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The Special Issue “Document Image Processing” in the Journal of Imaging aims at presenting
approaches which contribute to access the content of document images. These approaches are related
to low level tasks such as image preprocessing, skew/slant corrections, binarization and document
segmentation, as well as high level tasks such as OCR, handwriting recognition, word spotting
or script identification. This special issue brings together 12 papers that discuss such approaches.
The first three articles deal with historical document preprocessing. The work by Hanif et al. [1] aims
at removing bleed-through using a non-linear model, and at reconstructing the background by an
inpainting approach based on non-local patch similarity. The paper by Almeida et al. [2] proposes a
new binarization approach that includes a decision-based process for finding the best threshold for
each RGB channel. In the paper by Kavallieratou et al. [3], a segmentation-free approach based on the
Wigner-Ville distribution is used to detect the slant of a document and correct it.

Once a document image is preprocessed, a next step described in the paper by Ghosh et al. [4]
consists in separating text components from non-text ones, using a classifier based on LBP features.
Following steps may consist in recognizing text components or searching from word queries. In the
paper by Nashwan et al. [5] a holistic-based approach for the recognition of printed Arabic words
is proposed, coupled with an efficient dictionary reduction. In the work by Nagendar et al. [6] it is
shown that using a query specific fast Dynamic Time Warping distance, improves the Direct Query
Classifier (DQC) word spotting system.

Deep neural network-based approaches are now widely used in the domain of document image
processing, especially for the recognition of textual elements. The following papers also follow this
trend. In the work by Jangid and Srivastava [7], deep convolutional networks trained layer-wise, are
applied to the recognition of Devanagari characters. The paper by Kesiman et al. [8] is dedicated to
southeast Asian scripts written on palm leafs. Character and word images are recognized by CNNs
(Convolutional Neural Networks) and RNNs (Recurrent Neural Networks), respectively. Several
binarization and text-line segmentation approaches are also benchmarked on these specific documents.
The work by Granell et al. [9] describes an efficient text-line recognition system, based on CNN and
stacks of RNNs, that has been developed for the recognition of historical Spanish documents. These
documents include out-of-vocabulary ancient words which are handled by a language model based on
sub-lexical units.

Annotated datasets are necessary to train systems or to evaluate the various tasks related to
document image processing. In several papers published in this special issue, new datasets are
released as well as open-source tools that are able to generate synthetic images. A dataset of indic
scripts is released in the paper by Mukhopadhyay et al. [10] and first results are provided with this
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dataset. The DocCreator software described in the paper by Journet et al. [11] creates additional
document samples from input ones, using a degradation model. Such augmented data are used to
train deep learning systems or to evaluate system performance. Document images can be extended
to videos including text. The paper by Zayenne et al. [12] describes open-source tools for multiple
document processing tasks: annotation of Arabic news videos, evaluation of text detection and text
recognition. Authors also release the Activ2.0 database of Arabic videos and make it publicly available.

The guest editors would also like to thank all the authors that have submitted papers to this
special issue, all the reviewers for their contribution, and the Journal of Imaging Editors.

Author Contributions: The two authors have equally contributed to the writing of this editorial.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Bleed-through is a frequent, pervasive degradation in ancient manuscripts, which is caused
by ink seeped from the opposite side of the sheet. Bleed-through, appearing as an extra interfering
text, hinders document readability and makes it difficult to decipher the information contents.
Digital image restoration techniques have been successfully employed to remove or significantly
reduce this distortion. This paper proposes a two-step restoration method for documents affected
by bleed-through, exploiting information from the recto and verso images. First, the bleed-through
pixels are identified, based on a non-stationary, linear model of the two texts overlapped in the
recto-verso pair. In the second step, a dictionary learning-based sparse image inpainting technique,
with non-local patch grouping, is used to reconstruct the bleed-through-contaminated image
information. An overcomplete sparse dictionary is learned from the bleed-through-free image patches,
which is then used to estimate a befitting fill-in for the identified bleed-through pixels. The non-local
patch similarity is employed in the sparse reconstruction of each patch, to enforce the local similarity.
Thanks to the intrinsic image sparsity and non-local patch similarity, the natural texture of the
background is well reproduced in the bleed-through areas, and even a possible overestimation of
the bleed through pixels is effectively corrected, so that the original appearance of the document is
preserved. We evaluate the performance of the proposed method on the images of a popular database
of ancient documents, and the results validate the performance of the proposed method compared to
the state of the art.

Keywords: ancient document restoration; image inpainting; bleed-through removal; sparse representation

1. Introduction

Archival, ancient manuscripts constitute the primary carrier of most authentic information
starting from the medieval era, serving as history’s own closet, carrying stories of enigmatic, unknown
places or incredible events that took place in the distant past, many of which are still to be revealed.
These manuscripts are of great interest and importance for historians, and provide insight into culture,
civilisation, events and lifestyles of our past. With the passage of time, these documents have been
exposed to different types of progressive degradations, such as spots or ink fading, due to fragile nature
of the writing media, and bad storage or environmental conditions. This degradation process limits the
use of these ancient classics, and some of the deteriorated documents had a very narrow escape from
total annihilation. Specifically, in the manuscripts written on both sides of the sheet, often the ink had
seeped through and appears as an unpleasant degradation pattern on the reverse side. Ink penetration
through the paper is mainly due to aging, humidity, ink chemical properties or paper porosity [1],
and can range from faint to severe. In the literature, this kind of degradation is termed as bleed-through,
and impairs the legibility and interpretation of the document contents [2]. Therefore, it is of great
significance to remove the bleed-through contamination and restore the integrity of the original
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manuscripts. An example of bleed-through removal is shown in Figure 1. Earlier, physical restoration
methods were applied to deal with bleed-through degradation, but unfortunately those methods were
costly, invasive, and sometimes caused permanent, irreversible damage to the documents.

In recent years, digital preservation of the documental heritage has been the focus of
intensive digitisation and archiving campaigns, aimed at its distribution, accessibility and analysis.
With digitization prevailing, in addition to conservation, the computing technologies applied to the
digital images of these documents have quickly become a powerful and versatile tool to simplify
their study and retrieval, and to facilitate new insights into the document’s contents. Digital image
processing techniques can be applied to these electronic document versions, to perform any alteration
to the document appearance, while preserving the original intact. Specifically, digital image processing
techniques have been attempted for the virtual restoration of documents affected by bleed-through,
with some impressive results. In addition, to improve the document readability, the removal of the
bleed-though degradation is also a critical preprocessing step in many tasks such as feature extraction,
optical character recognition, segmentation, and automatic transcription.

Figure 1. An example of bleed-through removal.

Bleed-through removal is a challenging task mainly due to the possible significant overlap
between the original text and the bleed-through pattern, and the wide variation of its extent and
intensity. In literature, bleed-through removal is addressed as a classification problem, where the
document image is subdivided into three components: background (the paper support), foreground
(the main text), and bleed-through [1]. Broadly speaking, the existing methods in this domain can
be divided into two main categories: blind or single-sided, and non-blind or double-sided. In blind
methods, the image of a single side is used, whereas the non-blind methods require the information
of both the recto and verso sides of the document. Most of the earlier methods rely on the intensity
information of the image and perform restoration based on the grayscale or color (red, green, blue)
intensity distributions. The intensity based methods involve thresholding [3]; however, intensity
information alone is insufficient as there is often a significant overlap between the foreground and
bleed-through intensity profiles [4]. In addition, thresholding may also destroy other useful document
features, such as stamps, annotations, or paper watermarks. Thus, intensity based thresholding is
not suitable when the aim is to preserve the original appearance of the document. To overcome these
drawbacks, some methods incorporate spatial information by exploiting the neighbouring structure.

Among the blind methods, in [5], an independent component analysis (ICA) method is proposed
to separate the foreground, background, and bleed-through layers from an RGB image. A dual-layer
Markov random field (MRF) is suggested in [6], whereas, in [7], a conditional random field (CRF)
method is proposed. A multichannel based blind bleed-through removal is suggested in [8] using color
decorrelation or color space transformations, whereas, in [9], a recursive unsupervised segmentation
approach is applied to the data space first decorrelated by principal component analysis (PCA). In [10],
bleed-through removal is addressed as a blind source separation problem, solved by using a Markov
random field (MRF) based local smoothness model. Similarly, an expected maximization (EM)-based
approach is suggested in [11].

As per the non-blind methods, a model based approach using differences in the intensities
of recto and verso side is outlined in [12]. The same model is extended in [13] using variational
models with spatial smoothness in the wavelet domain. A non-blind ICA method is outlined in [14].
Other methods of this category are proposed in [15–17]. The performance of the non-blind methods
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depends on the accurate registration of recto and verso sides of the document, which is a non-trivial
pre-processing step.

For a plausible restoration of documents with bleed-through, in addition to bleed-through
identification, finding a suitable replacement for the affected pixels is also essential. The restored image
generated in most of the above methods is either binary, pseudo-binary (uniform background and
varying foreground intensities), or textured (the bleed-through regions are replaced with an estimate
of the local mean background intensity or with a random pattern). An estimate of the local mean
background is used in [6,18], but such methods are good for manuscripts with a reasonably smooth
background while producing visible artifacts for documents with a highly textured background. In [7],
a random-fill inpainting method is suggested to replace the bleed-through pixels with background
pixels randomly selected from the neighbourhood. However, the random pixel selection produces
salt and pepper like artifacts in regions with large bleed-through. In [6,16], as a preliminary step,
a “clean” background for the entire image is estimated, but this is usually a very laborious task.
In bleed-through removal, the desired restored image is the one where the foreground and background
texture is preserved as much as possible. Instead, most of the bleed-through removal methods usually
concentrate on foreground text preservation, neglecting the background texture. In order to enhance
the quality of the restored image, the identification of bleed-through pixels and the estimation of
a tenable replacement for them should be addressed with equal attention.

Image inpainting, which refers to filling in missing or corrupted regions in an image, is a well
studied and challenging topic in computer vision and image processing [19,20]. In image inpainting,
the goal is to find an estimate for those regions in order to reconstruct a visually pleasant and
consistent image [21]. Recently, sparse representation based image inpainting methods are reported
with exquisite results [22,23]. These methods find a sparse linear combination for each image patch
using an overcomplete dictionary, and then estimate the value of missing pixels in the patch. This linear
sparse representation is computed adaptively, by using a earned dictionary and sparse coefficients,
trained on the image at hand. A dictionary learning based method has been used for document
image resolution enhancement [24], denoising [25], and restoration [26]. In addition to sparsity,
non-local self-similarity is another significant property of natural images [27,28]. A number of non-local
regularization terms, exploiting the non-local self-similarity, are employed in solving inverse problems
[29,30]. Fusing image sparsity with non-local self-similarity produces better results in recently reported
image restoration techniques [31,32]. The underlying assumption in such methods is that similar
patches share the same dictionary atoms.

In this paper, we present a two-step method to restore documents affected by bleed-through using
pre-registered recto and verso images. First, the bleed-through pattern is selectively identified on
both sides; then, sparse image inpainting is used to find suitable fill in for the bleed-through pixels.
In general, any off-the-shelf bleed-through identification methods can be used in the first step. Here,
we adopt the algorithm described in [33], which is simple and very fast. Although efficient in locating the
bleed-through pattern, the method in [33] lacks a proper strategy to replace the unwanted bleed-through
pixels. The simple replacement with the predominant background gray level value causes unpleasant
imprints of the bleed-through pattern, visible in the restored image. An interpolation based inpainting
technique for such imprints is presented in [34], but the filled-in areas are mostly smooth. Here, we use
a sparse image representation based inpainting, with non-local similar patches, to find a befitting fill-in
for the bleed-through pixels. This sparse inpainting step, which constitutes the main contribution of
the paper, enhances the quality of the restored image and preserves well the natural paper texture and
the text stroke appearance. The optimization problem of sparse patch inpainting is formulated using
the non-local similar patches, to account for the neighbourhood consistency, and orthogonal matching
pursuit (OMP) is used to find the sparse approximation.

The rest of this paper is organized as follows. The next section briefly introduces sparse image
representation and dictionary learning. Section 3 presents the non-blind bleed-through identification
method. The proposed sparse image inpainting technique is described in Section 4. In Section 5,
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we comment on a set of experimental results, illustrating the performance of the proposed method and
its comparison with state-of-the-art methods. The concluding remarks are given in Section 6.

2. Sparse Image Representation

Recently, sparse representation emerged as a powerful tool for efficient representation and
processing of high-dimensional data. In particular, sparsity based regularization has achieved
great success, offering solutions that outperform classical approaches in various image and signal
processing applications. Among the others, we can mention inverse problems such as denoising [35,36],
reconstruction [22,37], classification [38], recognition [39,40], and compression [41,42]. The underlying
assumption of methods based on sparse representation is that signals such as audio and images are
naturally generated by a multivariate linear model, driven by a small number of basis or regressors.
The basis set, called dictionary, is either fixed and predefined, i.e., Fourier, Wavelet, Cosine, etc.,
or adaptively learned from a training set [43]. While the underlying key constraint of all these methods
is that the observed signal is sparse, explicitly meaning that it can be adequately represented using
a small set of dictionary atoms, the particularity of those based on adaptive dictionaries is that the
dictionary is also learned to find the one that best describes the observed signal.

Given a data set Y = [y1, y2, ..., yN ] ∈ Rn×N , its sparse representation consists of learning
an overcomplete dictionary, D ∈ Rn×K, N > K > n, and a sparse coefficient matrix, X ∈ RK×N with
non-zero elements less than n , such that yi ≈ Dxi, by solving the optimization problem given as

min
D,X

||Y − DX||2F s.t. ‖ xi ‖p≤ m,

where the xi are the column vectors of X, m is the desired sparsity level, and ‖ · ‖p is the �p-norm,
with 0 ≤ p ≤ 1.

Most of these methods consist of a two stage optimization scheme: sparse coding and dictionary
update [43]. In the first stage, the sparsity constraint is used to produce a sparse linear approximation
of the observed data, with respect to the current dictionary D. Finding the exact sparse approximation
is an NP-hard (non-deterministic polynomial-time hard) problem [44], but using approximate solutions
has proven to be a good compromise. Commonly used sparse approximation algorithms are Matching
Pursuit (MP) [45], Basis Pursuits (BP) [46], Focal Underdetermined System Solver (FOCUSS) [47],
and Orthogonal Matching Pursuit (OMP) [48]. In the second stage, based on the current sparse code,
the dictionary is updated to minimize a cost function. Different cost functions have been used for the
dictionary update, for example, the Frobenius norm with column normalization has been widely used.
Sparse representation methods iterate between the sparse coding stage and the dictionary update stage
until convergence. The performance of these methods strongly depends on the dictionary update
stage, since most of them share a similar sparse coding [43].

As per the dictionary that leads to sparse decomposition, although working with pre-defined
dictionaries may be simple and fast, their performance might be not good for every task, due to their
global-adaptivity nature [49]. Instead, learned dictionaries are adaptive to both the signals and the
processing task at hand, thus resulting in a far better performance [50].

For a given set of signals Y, dictionary learning algorithms generate a representation of signal yi
as a sparse linear combination of the atoms dk for k = 1, ..., K,

ŷi = Dxi. (1)

Dictionary learning algorithms distinguish themselves from traditional model-based methods by
the fact that, in addition to xi, they also train the dictionary D to better fit the data set Y. The solution
is generated by iteratively alternating between the sparse coding stage,

x̂i = arg min
xi

‖ yi − Dxi ‖2; subject to ‖ xi ‖0≤ m (2)
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for i = 1, ..., N, where ‖.‖0 is the �0-norm, which counts the non-zero elements in x, and the dictionary
update stage for the X obtained from the sparse coding stage

D = arg min
D

‖ Y − DX ‖2
F . (3)

Dictionary learning algorithms are often sensitive to the choice of m. The update step can either
be sequential (one atom at a time) [51,52], or parallel (all atoms at once) [53,54]. A dictionary with
sequential update, although computationally a bit expensive, will generally provide better performance
than the parallel update, due to the finer tuning of each dictionary atom. In sequential dictionary
learning, the dictionary update minimization problem (3) is split into K sequential minimizations,
by optimizing the cost function (3) for each individual atom while keeping fixed the remaining ones.
Most of the proposed algorithms have kept the two stage optimization procedure, the difference
appearing mainly in the dictionary update stage, with some exceptions having a difference in the
sparse coding stage as well [43]. In the method proposed in [51], which has become a benchmark in
dictionary learning, each column dk of D and its corresponding row of coefficients xrow

k are updated
based on a rank-1 matrix approximation of the error for all the signals when dk is removed

{dk, xrow
k } = arg min

dk ,xrow
k

‖ Y − DX ‖2
F

= arg min
dk ,xrow

k

‖Ek − dkxrow
k ‖2

F, (4)

where Ek = Y − ∑K
i=1,i �=k dix

row
i . The singular value decomposition (SVD) of Ek = UΔV� is used to

find the closest rank-1 matrix approximation of Ek. The dk update is taken as the first column of U,
and the xrow

k update is taken as the first column of V multiplied by the first element of Δ. To avoid the
loss of sparsity in xrow

k that would be created by the direct application of the SVD on Ek, in [51], it was
proposed to modify only the non-zero entries of xrow

k resulting from the sparse coding stage. This is
achieved by taking into account only the signals yi that use the atom dk in Equation (4), or, by taking,
instead of the SVD of Ek, the SVD of ER

k = EkIwk , where wk = {i|1 ≤ i ≤ N; xrow
k (i) �= 0}, and Iwk is

the N × |wk| submatrix of the N × N identity matrix obtained by retaining only those columns whose
index numbers are in wk.

3. Bleed-Through Identification

The algorithm used to recognise the pixels that belong to the bleed-through pattern makes use of
both sides of the document, i.e., the recto and the verso images, and suitably compares their intensities
in a pixel-by-pixel modality. Hence, it is essential that two corresponding, opposite pixels exactly refer
to the same piece of information. In other words, at location (i, j), to the pixel in a side, let us say
a bleed-through pixel, must correspond, in the opposite side, the foreground pixel that has generated
it, and vice versa. In order to ensure this matching, one of the two images needs to be reflected
horizontally, and then the two images must be perfectly aligned [55].

The way in which we perform the comparison between pairs of corresponding pixels is motivated
by some considerations about the physical phenomenon. Indeed, through experience, we observed
that, in the majority of the manuscripts examined, due to paper porosity, the seeped ink has also
diffused through the paper fiber. Hence, in general, the bleed-through pattern is a smeared and lighter
version of the opposite text that has generated it. Note that this assumption does not mean that,
on the same side, bleed-through is lighter than the foreground text. In fact, on each side, the intensity
of bleed-through is usually very variable, which is highly non-stationary, and sometimes can be as
dark as the foreground text.

Other considerations can be made by reasoning in terms of “quantity of ink”. Indeed, it is apparent
that the quantity of ink should be zero in the background, i.e., the unwritten paper, no matter the
color of the paper, maximum in the darker and sharper foreground text, and minimum in the lighter
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and smoother corresponding bleed-through text. As a measure for “quantity of ink” having such
properties, we use the concept of optical density, which is related to the intensity as follows:

d(i, j) = D(s(i, j)) = −log
(

s(i, j)
b

)
, (5)

where s(i, j) is the image intensity at pixel (i, j), and b represent the most frequent (or the average)
intensity value of the background area in the image.

Thus, based on the physically-motivated assumptions above, we adopt a linear, non-stationary
model in the optical densities, to describe the superposition between background, foreground and
bleed-through in the two observed recto and verso images:

dobs
r (i, j) = dr(i, j) + qv(i, j)D(hv(i, j)⊗ sv(i, j)),

dobs
v (i, j) = dv(i, j) + qr(i, j)D(hr(i, j)⊗ sr(i, j)),

(6)

for each pixel (i, j). In Equation (6), dobs is the observed optical density, and d is the ideal optical
density of the free-of-interferences image, with the subscripts r and v indicating the recto and verso side,
respectively. D is the operator that, when applied to the intensity, returns the optical density according
to Equation (5), and ⊗ indicates convolution between the ideal intensity s and a unit volume Point
Spread Function (PSF), h, describing the smearing of ink penetrating the paper. At present, we assume
stationary PSFs, empirically chosen as Gaussian functions, although a more reliable model for the
phenomenon of the ink spreading should consider non-stationary operators. Finally, the space-variant
quantities qr and qv have the physical meaning of attenuation levels of the density (or ink penetration
percentage), from one side to the other.

The proposed algorithm locates the bleed-through pixels in each side as those whose optical
density is lower than that of the corresponding pixels in the opposite side, i.e., of the foreground that
has generated the bleed-through. Thus, on the basis of Equation (6), at each pixel, we first compute the
following ratios:

qr(i, j) = dobs
v (i,j)

D(hr(i,j)⊗sobs
r (i,j))+ε

,

qv(i, j) = dobs
r (i,j)

D(hv(i,j)⊗sobs
v (i,j))+ε

.
(7)

Since the equations above are intended to identify bleed-through pixels, they are derived from
the model in Equation (6) assuming that the ideal optical density d(i, j) is zero on the side at hand.
As a consequence of this assumption, the opposite, ideal density, should correspond to that of the
foreground text, and then coincide with the density of the blurred observed intensity sobs. Then, for all
pixels, we maintain the smallest between the two computed attenuation levels, and set to zero the other.
This allows for correctly discriminating the two instances of foreground on one side and bleed-through
in the other, so that, all pixels where qr > 0 are classified as bleed-through in the verso side, whereas
those where qv > 0 are classified as bleed-through in the recto side.

However, it is apparent that, with the criterion above, we can obtain wrong positive attenuation
levels, on one of the two sides, in correspondence of some background pixels and some occlusion
pixels, i.e., where the two foreground texts superimpose on each other. This happens because, in the
cases background–background and foreground–foreground, the two densities are almost the same,
around zero in the first case and around the maximum density in the other, with small oscillations that
make unpredictable the value of the ratios.

To correct this possible overestimation of the bleed-through pixels, we set to zero the attenuation
level when the densities dobs

r and dobs
v are both low (or high, respectively) and close to each other.

We experimentally verified that this procedure works well in most cases. On the other hand, even if
some pixels remain misclassified as bleed-through, the sparse inpainting algorithm that we propose
here is able to properly replace them with the original, correct values. As detailed in the next section,
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the inpainting algorithm also incorporates information of similar neighbouring patches, thus making
possible the distinction between false bleed-through pixels in the background and false bleed-through
pixel in the foreground.

4. Sparse Bleed-Through Inpainting

After successful identification of the bleed-through pixels, the next task is to find a suitable
replacement for them. In this paper, we treat the bleed-through pixels as missing or corrupt image
regions, and use sparse image inpainting to estimate proper fill-in values, which are consistent with
the known uncorrupted surrounding pixels.

In recent years, image inpainting techniques have been widely used in image restoration,
target removal, and compression. Generally, image inpainting techniques can be divided into two
groups: diffusion based methods and exemplar based methods [21]. The diffusion based methods
use a parametric model or partial differential equations, which extend the local structure from the
surrounding to the internal of the region to be repaired [56]. In [57], a weighted average of known
neighbourhood pixels is used to replace the missing pixels, using a fast matching method. A diffusion
based method, with total variational approach, is presented in [58]. In [59], a multi-color image
inpainting is outlined using anisotropic smoothing. The methods in this category are suitable for
non-textured images with small missing regions.

In the exemplar based methods, an image block is selected as a unit, and the information is
replicated from the known part of the image to the unknown region. In [20], a patch priority based
inpainting is suggested that extends known image patches to the missing parts of the image. A non-local
exemplar based method is suggested in [60], where the missing patches are estimated as means of
selected non-local patches. Comparatively, the exemplar based methods are faster and exhibit better
performance, but use only a single best matching block to estimate the unknown pixels. However,
pure texture synthesis fails to preserve the structure information of the image, which constitutes its
basic outline. A combination of diffusion and exemplar based inpainting is suggested in [61] to repair
the structure and texture layers separately. This greedy kind of approach often introduces artifacts and
also consumes more time in finding the best match for each image patch [21].

Recently, sparse representation based image inpainting algorithms have been reported with
impressive results [62]. As sparse representation works on image patches, the main idea is to find the
optimal sparse representation for each image patch and then estimate the missing pixels in a patch
using the sparse coefficients of the known pixels. A sparse image inpainting method, using samples
from the known image part, is presented in [23]. A fusion of an exemplar-based technique and sparse
representation is presented in [22] to better preserve the image structure and the consistency of the
repaired patch with its surroundings. In [62], a sparse representation method based on structure
similarity (SSIM) of image patches is presented, where the dictionary training and the sparse coefficient
estimation are based on the SSIM index.

Mathematically, the image inpainting problem is formulated as the reconstruction of the
underlying complete image (in a column vector form) C ∈ RW from its observed incomplete version
I ∈ RL, where L < W. We assume a sparse representation of C over a dictionary D ∈ Rn×K: C ≈ DX.
The incomplete image I and the complete image C are related through I = MC, where M ∈ RL×W

represents the layout of the missing pixels. In formulas it is:

I = MC

≈ M(DX). (8)

Assuming that a well trained dictionary D is available, the problem boils down to the estimation
of sparse coefficients X̂ such that the underlying complete image Ĉ is given by Ĉ = DX̂. To learn the
dictionary D, a training set Y is created by extracting overlapping patches of size

√
ps ×√

ps from
the image at location j = 1, 2, . . . ., P, where ps is the patch size and P is the total number of patches.
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Then, we have yj = Rj(I), where Rj(.) is an operator that extracts the patch yj from the image I , and its
transpose, denoted by RT

j (.), is able to put back a patch into the j-th position in the reconstructed
image. Considering that patches are overlapped, the recovery of C from {ŷj} can be obtained by
averaging all the overlapping patches, as follows:

C =
P

∑
j=1

RT
j (ŷj)./

P

∑
j=1

RT
j (1ps). (9)

4.1. Group Based Bleed-Through Patch Inpainting

Traditional sparse patch inpainting, where the missing pixel values are estimated using the known
pixels from the corresponding patch only, ignores the relationship between neighbouring patches
when estimating the missing pixels [31]. Incorporating information of similar neighbouring patches
assists in the estimation of missing pixels and guarantees smooth transition by exploiting the local
similarity typical of natural images. Following this line, we used a non-local group based patch
inpainting approach here. For each patch to be inpainted, we search for similar patches within a
limited neighborhood using Euclidean distance as similarity criterion, calculated as given below:

distpatch =
√
(Pxre f − Pxnew)2 + (Pyre f − Pynew)2,

where Pxre f , Pyre f and Pxcur, Pycur represents the horizontal and vertical position of central pixel in
the reference and current patch, respectively.

For each patch y with bleed-through pixels, we select L non-local similar patches within an
Ns × Ns neighbouring window. The similar patches are grouped together in a matrix, yG ∈ Rps×L.
In each patch, we have known pixels and missing or bleed-through pixels. Let Ω be an operator that
extracts the known pixels in a patch and Ω̄ an operator that extracts the missing pixels, so that Ω(y)

represents the known pixels and Ω̄(y) represents the missing pixels in a patch y. An illustration of
such pixels’ extraction is given in Figure 2.

Figure 2. Extracting known and bleed-through pixels in a patch.

Similarly, for a group of patches, Ω(yG) extracts the known pixels of all patches, averaging
multiple entries at the same pixel location, and Ω̄(yG) represents the missing pixels. Given a
well-trained dictionary D, the sparse reconstruction of patches with bleed-through pixels can be
formulated as

x̂ = arg min
x

‖ Ω(yG)− Ω(Dx) ‖2 +α ‖ x ‖0, (10)

where α is a small constant. The first term of Equation (10) represents the data-fidelity and the
second term is the sparse regularization. After obtaining the sparse coefficients x̂ using Equation (10),
an estimate for the bleed-through pixels can be obtained using

Ω̄(y) = Ω̄(Dx̂). (11)

Using the reconstructed patches, an estimated, bleed-through free image is obtained by means of
patch averaging, according to Equation (9).
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In this paper, we learned a dictionary D from the training set Y created from the overlapping
patches of an image with bleed-through, using the method described in Section 2. For optimization,
we used only complete patches from Y, i.e., the patches with no bleed-through pixels, selected from
both background areas and foreground text. This choice of ‘clean patches’ speeds up the training
process and excludes the ‘non-informative’ bleed-through pixels. After dictionary training, the sparse
coefficients in Equation (10) are estimated using the OMP algorithm presented in [48]. The order in
which the bleed-through patches are inpainted has a significant impact on the final restored image.
Thus, similarly to [20], high priority is given to patches with structure information in the known part.
This patch priority scheme enables a smooth transition of structure information from the known part
to the unknown (bleed-through) part of the patch.

5. Experimental Results

In this section, we discuss the performance of our method in order to validate its effectiveness.
We compared the proposed method with other state-of-the-art methods including [7,16]. For evaluation,
we used images from the well known database of ancient documents presented in [63,64]. This database
contains 25 pairs of recto-verso images of ancient manuscripts affected by bleed-through, along with
ground truth images. In the ground truth images, the foreground text is manually labeled. For the
proposed method, the input images are first processed for bleed-through detection as discussed in
Section 3.

The dictionary training data set Y is constructed by selecting the overlapping patches of size 8 × 8
with no bleed-through pixels from the input image. We learned an overcomplete dictionary D of size
64 × 256 from Y, with sparsity level m = 5 and α = 0.26. We used discrete cosine transform (DCT)
matrix as an initial dictionary. For each patch to be inpainted, the sparse coefficients are estimated using
the learned dictionary and OMP. The sparse coefficients of each patch, denoted by xj, where j indicates
the number of the patch, are then used to estimate the fill-in values for the bleed-through areas. In
terms of computational complexity, the dictionary training step comparatively consumes more time.
The K-SVD algorithm requires K-times singular valve decomposition (SVD), with computational cost
of O(K4), where K represents the number of atoms. The proposed method is implemented in the
MATLAB2016a platform (The MathWorks, Inc., Natick, MA, USA) on a personal computer with core
i5-6500 CPU at 3.20 Ghz and 8 GB of RAM. It took about 2 min for dictionary learning, and 57 s for
inpainting an image of 720 × 940 pixels.

In bleed-through restoration, the efficacy is generally evaluated qualitatively, as in real cases
the original clean image is not available. A visual comparison of the proposed method with other
state-of-the-art methods is presented in Figure 3. The reported results for [16] are obtained from
the online available ancient manuscripts database (https://www.isos.dias.ie/). In the ground truth
images, obtained from [7], foreground text and bleed through are manually labeled. As can be seen,
the proposed method (Figure 3e) produces comparatively better results considering the given ground
truth image. It efficiently removes the bleed-through degradation, leaves intact the foreground text, and
preserves the original look of the document. The non-parametric method of [16] (Figure 3c), although
retaining foreground text and background texture, leaves clearly visible bleed-through imprints in
some cases. The recent method presented in [7] (Figure 3d) produces better results, but some strokes
of the foreground text are missing.

A bleed-through free colour image, obtained by using the proposed method, is shown in Figure 4.
In the case of color images, we applied the proposed inpainting method only in the luminance (luma)
band, and a simple nearest-neighbour based pixel interpolation is used in the other two chrominance
bands. The proposed method copes very well with bleed-through removal and the dictionary based
inpainting preserves the original appearance of the document.
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Figure 3. Visual comparison of bleed-through restoration. (a) input degraded image; (b) hand labeled
ground truth image; (c) restored image by [16]; (d) restored image by [7]; (e) restored image by the
proposed method.

Figure 4. Ink bleed-through removal in a colour image: input image (top) and the restored image using
the proposed method (bottom).

6. Conclusions

This paper presents a novel and general framework for high quality image restoration of
documents affected by bleed-through. We use the bleed-through identification method presented
in [33] in conjunction with group based sparse image inpainting, in order to obtain a non-blind
document bleed-through the removal method. The non-stationary linear model in [33] efficiently
locates the bleed-through pattern in recto-verso image pairs, but lacks a proper method to replace
the unwanted bleed-through pixels. Finding a befitting fill-in for the degraded pixels is a crucial
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task because the imprints due to assigned values that are not in accordance with the neighborhood
have unpleasant visual effects, and destroy the original look of the restored document. The simple
replacement with the predominant gray level value of the local background does not solve the problem.
To remedy this issue, a non-local group based adaptive sparse image inpainting is suggested to estimate
plausible fill-in values to replace the identified bleed-through pixels. The inclusion of non-local similar
patches encourages the consistency in local fine textures, without blocking or smoothing artefacts.
The proposed image inpainting method efficiently employs the intrinsic local sparsity and the non-local
patch similarity. The performance of the proposed method is compared with other state-of-the-art
methods on a database of recto-verso documents with bleed-through degradation.
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Abstract: Monochromatic documents claim for much less computer bandwidth for network
transmission and storage space than their color or even grayscale equivalent. The binarization of
historical documents is far more complex than recent ones as paper aging, color, texture, translucidity,
stains, back-to-front interference, kind and color of ink used in handwriting, printing process,
digitalization process, etc. are some of the factors that affect binarization. This article presents
a new binarization algorithm for historical documents. The new global filter proposed is performed
in four steps: filtering the image using a bilateral filter, splitting image into the RGB components,
decision-making for each RGB channel based on an adaptive binarization method inspired by
Otsu’s method with a choice of the threshold level, and classification of the binarized images to
decide which of the RGB components best preserved the document information in the foreground.
The quantitative and qualitative assessment made with 23 binarization algorithms in three sets of
“real world” documents showed very good results.

Keywords: documents; binarization; back-to-front interference; bleeding

1. Introduction

Document image binarization plays an important role in the document image analysis,
compression, transcription, and recognition pipeline [1]. Binary documents claim for far less storage
space and computer bandwidth for network transmission than color or grayscale documents.
Historical documents drastically increase the degree of difficulty for binarization algorithms.
Physical noises [2] such as stains and paper aging affect the performance of binarization algorithms.
Besides that, historical documents were often typed, printed or written on both sides of sheets of
paper and the opacity of the paper is often such as to allow the back printing or writing to be
visualized on the front side. This kind of “noise”, first called back-to-front interference [3], was later
known as bleeding or show-through [4]. Figure 1 presents three examples of documents with
such a noise extracted from the three different datasets used in this paper in the assessment of
the proposed algorithm. If the document is exhibited either in true-color or gray-scale, the human
brain is able to filter out that sort of noise keeping its readability. The strength of the interference
present varies with the opacity of the paper, its permeability, the kind and degree of fluidity of the
ink used, its storage, age, etc. Thus, the difficulty for obtaining a good binarization performance
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capable of filtering-out such a noise increases enormously, as a new set of hues of paper and printing
colors appear. The direct application of binarization algorithms may yield a completely unreadable
document, as the interfering ink of the backside of the paper overlaps with the binary one in the
foreground. Several document image compression schemes for color images are based on “adding
color” to a binary image. Such compression strategy is unable to handle documents with back-to-front
interference [5]. Optical Character Recognizers (OCRs) are also unable to work properly for such
documents. Several algorithms were developed specifically to binarize documents with back-to-front
interference [3,4,6–9]. There is no binarization technique to be an all case winner as many parameters
may interfere in the quality of the resulting image [9]. The development of new binarization algorithms
is still an important research topic. International competitions on binarization algorithms, such as
DIBCO - Document Image Binarization Competition [10], are an evidence of the relevance of this area.

 

 

Figure 1. Images with back-to-front interference from the three test sets used in this paper: Nabuco
bequest (left), LiveMemory (center) and DIBCO (right).

This paper presents a new global filter [1] to binarize documents, which is able to remove
the back-to-front noise in a wide range of documents. Quantitative and qualitative assessments
made in a wide variety of documents from three different “real-world” datasets (typed, printed and
handwritten, using different kinds of paper, ink, etc.) allow to witness the efficiency of the
proposed scheme.

2. The New Algorithm

The algorithm proposed here is performed in four steps: 1. decision-making for finding the vector
of parameters of the image to be filtered, 2. filtering the image using a bilateral filter, 3. splitting the
image into the RGB components, and performing their binarization using a method inspired by Otsu’s
algorithm for each RGB channel, and 4. choice of which of the RGB components best preserved
the document information in the foreground, which is considered the final output of the algorithm.
Figure 2 presents the block diagram of the proposed algorithm. The functionality of each block is
detailed as follows.
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Figure 2. Block diagram of the proposed algorithm.

2.1. The Decision Making Block

The decision making block takes as input the image to be binarized and outputs a vector with
four parameters: the value of the kernel (kernel) for the bilateral filter and three threshold values (tR, tG,
tB) that will be later used in the modified Otsu filtering.

The training of the binarization process proposed here is made with synthetic images which were
generated as explained in Section 2.2. After filtering, the matrix of co-occurrence probabilities between
the original image and of the binary image was calculated for each of the images in the document
training set, whose generation is explained below.

The probabilistic structure applied in the analysis to each of the images in the training set is
similar to the transmission of binary data in a Binary Asymmetric Channel, as shown in Figure 3.
The probabilities P(f/b) and P(b/f) represent an additive noise in communication channels in
information theory, here it represents the inability of the algorithm to correct the back-to-front
interference of the image tested in the binarization process. The probabilities P(b/b) and P(f/f)
are calculated from the pixel-to-pixel comparison of the binarized image generated by the proposed
algorithm with the ground-truth image.

Figure 3. Generation of the co-occurrence matrix for each of the images in the training set.

19



J. Imaging 2018, 4, 27

The background-background probability is a function that needs to be optimized in the
decision-making block, mapping background pixels (paper) from the original image onto white
pixels of the binary image. It depends of all the parameters of the original image texture, strength of
the back to front interference (simulated by the coefficient α), paper translucidity, etc. for each RGB
channel. Thus, one can represent this dependence as:

P(b/b) = f(α,R,G,B). (1)

The optimal threshold tc* for each channel is calculated in the decision-making block, the index c
can be R, G or B, maximizing P(b/b):

tc* = MaxP(b/b), (2)

subject to a given criterion P(f/f) ≥ M. The criterion used here was M = 97%, that is at most 3% of
the foreground pixels may be incorrectly mapped. During the training phase, the best tc* will be
chosen from the three channels, which best maximizes the P(b/b) for each of the images in the training
set. The matrix of co-occurrence probability is calculated and the decision maker chooses the best
binary image. The decision-making block was trained with 32,000 synthetic images in such a way to,
given a real image to be binarized, it finds the optimal threshold parameters.

2.2. Generating Synthetic Images

The Decision-Making Block needs training to “learn” about the optimal threshold parameters and
the value of the kernel to be used in the bilateral filter. Such training must be done using controlled
images which are synthesized to mimic the different degrees of back-to-front interference, paper aging,
paper translucidity, etc. Figure 4 presents the block diagram for the generation of synthetic images.
Two binary images of documents of different nature (typed, handwritten with different pens, printed,
etc.) are taken: F—front and V—verso (back). The front image is blurred with a weak Gaussian filter to
simulate the digitalization noise [1], the hues that appear in after document scanning.

Figure 4. Block diagram of the scheme for the generation of synthetic images for the Decision-Making Block.
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The verso image is “blurred” by passing through two different Gaussian filters that simulate the
low-pass effect of the translucidity of the verso as seen in the front part of the paper. Two different
parameters were used to simulate two different classes of paper translucidity. The “blurred” verso
image is now faded with a coefficient α varying between 0 and 1 in steps of 0.01. Then, a circular
shift of the lines of the document is made of either 5 or 10 pixels, to minimize the chances of the front
and verso lines coincide entirely. Finally, the two images are overlapped by performing a “darker”
operation pixel-by-pixel in the images. Paper texture is added to the image to simulate the effect
of document aging. The texture pattern was extracted from document from late 19th century to the
year 2000. The analysis of 3450 documents representative of a wide variety of documents of such
a period was analyzed yielding 100 different clusters of textures. The synthetic texture to be applied to
the image to simulate paper aging is generated using those 100 clusters by image quilting [11] and
randomly, as explained in reference [9]. The training performed in the current version of the presented
algorithm was made with 16 of those 200 synthetic textures. The total number of images used for
training here was thus 16 (textures), times 10 (0 < α < 1 in steps of 0.10), times 2 blur parameters
for the Gaussian filters, times 100 different binary images, totaling 32,000 images. Details of the full
generation process of the synthetic image database are out of the scope of this paper and may be found
in reference [9].

2.3. The Bilateral Filter

The bilateral filter was first introduced by Aurich and Weule [12] under the name “nonlinear
Gaussian filter”. It was later rediscovered by Tomasi and Manduchi [13] who called it the “bilateral
filter” which is now the most commonly used name according to reference [14].

The bilateral filter is a technique to smoothen images while preserving their edges. The filter
output at each pixel is a weighted average of its neighbors. The weight assigned to each neighbor
decreases with both the distance values among pixels of the image plane (the spatial domain S) and
the distance on the intensity axis (the range domain R). The filter applies spatial weighted averaging
without smoothing the edges. It combines two Gaussian filters; one filter works in the spatial domain,
while the other filter works in the intensity domain. Therefore, not only the spatial distance but also
the intensity distance is important for the determination of weights. The bilateral filter combines two
stages of filtering. These are the geometric closeness (i.e., filter domain) and the photometric similarity
(i.e., filter range) among the pixels in a window of size N × N. Let I(x,y) be a 2D discrete image of
size N × N, such that {x,y} ∈ {0, 1, ..., N − 1} X {0, 1, ..., N − 1}. Assume that I(x,y) is corrupted by
an additive white Gaussian noise of variance σ2

n . For a pixel (x,y), the output of a bilateral filter can be
as described by Equation (1):

IBF(x, y) =
1
K ∑x+d

i=x−d ∑x+d
j=y−d Gs(i; x, j; y)Gr[I(i, j), I(x, y)]I(i, j), (3)

where I(x,y) is the pixel intensity in the image before applying the bilateral filter, IBF(x,y) is the
resulting pixel intensity after applying the bilateral filter and d is a non-negative integer such that
(2d + 1) × (2d + 1) stands for the size of the neighborhood window. Let Gs and Gr be the domain and
the range components, respectively, which are defined as:

Gs(i; x, j; y) = e
− |(i−x)2+(j−y)2 |

2σ2
s (4)

and

Gr(I(i, j); I(x, y)) = e
− |I(i,j)−I(x,y)|2

2σ2
r (5)
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The normalization constant K is given as:

K =
1

∑x+d
i=x−d ∑x+d

j=y−d Gs(i; x, j; y)Gr[I(i, j), I(x, y)]
(6)

Equations (4) and (5) show that the bilateral filter has three parameters: σ2
s (the filter domain),

σ2
r (the filter range), and the third parameter is the window size N × N [15].

The geometric spread of the bilateral filter is controlled by σ2
s . If the value of σ2

s is increased,
more neighbours are combined in the diffusion process yielding a “smoother” image, while σ2

r
represents the photometric spreading. Only pixels with a percentage difference of less than σ2

r are
processed [13].

2.4. Otsu Filtering

After passing through the bilateral filter, the image is split into its original (non-gamma corrected)
Red, Green and Blue components, as shown in the block diagram in Figure 2. The kernel of the bilateral
filter alters the balance of the colors in the original image in such a way to widen the differences
between the color of the front and back-to-front interference. A modified version of Otsu [16] algorithm
is applied to each RGB channel using the thresholds determined by the Decision Making Block,
which may be considered as the “optimal” threshold for each RGB channel, and then three binary
images are generated.

2.5. Image Classification

The image classification block was also trained with the synthetic images in such a way to analyze
the three binary images generated in each of the channels and outputs the one that is considered the
best one. This decision was also made by a naïve Bayes automatic classifier which was trained using
the calculated co-occurrence matrix for each of the 32,000 synthetic images by comparing each of them
with the original ground truth image, the Front image.

3. Experiments and Results

As already explained, the enormous variety of kinds of text documents makes extremely
improbable that one single algorithm is able to satisfactorily binarize all kinds of documents.
Depending on the nature (or degree of complexity) of the image several or no algorithm will
be able to provide good results. This paper follows the assessment methodology proposed in
reference [9], in which one compares the numbers of background and foreground pixels correctly
matched with a ground-truth image. Twenty-three binarization algorithms were tested using the
methodology described:

1. Mello-Lins [5]
2. DaSilva-Lins-Rocha [6]
3. Otsu [16]
4. Johannsen-Bille [17]
5. Kapur-Sahoo-Wong [18]
6. RenyEntropy (variation of [18])
7. Li-Tam [19]
8. Mean [20]
9. MinError [21]
10. Mixture-Modeling [22]
11. Moments [23]
12. IsoData [24]
13. Percentile [25]
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14. Pun [26]
15. Shanbhag [27]
16. Triangle [28]
17. Wu-Lu [29]
18. Yean-Chang-Chang [30]
19. Intermodes [31]
20. Minimum (variation of [31])
21. Ergina-Local [32]
22. Sauvola [33]
23. Niblack [34]

A ground-truth image for each “real” world one is needed to allow a quantitative assessment
of the quality of the final binary image. Only the DIBCO dataset [10] had ground-truth images
available. This makes the assessment task of real-world images extremely difficult [35]. All care must
be taken to guarantee the fairness of the process. The ground-truth images for the other datasets were
generated by applying the 23 algorithms above and the bilateral algorithm to all the test images in the
Nabuco [7] and LiveMemory [36] datasets. Visual inspection was made to choose the best binary image
in a blind process, a process in which the people who selected the best image did not know which
algorithm generated it. To increase the degree of fairness and the number of filtering possibilities,
the three component images produced by the Decision Making block were all analyzed. The binary
images chosen using the methodology above went through salt-and-pepper filtering and were used as
ground-truth image for the assessment below. All the processing time figures presented in this paper
are from Intel i7-4510U@ 2.00 GHzx2, 8 GB RAM, running Linux Mint 18.2 64-bit. All algorithms were
coded in Java, possibly by their authors.

3.1. The Nabuco Dataset

The Nabuco bequest encompasses about 6500 letters and postcards written and typed by
Joaquim Nabuco [7], totaling about 30,000 pages. Such documents are of great interest to whoever
studies the history of the Americas, as Nabuco was one of the key figures in the freedom of black slaves,
and was the first Brazilian Ambassador to the U.S.A. The documents of Nabuco were digitalized
by the second author of this paper and the historians of the Joaquim Nabuco Foundation using
a table scanner in 200 dpi resolution in true color (24 bits per pixel), back in 1992 to 1994. Due to
serious storage limitations then, images were saved in the jpeg format with 1% loss. The historians
in the project concluded that 150 dpi resolution would suffice to represent all the graphical elements
in the documents, but choice of the 200-dpi resolution was made to be compatible with the FAX
devices widely used then. About 200 of the documents in the Nabuco bequest exhibited back-to-front
interference. The 15 document images used in this dataset were chosen for being representative of the
diversity of documents in such a universe.

Table 1 presents the quantitative results obtained for all the documents in this dataset. P(f/f)
stands for the ratio between the number of foreground pixels in the original image mapped onto
black pixels and the number of black pixels in the ground-truth image. Similarly, P(b/b) is proportion
between the number of background pixels in the original image mapped onto white pixels of the
binary image and the number of white pixels in the ground-truth image. The figures for P(b/b) and
P(f/f) are followed by “±” and the value of the standard deviation. The time corresponds to the mean
processing time elapsed by the algorithm to process the images in this dataset. The results were ranked
in P(b/b) decreasing order.

The results presented in Table 1 shows the bilateral filter in third place for this dataset in terms of
image quality, however the standard deviation is much lower than the two first. That implies that its
quality is more stable for the various document images in this dataset. Figure 5 presents the document
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for which the bilateral filter presented the best and the worst results in terms of image quality with
two zoomed areas from the original and the binarized document.

Table 1. Binarization results for images from Nabuco bequest.

AlgName P(f/f) P(b/b) Time (s)

IsoData 98.08 ± 3.39 99.38 ± 0.60 0.0171
Otsu 98.08 ± 3.39 99.36 ± 0.63 0.0159

Bilateral 99.57 ± 1.23 99.29 ± 0.93 1.0790
Huang 99.40 ± 2.14 98.69 ± 0.88 0.0200

Moments 99.39 ± 1.34 98.40 ± 1.70 0.0160
Ergina-Local 99.99 ± 0.03 98.13 ± 0.64 0.3412
RenyEntropy 100.00 97.56 ± 1.17 0.0188

Kapoo-Sahoo-Wong 100.00 97.51 ± 1.07 0.0172
Yean-Chang-Chang 100.00 97.38 ± 1.26 0.0161

Triangle 100.00 95.94 ± 1.46 0.0160
Mello-Lins 98.61 ± 5.14 89.63 ± 24.43 0.0160

Mean 100.00 81.77 ± 5.99 0.0168
Johannsen-Bille 98.87 ± 2.97 59.77 ± 48.80 0.0164

Pun 100.00 55.44 ± 2.57 0.0185
Percentile 100.00 53.21 ± 1.33 0.0185
Sauvola 85.51 ± 12.93 99.95 ± 0.11 1.2977
Niblack 99.75 ± 0.34 77.06 ± 5.63 0.2135

 

 

 

Figure 5. Historical documents from Nabuco bequest with the best ((left)—P(f/f) = 100, P(b/b) = 99.99)
and the worst ((right)—P(f/f) = 89.76, P(b/b) = 99.98) binarization results for the bilateral filter with
zooms from the original (top) and binary (bottom) parts.

3.2. The LiveMemory Dataset

This dataset encompasses 15 documents with 200 dpi resolution selected from the over
8000 documents from the LiveMemory project that created a digital library with all the proceedings of
technical events from the Brazilian Telecommunications Society. The original proceedings were offset
printed from documents either typed or electronically produced. Table 2 presents the performance
results for the 12 best ranked algorithms. The bilateral filter obtained the best results in terms of
image filtering. It is worth observing that in the case of the worst quality image (Figure 6, right) the
performance degraded for all the algorithms. This behavior is due to the shaded area in the hard-bound
spine of the volumes of the proceedings.
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Table 2. Binarization results for images from the LiveMemory project.

AlgName P(f/f) P(b/b) Time (s)

Bilateral 100.00 98.90 ± 1.07 3.3325
IsoData-ORIG 99.56 ± 0.69 98.61 ± 1.99 0.0734

Otsu 99.60 ± 0.68 98.57 ± 2.08 0.0735
Moments 99.99 ± 0.03 97.91 ± 1.87 0.0716

Ergina-Local 98.98 ± 2.82 97.62 ± 1.04 0.9917
Huang 99.93 ± 0.27 96.42 ± 4.20 0.0865

Triangle 100.00 94.24 ± 2.15 0.0728
Mean 100.00 83.58 ± 5.59 0.0747

Niblack 99.76 ± 0.76 78.31 ± 2.97 0.6710
Pun 100.00 55.28 ± 3.60 0.0800

Percentile 100.00 53.91 ± 1.96 0.0795
Kapur-Sahoo-Wong 98.62 ± 4.92 97.15 ± 1.44 0.0729

Figure 6. Images from LiveMemory with the best ((left)—P(f/f) = 100.00, P(b/b) = 99.99) and the worst
((right)—P(f/f) = 100.00, P(b/b) = 95.97) binarization results for the bilateral filter with zooms from the
original (top) and binary (bottom) parts.

3.3. The DIBCO Dataset

This dataset has all the 86 images from the Digital Image Binarization Contest from 2009 to
2016. Table 3 presents the results obtained. The performance of the bilateral filter in this set may be
considered good, in general. The overall performance of the bilateral filter was strongly degraded by
the single image shown in Figure 7 (right) in which the P(f/f) of 25.93 drastically dropped the average
result of the algorithm in this test set. It is important to remark that such an image is almost unreadable
even for humans and that it degraded the performance of all the best algorithms.

Table 3. Binarization results for images from Document Image Binarization Competition (DIBCO).

AlgName P(f/f) P(b/b) Time (s)

Ergina-local 91.37 ± 6.25 99.88 ± 1.89 0.1844
RenyEntropy 90.13 ± 14.19 96.77 ± 3.50 0.0125

Yean-Chang-Chang 90.61 ± 14.44 96.16 ± 4.35 0.0112
Moments 90.75 ± 9.91 95.80 ± 5.19 0.0112
Bilateral 92.99 ± 9.06 90.78 ± 16.01 0.6099
Huang 95.62 ± 6.37 84.22 ± 18.36 0.0147

Triangle 96.40 ± 5.72 80.80 ± 23.32 0.0113
Mean 99.35 ± 1.14 78.99 ± 9.35 0.0115

MinError 92.79 ± 23.46 74.29 ± 19.36 0.0115
Pun 99.68 ± 0.82 56.20 ± 6.18 0.0122

Percentile 99.71 ± 0.72 55.06 ± 3.58 0.0121
Sauvola 59.75 ± 30.06 99.58 ± 079 0.6933
Niblack 95.91 ± 2.31 78.61 ± 5.69 0.1241
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4. Conclusions

Historical documents are far more difficult to binarize as several factors such as paper texture,
aging, thickness, translucidity, permeability, the kind of ink, its fluidity, color, aging, etc. all may
influence the performance of the algorithms. Besides all that, many historical documents were written
or printed on both sides of translucent paper, giving rise to the back-to-front interference.

This paper presents a new binarization scheme based on the bilateral filter. Experiments performed
in three datasets of “real world” historical documents with twenty-three other binarization algorithms.
Image quality and processing time figures were provided, at least for the top 10 algorithms assessed.
The results obtained showed that the proposed algorithm yields good quality monochromatic images
that may compensate its high computational cost. This paper provides evidence that no binarization
algorithm is an “all-kind-of-document” winner, as the performance of the algorithms varied depending
of the specific features of each document. A much larger test set of synthetic about 250,000 images
is currently under development, such a test set will allow much better training of the Decision
Making and Image Classifier blocks of the bilateral algorithm presented. The authors are currently
attempting to integrate the Decision Making and Image Classifier blocks in such a way to anticipate
the choice of the best component image. This would highly improve the time performance of the
proposed algorithm.

 

 

Figure 7. Two documents from DIBCO dataset: (left-top) original image (left-bottom) binary image
obtained using the bilateral filter best result (P(f/f) = 97.05, P(b/b) = 99.88); (right-top) original image.
(right-bottom) the worst binarization results for the bilateral filter (P(f/f) = 25.93, P(b/b) = 99.99).

The authors of this paper are promoting a paramount research effort to assess the largest possible
number of binarization algorithms for scanned documents using over 5.4 million synthetic images
in the DIB-Document Image Binarization platform. An image matcher, a more general and complex
version of the Decision Making block, is also being developed and trained with that large set of images,
in order to whenever fed with a real world image, to be able to match with the most similar synthetic
one. Once that match is made, the most suitable binarization algorithms are immediately known.
If this paper were accepted, all the test images and algorithms will be included in the DIB platform.
The preliminary version of the DIB-Document Image Binarization platform and website is publicly
available at https://dib.cin.ufpe.br/.
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Abstract: Slanted text has been demonstrated to be a salient feature of handwriting. Its estimation is
a necessary preprocessing task in many document image processing systems in order to improve
the required training. This paper describes and evaluates a new technique for removing the slant
from historical document pages that avoids the segmentation procedure into text lines and words.
The proposed technique first relies on slant angle detection from an accurate selection of fragments.
Then, a slant removal technique is applied. However, the presented slant removal technique may
be combined with any other slant detection algorithm. Experimental results are provided for four
document image databases: two historical document databases, the TrigraphSlant database (the only
database dedicated to slant removal), and a printed database in order to check the precision of the
proposed technique.

Keywords: slant removal; document image processing; document image page

1. Introduction

In handwriting, slant removal is a necessary component of the text normalization procedure in
systems that perform recognition (e.g., optical character recognition (OCR) [1] or word-spotting [2]), in
order to improve the training procedure (less samples, lower computational cost). Moreover, writer
identification/verification systems also use slant estimation and/or detection [3]. After ideal slant
removal processing, the text should appear with the vertical stokes parallel to the perpendicular axis
of the page. Due to its importance, many researchers have already developed techniques for slant
removal [4–17].

The available techniques may be divided into three categories:

1. Techniques that estimate the slant by averaging the angles of the near-vertical strokes [4–7].
2. Techniques that analyze projection histograms [8,9] and detect the slant based on a pre-defined

criterion (e.g., a parameter maximization or minimization).
3. Techniques that are based on the statistics of chain-coded contours [10–12].

Considering the application these techniques can handle, they can be further classified into:

1. Uniform slant estimation and removal techniques [4–12]: they deal with uniform slant all over
the text.

2. Non-uniform slant correction techniques [13–16]: they handle the characters apart and deal with
the existence of several slants, simultaneously.
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Recently, Brink et al. [3] categorized the proposed techniques by angle-frequency and
repeated-shearing approaches that are described as follows:

1. Angle-frequency approach: Down-strokes are first located based on such criteria as the minimum
vertical extent or velocity. Next, the angle of the local ink direction is measured at these locations
and the resulting angles are agglomerated in a histogram. From this histogram, the slant angle is
determined. This is a one-step procedure.

2. Repeated-shearing approach: This method is based on the assumption that the projection of
dark pixels is maximized along an axis parallel to the slant angle. The basic principle is to
repeatedly shear images of individual text lines, varying the shear angle, and optimizing the
vertical projection of dark pixels. This approach is clearly more time consuming, but proves more
accurate, as indicated by its popularity.

The first category will be referred to here as ‘slant estimation’ (one-step procedure), and the
second category is referred to as slant detection, since this method searches among many, for the most
common angle. Slant estimation techniques are presented in [4–7], whereas a slant detection technique
is presented in [9]. According to Brink et al. [3], the slant detection techniques are the most popular
with the most precise results. The technique described in [9] is also used in that paper where extensive
experiments over slant are performed. Last but not least, in the specific experiments, the pages were
sheared entirely, since the alternative line or word segmentation is characterized as “less reliable and
breaks ink traces at region boundaries” [3]. The proposed techniques up to now require line or word
segmentation in order to be applied. In Figure 1, an example of the slant removal algorithm described
in [9], is presented. The image is from the IAM Handwriting Database (IAM-DB), and the application
of the algorithm requires image segmentation into text lines (Figure 1, horizontal stripes). For this
example, text line segmentation could succeed since text lines are spaced enough. It is not the case
for the document image shown in Figure 2 (17th century) which includes touching ascenders and
descenders and noise in the inter-line space. Since all existing algorithms perform slant removal on
word or text line level, a segmentation-free approach is desirable for difficult to segment documents.
Moreover, avoiding the text-line segmentation processing is computationally less expensive.

 

Figure 1. An example of a slant removal application resulting from the detection algorithm described
in [9]. Text-line segmentation is required prior to slant estimation.

A preliminary approach has been described in [17], while in this paper the parameter set up is
considered and described in detail. Moreover, the approach is extensively evaluated on new databases.
The proposed technique is appropriate for slant detection and removal from document images with
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homogenous slant. It does not require page segmentation into text lines or words. This makes the
proposed technique appropriate for historical documents, especially formal ones, since they ensure
a uniform slant over the entire page. Moreover, the segmentation into text lines would create more
noise. Usually, formal historical documents are written by well-educated people with a standard
writing style and fixed slant. On the other hand, the proposed methodology is inappropriate for
document images containing unconstrained writing and several slant angles. Methodologies, such
as the one described in [6], are more appropriate in such cases. Thus, experiments are performed on
several databases:

• the TrigraphSlant database [18] (the only available database for slant estimation),
• two databases of historical documents (George Washington [19] and Barcelona historical,

handwritten marriages database BH2M [20])
• a synthetic printed database where slants are fully determined.

The contribution of the current work consists of:

1. To the best of our knowledge, this is the first time that a slant removal technique is proposed,
able to be applied to the entire page, without requiring text line or word segmentation.

2. It does not generate extra noise, due to line and/or word segmentation that would remain
in the page after slant removal, which is accomplished by shifting the entire page uniformly
and ensuring text homogeneity. Most of the existed techniques apply to ideal databases, like
IAM-DB (Figure 1) that is appropriately made for line and word segmentation. In the case of
historical documents (Figure 2), the final result would be full of dots and strokes because of
the segmentation.

3. Instructions are given over the best application to document page, after detailed results.

In Section 2.1, a short description of the elaborated slant detection algorithm [9] is presented.
The proposed technique is described in detail in Section 2.2, where the parameters that are examined
in detail are analyzed. The experimental results are presented and analyzed in Section 3 while the
conclusions are discussed in Section 4.

 

Figure 2. A document from the Barcelona historical, handwritten marriages database (BH2M) [20].
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2. Materials and Methods

2.1. Slant Detection Algorithm

As already mentioned, in the proposed technique, the slant detection algorithm that is presented
in detail in [9] is used. The reason is that an algorithm for the detection is needed and this one has
proved to be popular and successful [3].

This specific algorithm makes use of the difference between the ascenders and descenders. In case
the text is vertical, the difference is larger (Figure 3). To detect that, it uses the Wigner Ville distribution
(WVD) [21], a space-frequency distribution of Cohen’s class, which is given by the formula

W(s, f ) =
+∞∫

−∞

z(s + τ/2)z ∗ (s − τ/2)e−2iπ f τdτ, (1)

where s the signal, f the frequency, z(s) represents the analytical signal associated with the discrete
signal h(s), that in the paper [9] is the vertical projection profile of the word.

Figure 3. From left to right: slanted words, corresponding histograms and maximum intensity curves
of WVD (Wigner–Ville distribution).
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In more detail, the detection algorithm [9] consists of the steps:

1. The word image is artificially slanted to both, left and right, under different slant detection angles.
The maximum slant angle is approximately 45 degrees and the slant angle step depends on the
height of the text image.

2. For each of the extracted word images, the vertical projection profile is calculated.
3. The WVD is calculated for all the above projected profiles.
4. The curves of maximum intensity of the WVDs are extracted, just by keeping the maximum value

of each curve of the space-frequency distribution, for the specific slant.
5. The curve of maximum intensity with the greatest peak, corresponding to the projected profile

with the most intense alternations is selected.
6. The corresponding word image is selected as the most non-slanted word.

The above procedure is repeated twice, once for a big step size of 10 degrees (BigStep) where the
area around an ANGLE1 is selected closer to the slant and the second time for a smaller step size of 1
degree, where a more detailed detection is performed and a more exact area ANGLE2 is detected.

This way, the computational cost is reduced, since the first detection is performed between
fewer possible angles in order to localize roughly the area ANGLE1, before a more accurate detection
(ANGLE2) is performed in this specific area for a step size of one degree. A slant of less than one
degree is not considered important enough to be examined. Finally, the detected angle (Detected_Slant)
is given by

Detected_Slant = ANGLE1 × BigStep + ANGLE2 × 1 (2)

2.2. Proposed Slant Removal Technique

The proposed technique is based on the slant detection algorithm presented in Section 2.1, but
in our case, it is applied to text fragments instead of words (Figure 4). It is based on the fact that in
historical documents there is a uniform slant that extends throughout the entire document image.
Since no segmentation is performed, fragments of text are used instead of words.

Figure 4. The proposed slant removal technique applied to fragments of text corrects the entire page
without segmentation.
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As previously mentioned, in the past, educated persons took special care when writing, resulting
in a high degree of stability in the slant of their writing style. Thus, in order to detect the slant of
the text in a historical document page, a few fragments of text are considered. Although one sample
could theoretically be enough, several ones are in practice necessary to ensure coverage of pages with
sparse text or special formatting, such as columns, arrays, etc. To localize appropriate fragments the
following way is followed: a page is scanned from left to right, top to bottom using a window of size
HxW (heightXwidth), starting from the pixel position (skip, skip) in order to skip scanning or other
noise. Skip can be general e.g., 1/5 of document width (here), or be determined depending on the
collection. All black pixels (black_pixels) inside the window are counted. The area inside the window is
retained if Condition (3) is true and the scanning stops when the required number M of fragments
is localized.

black_pixels
HxW

> R (3)

The Condition (3) requires the text in the window to take up more than R = 0.10 of the area.
The size of the window in these experiments, HxW, was selected as H = 2 mb and W = 7 mb, where
mb is the main character body size in the page (height of the character body excluding ascenders and
descenders). In the current paper, the following metrics and parameters are set up:

1. The text ratio R in the window;
2. The amount M of the fragments in use;
3. The height H of the window;
4. The width W of the window.

However, the same techniques are considered for:

1. The main body height detection [22], since it does not require line or word segmentation;
2. The slant detection procedure. Once the M fragments have been selected (Figure 5), the slant

detection algorithm [9], described in Section 2, is applied and the slant angles are detected, one
per fragment. The maximum and minimum slant angles are ignored as possible outliers, while
slant is defined as the detected slant of the page. The entire document page is then corrected
according to the slant angle by shifting each pixel so that

x f = x0 + round
[

y0 tan
(

π
slant
180

)]
(4)

y f = y0 (5)

where (x0, y0) defines the initial position of the pixel and (xf, yf) is the final pixel position.
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Figure 5. Possible localization of appropriate fragments on the page. The required number of fragments
is M = 5.

3. Results

Since there is no previous similar work to compare with, a trial is made to perform an absolute
evaluation in various ways. Thus, in order to perform our experiments and evaluate the parameters,
four databases were used:

1. The TrigraphSlant database (DB) [18], in order to perform tests on a renowned DB for slant.
However, in this DB each writer was asked to write two pages of his natural slant and two of
force slants. Only the natural slant documents were used here (see Experimental Results).

2. The George Washington DB [19], in order to perform tests on a renowned DB of
historical documents.

3. The BH2M: the Barcelona Historical Handwritten Marriages database [20], in order to perform
tests on a second DB of historical documents.

4. The Print DB: printed documents with artificial slant, in order to check the accuracy of the
technique. Moreover, since all the rest do not guarantee the existence of all the possible slants,
special care was taken to include all possible slants, including 0 (no slant).

A validation set and a test set were created. The validation set consists of 20 document images
from the TrigraphSlant DB, 4 from the Washington DB, 4 from the BH2M DB, and 80 from the Print DB.
The test set consists of 60 document images from the TrigraphSlant DB, 16 from the Washington DB, 16
from the BH2M DB, and 298 from the Print DB.
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The measure used to evaluate the technique is the root-mean-square error (RMSE)

RMSE =

√√√√√ N
∑

d=1

(
Slantd

gr − Slantd
es

)2

N
(6)

where Slantgr is the ground truth slant of document d and Slantes the slant estimated using the technique.
This measure gives a comparative result that is independent of the right or left slant direction. N
refers to the amount of documents. Next, a short description of the databases is given, while the
setup on the parameters follows. As initial parameter values, the parameters used in [17] are used in
our experiments, and as soon as the best parameter value is estimated, it is used further on. Finally,
experimental results for the four databases are presented (see Section 3.9).

3.1. TrigraphSlant DB

The TrigraphSlant [18] database contains images of handwriting produced under normal and
forced slant conditions. It includes 190 handwritten document images, written by 47 people. For each
image, the slant has been estimated by two researchers (Axel and Rolland) from the average
slant computed from 10 measurements on each document image. In Figure 6, an example of the
TrigraphSlant database after the application of the proposed technique is shown.

Figure 6. Application of the technique on a sample from the TrigraphSlant database (left); corrected by
+28 degrees (right).

3.2. George Washington DB

This archive contains a set of 20 page images from the George Washington collection [19] at
the Library of Congress in the United States. A process similar to that used for the TrigraphSlant
database was followed. Ten slants were measured by two humans on each page and the mean of
these measurements was considered to be the page slant. Figure 7 shows an example of the George
Washington DB after the application of the technique.
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Figure 7. Application of our slant removal technique on a sample from the George Washington DB
(left); corrected by −42.5◦ (right).

3.3. BH2M DB

The BH2M database [20] has been created under the EU ERC project Five Centuries of Marriages
(5CofM). It includes the Archives of the Barcelona Cathedral: 244 books with information on
approximately 550,000 marriages held between 1451 and 1905 in over 250 parishes. Each book
was written by a different writer and contains information of the marriages during two years. Here
pages for the 6th book are used. In Figure 8, an example of the BH2M DB is presented.

 

Figure 8. Application of our slant removal technique on sample from BH2M DB (left); corrected by
−17◦ (right).

37



J. Imaging 2018, 4, 80

3.4. PrintDB

The PrintDB consists of five printed document images that are artificially slanted over a range
from −45◦ to +45◦, yielding a total of 455 slanted, printed document images. The exact slant is
predetermined, making evaluation of the technique easier and more precise. The documents were
made from parts of .pdf files to ensure precise slant values. The pages were selected to include different
type of text types (including spare writing and single/double columns). All the text was slanted,
keeping the original dimensions ((1/5) * A4_height * (1/2) * A4_width). Figure 9 shows an example of
the PrintDB after the application of the technique.

Figure 9. Application of our slant removal technique on sample of PrintDB (left); corrected by
35◦ (right).

3.5. Set-Up of the Text Ratio R Parameter

The amount of text in the window is very important in order to detect the slant angle. Little
text includes very little information, while too much text would increase the computational cost.
In [17], the rate of 10% was used as approved amount of text in the selected windows just by test and
trial. Here, more detailed experiments are performed. The text ratio of each window is counted and
compared to the slant detection error. The experiment was performed for every window on several
images of the validation set: 5 document images from the TrigraphSlant DB, 1 from the Washington
DB, 1 from the BH2M DB, and 20 from the Print DB. Since the handwritten images were of high
resolution, the procedure was very time consuming and just few of them were used. On the other
hand, the images of printed text were all used. In Figure 10, the curve of sum of slant square errors
(SSE) with reference to the text ratio is presented for printed and handwritten text.

Figure 10. Sum of square errors according to text ratio R for the printed db (dotted line) and the three
handwritten databases (broken line).
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The main volume of windows, as it is shown in Figure 11, includes text up to 20%. Since the
printed images with slant are an artificial database, the result derived from handwritten images were
taken into account as a common R, that is 14% text in the image is the case of windows with minimum
detection error. The majority of windows include text up to 20% (see Figure 11). Since the slanted
printed images are an artificial database, the result derived from handwritten images were taken into
account as a common R = 14% corresponding to the minimum detection error (see Figure 10).

Figure 11. Number of windows according to text ratio in the window. The large amount close to zero
corresponds to almost empty windows (background).

3.6. Set-Up of the Height H of the Window

In order to estimate the best number for the window height, the whole validation set was used
in our program with the ratio equal to 0.14, as derived by the previous experiment, for values of the
height from 1 to 10 mb (main-bodies). The sum of square errors (SSE) was considered as evaluation
measure. The results are shown in Figure 12. The SSE is higher than in Figure 10, as here, all the
document images of the validation set were used, contrary to Figure 10 where just few of them were
considered due to the computational cost of the corresponding experiment.

As it is obvious in Figure 12, the value of two main bodies seems to give the best results (smaller
SSE) as (the 1: one main body) was considered extremely small in case of low resolution.

Figure 12. Sum of square errors for various widths and heights of the detected windows. The best
choice is five.

3.7. Set-Up of the Width W of the Window

In order to estimate the best number for the window width, the whole validation set was also used
in our program with the ratio R = 0.14 and H = 2 mbs, for values of the width from 1 to 10 main-bodies.
Sum of square errors (SSE) was considered as evaluation measure. The results are shown in Figure 12.
The SSE is much higher than in Figure 10, as here, all the document images of the validation set were
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used, contrary to Figure 10 where just few of them were considered due to the computational cost of
the corresponding experiment.

As it is obvious in Figure 12, the value of just five main-bodies seems to give significantly better
results (smaller SSE) which is far smaller than seven, initially used in [17]. The values of 1 and 2 that
give very low error proved very low in the case of low resolution, while more characters could confuse
the system.

3.8. Set-Up of the Number M of Fragments to Use

In order to estimate the best number for the window width, the whole validation set was also
used in our program with the ratio R = 0.14, H = 2 mbs, and W = 5 mbs, for values of the amount of
the fragments M of 4 and 5. More fragments could be used, however it is a problem in the case of
small images or images of low resolution. The sum of square errors (SSE) was considered as evaluation
measure for the scenarios:

• Four fragments, mean of the fragments: SSE on the evaluation set 563
• Five fragments, mean of the fragments: SSE on the evaluation set 513
• Five fragments, median of the fragments: SSE on the evaluation set 509

Obviously, the median was finally selected as the best case.

3.9. Experimental Results on the Databases

Having specified the parameters above, several experiments were conducted for the four
databases, on each test set. In order to demonstrate the flexibility of the proposed technique, two more
slant detection techniques were also used for the slant detection part, using the parameters that were
specified by the use of our technique [9]. The technique [23] detects the slant by using the main part of
the text having removed the horizontal parts, ascenders, and descenders. The technique [24] estimates
the slant by using the peaks of the slanted words.

The experimental results for all databases are given in Table 1 through RMSE. For the
TrigraphSlantDB: the RMSE is given only for the normal slants (between −45 and +45 degrees)
but for the both estimators (Axel & Rolland). In the TrigraphSlant, each writer was asked to force
different slants in two of the four documents, these are not presented since the results were strange
due to unnatural slant >45 degrees.

Table 1. Experimental results

Database Proposed Slant Detection [9] Slant Detection [23] Slant Detection [24]

TrigraphSlant (Axel estimat.) 7.08 8.30 6.99
TrigraphSlant (Rolland est.) 7.43 7.97 7.44

George Washington DB 3.44 6.53 3.40
BH2M DB 4.68 6.04 5.03
PrintDB 2.99 4.32 2.97

There were several significant differences in the RMSE values between the various DBs. Several
reasons for this are:

• In the TrigraphSlant, the writing is modern and not as uniform as in the historical documents.
When examined by human estimators, a standard deviation of 2.45 was observed.

• George Washington DB of historical documents is more uniform.
• BH2M presents more density which made our character main body size algorithm fail more times.
• PrintDB includes printed text that is artificially slanted, and therefore is uniform.
• We present in the following experiments in order to evaluate the improvement brought by our

slant detection and removal technique on document analysis and recognition tasks. We thus
conduct recognition experiments on printed documents with an OCR, and word spotting
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experiments on handwritten documents, before and after slant removal. The recognition results
for the handwriting of our databases were a failure, due to having historical documents or/and
languages other than English. For the PrintDB database, in Figure 13, the character error rate vs.
the artificial slant are shown, as obtained by a commercial OCR system (Adobe Acrobat).

For a page slant of less than −19 or greater than 37 degrees, it is very difficult to find
a correspondence between the characters of the image and the OCR result. The corrected version is very
well handled (0 degrees, English). Moreover, the OCR software handles right-slanted characters better
than left-slanted characters. This is likely due to extra training for italics in the commercial software.

The computational cost is less than 5 s for a historical document image of size a little bigger than
A4 and resolution 600 dpi in a computer with processor Intel(R) Core(TM) i5-4210U CPU @ 1.70GHz
2.40 GHz.

Since the proposed system was built in order to help our free-segmentation word-spotting
system [25], we provide an example of word spotting task on handwritten documents. It is worth
mentioning that an improvement of the recall of at least 20% is observed (Figure 14) for the 20 document
images of George Washington DB and 100 queries. The improvement appears extremely high, which
may be a result of the query being a part of the same page or collection. However, for slanted
characters, the slant degree is not always fixed and in many cases, the slanted characters overlap with
other characters.
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Figure 13. Character error rate vs. the degree of page slant as performed by a commercial OCR system.
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Figure 14. Application of the word-spotting system [25], before (above) and after (below)
slant correction.

4. Conclusions

In this paper, a technique was presented for slant estimation and removal for the entire
document page, without requiring line or word segmentation. The proposed technique is
recommended for historical document images that include homogenous slant throughout the page.
This segmentation-free technique guarantees the minimization of extra noise that could be introduced
since the segmentation procedure, in historical document images, where the text is very dense, would
leave behind small strokes and other kind of noise (points, lines).

Experimental results were provided for four databases: PrintDB, which contains artificially
slanted printed text to prove the accuracy of the technique; TrigraphSlant, a known DB of slant text;
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and the BH2M DB and the Washington DB to prove the application’s utility on historical documents.
The results proved quite satisfactory with a RMSE of less than three for the PrintDB, less than four for
the Washington DB, less than five for BH2M, and less than eight for the normal slanted documents of
the TrigraphSlant. The improvement in our word-spotting system for difficult historical documents
was impressive.

The technique fails if the character main body size detection is not correct. Thus, a good main
body size detection algorithm is required. Moreover, the proposed technique is appropriate only if the
slant is homogenous throughout the entire document image. However, more slant removal algorithms
could be used in combination with the proposed technique. This is among our future plans.
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Abstract: Isolating non-text components from the text components present in handwritten document
images is an important but less explored research area. Addressing this issue, in this paper, we have
presented an empirical study on the applicability of various Local Binary Pattern (LBP) based
texture features for this problem. This paper also proposes a minor modification in one of the
variants of the LBP operator to achieve better performance in the text/non-text classification
problem. The feature descriptors are then evaluated on a database, made up of images from
104 handwritten laboratory copies and class notes of various engineering and science branches,
using five well-known classifiers. Classification results reflect the effectiveness of LBP-based feature
descriptors in text/non-text separation.

Keywords: text/non-text separation; local binary pattern; handwritten document; document image
processing; texture-based features

1. Introduction

Documents, in the modern day, are required to be stored in digitized form to increase their
longevity, portability and security. In order to achieve this purpose, the development of a complete
Document Image Processing System (DIPS) has become an utmost need. Along with the other steps,
any DIPS needs to identify the texts present in a document image separately from the non-text
components like tables, diagrams, graphic designs before processing the text through an Optical
Character Recognition (OCR) engine [1–3]. The reason for this is very obvious: OCR engines do not
process non-text components. Researchers, to date, have reported many solutions to this problem for
printed documents [4–6]. However, the same is not true for regular handwritten documents; a rather
limited amount of work is available in this area, to the best of our knowledge, among which two
significant ones are [7,8]. In document image processing, researchers mostly use OCR technology in
order to work on word and/or character level to provide a viable solution for information content
exploitation [9].

In general, handwritten documents are unstructured i.e., in most cases, these documents do not
follow any specific layout, unlike the printed documents. Thus, the appearance of text and non-text in
handwritten documents is very chaotic. For example, text components often overlap with the non-text
components. Furthermore, the building blocks (i.e., characters) of the text in handwritten documents
do not follow the standard shape and size usually found in its printed counterpart. One of the key
difficulties in the graphics recognition domain is also to work on complex and composite symbol

J. Imaging 2018, 4, 57 45 www.mdpi.com/journal/jimaging



J. Imaging 2018, 4, 57

recognition, retrieval and spotting [10]. Thus, the separation of text and non-text in handwritten
documents is comparably complex than in printed documents.

Mostly, the reported solutions to the problem of text and non-text separation are done either at the
region level [4] or at the connected component (CC) level [5,6]. Methods that implement text/non-text
separation at the region level initially perform region segmentation and then classify each segmented
region as either a text or graphics region. For classifying the segmented regions, researchers have mostly
used texture based features like Gray Level Co-occurrence Matrix (GLCM) [4,11] Run-length based
features [12,13] or white tiles based features [14]. However, region segmentation based methods are
very sensitive to the segmentation results. Poor segmentation can cause a significant degradation in the
classification result. On the other hand, as CC based methods work at the component level, they do not
suffer from such a problem. Methods that follow a CC based approach use shape-based features [5,6].
In general, methods reported in this literature for text/non-text separation in handwritten documents
have mostly followed the CC based approach [7,8]. It is worth mentioning here that, as historical
handwritten manuscripts suffer from various quality degradation issues, techniques like binarization
and CC extraction become very error prone. Thus, in some recent articles [15–18], researchers have
followed a pixel based approach, which avoids the binarization and CC extraction steps.

From the available research work on this topic, it can be observed that texture features
like GLCM (Gray Level Co-occurrence matrix) [4,11], Run-length encoding based features [12,13],
Black-and-white transitional matrix based feature [19] have been commonly used by researchers to
solve the text/non-text separation problem for printed documents, as well as to separate handwritten
and printed text sections in documents [20]. In a recent work [8], a Rotation Invariant Uniform Local
Binary Pattern (RIULBP) operator has also been used successfully to separate the text and non-text
components in handwritten class-notes. Texture features have proven to be very useful in the field
of text/non-text separation due to the fact that text regions and graphics regions in most cases have
very different patterns, which can be exploited to differentiate between them. Motivated by this fact,
in the present work, we have attempted to evaluate the performance of different Local Binary Pattern
(LBP) based texture features to classify the components present in handwritten documents as text
or non-text.

The key contributions of our paper are as follows:

1. We have given a detailed analysis of how accurately features extracted by different variants of the
LBP operator from handwritten document images help in differentiating text components from
non-text ones, which is one of the most challenging research areas in the domain of document
image processing. For that purpose, we have considered five variants of LBP [21], namely, the
basic LBP [22], improved LBP [23], rotation invariant LBP [22], uniform LBP [22], and rotation
invariant and uniform LBP [22].

2. The contents of the dataset, used here for evaluation, have complex text and non-text components
as well as variations in terms of scripts, as we have considered both Bangla and English texts.
In addition to that, some of the documents have handwritten as well as printed texts.

3. We have also made a minor alteration to robust LBP [24] in order to develop robust and uniform
LBP. A method to determine the appropriate threshold value used in this variant of LBP for
handwritten documents has also been proposed.

2. Local Binary Patterns and Its Variants

LBP was first introduced by Ojala [25,26], as a computationally simple texture operator in a
monochrome texture image.

The generalized definition of LBP, given in [22], used M sample points evenly placed on a circle
of radius R with its center positioned at (xcen, ycen). The position (xp, yp) of the neighboring point p,
where p ∈ 0, 1, ..., M − 1 is given by

(xp, yp) = (xcen + R cos(2πp/M), ycen − R sin(2πp/M)). (1)

46



J. Imaging 2018, 4, 57

Let T be the feature vector representing the local texture:

T = f unc( Icen, I0, I1, ..., IM − 1),

where Icen and Ip for p ∈ {0, 1, ..., M − 1} represent gray values of the center pixel and the neighboring
pixels, respectively. To achieve gray scale invariance, the texture operator is modified to consider the
di f f erence in intensities of the center pixel and its neighbors:

T = f unc( I0 − Icen, I1 − Icen, ..., IM−1 − Icen).

Furthermore, to achieve a robustness against the scaling of grayscale, only the signs of difference
in intensities are considered:

T = f unc( f (I0 − Icen), f (I1 − Icen), ..., f (IM−1 − Icen)).

Here,

f (x) =

{
1, if x ≥ 0,

0, if x < 0.
(2)

Finally, the LBP operator, for the center pixel pcen having intensity value Icen with M neighbors
(X1, X2, ..., XM) of intensities (I1, I2, ..., IM), respectively, can be defined below:

LBP(M,R)(xcen, ycen) =
M

∑
n=1

f (In − Icen)× 2n−1. (3)

LBP creates an M-bit string. Hence, for M = 8, the values of LBP(M,R)(xcen, ycen) can vary from 0
to 255. The process is depicted in Figure 1.

Figure 1. Illustration of LBP value generation for a 3 × 3 gray image window, where M = 8,
and radius = 1.

In order to efficiently extract texture features of various complexities, the original LBP operator
has been modified to generate a number of variants.

2.1. Improved LBP (ILBP)

The main difference between ILBP [23] and simple LBP is that, instead of the intensity of the
center pixel, the mean intensity value of all the pixels, including the center pixel, is used to find the
intensity difference during binary pattern computation. In addition to that, while computing ILBP, the
intensity of the center pixel is also compared with mean intensity. ILBP is formally defined as follows:

ILBP(M,R)(xcen, ycen) =
M−1

∑
n=0

f (In − Imean)× 2n + f (Icen − Imean)× 2M, (4)
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Imean =
(∑M−1

n=0 In) + Icen

M + 1
. (5)

The value of f (x) is computed as given in Equation (2). As ILBP additionally considers the center
pixel, thus the value of ILBP(M,R)(xcen, ycen) can vary from 1 to 511 (see Figure 2).

Figure 2. Illustration of ILBP value generation for a 3 × 3 gray image window, where M = 8, Radius = 1
and Imean = 94. The bit representing the center pixel has been underlined in the binary representation
of the LBP value.

2.2. Rotation Invariant LBP (RILBP)

RILBP [22] is achieved by bit-wise rotation (circularly) of the binary patterns and then by selecting
the minimum value. This is done to cancel out the effect of rotation on a texture, which changes the
pattern, although the texture in consideration is essentially the same. RILBP can formally be defined
as follows:

RILBP(M,R)(xcen, ycen) = min{Rot(LBP(M,R), i|0 ≤ i ≤ M − 1)}. (6)

Here, Rot(A, i) is a function that takes an M-bit binary pattern ‘A’ and performs i time circular
bit-wise right shift operation on ‘A’. The entire process is shown in Figure 3.

Figure 3. Illustration of RILBP value generation for a 3 × 3 gray image window, where M = 8 and
Radius = 1. The binary pattern is rotated clockwise here.

2.3. Uniform LBP (ULBP)

In ULBP [22], the binary patterns with less than or equal to two numbers of zero/one transitions
are considered as uniform patterns and the rest are considered as non-uniform patterns. In this variant
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of LBP, all the non-uniform patterns are marked with the same label, whereas, for uniform patterns,
different labels are used, one for each pattern. This is performed because it has been observed that
certain patterns constitute a major portion of all texture features. ULBP uses, M × (M − 1) + 3 symbols
to label the patterns.

2.4. Rotation Invariant and Uniform LBP (RIULBP)

In RIULBP [22], the patterns are chosen such that they are both rotation invariant and uniform.
Similar to ULBP, here also all non-uniform rotation invariant patterns are placed in one separate bin.
This variant of LBP can be formulated as

RIULBP(M,R)(xcen, ycen) =

{
∑M

n=1 f (In − Icen), if U(RILBP(M,R)(xcen, ycen)) ≥ 2,

M + 1, otherwise.
(7)

Here,

U(RILBP(M,R)(xcen, ycen)) = (
M

∑
n=2

| f (In − Icen)− f (In−1 − Icen)|) + | f (IM − Icen)− f (I1 − Icen)|. (8)

2.5. Robust and Uniform LBP (RULBP)

In the present work, we have proposed a minor but significant modification to Robust
LBP (RLBP) [24] to develop RULBP. In RLBP, the argument of the function f (x) i.e., (In − Icen)

(see Equation (2)) is replaced with (In − Icen − th), where th acts as a threshold value. This essentially
means that the value of In has to be greater than the center pixel’s gray value Icen by an amount th
to produce a 1 (see Figure 4). This descriptor is devised with the idea of increasing the robustness to
negligible changes in gray value. Therefore, the RLBP can be formally defined as follows:

RLBP(M,R)(xcen, ycen) =
M

∑
n=1

f (In − Icen − th)× 2n−1. (9)

In this work, we have given a notion of setting the value of th for text/non-text separation in
handwritten documents and also incorporated the idea of ’uniform pattern’ in RLBP to develop RULBP.

Figure 4. Illustration of RLBP value generation for a 3 × 3 gray image window, where M = 8 and
Radius = 1. Here, the value of th = 90.

2.5.1. Idea of ‘Uniform Pattern’

To prove the effectiveness of LBP for texture classification [22], it has been shown that over
90 percent of the LBPs (generated using a segment of the image) present in a textured surface
are ‘uniform patterns’. Besides that, as ‘uniform patterns’ consider a very limited number of 0/1
transition, they can efficiently detect the common microfeatures like corner, edge and spots. Thus,
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in the present work, we have amalgamated the concept of ‘uniform patterns’ with RLBP to generate
RULBP. The formal definition of RULBP is given below:

RULBP(M,R)(xcen, ycen) =

{
∑M

n=1 f (In − Icen − th), if U(RILBP(M,R)(xcen, ycen)) ≥ 2,

M + 1, otherwise.
(10)

The value of U(RLBP(M,R)(xcen, ycen)) is computed using Equation (8).

2.5.2. Selecting the Value of th

From Equation (9), it can be inferred that the threshold (th) in RLBP plays an important role and
whose value might be application specific to some extent. Thus, in this work, we have attempted to
rationalize it in the context of text/non-text separation in handwritten documents.

Most handwritten documents generally possess a large intensity variation at the stroke level due
to the varied nature of writing instruments and non-uniformity in the amount of pressure applied while
writing. This non-homogeneity over a single stroke can only be identified if we magnify the image
(see the dark and bright patches within the stroke in Figure 5. For example, LBP for the 3 × 3 segment,
marked in red, in Figure 5 is ‘00010001’. However, the visual perception of a human being considers
this as a homogeneous region with all zeros ‘00000000’. This property of handwritten documents may
generate erroneous LBP feature values, which, in turn, fail to distinguish the text components from the
non-text ones. In order to solve such problems, a threshold ‘th’ has been introduced in LBP to generate
RLBP. This threshold ensures that two gray values that are not perceptibly different are not labeled
differently. The problem with selecting a value of th is that, if the value is extremely large, then the
entire region will behave like a homogeneous region with no intensity variation. This is because the
binary pattern ,according to Equation (10), will be all zeros for every pixel. Therefore, we need to
provide an upper limit, thmax , on the value of th.

Figure 5. Magnified image of a stroke shows the variation in gray values. A 3 × 3 matrix shows the
intensity values of the gray image segment marked in red.

To address this issue, we have set an upper limit, thmax , on the value of th. Generally, in a real-life
handwritten document image, the intensity of the background pixels reside within a close proximity
of the maximum intensity 255. Here, we assume that the intensity of the background pixels will be in a
range of [245, 255]. Now, for each image, we find the highest gray-scale intensity (Igraymax) less than 245.
We claim that the pixel P having this intensity value has to be a part of some writing stroke. thmax has
to be such that, if we consider Icen has a value Igraymax and a neighboring pixel has a value 245, f (x)
as given in Equation (2) for x = In − Icen − th gives a value 1. Therefore, thmax = 245 − Igraymax.
The value of th can be anything between thmax and 0. We have performed a weighted average of the
threshold values in the range, with the weights increasing for higher values of th and found the ideal

50



J. Imaging 2018, 4, 57

threshold thideal to be at around a value of 100. We have taken various threshold values from 5 to
115 and found experimentally that the accuracy of classification is maximum at about a threshold of
100. It is to be noted that we have set this hardcore threshold value after conducting a exhaustive
experimentation on the images belonging to our dataset. A change in document images might change
the threshold value a bit, but, we foretell that, this assumption would give the researchers a clear hint
to set the threshold value for the document images they consider.

3. Method

The input color image is first converted to the grayscale image and then the connected components
(CCs) are extracted for feature computation and classification. The entire process is depicted in
Figure 6. For CC extraction, first the grayscale image is binarized and the bounding boxes (BBs) of
all of the eight-connected components in the binarized image are calculated. Then, using these
estimated bounding boxes, CCs from the corresponding grayscale image are extracted. As we
are considering real-world handwritten documents, we need to be very careful about the noise
present in these documents, which might affect the binarization and BB estimation process. Thus, for
effective binarization, a background estimation and separation procedure is followed, prior to the
actual binarization, using Otsu’s method as given in [27]. During BB estimation from the binarized
image, only the CCs having height and width greater than three pixels are considered to avoid noise.
After extraction of the CCs from the grayscale image, six different LBP based features are computed.
During feature computation, the radius R has been kept constant at 1 (i.e., the number of neighboring
pixels M = 8). In order to compute a feature vector for each CC, we have generated a normalized
histogram of those LBP values. The number of bins used depends on the particular LBP variant
considered. Here, we should also point out that the LBP operators have been applied to each and
every pixel of a CC, without any discrimination.

Figure 6. Flowchart of the entire text/non-text separation process.

4. Experimental Setup

Experimental setup for any pattern classification problem requires an annotated dataset, classifiers
and a set of evaluation metrics. In this section, the data preparation procedure is described first,
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followed by details of the parameter values used by the classifiers. At the end, we present the
evaluation metrics used in the experiment.

4.1. Database Preparation

It is found that the unavailability of a standard database may be one of the possible reasons for
slow progress in some research areas, such as text/non-text separation from handwritten documents
in spite of their importance. Keeping this fact in mind, in the present work, a database has been
developed that consists of 104 handwritten engineering lab copies and class notes collected from an
engineering college. These copies include textual contents along with a varying number of tables,
graphic components and some printed texts. All of these lab copies are written by more than 20 students
from different engineering and science streams. The age of the writers vary from 18 to 24. Please note
that all these copies are written either in English or Bangla. The collected documents are scanned in
300 DPI (Dots per inch) using a flatbed scanner and then these scanned copies are stored as 24 bit ’BMP’
files. A sample image from the current database is shown in Figure 7a and the corresponding ground
truth image is shown in Figure 7b. In this work, from those 104 handwritten pages, a total of 66,058 CCs
are extracted, out of which 25,011 are text components and 41,047 are non-text components.

(a) (b)

Figure 7. (a) sample image from our dataset; (b) ground truth of the given image (here, red represents
text and blue represents non-text components).

4.2. Classifiers

For classification of the extracted CCs, five well-known classifiers are used in this work, namely,
Naïve Bayes (NB), Multi-layer perceptron (MLP), K-nearest neighbor (K-NN), Random forest (RF)
and Support Vector Machine (SVM). In the current experimental setup, performances of Simple LBP,
ILBP, RILBP, ULBP and RIULBP descriptors with each of the considered classifiers for the present
dataset are measured. Then, the classifier that performs better in all or most cases is used to justify
the newly hypothesized ’uniform pattern’ in RLBP i.e., RULBP. It is to be noted that one of the key
parameters of RULBP is th whose value is subjective to the document image. Here, different trial runs
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are performed to choose the optimal value of th. In this work, Weka 3 [28], a data mining software
(University of Waikato, Hamilton, New Zealand), has been used for classification and visualization
purpose. The values of the classifiers’ parameters used in the current experiment are given in Table 1.

Table 1. Detail values of the parameters used by the classifiers under consideration.

Classifier Parameters with Values

NB • Batch size: 100
• Normal distribution for numeric attributes

MLP

• Learning Rate for the back propagation algorithm: 0.3
• Momentum Rate: 0.2
• Number of epochs to train through: 500
• Learning Rate: 0.3

SMO

• Complexity constant C: 1
• Tolerance Parameter: 1.0 × 10−3

• Epsilon for round-off error: 1.0 × 10−12

• The random number seed: 1

K-NN • K: 1
• Batch size: 100

RF

• Batch size: 100
• Minimum number of instances per leaf: 1
• Minimum numeric class variance proportion of train variance for split: 1.0 × 10−3

• The maximum depth of the tree: unlimited

4.3. Performance Metrics

The performances of the LBP variants are measured using the following conventional metrics:

Recall =
TP

TP + FN
, (11)

Precision =
TP

TP + FP
, (12)

FM =
2 × Recall × Precision

Recall + Precision
, (13)

Accuracy =
TP + TN

Total number o f samples
× 100%. (14)

In Equations (11)–(14), TP, FP, TN and FN represent true positive, false positive, true negative
and false negative, respectively. It is to be noted that all the experiments are done using 3-fold cross
validation and the final results are computed after taking the average performance of the three folds.

5. Experimental Results

Detailed results for each LBP based feature descriptors except RULBP with each of the five
classifiers for the current database are given in Table 2. From Table 2, it can be observed that the RF
classifier outperforms others. Thus, classification results for RULBP with different threshold values are
computed using RF classifier only. We also see that the RULBP operator gives the best accuracy in
classification, among all the LBP variants considered. Detailed results depicting the performance of
RULBP for different thresholds are given in Table 3. A pictorial comparison among the performances
of different LBP operators using RF classifier is given in Figure 8. Figure 9 shows the image of a
document containing text written in Bangla and classified using RULBP, which gives the best result
among all LBP variants. In addition to this, a graphical comparison of the performance of various LBP
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variants are also presented in Figures 10 and 11. The data in Table 2 forms the basis for the points in
Figure 10 while the data in Table 3 forms the basis for the points in Figure 11.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. Pictorial comparison between the performances of different LBP based features with RF
Classifier. Here, (a) grayscale image, (b) ground truth image, (c) result using LBP, (d) result using ILBP,
(e) result using RILBP, (f) result using ULBP, (g) result using RIULBP, and (h) result using RULBP.
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(a) (b) (c)

Figure 9. A Bangla handwritten document classified with RF classifier. Here, (a) grayscale image,
(b) ground truth image, (c) result using RULBP.

Table 2. Performance measure for text/non-text separation, using various LBP features.

Feature Feature Dimension Classifier Precision Recall F-Measure Accuracy (in %)

NB 0.802 0.771 0.774 77.08
MLP 0.529 0.54 0.534 54.04

LBP 256 SMO 0.892 0.889 0.889 88.87
K-NN 0.856 0.851 0.852 85.12

RF 0.914 0.913 0.913 91.33

NB 0.82 0.764 0.767 76.41
MLP 0.386 0.621 0.476 62.13

ILBP 511 SMO 0.862 0.858 0.859 85.84
K-NN 0.852 0.845 0.847 84.5

RF 0.913 0.913 0.912 91.31

NB 0.831 0.802 0.805 80.18
MLP 0.908 0.907 0.905 90.66

RILBP 36 SMO 0.889 0.886 0.887 88.62
K-NN 0.882 0.882 0.882 88.19

RF 0.912 0.912 0.912 91.23

NB 0.862 0.857 0.858 85.65
MLP 0.912 0.912 0.912 91.22

ULBP 59 SMO 0.891 0.888 0.889 88.8
KNN 0.901 0.901 0.901 90.13

RF 0.918 0.918 0.917 91.79

NB 0.859 0.855 0.856 85.52
MLP 0.907 0.907 0.906 90.71

RIULBP 10 SMO 0.888 0.886 0.887 88.58
KNN 0.886 0.886 0.886 88.62

RF 0.909 0.909 0.908 90.9
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Table 3. Classification results using various thresholds for RULBP. The classification accuracy gradually
increases and attains a maximum at a th of 105 units.

Feature Dimension Threshold (th) Precision Recall F-Measure Accuracy in %

5 0.915 0.915 0.914 91.45
25 0.915 0.915 0.915 91.52
45 0.916 0.916 0.915 91.61

59 65 0.917 0.917 0.917 91.72
85 0.919 0.918 0.918 91.84
105 0.920 0.920 0.919 91.96
115 0.919 0.918 0.918 91.84

Figure 10. Graphical comparison of the performances of different LBP variants in classifying the texts
and non-texts present in handwritten document images.

Figure 11. Graphical comparison of the performances of RULBP with different threshold in classifying
the texts and non-texts present in handwritten document images.
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In the literature, different texture feature descriptors have been used to separate text and non-text
regions in printed documents. Here, we have considered two of the recent ones and compared their
individual performances on our dataset, with the performance of the RULBP operator. One of the
methods uses GLCM as feature descriptor [4] while the other uses Histogram of Oriented Gradients
(HOG) [29]. Table 4 gives the accuracy of classification for each of the three feature descriptors using
all five classifiers. It can be seen that the RULBP operator outperforms the other feature descriptors in
most cases.

Table 4. Performance comparison in terms of recognition accuracy (in %) of GLCM, HOG and RULBP
(th = 105) on the present dataset for five different classifiers.

Method NB MLP SMO KNN RF

RULBP 50.38 90.78 88.62 90.20 91.96
GLCM 77.92 90.22 87.21 87.70 90.90
HOG 36.22 80.46 72.61 88.89 91.42

6. Conclusions

In the present work, our objective is to validate the utility of LBP based feature descriptors for the
classification of text and non-text components present in handwritten documents, in a comprehensive
way. We have experimentally shown that RLBP performs better than simple LBP, ILBP, RILBP,
ULBP and RIULBP. However, a major issue in using RLBP is the selection of a suitable threshold, which
might be domain specific. In the current research attempt, we have selected the optimal value of the
threshold on the basis of a few observations, which is also validated through an experiment. We have
provided a justification for this selection as well, which we believe would lead to deeper insight into
the selection of the threshold used for LBP, especially in the case of handwritten documents. Excluding
that, we have proposed a minor modification to RLBP by incorporating the concept of a ‘uniform
pattern’ to develop RULBP, and it has been shown experimentally that RULBP performs better than
RLBP. In the future, we would look for the other texture based features along with some other variants
of LBP to see their utility in the current context. In the future, we plan to enlarge the database by
incorporating various types of document images, which, in turn, would motivate more researchers
to do some tangible work. It is worth mentioning here that, in order to analyze the texts written in
different scripts, a script recognition module is required [30], since an OCR engine is script specific.
Thus, our future plan is to incorporate the same in our model to make it more useful in a multi-script
environment. Another area that we will look into is the generalization of the threshold value th, so that
we may formulate a solid set of procedures that can be useful for any document, instead of using an
empirical method to detect the same.
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Abbreviations

The following abbreviations are used in this manuscript:

LBP Local Binary Pattern
GLCM Gray-Level Co-Occurrence Matrix
CC Connected Components
BB Bounding Box
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ILBP Improved Local Binary Pattern
RILBP Rotation Invariant Local Binary Pattern
ULBP Uniform Local Binary Pattern
RIULBP Rotation Invariant Uniform Local Binary Pattern
RULBP Robust Uniform Local Binary Pattern
NB Naive Bayes
MLP Multilayer Perceptron
SMO Sequential Minimal Optimization
k-NN k-Nearest Neighbors
RF Random Forest
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Abstract: Analytical based approaches in Optical Character Recognition (OCR) systems can endure a
significant amount of segmentation errors, especially when dealing with cursive languages such as
the Arabic language with frequent overlapping between characters. Holistic based approaches
that consider whole words as single units were introduced as an effective approach to avoid
such segmentation errors. Still the main challenge for these approaches is their computation
complexity, especially when dealing with large vocabulary applications. In this paper, we introduce
a computationally efficient, holistic Arabic OCR system. A lexicon reduction approach based on
clustering similar shaped words is used to reduce recognition time. Using global word level Discrete
Cosine Transform (DCT) based features in combination with local block based features, our proposed
approach managed to generalize for new font sizes that were not included in the training data.
Evaluation results for the approach using different test sets from modern and historical Arabic books
are promising compared with state of art Arabic OCR systems.

Keywords: Arabic OCR systems; holistic OCR approach; holistic OCR features; lexicon reduction

1. Introduction

Cursive scripts recognition has traditionally been handled by two major paradigms: a segmentation-
based analytical approach and a word-based holistic approach. In the analytical approach, the input
word is treated as a sequence of units (usually characters). Each unit is then individually recognized [1–4].
This approach has several disadvantages. The segmentation of cursive words is a challenging task and
any errors in that process will increase the errors in the following recognition step. Also, many of the
used fonts for cursive scripts extensively use ligatures where two or more letters are joined as a single
glyph, which complicates the character level segmentation. Figure 1 shows some challenging samples of
Arabic words.

Figure 1. Some examples of Arabic words that contain ligatures with manually segmented characters.

Cursively written word cannot be recognized without being segmented and cannot be segmented
without being recognized [5]. This phenomenon, known as Sayre’s paradox, pushes the community to
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search for more effective solutions to tackle the problem of classification. A more direct and efficient
methodology can be provided using holistic recognition [6]. Holistic approach handles the whole
word as a unified unit. A global feature vector is calculated for the indivisible input word sample
which is then utilized to classify the word against a stored lexicon of words. Holistic recognition
is inspired from what is known as the word superiority effect, which states that people have better
recognition of letters presented within words as compared to isolated letters and to letters presented
within non-words [7]. Holistic paradigms are not only effective, but also have the ability to maintain
certain effects which are special to the class under operation such as coarticulation effects [8].

Several previous research efforts have investigated the holistic approach for Arabic cursive script
recognition for both printed and handwritten types. Erlandson et al. [9] reported a word-level
recognition system for machine-printed Arabic. They used an image-morphological based vector of
features such as dots and hamzas, the direction of segments, the junctions and endpoints, direction of
cavities, holes, descenders and intra-word gaps. All these features are computed for a query word
image in the recognition phase and are matched against a pre-computed database of vectors from an
Arabic words lexicon and that system achieved a word recognition rate of 65%. This accuracy was
achieved with the integration of a lexicon pruning subsystem that is based on another recognition
method that was developed under the same project for a training set of 8436 word images scanned
at 300 dpi.

Al-Badr et al. [10] developed an Arabic holistic word recognition system based on a set of shape
primitives that are detected with mathematical morphology operations. That system was trained
using a single font with three types of documents: ideal (noise-free), synthetically degraded and
scanned. The used feature extraction operators were very sensitive to the scanning noise and the
degraded low resolution documents. That system achieved a recognition rate of 99.4% for noise-free
documents. For synthetically degraded documents, the system accuracy decreased to 95.6% and to 73%
for scanned documents. All these evaluations were performed using a limited lexicon that contained
4317 words [10].

Khorsheed and Clocksin [11] presented a technique for recognizing Arabic cursive words from
scanned images of text by transforming each word in a certain lexicon into a normalized polar image,
and then applied a two-dimensional Fourier transform to that polar image. Each word is represented
by a template that includes a set of Fourier’s coefficients, and for recognition, the system used a
normalized Euclidean distance that measures the distance between the word under test and those
templates. That system achieved a recognition rate of 90% for a lexicon size of 145 words and used
1700 word samples for training.

To get better performance, Khorsheed [12] presented a new system based on Hidden Markov
Models (HMMs). In that system, each word was represented by a single HMM. The word models
were trained using the word sample Fourier’s spectrum. The experiments were conducted on four
fonts, and the reported results are for Simplified Arabic and Arabic Traditional fonts only. The system
achieved a higher recognition rate compared to the template-based recognizer. The highest achieved
results for both fonts are: 90% as the first choice and 98% within the top-ten choices.

In a later work, Khorsheed [13] presented a cursive Arabic text recognition system based on
HMM. This system was also segmentation-free with an easy-to-extract statistical features vector of
length 60 elements, representing three different types of features. This system was trained with a
data corpus which includes Arabic text of more than 600 A4-size sheets typewritten in six different
computer-generated fonts: Tahoma, Simplified Arabic, Traditional Arabic, Andalus, Naskh and
Thuluth. The highest achieved results were 88.7% and 92.4% for Andalus font in mono-model and
tri-model, respectively. In another experiment, that system was trained with a multi-font data set that
was selected randomly with same sample size from all fonts and tested with a data set consisting of
200 lines from each font, and achieved an accuracy of 95% using the tri-model.

In another effort, Krayem et al. [14] presented a word level recognition system using discrete
hidden Markov classifier along with a block based discrete cosine transform. This system was
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trained by typewritten Arabic words in five fonts with size 14 points and lexicon size of 252 words.
Vector quantization was used to map each feature vector to the closest symbol in the codebook.
The multiple recognition hypotheses (N-best word lattice) of that system achieved a 97.65% accuracy.
Also, the holistic approach was successfully used on the subword level. Nasrollahi and Ebrahimi [15]
presented an approach to offline OCR for printed Persian subwords using wavelet packet transform.
The proposed technique extracted font invariant and size invariant features from different subwords
of four fonts and three sizes and compressed them using Principal Component Analysis (PCA). When
tested on a subset of 2000 words of printed Persian text documents, that system achieved an accuracy
of 97.9%.

In a later work [16], Slimane et al. organized the ICDAR2013 competition on multi-font
and multi-size digitally represented Arabic text. The main characteristic of the winner system,
Siemens system submitted by Marc-Peter Schambach et al., was the using of a three hidden layers
neural network, that transforms a two-dimensional pixel plane into a sequence of class probabilities.
the system have been applied on a subset of the APTI dataset [17] and managed to achieve an accuracy
over 99%.

While the holistic approach avoids the challenging segmentation task of Arabic cursive scripts,
it still has another challenge of dealing with large lexicon size of Arabic words. As the number of
words in the lexicon grows, the recognition task becomes more computationally expensive. Most of the
previously proposed holistic based Arabic OCR systems tested with small size vocabularies, but this is
not practical for Arabic as a morphologically rich language with a huge vocabulary size.

In this paper, we propose a computationally efficient holistic Arabic OCR system for a large
vocabulary size. For the sake of a practical approach, a lexicon reduction technique based on clustering
the similar shape words is used to minimize the word recognition time. The proposed system utilizes
a hybrid of several holistic features that combine global word level DCT-based features and local block
based features. Using these types of features, the system manages to achieve Omni-font performance
with font and size independence. Also, the presented system has a flexible architecture for integrating
language modelling constraints by using a second rescoring pass for the top n-best word hypotheses.
This rescoring operation provided a significant enhancement in the recognition accuracy of the system.
The rest of the paper is organized as follows. Section 2 includes a description for the proposed holistic
OCR system. The holistic DCT features used are described in Section 3. The developed lexicon
reduction technique is illustrated in Section 4. Section 5 describes the language rescoring process used
by the system. Section 6 presents system evaluation results and performance comparison with state of
art commercial Arabic OCR systems. The final conclusions and prospects for future work are included
in Section 7.

2. System Description

The developed holistic OCR system consists of two modules. The first one is the training module
where the holistic features are extracted from the training set of the word images. The extracted
features are used to build the set of clusters of similar word shapes. The generated words’ clusters and
their extracted features represent the knowledge base that is used in the recognition phase. The second
module is the recognition module. In that module, after applying the preprocessing operations on the
input image, the detected text blocks are segmented into lines and words. The features are extracted for
each word image then the word cluster or best-n clusters, that have the minimum Euclidean distance
with the test image vector, are assigned. The generated word list from the selected cluster is used to
construct a word lattice for the possible recognition hypotheses of the whole line. This word lattice
is rescored using n-gram language model to get the best recognition hypothesis. Figure 2 shows the
block diagram of the proposed holistic OCR system.
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Figure 2. Block Diagram of the Holistic OCR System.

3. Feature Extraction

The main concept of the proposed algorithm is based on the property that the DCT transform
compressed image is a decomposition vector which can uniquely represent the input image to be
correctly reconstructed later at a decompression stage. In this work, the first 100–200 2D-DCT
coefficients are used as word features that provide good approximation about the word image
information. In our system, three features were experimented. Those features are: Discrete Cosine
Transforms (DCT), Discrete Cosine Transforms 4-Blocks (DCT_4B), and a feature which is a combination
of DCT and DCT_4B.

3.1. Discrete Cosine Transform (DCT)

The DCT features in our system are extracted via two dimensional DCT. The two dimensional
DCT of an M × N image f(x, y) is defined as follows:

T(u, v) =
1√
MN

CuCv

M−1

∑
x=0

N−1

∑
y=0

f (x, y)cos(
(2x + 1)uπ

2M
)cos(

(2y + 1)vπ

2N
) (1)

where 0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1

Cu =

{ 1√
M

, x = 0
2√
M

, 1 ≤ x ≤ M − 1
, Cv =

{ 1√
N

, y = 0
2√
N

, 1 ≤ y ≤ N − 1
.

After applying DCT to the whole word image, the features are extracted in a vector form by
using the most significant DCT coefficients. The steps involved in DCT feature extraction as shown in
Figure 3 are:

1. Apply the DCT to the whole word image.
2. Perform zigzag operation on the DCT coefficients Idct.

The zigzag matrix Iz is a row vector matrix containing high frequency coefficients in its first N
values that contain most word information. This forms features vector fdct for each word.
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Figure 3. DCT based Feature Extraction.

3.2. Discrete Cosine Transform 4-Blocks (DCT_4B)

In this feature set, firstly we find the Centre of Gravity (COG) of image and make it as the starting
point; in order to calculate the centre of gravity, the horizontal and vertical centre must be determined
by the following equations:

Cx =
M(1,0)

M(0,0)
(2)

Cy =
M(0,1)

M(0,0)
(3)

where Cx is the horizontal centre and Cy the vertical centre of gravity and M(p,q) the geometrical
moments of rank p + q:

Mpq = ∑
x

∑
y
(

x
width

)p(
y

height
)q f (x, y). (4)

The x and y determine the image word pixels. The division of x and y by the width and the height
of the image, respectively, causes the geometrical moments to be normalized and be invariant to the
size of the word [18]. This method uses features of COG and DCT at the same time, the first one as an
auxiliary feature to divide the image into four parts and apply the second feature DCT on each part
as a whole.

This feature set is extracted and implemented as follows:

1. Calculate the COG of the word image and make it as a starting point as explained in
Equations (1)–(4).

2. Use the vertical and horizontal COG to divide the word image into four regions.
3. Apply the DCT to each part of the word image.
4. Perform zigzag operation on the DCT coefficients of each image part to get the first N/4 values

that contain most word information on that word part.
5. Repeat Steps 3 and 4 sequentially for all the word parts, and then combine them together to form

the feature vector of the word image.

3.3. Hybrid DCT and DCT_4B (DCT + DCT_4B)

This feature combines the two features DCT and DCT_4B.

4. Lexical Reduction and Clustering

To reduce the computation time for searching the whole lexicon in the recognition phase,
the similar shape words are clustered together. The word search is performed in two steps. In the first
one, the word cluster or the nearest n-clusters are determined then the best matching word inside that
cluster are selected as the recognition output. For words clustering, we used the LBG algorithm [19] to
cluster the words in each group depending on closeness of the word shapes from the point of view of
the used features. For the clustering process, we used the same DCT and DCT_4B features that we use
for the word recognition phase.

To measure the accuracy of the clustering step, and also lexical reduction, we used a clustering
accuracy measure which counts the number of times the test word exists within the selected
cluster/clusters per the tested words. For a vocabulary size of around 356,000 words of Simplified
Arabic font (14 pt.), we tested the clustering accuracy using a test set of 3465 words and a codebook size
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of 1024. Table 1 shows the clustering accuracy rate of the tested words using the three implemented
features when using varying number of clusters from one to 10.

Table 1. Clustering accuracy rate (percent) of Simplified Arabic font vs. number of clusters using three
features (codebook size = 1024, lexicon � 356, 000).

Features Number of Coefficients Top1 Top2 Top3 Top4 Top5 Top6 Top7 Top8 Top9 Top10

DCT 160 84.7 96.0 98.4 98.9 99.1 99.4 99.5 99.6 99.7 99.7
DCT_4B 160 78.5 91.9 96.2 97.8 98.7 99.2 99.4 99.6 99.7 99.7

DCT+ DCT_4B 200 86.1 96.2 98.5 99.1 99.3 99.6 99.7 99.8 99.8 99.8

The results of Table 1 show that the DCT+DCT_4B feature is better than the other two. This hybrid
feature benefited from the local and global feature of the DCT, so it achieved good results, especially in
the noisy data. Figure 4 shows the relation between codebook size and clustering accuracy rate.

Figure 4. Clustering accuracy rate of Simplified Arabic font vs. codebook size number using DCT+
DCT_4B feature for different top clusters.

As shown in Figure 4, the clustering accuracy rate increases when using larger number of
top-n clusters which is a logical consequence. When using a small number of clusters, each cluster
contains large number of words which raises the possibility of finding the tested word within one of
these clusters. When the number of clusters increase, the number of words in each cluster decrease,
which reduces the clustering accuracy rate but at the same time the words within each cluster becomes
more similar, which starts again to raise the clustering accuracy rate even up to the highest level when
each cluster contains only one word.

5. Language Rescoring

To enhance the recognition accuracy, the top-hypotheses from the holistic recognition results are
rescored using a language model. In our system, we used a 4-gram language model that was trained
from a Giga-word Arabic training database [20]. The top n-hypotheses for each word are combined in
a lattice format as shown in Figure 5, then we used the A* search technique to search for the best score
path in that lattice using the 4-gram language model to select the best matching sentence according to
the Arabic language constraints [21].
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Figure 5. An example of a rescoring lattice.

6. Experiment Results

To train the proposed holistic Arabic OCR system, we used a lexicon of around 356,000 words
selected from the news domain with high coverage for the Arabic Language. Using this lexicon,
we generated a database of images for three fonts: Simplified Arabic, Traditional Arabic and Arabic
Transparent, in 300 dpi with four different sizes.

To test the system, we used three different test datasets that represent different degrees
of challenges:

1. Laser scanned text data set: This data set is composed of 1152 single words taken from newspaper
articles and printed in three fonts and four different sizes in two types of qualities: clean and
first copy.

2. Recent computerized books data set: A data set composed of 10 scanned pages from different
recent computerized books that contain 2730 words.

3. Old un-computerized books: This data set consists of 10 scanned pages contain 2276 words from
old books that are typewritten with not well known fonts.

Figure 6 illustrates some examples of the scanned images. In the first experiment, we evaluated
our system using the laser scanned data set. Initially, we evaluated the system on a single font.
The system was trained on a single font with single size but was tested on the same font with different
sizes. We didn’t use the language model with this dataset as it consists of single words. Table 2
illustrates the Word Recognition Rate (WRR) results for this experiment.

Figure 6. Some samples of the scanned images.
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Table 2. Single font WRR (percent) for multi size fonts (12, 14, 16 and 20).

Training Font (Size) Testing Font Name Testing Font Size Top 1 Top 2 Top 3 Top 4 Top 5

Simplified Arabic (14) Simplified Arabic 12 98.26 99.48 99.91 99.96 99.96
14 98.22 99.87 100 100 100
16 98.39 99.44 99.78 99.83 99.83
20 99 99.87 99.96 99.96 99.96

Average 98.44 99.66 99.91 99.93 99.93

Arabic Transparent (14) Arabic Transparent 12 98.13 99.61 99.96 100 100
14 98.48 99.78 100 100 100
16 98 99.74 99.96 100 100
20 98.79 99.83 99.96 100 100

Average 98.33 99.74 99.97 100 100

Traditional Arabic (16) Traditional Arabic 12 97.57 99.65 99.83 99.96 99.96
14 97.61 99.91 99.96 100 100
16 97.39 99.43 99.78 99.83 99.83
20 96.57 99.22 99.83 99.83 99.87

Average 97.33 99.58 99.85 99.90 99.91

From the results in Table 2, we can see that the proposed system achieved very high accuracy
and managed to generalize for new font sizes that were not included in the training data with best
WRR of 98.44% for Simplified Arabic font and the lowest WRR of 97.33% for Traditional Arabic font.
When considered the multiple recognition hypotheses, the top-5 WRR was almost 100%.

In the second experiment, the system was evaluated as omnifont by including several fonts and
sizes from the laser scanned training data set. Table 3 includes the results for that evaluation.

Table 3. Multi-Fonts WRR (percent) for multi size fonts (12, 14, 16 and 20).

Training Font (Size) Testing Font Name Testing Font Size Top 1 Top 2 Top 3 Top 4 Top 5

Simplified Arabic (14) Simplified Arabic 12 98.26 99.61 100 100 100
Arabic Transparent (14) 14 98.13 99.87 100 100 100
Traditional Arabic (16) 16 98.35 99.44 99.78 99.83 99.83

20 98.96 99.91 100 100 100
Average 98.39 99.7 99.93 99.95 99.95

Simplified Arabic (14) Arabic Transparent 12 98.35 99.65 99.96 100 100
Arabic Transparent (14) 14 98.96 99.87 100 100 100
Traditional Arabic (16) 16 98.74 99.83 100 100 100

20 99.05 99.87 100 100 100
Average 98.79 99.81 99.99 100 100

Simplified Arabic (14) Traditional Arabic 12 97.57 99.65 99.83 99.96 99.96
Arabic Transparent (14) 14 97.61 99.91 99.96 100 100
Traditional Arabic (16) 16 97.39 99.43 99.78 99.83 99.83

20 96.4 99.09 99.83 99.83 99.87
Average 97.29 99.55 99.85 99.9 99.91

As we can see in Table 3, the proposed system managed to achieve for the multi-font and multi-size
task almost the same WRR as the single font one. This result shows that the presented system can
provide an omnifont performance.

In the third experiment, we evaluated our system using the recent and old books data sets. Table 4
shows the results of that evaluation.

Table 4. Multi-Fonts WRR (percent) for books.

Books Type Top 1 Top 5 Top 10 Top 20

Recent Computerized 77.33 86.37 87.69 89.19
Old Uncomputerized 47.76 60.68 65.77 69.24
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From the results in Table 4 we can see that our Arabic holistic OCR system achieved 77.3% WRR
for recent books and 47.8% WRR for old books. Considering the top-10 hypotheses, the WRR for recent
books increased to 87.7% and for old books increased to 65.7%. When considering top-20 hypotheses,
the WRR increased to 89% and 69% for recent and old books, respectively. A data analysis for the
recognition errors of the books data sets revealed several reasons that contributed to the reduction
of the WRR. We found that this data sets included high Out Of Vocabulary (OOV) rate of around 6%
for recent books and 7% for old books. It is known that the effect of the OOV is accumulative which
means a single OOV word can result in recognition errors for more than one of its neighboring words.
Another phenomenon that we noticed in these data set is the high rate of using the Kashida character,
which was 4% for recent books and 6% for old books. The Kashida character resulted in altering the
shapes of some characters which caused some word recognition errors. Also, we noticed that some
fonts of the old books had large differences from the fonts used in training the system such as the
Anglo-font which resulted in very low WRR for some pages.

When we applied a 4-gram language model rescoring for the books data sets using the top-10
hypothesis, we achieved 83% WRR for the recent books set and 53% WRR for the old books set. We got
an absolute gain of 6% in WRR for both of the recent and old books data sets. This result show that a
high percentage of the system recognition errors can be corrected using the top-n hypotheses and a
language model.

In the fourth evaluation, we compared the performance of the proposed system with three
commercial Arabic OCR systems, Sakhr, ABBYY and NovoDynamics, which represent the best
performing Arabic OCR packages currently available. Table 5 shows these comparative results.

Table 5. Recognition rate (percent) of recent computerized and uncomputerized books. ED stands for
Euclidean distance.

Books Type NovoDynamics Sakhr ABBYY
Holistic (Using Top 15 with LM)

Squared ED/Absolute ED

Computerized 88.45 82.17 54.33 82.97/84.76
Uncomputerized 78.15 54.94 29.22 53.21/58.04

The results in Table 5 show that, while using squared Euclidean distance as the distance measure,
our system managed to achieve better performance than two systems, ABBYY and Sakhr, for the
computerized books data set and achieved better performance than the ABBYY system for the
uncomputerized books data set. When we used the absolute Euclidean distance, the recognition
rate increased from 82.97% to 84.76% for the computerized books set and from 53.21% to 58.04% for the
uncomputerized books set, and the proposed system outperformed Sakhr and ABBYY systems for both
of the two datasets, although the NovoDynamics system outperfoms the proposed one. Our system is
still much faster, as we will see in the next section.

As heavy computation is one of the main drawbacks for the holistic approach, we evaluated the
runtime speed of the presented system. Table 6 shows the processing times of the proposed system
before and after lexical reduction versus the number of selected word clusters. These experiments
were run on Core i7 2.8 GHz machine with single thread execution.

Table 6. Processing time of word search and LM vs. words candidates.

Selected Words Processing Time (s/word)

No Reduction 0.545
Lexicon Reduction (1 cluster) 0.0005
Lexicon Reduction (5 clusters) 0.0026

Lexicon Reduction (10 clusters) 0.0051
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We can see from the displayed results in Table 6 that the computation cost of our developed
holistic system is very practical. With lexical reduction, we managed to reduce the run time by a
factor of 1000 and a one page with average number of 250 words can be computed in average time
of 1.2 s compared to 1 s/page for Sakhr system, 2.3 s/page for NovoDynamics and 3.5 s/page for
ABBY system.

7. Conclusions and Future Work

The holistic approaches provide effective solutions for the challenges of cursive scripts recognition
such as Arabic OCR. The main drawback of such approaches is its complexity and heavy computation
requirement especially for large vocabulary tasks. In this paper, we introduced a holistic Arabic OCR
approach that is computationally efficient. A lexicon reduction technique based on clustering the
similar shape words is utilized to reduce the word recognition time. The presented system makes
use of a hybrid of several holistic features that combine global word level DCT based features and
local block based features. Using this type of features, the system achieved Omni-font performance
with size and font independence. Also, the suggested system has a flexible architecture to integrate
language modelling constraints by using a second rescoring pass for the top n-best word hypotheses.

The proposed system has been tested using different sets of 1152 words with three different fonts
and four font sizes and has achieved 99.3% WRR. It also has been tested using sets of 2730 words
of recent computerized book’s text and has attained more than about 84.8% WRR. Results of
the holistic proposed system have been compared with known commercial Arabic OCR systems
provided by the largest international and local companies, and the results were promising. In future
work, we will investigate other holistic features like Wavelet Transform, Zernike Transform, Hough
Transform and loci. Also, we will investigate other lexicon reduction techniques that benefit from
linguistic information.
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Abstract: In this paper, we improve the performance of the recently proposed Direct Query Classifier
(DQC). The (DQC) is a classifier based retrieval method and in general, such methods have been shown
to be superior to the OCR-based solutions for performing retrieval in many practical document image
datasets. In (DQC), the classifiers are trained for a set of frequent queries and seamlessly extended for
the rare and arbitrary queries. This extends the classifier based retrieval paradigm to an unlimited
number of classes (words) present in a language. The (DQC) requires indexing cut-portions (n-grams)
of the word image and DTW distance has been used for indexing. However, DTW is computationally
slow and therefore limits the performance of the (DQC). We introduce query specific DTW distance,
which enables effective computation of global principal alignments for novel queries. Since the
proposed query specific DTW distance is a linear approximation of the DTW distance, it enhances the
performance of the (DQC). Unlike previous approaches, the proposed query specific DTW distance uses
both the class mean vectors and the query information for computing the global principal alignments
for the query. Since the proposed method computes the global principal alignments using n-grams,
it works well for both frequent and rare queries. We also use query expansion (QE) to further improve
the performance of our query specific DTW. This also allows us to seamlessly adapt our solution
to new fonts, styles and collections. We have demonstrated the utility of the proposed technique
over 3 different datasets. The proposed query specific DTW performs well compared to the previous
DTW approximations.

Keywords: DTW distance; query classifiers; word spotting; indexing; retrieval

1. Introduction

Retrieving relevant documents (pages, paragraphs or words) is a critical component in information
retrieval solutions associated with digital libraries. The problem has been looked at in two settings:
recognition based [1,2] like OCR and recognition free [3,4]. Most of the present day digital libraries
use Optical Character Recognizers (OCR) for the recognition of digitized documents and thereafter
employ a text based solution for the information retrieval. Though OCRs have become the de facto
preprocessing for the retrieval, they are realized as insufficient for degraded books [5], incompatible for
older print styles [6], unavailable for specialized scripts [7] and very hard for handwritten documents [8].
Even for printed books, commercial OCRs may provide highly unacceptable results in practice. The best
commercial OCRs can only give word accuracy of 90% on printed books [4] in modern digital libraries.
This means that every 10th word in a book is not searchable. Recall of retrieval systems built on
such erroneous text is thus limited. Recognition free approaches have gained interest in recent years.
Word spotting [3] is a promising method for recognition free retrieval. In this method, word images are
represented using different features (e.g., Profiles, SIFT-BOW), and the features are compared with the
help of appropriate distance measures (Euclidean, Earth Movers [9], DTW [10]). Word spotting has the

J. Imaging 2018, 4, 37 71 www.mdpi.com/journal/jimaging



J. Imaging 2018, 4, 37

advantage that it does not require prior learning due to its appearance-based matching. These techniques
have been popularly used in document image retrieval.

Konidaris et al. [5] retrieve words from a large collection of printed historical documents. A search
keyword typed by the user is converted into a synthetic word image which is used as a query
image. Word matching is based on computing the L1 distance metric between the query feature
and all the features in the database. Here the features are calculated using the density of the
character pixels and the area that is formed from the projections of the upper and lower profile
of the word. The ranked results are further improved by relevance feedback. Sankar and Jawahar [7]
have suggested a framework of probabilistic reverse annotation for annotating a large collection of
images. Word images were segmented from 500 Telugu books. Matching of the word images is done
using the DTW approach [11]. Hierarchical agglomerative clustering was used to cluster the word
images. Exemplars for the keywords are generated by rendering the word to form a keyword-image.
Annotation involved identifying the closest word cluster to each keyword cluster. This involves
estimating the probability that each cluster belongs to the keyword. Yalniz and Manmatha [4] have
applied word spotting to scanned English and Telugu books. They are able to handle noise in the
document text by the use of SIFT features extracted on salient corner points. Rath and Manmatha [11]
used projection profile and word profile features in a DTW based matching technique.

Recognition free retrieval was attempted in the past for printed as well as handwritten
document collections [4,7,12,13]. Since most of these methods were designed for smaller collections
(few handwritten documents as in [12]), computational time was not a major concern. Methods that
extended this to a larger collection [14–16] used mostly (approximate) nearest neighbor retrieval.
For searching complex objects in large databases, SVMs have emerged as the most popular and
accurate solution in the recent past [12]. For linear SVMs, both training and testing have become
very fast with the introduction of efficient algorithms and excellent implementations [17]. However,
there are two fundamental challenges in using a classifier based solution for word retrieval
(i) A classifier needs a good amount of annotated training data (both positive and negative) for
training. Obtaining annotated data for every word in every style is practically impossible. (ii) One
could train a set of classifiers for a given set of frequent queries. However, they are not applicable for
rare queries.

In [18], Ranjan et al. proposed a one-shot classifier learning scheme (Direct query classifier).
The proposed one shot learning scheme enables direct design of a classifier for novel queries,
without having any access to the annotated training data, i.e., classifiers are trained for a set of
frequent queries, and seamlessly extended for the rare and arbitrary queries, as and when required.
The authors hypothesize that word images, even if degraded, can be matched and retrieved effectively
with a classifier based solution. A properly trained classifier can yield an accurate ranked list of words
since the classifier looks at the word as a whole, and uses a larger context (say multiple examples)
for matching. The results of this method are significant since (i) It does not use any language specific
post-processing for improving the accuracy. (ii) Even for a language like English, where OCRs are fairly
advanced and engineering solutions were perfected, the classifier based solution is as good, if not
superior to the best available commercial OCRs .

In the direct query classifier (DQC) scheme [18], the authors used DTW distance for indexing the
frequent mean vectors. Since the DTW distance is computationally slow, the authors do not use all
the frequent mean vectors for indexing. For comparing two word images, DTW distance typically
takes one second [3]. This limits the efficiency of DQC. To overcome this limitation, the authors used
Euclidean distance for indexing. The authors use the top 10 (closest in terms of Euclidean distance)
frequent mean vectors for indexing. Since the DTW distance better captures the similarities compared
to Euclidean distance for word image retrieval, this restricts the performance of DQC.

For speed-up, DTW distance has been previously approximated [19,20] using different techniques.
In [20], the authors proposed a fast approximate DTW distance, in which, the DTW distance is
approximated as a sum of multiple weighted Euclidean distances. For a given set of sequences,
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there are similarities between the top alignments (least cost alignments) of different pairs of sequences.
In [20], the authors explored these similarities by learning a small set of global principal alignments
from the given data, which captures all the possible correlations in the data. These global principal
alignments are then used to compute the DTW distance for the new test sequences. Since these
methods [19,20] avoid the computation of optimal alignments, these are computationally efficient
compared to naive DTW distance. The fast approximate DTW distance can be used for efficient indexing
in DQC classifier. However, it gives sub-optimal results. For best results, it needs query specific global
principal alignments. In this paper, we introduce query specific DTW distance, which enables the direct
design of global principal alignments for novel queries. Global principal alignments are computed
for a set of frequent classes and seamlessly extended for the rare and arbitrary queries, as and when
required, without using language specific knowledge. This is a distinct advantage over an OCR engine,
which is difficult to adapt to varied fonts and noisy images and would require language specific
knowledge to generate possible hypotheses for out of vocabulary words. Moreover, an OCR engine can
respond to a word image query only by first converting it into text, which is again prone to recognition
errors. In [21,22], deep learning frameworks are used for word spotting. In [23], a attribute based
learning model PHOC is presented for word spotting. In training phase, each word image is to be given
with its transcription. Both word image feature vectors and its transcriptions are used to create the
PHOC representation. An SVM is learned for each attribute in this representation. Our approach bears
similarity with the PHOC representation based word spotting [23]. In this sense, both the approaches are
designed for handling out-of-vocabulary queries. Our work takes advantage of granular description
at ngrams (cut-portion) level. This somewhat resembles the arrangement of characters used in the
PHOC encoding. However, training efforts for PHOC are substantial with a large number of classifiers
(604 classifiers) being trained and requires complete data for training, which is huge for large datasets.
In our work, the amount of training data is restricted to only frequent classes, which is much less
compared to PHOC. Further, PHOC requires labels in the form of transcriptions, whereas in our work the
labels need not be transcriptions. In addition, PHOC is language dependent [24] and it is very difficult
to apply over different languages. The method proposed in this paper is language independent; it can
be applied to any language.

The paper is organized as follows. The next section describes the Direct query classifier (DQC).
Fast approximation of (DTW) distance is discussed in Section 3. The query specific DTW distance
is presented in Section 4. Experimental settings and results are discussed in Section 5, followed by
concluding remarks in Section 6.

2. Direct Query Classifier (DQC)

In [18], Ranjan et al. proposed Direct Query Classifier (DQC), which is a one-shot learning scheme
for dynamically synthesizing classifiers for novel queries. The main idea is to compute an SVM
classifier for the query class using the classifiers obtained from the frequent classes of the database.
The number of possible words in a language could be very large and it would be practically difficult to
build a classifier for each of the words. However, all these words come from a small set of n-grams.
The words corresponding to the frequent queries are expected to contain the n-grams that cover the
full vocabulary. Exemplar SVM classifiers are computed for the frequent queries (word classes) and
then appropriately concatenated to create novel classifiers for the rare queries. However, this process
has its challenges due to

(i) Variations due to nature of script and writing style,
(ii) Classifiers for smaller ngrams could be noisy.

The authors address these limitations by building the SVM classifiers for most frequent queries
and use classifier synthesis only for rare queries. This improves its overall performance. They use
Query Expansion (QE) for further improving the performance. An overview of the direct query
classifier is given in the following sections.

73



J. Imaging 2018, 4, 37

2.1. DP DQC: Design of DQC Using Dynamic Programming

Given a set of classifiers for frequent classes Ww = {w1, w2, . . . , wN} and a query vector Xq,
the query classifier wq is designed as a piecewise fusion of parts (n-grams) from the available classifiers
from Ww. Let p be the number of portions to be selected for computing the query classifier wq.
These portions are characterized by the sequence of indices a1, . . . , ap+1. The classifier synthesis
problem is formulated as that of picking up the optimal set of classifiers {ci} and the set of segment
indices {ai} such that {ai} form a monotonically increasing sequence of indices. This involves the
following optimization:

max
{ai},{ci}

p

∑
i=1

ai+1

∑
k=ai

wk
ci

Xk
q (1)

where wci corresponds to the weight vector of the cth
i classifier that we choose and the inner summation

applies the index k in the range (ai, ai+1) to use the kth component wk
ci

from the classifier ci. The index
i in the outer summation refers to the cut portions, and p is the total number of portions we need
to consider.

In [12], Malisiewicz et al. proposed the idea of exemplar SVEN (ESVM) where a separate (SVM)
is learned for each example. Almazan et al. [25] use ESVMs for retrieving word images. ESVMs are
inherently highly tuned to its corresponding example. Given a query, it can retrieve highly similar
word images. This constrains the recall, unless one has large variations of the query word available.
Another demerit of ESVM is the large overall training time since a separate SVM needs to be trained
for each exemplar. One approach to reducing training time is to make the negative example mining
step offline and selecting a common set of negative examples [26]. Gharbi et al. [27] provide another
alternative for fast training of exemplar SVM in which the hyperplane between a single positive point
and a set of negative points can be seen as finding the tangent to the manifold of images at the
positive point.

Given a query q, the similar vectors in the dataset are identified by adopting the ESVM formulation
proposed by Gharbi et al. [27] which yields an approach equivalent to Linear Discriminant Analysis.
It involves a fast computation of the weight vector by adopting a parametric representation of
the negative examples approximated as a Gaussian model on the complete set of training points.
The normal to the Gaussian at the query point q is computed using the covariance matrix to yield the
weight vector wq as follows:

wq = Σ−1(μq − μ0) (2)

where Σ and μ0 are the covariance and mean computed over the entire dataset. Since Σ and μ0 are
common for all data, finding wq requires finding the mean vector μq of the class to which the query q
belongs to. Let us define the set of class mean vectors for the frequent classes as Wμ = {μ1, . . . , μN}.
The mean vector μq for the class of the query q is computed by making use of appropriate cut portions
from the mean vectors of the frequent classes. Optimizing (1) for variable length cut portions entails
high computational complexity. Therefore, instead of matching variable-length n-grams, the method
divides Xq into p number of fixed length portions.

1. The class mean vectors of the most frequent 1000 classes are concatenated.
2. Now, each query cut portion Xk

q is searched in the concatenated mean vector using subsequence
dynamic time warping [28]

3. The most similar segment in the concatenated mean vector is taken as the corresponding portion
of the query class mean μk

q.
4. The concatenation of these query class mean cut portions μk

q synthesizes the query class mean
μq = [μ1

q, . . . , μ
p
q ].

Since DTW is computationally slow, applying subsequence DTW, in this case, is computationally
expensive.
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2.2. NN DQC: Design of DQC Using Approximate Nearest Neighbour

A speed-up is obtained by using approximate nearest neighbor search instead of using DTW.

• Instead of concatenating the class mean vectors, now each class mean vector is divided into same
p number of fixed length portions. An index is built over frequent class means cut portions
using FLANN.

• Each cut portion of Xq is compared with frequent class means cut portions using nearest neighbor
search with Euclidean distance.

• The best matching cut portions of the mean vectors are used to synthesize the mean vector for the
query class.

However, using nearest neighbor (NN DQC) instead of subsequence DTW based scheme (DP DQC)
compromises the optimality of the classifier synthesis.

Few qualitative examples for the two versions of DQC are given in Figure 1. We have shown
the retrieval results for frequent queries and rare queries. For each case, we have compared the
retrieval results for NN DQC and DP DQC. For rare query, we have also shown the results for Query
expansion (QE).

Frequent

Rare

NN DQC

NN DQC

DP DQC

DP DQC

NN DQC

QE with

Query Method Rank 1 Rank 2 Rank 4Rank 3 Rank 5
Retrieved Results

Query

Query

Figure 1. Figure shows few query words and their corresponding retrieval results. The first column
shows the query image and the corresponding images in each row are its retrieval results. First two
rows show frequent query results. The first row shows the results for NN DQC and second row show
the results for DP DQC. Row 3 to Row 5 show the retrieval results for a rare query. Row 3 shows
the results for NN DQC and Row 4 show the results for DP DQC and Row 5 show the results for
query expansion.

3. Approximating the DTW Distance

In general, DTW distance has quadratic complexity in the length of the sequence.
Nagendar et al. [20] proposed Fast approximate DTW distance (Fast Apprx DTW), which is a linear
approximation to the DTW distance. For a pair of given sequences, DTW distance is computed using the
optimal alignment from all the possible alignments. This optimal alignment gives a similarity between
the given sequences by ignoring local shifts. Computation of optimal alignment is the most expensive
operation in finding the DTW distance.

For a given set of sequences, there are similarities between the optimal alignments of different
pairs of sequences. For example, if we take two different classes, the top alignments (optimal
alignments/least cost alignments) between the samples of class 1 and the samples of class 2 always
have some similarity. For a small dataset, the top alignments between few class 1 samples and few
class 2 samples are plotted in Figure 2. It can be observed that the top alignments are in harmony.
Based on this idea, we compute a set of global principal alignments from the training data such that the
computed global principal alignments should be good enough for approximating the DTW distance
between any new pair of sequences. For new test sequences, instead of finding the optimal alignments,
the global principal alignments are used for computing the DTW distance. This avoids the computation
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of optimal alignments. Now, the DTW distance is approximated as the sum of the Euclidean distances
over the global principal alignments.

FastApprxDTW(x1, x2) = ∑
π∈GX

Euclidπ(x1, x2) (3)

where GX is the set of global principal alignments for the given data X and Euclidπ(x1, x2) is the
Euclidean distance between x1 and x2 over the alignment π. Notice that the DTW distance between
two samples is the Euclidean distance (ground distance) over the optimal alignment.

Figure 2. The top alignments between few samples from 2 different classes. Here, X-axis is the length
of the samples from class 1 and Y-axis is the length of the samples from class 2.

To show the performance of Fast Apprx DTW [20], we have compared with naive DTW distance and
Euclidean distance for word retrieval problem. Here, these distance measures are used for comparing
word image representations. The dataset contains images from three different word classes. The results
are given in Table 1. Nearest neighbor is used for retrieving the similar samples. The performance is
measured by mean Average Precision (mAP). From the results, we can observe that Fast Apprx DTW is
comparable to naive DTW distance and it performs better than Euclidean distance.

Table 1. The comparison of the performance of DTW distance, Fast Apprx DTW and Euclidean distance
as a similarity measure for a word retrieval problem.

DTW Distance Fast Apprx DTW Euclidean

mAP score 0.96 0.94 0.82

4. Query Specific Fast DTW Distance

In Fast approximate DTW distance [20] (Section 3), the global principal alignments are computed
from the given data. Here, no class information is used while computing the alignments and also these
alignments are query independent, i.e., query information is not used while computing the global
principal alignments. In this section, we introduce Query specific DTW distance, which is computed
using query specific (global) principal alignments. The proposed Query specific DTW distance has
been found to give a much better performance when used with the direct query classifier.

Let X be the given data and all the samples are scaled to a fixed size. Let {C1, C2, . . . , CN} be the
most frequent N classes from the data and μ1, . . . , μN be their corresponding class means. The matching
process using the query specific principal alignments is as follows:

(i) Divide each sample from the frequent classes to a fixed number p of equal size portions.
Let xi1 , . . . , xi|ci | be the samples (sequences) from the ith class ci, where |ci| is the number of

samples in the class ci. The cut portions for the class means μi are denoted as μi
1, . . . , μi

p, where
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each cut portion is of length d. Similarly, divide the query Xq into same number p of fixed
length portions.

(ii) For each class, compute the global principal alignments for each cut portion separately. These are
the cut specific principal alignments for the class. For ith class and jth cut portion the cut
specific principal alignments are computed from {xj

i1
, . . . xj

i|ci |} and these are denoted as Gj
i .

These alignments are computed for all the cut portions for each class.
(iii) The final step computes the cut specific principal alignments for the given query Xq as follows.

For each cut portion of Xq, we compute the DTW distance (Euclidean distance over the cut specific
principal alignments) with the corresponding cut portions of all the class means using their
corresponding cut specific principal alignments. The distance between the jth cut portion of Xq

i.e., Xj
q and the jth cut portion of the ith class mean i.e., μ

j
i is denoted as

Disj
i = ∑

π∈Gj
i

Euclidπ(Xj
q, μ

j
i) (4)

For each cut portion of Xq, we compute the minimum distance mean cut portion over all the class
mean vectors. The corresponding cut specific principal alignments of the closest matching mean
cut portions are taken as the cut specific principal alignments of the query cut portion. In addition,
the corresponding class mean cut portion is taken as the matching cut portion for constructing
the query mean. Let the jth cut portion of the query have the best match with the jth cut-portion
of the class with index c.

c = arg min
i

Disj
i (5)

Here the minimum distance is computed over all the frequent classes. We thus have

Gj
Xq

←− Gj
c and μ

j
q ←− μ

j
c (6)

Here Gj
Xq

is the cut specific principal alignments for the jth cut portion of Xq.

Together, all these query mean cut portions give the query class mean. The query class mean
μq is given as μq = (μ1

q, μ2
q, . . . , μ

p
q ). This query class mean μq is then used as in Equation (2) to

compute the LDA weight wq (query classifier weight).

The query specific (QS) DTW distance between the query Xq and a sample X from the data is
given as

dtw
qs

(Xq, X) =
p

∑
i=1

dtwGi
Xq
(Xi

q, Xi) (7)

where p is the number of cut portions.

Figure 3 shows all the processing stages of the nearest neighbor DQC. To summarize, we generate
query specific principal alignments on the fly by selecting and concatenating the global principal
alignments corresponding to the smaller n grams (cut portions). Our strategy is to build cut-specific
principal alignments for the most frequent classes; these are the word classes that will be queried
more frequently. These cut-specific principal alignments are then used to synthesize the query specific
principal alignments (see Figure 4). The results demonstrate that our strategy gives good performance
for queries from both the frequent word classes and rare word classes.
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Figure 3. Overall Scheme for NN DQC. In an offline phase, the mean vectors for the frequent word
classes are computed and their cut-specific principal alignments are computed. To process a query
word image, it is divided into cut portions and FastDTW matching is used to get the best matching
cut-portions from the frequent class mean vectors with the cut-portions of the query image. These best
matching cut-portions are used to construct the mean vector for the query class and the query specific
principal alignments. FastDTW [20] matching between the query image and the database images is
done using the query specific principal alignments.

(a) (b) 

Figure 4. Synthesis of query specific principal alignments. (a) Cut specific principal alignments
corresponding to “ground” and “leather” are joined to form the principal alignments for “great”.
Note that the appropriate cut portions are automatically found. (b) In a general setting, query specific
principal alignments gets formed from multiple constituent cut specific principal alignments computed
for frequent classes.

To ensure wider applicability of our approach, we consider that the alignments trained on one
dataset may not work well on another dataset. This is mainly due to the print and style variations.
For adapting to different styles, we use query expansion (QE), a popular approach in the information
retrieval domain in which the query is reformulated to further improve the retrieval performance.
An index is built over the given sample vectors from the database and using approximate nearest
neighbor search, the top 10 similar vectors to the given query are computed. These top 10 similar
vectors are then averaged to get the new reformulated query. This reformulated query is expected to
better capture the variations in the query class. In our experiments, this further improves the retrieval
performance. Approximate nearest neighbors are obtained using FLANN [29].

5. Results and Discussions

In this section, we validate the DQC classifier using query specific Fast DTW distance for
efficient indexing on multiple word image collections and also demonstrate its quantitative and
qualitative performance.
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5.1. Data Sets and Evaluation Protocols

In this subsection, we discuss datasets and the experimental settings that we follow in the
experiments. Our datasets, given in Table 2, comprise scanned English books from a digital library
collection. We manually created ground truth at word level for the quantitative evaluation of the
methods. The first collection (D1) of words is from a book which is reasonably clean. Second dataset
(D2) is larger in size and is used to demonstrate the performance in case of heterogeneous print styles.
Third dataset (D3) is a noisy book and is used to demonstrate the utility of the performance of our
method in degraded collections. We have also given the results over the popular George Washington
dataset. For the experiments, we extract profile features [11] for each of the word images. In this, we
divide the image horizontally into two parts and the following features are computed: (i) vertical
profile i.e the number of ink pixels in each column (ii) location of lowermost ink pixel, (ii) location
of uppermost ink pixel and (iv) number of ink to background transitions. The profile features are
calculated on binarized word images obtained using the Otsu thresholding algorithm. The features are
normalized to [0, 1], so as to avoid dominance of any specific feature.

To evaluate the quantitative performance, multiple query images were generated. The query
images are selected such that they have multiple occurrences in the database and are mostly functional
words and do not include the stop words. The performance is measured by mean Average Precision
(mAP), which is the mean of the area under the precision-recall curve for all the queries.

Table 2. Details of the datasets considered in the experiments. The first collection (D1) of words is
from a book which is reasonably clean. The second dataset (D2) is obtained from 2 books and is
used to demonstrate the performance in case of heterogeneous print styles. The third dataset (D3) is
a noisy book.

Dataset Source Type # Images # Queries

D1 1 Book Clean 14,510 100
D2 2 Books Clean 32,180 100
D3 1 Book Noisy 4100 100

5.2. Experimental Settings

For representing word images, we prefer a fixed length sequence representation of the visual
content, i.e., each word image is represented as a fixed length sequence of vertical strips. A set of
features f1,. . ., fL are extracted, where fi ∈ RM is the feature representation of the ith vertical strip
and L is the number of vertical strips. This can be considered as a single feature vector F ∈ Rd of
size d = LM. We implement the query specific alignment based solution as discussed in Section 4.
For query expansion based solution, we identify the five most similar samples to the query using
approximate nearest neighbor search and compute their mean.

Each dataset contains certain words which are more frequent than others. The number of samples
in the frequent word classes are more compared to the rare classes. The retrieval results for frequent
queries give better performance because the number of relevant samples available in the dataset is
greater. It is worth emphasizing that for the method proposed in this paper (QS DTW), the degradation
in the performance for rare queries is much less compared to other methods.

5.3. Results for Frequent Queries

Table 3 compares the retrieval performance of the direct query classifier DQC with the nearest
neighbor classifier using different options for distance measures. The performance is shown in terms
of mean average precision (mAP) values on three datasets. For the nearest neighbor classifier, we
experimented with five distance measures: naive DTW distance, Fast approximate DTW distance [20],
query specific DTW (QS DTW) distance, FastDTW [30] and Euclidean distance. We see that DTW
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performs comparably with DTW for all the datasets. It performs superior compared to the Fast DTW,
Fast approximate DTW distance [20] and performs significantly better compared to Euclidean distance.

For DQC, we experimented with four options for indexing the frequent class mean vectors:
subsequence DTW [18] (sDTW), approximate nearest neighbor NN DQC [18] (aNN), FastDTW, and QS

DTW. We use the cut-portions obtained from the mean vectors of the most frequent 1000 word classes
for (i) computing the cut-specific principal alignments in case of QS DTW, (ii) computing the closest
matching cut-portion (i.e., one with the smallest distance, which can be Euclidean or DTW) with
a cut-portion from the query vector, in case of aNNor FastDTW.

However, since sDTW has computational complexity O (n2), we restrict the number of frequent
words used for indexing to 100. The QS DTW distance improves the performance of the DQC classifier.
This is mainly due to the improved alignments involved in the QS DTW distance. The query specific
alignments better capture the variations in the query class. Moreover, unlike the case of sDTW distance,
the QS DTW distance has linear complexity and therefore we are able to index all the frequent mean
vectors in the DQC classifier. Thus, the proposed method of QS DTW enhances the performance of the
DQC classifier [18].

For frequent queries, the experiments revealed that the QS DTW gets the global principal
alignments from the mean vector of the same (query) class. Since the alignments are coming from the
query class, it gives minimum distance only for the samples which belong to its own class. Therefore,
the retrieved samples largely belong to the query class. The performance is therefore improved
compared to sDTW distance. In contrast, the Fast approximate DTW distance [20] computes the global
principal alignments using all samples in the database, without exploiting any class information. The
computed global principal alignments, therefore, include alignments from classes that may be different
from the query class. For this reason, it performs inferior to the proposed DTW distance.

Table 3. Retrieval performance of various methods for frequent queries.

Dataset

Retrieval Results (mAP) for Frequent Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Apprx DTW [20] QS DTW Euclidean FastDTW [30] sDTW aNN FastDTW QS DTW

D1 0.94 0.92 0.92 0.81 0.91 0.98 0.98 1 1
D2 0.91 0.89 0.9 0.75 0.87 0.96 0.95 0.97 0.99
D3 0.83 0.79 0.81 0.67 0.76 0.91 0.92 0.93 0.96

5.4. Results for Rare Queries

The faster indexing offered by the use of QS DTW with DQC allows us to make use of the mean
vectors of all the 1000 frequent classes. This gives us a much improved performance of the DQC
on rare queries, compared to sDTW [18] which uses mean vectors from 100 frequent classes. Table 4
shows the retrieval performance of DQC with a nearest neighbour classifier using different options
for distance measures. The performance is showed in terms of mean average precision (mAP) values
on rare queries from three datasets. For the nearest neighbor classifier, we experimented with five
distance measures: naive DTW distance, Fast approximate DTW distance [20], query specific DTW
(QS DTW) distance, FastDTW [30] and Euclidean distance. We see that QS DTW performs comparably
with DTW distance for all the datasets. It performs superior compared to the Fast approximate DTW

distance [20], FastDTW and significantly better compared to Euclidean distance.
For DQC, we observe that QS DTW improves the performance compared to sDTW. This

improvement of QS DTW over sDTWis more for rare queries compared to that for frequent queries. This
shows that QS DTW can be used for faster indexing for both frequent and rare queries.

For rare queries, the query specific DTW distance outperforms Fast approximate DTW [20] distance.
This happens because the Fast approximate DTW computes the global principal alignments from the
database and its performance depends on the number of samples. Also, these alignments are query
independent, i.e., they do not use any query information for computing the global principal alignments.
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For a given query, it needs enough samples from the query class for getting novel global principal
alignments. However, in any database, the number of samples for frequent classes dominate the
number of samples for rare classes. The global principal alignments for frequent queries are likely to
dominate the rare queries. Therefore, the precomputed global principal alignments in Fast approximate
DTW may not capture all the correlations for rare query classes. In the proposed QS DTW distance,
the global principal alignments are learned from the ngrams (cut-portions) of frequent classes. These
n-grams are in abundance and also shared with rare queries, thus there are enough n-gram samples
for learning the cut-specific alignments. The computed query specific alignments for the cut-portions
outperform the alignments obtained from Fast approximate DTW.

Table 4. Retrieval performance of various methods for rare queries.

Dataset

Retrieval Results (mAP) for Rare Queries

Using Nearest Neighbour Classifier Using DQC (Exemplar SVM)

DTW Fast Apprx DTW [20] QS DTW Euclidean FastDTW [30] sDTW aNN FastDTW QS DTW QE

D1 0.82 0.77 0.83 0.69 0.75 0.91 0.90 0.91 0.95 0.98
D2 0.81 0.74 0.80 0.65 0.74 0.89 0.90 0.90 0.94 0.95
D3 0.73 0.66 0.71 0.59 0.62 0.80 0.78 0.80 0.91 0.96

It is worth mentioning that FastDTW [30], which is an approximation method, attempts to
compute the DTW distance in an efficient way. It does not consider cut portion similarities, which may
be influenced by various printing styles. Hence, these approaches are not applicable in our setting
where the dataset can have words printed in varied printing styles, and thus can result in a marked
degradation of performance for rare queries. Since query specific DTW finds the approximate DTW
distance using cut specific principal alignments, it can exploit properties which cannot be used by
other DTW approximation methods.

To summarize, the experiments demonstrate that the proposed query specific DTW performs well
for both frequent and rare queries. Since it is learning the alignments from ngrams, it performs comparable
to sDTWdistance for rare queries. For some queries, it performed better than the DTW distance.

5.5. Results for Rare Query Expansion

The results for QS DTW enhanced with query expansion (QE) using five best matching samples
are also given in Table 4. It is observed that QE further improves the performance of our proposed
method. To show the effectiveness of query expansion, we have computed the average of the DTW

distance between the given query and all database samples that belonged to the query class. Likewise,
we computed the average of the DTW distance for the reformulated query. Table 5 shows a comparison
of the averaged DTW distance for the given query and the reformulated query using 2, 5, 7, and 10 most
similar (to the query) samples from the database. From the results, we can observe that compared to
the given query, the reformulated query using five best matching samples gives the lowest averaged
DTW distance to the samples from the query class. This means the reformulated query is a good
representative for the given query. However, using nine best matching samples for reformulating the
query leads to a higher average of DTW distances. This means some irrelevant samples to the query
are coming in the top similar samples.

Table 5. The table gives the average sum of DTW distance for the given query and the reformulated
query with varying number of samples n from the query class.

Average of DTW Distance

For given query For Reformulated Query

n = 2 n = 5 n = 7 n = 10
2.67 ± 0.19 2.69 ± 0.23 2.52 ± 0.13 2.58 ± 0.21 2.94 ± 0.29
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5.6. Results on George Washington Dataset

The George Washington (GW) dataset [31] contains 4894 word images from 1471 word classes.
This is one of the popular dataset for word images. We applied our proposed method of DQC using QS
DTW for word retrieval on the GW dataset. Table 6 provides comparative results for seven methods.
Experiments are repeated for 100 random queries and the average over these results are reported in
the table. We can observe that for the DQC the proposed QS DTW gives better performance than DTW.
We can also observe that for the nearest neighbor classifier, QS DTW distance is performing slightly
superior to the DTW distance and Fast approximate DTW distance. The superiority is because of the
principal alignments which are query specific.

Table 6. Retrieval performance on the George Washington (GW) dataset. The DQC makes use of top
800 frequent classes for indexing the cut-portions.

Dataset
mAP Using Nearest Neighbour mAP Using DQC

DTW Fast Apprx DTW [20] QS DTW Euclidean sDTW FastDTW [30] QS DTW

GW 0.51 0.50 0.52 0.32 0.62 0.63 0.70

5.7. Setting the Hyperparameters

The proposed method has few hyperparameters, like the length of the cut portion and the number
of cut specific principal alignments. For tuning these parameters, we randomly choose 100 queries for
each dataset and validate the performance over these queries. Queries included in the validation set
are not used for reporting the final results.

In Table 7, we report the effect of varying the cut portion length on retrieval performance. The mAP
score is less for smaller cut portion length. In this case, the learned alignments are not capturing the
desired correlations. This happens because the occurrence of smaller cut portions is very frequent in
the word images. For length more than 30, the mAP is again decreased. This is because the occurrences
of larger cut portions are rare. Cut portion lengths in the range of 10 to 20 give better results. In this
case, the cut portions are good enough to yield global principal alignments that can distinguish the
different word images.

Table 7. The table shows the change in retrieval performance with the change in the length of cut
portion over all the datasets (D1, D2, D3). Here l is the length of the cut portion.

l D1 D2 D3

1 0.81 0.78 0.7
10 0.86 0.83 0.74
20 0.86 0.82 0.75
30 0.82 0.77 0.72

We assessed the effect of varying the number of cut-specific principal alignments on the retrieval
performance on the three datasets and the results are given in Table 8. It is seen that the performance
degrades for all the datasets when the number of alignments is chosen as 30. This can be attributed to
some redundant alignments getting included in the set of principal alignments. Increasing the number
of alignments from 10 to 20 improves performance for dataset D1, but has no effect on the performance
for datasets D2 and D3. Therefore, we can conclude that restricting the number of principal alignments
in the range 10 to 20 would give good results. In all our experiments, we set the number of cut-specific
principal alignments as 10.
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Table 8. Retrieval performance on the 3 datasets D1, D2 and D3 for varying number of cut specific
principal alignments.

Number of Cut Specific
Principal Alignments

mAP for Different Datasets

D1 D2 D3

10 0.92 0.89 0.81
20 0.93 0.89 0.81
30 0.91 0.88 0.78

5.8. Computation Time

Table 9 gives the computational time complexity for the methods based on DTW. The main
computation involved in the use of QS DTW is that of computing the cut specific principal alignments
for the frequent classes. Figure 5 shows the time for computing the cut specific principal alignments
for the three datasets. The computation of these cut specific principal alignments can be carried
out independently for all the classes. Since we can compute these principal alignments in parallel
with each other, the proposed QS DTW scales well with the number of samples compared to Fast
Apprx DTW [20].

Figure 5. Computation time for computing the cut specific principal alignments for all the datasets.
It includes the computation of cut specific principal alignments for all the frequent classes over all the
cut portions.

Table 9. Computational complexities of DTW-based methods for distance computation. Here n is the
length of the cut-portion of the feature vector.

Methods sDTW Fast Apprx DTW [20] FastDTW [30] QS DTW

Computational Complexity O (n2) O (n) O (n) O (n)

Unlike the case of QS DTW, where the principal alignments are computed for the small cut
portions, in Fast Apprx DTW, the principal alignments are computed for the full word image
representation. Further, in Fast Apprx DTW, the principal alignments are computed from the entire
dataset, unlike the case of QS DTW in which the principal alignments are computed for the individual
classes. For these reasons, Fast Apprx DTW is computationally slower compared to the QS DTW.

For a given dataset, computing the cut specific principal alignments for the frequent classes is an
offline process. When performing retrieval for a given query, DQC involves computing the query mean
by composing together the nearest cut portions from the mean vectors of frequent classes. Further,
the query specific principal alignments are not explicitly computed but rather constructed using the
cut-specific principal alignments corresponding to the nearest cut portions. Once the query specific
principal alignments are obtained, computation of QS DTW involves computing the Euclidean distance
(using the query specific principal alignments) with the database images.
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For the given two samples x and y of length N, FastDTW [30] is computed in the following way.
First, these two samples are reduced to smaller length (1/8 times) and the naive DTW distance is
applied over the reduced length samples to find the optimal warp path. Next, both the optimal path
and the reduced length samples from the previous step are projected to higher (two times) resolution.
Instead of filling all the entries in the cost matrix in the higher resolution, only the entries around
a neighborhood of the projected warp path, governed by a parameter called radius r, are filled up.
This projection step is continued until the original resolution was obtained. The time complexity of
FastDTW is N (8r + 14), where r is the radius. The performance of FastDTW depends on the radius r.
The higher the value of r, the better the performance is. The time complexity of QSDTW/Fast Apprx
DTW is N ∗ p, where p is the number of principal alignments. In general, p << 8r + 14, for getting the
similar performance in both the methods.

6. Conclusions

We have proposed query specific DTW distance for faster indexing in the direct query classifier
DQC [18]. The benefit of deploying QS DTW with DQC is that it results in linear time complexity.
Therefore, we are able to index all the frequent mean vectors of the database for constructing the
mean vector for the query class in the DQC classifier. Since QS DTW distance performs equally well
as DTW distance and because we consider all the frequent mean vectors for indexing, the proposed
method enhances the performance of the DQC. Unlike previous approaches, the proposed QS DTW
distance uses both the class mean vectors and the query information for computing the global principal
alignments for the query. The use of ngrams for computing the global principal alignments makes
the method perform well for rare queries, which are query word images that belong to non-frequent
word classes for which mean vectors are not computed for the database. The query expansion (QE)
further improves the performance of QS DTW. We have demonstrated the utility of the proposed
technique over three different datasets. The proposed query specific DTW performs well compared to
the previous DTW approximations.
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Abstract: Handwritten character recognition is currently getting the attention of researchers because
of possible applications in assisting technology for blind and visually impaired users, human–robot
interaction, automatic data entry for business documents, etc. In this work, we propose a technique
to recognize handwritten Devanagari characters using deep convolutional neural networks (DCNN)
which are one of the recent techniques adopted from the deep learning community. We experimented
the ISIDCHAR database provided by (Information Sharing Index) ISI, Kolkata and V2DMDCHAR
database with six different architectures of DCNN to evaluate the performance and also investigate
the use of six recently developed adaptive gradient methods. A layer-wise technique of DCNN
has been employed that helped to achieve the highest recognition accuracy and also get a faster
convergence rate. The results of layer-wise-trained DCNN are favorable in comparison with those
achieved by a shallow technique of handcrafted features and standard DCNN.

Keywords: handwritten character recognition; deep learning; Devanagari characters; convolutional
neural network; adaptive gradient methods

1. Introduction

In the last few years, deep learning approaches [1] have been successfully applied to various areas
such as image classification, speech recognition, cancer cell detection, video search, face detection,
satellite imagery, recognizing traffic signs and pedestrian detection, etc. The outcome of deep learning
approaches is also prominent, and in some cases the results are superior to human experts [2,3] in
the past years. Most of the problems are also being re-experimented with deep learning approaches
with the view to achieving improvements in the existing findings. Different architectures of deep
learning have been introduced in recent years, such as deep convolutional neural networks, deep
belief networks, and recurrent neural networks. The entire architecture has shown the proficiency
in different areas. Character recognition is one of the areas where machine learning techniques
have been extensively experimented. The first deep learning approach, which is one of the leading
machine learning techniques, was proposed for character recognition in 1998 on MNIST database [4].
The deep learning techniques are basically composed of multiple hidden layers, and each hidden
layer consists of multiple neurons, which compute the suitable weights for the deep network. A lot of
computing power is needed to compute these weights, and a powerful system was needed, which
was not easily available at that time. Since then, the researchers have drawn their attention to finding
the technique which needs less power by converting the images into feature vectors. In the last few
decades, a lot of feature extraction techniques have been proposed such as HOG (histogram of oriented
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gradients) [5], SIFT (scale-invariant feature transform) [6,7], LBP (local binary pattern) [8] and SURF
(speeded up robust features) [9]. These are prominent feature extraction methods, which have been
experimented for many problems like image recognition, character recognition, face detection, etc. and
the corresponding models are called shallow learning models, which are still popular for the pattern
recognition. Feature extraction [10] is one type of dimensionality reduction technique that represents
the important parts of a large image into a feature vector. These features are handcrafted and explicitly
designed by the research community. The robustness and performance of these features depend on
the skill and the knowledge of each researcher. There are the cases where some vital features may be
unseen by the researchers while extracting the features from the image and this may result in a high
classification error.

Deep learning inverts the process of handcrafting and designing features for a particular problem
into an automatic process to compute the best features for that problem. A deep convolutional
neural network has multiple convolutional layers to extract the features automatically. The features
are extracted only once in most of the shallow learning models, but in the case of deep learning
models, multiple convolutional layers have been adopted to extract discriminating features multiple
times. This is one of the reasons that deep learning models are generally successful. The LeNet [4]
is an example of deep convolutional neural network for character recognition. Recently, many other
examples of deep learning models can be listed such as AlexNet [3], ZFNet [11], VGGNet [12] and
spatial transformer networks [13]. These models have been successfully applied for image classification
and character recognition. Owing to their great success, many leading companies have also introduced
deep models. Google Corporation has made a GoogLeNet having 22 layers of convolutional and
pooling layers alternatively. Apart from this model, Google has also developed an open source software
library named Tensorflow to conduct deep learning research. Microsoft also introduced its own deep
convolutional neural network architecture named ResNet in 2015. ResNet has 152-layer network
architectures which made a new record in detection, localization, and classification. This model
introduced a new idea of residual learning that makes the optimization and the back-propagation
process easier than the basic DCNN model.

Character recognition is a field of image processing where the image is recognized and converted
into a machine-readable format. As discussed above, the deep learning approach and especially
deep convolutional neural networks have been used for image detection and recognition. It has
also been successfully applied on Roman (MNIST) [4], Chinese [14], Bangla [15] and Arabic [16]
languages. In this work, a deep convolutional neural network is applied for handwritten Devanagari
characters recognition.

The main contributions of our work can be summarized in the following points:

1. This work is the first to apply the deep learning approach on the database created by ISI, Kolkata.
The main contribution is a rigorous evaluation of various DCNN models.

2. Deep learning is a rapidly developing field, which is bringing new techniques that can
significantly ameliorate the performance of DCNNs. Since these techniques have been published
in the last few years, there is even a validation process for establishing their cross-domain utility.
We explored the role of adaptive gradient methods in deep convolutional neural network models,
and we showed the variation in recognition accuracy.

3. The proposed handwritten Devanagari character recognition system achieves a high classification
accuracy, surpassing existing approaches in literature mainly regarding recognition accuracy.

4. A layer-wise technique of DCNN technique is proposed to achieve the highest recognition
accuracy and also get a faster convergence rate.

The remainder of this paper is organized as follows. Section 2 discusses previous work in handwritten
Devanagari character recognition, Section 3 presents the introduction of deep convolutional neural
network and adaptive gradient methods, Section 4 outlines the experiments and discussions and, finally,
Section 5 concludes the paper.
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2. Previous Work

Devanagari handwritten character recognition has been investigated by different feature extraction
methods and different classifiers. Researchers have used structural, statistical and topological features.
Neural networks, KNN (K-nearest neighbors), and SVM (Support vector machine) are primarily used
for classification. However, the first research work was published by I. K. Sethi and B. Chatterjee [17]
in 1976. The authors recognized the handwritten Devanagari numerals by a structured approach
which found the existence and the positions of horizontal and vertical line segments, D-curve, C-curve,
left slant and right slant. A directional chain code based feature extraction technique was used by
N. Sharma [18]. A bounding box of a character sample was divided into blocks and computed 64-D
direction chain code features from each divided block, and then a quadratic classifier was applied
for the recognition of 11,270 samples. The authors reported an accuracy of 80.36% for handwritten
Devanagari characters. Deshpande et al. [19] used the same chain code features with a regular
expression to generate an encoded string from characters and improved the recognition accuracy by
1.74%. A two-stage classification approach for handwritten characters was reported by S. Arora [20]
where she used structural properties of characters like shirorekha and spine in the first stage and
in another stage used intersection features. These features further fed into a neural network for
the classification. She also defined a method for finding the shirorekha properly. This approach has
been tested on 50,000 samples and obtained 89.12% accuracy. In [21], S. Arora combined different
features such as chain codes, four side views, and shadow based features. These features were fed
into a multilayer perceptron neural network to recognize 1500 handwritten Devanagari characters and
obtain 89.58% accuracy.

A fuzzy model-based recognition approach has reported by M. Hanmandlu [22]. The features are
extracted by the box approach which divided the character into 24 cells (6 × 4 grid), and a normalized
vector distance for each box was computed except the empty cells. A reuse policy is also used
to enhance the speed of the learning of 4750 samples and obtained 90.65% accuracy. The work
presented in [23] computed shadow features, chain code features and classified the 7154 samples
using two multilayer perceptrons and a minimum edit distance method for handwritten Devanagari
characters. They reported 90.74% accuracy. Kumar [24] has tested five different features named Kirsch
directional edges, chain code, directional distance distribution, gradient, and distance transform on
the 25,000 handwritten Devanagari characters and reported 94.1% accuracy. During the experiment,
he found the gradient feature outperformed the remaining four features with the SVM classifier,
and the Kirsch directional edges feature was the weakest performer. A new kind of feature was
also created that computed total distance in four directions after computing the gradient map and
neighborhood pixels’ weight from the binary image of the sample. In the paper [25], Pal applied
the mean filter four times before extracting the direction gradient features that have been reduced
using the Gaussian filter. They used modified quadratic classifier on 36,172 samples and reported
94.24% accuracy using cross-validation policy. Pal [26] has further extended his work with SVM and
MIL classifier on the same database and obtained 95.13% and 95.19% recognition accuracy respectively.

Despite the higher recognition rate achieved by existing methods, there is still room for
improvement of the handwritten Devanagari character recognition.

3. Deep Convolutional Neural Networks (DCNN)

The deep convolutional neural network can be broadly segregated into two major parts as shown
in Figure 1, the first part contains the sequence of alternative convolutional with max-pooling layers,
and another part contains the sequence of fully connected layers. An object can be recognized by its
features which are directly dependent on the distributions of color intensity in the image. The Gaussian,
Gabor, etc. filters are used to record these color intensity distributions. The values of a kernel for these
filters are predefined, and they record only the specific distribution of color intensity. The kernel values
are not going to change as per the response of the applied model. However, in DCNN, the values
of the kernel are being updated according to the response of the model. That helps to find the best
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kernel values for the model. The alternative convolutional and max-pooling layers do this job perfectly.
Another part of DCNN is fully connected layers which contain multiple neurons, like the simple neural
network in each layer that gets a high-level feature from the previous convolutional-pooling layer and
computes the weights to classify the object properly.

Figure 1. The schematic diagram of deep convolutional neural network (DCNN) architecture.

3.1. DCNN Notation

The deep convolutional neural network is a specially designed neural network for the image
processing work. The most of the color images are being represented in three dimensions h × w × c,
where h represents height, w represents the width of the image and c represents the number of channels
of the image. However, the DCNN can only take an image which has the same height and width.
So before feeding the image in DCNN, a normalization process has to follow to convert the image from
h × w × c size to m × m × c size where m represents height and width of an image. The DCNN directly
takes the three-dimensional normalized image/matrix X as an input and supplies to convolutional
layer which has k kernels of size n × n × p, where n < m and p ≤ c. The convolutional layer performs
the multiplication between the neighbors of a particular element of X with the weights provided by
the kernel to generate the k different feature maps of size l(m − n + 1). The convolutional layer is often
followed by the activation functions. Rectified linear unit (Relu) was selected as activation function

Yk
l = f

(
n

∑
i=1

Xi ∗ Wk
il + Bk

l

)
(1)

where k denotes the feature map layer, Y is a map of size l × l and Wil is a kernel weight of size n × n,
Bk

l represents the bias value and * represents the 2D convolution.
The next pooling layer works to reduce the feature maps by applying mean, max or min operation

over pl × pl local region of feature map, where pl can vary from 2 to 5 generally. DCNNs have multiple
consecutive layers of convolutional followed by pooling layers and each convolutional layer introduces
a lot of unknown weight. The back-propagation algorithm—one of the famous techniques used in
the simple neural network to find weight automatically—has been used to find the unknown weights
during the training phase. The back-propagation updates the weights to minimize a loss j(w) or error
with an iterative process of gradient descent that can be expressed as

Wt+1 = Wt − α∇E|j(Wt)|+ μνt (2)

Back-propagation algorithm helps to follow a direction towards where the cost function gives
the minimum loss or error by updating the weights. The value α, called learning rate, helps to
determine the step size or change in the previous weight. The back-propagation can be stuck at local
minimum sometimes, which can be overcome by momentum μ which accumulates a velocity vector
ν in the direction of continuous reduction of loss function. The error or loss of a network can be
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found by various functions. The sum of squares function used to calculate the loss or error that can be
expressed as

j(w) =
N

∑
n=1

(yn − ŷn)
2 + λ

L

∑
l=1

W2
l (3)

An L2 regularization λ was applied during the computation of loss to avoid the large progress of
the parameters at the time of the minimization process.

The entire network of DCNN involves the multiple layers of convolutional, pooling, relu, fully
connected and Softmax. These layers have a different specification to express them in a particular
network. In this paper, we used a special convention to express the network of DCNN.

• xINy: An input layer where x represents the width and height of the image and y represent the
number of channels.

• xCy: A convolutional layer where x represents a number of kernels and y represents the size of
kernel y*y.

• xPy: A pooling layer where x represents pooling size x*x, and y represents pooling stride.
• Relu: Represents rectified layer unit.
• xDrop: A dropout layer where x represents the probability value.
• xFC: A fully connected or dense layer where x represents a number of neurons.
• xOU: A output layer where x represents classes or labels.

3.2. Different Adaptive Gradient Methods

Basically, the neural network training updates the weights in each iteration, and the final goal
of training is to find the perfect weight that gives the minimum loss or error. One of the important
parameters of the deep neural network is learning rate, which decides the change in the weights.
The selection of value for learning rate is a very challenging task because if the value of the learning rate
selects low, then the optimization can be very slow and a network will take time to reach the minimum
loss or error. On the other hand, if the value of learning rate selects higher, then the optimization can
deviate and the network will not reach the minimum loss or error. This problem can be solved by
the adaptive gradient methods that help in faster training and better convergence. The Adagrad [27]
(adaptive gradient) algorithm was introduced by Duchi in 2011. It automatically incorporates low
and high update for frequent and infrequent occurring features respectively. This method gives
an improvement in convergence performance as compared to standard stochastic gradient descent for
the sparse data. It can be expressed as,

Wt+1 = Wt − α√
∑t Avt2 + ε

� gt (4)

where Avt is the previous adjustment gradient and ε is used to avoid divide by zero problems.
The Adagrad method divides the learning rate by the sum of the squared gradient that produces

a small learning rate. This problem is solved by the Adadelta method [28] that can only accumulate
a few past gradients in spite of entire past gradients. The equation of the Adadelta method can be
expressed as

Wt+1 = Wt − α√
E[Av]2 + ε

� gt (5)

where E[Av]2 represents entire past gradients. It depends on current gradient and the previous average
of the gradient. The problem of Adagrad is solved by Hinton [29] by the technique called RMSProp,
which was designed for stochastic gradient descent. RMSProp is an updated version of Rprop which
did not work with mini-batches. Rprop is same as the gradient, but it also divides by the size of
the gradient. RMSProp keeps a moving average of the squared gradient for each weight and, further,
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it divides the gradient by square root of the mean square value. The first moving average of the squared
gradient is given by,

AvtγAvt−1 + (1 − γ)(∇Qw)2 (6)

where γ is the forgetting factor, ∇Qw is the derivative of the error and Avt−1 is the previous adjustment
value. The weights are updated as per following equation,

wt+1wt − α√
Avt

∇Qw (7)

where w is the previous weight and wt+1 is the updated weight whereas α is the global learning rate.
Adam (adaptive moment estimation) [30] is another optimizer for DCNN that needs the first-order

gradient with small memory and computes adaptive learning rate for different parameters.
This method has proven better than the RMSprop and rprop optimizers. The rescaling of the gradient
is dependent on the magnitudes of parameter updates. The Adam does not need a stationary object
and works with sparse gradients. It also contains a decaying average of past gradients Mt.

Mt = B1Mt−1 + (1 − B1)Gt (8)

Vt = B2Vt−1 + (1 − B2)G2
t (9)

where Mt and Vt are calculated first and the second moment of the gradients and these values are
biased towards zero when the decay rates are small, and thereby bias-correction has done first and
second moments estimates:

M̌t =
Mt

1 − Bt
1

(10)

V̌t =
Vt

1 − Bt
2

(11)

As per the authors of Adam, the default values of B1 and B2 were fixed at 0.9 and 0.999 empirically.
They have shown its work in practice as a best choice as an adaptive learning method. Adamax is
an extension of Adam, where in place of L2 norm, an LP norm-based update rule has been followed.

3.3. Layerwise Training DCNN Model

The work of training is to find the best weight for the deep neural network at which the network
produces high accuracy or a very small error rate. The outcome of any deep model neural network
somehow depends on how the model was trained and the number of layers. Usually, the model
is created with the certain number of layers, and entire layers are being involved in the training
phase. In this work, we proposed a layer-wise training model of DCNN in spite of involving entire
layers during the training phase to recognize the handwritten Devanagari characters. The layer-wise
training model starts with adding one layer of convolutional and pooling layer, followed by fully
connected layer and applies the back-propagation algorithm to find the weights. In the next
phase of the layer-wise training model, the next layer of convolutional, pooling layer is added and
the back propagation algorithm is applied with previously found weights to calculate weights for
the added layer.

After adding entire layers, a fine tuning was performed with the complete network to adjust
the entire weights of the network on a very low learning rate. The back-propagation algorithm starts
with some random weights, and during training it sharpens the weighs by updating them in each epoch.
The layer-wise training model provides nice rough weights initially as the network starts with first
layers and, further, it adds remaining layers to find the weights for remaining layers. The layer-wise
training model is clearly shown in Figure 2. The training starts with only one pair of convolutional
and pooling layer and further another pair is being added. Algorithm 1 shows the stepwise procedure
to create the layer-wise DCNN model.
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Figure 2. Layer-wise training of deep convolutional neural network.

Algorithm 1. Layer wise training of deep convolutional neural network

INPUT: Model, T, t, α1, α2, n \\ T= (TrainData), t = (TestData),
OUTPUT: TM \\ TrainedModel
Begin \\ Add first layer of convolutional layer and pooling layer

Model.add (xCy, T, Relu)
Model.add (xPy)
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)
Model.fit (T, t, α1)

for all I := 1: n-1 step 1 do

\\ Remove the last two layers (FC & OU)
of existing model to add next layer of convolutional and pooling
Model.layer.pop()

Model.layer.pop()

Model.add (xCy, T, Relu)
Model.add (xPy)
\\ Again added fully connected and output layer
Model.add (xFC)
Model.add (xOU)
Model.compile (optimizer)

Model.fit (T, t, α1) \\ Trained the model with high learning rate
end for

Model.fit (T, t, α2) \\ Perform fine tuning with low learning rate
end

4. Experiments and Discussions

Experiments were carried out on two databases: ISIDCHAR and V2DMDCHAR using the DCNN,
layer-wise DCNN and different adaptive gradient methods. As it is hard to delineate the number of
layers of DCNN that can produce the best result, we considered six different network architectures
(NA) of DCNN as shown in Table 1. NA-1 contains only single convolutional-pooling layer and
500 fully connected neurons to observe the first response of DCNN. The next, NA-2 has double
the number of fully connected neurons. The aim is to observe the impact of enhancement. Further,
NA-3 and NA-4 have two C-P layers with variation in the number of kernels to analysis the impact of
two C-P layers. The last, NA-5 and NA-6 have three C-P layers.

Initially, the different network architectures of DCNN were applied on each database to find out
the best model for that particular database and then the proposed layer-wise DCNN was applied to
observe the impact of that model. The models have also been tested with different adaptive gradient
methods to these methods; they are also under experiment to observe their performance. Our work
also shows the impact of different adaptive gradient methods on recognition accuracy.
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Table 1. Various network architectures of deep convolutional neural network used.

Network Model Architectures

NA-1 64IN64-64C2-Relu-4P2-500FC-47OU
NA-2 64IN64-64C2-Relu-4P2-1000FC-47OU
NA-3 64IN64-32C2-Relu-4P2-32C2-Relu-4P2-1000FC-47OU
NA-4 64IN64-64C2-Relu-4P2-64C2-Relu-4P2-1000FC-47OU
NA-5 64IN64-32C2-Relu-4P2-32C2-Relu-4P2-32C2-Relu-4P2-1000FC-47OU
NA-6 64IN64-64C2-Relu-4P2-64C2-Relu-4P2-64C2-Relu-4P2-1000FC-47OU

The experiments were all executed on the ParamShavak supercomputer system having
two multicore CPUs with each CPU consisting of 12 cores along with two accelerator cards. This system
has 64 GB RAM with CentOs 6.5 operating system. The deep neural network model was coded in
Python using Keras—a high-level neural network API that uses Theano Python library. The basic
pre-processing tasks like background elimination, gray-normalization and image resizing were done
in Matlab. ISIDCHAR and V2DMDCHAR databases.

The ISIDCHAR [26] was prepared by researchers of the Indian Statistical Institute, Kolkata.
They collected the samples from persons of different age groups to accommodate the maximum
variation of written characters. Apart from that, the samples are also collected from the filled job
forms and post-cards that makes this database so realistic. This database consists of 36,172 grayscale
images of 47 different Devanagari characters. Owing to the assemblage of samples from many authors,
this database delivers a variety of samples in each class, and the background of the samples is also
highly uninformed. V2DMDCHAR [31] has been prepared by Vikas J. Dongre and Vijay H. Mankar’s
in 2012. This database has 20,305 samples of handwritten Devanagari characters.

4.1. Experimental Setup

The experiments were performed to investigate the effects of different network architectures,
optimizers, and layer-wise trainings. The first phase of experiments was performed to observe the best
network architecture for the database, and then the best-observed network architecture was tested
with six different optimizers to find the best optimizer. A total of 12 (6 + 6) different experiments were
performed on the database. The second phase of experiments aimed to observe the effect of layer-wise
training. The layer-wise training was only performed with the best network architecture and best
optimizer selected in the first phase.

Each optimizer had its own set of parameters. In our experiments, the optimizer parameters were
kept as per their default values or as suggested by the author. The rectified linear activation function
was used for entire experiments to mitigate the gradient vanishing problem. The sum of squares of
the difference between target and observed values was calculated to estimate the loss of the deep
network. Each network was trained for 100 epochs using mini-batches of size 200.

4.2. Results

The first phase of experiments was performed on ISIDCHAR to examine the best deep network
architecture. We recorded the recognition accuracy at different network architecture using the Adam
optimizer during each of the 50 epochs. The results in terms of the maximum, minimum, mean,
and standard deviation values of recognition accuracy are reported in Table 2.

The best recognition accuracy was obtained with the network architecture NA-6, and the least
recognition accuracy was obtained with the network architecture NA-1. Figure 3 shows the obtained
recognition accuracy at each epoch. The network NA-1 produced 85% recognition accuracy because
it has only one convolutional layer. The network NA-3 and NA-5 produced higher recognition
accuracies of 91.53% and 93.24% respectively because these networks have a more convolutional layer.
This enhancement signifies that the increment of the convolutional layer in deep convolutional neural
network produced best results. In our experiments, we observed the enhancement in the recognition
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accuracy by increasing the number of kernels of convolutional layer. The network architectures NA-2,
NA-4 and NA-6 had more kernels than NA-1, NA-3 and NA-5 and they produced higher recognition
accuracy as observed in Table 2. The number of trainable parameters for each network architecture
is shown in Table 3. The entire network architecture was also tested using the RMSProp optimizer,
and the results have reported in Table 4. The NA-6 network produced 96.02% recognition accuracy
with RMSProp while 95.58% with Adam. The behavior of NA-6 with RMSProp at each epoch can be
seen in Figure 4.

Figure 3. In this figure, we draw the recognition accuracy obtained with different network architectures
on ISIDCHAR database at each epoch. The Adam optimizer was used.

Table 2. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with different network architectures on ISIDCHAR when
the system trained for 50 epochs with the Adam optimizer. The best scores are in bold.

Recognition Accuracy
Different Network Architectures

NA-1 NA-2 NA-3 NA-4 NA-5 NA-6

Maximum 0.8571 0.8654 0.9153 0.9224 0.9324 0.9558
Minimum 0.7208 0.7701 0.8237 0.8363 0.8077 0.8385
Average 0.8436 0.8549 0.9000 0.9058 0.9190 0.9427

Std. Deviation 0.0204 0.0169 0.0165 0.0158 0.0178 0.0168

Table 3. List of trainable parameters in each network architecture.

Network Architectures Layer Type Layer Size Trainable Parameters Total Parameters

NA-1

Conv1 layer 64 × 64 × 64 1088
34,873,135Dense layer 500 34,848,500

Output layer 47 23,547

NA-2

Conv1 layer 64 × 64 × 64 1088
61,553,135Dense layer 1000 61,505,000

Output layer 47 47,047

NA-3

Conv1 layer 32 × 64 × 64 544

7,265,007
Conv2 layer 32 × 33 × 33 16,416
Dense layer 1000 7,201,000

Output layer 47 47,047
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Network Architectures Layer Type Layer Size Trainable Parameters Total Parameters

NA-4

Conv1 layer 64 × 64 × 64 1088

14,514,735
Conv2 layer 64 × 33 × 33 65,600
Dense layer 1000 14,401,000

Output layer 47 47,047

NA-5

Conv1 layer 32 × 64 × 64 544

1,649,423
Conv2 layer 32 × 33 × 33 16,416
Conv3 layer 32 × 17 × 17 16,416
Dense layer 1000 1,569,000

Output layer 47 47,047

NA-6

Conv1 layer 64 × 64 × 64 1088

3,316,335
Conv2 layer 64 × 33 × 33 65,600
Conv3 layer 64 × 17 × 17 65,600
Dense layer 1000 3,137,000

Output layer 47 47,047

Table 4. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with different network architectures on ISIDCHAR when
the system trained for 50 epochs with the RMSProp optimizer. The best scores are in bold.

Recognition Accuracy
Different Network Architectures

NA-1 NA-2 NA-3 NA-4 NA-5 NA-6

Maximum 0.8572 0.8641 0.903 0.9079 0.9311 0.9602
Minimum 0.7093 0.7475 0.7711 0.7788 0.7422 0.8067
Average 0.8383 0.8501 0.8927 0.8941 0.9150 0.9463

Std. Deviation 0.0321 0.0232 0.0210 0.0197 0.0308 0.0252

Figure 4. In this figure, we draw the recognition accuracy obtained with different network architectures
on the ISIDCHAR database at each epoch. The RMSProp optimizer was used.

The best recognition accuracy of the ISIDCHAR database was obtained with NA-6 network
architecture with RMSProp optimizer. However, it may be possible that this network could perform
better with other optimizers. To further investigate, we performed experiments with six different
optimizers. Table 5 shows the recognition accuracy obtained with NA-6 at different optimizers.
The highest recognition accuracy 96.02% was recorded with NA-6 at RMSProp optimizer. The Adam
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optimizer outperformed the SGD and Adagrad optimizers. The AdaDelta, AdaMax, and RMSProp
optimizers outperformed the Adam optimizer. Figure 5 shows the performance of individual optimizer.

Table 5. In this table, we report the results in term of maximum, minimum, mean, and standard
deviation recognition accuracy obtained with NA-6 on ISIDCHAR when the system trained for
50 epochs with the different optimizers. The best scores are in bold.

Recognition Accuracy
Different Optimizers

SGD Adagrad Adam AdaDelta AdaMax RMSProp

Maximum 0.931 0.9364 0.9558 0.9565 0.9579 0.9602
Minimum 0.6933 0.7703 0.7585 0.7605 0.7851 0.8067

Mean 0.9168 0.9280 0.9411 0.9457 0.9448 0.9463
Std. Deviation 0.0365 0.0252 0.0274 0.0311 0.0256 0.0252

 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. In this figure, we draw the recognition accuracy obtained with NA-6 network architecture
at different optimizers (a) SGD; (b) Adagrad; (c) Adam; (d) AdaDelta; (e) AdaMax; (f) RMSProp;
on the ISIDCHAR database at each epoch.
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We found that the NA-6 network architecture with RMSProp optimizer produced the highest
recognition accuracy. This network was again trained by layer-wise model as described in Section 3.3.

This network was tested with ISIDCHAR, V2DMDCHAR, and combined databases. The results
are reported in Table 6. It has been seen that a nice enhancement in the recognition accuracy
was recorded by the layer-wise training model. The 97.30% recognition accuracy was obtained
on ISIDCHAR database and 97.65% recognition accuracy obtained on V2DMDCHAR database.
The layer-wise training model was also applied after combining both the databases and obtained 98%
recognition accuracy when 70% of the samples were used for training and the rest used for testing.
The current work is compared to previous works on ISIDCHAR database in Table 7.

Table 6. In this table, we reported the maximum recognition accuracy obtained with NA-6 and RMSProp
optimizer on ISIDCHAR, V2DMDCHAR and combined both when the model was trained layer-wise.

Database No. of Samples
Recognition Accuracy

DCNN Layer-Wise DCNN

ISIDCHAR 36,172 96.02% 97.30%
V2DMDCHAR 20,305 96.45% 97.65%

ISIDCHAR+V2DMDCHAR 56,477 96.53% 98.00%

Table 7. Comparison of recognition accuracy by other researchers.

S. No. Accuracy Obtained Feature; Classifier Method Proposed by Data Size

1 95.19 Gradient; MIL U. Pal [26] 36,172
2 95.24 GLAC; SVM M. Jangid [32] 36,172
3 96.58 Masking, SVM M. Jangid [33] 36,172
4 96.45 DCNN Proposed work 36,172
5 97.65 SL-DCNN Proposed work 36,172
6 98 SL-DCNN Proposed work 56,477

5. Conclusions

Deep learning is one of the prominent technologies that have been experimentally studied with
entire major areas of computer vision and document analysis. In this paper, we experimentally
developed a deep convolutional neural network (DCNN) and adaptive gradient methods to recognize
the unconstrained handwritten Devanagari characters. The deep convolutional neural network
helped us to find the best features automatically and also classify them. We experimented with
a handwritten Devanagari character database with six different DCNN network architectures as
well as six different optimizers. The highest recognition accuracy 96.02% was obtained using NA-6
network architecture and RMSProp—an adaptive gradient method (optimizer). Further, we again
trained DCNN layer-wise, which is also adopted by many researchers to enhance the recognition
accuracy, using NA-6 network architecture and the RMSProp adaptive gradient method. Using DCNN
layer-wise training model, our database obtained 98% recognition accuracy, which is the highest
recognition accuracy of the database.
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Abstract: This paper presents a comprehensive test of the principal tasks in document image analysis
(DIA), starting with binarization, text line segmentation, and isolated character/glyph recognition,
and continuing on to word recognition and transliteration for a new and challenging collection of
palm leaf manuscripts from Southeast Asia. This research presents and is performed on a complete
dataset collection of Southeast Asian palm leaf manuscripts. It contains three different scripts: Khmer
script from Cambodia, and Balinese script and Sundanese script from Indonesia. The binarization
task is evaluated on many methods up to the latest in some binarization competitions. The seam
carving method is evaluated for the text line segmentation task, compared to a recently new text line
segmentation method for palm leaf manuscripts. For the isolated character/glyph recognition task,
the evaluation is reported from the handcrafted feature extraction method, the neural network with
unsupervised learning feature, and the Convolutional Neural Network (CNN) based method. Finally,
the Recurrent Neural Network-Long Short-Term Memory (RNN-LSTM) based method is used to
analyze the word recognition and transliteration task for the palm leaf manuscripts. The results from
all experiments provide the latest findings and a quantitative benchmark for palm leaf manuscripts
analysis for researchers in the DIA community.

Keywords: document image analysis; binarization; character recognition; text line segmentation;
word recognition; transliteration; palm leaf manuscript; dataset; benchmark; experimental test

1. Introduction

Since the world entered the digital age in the early 20th century, the need for a document
image analysis (DIA) system is increasing. This is due to the dramatic increase in efforts to digitize
the various types of document collections available, especially the ancient documents of historical
relics found in various parts of the world. Some very interesting projects on a wide variety of
heritage document collections can be mentioned here: for example, the tranScriptorium project
(http://transcriptorium.eu/) [1]; the READ (Recognition and Enrichment of Archival Documents)
project (https://read.transkribus.eu/) [2], which works on documents from the Middle Ages to
today, and also focuses on different languages ranging from Ancient Greek to modern English; the
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IAM Historical Document Database (IAM-HistDB) (http://www.fki.inf.unibe.ch/databases/iam-
historical-document-database) [3], which includes handwritten historical manuscript images from
the Saint Gall Database from the 9th century in Latin; the Parzival Database from the 13th century
in German; the Washington Database from the 18th century in English; the Ancient Lives Project
(https://www.ancientlives.org/) [4], which asks volunteers to transcribe Ancient Greek text fragments
from the Oxyrhynchus Papyri collection; and many other projects.

To accelerate the process of accessing, preserving, and disseminating the contents of the heritage
documents, a DIA system is needed. Besides aiming to preserve the existence of such ancient
documents physically, the DIA system is expected to enable open access to the contents of the
documents and provide opportunities for a wider audience to access all the important information
stored in the document. DIA is the process of using various technologies to extract text, printed
or handwritten, and graphics from digitized document files (http://www.cvisiontech.com/library/
pdf/pdf-document/document-image-analysis.html) [5]. DIA systems generally have a major role
in identifying, analyzing, extracting, structuring, and transferring document contents more quickly,
effectively, and efficiently. This system is able to work semi-automatically or even fully automatically
without human intervention. The DIA system is expected to save time, cost, and effort at many points
in the heritage document preservation process.

However, although the DIA research develops rapidly, it is undeniable that most of the document
collections used in the initial step are from developed regions such as America and European countries.
The document samples from these countries are mostly written in English or old English with
Latin/Roman script. Several important document collections were finally used as standard benchmarks
for the evaluation of the latest DIA research results. The next wave of DIA research finally began to deal
with documents from non-English-speaking areas with non-Latin scripts, such as Arabic, Chinese, and
Japanese documents. During the evolution of DIA research in the last two decades, DIA researchers
have proposed and achieved satisfactory solutions for many complex problems of document analysis
for these types of documents. However, the DIA research challenge is ongoing. The latest challenge is
documents from Asia, with new languages and more complex scripts to explore, such as Devanagari
script [6], Gurmukhi script [7–10], Bangla script [11], and Malayalam script [12], and the case of
multiple languages and scripts in documents from India. Optical character recognition (OCR) for
Indian languages is considered more difficult in general than for European languages because of the
large number of vowels, consonants, and conjuncts (combinations of vowels and consonants) [13].

This work was part of exploring DIA research for a palm leaf manuscripts collection from
Southeast Asia. This collection offers a new challenge for DIA researchers because palm leaves are
used as the writing medium and the language and script have never been analyzed before. In this
paper, we did a comprehensive benchmark experimental test of some principal tasks in the DIA
system, starting with binarization, text line segmentation, isolated character/glyph recognition, word
recognition, and transliteration. To the best of our knowledge, this work is the first comprehensive
study of the DIA researchers’ community and the first to perform a complete series of experimental
benchmarking analyses of palm leaf manuscripts. The results of this research will be very useful
in accelerating, evaluating, and improving the performance of existing DIA systems for a new type
of document.

This paper is organized as follow. Section 2 gives a brief description of the palm leaf manuscripts
collection from Southeast Asia, especially the Khmer palm leaf manuscript corpus from Cambodia
and two palm leaf manuscript corpuses, the Balinese and Sundanese manuscripts from Indonesia.
The challenges of DIA for this manuscript corpus are also presented in this section. Section 3 describes
the DIA tasks that need to be developed for the palm leaf manuscript collections, followed by a
description of the methods investigated for those tasks. The datasets and evaluation methods for each
DIA task used in the experimental studies for this work are presented in Section 4. Section 5 reports
and analyzes the detailed results of the experiments. Finally, conclusions are given in Section 6.
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2. Palm Leaf Manuscripts from Southeast Asia

Regarding the use of writing materials and tools, history records the discovery of important
documents written on stone plates, clay plates or tablets, bark, skin, animal bones, ivory, tortoiseshell,
papyrus, parchment (form of leather made of processed sheepskin or calfskin) (http://www.casepaper.
com/company/paper-history) [14], copper and bronze plates, bamboo, palm leaves, and other
materials [15]. The choice of natural materials that can be used as a medium for document writing
is strongly influenced by the geographical condition and location of a nation. For example, because
bamboo and palm trees are easily found in Asia, both types of materials were the first choice of writing
material in Asia. In Southeast Asia, most ancient manuscripts were written on palm leaves. For
example, in Cambodia, palm leaves have been used as a writing material dating back to the first
appearance of Buddhism in the country. In Thailand, dried palm leaves have also been used as one of
the most popular written documents for over 500 years [16]. Palm leaves were also historically used as
writing supports in manuscripts from the Indonesian archipelago. The leaves of sugar, or toddy, palm
(Borassus flabellifer) are known as lontar. The existence of ancient palm leaf manuscripts in Southeast
Asia is very important both in terms of the quantity and variety of historical contents.

2.1. Balinese Palm Leaf Manuscripts—Collection from Bali, Indonesia

2.1.1. Corpus

Apart from the collection at the museum (Museum Gedong Kertya Singaraja and Museum Bali
Denpasar), it is estimated that there are more than 50,000 lontar collections that are owned by private
families (Figure 1). For this research, in order to obtain a large variety of manuscript images, sample
images have been collected from 23 different collections, which come from five different locations
(regions): two museums and three private families. They consist of 10 randomly selected collections
from Museum Gedong Kertya, City of Singaraja, Regency of Buleleng, North Bali, Indonesia, four
collections from manuscript collections of Museum Bali, City of Denpasar, South Bali, seven collections
from a private family collection from the village of Jagaraga, Regency of Buleleng, and two other
private family collections from the village of Susut, Regency of Bangli and the village of Rendang,
Regency of Karangasem [17].

 

Figure 1. Balinese palm leaf manuscripts.

2.1.2. Balinese Script and Language

Although the official language of Indonesia, Bahasa Indonesia, is written in the Latin script,
Indonesia has many local, traditional scripts, most of which are ultimately derived from Brahmi [18].
In Bali, palm leaf manuscripts were written in the Balinese script in the Balinese language, in the
ancient literary texts composed in the old Javanese language of Kawi and Sanskrit. Balinese language
is a Malayo-Polynesian language spoken by more than 3 million people, mainly in Bali, Indonesia
(www.omniglot.com/writing/balinese.htm) [19]. Balinese is the native language of the people of
Bali, known locally as Basa Bali [18]. The alphabet and numbers of Balinese script are composed of
±100 character classes including consonants, vowels, and some other special compound characters.
According to the Unicode Standard 9.0, the Balinese script actually has the Unicode table from 1B00
to 1B7F.
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2.2. Khmer Palm Leaf Manuscripts—Collection from Cambodia

2.2.1. Corpus

In Cambodia, Khmer palm leaf manuscripts (Figure 2) are still seen in Buddhist establishments
and are traditionally used by monks as reading scriptures. Various libraries and institutions have been
collecting and digitizing these manuscripts and have even shared the digital images with the public.
For instance, the École Française d’Extrême-Orient (EFEO) has launched an online database (http:
//khmermanuscripts.efeo.fr) [20] of microfilm images of hundreds of Khmer palm leaf manuscript
collections. Some digitized collections are also obtained from the Buddhist Institute, which is one of the
biggest institutes in Cambodia responsible for research on Cambodian literature and language related
to Buddhism, and also from the National Library (situated in the capital city, Phnom Penh), which
is home to a large collection of palm leaf manuscripts. Moreover, a standard digitization campaign
was conducted in order to collect palm leaf manuscript images found in Buddhist temples in different
locations throughout Cambodia: Phnom Penh, Kandal, and Siem Reap [21].

 

 

Figure 2. Khmer palm leaf manuscript.

2.2.2. Khmer Script and Language

According to the era during which the documents were created, slightly different versions of
Khmer characters are used in the writing of Khmer palm leaf manuscripts. The Khmer alphabet is
famous for its numerous symbols (~70), including consonants, different types of vowels, diacritics, and
special characters. Certain symbols even have multiple shapes and forms depending on what other
symbols are combined with them to create words. The languages written on palm leaf documents vary
from Khmer, the official language of Cambodia, to Pali and Sanskrit, by which the modern Khmer
language was considerably influenced. Only a minority of Cambodian people, such as philologists
and Buddhist monks, are able to read and understand the latter languages.

2.3. Sundanese Palm Leaf Manuscripts—Collection from West Java, Indonesia

2.3.1. Corpus

The collection of Sundanese palm leaf manuscripts (Figure 3) comes from Situs Kabuyutan
Ciburuy, Garut, West Java, Indonesia. The Kabuyutan Ciburuy is a complex cultural heritage from
Prabu Siliwangi and Prabu Kian Santang, the king and the son of the Padjadjaran kingdom. The cultural
complex consists of six buildings. One of them is Bale Padaleuman, which is used to store the
Sundanese palm leaf manuscripts. The oldest Sundanese palm leaf manuscript in Situs Kabuyutan
Ciburuy came from the 15th century. In Bale Padaleuman, there are 27 collections of Sundanese
manuscripts. Each collection contains 15 to 30 pages, with dimensions of 25–45 cm in length × 10–15 cm
in width [22].

2.3.2. Sundanese Script and Language

The Sundanese palm leaf manuscripts were written in the ancient Sundanese language and script.
The characters consist of numbers, vowels (such as a, i, u, e, and o), basic characters (such as ha, na,
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ca, ra, etc.), punctuation, diacritics (such as panghulu, pangwisad, paneuleung, panyuku, etc.), and many
special compound characters.

 

Figure 3. Sundanese palm leaf manuscript.

2.4. Challenges of Document Image Analysis for Palm Leaf Manuscripts

There are two main technical challenges to assessing palm leaf manuscripts in a DIA system.
The first challenge is the physical condition of the palm leaf manuscript, which will strongly influence
the quality of the document images captured. For the image capturing process for DIA research, data
in a paper document are usually captured by optical scanning, but when the document is on a different
medium such as microfilm, palm leaves, or fabric, photographic methods are often used to capture the
images [13]. Nowadays, due to the specific characteristics of the physical support of the manuscripts,
the development of DIA methods for palm leaf manuscripts in order to extract relevant information is
considered a new research problem in handwritten document analysis. Ancient palm leaf manuscripts
contain artifacts due to aging, foxing, yellowing, strain, local shading effects, low intensity variations
or poor contrast, random noises, discolored parts, fading, and other types of degradation.

The second challenge is the complexity of the script. The Southeast Asian manuscripts with
different scripts and languages provide real challenges for document analysis methods, not only
because of the different forms of characters in the script, but also because the writing style of each
script (e.g., how to join or separate a character in a text line) differs. It ranges widely from a binarization
process [23–25], text line segmentation [26,27], and character and text recognition tasks [25,28,29], to
the word spotting methods [30].

In the domain of DIA, handwritten character and text recognition has been the subject of intensive
research during the last three decades. Some methods have already reached a satisfactory performance,
especially for Latin, Chinese, and Japanese scripts. However, the development of handwritten character
and text recognition methods for other various Asian scripts presents many issues. In the OCR task
and development for palm leaf manuscripts from Southeast Asia, several deformations in the character
shapes are visible due to the merges and fractures of the use of nonstandard fonts. The similarities
of distinct character shapes, overlaps, and interconnection of the neighboring characters further
complicate the OCR system [31]. One of the main problems faced when dealing with segmented
handwritten character recognition is the ambiguity and illegibility of the characters [32]. These
characteristics provide suitable conditions to test and evaluate the robustness of feature extraction
methods that were proposed for character recognition.

3. Document Image Analysis Tasks and Investigated Methods

Heritage document preservation is not just about converting physical documents into document
images. With many physical documents being digitized and stored in large document databases,
and then sent and received via digital machines, the interest and demand grew to require more
functionalities than simply viewing and print the images [33]. Further treatment is required before
the collection of document images can be explored more extensively. For example, a more specific
research field needed to be developed to add machine capabilities for extracting information from
these images, reading text on a document page, finding sentences, and locating paragraphs, lines,
words, and symbols on a diagram [33].

In this work, the methods for each DIA task were investigated for palm leaf manuscripts. The
binarization task is evaluated using the latest methods from binarization competitions. The seam
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carving method is evaluated for the text line segmentation task, compared to a recent text line
segmentation method for palm leaf manuscripts [27]. For the isolated character/glyph recognition
task, the evaluation is reported from the handcrafted feature extraction method, the neural network
with unsupervised learning feature to the CNN based method. Finally, the RNN-LSTM based method
is used to analyze the word recognition and transliteration task for palm leaf manuscripts.

3.1. Binarization

Binarization is widely applied as the first pre-processing step in image document analysis [34].
Binarization is a common starting point for document image analysis and converts gray image values
into binary representation for background and foreground, or, more specifically, text and non-text,
which is then fed into further document processing tasks such as text line segmentation and optical
character recognition. The performance of binarization techniques has a great impact and directly
affects the performance of the recognition task [35]. Non-optimal binarization methods produce
unrecognizable characters with noise [16]. Many binarization methods have been reported. These
methods have been tested and evaluated on different types of document collections. Based on the
choice of the thresholding value, binarization methods can generally be divided into two types,
global binarization and local adaptive binarization [16]. Some surveys and comparative studies of
the performance of several binarization methods have been reported [35,36]. A binarization method
that performs well for one document collection may not necessarily be applied to another document
collection with the same performance [34]. For this reason, there is always a need to perform a
comprehensive evaluation of the existing binarization methods for a new document collection that has
different characteristics, for example the historical archive documents [36].

In this work, we compared several alternative binarization algorithms for palm leaf manuscripts.
We tested and evaluated some well-known standard binarization methods, and some binarization
methods that are experimentally promising for historical archive documents, though not specifically for
images of palm leaf manuscripts. We also tested the binarization methods from the Document Image
Binarization Competition (DIBCO) competition [37,38], for example Howe’s method [39] and the ones
from the International Conference on Frontiers in Handwriting Recognition (ICFHR) competition
(amadi.univ-lr.fr/ICFHR2016_Contest) [25,40].

3.1.1. Global Thresholding

Global thresholding is the simplest technique and the most conventional approach for
binarization [34,41]. A single threshold value was calculated from the global characteristics of the image.
This value should be properly chosen based on a heuristic technique or a statistical measurement to
be able to give promising optimal binarization results [36]. It is widely known that using a global
threshold to process a batch of archive images with different illumination and noise variation is not a
proper choice. The variation between images in the foreground and background colors on low-quality
document images gives unsatisfactory results. It is difficult to choose one fixed threshold value that is
adaptable for all images [36,42].

Otsu’s method is a very popular global binarization technique [34,41]. Conceptually, Otsu’s
method tries to find an optimum global threshold on an image by minimizing the weighted sum of
variances of the objects and background pixels [34]. Otsu’s method is implemented as a standard
binarization technique in a built-in Matlab function called graythresh (https://fr.mathworks.com/help/
images/ref/graythresh.html) [43].

3.1.2. Local Adaptive Binarization

To overcome the weakness of the global binarization technique, many local adaptive
binarization techniques were proposed, for example Niblack’s method [34,36,41,42,44], Sauvola’s
method [34,36,41,42,44,45], Wolf’s method [42,44,46], NICK method [44], and the Rais method [34].
The threshold value in local adaptive binarization technique is calculated in each smaller local image
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area, region, or window. Niblack’s method proposed a local thresholding computation based on the
local mean and local standard deviation of a rectangular local window for each pixel on the image.
The rectangular sliding local window will cover the neighborhood for each pixel. Using this concept,
Niblack’s method was reported to outperform many thresholding techniques and gave optimal results
for many document collections. However, there is still a drawback to this method. It was found that
Niblack’s method works optimally only on the text region, but is not well suited for large non-text
regions of an image. The absence of text in local areas forces Niblack’s method to detect noise as
text. The suitable window size should be chosen based on the character and stroke size, which may
vary for each image. Many other local adaptive binarization techniques were proposed to improve
the performance of the basic Niblack method. For example, Sauvola’s method is a modified version
of Niblack’s method. Sauvola’s method proposes a local binarization technique to deal with light
texture, large variations, and uneven illumination. The improvement over Niblack’s method is in
the use of adaptive contribution of standard deviation in determining the local threshold on the gray
values of text and non-text pixels. Sauvola’s method processes the image in N × N adjacent and
non-overlapping blocks separately.

Wolf’s method tried to overcome the problem of Sauvola’s method when the gray values of text
and non-text pixels are close to each other by normalizing the contrast and the mean gray value of the
image to compute the local threshold. However, a sharp change in background gray values across the
image decreases the performance of Wolf’s method. Two other improvements to Niblack’s method
are NICK method and the Rais method. NICK method proposes a threshold computation derived
from the basic Niblack’s method and the Rais method proposes an optimal size of window for the
local binarization.

3.1.3. Training-Based Binarization

The top two proposed methods in the Binarization Challenge for the ICFHR 2016 Competition
on the Analysis of Handwritten Text in Images of Balinese Palm Leaf Manuscripts are training-based
binarization methods [25]. The best method in this competition employs a Fully Convolutional
Network (FCN). It takes a color subimage as input and outputs the probability that each pixel in the
sub-image is part of the foreground. The FCN is pre-trained on normal handwritten document images
with automatically generated “ground truth” binarizations (using the method of Wolf et al. [46]).
The FCN is then fine-tuned using DIBCO and HDIBCO competition images and their corresponding
ground truth binarizations. Finally, the FCN is fine-tuned again on the provided Balinese palm leaf
images. Consequently, the pixel probabilities of foreground are efficiently predicted for the whole
image at once and thresholded at 0.5 to create a binarized output image.

The second-best method uses two neural network classifiers, C1 and C2, to classify each pixel as
background or not. Two binarized images, B1 and B2, are generated in this step. C1 is a rough classifier
that tries to detect all the foreground pixels, while probably making mistakes for some background
pixels. C2 is an accurate classifier that should not classify a background pixel as a foreground pixel but
probably misses some foreground pixels. Secondly, these two binary images are joined to get the final
classification result.

3.2. Text Line Segmentation

Text line segmentation is a crucial pre-processing step in most DIA pipelines. The task aims
at extracting and separating text regions into individual lines. Most line segmentation approaches
in the literature require that the input image be binarized. However, due to the degradation and
noise often found in historical documents such as palm leaf manuscripts, the binarization task is
not able to produce good enough results (see Section 5.1). In this paper, we investigate two line
segmentation methods that are independent of the binarization task. These approaches work directly
on color/grayscale images.
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3.2.1. Seam Carving Method

Arvanitopoulos and Süsstrunk [47] proposed a binarization-free method based on a two-stage
process: medial seam and separating seam computation. The approach computes medial seams by
splitting the input page image into columns whose smoothed projection profiles are then calculated.
The positions of the medial seams are obtained based on the local maxima locations of the profiles.
The goal of the second stage of the approach is to compute separating seams with the application on
the energy map within the area restricted by the medial seams of two neighboring lines found in the
previous stage. The technique carves paths that traverse the image from left to right, accumulating
energy. The path with the minimum cumulative energy is then chosen.

3.2.2. Adaptive Path Finding Method

This approach was proposed by Valy et al. [27]. The method takes as input a grayscale image
of a document page. Connected components are extracted from the input image using the stroke
width information by applying the stroke width transform (SWT) on the Canny edge map. The set of
extracted components (filtered to remove components that come from noise and artifacts) is used to
create a stroke map. Using column-wise projection profiles on the output map, estimated number and
medial positions of text line can be defined. To adapt better to skew and fluctuation, an unsupervised
learning called competitive learning is applied on the set of connected components found previously.
Finally, a path finding technique is applied in order to create seam borders between adjacent lines by
using a combination of two cost functions: one penalizing the path that goes through the foreground
text (intensity difference cost function D) and another one favoring the path that stays close to the
estimated medial lines (vertical distance cost function V). Figure 4 illustrates an example of an
optimal path.

Figure 4. An example of an optimal path going from start state S1 to goal state Sn.

3.3. Isolated Character/Glyph Recognition

In a DIA system, word or text recognition tasks are generally categorized into two different
approaches: segmentation-based and segmentation-free methods. In segmentation-based methods,
the isolated character recognition task is a very important process [9]. A proper feature extraction and
a correct classifier selection can increase the recognition rate [48]. Although many methods for isolated
character recognition have been developed and tested, especially for Latin-based scripts and alphabets,
there is still a need for in-depth evaluation of those methods as applied to various other scripts. This
includes the isolated character recognition task for many Southeast Asian scripts, and more specifically
scripts that were written on ancient palm leaf manuscripts.

Previous studies on isolated character recognition in palm leaf manuscripts have already been
reported, but only with the Balinese script as the benchmark dataset [28,29]. In that first work, an
experimental study on feature extraction methods for character recognition of Balinese script was
performed [28]. For the second work, a training-based method with neural network and unsupervised
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feature learning was used to increase the recognition rate [29]. In this paper, we will conduct a broader
evaluation of the robustness of the methods previously tested on Balinese script, using the other two
palm leaf manuscripts with Khmer and Sundanese scripts. In the next sub-sections, we provide a brief
description of the methods. For a detailed description of each method, interested readers can refer to
our previous works.

3.3.1. Handcrafted Feature Extraction Methods

Since the beginning of pattern recognition research, many feature extraction methods for character
recognition have been presented in the literature. In our previous work [28], we investigated and
evaluated the performance of 10 feature extraction methods with two classifiers, k-NN (k-Nearest
Neighbor) and SVM (Support Vector Machine), in 29 different schemes for Balinese script on palm
leaf manuscripts. After evaluating the performance of those individual feature extraction methods,
we found that the Histogram of Gradient (HoG) features as directional gradient-based features [9,49]
(Figure 5), the Neighborhood Pixels Weights (NPW) [50] (Figure 6), the Kirsch Directional Edges [50],
and Zoning [12,32,50,51] (Figure 7) give very promising results. We then proposed a new feature
extraction method applying NPW on Kirsch edge images (Figure 8) and concatenated the NPW–Kirsch
with two other features, HoG and Zoning method, with k-NN as the classifier.

       

Figure 5. The representation of the array of cells in HoG [28].
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Figure 6. Neighborhood pixels for NPW features [28].

 

Figure 7. Type of Zoning (from left to right: vertical, horizontal, block, diagonal, circular, and radial
zoning) [28].
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Figure 8. Scheme of NPW on Kirsch features [28].

3.3.2. Unsupervised Learning Feature and Neural Network

With the aim of improving the performance of our proposed feature extraction method, we
continued our research on isolated character recognition by implementing the neural network as
classifier. In this second step [29], the same combination of feature extraction methods was used
and sent as the input feature vector to a single-layer neural network character recognizer. In
addition to using only the neural network, we also applied an additional sub-module for the initial
unsupervised learning based on K-Means clustering (Figure 9). This schema was inspired by the study
of Coates et al. [52,53]. The unsupervised learning calculates the initial learning weight for the neural
network training phase from the cluster centers of all feature vectors.

Train Images Features 
Extraction

Unsupervised 
Learning with 

K-Means 
Clustering

Feature Centers 
as Initial 

Weights for 
Neural Network

Train with 
Neural 

Network

Final Trained 
Weight of 
Network

Test Images Features 
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Recognition 
Results

Unsupervised 
Learning with 

K-Means 
CluC stering

Feature Centers 
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Weights for 
Neural Netwoorkrk

Instead of using 
Random Initial Weights

Figure 9. Schema of character recognizer with feature extraction method, unsupervised learning
feature, and neural network [29].

3.3.3. Convolutional Neural Network

The multilayer convolutional neural networks (CNN) have proven very effective in areas such
as image recognition and classification. In this evaluation experiment, a vanilla CNN is used.
The architecture of the CNN (Figure 10) is described as follows (this architecture has also been reported
in Khmer isolated character recognition baseline in [21]). The grayscale input images of isolated
characters are rescaled to 48 × 48 pixels in size and normalized by applying histogram stretching.
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The network consists of three sets of convolution and max pooling pairs. All convolutional layers use
a stride of one and are zero padded so that the output is the same size as the input. The output of
each convolutional layer is activated using the ReLu function and followed by a max pooling of 2 × 2
blocks. The numbers of feature maps (of size 5 × 5) used in the three consecutive convolutional layers
are 8, 16, and 32, respectively. The output of the last layers is flattened, and a fully-connected layer
with 1024 neurons (also activated with ReLu) is added, followed by the last output layer (softmax
activation) consisting of Nclass neurons, where Nclass is the number of character classes. Dropout with
probability p = 0.5 is applied before the output layer to prevent overfitting. We trained the network
using an Adam optimizer with a batch size of 100 and a learning rate of 0.0001.

 

Figure 10. Architecture of the CNN.

3.4. Word Recognition and Transliteration

In order to make the palm leaf manuscripts more accessible, readable, and understandable to a
wider audience, an optical character recognition (OCR) system should be developed. In many DIA
systems, word or text recognition is the final task in the processing pipeline. However, normally in
Southeast Asian script the speech sound of the syllable change is related to some certain phonological
rules. In this case, an OCR system is not enough. Therefore, a transliteration system should also be
developed to help transliterate the ancient scripts on these manuscripts. By definition, transliteration
is defined as the process of obtaining the phonetic translation of names across languages [54].
Transliteration involves rendering a language from one writing system to another. In [54], the problem
is stated formally as a sequence labeling problem from one language alphabet to another. It will help us
to index and to quickly and efficiently access the content of the manuscripts. In our previous work [29],
a complete scheme for segmentation-based glyph recognition and transliteration specific to Balinese
palm leaf manuscripts was proposed. In this work, a segmentation-free method will be evaluated to
recognize and transliterate the words from three different scripts of a palm leaf manuscript.

RNN/LSTM-Based Methods

From the last decade, sequence-analysis-based methods using a Recurrent Neural Network-Long
Short-Term Memory (RNN-LSTM) type of learning network have been very popular among researchers
in text recognition. RNN-LSTM-based method together with a Connectionist Temporal Classification
(CTC) works as a segmentation-free learning-based method to recognize the sequence of characters
in a word or text without any handcrafted feature extraction method. The raw image pixel can
be sent directly as the input to the learning network and there is no requirement to segment the
training data sequence. RNN is basically an extended version of the basic feedforward neural network.
In a RNN, the neurons in the hidden layer are connected to each other. RNN offers very good
context-aware processing to recognize patterns in a sequence or time series. One drawback of RNN is
the vanishing gradient problem. To deal with this problem, the LSTM architecture was introduced.
The LSTM network adds multiplicative gates and additive feedback. Bidirectional LSTM is an LSTM
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architecture with two-directional (forward and backward) context processing. LSTM architecture
is widely evaluated as a generic and language-independent text recognizer [55]. In this work, the
OCRopy (https://github.com/tmbdev/ocropy) [56] framework is used to test and evaluate the word
recognition and transliteration tasks for the palm leaf manuscript collection. OCRopy provides the
functional library of the OCR system by using RNN-LSTM architecture (http://graal.hypotheses.
org/786) [57,58]. We evaluated the dataset with unidirectional LSTM and the (Bidirectional LTSM)
BLSTM architecture.

4. Experiments: Datasets and Evaluation Methods

From the three manuscript corpuses (Khmer, Balinese, and Sundanese), the datasets for each DIA
task were extracted and used in the experimental work for this research.

4.1. Binarization

4.1.1. Datasets

The palm leaf manuscript datasets for binarization task are presented in Table 1. For Khmer
manuscripts, one ground truth binarized image is provided for each image, but for Balinese and
Sundanese manuscripts, each image has two different ground truth binarized images [17,25]. The study
of ground truth variability and subjectivity was reported in the previous work [24]. In this research,
we only used the first binarized ground truth image for evaluation. The binarized ground truth
images for Khmer manuscripts were generated manually with the help of photo editing software
(Figure 11). A pressure-sensitive tip stylus is used to trace each text stroke by keeping the original size
of the stroke width [59]. For the manuscripts from Bali, the binarized ground truth images have been
created with a semi-automatic scheme [17,23–25] (Figure 12). The binarized ground truth images for
Sundanese manuscripts were manually [22] generated using PixLabeler [60] (Figure 13). The training
set is provided only for the Balinese dataset. We used all images of the Khmer and Sundanese corpuses
as a test set because the training-based binarization method (ICFHR G1 method, see Section 5.1) was
evaluated for the Khmer and Sundanese datasets by using only the pre-trained Balinese training set
weighted model.

Table 1. Palm leaf manuscript datasets for binarization task.

Manuscripts Train Test Ground Truth Dataset

Balinese 50 pages 50 pages 2 × 100 pages Extracted from AMADI_LontarSet [17,25,40]
Khmer - 46 pages 1 × 46 pages Extracted from EFEO [20,59]

Sundanese - 61 pages 2 × 61 pages Extracted from Sunda Dataset ICDAR2017 [22]

 

 

Figure 11. Khmer manuscript with binarized ground truth image.
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Figure 12. Balinese manuscript with binarized ground truth image.

 

 

Figure 13. Sundanese manuscript with binarized ground truth image.

4.1.2. Evaluation Method

Following our previous work [24] and the evaluation method from the ICFHR competition [25],
three metrics of binarization evaluation that were used in the DIBCO 2009 contest [37] are used in the
binarization task evaluation for this work. Those three metrics are F-Measure (FM) (Equation (3)), Peak
SNR (PSNR) (Equation (5)), and Negative Rate Metric (NRM) (Equation (8)).

F-Measure (FM): FM is defined from Recall and Precision.

Recall =
TP

FN + TP
× 100 (1)

Precision =
TP

FP + TP
× 100 (2)

TP, defined as true positive, occurs when the image pixel is labeled as foreground and the ground
truth is also. FP, defined as false positive, occurs when the image pixel is labeled as foreground but the
ground truth is labeled as background. FN, defined as false negative, occurs when the image pixel is
labeled as background but the ground truth is labeled as foreground (Equations (1) and (2)).

FM =
2 × Recall × Precision

Recall + Precision
(3)

A higher F-measure indicates a better match.
Peak SNR (PSNR): PSNR is calculated from Mean Square Error (MSE) (Equation (4)).

MSE =
M

∑
x=1

N

∑
y=1

(I1(x, y)− I2(x, y))2

M ∗ N
(4)

PSNR = 10 × log10(
C2

MSE
), (5)

where C is defined as 1, the difference between foreground and background colors in the case of a
binary image. A higher PSNR indicates a better match.
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Negative Rate Metric (NRM): NRM is defined from the negative rate of false negative (NRFN)
(Equation (6)) and the negative rate of false positive (NRFP) (Equation (7)):

NRFN =
FN

FN + TP
(6)

NRFP =
FP

FP + TN
(7)

TN, defined as true negative, occurs when both the image pixel and ground truth are labeled as
background. The definitions of TP, FN, and FP are the same as the ones given for the F-Measure.

NRM =
NRFN + NRFP

2
(8)

A lower NRM indicates a better match.

4.2. Text Line Segmentation

4.2.1. Datasets

The palm leaf manuscript datasets for text line segmentation task are presented in Table 2. The text
line segmentation ground truth data for Balinese and Sundanese manuscripts have been generated
by hand based on the binarized ground truth images [17]. For Khmer 1, a semi-automatic scheme
is used [26,59]. A set of medial points for each text is generated automatically on the binarization
ground truth of the page image. Then those points can be moved up or down with a tool to fit the
skew and fluctuation of the real text lines. We also note touching components spreading over multiple
lines and the locations where they can be separated. For Khmer 2 and 3, an ID of the line it belongs to
is associated with each annotated character. The region of a text line is the union of the areas of the
polygon boundaries of all annotated characters composing it [21,27].

Table 2. Palm leaf manuscript datasets for text line segmentation task.

Manuscripts Pages Text Lines Dataset

Balinese 1 35 pages 140 text lines Extracted from AMADI_LontarSet [17,26,40]

Balinese 2 Bali-2.1: 47 pages
Bali-2.2: 49 pages

181 text lines
182 text lines Extracted from AMADI_LontarSet [17]

Khmer 1 43 pages 191 text lines Extracted from EFEO [20,26,59]
Khmer 2 100 pages 476 text lines Extracted from SleukRith Set [21,27]
Khmer 3 200 pages 971 text lines Extracted from SleukRith Set [21]

Sundanese 1 12 pages 46 text lines Extracted from Sunda Dataset [26]
Sundanese 2 61 pages 242 text lines Extracted from Sunda Dataset [22]

4.2.2. Evaluation Method

Following our previous work [26], we use the evaluation criteria and tool provided by ICDAR2013
Handwriting Segmentation Contest [61]. First, the one-to-one (o2o) match score is computed for a
region pair based on the evaluator’s acceptance threshold. In our experiments, we used 90% as the
acceptance threshold. Let N be the count of ground truth elements, and M the count of result elements.
With the o2o score, three metrics are calculated: detection rate (DR), recognition accuracy (RA), and
performance metric (FM).

4.3. Isolated Character/Glyph Recognition

4.3.1. Datasets

The palm leaf manuscript datasets for isolated character/glyph recognition task are presented
in Table 3. For the Balinese character dataset, Balinese philologists manually annotated the segment
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of connected components that represented a correct character in Balinese script from the word-level
binarized images that were manually annotated [11,17,20] using Aletheia (http://www.primaresearch.
org/tools/Aletheia) [62,63] (Figure 14). The Sundanese character dataset was annotated manually [22]
(Figure 15). For the Khmer character dataset, a tool has been developed to annotate characters/glyphs
on the document page. The polygon boundary of each character is traced manually by dotting
out its vertex one by one. A label is given to each annotated character after its boundary has been
constructed [21] (Figure 16).

Table 3. Palm leaf manuscript datasets for isolated character/glyph recognition task.

Manuscripts Classes Train Test Dataset

Balinese 133 classes 11,710 images 7673 images AMADI_LontarSet [17,25,28]
Khmer 111 classes 113,206 images 90,669 images SleukRith Set [21]

Sundanese 60 classes 4555 images 2816 images Sunda Dataset [22]

Figure 14. Balinese character dataset.
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Figure 15. Sundanese character dataset.

Figure 16. Khmer character dataset.

4.3.2. Evaluation Method

Following the evaluation method from the ICFHR competition [25], the recognition rate, i.e., the
percentage of correctly classified samples over the test samples (C/N) is calculated, where C is the
number of correctly recognized samples and N is the total number of test samples.

4.4. Word Recognition and Transliteration

4.4.1. Datasets

The palm leaf manuscript datasets for word recognition and transliteration task are presented in
Table 4. For the Khmer dataset, all characters on the page have been annotated and grouped together
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into words (Figure 17). More than one label may be given to the created word. The order of how each
character in the word is selected is also kept [21]. Balinese (Figure 18) and the Sundanese (Figure 19)
word dataset was manually annotated using Aletheia [63].

Table 4. Palm leaf manuscript datasets for word recognition and transliteration tasks.

Manuscripts Train Test Text Published

Balinese 15,022 images from
130 pages

10,475 images from
100 pages Latin AMADI_LontarSet [17,25]

Khmer 16,333 images (part
of 657 pages)

7791 images (part
of 657 pages) Latin and Khmer SleukRith Set [21]

Sundanese 1427 images from
20 pages

318 images from 10
pages Latin Sunda Dataset [22]

 

Figure 17. Khmer word dataset.

 

Figure 18. Balinese word dataset.

 

Figure 19. Sundanese word dataset.
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4.4.2. Evaluation Method

The error rate is defined by edit distances between ground truth and recognizer output and is
computed using the provided OCRopy function ocropus-errs (https://github.com/tmbdev/ocropy/
blob/master/ocropus-errs) [56].

5. Experimental Results and Discussion

In this section, the performance of each method for the DIA tasks on palm leaf manuscript
collections is presented.

5.1. Binarization

The experimental results for the binarization task are presented in Table 5. These results show
that the performance of all methods on each dataset is still quite low. Most of the methods achieve
less than a 50% FM score. This means that palm leaf manuscripts are still an open challenge for the
binarization task. The different parameter values for the local adaptive binarization methods show
significant improvement in performance, but still give unsatisfactory results. In these experiments,
the ICFHR G1 method was evaluated for the Khmer and Sundanese datasets using the pre-trained
Balinese training set weighted model. Based on these experiments, Niblack’s method gives the highest
FM score for Sundanese manuscripts (Figure 20), ICFHR G1 method gives the highest FM score for
Khmer manuscripts (Figure 21), and ICFHR G2 gives the highest FM score for Balinese manuscripts
(Figure 22). However, visually, there are still many broken and unrecognizable characters/glyphs, and
noise is detected in the images.

 

 

Figure 20. Binarization of Sundanese manuscript with Niblack’s method.

 

Figure 21. Binarization of Khmer manuscript with ICFHR G1 method.
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Table 5. Experimental results for binarization task in F-Measure (FM), Peak SNR (PSNR), and Negative
Rate Metric (NRM). A higher F-measure and PSNR, and a lower NRM, indicate a better result.

Methods Parameter Manuscripts FM (%) NRM PSNR (%)

OtsuGray
[34,41]

Otsu from gray image
Using Matlab graythresh [43]

Balinese 18.98178 0.398894 5.019868
Khmer 23.92159 0.313062 7.387765

Sundanese 23.70566 0.326681 9.998433

OtsuRed
[34,41]

Otsu from red image channel
Using Matlab graythresh

Balinese 29.20352 0.300145 10.94973
Khmer 21.15379 0.337171 5.907433

Sundanese 21.25153 0.38641 12.60233

Sauvola
[34,36,41,42,44,45] window = 50, k = 0.5, R = 128

Balinese 13.20997 0.462312 27.69732
Khmer 44.73579 0.268527 26.06089

Sundanese 6.190919 0.479984 24.78595

Sauvola2
[34,36,41,42,44,45] window = 50, k = 0.2, R = 128

Balinese 40.18596 0.274551 25.0988
Khmer 47.55924 0.155722 21.96846

Sundanese 43.04994 0.299694 23.65228

Sauvola3
[34,36,41,42,44,45] window = 50, k = 0.0, R = 128

Balinese 35.38635 0.165839 17.05408
Khmer 30.5562 0.190081 12.78953

Sundanese 40.29642 0.181465 16.25056

Niblack
[34,36,41,42,44] window = 50, k = −0.2

Balinese 41.55696 0.175795 21.24452
Khmer 38.01222 0.160807 16.84153

Sundanese 46.79678 0.195015 20.31759

Niblack2
[34,36,41,42,44] window = 50, k = 0.0

Balinese 35.38635 0.165839 17.05408
Khmer 30.5562 0.190081 12.78953

Sundanese 40.29642 0.181465 16.25056

NICK [44] window = 50, k= −0.2
Balinese 37.85919 0.328327 27.59038
Khmer 51.2578 0.176003 24.51998

Sundanese 29.5918 0.390431 24.26187

Rais [34] window = 50
Balinese 34.46977 0.171096 16.84049
Khmer 31.59138 0.187948 13.52816

Sundanese 40.65458 0.177016 16.35472

Wolf [42,44] window = 50, k = 0.5
Balinese 27.94817 0.392937 27.1625
Khmer 46.78589 0.23739 25.1946

Sundanese 42.40799 0.299157 23.61075

Howe1 [39] Default values [39]
Balinese 44.70123 0.267627 28.35427
Khmer 40.20485 0.280604 25.59887

Sundanese 45.90779 0.235175 21.90439

Howe2 [39] Default values
Balinese 40.5555 0.273994 28.02874
Khmer 32.35603 0.294016 25.96965

Sundanese 35.35973 0.274865 22.36583

Howe3 [39] Default values
Balinese 42.15377 0.304962 28.38466
Khmer 30.7186 0.382087 26.36983

Sundanese 25.77321 0.350349 23.66912

Howe4 [39] Default values
Balinese 45.73681 0.273018 28.60561
Khmer 36.48396 0.280519 25.83969

Sundanese 38.98445 0.281118 22.83914

ICFHR G1 See ref. [25]
Balinese 63.32 0.15 31.37
Khmer 52.65608 0.250503 28.16886

Sundanese 38.95626 0.329042 24.15279

ICFHR G2 See ref. [25]
Balinese 68.76 0.13 33.39
Khmer - - -

Sundanese - - -

ICFHR G3 See ref. [25]
Balinese 52.20 0.18 26.92
Khmer - - -

Sundanese - - -

ICFHR G4 See ref. [25]
Balinese 58.57 0.17 29.98
Khmer - - -

Sundanese - - -
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Figure 22. Binarization of Balinese manuscript with ICFHR G2 method.

5.2. Text Line Segmentation

The experimental results for text line segmentation task are presented in Table 6. According to
these results, both methods perform sufficiently well for most datasets, except Khmer 1 (Figures 23–25).
This is because all images in this set are of low quality due to the fact that they are digitized from
microfilms. Nevertheless, the adaptive path finding method achieves better results than the seam
carving method on all datasets of palm leaf manuscripts in our experiment. The main difference
between these two approaches is that instead of finding an optimal separating path within an area
constrained by medial seam locations of two adjacent lines (in the seam carving method), the adaptive
path finding approach tries to find a path close to an estimated straight seam line section. These
line sections already represent well the seam borders between two neighboring lines, so they can be
considered a better guide for finding good paths, hence producing better results.

One common error that we encounter for both methods is in the medial position computation
stage. Detecting correct medial positions of text lines is crucial for the path-finding stage of the
methods. In our experiment, we noticed that some parameters play an important role. For instance,
the number of columns/slices r of the seam carving method and the high and low thresholding values
of the edge detection algorithm in the adaptive path finding approach are important. In order to select
these parameters, a validation set consisting of five random pages is used. The optimal values of the
parameters are then empirically selected based on the results from this validation set.

Table 6. Experimental results for text line segmentation task: the count of ground truth elements (N),
and the count of result elements (M), the one-to-one (o2o) match score is computed for a region pair
based on 90% acceptance threshold, detection rate (DR), recognition accuracy (RA), and performance
metric (FM).

Methods Manuscripts N M o2o DR (%) RA (%) FM (%)

Seam carving [47]

Balinese 1 140 167 128 91.42 76.64 83.38
Bali-2.1 181 210 163 90.05 77.61 83.37
Bali-2.2 182 219 161 88.46 73.51 80.29

Khmer 1 191 145 57 29.84 39.31 33.92
Khmer 2 476 665 356 53.53 74.79 62.40
Khmer 3 971 1046 845 87.02 80.78 83.78

Sundanese
1 46 43 36 78.26 83.72 80.89

Sundanese
2 242 257 218 90.08 84.82 87.37

Adaptive Path Finding [27]

Balinese 1 140 143 132 94.28 92.30 93.28
Bali-2.1 181 188 159 87.84 84.57 86.17
Bali-2.2 182 191 164 90.10 85.86 87.93

Khmer 1 191 169 118 61.78 69.82 65.55
Khmer 2 476 484 446 92.15 93.70 92.92
Khmer 3 971 990 910 93.71 91.91 92.80

Sundanese
1 46 50 41 89.13 82.00 85.41

Sundanese
2 242 253 222 91.73 87.74 89.69
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Figure 23. Text line segmentation of Balinese manuscript with the Seam Carving method (green) and
Adaptive Path Finding (red).

 

Figure 24. Text line segmentation of Khmer manuscript with the Seam Carving method (green) and
Adaptive Path Finding (red).

 

Figure 25. Text line segmentation of Sundanese manuscript with the Seam Carving method (green)
and Adaptive Path Finding (red).

5.3. Isolated Character/Glyph Recognition

The experimental results for isolated character/glyph recognition task are presented in Table 7.
For handcrafted feature with k-NN, the Khmer set with 113,206 train images and 90,669 test images
will need a considerable amount of time for one-to-one k-NN comparison, so we do not think it is
reasonable to use it. For CNN 1, previous work only reported results for the Balinese set. For all ICFHR
competition methods, the competition was proposed only for the Balinese set, so we only have the
reported results for the Balinese set. According to these results, the handcrafted feature extraction
combination of HoG-NPW-Kirsch-Zoning is a proper choice resulting in a good recognition rate for
Balinese and Khmer characters/glyphs. The CNN methods also show satisfactory results, but the
differences in recognition rates are not too significant with the handcrafted feature combinations. The
unbalanced number of image samples for each character class means the CNN method did not perform
optimally. For the Sundanese dataset, the handcrafted feature with NN slightly outperformed the
CNN method. The UFL method slightly increased the recognition rate of the pure NN method for the
Khmer and Balinese datasets.

Table 7. Experimental results for isolated character/glyph recognition tasks (in % recognition rate).

Methods Balinese Khmer Sundanese

Handcrafted Feature (HoG-NPW-Kirsch-Zoning) with k-NN [28] 85.16 - 72.91
Handcrafted Feature (HoG-NPW-Kirsch-Zoning) with NN [29] 85.51 92.15 79.69

Handcrafted Feature (HoG-NPW-Kirsch-Zoning) with UFL + NN [29] 85.63 92.44 79.33
CNN 1 [28] 84.31 - -

CNN 2 85.39 93.96 79.05
ICFHR G1: VCMF [25] 87.44 - -

ICFHR G1: VMQDF [25] 88.39 - -
ICFHR G3 [25] 77.83 - -
ICFHR G5 [25] 77.70 - -

5.4. Word Recognition and Transliteration

The experimental results for word recognition and transliteration task are presented in Table 8.
The error rates for word recognition and transliteration tests set on each training model iteration are
shown in Figures 26–28. The LSTM-based architecture of OCRopy seems very promising in terms of
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recognizing and directly transliterating Balinese words. For the Khmer and Sundanese datasets, the
LSTM architecture seems to struggle to learn the training data. More synthetic data training with a
more frequent word should be generated in order to support the training process. For the Balinese
dataset, a sequence depth of 100 pixels with a neuron size of 200 gives a better result for both LSTM
and BLTSM architecture. Most of the Southeast Asian scripts are syllabic scripts. One character/glyph
in these scripts represents a syllable, with a sequence of letters in Latin script. In this case, word
transliteration is not just word recognition with one-to-one glyph-to-letter association. This makes
word transliteration more challenging than character/glyph recognition.

Table 8. Experimental results for word recognition and transliteration tasks (in % error rate for test).

Methods (with OCRopy [56] Framework) Balinese Khmer Sundanese

BLSTM 1 (seq_depth 60, neuron size 100) 43.13 Latin text: 73.76
Khmer text: 77.88 75.52

LSTM 1 (seq_depth 100, neuron size 100) 42.88 - -

BLSTM 2 (seq_depth 100, neuron size 200) 40.54 - -

LSTM 2 (seq_depth 100, neuron size 200) 39.70 - -

 

Figure 26. Error rate for Balinese word recognition and transliteration test set.

Figure 27. Error rate for Khmer word recognition and transliteration test set.
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Figure 28. Error rate for Sundanese word recognition and transliteration test set.

6. Conclusions and Future Work

A comprehensive experimental test of the principal tasks in a DIA system, starting with
binarization, text line segmentation, and isolated character/glyph recognition, and continuing on to
word recognition and transliteration for a new collection of palm leaf manuscripts from Southeast
Asia, is presented. The results from all experiments provide the latest findings and a quantitative
benchmark of palm leaf manuscripts analysis for researchers in the DIA community. Binarizing the
palm leaf manuscript images seems very challenging. Still, with many broken and unrecognizable
characters/glyphs and noises detected in the images, binarization should be reconsidered the first
step in the DIA process for palm leaf manuscripts. On the other hand, although there are already
training-based DIA methods that do not require this binarization process, they usually require adequate
training data. The problem of inadequate training data also influences glyph recognition and word
transliteration. The unbalanced number of image samples for each character class means the CNN
methods did not perform optimally in glyph recognition. The differences in the recognition rates
of the CNN methods are not too significant with the handcrafted feature combinations. For future
work, more synthetic data training for palm leaf manuscript images should be generated in order
to support the training process. Especially for the word transliteration task, more synthetic data
training with a more frequent word should be generated in order to improve the training process.
Many examples of glyph-to-syllable association should be synthetically generated to transliterate
syllabic scripts from Southeast Asia. The special characteristics and challenges posed by the palm
leaf manuscript collections will require a thorough adaptation of the DIA system. Some specific
adjustments need to be applied to the DIA methods for other types of documents. The adaptation of a
DIA for palm leaf manuscripts is not unique and is not universal for all types of problem from different
collections. However, among the DIA system’s non-unique solutions, one specific solution can still
be designed to deliver the most optimal DIA system performance while still taking into account the
conditions of that collection.
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Abstract: The digitization of historical handwritten document images is important for
the preservation of cultural heritage. Moreover, the transcription of text images obtained from
digitization is necessary to provide efficient information access to the content of these documents.
Handwritten Text Recognition (HTR) has become an important research topic in the areas of image
and computational language processing that allows us to obtain transcriptions from text images.
State-of-the-art HTR systems are, however, far from perfect. One difficulty is that they have to cope
with image noise and handwriting variability. Another difficulty is the presence of a large amount
of Out-Of-Vocabulary (OOV) words in ancient historical texts. A solution to this problem is to use
external lexical resources, but such resources might be scarce or unavailable given the nature and
the age of such documents. This work proposes a solution to avoid this limitation. It consists of
associating a powerful optical recognition system that will cope with image noise and variability, with
a language model based on sub-lexical units that will model OOV words. Such a language modeling
approach reduces the size of the lexicon while increasing the lexicon coverage. Experiments are first
conducted on the publicly available Rodrigo dataset, which contains the digitization of an ancient
Spanish manuscript, with a recognizer based on Hidden Markov Models (HMMs). They show
that sub-lexical units outperform word units in terms of Word Error Rate (WER), Character Error
Rate (CER) and OOV word accuracy rate. This approach is then applied to deep net classifiers,
namely Bi-directional Long-Short Term Memory (BLSTMs) and Convolutional Recurrent Neural
Nets (CRNNs). Results show that CRNNs outperform HMMs and BLSTMs, reaching the lowest WER
and CER for this image dataset and significantly improving OOV recognition.

Keywords: historical handwritten transcription; out-of-vocabulary word recognition; character-level
language model; word structure retrieval

1. Introduction

The digitization of historical handwritten document images is important for the preservation of
cultural heritage. Moreover, the transcription of text images obtained from digitization is necessary
to provide efficient information access to the content of these documents. Automatic transcription
of these documents is performed by Handwriting Text Recognition (HTR) systems, which are
traditionally composed of an optical model, a dictionary and a Language Model (LM). However,
HTR systems face several challenges at both the image and language modeling levels. Historical
document images may include defects due to age, manipulation and bleed-through of ink. They may
also include calligraphic initial letters and long character strokes as ornaments. This is particularly
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true for Spanish documents from the 16th century as seen in Figure 1. Ancient texts also include rare
characters, grammatical forms, word spellings and named entities distinct from modern ones. Such
forms lead to Out-Of-Vocabulary (OOV) words, i.e., words that do not belong to the dictionary of
the HTR system. Improving HTR systems at both image and language levels is an important issue
for the recognition of such ancient historical documents. The main goal of this paper is to design
efficient HTR systems that process document images written in Spanish and that can cope with ancient
character forms and language.

Figure 1. Sample image of a Spanish document from the 16th century.

Several approaches have been proposed to build optical models for handwriting recognition.
Such approaches include Hidden Markov Models (HMMs) [1–4], Recurrent Neural Networks (RNNs)
such as Long Short-Term Memory (LSTMs) and their variants: Bi-directional LSTMs (BLSTMs) and
Multi-Dimensional LSTMs (MDLSTMs) [5]. HMMs enable embedded training and can be robust to
noise and linear distortions. However, RNNs and their variants are generative models that perform
better than HMMs in terms of accuracy. Nowadays, RNNs can be trained by using dedicated resources
such as Graphic Processor Units (GPUs) that considerably reduce training time. By using GPUs,
RNNs can be trained in a similar amount of time required to train HMMs with traditional Central
Processing Units (CPUs).

Usually, the inputs of HMMs and RNNs are sequences of handcrafted features or pixel columns.
However, deep learning approaches starting with convolutional layers as the first layers allow
extracting learning-based features instead of handcrafted ones [6–8].

Generally, in HTR systems, the optical models are associated with dictionaries (lexical models)
and Language Models (LMs), usually at the word level, in order to direct the recognition of real
words and plausible word sequences (see Figure 2). In order to build open vocabulary systems,
language models based on character units can be used [9]. Then, the dictionary is limited to the set
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of different characters, and the transition probabilities between the character models are given by
a character LM. Character-based LMs are also useful for related tasks such as word spotting [10].
In the previous character LM approach or even in general word LM approaches, the optical models
still model characters. However, in works such as [11,12], the optical models model strokes that are
concatenated to form words.

Optical Model

Language Model y pequeños

Lexical Model y p e q u e ñ o s y pequeños

Figure 2. Scheme of a handwritten text recognition system.

When a word-based dictionary helps the recognition process, the handwriting recognition system
can only transcribe a limited number of words. The size of the dictionary is a compromise between
a too large size yielding word confusions and a too small one yielding many unknown words. Words
of the test set that are not present in the HTR dictionary are denoted as Out-Of-Vocabulary (OOV)
words. Several types of OOV words exist, such as common words using a less common grammatical
form, misspellings, words attached to punctuation marks, hyphenated words or words containing rare
characters (abbreviations, special signs, etc.).

An approach to cope with OOV words consists of extending the dictionary with external lexical
resources, such as Wikipedia [13], or in the case of historical documents, with the transcription
of other documents from the same period and topic [14]. From these resources, the language
model can also be refined. However, in the general case, such resources may not be available,
and a proportion of words (such as named entities and rare words) still remains as OOV. Another
approach for coping with OOV words consists of modeling text at a sub-word level, as a sequence
of characters, syllables or multi-grams [15]. Hybrid approaches [16,17] consist of using word-based
language models for the most frequent words and character-based models for the less frequent ones.
In sub-word approaches, the dictionary is considerably reduced to the number of lexical units, as well
as the computational complexity. In addition, the language model can model unknown words by
combining such lexical units.

In this work, we compare several HTR systems, based on HMMs, RNNs and convolutional
RNNs (CRNNs). The CRNN is inspired from a very deep architecture presented in [18]. It consists
of stacking BLSTMs and associating them with convolutional layers. Features are thus automatically
extracted by the convolutional layers and processed by the BLSTM layers. We also model dictionaries
and language models of our HTR systems with sub-word units. We apply this approach to
the recognition of a publicly available Spanish historical documents dataset. We compare several HTR
systems based on different types of sub-word units, and we show that sub-word units are more efficient
than word units. We obtain, to our knowledge, the best recognition results on this Spanish dataset by
associating sub-word units with the deepest HTR optical system, namely the CRNN. We also obtain
high rates for the recognition of OOV words.

The rest of the paper is structured as follows: the Spanish historical manuscript used in
the experimentation is presented in the next section (Section 2); the HTR systems and the experimental
conditions are described in Section 3; our experiments and the obtained results are reported in Section 4;
the conclusions and future work are drawn in Section 5; finally, in Appendix A, several recognition
examples are shown.

2. The Rodrigo Dataset

The Rodrigo corpus [19] was obtained from the digitization of the book “Historia de España
del arçobispo Don Rodrigo”, written in ancient Spanish in 1545. It is a single writer book where
most pages consist of a single block of well-separated lines of calligraphical text, as the examples
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presented in Figures 1 and 3. It is composed of 853 pages that were automatically divided into lines,
giving a total number of 20,356 lines. In the standard training partition, the vocabulary size is of
about 11,000 words with a set of 106 characters (the 105 different characters that appear in the text
of the training partition and one extra character that appears in the text of the validation partition),
including 10 numbers, 72 upper and lower case letters with and without accents, 5 punctuation marks,
1 blank space and 18 special symbols. The first 15,010 lines are publicly available on the website of
the Pattern Recognition and Human Language Technology (PRHLT) research center [20]. In this work,
we used this publicly available partition. The first 9000 lines were used for training the optical and
language models, the next 1000 for validation and the last 5010 lines for testing.

Figure 3. Page 515 of the Rodrigo dataset.

In the Rodirgo corpus, there are many rare words and words in their archaic forms yielding a large
amount of OOV words. Moreover, this corpus contains scarce OOV characters (such as: \, ṕ, ḡ, � and w)
that do not belong to the training set. OOV words generally include words that appear in distinct form
in the training and test sets (e.g., portugal and portuḡl), abbreviations and words hyphenated differently
in the training and test sets.

Table 1 presents a summary of the information contained in the partitions of the Rodrigo corpus
used in this work at the three lexical units studied: words, sub-words and characters. This table
presents for each lexical unit the total amount, the vocabulary size (different units), the amount of
OOV units and the overlapping between the OOV contained in the validation and test partitions, i.e.,
the amount of OOV units contained in the test partition that are present in the validation partition.
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Table 1. Description of the partitions of the Rodrigo corpus used in this work.

Partition Lines
Words Sub-Words Characters

Total / Diff./ OOV (over.) Total/Diff./OOV (over.) Total/Diff./OOV (over.)

Training 9000 98,232/12,650/- 148,070/3045/- 493,126/105/-
Validation 1000 10,899/3016/850 14,907/1074/7 54,936/82/1

Test 5010 55,195/7453/4918 (203) 73,660/1418/55 (11) 272,132/91/14 (1)

3. Handwritten Text Recognition Systems

This section presents our proposal, the feature extraction, the models used by the implemented
HTR systems and the evaluation metrics used in the experimentation.

3.1. Proposal

The HTR problem can be formulated as finding the most likely word sequence ŵ given a feature
vector sequence x = (x1, x2, . . . , x|x|) that represents a handwritten text line image [21], that is:

ŵ = arg max
w∈W

Pr(w | x) = arg max
w∈W

Pr(x | w)Pr(w)

Pr(x)
= arg max

w∈W
Pr(x | w)Pr(w) (1)

where W represents the set of all permissible word sequences, Pr(x) is the probability of observing x,
Pr(w) is the probability of the word sequence w = (w1, w2, . . . , w|w|) and Pr(x | w) is the probability
of observing x by assuming that w is the underlying word sequence for x. Pr(w) is approximated by
the Language Model (LM), whereas Pr(x | w) is modeled by the optical model, which trains character
models and concatenates them to build optical word or sub-word models.

Written words can be decomposed into small sub-word units such as characters, but they can also
be decomposed into larger sub-word units such as graphemic syllables, hyphens or multigrams [15].
We choose here to compare character and hyphen word decompositions. In both cases, words are
represented as a sequence of sub-word units s = (s1, s2, . . . , s|s|). Then, the HTR problem can be
reformulated as finding the most likely sub-word sequence ŝ given a feature vector sequence x that
represents a handwritten text image. Therefore, Equation (1) becomes:

ŝ = arg max
s∈S

Pr(x | s)Pr(s) (2)

where Pr(s) is approximated by a sub-word LM, whereas Pr(x | s) can be modeled by the same
optical model.

It should be noted that RNN-based systems directly provide in their outputs posterior
distributions of character labels, at each time step, i.e., ot

k for k = 1, . . . , L and t = 1, . . . , T, T being
the length of the observation sequence x and L the alphabet size. From these posteriors, the decoding
can be constrained by a lexicon and a language model, in order to find the best output sequence ŝ.
This can be done through Weighted Finite State Transducers (WFST) decoding (see Section 3.5), which
can include several types of lexicon and language models (at word, hyphen or character levels).

Working at the sub-word level in HTR relaxes the restrictions imposed by the lexicon, allowing
for a faster decoding, and given that the language model describes the relation between sub-word
units, some OOV words can be decoded. Therefore, our proposal is to decode the handwritten text
line images at the sub-word level and, then, from the obtained decoding output, reconstruct the words
to build the final hypothesis.

First of all, the language model of sub-word units is trained using the transcription of the text
lines of the training partition after a minimum preprocessing. This preprocessing consists of
adding a new symbol (<SPACE>) for the separation between words and then splitting the words
into sub-word sequences. In this way, the information of the separation between words is maintained.

As an example, the following text line from the training set:
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Agora cuenta la historia

would be transformed into the following character sequence:

A g o r a~<SPACE> c u e n t a~<SPACE> l a~<SPACE> h i s t o r i a

or into the following sequence following the hyphenation rules for Spanish:

Ago ra <SPACE> cuen ta <SPACE> la <SPACE> his to ria

Then, these preprocessed transcriptions can be used to train the sub-word unit language model.
Usually, n-gram language models of sub-word units are trained with a large n (large context). On
the other side, the lexicon is reduced to match the list of sub-word units.

In the decoding process, the best hypothesis is processed to obtain the final hypothesis. This final
process consists of collapsing the sub-word unit sequence to form words and to substitute the symbol
used to mark the separation between words (<SPACE>) by a space. Figure 4 presents a text line example
from the test partition whose reference transcription is:

vio e recognoscio el Astragamiento que perdiera de su gente

In this example, the words recognoscio and Astragamiento are OOV words. It is interesting to
note their etymology. They are archaic forms from Early Modern Spanish (15th–17th century) that in
Modern Spanish correspond to the forms reconoció and Estragamiento. For that reason, we could not
find them in any external resource, not even in Google N-Grams [22].

Figure 4. Text line sample. “Recognoscio” and “Astragamiento” are rare words; recognoscio is an archaic
form of reconoció and Astragamiento an ancient form of Estragamiento.

The HMM decoding process with a traditional word-based approach offers the following
best hypothesis:

vno & rea gustio el Astragar mando que perdona de lugar

which represents a Character Error Rate (CER) equal to 35.6% with respect to the reference text-line
transcription. However, using a sub-word based approach, the following best hypothesis is obtained:

vio <SPACE> & <SPACE> re ca ges cio <SPACE> el <SPACE> As tra ga mien to
<SPACE> que <SPACE> per do na <SPACE> de <SPACE> lu gar <SPACE>

which is transformed into the improved hypothesis (CER = 22.0%):

vio & recagescio el Astragamiento que perdona de lugar

On the other hand, with a character-based approach, the following best hypothesis is obtained:

v i o <SPACE> & <SPACE> r e c e g e s c i o <SPACE> e l <SPACE> A s t r a~g a~m i e n t o
<SPACE> q u e <SPACE> p e r d i e r a~<SPACE> d e l <SPACE> s e g u n d o

which results in the next final best hypothesis (CER = 17.0%):

vio & recegescio el Astragamiento que perdiera del segundo

As can be observed, the final hypotheses obtained at sub-word levels (characters, hyphenation
sub-word units) in HTR are considerably better than those obtained with the word-based approach.
In addition, the OOV word Astragamiento has been fully recognized. The second OOV word is
recognized as recegescio or recagescio, which also improves the word-based recognition rea gustio.
In Section 4, word and sub-word language modeling approaches will be compared with several types
of optical HTR systems.
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3.2. Handcrafted Features

Features are computed in several steps from text line images. First, the image brightness is
normalized, and a median filter of size 3 × 3 pixels is applied to the entire image. Next, slant correction
is performed by using the maximum variance method with a threshold of 92% [23]. Then, size
normalization is performed, and the final image is scaled to a height of 40 pixels. Finally, a sequence of
60-dimensional feature vectors is extracted by a sliding window, using the method described in [24].

3.3. Lexicon and Language Models

The lexicon and language models at the sub-word level were obtained by hyphenating
the vocabulary words following the rules for modern Spanish by using the testhyphens package [25]
for LATEX. Lexicon models were in HTK lexicon format, where vocabulary words and sub-word
units were modeled as a concatenation of symbols; however, characters were modeled as just
the corresponding symbol.

Language Models (LM) were estimated as n-grams with Kneser–Ney back-off smoothing [26]
by using the SRILM toolkit [27]. Different LMs were used in the experiments at word, sub-word
and character levels. For the word-based system and the open-vocabulary case, the LM is
trained directly from the text-line transcriptions of the training set. In the closed-vocabulary
case, the LM is trained with the same transcriptions, plus the OOV words included as unigrams.
For the character-based system, the closed-vocabulary case indicates that the character sequences that
represent the OOV words are used for building the n-gram character LM. For both systems, word
or character-based, “with validation” means that training and validation transcriptions are used for
building the LM.

3.4. Optical Models

In this paper, three different approaches for optical modeling for HTR are used: traditional hidden
Markov models and two deep network classifiers. The first one is based on recurrent neural networks
with bi-directional long-short term memory, and the other one is based on convolutional recurrent
neural networks.

3.4.1. Hidden Markov Models

The Hidden Markov Models (HMM) for optical modeling were trained with HTK [28]. The trained
models are left-to-right character models including four states. The observation probabilities in each
state are described by a mixture distribution of 64 Gaussians. The number of character models is 106,
and words and sub-words are modeled by the concatenation of compound character HMMs. The
HMM system uses as input sequences of handcrafted features. HMM HTR systems were implemented
by using the iATROS recognizer [29].

3.4.2. Deep Models Based on BLSTMs

In this approach, we use an RNN to estimate the posterior probabilities of the characters at
the frame level (features vector). Therefore, the size of the input layer corresponds to the size of
the handcrafted feature vectors and the size of the output layer to the number of different characters.
The frame-level labeling required to train this neural network was generated from a forced alignment
decoding by a previously trained HMM recognition system [30]. This forced alignment decoding and
the model training were repeated several times until the convergence of the assignment of the frame
labels to the optical model.

Then, as presented in Figure 5, our RNN is formed by 60 neurones at the input layer, 500 BLSTM
neurones at the hidden layer with a hyperbolic tangent activation function and 106 neurones at
the output layer with a softmax function. The training was performed by using RNNLIB [31],
and the main parameters (such as the size of the hidden layer) were tuned by using the validation
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partition. The Weighted Finite State Transducers (WFST) decoding (see Section 3.5) can be designed to
output word, sub-word or character sequences. For each output type, the lexicon and language model
have to be modified accordingly, and no additional modification is necessary in the system.

Preprocessing
and feature
extraction

Recurrent Neural Network

x Word Lexicon
and

Language Model

WFST decoding

o

muerte e peor merescia el por quanto passara el mandami

x1

x2

. . .

x60

BLSTM layer

o1

. . .

o106

Figure 5. Bi-directional Long-Short Term Memory (BLSTM) system architecture. The BLSTM RNN
outputs posterior distributions o at each time step. The decoding is performed with Weighted Finite
State Transducers (WFST) using a lexicon and a language model at word level.

3.4.3. Deep Models Based on Convolutional Recurrent Neural Networks

The Convolutional Recurrent Neural Network (CRNN) [32] is inspired by the VGG16
architecture [33] that was developed for image recognition. We use a stack of 13 convolutional
(3 × 3 filters, 1 × 1 stride) layers followed by three bi-directional LSTM layers with 256 units per
layer (see Figure 6). Each LSTM unit has one cell with enabled peephole connections. Spatial pooling
(max) is employed after some convolutional layers. To introduce non-linearity, the Rectified Linear
Unit (ReLU) activation function was used after each convolution. It has the advantage of being
resistant to the vanishing gradient problem while being simple in terms of computation and was
shown to work better than sigmoid and hyperbolic tangent activation functions [34]. A square-shaped
sliding window is used to scan the text-line image in the direction of the writing. The height of
the window is equal to the height of the text-line image, which has been normalized to 64 pixels.
The window overlap is equal to two pixels to allow continuous transition of the convolution filters.
For each analysis window of 64 × 64 pixels in size, 16 feature vectors are extracted from the feature
maps produced by the last convolutional layer and fed into the observation sequence. For each of
the 16 columns of the last 512 feature maps, the columns of a height of two pixels are concatenated
into a feature vector of size 1024 (512 × 2). Thanks to the CTCtranscription layer [35], the system is
end-to-end trainable. The convolutional filters and the LSTM units weights are thus jointly learned
using the back-propagation procedure. We combined the forward and backward outputs at the end
of the BLSTM stack [36] rather than after each BLSTM layer, in order to decrease the number of
parameters. We also chose not to add additional fully-connected layers since, by adding such layers,
the network had more parameters, converged more slowly and performed worse. Hyper parameters
such as the number of convolution layers and the number of BLSTM layers were set up on a validation
set. The LSTM unit weights were initialized as per the method of [37], which proved to work well
and helps the network to converge faster. This allows the network to maintain a constant variance
across the network layers, which keeps the signal from exploding to a high value or vanishing to zero.
The weight matrices were initialized with a uniform distribution.
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Figure 6. CRNN system architecture.

The Adam optimizer [38] was used to train the network with the initial learning rate of 0.001.
This algorithm could be thought of as an upgrade for RMSProp [39], offering bias correction and
momentum [40]. It provides adaptive learning rates for the stochastic gradient descent update
computed from the first and second moments of the gradients. It also stores an exponentially decaying
average of the past squared gradients (similar to Adadelta [41] and RMSprop) and the past gradients
(similar to momentum). Batch normalization, as described in [42], was added after each convolutional
layer in order to accelerate the training process. It basically works by normalizing each batch by
both the mean and variance. The network was trained in an end-to-end fashion with the CTC
loss function [35].
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3.5. Decoding with Deep Optical Models

Decoding for both deep net systems was performed with Weighted Finite State Transducers
(WFST). Our decoder is based on the CTC-specific implementation proposed by [43] for speech
recognition. A “token” WFST was designed to handle all possible label sequences at the frame level,
so as to allow for the occurrence of the blank label along with the repetition of non-blank labels. It can
map a sequence of frame-level CTC labels to a single character. A search graph is built with three
WFSTs (T, L and G) compiled independently and combined as follows:

S = T ◦ min(det(L ◦ G)) (3)

T, L and G are the token, lexicon and grammar WFSTs respectively, whereas ◦, det and min denote
composition, determination and minimization, respectively. The determination and minimization
operations are needed to compress the search space, yielding a faster decoding.

3.6. Evaluation Metrics

The quality of the obtained transcriptions was assessed using the edit distance [44] with respect
to the reference text, at the word and at the character level. The Word Error Rate (WER) is this edit
distance at the word level and can be calculated as the minimum number of substitutions, deletions
and insertions needed to transform the transcription into the reference, divided by the number of
words of the reference:

WER =
s + d + i

n
· 100 (4)

where s is the number of substitutions, d the number of deletions, i the number of insertions and n
the total number of words in the reference.

Similarly, this edit distance can be calculated at the character level, giving the Character Error
Rate (CER). In this framework, the CER value is especially interesting, since transcription errors are
usually corrected at the character level. The OOV Word Accuracy Rate (OOV WAR) was measured as
the amount of recognized OOV words over the total amount of OOV words. The statistical significance
of experimental results can be estimated by means of confidence intervals. Generally, when comparing
two experimental results, it is always true that if the confidence intervals do not overlap, we can say
that the difference is statistically significant [45]. In this work, confidence intervals of probability 95%
(α = 0.025) were calculated by using the bootstrapping method with 10,000 repetitions [46] for these
rate measures.

Finally, as language models are probability distributions over entire sentences or texts,
perplexity [47] can be used to evaluate their performance over a reference text. In this work, we use
the perplexity presented by a character LM over the OOV words (as sequences of characters), to assess
the differences between the recognized and unrecognized OOV words.

4. Experimental Results

In the test experiments, we compared the performance on the test partition of the Rodrigo
corpus. Different systems were compared, the first one based on HMMs, the second one based
on RNN and the third one on CRNN. For the three systems, experiments were performed at word,
sub-word, and character levels. We first explore the influence of the size of the LM context (n-gram
degree). Then, we develop an analysis of the difference between the structure of recognized and
unrecognized OOV words. The last experiment compares the results obtained in three different cases:
open vocabulary, closed vocabulary and when using the validation samples for training the LM.

We observed that in the training partition of Rodrigo, usually there are no spaces between words
and punctuation marks, so we decided to remove those spaces from the hypotheses offered by
the word-based systems. Therefore, in the word-based cases, the recognized OOV words correspond
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to words attached to punctuation marks, which were correctly recognized after removing the space
between them (see Figure A2).

4.1. Study of the Context Size Influence

Figure 7 presents the results obtained for the word-based HMM system (in terms of WER and
CER) by using n-gram LM with different context sizes n = {1, . . . , 6}. As can be observed in this figure,
the best result was obtained by using a three-gram LM; concretely, a WER equal to 43.3% ± 0.5, a CER
equal to 21.1% ± 0.3 and an OOV WAR equal to 2.3% ± 0.4.
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Figure 7. Results obtained by the HMM word-based system using n-gram language models with size
n = {1, . . . , 6}.

Then, the performance of the HMM system at the sub-word level was tested. Figure 8 presents
the results obtained using sub-word n-gram LM with different sizes n = {1, . . . , 6} in terms of WER,
CER and recognition accuracy of the OOV words. The best result was obtained with a sub-word
language model of size n = 4 (a WER equal to 43.2% ± 0.5 and a CER equal to 20.0% ± 0.3). Regarding
the recognition of OOV words, the sub-word approach was able to recognize correctly 9.3% ± 0.7 of
the OOV words.

Figure 9 presents the results obtained for the HMM system using character n-gram LM with
different degrees n = {1, . . . , 15} in terms of WER, CER and recognition accuracy of the OOV words.
Although similar results are obtained for n ≥ 6, the overall best result was obtained with a character
language model of degree n = 10 (a WER equal to 39.8% ± 0.5 and a CER equal to 17.6% ± 0.3).
Regarding the recognition of OOV words, this character-based approach was able to recognize correctly
18.3% ± 0.9 of the OOV words using no external resource or dictionary, but a character language
model only.

Table 2 presents a summary of the obtained best results for the test experiments for the HMM
system. As can be observed, the improvement offered by the sub-word approach is not statistically
significant at the WER level compared to the results obtained from the word-based system.
Nevertheless, the character-based approach offers 9.3% of statistically-significant relative improvement
over the baseline in terms of WER and 17.0% of statistically-significant relative improvement
over the baseline in terms of CER. Thus, using a dictionary and LM at the word level performs
worse than using a single character-based n-gram LM, with n large enough. This demonstrates
the interest in working at the character level for transcribing historical manuscripts. We study in
the following the structure of the OOV words in comparison with the training words (Section 4.2).
We also study the effect of reducing the OOV rate, either by using the validation set or by closing
the vocabulary (Section 4.3).
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Figure 8. Results obtained by decoding at the HMM sub-word level by using n-gram language models
with size n = {1, . . . , 6}.
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Figure 9. Results obtained by decoding at the HMM character level by using n-gram language models
with size n = {1, . . . , 15}.

Table 2. Overall best results on the Rodrigo test set in terms of WER, CER and OOV WAR for
the HMM system.

Measure
Word Sub-Word Character

3-gram 4-gram 10-gram

WER 43.9% ± 0.5 43.2% ± 0.5 39.8% ± 0.5
CER 21.2% ± 0.3 20.0% ± 0.3 17.6% ± 0.3

OOV WAR 2.3% ± 0.3 9.3% ± 0.7 18.3% ± 0.9

4.2. Study of the Relation between the Structure of the OOV Words and the Training Words

The character-based approach is able to recognize some OOV words given that the character-based
LM learns the structure of the words contained in the training set. In order to verify this hypothesis,
we measured the perplexity presented by the best character-based LM (10-gram) for decoding each one
of the 4918 OOV words as their corresponding character sequences. Figure 10 presents the obtained
perplexity per OOV word separated into two distributions, recognized and unrecognized OOV words.
Table 3 summarizes the main features of these distributions. As expected, the recognized OOV words
present lower perplexity than the unrecognized OOV words. The overlap of both distributions makes
us think that there is still room for improvement given that more OOV words could be recognized.
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Figure 10. Distribution of the perplexity presented by the 10-gram character Language Model (LM) per
recognized and unrecognized OOV words (decomposed into character sequences) by the HMM system.

Table 3. Features of the perplexity per OOV word recognized and unrecognized distributions
for the HMM character-based 10-gram LM. Q1, Q2 and Q3 are respectively the 1th, 2nd and 3rd
quartile, IQR the interquartile range, Min. and Max. the minimum and maximum values and SD
the standard deviation.

Distribution Q1 Q2 Q3 IQR Min. Max. SD

Recognized 6.64 9.22 12.57 5.94 3.26 46.05 5.37
Unrecognized 8.70 12.21 17.75 9.05 3.06 367.07 16.25

4.3. Study of the Effect of Closing the Vocabulary and Adding the Transcription of the Validation Set for
Training the LM

After the adjustment of the decoding parameters with the validation set, the transcription of
the text lines contained in this partition can be used to train an improved LM that, hopefully, will reduce
the amount of OOV words. Moreover, the OOV words can be included in the vocabulary as unigrams
(closed vocabulary experiments) to verify their influence on the recognition. These conditions were
experimented for the best language models at word and character levels (3-gram for the word based
system and 10-gram for the character-based system). Given that the sub-word approach presented
no significative difference in terms of WER, compared to the word-based system (see Table 2),
this approach was not tested in this experiment.

Figures 11–13 allow comparing the obtained results for the word-based system and
the character-based approach with open and closed vocabulary, with and without the use of
the validation samples when training the LM (see Section 3.4). On the one hand, as can be seen
in Figures 11 and 13, the use of the validation set does not significantly improve the word-based
recognition in terms of WER or CER. However, this additional information is very useful in
the character-based approach. As can be observed in Figure 11, a statistically-significant improvement
in terms of CER is achieved (16.9% ± 0.3 instead of 17.6% ± 0.3). This improvement allows
increasing the OOV word recognition accuracy (see Figure 12). On the other side, although
closing the vocabulary significantly improves the recognition performance, it is interesting to note
the beneficial effect of the use of the validation samples in the character-based approach. It is also
interesting to note in Figures 11 and 13 that the character-based system, even in the more difficult
case (“open-vocabulary”), outperforms, in terms of CER, the word-based system in the best case
(“closed-vocabulary”). In the closed vocabulary conditions, the word-based system recognizes more
OOV words than the character-based system, 34.7% ± 1.2 instead of 29.6% ± 1.1 (see Figure 12).
However, in the real-world case, i.e., the open-vocabulary conditions, the character-based system
performs better.
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Figure 11. CER results obtained by the best word-based HMM system and the best character-based
HMM system with open and closed vocabulary, with and without using the validation samples for
training the LM.
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Figure 12. Recognition accuracy rate for OOV words by the best word-based HMM system and the best
character-based HMM system with open and closed vocabulary, with and without using the validation
samples for training the LM.
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Figure 13. WER results obtained by the best word-based HMM system and the best character-based
HMM system with open and closed vocabulary, with and without using the validation samples for
training the LM.
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4.4. Study of the Context Size Influence Using Deep Optical Models

This last part of the experimentation studies the influence of the different language units
and the context size of the language model, on the HTR system based on deep neural networks
(see Sections 3.4.2 and 3.4.3).

4.4.1. Results for Deep Models Based on Recurrent Neural Networks with BLSTMs

In Figure 14, the recognition results obtained for the word-based RNN system are presented.
As explained before, in this case, the recognized OOV words correspond to words attached to
punctuation marks, which were correctly recognized after removing the space between them (see the
example presented in Figure A2). Compared with the word-based HMM system, the obtained results
are significantly worse in terms of WER; however, in terms of CER and OOV word recognition
accuracy, the obtained results are significantly better. Concretely, the best result was obtained by using
a two-gram LM, and it presents a WER equal to 52.5% ± 0.8, a CER equal to 17.2% ± 0.3 and an OOV
WAR equal to 16.3% ± 0.9.

Figure 15 shows the results obtained using sub-word n-gram LM. As can be observed, the WFST
approach has no context information about the separation between words when sub-word unigrams
LM are used; therefore, it is unable to reconstruct words correctly in spite of obtaining a good CER.
We will see this effect in the next experiments with the sub-word and character-based deep net systems.
In this case, the best result was obtained with a five-gram language model (a WER equal to 38.6%± 0.5,
a CER equal to 17.3% ± 0.3 and an OOV WAR equal to 27.4% ± 1.1).
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Figure 14. Results obtained by the RNN word-based system using n-gram language models.
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Figure 15. Results obtained by the RNN sub-word-based system using n-gram language models.
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The results obtained with the RNN system using character n-gram LM are presented in Figure 16.
As in the character-based HMM experiments, similar results are obtained for n ≥ 6, and the overall
best result was obtained with a 10-gram character language model: a WER equal to 37.7% ± 0.5, a CER
equal to 14.3% ± 0.3 and an OOV WAR equal to 37.8% ± 1.1.
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Figure 16. Results obtained by the RNN character-based system using n-gram language models.

A summary of the obtained best results for the test experiments for the RNN system is presented
in Table 4. As can be observed, generally, the RNN approach performs better than the traditional
HMM approach. Although the use of the word-based RNN system obtains a statistically-significant
relative deterioration of 19.6% over the HMM system (43.9% ± 0.5) in terms of WER, 18.9%
statistically-significant relative improvement in terms of CER (21.2% ± 0.3) can be considered.
Moreover, 16.3% of OOV words, which correspond to words followed by punctuation marks,
are well recognized.

Table 4. Summary of the best results in terms of WER, CER and OOV WAR for the RNN system.

Measure
Word Sub-Word Character

2-gram 5-gram 10-gram

WER 52.5% ± 0.8 38.6% ± 0.5 37.7% ± 0.5
CER 17.2% ± 0.3 17.3% ± 0.3 14.3% ± 0.3

OOV WAR 16.3% ± 0.9 27.4% ± 1.1 37.8% ± 1.1

The use of sub-word units offers better results than using words, allowing one to obtain significant
improvements in terms of WER and CER over the HMM system. In this case, the use of a five-gram LM
trained with hyphenated words allowed obtaining statistically-significant improvements at the WER
level over the use of a two-gram LM of full words. However, as for the HMM system, the overall best
results are obtained by using the character-based approach: a WER equal to 37.7% ± 0.5, a CER equal
to 14.3% ± 0.3 and an OOV WAR equal to 37.8% ± 1.1.

4.4.2. Results for Deep Models Based on Convolutional Recurrent Neural Networks

Figure 17 presents the recognition results obtained for the word-based CRNN system. As in
the previous word-based systems, the recognized OOV words correspond to words attached to
punctuation marks, which were correctly recognized after removing the space between them
(see the example presented in Figure A2). The best result, obtained by using a three-gram LM,
presents a WER equal to 17.9%± 0.4, a CER equal to 4.0%± 0.1 and an OOV WAR equal to 21.5%± 1.0.

The results obtained using sub-word n-gram LM are shown in Figure 18. The best result was
obtained with a four-gram language model (a WER equal to 14.8%± 0.3 and a CER equal to 3.4%± 0.1).
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Regarding the recognition of OOV words, the sub-word approach allowed correctly recognizing
42.4% ± 1.5 of the OOV words.
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Figure 17. Results obtained by the CRNN word-based system using n-gram language models with
size n = {1, . . . , 6}.
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Figure 18. Results obtained by the CRNN sub-word-based system using n-gram language models with
size n = {1, . . . , 6}.

Figure 19 presents the results obtained with the CRNN system using character n-gram LM. As in
the previous character-based experiments, similar results are obtained for n ≥ 6, and the overall best
result was obtained with a 10-gram character language model (a WER equal to 14.0% ± 0.3 and a CER
equal to 3.0% ± 0.1). Regarding the recognition of OOV words, this approach was able to recognize
correctly 69.2% ± 1.1 of the OOV words using no external resource or dictionary, but a character
language model only.

Table 5 presents a summary of the obtained best results for the test experiments for
the CRNN system. As can be observed, the use of deep optical models allows one to obtain
a statistically-significant relative improvement of 59.2% over the HMM system (43.9%± 0.5) in terms of
WER and 81.1% statistically-significant relative improvement over the HMM system in terms of CER.
Regarding OOV words, 21.5% of OOV words, which correspond to words followed by punctuation
marks, are well recognized. It should be noted that these results are also significantly better than those
obtained by the HMM system in the closed vocabulary experiments (Figures 11–13).

The use of sub-word units performs better than using words. In this case, the use of a four-gram
LM trained with hyphenated words allowed obtaining statistically-significant improvements over
the use of a three-gram LM of full words. However, the overall best results are obtained by using
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the character-based approach: a WER equal to 14.0% ± 0.3, a CER equal to 3.0% ± 0.1 and an OOV
WAR equal to 69.2% ± 1.1. These results confirm the interest of working at the character level for
transcribing historical manuscripts.
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Figure 19. Results obtained by the CRNN character-based system using n-gram language models with
size n = {1, . . . , 15}.

Table 5. Overall best results on the Rodrigo test set in terms of WER, CER and OOV WAR for
the CRNN system.

Measure
Word Sub-Word Character

3-gram 4-gram 10-gram

WER 17.9% ± 0.4 14.8% ± 0.3 14.0% ± 0.3
CER 4.0% ± 0.1 3.4% ± 0.1 3.0% ± 0.1

OOV WAR 21.5% ± 1.0 42.4% ± 1.5 69.2% ± 1.1

5. Conclusions

In this paper, we deal with the transcription of historical documents, for which no external
linguistic resources are available. We have developed various HTR systems that model language at
word and sub-lexical levels. We have shown that character-based language modeling performs best.

The strengths of the proposed work are:

• comparing several types of HTR systems (HMM-based, RNN-based).
• proposing a state-of-the-art HTR system for the transcription of ancient Spanish documents whose

optical part is based on very deep nets (CRNNs).
• proposing to associate the optical HTR system with a dictionary and a language model based on

sub-lexical units. These units are shown to be efficient in order to cope with OOV words.
• reaching with such optical and LM HTR components the best overall recognition results on

a publicly available Spanish historical dataset of document images.

In future work, we would like to extend this work using other kinds of language models, such as
models based on RNN.
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Appendix A. Some Recognition Examples

This Appendix presents some recognition examples. Figures A1–A3 present the best hypothesis
obtained for several lines of the Rodrigo corpus in the open vocabulary experiments, by using a 3-gram
word-based LM, a 4-gram sub-word-based LM and a 10-gram character-based LM.

Text Image

Text Reference muerte e peor merescia el por quanto passara el mandami
Word-based 1-best me & peor matara el por quanto pagana el manda

Sub-word-based 1-best mun do <SPACE> & <SPACE> por <SPACE> ma ta ra <SPACE> el <SPACE> por <SPACE>
quan to <SPACE> pa ga na <SPACE> el <SPACE> man da <SPACE>
mundo & por matara el por quanto pagana el manda

Character-based 1-best
m u c h o <SPACE> & <SPACE> p o r <SPACE> m e r e s c i a <SPACE> e l <SPACE>
p o r <SPACE> q u a n t o <SPACE> p a g a u a <SPACE> e l <SPACE> m a n d a m i
mucho & por merescia el por quanto pagaua el mandami

Figure A1. Example of the best hypotheses obtained for the 12th line of page 500 of Rodrigo.

Text Image

Text Reference portugal.

Word-based 1-best portugal.
portugal.

Sub-word-based 1-best pe tu gal zo
petugalzo

Character-based 1-best p o r t u g a z
portugaz

Figure A2. Example of the best hypotheses obtained for the 9th line of page 619 of Rodrigo.

Text Image

Text Reference maron lo cauallero e seyendo Cauallero enfermo muy mal
Word-based 1-best non lo Cauallero & seyendo Cauallero enfermo muy dia

Sub-word-based 1-best na ron <SPACE> la <SPACE> Caua lle ro <SPACE> & <SPACE> se yen do <SPACE>
Caua lle ro <SPACE> en fer mo <SPACE> muy <SPACE> dia <SPACE>
naron la Cauallero & seyendo Cauallero enfermo muy dia

Character-based 1-best
m a r o n <SPACE> l a <SPACE> c a u a l l e r o <SPACE> & <SPACE> s e y e n d o
<SPACE> C a u a l l e r o <SPACE> e n f e r m o <SPACE> m u y <SPACE> m a l
maron la cauallero & seyendo Cauallero enfermo muy mal

Figure A3. Example of the best hypotheses obtained for the 4th line of page 514 of Rodrigo.
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Abstract: Script identification is an essential step in document image processing especially when
the environment is multi-script/multilingual. Till date researchers have developed several methods
for the said problem. For this kind of complex pattern recognition problem, it is always difficult to
decide which classifier would be the best choice. Moreover, it is also true that different classifiers
offer complementary information about the patterns to be classified. Therefore, combining classifiers,
in an intelligent way, can be beneficial compared to using any single classifier. Keeping these
facts in mind, in this paper, information provided by one shape based and two texture based
features are combined using classifier combination techniques for script recognition (word-level)
purpose from the handwritten document images. CMATERdb8.4.1 contains 7200 handwritten word
samples belonging to 12 Indic scripts (600 per script) and the database is made freely available
at https://code.google.com/p/cmaterdb/. The word samples from the mentioned database are
classified based on the confidence scores provided by Multi-Layer Perceptron (MLP) classifier. Major
classifier combination techniques including majority voting, Borda count, sum rule, product rule,
max rule, Dempster-Shafer (DS) rule of combination and secondary classifiers are evaluated for this
pattern recognition problem. Maximum accuracy of 98.45% is achieved with an improvement of 7%
over the best performing individual classifier being reported on the validation set.

Keywords: Classifier combination; Dempster-Shafer theory of evidence; Indic script identification;
Histograms of Oriented Gradients; Modified Log-Gabor filter transform; Elliptical features

1. Introduction

In the domain of document images processing, Optical Character Recognition (OCR) systems
are, in general, developed keeping a particular script in mind, which implies that such systems can
read characters written in a specific script only. This is because the number of characters, shape of the
characters or the writing style of using a particular character set is so different that designing a common
feature set applicable for recognizing any character set is practically impossible. As an alternative,
a pool of OCR systems that correspond to different scripts [1] can be used to solve this said problem.
This statement infers that before the document images are fed to an OCR system, it is required to
identify the script in which the document is written so that those document images can be suitably
converted into a computer-editable format using that OCR system. This summarizes the problem of
script identification. There are some important applications of script identification system such as
automatic archiving as well as indexing of multi-script documents, searching required information
from digitized archives of multi-scripts document images.

In this paper, script identification from handwritten document images written in different scripts
is considered. In this regard, it is to be noted that hurdles are multi-fold when handwritten document
images are considered compared to its printed counterpart. The main difficulty which researchers
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need to deal with is the non-uniformity of the shape and size of the characters written by different
writers. Along with these, problems like skew, slant etc. are commonly seen in handwritten documents.
Even the paper and ink qualities make things much difficult. Apart from the intrinsic complexities of
handwritings, similarities among the characters belonging to different script augment the challenges
of script recognition from the handwritten document images. It is worth mentioning that, usually,
script recognition is performed at page, text-line or at word level. But in this paper, this is done at
word-level because of two reasons: (a) feature extraction at word-level is less time consuming than at
page or at text-line level and (b) sometimes, it is seen that a single document page or a single text line
contains multiple scripts. In that case, word-level script identification is appropriate.

Script recognition articles for handwritten documents are relatively limited in comparison to
its printed counterpart. Ubul et al. [2] comprehensively showed the state-of-the-art performance
results for different identification, feature extraction and classification methodologies involved in
the process. Recently, Singh et al. [1] provided a survey considering various feature extraction and
classification techniques associated with the offline script identification of the Indic scripts. Spitz [3]
proposed a method for distinguishing between Asian and European languages by analysing the
connected components. Tan et al. [4] developed a method based on texture analysis for automatic
script identification from document images using multiple channel (Gabor) filters and Gray level
co-occurrence matrices(GLCM) for seven languages: Chinese, English, Greek, Koreans, Malayalam, Persian
and Russian. Hochberg et al. [5,6] described an algorithm for script and language identification from
handwritten document images using statistical features based on connected component analysis.
Wood et al. [7] demonstrated a projection profile method to determine Roman, Russian, Arabic, Korean
and Chinese characters. Chaudhuri et al. [8] discussed an OCR system to read two Indian languages viz.,
Bangla and Devanagari (Hindi). Pal et al. [9] proposed an algorithm for word-wise script identification
from document containing English, Devanagari and Telugu text, based on conventional and water
reservoir features. Chaudhury et al. [10] proposed a method for identification of Indian languages by
combining Gabor filter based techniques and direction distance histogram classifier for Hindi, English,
Malayalam, Bengali, Telugu and Urdu. Some analysis of the variability involved in the multi-script
signature recognition problem as compared to the single-script scenario is discussed in [11,12].

Various classification algorithms are applied for different pattern recognition problems and the
same fact also applies to the script recognition problem. Till date, for Indic script recognition purpose,
different classifiers have been used such as k-Nearest Neighbours (k-NN) [13,14], Linear Discriminant
Analysis (LDA) [15], Neural Networks (NN) [15,16], Support Vector Machine (SVM) [16,17], Tree
based classifier [18,19], Simple Logistic [20] and MLP [21,22]. Though good results have already
been achieved in this pattern recognition task but with a single classifier it is still hard to achieve
acceptable accuracy. Studies expose that the fusion of multiple classifiers can be a viable solution to
get better classification results as the error amassed by any single classifier is generally compensated
using information from other classifiers. The reason for this is that different classifiers may offer
complementary information about the patterns under consideration. Based on this fact, since long,
a section of researchers has focused on devising different algorithms for combining classifiers in
an intelligent way so that the combination can achieve better results than any of the individual
classifier used for combining. The key idea is that instead of relying on a single decision maker,
all the designs or their subsets are applied for the decision making by combining their individual
beliefs in order to come up with a consensus decision. This fact motivates many researchers to
apply the classifier combination methods to different pattern recognition problems. The popular
methodologies for classifier combination include: Majority Voting [23,24], Subset-combining and
re-ranking approach [25], Statistical model [26], Bayesian Belief Integration [27], Combination based
on DS theory of evidence [27,28] and Neural Network combinator [29].

But till date, classifier combination approach for script recognition problem, either handwritten
or printed, has not been tested much, though it has enormous potential. To bridge this research gap,
this paper applies different classifier combination techniques in the field of Indic script recognition.
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The main contribution of the present work is the comprehensive evaluation of the major classifier
combination approaches which are either rule based or apply a secondary classifier for information
fusion. The motivation is to improve the classification accuracy at the word-level handwritten script
recognition by combining the results of the best performing classifier on three previously used feature
sets. It is a multi-class classification problem and in the present case, 12 officially used Indic-scripts are
considered which are: Devanagari, Bangla, Odia, Gujarati, Gurumukhi, Tamil, Telugu, Kannada, Malayalam,
Manipuri, Urdu and Roman. Three different sets of feature vectors based on both shape and texture
analysis have been estimated from each of the handwritten word images. Identification of the scripts
in which the word images are written, is done with these feature values by feeding the same into
different MLP classifiers. Soft-decisions provided by the individual classifiers are then combined using
an array of classifier combination techniques. This kind of work is implemented for the first time
assuming the number of Indic scripts undertaken and the range of combination techniques applied.
The system developed for the script recognition task here, is a part of the general framework where
different feature sets and classifier outputs can be modelled into a single system without much increase
in the computation involved. Block diagram of the present work is shown in Figure 1.

 

Figure 1. Schematic diagram of the proposed methodology.

2. Feature Extraction

In this paper, three popular feature extraction methodologies have been used for the combination
namely, Elliptical Features [21], Histogram of Oriented Gradients (HOG) [30] and Modified log-Gabor
filter transform [20]. The first feature set is applied to capture the overall structure present in the script
word images whereas the rest two feature sets deal with the texture of the same. These features have
already provided satisfactory results to this challenging task of handwritten script identification.

2.1. Elliptical Features

The word images are generally found to be elongated in nature which can better covered by an
ellipse. That is why; elliptical features are extracted from the contour and the local regions of a word
image so that it is easier to isolate a particular script. Two more important notations used in this
subsection are: (a) Pixel ratio (Pr) and (b) Pixel count (Pc). Pr is defined as the ratio of the number of
contour pixels (object) to the number of background pixels and the pixel count whereas Pc is defined
as the number of contour pixels. The features are described in detail:

2.1.1. Maximum Inscribed Ellipse

The height and width of the bounding box are calculated for each word image. A representative
ellipse is then inscribed (considering the orientation of the ellipse) inside this bounding box having
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major and minor axes equal to the width and the height of the bounding box and the centre of an ellipse
is also the centre of the corresponding bounding box. This ellipse divides the word image into eight
regions Ri, I = 1, 2 . . . , 8. The bounding box along with the inscribed ellipse for a handwritten Bangla
word image are shown in Figure 2b. Taking the values of Pr from these eight regions, as shown in
Figure 2a, eight features (F1–F8) for each handwritten word image are estimated. Now, another type of
feature, Pcalong N (N = 8 for the present work) lines parallel to major/minor axis of the representative
ellipse are computed. The mean and standard deviation of the values of Pcalong major/minor axis are
taken as four additional features (F9–F12).

Figure 2. Illustration of fitting (a) an imaginary ellipse inside the minimum boundary box which
divides a Bangla handwritten word image in 8 regions as shown in (b).

2.1.2. Sectional Inscribed Ellipse

Each of the word images surrounded by the minimum bounding box is again divided into four
equal rectangles and a representative ellipse is fit into each of these rectangles using the same procedure
as described in the previous subsection. As a result, every ellipse produces eight regions inside its
rectangular area namely, Rij where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 8 which makes 8 × 4 = 32 regions in
total. A total of 32 feature values (F13–F44) using the Pr values is computed from the 32 ellipses in
similar fashion.

2.1.3. Concentric Ellipses

These feature values are computed by taking the entire topology of the word image. A primary
ellipse is made circumscribing the word image with centre taken to be the midpoint of its minimum
bounding box. The values of the major and minor axes of the ellipse are taken into consideration.
After fitting the primary ellipse, three concentric ellipses are drawn inside the primary ellipse having
the same centre point as the primary ellipse and major and minor axes equal to 1/4th, 2/4th and 3/4th
of major and minor axes of the primary ellipse respectively. These four ellipses divide each of the
word images into four regions- Re1, Re2, Re3 and Re4. The partitioning of the four regions on a sample
handwritten Devanagari word image is shown in Figure 3. From the four regions, four features values
(F45–F48) considering the Pr’s and four feature values (F49–F52) considering the Pc’s of the regions Re1,
Re2, Re3 and Re4 are estimated. The remaining six features (i.e., F53–F58) are taken as the corresponding
differences of the Pr’s and Pc’s between the regions Re1 and Re2, Re2 and Re3, Re3 and Re4 respectively.
The elliptical features (F1–F58) are suitably normalized by the height and width of the corresponding
word image.

 

Figure 3. Figure showing the elliptical partition of four regions on a sample handwritten Devanagari
word image.
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2.2. Histogram of Oriented Gradients (HOG)

HOG descriptor [31] counts occurrences of gradient orientation in localized portions of an image
which was first proposed for pedestrian detection in steady images. The essential thought behind
the HOG descriptor is that local object appearance and shape within an image can be described by
the distribution of intensity gradients or edge directions. At first, the values of the magnitude and
direction of all the pixels for each of the word images are calculated. Next, each pixel is pigeonholed
in certain category according to its direction which is known as orientation bins. Then, the word
image is divided into n (here n = 10) connected regions, called cells and for each cell, a histogram of
gradient directions or edge orientations is computed for the pixels within the cell. The combination of
these histograms then represents the descriptor. Since the number of orientation bins is taken as 8 for
the present work, an 80-D (i.e., 10 × 8) feature vector has been extracted using HOG descriptor [30].
The magnitude and direction of each pixel of a sample handwritten Telugu word image are also shown
in Figure 4.

  

(a) (b) (c) 

Figure 4. Illustration of: (a) handwritten Telugu word image, (b) its magnitude part and (c) its
direction part.

2.3. Modified Log-Gabor Filter Transform (MLG Transform)

Modified log-Gabor filter transform-based features, proposed in Reference [20], had performed
well in the script classification task and therefore are also chosen as one of the feature descriptors of
our proposed methodology in order to identify the script of the word images. In order to preserve the
spatial information, a Windowed Fourier Transform (WFT) is considered in the present work. WFT
involves multiplication of the image by the window function and the resultant output is followed
by applying the Fourier transform. WFT is basically a convolution of the image with the low-pass
filter. Since for texture analysis, both spatial and frequency information are preferred, the present work
tries to achieve a good trade-off between these two. Gabor transforms use a Gaussian function as the
optimally concentrated function in the spatial as well as in the frequency domain [32]. Due to the
convolution theorem, the filter interpretation of the Gabor transform allows the efficient computation
of the Gabor coefficients by multiplication of the Fourier transformed image with the Fourier transform
of the Gabor filter. The inverse Fourier transform is then applied on the resultant vector to get the
output filtered images.

The images, after low pass filtering, are passed as input to a function that computes Gabor energy
feature from them. The input image is then passed to a function to yield a Gabor array which is the
array equivalent of the image after Gabor filtering. The function displays the image equivalent of the
magnitude and the real part of the Gabor array pixels.

For the present work, both energy and entropy features [33] based on Modified log-Gabor filter
transform have been extracted for 5 scales (1, 2, 3, 4 and 5) and 6 orientations (0◦, 30◦, 60◦, 90◦, 120◦ and
150◦) to capture complementary information found in different script word images. Here, each filter is
convolved with the input image to obtain 60 different representations (response matrices) for a given
input image. Figure 5 shows output images formed after the application of Modified log-Gabor filter
transform for a sample handwritten Bangla word image.
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Figure 5. Output word images of Modified log-Gabor filter transform on a sample handwritten Bangla
word image (shown on left-side) for 5 different scales and 6 different orientations (the first row shows
the output for no = 00 and five scales, the second row shows the output for no = 300 and five scales
and so on).

3. Classifier Combination

Classifier combination tries to improve on the task of pattern recognition performance through
mathematical models. The outputs of classifiers can be represented as vectors of numbers where the
dimension of vectors is equal to the number of classes. As a result, the combination problem can be
defined as a problem of finding the combination function accepting N-dimensional score vectors from
M classifiers and outputting N final classification scores (see Figure 6), where the function tries to
minimize the misclassification cost.

 

Figure 6. Classifier combination takes a set of sj
i score for class i by classifier j and produces combination

scores Si for each class i [34].
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The field of classifier combination can be grouped into different categories [35] based on the stage
at which the process is applied, type of information (classifier output) being fused and the number
and type of classifiers being combined.

Based on the operating level of the classifiers, classifier combination can be done at the feature
level. Multiple features can be joined to provide a new feature set which provide more information
about the classes. But with the increase in dimensionality of the data, training becomes expensive.

The classifier outputs after the extraction of the individual feature sets can be combined to provide
better insights at the decision level. Decision level combination techniques are popular as it cannot
need any understanding of the ideas behind the feature generation and classification algorithms.

Feature level combination is performed by concatenating the feature sets in all possible
combinations and passing it through the base classifier, MLP in this case. Apart from that, all the other
combination processes worked out operate at the decision level.

Classifier combination can also be classified by the outputs of the classifiers used in the
combination. Three types of classifier outputs are usually considered [36]:

• Type I (Abstract level): This is the lowest level in a sense that the classifier provides the least
amount of information on this level. Classifier output is a single class label informing the decision
of the classifier.

• Type II (Rank level): Classifier output on the rank level is an ordered sequence of candidate
classes, the so-called n-best list. The candidate classes are ordered from the most likely class at the
front and the least likely class index featuring at the last of the list. There are no confidence
scores attached to the class labels on rank level and the relative positioning provides the
required information.

• Type III (Measurement level): In addition to the ordered n-best lists of candidate classes on the
rank level, classifier output on the measurement level has confidence values assigned to each
entry of the n-best list. These confidences, or scores, are generally real numbers generated using
the internal algorithm for the classifier. This soft-decision information at the measurement level
thus provides more information than the other levels.

In this paper, Type II (rank level) and Type III (measurement level) combination procedures are
worked out because they allow the inculcation of a greater degree of soft-decision information from
the classifiers and find use in most practical applications.

The focus of this paper is to explore the classifier combination techniques on a fixed set of
classifiers. The purpose of the combination algorithm is to learn the behaviour of these classifiers and
produce an efficient combination function based on the classifier outputs. Hence, we use non-ensemble
classifier combinations which try to combine heterogeneous classifiers complementing each other.
The advantage of complementary classifiers is that each classifier can concentrate on its own small sub
problem and together the single larger problem is better understood and solved. The heterogeneous
classifiers, here, are generated by training the same classifier with different feature sets and tuning
them to optimal values of their parameters. This procedure does away with the need for normalization
of the confidence scores provided by different classifiers which do not tend to follow a common
standard and depend of the algorithm. For example, in the MLP classifier used here, the last layer has
each node containing a final score for one class. These scores can then be used for the rank level and
decision level combination along with the maximum being chosen for the individual classifier decision.

In the next sub-section, the set of major classification algorithms evaluated in this paper are
categorized into two approaches based on how the combination process is implemented. In the
first approach, rule based combination practices are demonstrated that apply a given function to
combine the classifier confidences into a single set of output scores. The second approach employs
another classifier, called the ‘secondary’ classifier that operates on the outputs of the base classifier
and automatically account for the strengths of the participants. The classification algorithm is trained
on these confidence values with output classes same as the original pattern recognition problem.
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Essentially, both the approaches apply a function on the confidence score inputs, where the rule based
functions are simpler operations like sum rule, max rule, etc. and classifiers like k-NN and MLP apply
more complicated functions.

3.1. Rule Based Combination Techniques

Rules are applied on the abstract level, rank level and measurement level outputs from the
classifiers to obtain a final set of confidence scores that can take into account the insights provided by
the previous stage of classification. Elementary combination approaches like majority voting, Borda
count, sum rule, product rule and the max rule come under this approach of classifier combination. DS
theory of evidence is a relatively complex technique that is adopted for this purpose, utilising the rule
of combination for information sources with the same frame of discernment.

3.1.1. Majority Voting

A straightforward voting technique is majority voting operating at the abstract level. It considers
only the decision class provided by each classifier and chooses the most frequent class label among
this set. In order to reduce the number of ties, the number of classifiers used for voting is usually odd.

3.1.2. Borda Count

Borda count is a voting technique on rank level [37]. For every class, Borda count adds the ranks
in the n-best lists of each classifier so that for every output class the ranks across the classifier outputs
get accumulated. The class with the most likely class label, contributes the highest rank number and
the last entry has the lowest rank number. The final output label for a given test pattern X is the class
with highest overall rank sum. In mathematical terms, this reads as follows: Let N be the number of
classifiers and rj

i the rank of class i in the n-best list of the j-th classifier. The overall rank ri of class i is
thus given by

ri =
N

∑
j=1

rj
i (1)

The test pattern X is assigned the class i with the maximum overall rank count ri. Borda count
is very simple to compute and requires no training. There is also a trainable variant that associates
weights to the ranks of individual classifiers. The overall rank count for class i is then computed as
given below

ri =
N

∑
j=1

wjr
j
i (2)

The weights can be the performance of each individual classifier measured on a training or
validation set.

3.1.3. Elementary Combination Approaches on Measurement Level

Elementary combination schemes on measurement level apply simple rules for combination, such
as sum rule, product rule and max rule. Sum rule simply adds the score provided by each classifier
from a set of classifier for every class and assigns the class label with the maximum score to the given
input pattern. Similarly, product rule multiplies the score for every class and then outputs the class
with the maximum score. The max rule predicts the output by the selecting the class corresponding to
the maximum confidence value among all the participating classifiers’ output scores.

Interesting theoretical results, including error estimations, have been derived for these simple
combination schemes. Kittler et al. showed that sum rule is less sensitive to noise than other rules [38].
Despite their simplicity, simple combination schemes have resulted in high recognition rates and
shown comparable results to the more complex procedures.
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3.1.4. Dempster-Shafer Theory of Evidence

The DS framework [39] is based on the view whereby propositions are represented as subsets of
a given set W, referred to as a frame of discernment. Evidence can be associated to each proposition
(subset) to express the uncertainty (belief) that has been observed or discerned. Evidence is usually
computed based on a density function m called Basic Probability Assignment (BPA) and m(p)
represents the belief exactly committed to the proposition p.

DS theory has an operation called Dempster’s rule of combination that aggregates two (or more)
bodies of evidence defined within the same frame of discernment into one body of evidence. Let m1

and m2 be two BPAs defined in W. The new body of evidence is defined by the BPAm1,2 as:

m1,2(A) =

{
0 i f A = ∅

1
1−K ∑

B∩C=A
m1(B)m2(C) i f A �= ∅

(3)

where, K = ∑B∩C=∅m1(B)m2(C) and A is the intersection of subsets B and C.
In other words, the Dempster’s combination rule computes a measure of agreement between two

bodies of evidence concerning various propositions determined from a common frame of discernment.
The rule focuses only on those propositions that both bodies of evidence support.

The denominator is a normalization factor that ensures that m is a BPA, called the conflict.
The Yagar’s modification of the DS theory [40] has been implemented in the paper with the normalizing
factor as 1. This reduces some of the issues regarding the conflict factor.

Earlier, DS theory based combination has been applied on different fields like handwritten
digit recognition [41], skin detection [42], 3D palm print recognition [43] among other pattern
recognition domains.

3.2. Secondary Classifier Based Combination Techniques

The confidence values provided by the classifiers act as the feature set for the secondary classifier
which acts on the second stage of the framework. With the training from the classifier scores, it learns
to predict the outcome for a set of new confidence scores from the same set of classifiers. The advantage
of using such a generic combinator is that it can learn the combination algorithm and can automatically
account for the strengths and score ranges of the individual classifiers. For example, Dar-Shyang
Lee [29] used a neural network to operate on the outputs of the individual classifiers and to produce
the combined matching score. Apart from the neural network, other classifiers like k-NN, SVM and
Random Forest have been fitted and tested in this paper.

4. Results and Interpretation

4.1. Preparation of Database

At present, no standard benchmark database of handwritten Indic scripts is freely available in the
public domain. Hence, we have created our own database of handwritten documents in the laboratory.
The document pages for the database were collected from different sources on request. Participants
of this data collection drive were asked to write few lines on A-4 size pages. No other restrictions
were imposed regarding the content of the textual materials. The documents were written in 12 official
scripts of India. The document pages are digitized at 300 dpi resolution and stored as grey tone images.
The scanned images may contain noisy pixels which are removed by applying Gaussian filter [33].
The text words are automatically extracted from the handwritten documents by using a page-to-word
segmentation algorithm described in [44]. A sample snapshot of word images written in 12 different
scripts is shown in Figure 7. Finally, a total of 7200 handwritten word images are prepared, with exactly
600 text words per script.
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Figure 7. Sample word images written in 12 different Indian scripts.

Our developed database has been named as CMATERdb8.4.1, where CMATER stands for ‘Centre
for Microprocessor Applications for Training Education and Research,’ a research laboratory at
Computer Science and Engineering Department of Jadavpur University, India, where the current
database is prepared. Here, db symbolizes database, the numeric value 8 represents handwritten
multi-script Indic image database and the value 4 indicates word-level. In the present work, the first
version of CMATERdb8.4 has been released as CMATERdb8.4.1. The database is made freely available
at https://code.google.com/p/cmaterdb/.

4.2. Performance Analysis

The classifier combination approaches, described above, are applied on a dataset of 7200 words
divided into 12 classes with equal number of instances in each of them. 12 classes refer to the 12 Indic
scripts that have been studied before and for which the MLP classifier results can be obtained with
high accuracy. The classes numbered from A to L are Devanagari, Bangla, Oriya, Gujarati, Gurumukhi,
Tamil, Telugu, Kannada, Malayalam, Manipuri, Urdu and Roman in that particular order.
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First, the confusion matrix that is obtained from the MLP based classifier on the dataset by using
MLG feature along with the overall accuracy is presented. Then, the result generated by the same
classifier on the HOG and Elliptical feature sets applied on the same dataset is also presented. Results
have been cross-validated for the classifier parameter values to obtain the optimal results for the
dataset and the values are provided in the result section.

The MLG feature set consisting of 60 feature values for every input image is fed into the MLP
classifier with 30 hidden layer neurons and a learning rate of 0.8. Here, 500 iterations are allowed with
an error tolerance of 0.1. The overall accuracy obtained is 91.42% and the confusion matrix generated
in this case is given in Table 1. The R column in the table refers to the rejection of the input by the
recognition module but the class confidences that are associated with them get accounted for during
the combination process.

The HOG feature set, consisting of 80 feature values for every input data, is fed into the MLP
classifier with 40 hidden layer neurons and a learning rate of 0.8. Same error tolerance and the number
of iterations, as applied in case of MLG features, are allowed here. A maximum recognition accuracy
of 78.04% has been noted. The confusion matrix is shown in Table 2.

The Elliptical feature set containing 58 feature values derived from each image data forms the
training set for the MLP classifier with 30 hidden neurons with a learning rate of 0.7. The error
tolerance and number of iterations remain the same as the previous cases. An accuracy of 79.2% is
achieved and represented in the confusion matrix given in Table 3.

Table 1. Classification results for HOG feature set with MLP Classifier.

Class
Class

A B C D E F G H I J K L R

A 345 9 6 22 13 21 64 42 27 0 44 7 27
B 27 548 0 7 9 0 1 0 1 0 7 0 0
C 0 0 557 0 6 13 1 19 2 1 0 1 38
D 38 4 0 516 3 3 4 0 9 0 20 3 10
E 10 6 1 12 449 26 5 2 0 0 13 76 30
F 30 0 23 3 46 417 33 36 6 1 4 1 27
G 27 2 15 10 12 16 446 34 12 1 24 1 10
H 10 0 27 17 16 41 8 420 28 11 14 8 38
I 38 2 4 16 0 10 34 33 455 0 8 0 0
J 0 0 17 0 7 0 0 16 0 553 1 6 38
K 38 6 5 35 22 14 42 31 0 2 404 1 2
L 2 2 14 6 15 24 1 9 0 13 5 509 0

Table 2. Classification results for MLG feature set with MLP Classifier.

Class
Class

A B C D E F G H I J K L R

A 528 0 2 13 1 1 19 9 5 0 12 10 0
B 0 576 0 6 0 0 0 0 0 0 3 15 1
C 1 0 596 0 0 0 1 1 1 0 0 0 2
D 2 9 0 574 0 0 0 0 1 0 0 14 0
E 0 0 0 0 592 6 0 1 0 0 0 1 0
F 0 0 2 0 16 553 0 20 0 9 0 0 4
G 4 0 9 3 0 1 528 15 26 0 10 4 7
H 7 0 5 0 5 30 8 512 16 1 8 8 12
I 12 0 7 1 0 0 12 2 560 0 4 2 0
J 0 0 0 0 3 4 0 5 0 588 0 0 19
K 19 3 1 7 2 0 24 2 4 0 527 11 3
L 3 2 25 29 24 9 4 21 18 4 13 448 0
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Table 3. Classification results for Elliptical feature set with MLP Classifier.

Class
Class

A B C D E F G H I J K L R

A 355 29 49 48 0 25 3 4 42 10 6 29 2
B 2 550 0 7 0 1 32 0 0 0 0 8 27
C 27 0 479 8 1 19 2 11 31 1 8 13 32
D 32 9 0 514 0 13 23 0 3 2 4 0 66
E 66 1 2 1 441 42 4 7 10 20 4 2 96
F 96 3 6 15 6 397 16 4 19 12 14 12 55
G 55 13 7 54 6 17 402 1 3 19 22 1 25
H 25 0 2 3 0 26 0 491 28 10 4 11 7
I 7 0 23 3 33 8 7 3 493 10 4 9 0
J 0 0 1 0 16 5 2 2 9 553 6 6 2
K 2 0 16 7 1 7 12 0 2 7 546 0 8
L 8 22 1 0 6 6 20 13 6 9 1 508 0

Now, the confidence values provided to the classes for every input data by the classifiers on the
three sets of features form the input for the classifier combination procedures. The confusion matrix
resulting from the Majority voting procedure is presented in Table 4. An overall accuracy of 95.6% is
achieved on this dataset containing 7200 samples divided equally among the 12 script classes. It is seen
that Devanagari script has got the least accuracy and gets confused with Telugu whereas high accuracies
are shown for Manipuri and Odia and Bangla.

Borda count algorithm gives an accuracy of 93.5% which is an increase of 2.1% over the best
performing individual classifier. It provides the highest recognition rate for Devanagari among all the
combination schemes and good accuracies for other popular scripts like Bangla and Odia and hence
can be the preferred choice for wide usage. The trainable version of the algorithm with weights based
on overall accuracy of the classifiers improves the results further. The increase is 2.9% with satisfactory
results for scripts like Telugu, Kannada and Urdu. The accuracy for the Gurumukhi script remains low
irrespective of the weights. The results are presented in Tables 5 and 6.

The simple rules at the measurement level to combine the decisions provide good results in the
present work. The sum rule attains an accuracy of 97.76% with almost close to perfect recognition
for Urdu, Gurumukhi and Roman. The product rule and max rule have accuracies of 95.73% and
94.60% respectively. Highest accuracy is found for Odia script whereas product rule suffers in case of
Gurumukhi and max rule in case of Devanagari. The results for the elementary rules of combination are
tabulated in Tables 7–9.

Sum rule outperforms all other rule based combination approaches in this work and testifies the
results presented by Kittler et al. mentioned in [38] by being less prone to noise and unclean data.
The DS theory results combine the results, two at a time and then all three together. The class-wise
performance based BPA, which outperforms the global performance based BPA, has been implemented
for the multi-classifier combination using the DS theory [45]. The rule applied for this process is
quasi-associative and hence the results of combining two sources cannot be combined with the third.
The rule has to be extended to include all the three sources together. Results for the combination of the
classifier results on HOG and Elliptical features, MLG and Elliptical features, and, HOG and MLG
features are presented in Tables 10, 11 and 12respectively. The combination result including all the
three sources of information is given in Table 13.

There is no improvement shown by the combination of the results from MLG and HOG feature
sets. But when the Elliptical feature set is involved in the combination process there is much
improvement over the participating classifiers. Overall accuracies of 91.2% and 97.04% are achieved
by combining sources having 78.1% and 79.4% accuracies and 91.4% and 79.4% accuracies respectively.
So, improvements of 6% and 10% are found by applying the DS theory of evidence. Combining all
three, an accuracy of 95.64%, more than 4% over the better performing classifier is seen. In both the
schemes all the script classes have accuracies over 90% and with almost 100% accuracy for certain
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scripts like Manipuri, Gujarati and Urdu, thus proving to be the model to be used where these scripts
are widely used.

In order to understand why the results from the Elliptical feature set combine so well with the
two other feature sets, correlation analysis is performed on the confidence score outputs. Spearman
rank correlation is done on the rank level information provided by the classifiers to arrive at mean
values for the measure of the correlation. HOG and MLG show an index of 0.619 which is almost the
double of the scores obtained by comparing the Elliptical features with these two. With values of 0.32
and 0.27, the low correlation index is an indication of better possibilities for the combination processes.
Thus, complementary information is provided by the output of Elliptical feature set which helps in the
improvement the overall combined accuracy.

Secondary classifiers are applied to learn the patterns from the primary classifier outputs and
develop a way to combine them. The confidence scores from the three sources are concatenated to form
a larger training set with its correct label. This set is the new feature set which undergoes classification
using well-known algorithms. Classifiers like k-NN, Logistic Regression, MLP and Random Forest are
applied to report final results which are tabulated in Tables 14–17 respectively. The results are reported
after 3-fold cross validation and tuning of the parameters involved. This process is computationally
costly and takes a processing step along with much higher complexity but is compensated by the high
accuracy results that are obtained. 3-NN provides an accuracy of 98.30%, Random Forest classified
98.33% of the 7200 samples correctly and Logistic Regression attained 98.48% accuracy. Using MLP
again as the secondary classifier, 98.36% accuracy is obtained. Devanagari is the most confused script in
all the cases but still has accuracy over 95%. The other scripts are predicted to almost certainty.

Table 4. Classification results after combination using Majority voting procedure.

Class
Class

A B C D E F G H I J K L

A 534 2 3 10 3 2 16 7 13 0 5 5
B 1 590 0 3 0 0 0 0 0 0 0 6
C 0 0 597 0 0 2 0 0 1 0 0 0
D 2 3 0 590 0 0 0 0 0 0 2 3
E 0 1 0 0 591 2 0 0 0 1 0 5
F 12 0 5 0 13 561 1 7 1 0 0 0
G 2 0 6 4 5 1 554 14 7 3 4 0
H 4 0 4 3 1 6 0 567 7 2 5 1
I 9 1 1 2 0 1 7 2 572 0 5 0
J 0 0 1 0 2 0 0 3 0 594 0 0
K 4 0 2 5 4 1 10 4 1 0 567 2
L 0 2 10 3 6 2 1 1 1 5 3 566

Table 5. Classification results after combination using Borda count procedure without weight.

Class
Class

A B C D E F G H I J K L

A 567 0 5 7 0 0 5 4 7 0 3 2
B 16 580 0 4 0 0 0 0 0 0 0 0
C 1 0 586 0 0 5 0 4 3 0 0 1
D 25 1 0 572 0 0 0 0 0 0 1 1
E 6 0 0 0 466 108 0 11 1 0 0 8
F 16 0 2 0 7 571 0 1 1 1 0 1
G 25 0 4 2 0 2 548 3 1 0 15 0
H 30 0 5 0 0 21 0 533 6 0 1 4
I 39 0 2 1 0 2 6 6 540 0 4 0
J 0 0 2 0 2 0 0 7 0 589 0 0
K 5 0 0 3 0 0 12 0 1 0 579 0
L 4 0 10 2 2 4 0 1 3 3 3 568
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Table 6. Classification results after combination using Borda count procedure using weight.

Class
Class

A B C D E F G H I J K L

A 563 0 4 7 0 0 8 6 7 0 3 2
B 14 582 0 4 0 0 0 0 0 0 0 0
C 0 0 586 0 0 5 0 5 3 0 0 1
D 15 2 0 580 0 0 0 0 0 0 2 1
E 5 0 0 0 466 102 0 17 2 0 0 8
F 13 0 0 0 6 576 0 2 1 1 0 1
G 14 0 3 2 0 1 558 3 1 0 18 0
H 22 0 5 0 0 14 0 546 6 0 1 6
I 30 0 2 1 0 1 6 5 551 0 4 0
J 0 0 2 0 2 0 0 6 0 590 0 0
K 2 0 0 2 0 0 9 0 0 0 587 0
L 4 0 10 1 2 4 0 1 2 3 3 570

Table 7. Classification result after combination using Sum rule.

Class
Class

A B C D E F G H I J K L

A 549 1 4 6 0 1 13 10 11 0 3 2
B 3 589 0 2 0 0 0 0 0 0 1 5
C 0 0 597 0 0 1 0 1 1 0 0 0
D 1 3 0 593 0 0 0 0 0 0 0 3
E 0 0 0 0 595 2 0 0 0 0 0 3
F 6 0 2 0 8 576 0 7 0 0 0 1
G 3 0 5 3 1 0 568 10 3 2 5 0
H 2 0 2 0 0 5 0 582 4 1 3 1
I 16 0 1 1 0 1 6 3 569 0 3 0
J 0 0 0 0 0 0 0 1 0 599 0 0
K 0 0 0 2 2 0 5 3 0 0 588 0
L 1 0 6 1 3 0 0 0 1 3 2 583

Table 8. Classification result after combination using Product rule.

Class
Class

A B C D E F G H I J K L

A 566 0 4 6 0 0 6 6 9 0 1 2
B 7 584 0 8 0 0 0 0 1 0 0 0
C 0 0 597 0 0 2 0 0 1 0 0 0
D 5 2 0 591 0 0 0 0 0 0 1 1
E 4 0 0 0 467 97 0 10 2 0 7 13
F 8 0 0 0 5 582 0 3 0 1 0 1
G 5 0 2 2 0 1 578 3 1 0 8 0
H 12 0 4 0 0 15 0 562 4 0 0 3
I 31 0 0 0 0 1 8 2 556 0 2 0
J 0 0 1 0 1 0 0 4 0 594 0 0
K 2 0 0 1 0 0 4 0 0 0 593 0
L 2 0 2 0 0 1 0 1 0 2 3 589
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Table 9. Classification result after combination using Max rule.

Class
Class

A B C D E F G H I J K L

A 512 6 4 13 4 2 17 13 17 0 8 4
B 1 587 0 3 0 0 2 0 0 0 0 7
C 0 0 599 0 1 0 0 0 0 0 0 0
D 2 5 0 580 0 0 2 0 3 0 3 5
E 1 1 0 4 566 3 0 1 0 1 0 23
F 7 0 6 0 10 556 2 12 2 1 1 3
G 3 1 6 5 4 1 553 8 7 4 8 0
H 3 0 4 4 1 5 0 566 11 2 3 1
I 8 1 1 1 2 1 6 5 569 0 5 1
J 0 0 1 0 1 0 0 4 0 594 0 0
K 3 1 4 5 6 4 5 6 1 0 564 1
L 0 3 3 9 5 2 2 2 2 5 2 565

Table 10. Classification results after combination using DS theory for HOG and Elliptical features.

Class
Class

A B C D E F G H I J K L

A 512 6 4 13 4 2 17 13 17 0 8 4
B 1 587 0 3 0 0 2 0 0 0 0 7
C 0 0 599 0 1 0 0 0 0 0 0 0
D 2 5 0 580 0 0 2 0 3 0 3 5
E 1 1 0 4 566 3 0 1 0 1 0 23
F 7 0 6 0 10 556 2 12 2 1 1 3
G 3 1 6 5 4 1 553 8 7 4 8 0
H 3 0 4 4 1 5 0 566 11 2 3 1
I 8 1 1 1 2 1 6 5 569 0 5 1
J 0 0 1 0 1 0 0 4 0 594 0 0
K 3 1 4 5 6 4 5 6 1 0 564 1
L 0 3 3 9 5 2 2 2 2 5 2 565

Table 11. Classification results after combination using DS theory for Elliptical and MLG features.

Class
Class

A B C D E F G H I J K L

A 564 0 3 8 0 1 7 4 8 0 0 5
B 0 593 0 1 0 0 0 0 0 0 0 6
C 0 0 600 0 0 0 0 0 0 0 0 0
D 0 7 0 590 0 0 1 0 0 0 0 2
E 1 0 0 0 589 8 0 1 0 1 0 0
F 0 0 0 0 5 580 1 7 0 4 1 2
G 5 0 4 3 0 0 563 3 10 3 8 1
H 3 0 1 0 1 16 0 567 7 2 1 2
I 6 0 1 0 2 0 2 1 583 2 1 2
J 0 0 0 0 0 0 0 0 0 600 0 0
K 1 0 1 0 0 0 5 0 1 0 592 0
L 3 6 3 3 7 0 4 2 2 2 2 566
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Table 12. Classification results after combination using DS theory for HOG and MLG features.

Class
Class

A B C D E F G H I J K L

A 511 2 4 12 5 1 19 19 12 0 8 7
B 6 573 0 5 2 0 0 0 0 0 5 9
C 1 0 590 0 1 1 0 5 2 0 0 0
D 4 4 0 580 0 0 1 0 2 0 4 5
E 3 1 1 6 540 6 0 1 0 0 3 39
F 7 0 5 0 18 549 1 18 0 2 0 0
G 7 1 7 5 2 0 530 21 11 1 13 2
H 10 0 10 6 8 13 4 524 11 5 7 2
I 26 1 2 4 0 0 17 11 535 0 4 0
J 0 0 3 0 5 0 0 9 0 580 0 3
K 22 3 4 11 3 1 15 11 3 2 522 3
L 3 1 19 8 12 4 1 2 2 6 3 539

Table 13. Classification results after combination using DS theory for Elliptical, HOG and MLG features.

Class
Class

A B C D E F G H I J K L

A 548 1 5 7 3 1 12 5 12 0 2 4
B 4 584 0 5 0 0 0 0 0 0 1 6
C 0 0 598 0 0 0 0 1 1 0 0 0
D 5 2 0 592 0 0 0 0 0 0 0 1
E 0 1 0 5 548 22 0 3 1 2 3 15
F 10 1 2 0 5 572 1 6 0 1 0 2
G 10 0 3 3 3 0 556 9 7 1 8 0
H 8 0 4 0 2 8 0 568 4 1 4 1
I 17 1 1 2 0 0 12 3 561 0 3 0
J 0 0 0 0 1 0 0 2 0 597 0 0
K 6 0 1 2 0 2 7 0 0 0 582 0
L 2 1 5 4 2 0 2 0 0 3 1 580

Table 14. Classification results using 3-NN secondary classifier.

Class
Class

A B C D E F G H I J K L

A 573 1 3 5 0 0 8 5 3 0 1 1
B 1 597 0 2 0 0 0 0 0 0 0 0
C 1 0 598 0 0 0 0 0 1 0 0 0
D 1 2 0 595 0 0 0 0 0 0 0 2
E 0 0 0 0 599 1 0 0 0 0 0 0
F 0 0 0 0 4 590 0 5 0 0 0 1
G 7 1 5 3 0 0 571 1 5 1 6 0
H 2 0 0 0 0 9 1 585 1 0 2 0
I 11 0 2 0 0 0 0 0 586 0 1 0
J 0 0 0 0 0 0 0 2 0 598 0 0
K 1 0 0 0 1 0 4 0 0 0 594 0
L 1 0 3 0 1 1 0 1 0 1 0 592
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Table 15. Classification results using Logistic Regression secondary classifier.

Class
Class

A B C D E F G H I J K L

A 583 0 1 2 0 0 5 4 2 0 1 2
B 0 598 0 2 0 0 0 0 0 0 0 0
C 1 0 598 0 0 0 0 0 1 0 0 0
D 1 2 0 594 0 0 0 1 0 0 0 2
E 1 0 0 0 595 3 0 0 0 0 0 1
F 0 0 0 0 4 589 0 5 1 0 0 1
G 4 0 3 2 0 0 578 2 3 0 8 0
H 3 0 0 0 0 6 1 586 1 0 1 2
I 6 0 1 0 0 0 2 3 587 0 1 0
J 0 0 0 0 0 2 0 1 0 596 0 1
K 1 0 0 0 0 0 5 0 0 0 594 0
L 1 0 1 0 2 0 2 1 0 0 0 593

Table 16. Classification results using MLP secondary classifier.

Class
Class

A B C D E F G H I J K L

A 575 1 2 4 0 0 4 4 4 0 2 4
B 1 597 0 2 0 0 0 0 0 0 0 0
C 1 0 598 0 0 0 0 0 1 0 0 0
D 3 2 0 594 0 0 0 1 0 0 0 0
E 0 0 0 0 599 1 0 0 0 0 0 0
F 0 0 0 0 2 594 0 3 0 0 0 1
G 7 1 2 1 3 0 577 0 2 1 6 0
H 4 0 0 0 1 7 1 583 1 1 0 2
I 7 0 2 1 0 0 3 0 586 0 1 0
J 0 0 1 0 0 0 0 0 0 599 0 0
K 0 0 0 0 0 0 7 0 0 0 593 0
L 1 0 0 0 4 0 1 0 0 0 0 594

Table 17. Classification results using Random Forest secondary classifier.

Class
Class

A B C D E F G H I J K L

A 581 0 3 2 0 0 8 1 4 0 0 1
B 0 597 0 2 0 0 1 0 0 0 0 0
C 1 0 595 0 0 0 2 0 1 0 0 1
D 2 2 0 593 0 0 0 0 0 0 0 3
E 0 0 0 0 598 2 0 0 0 0 0 0
F 0 0 0 0 7 585 0 6 0 1 0 1
G 3 0 4 1 0 0 585 1 2 0 4 0
H 4 0 2 0 0 8 0 582 1 0 1 2
I 9 0 1 0 0 0 3 2 584 0 1 0
J 0 0 0 0 0 2 0 2 0 595 0 1
K 0 0 0 0 0 0 6 0 0 0 593 1
L 1 0 4 0 1 0 0 1 0 1 0 592

Script recognition is a difficult task given the variation in the words for a particular script. But the
results are really encouraging for building a model that can identify the script with certainty. The results
obtained after the combination exceeds the reported accuracies for this certain task and hence set the
new benchmark. Table 18 provides the class wise accuracy along with the overall accuracy achieved
by each procedure used in the paper. It shows that the Logistic Regression classifier acting on the MLP
classifier outputs provide the best result where 98.45% accuracy is obtained with an improvement
of 7.05%. Results are also obtained from the feature level combination. Natural combination or
concatenation of two features at a time and all three together are done. The new feature set formed in
each case undergoes the same process of classification through the MLP classifier. The comprehensive
results for comparison are given in the following Table 19.
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5. Conclusions

This is the first application of classifier combination approaches in the domain of script recognition
considering the number of scripts being undertaken and the range of classifier combination procedures
that are evaluated. Combination is performed at the feature level as well as decision level using
abstract level, rank level and measurement level information provided by the classifiers. Encouraging
results are obtained from the experiments. High accuracies in the range of 95–98% have been achieved
by using combination techniques as shown in the previous Result section. There is an increase of
over 7% with the best performing MLP classifier when Logistic Regression is used as the secondary
classifier for 7200 samples from 12 different scripts. So, this model proves to be useful for this complex
pattern recognition problem and makes a better decision based on the information provided by the
base classifier.

Though, in the present work, three sources of information with different feature sets have been
combined using their respective classifier results but this process can be extended to include more
input sources along with different classifier. With the increase in the number of sources, an intelligent
and dynamic selection procedure needs to be employed in order to facilitate combination in a more
meaningful way. The combination being an overhead to the classification task, it is important to
develop methods that can indicate if the combination would work or not qualitatively. In future,
the work can be extended for a larger dataset so that the robustness of the procedures can be established.
The script recognition system here is a general framework which can be applied to other similar pattern
recognition tasks like block and line level recognition of scripts to establish its usefulness in document
analysis research.
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Abstract: Most digital libraries that provide user-friendly interfaces, enabling quick and intuitive
access to their resources, are based on Document Image Analysis and Recognition (DIAR) methods.
Such DIAR methods need ground-truthed document images to be evaluated/compared and, in some
cases, trained. Especially with the advent of deep learning-based approaches, the required size of
annotated document datasets seems to be ever-growing. Manually annotating real documents has
many drawbacks, which often leads to small reliably annotated datasets. In order to circumvent
those drawbacks and enable the generation of massive ground-truthed data with high variability,
we present DocCreator, a multi-platform and open-source software able to create many synthetic
image documents with controlled ground truth. DocCreator has been used in various experiments,
showing the interest of using such synthetic images to enrich the training stage of DIAR tools.

Keywords: synthetic image generation; document degradation models; performance evaluation;
data augmentation for retraining and fine-tuning; DIAR

1. Introduction

Almost every researcher in the field of Document Image Analysis and Recognition (DIAR) had
to face the problem of obtaining a ground-truthed document image dataset. Indeed, many DIAR
tools (image restoration, layout analysis, text-graphic separation, binarization, OCR, etc.) rely on
a preliminary stage of supervised training. Moreover, ground-truthed document image datasets are
needed to evaluate these DIAR tools. Digital curators are the first users of these tools, e.g., for announcing
expected OCR recognition rates together with automatic transcriptions of books [1]. One common
solution is to use ground-truthed training and benchmarking datasets publicly available on the
internet. For document images, the following databases are the most commonly used. For printed
documents: Washington UW3 [2], LRDE [3], RETAS-OCR [4], PaRADIIT [5], etc.; for handwritten
documents IAM database [6], RIMES [7], GERMANA [8], etc.; for graphical documents: chemical symbol
database [9], logo databases [10,11], architectural symbol database [12] or musical symbol database
CVC-MUSICMA [13]; camera-based document image analysis [14,15]. The International Association
for Pattern Recognition, for instance, gathered some interesting datasets [16] mostly used for different
conference competitions over the last two decades. The main international conference in document
image analysis, ICDAR, references on its websites many contest datasets. However, very few of them
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are reliably annotated, copyright-free, up-to-date or easily available to download. An alternative for
researchers and digital curators is to create their own ground truth by manually annotating document
images. In order to assist them in the tedious task of ground truth creation, multiple software have been
proposed during the last two decades.

As detailed in Table 1, some are fully manual stand-alone software (Pink Panther (1998) [17],
trueViz (2003) [18]), while others provide semi-automatic annotation modules (GEDI (2010) [19],
Aletheia (2011) [20,21]). Some of the most recent solutions are based on an online collaborative platform
(Transcriptorium (2014) [22], DIVADIAWI [23] (2015), [24] (2016), Recital manuscript platform [25]
(2017)). Among non open-source solutions, some have an academic licence: [20,26]. These software
assist the user in creating the ground truth associated with real documents, intrinsically limited in
number because of acquisition procedures and copyright issues. Moreover, despite the use of such
software, manual annotation remains a costly task that cannot always be performed by a non-specialist.

Another solution is available for getting (quickly and with lower human cost) large
ground-truthed document image datasets. This solution, investigated since the beginning of the
nineties [27], is to generate synthetic images with controlled ground truth. The authors of [28,29]
propose two similar systems. They consist of using a text editor (e.g., Word-office, Latex, etc.) to
automatically create multiple documents with varied contents (in terms of font, background, layout).
Alternative approaches consist of re-arranging, in a new way, elements extracted from real images
so as to generate (manually, semi-automatically or automatically) multiple semi-synthetic document
images [12,30]. Recently, in particular with the advent of deep learning techniques which require huge
masses of training data, the need for synthetic data generation seems to be ever-growing. In [31],
among the 60,000 character patches that were used to train a convolutional network for text recognition,
only 3000 were real.

In this paper we present DocCreator, an open-source and multi-platform software that is able to
create virtually unlimited amounts of different ground-truthed synthetic document images based on
a small number of real images.

Table 1. Technical and functional characteristics of existing annotation software. Six features are
presented: export format, source availability, desktop/online software, groundtruthing assistance
(whether the software provides features that help the user to quickly create the groundtruth),
collaborative/crowd-sourcing software, and year of distribution.

Export Open-Source Desktop/Online Groundtruthing Assistance Collaborative Year

Software for manual ground truth creation

Pink Panther [17] ASCII n/a desktop no no 1998
TrueViz [18] XML yes desktop no no 2003

PerfectDoc [32] XML yes desktop ? no 2005
PixLabeler [33] XML no desktop no no 2009

GEDI [19] XML yes desktop yes no 2010
DAE [34] no yes online yes yes 2011

Aletheia [20,26] XML no online/desktop yes no 2011
Transcriptorium [22] TEI-XML no online yes yes 2014

DIVADIAWI [23] XML n/a online yes n/a 2015
Recital [25] no yes online yes yes 2017

Algorithms for synthetic data augmentation

Baird et al. [27] no n/a n/a n/a no 1990
Zhao et al. [28] no n/a n/a n/a no 2005

Delalandre et al. [12] no n/a n/a n/a no 2010
Yin et al. [30] no n/a n/a n/a no 2013
Mas et al. [24] no n/a n/a n/a yes 2016

Seuret et al. [35] no yes n/a n/a no 2015

Software for semi-automatic ground truth creation and data augmentation capabilities

DocCreator XML yes online/desktop yes no 2017

As illustrated in Figure 1, DocCreator can handle the creation of ground-truthed synthetic
images from a limited set of real images. Various realistic degradation models can be applied on
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original document images, the resulting images being called semi-synthetic images in the rest of the
paper. If there is no ground truth associated to the real images, DocCreator can create, with a given
text, synthetic images that look like the real ones and their associated ground truth. Depending
on the needs and expertise of the user, DocCreator can be used in a fully automatic mode, or in
a semi-automatic mode where the user can interact with the system and tune its parameters. Visual
feedback of the results is returned by the system. Degradations available in DocCreator can be
applied on any type of document images. The DocCreator ability to create synthetic documents that
mimic real ones is effective for typewritten and handwritten characters (as long as the characters are
apart from one another). Images created with DocCreator have already been used in many DIAR
contexts: text/background/image pixel classification [36]; staff removal [13,37,38]; and handwritten
character recognition [39]. In this article we present how DocCreator can be useful to enhance
a binarization algorithm and for OCR performance prediction. DocCreator could also be used,
for example, for camera-based document image analysis and word spotting.

Figure 1. According to the needs of the DIAR researcher, it is possible to generate synthetic document
images (and their ground truth) in different ways. First possibility: if a researcher has real document
images but without any ground truth, DocCreator can generate synthetic images that look like the
real ones, and of course, with the associated ground truth. Second possibility: a researcher has
a ground-truthed database but it is too small or not heterogeneous enough. DocCreator provides several
degradation algorithms to augment the dataset. By degrading text ink, paper shape or background
colours it is possible to create a representative document image database where many defects are
present. This complete database is finally useful for very precise performance evaluation or to provide
multiple cases for retraining processes (in algorithms embedding a learning step).

DocCreator features compared to existing software are highlighted in Table 1. First of all,
DocCreator is the only one that can create synthetic documents that mimic real ones. Besides, as it
includes several degradation models, it provides an integrated solution to carry out data augmentation.
DocCreator thus makes quickly available ground-truthed databases. It makes DocCreator a unique
software that can be seen as a complementary tool to those mentioned in Table 1.

This paper is organized as follows. In Section 2, we present the methods used to extract document
characteristics and to generate synthetic documents, while in Section 3 document degradation models
are discussed. Section 4 highlights the advantages of DocCreator on various DIAR tasks, both for
benchmarking and for retraining DIAR tools using data augmentation.

2. How to Create a Synthetic Document (with Ground Truth) That Looks Like a Real One?

The left part of Figure 1 illustrates the pipeline used in order to generate synthetic documents that
look realistic. Given an original image, we extract the three main required components: (1) the font;
(2) the background; and (3) the layout of the document. The system can then write any text with
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the extracted font, onto the reconstructed background, with a layout similar to one of the original
documents (see Figure 2).

The font is extracted using a semi-automatic method. First, an Optical Character Recognition
system (OCR) automatically associates a label (Unicode value) to each character on the image.
Tesseract OCR engine [40] is used. Then the user can modify the character properties (label, baseline,
margins, etc.). Our software allows us to pair a given symbol with several character images in the
extracted font. Thus, when the font is used to write a text, the software will randomly choose an image
for the required symbol. This will make the final output look more realistic by reducing the strict
uniformity between similar letters.

In order to correctly write text with this font, the baseline of each character has to be computed.
The baseline is the imaginary straight line on which semi cursive or cursive text are aligned and upon
which most letters “sit” and, below which, descenders extend. In order to extract each character
baseline and deal with various documents, we propose a different approach from classical ones [40,41].
The main originality of our baseline extraction method is that the baseline is computed for each
character individually instead of finding a baseline for the whole line. We evaluated this method on
more than 5000 manually annotated baselines considered as the ground truth. The baseline extraction
error rate is relatively close the one obtained using [40] (the same baseline extraction error rate).
However, our method has the main advantage of being robust to skew orientation, the hand-written
wavy pattern and unaligned columns in a same page. Besides, the inter words distance is automatically
computed as the average of characters width. For the inter characters distance, none is specified by
default. However, the user can interactively specify the left and right margin to better position the
character relative to others. The GUI of DocCreator also allows the user to modify several parameters to
improve the extracted characters. The user can change the baseline or the letter assigned to a character
and smooth the border of a character. Via this semi-automatic font extraction method, the user is able
to correct mistakes made by the OCR (frequent on old documents). From several testing sessions,
we evaluate the time needed to correctly extract a font between 30 seconds (when the OCR works
accurately) and 60 min (when the OCR fails and the user has to manually extract the characters).

Once the font is extracted, the background of the document can be computed. This background
extraction is performed completely automatically. For that purpose, we apply an inpainting method to
remove all the characters. We use the OpenCV implementation of [42].

To construct a realistic document, the layout of the document image is also extracted.
Document image physical layout analysis algorithms can be categorized into three classes: top-down
approaches [43], bottom-up approaches [44] and hybrid approaches [45,46]. As word segmentation is
already available via Tesseract OCR (but not the complete document layout), we use a hybrid approach
proposed by [45]. With only one parameter to adjust the number of extracted blocks, this method
ensures a good layout segmentation of many different classes of typewritten documents. DocCreator,
as an interactive software, leaves once more the possibility to adapt to the wished segmentation
results. This method has the advantage of a very low computational cost, without any preprocessing
training required.

At this point, the three characteristics used in the synthetic image generation process have been
extracted (background, font and layout). The next step is to assemble these elements with a given
text in order to build the final output, which is the created synthetic image and the associated XML
ground truth. Figure 2 illustrates a synthetic image (right) created automatically from a given original
document image (left). As this example illustrates, a complete automatic generation may still produce
perfectible results. In particular, if the original image suffers from local deformations (as the original
image in Figure 2), the characters extracted to build the font may have different forms or sizes, and,
when assembled to compose the final document, may locally look too different and thus not realistic.

Obviously, one can combine fonts, background images, layout from different images and various
texts, to generate many of synthetic document images.

174



J. Imaging 2017, 3, 62

Figure 2. Synthetic document image generation. (Left) original document image. (Right) synthetic
document image generated automatically with the random text “Lorem ipsum”. The automatically
generated image looks similar to the original one. The result is still perfectible. Here, as the original
image suffers from local deformations, the characters extracted to build the font are quite different
and may look too random when assembled on the synthetic document. A better font extraction or
composition using the context to choose new characters may alleviate this problem.

3. Document Degradation Models

Physical degradation due to ageing, storage conditions or poor quality of printing materials may
be present on documents.

DocCreator currently proposes seven degradation models.
As detailed in Figure 1 (right part), all these models can be applied on real images to extend any

document image database. The user can interact with DocCreator in order to set the quantity of defects
to generate.

In the following sections, we describe the main ideas of these seven degradation models.
As DocCreator is an open source software, readers can consult the source code to get more details
about the implementation of these models.

3.1. Ink Degradation

DocCreator provides a grayscale ink degradation model (detailed in [41]) able to simulate the
most common character degradations due to the age of the document itself and printing/writing
process, such as ink splotches, white specks or streaks. This model locally degrades the image in
the neighbourhood of the characters boundaries. Noise is then generated to create some small ink
spots near characters or to erase some characters ink area. Contrary to the well known Kanungo noise
model [47] that works only on black and white images, this degradation method can process grayscale
images. See Figure 3 for an ink degradation example.
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Figure 3. Ink degradation on an old document. (Left) original image. (Right) degraded image.

3.2. Phantom Character

The phantom character is a typical defect that appears on documents that have been manually
printed (using a wooden or metal character). After many uses, a printing character can be eroded. It is
thus possible that ink reaches the borders of the piece; borders are then printed on the sheet of paper.
DocCreator provides an algorithm that reproduces such ink apparition around the characters. To be
as realistic as possible, we have manually extracted more than 30 phantom defects from real images.
These defects are then automatically put between characters following a patch-based algorithm.

The degradation algorithm works as follow: (1) the user provides an image and the percent of
character to degrade; (2) characters are extracted using a connected component algorithm; (3) a list
of characters is randomly set; (4) for each selected character; (4.1) a phantom defect is randomly
selected from the manually extracted available defects; (4.2) the phantom defect is resized to fit with
the character size; (4.3) to be realistic, the phantom defect is used only as a pattern; the pixels within
the pattern are transformed using a patch algorithm inspired from [48] where a zone from another
part of the document image is selected and copied within the patch.

See Figure 4 for an example.

Figure 4. Phantom character apparition. (Left) original image. (Right) degraded image.

3.3. Paper Holes

Many old or recent document images contain holes. These holes have different shapes, sizes and
locations. DocCreator provides an algorithm that creates different kinds of holes in a document
image. This algorithm simply randomly applies holes extracted from real document images on a given
document image. See Figure 5 for examples.

Figure 5. Cont.
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Figure 5. Hole degradation. (Left) original images. (Right) degraded images.

3.4. Bleed-Through

With DocCreator it is possible to add bleed-through defects. This algorithm is directly inspired
from [49] that initially proposes an algorithm for erasing the bleed-through from a document image.
By just giving an input recto image, an input verso image and the amount of wished degradation,
a physical model is applied. This model mimics the verso ink that seeps through the recto side.
This model simulates an anisotropic diffusion and each pixel at time t + 1 is modified according to the
pixels values at time t with the following equation:
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where I is the recto image, V is the verso image, lambda a constant value in [0; 0.25] and N, S,
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. The user sets the number of iterations and thus the

quantity of generated bleed-through.
See Figure 6 for a bleed-through example.

Figure 6. Bleed-through defect. (Left) original image. (Right) degraded image.
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3.5. Adaptive Blur

The blur defect is a very common defect encountered during digitization campaigns. The difficulty
here is to create a realistic blur defect that mimics the very slight blur that appears when the scanner is
incorrectly set (a large blur is easily detected by scanners). To do so, we propose a method inspired by
the blur detection from [50]. First, the user chooses a blur image to mimic among a real blur example
available in DocCreator. Then, using a dichotomic algorithm, we compute the size of the kernel of
a Gaussian blur that, once applied on the input image, produces a blur similar to the chosen real blur
image. In this method, the Fourier Transform of the image is first computed. Then the module of the
Fourier Transform is binarized according to its mean. The resulting binarized image produces a disc
for images with only text. As the high frequencies decrease when the blur increases, the disc radius in
the binarized image also decreases when the blur increases. This radius is used to characterize the
images. The dichotomic algorithm is used to search the kernel size that produces a radius similar to
the one found on the selected example image. See Figure 7 for an example.

Figure 7. Adaptive blur defect. (Left) image with real blur. (Right) image with synthetic blur that
mimics the real one

3.6. 3D Paper Deformation

The paper on which a book is printed may have several types of deformation (along curvature,
rotation, fold, hole, etc.). We propose a 3D deformation model that generate realistic small or large
paper deformations.

The full process is detailed in [51]. The main idea is: first, a 3D scanner is used to acquire a 3D mesh
from a real document. This mesh preserves all representative distortions. Then, the mesh is unfolded
into a 2D plan. Therefore, each vertex in the mesh has a corresponding 2D point. The coordinates of
such a point are considered as texture coordinates. Finally, the mesh can be rendered with any 2D
image mapped as a texture. For the rendering, we use the Phong reflection model as the illumination
model. Changing light properties and position allows to accentuate or minimize distortion effects.
DocCreator currently provides 17 parameterized meshes, enabling one to produce numerous distorted
images. Figure 8 shows such a deformation.

This 3D paper deformation model can be used to simulate mobile document capture. The user can
add a background plane with texture, on top of which the document stands. By changing viewpoint
and light positions, the user can generate many images. These images can be used for camera-based
document image analysis. Figure 9 shows examples of two points of view generated with the same
document image.
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Figure 8. Examples of 3D deformations of a 2D receipt images. (Left) original images. (Right) degraded images.
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Figure 9. Examples of two viewpoints of the same document image, that could be used in the context
of camera-based document image analysis.

3.7. Nonlinear Illumination Model

DocCreator provides an implementation of the nonlinear illumination model proposed in [52].
When scanning thick documents, the page to be photocopied may not be flat on the document glass
and thus the illumination is not constant on the whole document. This model consider that a border of
the document is bend in one direction by a radius ρ. The illumination at a point P’ on the document
pages is inversely proportional to the distance of point P’ from the light source L. The illumination at
point P’ is computed with the following equation:

IP′ = I0(
l0

(l0 + ρ(1 − cosφ))
)2

where I0 is the original intensity, l0 the distance between the document glass and the light source
L, and φ the angle between the normal at P’ (where the page is curved) and the normal to the
glass document. Figure 10 shows an example of this illumination defect. It is noteworthy that this
illumination defect simulates just a particular case of what our 3D paper deformation model presented
in the previous section can portray.

Except for the ink degradation model, the other degradation models work both on grayscale and
colour document images.

DocCreator aims at providing other degradation models. In particular, we are currently working
on the integration of a colour ink spot generation model described in [35].
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Figure 10. Examples of nonlinear illumination model defect. (Left) original image. (Right) degraded
image with illumination defect applied on the left border.

4. Use of DocCreator for Performance Evaluation Tasks or Retraining

Here, we describe rapidly how DocCreator was used by other researchers and the conclusions
they drew.

4.1. Published Results Using DocCreator

4.1.1. Document Image Generation for Performance Evaluation

The segmentation system proposed by [36] is based on a texture feature extraction without any
a priori knowledge on the physical and logical document layout. To assess the noise robustness of their
system, they used DocCreator and applied the character degradation model. From 25 simplified real
document images, they generated a semi-synthetic database of 150 document images. This database is
made up of several subsets where the degradation levels are different. The performance evaluations
presented in [36] highlight that the texture descriptors are slightly perturbed by the degradations.
When characters are highly disconnected (our algorithm has erased important character ink areas),
a drop of the segmentation performances was observed.

DocCreator was also used during the ICDAR contest: staff-line removal from musical scores.
The 3D distortion and the character degradation models were used in order to generate an extended
database from the 1000 images of the MUSCIMA database [13]. As a result, the extended database
contains 6000 semi-synthetic grayscale images and 6000 semi-synthetic binary images. This database
has been used in the second edition of the music score competition ICDAR 2013 [37]. Five participants
submitted eight methods. Participants were given a training set of 4000 semi-synthetic images and
then 2000 semi-synthetic images to test their methods on. Regarding the results on the 3D distortion
set, the submitted methods seem less robust to global distortion than to the presence of small curves
and folds. For more details about the participants, the methods and the contest protocol, refer to [37].
This database has already become a benchmark database for musical document images analysis and
recognition, as stated in [53]. So far, the database has indeed been used for benchmarking in multiple
scientific publications about musical document processing and recognition [38,53–56] and even in the
more general field of machine learning [57].

4.1.2. Document Image Generation for Retraining Task

The IAM-HistDB [58] database contains 127 handwritten historical manuscript images together
with their ground truth. This database consists of three sets: the Saint Gall set containing 60 images
(1.410 text lines) in Latin, the Parzival set containing 47 images (4.477 text lines) in Medieval German,
and the Washington set containing 20 images in English. The authors of [39] used the character
degradation model to create two extended databases of the IAM-HistDB. The first one is composed
of 17.661 images degraded with the ink model. The 1.524 images from the second dataset have been
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created using the 127 original images and transformed using our 3D distortion model. The tests
presented in [39,59] confirm the conclusion of [60] about the impact of the degradation level on
re-training, either for a task of character recognition or layout extraction.

4.2. New Results on Performance Prediction Using DocCreator

Here, we show whether DocCreator can be useful for performance prediction of existing methods.

4.2.1. Increase the Prediction Rate of Predictive Binarization Algorithm

In [61], we have presented an algorithm to predict error rates of 11 binarization methods on
given document images so that the best binarization method is automatically chosen for any image
depending on its quality. This method requires ground-truthed data as input of the training step.
The DIBCO database [62] was used. However, the DIBCO database contains only 36 images.

We propose here to extend the original DIBCO database by using the ink degradation model.
Since the DIBCO database contains 36 images, we extend it with the same number of semi-synthetic
document images. This extended dataset is then used to train the prediction model of [61].

Our retraining tests show that the use of this extended dataset allows one to increase the
performance of the prediction model of [61]. More precisely, the error rate of the prediction model
decreases (until it levels off) when the number of semi-synthetic images in the training set increases.
On average, the error rate drops of about 15% compared with using only real images in the training
set. The error rate converges when the proportion of semi-synthetic images is around 50% of the
training set.

4.2.2. Predict OCR Recognition Rate Using Synthetic Images

Many on-line digital libraries propose a text search engine. To this end, the text within the
document images has to be transcribed. Depending on the OCR recognition rate quality, three options
are available: (1) directly use the OCR result when the recognition rate is close to 100%; (2) manually
correct the OCR result when the automatic transcription gives “acceptable quality”, or (3) do a complete
manual transcription (often quite expansive). As a consequence, it is very important to be aware of
the OCR recognition rate before deciding between one of these three solutions. The amount of recent
publications on this subject ([63–66]) reflects the scientific interest in predicting OCRs recognition rate.

We propose here to use synthetic images to predict the OCR rate of a digitized book as follows:
(1) font, background and layout are extracted from original images (with methods described in II).
It is noteworthy to mention that the fonts were extracted thoroughly, in particular to include even
characters not recognized by the OCR, or even to adjust margins of correctly labeled characters.
(2) An adapted Lorem ipsum text is randomly generated and used to create synthetic images with the
font and background previously extracted. This adapted Lorem ipsum is generated with accentuated
characters (é, à, ù, etc.) and old characters (ff, fi, s, fl, ffi) if the original text contains such
characters. Generating such characters is important to have a representative dataset for fair OCR
testing. As a result, images like the one presented in Figure 2 are generated with the associated
XML ground truth. (3) An OCR (Tesseract) is finally used to recognize the text on these synthesized
images. This text is compared with the Lorem ipsum ground truth text, giving an OCR recognition
rate. We consider that this recognition rate is a prediction of the OCR rate if the OCR software was
applied on original images. Table 2 Column 1 provides the average OCR recognition rate obtained
on the original images, Table 2 Column 3 refers to the average OCR rates computed on the synthetic
“Lorem ipsum” images versions.

We also propose to evaluate the capacity of our method to correctly predict the OCR recognition
rate by comparing original images with their synthetic version generated with exactly the same text
(see Figure 11 to compare the original images and their synthetic versions). These images are generated
following this protocol: (1) pages from three books (2 typewritten and 1 manuscript book) have
been manually transcribed; (2) font, background and layout are automatically extracted from original
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images; and (3) font, background and layout are finally used with the transcribed texts to automatically
generate synthetic versions of the original ones. The whole database is composed of 93 document
images containing 18.240 words and 115.622 characters.

(a) (DB1) Contemporary french typewritten document.

(b) (DB2) Old french typewritten document.

(c) (DB3) Old french Manuscript document.

Figure 11. Images extracted from the database used for testing our prediction algorithm. (Left) original
images. (Right) synthetic generated images.

To evaluate the OCR text recognition rate, we use the Levenshtein distance (a metric measuring
the difference between two strings) between the whole original transcribed text and the whole
recognized text. We compute the mean of the Levenshtein distances for the N documents of each
database. Using this Levenshtein distance, the difference between the OCR text recognition rate
computed on real images and the one computed on “Lorem ipsum” version (Table 2 Column 1 and
Column 2) is, on average, only overestimated by 0.04. The difference between the real OCR rate
and the one computed on the synthetic versions (Table 2 Column 1 and Column 3) is, on average,
only overestimated by 0.03. Most of the success of different existing OCR prediction methods ([63–66])
are related to the quality and quantity of the needed ground truth. Our prediction method presented
here provides comparable results with the ones form the state of the art.

Table 2. Comparison between OCR recognition rates obtained on three different books original images
and their synthetic versions. Column 1: OCR recognition rate on original images, Column 2: OCR
recognition rate on synthetic images generated with both the text and the font from the original images,
Column 3: OCR recognition rate on synthetic images generated with lorem ipsum random text and the
font from the original images.

Original Image Font From Same Text Lorem Text

DB1 0.95 DB1 0.94 0.88
DB2 0.80 DB2 0.85 0.84
DB3 0.24 DB3 0.21 0.23

5. Conclusions

DocCreator gives to DIAR researchers a simple and rapid way to extend existing document
image databases or to create new ones avoiding the tedious task of manual ground truth generation.
DocCreator embeds many fonts, backgrounds, meshes and realistic degradation models which,
when combined, result in an interesting combination of ground-truthed databases. The experiments
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detailed in this paper show semi-synthetic and synthetic documents created with DocCreator are
useful for performance evaluation, retraining tasks or performance prediction. In future work, we plan
to improve the synthetic document creation to avoid to have too different characters in the composed
document. For example, we should investigate if adding some constraints on the font extraction phase
or taking into account the context when adding new characters to the synthetic document may lead to
more realistic synthetic documents. We also consider to set up a cognitive experiment to evaluate the
perceived realness of the degraded documents or even the created synthetic documents. We are also
planning to investigate how the generation of highly diversified data can improve the results of tasks
based on deep learning methods.

DocCreator (source, Linux, Mac, Windows packaged versions), all the databases used for the tests,
a video and an extra database (31.000 synthetic images generated with William Shakespeare sonnet
text files) are available at [http://doc-creator.labri.fr/].
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Abstract: Recognizing texts in video is more complex than in other environments such as scanned
documents. Video texts appear in various colors, unknown fonts and sizes, often affected by
compression artifacts and low quality. In contrast to Latin texts, there are no publicly available
datasets which cover all aspects of the Arabic Video OCR domain. This paper describes a new
well-defined and annotated Arabic-Text-in-Video dataset called AcTiV 2.0. The dataset is dedicated
especially to building and evaluating Arabic video text detection and recognition systems. AcTiV 2.0
contains 189 video clips serving as a raw material for creating 4063 key frames for the detection
task and 10,415 cropped text images for the recognition task. AcTiV 2.0 is also distributed with
its annotation and evaluation tools that are made open-source for standardization and validation
purposes. This paper also reports on the evaluation of several systems tested under the proposed
detection and recognition protocols.

Keywords: video text detection; video text recognition; AcTiV dataset; Arabic Video OCR

1. Introduction

Broadcast news and public-affairs programs are a prominent source of information that provides
daily updates on national and world news. Nowadays, TV newscasters archive a tremendous number
of news video clips thanks to the rapid progress in mass storage technology. As the archive size grows
rapidly, the manual annotation of all video clips becomes impractical.

Since the 80s, research in OCR techniques has been an attractive field in the document analysis and
recognition community. Prior work has addressed specific research problems that have bordered on
printed and handwritten texts in scanned documents. Recently, embedded text in videos has received
increasing attention as it often gives crucial information about the media content [1–3]. News videos
generally contain two types of texts [2]: scene text and artificial text (Figure 1). The first type is
naturally recorded as part of scene during video capturing, such as traffic and shop signs. The second
type of text is artificially superimposed on the video during the editing process. Compared with scene
text, the artificial one usually provides brief and direct description of video content, which is important
for automatic broadcast annotation. Typically, artificial text in news video indicates speaker’s name,
location, event information, scores of a match, etc. Therefore, in this context, we particularly focus on
this category of text.

Recognizing text in videos, often called Video OCR [4], is an essential task in many applications
such as news indexing and retrieval [5], video categorization, large archive managing and speaker
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identification [6]. A Video OCR system is generally composed of four stages: detection, tracking,
extraction and recognition. The two first steps consist in locating text regions in video frames and
generating the bounding boxes of text lines as an output. Text extraction aims at extracting text pixels
and removing background ones. The recognition task converts image regions into text strings. In this
work, we focus especially on the detection and recognition steps.

Figure 1. Example of an Arabic video frame including scene and artificial texts (a). Decomposition of
an Arabic word into characters (b).

Compared to scanned documents, text detection and recognition in video frames is more
challenging. The major challenges are:

• Text patterns variability: unknown font-size and font-family, different colors and alignment
(even in the same TV channel).

• Background complexity: text-like objects in video frames, such as fences, bricks and signs, can be
confused with text characters.

• Video quality: acquisition conditions, compression artifacts and low resolution.

All these challenges may give rise to failures in video text detection. The present study focuses
on the Arabic video OCR problem. This introduces many additional challenges related to Arabic
script [7]. Compared to Latin, the Arabic text has special characteristics such as presence of diacritics,
non-uniform inter/intra-word distance and cursiveness of the script, i.e., characters may have up to
four shapes depending on their position in the word (for examples, see Figure 1b).

Several techniques have been proposed in the conventional field of Arabic OCR in scanned
documents [7–10]. However, few attempts have been made on the development of detection and
recognition systems for overlaid text in Arabic news video [11–13]. These systems were tested on
private datasets with different evaluation protocols and metrics that make direct comparison and
objective benchmarking rather impractical. For instance, in [11], the proposed text detector was
evaluated on a private set of 150 video images. In [13], Yousfi et al. evaluated their text detection
system on two private test sets of 164 and 201 video frames. Therefore, the availability of an annotated
and public dataset is of key importance for the Arabic video text analysis community.

In this paper, we present AcTiV 2.0 as an open Arabic-Text-in-Video dataset dedicated to
benchmarking and comparison of systems for Arabic text detection, tracking and recognition. AcTiV 2.0
is an important extension of the one published in ICDAR 2015 [14]. It includes 189 video clips with
an average length of 10 min per sequence for a global duration of about 31 h. These video sequences
have been collected from four different Arabic news channels during the period between October
2013 and March 2016. In the present work, three video resolutions were chosen: HD (High Definition,
1920 × 1080), SD (Standard Definition, 720 × 576) and SD (480 × 360). The latter resolution concerns
video clips that have been downloaded from the official YouTube channel of TunisiaNat1 TV.

The paper is organized as follows: In Section 2, we present related work on datasets for text
detection/recognition problems. Then, we present in Section 3 the AcTiV 2.0 dataset in terms of
features, statistics and annotations. We detail the evaluation protocols in Section 4 and present the
experimental results in Section 5. In Section 6, we draw the conclusions and discuss future work.
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2. Literature Review

Recently, several approaches have been proposed to detect and recognize texts in videos and
natural scene images [1,2,15,16].

All mentioned work so far are dedicated to Latin or Chinese text detection and recognition
methods. Much of the progress that has been made in this field of research is attributed to the
availability of standard datasets. The most popular of these is the dataset of ICDAR 2003 Robust
Reading Competitions (RRC) [17], prepared for scene text localization, character segmentation
(removing background pixels) and word recognition. This dataset includes 509 text images in real
environments captured with hand-held devices. 258 images from the database are used for training and
the remaining 251 images constitute the test set. Some examples are depicted in Figure 2a. This dataset
was also used in the ICDAR 2005 Text Locating Competition [18]. Figure 3 shows the evolution of
the Latin text detection research between 2003 and 2013 [18–20] taking as a benchmark the ICDAR
2003 dataset. As can be observed, the method of Huang et al. [19] outperforms other approaches
by a large margin. This method enhances the Stroke Width Transform (SWT) algorithm using color
information and introduces Text Covariance Descriptors (TCDs). For the word-recognition task,
the best accuracy of 93.1%, was achieved by Jaderberg et al. [21] using their proposed Convolutional
Neural Networks (CNN) model. The dataset in ICDAR 2011 RRC [22] was inherited from the
benchmark used in the previous ICDAR competitions (i.e., 2003 and 2005) but have undergone
extension and modification, since there are some missing ground truth information and imprecise
word bounding boxes. The final datasets consisted of 485 full images and 1564 cropped word images
for localization and word-recognition tasks, respectively. On this dataset, the text detection method of
Liao et al. [23] obtains state-of-the-art performance with an F-score of 82%. This algorithm is based on
a fully convolutional network (FCN) followed by a standard non-maximum suppression process.

a b c d

Figure 2. Typical samples from ICDAR2003 (a), MSRA-TD500 (b), NEOCR (c) and KAIST (d) datasets.

In the 2013 edition of ICDAR RRC [24], a new database was proposed for video text detection,
tracking and recognition. It contains 28 short video sequences. An updated version of this dataset was
provided in ICDAR 2015 [25] including a training set of 25 videos and a test set of 24 videos.

The MSRA-TD500 dataset [26] works on multi-oriented scene texts detection. This dataset includes
500 images (300 for training and 200 for testing) with horizontal and slant/skewed texts in complex
natural scenes (see Figure 2b for examples). The method of Liu et al. [27] achieves state-of-the-art
performance on this database with an F-score of 75%. This method makes use of the Maximally Stable
Extremal Regions (MSER) technique as text candidates extractor as well as a set of heuristic rules and
an AdaBoost classifier as a two-stages filtering process.

The Street View Text (SVT) dataset [28] is used for scene text detection, segmentation and
recognition in outdoor images. It includes 350 full images with 904 word-level annotated bounding
boxes. The method of Shi et al. [29] shows superiority over existing techniques with 80.8% as a
recognition accuracy. This method is based on Convolutional Recurrent Neural Network (CRNN),
which integrates the advantages of both CNN and Recurrent Neural Networks (RNN). For the
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segmentation task, the best F-score, 90%, was obtained by Mishra et al. [30]. The algorithm is mainly
based on two steps: a GMM refinement using stroke and color features and a graph cut procedure.

The KAIST dataset [31] consists of 3000 images taken in indoor and outdoor scenes (see Figure 2d
for examples). This is a multilingual dataset, which includes English and Korean texts. KAIST can be
used for both detection and segmentation tasks, as it provides binary masks for each character in the
image. The text segmentation algorithm of Zhu and Zhang [32] outperforms existing methods on this
dataset with an F-score of 88%. The method is based on superpixel clustering. First, an adaptive SLIC
text superpixel generation procedure is performed. Next, a DBSCAN-based superpixel clustering is
used to fuse stroke superpixels. Finally, a stroke superpixel verification process is applied.

The NEOCR dataset [33] contains 659 natural scene images with multi-oriented texts of high
variability (see Figure 2c for examples). This database is intended for scene text recognition and
provided multilingual evaluation environments, as it includes texts in eight European languages.

In 2016, Veit et al. [34] proposed a dataset for English scene text detection and recognition called
COCO-Text. The dataset is based on the Microsoft COCO dataset, which contains images of complex
everyday scenes. The best result on this dataset (67.16%) was obtained by the winner of the COCO-Text
ICDAR2017 competition [35]. Note that the participating methods on this competition were ranked
based on their Average precision (AP) with an Intersection over Union (IoU) of 0.5.

Recently, Chng and Chan [36] introduced a new dataset, namely Total-text, for curved scene text
detection and recognition problems. It contains 1555 scene images and 9330 annotated words with
three different text orientations.

Figure 3. Some examples of text detection systems [18–20] showing the evolution of this area of
research over ten years.

As for Arabic language, major contributions have already been made in the conventional field
of printed and handwritten OCR systems [7,10]. Much progress of such systems has been triggered
thanks to the availability of public datasets. Examples include the IFN/ENIT [37] and KHATT [38]
datasets for offline handwriting recognition and writer identification; the APTI database [39] for
printed word recognition; and the ADAB dataset [40] that works on online handwriting recognition.

However, handling Arabic text detection and recognition for multimedia documents is limited to
very few studies [41–43].

Table 1 presents commonly used datasets for text processing in images and videos,
and summarizes their features in terms of text categories, sources, tasks, script, information of
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training/test samples and best achieved result. As depicted by this table, publicly available datasets for
Arabic Video OCR systems are limited to one work for the recognition task and are even non-existent
for detection and tracking problems. Yousfi et al. [44] put forward a dataset for superimposed text
recognition, called Alif. The dataset was composed of 6532 static cropped text images extracted from
diverse Arabic TV channels and with about 12% extracted from web sources. This dataset offered only
one image resolution.

Table 1. Most important existing datasets for text processing in videos and scene images. “D”, “S” and
“R” respectively denote “Detection”, “Segmentation” and “Recognition”.

Dataset
(Year)

Category Source Task
# of Images
(Train/Test)

# of Text
(Train/Test)

Script
Best
Scores

ICDAR’03 [18]
(2003) Scene text Camera D/R

509
(258/251)

2276
(1110/1156) English 93.1% (R)

KAIST [31]
(2010) Scene text

Camera,
mobile phone D/S 3000 >5000

English,
Korean 88% (S)

SVT [28]
(2010) Scene text

Google
Street View D/S/R

350
(100/250)

904
(257/647) English

80.8% (R)
90% (S)

NEOCR [33]
(2011) Scene text Camera D/R 659 5238

Eight
languages

ICDAR’11 [22]
(2011) Scene text Camera D/R 485 1564 English 82% (D)

MSRA-TD500
[26] (2012) scene text Camera D

500
(300/200) _

English,
Chinese 75%

ICDAR’13 [24]
(2013)

Scene text
Artificial text
Video scene

Camera
Web
Camera

D/S/R
D/S/R
D/T/R

229/233
410/141
28 videos

848/1095
3564/1439
_

Spanish,
French,
English

ALIF [44]
(2015) Artificial text Video frames R

6532
(4152/2199) Arabic 55.03%

COCO-Text [34]
(2016) Scene text

MS COCO
dataset D/R

63,686
(43.6k/10k) 173,000 English

67.16%
(D)

Total-Text [36]
(2017) Curved scene text web D/R

1555
(1255/300) 9330 (words) English

3. Proposed Datasets

In this section, we describe the AcTiV 2.0 dataset in terms of characteristics, statistics and
annotation guidelines.

3.1. Data Characteristics and Statistics

As mentioned in the introduction, AcTiV 1.0 (http://tc11.cvc.uab.es/datasets/AcTiV_1) was
presented in the ICDAR’15 conference [14] as the first publicly accessible annotated dataset designed
to assess the performance of different Arabic Video OCR systems. This database is currently used by
several research groups around the world. It was partially used as a benchmark in the first edition of
the “AcTiVComp” contest in conjunction with the ICPR’16 conference [45]. The two main challenges
addressed by this dataset are text pattern variability and presence of complex backgrounds with
various text-like objects. AcTiV 1.0 consists of 80 video clips recorded from four different Arabic news
channels: TunisiaNat1, France24, Russia Today and AljazeeraHD. AcTiV 1.0 is composed of video clips
and their corresponding XML files (detailed in Section 3.2). We selected from these video clips 1843
frames dedicated to the detection task. In [14,46], the first results using AcTiV 1.0 were presented.

Based on the obtained results under different evaluation protocols and considering the AcTiV 1.0
users’ feed-backs, it was necessary to extend the content in terms of video clips and resolutions offering
more training samples, especially for deep learning-based methods.
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The new dataset AcTiV 2.0 includes 189 video sequences, 4063 key frames, 10,415 text images
and three video-stream resolutions, i.e., the new one is SD (480 × 360). A brief comparison in
terms of content between the initial and new version of the proposed dataset is presented in Table 2.
The architecture of the new dataset is completely different from the old one. In addition to the
videos and their annotation XML files, AcTiV 2.0 includes two appropriate datasets for detection and
recognition tasks, (see Figure 4).

Table 2. Statistics of AcTiV 1.0 and AcTiV 2.0.

#Resolution #Videos #Frames #Cropped Images

AcTiV 1.0 2 80 1843 -
AcTiV 2.0 3 189 4063 10,415

R

D
1920 x 1080
AlJazeeraHD

909
France24

874
RussiaToday

882
TunisiaNat1

1099
TunisiaNat1+

299

AlJazeeraHD
2367
9958

57189

France24
2276
7084

40520

RussiaToday
2633

16543
96990

TunisiaNat1
2411

10998
64493

TunisiaNat1+
631

2635
15371

#Lines
#Words
#Characters

# Frames
TV Channel
Resolution 720 x 576                          460 x 380

Resolution 1920 x 1080                      720 x 576                          460 x 380
TV Channel189

Figure 4. Architecture of AcTiV 2.0 and statistics of the detection (D) and recognition (R) datasets.

• AcTiV-D represents a dataset of non-redundant frames used to build and evaluate methods for
detecting text regions in HD/SD frames. A total of 4063 frames have been hand-selected with
a particular attention to achieve a high diversity in depicted text regions. Figure 5 provides
examples from AcTiV-D for typical problems in video text detection. To test the systems’ ability to
locate texts under different situations, the proposed dataset includes some frames which contain
the same text region but with different backgrounds and some others without any text component.

• AcTiV-R is a dataset of textline images that can be utilized to build and evaluate Arabic text
recognition systems. Different fonts (more than 6), sizes, backgrounds, colors, contrasts and
occlusions are represented in the dataset. Figure 6 illustrates typical examples from AcTiV-R.
The collected text images cover a broad range of characteristics that distinguish video frames
from scanned documents. AcTiV-R consists of 10,415 textline images, 44,583 words and
259,192 characters. To have an easily accessible representation of Arabic text, it is transformed
into a set of Latin labels with a suffix that refers to the letter’s position in the word, _B: Begin, _M:
Middle; _E: End; and _I: Isolate. An example is shown in Figure 1. During the annotation process,
we have considered 164 Arabic character forms:

– 125 letters, i.e., taking into account this “positioning” variability;
– 15 additional characters, i.e., combined with the diacritic sign “Chadda”;
– 10 digits; and
– 14 punctuation marks including the white space.

The different character labels can be observed in Table 3. The same table gives for each character
its frequency in the dataset.

More details about the statistics of the detection and recognition datasets are in Figure 4.
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Table 3. Distribution of letters in the AcTiV-R dataset.

In Arabic In ArabicCharacter
Label

# of
Occurrence I B M E

Character Label
# of
Occurrence I B M E

Alif 28,433 � - - � HamzaAboveAlif 1653
�
� - -

�
��

Baa 7417 �� �� 	� 
� HamzaUnderAlif 1049 ��� - - ����
Taaa 8948 �� �� �	 �
 TildAboveAlif 87


� - -


�

Thaa 851 �� �� �	 �
 HamzaAboveAlifBroken 1022 �� - - ��
Jiim 3270 �� �� �� �� HamzaAboveWaaw 268 ��� - - ��
Haaa 3976 � � � � LaamHamzaAboveAlif 925

��
� - -

��
��
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Figure 5. Typical video frames from AcTiV-D dataset. From left to right: Examples of RussiaToday
Arabic, France24 Arabe, TunisiaNat1 (El Wataniya 1) and AljazeeraHD frames.
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Figure 6. Example of text images from AcTiV-R depicting typical characteristics of video text images.

3.2. Annotation Guidelines

We utilized the AcTiV-GT tool [47] to annotate our collection of data. Figure 7 illustrates the
user interface of this tool. In the annotation process, we collect the following information for each
text rectangle.

• position: x, y, width and height.
• content: text strings, text color, background color, background type (transparent, opaque).
• Interval: apparition interval of the textline (Frame_S (Start), Frame_E (End)).

Note that a text rectangle can include multiple lines if they share the same font, color and size,
and if they are not far from each other.

Case of static text annotation:
Determine (1) spatial coor. of
the current text , (2) its color,
(3) its bg type and color, next
(4) its apparition interval

List of video frames 
and visualization of 
the transcriptions' 
information

Visualization of the layout coor. 
(x, y, w, h) and of the fd/bg color

List of video frames 
and visualization of 
the transcriptions' 
information

Figure 7. AcTiV-GT open-source tool displaying a labeled frame.

This set of information is saved in a meta file called global XML file (an extract is illustrated
in Figure 8). This file can be used for tracking and end-to-end tasks. In AcTiV 2.0, two additional
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types of XML files have been generated, based on the information contained in the global XML file,
one for the detection dataset and the other for the recognition dataset. The detection XML file is
provided at the line level for each frame. Figure 9a depicts a part of the detection XML file of France24
TV channel. One bounding box is described by the element Rectangle which contains the rectangle
attributes: (x, y) coordinates, width and height. The recognition ground-truth files are provided at the
line level for each text image. The XML file is composed of two markup sections: ArabicTranscription
and LatinTranscription. Figure 9b depicts an example of a ground-truth XML file and its textline image.

Figure 8. A part of a global XML annotating a video sequence of Aljazeera TV. This figure contains
ground-truth information about three text-boxes from a total of 17.

a

b

Figure 9. Example of AcTiV 2.0 specific XML files: (a) a part of the detection XML file of France24 TV;
and (b) a recognition ground-truth file and its corresponding textline image.
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4. Evaluation Protocols and Metrics

As mentioned before, the proposed AcTiV datasets are mainly dedicated to train and evaluate the
existing systems for Arabic text detection and recognition in news video. To objectively compare and
measure the performance of these systems, we proposed to partition each of the AcTiV-D and AcTiV-R
datasets into train, test and closed test subsets taking advantage of the variability in data content. It is
to note that the latter subset contains private data (quite similar to the test set) that are used in the
context of competitions only. In addition, we suggested a set of evaluation protocols such that different
techniques could be directly compared. In other words, the proposed protocols allow us to closely
analyze the system behavior towards a given resolution (HD/SD) and/or quality (DBS/Web).

4.1. Detection Protocols and Metrics

Table 4 depicts the detection protocols.

• Protocol 1 aims to measure the performance of single-frame based methods to detect texts in
HD frames.

• Protocol 4 is similar to Protocol 1, differing only by the channel resolution. All SD (720 × 576)
channels in our database can be targeted by this protocol which is split in four sub-protocols:
three channel-dependent (Protocols 4.1, 4.2 and 4.3) and one channel-free (Protocol 4.4).

• Protocol 4bis is dedicated to the new added resolution (480 × 360) for the Tunisia Nat1 TV
channel. The main idea of this protocol is to train a given system with SD (720 × 576) data
i.e., Protocol 4.3 and test it with different data resolution and quality.

• Protocol 7 is the generic version of the previous protocols where text detection is evaluated
regardless of data quality.

Table 4. Detection Evaluation Protocols.

Training-Set 1 Training-Set 2 Test-Set 1 Test-Set 2 Closed-Set
Protocol TV Channel

# Frames # Frames # Frames # Frames # Frames

1 AlJazeeraHD 337 610 87 196 103

France24 331 600 80 170 104
Russia Today 323 611 79 171 100
TunisiaNat1 492 788 116 205 1064

All SD 1146 1999 275 546 310

4bis TunisiaNat1+ - - - 149 150

7 All 1483 2609 362 891 563

Metrics: The performance of a text detector is evaluated based on precision, recall and F-measure
metrics that are defined as:

Precision =
∑
|D|
i=1 matchD(Di)

|D| (1)

Recall =
∑
|G|
i=1 matchG(Gi)

|G| (2)

Fmeasure = 2 ∗ Precision ∗ Recall
Precision + Recall

(3)

where D is the list of detected rectangles, G is the list of ground-truth rectangles and matchD/matchG
are the matching functions, respectively. These measures are calculated using our evaluation tool [48]
which takes into account all types of matching cases between G bounding boxes and D ones,
i.e., one-to-one, one-to-many and many-to-one matching. In the matching procedure, two quality
constraints, namely, tp and tr are utilized. tp ∈ [0, 1] is the constraint on area precision and tr ∈ [0, 1] is
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the recall constraint. Figure 10 depicts the user interface of our evaluation tool as well as the precision
and recall curves, where x-axis denotes tr values and y-axis denotes tp ones. The proposed performance
metrics and their underlying constraints are similar to those used in ICDAR 2013 [24] and ICDAR
2015 [25] RRCs. It is worth noting that our annotation and evaluation tools are fully implemented in
Java and are made open-source for standardization and validation purposes.

Frame list Frame preview

Evaluation buttons

a b

Figure 10. AcTiV-D evaluation tool. The user can apply the evaluation procedure to the current frame
“Evaluate CF” button or to all video frames “Evaluate All” button (a). The “Performance Value” button
displays precision, recall and F-score values (b).

4.2. Recognition Protocols and Metrics

Table 5 depicts the recognition protocols.

• Protocol 3 aims to evaluate the performance of OCR systems to recognize texts in HD frames.
• Protocol 6 is similar to Protocol 3, differing only by the channel resolution. All SD (720 × 576)

channels in our dataset can be targeted by this protocol which is split in four sub-protocols: three
channel-dependent (Protocols 6.1, 6.2 and 6.3) and one channel-free (Protocol 6.4).

• Protocol 6bis is dedicated to the new added resolution (480 × 360) for the Tunisia Nat1 TV
channel. The main idea of this protocol is to train a given system with SD (720 × 576) data i.e.,
Protocol 6.3 and test it with different data resolution and quality.

• Protocol 9 is the generic version of Protocols 3 and 6 where text recognition is assessed without
considering data quality.

Table 5. Recognition Evaluation Protocols. “Lns” and “Wds” respectively denote “Lines” and “Words”.

Protocol TV Channel
Training-Set Test-Set Closed Test-Set

#Lns #Wds #Chars #Lns #Wds #Chars #Lns #Wds #Chars

3 AlJazeeraHD 1909 8110 46,563 196 766 4343 262 1082 6283
6 France24 1906 5683 32,085 179 667 3835 191 734 4600

Russia Today 2127 13,462 78,936 250 1483 8749 256 1598 9305
TunisiaNat1 2001 9338 54,809 189 706 4087 221 954 5597

All SD 6034 28,483 165,830 618 2856 16,671 668 3286 19,502
6bis TunisiaNat1+ - - - 320 1487 8726 311 1148 6645

9 All 7943 36,593 212,393 814 3622 21,014 930 4368 25,785

Metrics: The performance measure for the recognition task is based on the Line Recognition Rate
(LRR), Word Recognition Rate (WRR) at the line and words levels, respectively, and on the computation
of insertion (I), deletion (D) and substitution (S) errors at the character level (CRR) that are defined as:

CRR =
#characters − I − S − D

#characters
(4)
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WRR =
#words_correctly_recognized

#words
(5)

LRR =
#lines_correctly_recognized

#lines
(6)

Figure 11 shows an example explaining the impact on CRR and WRR metrics resulting from
substitution and deletion errors.

Figure 11. Example of CRR and WRR computation based on output errors.

It is worth noting that the proposed protocols help us understanding how generic is the system,
i.e., if a system performs well for Protocols 7 and 9 (independently of the TV channel). For instance, in
the AcTiVComp contest, we observed that some participating systems perform well in HD resolution
only, some others are quite generic (i.e., good in both SD and HD resolutions). Other systems are
incompatible with a specific resolution. Various examples of using these evaluation protocols will be
presented in the next section.

5. Application of AcTiV Datasets

The proposed datasets have been used to build and evaluate two systems for Arabic video text
detection and recognition. The text detector is based on a hybrid approach composed of CC-based
heuristic phase and a machine learning verification procedure. The recognizer system consists of a
Multi-Dimensional RNNs (MDRNNs) [49] coupled with a Connectionist Temporal Classification (CTC)
layer [50].

5.1. LADI Detector

The LADI text detection system is based in our previous work [14,46], with new added
enhancements considering the color consistency of near text regions. Our text detector represents a
hybrid approach consisting of two stages: a CC-based heuristic algorithm and a machine learning
classification. The main idea of this system is to combine two techniques: an adapted version of the
SWT algorithm and a convolutional auto-encoder (CAE). As shown in Figure 12, the first stage starts
with a preprocessing step to decrease noise and fine detail. It then computes the edge map and X&Y
gradients from the processed frame using Canny and Sobel operators, respectively. After that, the SWT
operator is performed as follow.

- Gradient direction dp is calculated, at each edge pixel p, which is roughly perpendicular to the
stroke orientation.

- A search ray r = p + n ∗ dp (n > 0) starting from an edge pixel p along the gradient direction dp

is shot until we find another edge pixel q. If these two edge pixels have nearly opposite gradient
orientations, the ray is considered valid. All pixels inside this ray are labeled by the length |p − q|.
The next step is to group adjacent pixels in the resulting SWT image into CCs. This is done by

applying a flood-fill algorithm based on consistency in stroke width and color. The CCs are then
filtered using a set of simple heuristic rules concerning the CC size, position, aspect-ratio and color
uniformity. The remaining CCs are iteratively merged into words and textlines based on a proposed
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textline formation method (see [46] for more details). The second stage uses CAE to automatically
produce features, instead of hard-coding them. These features have been learned in an unsupervised
way from the textline candidates obtained in the first stage. Then, to discriminate text objects from
non-text ones, an SVM classifier with RBF kernel is trained on the patches extracted from the textline
candidates by using the generated CAE features.

Note that the whole algorithm is performed twice (for each image) to handle both dark-on-light
and light-on-dark texts, once along the gradient direction and once along the inverse direction.
The results of two passes are combined to make final decisions.

Figure 12. Pipeline of the text detection algorithm. Two passes are performed, one for each text polarity
(Dark text on Light background or Light text on Dark background).

5.2. SID OCR

The SID OCR system [51] relies specifically on a Multi-Dimensional Long Short Term Memory
(MDLSTM) with a CTC output layer. The proposed network is composed of three levels: an input
layer, five hidden layers and an output layer. The hidden layers are MDLSTM that respectively have
2, 10, and 50 cells and separated by feedforward layers with 6 and 20 cells. In fact, we have created
a hierarchical structure by repeatedly composing MDLSTM layers with feedforward layers. Firstly,
the image is divided into small patches using a pixel window called the “input block”, each of which
is presented to the first MDLSTM layer as a feature vector of pixel intensities. These vectors are then
scanned by four MDLSTM layers in different directions (i.e., up, down, left an right).

After that, the cells activation of the MDLSTM layers are sequentially fed to the first and second
feed-forward layers through sub-sample windows, namely “hidden block”. This can be seen as
a subsampling step with trainable weights, in which the activation are summed and squashed by
the hyperbolic tangent (tanh) function. This step aims to extremely reduce the number of weight
connections between hidden layers.

The final level is the CTC output layer which labels the sequences of textlines. This layer has
n cells, where n is the number of classes, in our case 165 (164 characters and one cell for the ‘blank’
output). The output activations are normalized at each time step with the softmax activation function.
The use of such layer allows working on unsegmented input sequence, which is not the case for
standard RNN objective functions. A separate network has been trained for each TV channel of the
reference protocol. All input images have been scaled to common heights (70 pixels) and converted
to gray-scale. The training is carried out with back-propagation through time (BPTT) algorithm and
steepset optimizer has been used with a learning rate of 10−4 and with a momentum value of 0.9.
We performed several experiments to find the optimal sizes of the MDLSTM layers, feedforward layers,
input block and hidden block. Table 6 summarizes the best obtained values of the network parameters.
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Note that the size of the input block is set to 1 × 4 for Protocols 6.1 and 3 (not 2 × 4), respectively.
To fine-tune these parameters we just pick out a set of 2000 labeled images from AcTiV-R, in which
190 are used as a validation set.

Table 6. Best parameters for training the network.

Parameters Values

MDLSTM Size 2, 10 and 50
Feed-forward Size 6 and 20

InputBlock Size 2 × 4
HiddenBlock Sizes 1 × 4 and 1 × 4

Learn rate 10−4

Momentum 0.9

5.3. Experimental Results

Several experiments have been conducted using the AcTiV-D and AcTiV-R subsets. These
experiments can be divided into two categories: The first one concerns the comparison of our systems
with two recent methods. The second category aims at analyzing the effect of increasing the training
data on the accuracy of the LADI text detector.

5.3.1. Comparison with Other Methods

As proof of concept of the proposed benchmark, we compare our systems with two recent
methods. The first one was proposed by Gaddour et al. [52] to basically detect Arabic texts in natural
scene images. The main steps involved are:

• Pixel-color clustering using k-means to form pairs of thresholds for each RGB channel.
• Creation of binary map for each pair of thresholds.
• Extraction of CCs.
• Preliminary filtering according to “area stability” criterion.
• Second filtering based on a set of statistical and geometric rules.
• Horizontal merging of the remaining components to form textlines.

The second method was put forward by Iwata et al. [53] to recognize artificial Arabic text in video
frames. It operates as follows:

• Textline segmentation into words by thresholding gaps between CCs.
• Over-segmentation of characters into primitive segments.
• Character recognition using 64-dimensional feature vector of chain code histogram and the

modified quadratic discriminant function.
• Word recognition by dynamic programming using total likelihood of characters as

objective function.
• False word reduction by measuring the average of the character likelihoods in a word and

comparing it to a predefined threshold.

The detection systems have been trained on the training-set1 of Table 4. The evaluation has been
done on the test set for the detection and recognition tasks. Table 7 presents evaluation results of the
detection protocols in terms of precision, recall and F-measure. The best results are marked in bold.
The LADI system scores best for all protocols with an F-measure between 0.73 and 0.85 for AllSD
protocol (p4.4) and AljazeeraHD protocol (p1) respectively. In contrast to the SysA that represents
a fully heuristic-based method, the LADI system increased the F-measure by 11% for Protocol 1.
For Protocols 4.1, 4.2, 4.3 and 4.4 (SD channels), the results are higher, with a gain of, respectively,
11%, 17%, 14% and 24%. This reflects the effectiveness of using a machine-learning solution to filter the
results given by the SWT algorithm. The Gaddo system has strong fragmentation and miss detection
tendency as depicted by its obtained numerical results. Table 8 presents evaluation results of the
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recognition protocols in terms of CRR, WRR and LRR metrics. The SID-OCR system has shown
superiority in all protocols. The best accuracies are achieved on the TunisiaNat1 channel subset (p6.3)
with 0.94 as a CRR and 0.62 as a LRR. The IWATA system performs well for all SD protocols especially
for the CRR/WRR metrics. However its current version is incompatible with HD resolution. The result
shows that our system has low recognition rate when facing different text patterns and resolutions,
i.e., global Protocol 9. Based on our knowledge about the shapes of Arabic characters, we divide the
causes of errors into two classes: character similarity and insufficient samples of punctuation, digits
and symbols. Several measures can be taken to minimize the character error rate, for instance by
integrating language models or dropout mechanism.

Table 7. Performance of text detection systems evaluated on the test set of AcTiV-D.

Protocol System Precision Recall Fmeasure

1
LADI [46] 0.86 0.84 0.85
SysA [14] 0.77 0.76 0.76

Gaddo [52] 0.52 0.49 0.51

4.1
LADI [46] 0.74 0.76 0.75
SysA [14] 0.69 0.6 0.64

Gaddo [52] 0.47 0.61 0.54

4.2
LADI [46] 0.8 0.75 0.77
SysA [14] 0.66 0.55 0.6

Gaddo [52] 0.41 0.5 0.45

4.3
LADI [46] 0.85 0.82 0.83
SysA [14] 0.68 0.71 0.69

Gaddo [52] 0.34 0.49 0.41

4.4
LADI [46] 0.71 0.76 0.73
SysA [14] 0.5 0.49 0.49

Gaddo [52] - - -

Table 8. Performance of the recognition systems evaluated on the test set of AcTiV-R.

Protocol System CRR WRR LRR

3
SIDOCR [51] 0.90 0.71 0.51
IWATA [53] - - -

6.1
SIDOCR [51] 0.89 0.70 0.51
IWATA [53] 0.88 0.67 0.46

6.2
SIDOCR [51] 0.94 0.68 0.41
IWATA [53] 0.9 0.68 0.39

6.3
SIDOCR [51] 0.94 0.81 0.62
IWATA [53] 0.94 0.77 0.56

6.4
SIDOCR [51] 0.93 0.73 0.52
IWATA [53] 0.9 0.73 0.48

9
SIDOCR [51] 0.73 0.58 0.32
IWATA [53] - - -

5.3.2. Training with AcTiV 2.0

To examine the effect of increasing the number of training samples on the accuracy of our text
detector, we conduct the same experiment of Protocol 6.1, in Table 7, using training-set2, which
includes roughly the double of samples (600 frames) than training-set1 (see Table 4). We observed
that the detection rates of our text detector have been increased as expected. Specifically, the recall
increases by 2% and the precision increases by 5%. This can be explained by the increase in the number
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of samples provided to the CAE, which leads to more robust feature representations and subsequently
better classification results.

6. Conclusions

In this paper, we have presented a new version of the AcTiV dataset for the development and
evaluation of text detection and recognition systems targeting Arabic news video. This dataset is freely
available to research institutions. We have provided details about the characteristics and statistics of
the database. We have also reported about our ground-truthing software used to semi-automatically
annotate the video clips and our open text detection evaluation tool. We have evaluated five text
detection and recognition algorithms as proof-of-concept of the new dataset. Additionally, a set of
evaluation protocols has been made to measure the systems performance under different situations.
The experimental results have shown that there is still room for improvement in both detection and
recognition of Arabic video text. We look forward to more researchers joining the challenging research
topic of Arabic video texts detection and recognition.

Acknowledgments: The researchers would like to thank all the TV channels for providing us with data and
multimedia files, especially the archive staff of ElWataniya1 (TunisiaNat1) TV.

Author Contributions: Oussama Zayene conceived the dataset, developed the tools and realized the experiments
under the supervision and help of professors Najoua Essoukri Ben Amara, Jean Hennebert and Rolf Ingold.
Sameh Masmoudi Touj contributed to the collect, design and annotation of the dataset, and verified the annotated
data. All the co-authors have substantially revised the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lu, T.; Palaiahnakote, S.; Tan, C.L.; Liu, W. Video Text Detection; Springer Publishing Company, Incorporated:
London, UK, 2014.

2. Ye, Q.; Doermann, D. Text detection and recognition in imagery: A survey. IEEE Trans. Pattern Anal.
Mach. Intell. 2015, 37, 1480–1500.

3. Yin, X.C.; Zuo, Z.Y.; Tian, S.; Liu, C.L. Text Detection, Tracking and Recognition in Video: A Comprehensive
Survey. IEEE Trans. Image Process. 2016, 25, 2752–2773.

4. Lienhart, R. Video OCR: A survey and practitioner’s guide. In Video Mining; Springer: Boston, MA, USA,
2003; pp. 155–183.

5. Yang, H.; Quehl, B.; Sack, H. A framework for improved video text detection and recognition.
Multimed. Tools Appl. 2014, 69, 217–245.

6. Poignant, J.; Bredin, H.; Le, V.B.; Besacier, L.; Barras, C.; Quénot, G. Unsupervised speaker identification
using overlaid texts in TV broadcast. In Proceedings of the Interspeech 2012—Conference of the International
Speech Communication Association, Portland, OR, USA, 9–13 September 2012; p. 4.

7. Märgner, V.; El Abed, H. Guide to OCR for Arabic Scripts; Springer: Berlin, Germany, 2012.
8. Touj, S.M.; Amara, N.E.B.; Amiri, H. Arabic Handwritten Words Recognition Based on a Planar Hidden

Markov Model. Int. Arab J. Inf. Technol. 2005, 2, 318–325.
9. Lorigo, L.M.; Govindaraju, V. Offline Arabic handwriting recognition: A survey. IEEE Trans. Pattern Anal.

Mach. Intell. 2006, 28, 712–724.
10. Chammas, E.; Mokbel, C.; Likforman-Sulem, L. Arabic handwritten document preprocessing and recognition.

In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR),
Tunis, Tunisia, 23–26 August 2015; pp. 451–455.

11. Jamil, A.; Siddiqi, I.; Arif, F.; Raza, A. Edge-based features for localization of artificial Urdu text in video
images. In Proceedings of the 2011 International Conference on Document Analysis and Recognition, Beijing,
China, 18–21 September 2011; pp. 1120–1124.

12. Halima, M.B.; Karray, H.; Alimi, A.M. Arabic text recognition in video sequences. arXiv 2013,
arXiv:preprint/1308.3243

203



J. Imaging 2018, 4, 32

13. Yousfi, S.; Berrani, S.A.; Garcia, C. Arabic text detection in videos using neural and boosting-based
approaches: Application to video indexing. In Proceedings of the 2014 IEEE International Conference on
Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 3028–3032.

14. Zayene, O.; Hennebert, J.; Touj, S.M.; Ingold, R.; Amara, N.E.B. A dataset for Arabic text detection,
tracking and recognition in news videos-AcTiV. In Proceedings of the 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 996–1000.

15. Elagouni, K.; Garcia, C.; Mamalet, F.; Sébillot, P. Text recognition in videos using a recurrent connectionist
approach. In Proceedings of the International Conference on Artificial Neural Networks, Lausanne,
Switzerland, 11–14 September 2012; pp. 172–179.

16. Khare, V.; Shivakumara, P.; Raveendran, P. A new Histogram Oriented Moments descriptor for
multi-oriented moving text detection in video. Expert Syst. Appl. 2015, 42, 7627–7640.

17. Lucas, S.M.; Panaretos, A.; Sosa, L.; Tang, A.; Wong, S.; Young, R.; Ashida, K.; Nagai, H.; Okamoto, M.;
Yamamoto, H.; et al. ICDAR 2003 robust reading competitions: Entries, results, and future directions. Int. J.
Doc. Anal. Recognit. (IJDAR) 2005, 7, 105–122.

18. Lucas, S.M. ICDAR 2005 text locating competition results. In Proceedings of the Eighth International
Conference on Document Analysis and Recognition, Seoul, Korea, 31 August–1 September 2005; pp. 80–84.

19. Huang, W.; Lin, Z.; Yang, J.; Wang, J. Text localization in natural images using stroke feature transform
and text covariance descriptors. In Proceedings of the IEEE International Conference on Computer Vision,
Sydney, Australia, 1–8 December 2013; pp. 1241–1248.

20. Zhu, Y.; Yao, C.; Bai, X. Scene text detection and recognition: Recent advances and future trends.
Front. Comput. Sci. 2016, 10, 19–36.

21. Jaderberg, M.; Simonyan, K.; Vedaldi, A.; Zisserman, A. Reading text in the wild with convolutional neural
networks. Int. J. Comput. Vis. 2016, 116, 1–20.

22. Shahab, A.; Shafait, F.; Dengel, A. ICDAR 2011 robust reading competition challenge 2: Reading text in
scene images. In Proceedings of the 2011 International Conference on Document Analysis and Recognition,
Beijing, China, 18–21 September 2011; pp. 1491–1496.

23. Liao, M.; Shi, B.; Bai, X.; Wang, X.; Liu, W. TextBoxes: A Fast Text Detector with a Single Deep Neural
Network. In Proceedings of the 2017 AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4–9 February 2017; pp. 4161–4167.

24. Karatzas, D.; Shafait, F.; Uchida, S.; Iwamura, M.; i Bigorda, L.G.; Mestre, S.R.; Mas, J.; Mota, D.F.;
Almazan, J.A.; de las Heras, L.P. ICDAR 2013 robust reading competition. In Proceedings of the 2013 12th
International Conference on Document Analysis and Recognition, Washington, DC, USA, 25–28 August 2013;
pp. 1484–1493.

25. Karatzas, D.; Gomez-Bigorda, L.; Nicolaou, A.; Ghosh, S.; Bagdanov, A.; Iwamura, M.; Matas, J.; Neumann, L.;
Chandrasekhar, V.R.; Lu, S.; et al. ICDAR 2015 competition on robust reading. In Proceedings of
the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia,
23–26 August 2015; pp. 1156–1160.

26. Yao, C.; Bai, X.; Liu, W.; Ma, Y.; Tu, Z. Detecting texts of arbitrary orientations in natural images.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 1083–1090.

27. Liu, Z.; Li, Y.; Qi, X.; Yang, Y.; Nian, M.; Zhang, H.; Xiamixiding, R. Method for unconstrained text detection
in natural scene image. IET Comput. Vis. 2017, 11, 596–604.

28. Wang, K.; Belongie, S. Word spotting in the wild. In Proceedings of the European Conference on Computer
Vision, Heraklion, Greece, 5–11 September 2010; pp. 591–604.

29. Shi, B.; Bai, X.; Yao, C. An end-to-end trainable neural network for image-based sequence recognition and its
application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2298–2304.

30. Mishra, A.; Alahari, K.; Jawahar, C. Unsupervised refinement of color and stroke features for text binarization.
Int. J. Doc. Anal. Recognit. (IJDAR) 2017, 20, 105–121.

31. Lee, S.; Cho, M.S.; Jung, K.; Kim, J.H. Scene text extraction with edge constraint and text collinearity.
In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey,
23–26 August 2010; pp. 3983–3986.

32. Zhu, Y.; Zhang, K. Text segmentation using superpixel clustering. IET Image Process. 2017, 11, 455–464.

204



J. Imaging 2018, 4, 32

33. Nagy, R.; Dicker, A.; Meyer-Wegener, K. NEOCR: A configurable dataset for natural image text recognition.
In Proceedings of the International Workshop on Camera-Based Document Analysis and Recognition,
Beijing, China, 22 September 2011; pp. 150–163.

34. Veit, A.; Matera, T.; Neumann, L.; Matas, J.; Belongie, S. Coco-text: Dataset and benchmark for text detection
and recognition in natural images. arXiv 2016, arXiv:preprint/1601.07140.

35. Gomez, R.; Shi, B.; Gomez, L.; Numann, L.; Veit, A.; Matas, J.; Belongie, S.; Karatzas, D. ICDAR2017 Robust
Reading Challenge on COCO-Text. In Proceedings of the 2017 International Conference on Document
Analysis and Recognition, Kyoto, Japan, 10–15 November 2017; pp. 1435–1443.

36. Ch’ng, C.K.; Chan, C.S. Total-Text: A Comprehensive Dataset for Scene Text Detection and Recognition.
In Proceedings of the 2017 International Conference on Document Analysis and Recognition, Kyoto, Japan,
10–15 November 2017; pp. 935–942.

37. Pechwitz, M.; Maddouri, S.S.; Märgner, V.; Ellouze, N.; Amiri, H. IFN/ENIT-database of handwritten
Arabic words. In Proceedings of the Colloque International Francophone sur l’Ecrit et le Document (CIFED),
Hammamet, Tunisia, 21–23 October 2002; pp. 127–136.

38. Mahmoud, S.A.; Ahmad, I.; Al-Khatib, W.G.; Alshayeb, M.; Parvez, M.T.; Märgner, V.; Fink, G.A. KHATT:
An open Arabic offline handwritten text database. Pattern Recognit. 2014, 47, 1096–1112.

39. Slimane, F.; Ingold, R.; Kanoun, S.; Alimi, A.M.; Hennebert, J. A new arabic printed text image database
and evaluation protocols. In Proceedings of the 2009 International Conference on Document Analysis and
Recognition, Barcelona, Spain, 26–29 July 2009; pp. 946–950.

40. Kherallah, M.; Tagougui, N.; Alimi, A.M.; El Abed, H.; Margner, V. Online Arabic handwriting recognition
competition. In Proceedings of the 2011 International Conference on Document Analysis and Recognition,
Beijing, China, 18–21 September 2011; pp. 1454–1458.

41. Halima, M.B.; Alimi, A.; Vila, A.F.; Karray, H. Nf-SAVO: Neuro-fuzzy system for arabic video OCR.
arXiv 2012, arXiv:preprint/1211.2150.

42. Moradi, M.; Mozaffari, S. Hybrid approach for Farsi/Arabic text detection and localisation in video frames.
IET Image Process. 2013, 7, 154–164.

43. Yousfi, S.; Berrani, S.A.; Garcia, C. Deep learning and recurrent connectionist-based approaches for Arabic
text recognition in videos. In Proceedings of the 2015 13th International Conference on Document Analysis
and Recognition, Tunis, Tunisia, 23–26 August 2015; pp. 1026–1030.

44. Yousfi, S.; Berrani, S.A.; Garcia, C. ALIF: A dataset for Arabic embedded text recognition in TV broadcast.
In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR),
Tunis, Tunisia, 23–26 August 2015; pp. 1221–1225.

45. Zayene, O.; Hajjej, N.; Touj, S.M.; Ben Mansour, S.; Hennebert, J.; Ingold, R.; Amara, N.E.B. ICPR2016
Contest on Arabic Text Detection and Recognition in Video Frames AcTiVComp. In Proceedings of the 23th
International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 187–191.

46. Zayene, O.; Seuret, M.; Touj, S.M.; Hennebert, J.; Ingold, R.; Amara, N.E.B. Text detection in arabic news
video based on SWT operator and convolutional auto-encoders. In Proceedings of the 2016 12th IAPR
Workshop on Document Analysis Systems (DAS), Santorini, Greece, 11–14 April 2016; pp. 13–18.

47. Zayene, O.; Touj, S.M.; Hennebert, J.; Ingold, R.; Amara, N.E.B. Semi-automatic news video annotation
framework for Arabic text. In Proceedings of the 2014 4th International Conference on Image Processing
Theory, Tools and Applications, Paris, France, 14–17 October 2014; pp. 1–6.

48. Zayene, O.; Touj, S.M.; Hennebert, J.; Ingold, R.; Amara, N.E.B. Data, protocol and algorithms for
performance evaluation of text detection in Arabic news video. In Proceedings of the 2016 2nd International
Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Monastir, Tunisia,
21–23 March 2016; pp. 258–263.

49. Graves, A. Offline arabic handwriting recognition with multidimensional recurrent neural networks. In Guide
to OCR for Arabic Scripts; Springer: Berlin, Germany, 2012; pp. 297–313.

50. Graves, A.; Fernández, S.; Gomez, F.; Schmidhuber, J. Connectionist temporal classification: Labelling
unsegmented sequence data with recurrent neural networks. In Proceedings of the 23rd International
Conference on Machine Learning, Pittsburgh, PA, USA, 25–29 June 2006; pp. 369–376.

51. Zayene, O.; Essefi, S.A.; Amara, N.E.B. Arabic Video Text Recognition Based on Multi-Dimensional Recurrent
Neural Networks. In Proceedings of the International Conference on Computer Systems and Applications
(AICCSA), Hammamet, Tunisia, 30 October–3 November 2017; pp. 725–729.

205



J. Imaging 2018, 4, 32

52. Gaddour, H.; Kanoun, S.; Vincent, N. A New Method for Arabic Text Detection in Natural Scene Image
Based on the Color Homogeneity. In Proceedings of the International Conference on Image and Signal
Processing, Trois-Rivières, QC, Canada, 30 May–1 June 2016; pp. 127–136.

53. Iwata, S.; Ohyama, W.; Wakabayashi, T.; Kimura, F. Recognition and transition frame detection of Arabic
news captions for video retrieval. In Proceedings of the 2016 23rd International Conference on Pattern
Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 4005–4010.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

206



MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Journal of Imaging Editorial Office
E-mail: jimaging@mdpi.com

www.mdpi.com/journal/jimaging





MDPI 
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03897-106-1


	Blank Page



