the following properties:

• The inner square (also known as the right-hand side square of diagram (14)) is a 3/2-pushout
square;

• The outer square (η, θ, η′, θ1) is a model amalgamation square;
• (ϕ1, θ1) : χ1 → χ′1 and (ζ ′, η′) : χ′ → χ′1 are strict.

Then, the lax cocone of diagram (15) has the model amalgamation property.

Proof. Let us consider (M1, M, M′, N1, N, N′, N′1), a model of the diagram of 7 vertices
and 9 arrows of diagrams (14). Let M′

1 be the amalgamation of M′ and M1 by using
the model amalgamation property of the outer square (η, θ, η′, θ1). We show that M′

1 is
also the amalgamation of (M1, M, M′, N1, N, N′, N′1), and its uniqueness follows from the
uniqueness as amalgamation of M′ and M1 only.

143

Mathematics 2022, 10, 1507

We first prove that N′1 ∈ Mod(χ′1)M′
1. This goes as follows. Since N′ ∈ Mod(χ′)M′,

this means that χ′; M′ ≤ N′. It follows that:

ζ ′; χ′1; M′
1 = χ′; η′; M′

1 = χ′; M′ ≤ N′ = Mod(ζ ′)N′1 = ζ ′; N′1. (17)

Similarly,
ϕ1; χ′1; M′

1 ≤ ϕ1; N′1. (18)

Because the inner square of diagram (15), i.e., the square (ϕ, ζ, ζ ′, ϕ1), is a 3/2-pushout
square, from (17) and (18), we obtain that χ′1; M′

1 ≤ N′1, which means N′1 ∈ Mod(χ′1)M′
1.

From here, the proof that M′
1 is an amalgamation of (M1, M, M′, N1, N, N′, N′1) follows the

same steps as in the second part of the proof of proposition 6. In particular, this means that
the three specific conditions of the current proposition are not used anymore.

In concrete situations, it is quite common that the 3/2-pushout condition on the inner
square in proposition 7 implies the model amalgamation condition on the same square in
proposition 6, a fact that enhances the applicability of proposition 7 within the context of
the equivalence established by proposition 6.

Proposition 8. In the context of a 3/2-institution generated by a 3/2-institutional seed, let us
assume that Sen preserves and reflects maximality (i.e., ϕ is maximal if and only if Sen(ϕ) is total).
Then, any pushout cocone of signature morphisms determines a model amalgamation square.

Proof. Let (ϕ1, ζ ′) be a pushout cocone for a span (ϕ, ζ) of signature morphisms (such as
in the diagram below).

Σ
ϕ ��

ζ

		

Σ′

ζ ′

		 N′

98

Σ1
ϕ1 ��

N1 ��

Σ′1
N′1

��
Π

Given a Σ′-model N′ and a Σ1-model N1, such that Mod(ϕ)N′ = Mod(ζ)N1, we obtain
a strict cocone (N′, N1) for the span (ϕ, ζ). By the pushout property of (ϕ1, ζ ′), there exists
an unique N′1 : Σ′1 → Π, such that N′ = ζ ′; N′1 and N1 = ϕ1; N′1. It remains to prove that
N′1 qualifies as a Σ′1-model, i.e., that Sen(N′1) is total.

By the hypothesis on Sen that it preserves maximality, it is enough to prove that N′1
is maximal. Consider any x : Σ′1 → Π, such that N′1 ≤ x. It follows that N′ ≤ ζ ′; x and
N1 ≤ ϕ1; x. By the hypothesis on Sen that it reflects maximality, we have that both N′ and
N1 are maximal, hence ζ ′; x = N′ and ϕ1; x = N1. By the pushout hypothesis, it follows
that x = N′1.

With respect to the conditions underlying proposition 8, note that:

• There are no restrictions on the signature morphisms that form the pushout square.
• Then, the condition of proposition 8 that Sen preserves and reflects maximality applies

well in concrete situations. As an example, let us consider the case of 3/2PL. There,
Sign = Pfn, and therefore it is evident that for any signature morphism ϕ Sen(ϕ) is
total if and only if ϕ is total.

• The 3/2-pushout condition of proposition 7 in general is stronger than the pushout
condition of proposition 8.

Often, in concrete situations that are related to the basic context of proposition 6, the
pushout squares of signature morphisms are already 3/2-pushout squares. The following
result illustrates such a case that is emblematic for the concrete applications not only
because it is sometimes involved as such (e.g., in 3/2PL) but also because when it is not

144

Mathematics 2022, 10, 1507

the case then the respective category of signature morphisms can be often treated in a
similar way.

Proposition 9. Any pushout square in Set is a 3/2-pushout square in Pfn.

Proof. For this proof, it is convenient to use the representation of partial functions as
homomorphisms between pointed sets. A pointed set A is a set with a universally designated
element ⊥. A homomorphism f : A → B of pointed sets is a function that preserves
the designated element ⊥, i.e., f⊥ = ⊥. This yields a category Set⊥ and a canonical
isomorphism Pfn ∼= Set⊥ that:

• Maps any set A to the set A⊥ = A ∪ {⊥} (disjoint union);
• Maps any partial function f : A �→ B to the homomorphism f⊥ : A⊥ → B⊥ defined

for each x ∈ A by:

f⊥x =

{
f x, f x defined
⊥, f x undefined.

Now, let us consider a pushout square in Set as follows.

Σ
ϕ ��

ζ

		

Σ′

ζ ′

		
Σ1 ϕ1

�� Σ′1

(19)

By mapping the pushout square (19) to Set⊥, we obtain the commutative square

Σ⊥
ϕ⊥ ��

ζ⊥
		

Σ′⊥

ζ ′⊥
		

(Σ1)⊥
(ϕ1)⊥

�� (Σ′1)⊥

This is a pushout square because (_)⊥ : Set → Set⊥ is a left adjoint to the forgetful
functor Set⊥ → Set and left adjoint functors preserve all colimits [15]. This left adjoint
property can be either checked directly, or else, it can be established by noticing that it is a
special case of a free algebra construction corresponding to a reduct functor of categories of
algebras for the signature inclusion of the signature consisting of one sort into the signature
consisting of one sort and one constant.

This showed that (19) is a pushout square in Pfn. In order to prove that this is a
3/2-pushout square in Pfn, we let (a′, a1) and (b′, b1) be strict cocones for the span (ϕ, ζ),
such that a′ ⊆ b′ and a1 ⊆ b1. Let α and β be the unique mediating partial functions for
(a′, a1) and (b′, b1), respectively. We have to show that α ⊆ β. Note that α ⊆ β means that
for each x ∈ Σ′1, α⊥x
= ⊥ implies α⊥x = β⊥x. However, α⊥
= ⊥ implies x
= ⊥. By the
pushout property of (19), it follows that there exists y in Σ′ or in Σ1, such that ζ ′y = x or
ϕ1x = y. By symmetry, without any loss of generality, we may assume that y ∈ Σ′ and
ζ ′y = x. We have that:

α⊥x = α⊥(ζ
′y) = ay = by (since a ⊆ b) = β⊥(ζ

′y) = β⊥x.

5. Conclusions and Future Work

We have defined a representation of 3/2-institutions as stratified institutions in which
the set of the reducts of a model with respect to a fixed signature morphism is assimilated
to the set of its states. This representation is subject to some conditions on the signature

145

Mathematics 2022, 10, 1507

morphisms. Then, we have explored three consequences of this general representation:
a further representation to ordinary institutions, (stratified) semantic connectives in 3/2-
institutions, and stratified model amalgamation in 3/2-institutions.

The results of our work also raise a series of issues to be addressed in the future. We
mention a couple of them:

• The import of more model theory from stratified institution theory to 3/2-institutions.
• Find general ways, with good applicability in concrete situations, to generate model

amalgamation cocones such as in diagrams (15).

As stratified institution theory continues to develop, our representation result may
provide new enhancements of the theory of 3/2-institutions with concepts and results that
come from stratified institutions.

Funding: This work was supported by a grant of the Romanian Ministry of Education and Research,
CNCS—UEFISCDI, project number PN-III-P4-ID-PCE-2020-0446, within PNCDI III.

Acknowledgments: The comments of the reviewers helped improve the presentation of the results
in the paper.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Goguen, J.; Burstall, R. Institutions: Abstract Model Theory for Specification and Programming. J. Assoc. Comput. Mach. 1992,
39, 95–146. [CrossRef]

2. Sannella, D.; Tarlecki, A. Foundations of Algebraic Specifications and Formal Software Development; Springer: Berlin/Heidelberg,
Germany, 2012.

3. Diaconescu, R. Institution-Independent Model Theory; Birkhäuser: Basel, Switzerland, 2008.
4. Diaconescu, R.; Stefaneas, P. Modality in Open Institutions with Concrete Syntax. Bull. Greek Math. Soc. 2004, 49, 91–101.

Previously published as JAIST Tech Report IS-RR-97-0046, 1997.
5. Aiguier, M.; Diaconescu, R. Stratified institutions and elementary homomorphisms. Inf. Process. Lett. 2007, 103, 5–13. [CrossRef]
6. Diaconescu, R. Implicit Kripke Semantics and Ultraproducts in Stratified Institutions. J. Log. Comput. 2017, 27, 1577–1606.

[CrossRef]
7. Aiguier, M.; Bloch, I. Logical dual concepts based on mathematical morphology in stratified institutions: Applications to spatial

reasoning. J. Appl. Non-Class. Log. 2019, 29, 392–429. [CrossRef]
8. Găină, D. Forcing and Calculi for Hybrid Logics. J. Assoc. Comput. Mach. 2020, 67, 25:1–25:55. [CrossRef]
9. Fauconnier, G.; Turner, M. Conceptual integration networks. Cogn. Sci. 1998, 28, 133–187. [CrossRef]
10. Goguen, J. An Introduction to Algebraic Semiotics, with Application to User Interface Design. In Computation for Metaphors,

Analogy, and Agents; Lecture Notes in Computer Science; Nehaniv, C.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1999;
Volume 1562, pp. 242–291.

11. Goguen, J.A. What Is a Concept? In Conceptual Structures: Common Semantics for Sharing Knowledge. ICCS 2005; Lecture Notes
in Computer Science; Dau, F., Mugnier, M.L., Stumme, G., Eds.; Springe: Berlin/Heidelberg, Germany, 2005; Volume 3596,
pp. 52–77.

12. Goguen, J. Categorical Approaches to Merging Software Changes. Unpublished draft.
13. Diaconescu, R. Implicit Partiality of Signature Morphisms in Institution Theory. In Hajnal Andréka and István Németi on Unity of

Science: From Computing to Relativity Theory Through Algebraic Logic; Outstanding Contributions to Logic; Madarász, J., Székely, G.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 19, pp. 81–123, ISBN 978-3-030-64186-3.

14. Diaconescu, R. Decompositions of Stratified Institutions. arXiv 2021, arXiv:2112.12993.
15. Mac Lane, S. Categories for the Working Mathematician, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998.
16. Kelly, M. Basic Concepts of Enriched Category Theory; Cambridge University Press: Cambridge, UK, 1982.
17. Borceux, F. Handbook of Categorical Algebra; Cambridge University Press: Cambridge, UK, 1994.
18. Kelly, M.; Street, R. Review of elements of 2-categories. In Category Seminar Sydney 1972/1973; Lecture Notes in Mathematics;

Springer: Berlin/Heidelberg, Germany, 1974; pp. 75–103.
19. Jay, C.B. Partial Functions, Ordered Categories, Limits and Cartesian Closure. In IV Higher Order Workshop, Banff 1990:

Proceedings of the IV Higher Order Workshop, Banff, AB, Canada 10–14 September 1990; Birtwistle, G., Ed.; Springer: London, UK,
1991; pp. 151–161.

20. Diaconescu, R.; Stefaneas, P. Ultraproducts and Possible Worlds Semantics in Institutions. Theor. Comput. Sci. 2007, 379, 210–230.
[CrossRef]

146

Mathematics 2022, 10, 1507

21. Martins, M.A.; Madeira, A.; Diaconescu, R.; Barbosa, L. Hybridization of Institutions. In Algebra and Coalgebra in Computer
Science; Lecture Notes in Computer Science; Corradini, A., Klin, B., Cîrstea, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 6859, pp. 283–297.

22. Diaconescu, R. Quasi-varieties and initial semantics in hybridized institutions. J. Log. Comput. 2016, 26, 855–891. [CrossRef]
23. Madeira, A. Foundations and Techniques for Software Reconfigurability. Ph.D. Thesis, Universidades do Minho, Aveiro and

Porto (Joint MAP-i Doctoral Programme), Aveiro, Portugal, 2014.
24. Tarlecki, A. On the Existence of Free Models in Abstract Algebraic Institutions. Theor. Comput. Sci. 1986, 37, 269–304. [CrossRef]
25. Diaconescu, R. Institution-independent Ultraproducts. Fundam. Inform. 2003, 55, 321–348.
26. Diaconescu, R.; Goguen, J.; Stefaneas, P. Logical Support for Modularisation. In Logical Environments; Huet, G., Plotkin, G., Eds.;

Cambridge University Press: Cambridge, UK, 1993; pp. 83–130.

147

Citation: Diaconescu, R. The

Axiomatic Approach to

Non-Classical Model Theory.

Mathematics 2022, 10, 3428.

https://doi.org/10.3390/

math10193428

Academic Editor: Francesco Calimeri

Received: 6 August 2022

Accepted: 16 September 2022

Published: 21 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

The Axiomatic Approach to Non-Classical Model Theory

Răzvan Diaconescu

Simion Stoilow Institute of Mathematics of the Romanian Academy, 010702 Bucharest, Romania;
razvan.diaconescu@imar.ro

Abstract: Institution theory represents the fully axiomatic approach to model theory in which all
components of logical systems are treated fully abstractly by reliance on category theory. Here, we
survey some developments over the last decade or so concerning the institution theoretic approach
to non-classical aspects of model theory. Our focus will be on many-valued truth and on models
with states, which are addressed by the two extensions of ordinary institution theory known as
L-institutions and stratified institutions, respectively. The discussion will include relevant concepts,
techniques, and results from these two areas.

Keywords: model theory; institution theory; category theory; stratified institutions; categorical model
theory; many-valued truth institutions; L-institutions

MSC: O3C95; 03C40; 68Q65

1. From Classical Model Theory to Axiomatic Non-Classical Model Theory

In this introductory section, we will discuss briefly and informally the path leading
from the most traditional form of model theory to the modern and non-classical one.

1.1. Model Theory

In a broader sense, model theory is the mathematical study of language interpreta-
tions, its main paradigm being Alfred Tarski’s semantic definition of truth [1]. Thus, the
occurrence of the symbol |= always indicates that we are in the presence of some form of
model–theoretical argument. In its most classical form, model theory deals with first-order
structures. So, in first-order model theory, the relation M |= ρ means that M is a first-order
model and ρ is a first-order sentence. Tarski’s approach was to determine the validity of this
relation inductively on the structure of ρ. On the one hand, first-order model theory [2,3]
is a vibrant and sophisticated area of mathematical research that brings logical methods
to bear on deep problems of classical mathematics. Two early achievements of first-order
model theory that brought it fame within the wider mathematical community were the
modern and rigorous recovery of the approach to mathematical analysis of Newton, Leibniz
and Euler—in the form of Robinson’s non-standard analysis [4,5]—and the proof of the
independence of the Continuum Hypothesis [6,7]. Moreover, first-order model theory has
applications to other scientific areas, most notably to computing science. On the other hand,
first-order model theory is the area in which many of the broader ideas of model theory
were first worked out.

1.2. Axiomatic Model Theory

First-order model theory is also the most important example of the explicit and
concrete approach to model theory. The axiomatic approach contrasts this as the concepts
and defining properties are axiomatised rather than considered concretely. As with all
other axiomatic approaches in mathematics, this achieves proper abstraction, relativisation,
conceptual clarity, and structurally clean causality. In a sophisticated mathematical area
such as model theory, these features are crucial. The very origins of the axiomatic approach

Mathematics 2022, 10, 3428. https://doi.org/10.3390/math10193428 https://www.mdpi.com/journal/mathematics149

Mathematics 2022, 10, 3428

to model theory may be traced back, although not in an explicit form, in Lindström’s
“external” characterisation of first-order logic [8]. Several explicit axiomatic developments
followed, such as Barwise’s abstract model theory [9,10] or the categorical model theory of the
Budapest school [11–15], etc. In spite of their success in developing interesting results, all
those approaches lacked full axiomatisability, as they would usually treat axiomatically
some parts of the logical systems while considering concretely other parts. Consequently,
they were not able to achieve the true power of the full axiomatic approach.

1.2.1. The Institution-Theoretic Trend

The definition in the late 1970s by Goguen and Burstall of the concept of institution as a
formal definition of the intuitive notion of logic [16–18] achieved the full axiomatic approach
to model theory. In institution theory, all three components of logical systems—namely,
the syntax, the semantics, and the satisfaction relation between them—are treated fully
abstractly by relying heavily on category theory [19]. Very briefly, the above-mentioned
formalization is a category–theoretic structure (Sign, Sen, Mod, |=), called institution, con-
sisting of a category Sign (of so-called signatures), two functors (Sen for the syntax and Mod
for the semantics), and a family |= of binary relations, which are all bound to satisfy certain
consistency axioms. We will clarify precisely this definition below in the paper. In our
survey, we will follow this trend of axiomatic model theory known as institution-independent
model theory, or institutional model theory, or institution-theoretic model theory. The first in
this list of synonymous terminologies may be actually the most informative, as the word
‘independent’ suggests a model theory that is not confined to any particular logical system.

1.2.2. The Original Motivation

With institution theory, Goguen and Burstall addressed an important issue in com-
puting science, and especially in formal–specification theory. There was an explosion of
formal logical systems used, and there was a need for a uniform treatment of specification
concepts and results across the increasing number of logic-based formal methods. There
was also a strong feeling that much of the logic-based specification theory may actually be
developed independently of an underlying concrete logical system. Over decades, this area
undertook a massive development, and now, it is still vibrant and dynamic. It has fulfilled
its original mission, even beyond expectations, as follows:

• The concept of institution has emerged as the most fundamental mathematical structure
of logic-based formal specifications in the sense that virtually all modern specification lan-
guages/systems are rigorously based upon a logical system that is formally captured
as an institution in such a way that each language construct corresponds exactly to a
mathematical concept from that institution. In particular, this has been the principle
underlying the design of specification languages and systems such as CASL [20],
CafeOBJ [21,22], Hets [23], DOL [24], etc.

• A great deal of modern formal specification theory has been developed at the general level
of abstract institutions, thus bringing an unprecedented high level of uniformity and
clarity to an area that has witnessed a real explosion in the population of logical
systems (cf. the monograph [25]).

• The institution–theoretic methods have been successfully exported to other areas of com-
puting science, most notably to declarative programming [26–28] and ontologies [24,29].
In all these areas, in issues involving modularisation, stepwise refinement, or logical
heterogeneity, the use of institution theory is practically without alternative.

1.2.3. Institutional Model Theory as Such

The abstract axiomatic development of institutional model theory goes back to [30–32].
Those early endeavours stemmed from computing science, addressing typical issues from
formal specification (such as initial semantics), but they also led to strong model–theoretic
results in themselves. Even so, a systematic programme for developing an in-depth
institutional model theory beyond computing science motivations arose only after 2000.

150

Mathematics 2022, 10, 3428

• This meant an axiomatic-driven redesign of core parts of model theory at a new level
of generality—namely, that of abstract institutions—independently of any concrete
logical system. Those included institutional developments of some of the most impor-
tant model–theoretic methods that were originally worked out in first-order model
theory, such as diagrams [33], ultraproducts [34], elementary chains [35], saturated
models [36], omitting types [37], forcing [38], etc.

• This institutional development has had at least three major consequences:

1. A new understanding of model–theoretic phenomena that are uncontaminated by
irrelevant concrete details; this led to revisions of well established concepts and
facilitated access to difficult results;

2. A consequence of (1) is a series of results about completeness [38,39], definabil-
ity [40,41], interpolation [42–45], Löwenheim–Skolem [37,45], some instances of
these representing new important results even in first-order model theory;

3. A systematic and uniform development of model theories for unconventional logics,
either new or older ones, which is a process of great difficulty within concrete
frameworks.

Moreover, in the case of (3), the institution–theoretic approach has also led to a
better understanding of the respective logics sometimes accompanied by a conceptual
resetting.

1.2.4. Logic by Translation

A specific general logical method that has gained prominence in the past few decades
is that of logic by translation. By this method, one can overcome difficulties of developing
results in a certain logical system by exporting the problem to another logical system
where a solution is known or, for various reasons, is easier to obtain. This relies on
translations/encodings between logical systems that have adequate properties both for
the forward translation and for shifting the obtained result back to the source logic. Logic-
by-translation has had many applications in logic and computer science, many of them
through institution theory. That is mostly thanks to the fact that institution theory, with its
category–theoretic build where logical systems arise as categorical objects, has come up with
adequate mathematical concepts of structural mapping between institutions at an abstract
level [18,46]. The value of the institution–theoretic proposal to logic-by-translation [47]
has been awarded internationally by the scientific community at the 2nd World Congress of
Universal Logic (Xi’an, 2007).

1.3. Beyond Classical Institutional Model Theory

The concept of institution is abstract enough to accommodate any logical system based
on satisfaction between sentences and models of any kind, including non-classical logics.
However, the developments discussed above, albeit highly abstract and axiomatic, may
be considered “classical” in the sense that they reflect concepts, methods and results that
have been originally worked out at a concrete level in first-order model theory. Classical
institutional model theory may be effective to some extent in non-classical contexts but
not entirely satisfactory. For instance, non-classical logical situations that are beyond the
usual binary satisfaction relation between models and sentences, such as local satisfaction
in modal logics or many-valued satisfaction, admit classical institution–theoretic formal-
isations but at the cost of flattening the satisfaction relation to the binary case [44,48],
which is a process that alters the nature of the respective logics. Consequently, there is a
loss of information, and important non-classical logic developments cannot be completed
naturally or not at all. For example, when considering institutions for modal logics, this is
completed on the basis of global satisfaction, which is much less relevant than the local sat-
isfaction relation. In addition, in the flattening of many-valued satisfaction, the possibility
of grading the consequence relation [49] is lost. Moreover, logic encodings that are based
on theoroidal comorphisms are difficult to define because of the multifaceted nature of the
concept of theory in many-valued logics [49,50]. The answers to these challenges is given

151

Mathematics 2022, 10, 3428

by the stratified institutions [51–53] and the L-institutions [49] that represent extensions of
the ordinary concept of institution that accommodate properly models with states and
local satisfaction, and many-valued semantic truth, respectively. Technically, these two new
mathematical structures are generalisations of the ordinary concept of institution. This
survey is about these two extensions of ordinary institution theory with emphasis on model
theory-motivated developments rather than computing science. Regarding the technical
level of this survey, while avoiding technical vagueness, we will also deliberately try to
avoid intricate technicalities that pervade many institutional model theory works. In order
to achieve such a balance in the presentation, we will employ more informal explanations
while providing pointers to works where the respective technical details can be found.

Before surveying the theories of stratified and of L-institutions, respectively, we will
review the ordinary concept of institution.

2. Institutions

In this section, we will first discuss the role played by category theory in institution
theory, we will review some basic notational conventions, and finally, we will recall the
concept of institution.

2.1. First, Some Category Theory

Category theory of Eilenberg and Mac Lane [19,54] constitutes the mathematical
substance of institution theory. This situation is similar in other axiomatic approaches to
model theory, such as in the above-mentioned Budapest school of abstract model theory.
This means that the mathematical structures in institution theory are all categorical. On the
other hand, the flow of ideas in institution theory is model theoretic. So, institution theory
is a form of model theory that at the level of the mathematical structures is heavily based
on categorical structures. This represents a sharp contrast to the widespread perception of
category theory as a mere language that supports a clearer presentation and structuring of
mathematical concepts that in fact do not have an inherent categorical nature. Institution
theory without category theory is possible to the same extent as, for instance, group theory
is possible without set theory!

Why such a reliance on category theory; is it indispensable for the axiomatic treatment
of model theory? There are several reasons for this. One is that that set theoretical structures
cannot support the required level of generality and abstraction. Another one is that category
theory emphasises the relationships between objects rather than their internal structures.
Moreover, category theory is conceptually a highly developed area of mathematics, so this
brings in much conceptual and technical power.

However, the level of category theory involved in institution theory is rather elemen-
tary, as it hardly touches advanced concepts and techniques; the only slight exception being
found in the area of stratified institutions. So, familiarity with concepts such as opposite
(dual) of a category C (denoted C�), comma category, functor, (lax) natural transformation,
(co)limit, and adjunction may be enough to be able to engage with the study of institutional
model theory. In this survey, with a few exceptions, in general, we follow the terminology
and the notations of [19]. As regards the notational conventions,

• |C| denotes the class of objects of a category C, C(A, B) and the set of arrows (mor-
phisms) with domain A and codomain B;

• The domain of an arrow/morphism f is denoted by � f , while its codomain is denoted
by f�;

• f ; g denotes the composition of arrows/morphisms in diagrammatic order, which in
set theoretic orders reads as g ◦ f ;

• The category of sets (as objects) and functions (as arrows) is denoted by Set;
• The category of all categories (as objects) and functors (as arrows) is denoted by

CAT. (Strictly speaking, CAT is only a ‘quasi-category’ living in a higher set-theoretic
universe).

152

Mathematics 2022, 10, 3428

2.2. The Concept of Institution

The original standard reference for institution theory is [18]. An institution

I = (SignI , SenI , ModI , |=I)
consists of

• A category SignI whose objects are called signatures;
• A sentence functor SenI : SignI → Set defining for each signature a set whose

elements are called sentences over that signature and defining for each signature
morphism a sentence translation function;

• A model functor ModI : (SignI)� → CAT defining for each signature Σ the category
ModI (Σ) of Σ-models and Σ-model homomorphisms, and for each signature morphism
ϕ the reduct functor ModI (ϕ);

• For every signature Σ, a binary Σ-satisfaction relation |=IΣ⊆ |ModI (Σ)| × SenI (Σ);

such that for each morphism ϕ, the Satisfaction Condition

M′ |=Iϕ� SenI (ϕ)ρ if and only if ModI (ϕ)M′ |=I�ϕ ρ (1)

holds for each M′ ∈ |ModI (ϕ�)| and ρ ∈ SenI (�ϕ). This can be expressed as the satisfac-
tion relation |= being a natural transformation:

�ϕ

ϕ

		

SenI (�ϕ)
|=I�ϕ ��

SenI (ϕ)
		

[|ModI (�ϕ)| → 2]

ϕ� SenI (ϕ�)
|=Iϕ�

�� [|ModI (ϕ�)| → 2]

ModI (ϕ)

([|Mod(Σ)| → 2] represents the ‘set’ of the ‘subsets’ of |Mod(Σ)|).
We may omit the superscripts or subscripts from the notations of the components of

institutions when there is no risk of ambiguity. For example, if the considered institution
and signature are clear, we may denote |=IΣ just by |=. For M = Mod(ϕ)M′, we say that M
is the ϕ-reduct of M′.

The literature shows myriads of logical systems from computing or from mathematical
logic captured as institutions. Many of these are collected in [25,44]. In fact, an informal the-
sis underlying institution theory is that any ‘logic’ may be captured by the above definition.
While this should be taken with a grain of salt, it certainly applies to any logical system
based on satisfaction between sentences and models of any kind. In [44], one can read
how propositional logic PL, (many-sorted) first order logic FOL together with many of its
fragments, partial algebra, various flavours of modal logic, intuitionistic logics, preordered
algebra, multialgebras, membership algebra, higher-order logics with various semantics,
many-valued logics, etc. can be captured as institutions. In all these cases, the effort to
capture the (model theory of the) respective logical system as an institution implies a con-
ceptual adjustment of some of its aspects in the direction of a higher mathematical rigour, an
emblematic case being that of the variables (see for example the relevant discussion in [55]).
In many cases, some important concepts have been extended, most notably concepts of
signature morphisms. In order to fully understand these conceptual developments, it is
worth looking in the literature at detailed examples of mainstream concrete institutions.

3. Stratified Institutions

Models with states appear in myriad forms in computing science and logic. Classes of
examples include at least

• A wide variety of Kripke semantics as in [51,52,56,57];
• Various automata theories;
• Various model theories with partiality for signature morphisms [58], providing mathe-

matical foundations to conceptual blending (see [59]).

153

Mathematics 2022, 10, 3428

The institution theory answer to this is given by the theory of stratified institutions
introduced in [51,60] and further developed or invoked in works such as [52,53,56–58], etc.
Informally, the main idea behind the concept of stratified institution as introduced in [51,60]
is to enhance the concept of institution with ‘states’ for the models. Thus, each model M
comes equipped with a set [[M]] that has to satisfy some structural axioms. The following
definition has been given in [52] and represents an important upgrade of the original
definition from [51], the main reason being to make the definition of stratified institutions
really usable for conducting in-depth model theory. A slightly different upgrade has been
proposed in [53], which is however strongly convergent to the upgrade proposed in [52].

A stratified institution S is a tuple (SignS , SenS , ModS , [[_]]S , |=S) consisting of:

• A category SignS of signatures;
• A sentence functor SenS : SignS → Set;
• A model functor ModS : (SignS)� → CAT.

Until this point, this definition is identical to that of an ordinary institution. However,
now comes the additional structure that provides explicitly the states of the models.

• A “stratification” lax natural transformation [[_]]S : ModS ⇒ SET, where SET : SignS →
CAT is a functor mapping each signature to Set; and

• A satisfaction relation between models and sentences which is parameterised by model
states, M (|=S)w

Σ ρ where w ∈ [[M]]SΣ such that the following Satisfaction Condition

ModS (ϕ)M′ (|=S)[[M
′]]ϕw

�ϕ ρ if and only if M′ (|=S)w
ϕ� SenS (ϕ)ρ (2)

holds for any signature morphism ϕ, M′ ∈ |ModS (ϕ�)|, w ∈ [[M′]]Sϕ�, ρ ∈ SenS (�ϕ).

As for ordinary institutions, when appropriate, we shall also use simplified notations
without superscripts or subscripts that are clear from the context.

The lax natural transformation property of [[_]] is depicted in the diagram below

Σ′′ Mod(Σ′′)
[[_]]Σ′′ ��

Mod(ϕ′)
		 22

00

Set

[[_]]ϕ′
3" =

		
Σ′

ϕ′

Mod(Σ′)

Mod(ϕ)

		

[[_]]Σ′ ��

43
00

Set

=

		[[_]]ϕ
3"

Σ

ϕ

Mod(Σ)
[[_]]Σ

�� Set

with the following compositionality property for each Σ′′-model M′′:

[[M′′]](ϕ;ϕ′) = [[M′′]]ϕ′ ; [[Mod(ϕ′)M′′]]ϕ. (3)

Moreover, the natural transformation property of each [[_]]ϕ is given by the commuta-
tivity of the following diagram:

M′

h′
		

[[M′]]Σ′
[[M′]]ϕ ��

[[h′]]Σ′
		

[[Mod(ϕ)M′]]Σ

[[Mod(ϕ)h′]]Σ
		

N′ [[N′]]Σ′
[[N′]]ϕ

�� [[Mod(ϕ)N′]]Σ

(4)

The satisfaction relation can be presented as a natural transformation

|= : Sen ⇒ [[Mod(_)→ Set]]

where the functor [[Mod(_)→ Set]] : Sign → Set is defined by

154

Mathematics 2022, 10, 3428

– For each signature Σ ∈ |Sign|, [[Mod(Σ) → Set]] denotes the set of all the mappings
f : |Mod(Σ)| → Set such that f (M) ⊆ [[M]]Σ; and

– For each signature morphism ϕ : Σ → Σ′

[[Mod(ϕ)→ Set]](f)(M′) = [[M′]]−1
ϕ (f (Mod(ϕ)M′)).

A straightforward check reveals that the Satisfaction Condition (2) appears exactly as
the naturality property of |=:

Σ

ϕ

		

Sen(Σ)
|=Σ ��

Sen(ϕ)
		

[[Mod(Σ)→ Set]]

[[Mod(ϕ)→Set]]
		

Σ′ Sen(Σ′)
|=Σ′

�� [[Mod(Σ′)→ Set]]

Ordinary institutions are the stratified institutions for which [[M]]Σ is always a sin-
gleton set. In the upgraded definition, the surjectivity condition on [[M′]]ϕ from [51] has
been removed, as it can be made explicit when necessary. This is motivated by the fact that
most of the results developed do not depend upon this condition which, however, holds
in all examples known by us. On the one hand, in many important concrete situations
(Kripke semantics, automata, etc.), [[M′]]ϕ are even identities, which makes [[_]] a strict
rather than a lax natural transformation. However, on the other hand, there are interesting
examples when the stratification is properly lax, such as in the OFOL example below or
the representation of 3/2 institutions as stratified institutions developed in [58].

The literature on stratified institutions shows many model theories that are captured
as stratified institutions. Here, we recall some of them in a very succint form; for a more
detailed form, one may find them in [52,57,58].

1. In modal propositional logic (MPL), the category of the signatures is Set, Sen(P) is
the set of the usual modal sentences formed with the atomic propositions from P,
and the P models are the Kripke structures (W, M) where W = (|W|, Wλ) consists
of a set of ‘possible worlds’ |W| and an accessibility relation Wλ ⊆ |W| × |W|, and
M : |W| → 2P. The stratification is given by [[(W, M)]] = |W|.

2. In first-order modal logic (MFOL), the signatures are first-order logic (FOL) signatures
consisting of sets of operation and relation symbols structured by their arities. The
sentences extend the usual construction of FOL sentences with the modal connectives
� and �. The models for a signature Σ are Kripke structures (W, M) where W is like
inMPL but M : |W| → |ModFOL(Σ)| is subject to the constraint that the carrier sets,
and the interpretations of the constants are shared across the possible worlds. The
stratification is like inMPL.

3. Hybrid logics (HPL,HFOL, etc.) refine modal logics by adding explicit syntax for the
possible worlds such as nominals and @. Stratified institutions of hybrid logics upgrade
the syntactic and the semantic components of the stratified institutions of modal logics
accordingly. For instance, in the stratified institution of hybrid propositional logic
(HPL), the signatures are pairs of sets (Nom, P), the (Nom, P)-models are Kripke
structures (W, M) like in MPL, but where W adds interpretations of the nominals,
i.e., W = (|W|, (Wi)i∈Nom, Wλ), and at the level of the syntax, for each i ∈ Nom, we
have a new sentence i-sen, a new unary connective @i, and existential quantifications
over nominals variables. Then, ((W, M) |=w i-sen) = (Wi = w), ((W, M) |=w @iρ) =
((W, M) |=Wi ρ), etc.

4. Multi-modal logics exhibit several modalities instead of only the traditional � and �,
and moreover, these may have various arities. If one considers the sets of modalities
to be variable, then they have to be considered as part of the signatures. Each of the
stratified institutions discussed in the previous examples admit an upgrade to the
multi-modal case.

155

Mathematics 2022, 10, 3428

5. In a series of works on modalization of institutions [61–63], modal logic and Kripke
semantics are developed by abstracting away details that do not belong to modality,
such as sorts, functions, predicates, etc. This is achieved by extensions of abstract
institutions (in the standard situations meant in principle to encapsulate the atomic
part of the logics) with the essential ingredients of modal logic and Kripke semantics.
The results of this process, when instantiated to various concrete logics (or to their
atomic parts only) generate uniformly a wide range of hierarchical combinations
between various flavours of modal logic and various other logics. Concrete examples
discussed in [61–63] include various modal logics over non-conventional structures
of relevance in computing science, such as partial algebra, preordered algebra, etc.
Various constraints on the respective Kripke models, many of them having to do
with the underlying non-modal structures, have also been considered. All these
arise as examples of stratified institutions such as the examples presented above in
the paper. An interesting class of examples that has emerged quite smoothly out
of the general works on hybridization (i.e., modalization including also hybrid logic
features) of institutions is that of multi-layered hybrid logics that provide a logical
base for specifying hierarchical transition systems (see [64]). This construction will be
discussed in more detail in a dedicated section below in the paper.

6. Open first-order logic (OFOL). This is an FOL instance of St(I), the ‘internal stratifica-
tion’ abstract example developed in [51]. An OFOL signature is a pair (Σ, X) consist-
ing of FOL signature Σ and a finite block of variables. To any OFOL signature (Σ, X)
corresponds an FOL signature Σ + X that adjoins X to Σ as new constants. Then,
SenOFOL(Σ, X) = SenFOL(Σ + X), ModOFOL(Σ, X) = ModFOL(Σ), [[M]]Σ,X = MX , i.e.,
the set of the “valuations” of X to M and for each (Σ, X)-model M, each w ∈ MX,
and each (Σ, X)-sentence ρ, we define (M(|=OFOLΣ,X)wρ) = (Mw |=FOLΣ+X ρ) where Mw

is the expansion of M to Σ + X such that Mw
X = w (i.e., the new constants of X are

interpreted in Mw according to the “valuation” w).
7. Various kinds of automata theories can be presented as stratified institutions. For

instance, the stratified institution SAUT of deterministic automata (for regular lan-
guages) has sets of input symbols as signatures, the automata A are the models and
the words are the sentences. Then, [[A]] is the set of the states of A and A |=s α if and
only if α is recognised by A from the state s.

8. In [51], the authors introduced an abstract approach to connectives that generalises
the propositional and quantification connectives, modalities, nominals, and so on. A
connective signature C is just a single sorted signature of operation symbols, which are
called connectives. Let TC denote the set of all C-terms. A C-algebra A consists of a set
[[A]] and a mapping A : TC → P [[A]]. A C-homomorphism h : A → B is a function
h : [[A]]→ [[B]] such that 2h ◦ A = B. If η ∈ [[A]] and ρ ∈ TC , then A |=η

C ρ holds when
η ∈ A(ρ). All these define the stratified institution of abstract connectives CON that
has the connectives signatures as its signatures, C-algebras and C-models, TC as the
set of C-sentences, the stratification being given by [[A]] and the satisfaction relation
defined as above.

9. In [58], there is a development of a general representation theorem of 3/2 institutions
as stratified institutions. The theory of 3/2 institutions [59] is an extension of ordinary
institution theory that accommodates the partiality of the signature morphisms and
its syntactic and semantic effects, which is motivated by applications to conceptual
blending and software evolution. The representation theorem is based, for each
ϕ�-model M, on setting [[M]] to the set its ϕ-reducts. This is possible because in
3/2 institutions, unlike in ordinary institution theory, a model may have more than
one reduct with respect to a fixed signature morphism, this being the semantic effect
of the (implicit) partiality of the signature morphisms.

That was the brief presentation of the concept of stratified institution together with
a list of relevant concrete examples. In the remaining part of this section, we will present

156

Mathematics 2022, 10, 3428

some of the most important model theoretic developments with stratified institutions
as follows:

• A ‘flattening’ of stratified institutions to ordinary institutions as a universal con-
struction, and on this basis, a general technique for establishing properties in some
important class of stratified institution, which uses an axiomatic decomposition of the
respective stratified institution.

• A general method to construct new stratified institutions out of existing stratified
institutions by ‘modalisation’.

• An axiomatic treatment of important model theoretic concepts such as propositional
connectives, quantifiers, modalities, nominals, and interpolation.

• Some important model theoretic methods in the context of stratified institutions,
including diagrams, ultraproducts, and Tarski’s elementary chain theorem.

• Some more computing science-motivated uses of stratified institutions.

3.1. Flattening Stratified Institutions to Ordinary Institutions

Given any stratified institution S = (Sign, Sen, Mod, [[_]], |=), in [52], we have built an
ordinary institution S 	 = (Sign, Sen, Mod	, |=) as follows:

– The objects of Mod	(Σ) are the pairs (M, w) such that M ∈ |Mod(Σ)| and w ∈ [[M]]Σ;
– The Σ-homomorphisms (M, w) → (N, v) are the pairs (h, w) such that h : M → N

and [[h]]Σw = v;
– For any signature morphism ϕ : Σ → Σ′ and any Σ′-model (M′, w′)

Mod	(ϕ)(M′, w′) = (Mod(ϕ)M′, [[M′]]ϕw′);

– For each Σ-model M, each w ∈ [[M]]Σ, and each ρ ∈ Sen(Σ)

((M, w) |=	
Σ ρ) = (M |=w

Σ ρ). (5)

In [57], the construction of S 	 is explained as a categorical universal construction. That
explanation involves the concept of morphism of stratified institutions which is an extension of
the notorious concept of morphism of institutions (cf. [18,44,46], etc.). Both concepts represent
mappings that preserve the mathematical structure of stratified institutions and of ordinary
institutions, respectively, in the same way group homomorphisms preserve the group
structure, or the continuous functions preserve the structure of topological spaces. Thus,
(_)	 arises as a left-adjoint functor from the category SINS of strict stratified institutions to
the category INS of ordinary institutions. One way to present this is that for each institution
B, there exists a stratified institution B̃ and an institution morphism εB : B̃	 → B such that
for each morphism of institutions(Φ, α, β) : S 	 → B, there exists a unique strict stratified
institution morphism (Φ, α, β̃) : S → B̃ such that the following diagram commutes:

B B̃	εB�� B̃

S 	
(Φ,α,β)

++

(Φ,α,β̃)	

:9

S
(Φ,α,β̃)

�� (6)

The construction S 	, called the flattening of S , on the one hand reduces stratified
institutions to ordinary institutions without any loss of information. It is helpful for trans-
ferring concepts and results from the simpler world of ordinary institution theory to that
of stratified institutions. One important example of that is given by the model amalgama-
tion property, which is one of the most fundamental properties of institutions with vast
consequences both in computing science and in institutional model theory (cf. [25,44,65],
etc.). Model amalgamation in S 	 defines the so-called stratified model amalgamation in S [57],
which is more refined than plain model amalgamation in S and is a characteristic only
to stratified institutions. On the other hand, it is important to avoid the trap of believing
that in this way, the theory of stratified institutions can be dealt with entirely within the

157

Mathematics 2022, 10, 3428

ordinary institution theoretic framework. The reason for this cannot be the case that the
institutions S 	 are not any institutions, as they have a very specific structure given by the
stratified structure of S .

Another way to reduce a stratified institution to an ordinary institution is to flatten
only the satisfaction relation, i.e.,

M |=∗ ρ if and only if M |=w ρ for each w ∈ [[M]].

This yields an institution when the stratification is surjective (i.e., for each signature
morphism ϕ and each ϕ�-model M′, [[M′]]ϕ is surjective). However, in this institution,
denoted S∗, the locality aspect of S—which is very important—is lost. In the literature,
S∗ and S 	 are known as the global and the local, respectively, institutions associated to S .
They can be regarded as high abstractions of the global and of the local satisfaction in
modal logic.

3.2. Decompositions of Stratified Institutions

In [57], we have introduced a technique for establishing properties of stratified institu-
tions at the general level, which consists of projecting to simpler structures. This reflects
a situation that occurs especially in the stratified institutions that are based on Kripke
semantics, where the models are combined from two simpler components, of which one
may think as a structure of the worlds on the one hand and a structure of primitive or base
models placed in these worlds on the other hand. The actual definition of this is as follows.

Let S be any stratified institution and (Φ, α, β) : S 	 → B be a morphism of institutions
(called a base for S). By the natural isomorphism INS(S 	,B) ∼= SINS(S , B̃) (given by
the adjunction between SINS and INS), we obtain a morphism of stratified institutions

(Φ, α, β̃) : S → B̃ (cf. (6)). A constraint model sub-functor ModC ⊆ ModB̃ is a sub-functor
such that for each signature Σ,

β̃Σ(ModS (Σ)) ⊆ ModC(ΦΣ).

Let B̃C denote the stratified sub-institution of B̃ induced by ModC. A decomposition of
S consists of two strict stratified institution morphisms such as below

S0 S(Φ0,α0,β0)�� (Φ,α,β̃) �� B̃C

such that for each S-signature Σ

Mod0(Φ0Σ)

[[_]]0
Φ0Σ ��

ModS (Σ)
β0

Σ�� β̃Σ ��

[[_]]SΣ
		

ModC(ΦΣ)

[[_]]B̃ΦΣ��
Set

is a pullback in CAT.
The following aspects emerge from the concept of decomposition.

• The models of S can be represented as pairs of S0 models and families of B models
satisfying certain constraints (hence, B̃C models) such that the “worlds” of the corre-
sponding B̃C model constitutes the stratification of the corresponding S0 model. This
means that at the semantic level, S is completely determined by the two components
of the decomposition.

• The situation at the syntactic level is different. The syntax (signatures and sentences)
of each of the two components is represented in the syntax of S , but the latter is not
completely determined by the former syntaxes. In other words, S may have signatures
and sentences that do not originate from either of the two components. This is what
the definition gives us. However, while there are hardly any examples/applications
where all sentences come from either one of the two components, in many examples,
the signatures of S are composed from the signatures of S0 and those from B.

158

Mathematics 2022, 10, 3428

In the definition of decomposition, the role of the constraint model sub-functor ModC

is strongly related to applications. For instance, in many concrete situations of interest,
the Kripke models enjoy some form of sharing. Cases such as MFOL and HFOL are
emblematic in this respect. If we consider the latter one, then:

• S0 = RELC1, which is the single-sorted sub-institution of FOL determined by the sig-
natures without operation symbols other than constants. Consequently, Φ0(Nom, P) =
(Nom, λ : 2).

• α0 is defined by

α0
(Nom,P)λ(i, j) = @i�j(= @i¬�¬j).

• B = AFOL, i.e., the sub-institution of FOL that admits only atoms as sentences.
• ModC restricts the B̃ models only to those for which the base FOLmodels share their

underlying sets and the interpretations of the constants.
• α consists of canonical interpretations of the FOL atoms asHFOL sentences.

One of the consequences of decompositions is the possibility to obtain model amal-
gamation properties in S via model amalgamation properties in the components S0 and
B. This can be very useful in the applications as Kripke models are complex structures;
therefore, their model amalgamation is a mathematically complicated matter, while model
amalgamation in the components of a decomposition is much simpler. In [57], we have
provided a general theorem that obtains model amalgamation through decompositions
and which applies well in the examples. There have been also other applications of this
decomposition technique which we will discuss later on in the paper.

Another important potential of the concept of decomposition is the possibility to apply
it in a reverse way in the sense of constructing new stratified institutions starting from the
components S0 and B (actually B̃C). This can be a great source of new concrete stratified
institutions serving various computing science purposes.

3.3. Modalised (Stratified) Institutions

The modalisation of institutions, already discussed as an item in the list of examples
of stratified institutions, constitutes an example of reversing the decomposition concept
in which S0 is rather concrete—its models being Kripke frames—while B is kept abstract,
and it goes back essentially to [61].

In this context, the work [66] generalises the famous encoding of modal logic into
first-order logic [67] in the sense that any abstract encoding B → FOL becomes lifted to
an encoding S∗ → FOL (the precise notion of encoding being what is known as theoroidal
comorphism). This highly general encoding constitutes the foundations for the formal
specification and verification language H [68], which is a language that is institution-
independent in the sense that in principle, the base institution B can be any institution that
can be plugged into the system.

Although the modalisation of institutions has been defined in the way presented
above, in fact, it can be extended to a construction that takes an arbitrary stratified rather
than an ordinary institution as input. So, it becomes a method for building new stratified
institutions on top of proper stratified institutions. A brief description of this method is as
follows:

• Let S be a stratified institution. The stratified institution to be constructed will be
denoted K(S).

• Then, we let SignK(S) = SignS .
• For any signature Σ, SenK(S) is the least set containing SenS (Σ) and which is closed

under propositional connectives, quantifiers, and modalities (�,�). We can chose
what we need from those connectives, which means that they should be regarded as
a parameter for K(S). The quantifiers are treated abstractly in the typical institution
theoretic manner (cf. [30,44] etc.) by using an abstract designated class of signature
morphisms that obey some axioms known as quantification space [63,69].

159

Mathematics 2022, 10, 3428

• The models of K(S) are the Kripke models over S , i.e., pairs (W, M) where W is a Kripke
frame as inMPL orMFOL, and M = (Mw)w∈|W| such that [[Mw]]SΣ = [[Mv]]SΣ for all
w, v ∈ |W| (so the components of M share their ‘internal states’).

• The stratification is defined by [[(W, M)]]
K(S)
Σ = |W| × [[M]]SΣ .

• The satisfaction relation of K(S) is defined inductively on the structure of the respec-
tive sentences by following the common ideas of of Kripke semantics. For the base
case, when the sentence is in S , we rely on the satisfaction relation of S .

In order to capture precisely various relevant examples, this construction can be
refined in various ways by considering constrained models (axiomatically in the manner
described in [63] or more concretely as in [61]), or by considering nominals structures or
polyadic modalities. In the case of the latter two extensions, of course, the new category of
signatures is a product between SignS and some category of signatures for relations.

3.4. The Logic of Stratified Institutions

The development of an in-depth model theory in the axiomatic style relies also on
the possibility to ‘internalise’ important logical concepts such as propositional connectives
and quantifiers. In ordinary institution theory, this has been achieved very early in [30]
(for a more comprehensive treatment, see also [44]). The axiomatic semantic definitions of
the common propositional connectives and of quantifiers have been extended to stratified
institutions in [52]. Although presented in a different form closer to [53], the definitions
below are equivalent to those of [52]. The following notation is useful for what follows. For
any Σ-model M and any Σ-sentence ρ, we let

[[M, ρ]] = {w ∈ [[M]]Σ | M |=w ρ}.

3.4.1. Propositional Connectives

Given a signature Σ in a stratified institution, a Σ-sentence ρ′ is a semantic

• Negation of ρ when [[M, ρ′]] = [[M]] \ [[M, ρ]];
• Conjunction of ρ1 and ρ2 when [[M, ρ′]] = [[M, ρ1]] ∩ [[M, ρ2]];
• Disjunction of ρ1 and ρ2 when [[M, ρ′]] = [[M, ρ1]] ∪ [[M, ρ2]];
• Implication of ρ1 and ρ2 when [[M, ρ′]] = ([[M]] \ [[M, ρ1]]) ∪ [[M, ρ2]];
• etc.

for each Σ-model M. A stratified institution has (semantic) negation when each sentence of
the institution has a negation. It has (semantic) conjunctions when each two sentences (of the
same signature) have a conjunction. Similar definitions can be formulated for disjunctions,
implications, and equivalences. As in ordinary institution theory, distinguished negations
are usually denoted by ¬_ , distinguished conjunctions are usually denoted by _ ∧ _ ,
distinguished disjunctions are usually denoted by _ ∨ _ distinguished implications are
usually denoted by _ ⇒ _ distinguished equivalences are usually denoted by _ ⇔ _ , etc.
Note that MFOL, MPL together with their hybrid extensions HFOL, HPL, as well as
OFOL have all these semantics propositional connectives. SAUT has conjunctions only.

When they exist, the semantic propositional connectives are inter-definable. Moroever,
when they exist, the negations, conjunctions, disjunctions, implications, and negations
coincide in S and S 	.

3.4.2. Quantifiers

Given a morphism of signatures χ : Σ → Σ′, a Σ-sentence ρ is a semantic

• Universal χ-quantification of a Σ′-sentence ρ′ when

[[M, ρ]] =
⋂

Mod(χ)M′=M

{w ∈ [[M]]Σ | [[M′]]−1
χ w ⊆ [[M′, ρ′]]}, and

• Existential χ-quantification of a Σ′-sentence ρ′ when

[[M, ρ]] =
⋃

Mod(χ)M′=M

[[M′]]χ([[M′, ρ′]]),

160

Mathematics 2022, 10, 3428

for any Σ-model M.
A stratified institution has (semantic) universal D-quantification for a class D of sig-

nature morphisms when for each (χ : Σ → Σ′) ∈ D, each Σ′-sentence has a universal
χ-quantification. A similar definition applies to existential quantification. Distinguished
universal/existential quantifications are denoted by (∀χ)ρ′/(∃χ)ρ′.

When they exist, the universal and the existential χ-quantifications, respectively, coin-
cide in S and S 	. So, on the one hand, the concepts of semantic propositional connectives
and quantifications in ordinary institutions arise as an instance of those of stratified institu-
tions when the underlying set of each [[M]]Σ is a singleton set. On the other hand, we have
seen that the stratified institution concepts of propositional connectives and quantifications
are in substance no more general than their ordinary institution theoretic correspondents.
Therefore, an alternative equivalent way to introduce the stratified institution semantics
of propositional connectives is to define them on the basis of S 	 and then infer the above
definitions as properties at the level of S .

3.4.3. Modalities

While propositional and quantification connectives in stratified institutions can still
be explained in terms of their ordinary institution theoretic counterparts, modalities and
nominals can be defined only in the presence of stratifications because both of them rely
semantically on models having internal states. Moreover, this is not enough; in both cases,
some additional specific semantic infrastructure is also needed.

In order to define semantic possibility (�) and necessity (�) in a stratified institution,
we have to be able to ‘extract’ Kripke frames from the stratification. Let REL denote the
sub-institution of FOL determined by those signatures without function symbols. LetREL1

denote the single sorted version of REL. Given a stratified institution S , a binary frame
extraction assumes that for each signature Σ, the stratification [[_]]Σ is a composition between

a functor FrΣ : Mod(Σ)→ ModREL
1
(λ : 2) and the forgetful functor ModREL

1
(λ : 2)→ Set,

where ModREL
1
(λ : 2) is the category of the FOL models for a single sorted signature with

one binary relation symbol λ.

Mod(Σ)
[[_]]Σ ��

FrΣ 87

Set

ModREL
1
(λ : 2)

forgetful

Note that the models of ModREL
1
(λ : 2) are exactly the Kripke frames W = (|W|, Wλ)

of the modal logic examplesMPL,MFOL,HPL, andHFOL. Since |FrΣ(M)| = [[M]]Σ, we
can write FrΣ(M) = ([[M]]Σ, (FrΣ(M))λ). The FrΣ functors are also required to form a lax
natural transformation from Mod to the constant functor mapping any signature to the

category ModREL
1
(λ : 2).

Concretely, in the stratified institutionsMFOL,MPL,HFOL, andHPL, the Fr maps
the Kripke models (W, M) to their underlying Kripke frames W = (|W|, Wλ).

In the most general situation, when we allow polyadic modalities, i.e., modalities with
more than one argument, first, we need a functor L : SignS → SignREL

1
such that L(Σ)

represents the relation symbols corresponding to the modalities of Σ (we allow a flexible
approach where the modalities may change with the signature). Then, we have a more
general concept of frame extraction. In the binary case, L(Σ) is always {λ : 2} and hence,
there is no reason to have λ as part of the signatures.

A (general) frame extraction (L, Fr) is a stratified institution morphism

(L, ∅, Fr) : S → REL1

whereREL1 is considered as a stratified institution with no sentences, and for eachREL1-
model M, [[M]] is the underlying set of M and the satisfaction is invariant with respect to

161

Mathematics 2022, 10, 3428

the states, i.e., M |=w ρ is M |= ρ. Commonly, in concrete examples, it happens that frame
extractions are in fact strict institution morphisms.

In any stratified institution endowed with a binary frame extraction Fr, a Σ-sentence
ρ′ is a semantic

• possibility (�) of ρ when [[M, ρ′]] = (FrΣ M)−1
λ [[M, ρ]];

• necessity (�) of ρ when [[M, ρ′]] = {i | (FrΣ M)λi ⊆ [[M, ρ]]},

for each Σ-model M.
Obviously, inMPL,MFOL,HPL, andHFOL, we have that each �ρ/�ρ is a semantic

possibility/necessity of ρ in the sense of our definitions above. The concept of semantic
possibility/necessity admits an obvious extension to polyadic modalities by using general
frame extractions.

3.4.4. Nominals

In order to define the semantics of hybrid features such as nominals and the satisfaction
operator (@) in stratified institutions, we need to be able to extract nominals data from
the corresponding stratification. Let SETC be the sub-institution of FOL that restricts
the signatures to single-sorted ones and without relation symbols or function symbols of
non-null arity, so only constants being admitted. Given a stratified institution S , a nominals
extraction assumes two additional data:

• A functor N : SignS → SignSETC , i.e., each N(Σ) is a single-sorted FOL signature
having only constants; and

• That for each signature Σ, the stratification [[_]]Σ is a composition between a functor
NmΣ : ModS (Σ)→ ModSETC(N(Σ)) and the forgetful functor ModSETC(N(Σ))→ Set,

ModS (Σ)
[[_]]Σ ��

NmΣ 87

Set

ModSETC(N(Σ))

forgetful

such that the NmΣ functors are also required to form a lax natural transformation
ModS ⇒ N; ModSETC .

Hence, a nominals extraction (N, Nm) is a stratified institution morphism

(N, ∅, Nm) : S → SETC

where SETC is considered as a stratified institution in the same manner we considered
REL1 as a stratified institution.

Concretely, in the stratified institutions of the hyrbid modal logics HFOL, HPL, we
have that N maps each signature (Nom, Σ) to the single-sorted signature of constants
Nom, and that Nm(Nom,Σ) maps each Kripke model (W, M) to the ModSETC(Nom)-model
(|W|, (Wi)i∈Nom), so from the Kripke models, it forgets both the M part as well as the
accessibility relation Wλ.

In any stratified institution endowed with a nominals extraction N, Nm, for each
signature Σ and each i ∈ N(Σ),

• A Σ-sentence ρ′ is an i-sentence when [[M, ρ′]] = {(NmΣ M)i};
• A Σ-sentence ρ′ is the satisfaction of ρ at i when

[[M, ρ′]] =

{
[[M]], (NmΣ M)i ∈ [[M, ρ]]

∅, (NmΣ M)i
∈ [[M, ρ]]

for each Σ-model M.
InHPL andHFOL, we have that each nominal i of the signature is an i-sentence and

each sentence @iρ is a satisfaction at i in the sense of the above definitions. In general, for

162

Mathematics 2022, 10, 3428

the distinguished i-sentences and satisfaction at i, we may use the notations i-sen and @iρ,
respectively.

3.5. Interpolation in Stratified Institutions

Interpolation is a notoriously important logical property which is easy to understand
but difficult to establish. It also has a number of important applications in computing
science, especially in formal specification theory [65,70–74] but also in databases (ontolo-
gies) [75], automated reasoning [76,77], type checking [78], model checking [79], structured
theorem proving [80,81], etc. Computing science and model theoretic motivations have led
to a very general approach to interpolation [30] within the theory of institutions that is com-
pletely independent of any concrete logical system. This direction of study and research has
produced a substantial body of results reported in works such as [30,42,43,45,65,74,82–86].
In this context, the institution theoretic concept to interpolation had suffered a gradual
evolution. At the level of ordinary institution theory, one way to express the end result of
this evolution is that of ‘interpolation square’. In its Craig interpolation version, this is as
follows. In any given institution I , a commutative square of signature morphisms as below

Σ
ϕ1 ��

ϕ2

		

Σ1

θ1
		

Σ2
θ2

�� Σ′

(7)

is a Craig interpolation square when for each finite set Ek of Σk-sentences, k = 1, 2, such that
when θ1E1 |= θ2E2, there exists a finite set E of Σ-sentences such that

E1 |= ϕ1E and ϕ2E |= E2.

How can we lift this concept of interpolation square to stratified institutions? The
obvious answer is to maintain the concept by apply it to a flattening of the respective
stratified institution S . However, here, we run into a problem: which of S∗ and S 	 is the
most appropriate for this? The answer is that this may be actually a wrong question, as
both the local (|=) and the global (|=∗) semantic consequences can be used legitimately to
define interpolation concepts in stratified institutions. So, we naturally end up with two
concepts of interpolation in stratified institutions.

Then, a natural question arises: what is the causal relationship between local and
global interpolation? In [87], we have provided an answer to this question. Without
some additional infrastructure, none of the two interpolation concepts causes the other
one. However, the main result of [87] shows that local causes global interpolation when
the respective stratified institution has some nominals infrastructure including universal
quantification over the nominals. In [87], these properties are given precise mathematical
sense through some rather intricate technicalities which we do not present here. This is
only the first step toward a proper theory of interpolation specific to stratified institutions.
More steps are needed in order to mature it at a level comparable to that of interpolation in
ordinary institution model theory.

3.6. Diagrams in Stratified Institutions

In conventional model theory, the method of diagrams is one of the most important
methods. The institution-independent method of diagrams plays a significant role in the
development of a lot of model theoretic results at the level of abstract institutions, many of
its applications being presented in [44]. These include the existence of co-limits of models,
free models along theory morphisms, axiomatisability results, elementary homomorphisms
results, filtered power embeddings results, saturated models results (including an abstract
version of Keisler–Shelah isomorphism theorem), the equivalence between initial semantics
and quasi-varieties, Robinson consistency results, interpolation theory, definability theory,
proof systems, predefined types, etc.

163

Mathematics 2022, 10, 3428

In institution theory, diagrams had been introduced for the first time by Tarlecki
in [31,32] in a form different from ours. In the form presented here, it has been introduced
at the level of institution-independent model theory in [33] as a categorical property which
formalises the idea that

the class of model homomorphisms from a model M can be represented (by a
natural isomorphism) as a class of models of a theory in a signature extending
the original signature with syntactic entities determined by M.

Let us recall from [33,44] the main concept of the institution theoretic method of dia-
grams. An institution I has diagrams when for each signature Σ and each Σ model M, there
exists a signature ΣM and a signature morphism ιΣ(M) : Σ → ΣM, functorial in Σ and M,
and a set EM of ΣM sentences such that Mod(ΣM, EM) and the comma category M/Mod(Σ)
are naturally isomorphic, i.e., the following diagram commutes by the isomorphism iΣ,M
that is natural in Σ and M

Mod(ΣM, EM)
iΣ,M ��

Mod(ιΣ(M)) 87

M/Mod(Σ)

forgetful
		

Mod(Σ)

(8)

The signature morphism ιΣ(M) : Σ → ΣM is called the elementary extension of Σ via
M, and the set EM of ΣM sentences is called the diagram of the model M.

This can be seen as a coherence property between the semantic and the syntactic
structures of the institution. By following the basic principle that a structure is rather
defined by its homomorphisms (arrows) than by its objects, the semantic structure of
an institution is given by its model homomorphisms. On the other hand, the syntactic
structure of an(y concrete) institution is based upon its corresponding concept of atomic
sentence.

In [57], it has been proposed that the concept of a diagram in stratified institutions
should be transferred to the flattenings:

the diagrams in a stratified institution S are the diagrams in S 	 (or in S∗).
Based on this principle, in [57], we have developed a general result on the existence of

diagrams at the level of abstract stratified institutions that is applicable to a wide class of
concrete situations. Its underlying idea is to combine the diagrams in the two components
of a decomposition. However, again, this requires some nominal infrastructure. Let us
present briefly how we can obtain diagrams in S when this comes with a decomposition as
in Section 3.2.

• For each Σ model of S , let us define Σ0 = Φ0Σ, Σ1 = ΦΣ, M0 = β0
Σ M, M1 = β̃Σ M. We

also let ιΣ0 M0 : Σ0 → (Σ0M0
, EM0) and (for each i ∈ [[M]]) ιΣ1 Mi

1 : Σ1 → (Σ1Mi
1
, EMi

1
)

be the diagrams of M0 and Mi
1, respectively.

• We assume a coherence property that in the examples holds naturally in the case
of models constrained by common forms of sharing (such as MFOL,HFOL, etc.):
ιΣ1 Mi

1 = ιΣ1 Mj
1 for all i, j ∈ [[M]].

• We further assume that

Sign0 SignSΦ0
�� Φ �� SignB

is a product in CAT. This is a rather easy condition in concrete applications, typical
examples being given byHPL andHFOL.

• A final important assumption refers to each element i ∈ [[M]] of the underlying
stratification having a syntactic designation nΣ,Mi ∈ N(ΣM). This is required to satisfy
some natural conditions (details in [57]).

• Then, we define the S signature morphism ιΣ M : Σ → ΣM by using the product
property of (Φ0, Φ):

ιΣ M = (ιΣ0 M0, ιΣ1 M1).

164

Mathematics 2022, 10, 3428

• Furthermore, we let

EM = α0
ΣM

EM0 ∪
⋃

i∈[[M]]

@i(αΣM EMi
1
)

where @i(αΣM EMi
1
) abbreviates {@nΣ,M(i)αΣM ρ | ρ ∈ EMi

1
}. This gives the diagram M

in S∗.
• In order to obtain the diagram of a model (M, w) in S 	, it is enough to add the syntactic

designation of w as a sentence to EM.

Particular typical consequences of this general result are the existence of diagrams in
hybrid logic institutions such asHPL,HFOL. The limitation of this result is represented
by the general assumption on the availability of a nominals infrastructure. However, this
seems to be an inherent limitation that has to do with the existence of diagrams; in other
words, it is not a limitation of the way we have constructed the diagrams. This conclusion
is supported toward the end of [57] by a proof showing that MPL and MFOL do not
admit institution theoretic diagrams.

3.7. Ultraproducts in Stratified Institutions

The method of ultraproducts is renowed as extremely powerful and pervading a lot
of deep results in model theory [2,88]. For instance, model ultraproducts are instrumen-
tal in the non-standard analysis [4,5] as the hyperreals are constructed by this technique.
Chief among the ultraproduct method concepts and results that have been lifted to ab-
stract institution theory is a very general version of Łoś theorem obtained as a puzzle of
preservation results [34,44]. Then, general compactness results have been obtained as a
consequence of this. Furthermore, in [61], all these have been extended to the framework
of modalised institutions. In [52], we took another step by generalising the developments
of [61] to arbitrary stratified institutions. In what follows, we present the milestones of this
development:

• For any filter F over a set I and for any family (Mi)i∈I of Σ models, its F-product is
defined categorically as the co-limit μ of a diagram of projections:

MJ
pJ,i

&&

pJ⊇J′

		

μJ

��
Mi MJ′pJ′ ,i

��
μJ′

�� MF

where for each J ∈ F, (pJ,j : MJ → Mj)j∈J denotes a categorical product. This categor-
ical approach on filtered products (called ultraproducts when F is an ultrafilter) has been
used in various other categorical approaches to model theory such as [11,12,15,89],
etc.

• The preservation of (the satisfaction of) a sentence ρ by F-filtered products is defined
as follows. For any Σ sentence ρ, we introduce the following notation:

Aμ(ρ) =
⋃
J∈F

[[μJ]]
⋂
j∈J

[[pJ,j]]
−1[[Mj, ρ]].

Let F be a class of filters. Then, ρ is

– Preserved by F -products when Aμ(ρ) ⊆ [[MF, ρ]], and it is
– Preserved by F -factors when [[MF, ρ]] ⊆ Aμ(ρ),

for all filters F ∈ F and all families of models (Mi)i∈I . When the F-products are
concrete, which means that they are preserved by the stratification—a very common
situation in the applications—the stratified concept of preservation in S reduces to the
ordinary institution theoretic concept of preservation in S 	.

• Then, we have developed a series of results expressing the invariance of preservation,
corresponding to various connectives. In the case of the propositional connectives, this

165

Mathematics 2022, 10, 3428

invariance can be reduced to the corresponding invariance in ordinary institutions,
which are already established in [34,44]. In the case of the quantifiers, this cannot be
completed, but the proofs are similar to those from the ordinary institution theoretic
framework. More interesting are the invariance results for modalities and nominals,
as they do not have a counterpart in ordinary institutions, with the presence of stratifi-
cation playing a key role. However, this is hardly unexpected, since the connectives
are relevant only when models have internal states.

• In the applications, in order to obtain a preservation result for a certain sentence, we
invoke corresponding invariance results through an inductive process on the structure
of the respective sentence. For the base case, i.e., for the atomic sentences, we may use
the ordinary institution theoretic preservation of the so-called basic sentences [34,44]
via a decomposition of the stratified institution. Or else, we may establish their
preservation directly.

• Each of the invariance results discussed above depends on some specific technical
conditions involving model reducts, frame and nominals extractions, the class F of
filters, etc. All of them are rather mild in the applications.

With respect to the compactness consequences of these invariances of preservation
results, which together give a Łoś-style theorem for abstract stratified institutions, both in
the local and global flattening (i.e., S 	 and S∗, respectively), we usually obtain the model
compactness property. However, the entailment–theoretic compactness of the semantic
consequence may be obtained only for S 	, as in S∗ negation, disjunction, existential quan-
tifiers, etc., usually connectives that are related to negation in one form or another, pose
some problems.

3.8. Abstract Connectives and Elementary Homomorphisms

In the list of examples of stratified institutions, we have presented the example CON .
We said that CON may provide foundations for an abstract theory of connectives. Let us
see how this works by following some theory developed in [51]. The main idea is that we
think of a stratified institution S as having connectives when we can ‘extract’ them from
S . Technically, this means that there exists a functor C : SignS → SignCON and for each
Σ ∈ |SignS |, a function βΣ : |ModS (Σ)| → |ModCON (CΣ)| natural in Σ such that

Sen = T_ ◦ C, [[M]]SΣ = [[βΣ M]]CONCΣ , M |=η
Σ ρ if and only if βΣ M |=η

CΣ ρ.

This means that any sentence of S is formed from connectives, each S model has
an underlying connective algebra, and the satisfaction in S is given by evaluating the
connective terms. In a more sophisticated terminology, S having connectives provides an
example of morphism of stratified institutions.

OFOL provides a good example of this situation by letting the null-ary connectives
consist of the atoms, the unary connectives consist of negation and quantifiers, the binary
connectives being ∧,∨, . . ., and that is all. Then, β maps to corresponding sets of valuations.

One of the consequences of these conceptual developments is the possibility of having
a stratified institution theoretic alternative to the concepts of elementary homomorphism
that is based on quasi-representability or on diagrams, such as in [35,44]. Thus, we say that
a model homomorphism h : M → N in a stratified institution S is elementary when for
each sentence ρ and each η ∈ [[M]], we have that

M |=η
Σ ρ if and only if N |=[[h]]Ση

Σ ρ.

The advantage of this concept of elementary homomorphism over the other ones from
institution theory is that it does not depend on other properties that may be problematic
in some cases. For instance, we have seen in Section 3.6 that diagrams are not always
available especially in stratified contexts. So, in [51], there is a result that explains the
common concept of elementary homomorphism in terms of stratified institution elementary
homomorphism. Given a stratified institution with connectives, a Σ-homomorphism

166

Mathematics 2022, 10, 3428

h : M → N is elementary if and only if [[h]] is a connective algebra homomorphism
βΣ M → βΣN.

In [51], this result had been used for providing a method for establishing Tarski’s
elementary chain/co-limit theorem for concrete model theories that can be captured as
stratified institutions. This is one of the early model theoretic results in first-order logic [90]
with manifold applications (these can be consulted in [2]), which has also received a proof
in the abstract setting of arbitrary institutions in [35,44]. It says that the co-limit of a directed
diagram of elementary homomorphisms consists of elementary homomorphisms, too. In
the context of stratified institutions with connectives, this means that any co-limit of a
directed diagram of elementary homomorphisms becomes mapped by the stratification to
a co-limit in the category of connective algebra homomorphisms. Moreover, in [51], we can
find examples on how this works inMPL and OFOL.

3.9. Foundations for Formal Verification of Reconfigurable Systems

In [56], the author employs stratified institutions with frame and nominals extraction
(presented above in Section 3.4) (rebranded as ‘hybrid institutions’) as a general founda-
tional framework for a formal verification methodology for reconfigurable systems. The
envisaged methodology would thus constitute an alternative to the methodology imple-
mented by the language H [68] based on the generic translation concept of [66]. While in
the latter case, the verification process is exported to first-order logic, and the result of that
is imported back to the source logic, in the former case, the verification process happens
right in the respective stratified institution. However, both approaches share the same
verification goal: that of reconfigurable systems.

The substance of [56] consists of the definition of a generic proof calculi applicable
to a relevant class of stratified institutions with frame and nominals extraction, which is
proved complete (apparently) with respect to the local satisfaction relation |=	. The method
to prove completeness is Cohen’s forcing [6,7] adapted to abstract institutions [38].

3.10. Mathematical Morphology in Stratified Institutions

The mathematical morphology of [91,92] uses a pair of dual mappings between lattices
called ‘dilation’ and ‘erosion’ in the context of some mathematical foundations for image
analysis. In [53], the authors employ these concepts from mathematical morphology in
order to derive pairs of dual connectives. This uses, for a given model M, the lattice on the
quotient Sen(Σ)/≡M , where ρ ≡M ρ′ when [[M, ρ]] = [[M, ρ′]] and the order on Sen(Σ)/≡M is
given by ρ/≡M ≤ ρ′/≡M when [[M, ρ]] ⊆ [[M, ρ′]]. When the respective stratified institution
has conjunctions and disjunctions, (Sen(Σ)/≡M ,≤) is a lattice indeed. The authors provide
a general abstract definition of ‘dilation’ and ‘erosion’ operators on sentences, DBρ and EBρ,
respectively, which are then extended as operations on Sen(Σ)/≡M . Instances of DB and
EB include the universal and existential quantifications in OFOL as well as the necessity
and possibility in various modal logics. Moreover, the authors of [53] develop a general
proof theory in stratified institutions based on abstract erosion and dilation operators,
which is shown to be complete. Finally, ref. [53] offers some preliminary ideas regarding
applications of this theory to qualitative spatial reasoning.

4. Many-Valued Truth Institution-Independent Model Theory

In standard institution theory, the satisfaction relation between models and sentences
is considered to be binary, M |= ρ either holds true or it does not. Many-valued institution
theory considers a generalisation of ordinary institution theory where M |= ρ is not
necessarily binary. Such a generalisation can be achieved, and basic concepts such as
semantic consequence, the Galois connection between syntax and semantics, internal logic,
but also more advanced concepts such as filtered products, preservation, interpolation,
definability, logic translation, etc. do “survive” it but in a subtler form. From a pure
theoretical standpoint (there are also more practical motivations), this generalisation brings
further clarifications to the complex network of causal relationships underlying model

167

Mathematics 2022, 10, 3428

theory. This has to do with binary truth being a collapsed form of truth where many things
happen somehow “by accident”. Much institution-independent model theory may be
developed in the many-valued truth fashion.

4.1. L-Institutions

The extension of the concept of institution from binary to many-valued truth may
be achieved at several structural levels. The most primitive level is to consider a plain
set of truth values, either in general or in some particular form. At higher levels, we may
consider various order theoretic structures. Traditionally, the binary situation is treated as a
Boolean algebra in order to support the common logical connectives such as ∧,∨,¬, etc.
and their semantics. The many-valued approach treats the structure of truth values rather
axiomatically, so we can consider order theoretic structures of various degrees of complexity.
At the end, the most constrained such structure is in fact the binary Boolean algebra.

Given a set L, called the space of the truth values, an L-institution

I =
(
SignI , SenI , ModI , |=I

)
is like an ordinary institution with the only difference that the Satisfaction Relation is an
indexed family of L-fuzzy relation, i.e., |=IΣ : |ModI (Σ)| × SenI (Σ) → L for each Σ ∈
|SignI |. Then, the Satisfaction Condition obtains the following form: for each morphism
ϕ : Σ → Σ′ ∈ SignI ,

(M′ |=IΣ′ SenI (ϕ)ρ) = (ModI (ϕ)M′ |=IΣ ρ) (9)

holds for each M′ ∈ |ModI (Σ′)| and ρ ∈ SenI (Σ). The Satisfaction Condition says that the
truth degree is an invariant with respect to change of notation.

For L = (L,�) partial order, an L-institution means just an L-institution. Evidently,
the ordinary institutions are just L-institutions for which L is the binary Boolean algebra.
For this reason, in the context of the theory of L-institutions, ordinary institutions may be
refereed to as binary institutions. The step from classic binary institutions to many-valued
institutions is hardly new; this idea had appeared already in the early age of institution
theory in the form of the so-called ‘galleries’ of [93]. The ‘generalised institutions’ of [94]
are very similar to L-institutions; however, they introduce an additional monadic structure
on the sentence functor meant to model substitution systems. A fully abstract treatment of
many-valued semantics appears very early in [50]; however, it differs form the approach
of L-institutions in two quite important aspects. One is its single-signature feature. The
other is the collapse of model theory modulo elementary equivalence, which makes it
unusable for the development of a proper fully abstract many-valued model theory. In
other words, Pavelka’s approach in [50] would correspond to an L-institution that has only
one signature Σ and also such that |Mod(Σ)| ⊆ LSen(Σ).

Now, we present the following examples from [48,49,95] very briefly; for more details,
the reader should study them from these publications.

1. Propositional many-valued logic (MVL0) turns the institution of classical propositional
logic (cf. [44]) into an L-institution by adding ∗ as a new propositional connective and
by letting models represent valuations of the propositional symbols of the signatures
into L. L is required to be a residuated lattice.

2. First-order many-valued logic (MVL1) generalises the institution of classical first-order
logic (cf. [18,25,44], etc.) in a way that resembles howMVL0 generalises the institution
of classical propositional logic. For defining the satisfaction of quantified sentences, it
is required that L is also complete.

3. Temporal logic (TL). L is a fixed complete total order that models the ‘time’. In the
propositional version, the models interpret each propositional symbol as a subset of L.
We have the usual temporal logic connectives, and the truth value of M |= ρ is the
supremum of all the time moments for which ρ holds in M at all moments of time
before that.

168

Mathematics 2022, 10, 3428

4. Fuzzy multi-algebras (FMA). This L-institution generalises the institution of multi-
algebras [96–98] (used for specifying non-determinism) to many-valued truth. Its
main idea is that models M interpret an algebraic operation σ of arity n as an L-valued
(n + 1)-ary relation. Intuitively, Mσ(x1, . . . , xn+1) is thought of as the truth degree of
σ(x1, . . . , xn) = xn+1 in M.

5. Abstract many-valued logic (I(L)). This L-institution is more a model theoretic frame-
work rather than a logical system as such. In [48], it is shown thatMVL0,MVL1, and
FMA can be conservatively embedded in I(L), which means that their semantics
may be substituted by the generic categorical one provided by I(L).
In the rest of this section, we present the main developments that have happened

in the area of L-institutions over the past decade or so. Our discussion includes the
following aspects.

• A general ‘flattening’ of L-institutions to ordinary institution.
• A concept of semantic consequence that is genuinely many-valued and represents the

most conceptually refined reflection of the binary semantic consequence of ordinary
institution theory to many-valued truth.

• Unlike in binary institution theory, in L-institutions, the concept of theory is mul-
tifaceted. This is apparent especially when we consider closures of theories. This
situation reflects also to concepts of consistency and compactness.

• We present the extension of the ordinary institution theoretic semantics of proposi-
tional and quantification connectives to L-institutions, both in their consequence and
model theoretic forms.

• We present a series of preservation (by filtered products) results that have been recently
developed for L-institutions. Consequences of these are general model compactness
and initial semantics results.

• The graded concept of semantic consequence gives rise to a graded concept of in-
terpolation specific to L-institutions. We discuss this new concept and its further
impact to the whole conceptual environment of interpolation, including (Beth) defin-
ability and Robinson consistency. We re-establish the causality relationships between
interpolation and these in the many-valued context.

4.2. Flattening L-Institutions to Binary Institutions

The general reduction of many-valued truth to binary truth advocated by the skeptics
of many-valued truth can also be applied toL-institutions. It works as follows. Given anyL-
institution I = (Sign, Sen, Mod, |=), we define the binary institution
I 	 = (Sign	, Sen	, Mod	, |=):

• Sign	 = Sign, Mod	 = Mod;
• Sen	(Σ) = Sen(Σ)× L;
• M |=	

Σ (ρ, κ) if and only if (M |=Σ ρ) 	 κ.

This flattening idea has been present in several places in the fuzzy logic literature.
For instance, in [99], our pairs (ρ, κ) are called ‘signed formulas’ and given the same
interpretation as here.

The flattening of L-institutions to binary institutions has the advantage of reducing
things to a well-studied and matured framework and functions well in some aspects, but it
falls short in several areas that involve some fine-grained aspects of multiple truth values.
Thus, while the flattening S 	 of stratified institutions does not pose many limitations, the
situation is different with the flattenings of L-institutions.

4.3. The Graded Semantic Consequence

Given an L institution such that L is a complete meet-semilattice, for each Σ-model M
and each set E of Σ-sentences, we define

(M |=Σ E) =
∧
{M |=Σ ρ | ρ ∈ E}. (10)

169

Mathematics 2022, 10, 3428

Given an L-institution, there are two ways to extend the satisfaction relation to a
semantic consequence relation between sets of sentences and single sentences, both of them
generalising the semantic consequence relation of binary institution theory.

1. The crisp semantic consequence, defined by E |= e if and only if for each model M,
(M |= E) = 1 implies (M |= e) = 1 (where 1 denotes the top element of L).

2. The graded semantic consequence, defined by

(E |=Σ e) =
∧
{(M |=Σ E)⇒ (M |=Σ e) | M ∈ |Mod(Σ)|}. (11)

The graded semantic consequence is more subtle and more in the spirit of many-valued
truth than the crisp one, although the definition of the latter requires more infrastructure
on the space of the truth values, namely that L is a residuated lattice [100,101]. Hence, “⇒”
of (11) represents the residuated implication operation. This difference in subtlety may be
traced to the fact that while the crisp semantic consequence corresponds to the semantic
consequence of the binary flattening I 	 of the L-institution I (that E |= e holds in I means
{(ρ, 1) | ρ ∈ E} |= (e, 1) in I), the graded semantic consequence is a concept beyond I 	.
The graded semantic consequence appears in a disguised form in [50] within the context
of Pavelka’s theory of fuzzy consequence operators and in a form that is more explicitly
similar to ours in [102] within the framework of ‘graded consequence relations’. However,
both these semantic frameworks are less general than ours, in both of them models being
in fact fuzzy theories.

One of the important properties of the semantic consequence in binary institution the-
ory is that it satisfies the axioms of entailment systems. The graded semantic consequence
enjoys the same property but for the following refined many-valued concept of entailment.
This has been proved in a full form in [49]. In a restricted single signature framework, this
has also been proved in [102].

Graded Entailment

Let L = (L,≤, ∗) such that (L,≤) is a complete meet-semilattice (with 1 denoting
its upper bound) and ∗ is a binary operation on L. An L-entailment system (Sign, Sen,")
consists of a functor Sen : Sign → Set and a family "= ("Σ : PSen(Σ)→ Sen(Σ))Σ∈|Sign|
such that the following axioms hold:
{γ} "Σ γ = 1 reflexivity
(E "Σ γ) ≤ (E′ "Σ γ) when E ⊆ E′ monotonicity

(E "Σ Γ) ∗ (Γ "Σ ρ) ≤ (E "Σ ρ) (where (E " Γ) =
∧

γ∈Γ(E " γ).) transitivity

(E "Σ γ) ≤ (Sen(ϕ)E "Σ′ Sen(ϕ)γ) for any sign. morphism ϕ : Σ → Σ′ translation.
When L is just the binary Boolean algebra (with ∗ being ∧), L-entailment systems

are just ordinary entailment systems [44,103]/π-institutions [104]. In the graded context,
the binary entailment systems will also be called crisp entailment systems. Previous to [49],
the idea of graded entailment has appeared in various different forms in works such
as [50,94,102,105]; in [49], there is a brief analysis on the differences between these several
variants, which are in fact rather slight. Depending on actual applications, graded entail-
ments may be interpreted in various ways: as provability degree, as degree of confidence
in proofs, or even as a(n inverse) measure for the complexity of a proof. Moreover, in [49],
there are also temporal interpretations of graded proofs. An important technical aspect
worth mentioning is the use of ∗ rather than ∧ in the transitivity axiom; in [49], it is shown
that this choice is necessary for accommodating the semantic interpretations of graded
entailment.

The result of [49] that the graded semantic consequence in an L-institution I yields
an L-entailment system—called the semantic entailment system of I—seems to suggest
that L-entailment systems are more abstract/general than L-institutions. However, at
least when L is a complete residuated lattice, this is a wrong impression, because a result
from [49] shows that each L-entailment system determines an L-institution whose semantic
entailment is precisely the respective L-entailment system.

170

Mathematics 2022, 10, 3428

4.4. Many-Valued Theories, Consistency and Compactness

In binary institution theory, a Σ-theory is a set of Σ-sentences. (However, in many
works, including [18,44], etc., this is called ‘presentation’, the word ‘theory’ being used
for ‘presentations’ that are closed under semantic consequence. This owes to the algebraic
specification tradition which considers theories that are ‘presented’ by (finite) sets of
sentences, these being in fact specification modules.) Any theory may be represented by
its characteristic function Sen(Σ)→ 2, which for each sentence gives a truth value for its
membership to the respective theory. This new perspective on theories is the basis for
the generalisation of the concept of theory to many-valued truth. For any fixed set L and
for any functor Sen : Sign → Set, a Σ-theory is just a function X : Sen(Σ) → L. When
L = (L,≤,∧) is a complete meet-semilattice, for any Σ-theory X : Sen(Σ) → L and for
any E ⊆ Sen(Σ), we denote

X(E) =
∧
{X(e) | e ∈ E}. (12)

Note that a theory in an L-institution I corresponds exactly to a theory in its binary
flattening I 	 by representing any function X : Sen(Σ) → L as the set {(ρ, X(ρ)) | ρ ∈
Sen(Σ), X(ρ)
= 0} (0 denotes the bottom element of L).

The concept of Galois connection between syntax and semantics in binary institu-
tion theory admits a natural extension to many-valued truth. Let L be a complete meet-
semilattice. In any L-institution:

• For any Σ-model M, we let the theory M∗ : Sen(Σ)→ L such that M∗(ρ) = (M |= ρ).
For any class of modelsM⊆ |Mod(Σ)|, we letM∗ =

∧
M∈M M∗.

• For any Σ-theory X : Sen(Σ)→ L we let X∗ = {M ∈ |Mod(Σ)| | X ≤ M∗}.

For each signature Σ, the mappings (_)∗ defined above represent a Galois connection
between (P|Mod(Σ)|,⊇) and (LSen(Σ),≤).

4.4.1. Closure Systems

Concepts of closures of theories can be regarded as axiomatic treatments of conse-
quence relations. This approach originates from Tarski’s work [106] and later on was
applied by Pavelka [50] to many-valued theories. The following definition from [49] ex-
tends the latter to the multi-signature framework. Given a partial order L = (L,≤), an
L-closure system is a tuple (Sign, Sen, C) where

– Sen : Sign → Set is a functor, and
– C is a Sign-indexed family of functions CΣ : LSen(Σ) → LSen(Σ) satisfying the following

axioms (for ϕ : Σ → Σ′ any signature morphism):
X ≤ CΣX for each X C-reflexivity

CΣX ≤ CΣY when X ≤ Y C-monotonicity

CΣ(CΣX) = CΣX C-transitivity

CΣ(Sen(ϕ); X′) ≤ Sen(ϕ); CΣ′(X′) C-translation.

In the binary framework, there is a straightforward equivalence between the concepts
of entailment system and closure system: E "Σ e if and only if e ∈ CΣE. However, in
the many-valued framework, the relationship between the two concepts is much more
interesting. Let us present two of them from [49].

• Provided some conditions on L are fulfilled, the following closure applies to any
graded entailment system. Let L = (L,≤, ∗) be a complete meet-semilattice with a
binary operation ∗ and let (Sign, Sen ") be an L-entailment system. The following
definition draws inspiration from Goguen’s many-valued interpretation of Modus
Ponens [107]. A theory X : Sen(Σ)→ L is weakly closed with respect to the entailment
system when for each entailment E "Σ ρ,

X(E) ∗ (E " ρ) ≤ X(ρ).

171

Mathematics 2022, 10, 3428

If ∗ is increasing monotone, then in [49], we have proved that the weakly closed
theories are closed under arbitrary meets. This allows for the following definition:
for any theory X, let X◦, called the weak closure of X, denote the least weakly closed
theory greater than X. In [49], we have also proved that the weak closure (_)◦ defines
an L-closure system.

• The second closure system on many-valued theories has a semantic nature, so its basic
framework is now stronger than in the case of the previous closure system. Note that
in any L-institution, the Galois connection between (P|Mod(Σ)|,⊇) and (LSen(Σ),≤)
determines an L-closure system (Sign, Sen, (_)∗∗). This allows for the following def-
inition. In any L-institution, a Σ-theory is strongly closed when X = X∗∗. Moreover,
X∗∗ is called the strong closure of X. The relationship between the two closure systems
has been established in [49] as follows. When L is a complete residuated lattice, in
any L-institution and for any Σ-theory X, if X◦ denotes its weak closure with respect
to the semantic L-entailment system, then X◦ ≤ X∗∗.

4.4.2. Consistency

The following is a generalisation of the concept of consistent theory from binary
institution theory to L-institutions. According to [49], in any L-institution, a Σ-theory T
is consistent when there exists a Σ-model M such that T � M∗. E is consistent when there
exists κ > 0 such that E is κ-consistent; otherwise, it is inconsistent. Note that the concept
of κ-consistency can be derived from the corresponding consistency concept from binary
institution theory by considering the binary flattening of the respective L-institution.

Now, we introduce another concept of consistency that is relative to a fixed truth value.
First, we prepare some notations. For any truth value κ ∈ L, let Tκ denote the constant
theory defined by Tκρ = κ for each sentence ρ. For any Σ-theory T and Γ ⊆ Sen(Σ), the
theory T|Γ is defined for each ρ ∈ Sen(Σ) by

(T|Γ)ρ =

{
Tρ, ρ ∈ Γ
0, otherwise.

In any L-institution, for any truth value κ, a set E of Σ-sentences is κ-consistent when
Tκ |E is consistent. Note that this concept can also be reduced to binary consistency since E
is κ-consistent if and only if (E, κ) = {(e, κ) | e ∈ E} is consistent in the binary flattening of
the respective L-institution. Note also that in the binary case, both concepts of consistency
defined above collapse to the same concept.

4.4.3. Compactness

Compactness can be thought both in semantic and consequence theoretic terms. This
is what happens in every logic, and it extends also to many-valued truth.

• An L-institution I is m-compact when its binary flattening I 	 is m-compact. This
means that for each Σ-theory T, if T|Γ is consistent for each finite Γ ⊆ Sen(Σ), then T
is consistent, too. This concept of compactness involves potentially all truth values.
The following concept of compactness refers to an arbitrarily fixed truth value. In an
L-institution, let κ ∈ L be any truth value. Then, the L-institution is κ-m-compact when
each set E of Σ-sentences is κ-consistent if E0 is κ-consistent for each finite E0 ⊆ E.
Whilst in the binary case, the two concepts of compactness defined above collapse
to the same concept, this is not the case in a proper many-valued context. However,
in [49], we have established that the former is stronger than the latter: any m-compact
L-institution is κ-m-compact for each truth value κ.

• An L-entailment system (Sign, Sen,") is compact when for any entailment E "Σ γ,
we have

E " γ =
∨
{E0 " γ | E0 finite ⊆ E}

The following characterisation from [49] brings closer to something that sounds more
familiar. In any compact L-entailment system (Sign, Sen,") such that the meet opera-

172

Mathematics 2022, 10, 3428

tion ∧ is join-continuous, for any finite κ ∈ L, if κ ≤ (E " γ), then there exists finite
E0 ⊆ E such that κ ≤ (E0 " γ).

4.5. The Logic of L-Institutions

Many-valued logic in the institution theoretic framework can be approached at two
different levels, namely that of consequence (L-entailment systems) and that of semantics
(L-institutions). The former is of course more abstract than the latter, but the relationship
between them is non-trivial. All these have been addressed in [49] as follows.

4.5.1. Entailment Theoretic Connectives

In an L-entailment system (Sign, Sen,"), a Σ-sentence ρ is

• A conjunction of sentences ρ1 and ρ2 when for any set of sentences E,

E " ρ = (E " ρ1) ∧ (E " ρ2);

• A residual conjunction of sentences ρ1 and ρ2 when for any set of sentences E,

E " ρ = (E " ρ1) ∗ (E " ρ2);

• An implication of sentences ρ1 and ρ2 when for any set of sentences E,

E " ρ = E ∪ {ρ1} " ρ2;

• A disjunction of sentences ρ1 and ρ2 when L has joins and for any set of sentences E,

E " ρ = (E " ρ1) ∨ (E " ρ2);

• A negation of the sentence ρ′ when for any sentence e,

{ρ, ρ′} " e = 1;

• A universal χ-quantification of a Σ′-sentence ρ′ for χ : Σ → Σ′ signature morphism
when for any set of Σ-sentences E

E "Σ ρ = χ(E) "Σ′ ρ′;

• An existential χ-quantification of a Σ′-sentence ρ′ for χ : Σ → Σ′ signature morphism
when for any Σ-sentence e

ρ "Σ e = ρ′ "Σ′ χ(e).

These definitions can be extended at the level of the L-entailment system. For instance,
we say that the L-entailment system has conjunctions when any two Σ-sentences have a
conjunction and similarly for the other connectives.

When L is the binary Boolean algebra, the above definitions yield the usual entailment
theoretic connectives from the institution theory literature (e.g., [108]). In binary logic, the
inequalities that are implicit in the equation defining the entailment theoretic implication
are known as Modus Ponens (≤) and the Deduction Theorem (≥). This terminology can be
extended to L-entailment systems.

As in the binary situation, we can consider the least entailment system that “contains”
a given entailment system and that has some of the connectives defined above. This is
supported by the following result from [49]: any intersection of entailment systems (that
share the same sentence functor) is an entailment system. Moreover, the property of having
a certain connective is invariant with respect to such intersections.

4.5.2. Model Theoretic Connectives

The many-valued semantic connectives mimic those defined for binary
institutions [30,34,44,108], etc., but now, their interpretation is in a many-valued truth
context. A Σ-sentence ρ is an L-institution that is

173

Mathematics 2022, 10, 3428

• A semantic conjunction of sentences ρ1 and ρ2 when L has meets and for each Σ-
model M,

(M |= ρ) = (M |= ρ1) ∧ (M |= ρ2);

• A semantic residual conjunction of sentences ρ1 and ρ2 when L is a residuated lattice
and for each Σ-model M,

(M |= ρ) = (M |= ρ1) ∗ (M |= ρ2);

• An semantic implication of sentences ρ1 and ρ2 when L is a residuated lattice and for
each Σ-model M,

(M |= ρ) = (M |= ρ1)⇒ (M |= ρ2);

• A semantic disjunction of sentences ρ1 and ρ2 when L has joins and for each Σ-model M,

(M |= ρ) = (M |= ρ1) ∨ (M |= ρ2);

• A semantic negation of a sentence ρ′ when L is a residuated lattice for each Σ-model M,

(M |= ρ′) = (M |= ρ)⇒ 0;

• A semantic universal χ-quantification of a Σ′-sentence ρ′ for χ : Σ → Σ′ signature
morphism when L is a complete meet-semilattice and for each Σ-model M

(M |=Σ ρ) =
∧
{M′ |=Σ′ ρ′ | Mod(χ)M′ = M};

• An semantic existential χ-quantification of a Σ′-sentence ρ′ for χ : Σ → Σ′ signature
morphism when L is a complete join-semilattice and for each Σ-model M

(M |=Σ ρ) =
∨
{M′ |=Σ′ ρ′ | Mod(χ)M′ = M}.

These definitions can be extended at the level of the respective L-institution. For
instance, we say that the L-institution has conjunctions when any two Σ-sentences have a
conjunction, etc.

The semantic connectives represent yet another situation when the binary flattening
diverges from the respective L-institution. In general, it is not possible to establish a
general causality relationship between the semantic connectives in the L-institution and in
its binary flattening.

4.5.3. Model Theoretic versus Entailment Theoretic Connectives

Given an L-institution I , when L is a complete residuated lattice, we thus have two
different definitions for each connective: one in terms of satisfaction by models and another
one in terms of the semantic L-entailment system of I . It is important to establish the
relationship between these two in order to be able to have an entailment-based calculus for
the semantic consequence.

Consider the semantic L-entailment system of an L-institution such that L is a com-
plete residuated lattice. Let ρ be a Σ-sentence and ϕ : Σ → Σ′ be a signature morphism.
Then,

1. ρ is the entailment theoretic conjunction of ρ1 and ρ2 if it is the semantic conjunction
of ρ1 and ρ2.

2. ρ is the entailment theoretic universal/existential χ-quantification of ρ′ if it is its
semantic universal/existential χ-quantification.

Let us further assume that L is a Heyting algebra. Then,

3. ρ is the entailment theoretic implication of ρ1 and ρ2 if it is the semantic implication
of ρ1 and ρ2.

4. ρ is the entailment theoretic negation of ρ′ if it is its semantic negation.

Let us further assume that L is a completely distributive Boolean algebra. Then

5. ρ is the entailment theoretic disjunction of ρ1 and ρ2 if it is the semantic disjunction of
ρ1 and ρ2.

174

Mathematics 2022, 10, 3428

4.6. Preservation and Consequences

In [95], there is a development of a body of preservation results in the same style as
had been conducted for ordinary institutions in [34] or for stratified institutions in [52]. The
milestones of this development are as follows:

• The concept of a filtered product of models is the categorical one as discussed in
Section 3.7 in the context of stratified institutions.

• The preservation of (the satisfaction of) a sentence ρ by filtered products/factors has
been defined in [95] as follows. In any L-institution, let Σ be any signature and let e be
any Σ-sentence. In addition, let F be any class of filters and κ be any value in L. Then,

– e is κ-preserved by F -products when for each F-product (μJ : MJ → MF)J∈F
(where F ∈ F is a filter over I)

{i ∈ I | (Mi |= e) 	 κ} ∈ F implies (MF |= e) 	 κ;

– e is κ-preserved by F -factors when for each F-product as above we have the reverse
implication to the above.

As a matter of terminology, when F is the class of all ultrafilters, we rather say directly
“κ-preserved by ultraproducts/ultrafactors”. WhenF is the class of all singleton filters,
we rather say “κ-preserved by direct products/factors”. In addition, when we do not
specify the truth value κ and we just say “preserved by F -products/factors”, we mean
that the sentence is κ-preserved for all truth values κ.
Note that whilst κ-preservation represents just a rephrasing of the preservation con-
cepts from binary institution theory because “ρ is κ-preserved by ...” is technically
the same with “(ρ, κ) is preserved by ...” in the binary flattening, this is not the
case for the preservation for all truth values. In other words “ρ is preserved by ...”
in an L-institution cannot be reduced to preservation in its binary flattening of a
single sentence.

• The results in [95] that express the invariance of preservation with respect to connec-
tives are restricted to

– Invariance of preservation by F -products under ∧ and quantifications;
– Invariance of preservation by F -factors under ∧,∨, ∗ and quantifications; and
– ρ ⇒ ρ′ is preserved by F -products when ρ is preserved by F -factors and ρ′ is

preserved by F -products.

Each of these results is subject to some specific conditions of various intensities of
a general nature regarding L, model reducts, F , etc. All of them are manageable in
concrete applications.

• As in the case of ordinary or stratified concrete institutions, when the sentences are con-
structed by iterative applications of connectives, in order to obtain their preservation,
we invoke corresponding invariance results through an inductive process. However,
in general, because the above-mentioned invariance results are less than in the binary
truth case, it may happen that not all sentences of a respective L-institution can be
reached in this way. However, even under this less favourable situation, important
classes of sentences are preserved by filtered products and factores. According to [95],
these include an extended class of general Horn sentences.

• In this iterative process, the base cases are taken care of by corresponding preservation
results for basic sentences in L-institution theoretic sense as introduced in [95] as a
generalisation of the ordinary concept of basic sentence from [34,44].

In [95], two main consequences of these preservation results have been derived.

• Initial semantics for a general class of Horn sentences.
• Model compactness for an extended general class of Horn sentences that do not

necessarily admit initial semantics.

The former result involves also preservation by ‘sub-models’, which is a concept that is
taken care of by the inclusion systems of [44,65], etc. (Such involvement of inclusion systems
is common to all institution–theoretic approaches to quasi-varieties ([44]).)

175

Mathematics 2022, 10, 3428

For all this general theory, FMA presents itself as a special case when some general
results cannot always be applied due to a lack of basic sentences. However, in [95], it is
shown how an invariance of preservation results can still be used to obtain the preservation
by filtered products for a relevant class of FMA sentences and consequently a model
compactness result for those.

4.7. Around Graded Interpolation

In [109], the author developed a study of interpolation in the graded consequence
framework. Envisaged applications include various forms of approximate reasoning. The
starting point of this study is the extension of the classical concept of interpolation from the
classical binary to the many-valued graded context. In any L-entailment system, given a
commutative square of signature morphisms

Σ
ϕ1 ��

ϕ2

		

Σ1

θ1
		

Σ2
θ2

�� Σ′

and finite sets E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2), we say that a finite set E ⊆ Sen(Σ) is a
Craig interpolant of E1 and E2 when

θ1E1 " θ2E2 ≤ (E1 " ϕ1E) ∗ (ϕ2E " E2). (13)

When interpolants exist for all E1, E2, the respective commutative square of signature
morphisms is called a Craig interpolation square (abbr. Ci square). When L is a residuated
lattice, the concepts introduced in this definition extend also toL-institutions by considering
the graded semantic entailment system.

In [109], there are some proper examples of the graded interpolation concept, proof the-
oretic as well as model theoretic. Some of the examples suggest that graded interpolation is
much more subtle than the crips (binary truth) interpolation, as there are natural situations
when crisp interpolation non-problems may be good graded interpolation problems.

Craig–Robinson interpolation [110] is an extended version of common (Craig) interpola-
tion, this extension being especially relevant in computing science applications [44,65,70,83]
but not only. In the binary case, under the presence of implication, the two versions of
interpolation can be established as equivalent (an institution-independent proof can be
found in [44]). In [109], this has been extended to graded interpolation under the assump-
tion that L is a Heyting algebra and only for the graded semantic consequence relation in
L-institutions.

Traditionally, model theoretic interpolation is causally related to Robinson consis-
tency [2,111,112] and Beth definability [2,113]. These causalities have also been established
in the abstract institution theoretic setting in [30,43,44]. Moreover, in [109], they have also
been recovered at the many-valued truth level of L-institutions. However, that enterprise
required a significant conceptual and mathematical effort that we will briefly and rather
informally review in what follows.

4.7.1. Graded Interpolation versus Many-Valued Robinson Consistency

Let us first have a look at the binary institution theoretic version of Robinson consis-
tency (abbr. Rc). In an institution, a commutative square of signature morphisms such
as below

Σ
ϕ1 ��

ϕ2

		

Σ1

θ1
		

Σ2
θ2

�� Σ′

176

Mathematics 2022, 10, 3428

is a Robinson consistency (Rc) square when any finite sets Ei of Σi-sentences, i = 1, 2, with
‘inter-consistent reducts’ (i.e., {ρ ∈ Sen(Σ) | E1 |= ϕ1ρ} ∪ {ρ ∈ Sen(Σ) | E2 |= ϕ2ρ} has a
model) has ‘inter-consistent Σ′-translations’ (i.e., θ1E1 ∪ θ2E2 has a model).

The many-valued version of this is based on a many-valued concept of ‘inter-consistency’
which is relative to arbitrary truth values and, very importantly, the two truth values of
the inter-consistency of the reducts and of the translations, respectively, are in general not
necessarily equal. Then, we obtain the expected bi-directional causality between Rc and a
somehow stronger version of Ci. There are many aspects underlying this result that deserve
mention.

• As expected, both directions rely on the respective L-institution having conjunctions
and negations.

• In the case of the implication of Ci from Rc, an additional compactness condition is
required. This is different from the compactness concepts we discussed above, but a
relationship with those is established at the general level, which also applies well in
the concrete cases.

• Both directions require some relationships between the truth values of the two inter-
consistencies, the two relationships being somehow dual. They also have an intersec-
tion such that one truth value determines uniquely the other one, which is relevant for
the formulation of the causality relationship between Rc and Ci when formulated as
an equivalence.

4.7.2. Graded Definability by Graded Interpolation

Both in the concrete classical case and in the institution theoretic context, interpolation
constitutes a principal cause for the definability property, i.e., that implicitly implies explicit
definability. In fact, in [44], it has been revealed that interpolation in the Craig–Robinson
form is what is needed in order to establish definability. In this way, we can dispense with
implications, and while implications plus Ci obtain Craig–Robinson interpolation, there
are important situations when we have the latter in the absence of implications, such as in
many-sorted Horn clause logics (cf. [44]).

In [109], we have extended both the implicit and the explicit definabilities from the
their binary version of [40,44] to many-valued truth as follows.

• In any L-entailment system, for any κ ∈ L, a signature morphism ϕ : Σ → Σ′ is
defined κ-implicitly by a set E′ ⊆ Sen(Σ′) when for any diagram of pushout squares
such as below

Σ′ θ′ �� Σ′1
u

��
Σ θ ��

ϕ ��

ϕ
��

Σ1
ϕ1

��

ϕ1

;:

Σ′′

Σ′
θ′

�� Σ′1

v

;:

(14)

and for any Σ′1-sentence ρ, we have that

u(θ′E′) ∪ v(θ′E′) ∪ uρ " vρ ≥ κ.

• In any L-entailment system, for each κ ∈ L, a signature morphism ϕ : Σ → Σ′ is
κ-explicitly defined by a set of sentences E′ ⊆ Sen(Σ′) when for each pushout square of
signature morphisms such as

Σ
ϕ ��

θ

		

Σ′

θ′
		

Σ1 ϕ1
�� Σ′1

(15)

177

Mathematics 2022, 10, 3428

and each ρ ∈ Sen(Σ′1), there exists a finite set of sentences Eρ ⊆ Sen(Σ1) such that

(θ′E′ ∪ ρ " ϕ1Eρ) ∗ (θ′E′ ∪ ϕ1Eρ " ρ) ≥ κ.

The main result of this development is a theorem that generalises the binary truth
result of [40]. It says that in any L-institution with a form of model amalgamation and
which enjoys Craig–Robinson interpolation (with respect to designated classes of signature
morphisms), a signature morphism is defined κ-explicitly when it is defined
-implicitly
provided the truth values κ and
 are related by a condition similar to one of the conditions
underlying the implication of Rc from Ci.

5. Conclusions

Standard institutional model theory has undergone a high level of development as
partially shown in [44]. On the other hand, although non-classical institutional model
theory, in its stratified and L-institution forms, has advanced significantly over the past
decade, it still lags behind the standard version. This is because of two main factors: time
scale and mathematical difficulty. While standard institutional model theory has been
developed over approximately four decades, the non-classical version is much younger.
Then, of course, the latter is mathematically more difficult than the former; it is enough only
to compare the basic definition in order to obtain an understanding of this. However, we
have already seen that many non-classical developments may benefit from classical ones.
At the same time, non-classical institution model theory has aspects that cannot be related
to classical developments. All these mean that a lot of interesting theoretical problems
await in non-classical institutional model theory, and we hope that in the next decade or so,
many of them will be addressed.

In addition, there is something to be addressed that is at least as important as the
theoretical problems: namely, to find new relevant applications. For instance, due to
the highly abstract nature of this approach, which goes hand-in-hand with the axiomatic
method, it has a strong potential to accomodate a wide class of old and new formalisms
especially from computing science. However, all these require a thorough exploration.

Funding: This work was supported by a grant of the Romanian Ministry of Education and Research,
CNCS–UEFISCDI, project number PN-III-P4-ID-PCE-2020-0446, within PNCDI III.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Tarski, A. The Semantic Conception of Truth. Philos. Phenomenol. Res. 1944, 4, 13–47. [CrossRef]
2. Chang, C.C.; Keisler, H.J. Model Theory; North-Holland: Amsterdam, The Netherlands, 1990.
3. Hodges, W. Model Theory; Cambridge University Press: Cambridge, MA, USA, 1993.
4. Robinson, A. Non-Standard Analysis; North-Holland: Amsterdam, The Netherlands, 1966.
5. Goldblatt, R. Lectures on Hyperreals; Graduate Texts in Mathematics; Springer: New York, NY, USA; Berlin/Heidelberg, Germany,

1998; Volume 188.
6. Cohen, P.J. The independence of the Continuum Hypothesis. Proc. Natl. Acad. Sci. USA 1963, 50, 1143–1148. [CrossRef]
7. Cohen, P.J. The independence of the Continuum Hypothesis II. Proc. Natl. Acad. Sci. USA 1964, 51, 105–110. [CrossRef]
8. Lindström, P. On Extensions of Elementary Logic. Theoria 1969, 35, 1–11. [CrossRef]
9. Barwise, J. Axioms for Abstract Model Theory. Ann. Math. Log. 1974, 7, 221–265. [CrossRef]
10. Barwise, J.; Feferman, S. Model-Theoretic Logics; Springer: Berlin/Heidelberg, Germany, 1985.
11. Andréka, H.; Németi, I. Łoś Lemma Holds in Every Category. Stud. Sci. Math. Hung. 1978, 13, 361–376.
12. Andréka, H.; Németi, I. A General Axiomatizability Theorem Formulated in Terms of Cone-Injective Subcategories. In Universal

Algebra; Csakany, B., Fried, E., Schmidt, E., Eds.; North-Holland: Amsterdam, The Netherlands, 1981; pp. 13–35.
13. Andréka, H.; Németi, I. Generalization of the Concept of Variety and Quasivariety to Partial Algebras through Category Theory;

Dissertationes Mathematicae; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1983; Volume 204.
14. Makkai, M.; Reyes, G. First Order Categorical Logic: Model-Theoretical Methods in the Theory of Topoi and Related Categories; Lecture

Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1977; Volume 611.
15. Makkai, M. Ultraproducts and Categorical Logic. In Methods in Mathematical Logic; Lecture Notes in Mathematics; DiPrisco, C.,

Ed.; Springer: Berlin/Heidelberg, Germany, 1985; Volume 1130, pp. 222–309.

178

Mathematics 2022, 10, 3428

16. Burstall, R.; Goguen, J. Semantics of Clear. In Unpublished Notes Handed out at the 1978 Symposium on Algebra and Applications;
Stefan Banach Center: Warsaw, Poland, 1977.

17. Goguen, J.; Burstall, R. Introducing Institutions. In Proceedings of the Logics of Programming Workshop; Lecture Notes in Computer
Science; Clarke, E., Kozen, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 164, pp. 221–256.

18. Goguen, J.; Burstall, R. Institutions: Abstract Model Theory for Specification and Programming. J. Assoc. Comput. Mach. 1992,
39, 95–146. [CrossRef]

19. Mac Lane, S. Categories for the Working Mathematician, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 1998.
20. Astesiano, E.; Bidoit, M.; Kirchner, H.; Krieg-Brückner, B.; Mosses, P.; Sannella, D.; Tarlecki, A. CASL: The Common Algebraic

Specification Language. Theor. Comput. Sci. 2002, 286, 153–196. [CrossRef]
21. Diaconescu, R.; Futatsugi, K. CafeOBJ Report: The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic

Specification; AMAST Series in Computing; World Scientific: Singapore, 1998; Volume 6.
22. Diaconescu, R.; Futatsugi, K. Logical Foundations of CafeOBJ. Theor. Comput. Sci. 2002, 285, 289–318. [CrossRef]
23. Mossakowski, T.; Maeder, C.; Lütich, K. The Heterogeneous Tool Set. In Lecture Notes in Computer Science; World Scientific

Publishing: Singapore, 2007; Volume 4424, pp. 519–522.
24. Mossakowski, T.; Codescu, M.; Neuhaus, F.; Kutz, O. The Distributed Ontology, Modeling and Specification Language—DOL. In

The Road to Universal Logic; Koslow, A., Buchsbaum, A., Eds.; Birkhauser: Cham, Switzerland, 2015.
25. Sannella, D.; Tarlecki, A. Foundations of Algebraic Specifications and Formal Software Development; Springer: Berlin/Heidelberg,

Germany, 2012.
26. Diaconescu, R. Herbrand Theorems in arbitrary Institutions. Inf. Process. Lett. 2004, 90, 29–37. [CrossRef]
27. Ţuţu, I.; Fiadeiro, J.L. From conventional to institution-independent logic programming. J. Log. Comput. 2017, 27, 1679–1716.
28. Ţuţu, I.; Fiadeiro, J.L. Service-oriented Logic Programming. Log. Methods Comput. Sci. 2015, 11, lmcs:1579. [CrossRef]
29. Kutz, O.; Mossakowski, T.; Lücke, D. Carnap, Goguen, and the hyperontologies—Logical pluralism and heterogeneous structuring

in ontology design. Log. Universalis 2010, 4, 255–333. [CrossRef]
30. Tarlecki, A. Bits and Pieces of the Theory of Institutions. In Category Theory and Computer Programming, Proceedings of the Summer

Workshop on Category Theory and Computer Programming, Guildford, UK, 16-20 September 1985; Lecture Notes in Computer Science;
Pitt, D., Abramsky, S., Poigné, A., Rydeheard, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1986; Volume 240, pp. 334–360.

31. Tarlecki, A. On the Existence of Free Models in Abstract Algebraic Institutions. Theor. Comput. Sci. 1986, 37, 269–304. [CrossRef]
32. Tarlecki, A. Quasi-Varieties in Abstract Algebraic Institutions. J. Comput. Syst. Sci. 1986, 33, 333–360. [CrossRef]
33. Diaconescu, R. Elementary diagrams in institutions. J. Log. Comput. 2004, 14, 651–674. [CrossRef]
34. Diaconescu, R. Institution-independent Ultraproducts. Fundam. Inform. 2003, 55, 321–348.
35. Găină, D.; Popescu, A. An institution-independent generalization of Tarski’s Elementary Chain Theorem. J. Log. Comput. 2006,

16, 713–735. [CrossRef]
36. Diaconescu, R.; Petria, M. Saturated models in institutions. Arch. Math. Log. 2010, 49, 693–723. [CrossRef]
37. Găină, D. Forcing, Downward Löwenheim-Skolem and Omitting Types Theorems, Institutionally. Log. Universalis 2014,

8, 469–498. [CrossRef]
38. Găină, D.; Petria, M. Completeness by Forcing. J. Log. Comput. 2010, 20, 1165–1186. [CrossRef]
39. Codescu, M.; Găină, D. Birkhoff completeness in institutions. Log. Universalis 2008, 2, 277–309. [CrossRef]
40. Petria, M.; Diaconescu, R. Abstract Beth definability in institutions. J. Symb. Log. 2006, 71, 1002–1028. [CrossRef]
41. Aiguier, M.; Barbier, F. An institution-independent proof of the Beth definability theorem. Stud. Log. 2007, 85, 333–359. [CrossRef]
42. Diaconescu, R. An institution-independent proof of Craig Interpolation Theorem. Stud. Log. 2004, 77, 59–79. [CrossRef]
43. Găină, D.; Popescu, A. An institution-independent proof of Robinson Consistency Theorem. Stud. Log. 2007, 85, 41–73. [CrossRef]
44. Diaconescu, R. Institution-Independent Model Theory; Birkhäuser: Basel, Switzerland, 2008.
45. Găină, D. Downward Löwenheim-Skolem theorem and interpolation in logics with constructors. J. Log. Comput. 2017,

27, 1717–1752. [CrossRef]
46. Goguen, J.; Roşu, G. Institution morphisms. Form. Asp. Comput. 2002, 13, 274–307. [CrossRef]
47. Mossakowski, T.; Diaconescu, R.; Tarlecki, A. What is a logic translation? Log. Universalis 2009, 3, 59–94. [CrossRef]
48. Diaconescu, R. Institutional semantics for many-valued logics. Fuzzy Sets Syst. 2013, 218, 32–52. [CrossRef]
49. Diaconescu, R. Graded consequence: An institution theoretic study. Soft Comput. 2014, 18, 1247–1267. [CrossRef]
50. Pavelka, J. On fuzzy logic I—Many-valued rules of inference. Zeitscher Math. Log. Und Grund. Math. 1979, 25, 45–52. [CrossRef]
51. Aiguier, M.; Diaconescu, R. Stratified institutions and elementary homomorphisms. Inf. Process. Lett. 2007, 103, 5–13. [CrossRef]
52. Diaconescu, R. Implicit Kripke Semantics and Ultraproducts in Stratified Institutions. J. Log. Comput. 2017, 27, 1577–1606.

[CrossRef]
53. Aiguier, M.; Bloch, I. Logical dual concepts based on mathematical morphology in stratified institutions: Applications to spatial

reasoning. J. Appl.-Non-Class. Logics 2019, 29, 392–429. [CrossRef]
54. Eilenberg, S.; Mac Lane, S. General Theory of Natural Equivalences. Trans. Am. Math. Soc. 1945, 58, 231–294. [CrossRef]
55. Diaconescu, R. From Universal Logic to Computer Science, and Back. In Proceedings of the Theoretical Aspects of Computing–

ICTAC 2014, Bucharest, Romania, 17–19 September 2014; Lecture Notes in Computer Science; Ciobanu, G., Méry, D., Eds.;
Springer: Berlin/Heidelberg, Germany, 2014; Volume 8687.

56. Găină, D. Forcing and Calculi for Hybrid Logics. J. Assoc. Comput. Mach. 2020, 67, 1–55. [CrossRef]

179

Mathematics 2022, 10, 3428

57. Diaconescu, R. Decompositions of Stratified Institutions. arXiv 2021, arXiv:2112.12993.
58. Diaconescu, R. Representing 3/2-Institutions as Stratified Institutions. Mathematics 2022, 10, 1507. [CrossRef]
59. Diaconescu, R. Implicit Partiality of Signature Morphisms in Institution Theory. In Hajnal Andréka and István Németi on Unity of

Science: From Computing to Relativity Theory Through Algebraic Logic; Outstanding Contributions to Logic; Madarász, J., Székely, G.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2021; Volume 19, pp. 81–123. ISBN 978-3-030-64186-3.

60. Diaconescu, R.; Stefaneas, P. Modality in Open Institutions with Concrete Syntax. Bull. Greek Math. Soc. 2004, 49, 91–101.
61. Diaconescu, R.; Stefaneas, P. Ultraproducts and Possible Worlds Semantics in Institutions. Theor. Comput. Sci. 2007, 379, 210–230.

[CrossRef]
62. Martins, M.A.; Madeira, A.; Diaconescu, R.; Barbosa, L. Hybridization of Institutions. In Proceedings of the Algebra and

Coalgebra in Computer Science, Winchester, UK, 30 August–2 September 2011; Lecture Notes in Computer Science; Corradini, A.,
Klin, B., Cîrstea, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 6859, pp. 283–297.

63. Diaconescu, R. Quasi-varieties and initial semantics in hybridized institutions. J. Log. Comput. 2016, 26, 855–891. [CrossRef]
64. Madeira, A. Foundations and Techniques for Software Reconfigurability. Ph.D. Thesis, Universidades do Minho, Aveiro and

Porto (Joint MAP-i Doctoral Programme), Braga, Portugal, 2014.
65. Diaconescu, R.; Goguen, J.; Stefaneas, P. Logical Support for Modularisation. In Logical Environments; Huet, G., Plotkin, G., Eds.;

Cambridge University Press: Cambridge, UK, 1993; pp. 83–130.
66. Diaconescu, R.; Madeira, A. Encoding Hybridized Institutions into First Order Logic. Math. Struct. Comput. Sci. 2016, 26, 745–788.

[CrossRef]
67. Van Bentham, J. Modal Logic and Classical Logic; Humanities Press: London, UK, 1988.
68. Diaconescu, R. Introducing H, an institution-based formal specification and verification language. Log. Universalis 2020,

14, 259–277. [CrossRef]
69. Diaconescu, R. Quasi-Boolean encodings and conditionals in algebraic specification. J. Log. Algebr. Program. 2010, 79, 174–188.

[CrossRef]
70. Bergstra, J.; Heering, J.; Klint, P. Module Algebra. J. Assoc. Comput. Mach. 1990, 37, 335–372. [CrossRef]
71. Dimitrakos, T. Formal Support for Specification Design and Implementation. Ph.D. Thesis, Imperial College, London, UK, 1998.
72. Bicarregui, J.; Dimitrakos, T.; Gabbay, D.; Maibaum, T. Interpolation in practical formal development. Log. J. IGPL 2001, 9, 231–243.

[CrossRef]
73. Veloso, P. On pushout consistency, modularity and interpolation for logical specifications. Inf. Process. Lett. 1996, 60, 59–66.

[CrossRef]
74. Borzyszkowski, T. Logical systems for structured specifications. Theor. Comput. Sci. 2002, 286, 197–245. [CrossRef]
75. Kutz, O.; Mossakowski, T. Modules in Transition. Conservativity, Composition, and Colimits. In Proceedings of the Second

International Workshop on Modular Ontologies, Whistler, BC, Canada, 28 October 2007.
76. Nelson, G.; Oppen, D. Simplication by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1979, 1, 245–257.

[CrossRef]
77. Oppen, D. Complexity, convexity and combinations of theories. Theor. Comput. Sci. 1980, 12, 291–302. [CrossRef]
78. Jhala, R.; Majumdar, R.; Xu, R.G. State of the Union: Type Inference Via Craig Interpolation. In Proceedings of the Tools and

Algorithms for the Construction and Analysis of Systems, Braga, Portugal, 24 March–1 April 2007; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4424, pp. 553–567.

79. McMillan, K. Applications of Craig interpolants in model checking. In Proceedings of the TACAS’2005, Edinburgh, UK, 4–8
April 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3440, pp. 1–12.

80. Amir, E.; McIlraith, S. Improving the Efficiency of Reasoning Through Structure-Based Reformulation. In Proceedings of
the Symposium on Abstraction, Reformulation and Approximation (SARA’2000), Horseshoe Bay, TX, USA, 26–29 July 2000;
Lecture Notes in Artificial Intelligence; Choueiry, B., Walsh, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1864,
pp. 247–259.

81. McIlraith, S.; Amir, E. Theorem Proving with Structured Theories. In Proceedings of the 17th International Conference on
Artificial Intelligence (IJCAI-01), Seattle, WA, USA, 4–10 August 2001; pp. 624–631.

82. Borzyszkowski, T. Generalized Interpolation in CASL. Inf. Process. Lett. 2001, 76, 19–24. [CrossRef]
83. Dimitrakos, T.; Maibaum, T. On a Generalized Modularization Theorem. Inf. Process. Lett. 2000, 74, 65–71. [CrossRef]
84. Diaconescu, R. Interpolation in Grothendieck Institutions. Theor. Comput. Sci. 2004, 311, 439–461. [CrossRef]
85. Diaconescu, R. Borrowing interpolation. J. Log. Comput. 2012, 22, 561–586. [CrossRef]
86. Diaconescu, R. Interpolation for predefined types. Math. Struct. Comput. Sci. 2012, 22, 1–24. [CrossRef]
87. Diaconescu, R. Concepts of Interpolation in Stratified Institutions. 2022, submitted. [CrossRef]
88. Bell, J.L.; Slomson, A.B. Models and Ultraproducts; North-Holland: Amsterdam, The Netherlands, 1969.
89. Matthiessen, G. Regular and strongly finitary structures over strongly algebroidal categories. Can. J. Math. 1978, 30, 250–261.

[CrossRef]
90. Tarski, A.; Vaught, R. Arithmetical extensions of relational systems. Compos. Math. 1957, 13, 81–102.
91. Serra, J. Mathematical Morphology; Academic Press: Cambridge, MA, USA, 1982.
92. Bloch, I.; Heijmans, H.; Ronse, C. Handbook of Spatial Logics; Chapter Mathematical Morphology; Springer: Berlin/Heidelberg,

Germany, 2007; pp. 857–947.

180

Mathematics 2022, 10, 3428

93. Mayoh, B. Galleries and Institutions; Technical Report DAIMI PB-191; Aarhus University: Aarhus, Denmark, 1985.
94. Eklund, P.; Helgesson, R. Monadic extensions of institutions. Fuzzy Sets Syst. 2010, 161, 2354–2368. [CrossRef]
95. Diaconescu, R. Preservation in many-valued truth institutions. Fuzzy Sets Syst. 2021, submitted. [CrossRef]
96. Walicki, M.; Meldal, S. Algebraic approaches to nondeterminism—An overview. ACM Comput. Surv. 1997, 29, 30–81. [CrossRef]
97. Lamo, Y.; Walicki, M. The general logic of Multialgebras. In Proceedings of the Workshop on Algebraic Development Techniques,

Frauenchiemsee, Germany, 24–27 September 2002.
98. Lamo, Y. The Institution of Multialgebras—A General Framework for Algebraic Software Development. Ph.D. Thesis, University

of Bergen, Bergen, Norway, 2003.
99. Gerla, G. Fuzzy Logic: Mathematical Tools for Approximate Reasoning; Kluwer: Alphen aan den Rijn, The Netherlands, 2001.
100. Ward, M.; Dilworth, R. Residuated lattices. Trans. Am. Math. Soc. 1939, 45, 335–354. [CrossRef]
101. Galatos, N.; Jipsen, P.; Kowalski, T.; Ono, H. Residuated Lattices: An Algebraic Glimpse at Substructural Logics; Elsevier: Amsterdam,

The Netherlands, 2007.
102. Chakraborty, M.K. Graded Consequence: Further studies. J. Appl.-Non-Class. Logics 1995, 5, 127–137. [CrossRef]
103. Meseguer, J. General Logics. In Logic Colloquium ’87: Proceedings of the Colloquium (LOGIC COLLOQUIM// PROCEEDINGS),

Granada, Spain, 20–25 July 1987; Ebbinghaus, H.D., Fernandez-Prida, J., Garrido, M., Lascar, D., Eds.; North-Holland: Amsterdam,
The Netherlands, 1989; pp. 275–329.

104. Fiadeiro, J.L.; Sernadas, A. Structuring Theories on Consequence. In Recent Trends in Data Type Specification; Lecture Notes in
Computer Science; Sannella, D., Tarlecki, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 332, pp. 44–72.

105. Chakraborty, M.K. Use of fuzzy set theory in introducing graded consequence in multiple valued logic. In Fuzzy Logic in
Knowledge-Based Systems, Decision and Control; Gupta, M., Yamakawa, T., Eds.; Elsevier Science Publishers, B.V., North Holland:
Amsterdam, The Netherlands, 1988; pp. 247–257.

106. Tarski, A. On some fundamental concepts of metamathematics. In Logic, Semantics, Metamathematics; Oxford University Press:
Oxford, UK, 1956; pp. 30–37.

107. Goguen, J. The logic of inexact concepts. Synthese 1968, 19, 325–373. [CrossRef]
108. Mossakowski, T.; Goguen, J.; Diaconescu, R.; Tarlecki, A. What is a Logic? In Logica Universalis; Béziau, J.Y., Ed.; Birkhäuser:

Basel, Switzerland, 2005; pp. 113–133.
109. Diaconescu, R. Generalized Graded Interpolation. 2022, submitted.
110. Maehara, S. On the interpolation theorem of Craig. Sugaku 1962, 12, 235–237.
111. Robinson, A. A result on consistency and its applications to the theory of definition. Indag. Math. 1956, 18, 47–58. [CrossRef]
112. Mundici, D. Robinson’s consistency theorem in soft model theory. Trans. AMS 1981, 263, 231–241.
113. Beth, E.W. On Padoa’s method in the theory of definition. Indag. Math. 1953, 15, 330–339. [CrossRef]

181

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

ISBN 978-3-0365-7377-9

MDPI

St. Alban-Anlage 66

4052 Basel

Switzerland

Tel: +41 61 683 77 34

www.mdpi.com

	A9Rl92d9_1u1ntn9_1b4.pdf
	[Mathematics] Logic and Computation.pdf
	A9Rl92d9_1u1ntn9_1b4

