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Preface to “Mathematical Modeling and Control

of Bioprocesses”

Over the years, we have been involved in several invited sessions at international conferences, as

well as Special Issues dedicated to topics revolving around mathematical modeling and the analysis

of biological systems, as well as bioprocess optimization and control. All this would not have been

possible without the participation of a great circle of colleagues and friends who have contributed

high-quality work to these events. The present book is no exception to this fruitful synergy and

communication, and we would like to express our gratitude to the contributors to this collective

publication. The array of subjects considered in the several chapters reflects the vibrant research in

the area of biosystem modeling and control. Mathematical modeling and analysis have always been

central in unveiling behavioral aspects of biosystems and today, more than ever, to forge strategies to

improve the quality, productivity, and sustainability of bioprocesses.

Philippe Bogaerts and Alain Vande Wouwer

Editors
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Special Issue: Mathematical Modeling and Control
of Bioprocesses

Philippe Bogaerts 1,* and Alain Vande Wouwer 2,*
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* Correspondence: philippe.bogaerts@ulb.be (P.B.); alain.vandewouwer@umons.ac.be (A.V.W.)

This Special Issue (SI) of Processes on Mathematical Modeling and Control of Biopro-
cesses (MMCB) contains papers focusing, on the one hand, on mathematical modeling of
biological processes at different scales ranging from microscopic to macroscopic levels and,
on the other hand, on model-based estimation, optimization and control of these processes.

1. Mathematical Modeling of Biological Processes at Microscopic Scale

At the microscopic scale, metabolic networks are often used to model cell behavior in
different culture conditions. Three papers of the SI on MMCB are focused on metabolic
network modeling. One of the major issues with models based on metabolic networks is
their underdetermination, in the sense that the number of unknown intracellular fluxes to
be determined is usually higher than the number of available equations corresponding to
the mass balances and the available measurements. Bogaerts and Vande Wouwer [1] review
various methods to tackle this underdetermination, among which are flux pathway analysis,
flux balance analysis, flux variability analysis and sampling of the flux solution space. One
of these methods, namely Dynamic Flux Balance Analysis, is used by Shen and Budman [2]
to infer metabolite concentrations for which hardware measurements are not available.
A variable structure system, describing different regions of the state space, is introduced
and a set membership-based approach is used to estimate the unmeasured concentrations
from few available measurements. To completely circumvent the abovementioned problem
of system underdetermination, Bastin et al. [3] use relatively simple macroscopic models
that allow obtaining a unique flux distribution to describe VERO cell behavior in different
bioreactor culture conditions, e.g., exponential growth phase or substrate-limited growth
phase. Such models could be used to develop feedback control strategies in fed-batch or
perfused bioreactors.

2. Mathematical Modeling of Biological Processes at Macroscopic Scale

At a more macroscopic scale, four papers of the SI on MMCB focus on dynamic
models for describing different processes, i.e., production of biopolymers [4], production
of biopesticides [5], biodegradation [6] and biorefinery of second-generation biomass [7].
Duvigneau et al. [4] propose a new kinetic model for describing the production of the
bio-copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), which has a broad
range of applications and is easier to process than the classical homopolymer poly(3-
hydroxybutyrate). Given the coupling of CO2 online measurements in the exhaust gas to
biomass production, the model allows for predicting the composition and current yield
of PHBV along the process. Monroy et al. [5] propose and compare different kinetic
models for three different strains of Bacillus thuringiensis ssp Kurstaki, a microorganism
used for the production of biopesticides. The main goal of the model is to estimate the total
protein productivity, yield and titer. Based on several experimental datasets, a dynamical
model is finally selected with the Akaike information criterion. Dimitrova and Zlateva [6]

Processes 2022, 10, 1372. https://doi.org/10.3390/pr10071372 https://www.mdpi.com/journal/processes1
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propose a mathematical model for the biodegradation of a phenol and cresol mixture in
a continuously stirred bioreactor, with a specific growth rate that involves sum kinetics
with interaction parameters (SKIP) and inhibition effects. The global stabilizability of the
model dynamics towards equilibrium points is analyzed and illustrated with numerical
examples. Sbarciog et al. [7] propose a biorefinery model that integrates several processes,
among which are steam refining, anaerobic digestion, ammonia stripping and composting.
The overall goal is the model-based optimization of the process. The authors illustrate
with simulation results the potential to efficiently produce oligosaccharides, lignin, fibers,
biogas, fertilizer and compost from real collected biowaste.

3. Model-Based Estimation, Optimization and Control of Biological Processes

This SI on MMBC also focuses attention on recent developments in monitoring and
optimization of biological systems, where mathematical models can of course play an
important role, as reflected by four articles.

Sokač et al. [8] review the application of mathematical modeling and optimization
for enhancing composting, which is a complex process whose efficiency is influenced by
temperature, pH, moisture content, C/N ratio, particle size, nutrient content and oxygen
supply. In [9], Djema et al. derive optimal control strategies based on the Pontryagin
maximum principle in order to ensure the domination of the strain of interest in cultures of
microalgae in the chemostat described by the Droop model. Sari [10] considers one-step
and two-step models of anaerobic digestion together with a large class of growth functions
encountered in applications, and studies their operating diagrams as a function of the
dilution rate and inlet concentration, so as to define the best operating conditions for
biogas production. In [11], Wallocha and Popp present an off-gas-based software sensor
for real-time biomass estimation in continuous single-use bioreactors with CHO cell lines.
They discuss the interest of considering viable cell volume concentration (instead of the
density) as cell size or volume can have a direct impact on oxygen demand.

Finally, two articles are devoted to controller design and implementation, addressing
important practical aspects of bioprocess control strategy deployment.

Colin-Robles et al. [12] consider the maximization of the hydrogen production rate
in a microbial electrolysis cell. Using the golden section search optimization algorithm
coupled with a robust super-twisting controller, the cell is brought to the maximum of a
static performance map. The proposed optimization strategy is embedded in an FPGA
throughout different digital architectures that are executed in parallel without hardware
sharing. In [13], Butkus et al. propose a gain scheduling approach, which is based on
controller input/output signals only and does not require additional online measurements
of cultivation process variables for the adaptation of controller parameters. The approach is
used to control dissolved oxygen concentration in a bioreactor operated in fed-batch mode.

Author Contributions: Both authors contributed equally. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.
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Abstract: Although the culture of VERO cells in bioreactors is an important industrial bioprocess
for the production of viruses and vaccines, surprisingly few reports on the analysis of the flux
distribution in the cell metabolism have been published. In this study, an attempt is made to fill
this gap by providing an analysis of relatively simple metabolic networks, which are constructed
to describe the cell behavior in different culture conditions, e.g., the exponential growth phase
(availability of glucose and glutamine), cell growth without glutamine, and cell growth without
glucose and glutamine. The metabolic networks are kept as simple as possible in order to avoid
underdeterminacy linked to the lack of extracellular measurements, and a unique flux distribution is
computed in each case based on a mild assumption that the macromolecular composition of the cell is
known. The result of this computation provides some insight into the metabolic changes triggered by
the culture conditions, which could support the design of feedback control strategies in fed batch or
perfusion bioreactors where the lactate concentration is measured online and regulated by controlling
the delivery rates of glucose and, possibly, of some essential amino acids.

Keywords: metabolic flux analysis; metabolic network; VERO cells; biotechnology

1. Introduction

The production of biopharmaceuticals using cultures of genetically modified strains
has gained tremendous importance in the drug manufacturing sector. In this context, it
is important to understand and assess the influence of the culture conditions, and the
impact of metabolic engineering, on the yield of the products of interest. This can be
achieved through an analysis of the flux distribution inside the metabolic network of the
cells or microorganisms under consideration. Various computational procedures have been
proposed for that purpose, including metabolic flux analysis and flux balance analysis [1].

Even though there has been a significant number of reports of the application of
these procedures to cultures of CHO cells and hybridoma cells (e.g., [2–8]), there has been
surprisingly few reports focusing on the metabolism of VERO cell cultures [9]. However
VERO cells are important vectors for the production of viruses (and vaccines) (e.g., [10–18]).

The objective of this study is to apply metabolic flux analysis to small metabolic
networks of VERO cells, on the basis of experimental data collected in three different
culture conditions. In each case, the network is designed to be fully compatible with the
data while being kept as simple as possible to avoid the underdeterminacy that usually
prevails when manipulating large metabolic networks. In this study, the considered
metabolic networks allow keeping the underdeterminacy at a minimum, and to compute a
unique solution based on the only additional mild assumption that the macromolecular
(proteins, nucleic acids, membrane lipids) composition of the cell is as reported in the
literature [19] (p. 113, Table 7.1).

Processes 2021, 9, 2097. https://doi.org/10.3390/pr9122097 https://www.mdpi.com/journal/processes5
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The paper is organized as follows. The next section presents the experimental data,
cell densities, and metabolite concentrations, collected in two batch cultures of VERO cells.
From these data, depending on the availability of glucose and glutamine, three types of
culture growth are distinguished. The metabolic network and its analysis are then detailed
and discussed in Section 3 for the exponential growth phase with glucose and glutamine as
carbon and nitrogen sources, respectively. Next, in Section 4, we consider the case where
glutamine is replaced by glutamate as the source of nitrogen. Finally, the case where lactate
becomes the source of carbon instead of glucose is addressed in Section 5. Final conclusions
are presented in the last section.

2. Experimental Data

In this paper, we use data from two batch cultures of VERO cells, labeled (a1) and (a2),
which were simultaneously carried out over a period of eight days in parallel spinner-flasks,
using the same culture medium. In particular, the two cultures were seeded from the same
pool of cells. The only difference between the two cultures lies in the initial concentration
of glucose. A full description of the materials and methods of these experiments can be
found in [20] (Section 3).

The experiments were performed in spinner-flasks (paddle impeller type). The cul-
ture volume was 250–270 mL. VERO cells (passage 136–146) were grown adherently on
Cytodex 1 microcarriers (3.5 g/L). The spinner-flasks were inoculated with approximately
105 cells/mL, which corresponded to eight cells per microcarrier on average. The basic
culture medium was M199 supplemented at inoculation with fetal calf serum (10% v/v)
and antibiotic (neomycin sulfate 5% v/v). The culture was magnetically stirred at 45 RPM.
The oxygen supply was provided by transfer via the head space. The atmosphere of the
head space was renewed twice a day.

The culture medium was sampled (2 mL) twice a day for analysis (except on day
5, where there was only one sample). Cell counting was done with a hemacytometer
using crystal violet staining. Glucose and lactate concentrations were determined with a
Yellow–Springer analyzer. Amino acids and ammonia were determined with the HPLC
method.

The data collected during these cultures are presented in various figures hereafter. The
time evolution of cell densities (counting) is shown in Figure 1. We can readily observe two
different successive phases in both cultures. The growth begins with a classical exponential
phase during the first four days. Then, from the fourth to the eighth days, there was a shift
to a slower quasi-linear growth. An explanation for this behavior can be found in Figure 2
where the time evolution of the concentrations of glucose and glutamine in the culture
medium are shown. Indeed, it can be seen that, after the fourth day, both glucose and
glutamine are depleted in culture (a1). However the growth proceeds more slowly, with
lactate as the carbon source, while alanine and glutamate are alternative nitrogen sources
in the central metabolism (see Figure 3). In contrast, culture (a2) is operated with an excess
of glucose, so that only glutamine is depleted on the fourth day and replaced by glutamate
as a source of nitrogen. These three different situations of the culture conditions are
summarized in the Table 1 below. Our purpose, in this paper, is to perform a metabolic flux
analysis in order to compute and compare the distributions of the intracellular metabolic
fluxes in these three situations.

Table 1. Three different culture conditions.

Culture Conditions Carbon Source Nitrogen Source

Exponential growth Glucose Glutamine μ ≈ 0.6 day−1

Growth without Gln Glucose Glutamate μ ≈ 0.18 day−1

Growth without Glc and
Gln Lactate Glutamate, Alanine μ ≈ 0.04 day−1
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Figure 1. Time evolution of cell density in cultures a1 (left) and a2 (right).
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Figure 2. Time evolution of substrates and products of the central metabolism in cultures a1 and a2.
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Figure 3. Time evolution of non-essential amino acids in cultures a1 and a2.
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Data of Amino Acids

Concentration measurements of eighteen amino acids in the culture medium were
measured with an HPLC method. In Figure 4, we present the data for nine essential amino
acids, which are naturally consumed in correlation with the cell growth: arginine, histidine,
isoleucine, leucine, lysine, methionine, phenylalanine, tryptophan, and valine. Data are not
available for threonine. It can be seen that the shape of the consumption is quite similar for
both cultures, (a1) and (a2), with only marginal deviations for leucine and isoleucine.

Moreover, in addition to glutamine in Figure 2, we present in Figure 3 the measure-
ments for eight other non-essential amino acids: alanine, aspartate, cysteine, glutamate,
glycine, proline, serine, and tyrosine. It can be seen that these measurements do not always
follow the shape of the cellular growth. In particular, glutamate and alanine are accumu-
lated in the culture medium during the exponential growth, but are significantly consumed
when glutamine is depleted. We also note that the medium does not contain asparagine at
the start of the culture and that asparagine data are not available throughout the culture.

In Tables 2–4, the specific uptake and/or excretion rates of all the species measured in
the culture medium are given for the three considered culture conditions (Tables 2 and 4
are complementary and when a rate does not appear in one table (symbol –––––) it appears
in the other one). These rates are estimated from the slopes of the solid curves that fit the
experimental data in Figures 2–4, at time t = 2.90 days for the exponential growth and at
time t = 6.64 days for the growth without glucose and/or glutamine.

Table 2. Specific uptake rates (μM/d × 107 cell) Glucose, Lactate and non-essential AA.

Species Exponential Growth Growth without Gln Growth without Glc & Gln

Glucose vGlc 42.308 8.933 0.0
Lactate vLac ––––– ––––– 10.218
Glutamine vGln 4.994 0.0 0.0
Alanine vAla ––––– 0.058 0.702
Aspartate vAsp 0.338 0.337 0.376
Cysteine vCys 0.264 0.068 0.077
Glutamate vGlu ––––– 0.499 0.558
Glycine vGly 0.325 ––––– –––––
Proline vPro 0.565 ––––– –––––
Serine vSer 0.231 0.182 –––––
Tyrosine vTyr 0.205 0.063 0.071

Table 3. Specific uptake rates (μM/d × 107 cell) for essential AA.

Species Exponential Growth Growth without Gln Growth without Glc & Gln

Arginine vArg 0.949 0.179 0.200
Histidine vHis 0.195 0.045 0.051
Isoleucine vIle 0.428 0.105 0.171
Leucine vLeu 0.821 0.200 0.459
Lysine vLys 0.484 0.199 0.222
Methionine vMet 0.244 0.100 0.112
Phenylalanine vPhe 0.228 0.091 0.101
Tryptophan vTrn 0.091 0.037 0.042
Valine vVal 0.499 0.146 0.164

Table 4. Specific excretion rates (μM/d × 107 cell) Lactate, NH3 and non-essential AA.

Species Exponential Growth Growth without Gln Growth without Glc & Gln

Lactate vLac 63.770 8.818 –––––
NH3 vNH3 5.316 0.195 1.089
Alanine vAla 0.513 ––––– –––––
Glutamate vGlu 0.659 ––––– –––––
Glycine vGly ––––– 0.019 0.021
Proline vPro ––––– 0.474 0.859
Serine vSer ––––– ––––– 0.624
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Figure 4. Time evolution of essential amino acids in cultures a1 and a2.
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3. Metabolic Flux Analysis of the Exponential Growth Phase

3.1. Metabolic Network

The metabolic network considered for the exponential growth is made up of all the
biochemical reactions in Figures 5–7. The main motivations behind the set-up of this
network are given in the present section.

3.1.1. Central Metabolism

For the growth of mammalian cells, the central metabolism involves glycolysis, TCA
cycle, and glutaminolysis, as represented in Figure 5. For simplicity, the pentose phosphate
pathway is neglected.
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Figure 7. Metabolic network for arginine (essential) and proline (non-essential). (a) Exponential growth; (b) growth without
glutamine.

3.1.2. Synthesis of Proteins

Essential amino acids cannot be synthesized and must be provided in the culture
medium. Therefore, the maximum possible production rate of proteins is determined
by the essential amino acid with the lowest ratio between its external uptake rate (from
Table 3) and its frequency in protein composition as given in Table 5.
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Table 5. Specific consumption rates of amino acids (AA) for protein production [μM/d × 107 cell].
(Essential AA are in bold).

Amino Acid (AA)
Frequency 1 Exponential Growth Growth without

f (%) Growth without Gln Glc & Gln

Alanine 8.0 wAla 0.493 0.150 0.033
Arginine 5.0 wArg 0.306 0.093 0.020
Asparagine 4.3 wAsn 0.266 0.081 0.018
Aspartate 5.5 wAsp 0.339 0.103 0.023
Cysteine 2.5 wCys 0.151 0.046 0.010
Glutamine 4.2 wGln 0.260 0.079 0.017
Glutamate 5.9 wGlu 0.366 0.111 0.024
Glycine 7.5 wGly 0.464 0.141 0.031
Histidine 2.4 wHis 0.150 0.045 0.010
Isoleucine 4.6 wIle 0.286 0.087 0.019
Leucine 8.4 wLeu 0.515 0.157 0.034
Lysine 7.2 wLys 0.443 0.135 0.030
Methionine 2.0 wMet 0.126 0.038 0.008
Phenylalanine 3.7 wPhe 0.228 0.070 0.015
Proline 4.9 wPro 0.305 0.093 0.020
Serine 7.1 wSer 0.435 0.132 0.029
Threonine 5.9 wThr 0.366 0.111 0.024
Tryptophan 1.1 wTrn 0.069 0.021 0.005
Tyrosine 3.1 wTyr 0.189 0.057 0.013
Valine 6.5 wVal 0.402 0.122 0.027

∑ wAA 6.159 1.874 0.411
1Average of frequencies given in [3,21,22].

In the case of exponential growth, among all essential measured amino acids, pheny-
lalanine is the one with this lower ratio. Hence, assuming a maximization of the biomass
production, we suppose that phenylalanine is exclusively used for protein production.
Therefore the protein production flux from phenylalanine wPhe must be equal to the exter-
nal uptake rate given in Table 3, i.e., wPhe = vPhe = 0.228 μM/d × 107 cell. On this basis, we
can then compute the contribution of each amino acid to the production rate of proteins
given in Table 5 with the formula:

wAA = wPhe
fAA
fPhe

. (1)

where wAA is a specific intracellular consumption rate of amino acid AA for protein
production, fAA is the frequency of amino acid AA in the protein composition (and AA =
Phe for phenylalanine).

3.1.3. Synthesis of Nucleotides

The synthesis of nucleotides is represented by the following standard overall biochem-
ical reactions:

1 Ribose-5-P + 2 Glutamine + 1 Aspartate + 1 Glycine + 1 CO2 + 5 ATP

−→ 2 Glutamate + 1 Fumarate + 4 ADP + 1 AMP + 1 Purine

1 Ribose-5-P + 1 Glutamine + 1 Aspartate + 2 ATP

−→ 1 Glutamate + 2 ADP + 1 Pyrimidine

Furthermore, we assume that DNA and RNA are made up with, approximately, equal
shares of purine and pyrimidine nucleotides. It results that, omitting the co-factors ATP,
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ADP and AMP, nucleotide synthesis is represented in the network of Figure 5 by the single
overall reaction:

2 Ribose-5-P + 3 Glutamine + 2 Aspartate + 1 Glycine + 1 CO2

−→ 3 Glutamate + 1 Fumarate + 2 Nucleotides. (2)

3.1.4. Catabolism of Essential Amino Acids

Only catabolic pathways must be considered for essential amino acids since they
cannot be synthesized in the cell. We adopt the standard catabolic reactions represented
in Figures 6 and 7. It can be verified that this representation is fully consistent with the
available data because we have 0 < wAA � vAA for all essential amino acids (with vAA
from Table 3 and wAA from Table 5).

3.1.5. Metabolism of Non-Essential Amino Acids

For non-essential amino acids, both catabolic and anabolic pathways can be taken into
account. From the data of Tables 2, 4 and 5, it appears that the metabolism of non-essential
AA may strongly depend on the culture conditions.

In the phase of exponential growth, anabolic pathways must be considered for alanine
and glutamate because, as seen in Table 4, they are excreted in the culture medium and,
therefore, produced inside the cell at a level that is widely in excess, with respect to
the amount needed for protein production. The metabolism of alanine and glutamate is
represented in Figure 5.

Moreover, from the data of Table 2, it appears that the uptake rates of extracellular
aspartate, glycine, and serine are not sufficient to reach the protein production level given
in Table 5, and that an intracellular synthesis must be provided, too. The metabolism
of these amino acids is also represented in Figure 5. In Figure 5, a synthesis pathway is
provided for asparagine together with an excretion. This assumption will be motivated in
the next section.

In contrast, again from Table 2, we see that the uptake rate of cysteine, proline, and
tyrosine is large enough for protein production, and that an additional catabolic pathway
is needed. The catabolic reactions are represented in Figure 6 for cysteine and tyrosine, and
in Figure 7a for proline.

3.1.6. Synthesis of Lipids

Finally, in addition to nucleotides and amino acids, we consider the lipids as the last
fundamental building blocks of the biomass, in order to set up a model that is consistent, in
terms of mass balance with a sufficient accuracy. For simplicity, we assume however that
acetyl-CoA is the only significant contributor to the molecular mass of lipids, with a rate
denoted wLip as shown in Figure 5. Indeed, the other necessary precursors of membrane
lipids (e.g., serine, choline, ethanolamine, or dihydroxyacetone phosphate) are used in
such low proportions that they can be neglected without significant loss of accuracy.

3.2. Metabolic Flux Analysis
3.2.1. Balance Equations

The metabolic fluxes satisfy the following set of balance equations.

Internal Metabolite Flux Balance Equation

Glucose-6-P v1 + v20 = vGlc = 42.308
Glyceraldehyde-3-P v1 + v2 − v3 = 0
Dihydroxyacetone P v1 − v2 = 0
3-Phosphoglycerate v3 − v4 − v23 = 0
Pyruvate v4 − v5 + v13 + v27 − v37 = vLac = 63.970
Acetyl-coA v5 − v6 + 2v28 + v31 + v32 − wLip = 0
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Internal Metabolite Flux Balance Equation

Citrate v6 − v7 = 0
α-ketoglutarate v7 − v8 + v15 − v19 + v22 + v23 − v30 − v31 − v34 + v37 − 2v38 = 0
Succinyl-CoA v8 − v9 − v28 + v35 = 0
Succinate v9 − v10 + v28 = 0
Fumarate v10 − v11 + v34 + v39 = 0
Malate v11 − v12 − v13 = 0
Oxaloacetate −v6 + v12 − v22 = 0
Glutamate-5-semialdehyde −v17 + v18 + v19 = 0
α-ketobutyrate v26 − v29 = 0
Propionyl-CoA v29 + v30 + v31 − v35 = 0
α-ketoadipate v36 + v38 − 2v21 = 0
Acetoacetate v21 − v28 + v32 + v34 = 0
Ribose-5-P v20 − 2v39 = 0
Arginine v19 = vArg − wArg = 0.643
Aspartate −v22 + v25 + 2v39 = vAsp − wAsp = −0.001
Asparagine v25 − vAsn = wAsn = 0.266
Cysteine −v26 + v27 = vCys − wCys = 0.113

Glutamate
v14 − v15 + v16 + v17 + v19 − v22 − v23 + v25 + v30 + v31 + v34 −
v37 + 2v38 + 3v39 = vGlu + wGlu = 1.025

Glutamine v14 + v25 + 3v39 = vGln − wGln = 4.734
Glycine −v24 + v39 = vGly − wGly = −0.139
Histidine v16 = vHis − wHis = 0.045
Methionine v26 = vMet − wMet = 0.118
Phenylalanine v33 = vPhe − wPhe = 0
Proline v18 = vPro − wPro = 0.260
Serine −v23 + v24 = vSer − wSer = −0.204
Tyrosine −v33 + v34 = vTyr − wTyr = 0.016
Valine v30 = vVal − wVal = 0.097
Isoleucine v31 = vIle − wIle = 0.142
Leucine v32 = vLeu − wLeu = 0.306
Lysine v38 = vLys − wLys = 0.041
Tryptophan v36 = vTrp − wTrp = 0.022
Alanine v36 + v37 = vAla + wAla = 1.006
NH3 v14 + v15 + v16 + v27 = vNH3 = 5.3

3.2.2. Computation of Metabolic Fluxes

The above 39× 41 system of linear equations is underdetermined. One of the rea-
sons for this indeterminacy is that asparagine data are not available and the rate vAsn of
asparagine transfer between the cell and the external culture medium is unknown. In order
to get a unique solution, we introduce the additional constraint that the macromolecular
(proteins, nucleic acids, membrane lipids) composition is as reported, e.g., in [19] (p. 113,
Table 7.1) for mammalian cells. From this reference, the mass of proteins is roughly 12-fold
larger than the mass of nucleic acids in mammalian cells. Furthermore, we know that the
average mass of a nucleotide is about three-fold larger than the average mass of an amino
acid. Using molar units as we do in this paper, it follows that the sum ∑ wAA (see Table 5)
of amino acid rates for protein production must be approximately 36-fold larger than the
nucleotide production rate and, consequently, 72-fold larger that the rate v39 of reaction (2),
i.e.,

∑ wAA
v39

≈ 72. (3)

Similarly, the mass of protein is roughly 3.5-fold larger than the mass of membrane lipids,
while the average mass of a phospholipid is about 7-fold larger than the average mass of
an amino acid. Then, since the production of one mole of phospholipids consumes about
18 moles of acetyl-CoA, we deduce that we have approximately:
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∑ wAA
wLip

≈ 3.5× 7
18

= 1.36, (4)

where wLip denotes the consumption rate of acetyl-CoA for lipid synthesis (see Figure 5).
Under these additional constraints (3) and (4), the system of equations is determined

and has the following solution:

v1 = v2 = 42.136 v13 = 3.198 v23 = 0.429 v33 = 0.0
v3 = 84.272 v14 = 2.731 v24 = 0.225 v34 = 0.016
v4 = 83.843 v15 = 2.306 v25 = 1.745 v35 = 0.357
v5 = 22.318 v16 = 0.045 v26 = 0.118 v36 = 0.022
v6 = v7 = 18.973 v17 = 0.903 v27 = 0.231 v37 = 0.984
v8 = 23.630 v18 = 0.260 v28 = 0.354 v38 = 0.041
v9 = 23.633 v19 = 0.643 v29 = 0.118 v39 = 0.086
v10 = 23.987 v20 = 0.172 v30 = 0.097
v11 = 24.089 v21 = 0.032 v31 = 0.142 vAsn = 1.479
v12 = 20.891 v22 = 1.918 v32 = 0.306 wLip = 4.52

These results can be summed up as follows:

Assuming that

(a) The essential amino acids are not produced inside the cell;
(b) The biomass production is maximal;
(c) The production rates of proteins, nucleic acids, and membrane lipids are in the same

proportions as the respective mass fractions of these macromolecules inside the cells;

Then

(a) A metabolic flux analysis based on the considered metabolic network allows comput-
ing the entire intracellular flux distribution from the measured extracellular uptake
and excretion rates of Tables 2–4.

(b) Closing the overall flux balance necessarily implies that asparagine (which is not
measured) is significantly excreted with a rate of about 1.5 μM/d × 107 cells. This is
quite natural because it is well known that “mammalian cell culture metabolism is
characterized by a high glucose and glutamine uptake combined with a high rate of
lactate and non-essential amino acid secretion” [3]. From our results, it appears that
glutamate, alanine, and especially asparagine, are the main excreted non-essential
amino acids for this culture of VERO cells during the exponential growth. It is clearly
the reason why a medium without asparagine may be used at the start of the culture
without problem.

4. Metabolic Flux Analysis for the Growth without Glutamine

4.1. Metabolic Network
4.1.1. Central Metabolism and Nucleotide Synthesis

As explained in Section 1, we now consider a case where there is no glutamine in the
culture medium while glucose is in excess and not limiting. Glutamate (and aspartate to a
lesser extent) become the main nitrogen sources. Obviously, in that case, glutamine must
be synthesized inside the cells. The central metabolism is therefore slightly modified as
represented in Figure 8 with a pathway for the synthesis of glutamine from glutamate.

Moreover, as shown in Figure 8, the pathway to nucleotide synthesis is assumed to be
identical to that of exponential growth (see Section 3.1.3).

16



Processes 2021, 9, 2097

Glucose-ext

Glucose–6–P

Glyc–3–P

3–P–Glyc

Pyruvate

Dihydroxi–A–P

Acetyl–coA

Citrate

Oxaloacetate

a–k–glutarate

Malate

Fumarate

Succinate Succ–coA

Nucleotides

Glutamate

NH3

Lactate-ext

Aspartate

Glutamine

SerineGlycine

Serine-extGlycine-ext

Rybose–5–P

V1

V2

V3

V4

WGlu

WGln

WSerWGly

WAsp

V5

V6

V7

V8V9

V10

V11

V12

V13

V15

V14

VGlc

V23

V22

V39

V20

Glutamate-ext

VGlu

VSerVGly

VLac

Aspartate-ext

3

3

2

V24

V28 V35V28

NH3

V34

V27

V28V31

V32

V17, V19, V22, V25, V30,

V31, V34, V37, V38

Alanine

Alanine-ext

VAla
WAlaV36

Histidine

Histidine-ext

VHis

V16

WHis

V37
2

Asparagine

Asparagine-ext

WAsn

2

Gln Glu

VAsp VAsn

V25

a-k-g

Glu

V25

V19, V22, V30,

V31, V34, V38

WLip

Figure 8. Growth without glutamine: central metabolism involving glycolysis, TCA and glutamine synthesis, nucleotide
synthesis and metabolism of alanine, asparagine, aspartate, histidine, glycine, and serine.

4.1.2. Synthesis of Proteins

In this phase of growth without glutamine, histidine turns out to be the essential amino
acid with the lowest ratio between its external uptake rate (from Table 3) and its frequency
in protein composition (from Table 5). If we assume (as in the previous section) that the
cell growth is maximized and that histidine is exclusively used for protein formation, then
the total protein production rate can be estimated as

(
∑ wAA

)
wg ≈

vHis
fHis

=
0.045
0.024

= 1.87
μM

d× 107 cells
(5)
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where the values of vHis and fHis are taken from Tables 3 and 5, respectively. We can then
compute the contribution of each amino acid to the production rate of proteins. The result
is given in Table 5.

From the available experimental data, the assumption of cell growth maximization
could however be questionable when glutamine is depleted. The reason is that, as it can
be seen in Figure 4, the net uptake rate of essential amino acids is similar in magnitude to
the exponential growth while the specific cell growth rate is much smaller. An alternative
natural assumption is to suppose that the rate of protein production is proportional to
the rate of cell growth. Under this assumption, we have another manner to compute a
plausible estimate of the protein production rate, as follows:

(
∑ wAA

)
wg ≈

μwg

μeg

(
∑ wAA

)
eg =

0.18
0.6

× 6.159 = 1.85
μM

d× 107 cells
. (6)

In Equations (5) and (6), the subscripts ‘wg’ and ‘eg’ refer to the growth without
glutamine and to the exponential growth, respectively. The values of the growth rates μeg
and μwg are taken from Table 1.

It is remarkable that these two estimations of the protein production rate are almost
equal, although they are obtained under totally different assumptions. In our viewpoint,
this certainly gives a strong consistency to the validity of our experimental data and to the
relevance of the assumption of growth maximization, which appears to be very plausible,
not only for the exponential growth with non-limiting glucose and glutamine resources,
but also in the case of growth with glutamine limitation. It will be seen, in the next section,
that the situation is very different for the culture without glucose.

4.1.3. Metabolism of Amino Acids

For the catabolism of essential amino acids, we adopt the same standard catabolic
reactions represented in Figures 6 and 7.

Moreover anabolic pathways must be provided for glycine and proline, which are
excreted into the extracellular medium under the current conditions (see Table 2). The
metabolic pathways are given in Figure 7b for proline and in Figure 8 for glycine. Note
that the difference between Figure 7a,b lies in the inversion of fluxes v17, v18 and vPro.

Finally, catabolic pathways are used for aspartate, cysteine, serine, and tyrosine
because the uptake rate from the culture medium is larger than their contribution to
the flux in protein production given in Table 5. The metabolism of these amino acids is
represented in Figure 6 for cysteine and tyrosine, and in Figure 8 for aspartate and serine.

4.2. Metabolic Flux Analysis

In this case of growth without glutamine, the metabolic fluxes satisfy the following
set of balance equations.

Internal Metabolite Flux Balance Equation

Glucose-6-P v1 + v20 = vGlc = 8.933
Glyceraldehyde-3-P v1 + v2 − v3 = 0
Dihydroxyacetone P v1 − v2 = 0
3-Phosphoglycerate v3 − v4 − v23 = 0
Pyruvate v4 − v5 + v13 + v27 − v37 = vLac = 8.818
Acetyl-CoA v5 − v6 + 2v28 + v31 + v32 − wLip = 0
Citrate v6 − v7 = 0
α-ketoglutarate v7 − v8 + v15 − v19 + v22 + v23 − v30 − v31 − v34 + v37 − 2v38 = 0
Succinyl-CoA v8 − v9 − v28 + v35 = 0
Succinate v9 − v10 + v28 = 0
Fumarate v10 − v11 + v25 + v34 = 0
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Internal Metabolite Flux Balance Equation

Malate v11 − v12 − v13 = 0
Oxaloacetate −v4 − v6 + v12 + v22 = 0
Glutamate-5-semialdehyde v17 − v18 + v19 = 0
α-ketobutyrate v26 − v29 = 0
Propionyl-CoA v29 + v30 + v31 − v35 = 0
α-ketoadipate v36 + v38 − 2v21 = 0
Acetoacetate v21 − v28 + v32 + v34 = 0
Ribose-5-P v20 − 2v39 = 0
Arginine v19 = vArg − wArg = 0.086
Aspartate −v22 + v25 + 2v39 = vAsp − wAsp = 0.234
Asparagine v25 − vAsn = wAsn = 0.081
Cysteine −v26 + v27 = vCys − wCys = 0.022

Glutamate
−v14 − v15 + v16 + v17 + v19 − v22 − v23 + v25 + v30 + v31 +
v34 − v37 + 2v38 + 3v39 = −vGlu + wGlu = −0.388

Glutamine v14 − v25 − 3v39 = wGln = 0.079
Glycine v24 − v39 = vGly + wGly = 0.160
Histidine v16 = vHis − wHis = 0.0
Methionine v26 = vMet − wMet = 0.062
Phenylalanine v33 = vPhe − wPhe = 0.021
Proline v18 = vPro + wPro = 0.567
Serine −v23 + v24 = vSer − wSer = 0.050
Tyrosine −v33 + v34 = vTyr − wTyr = 0.006
Valine v30 = vVal − wVal = 0.024
Isoleucine v31 = vIle − wIle = 0.018
Leucine v32 = vLeu − wLeu = 0.043
Lysine v38 = vLys − wLys = 0.064
Tryptophan v36 = vTrp − wTrp = 0.016
Alanine v36 + v37 = wAla − vAla = 0.092
NH3 −v14 + v15 + v16 + v27 = vNH3 = 0.195

Under conditions (3) and (4), this system of linear equations is determined and has
the following solution.

v1 = v2 = 8.881 v13 = 0.741 v23 = 0.136 v33 = 0.021
v3 = 17.762 v14 = 0.544 v24 = 0.186 v34 = 0.027
v4 = 17.626 v15 = 0.655 v25 = 0.545 v35 = 0.104
v5 = 9.557 v16 = 0.0 v26 = 0.062 v36 = 0.016
v6 = v7 = 8.478 v17 = 0.481 v27 = 0.084 v37 = 0.076
v8 = 9.426 v18 = 0.567 v28 = 0.110 v38 = 0.064
v9 = 9.420 v19 = 0.086 v29 = 0.062 v39 = 0.026
v10 = 9.530 v20 = 0.052 v30 = 0.024
v11 = 9.583 v21 = 0.040 v31 = 0.018 vAsn = 0.465
v12 = 8.842 v22 = 0.363 v32 = 0.043 wLip = 1.36

We can conclude, as above, that the flux balance analysis based on the considered
metabolic network allows computing the entire intracellular flux distribution from the
measured extracellular uptake and excretion rates of Tables 2–4.

In this case, closing the overall flux balance requires that the non-essential amino
acids that are significantly excreted be asparagine (0.47 μM/d × 107 cells) and proline
(0.47 μM/d × 107 cells).
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5. Metabolic Flux Analysis for the Growth without Glucose and Glutamine

5.1. Metabolic Network
5.1.1. Central Metabolism and Nucleotide Synthesis

We now consider the case where there is neither glucose nor glutamine in the culture,
and where lactate, glutamate, and alanine are the main carbon and nitrogen sources for
the central metabolism. This is represented by a metabolic network, shown in Figure 9,
which involves a gluconeogenesis pathway for the synthesis of glucose-6-phosphate and
a pathway for the synthesis of glutamine from alanine and glutamate. Moreover, the
nucleotide synthesis pathway remains unchanged.
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Figure 9. Growth without glucose and glutamine: central metabolism involving glyconeogenesis, TCA, and glutamine
synthesis, nucleotide synthesis and metabolism of alanine, asparagine, aspartate, histidine, glycine, and serine.
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5.1.2. Synthesis of Proteins

In this phase of growth without glucose and glutamine, histidine is the essential amino
acid with the lowest ratio between its external uptake rate (from Table 3) and its frequency
in protein composition (from Table 5). From the assumption that the protein production
rate is proportional to the cell growth rate, it appears however that maximization of cell
growth is not applicable. Indeed, using equations of the form (5) and (6), we have here:

(
∑ wAA

)
wgg ≈

μwgg

μeg

(
∑ wAA

)
eg =

0.04
0.6

× 6.159 = 0.41
μM

d× 107cells
(7)

� vHis
fHis

=
0.051
0.024

= 2.12
μM

d× 107cells
. (8)

In Equation (7), the subscript ‘wgg’ refers to growth without glucose and glutamine. It
follows clearly from (7) and (8) that the actual protein production rate must be much
smaller than the maximal rate that could be reached from the measured amino acid uptakes.
Hence, the contributions of the amino acids are computed, in Table 5, by using the value
∑ wAA = 0.41 from Equation (7).

5.1.3. Metabolism of Amino Acids

For the catabolism of essential amino acids, we adopt the same standard catabolic
reactions represented in Figures 6 and 7.

Moreover, anabolic pathways are provided for glycine, serine, and proline, which are
excreted into the extracellular medium under the current conditions (see Table 2). The
metabolic pathways for glycine and serine are given in Figure 9. The metabolism of proline
is represented in Figure 7b.

Furthermore, catabolic pathways are used for aspartate, cysteine, and tyrosine, because
the uptake rate from the culture medium is larger that their contribution to the flux in
protein production. The metabolism of these amino acids is represented in Figure 9 for
aspartate and in Figure 6 for cysteine and tyrosine.

5.2. Metabolic Flux Analysis

In this case of growth without glucose and without glutamine, the metabolic fluxes
satisfy the following set of balance equations.

Internal Metabolite Flux Balance Equation

Glucose-6-P v1 − v20 = 0
Glyceraldehyde-3-P −v1 − v2 + v3 = 0
Dihydroxyacetone P −v1 + v2 = 0
3-Phosphoglycerate −v3 + v4 − v23 = 0
Pyruvate v5 + v13 − v27 − v37 = vLac = 10.218
Acetyl-coA v5 − v6 + 2v28 + v31 + v32 = 0
Citrate v6 − v7 = 0
α-ketoglutarate v7 − v8 + v15 − v19 + v22 + v23 − v30 − v31 − v34 + v37 − 2v38 = 0
Succinyl-CoA v8 − v9 − v28 + v35 = 0
Succinate v9 − v10 + v28 = 0
Fumarate v10 − v11 + v34 + v39 = 0
Malate v11 − v12 = 0
Oxaloacetate −v4 − v6 + v12 + v13 − v22 = 0
Glutamate-5-semialdehyde v17 − v18 + v19 = 0
α-ketobutyrate v26 − v29 = 0
Propionyl-CoA v29 + v30 + v31 − v35 = 0
α-ketoadipate −2v21 + v36 + v38 = 0
Acetoacetate v21 − v28 + v32 + v34 = 0
Ribose-5-P v20 − 2v39 = 0
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Internal Metabolite Flux Balance Equation

Arginine v19 = vArg − wArg = 0.180
Asparagine v25 − vAsn = wAsn = 0.018
Aspartate −v22 + v25 + 2v39 = vAsp − wAsp = 0.353
Cysteine −v26 + v27 = vCys − wCys = 0.067

Glutamate
v14 + v15 − v16 − v17 − v19 + v22 + v23 − v25 − v30 − v31 − v34 +
v37 − 2v38 − 3v39 = vGlu − wGlu = 0.534

Glutamine v14 − v25 − 3v39 = wGln = 0.017
Glycine v24 − v39 = vGly + wGly = 0.052
Histidine v16 = vHis − wHis = 0.041
Methionine v26 = vMet − wMet = 0.104
Phenylalanine v33 = vPhe − wPhe = 0.086
Proline v18 = vPro + wPro = 0.879
Serine v23 − v24 = vSer + wSer = 0.653
Tyrosine −v33 + v34 = vTyr − wTyr = 0.058
Valine v30 = vVal − wVal = 0.137
Isoleucine v31 = vIle − wIle = 0.152
Leucine v32 = vLeu − wLeu = 0.425
Lysine v38 = vLys − wLys = 0.192
Tryptophan v36 = vTrp − wTrp = 0.037
Alanine −v36 + v37 = vAla − wAla = 0.669
NH3 −v14 + v15 + v16 + v25 + v27 = vNH3 = 1.089

Under conditions (3) and (4), this system of equations is determined and has the
following solution.

v1 = v2 = 0.012 v13 = 0.567 v23 = 0.711 v33 = 0.086
v3 = 0.024 v14 = 0.874 v24 = 0.058 v34 = 0.144
v4 = 0.735 v15 = 1.751 v25 = 0.839 v35 = 0.393
v5 = 11.662 v16 = 0.041 v26 = 0.104 v36 = 0.037
v6 = v7 = 13.306 v17 = 0.699 v27 = 0.171 v37 = 0.706
v8 = 14.563 v18 = 0.879 v28 = 0.684 v38 = 0.192
v9 = 14.272 v19 = 0.180 v29 = 0.104 v39 = 0.006
v10 = 17.956 v20 = 0.012 v30 = 0.137
v11 = 15.106 v21 = 0.114 v31 = 0.152 vAsn = 0.821
v12 = 14.539 v22 = 0.498 v32 = 0.425 wLip = 0.3

Here, the excreted amino acids are proline (0.86 μM/d × 107 cells), asparagine
(0.82 μM/d × 107 cells), and serine (0.62 μM/d × 107 cells).

6. Final Remarks and Conclusions

In this paper, we applied metabolic flux analysis to investigate the behavior of VERO
cells in three different culture conditions.

As long as glucose is not limiting, this analysis supports the validity of a maximum
growth hypothesis in which the amino acids are primarily used as building blocks for
the formation of the biomass, even in case of glutamine deprivation. In the latter case,
glutamine is replaced by glutamate as the nitrogen source and it can be observed that the
biomass yield is even slightly higher (while the productivity is lower).

When glucose is exhausted, the cell growth does not stop, but continues at a smaller
rate with the consumption of lactate as an alternative source of carbon, while using only a
small part (about 20%) of available amino acids for biomass synthesis. As represented in
the network of Figure 9, lactate is reintroduced into the cell, transformed into pyruvate,
and integrated in the TCA cycle in order to provide a part of the required energy, which is
no longer given by glycolysis. The rest of the energy is provided by the degradation of that
part of amino acids, which are not used as building blocks for the biomass synthesis.
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This analysis provides a metabolic foundation for the design of feedback control
strategies in fed batch or perfusion bioreactors where the lactate concentration is measured
online and regulated by controlling the delivery rates of glucose and, possibly, of some
essential amino acids. Applications of such control strategies to CHO cells are discussed,
e.g., in [23,24], while, to our knowledge, applications to VERO cell cultures have not been
reported in the literature.

Let us finally mention that, in our metabolic analysis, one amino acid, namely threo-
nine, was omitted from the model because experimental measurements are (unfortunately)
missing. Obviously, this is equivalent to implicitly assume that, in the considered experi-
ments, threonine, which is an essential amino acid, is consumed at the rate required for
protein synthesis as given in Table 5. We can however confirm that this assumption is quite
plausible on the basis of threonine data, which were obtained for the same cell line grown
in similar conditions, but with a slightly different fetal serum (bovine instead of calf), as
reported in [20], Chapter 3. This means that including threonine catabolism in the model,
if actual data were available, should not significantly alter our results.
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Abstract: Dynamic flux balance models (DFBM) are used in this study to infer metabolite concentra-
tions that are difficult to measure online. The concentrations are estimated based on few available
measurements. To account for uncertainty in initial conditions the DFBM is converted into a variable
structure system based on a multiparametric linear programming (mpLP) where different regions of
the state space are described by correspondingly different state space models. Using this variable
structure system, a special set membership-based estimation approach is proposed to estimate un-
measured concentrations from few available measurements. For unobservable concentrations, upper
and lower bounds are estimated. The proposed set membership estimation was applied to batch
fermentation of E. coli based on DFBM.

Keywords: set membership estimation; dynamic flux balance model; multiparametric programming;
observability; variable structure system

1. Introduction

The increasing demand of bio-pharmaceutical products requires continuous improve-
ment in monitoring and control strategies for the fermentation processes. Model-based
control and optimization strategies are crucial to boost productivity. Unlike traditional
unstructured biochemical models, dynamic flux balance models (DFBM) have gained
increasing attention since they contain more detailed information about the distribution of
metabolic fluxes [1,2]. The strength of DFBM relies on their use of stoichiometric informa-
tion about the cell metabolic network. The use of this information often results in models
that require a smaller number of parameters as compared to another type of modelling
approaches and thus are less prone to over-fitting. However, regardless of the choice of
model, monitoring and control of industrial fermentation processes remains challenging
because feedback control strategies require many states to be measured online. In reality,
most states cannot be measured online either due to the expense of measuring equipment
and its maintenance or the lack of online measurement devices [3–5]. Some states, including
concentration of amino acids, metals, vitamins, ATP and precursors have great effect on
the fermentation process but are either difficult or impossible to measure online.

To address the lack of online measurements, soft sensors have been proposed. Soft
sensors are algorithms that estimate the values of the states based on few available online
measurements. Data-driven soft sensors are currently very popular, driven by the interest
in the artificial intelligence research area. Reported data-driven soft sensors are generally
based on artificial neural networks, support vector machines, partial least squares, and
fuzzy inference [4]. However, despite their popularity, the main drawback of data-driven
soft sensors is their limited applicability to the region of data used for model training
and the scarcity of data available for calibration [6]. Moreover, the lack of mechanistic
information of these black box models introduces concerns about the safety and reliability
of the controllers designed based on these models [6].

Another category of soft sensors are state observers based on mechanistic models such
as a Luenberger observer, Kalman filter, and particle filter. These state observers estimate
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Processes 2021, 9, 1762

the values of some states based on convergence of state prediction errors and provided
that sufficient measurements are available [7]. A key prerequisite of theses state observer
designs is that some observability condition is satisfied with respect to the estimated states.
It will be shown later in the manuscript that, unless enough states of a DFBM model are
measured online, it is difficult to satisfy full observability for all the states.

In the absence of observability of some states, instead of estimating their specific
values it is possible to estimate intervals (ranges) of values based on a priori known range
of initial conditions, i.e., range of values at time = 0. This type of problem is referred to in
the literature as an initial values problem with parameter uncertainty or set-valued ODE
integration. The parameter here refers to either uncertain initial states or some model pa-
rameter such as a kinetic constant. In the past several decades, different methods have been
proposed to find tight bounds containing the reachable sets, including interval analysis [8],
Taylor models with different remainder bounds [9], set-base parameter estimation [10],
and different relaxation methods [11]. Due to the uncertainty amplification effect, interval
analysis can diverge quickly and only suits a small part of the system. Set-based parameter
estimation is computationally expensive because the parameter space need to be validated
in a piecewise manner and each validation test requires the solution of a semi-definite
programming problem. Taylor models can be used to find tight and nonconvex bounds of
reachable sets but cannot be easily formulated to take measurements into consideration.
To find the reachable sets compatible with available measurements, different relaxation
methods and domain reduction are required which are computationally expensive.

When measurements are available, the trajectories that are not compatible with those
measurements should be removed from the reachable sets. Estimation algorithms that effi-
ciently deal with reachable sets subject to measurements including interval observers and
set membership estimation algorithms [12,13]. An interval observer is usually composed
of two classical observers (framers) which estimate the lower and upper bounds of states,
respectively. However, sufficient measurements and fulfillment of observability are still
required to build the two classical observers [14,15]. Most interval observers exploit the
order-preserving properties of cooperative systems to estimate bounds of states [16]. Set
membership estimation is an alternative method for estimating the uncertainty of a set of
states that has been applied to linear systems [17]. The propagation of uncertainty along
time is performed by a series of affine mapping operations over sets. Different shapes of
sets have been used to contain the uncertainty, including zonotopes [18], parallelotopes [17]
and ellipsoids [19].

In this research, a set membership estimation approach is proposed for nonlinear
systems described by DFBM models. The DFBM is converted into a variable structure
system composed of several continuous systems in different region of state space by
multiparametric linear programming. To address the lack of measurements an Extended
Kalman Filter (EKF) is used to estimate nominal values of some states which are important
for determining metabolic fluxes. Then, a set membership estimation algorithm is applied
for DFBM to estimate bounds of all states. A detector is proposed to detect the switch
between different subsystems.

The paper is organized as follows. Section 2.1 introduces background of DFBM.
Section 2.2 describes the use of multiparametric linear programming to convert the
DFBM into a variable structure system composed of subsystems. Section 2.3 describes
the EKF used to estimate some states which are important for determining metabolic
fluxes. Section 2.4 presents the main ideas of set propagation and error compensation
for calculation of states’ bounds. Section 2.5 presents the algorithm for detecting the
switch between different subsystems. Section 3 provides the application of the proposed
techniques to the batch fermentation of E. coli. Section 4 presents a Discussion of the
results followed by Conclusions.
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2. Materials and Methods

2.1. Dynamic Flux Balance Models

Dynamic flux balance models (DFBM) are structured genome-based metabolic models
developed from flux balance models. The key assumption of DFBM is that the cells act as
agents distributing resources through metabolic reaction networks to boost a biological
objective, e.g., growth rate [1]. Accordingly, the DFBM is formulated as an optimization
problem. In the literature [20], both dynamic and static optimization approaches are
reported. In the dynamic approach, the nonlinear programming problem is solved over a
relatively large time period which is computationally expensive and thus less convenient
for uncertainty propagation. In this investigation, static optimization approach is adopted
for its simplicity. DFBM is interpreted as a local linear programming problem to maximize
a biological objective. In terms of dynamics of intracellular metabolites, there are two
type of DFBM models in the literature. One type of DFBM differentiates intracellular
and extracellular environments and assumes that the intracellular metabolic reactions are
fast enough such as it can be assumed at quasi-steady state [2,21]. Accordingly, only the
extracellular metabolites and the biomass are described by dynamic state equations. It
has been argued that the intracellular metabolite concentrations are not constant and may
change over time [22]. Accordingly, there is a second type of DFBM, used in the current
study, which does not differentiate between intracellular and extracellular compartments
and the dynamics of all the metabolites are considered [20,23]. The governing equations of
DFBM are based on discretized mass balances for all metabolites and these are defined by
Equations (1a)–(1d).

xk+1 = Bxk + Δtxbio,k Avk + h (1a)

yk = Cxk + rk (1b)

x0 ∈ P0 (1c)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (1d)

where xk is a vector of nx state variables at the time step k. The state vector x includes
concentrations of metabolites and biomass xbio. y is a vector of ny measured variables.
B ∈ R

nx ×R
nx is a constant diagonal matrix with diagonal elements bj, j = 1, · · · , nx. Δt

is a constant discrete time step size. A ∈ R
nx ×R

nrct is a stoichiometry coefficient matrix,
where nrct is the number of reactions considered in the metabolic network. v ∈ R

nrct is the
metabolic flux vector and its calculation is discussed below. h ∈ R

nx is a constant vector.
The initial state x0 is assumed to be bounded by a finite polyhedron P0 as Equation (1c).
The underlying assumption is that in practice the initial concentrations of the culture
medium components are known to be within specific ranges of values P0. This assumption
is based on the fact that some variation in media formulation occurs due to human factor
and variability in raw materials. Hence, this research focuses on the initial uncertainty and
we assume all parameters in the state equations to be known accurately. In other words,
the method proposed in this research cannot deal with model structure uncertainty like
uncertainty in matrix A. However, the method can be extended to deal indirectly with
uncertainty in parameters θ defined in the following paragraphs.

rk ∈ R
ny are measurement noise vectors of which the elements follow the truncated

multivariate normal distribution (TN) [24,25]. The probability density function p for
TN(μ, Σ, l, u) are defined as per Equation (2).

p(x, μ, Σ, l, u) =
exp{− 1

2 (x− μ)TΣ−1(x− μ)}∫ u
l exp{− 1

2 (x− μ)TΣ−1(x− μ)}
(2)

For rk, the mean vector of TN is 0 ∈ R
ny ; the covariance is Σ ∈ R

ny ×R
ny ; the corresponding

variance vector is σ2 ∈ R
ny ; the lower bound and upper bound are l ∈ R

ny and u ∈ R
ny ,

respectively. | · | indicates the absolute value of a vector. It is assumed that |l| ≤ 3σ and
|u| ≤ 3σ, which indicate that the absolute values of the lower bound and upper bound,
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respectively, are within the range of 3σ. For simplicity, the current study assumes the
process noise to be zero. Process noise could be included as an additional state but this is
beyond the scope of the current work.

Following the assumption that the cell allocates resources optimally, the metabolic
flux v vector at each time step is obtained by solving a linear programming (LP) problem,
defined by Equations (3a) and (3b).

max
vk

cTvk (3a)

subject to Gvk ≤ Fθk(xk) + z (3b)

where c ∈ R
nrct , F ∈ R

nG × R
nθ , z ∈ R

nG , G ∈ R
nG × R

nrct , θ ∈ Θ ⊆ R
nθ . nG is the

number of linear constraints. The parameter vector θ is a nonlinear vector-valued function
of states x. nθ denotes the number of elements in the parameter vector θ. Usually, each
element θ is only function of two states at most and one of these two states is biomass
concentration. Θ denotes the parameter space where the optimal solution of the LP resides.
Equation (3a) denotes the objective of the LP that cells are optimizing where the most
commonly used objective is the biomass production rate, i.e., growth rate. Thus, cells
try to maximize growth rate by allocating limited resources. The LHS (left hand-side) in
Equation (3b) describes either the rate of change of metabolite concentrations or the change
of metabolite concentrations over a discretization time step Δt. Matrices G are constant
matrices containing the information of the stoichiometry of reactions. RHS in Equation (3b)
is a function of xk, denoting the metabolic reaction bounds for each step. The matrix F is a
matrix of which the elements are the part of the right hand side of the constraints that are
functions of states at the previous time interval. z is a vector containing constant values
such as constant uptake rate limits. Therefore, linear constraints of flux v in Equation (3b)
are reaction rate limits or bounds on available resources (nutrients). Numerical examples
of these matrices and vectors are shown for the E. coli model in the results section.

2.2. Multiparametric Linear Programming for DFBM
2.2.1. Multiparametric Linear Programming

While set -based methods are available for uncertainty propagation for linear state
space equations, these methods are not directly applicable to DFBM. The reason is that
the fluxes used in the state equations are obtained from an LP and thus the problem is
nonlinear due to the nonlinear function θ(x) and the occurrence of different sets of active
constraints. To tackle the dependency of the state equations on the LP, the concept of
multiparametric linear programming (mpLP) is used to convert the DFBM into a variable
structure system which is composed of subsystems. Multiparametric linear programming
divides the parameter space (Θ) into different regions corresponding to different sets of
active constraints and generates explicit expressions for calculating optimal solutions (v)
for each region [26–28].

Let assume a given optimal solution v of the LP (Equation (3)) where subscript A
and I denote indices of active and inactive constraints, respectively. Using this notation
Equation (3b) is decomposed into two parts, equalities GAvk = FAθk(xk) + zA and
inequalities GIvk ≤ FIθk(xk) + zI . Without loss of generality, let us assume that GA
is linear independent (linear redundant rows can always been removed by Gaussian
elimination). Let H = G−1

A FA and g = G−1
A zA, then the optimal solution can be obtained

by Equation (4).
vk = Hθk(xk)+ g (4)

Substituting Equation (4) into the inequality constraints results in Equation (5).

(GIH − FI )θk(xk) < zI −GI g (5)

Equation (5) defines a polyhedral region of θ where the existence of the optimal solution is
ensured by Equation (4). The region defined by Equation (5) is referred to as a critical region
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in the multiparametric programming literature. Different critical regions are defined by
different combinations of A and I . Then, the entire parameter space Θ can be decomposed
into connected critical regions denoted by {Θi}, i = 1, · · · , nΘ. nΘ denotes the total
number of critical regions in Θ. In practice, critical regions that are very small are ignored
and assumed to be covered by the adjacent critical region. Correspondingly, superscript i
is used to denotes the i-th critical region. Assume for a specific θ ∈ Θi, the optimal flux v
vector can be calculated analytically by vi

k = Hiθk + gi thus bypassing the need for solving
the LP. Following the literature and our previous studies, for a given θ, multiple optimal
solutions can coexist [29,30]. In other words, multiple Equation (4) can coexist which
results in different ways to divide the parameter space Θ. When such multiplicity issue
occurs it results in different time trajectories. For simplicity, multiplicity is not addressed
in the current study and it is addressed in a separate work by different methods from the
one presented here.

By substituting the optimizer equation vi
k = Hiθk + gi into Equation (1a), we obtained

a set of governing state equations as per Equations (6a)–(6e). Since different θk are within
different critical regions as Equation (6b), each critical region corresponds to different state
equations Equation (6a). Thus the set {Θi} defines a family of state space models and this
family is referred to as a variable structure system. A variable structure system is a piece-
wise continuous system composed of subsystems where each subsystem corresponds to a
different region of the state space. Furthermore, the region of the state space corresponding
to a specific subsystem is referred to as a critical region. Each subsystem is described by
a different set of state equations. Accordingly, the state equations need to be changed as
soon as the states enter into a new critical region. Here, the superscript i denotes the i-th
subsystem corresponding to a critical region Θi. Equations (6c)–(6e) remain the same form
as Equations (1b)–(1d).

xk+1 = Bxk + Δtxbio,k A(Hiθk(xk)+ gi) + h (6a)

θk(xk) ∈ Θi i = 1, · · · , nΘ (6b)

yk = Cxk + rk (6c)

x0 ∈ P0 (6d)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (6e)

2.2.2. Reaction Rate Estimability

To further simplify the system described by Equations (6a)–(6e) it is possible to exploit
the sparseness of the H matrix. For instance, to take advantage of zero columns of H,
Equation (4) can be re-written as shown in Equation (7). For conciseness, the subscript k is
omitted here because Equation (7) applies for all time steps.

vi = Hiθ(x)+ gi =
[
Hi

N Hi
Z
][θi

N(xi
N)

θi
Z(x)

]
+ gi = Hi

N θi
N(xi

N)+ gi (7)

In Equation (7) N and Z denote the indices of the nonzero and zero columns of the H
matrix, respectively. Because HZ is a submatrix containing the zero columns of H, the
flux v is only a function of parameters θN(xN) according to Equation (7). Moreover,
while the parameters θ are a function of states x (see Equations Equations (1a)–(1d)
and (3)), only some elements of x actually determine the entire flux vector v. The vector xN
contains, according to Equation (7), the states that determine the flux vector. Notice that
for different critical regions flux-determining vector xN contains different states. Therefore,
Equation (6a) can be simplified into Equation (8).

xk+1 = Bxk + Δtxbio,k A(Hi
N θi

N(xi
N,k)+ gi) + h (8)

The biological interpretation of the flux-determining state vector xN is that only some
resources are limiting the growth of cells, either because they are limited or because the
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activity of enzymes in the related reactions (fluxes) is limiting. As the fermentation pro-
gresses, the states transit into new critical regions from old critical regions. Different critical
regions can be interpreted as different metabolic stages where xN are different. Similar
interpretations have been reported in [26] in the context of steady state flux balance analysis.

In Equation (8), the term Δtxbio,k A(Hi
N θi

N(xi
N ,k) denotes the change of metabolite

concentrations contributed by metabolic reactions. Therefore, the reaction rates are
xbio,k A(Hi

N θi
N(xi

N ,k). It is noted that this nonlinear reaction rate term is not only a
function of the flux-determining states vector xN but also of biomass concentration
xbio , because the fluxes are defined per unit biomass, i.e., more biomass demands more
nutrients to satisfy the requirement of the growth. Once the states that determine the
reaction rates, i.e., the states xN together with the value of xbio , can be estimated, the
estimation problem can be simplified greatly. Since in some cases xN contains xbio but
in some cases it does not, we define a reaction-rate-determining state vector xM in
Equation (9). Hence, the reaction-rate-determining state vector xM always contains the
flux-determining states xN and the biomass state xbio without any redundancy.

xM =

⎧⎪⎨
⎪⎩

xN , if xN contains the biomass state xbio .[
xN

xbio

]
, otherwise.

(9)

The vector xM for critical region Θi is denoted by xi
M . We define reaction rate estima-

bility as the ability to determine the reaction rates xbio,k A(Hi
N θi

N(xi
N,k) in the metabolic

networks which is needed for the calculation of Equation (8). Following the above, once
reaction-rate-determining state vector xM at time step k can be estimated, the dynamic
evolution of the culture at step k + 1 as per Equation (8) can be predicted. In addition, it
should be noticed that it is not necessary to measure all the reaction-rate-determining states
for reaction rate estimability and instead some states can be estimated by an observer from
available measurements. However, if an observer is used to estimate xi

M , some particular
combination of measurements is necessary for observability of xi

M . Considering different
measurement combinations Ωi

1, Ωi
2... for the critical region Θi, only some combinations

provide full observability of xi
M . Let Ωi

O be defined as a family of sets of measurements,
which contains all measurement combinations that fulfill observability of xi

M .
Although many different critical regions and corresponding combinations of measure-

ments could be considered, in practice the possibilities will be limited because industrial
fermentations usually operate in a narrow range of operating conditions. Thus, the dy-
namic trajectories of states only pass through a limited set of critical regions. Assume for
∀x0 ∈ P0, the set of critical regions that the trajectories traverse are Γ. Then, the minimum
set of measurements required for the reaction rate estimability of the critical region set Γ is
ΩΓ as per Equations (10a)–(10c).

ΩΓ = min
j
|
⋃

i
Ωi

j| (10a)

subject to i ∈ Γ (10b)

Ωi
j ∈ Ωi

O (10c)

where | · | is the cardinality of a finite countable set, i.e., the number of elements of a set.
In Equation (10c), Ωi

j ∈ Ωi
O indicates that the measurement combination Ωi

j can fulfill the

observability of reaction-rate-determining states xi
M of critical region Θi. If all states in set

ΩΓ are measured, the reaction rate term of any trajectory starting from P0 can be estimated
by the observer. In other words, although xi

M in different critical regions may be different,
requiring different measurements for observability, xi

M is always observable if the chosen
set of measurements satisfy Equation (10c).
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2.3. Extended Kalman Filter (EKF)

Using the minimum required set of measurements, ΩΓ is defined in Equation (10c),
xM can be estimated by an observer. xM corresponds to the observable subspace of the
governing equation (Equations (1a)–(1d)) for each critical region. The state equation of the
observable subspace for critical region Θi is given by Equations (11a)–(11c).

xi
M,k+1 = f i(xi

M,k) = Bxi
M,k + Δtxbio,k AM(Hi

N θi
N(xi

N,k)+ gi) + hM (11a)

yk = Ci
M xi

M,k + rk (11b)

rk ∼ TN(0, Σ, l, u) k = 0, 1, 2 · · · (11c)

where xi
N,k and xi

M,k are the flux-determining state vector and the reaction-rate-determining
state vector for critical region Θi, respectively; AM is the stoichiometry submatrix cor-
responding to xM . Similarly hM is a sub-vector of h corresponding to xM . It should be
noticed that, for different critical regions, xM involves different states. Accordingly, each
critical region requires the use of a different EKF. In addition, it should be noticed that the
Ci

M matrices are different for each critical region but the measured variables ΩΓ are the
same since the same sensors are used for the entire fermentation.

To estimate xi
M , an standard EKF is used due to its effective and simple structure [31].

The estimate x̂i
M,k and covariance Pi

k of xi
M for critical region Θi are described by Equa-

tion (12a) and Equation (12b), respectively.

x̂i
M,k = f i(x̂i

M,k−1) + Kk(yk − Ci
M f i(x̂i

M,k−1)) (12a)

Pi
k
−1

= Φi
k−1Pi

k−1Φi
k−1

T
+ Ci

M
T
(ΣΣT)−1Ci

M (12b)

where

Kk = Φi
k−1Pi

k−1Φi
k−1

T
Ci

M
T
(Ci

MΦi
k−1Pk−1Φi

k−1

T
Ci

M
T
+ ΣΣT)−1 (13a)

Φi
k =

∂ f i

∂xi
M
(x̂i

M,k) (13b)

The measurement noise is assumed to be a truncated multivariate normal distribution as
Equation (11c). This assumption is needed for estimating finite bounds as explained in
the following section. Recall in Equation (2) that |l| ≤ 3σ and |u| ≤ 3σ, the lower and
upper bounds are located within the range of 3σ. The covariance matrix Pk is always
overestimated to ensure boundedness. Although the EKF resulting from this assumption is
sub-optimal, it is still sufficient to estimate xi

M .

2.4. Set Propagation and Error Compensation

Since the minimum set of measurements defined by Equations (10a)–(10c) can only
ensure the observability of xM , the estimation of other states needs different estima-
tion strategies. The idea is to exploit the a priori knowledge of the initial ranges of
initial conditions to estimate all states. Instead of predicting specific values of states,
set membership estimation (SME) approach is used to predict sets containing all pos-
sible states by a series of set operations. These set operations usually include linear
mapping, projection, translation, Minkowski addition, intersection, union, and outer
approximation. In this research, all sets and multiparametric linear programming op-
erations are performed with the Multi-Parametric Toolbox 3.0 (https://www.mpt3.org/
accessed on 15 July 2021) [32] and MATLAB R2018a. The E. coli example can be found
online (https://github.com/SetMembershipEstimationDFBM/E.coliExample, accessed on
25 September 2021). For DFBM, SME propagates the initial set P0 by affine mapping as
Equation (14). Affine mapping involves two operations: linear mapping of the previous set
and translation.
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X̂k+1 ≈ BX̂k︸︷︷︸
linear mapping

+ Δtx̂bio,k A(Hi
N θi

N(x̂i
N,k)+ gi) + h︸ ︷︷ ︸

translation

(14)

where X̂k represents the set of states at time step k and X̂0 = P0, i.e., the set of initial
conditions assumed to be known. In Equation (14), the translation term is approximated by
using the estimate x̂i

M,k obtained by the EKF. In the application of EKF, the estimate x̂i
M,k

needs several time steps to converge to the true flux-determining states xi
M,k. Thus the SME

described by Equation (14) may underestimate bounds while the EKF is converging. To
mitigate this problem, a correction is implemented to compensate for the estimate error as
described below. Since no extra information is available, the compensation of the estimate
error is based on the worst case scenario.

The error in the estimate incurred by the observer for critical region Θi is ei
M =

xi
M,k− x̂i

M,k. Since xi
M,k always contains biomass xi

bio,k and xi
N,k, the corresponding estimate

errors are defined as ei
N,k = xi

N,k − x̂i
N,k and ei

bio = xi
bio,k − x̂i

bio,k. Let us assume that the
function θ is first-order differentiable and define Jacobian matrix ψi

k.

ψi
k =

∂θi
N

∂xi
N
(x̂i

N,k) (15)

Substituting the estimate error ei
k, ei

bio and Jacobian matrix ψi
k into Equation (8), a corrected

state equation that accounts for the estimate error is obtained as Equations (16a) and (16b).
Equations (16a) and (16b) uses a first order approximation to account for the state deviation
εi

k caused by the estimate error ei
M,k, while the EKF is converging. The error compensation

based on linearization provides satisfactory bounds because the error between estimate
and measured is small and decreases quickly due to the convergence of EKF.

xk+1 = Bxk + Δtx̂bio,k A(Hi
N ψi

k x̂i
N,k + gi) + h + εi

k (16a)

εi
k = Dkei

N,k + ebio,k Mkei
N,k + Lkebio,k (16b)

where

Dk = x̂bio,kΔtAHi
N ψi

k + h (17a)

Mk = ΔtAHi
N ψi

k (17b)

Lk = ΔtA(Hi
N θi

N,k(x̂i
N,k)+ gi) (17c)

In this work, the noise was assumed to follow a truncated multivariate Gaussian
distribution. The corresponding standard multivariate Gaussian distribution of noise
contains the truncated one. As illustrated in Figure 1, when an EKF is used to estimate the
states, the distribution of states with a standard Gaussian noise should similarly contain the
one with the truncated Gaussian noise, which is the true distribution of states. Moreover,
the distribution of states by standard EKF is also a multivariate Gaussian distribution.
For Gaussian distribution, 99.7% of the samples are within the interval of 6 standard
deviations from both sides of the mean for each state. Thus, an interval set based on
6 standard deviations can contain the distribution by standard EKF and eventually contain
the true distribution of states as in Figure 1. Since Pi

k is the covariance of a standard EKF,
the diagonal elements of matrix Pi

k are the variances for each state. Therefore, diagonal
elements of Pi

k can be used to define the interval set to bound the error εi
k.
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Figure 1. Illustration of the interval set containing the distribution of states.

To formulate an error compensation operation scheme several set operations are
introduced first as follows. The n-dimensional interval set is S(p, q) with lower bound
p and upper bound q as S(p, q) = {x ∈ R

n : p ≤ x ≤ q}. The outer approximation
operation Q(·) of a bounded set W is denoted by Q(W), which involves the mapping of
the set W to a new interval set. If the infimum and supremum are denoted by inf(·) and
sup(·), respectively, the outer approximation of the set W is Q(W) = S(inf(W), sup(W)).
The operator ⊕ is the Minkowski addition of two sets. For example, for two sets α and β,
α⊕ β = {a + b : ∀a ∈ α, ∀b ∈ β}.

Notice that the diagonal elements of Pi
k are the variances of each state. Then, if the

standard deviation of ei
N,k is ηi

N,k and of ei
bio,k is ηi

bio,k, two interval sets EN,k and Ebio,k can be
defined to bound ηi

N,k and ηi
bio,k, respectively, based on the choice of 3 standard deviation

ranges, as ei
N,k ∈ EN,k = S(−3ηi

N,k, 3ηi
N,k) and ei

bio,k ∈ Ebio,k = S(−3ηi
bio,k, 3ηi

bio,k). In
Equation (16b), since |ei

bio,k| < 3ηi
bio,k, we have ebio,k Mkei

N,k ∈ 3ηi
bio,k MkEN,k. Similarly, the

other two terms in Equation (16b) can be bounded as Dkei
N,k ∈ DkEN,k and Lkebio,k ∈

LkEbio,k, respectively. Therefore, the state deviation εi
k term can be contained within the

interval set Eε,k according to Equation (18).

εi
k ∈ Eε,k = Q((Dk + 3ηi

bio,k Mk)EN,k)⊕Q(LkEbio,k) (18)

where the sets DkEN,k and 3ηi
bio,k MkEN,k occurring in Equation (18) are combined together.

On the other hand, LkEbio,k originates from a different set Ebio,k and thus Minkowski
addition must be used to add the different sets. However, linear mapping of interval sets
can lead to irregular convex sets. In computational geometry, traditional algorithms that
perform Minkowski addition for two convex irregular high-dimensional polytopes are
computationally expensive [33]. On the other hand, Minkowski addition of two interval
sets is computationally efficient because intervals are axis-aligned. Thus, the operator Q(·)
that converts the irregular set to the axis-aligned set is applied to speed up the computation
of the Minkowski addition.

Following the above, the set of states X̂k+1 is bounded by the prior estimate set P−k+1
according to Equations (19a) and (19b).

P−k+1 = Q{ BP+
k︸ ︷︷ ︸

linear mapping

+Δtx̂bio,k A(Hi
N θi

N(x̂i
N,k)+ gi) + h︸ ︷︷ ︸

translation

} ⊕ Eε,k (19a)

X̂k+1 ⊂ P−k+1 (19b)

where the set of the posterior estimates is P+
k . BP+

k denotes the scaling of the set P+
k by the

diagonal matrix B. Then the set BP+
k is translated by the vector in the big curly brackets.

To compensate for the deviation during the convergence of EKF, the interval set Eε,k is
added by Minkowski addition.

Considering the truncated measurement noise, rk = yk − Cxk is bounded by the
lower l and upper bounds u; let us define a set Mk = {xk ∈ R

nx : l < yk − Cxk < u}.
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Then, the posterior estimate set P+
k+1 is given by Equations (20a)–(20c). In this study, it is

assumed that P+
k and P−k+1 are much smaller than the volumes of the critical regions.

P+
k+1 = P−k+1

⋂
Mk+1 (20a)

X̂k+1 ⊂ P+
k+1 (20b)

P+
0 = P0 (20c)

Figure 2 illustrates the set propagation using intervals for an example involving two
states, e.g., glucose and biomass concentrations. The initial set P0 contains all possible
initial values of glucose and biomass. Then P+

1 is generated through set operations by
computational geometry algorithms. Since an interval set is used, it is computationally
efficient to project the setP+

1 onto the biomass and glucose axes to obtain the corresponding
lower bounds lglc, lbio and upper bounds uglc, ubio as shown in the figure for the set P+

1 .

Figure 2. Illustration of set propagation of SME by set operations.

2.5. Detecting the Transition between Critical Regions

The proposed use of multiparametric programming converts the DFBM into a variable
structure system composed of subsystems where each critical region corresponds to a
subsystem. Along a given time trajectory the states may transit from one critical region to
another. When the states estimated by the EKF leave a critical region Θi to enter another
critical region Θj, the estimate x̂M,k and the covariance Pk must be reinitialized because
xM for different critical regions may be different, even though the measured states are the
same. Moreover, a criterion is required to detect whether the states are entering into a new
critical region.

When the system is traversing from one critical region to another, it needs to cross
a boundary between the critical regions. Over time the states may cross over several
boundaries along their trajectories and these crossings must be detected. Two neighboring
critical regions share a boundary where an active constraint will become inactive or vice
versa. The activation of a constraint may require the change of constraints related to
x̂N,k. For a given constraint, θ is usually only function of two states at most because of
commonly used Michaelis-–Menten kinetics [34] or constraints to prevent the depletion
of nutrients [23] and one of these two states is biomass. So two special cases should be
considered as follows when system switches from one critical region to the next:

Case i—xi
N of the old critical region Θi have one more observable state than the xj

N of
the new critical region Θj. For this case, the switch between critical regions is determined
by Equation (21). Equation (21) calculates the norm of the difference between the flux
estimates obtained with Equation (7) in the two neighboring regions. Notice that the flux
estimate of Θj is based on estimate x̂i

N,k of the old critical region. The value of γ(i, j, k) is
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used to detect the occurrence of a switch. If the system is exactly at the boundary of these
two critical regions, the flux equation Equation (7) for these two critical regions should
result in the same flux value and γ(i, j, k) will be zero. A schematic example is shown in
Figure 3. Polygons in different colors represent different critical regions in the parameter
space Θ. As the state evolves with time, the corresponding θ changes along the dash
line in the parameter space Θ. As the θ approaches the boundary between the critical
region Θ1 and Θ2, γ(i, j, k) approaches zero. Correspondingly, a value of γ(i, j, k) smaller
than a user specified tolerance indicates a switch between critical regions, thus requiring
reinitialization of the EKF as follows: x̂j

N,k is set equal to x̂i
N,k and Pj

k is set equal to Pi
k.

γ(i, j, k) =
∥∥∥v̂i

k − v̂j
k

∥∥∥ = ∥∥∥Hi
N θi

N(x̂i
N,k)+ gi − (Hj

N θ
j
N(x̂i

N,k)− gj)
∥∥∥ (21)

Figure 3. Illustration of detecting a critical region switch.

Case ii—xj
N of the new critical region Θi has one more observable state than the xj

N of
the old critical region Θi. To reinitialize the EKF, x̂j

N,k and Pj
k can be set to the old values

except for the new observable state that is not observable in the old critical region, and
thus it needs to be estimated for calculating γ(i, j, k). By projecting the set P+

k , the lower
lun,k and upper bounds uun,k can be calculated. Since no extra information is available,
the mean value of the upper bound and lower bound is used as the nominal value of the
unobservable state as per Equation (22).

x̂i
un,k =

1
2
(uun,k + lun,k) (22)

Equation (23) is used to calculate γ(i, j, k). The flux estimate for the new critical region Θj

is based on the nominal values of the unobservable state x̂i
un,k combined with x̂i

N,k of the
old critical region.

γ(i, j, k) =
∥∥∥v̂i

k − v̂j
k

∥∥∥ = ∥∥∥Hi
N θi

N(x̂i
N,k)+ gi − (Hj

N θ
j
N(x̂i

un,k, x̂i
N,k)− gj)

∥∥∥ (23)

To reinitialize the EKF, the estimate and covariance are used together with the estimation of
the new state that is added in the new critical region. Assuming the states are close enough
to the boundary between the critical regions, then Equation (24) holds.∥∥∥Hi

N θi
N(x̂i

N,k)+ gi − (Hj
N θ

j
N(x̂j

N,k, x̂j
un,0)− gj)

∥∥∥ = 0 (24)

The initial estimate of new observable state x̂j
un,0 in the new region can be calculated by

solving the Equation (24). Since the new state is between the upper bound and lower
bound by SME, the half length between uun,k and lun,k is the worst possible deviation. Then,
using a 3 standard deviation range, the initial variance η2

un,k can be estimated according
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to Equation (25) and all other covariance terms related to the new state are assumed to
be zero.

ηun,k =
1
3
· 1

2
(uun,k − lun,k) (25)

Bounds of states estimated by the SME are rigorously guaranteed in each critical region
separately but subject to accurate tuning of the tolerance that is used to switch between the
subsystems. The tolerance of γ(i, j, k) is the only user specified parameter in this research.
If the tolerance is too large or small, the EKF may switch the subsystem too early or too
late. Accordingly, if the wrong state equations are used in estimation, the bounds on the
states may be violated. To avoid such a situation, exhaustive simulations that are initialized
with P0 are conducted to find the tolerance used to switch between critical regions. As an
alternative, an overestimated covariance can also be used to reinitialize the EKF when the
state enters a new critical region to avoid bound violations.

3. Results

3.1. DFBM Model of E. coli

A DFBM model of E. coli reported in [20] is used to illustrate the proposed method-
ology. The DFBM in batch operation includes four states, glucose concentration xglc,
oxygen concentration xoxy, acetate concentration xace, and biomass concentration xbio as

in Equations (26a)–(26e). Thus, the state vector is x =
[
xglc xoxy xace xbio

]T . The
substrates are glucose, oxygen, acetate.

xglc,k+1 = xglc,k + Δtxbio,k Aglcvk (26a)

xoxy,k+1 = (1− kLaΔt)xoxy,k + Δtxbio,k Aoxyvk + 0.21kLaΔt (26b)

xace,k+1 = xace,k + Δtxbio,k Aacevk (26c)

xbio,k+1 = xbio,k + Δtxbio,k Abiovk (26d)

x0 ∈ P0 = S(
[
0.38 0.1995 0.19 0.00095

]T ,
[
0.42 0.2205 0.21 0.00105

]T
) (26e)

where kLa = 4 h−1 is the oxygen mass transfer coefficient. The initial state vector x0 is
defined by the interval set P0 according to Equation (26e). The matrix A contains the
stoichiometric coefficients corresponding to four reactions according to Equation (27).
Each column of this matrix corresponds to one reaction and each row correspond to one
component.

A =

⎡
⎢⎢⎣

Aglc
Aoxy
Aace
Abio

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 −9.46 −9.84 −19.23
−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

1 1 1 1

⎤
⎥⎥⎦ (27)

The flux vector vk is obtained by solving the following linear programming problem as
Equations (28a)–(28g):

max
vk

Abiovk (28a)

subject to − Aoxyvk ≤ OURmax (28b)

Aacevk ≤ 100 (28c)

− ΔtAglcvk ≤
xglc,k

xbio,k
= θ1,k (28d)

− ΔtAoxyvk ≤
(1− kLaΔt)xoxy,k + 0.21kLaΔt

xbio,k
= θ2,k (28e)

− ΔtAacevk ≤
xace,k

xbio,k
= θ3,k (28f)
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− Aglcvk ≤
GURmaxxglc,k

Km + xglc,k
= θ4,k (28g)

where OURmax = 12 mM/(g-dw·h) is the maximum oxygen uptake rate and g-dw is grams
of dry weight of biomass; GURmax = 6.5 mM/(g-dw·h) denotes the maximum glucose
uptake rate. Equation (28a) describes that the objective of the cells is to maximize the
biomass growth rate. Equation (28b) indicates that the oxygen consumption rate is limited
by a maximum uptake limit. Equation (28c) indicates that the acetate generation rate is
bounded by 100 mM/(g-dw·h). Equation (28g) indicates that the glucose consumption rate
is bounded by an upper limit. All the other constraints are positivity constraints to prevent
depletion of metabolites. To express these constraints in Equations (28a)–(28g) compactly,
the constraints in (28a)–(28g) can be expressed in the form of Equation (3):

Gvk ≤ Fθk(xk)+ z (29a)

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

−Aoxy
Aace

−ΔtAglc
−ΔtAoxy
−ΔtAace
−Aglc

⎤
⎥⎥⎥⎥⎥⎥⎦ (29b)

F =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ (29c)

z =

⎡
⎢⎢⎢⎢⎢⎢⎣

OURmax
100

0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (29d)

3.2. Determination of Minimum Measurements

Due to the assumption that the initial state is contained in an interval, the problem
in Equations (28a)–(28g) can be formulated as a multiparameteric linear programming
(mpLP) problem. The vector θ is composed of four parameters which are nonlinear
functions of states. Using the Multi-Parametric Toolbox 3.0, it can be found that the
entire parameter space Θ can be decomposed into a maximum of 24 critical regions. For
each critical region, the mpLP solver calculates the constraints that form the boundaries
of the region and the equations that generate the optimal solutions. In order to reduce
the computational effort, extensive simulations are conducted with randomly chosen
initial values in set P0 to identify which critical regions are relevant for the problem. It
is found from these simulations that, for the chosen range of initial conditions, the states
only traverse through two neighboring critical regions Θ1 and Θ2 assuming small critical
regions are ignored. According to the results of the mpLP solver, the two critical regions
can be defined as Equations (30a) and (30b). Critical regions Θ1 and Θ2 share a boundary
defined in Equation (30c). Since θ is a function of x, the critical regions are next to each
other in the state space.
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Θ1 :

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.9988 0 0 0.0499 0
0 −1 0 0 0
0 0 −0.9971 −0.0767 0
0 0 0 −0.0033 −1
0 0 0 1 0
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦θ(x) ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−0.6

−0.6740
0.0171
8.7864

0

⎤
⎥⎥⎥⎥⎥⎥⎦ (30a)

Θ2 :

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.9988 0 0 0.0499 0
0 −0.7469 0.6630 0.0510 0
0 0 −0.0254 −0.0053 −0.9997
0 0 −1 0 0
0 0 0.9971 0.0767 0
0 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎦θ(x) ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

0.6740
0

⎤
⎥⎥⎥⎥⎥⎥⎦ (30b)

Θ1
⋂

Θ2 :
[
0 0 0.9971 0.0767 0

]
θ(x) = 0.6740 (30c)

Accordingly, the mpLP solver also calculates the matrix H and g used in the flux equation
Equation (7) for these two critical regions. By taking advantage of the sparseness of H for
these two critical regions, θN can be determined. The equations to calculate fluxes for these
two critical regions can be expressed as Equations (31a) and (31b).

v1
k =

[
−0.039 0.1057 0 0

]T
θ4(xglc,k) +

[
0.3429 0 0 0

]T (31a)

v2
k =

[
0.5072 0 0 0

]T
θ3(xace,k, xbio,k) +

[
0 0.1057 0 0

]T
θ4(xglc,k) (31b)

where θN for critical region Θ1 is θ4 and θN for critical region Θ2 is θ3 and θ4. By substitut-
ing the flux equation Equations (31a) and (31b) into Equations (26a)–(26e), the simplified
state equations of E. coli model can be rewritten compactly as in Equations (32a) and (32b).

xk+1 = Bxk + Δtxbio,k Av1
k(xglc,k) + h θ(xk) ∈ Θ1 (32a)

xk+1 = Bxk + Δtxbio,k Av2
k(xace,k, xbio,k, xglc,k) + h θ(xk) ∈ Θ2 (32b)

Following the calculations above, the original E. coli model is simplified into an equivalent
system comprised of two subsystems of interest. Equations (32a) and (32b) describe
subsystem 1 and subsystem 2, respectively. These two subsystems are continuous in
the state space and they share the same boundary as per Equation (30c). Once the state
crosses the boundary between the two subsystems, the governing equation is switched
from Equations (32a) and (32b). Because the initial state is randomly initialized in set P0,
P0 corresponds to a set in Θ1. Thus, the state evolves within the region of subsystem 1 and
gradually approximates the region of subsystem 2 governed by Equation (32b) until finally
crossing the boundary given by Equation (30c). As only part of θ is known, a detector is
used to detect the crossing of the boundary, thus ensuring that the switch between the
regions is performed accurately.

Based on the flux equation Equations (31a) and (31b), the reaction-rate-determining
states vector xi

M for Θ1 are biomass and glucose and for Θ2 are biomass, acetate and glucose.
Accordingly, the possible combinations of measurements needed for observing x1

M of Θ1

include Ω1
1 = {Bio}, Ω1

2 = {Glc} and Ω1
3 = {Bio, Glc}. Similarly, there are 7 possible

combinations of measurements for observing the vector x2
M in Θ2, namely Ω2

1 = {Ace},
Ω2

2 = {Bio}, Ω2
3 = {Glc}, Ω2

4 = {Ace, Bio}, Ω2
5 = {Bio, Glc}, Ω2

6 = {Ace, Glc}, and
Ω2

7 = {Ace, Bio, Glc}. To find a combination of measurements ΩΓ that will be suitable
for both critical regions, it is necessary to perform an analysis of observability for these
combinations. The Symbolic Toolbox calculation of MATLAB R2018a is used to develop an
analytical equation observability rank condition and rank of Φi

k of the nonlinear system
according to the criterion presented in [31]. Since the symbolic expressions of the rank
for each critical regions for Equation (11) are very complex, it is very difficult to infer a
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analytical condition of observability for all possible values of the states. Instead, the rank
values are calculated for different measurement combinations and rank of Φi

k using a
Monte Carlo algorithm based on 5 million samples of Θ1 and Θ2, respectively. According
to these Monte Carlo simulations, the only measurement required for observability of the
vectors x1

M in Θ1 and x2
M in Θ2 is the biomass concentration, namely ΩΓ = {Bio}.

3.3. EKF for the Two Subsystems and Detection of Transition between Subsystems

Based on the aforementioned observability analysis, the biomass concentration is the
only state that needs to be measured online as per Equation (33a) for implementation of
the EKF. Measurement noise is assumed as a truncated normal distribution as described
by Equation (33b). Since the initial P0 is assumed to be known, the EKF is initialized at
the center of P0 with a variance based on 3 standard deviations and zero covariance terms.
The state of the plant is initialized randomly by sampling a point within the region defined
by P0.

yk =
[
0 0 0 1

]
xk + rk (33a)

rk ∼ TN(0, 0.0042,−0.0004, 0.0004) k = 0, 1, 2 · · · (33b)

Based on the assumed P0, in the batch process the EKF starts in critical region Θ1

and later it transitions into critical region Θ2. Thus, two EKFs are required in this case
study to estimate the xM as summarized in Table 1. Based on the biomass measurement
yk, the glucose and biomass concentrations are estimated by the EKF for Θ1 as x̂N,bio,k and
x̂N,glc,k. With the same biomass measurement, the second critical region Θ2 has one more
observable state which is the acetate concentration x̂N,ace,k.

Table 1. Observable and unobservable subpace of two subsystems of the DFBM model of E. coli.

Subsystem of Θ1 Subsystem of Θ2

Observable Subspace (xM ) Glc, Bio Glc, Ace, Bio
Unobservable Subspace Ace, Oxy Oxy

Measurement Bio Bio

Since acetate and oxygen are unobservable in Θ1, they need to be estimated by bounds.
To find these bounds, SME propagates the initial set P0 by set operations to obtain a prior
estimate set P−k as Equation (19). After obtaining the measurement of biomass, a posterior
estimate set P+

k as in Equation (20) is calculated by set operations. The error due to lack of
convergence of the EKF is compensated by using Equation (18). By projecting P+

k onto the
axis of acetate and oxygen, respectively, the upper bound uun,k and lower bound lun,k of
these two states are obtained.

Since Θ2 has one more flux-determining state, acetate that is not observable from the
measurement of biomass, it must be estimated as explained in Equation (22). Using the
mean value of uun,ace,k and lun,ace,k the nominal values of the unobservable state x̂un,ace,k are
obtained. Using the EKF estimates of the observable flux-determining states x̂N,k together
with the nominal value of acetate x̂un,ace,k, the detection scheme explained in Section 2.5 can
be implemented. Accordingly, γ(i, j, k) is calculated from Equation (23) to determine the
switch from critical region Θ1 to critical region Θ2. The tolerance of γ(i, j, k) to determine
the switch between the critical regions is assumed as 0.08. This tolerance is the only tuning
parameter of the proposed method and it is determined by trial and error. After the switch
occurs the acetate concentration is initialized by the solution of Equation (24) and the
variance of acetate is initialized based on Equation (25). After the switch to critical region
Θ2, the EKF continues to generate estimates of glucose, acetate and biomass concentrations
in Θ2 and the SME approach is used to propagate the set P+

k as conducted in critical
region 1. Figure 4 presents the posterior estimate sets P+ and true plant state x at different
times. Since the model is 4 dimensional, the posterior estimate sets P+ are projected for
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visualization onto two dimensional spaces: the glucose–oxygen subspace and acetate–
biomass subspace. The 8 boxes denote the projected posterior estimate sets between 0 h
and 7 h, and each box represents an hour. The arrows in Figure 4 indicate the direction of
time evolution. The black dots denote the true plant state. Since biomass is measured, the
length of the boxes along the biomass dimension is relatively smaller, as compared to the
other dimensions. The switch between the critical regions occurs at around 5 h.

Figure 4. Posterior estimate sets projected onto the glucose–oxygen subspace and the acetate–biomass
subspace at different times.

3.4. Set Membership Estimation

To verify the estimate and bounds generated by the proposed algorithm, we use a
special Monte Carlo Algorithm (MCA) that takes biomass measurements into account.
MCA randomly samples 100,000 different points from P0 and use them as initial states’
values, and then calculates the corresponding trajectories with respect to time. Since, for the
measurement of biomass, a truncated normal distribution measurement noise was assumed,
some trajectories are not within the confidence interval of measurements. Once a trajectory
is found out of the measurement range, the evolution of the trajectory is stopped and the
corresponding trajectory is removed while trajectories which are still within the confidence
interval of measurements are kept. Accordingly, only a part (2581) out of the trajectories
starting from P0 are used for comparison to the bounds calculated by the proposed method.
It should be noticed the fraction of trajectories kept for comparison is small because only a
very narrow set of solutions are within the measurement range from the from the beginning
to the end. In other words, only a small part of the samples considered in the simulation
are compatible with the biomass measured trajectory that is assumed for the calculation
of bounds by the set-based approach. Using parallel computation, 4 hour and 4 minutes
of CPU time were required to complete all simulations. For comparison, the method
proposed in this work can generate bounds with only 41 sec of CPU time without parallel
computation. It should be remembered that the MCA was conducted for a specific trajectory
of biomass measurements so as to enable a fair comparison with the method proposed in
the current study. While it could be argued that MCA could be used to calculate bounds
for all possible biomass trajectories, this will be computationally prohibitive. Thus, the
proposed technique is a practical and analytical approach to the online estimation problem.

In Figure 5, the grey area denotes the trajectories randomly sampled and the two black
lines represent the upper and lower bounds by SME. It is clear that the SME contains all
the solutions generated by MCA, especially for the unobservable states. It can be observed
that the switch from one critical region to the other occurs at approximately 5 h as shown
in Figure 2. Before 5 h, the reactor has enough resources for cell growth and the limiting
step is glucose uptake as Equation (31a) shows. Thus, critical region Θ1 corresponds to the
logarithmic phase of growth where the latter is driven by glucose consumption. At about
5 h, the simultaneous depletion of acetate and glucose leads to a metabolic switch from
the logarithmic phase to the stationary phase. Following this metabolic switch, the culture
is also acetate limited and thus acetate become a new flux-determining state. Since the
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oxygen feed rate is maintained constant in the model, the fact that the growth significantly
decreases after the switch explains why the oxygen concentration bounces back up.
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Figure 5. Comparison between MCA with bounds of 4 components estimated by SME in batch
fermentation of E. coli.

To further verify the proposed scheme, similar MCA simulations were conducted with
a larger initial uncertainty and measurement noise. In Figure 6, the bounds of 4 component
concentrations estimated by SME are shown. It is clear that the simulated trajectories
contained in the grey color band generated by MCA is within the bounds calculated by the
proposed methodology. From comparison of Figures 5 and 6, it can be found that the SME
approach copes with the larger noise and initial uncertainty by generating larger bounds.
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Figure 6. Comparison between MCA with bounds of 4 components estimated by SME with loud noise.

4. Discussion

DFBM models are advantageous since they contain significant detail about the cell
metabolism as compared to classical unstructured models. However, due to this level of
detail, DFBM contain many states thus resulting in more difficult state estimation problem.
The challenge of dealing with a large number of states is further exacerbated by the fact
that online measurements of metabolites are generally difficult to obtain or not available.
With limited online measurements, it is often impossible to produce observability for all the
states. Noticing that the diagonal matrix B in Equation (19) is a linear mapping of states,
if the nonlinear term Δtxbio,k Avk can be estimated then it is possible to estimate the other
states of the DFBM.
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Multiparametric LP is introduced to convert the original system into a series of
piecewise continuous subsystems based on the partitioning of the parameter space into
critical regions. The availability of an explicit expression for the calculation of the LP optima
for each critical region significantly simplifies the solution of the problem. Although many
critical regions may be mathematically possible, industrial fermentation is operated in a
narrow range of initial operating conditions and as such only a few critical regions need to
be considered.

Beyond their computational convenience the critical regions identified by the Multi-
parametric LP approach can be interpreted as corresponding changes in the cell metabolism.
The relative abundance of substrates, i.e., glucose, acetate and oxygen in the E. coli model
and their consumption towards biomass lead to the occurrence of different resources’
limitations at any given time. Within some ranges of concentration, the limiting substrate
remains the same corresponding to a specific metabolism strategy.

In the E. coli example, four reactions can synthesize the biomass from glucose, acetate
and oxygen. However, since the objective is to maximize growth subject to constraints, the
cell prioritizes these reactions differently at any given time due to their different efficiency
for biomass synthesis. The ratio of the stoichiometry coefficients in each column of matrix
A indicates the biomass yield of each substrate for each reaction. Reaction 1 is the only
reaction that consumes acetate to synthesize biomass. The yield of acetate to biomass is

1
39.43 for reaction 1, which is very low compared with reaction 2 and reaction 3. The biomass
yield of reaction 2 and reaction 3 by glucose is 1

9.46 and 1
9.84 , respectively. Reaction 4 is the

only reaction that do not consume oxygen to generate biomass but it is very inefficient.
Because the biomass yield of these reactions are different, reaction 2 is preferred over
reaction 1 and reaction 3 when glucose and oxygen are abundant. When oxygen is very low,
the cells switch their metabolism from aerobic to anaerobic to generate biomass through
reaction 4.

To maximize the biomass growth rate, cells take advantage of reaction 1 and 2 to
consume as much acetate and glucose as possible when oxygen is sufficient. However, the
glucose amounts that can be consumed by the cells is limited by the glucose uptake rate,
which is θ4. Similarly, oxygen consumption is limited by a constant oxygen uptake rate as
in Equation (28b). The oxygen is consumed first with glucose in reaction 2 to synthesize
biomass and the remaining oxygen is consumed for reaction 1. Multiparametric LP captures
the relative priority of different reactions towards maximization of growth and identify the
key limited resources. In critical region Θ1, glucose is the key resource that determines the
flux vector according to Equation (31a). As glucose and acetate are consumed by reactions 1
and 2, biomass increases exponentially and the oxygen concentration drops fast due to
oxygen demands as in Figures 5 and 6. At some point the concentration of acetate becomes
very low but acetate is necessary for reaction 2 to synthesize biomass. At this point, acetate
becomes the key limited resource and the system enters into a new critical region Θ2. Then
in Θ2, the metabolism is limited by the available acetate and glucose and as they deplete
the growth of cells decreases and ultimately stops. Accordingly, Θ1 corresponds to the
logarithmic phase and Θ2 to the stationary phase of growth.

The use of EKF for each subsystem is used to estimate the reaction-rate-determining
states thus reducing the need for online measurements. Since biomass is highly correlated
with the reaction-rate-determining states, EKF can take advantage of biomass measurement
to estimate these states. Because some of these reaction-rate-determining states are common
to different critical regions, only are fewer states required to be measured or estimated,
which greatly reduce the demand of online measurements of concentration. In the E. coli
example, only biomass needs to be measured. Once biomass is measured, glucose can be
estimated by the EKF in critical region Θ1 and glucose and acetate can be estimated in Θ2.

By using the SME upper and lower bounds for all states can be generated including
the unobservable ones such as acetate and oxygen in Θ1. Using the bounds of the acetate
and biomass estimates, it was possible to determine the switch from one critical region to
another and to re-initialize the estimates and covariance matrix for the EKF after the switch.
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This research is helpful in DFBM-based control in bio-processes when many compo-
nents cannot be measured online. Using the upper and lower bounds calculated by SME
of unobservable states and estimates by EKF of observable states, robust control methods
can be applied to achieve optimal operation in the presence of uncertainty. The method
developed can also be extended to monitor the bio-processes and differentiate between
normal and abnormal operations.

5. Conclusions

This research proposed a comprehensive DFBM-based approach to estimate the
metabolites concentrations with a minimal number of online measurements. The main
idea is to convert the DFBM model with uncertainty in initial conditions to an explicit
variable structure system that can be analyzed by multiparametric linear programming.
A key finding of the proposed work is that only a subset of the states, referred to as
reaction-rate-determining states, is needed to calculate the flux vector. Identification of
the reaction-rate-determining states for each critical region permitted the determination of
the minimum set of measurements required for full state estimation. EKFs were used to
estimate the observable states and set propagation by SME was used to identify bounds of
both the observable states and unobservable states.
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Abstract: Metabolic flux analysis is often (not to say almost always) faced with system underde-
terminacy. Indeed, the linear algebraic system formed by the steady-state mass balance equations
around the intracellular metabolites and the equality constraints related to the measurements of
extracellular fluxes do not define a unique solution for the distribution of intracellular fluxes, but
instead a set of solutions belonging to a convex polytope. Various methods have been proposed to
tackle this underdeterminacy, including flux pathway analysis, flux balance analysis, flux variability
analysis and sampling. These approaches are reviewed in this article and a toy example supports the
discussion with illustrative numerical results.

Keywords: flux variability analysis; flux balance analysis; sampling; metabolic network; elementary
flux modes

1. Introduction

Computational approaches for studying the flux distribution inside metabolic net-
works of microbial strains or mammalian cell lines have gained a tremendous importance
in biotechnology. Indeed, the production of high-added value biochemicals is based on
large-scale cultures of genetically engineered strains, and the determination of the flux
distribution provides insight into the biosynthesis pathways, the impact of metabolic
engineering and the influence of the culture conditions. Different approaches have been
developed to compute this flux distribution, which are based on a common assumption
that the intracellular metabolites do not accumulate, or in other words, that the cell is in
a metabolic pseudo-steady state [1]. This assumption leads to a system of mass-balance
equations of the form:

Nv = 0 vi ≥ 0 ∀i (1)

where N ∈ R
ns×nv is the stoichiometric matrix (and the incidence matrix of the graph

representing the metabolic network), v ∈ R
nv is the vector of intracellular fluxes (in

mmol/gDW/h), which are assumed positive (i.e., to have a net direction), and ns is
the number of intracellular metabolites. N is assumed full-row rank, thus defining ns
independent mass balance equations. This system of equations expresses the zero balance
in each internal node of the metabolic network, and imposes a set of linear equality
constraints, which are not sufficient to determine a unique solution for the flux vector
v. This system of equations is often supplemented by additional mass balance equations
expressing the link between the intracellular fluxes and the measurements of external
fluxes (uptake or production of extracellular metabolites):

Nmv = vm (2)

where vm ∈ R
nm . Even though this additional information allows restricting the solution

space, it is usually not sufficient to define a unique solution. More precisely, a subset of
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the fluxes might be exactly calculable [2] while only intervals of values for the remaining
fluxes can be computed. In general, the system of equations under consideration can be
formulated as:

Aev = be (3)

Aiv ≤ bi (4)

where the equality constraints (1) and (2) are put together in (3), and Equation (4) contains
the positivity constraints as well as other bound constraints, e.g., upper bounds on some
of the fluxes, corresponding to prior knowledge or biological assumptions. The matrices
Ae ∈ R

ne×nv and Ai ∈ R
ni×nv , correspond to ne equality constraints and ni inequality

constraints, respectively. To tackle the underdeterminacy, several approaches have been
proposed in recent years, which can be grouped into two distinct strategies:

1. Dealing with the underdeterminacy—this strategy is adopted in several methods
where minimal and maximal bounds on the admissible fluxes are determined. This
category of methods includes Flux Pathway Analysis (FPA), where convex analysis
is used to decompose the admissible flux distributions into Elementary Flux Modes
(EFMs) or Extreme Pathways [3,4], Flux Variability Analysis (FVA), which is a Linear-
Programming (LP)-based method determining the range of admissible fluxes [5], Flux
Spectrum Approach (FSA), which is another LP-based method taking insufficient
and uncertain measurements into account [6]. Random sampling of the admissible
solution set allows determining the marginal probability density functions of the
fluxes [7–10], and statistical methods based on the maximum entropy principle can
be used to infer intracellular flux distributions [11,12].

2. Reducing or eliminating the underdeterminacy—this strategy consists in adding con-
straints in various ways, e.g., including more measurements of the extracellular fluxes
or, possibly, measurements of the intracellular fluxes using specific techniques such as
13C tracing [13,14] and parallel labeling [15], leading to the sophisticated procedures
of 13C MFA. Alternatively, additional constraints can be introduced by formulat-
ing biological assumptions either based on prior knowledge and/or experimental
observations [16,17] or systematic procedures to determine active constraints [18].
The use of thermodynamic constraints can be important in relation with reaction
reversibility and the limitation of the solution space [19]. Moreover, thermodynamical
constraints can prevent infeasible loops in a metabolic network as demonstrated
in [20]. Underdeterminacy can also be reduced (or even eliminated) through the for-
mulation of an optimization problem originating from the assumption of an optimal
metabolic behavior of the cells. This approach corresponds to Flux Balance Analysis
(FBA) [21,22], which uses an objective function expressed as a linear combination
of selected fluxes. Recently, the increasing availability of metabolite profiling data
obtained through gas and liquid chromatography combined with mass spectroscopy
has also allowed the integration of time-course absolute quantitative metabolomics
in unsteady-state (or dynamic) FBA [23,24]. In the usual situation where FBA still
leads to an underdetermined system with an infinite number of flux distributions that
optimize the cost function, variants of FBA have been proposed in order to define
a unique solution, e.g., the geometric approach developed in [25] that searches for
the minimal flux distribution satisfying the given objective. Assuming that fluxes
correlate with enzyme levels, this specific flux distribution would correspond to the
minimization of the amount of enzymes required to satisfy the objective defined
in FBA. Ultimately, the concept of Most Accurate Fluxes [26] allows computing a
unique flux distribution, hence eliminating the system underdeterminacy, with a
very low computational load and without any assumption regarding an optimal
biological behavior.
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In the following, we review some of these methods and their implementation with a
toy example, which provides a numerical illustration of the main concepts. The Matlab
code of this example is provided in the Supplementary Materials associated to this article.

2. A Toy Example

Despite its small size, the metabolic network (see Figure 1) that is considered to illus-
trate the several methods introduced in the previous section presents many representative
features, e.g., several intracellular metabolites, extracellular substrates, and intra- and
extra-cellular products. This network is described by the following reactions:

S1
v1→ M1

S2
v2→ M2

S2
v3→ M3

M1
v4→ M4 + M5

M4
v5→ M5

M2
v6→ M5

M5
v7→ P1

M1 + M3
v8→ P2

Figure 1. Simple metabolic network. Mi, i = 1, . . . , 5 are the internal metabolites, Si, i = 1, 2 are the
extracellular substrates, and Pi, i = 1, 2 are the extracellular and intracellular product, respectively.

The quasi-steady state assumption for the internal metabolites Mi, i = 1, . . . , 5, yields
a system of algebraic mass-balance equations in the form of Equation (1)

⎡
⎢⎢⎢⎢⎣

1 0 0 −1 0 0 0 −1
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 −1 0 0 0
0 0 0 1 1 1 −1 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
v4
v5
v6
v7
v8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Nv = 0 vi ≥ 0 ∀i (5)
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The stoichiometric matrix N is full row rank (i.e., 5) and the system of equations
has 3 degrees of freedom (5 independent equations for 8 unknown fluxes). In an ideal
measurement configuration, we consider that the 3 extracellular fluxes can be measured,
for instance:⎡

⎣ 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0

⎤
⎦v = Nmv =

⎡
⎣ vm1

vm2
vm3

⎤
⎦ =

⎡
⎣ 3.5

2.7
1.8

⎤
⎦ = vm (6)

so that a unique solution, i.e., flux distribution, can be found:

v =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.5000
0.0667
2.6333
0.8667
0.8667
0.0667
1.8000
2.6333

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

In the sequel, we will consider various situations with less measurements, and alter-
native methods to deal with, reduce or eliminate the underdeterminacy.

3. Dealing with the Underdeterminacy

The solution space of Equation (5) can be described using the concept of EFMs [3,27]
which represent minimal, non-decomposable pathways connecting substrates to products.
Every flux in the metabolic network can be described as a convex combination of EFMs:

v =
nEFM

∑
i=1

μiei = Eμ, μi ≥ 0 (8)

where nEFM is the number of EFMs ei.
The EFMs can be computed using readily available software such as Metatool [28],

EFMtool [29] or FluxModeCalculator [30]. The main issue associated to this computation
is the combinatorial explosion of the number of EFMs with the network size (a network
of less than 100 reactions can have tens of thousands of EFMs), and the fact that the
computation involves some form of enumeration, which requires large computer memory
space and computation time. Alternative procedures have therefore been proposed to
compute minimal sets of EFMs without enumerating all of them [31]. For the small network
under consideration in this review, this computation is trivial and leads to

E =
[

e1 e2 e3
]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0.5
1 0 0
0 1 0
0 0 0.5
0 0 0.5
1 0 0
1 0 1
0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9)

The three EFMs define a polyhedral cone in the positive orthant, which contains
all possible flux distributions. They correspond to a minimal bioreaction system, which
provides an input–output representation of the cell metabolism (this kind of representation
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can be very useful to derive reduced-order macroscopic representations of the culture
system [32–34], but this subject will be addressed later on in this paper; see Section 5.4).

S2 → P1

S1 + S2 → P2

0.5S1 → P1

(10)

We already know that if three measurements are available, such as the ones defined
in Equation (2), the solution is unique and the coefficient vector

[
μ1 μ2 μ3

]T
=[

0.0667 2.6333 1.7333
]T . If less measurements are available, for instance only vm1 and

vm2, then the EFM basis of the linear system

[
N 0

Nm −vm

][
v

1

]
= 0 (11)

leads to the so-called extreme rays f
i

[35]

[
f

1
f

2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.5 3.5
0 2.7

2.7 0
0.8 3.5
0.8 3.5
0 2.7

1.6 9.7
2.7 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

which defines a pointed polyhedral cone that is a subspace of the previous solution cone. More-
over, the flux spectrum F0 =

{
v : vmin

i ≤ vi ≤ vmax
i
}

with vmin
i = min{ fki, k = 1, · · · , p} and

vmax
i = max{ fki, k = 1, · · · , p} is easily deduced, giving

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 = 3.5
0 ≤ v2 ≤ 2.7
0 ≤ v3 ≤ 2.7

0.8 ≤ v4 ≤ 3.5
0.8 ≤ v5 ≤ 3.5
0 ≤ v6 ≤ 2.7

1.6 ≤ v7 ≤ 9.7
0 ≤ v8 ≤ 2.7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

which indeed encloses the unique solution found with an additional measurement.
An alternative and straightforward way to compute the flux spectrum is provided by

Flux Variability Analysis (FVA) [5], which consists in formulating a double optimization
problem (minimization/maximization) of the flux distribution under the constraints pro-
vided by the metabolic network stoichiometry, the measurements, and any other additional
biological constraints.

vmin
i = min

v
vi

vmax
i = max

v
vi

⎫⎬
⎭∀i ∈ [1, nv]

s.t.
{

Aev = be
Aiv ≤ bi

(14)

The unique solution to this problem, if bounded and feasible, can be computed using
linear programming, as available in many software libraries (e.g., linprog in Matlab or other
LP solvers such as CPLEX interfaced in the language of your choice such as Python or Julia)
or dedicated environments (e.g., COBRA [36] and CellNetAnalyzer [37]). In our application
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example, we use linprog to compute the flux spectrum in the situation where only the first
measurement is available (vm1) and a constraint is imposed in the form v2 + v3 ≤ 5.

Ae =

[
N

1 0 0 0 0 0 0 0

]
be =

[
0 0 0 0 0 3.5

]T
Ai =

[ −I8
0 1 1 0 0 0 0 0

]
bi =

[
0 0 0 0 0 0 0 0 5

]T (15)

Thus, the spectrum F0 is given by

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 = 3.5
0 ≤ v2 ≤ 5

0 ≤ v3 ≤ 3.5
0 ≤ v4 ≤ 3.5
0 ≤ v5 ≤ 3.5
0 ≤ v6 ≤ 5
0 ≤ v7 ≤ 12
0 ≤ v8 ≤ 3.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

The application of FVA can be delicate when the measurements are corrupted by noise,
as the constraints imposed by the metabolic network and/or the bounds on the fluxes
could become incompatible with the measurement information. Several approaches take
account of the measurement uncertainty, such as Flux Spectrum Analysis [6] or Adaptive
Flux Variability Analysis [38], which relax the constraints to allow for a feasible solution.
Here, we consider a variation of our simple example where only the first measurement
vm1 = 10.5 would be available and 3 constraints would be imposed, i.e., v2 ≤ 5, v5 ≤ 5 ,
v8 ≤ 5. In this case, the matrices become

Ae =

[
N

1 0 0 0 0 0 0 0

]
be =

[
0 0 0 0 0 10.5

]T

Ai =

⎡
⎢⎢⎣

−I8
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎦ bi =

[
0 0 0 0 0 0 0 0 5 5 5

]T (17)

but unfortunately the LP solver returns the message that no feasible solution can be found.
What is happening? In fact, the solution of the FVA problem without the knowledge of the
first measurement vm1 returns the following spectrum:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ≤ v1 ≤ 10
0 ≤ v2 ≤ 5
0 ≤ v3 ≤ 5
0 ≤ v4 ≤ 5
0 ≤ v5 ≤ 5
0 ≤ v6 ≤ 5
0 ≤ v7 ≤ 15
0 ≤ v8 ≤ 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

which shows that the maximum admissible value of v1 is 10. Hence, the noisy measurement
vm1 = 10.5 is incompatible with this upper bound, and it is not possible to include it as such
in the equality constraints. A way round this issue is to introduce inequality constraints in
the form

(1− e)vm1 ≤ v1 ≤ (1 + e)vm1 (19)

where e represents a relative uncertainty. In our example, we could choose e = 5%, which
is the smallest uncertainty leading to the matrices modification
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Ae =
[

N
]

be =
[

0 0 0 0 0
]T

Ai =

⎡
⎢⎢⎢⎢⎢⎢⎣

−I8
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
−1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ bi =

[
0 0 0 0 0 0 0 0 5 5 5 −9.975 11.025

]T (20)

and a feasible solution ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.975 ≤ v1 ≤ 10
0 ≤ v2 ≤ 5

4.975 ≤ v3 ≤ 5
4.975 ≤ v4 ≤ 5
4.975 ≤ v5 ≤ 5

0 ≤ v6 ≤ 5
9.95 ≤ v7 ≤ 15
4.975 ≤ v8 ≤ 5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

On another matter, it can be convenient to eliminate the equality constraints and
to formulate the problem in terms of inequality constraints only in a space of reduced
dimension [39]. To this end, we can use the kernel (or null space) of the matrix Ae.
If A0 ∈ R

nv×(nv−ne) is a matrix whose columns form a basis of this kernel (nq = nv − ne
is the nullity of the kernel for a full row rank matrix Ae), then any solution of Aev = be
(Equation (3)) can be expressed as

v = v0 + A0q (22)

where v0 is a particular solution to Equation (3) and the vector q ∈ R
nq allows the reformu-

lation of the inequality constraints as

A0
i q ≤ b0

i (23)

with A0
i = Ai A0 and b0

i = bi − Aiv0.
A particular solution v0 can for instance be obtained by solving the following problem

(in this case v0 is the flux vector with minimum Euclidean norm in the set of solutions)

v0 = min
v

vTv

s.t.
{

Aev = be
Aiv ≤ bi

(24)

To illustrate this, we return to our original example and consider the situation where
only the first measurement vm1 = 3.5 is available and a constraint is imposed in the form
v2 + v3 ≤ 5. v0 can be computed using quadratic programming, e.g., quadprog in Matlab

v0 =
[

3.500 0 2.625 0.875 0.875 0 1.750 2.625
]T (25)

The null space of the equality constraint matrix Ae ∈ R
6×8 can be computed using

null in Matlab and is given by

A0 =

[
0 0.2019 −0.2846 0.2846 0.2846 0.2019 0.7711 −0.2846
0 0.5994 0.2627 −0.2627 −0.2627 0.5994 0.0740 0.2627

]T

(26)

and, in turn
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A0
i =

[
0 −0.2019 0.2846 −0.2846 −0.2846 −0.2019 −0.7711 0.2846 −0.0827
0 −0.5994 −0.2627 0.2627 0.2627 −0.5994 −0.0740 −0.2627 0.8621

]T

(27)

and
b0

i =
[

3.500 0 2.625 0.875 0.875 0 1.750 2.625 2.375
]T (28)

The application of FVA in the q-space (a reduced space of dimension nq = 2), i.e., with
inequality constraints only

qmin
i = min

q
qi

qmax
i = max

q
qi

⎫⎪⎬
⎪⎭∀i ∈ [1, nq]

s.t. A0
i q ≤ b0

i

(29)

gives a spectrum Q0 [ −2.3454 ≤ q1 ≤ 12.9102
−2.3698 ≤ q2 ≤ 3.9938

]
(30)

In the reduced q-space, the system of inequality constraints defines half hyperplanes
whose intersection consists of a convex polytope that contains all the admissible flux
distributions q. Uniformly sampling this convex polytope allows subsequently computing
the marginal probability density functions (or marginal distributions) of each flux.

In our toy example, the rejection algorithm [40] can be applied, which boils down to
uniformly sample each coordinate qi (∀i ∈ [1, nq]) on [qmin

i , qmax
i ]. The obtained sample q

is kept if it satisfies the inequality constraints A0
i q ≤ b0

i , otherwise it is rejected. The pro-
cedure is repeated until the desired number of samples is reached. Figure 2 shows 104

samples obtained with the rejection algorithm. Despite its simplicity and the genuine
uniform distribution that it provides, this algorithm cannot be used with high dimensional
spaces and irregular shaped polytopes given that the fraction of rejected samples increases
dramatically with the number of metabolic fluxes considered in the network.

Figure 2. Rejection algorithm in the q-space (mean = X).

Other algorithms have been (and are still) developed to circumvent this problem [41,42].
Among the oldest and simplest methods, hit-and-run algorithms [43] consist of Markov
Chain Monte Carlo methods that sample the convex polytope via some specific random
walk. While they can be used with high dimensional spaces, their main drawback is that the
samples often get stuck in some part of the polytope when this latter exhibits an irregular
shape, which is generally the case. Figure 3 represents the marginal distributions of each
flux in the v-space (transforming the q samples into v samples through Equation (22)),
inferred from 104 samples obtained with the rejection algorithm and with a specific hit-and-
run algorithm (namely, the random direction algorithm). Both results are almost identical.
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Figure 3. Marginal probability distribution in the original v-space, inferred from 104 samples with the rejection algorithm
(red) and a hit-and-run algorithm (blue).

4. Reducing or Eliminating the Underdeterminacy

A straightforward way to reduce or eliminate underdeterminacy is to include addi-
tional measurements, either extracellular as shown in Equation (6) for our simple example,
or intracellular using 13C tracing [13,14] or the integration of time-course absolute quanti-
tative metabolomics [23,24], which would amount to directly measure some of the internal
fluxes vi, i = 1, . . . , 8 in the toy example. However, this implies additional time-consuming,
delicate, and costly experiments and equipment. If sufficient additional measurements
are not available, a candidate flux distribution can be provided by Flux Balance Analy-
sis (FBA) [21,22], which assumes some optimal behavior of the cell, such as maximum
cell growth rate or maximum ATP production rate, and formulates a linear program-
ming problem

v̂ = arg min
v

λTv

s.t.
{

Aev = be
Aiv ≤ bi

(31)

If the LP is feasible and bounded, then the cost function J = λTv has a unique
minimum value J∗, but the corresponding flux distribution v̂ is not necessarily unique, still
implying underdeterminacy. In this latter case, it is possible to combine FBA (31) with FVA
by subsequently solving a set of 2nv LPs

vmin
i = min

v
vi

vmax
i = max

v
vi

⎫⎬
⎭∀i ∈ [1, nv]

s.t.

⎧⎨
⎩

Aev = be
λTv = J∗

Aiv ≤ bi

(32)

This FVA problem includes an additional equality constraint enforcing the value
J∗ = λTv determined in the first FBA step.
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This can be illustrated with our toy example, first by applying FBA with the assump-
tion that v7 is maximum. In this case, v̂7 = 12 and the corresponding flux distribution is
given by

v̂ =
[

3.50 5.00 0 3.50 3.50 5.00 12.0 0
]T (33)

which is confirmed to be the unique solution by applying FVA (which produces a flux
spectrum which reduces to the single value v̂).

If we repeat this exercise with the maximization of v8, we find v̂8 = 3.5, but the
corresponding flux distribution is not unique and belongs to the spectrum

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 = 3.5
0 ≤ v2 ≤ 1.5

v3 = 3.5
v4 = 0
v5 = 0

0 ≤ v6 ≤ 1.5
0 ≤ v7 ≤ 1.5

v8 = 3.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

5. An Overview of Important Topics

In this section, we address a few important questions when dealing with the analysis
of metabolic networks. Some of them have a direct impact on the underdeterminacy of
the metabolic flux analysis, such as the topology and size of the metabolic network or the
selection of the extra- or intra-cellular measurements. On the contrary, other issues, such as
the dynamic evolution of the extracellular fluxes, might have no particular influence on
this underdeterminacy, but will impact the computational procedure and the visualization
of the results, and this is why we include them in the global picture.

5.1. How to Select the Size/Detail of the Metabolic Network?

The structure and size of the metabolic network can be represented by an incidence
graph, whose topological properties are important for the solution of Equations (1)–(4).
The analysis of these properties, such as determinacy, redundancy, balanceability, and calcu-
lability, can be assessed using software tools such as CellNetAnalyser [37] or COPASI [44],
which were the first to propose such functionalities. The size of the network will also have
a tremendous influence on the number of EFMs. A large network will probably imply
that the EFMs are no longer enumerable due to memory and computation limitations.
Hence, the importance of procedures to compute only subsets of EFMs such as [31], and
of concepts such as the giant strong component (GSC), which represents the largest fully
connected part of a metabolic network as introduced originally in [45]. Indeed, the GSC
usually contains less than one-third of the nodes of the network, but key metabolites, and is
more feasible for analysis of flux distribution and computation of EFMs. Another concept
of interest is the introduction of minimal cut sets (MCSs), which represent sets of reactions
whose removal will disable certain network functions [46], and which have been shown
to be the EFMs of a dual network [47]. MCSs can be used to study the observability of
reaction rates in metabolic flux analyses. The selection of the network will therefore be a
compromise between describing the metabolic features of interest and the tractability of
the computation procedure underlying the flux determination. An open research question
is the selection of the right metabolic network for the derivation of low-order dynamic
models (as introduced in the following Section 5.4). Should a reduction be operated a priori
based on biological assumptions and simplifications or only a posteriori, in the course of
the derivation of the dynamic macroscopic model?

5.2. Dynamic Metabolic Flux Interval Analysis

To date, we have considered that the measured specific extracellular fluxes are constant.
This is typically the case in the early exponential growth phase of batch cultures or in
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the steady state of continuous cultures. However, there are other situations where the
fluxes are time varying following changes in the environmental conditions (substrate
excess or depletion, accumulation of byproducts). This can occur in fed-batch cultures,
the transient phase between batch and continuous modes, or the transient phase between
different setpoints in continuous operation. The previous analysis can be extended to these
situations by considering a time-scale separation where the bioreactor environment is the
slow subsystem and the cells or micro-organisms the fast subsystem, which can therefore
be considered in a pseudo steady-state. The dynamics of the extracellular substrates S and
products P can be described by a set of mass balance equations

dS
dt

= −vSX − D(S− Sin)

dP
dt

= vPX − D(P− Pin)

(35)

where S and P represent the extracellular substrate and product concentrations, respectively,
vS is the vector of specific uptake rates, vP the vector of specific production rates, D = Fin/V
is the dilution rate (ratio of the inlet flow rate Fin(t) to the culture volume V(t)).

A straightforward approach consists in smoothing the extracellular concentration
evolutions, computing the derivatives of the smoothed signals and evaluating the uptake
and production rates using Equation (35) and the knowledge about the transportation
terms (functions of the dilution rate and inlet concentrations Sin and Pin). This approach
was originally developed for MFA with no underdeterminacy or even overdeterminacy.
One of the earlier reports can be found in [48] where the lysine fermentation process by
Corynebacterium glutamicum is studied and the cell metabolic state is estimated online
based on a small metabolic network with 11 fluxes. This work is extended in [49], where
HEK cells are cultivated in perfusion and the metabolic fluxes are estimated online using
a medium-size metabolic network of 40 reactions. Other notable accounts include [50],
where Escherichia coli cultivations shifting from carbon limitation to nitrogen limitation
and vice versa are studied, and [51], where a human cell line is analyzed and the authors
compare Dynamic MFA (DMFA) to a flux average approach where the culture is divided
in phases over which constant (average) fluxes are considered.

When underdeterminacy prevails, the approaches previously reviewed can be ex-
tended to take account of the dynamic evolution of the extracellular fluxes as well.

In [52,53], Dynamic Flux Balance Analysis (DFBA) is introduced and applied to the
analysis of diauxic growth of Escherichia coli on glucose and acetate. Two optimization
approaches can be considered: (a) a sequence of static LP problems corresponding to
the subdivision of the batch time into time intervals over which the fluxes are assumed
constant, or (b) a global dynamic optimization formulated over the total batch duration
that can be solved using multiple shooting and orthogonal collocation to be converted
into a NLP. The latter approach allows the consideration of an integrated (over the system
trajectory) optimality objective or an end-of-batch objective, as well as nonlinear constraints
on the fluxes resulting from a priori knowledge about kinetic expressions, but results in
a significantly more complex problem. DFBA is nowadays a popular approach, which
has led to many interesting applications (see for instance [54–58]) and the emergence of
software tools such as DFBLAB [59].

In [60], Flux Spectrum Approach (FSA), which is a method based on the formulation
of a set of min/max LP problems taking account of a range of measurement errors, is
applied to the analysis of the evolution over time of the fluxes in small metabolic network
of the CHO metabolism and data borrowed from [35].

In [61], a linear objective function subject to elementary modes as constraints is opti-
mized to determine the fluxes in the metabolic network of Corynebacterium glutamicum at
different temporal phases of fermentation. The use of convex analysis and EFMs is investi-
gated in [35] to determine intervals for the metabolic fluxes of CHO cells in batch cultures,
which are decomposed into several time periods corresponding to different phases of the
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cell life cycle. This work is extended to more detailed metabolic networks in [62] and to
the dynamic evolution of the flux spectrum, without assuming a decomposition in phases,
in [34] where convex analysis is applied to hybridoma cultures switching from batch to
perfusion mode.

5.3. How to Represent the Accumulation of Internal Metabolites?

Besides the possible time evolution of the extracellular fluxes discussed in the previous
subsection, another dynamic phenomenon might need special attention: the accumula-
tion of an intracellular metabolite over time, implying that the traditional assumption
of quasi steady-state is no longer valid. This situation is, for instance, observed in cul-
tures of photosynthetic micro-organisms that can accumulate various components, such
as carbohydrates and lipids. It is also well-known that yeasts, such as Saccharomyces
cerevisiae, are able to accumulate some carbohydrates, e.g., trehalose, that play a role of
carbon and energy reserve, as well as of stress protectant against harmful environmental
conditions [63]. Abandoning the quasi steady state assumption for some of the intracel-
lular metabolites boils down to removing their corresponding rows in the stoichiometric
matrix N involved in Equation (1), hence increasing the number of degrees of freedom
that characterizes the system underdeterminacy. To compensate for the mass balance equa-
tions withdrawn from (1), the kinetics of accumulation and/or reuse of the intracellular
metabolites should be included in mass balance ODEs. However, the lack of intracellular
measurements along time usually hampers the identification of these intracellular reac-
tion rates. In [64], the authors propose the DRUM (Dynamic Reduction of Unbalanced
Metabolism) modeling framework that consists in defining subsets of balanced intracellular
metabolites that are interconnected via linking metabolites. These latter may accumulate
or be reused. The subsets of balanced metabolites are reduced to macroscopic reactions,
based on Elementary Flux Mode analysis, for which simple kinetic models are derived
that allow building mass balance ODEs for the linking metabolites, biomass production,
substrate consumption and product excretion. This methodology is applied to the lipid and
carbohydrate accumulation in the microalgae Tisochrysis lutea. The modeling approach
proposed in [65] can be applied to any metabolic network whose kinetics can be locally
linearized. As in [64], the authors also consider subnetworks of fast reactions (involving
metabolites that are assumed at quasi steady state) connected via metabolites consumed
at low rates. Based on this time scale separation, the methodology allows reducing high
dimensional linearized models, while accounting for the accumulation of some metabolites,
as well as for the dilution effect due to biomass growth. In [66], a FBA-based simulator of
Saccharomyces cerevisiae fed-batch cultures is proposed, using the assumption that the
intracellular alpha-ketoglutarate is unbalanced. Its dynamics are described with a linear
combination of the glucose and nitrogen specific uptake rates whose models involve the
alpha-ketoglutarate concentration.

5.4. Model Reduction to Macroscopic Scale

Macroscopic models mainly predict biomass growth, the consumption of external
substrates and the secretion of external products. Their structural simplicity allows their
use for bioprocess optimization, control and online monitoring. To these purposes, it can be
worthy to reduce metabolic models to a macroscopic scale. In [67,68], the authors propose
a systematic methodology to build macroscopic reaction rate models via the definition
of additional constraints whose number corresponds exactly to the number of degrees
of freedom, i.e., the difference between the number of metabolic fluxes and the number
of available equality constraints, hence removing the system underdeterminacy. These
constraints express linear combinations of the metabolic fluxes as nonlinear functions
of the extracellular concentrations, which correspond to the macroscopic reaction rate
models. Another method that has often been used to define macroscopic reactions is the
Elementary Flux Mode analysis [32–34,69]. As discussed above, EFMs are the shortest
pathways from substrates to products. However, the main drawback with EFMs is that
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their total number dramatically increases with the network size. To overcome this problem,
different solutions have been proposed. To avoid the exhaustive enumeration of all EFMs,
refs [31,70] propose fast algorithms that randomly compute minimal sets of EFMs. In [71],
the number of EFMs is reduced through a projection from the flux space to the yield
space. Refs. [72,73] select EFMs, via ranking or controlled random search algorithms,
using a multi-criteria objective function that combines prediction error, model size and
efficiency of the EFMs (investment required to produce the enzymes). Another approach
is made of Lumped Hybrid Cybernetic Models in which EFMs are grouped into clusters,
each of them being associated to an average EFM [74]. In [75], the column generation
method is used to determine a (non-necessarily unique) minimal subset of EFMs, which
consists in solving iteratively two levels of optimization problems: the master problem
is a quadratic optimization problem that identifies the macroscopic flux values using
a subset of EFMs, and the subproblem is a linear problem for identifying EFMs that
improve the model prediction in the master problem. Based on extensions of Dynamic
Metabolic Flux Analysis introduced in [76], that only uses concentration measurements
and avoids any numerical differentiation, refs. [77,78] select reduced sets of EFMs via a
geometrical reduction (excluding EFMs with a cosine-similarity algorithm) followed by a
multi-objective genetic algorithm that minimizes the prediction error and the size of the
EFMs subset. A linear optimization problem has been formulated in [79] for selecting the
best subset of EFMs based on a relaxation criterion. The methodology is extended in [80]
and includes a more efficient selection procedure for the minimal subset of EFMs. Note that
once the macroscopic reactions have been deduced from the metabolic network, it remains
to identify their kinetic models. To that purpose, general kinetic models and systematic
identification procedures can be very useful [81,82]. Model reduction methodologies
based on subsets of balanced metabolites interconnected via linking metabolites that
may accumulate within cells [64,65], have also been introduced in the previous section.
Finally, independently of any EFM computation, macroscopic models may also consist of
ODEs describing the mass balances for the biomass and the extracellular species, in which
the reaction rates are computed at each time point by solving a FBA problem [16,17,66].
In [66], the underdeterminacy of the FBA problem is taken into account within the set of
mass balance ODEs by computing the minimum and maximum admissible values of the
ethanol concentration associated to the respective minimum and maximum admissible
values of the specific ethanol production rate that are computed through FVA. Hence,
the underdeterminacy at the level of FBA leads to corridors of admissible values along
time for the concentrations of some macroscopic components, typically the extracellular
products that are secreted.

5.5. How to Handle the Measurement Errors?

In the toy example, the adverse effect of an error on the measured extracellular flux
was alleviated by relaxing an equality constraint and reformulating it as two inequality
constraints (see Equation (19)). Such errors are frequent in practice, as it is necessary to
compute the specific extracellular fluxes from the measurements of the evolution of the
biomass and the extracellular concentrations. If we consider, for simplicity, the exponential
growth phase of a batch culture, this can be formulated in the following way:

dS
dt

= −vSX

dP
dt

= vPX

dX
dt

= μX

(36)
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The solution of these equations are in the form of a linear regression

S(t) = −vS
μ

X(t) + (S(0) +
vS
μ

X(0)) = a1X(t) + b1

P(t) =
vP
μ

X(t) + (P(0)− vP
μ

X(0)) = a2X(t) + b2

ln(X(t)) = μt + ln(X(0)) = a3t + b3

(37)

where the regressors ai give the estimation of the specific fluxes. If the environmental
conditions evolve over time, it will be necessary to consider the inflows and outflows
of the bioreactor as in dynamic model (35), and the variation of the growth rate of the
biomass. This will imply the evaluation of the time derivatives using smoothing and
numerical differentiation as explained in Section 5.2, or the formulation of the fluxes as
piecewise linear functions without the need for numerical differentiation as proposed
by [76]. Whatever the numerical procedure, experimental and numerical errors will always
corrupt the information about the specific fluxes, which could in turn become incompatible
with the constraints imposed by the metabolic network and prior knowledge about the
system biology. This has to be taken into account by some form of constraints relaxation
such as developed in Flux Spectrum Analysis [6] or Adaptive Flux Variability Analysis [38],
where the uncertainty on the extracellular fluxes is represented as an interval around
the measured values. In [38], minimum values for these uncertainties are determined by
solving a sequence of optimization problems. The impact of these uncertainties on the
solution, i.e., on the extent of the intervals for the intracellular fluxes, will largely depend
on the structure and size of the metabolic network. This point is, however, still an open
research question.

5.6. Some Further Perspectives on Sampling Algorithms

The ongoing research on sampling algorithms aims at improving their computational
efficiency, convergence properties and ability to extensively explore the convex polytope of
admissible flux distributions. To avoid the above mentioned problem of the samples that
often become stuck in some part of the polytope when using hit-and-run algorithms [43],
other methods have been proposed such as the artificial centering hit-and-run method
(ACHR) [83] and the optimized general parallel sampler (OPTGP) [9]. Ref. [84] showed
that the ACHR algorithms have convergence problems with high-dimensional polytopes,
and introduced rounding methods with better performances. These methods were further
improved in [10], leading to the coordinated hit-and-run with rounding (CHRR) method
that computes the largest ellipsoid inscribed in the polytope and the rounding transforma-
tion of this ellipsoid into a unit ball. This latter transformation is then applied to the convex
polytope whose sampling therefore becomes much more efficient in terms of computational
time and convergence. Regarding these criteria, refs. [41,42] have shown that CHRR outper-
forms ACHR and OPTGP. Recently, refs. [39,85] have proposed the DISCOPOLIS (DIscrete
Sampling of COnvex POlytopes via Linear program Iterative Sequences) algorithm that,
instead of being a Markov Chain Monte Carlo method, provides (subsets of) samples that
are independent of each other. This allows obtaining larger ranges of admissible flux values.
Given the increasing complexity of the available metabolic networks, involving thousands
of fluxes, there is still a need for the development and improvement of sampling algorithms
with a reasonably low computational time and extensive exploration abilities for irregular
shaped polytopes. Another difficult challenge consists in sampling non-convex solution
spaces that are observed when using thermodynamical constraints for preventing infeasible
loops in the metabolic network [20,84].

6. Conclusions

This paper reviews and applies to a toy example (the Matlab code of this example
is provided in the Supplementary Materials associated to this article) some methods that
can be used with underdetermined problems in metabolic flux analysis. These methods
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are grouped in two different strategies, the former consisting in simply dealing with the
underdeterminacy without trying to reduce it, and the latter consisting in reducing or even
eliminating the underdeterminacy. The choice between these two strategies depends on the
specific problem to be solved and on the goals of the analysis. On the one hand, one could
be interested by a unique solution that would be representative of a specific metabolic
behavior in the considered cell line, e.g., by adding additional constraints describing these
specific conditions and/or by defining an appropriate optimal behavior through FBA.
On the other hand, one could be interested by the diversity of the possible metabolic be-
haviors resulting from the underdeterminacy, e.g., by analyzing the marginal distributions
of each flux obtained from a sampling method. The point of utmost importance is to be
aware of the system underdeterminacy. For example, even if one solution is provided
by an algorithm used to solve the linear program of a FBA problem, that solution is not
necessarily unique and a quick check via FVA could highlight that the system remains un-
derdetermined. Many of the methods that have been presented are actually complementary,
as illustrated in the abovementioned coupling of FBA with FVA. System underdeterminacy
is a direct consequence of biological complexity and of the limited access to intracellular
measurements. Developing methods to analyze underdetermined systems and/or to re-
duce their underdeterminacy in diverse and complementary ways will therefore remain an
important research topic in the future. The interested reader might also consider the recent
review [86], which includes an in-depth discussion of kinetic approaches for modeling
cell metabolism.

Supplementary Materials: The following material is available online at https://www.mdpi.com/
article/10.3390/pr9091577/s1, code S1: toy_example.zip.
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Abstract: Biopolymers are a promising alternative to petroleum-based plastic raw materials. They
are bio-based, non-toxic and degradable under environmental conditions. In addition to the ho-
mopolymer poly(3-hydroxybutyrate) (PHB), there are a number of co-polymers that have a broad
range of applications and are easier to process in comparison to PHB. The most prominent represen-
tative from this group of bio-copolymers is poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV).
In this article, we show a new kinetic model that describes the PHBV production from fructose and
propionic acid in Cupriavidus necator (C. necator). The developed model is used to analyze the effects
of process parameter variations such as the CO2 amount in the exhaust gas and the feed rate. The
presented model is a valuable tool to improve the microbial PHBV production process. Due to the
coupling of CO2 online measurements in the exhaust gas to the biomass production, the model has
the potential to predict the composition and the current yield of PHBV in the ongoing process.

Keywords: bioplastic; copolymerization; polyhydroxyalkanoate; kinetic modeling

1. Introduction

One suitable alternative to conventional petroleum-based plastics is that of the group
of polyhydroxyalkanoates (PHAs) [1,2]. These polyesters stand out because of their favor-
able processing properties, e.g., their melting behavior or different blending options [3].
Furthermore, these are produced microbially by many bacteria and some archaea using a
wide variety of non-fossil carbon sources [1]. There is a repertoire of possible and cheap
substrates, such as those of inexpensive sugars in waste streams from the manufacturing
industry (juice production, sugar cane processing), volatile fatty acids (VFAs) from biogas
plants and wastewater in sewage treatment plants and even CO2 [4–11]. In addition to the
diverse possibilities of microbially producing bio-based PHAs, this plastic raw material has
another important property: PHAs are degradable under environmental conditions [12].
However, from an economic point of view, the industrial production of PHAs is about
five times more expensive than the production of petroleum-based polymers [13]. In addi-
tion to an improved extraction and processing of the polymers, a large part of the costs
can be saved through optimized bioprocesses with increased PHA yield. This can be
achieved by the incorporation of the sophisticated experimental investigation of different
process modes or the optimization of substrates and feeding strategies with mathematical
modeling [2,14,15]. Furthermore, model approaches represent the basic component in the
development of advanced process control and intensification strategies [16,17].

In the research area of PHA production, a large number of models can be found
that greatly differ in terms of modeling approach and complexity. Due to the complexity
and variability of the bioprocess, there is no universal tool for predicting product yields
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regardless of the producing organism, bioreactor or process conditions such as temperature
or pH [18]. Some approaches appear promising due to their simplicity and are able
to reproduce the concentration curves in a qualitative manner, while they contain only
little metabolic information [19–21]. Other approaches take the metabolism into account,
however, due to their complexity, they can only be used to a limited extent for model-based
process control intensification and are difficult to transfer to other PHA producers [22–27].

Many of the modeling approaches focus on the microbial production of the best-
known representative from the group of PHAs: poly(3-hydroxybutyrate) (PHB). From an
industrial point of view, however, the experimentally well-investigated bio-co-polymer
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is more interesting, because of its
lower melting temperature, higher elongation-to-break values and higher biocompatibility
in comparison to PHB [28]. However, only a few model approaches already exist to
investigate microbial PHBV production [21,29]. PHBV is also the target product of the
present work. In order to develop a universal simulation tool, the mathematical model
must contain a balanced amount of metabolic information. Such a modeling approach is
rarely found in the literature: in [21], the description of the metabolism was reduced to
central points with respect to PHA production (e.g., acetyl-CoA production), which can be
found in many organisms in mixed cultures.

In the mathematical model presented here, we applied a time-dependent, kinetic
parameter for the formation of residual biomass from fructose and propionic acid in C.
necator, in order to map the dynamics of the present metabolic activity without detailed
metabolic information. As the researchers at the University of Antioquia (Colombia)
already have shown [30,31], the online measurement for the CO2 content in exhaust gas
serves as an excellent measure of the dynamic growth rate. Here, we also apply this
correlation and hence, the model is a suitable candidate for the online estimation of PHBV
product yields. In addition, it can be used to predict the polymer composition, since 3-
hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) amounts in the chains are considered
in the model. For the parameter adaption, two data sets from aerobic PHA production in
C. necator were used, and one experimental setup with only fructose as a carbon source
and the other with fructose and propionic acid as carbon sources. In the last part of this
manuscript, the model is used in a simulation study to investigate the influence of the feed
rate for the propionic acid and of constant CO2 in the exhaust gas on the bio-co-polymer
yield and the 3HV proportion in the polymer.

The presented model approach is a suitable candidate for the development of a soft
sensor for the online prediction of the polymer yield and composition. This opens new
options to increase the flexibility, productivity and quality of the PHBV production process.
With further model extensions, e.g., by coupling to polymerization kinetics [32], it will be
possible to additionally estimate the chain length distribution during the process to obtain
more information about polymer properties.

2. Experimental Methods

2.1. Mircoorganism and Cultivation Conditions

C. necator (H16, DSM 428) obtained from DSMZ GmbH Braunschweig was used for
the fermentations. Bacteria were precultured in a shake flask with 10 vol% LB medium
(Carl Roth, Karlsruhe, Germany) at 30 ◦C and 150 rpm. After reaching an optical density
of 4 at 600 nm, the bacteria were transferred to an shake flask filled with 10 vol% of
M81 medium supplemented with 20 g/L fructose and 1.5 g/L ammonium chloride. The
recipe for the Medium 81 can be found in [23] or on the web page of the DSMZ. The M81
preculture was grown until an OD of 4.8 and used as an inoculum for the bioreactors.
The fermentations were performed in a DASGIP parallel bioreactor system (Eppendorf
AG, Juelich, Germany) with an inoculation OD of 0.4. During the experiments, the pH
was kept at 6.8 and the dissolved oxygen (DO) was 70%. The DO measurements were
performed with sensors from Mettler Toledo (Gießen, Germany). In the case of fructose as
a single carbon source, the pH-control was performed with 2 M H2SO4. During the reactor
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experiment with fructose and propionic acid, the pH was stabilized with 20 g/L solution
propionic acid as shown in [33]. The detection of the exhaust gas composition was done
with the GA4 module of the DASGIP parallel bioreactor system (Eppendorf AG, Juelich,
Germany). The initial conditions for the reactor experiments are shown in Table A1. All
bioreactor experiments were performed with M81 media at 30 ◦C.

2.2. Determination of Total Biomass

For the determination of total biomass (TBM), 1 ml culture broth was centrifuged for
10 min at 9600× g and 4 ◦C (VWR MicroStar 17R, Pennsylvania, PA, USA). In a second
step, the cell pellet was dried over night at 80 ◦C and weighted.

2.3. Enzyme Assay

By using enzymatic test kits (Kit No. 5390 and No. 10139106035, R-Biopharm AG,
Darmstadt, Germany) and following the manufacturer’s instructions, ammonium and
fructose concentrations were determined from the supernatant of the sample.

High-Pressure Liquid Chromatography

Concentrations of 3HB and 3HV were determined by applying the procedure pub-
lished in [34] using an Agilent 1100 high-performance liquid chromatography (HPLC).
For this, 1 mL of the culture broth was alkaline digested as reported in [35]. The samples
were filtered through a 0.25 μm nylon membrane and 10 μL were loaded on the reverse
phase column (Inertsil 100A ODS-3, 5 μm poresize, 250 × 4.6 mm, MZ-Analysentechnik
GmbH, Mainz, Germany) and isocratically eluted with 1 mL·min−1 at 60 ◦C with 92% low
concentrated H2SO4 (0.025% solution, Carl Roth, Karlsruhe, Germany) and 8% acetonitrile
(Carl Roth, Karlsruhe, Germany). The 3HB and 3HV concentrations in the polymer chains
of the samples were determined by using crotonic (Carl Roth, Karlsruhe, Germany) and
2-pentenoic acid standard samples (Sigma Aldrich, St. Louis, MO, USA), respectively.
In parallel, a PHBV sample (12% 3HV, Sigma-Aldrich /Merck, Darmstadt, Germany)
with known concentration must be measured to calculate the conversion yields YHB and
YHB [34]:

YHB = 2 · cCA
cHB

, (1)

YHV = 2 · cPA
cHV

. (2)

Here, the dilution ratio (D) is 2, cHB is the known HB and cHV the known 3HV
concentration of the PHBV test sample. Due to the standard measurement of crotonic
acid cCA and 2-pentenoic acid cPA, the conversion yields YHB and YHV can be determined,
respectively. Detection takes place with a photodiode-array detector (G7115A, Agilent,
Waldbronn, Germany) at 210 nm.

3. Kinetic Modeling Approach

The description of the formation and degradation in the microbial PHA production
is an important building block for the complete production process. There are already a
number of model candidates for the formation of PHB [18,20,23,36] that can accurately
reflect the development of the homopolymer concentration over time. Compared to the
homopolymer PHB, the copolymer PHBV has significantly improved processing prop-
erties. However, so far, only simple kinetic approaches for the formation of PHBV were
developed [21]. Furthermore, the model from Špoljarić and colleagues was developed for
the conversion of fatty acid methyl esters (FAMES) from biofuel to PHBV using lumped
metabolic pathways [19]. The model presented here describes the formation and degra-
dation of 3HB and 3HV in the polymer chains using fructose and propionate, two carbon
sources that frequently occur in inexpensive residues or can be produced from them, e.g., by
using waste streams from juice, cheese and paper production. In our model approach, de-
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tailed metabolic reaction pathways were not taken into account to keep the model structure
as simple as possible.
The following assumptions were made for the model:

• A simple mass-action kinetic is assumed for the dynamics of the substrates;
• Propionate has an inhibiting effect and decelerates the growth of bacteria [33];
• The conversion of PHA into enzymatically active biomass (residual) is not affected by

external propionic acid concentrations, as this is an internal process;
• C. necator begins to produce PHA already before nitrogen is depleted [18]. This be-

havior is considered in the model via an inhibitory term with nitrogen by a Michaelis–
Menten kinetics approach (see Equation (3), term inh2);

• Steric effects in the granules prevent the further production of PHA after reaching a
total amount of 89 % of the total biomass (TBM, Pt,max) [36,37].

In the following, a set of ordinary differential equations for the dynamics of the system
with fructose and propionic acid as substrates and residual biomass, 3HB and 3HV in
the polymer chains as products is described. The dynamic state equation for the fructose
concentration is given as

dc f ru

dt
=− k1 · bCO2(t) · cres · c f ru · cn · inh1

− k4 · cres · c f ru · inh2 · inh3

− k7 · bCO2(t) · c f ru · cres

− D · c f ru

(3)

with:

inh1 = max
(

0, 1− cp
cp,inh

)
, inh2 = max

(
0, 1− cn

cn+cn,sw

)
, inh3 = max

(
0, 1− Pt

Pt,max

)
.

Fructose can be metabolized for biomass production with the rate parameter k1, the ac-
cumulation of 3HB in the polymer with k4 or the conversion to CO2 with k7. The growth of
biomass through fructose is controlled by the activity coefficient bCO2(t) based on the CO2
ratio in the exhaust gas and inhibited by the concentration of propionate with the term
inh1. At a concentration of 1.5 g/L propionic acid (cp,inh), the substrate uptake for biomass
is completely inhibited [33]. Since CO2 in the exhaust gas is often defined as a proportion
of the gas composition, we chose the relative CO2 proportion to describe the metabolic
activity bCO2(t) as follows:

bCO2(t) =
CO2,out(t)

CO2,in
. (4)

The metabolic activity is described by the quotient of CO2,out in the exhaust gas and
CO2,in in the fresh inlet air. Since C. necator is a PHA producer of group 2 according
to Novak et al. [18], the build-up of 3HB from fructose begins when there is still a small
amount of ammonium in the medium. This effect is modeled by the term inh2. As described
in [36], steric effects at high polymer concentrations inhibit the conversion of substrates
to PHA (term inh3). According to literature values [1], the maximum achievable amount
Pt,max is 0.89 (89 % of the total biomass).

The inhibitory steric effect is given as the ratio between overall HA concentration and
total biomass concentration:

Pt =
(chb + chv)

(chb + chv + cres)
. (5)

Finally, the dilution factor in the fed-batch process:

D =
Fin
V

, (6)

is the ratio of the feed flow rate Fin and reactor volume V.
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For the computational study, a volume balance is necessary:

dV
dt

= Fin. (7)

As for fructose, a state equation can be set up for propionate dynamics:

dcp

dt
=− k2 · bCO2(t) · cres · cp · cn · inh1

− (k5 + k6) · cres · cp · inh2 · inh3

− k8 · bCO2(t) · cp · cres

+ D ·
(
cp,in − cp

)
.

(8)

It describes the consumption of propionate for biomass with a rate coefficient k2, CO2
with k8 and 3HB production with k5. In addition to the generation of 3HB, propionate can
also be converted into 3HV (k8). In fed-batch mode, a propionate solution according to
Table A1 is fed to the system with the feed flow rate Fin.

For growth, organisms need ammonium. The state equation for the ammonium
dynamics is:

dcn

dt
=− cres · cn · bCO2(t) ·

(
k1 · c f ru + k2 · cp

)
· inh1

− k3 · cres · cn · (chb + chv)

− D · cn .

(9)

In addition to the ammonium uptake for biomass growth by consuming external
carbon sources (first term in Equation (9)), ammonium is needed to convert the biopolymer
to catalytically active biomass with the degradation rate parameter k3.

The dynamical behavior of residual (non-PHA, catalytically active) biomass is de-
scribed as follows:

dcres

dt
=cres · cn ·

[
inh1 ·

(
k1 · c f ru + k2 · cp

)
· bCO2 + k3 · (chb + chv)

]
− D · cres .

(10)

Residual biomass is produced through the consumption of external carbon sources
such as fructose and propionate and the conversion of 3HB and 3HV from the polymer
chains in the presence of ammonium.

The following ordinary differential equations (ODEs) account for the dynamics of the
monomers 3HB and 3HV in the polymer chains:

dchb
dt

=cres · inh2 · inh3 ·
(

k4 · c f ru + k5 · cp

)
− k3 · cres · cn · chb − D · chb .

(11)

dchv
dt

=k6 · cres · cp · inh2 · inh3

− k3 · cres · cn · chv − D · chv .
(12)

For the accumulation and breakdown of the biopolymer (3HB and 3HV), CO2 forma-
tion is negligible, since the metabolic reaction pathways produce only little CO2 compared
to the breakdown of sugars and organic acids into catalytically active components of the
total biomass.
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3.1. Numerical Solution
3.1.1. Interpolation for Volume, CO2,out and Feed Rate

For the simulation of the model, the temporal evolution of the CO2 amount in the
exhaust gas from reactor experiments is required. Since the online measurement often
fluctuates and does not provide a smooth curve, the data were interpolated to integrate
them into the ODE model. For this, a smoothing spline interpolation was carried out
with the MATLAB command csaps. For both experiments, different smoothing factors
were evaluated. A smoothing factor of 0.2 was selected for the experiment with fructose
as the only carbon source (data set 1), while the data from the reactor experiment with
fructose and propionic acid as carbon sources (data set 2) achieved a smooth and well-fitted
curve with a smoothing factor of 0.02. For the interpolation, the splines are evaluated at
the sampling points. The evaluation was carried out with the MATLAB command ppval.
The curves and online data are shown in Figure 1 for both data sets.

Figure 1. Exhaust CO2 for data set 1 (fructose as carbon source, left panel, +) and data set 2 (fructose
and propionic acid as carbon sources, right panel, +) and the interpolations (solid lines).

The feeding of the odd carbon source propionic acid was achieved by pH control.
If the pH increases, a certain amount of propionic acid with 20 g/L in the feed is added to
the bioreactor to stabilize the pH at 6.8. The pre-implemented PI controller of the DASGIP
parallel bioreactor system (Eppendorf AG, Jülich, Germany) was used for this purpose.
As for the activity factor, frequent fluctuations are observed because of the special pH-
dependent feeding strategy and thus the feed rate for propionic acid was interpolated and
evaluated in the same way as the CO2 amount in the exhaust gas (Figure 2). Here, a factor
of 0.02 delivered a smooth curve.

Furthermore, an interpolation of the volume was necessary for the fed-batch exper-
iment with fructose and propionic acid as carbon sources (data set 2). For this purpose,
a polynomial of order 10 was determined with the MATLAB command polyfit and evaluated
with polyval at the sampling times. As seen in Figure 3, volume reduction by sampling was
also taken into account. Hence, a decrease in volume was recorded despite an average feed
rate of approximately 20 mL/h between 15 and 25 h (see Figure 2). In the experiment with
fructose as the single carbon source, the reactor was operated in batch mode. Since it was
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assumed that the system was ideally mixed, the changes in concentration were only caused
by internal sinks and sources (no substrate was pumped in), and the volume reduction due
to sampling can be neglected in data set 1. All simulations, interpolations and evaluations
were carried out with MATLAB 2019b.

Figure 2. Experimental feed rate and polynomial for the propionic acid inlet of data set 2 (fructose
and propionic acid as carbon sources).

Figure 3. Experimental volume (small blue line) and polynomial (black curve) of data set 2 (fructose
and propionic acid as carbon sources).

3.1.2. Parameter Identification

For parameter identification, the following objective function was minimized:

ESS =
n

∑
i=1

(
xexp(ti)− xsim(ti)

max(xexp)

)2

. (13)

Here, the error between the simulated xsim and experimental data xexp at time point
ti is determined and weighted with the maximum value in the experimental data set.

The kinetic parameters were determined using the algorithm fmincon in MATLAB
2019b. The ODEs were numerically solved with the algorithm ode15s with a relative
tolerance of 10−9. To prevent a sub-optimal initial parameter set a multi-start approach
with N = 10,000 was applied. To further validate the resulting parameter set obtained by
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the local optimization strategy, the global optimization algorithm differential evolution
(DE) was selected [38]. The resulting set of parameters can be found in Table A1.

To prove the parameter identifiability, profile likelihoods are determined for the
parameter set [39]. Appendix B shows all profile likelihoods and the corresponding
likelihood-based confidence intervals. All profile likelihoods show a distinct minimum at
the estimated parameter set and thus all parameters and the model itself are (locally) iden-
tifiable. The confidence intervals are obtained by calculating the value of a χ2-distribution
with a confidence level α = 0.95 and one degree of freedom as proposed in [39].

4. Results

4.1. Identification Using Different Data Sets

The kinetic model was adapted to two data sets from bioreactor experiments with
a working volume of 1.2 L. In the first data set, fructose was the only carbon source that
was metabolized under aerobic conditions. The second data set was also obtained under
aerobic conditions with fructose and propionic acid as carbon sources. Here, propionic
acid was added via a pH-regulated feed as proposed by Kim and coworkers [33] aiming
for a constant pH value of 6.8. From the available data of these sets, the online data for
the CO2 content in the inflow and in the exhaust gas, the feed rate for the propionic acid
and the exact volume considering the sampling volume were used in the case of data set 2.
In the case of the data set 1, online data for the CO2 content in the inflow and in the exhaust
gas were also used, but a constant volume and a batch mode (Fin =0) were considered.
The CO2 content in the exhaust gas, the feed stream for the propionic acid and the reactor
volume were approximated as described in Section 3.1.1. The smoothed measurement data
were used for the model simulation. Furthermore, the concentrations for total biomass,
biopolymer, fructose and propionic acid were determined offline in both data sets (see
Section 2).

The dynamic behavior for the conversion of the substrates from data set 1 (only
fructose) can be reproduced well with the present model (solid lines, Figure 4a). The model
shows larger deviations for the substrates from data set 2 (fructose and propionic acid),
especially in the last time segment from 25 h (dashed lines, Figure 4b). On the one hand,
this is due to the approximation of the inflow rate for propionic acid (see Figure 2), and on
the other hand, the measurement of the propionic acid in the medium becomes more
difficult. It seems to be, that there are more and more apoptosis fragments, e.g., matrix,
RNA and proteins in the culture supernatant that disrupt the signal obtained by HPLC
(own experimental findings). These fragments could be avoided by elaborate sample
preparation before HPLC measurement, e.g., additional filtration, boiling procedures or
the supplementation of organic acids. Furthermore, the chromatographic peak consisting
of propionic acid can be be fractionated and separated from impurities by a second HPLC
run with an adjusted mobile phase.

The model for the case of fructose as a single substrate can reproduce the production
and depletion of total biomass and 3HB with sufficient accuracy (Figure 5a). The same
applies to the case with fructose and propionic acid as carbon sources (Figure 5b). In par-
ticular, the degradation of 3HB and 3HV in the polymer chains after an NH4Cl shot at
24 h can be mapped very well by the model. This property is important when working
with waste streams which also contain nitrogen sources and which are added during the
ongoing process in order to keep the carbon in excess. Since the model can reproduce the
product concentrations very well, it can further be used for a simulation study.
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(a) Data set 1 (fructose only)—substrates (b) Data set 2 (fructose + propionic acid)—substrates

Figure 4. Consumption of substrates for two feeding scenarios: (a) fructose as a single carbon
source without additional feeding (batch); (b) fructose and propionic acid as carbon sources with
pH-dependent propionic acid feeding.

(a) Data set 1 (fructose only) - products (b) Data set 2 (fructose + propionic acid) - Products

Figure 5. Production and degradation of polyhydroxyalkanoate (PHA) monomers (chb, chv) and
total biomass (cbio = cres + chb + chv).
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4.2. Computational Study

In the following, the identified model was used to investigate the maximum prod-
uct concentrations by applying different constant CO2 and propionic acid feed profiles.
A constant feed rate can easily be implemented on every bioreactor system with contin-
uous pumps. The constant CO2 in the exhaust gas represents a complex control task,
as CO2 is produced by the bacteria themselves (autogenous CO2). However, the research
work in [40] shows the feasibility of this control task which can also be used in future
validation experiments.

In the simulation study (Figure 6), a constant CO2 proportion in the exhaust gas and
a constant feed rate for propionate were assumed for the process time. The propionic
acid concentration in the feed was set to 20 g/L as in data set 2. Figure 6a shows the
maximum total 3HB and 3HV in the polymer chains Pt* as a function of CO2 in the exhaust
gas and the feed rate for propionic acid. The inhibitory area is clearly visible on the left
side. In this range, the propionic acid concentration in the medium becomes too high so
that growth is inhibited. In the case of increased CO2 values in the exhaust gas, the feed
rate can also be increased without triggering growth inhibition. This behavior can be
justified as follows: a higher exhaust gas value for CO2 produced by the microorganisms
(autogenous CO2) is triggered by an increased uptake of substrates from the medium.
In C. necator, the degradation of pentoses and hexoses takes place via the Entner–Doudoroff
(ED) pathway. Furthermore, the tricarboxylic acid cycle (TCA) is mainly responsible
for the generation of energy and precursor molecules for biomass synthesis from the
precursors of metabolic sugar degradation and organic acids. Both the ED pathway and
the TCA generate CO2 as a by-product, which can be found in the exhaust gas values of
the simulation study. With other words, increased autogenous CO2 in the exhaust gas
can be translated into stronger residual biomass growth with increased substrate uptake.
As a result, the growth inhibition with increased CO2 in the exhaust gas only occurs at
higher feeding rates for propionic acid. In addition to the beneficial effect of higher exhaust
CO2, the total biopolymer concentration decreases in the non-inhibitory area. This effect
occurs because the CO2 output is related to the higher residual biomass growth and hence,
the substrates were less translated into biopolymers.

(a) Best total 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) concen-
tration

(b) Maximum possible 3HV concentration after 60 h

Figure 6. Simulation study with constant values for CO2 and Fin.
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The highest total biopolymer concentration of 12.5 g/L within 60 h simulation time
can be achieved without feeding propionic acid to the system and with a very low CO2
content in the exhaust gas. However, without an active feed rate, no 3HV will be produced
and the 3HV content is decisive for improved processing of copolymers compared to their
homopolymers. The maximum HV concentration in the polymer is shown in Figure 6b for
different constant autogenous CO2 and propionic acid feeding rates. Here, the inhibiting
region can be seen again due to a high propionate concentration in the medium. For a high
3HV concentration, our model predicts feed rates between 12 and 40 mL/h depending
on the CO2 in the exhaust. In general, less than 2.5 % CO2 in the exhaust gas leads to
higher 3HV concentrations. As our simulation results show, the feed rate for propionic
acid must be chosen very carefully because of their strong correlation with the CO2 value:
overly high feed rates at higher CO2 in the exhaust gas lead to less residual biomass
and a decreased 3HV concentration (see Figure A1). Further characteristic values of the
simulation study are shown in Figure A1 (e.g., residual biomass at the maximum total 3HB
and 3HV concentration, total monomer/total biomass ratio).

Three exemplary time courses for different production goals were illustrated in
Figure 7. In case A, the dynamic behavior to achieve a high total polymer concentra-
tion (3HB + 3HV) with the given initial conditions is shown. For this purpose, the feed rate
was set to 0 mL/h and the CO2 amount to 1 %. For case B, the same CO2 value as in case
A was applied together with a feed rate of 25 mL/h to show an example time course for
a high 3HV concentration. In addition to the two preferred fermentation results (cases A
and B, Figure 7), the inhibitory case was also shown (case C, Figure 7) by increasing the
feed rate to 105 mL/h.

(a) Substrates (b) Products

Figure 7. Three example cases of dynamical behavior applying constant exhaust CO2 and feed rate
for propionic acid (profile study 1). Legend: A, maximum total biopolymer concentration (chb + chv);
B, high 3HV concentration (chv); and C, inhibition caused by propionic acid (cp).

5. Concluding Remarks

In this manuscript, a model approach is presented which enables the integration of
online data for the estimation of the yield and the composition of the copolymer PHBV in
C. necator. Compared to other approaches, no genome-scale metabolic networks or reduced
variants are necessary [23,41], since it is a pure kinetic approach that describes changes
in the metabolism due to a CO2-dependent biomass production rate that changes over
time. Despite the lack of detailed metabolic information, our kinetic model can display
the data sets with fructose as a single substrate and fructose and propionate as substrate
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with high accuracy. The model approach has similar complexity as the models presented in
Koller et al. [36] and Dias et al. [21], whereby the metabolic activity that controls the biomass
growth can be described by the CO2 profile in the exhaust gas. Because of the compact
model structure and smart coupling to available online measurements the approach can
be applied as a soft sensor for the prediction of biomass, substrates, product yield and the
composition of the biopolymer (e.g., 3HV/3HB ratio). First steps in this direction where
already successfully applied for a vinasse-molasse PHA process [30,31]. In comparison to
the model approach used in [30,31], our more complex model represents an excellent basis
to predict 3HV and 3HB amounts in the polymer chains. In addition to the application
options during the process, CO2 profiles can be estimated in optimization studies with
predefined concentrations profiles for the substrates and products. As a first step, we
investigated in our simulation study the effect of constant CO2 fractions in the exhaust gas
and constant feed rates for propionic acid on biopolymer yield and composition. The lower
the feed rate was set and the less CO2 was in the exhaust gas, the more PHA was produced
but with less 3HV content in the polymer. A suitable feed rate for propionic acid input
was predicted to be between 12 and 40 mL/h in order to achieve high 3HV concentration
in the final co-biopolymer. Furthermore, the model approach can be used for the design
of observers and state estimators for the reconstruction of non-measurable states. A first
example in this direction was recently presented by Carius and coworkers [16]. Here,
an unscented Kalman filter and a moving horizon estimation based on a hybrid cybernetic
PHB model [23] was designed and evaluated.

Future work should focus on the design of model-based soft sensor approaches, since
this will enable the reliable online estimation of the PHBV content using measurements
of the exhaust gas online without the need for additional expensive hardware sensors.
Furthermore, the transferability of the kinetic model to other PHA producers must be
researched. Here, the focus should be on PHA producers, which are already producing
PHA under growth conditions, e.g., C. necator DSM 515, as the model was designed for
this group of bacteria. Furthermore, it should be checked whether a characteristic CO2
profile occurs during the accumulation of other copolymer building blocks, such as 4-
hydroxybutyrate. Finally, a control concept should be developed which is able to keep CO2
in the exhaust gas on a desired level over a longer period of time. The work of Shang and
colleagues [40] shows that it is in principle possible to control a process parameter that is
strongly influenced or caused by the bacteria. The CO2 amount in the exhaust gas was
adjusted in the work of Shang and coworkers in order to investigate the inhibitory effects
of CO2. Such an effect has not yet been taken into account in the model presented in this
manuscript, but should be considered in future model extensions.

Overall, our model approach provides the basis for a broad range of possible future
applications and will help make the production process of biopolymers more reliable and
less expensive.
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Appendix A. Additional Figures—Profile Study

(a)3HV/total biopolymer ratio at maximum total biopoly-
mer concentration after 60 h

(b)Residual biomass concentration at highest total
biopolymer concentration after 60 h

(c)Biopolymer concentration/total biomass ratio at maxi-
mum total biopolymer concentration after 60 h

(d)Time where the maximum biopolymer value occurs

Figure A1. Simulation study with constant values for CO2 and Fin—3HV content (a), residual
biomass (b), PHA/BTM ratio (c), time (d).

Figure A2. Reactor volume V, feed rate Fin, dilution rate D and CO2 in the exhaust for the three
example cases. Legend: A, maximum total biopolymer concentration; B, high 3HV concentration;
and C, inhibition caused by propionic acid.
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Appendix B. Parameter Identifiability

Figure A3. Profile likelihood of k1. Horizontal dashed line represents the explained sum of squares
(ESS) value of the 95% confidence interval.

Figure A4. Profile likelihood of k2. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Figure A5. Profile likelihood of k3. Horizontal dashed line represents the ESS value of the 95%
confidence interval.
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Figure A6. Profile likelihood of k4. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Figure A7. Profile likelihood of k5. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Figure A8. Profile likelihood of k6. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

77



Processes 2021, 9, 1260

Figure A9. Profile likelihood of k7. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Figure A10. Profile likelihood of k8. Horizontal dashed line represents the ESS value of the 95%
confidence interval.

Appendix C. Parameter Values and Initial Conditions

Table A1. Kinetic parameters, states and variables.

Parameter Unit Description Value

fitted

k1 (L2/(g2h)) consumption of fructose
and ammonium for growth 4.34 × 10−6

k2 (L2/(g2h)) consumption of propionic acid
and ammonium for growth 0.0048

k3 (L2/(g2h)) HA consumption 0.0713
k4 (L/(g h)) consumption of fructose

for 3HB accumulation 0.0563
k5 (L/(g h)) consumption of propionic acid

for 3HB accumulation 0.6803
k6 (L/(g h)) consumption of propionic acid

for 3HV accumulation 2.0208
k7 (L2/(g2h)) fructose consumption

for maintenance 3.4184 × 10−4

k8 (L2/(g2h)) propionic acid consumption
for maintenance 0.0125
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Table A1. Cont.

Parameter Unit Description Value

fixed

cp,inh (g/L) inhibitory propionic acid concentration 1.5 [33]
cn,sw (g/L) Michalis–Menten rate for ammonium 0.2
cp,in (g/L) propionic acid concentration in the feed 20
c f ru(0) (g/L) initial fructose concentration

data set 1/data set 2 21.96/21.75
cp(0) (g/L) initial propionic acid concentration

data set 1/data set 2 0/0.48
cn(0) (g/L) initial ammonium concentration

data set 1/data set 2 1.74/1.40
cres(0) (g/L) initial residual biomass concentration

data set 1/ data set 2 1.47 / 1.16
chb(0) (g/L) initial 3HB concentration

data set 1/ data set 2 0.03 / 0.03
chv(0) (g/L) initial 3HV concentration

data set 1/ data set 2 0 / 0.01
Pt (g/L) HA (3HB+3HV) concentration time dependent
CO2,out (%) exhaust CO2 measurement
CO2,in (%) inlet CO2 measurement
bCO2 (-) CO2 dependent metabolic activity time dependent
D (-) dilution rate time dependent
Fin (%) feed rate for propionic acid pH controlled [33]
Pt,max (g/L) maximum concentration of PHA 0.89 [37]
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modeling of polyhydroxyalkanoate synthesis from complex substrates. Bioprocess Biosyst. Eng. 2006, 29, 367–377. [CrossRef]
[PubMed]

37. Mohidin Batcha, A.F.; Prasad, D.M.; Khan, M.R.; Abdullah, H. Biosynthesis of poly(3-hydroxybutyrate) (PHB) by Cupriavidus
necator H16 from jatropha oil as carbon source. Bioprocess Biosyst. Eng. 2014, 37, 943–951. [CrossRef] [PubMed]

38. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces.
J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

39. Raue, A.; Kreutz, C.; Maiwald, T.; Bachmann, J.; Schilling, M.; Klingmüller, U.; Timmer, J. Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 2009, 25, 1923–1929. [CrossRef]
[PubMed]

80



Processes 2021, 9, 1260

40. Shang, L.; Jiang, M.; Ryu, C.H.; Chang, H.N.; Cho, S.H.; Lee, J.W. Inhibitory effect of carbon dioxide on the fed-batch culture
of Ralstonia eutropha: Evaluation by CO2 pulse injection and autogenous CO2 methods. Biotechnol. Bioeng. 2003, 83, 312–320.
[CrossRef]

41. Park, J.M.; Kim, T.Y.; Lee, S.Y. Genome-scale reconstruction and in silico analysis of the Ralstonia eutropha H16 for polyhydrox-
yalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst. Biol. 2011, 5, 101. [CrossRef]

81





processes

Article

Dynamic Model for Biomass and Proteins Production by Three
Bacillus Thuringiensis ssp Kurstaki Strains

Tatiana Segura Monroy 1, Nouha Abdelmalek 2, Souad Rouis 3, Mireille Kallassy 4, Jihane Saad 4,5,

Joanna Abboud 4,5, Julien Cescut 5, Nadia Bensaid 2, Luc Fillaudeau 1 and César Arturo Aceves-Lara 1,*

Citation: Monroy, T.S.; Abdelmalek,

N.; Rouis, S.; Kallassy, M.; Saad, J.;

Abboud, J.; Cescut, J.; Bensaid, N.;

Fillaudeau, L.; Aceves-Lara, C.A.

Dynamic Model for Biomass and

Proteins Production by Three Bacillus

Thuringiensis ssp Kurstaki Strains.

Processes 2021, 9, 2147. https://

doi.org/10.3390/pr9122147

Academic Editor: Philippe Bogaerts

Received: 27 October 2021

Accepted: 24 November 2021

Published: 28 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Toulouse Biotechnology Institute, Bio & Chemical Engineering, Université de Toulouse,
F-31077 Toulouse, France; seguramo@insa-toulouse.fr (T.S.M.); luc.fillaudeau@insa-toulouse.fr (L.F.),

2 Laboratoires Pharmaceutiques MédiS, B.P 206 Nabeul 8000, Tunisia; nouha_abdelmalek@yahoo.com (N.A.);
nadia.bensaid@labomedis.com (N.B.)

3 Centre of Biotechnology of Sfax, B.P 1177 Sfax 3018, Tunisia; souad.rouis@cbs.rnrt.tn
4 Faculty of Sciences, Saint-Joseph University, Riad El Solh, Beirut 1004 2020, Lebanon;

mireille.kallassy@usj.edu.lb (M.K.); jihane.saad@inrae.fr (J.S.); joanna.abboud-1@inrae.fr (J.A.)
5 Toulouse White Biotechnology (UMS INRAE/INSA/CNRS), 135 Avenue de Rangueil,

F-31077 Toulouse, France; Julien.Cescut@inrae.fr
* Correspondence: seguramo@etud.insa-toulouse.fr

Abstract: Bacillus thuringiensis is a microorganism used for the production of biopesticides worldwide.
In the present paper, different kinetic models were analyzed to study and compare three different
strains of Bt ssp kurstaki (LIP, BLB1, and HD1). Bioperformances (vegetative cell, spore, substrate, and
protein) and successive culture phases (oxidative growth, limitation and sporulation, and protein
release) were depicted with an overarching aim to estimate total protein productivity, yield, and
titer. In the end, two models were calibrated using experimental dataset (11 batches culture in 3 L
bioreactor with semisynthetic medium), subsequently validated, and statistically compared. Both
models satisfactorily followed the dynamics of the experimental data. Finally, a dynamic model was
selected following the Akaike information criterion (AIC).

Keywords: B. thuringiensis kurstaki; biopesticides; kinetic parameters; dynamic model

1. Introduction

B. thuringiensis is a facultative anaerobic Gram-positive sporulating bacterium, fre-
quently used in the production of some biopesticides and as a source of genes for transgenic
expression in plants [1]. It usually inhabits different environments, among which soil, set-
tled dust, insects, water, and others have been identified [2]. B. thuringiensis has been shown
to be toxic to various organisms, such as lepidopterans, coleopterans, dipterans, or nema-
todes, but is considered safe for mammals. Thus, the products based on B. thuringiensis
(Bt) provide effective and environmentally benign control of several insects in agricultural,
forestry, and disease-vector applications [3]. This insecticidal activity is mainly due to the
production of some intracellular inclusions (called σ-endotoxins) during the sporulation
phase of B. thuringiensis cells.

Most of the biopesticides distributed in the world are mainly based on Btk. HD1 strain.
However, two recent strains, identified as Btk. LIP (from Lebanese soil), and BLB1 (from
Tunisian soil), have been isolated and described to be more efficient than HD1 [4], and,
therefore, will be studied in this work.

Due to the several changes of cell physiology during the σ-endotoxins production
bioprocess (exponential growth, formation of inclusion, formation of spore, lysis), B.
thuringiensis culture is considered a laborious process. Although one possibility to optimize
B. thuringiensis culture is through mathematical models, there are not many mathematical
models that describe the dynamics of the growth phases of B. thuringiensis culture [5].
Holmberg and Sievanen [6] proposed a model based on Monod kinetics to describe the
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relationship between cell growth and toxin production. Later, Rivera et al. (1999) [7]
showed the Monod model limitations when they tried to describe the biomass diversity
of B. thuringiensis. In their model, they assumed the presence of two kind of cells in the B.
thuringiensis culture; those available to multiply, and those that have become spores. Thus,
they divided them between the biomass of the vegetative cells and the biomass of the spore-
forming cells. In addition, they used the Monod model to describe the relationship between
vegetative cell growth and substrate concentration, as did Holmberg and Sievanen [6].

Furthermore, Popovic et al. [8] proposed a model that considered a minimum level
of poly-β-hydroxy butyric acid (PHB) required in cells at the beginning of sporulation
for efficient sporulation and endotoxins productions. Additionally, they used Contois
kinetics to describe the growth of the cells, considering that this model fits better to the
experimental data than the expression of Monod.

Therefore, this work proposes a dynamic model for B. thuringiensis. Section 2 describes
experimental data and the dynamic model for B. thuringiensis. The simulation results and
the performance evaluation are shown in Section 3. Finally, conclusions and perspectives
close this paper.

2. Materials and Methods

The materials and methods used to generate the set of experimental data are described
in this section. Then, experimental data are introduced, and assumption and formulation
of models are explained.

2.1. Microorganism and Culture Media

Three B. thuringiensis ssp. kurstaki strains were used in the present work: a Lebanese
strain LIP [4], a Tunisian strain BLB1 [9], and HD1 strain used as a reference (industrial gold
standard) [10]. Luria broth (LB) medium was used for inoculum production, whereas a
semisynthetic medium (SSM), defined by Sarrafzadeh et al. [11], was used for fermentation
assays. Their compositions (g·L–1) are described in Table 1. For the SSM, concentrated
glucose (Sol 2) and all salts solutions (Sol 3–5) were prepared and sterilized separately and
added before inoculation to the rest of the medium (Sol 1) previously sterilized.

Table 1. Semisynthetic and Luria broth media composition (g·L–1).

Sol Components
Semisynthetic

(SSM)
LB

Peptone - 10

NaCl - 5

1

Yeast Extract 0.5 5

Casein acid
hydrolysate 4.5 -

(NH4)2SO4 6 -

K2HPO4 1.4 -

KH2PO4 1.4 -

2 Glucose 5 -

3 MgSO4, 7H2O 0.61 -

4 CaCl2, 2H2O 0.332 -

5 MnSO4, H2O 0.006 -

2.2. Inoculum Preparation

Inocula were prepared by transferring cells from nutrient agar slants into 10 mL of LB
medium and incubated overnight at 30 ◦C in a rotary shaker set at 200–230 rpm. Aliquots
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corresponding to an initial OD600 = 0.15 were used to inoculate 1 L Erlenmeyer flasks
containing 100 mL LB medium. After 10–12 h of incubation at 30 ◦C, in a rotary shaker set
at 200–230 rpm, the OD600 was determined. The culture broth was used to inoculate the
bioreactor containing the studied media to start with an initial OD600 of 0.15.

2.3. Culture Conditions

Several fermentations were conducted over 48 h in batch mode at 30 ◦C in a 3 L Biostat
B plus fermenter (Sartorius, Göttingen, Germany) containing 1.8 L of the SSM medium
and with continuous regulation of pH at 6.8 using 1 M H2SO4 and 3 M NaOH. Dissolved
oxygen was continuously monitored by an optical oxygen sensor and maintained at 25%
pO2-sat with a constant aeration rate (VVM = 10 with Qair = 0.18 min·L−1) and variable
stirring (from 250 to 1200 rpm). Foaming was controlled using an antifoam (Emultrol DFM
DV-14 FG), through the fermentation process.

2.4. Analysis and Sampling Strategy

Several samples were collected from the Bt broth during experiments, and substrate,
biomass, and product analyses (glucose, cell and spore counting, protein) were conducted
to determine biokinetics.

2.4.1. Detection of Sporulation

The diverse cell states were distinguished, during the fermentation process, based on
their morphological differences and the refractile nature of the endospores, using a phase
contrast microscope (ZeissPrima Pro, Paris, France, ×100 oil).

2.4.2. Biomass Analyses
Cells and Spores Counts

The follow-up of the biopesticides production was checked by estimating viable cell
counts (VC) and spore counts (SC) by plate counts. To determine VC and SC, the withdrawn
samples were serially diluted, spread on LB plates and incubated at 30 ◦C for 16–18 h. For
determining SC, the appropriately diluted samples were heated at 85 ◦C for 15 min and
cooled for 5 min before spreading onto LB plates. Number of colonies should be between
20 and 300 to be acceptable. All analyses were realized in triplicate.

Cell Dry Weight

A known amount of sample (1 to 20 mL) was filtered via nitrocellulose membrane
(0.2 μm) and the membrane was then dried at 70 ◦C (24 h). Biomass dry weight is de-
termined by differential weighing of the filter before the filtration and after filtration
and drying.

Quantification of Proteins Production

In order to estimate the concentration of total proteins (mainly composed of δ-
endotoxin) produced during the fermentation, 1 mL sample was centrifuged at 13,000 rpm
for 5 min at 4 ◦C. The supernatant was collected for other analysis and the pellet was
washed twice with cold NaCl 1M and four times with cold water. The protein crystal was
then dissolved in 0.05 N NaOH for 2 to 3 h at 30 ◦C in a rotary shaker (200 rpm). The
suspension was then centrifuged at 13,000 rpm for 5 min, and the supernatant containing
the solubilized proteins was recuperated.

The concentration of the proteins in this supernatant was determined by Bradford
assay [12] using bovine serum albumin (BSA) as a protein standard. Absorbances were
measured after 10 min at 595 nm (2300 EnSpire Multilabel Plate Reader). The obtained
value was the average of three measures of the same sample (microwell plate). Considering
our protocol, protein concentration estimates the total protein production after separation
but not specifically the δ- endotoxin, even if it is the dominant fraction.
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Sugar Analysis

The sugar concentrations were determined using HPLC-UV. The HPLC assays were
performed using an Ultimate 3000 RSLC/MWD/RI/CAD. A mobile phase of 5 mM H2SO4
with a flow rate of 0.6 mL·min−1 was used. The mobile phase was filtered and degassed
through a 0.2 μm cellulose nitrate membrane. The samples and standards were also filtered
before injection into the HPLC.

2.5. Experimental Data

Between three to four batch cultures per strain were carried out (Table 2). Two batches
per strain were used to perform parameter calibration, and between one and two batches
were used to validate the models. The experimental datasets for each strain are presented
in Figures 1–3. It is relevant to indicate that in batch 07, dry matter measurement was
estimated by OD600nm for exponential growth phase.

Table 2. Batches culture carried out per strain.

Strain Batch

Btk. HD1 B03, B04, B07

Btk. BLB1 B01, B02, B05, B06

Btk. LIP B08, B09, B10

Figure 1. Evolution of cell biomass, spores, substrate, and protein content as a function of time with BLB1 strain (batches:
01, 02, 05, and 06).
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Figure 2. Evolution of cell biomass, spores, substrate, and protein content as a function of time with HD1 strain (batches: 03,
04, and 07).

Figure 3. Evolution of cell biomass, spores, substrate, and protein content as a function of time with LIP strain (batches: 08,
09, and 10).
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During all cultures, several milestones should be identified: (i) the maximum cell
biomass production, (ii) substrate depletion, (iii) full sporulation informing about proteins
production, and (iv) its release in supernatant due to full cell lysis.

2.5.1. Btk. BLB1 Strain

For the BLB1 strain, data were taken from four batches (01, 02, 05, and 06). Figure 1
presents the graphical experimental data. Batch 11 was used to validate the model.

The maximum biomass concentration was reached after approximately 10 h culture
for the four batches, and then began to decrease. As expected, this time approximately
coincided with the substrate depletion, corresponding to a glucose concentration close to
0 g·L−1. In addition, the concentration of spores began to increase at this moment, since
the limitation of the substrate induced their formation. After 20 h, sporulation reached a
plateau value. Cell lysis was fully achieved after 30 h, as indicated by protein release into
supernatant. Finally, protein content reached around 0.8–1 g·L−1 with BLB1 stain.

2.5.2. Btk. HD1 Strain

Similar data and milestones were obtained for the HD1 strain (Figure 2). Around 10 h,
maximum biomass concentration and substrate depletion were reached. However, in batch
07, no values were recorded for the biomass concentration after exponential growth phase
due to technical misplaced measurements. After 20 h, sporulation rate was achieved, and
protein content plateaued after 30 h. Final protein content was around 0.8–1 g/L, except
for batch 07 (0.4 g/L).

2.5.3. Btk. LIP Strain

Figure 3 presents identical variables and leads to identify the same milestones and
critical time as described above with Btk. BLB1 and HD1 strains. LIP strain exhibited the
lowest protein concentration, close to 0.2 g/L. This result could be explained by a lower
cell lysis rate; therefore, protein crystals were not released in the supernatant.

2.5.4. Model Assumptions

The main features of dynamic models include the key parameters describing bioper-
formances (vegetative cell, spores, substrate, proteins) and associated kinetics, considering
successive phases (oxidative growth, limitation, sporulation, and protein release), during
bioproduction. The mass balance equations on each compound are shown in Equations (1),
(2), (4)–(7). Equation (1) represents the evolution of biomass concentration with respect to
time, while the relationship between bacterial growth and substrate consumption is shown
in Equations (1) and (2).

dX
dt

= μ ∗ X− kd∗X (1)

dS
dt

= − μ ∗ X
Y1

(2)

where X is the biomass concentration (g·L−1), S is the concentration of substrate (g·L−1),
Y1 is the yield coefficient between the biomass and the substrate (gBiomass/gGlucose),
and kd is the death rate (h−1).

The cell growth process is represented by the Contois expression, as follows:

μ = μmax
S

(Kc ∗ X) + S
(3)

where μ is the specific growth rate (h−1) and μmax is the maximum specific growth rate
(h−1), a constant defined for a substrate concentration; X1 is the concentration of biomass
(g·L−1); S1 is the concentration of glucose (g·L−1); and Kc is a saturation constant.

Equations (4)–(7) show the mass balance for proteins and spores. In the first model,
proteins and spores are correlated with biomass (Model 1). In the second model, α and
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β parameters were used to unassociated proteins and spores from biomass production
(Model 2). The corresponding models are shown in Equations (4) and (5) (Model 1) and
Equations (6) and (7) (Model 2).

Model 1
dPro

dt
=

X1∗Y2
Y1

(4)

dSpo
dt

=
X1∗Y3

Y1
(5)

Model 2
dPro

dt
=

X1∗Y2
Y1

+ α (6)

dSpo
dt

=
X1∗Y3

Y1
+ β (7)

where Pro is the protein concentration (g·L−1), Spo is the spores concentration
(CFU·10−8/mL), Y2 (gPro·gGlucose−1 ·h−1) and Y3 (CFU·10−5·g Glucose−1·h−1) are yield
coefficients, and α(g·L−1·h−1) is a constant.

The set of equations were simulated using MATLAB®(R2019a).
Three statistical criteria were used to analyze the fit of the models using experimental

datasets. These parameters were the coefficient of determination (R2), the root mean square
errors (RSME), and the correction of Akaike information criterion (AICc). The expressions
of these parameters are presented in Equations (8)–(11), respectively.

R2 =
SSR
SST

(8)

SSR is sum of squared regression, and SST is sum of squared total.

RMSE =

(
X− X

)TW
(
X− X

)
n− p

(9)

where n represents the number of data, p the number of parameters, W the weighting
matrix, and X and X are the data and estimated data, respectively [13].

AICc = AIC +
2p(p + 1)
n− p− 1

(10)

AIC = 2p + n(ln(2π) + ln(SSE)− ln(n) + 1) (11)

The main parameter used to determine the model that best fits the data is the AICc
parameter [13]. The AIC criterion is one of the most popular for the comparison of models
because it considers the number of parameters, the number of data, and the residuals,
making it a parameter that balances the complexity of the model and the fit of the data [14].
Additionally, the parameter correction (AICc) gives accurate results for a larger number
of datasets. Thus, the model with the lowest value for AICc is selected to represent the
experimental data more adequately.

Parameter calibration was carried out in MATLAB using a particle swarm optimization
(PSO) algorithm. This method, as its name implies, is inspired by the behavior of swarms of
insects in nature. Thus, for a set of variables to be optimized, the method begins by placing
random particles in the search space, but then a series of rules are established considering
each parameter and the set of parameters (“swarm”) globally. Thus, the variables are
optimized quite well, and few computational resources are spent, becoming a fast method
in convergence, and simple in application [15].

3. Results

This section presents the results obtained through various simulations carried out in
MATLAB. It is divided into two main sections: model calibration and model validation.
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Initially, the parameters of each model were estimated (six for Model 1 and eight for
Model 2) with the experimental data of two batches for each strain. Subsequently, the
parameters found were used to observe the behavior of the four state variables (biomass,
glucose, proteins, and spores concentrations) in two batches for the BLB1 strain and
one batch for the HD1 and LIP strains. Likewise, the results obtained were compared
with the experimental data. In this way, the validation of the parameters found in the
calibration phase was carried out. Moreover, to compare models 1 and 2, a series of
statistical parameters were calculated from which the selection of the model that best fits
the experimental data is facilitated.

3.1. Model Calibration BLB1 Strain

Kinetics parameters of the B. thuringiensis culture were calibrated for three strains:
BLB1 (Table 3), HD1 (Table 5), and LIP (Table 7). The maximum specific growth rate
(μmax) was between 1.15 h−1 for the BLB1 strain (Model 1) and 0.39 h−1 for the LIP strain
(Model 2). These results are within ranges similar to those reported by Holmberg and Sieva-
nen (1980), who reported values between 1.90 and 0.17 h−1 [6], and Atehortúa et al. (2007),
who reported values between 0.80 and 0.58 h−1 [16]. The death rate (kd) was between
0.0458 (BLB1 strain) and 0.0184 h−1 (LIP strain), which coincided with previous results in
the literature (between 0 and 0.13 h−1) [6]. The yield coefficient between the biomass and the
substrate (Y1) was between 0.49 (gBiomass·gGlucose−1) and 0.96 (gBiomass·gGlucose−1)
for all strains.

Table 3. Optimized parameter values from BLB1 strain.

Parameter
BLB1

Model 1 Model 2

μ max (h−1) 1.1490 1.0720

Kc 4.7450 4.1250

Kd (h−1) 0.0437 0.0439

Y1 gBiomass·gGlucose−1 0.7136 0.7141

Y2 (gPro/gGlucose*h) 0.0067 0.0067

Y3 (CFU*10−5/gGlucose*h) 0.0537 0.0524

Alpha (g/L*h) - 0.0001

Beta (CFU*10−5/L*h) - 0.0001

The comparison between Models 1 and 2 and the experimental data for the BLB1 strain
are shown in Figure 4. According to the figure, Models 1 and 2 did not have very noticeable
differences; therefore, the alpha and beta parameters of Model 2 did not have a great impact
on the modeling. Both models showed a satisfactory fit to the experimental data; however,
the statistical study will give precise information on the best model. It is important to
note that the quantification of the spore concentration and protein concentration are more
subject to systematic error than biomass and glucose, which may explain the discrepancies
between models and measurements.

Model 1 had higher values for μmax and Kc, although other parameters remained
with similar values. Furthermore, for the constants alpha and beta, very low values of
0.0001 were obtained, which confirmed that both models are similar.

Table 4 presents the statistical coefficients that allowed comparing Model 1 and Model
2 for BLB1 strain. The statistical coefficients showed a good fit to the experimental data.
Spores concentration was the variable with the worst fit. These results are supported by
Figure 4, since the furthest experimental values of the two models can be observed in it.
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Figure 4. Calibration of the two models with the dataset from BLB1 strain. (o) Experimental data; (-) Model 1; (- -) Model 2.

Table 4. Statistical evaluation of the two models with BLB1 strain.

Model Criterion Biomass Glucose Proteins Spores

Batch01

1
R2 0.6902 0.9863 0.7088 0.1350

RMSE 0.4539 0.2445 0.2138 10.2994
AICc 29.5540 17.1797 14.4991 91.9945

2
R2 0.6935 0.9835 0.7088 0.1357

RMSE 0.4552 0.2711 0.2125 10.3321
AICc 149.6104 139.2478 134.3794 212.0580

Batch06

1
R2 0.5663 0.9976 0.7329 0.5756

RMSE 1.1693 0.1154 0.1633 2.2508
AICc 41.2816 –9.6689 –2.0279 55.6878

2
R2 0.5686 0.9981 0.7337 0.5762

RMSE 1.1699 0.0996 0.1638 2.2597
AICc 96.2913 42.1035 53.0457 110.7744

As far as the determination coefficient (R2), values greater than 0.98 were observed
for glucose measurements, which indicates that this variable has the best fit. However, as
mentioned above, the parameter of greatest interest is the AICc since it takes into account
several important aspects. The model that presented the lowest AICc values for the four
variables was Model 1. This model does not include any extra constants, which makes it a
less complex model than Model 2, but also predicts the behavior of the variables studied.

3.2. Model Calibration HD1 Strain

The results for the HD1 strain are shown in Figure 5 and Table 5. It was shown that
there are big differences between Model 1 and Model 2. Protein concentration and spore
concentration were the variables in which these differences were most visible according to
Figure 5, which makes sense since the alpha and beta constants present in Model 2 have a
direct influence on these two variables. Additionally, both models presented a very good
fit for the biomass and substrate concentration.
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Figure 5. Calibration of the two models with the dataset from HD1 strain. (o) Experimental data; (-) Model 1; (- -) Model 2.

Table 5. Optimized parameter values from HD1 strain.

Parameter
HD1

Model 1 Model 2

μ max (h−1) 0.5985 0.4024

Kc 1.4700 0.5140

Kd (h−1) 0.0458 0.0352

Y1 gBiomass·gGlucose−1 0.9612 0.8333

Y2 (gPro/gGlucose*h) 0.0056 0.0050

Y3 (CFU*10−5/gGlucose*h) 0.0281 0.0001

Alpha (g/L*h) - 0.0062

Beta (CFU*10−5/L*h) - 0.1116

The optimized parameters showed higher values in Model 1 than in Model 2 for
almost all parameters. Although the values of μmax were lower than those found for the
BLB1 strain, parameters such as Y1 and alpha and beta constants were higher than those
obtained with the BLB1 strain.

The results of the statistical parameters for the calibration of the HD1 strain are
presented in Table 6. In a similar way to the BLB1 strain, the variable that best fits the
models according to the coefficient of determination was glucose, even reaching a value of
1 for batch 4 and Model 2. In general, the R2 and RMSE coefficients showed a better fit of
the models with the experimental data for the HD1 strain than the previously analyzed
BLB1 strain. In fact, for HD1 strain, the experimental data of the spore concentration have
a better fit than those obtained for the BLB1 strain.

Since for the HD1 strain, Model 1 showed the lowest AICc values, this model was
considered as the most appropriate to predict the behavior of the HD1 strain according to
the results of the calibration. This means that Model 1 showed the best parsimony.

3.3. Model Calibration LIP Strain

Figure 6 shows the results obtained for the LIP strain. Graphically, Model 1 and Model
2 showed great similarities except for protein concentration. The values obtained for the
parameters and the statistical coefficients reflect these differences.
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Table 6. Statistical evaluation of the two models with HD1 strain.

Model Criterion Biomass Glucose Proteins Spores

Batch03

1
R2 0.7086 0.9876 0.9763 0.9122

RMSE 0.7287 0.3705 0.1677 0.4863
AICc 39.0235 25.4968 9.6408 30.9351

2
R2 0.7575 0.9803 0.9546 0.8486

RMSE 0.6305 0.4203 0.0870 0.6881
AICc 156.1279 148.0185 116.5131 157.8768

Batch04

1
R2 0.7063 0.9992 0.7036 0.73007

RMSE 0.77276 0.0544 0.3128 2.7302
AIC 14.6311 −22.5237 1.9751 32.3051

2
R2 0.7666 1,0000 0.6469 0.7191

RMSE 0.6203 0.0112 0.2140 1.5365
AICc –56.4420 –112.6332 –71.3404 –43.7434

Figure 6. Calibration of the two models with the dataset from LIP strain. (o) Experimental data; (-) Model 1; (- -) Model 2.

Table 7 summarizes the parameter values of both models. It is noteworthy that the
proteins/substrate yield coefficient (Y2) showed very low values.

Table 7. Optimized parameter values from LIP strain.

Parameter
LIP

Model 1 Model 2

μ max (h−1) 0.3966 0.3916

Kc 0.6899 0.5794

Kd (h−1) 0.0189 0.0193

Y1 gBiomass·gGlucose−1 0.4866 0.4956

Y2 (gPro/gGlucose*h) 0.0005 0.0001

Y3 (CFU*10−5/gGlucose*h) 0.0213 0.0218

Alpha (g/L*h) - 0.0042

Beta (CFU*10−5/L*h) - 0.0002

93



Processes 2021, 9, 2147

Moreover, the calibrated parameters showed a higher value for the alpha parameter
than the beta one. Therefore, the beta parameter, has a very small value and little influence
on Model 2.

Table 8 indicates the values of the statistical parameters for the LIP strain. The
statistical parameters showed a good fit of the models, presenting very low values of the
determination coefficient only for the protein concentration in batch 10. Glucose continues
to be the variable that has the best fits between two models. Additionally, as in the BLB1
and HD1 cases, Model 1 obtained the lowest values for AICc, making it the model that
could best predict the behavior of the LIP strain.

Table 8. Statistical evaluation of the two models with LIP strain.

Model Criterion Biomass Glucose Proteins Spores

Batch09

1
R2 0.6610 0.9387 0.8130 0.7747

RMSE 0.6795 0.7169 0.0472 0.9691
AICc 23.7638 25.0484 –40.2561 32.2820

2
R2 0.6653 0.9397 0.8377 0.7731

RMSE 0.6992 0.7088 0.0289 0.9773
AICc 59.6479 59.9742 –16.7948 67.6853

Batch10

1
R2 0.9528 1.0000 0.0002 0.6794

RMSE 0.6082 0.0083 0.1146 7.0190
AICc 35.4078 –50.4395 2.0181 84.3253

2
R2 0.9507 1.0000 0.0002 0.6796

RMSE 0.5819 0.0039 0.0920 6.9800
AICc 154.5226 54.2584 117.6327 204.2139

3.4. Model Validation

Several datasets of each strain, different from those used in the calibration of the
models, were used to validate the results obtained previously. Batch 2 and 5 were used to
validate the parameters obtained for the BLB1 strain, the data from batch 7 were used for
the HD1 strain, and, finally, batch 8 helped validate the parameters of the LIP strain.

3.4.1. BLB1 Strain

Figure 7 shows the results of the validation for the BLB1 strain, and Table 9 shows the
respective statistical coefficients. For both experiments, the calibrated parameters fit the
experimental data very well. According to Figure 7, Models 1 and 2 behaved similarly and
there were no noticeable differences.

Table 9. Statistical evaluation of the two models with BLB1 strain.

Model Criterion Biomass Glucose Proteins Spores

Batch02

1
R2 0.1518 0.9195 0.3212 0.6722

RMSE 0.6181 0.2109 0.4249 17.9155
AIC 11.5082 −3.5438 6.2621 58.6431

2
R2 0.1484 0.9077 0.3225 0.6716

RMSE 0.6275 0.2275 0.4229 17,9704
AICc −56.2800 −70.4822 −61.8033 −9.3141

Batch05

1
R2 0.7510 0.9828 0.9047 0.9029

RMSE 0.5389 0.4323 0.1302 1.0764
AICc 32.9878 28.5794 4.5721 46.8259

2
R2 0.7524 0.9814 0.9053 0.9029

RMSE 0.5423 0.4433 0.1289 1.0345
AICc 153.1159 149.0829 124.3779 166.0305
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Figure 7. Validation of the two models with the dataset from BLB1 strain. (o) Experimental data; (-) for Model 1;
(- -) for Model 2.

Statistical analysis showed that Model 1 fit better than Model 2 because it has the
lowest values of the AICc coefficient. As seen graphically, the statistical parameters showed
less adjustment for some variables of batch 02 than for batch 05.

3.4.2. HD1 Strain

Data from batch 7 were used for validation of the parameters obtained in HD1 strain
calibration. The results are shown in Figure 8 and Table 10. As said before, no values
were recorded for the biomass concentration after exponential growth phase due to tech-
nical misplaced measurements, which is reflected in Figure 8. However, simulations
showed that biomass during exponential growth phase and the other state variables fit
adequately. The set of statistical coefficients that express the effectiveness of the models is
expressed in Table 10.

Figure 8. Validation of the two models with the dataset from HD1 strain. (o) Experimental data; (-)
for Model 1; (- -) for Model 2.
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Table 10. Statistical evaluation of the two models with HD1 strain.

Model Criterion Biomass Glucose Proteins Spores

Batch07

1
R2 NC * 0.9940 0.7991 0.4551

RMSE NC * 0.3078 0.2263 30.1202
AICc NC * −55.7705 −71.7791 182.5655

2
R2 NC * 0.9981 0.7720 0.3628

RMSE NC * 0.1337 0.3701 30.1186
AICc NC * −91.0931 −38.1445 190.6123

NC *: Not calculated.

Both models fit quite well for glucose concentration and followed the dynamics of
spores concentration. The statistical coefficients showed the worst results for spores. As
demonstrated previously, according to the AICc criterion, Model 1 should be the one used
to represent the data of the HD1 strain.

3.4.3. LIP Strain

Figure 9 show the results of the validation for the LIP strain. Similar to batch 7 (HD1
strain), batch 8, which corresponds to the LIP strain, showed a biomass measurement prob-
lem. However, glucose concentration was well represented by the two models. Although
the models followed the dynamics for the concentration in proteins and spores, a slight lag
was evident for the spores.

Figure 9. Validation of the two models with the dataset from LIP strain. (o) Experimental data; (-)
Model 1; (- -) Model 2.

Table 11 presents results for statistics parameters in LIP validation. As for the other
two strains, the glucose data showed the best fit. However, the coefficient of determination
for proteins and spores showed a good fit of the models. As in all the cases studied in this
report, the most suitable model to predict and represent the experimental data is Model 1,
according to the AICc criterion.
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Table 11. Statistical evaluation of the two models with LIP strain.

Model Criterion Biomass Glucose Proteins Spores

Batch08

1
R2 NC * 0.9883 0.8321 0.7054

RMSE NC * 0.3716 0.0817 2.4370
AICc NC * –45.9879 –124.7646 51.8161

2
R2 NC * 0.9878 0.8937 0.7042

RMSE NC * 0.3813 0.0351 2.4099
AICc NC * –36.5917 –160.6215 59.2837

NC *: Not calculated.

4. Conclusions

The objectives of approach were to model bioperformances (vegetative cell, spore,
substrate, and protein) considering different B. thuringiensis ssp. kurstaki strains and succes-
sive culture phases (oxidative growth, limitation and sporulation, protein release). Our
overarching aim to estimate total proteins production (mainly composed of δ-endotoxin)
was successfully achieved. Initially, the bibliographic research allowed understanding
of the context and the different phenomena involved in the study of the B. thuringiensis
culture, such as the particular life cycle of these microorganisms and the importance of the
endotoxins produced.

B. thuringiensis is an important microorganism for the biopesticide market worldwide.
The experimental simulations developed in the present study and based on B. thuringiensis
cultures made it possible to analyze the behavior of the concentration in biomass, substrate,
proteins, and spores and adjust two models to the experimental datasets. The calibration of
both models allowed to calculate the kinetic parameters of the culture, and the experimental
data presented a good fit. Likewise, the models were validated in a satisfactory way.

For the selection of the best model, the AICc criterion was used, which, for all batches,
showed better results for Model 1 due to its parsimony. Additionally, although the BLB1
strain showed the highest maximum specific growth rate (μmax), the HD1 strain presented
the highest biomass/substrate yield coefficient values (Y1), in opposition to the LIP strain
which presented the lowest values for this yield. As for the production of proteins, mainly
used for insecticidal toxicity, the BLB1 strain presented the highest concentration and
proteins/substrate yield coefficient (Y2), while the LIP strain showed the lowest values for
this yield.
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Abstract: We propose a mathematical model for phenol and p-cresol mixture degradation in a
continuously stirred bioreactor. The model is described by three nonlinear ordinary differential
equations. The novel idea in the model design is the biomass specific growth rate, known as sum
kinetics with interaction parameters (SKIP) and involving inhibition effects. We determine the
equilibrium points of the model and study their local asymptotic stability and bifurcations with
respect to a practically important parameter. Existence and uniqueness of positive solutions are
proved. Global stabilizability of the model dynamics towards equilibrium points is established. The
dynamic behavior of the solutions is demonstrated on some numerical examples.

Keywords: mathematical model; continuous bioreactor; biodegradation; phenol and p-cresol mixture;
SKIP model; equilibrium points; stability analysis; global stabilizability; numerical simulation

1. Introduction

Organic chemical mixtures are among the most persistent environmental pollutants.
Different aromatic compounds such as phenol, cresols, nitrophenols, benzene, etc. coexist
as complex mixtures in wastewaters from petroleum refineries, coal mining and other
industrial chemical sources [1]. Biological degradation has recently become a viable tech-
nology for remediation of organic pollutants as an alternative to the traditional physical
and chemical methods that can be costly and produce hazardous products. Most of the
current research has been directed to the isolation and study of microbial species with
high-degradation activity and capabilities of degrading chemical compounds. The review
paper [2] reports on hundreds of isolated bacteria capable of degrading aromatic com-
pounds, among them different strains of Aspergillus awamori, Arthrobacter, Burkholderia,
Mycobacterium, Pseudomonas, Rhodococcus, Staphylococcus, Trametes hirsute etc. The biodegra-
dation of one or all chemical components depends on the composition of the particular
mixture and the used microorganisms [3–5]. The adequate analysis of interactions between
the compounds and their influence on microbial growth is very important for understand-
ing the simultaneous metabolism of phenolic mixtures [6].

Most research on microbial potentials to degrade chemical pollutants has been per-
formed on a laboratory scale. Based on batch processes various mathematical biodegra-
dation kinetic models have been recently developed and widely used. Among them are
Monod’s, Haldane’s (known also as Andrews), sum kinetic models, sum kinetics with
interaction parameter (SKIP) models, etc. [7,8]. It is known that Monod’s and Haldane’s
models are appropriate for single substrate utilization. The Monod model describes the
biodegradation rate in dependence of the biomass concentration. When a substrate inhibits
its own degradation then Haldane’s model is more appropriate. In [9] the Haldane equation
modified with a Monod-like switching function is proposed and applied to the biological
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removal of mixtures of phenolic compounds in sequential batch bioreactors. In [10] the
aerobic biodegradability of phenol, resorcinol and 5-methylresorcinol and their different
two-component mixtures is investigated and various kinetic models are tested to obtain
the best curve fit.

In the case when a mixture of two or more substrates occurs, the sum kinetic and SKIP
models predict better the outcome of biodegradation experiments. The latter have been
proposed for the first time in [11] and widely used by many researchers. The (no-interaction)
sum kinetics model for cell growth is usually represented as a sum of the specific growth
rates on each substrate, e.g., as a sum of Monod- and/or Haldane-type specific growth
rates. These models were evaluated in [12,13] for biodegradation of benzene, toluene and
phenol mixtures using Pseudomonas putida F1 and Burkholderia sp. strain JS150 and found
that the interactions between these substrates could not be described by sum kinetics
models. On the contrary, the SKIP model predicts better the outcome of the mixed-culture
experiments. This is due the fact that the SKIP models extend the sum kinetics models by
incorporating interaction parameters to describe more accurately the biodegradation of the
chemical mixture.

The biodegradation of benzene, toluene and phenol is studied in [14] by adaptation
of Pseudomonas putida F1 ATCC 700007. For the substrate mixtures, a SKIP model is used.
The latter provides an excellent prediction of the growth kinetics and the interactions
between these substrates.

In [15] biodegradation kinetics of different multiple substrate mixtures of mono-
aromatic volatile organic carbon (VOCs) such as toluene, ethyl benzene and o-xylene
are studied. A general mixed-substrate biodegradation model is developed which can
describe the biodegradation kinetics of common industrial VOCs when present as a mixture,
incorporating parameters for interaction effects.

The paper [16] examines biodegradation kinetics of styrene and ethylbenzene, inde-
pendently and as binary mixtures, using a series of aerobic batch degradation. The SKIP
model and the purely competitive enzyme kinetics model are employed to evaluate any
interactions. The SKIP model is found to more accurately describe the interactions.

Here, we propose a mathematical model for biodegradation of phenol and 4-methylph-
enol (p-cresol) in a continuously stirred tank bioreactor, in which the biodegradation kinetics
is described by a SKIP model. The bioreactor model presents an extension of the growth
kinetic model proposed in [17]. There, the growth behavior and degradation capacity of
Aspergillus awamori NRRL 3112 microbial strain on the binary mixture phenol/p-cresol are
investigated. Based on laboratory experiments, the growth kinetic model is first evaluated
by a sum kinetic model involving Haldane’s specific growth rate. An alternative model is
then formulated by adding interaction parameters into the sum kinetics model to produce
the SKIP model. It is shown that the SKIP model describes better the degradation patterns
in the biological system.

The paper is organized as follows. The next Section 2 presents a short description of
the proposed mathematical model. Section 3 includes steady states computations. Local
stability analysis and bifurcations of the equilibrium points are presented in Section 4.
Section 5 reports on general and important properties of the model solutions and provides
results on the global stabilizability of the system towards an interior equilibrium point.
The last Section 6 presents numerical examples as illustration of the theoretical studies on
the model dynamics.
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2. Model Description

We consider the following mathematical model for phenol and p-cresol mixture
degradation in a continuously stirred bioreactor

dX(t)
dt

=
(

μ(Sph, Scr)− D
)

X(t) (1)

dSph(t)
dt

= −kph μ(Sph, Scr)X(t) + D(S0
ph − Sph(t)) (2)

dScr(t)
dt

= −kcr μ(Sph, Scr)X(t) + D(S0
cr − Scr(t)), (3)

where μ(Sph, Scr) is the specific growth rate, presented by

μ(Sph, Scr) =
μmax(ph)Sph

ks(ph) + Sph +
S2

ph
ki(ph)

+ Icr/phScr

+
μmax(cr)Scr

ks(cr) + Scr +
S2

cr
ki(cr)

+ Iph/crSph

. (4)

The definition of the state variables X, Sph and Scr as well as of the model parameters
is given in Table 1. The numerical values in the last column are validated by laboratory
experiments and given in [17].

The specific growth rate μ(Sph, Scr) represents a SKIP (sum kinetics with interaction
parameters) model for biological degradation of the chemical compounds. The interaction
parameters Icr/ph and Iph/cr indicate the degree to which substrate p-cresol affects the
biodegradation of substrate phenol, and substrate phenol affects the biodegradation of
substrate p-cresol, respectively. The larger value of Icr/ph (see Table 1) indicates that p-cresol
inhibits the utilization of phenol much more than phenol inhibits the utilization of p-cresol.

The kinetic function μ(Sph, Scr) also involves inhibition terms
S2

ph
ki(ph)

and S2
cr

ki(cr)
for cell growth

on phenol and p-cresol, respectively. Obviously, μ(Sph, 0) and μ(0, Scr) are the well-known
Andrews (or Haldane) model functions, which are unimodal and achieve their maximum
at Sph =

√
ks(ph)ki(ph) and Scr =

√
ks(cr)ki(cr) respectively.

The influent concentrations S0
ph, S0

cr and the dilution rate D are the parameters that can

be manipulated by the operator of the bioreactor. In our analysis we assume that S0
ph and

S0
cr are constant and consider the dilution rate D as a varying control parameter. Clearly,

D > 0 should be fulfilled.
The same model (1)–(3) has been considered in [18] using a more simple specific

growth rate function μ(Sph, Scr) which does not involve the inhibition terms
S2

ph
ki(ph)

and S2
cr

ki(cr)

for cell growth on phenol and p-cresol. Adding these terms makes the dynamics (1)–(3)
more complicated, but as shown in [17], see also [5], the SKIP model (4) describes the trend
of experimental data much better than other kinetic models.
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Table 1. Model variables and parameters.

Definitions Values

X biomass concentration [g/dm3] –
Sph phenol concentration [g/dm3] –
Scr p-cresol concentration [g/dm3] –
D dilution rate [h−1] –

S0
ph influent phenol concentration [g/dm3] 0.7

S0
cr influent p-cresol concentration [g/dm3] 0.3

kph metabolic coefficient [Sph/X] 11.7
kcr metabolic coefficient [Scr/X] 5.8

ki(ph)
inhibition constant for cell growth on phenol
[g/dm3]

0.61

ki(cr)
inhibition constant for cell growth on cresol
[g/dm3]

0.45

Iph/cr

interaction coefficient indicating the degree
to which phenol affects the p-cresol biodegra-
dation

0.3

Icr/ph

interaction coefficient indicating the degree
to which p-cresol affects the phenol biodegra-
dation

8.6

μmax(ph)
maximum specific growth rate on phenol as
a single substrate [h−1]

0.23

μmax(cr)
maximum specific growth rate on p-cresol as
a single substrate [h−1]

0.17

ks(ph)
saturation constant for cell growth on phenol
[g/dm3]

0.11

ks(cr)
saturation constant for cell growth on p-cresol
[g/dm3]

0.35

3. Existence of Equilibrium Points

We shall investigate existence of the model equilibrium points in dependence of the
control parameter D.

The equilibrium points of (1)–(3) are solutions of the following system of algebraic
equations (

μ(Sph, Scr)− D
)

X = 0 (5)

−kph μ(Sph, Scr)X + D(S0
ph − Sph) = 0 (6)

−kcr μ(Sph, Scr)X + D(S0
cr − Scr) = 0. (7)

Obviously, the point E0 = (0, S0
ph, S0

cr) (with X = 0) is an equilibrium point of the
model for all D > 0.

We are looking now for solutions of (5)–(7) assuming that X �≡ 0.
After multiplying Equation (6) by −kcr, Equation (7) by kph and summing the latter,

we obtain
− kcr(S0

ph − Sph) + kph(S0
cr − Scr) = 0. (8)

Let us express Sph from (8) as a function of Scr. Denoting

K =
kph

kcr
, S0 = S0

ph − KS0
cr, (9)

We obtain

Sph = S0
ph −

kph

kcr

(
S0

cr − Scr

)
= S0 + KScr. (10)

After replacing the latter presentation of Sph into the equation μ(Sph, Scr) = D from
(5) we obtain an equation with respect to Scr of the form
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μ(S0 + KScr, Scr) = D,

or equivalently

μmax(ph)
(
S0 + KScr

)
ks(ph) + S0 + KScr +

1
ki(ph)

(S0 + KScr)2 + Icr/phScr

+
μmax(cr)Scr

ks(cr) + Scr +
1

ki(cr)
S2

cr + Iph/cr(S0 + KScr)
= D.

Straightforward calculations lead to a polynomial equation of the form

A1S4
cr + A2S3

cr + A3S2
cr + A4Scr + A5 = 0, (11)

where

A1 = −D · 1
ki(cr)

· 1
ki(ph)

;

A2 = μmax(ph)
K

ki(cr)
+ μmax(cr)

1
ki(ph)

− D

[
(1 + Iph/crK)

1
ki(ph)

+
1

ki(cr)

(
Icr/ph + K + 2KS0 1

ki(ph)

)]
;

A3 = μmax(ph)

[
S0 1

ki(cr)
+ K(1 + Iph/crK)

]
+ μmax(cr)

[
K + Icr/ph + 2KS0 1

ki(ph)

]

− D

[
1

ki(ph)
(ks(cr) + Iph/crS0) + (1 + Iph/crK)

(
K + Icr/ph + 2KS0 1

ki(ph)

)

+
1

ki(cr)

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

;

A4 = μmax(ph)

[
S0(1 + Iph/crK) + K(ks(cr) + Iph/crS0)

]
+ μmax(cr)

(
ks(ph) + S0 +

1
ki(ph)

S02
)

− D

[
(ks(cr) + Iph/crS0)

(
K + Icr/ph + 2KS0 1

ki(ph)

)

+ (1 + Iph/crK)

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

;

A5 =

[
μmax(ph)S

0 − D

(
ks(ph) + S0 +

1
ki(ph)

S02
)]

(ks(cr) + Iph/crS0).

All coefficients Ai, i = 1, 2, . . . , 5, depend on the parameter D.
Obviously, if A5 = 0, then Equation (11) possesses a solution Scr = 0. We have

A5 = 0 ⇐⇒ D = Dcr :=
S0μmax(ph)ki(ph)

S02 + ki(ph)S0 + ki(ph)ks(ph)
= μ(S0, 0). (12)

The latter value of Dcr is biologically reasonable only if S0 > 0. Using the numerical
values of the model coefficients in the last column of Table 1, we obtain

S0 = S0
ph − KS0

cr ≈ 0.09483 > 0,
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and so,

Dcr = μ(S0, 0) ≈ 0.09933.

This means that for D = Dcr there exists an equilibrium point with Scr = 0. Further
from (10) we compute the component of Sph = S0, and from (7) we get the corresponding

component of X =
S0

cr
kcr

. Thus, at D = Dcr there exists a steady state

E1 = E1(Dcr) =

(
S0

cr
kcr

, S0, 0
)
= (0.05172, 0.09483, 0). (13)

Considering the cubic equation A1S3
cr + A2S2

cr + A3Scr + A4 = 0 at D = Dcr (i.e., with
A5 = 0), numerical computations produce the following roots of the latter equation

−4.484933737, 0.2614282531± i 0.2468184467,

so, the real root is negative and cannot serve as a component of the model equilibrium point.
If D �= Dcr then Equation (11) may possess up to 4 real positive solutions with respect

to Scr. If there exists at least one positive solution of (11), say S∗cr, such that S∗cr < S0
cr for

some values of D, we shall have an interior (with positive components) equilibrium of
the form

E∗ = (X∗, S∗ph, S∗cr), S∗ph = S0 + KS∗cr < S0
ph, X∗ =

S0
cr − S∗cr

kcr
=

S0
ph − S∗ph

kph
. (14)

Remark 1. If we express Scr from (8) as a function of Sph and denote K̂ =
kcr

kph
=

1
K

, Ŝ0 =

S0
cr − K̂S0

ph, then we shall have Scr = Ŝ0 + K̂Sph. Similar calculations as above will produce

a polynomial equation of the form Â1S4
ph + Â2S3

ph + Â3S2
ph + Â4Sph + Â5 = 0, where the

coefficients Âi are similar to Ai, i = 1, 2, . . . , 5, within Ŝ0 and K̂ instead of S0 and K, respectively.
In this case we have

Â5 =

(
μmax,cr − D

(
ks(cr) + Ŝ0 +

Ŝ02

ki(cr)

))
(ks(ph) + Icr/phŜ0).

Obviously, Â5 = 0 at D̂ = μ(0, Ŝ0). But in this case Ŝ0 = − 1
K S0 ≈ −0.047 < 0, thus there

is no value of D at which Sph = 0 is a root of the polynomial ∑5
i=1 ÂiS5−i

ph = 0. As we shall see in
the following, this is the case with the equilibrium component Sph.

Numerical computations show that if D > Dcr then there are no positive real roots
of Equation (11). Therefore, we can expect interior (coexistence) equilibria of the form
E∗ if D ∈ (0, Dcr), in case that the equilibrium components with respect to Scr satisfy the
inequality Scr ≤ S0

cr. Further we obtain numerically the following results:

• There exists a value D = D(1)
cr ≈ 0.0745599, so that Equation (11) possesses a double

root Scr ≈ 0.04327 for D = D(1)
cr .

• If D < D(1)
cr then there are no positive roots of (11) which are less than or equal to S0

cr.

• Denote D(2)
cr := μ(S0

ph, S0
cr) ≈ 0.08651 < Dcr. If D ∈

(
D(1)

cr , D(2)
cr

)
then there are two

positive roots of (11) which are less than S0
cr.

• If D ∈
(

D(2)
cr , Dcr

)
, Dcr = μ(S0, 0) ≈ 0.09933, then there is only one positive root of

(11) which is less than S0
cr.
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The left plot in Figure 1 shows the graph of the function μ(S0 + KScr, Scr) for Scr ∈
[0, S0

cr] = [0, 0.3]; the horizontal dash lines correspond to the values of D(1)
cr , D(2)

cr and Dcr.
Therefore, the model (1)–(3) possesses two interior equilibrium points depending on

the values of D. Denote them by

E2 = E2(D) =
(

X(2), S(2)
ph , S(2)

cr

)
, D ∈

(
D(1)

cr , Dcr

)
;

E3 = E3(D) =
(

X(3), S(3)
ph , S(3)

cr

)
, D ∈

(
D(1)

cr , D(2)
cr

)
, with S(3)

cr > S(2)
cr .

Numerical computations also produce the following results:

E2(Dcr) = E1 = (0.05172, 0.09483, 0), Dcr = μ(S0, 0) = 0.09933;

E2(D(1)
cr ) = E3(D(1)

cr ) = (0.04426, 0.18211, 0.04327), D(1)
cr = 0.0745599;

E3(D(2)
cr ) = E0 = (0, S0

ph, S0
cr) = (0, 0.7, 0.3), D(2)

cr = μ(S0
ph, S0

cr) = 0.08651.

Figure 1. (Left): graph of the function μ(S0 + KScr, Scr) for Scr ∈ [0, S0
cr]. (Right): the equilibrium components S(2)

cr (dash

line) and S(3)
cr (solid line), parameterized on D. The horizontal dash-dot&solid line passes trough S0

cr. On the horizontal axis,

the solid circle denotes D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr. The vertical dot line passes through D(2)
cr .

Figure 1 (right plot) and Figure 2 visualize the components Scr, Sph and X of the
equilibria E0, E2 and E3. In the three plots, the components of the equilibrium point E0
are marked by horizontal dash-dot&solid lines, the components of E2 are marked by dash
lines and the ones of E3 are shown by solid lines.
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Figure 2. (Left): the equilibrium components S(2)
ph (dash line) and S(3)

ph (solid line), parameterized on D. The horizontal dash-

dot&solid line passes trough S0
ph. (Right): the equilibrium components X(2) (dash line) and X(3) (solid line), parameterized

on D. The horizontal dash-dot&solid line passes trough 0. On the horizontal axis (left and right plot), the solid circle denotes

D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr. The vertical dot line passes through D(2)
cr .

4. Local Stability of the Equilibrium Points

In this section we shall study the conditions for local asymptotic stability of the model
equilibrium points.

It is well known that an equilibrium point is locally asymptotically stable, if all
eigenvalues of the Jacobi matrix evaluated at this equilibrium have negative real parts,
cf. e.g., [19]. The eigenvalues of the Jacobi matrix coincide with the roots of the correspond-
ing characteristic polynomial.

To simplify notations, in the following we shall sometimes write μ instead of μ(Sph, Scr).
The Jacobi matrix J related to the model Equations (1)–(3) has the form

J =

⎛
⎜⎜⎜⎜⎜⎝

μ(Sph, Scr)− D ∂μ
∂Sph

X ∂μ
∂Scr

X

−kphμ(Sph, Scr) −kph
∂μ

∂Sph
X − D −kph

∂μ
∂Scr

X

−kcrμ(Sph, Scr) −kcr
∂μ

∂Sph
X −kcr

∂μ
∂Scr

X − D

⎞
⎟⎟⎟⎟⎟⎠.

The characteristic polynomial corresponding to J is defined by det(J − λI3), where λ
is any complex number and I3 is the (3× 3)–identity matrix

det(J − λI3) =

∣∣∣∣∣∣∣∣∣∣∣

μ(Sph, Scr)− D− λ
∂μ

∂Sph
X ∂μ

∂Scr
X

−kphμ(Sph, Scr) −kph
∂μ

∂Sph
X − D− λ −kph

∂μ
∂Scr

X

−kcrμ(Sph, Scr) −kcr
∂μ

∂Sph
X −kcr

∂μ
∂Scr

X − D− λ

∣∣∣∣∣∣∣∣∣∣∣
.

Multiplying the second row of the above determinant by − kcr

kph
and adding the latter

to the third row, we obtain
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det(J − λI3) =

∣∣∣∣∣∣∣∣∣∣∣

μ(Sph, Scr)− D− λ
∂μ

∂Sph
X ∂μ

∂Scr
X

−kphμ(Sph, Scr) −kph
∂μ

∂Sph
X − D− λ −kph

∂μ
∂Scr

X

0 kcr
kph

(D + λ) −D− λ

∣∣∣∣∣∣∣∣∣∣∣
.

Straightforward calculations deliver the following characteristic polynomial

det(J − λI3) = (D + λ)2

[
μ(Sph, Scr)− D− λ− X

(
kph

∂μ

∂Sph
+ kcr

∂μ

∂Scr

)]
. (15)

Denote by J(Ei) the Jacobian matrix evaluated at the equilibrium point Ei, i = 0, 1, 2, 3.
It follows from (15) that λ1,2 = −D < 0 are always eigenvalues of J(Ei), i = 0, 1, 2, 3.
The third eigenvalue λ3 is determined from the second multiplier of (15).

Proposition 1.

(i) If D < D(2)
cr = μ(S0

ph, S0
cr) then the equilibrium point E0 =

(
0, S0

ph, S0
cr

)
(with X = 0)

is locally asymptotically unstable (a saddle).

(ii) If D > D(2)
cr then E0 is locally asymptotically stable (a stable node).

(iii) At D = D(2)
cr the equilibrium E0 is neither stable, nor unstable: J(E0) possesses a zero

eigenvalue, λ3 = 0, thus D(2)
cr is a bifurcation parameter value.

(iv) The equilibrium point E1 = E1(Dcr) =

(
S0

cr
kcr

, S0, 0
)

, (see (13)), is locally asymptotically

unstable.

Proof. (i)–(iii) We obtain from (15)

det(J(E0)− λI3) = (D + λ)2(μ(S0
ph, S0

cr)− D− λ),

thus the third root λ3 satisfies

λ3 = μ(S0
ph, S0

cr)− D

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

> 0, if D < D(2)
cr = μ(S0

ph, S0
cr),

< 0, if D > D(2)
cr ,

= 0, if D = D(2)
cr .

(iv) The characteristic polynomial corresponding to the equilibrium E1 is presented by

det(J(E1)− λI3) = −(Dcr + λ)2

(
S0

cr

(
K

∂μ

∂Sph
(S0, 0) +

∂μ

∂Scr
(S0, 0)

)
+ λ

)
.

The third root λ3 of the latter polynomial is computed numerically and is equal to

λ3 = −S0
cr

(
K

∂μ

∂Sph
(S0, 0) +

∂μ

∂Scr
(S0, 0)

)
≈ −(−0.7574) > 0,

which means that E1(Dcr) is a saddle equilibrium point. This proves the proposi-
tion.
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The equilibrium components S(i)
ph and S(i)

cr of the equilibria Ei, i = 2, 3, satisfy the
equation μ(Sph, Scr) = D, so that from (15) we obtain

det(J(Ei)− λI3) = −(D + λ)2

[
λ + X(i)

(
kph

∂μ

∂Sph
(S(i)

ph , S(i)
cr ) + kcr

∂μ

∂Scr
(S(i)

ph , S(i)
cr )

)]
,

i = 2, 3.

The third root λ
(i)
3 = −X(i)

(
kph

∂μ
∂Sph

(S(i)
ph , S(i)

cr ) + kcr
∂μ

∂Scr
(S(i)

ph , S(i)
cr )
)

is found numeri-
cally by computing the right-hand side expression on a discrete mesh of values for D,
where D ∈ (D(1)

cr , Dcr) for E2, and D ∈ (D(1)
cr , D(2)

cr ) for E3. Figure 3 visualizes the three
eigenvalues of J(E2) and J(E3). One can see that the eigenvalues of J(E3) are negative
(right plot), and J(E2) possesses one real positive eigenvalue (left plot). Moreover, one
eigenvalue of J(E2) approaches zero at D = D(1)

cr , and one eigenvalue of J(E3) approaches
zero at D = D(1)

cr and D = D(2)
cr , thus D(1)

cr and D(2)
cr are bifurcation parameter values.

Figure 3. Eigenvalues corresponding to the equilibrium points E2 (left) and E3 (right), parameterized on D. On the

horizontal axis, the solid circle denotes D(1)
cr , the solid box denotes D(2)

cr , the diamond denotes Dcr.

We summarize the above results in the next proposition.

Proposition 2.

(i) The equilibrium E2, defined for D ∈ (D(1)
cr , Dcr), is locally asymptotically unstable (a

saddle).

(ii) The equilibrium E3, defined for D ∈ (D(1)
cr , D(2)

cr ), is locally asymptotically stable (a stable
node).

(iii) At D = D(1)
cr , the two interior equilibrium points, E2 and E3, are ’born’, thus D(1)

cr is a
bifurcation value of the parameter D. At D = D(1)

cr the steady states E2 and E3 undergo a
saddle-node bifurcation.

(iv) At D = D(2)
cr the equilibrium points E3 and E0 coalesce and exchange stability for D >

D(2)
cr . Thus, at D = D(2)

cr the steady states E3 and E0 undergo a transcritical bifurcation.
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Figure 1 (right plot) and Figure 2 also visualize the stability of E0, E2 and E3: the solid
lines correspond to the components of the stable equilibria, the dash and the dash-dot lines
mark the components of the unstable equilibria. Therefore, these three plots can also be
considered as bifurcation diagrams: a saddle node bifurcation occurs at the parameter
value D = D(1)

cr , and D = D(2)
cr serves as a transcritical bifurcation point.

5. Global Stabilizability of the Model Dynamics

First we prove that the model (1)–(3) exhibits the standard properties that we would
expect from a bioreactor model, namely uniqueness and positiveness of solutions for
non-negative initial conditions.

Theorem 1. Consider the model (1)–(3) and assume that X(0) ≥ 0, Sph(0) ≥ 0, Scr(0)) ≥ 0.

(i) If X(0) = 0 then all model solutions tend to the equilibrium point E0 = (0, S0
ph, S0

cr).

(ii) If X(0) > 0 then X(t) > 0, Sph(t) > 0, Scr(t) > 0 for all t > 0.

(iii) All solutions are uniformly bounded for all t ≥ 0.

Proof. (i) Let X(0) = 0 and Sph(0) ≥ 0, Scr(0) ≥ 0 be satisfied. It follows that X(t) = 0 for
all t ≥ 0 due to uniqueness of solutions of the Cauchy problem. Then the model (1)–(3)
reduces to

dSph(t)
dt

= D(S0
ph − Sph(t))

dScr(t)
dt

= D(S0
cr − Scr(t)).

The latter equations imply that Sph(t) and Scr(t) converge exponentially to S0
ph and

S0
cr respectively. The plane X = 0 is invariant for the model.

(ii)–(iii) Assume that X(0) > 0, Sph(0) ≥ 0, Scr(0)) ≥ 0. It follows from Equation (1)
that

dX
X

=
∫ t

0
(μ(Sph(τ), Scr(τ))− D)dτ,

X(t) = X(0)e
∫ t

0 (μ(Sph(τ),Scr(τ))−D)dτ > 0 for each t ≥ 0.

Denote Σ1(t) = Sph(t) + kphX(t)− S0
ph. Then Equations (1) and (2) imply

d
dt

Σ1(t) =
dSph

dt
+ kph

dX
dt

= D
(

S0
ph − (Sph + kphX)

)
= −DΣ1(t),

which means that Σ1(t) = e−DtΣ1(0), thus limt→∞ Σ1(t) = 0, or equivalently

lim
t→∞

(
Sph(t) + kphX(t)

)
= S0

ph.

Since X(t) > 0 for all t > 0 this means Sph(t) > 0 for all t > 0 as well. Moreover, X(t)
and Sph(t) are uniformly bounded.

Similarly, using Equations (1) and (3) and denoting Σ2(t) = Scr(t) + kcrX(t)− S0
cr we

obtain Σ2(t) = e−DtΣ2(0), which means that

lim
t→∞

(Scr(t) + kcrX(t)) = S0
cr. (16)

Therefore, Scr(t) > 0 for all t > 0 and Scr(t) is uniformly bounded for t ≥ 0. Hence,
the model solutions X(t), Sph(t), Scr(t) exist for all time t ≥ 0. This completes the proof of
Theorem 1.
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In the following we shall prove the global asymptotic stabilizability of system (1)–(3)
when the control parameter D belongs to the interval

(
D(1)

cr , D(2)
cr

)
, with D(2)

cr = μ(S0
ph, S0

cr).

Similarly to the proof of Theorem 1, denote Σ3(t) = Sph(t) − KScr(t) − S0, where

K and S0 are defined in (9). After multiplying Equation (3) by −
kph

kcr
and adding to

Equation (2) we obtain

d
dt

Σ3(t) =
d
dt

(
Sph(t)− KScr(t)

)
= D

(
S0

ph − Sph(t)− KS0
cr + KScr(t)

)
= D

(
(S0

ph − KS0
cr)− (Sph(t)− KScr(t))

)
= −D

(
S0 − (Sph(t)− KScr(t))

)
= −DΣ3(t).

This means that Σ3(t) = e−DtΣ3(0), Σ3(0) ≥ 0, so limt→∞ Σ3(t) = 0. Then system
(1)–(3) may be written in the form

d
dt

Σ3(t) = −DΣ3(t)

d
dt

X(t) =
(

μ(S0 + KScr(t), Scr(t))− D
)

X(t)

d
dt

Scr(t) = −kcrμ(S0 + KScr(t), Scr(t))X(t) + D(S0
cr − Scr(t)).

Since limt→∞ Σ3(t) = 0, the positive ω-limit set of any solution of system (1)–(3) is
contained in the set

Ω3 =
{
(X, Sph, Scr) : X > 0, Sph ≥ 0, Scr ≥ 0, Σ3 = 0

}
.

Using the theory of the asymptotically autonomous systems (cf. [20,21]) it follows that
all trajectories forming the ω-limit set of any solution of (1)–(3) with initial conditions in
Ω3 are solutions of the following limiting system

dX(t)
dt

=
(
μ(S0 + KScr(t), Scr(t))− D

)
X(t)

dScr(t)
dt

= −kcr μ(S0 + KScr(t), Scr(t))X(t) + D(S0
cr − Scr(t)).

(17)

We consider Equation (17) on the set

Ω2 =
{
(X, Scr) : X > 0, Scr ≥ 0, S0 + KScr ≥ 0

}
.

Denote for simplicity μcr(Scr) = μ(S0 + KScr, Scr). Then obviously μcr(S0
cr) = μ(S0 +

KS0
cr, S0

cr) = μ(S0
ph, S0

cr) = D(2)
cr holds true.

Let us choose an arbitrary value D̄ ∈
(

D(1)
cr , D(2)

cr

)
, and consider the following system

obtained from (17) after substituting D = D̄ in the latter:

dX(t)
dt

= (μcr(Scr(t))− D̄)X(t) (18)

dScr(t)
dt

= −kcr μcr(Scr(t))X(t) + D̄(S0
cr − Scr(t)). (19)
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Let us recall, that at D = D̄ there are two interior equilibria of the model (1)–(3),

E2(D̄) = (X(2)(D̄), S(2)
ph (D̄), S(2)

cr (D̄)) and

E3(D̄) = (X(3)(D̄), S(3)
ph (D̄), S(3)

cr (D̄)) with S(2)
cr (D̄) < S(3)

cr (D̄).

Denote

Ē = (X̄, S̄cr) =
(

X(3)(D̄), S(3)
cr (D̄)

)
.

Obviously, Ē is an equilibrium point of (18) and (19).
We make the following assumption.

Assumption 1. There exist points S−cr and S+
cr such that 0 < S−cr < S+

cr < S0
cr and μcr(Scr) is

monotone increasing for all Scr ∈ (S−cr, S+
cr).

Assumption 1 identifies the equilibrium Ē with the projection of E3(D̄) in the plane
Sph −KScr = S0. If we choose for S−cr the Scr-component of the double root of Equation (11),

i.e., S−cr = S(2)
cr (D(1)

cr ) = S(3)
cr (D(1)

cr ), and S+
cr = S0

cr, then μcr(Scr) is monotone increasing in
(S−cr, S+

cr), see the left plot in Figure 1.
Based on the above considerations, the problem for global stabilizability of the model

(1)–(3) is reduced to proving the global stabilizability of the well known basic bioreactor
(chemostat) model (17), which is well studied in the literature, see e.g., [20,22–24] and the
references therein. The next Theorem 2 is also a corollary from Theorem 2.1 in [25]. We
present the proof here for reader’s convenience.

Theorem 2. Let Assumption 1 be fulfilled. Assume that D̄ ∈
(

D(1)
cr , D(2)

cr

)
. Then for any initial

point (X(0), Scr(0)) ∈ Ω2 the corresponding solution of (18) and (19) converges asymptotically
towards the equilibrium point Ē.

Proof. Let us fix an arbitrary initial point (X(0), Scr(0)) ∈ Ω2.
First we shall show that there exists time T > 0, such that Scr(t) < S0

cr for all t > T.
Assume that Scr(t) ≥ S0

cr holds true for each t > 0. Then we have from (19) that

dScr(t)
dt

= −kcr μcr(Scr)X(t) + D̄(S0
cr − Scr(t)) < 0.

Barbălat’s Lemma [26] implies

0 = lim
t→∞

dScr(t)
dt

= lim
t→∞

(
−kcr μcr(Scr)X(t) + D̄(S0

cr − Scr(t))
)

,

which leads to Scr(t)→ S0
cr and X(t)→ 0 as t → ∞. Further we have that μcr(S̄cr) = D̄ <

D(2)
cr = μcr(S0

cr). The continuity of μcr(·) and the relation Scr(t)→ S0
cr as t → ∞ imply that

there exists a number δ > 0 such that

μcr(Scr(t))− D̄ = μcr(Scr(t))− μcr(S̄cr) ≥ δ

for all sufficiently large t. Then it follows
dX(t)

dt
= (μcr(Scr(t)) − D̄)X(t) ≥ δX(t) for

all sufficiently large t, which contradicts the boundedness of X(t). Hence, there exists a
sufficiently large T > 0 with Scr(T) ≤ S0

cr. If the equality Scr(T) = S0
cr holds true, then

we have
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dScr

dt
(T) = −kcr μcr(Scr(T))X(T) + D̄(S0

cr − Scr(T))

= −kcr μcr(Scr(T))X(T) < 0.

The last inequality shows that Scr(t) < S0
cr for each t > T.

Let us fix an arbitrary γ ∈
(
0, (μcr(S0

cr)− μcr(S̄cr))/2
)
. (Note that μcr(Scr) is monotone

increasing.) The continuity of μcr implies that there exists ε > 0 such that μcr(S̄cr) + γ <
μcr(Scr) for each Scr ∈

[
S0

cr − (1 + kcr)ε, S0
cr
)
. It follows from (16) that there exists time

Tε > 0 so that X(t) and Scr(t) satisfy

S0
cr − ε < Scr(t) + kcrX(t) < S0

cr + ε for each t ≥ Tε. (20)

Assume now that X(t̄) ≤ ε for some t̄ ≥ Tε; then we obtain from (20)

S0
cr > Scr(t̄) ≥ S0

cr − kcrX(t̄)− ε ≥ S0
cr − (1 + kcr)ε,

i.e., Scr(t̄) ∈
[
S0

cr − (1 + kcr)ε, S0
cr
)
. Hence,

d
dt

X(t̄) = (μcr(Scr(t̄))− D̄)X(t̄) = (μcr(Scr(t̄))− μcr(S̄cr))X(t̄) ≥ γX(t̄) > 0.

It follows then that X(t) ≥ e(t−t̄)γX(t̄). If there exists t1 ≥ t̄ such that X(t1) = ε, then

at every time t2 ≥ t1 with X(t2) = ε we have
d
dt

X(t2) = (μcr(Scr(t2))− D̄)X(t2) ≥ γε > 0.

Hence there exists time T1 > T such that X(t) ≥ ε for each t ≥ T1.
The above considerations mean that the ω-limit set of the corresponding trajectory of

(18) and (19) lies in the set

{(X, Scr) : X ≥ ε, 0 ≤ Scr ≤ S0
cr}.

For X > 0 and Scr ∈ (0, S0
cr) we define the following Lyapunov function

V = V(X, Scr) =
∫ X

X̄

η − X̄
η

dη +
∫ Scr

S̄cr

X̄(μcr(ξ)− D̄)

D̄(S0
cr − ξ)

dξ.

The derivative
d
dt

V of V along the solutions of (18) and (19) is presented by

d
dt

V =
X − X̄

X
(μcr(Scr)− D̄)X +

X̄(μcr(Scr)− D̄)

D̄(S0
cr − Scr)

(
−kcrμcr(Scr)X + D̄(S0

cr − Scr)
)

= X(μcr(Scr)− D̄)

(
1− X̄kcrμcr(Scr)

D̄(S0
cr − Scr)

)

= X(μcr(Scr)− D̄)

(
1− S0

cr − S̄cr

S0
cr − Scr

· μcr(Scr)

D̄

)
≤ 0

for each Scr ∈ (0, S0
cr) and X > 0. Applying LaSalle’s invariance principle it follows

that each trajectory of (18) and (19) approaches the equilibrium point Ē, i.e., Ē is globally
asymptotically stable. This proves the theorem.

It follows from Propositions 1 and 2 that when the control input D takes values
D > D(2)

cr = μ(S0
ph, S0

cr) then the model (1)–(3) possesses two equilibrium points—the

wash-out equilibrium E0 = (0, S0
ph, S0

cr) and the interior equilibrium E2, such that E0 is
locally asymptotically stable and E2 is locally asymptotically unstable. Using the reduced
model (17) it can be shown that the restriction Ē0 = (0, S0

cr) of the wash-out equilibrium
E0 is globally asymptotically stable if D > D(2)

cr = μcr(S0
cr). Although the proof can be

extracted from the more general Lemma 2.2 in [24], we present it below for completeness.
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Theorem 3. Assume that D > D(2)
cr holds true. Then for any initial point (X(0), Scr(0)) > 0 the

corresponding solution of (17) converges asymptotically towards the equilibrium Ē0 = (0, S0
cr).

Proof. Choose some D̄0 > D(2)
cr and consider system (18) and (19), where D̄ is replaced

by D̄0. Assume that limt→∞ X(t) = X∗ > 0. Then Barbălat’s Lemma [26] applied to
Equation (18) implies 0 = limt→∞

d
dt X(t) = limt→∞(μcr(Scr(t)) − D̄0)X∗, which means

that limt→∞ μcr(Scr(t)) = D̄0 > μcr(S0
cr). From the continuity of μcr(·) it follows that

there exists time T > 0 and a positive number δ such that μcr(Scr(t)) − μcr(S0
cr) ≥ δ

for all t ≥ T. The latter inequality leads to d
dt X(t) ≥ δX(t), a contradiction with the

boundedness of X(t). Therefore, X(t)→ 0 as t → ∞. From the theory of the asymptotically
autonomous systems (cf. [20,21]) it follows that the dynamics (18) and (19) can be reduced
to the limiting equation d

dt Scr(t) = D̄0(S0
cr − Scr(t)), which implies limt→∞ Scr(t) = S0

cr,
and this completes the proof.

6. Dynamic Behavior of the Model Solutions: Numerical Simulation

In this section we present two numerical examples that illustrate the dynamic behavior
of the model solutions.

Example 1. D = 0.08 ∈ (D(1)
cr , D(2)

cr )

In this case there exist two positive (coexistence) equilibrium points

E2 = (0.0491, 0.126, 0.0153) and E3 = (0.0318, 0.328, 0.116),

such that E2 is locally asymptotically unstable, E3 is the globally asymptotically stable
equilibrium point according to Theorem 2. The wash-out equilibrium E0 = (0, 0.7, 0.3) is
locally asymptotically unstable.

The left plot in Figure 4 visualizes the convergence of the solutions towards the
corresponding equilibrium components of E3 using two different starting points. The right
plot of Figure 4 as well as Figure 5 visualize projections of the trajectories in the phase planes
(X, Scr), (X, Sph) and (Sph, Scr) respectively with three different initial points, denoted by
circles. The corresponding projections of the invariant planes are marked by dash lines in
the three plots.

Figure 4. D = 0.08. (Left): time evolution of solutions X (solid line), Sph (dash-dot line) and Scr (dash line); the horizontal
dot lines pass through the corresponding components of the equilibrium point E3. (Right): projections of the trajectories in
the (X, Scr)-phase plane with three different initial points, denoted by circles. The corresponding equilibrium components
of E3 are marked by a solid box, of E2 are denoted by a box. The dash line presents the a projection of invariant plane
Scr + kcrX = S0

cr.
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Example 2. D = 0.095 > D(2)
cr ≈ 0.0865

In this case there exists only one interior equilibrium point E2 = (0.0514, 0.0987, 0.00191)
which is locally asymptotically unstable. The wash-out equilibrium E0 = (0, 0.7, 0.3) is the
globally asymptotically stable steady state according to Theorem 3.

The global stability of E0 for large values of the control parameter D means total
wash-out of the biomass X and thus no detoxification of the bioreactor medium.

The left plot in Figure 6 visualizes the convergence of the solutions towards the
corresponding components of E0 using two different starting points. The right plot of
Figure 6 as well as Figure 7 visualize projections of the trajectories in the phase planes
(X, Scr), (X, Sph) and (Sph, Scr) respectively with three different initial points, marked by
circles. The latter three plots also visualize the projections of the invariant planes in the
corresponding phase planes.

Figure 5. D = 0.08. Projections of the trajectories in the (X, Sph)-phase plane (left) and in the (Sph, Scr)-phase plane (right)
with three different initial points, denoted by circles. The corresponding equilibrium components of E3 are marked by solid
boxes, of E2 are denoted by boxes. The dash lines present projections of the invariant planes Sph + kphX = S0

ph (left) and

Sph − KScr = S0 (right).

Figure 6. D = 0.095. (Left): time evolution of solutions X (solid line), Sph (dash-dot line) and Scr (dash line); the horizontal
dot lines pass through the corresponding components of the equilibrium point E0. (Right): projections of the trajectories in
the (X, Scr)-phase plane with three different initial points, denoted by circles. The corresponding equilibrium components
of E0 are marked by a solid box, of E2 are denoted by a box. The dash line presents a projection of the invariant plane
Scr + kcrX = S0

cr.
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Figure 7. D = 0.095. Projections of the trajectories in the (X, Sph)-phase plane (left) and in the (Sph, Scr)-phase plane (right)
with three different initial points, denoted by circles. The corresponding components of E0 are marked by solid boxes, of E2

are denoted by boxes. The dash lines present projections of the invariant planes Sph + kphX = S0
ph (left) and Sph −KScr = S0

(right).

7. Conclusions

We perform a mathematical analysis of a dynamic model, describing phenol and 4-
methylphenol (p-cresol) biodegradation in a continuously stirred tank bioreactor. The model
is described by three nonlinear ordinary differential equations and presents an extension
of the batch growth model given in [17] to perform the ability of Aspergillus awamori strain
to degrade the mixture of phenol and p-cresol. The novel idea is the usage of sum kinetic
interaction parameters in the analytic expression of the microorganisms specific growth rate
μ(Sph, Scr) in the medium, as well as inhibition terms with respect to both phenol and
p-cresol concentrations. The advantages of using such kind of specific growth rates is
validated by practical laboratory experiments [17], see also [5]. To our knowledge, such
kind of dynamic models, describing biodegradation in continuous biorectors (chemostats),
are not studied in the literature until now.

We compute the equilibrium points of the model and investigate their local asymptotic
stability as well as existence of bifurcations in dependence of the input control parameter
D, the dilution rate. It is shown that an equilibrium E0 =

(
0, S0

ph, S0
cr

)
, corresponding

to total wash-out of the biomass in the bioreactor, exists for all D > 0. We find values
of D such that two interior (coexistence) equilibria E2 and E3 do exist: E3 is defined for
D ∈

(
D(1)

cr , D(2)
cr

)
, and E2 exists if D ∈

(
D(1)

cr , Dcr

)
. Local stability analysis shows that

E2 is locally asymptotically unstable and E3 is locally asymptotically stable where they
exist, E0 is locally asymptotically stable for D > D(2)

cr . Two types of bifurcations of the
equilibria occur, a saddle node bifurcation at D = D(1)

cr where E2 and E3 coalesce, and a
transcritical bifurcation at D = D(2)

cr , where E0 coincides with E3 and E3 disappears for
D > D(2)

cr . Practically, the bifurcation values D(1)
cr and D(2)

cr of D should be carefully avoided,
because small nearby perturbations may cause destabilization of the process, leading to
total wash-out of the biomass. Most of the computations are carried out numerically due
to the complicated expression of the model function μ(·) and the large number of model
parameters. The computations are performed in the computer algebra system Maple.
The most important property of the model solutions—existence, uniqueness and uniform
boundedness—is established theoretically in Theorem 1. We also prove (Theorem 2) the
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global asymptotic stability of the interior equilibrium point E3 when D takes values within
certain bounds, D ∈

(
D(1)

cr , D(2)
cr

)
, D(2)

cr = μ(S0
ph, S0

cr). The existence of these bounds for
D is not restrictive in practical applications, since the dilution rate D is proportional to
the speed of the pumping mechanism which feeds the bioreactor, thus there always exist
a lower and an upper bound for D [27]. Choosing D in the interval

(
D(1)

cr , D(2)
cr

)
ensures

practically long-term sustainability of the bioremediation process in the bioreactor. On the
other hand, large values of the dilution rate D, D > D(2)

cr = μ(S0
ph, S0

cr), may cause total
wash-out of the biomass in the reactor and may lead to process breakdown. This is due
to the fact that the wash-out equilibrium E0 = (0, S0

ph, Scr0) is the global attractor of the
dynamics (Theorem 3). The dynamic behavior of the model solutions is illustrated by some
numerical examples for different values of the dilution rate.
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Abstract: Second-generation biomass is an underexploited resource, which can lead to valuable
products in a circular economy. Available locally as food waste, gardening and pruning waste or
agricultural waste, second-generation biomass can be processed into high-valued products through a
flexi-feed small-scale biorefinery. The flexi-feed and the use of local biomass ensure the continuous
availability of feedstock at low logistic costs. However, the viability and sustainability of the biorefin-
ery must be ensured by the design and optimal operation. While the design depends on the available
feedstock and the desired products, the optimisation requires the availability of a mathematical
model of the biorefinery. This paper details the design and modelling of a small-scale biorefinery in
view of its optimisation at a later stage. The proposed biorefinery comprises the following processes:
steam refining, anaerobic digestion, ammonia stripping and composting. The models’ integration
and the overall biorefinery operation are emphasised. The simulation results assess the potential of
the real biowaste collected in a commune in Flanders (Belgium) to produce oligosaccharides, lignin,
fibres, biogas, fertiliser and compost. This represents a baseline scenario, which can be subsequently
employed in the evaluation of optimised solutions. The outlined approach leads to better feedstocks
utilisation and product diversification, raising awareness on the impact and importance of small-scale
biorefineries at a commune level.

Keywords: biomass; biorefinery design; process integration; scheduling; simulation

1. Introduction

Lignocellulosic biomass represents an abundant and sustainable carbon-rich feedstock
that can be employed to produce, e.g., (bio-)chemicals, biofuels, fibres and nutrients. As the
urge to employ sustainable processing methods and feedstocks is becoming ever greater
with regard to climate change, interest in how to optimally process this feedstock has
steadily increased over the past decade. To obtain valuable and useful products, the dense
crystalline structure of lignocellulosic biomass needs to be broken down. The three main
building-blocks of lignocellulosic biomass are: (i) lignin, (ii) cellulose and (iii) hemicellulose
(see Figure 1). While cellulose is an extremely dense structure, mainly consisting of β(1 →
4)-D-Glucose units, structured in a helical strand, hemicellulose and lignin are more
diverse, containing a multitude of different compounds, the most important of which are
represented in Figure 1.

The breakdown and conversion of lignocellulosic biomass in useful and value-added
products occurs in a biorefinery. In [1], the authors presented a classification system to cate-
gorise biorefineries based on: (i) which platforms or intermediate products they used, (ii) the
products they produced, (iii) the used feedstocks and (iv) the used processes. So-called
first-generation biorefineries used food products, such as corn and wheat, as feedstock and
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converted these starch-rich and uniform feedstocks into bulk products such as biofuels
and other platform chemicals. In essence, these biorefineries were the biomass-based
counterpart of regular petroleum refineries (where raw fossil oil is refined into value-added
products). However, as they used food as feedstock and they competed with the food
industry for arable land, these enterprises were faced with heavy criticism [1,2].

(i)

(ii)

(iii)

Figure 1. Schematic representation of lignocellulosic biomass and its three main building-blocks:
(i) hemicellulose, (ii) cellulose and (iii) lignin (taken from [3]).

Second-generation biorefineries were developed as a response to this major flaw of
first-generation biorefineries. In a second-generation biorefinery, the feedstock that is
processed is a waste, or a non-food stream [1,2,4]. In particular, the usage of biowaste has
become of great interest lately, as biowaste biorefineries additionally act as waste process-
ing facilities [5], thus playing a central role in the circular economy. When regarding the
application potential of biorefineries on a local level, their ability to revalorise biowaste in
locally desired products is a compelling advantage [6,7]. (Lignocellulosic) Waste streams,
however, have the major disadvantage that their composition, due to their waste nature, is
no longer uniform [8,9]. Moreover, when only considering local biowaste streams, their pe-
riodic yields are also limited. Combined, these two disadvantages make biowaste streams
unsuitable for the production of bulk products such as biofuels. Unlike first-generation
biorefineries, the processes employed in a local and small-scale biorefinery need to be more
robust and flexible, as the feedstock’s composition may be variable. Additionally, the se-
lected processes should render high-value products, as the overall feedstock throughput of
the biorefinery will be limited due to its local nature [10]. In addition, Refs. [4,9] indicated
that the production of fuels by biorefineries is inherently unsustainable. The combination
of both considerations has led to a steady increase in interest regarding the production of
high-value-added products from biowaste streams using biorefinery systems.

Even though the advantages of small-scale biorefineries have been indicated by mul-
tiple research studies, their implementation is lagging behind [6,7]. In particular, with
regards to planning and designing a suitable small-scale and locally adapted biorefinery,
decision-makers and investors are faced with a multitude of challenges and uncertainties.
These uncertainties can often lead to the absence of the required investments to build biore-
finery facilities. This, on its turn, leads again to an increased lack of trust in the considered
systems [11,12]. (Online) Decision support tools (DST) are a convenient alternative for aid-
ing decision-makers in designing the most suitable biorefinery systems for their particular
settings as well as to increase their confidence in the proposed process layout [11,12].
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An important part of developing a small-scale and locally embedded biorefinery
consists of selecting the most suitable processes for converting locally available biowaste
streams into value-added and desirable products [3]. Mathematical models of the con-
sidered processes allow for an easy assessment of the performance of the investigated
processing chain. Moreover, mathematical models can be used to optimise the process
flow-sheet itself as well as the processing conditions. Mathematical models of biorefinery
conversion processes can range from static to dynamic models. Whereas the first type
of models consider a steady-state process, i.e., time has no influence on the states of the
process, a dynamic model allows for a more accurate prediction of the process’s states and
outputs, which are inherently influenced by the time variation of the inputs and distur-
bances acting on the process. Especially when considering batch processes, such as steam
refining and composting, the duration of the process has a major influence on the process
outcome. An additional advantage of dynamic models is that they allow for optimising
the way a biorefinery is operated, i.e., imposing an (on-line) optimal control system on
the biorefinery [13,14]. Static process models would only allow for a yield-based process
optimisation. With regard to optimising the process flow-sheet itself, often, the so-called
superstructure modelling system is employed [15–17]. To increase the extendability and
user-friendliness of these superstructure models (which often consider a vast amount of
different processes and/or process combinations), a simplified and generalised modelling
framework is employed for all the considered processes. In this contribution, a similar
superstructure model is being developed; however, as the scope of the foreseen biorefinery
is limited to local and small-scale processing of biowaste streams, the number of processes
selected using expert knowledge is limited. Moreover, as the eventual goal is to submit
the proposed design to a process and a control optimisation, dynamic models have been
selected for the considered processes. The developed model can be used in the first stage
to assess the potential of locally available biowaste for producing value-added products.
Subsequently, it may be employed to optimise the entire operation of the biorefinery in
view of maximising the production of desired products. The model can be integrated to-
gether with a bioinventory tool, which provides a survey of the available biowaste, and an
optimisation tool, which may take into account also sustainable indicators, into a decision
support tool that allows for the design of small-scale, flexi-feed, sustainable biorefineries in
a local setting.

The remainder of this contribution consists of a thorough discussion on the design of
a local small-scale biorefinery in Section 2, followed by an in-depth discussion in Section 3
on the employed models for each process that was incorporated in the design, the models’
integration and the biorefinery operation. Section 4 focuses on the obtained results from
simulating the biorefinery operation for the biowaste available in a commune in the Flan-
ders region. Finally, conclusions, as well as some remarks with regard to future research,
are drawn in Section 5.

2. Biorefinery Design

A biorefinery can be simply considered to consist of three parts that are linked together:
(i) the input or feedstock part, (ii) the process part and (iii) the output or product part. All
three parts come with their own set of distinct (strategical) design choices that need to be
considered when designing a biorefinery system (see Figure 2) [18]. Moreover, the choices
made in one part of the biorefinery system will inevitably influence the choices that have to
be made with regard to the other parts. To illustrate this, when the biorefinery is designed
with the ethos of producing a certain product, e.g., biofuel, only a small set of suitable
conversion processes and feedstocks will remain eligible for selection.

A local and small-scale biorefinery should tailor for local needs: local feedstocks
should be converted into locally desired products. As the biorefinery system proposed in
this contribution should additionally function as a waste-processing facility, the overall
biorefinery system is designed starting from the feedstock part.
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Figure 2. Simplified outline of a biorefinery with its three parts (feedstock, process and product), and
their respective main strategic decisions (taken from [18]).

When designing a biorefinery from the feedstock side, one of the main aspects to
consider is which feedstock is supposed to be processed by the facility. The most optimal
conversion processes for a dense and highly crystalline feedstock will differ considerably
from those employed when a soft feedstock is being processed. Additionally, the selection
of certain conversion processes over others will have an influence on which volumes the
biorefinery can handle and/or which products the facility will render.

2.1. Designing a Local Small-Scale Biorefinery

The two main lignocellulosic feedstocks that should be considered in a Flemish setting
are kitchen waste and wood waste obtained from garden and landscape maintenance.
Based on expert knowledge, a set of flexible and robust processes which are able to process
either one or both of the considered feedstock streams were selected. The concatenation
of the proposed conversion processes was obtained by employing a reverse-engineering
design approach. More specifically, for each of the proposed feedstocks and for all of the
proposed conversion processes, which products could be obtained was assessed. Based on
the selected (set of) products, the required processes were coupled in such a way that the
net flow of waste streams, i.e., undervalorised outflows of organic material, was minimised.

2.2. Proposed Integrated Small-Scale Biorefinery for a Flemish Setting

Figure 3 displays the eventually obtained flow-sheet of the small-scale biorefinery that
will be presented and modelled in this contribution. Note that this flow-sheet represents
the overarching, or superstructure, of the proposed small-scale and flexi-feed biorefinery in
a Flemish setting. Depending on which products the biorefinery operators are interested in
and/or their local circumstances with regard to equipment, the flow-sheet can be adapted
to fit these local needs.

The main processes have been selected based on the foreseen feedstocks that could be
processed by the biorefinery, i.e., two major lignocellulosic feedstocks that can be found
in the case study region of Flanders: kitchen waste and (postconsumer) wood waste.
Four main processes have been selected based on expert knowledge: (i) steam refining,
(ii) anaerobic digestion, (iii) ammonia stripping and (iv) composting.

The four main processes are concatenated in such a way that the waste/output streams
of each process are, on their turn, maximally utilised. This overarching integrated biorefin-
ery design has been defined using expert knowledge.

Wood waste obtained from garden and landscape maintenance (i.e., pruning waste)
is initially submitted to a pretreatment step consisting of chipping and sieving. Small
enough wood chips are processed using steam refining, whereas bigger pieces (on average,
this residue stream accounts for 5% of the total wood waste) are processed directly via a
composting process.
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Figure 3. Schematic representation of the small-scale biorefinery modelled in this contribution.
(Intermediate) Feedstocks are represented in green, main processes are represented in red, secondary
processes are represented in purple, and (intermediate) products are represented in blue.

A steam refiner is, in essence, a mill consisting of two grinding wheels spinning in
opposite directions between which the wood chips are ground down. To facilitate this
process, steam is injected in the mill to weaken the crystalline structure of the lignocellulosic
chips and to extract small molecules from the wood chips. The two main product categories
of a steam refining process are solid fibres and a liquid extract containing a broad range of
components, e.g., oligosaccharides. The obtained fibres can be further processed into paper,
while the extract stream can be further refined to nutrients, tensides, etc.

Kitchen waste is a fairly soft feedstock and therefore does not require severe conversion
processes like wood waste does. In the region of Flanders, kitchen waste that is collected
via home-to-home collection rounds is of compostable quality. However, when aiming to
maximise the potential of this particular feedstock, other conversion processes can take
place prior to the final composting step. As kitchen waste is a nitrogen-rich feedstock, it
lends itself perfectly to being processed using an anaerobic digestion step, followed by an
ammonia stripping step.

An anaerobic digester is a continuous process during which the input stream is broken
down, in the absence of oxygen, by bacteria into biogas and digestate. Biogas is a mix of
methane (CH4), carbon dioxide (CO2) and hydrogen (H2), whereas digestate is a nitrogen-
rich waste stream. Anaerobic digestion is one of the most commonly applied biorefinery
processes. In particular, countries such as Germany and France are at the forefront with
regard to biomethane facilities, with 232 and 131 biomethane plants, respectively [19].
The quality of the produced biogas is defined by the amount of CH4 in the output stream,
i.e., the more methane, the higher the quality of the biogas. The methane percentage in
biogas can be optimised by either adjusting the process parameters (see also Section 3.2)
or adjusting the composition of the feedstock streams that are entering the biorefinery.
The latter can, for instance, be artificially obtained by mixing two feedstocks together [20].

Even though anaerobic digestion is a flexible process, which has been employed for the
conversion of manure, wastewater sludge and other recalcitrant organic waste streams [21],
it has the disadvantage that the conversion process is coupled with the production of a
steady and nitrogen-rich waste stream: the digestate. As nitrogen is not dissimilated during
the digestion process, it accumulates in the digester’s nongaseous output stream. In the
case study region of Belgium, processing such high volumes of a nitrogen-rich waste stream
cannot be accomplished without removing the bulk of the nitrogen content from the waste
stream. Moreover, the nitrogen still present in the digestate stream can be used to produce
a nitrogen fertiliser. Unbound nitrogen (i.e., in its NH3/NH+

4 state) can be easily removed
from a liquid stream at increased pH using air stripping.

123



Processes 2022, 10, 829

The remaining digestate stream, now with low nitrogen content, still represents a
constant and relatively high flow of organic material that can still be further processed.
The final step in the proposed biorefinery design consists of a composting step of the
digestate combined with the residual wood waste that could not be processed using
the steam refining process.Whereas the anaerobic digestion and ammonia stripping are
operated in a continuous mode, the composting process is operated as a batch process.
Switching from a continuous production line to a batch-operated production line requires
a decoupling, often obtained by the usage of holding tanks. Holding tanks can store the
continuously produced input of the batch process until the batch reactor is available again.
This topic is detailed in the next section.

3. Materials and Methods

3.1. Steam Refining

The steam refining model used in this biorefinery setup is a kinetic model developed
in [22,23] for the treatment of birch wood at temperatures in the range [180, 240] ◦C , with the
concept of a wood biorefinery in view. This implies the selective separation of the three
main wood components (lignin, cellulose/xylose and hemicellulose/glucan), which may
be further used for the production of high-value components. Consequently, the model
includes the three main processes, i.e., delignification, degradation and conversion of xylan
and degradation and conversion of glucan, which are briefly described below. The efficiency
of the treatment is determined by the experiment temperature and duration. A schematic
representation of the steam refining process is illustrated in Figure 4. 

 

 

Figure 4. Schematic representation of a steam refiner.

The delignification process consists of a solubilisation reaction and a condensation
reaction. In the solubilisation reaction, the lignin in the solid, which is divided into a
hard-to-remove fraction L1 and an easy-to-remove fraction L2, is converted into solubilised
lignin Ls. In the condensation reaction, a part of the solubilised lignin returns to the solid
phase as condensed lignin Lc. Hence, the amount of lignin in the solid phase is determined
by the sum L1 + L2 + Lc, while the amount of lignin in the extract is determined by Ls.
The delignification process is mathematically described by:
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dL1

dt
= −ks1L1

dL2

dt
= −ks2L2 (1)

dLs

dt
= ks1L1 + ks2L2 − kcLs

dLc

dt
= kcLs

where ks1, ks2 and kc respectively represent the temperature-dependent kinetic rates of the
hard degradable lignin fraction, easily degradable lignin fraction and condensed lignin.
The numerical values of the kinetic rates and the initial hard and easily degradable fractions
for the considered temperature range are given in [22] (Table 3).

The degradation and conversion of xylan and glucan follow the same pathway: poly-
mers (xylan and glucan) are converted into their corresponding monomers (xylose and
glucose) via intermediate oligosaccharides. Subsequently, the monomers are degraded to
furfural, 5-hydroxymethylfurfural and other degradation products. Similar to the deligni-
fication process, it is assumed in [23] that both xylan and glucan in the solid consist of a
fast-degrading fraction and a slow-degrading fraction. Considering first-order reactions,
the conversion of xylan is described by

dXN1

dt
= −kx1 · XN1

dXN2

dt
= −kx2 · XN2

dXOS
dt

= kx1 · XN1 + kx2 · XN2 − kx3 · XOS (2)

dX
dt

= kx3 · XOS− (kx4 + kx5) · X

dF
dt

= kx4 · X − kx6 · F

while the conversion of glucan is given by

dGN1

dt
= −

(
kg1 + kg6

)
· GN1

dGN2

dt
= −

(
kg2 + kg7

)
· GN2

dGOS
dt

= kg1 · GN1 + kg2 · GN2 −
(
kg3 + kg8

)
· GOS (3)

dG
dt

= kg3 · GOS−
(
kg4 + kg9

)
· G

dHMF
dt

= kg4 · G− kg5 · HMF

In (2), XN1 and XN2 denote respectively the fast- and slow-degrading xylan fractions,
XOS denotes the xylo-oligosaccharides, X represents xylose and F represents furfural, while
kxi with i = 1 . . . 6 are the temperature-dependent kinetic rates. Initial fractions of xylan in
the solid as well as the parameters of the kinetic rates may be found in [23] (Tables 3 and 4).
In (3), GN1 and GN2 denote respectively the fast- and slow-degrading glucan fractions,
GOS denotes the gluco-oligosaccharides, G represents glucose and HMF represents 5-
hydroxymethylfurfural, while kgj with j = 1 . . . 9 are the temperature-dependent kinetic
rates. Initial fractions of glucan in the solid as well as the parameters of the kinetic rates may
be found in [23] (Tables 5 and 6). Note that the states in (1) are expressed in percentages
with respect to the original amount of lignin in the wood, which represents 22.36% of the
dry wood mass (Table 1 in [22]), while the states in (2) and (3) are expressed in g per kg of
dry wood.
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3.2. Anaerobic Digestion

The anaerobic digestion model employed here is developed in [24]. It is an extension
of the well-known ADM1 model [21], with the amendments made in [25], to accommodate
the food waste digestion experimentally observed.

ADM1 is the most complex model describing the anaerobic digestion process. It
includes the following conversion steps [21,26]: (i) disintegration of the composite material;
(ii) hydrolysis of carbohydrates, proteins and lipids into their corresponding building
blocks; (iii) acidogenesis, in which monosaccharides, amino-acids and long-chain fatty
acids are fermented and short-chain organic acids, hydrogen, carbon dioxide and ammonia
are produced; (iv) acetogenesis, in which various metabolic products of the previous degra-
dation stages are mainly broken down into acetic acid, hydrogen and carbon dioxide, and
(v) methanogenesis, in which mainly acetic acid and hydrogen are converted into methane.
These conversion steps occur simultaneously and involve a variety of microorganisms.
The process takes place in a continuous stirred tank reactor as schematically illustrated
in Figure 5: waste is continuously supplied in the influent with the flow rate q (m3/day),
and an equal flow is withdrawn from the reactor such that the liquid volume Vliq remains
constant; the produced biogas (composed of methane, carbon dioxide and hydrogen) leaves
the reactor with the flow rate qgas.

 

Figure 5. Anaerobic digestion system.

The ADM1 model consists of the mass balance of components in the solid-liquid and
gas phases as summarised by

dSi
dt

=
q

Vliq
(Sin,i − Si) + ∑

j
ρjνij − ρT,j (4)

dXi
dt

=
q

Vliq
(Xin,i − Xi) + ∑

j
ρjνij (5)

dSgas,i

dt
= − qgas

Vgas
Sgas,i +

Vliq

Vgas
ρT,j (6)

where: Si denotes the concentration of the soluble component i, Xi denotes the concen-
tration of the particulate component i and Sgas,i denotes the concentration in gas of either
methane, carbon dioxide or hydrogen; Sin,i/Xin,i is the concentration in the influent of
soluble/particulate component i; ρj represents the reaction rate of process j, while νij rep-
resents the stoichiometric coefficient of component i on the process j; ρT,j represents the
transfer rate to the gas j and Vgas denotes the headspace volume. Note that the only soluble
components which are transferred to the gas phase are methane, hydrogen and inorganic
carbon. Except for nitrogen and carbon concentrations expressed in kmol/m3, all the other
concentrations are expressed as kgCOD/m3.
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In addition to the soluble matter, particulate matter and gas components, ADM1 in-
cludes balances for anions, cations and ion states, allowing for an accurate calculation of the
process pH. The implementation reported by [25] consists of 35 differential equations and
8 algebraic equations, while the implementation [24] used in this work considers the acetate
oxidation pathway, which is proved to make significant contributions to methane produc-
tion and, in some cases, become more important than the acetoclastic methanogenesis.
Compared to the original ADM1 implementation,

• two new processes are included, namely the acetate degradation by a new biomass
group of acetate oxidisers and the decay of the new biomass group;

• hydrogen ions’ concentration used to compute pH is a state of the model [27];
• some parameters are re-estimated to account for the digestion of waste with high

nitrogen content such as food waste.

The main food waste characteristics and their translation into inlet concentrations of
ADM1 model are also found in [24].

3.3. Ammonia Stripping

The ammonia stripping process [28–30] takes place in a closed vessel, where air is
continuously sparged at its bottom and its content is continuously agitated. Ammonia is
transferred from the liquid to the air bubbles, which leave the vessel. To facilitate the phase
transition, the pH of the system must be increased, which requires the addition of a base.
After the stripping, acid is added to re-establish the pH. The air outflow rich in ammonia is
supplied to ammonia scrubbing process (not considered here), which allows the retrieval of
ammonia as salt that can be used as fertiliser. A schematic representation of the ammonia
stripping process is illustrated in Figure 6. 

 

Figure 6. Schematic representation of the ammonia stripping process.

The mathematical model [28–30] describing the process relies on the mass balance
for ammonia:

VL
dCL
dt

+ εGVL
dCG
dt

= qL(CL,in − CL) + qG(CG,in − CG) (7)

where qG is the volumetric air flow rate (m3/s), CG,in and CG are the ammonia concentra-
tions in the air entering and leaving the vessel (kmol/m3), VL is the liquid volume (m3),
CL,in and CL are the ammonia concentrations in the liquid phase entering and leaving
the vessel (kmol/m3) and εG is the air holdup or the volume fraction of the air bubbles
entrained in the liquid (dimensionless). Since [29]

• no ammonia is present in the influent air (CG,in = 0);
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• ammonia accumulation in the air bubbles is insignificant;
• the equilibrium equation between air and liquid for any gas is given by Henry’s law;
• and the output stripping gas is probably not close to saturation,

the mass balance (7) reduces to

VL
dCL
dt

= qL(CL,in − CL)− qGKHCL (8)

where KH denotes Henry’s constant (dimensionless).
The efficiency of the ammonia stripping process is calculated as

Removed ammonia(%) =

(
1− CL

CL,in

)
× 100 (9)

3.4. Composting

Composting refers to the aerobic degradation of organic matter into valuable inert
material (compost), which can be used as fertiliser for soil and plants.

The model of composting in biocells proposed in [31] relies on three main biochemical
phenomena: (i) hydrolysis of the insoluble substrate, (ii) aerobic degradation of soluble
substrate and (iii) biomass decay. The model describes the evolution of the main process
variables (concentrations expressed in mol C/m3): soluble substrate S, representing the
material that can be directly degraded; insoluble substrate I, representing the waste which
needs to be hydrolysed before conversion; biomass concentration X; liquid part L; inert
material (compost) M, and oxygen concentration O. As the biocell is a closed system,
oxygen has to be supplied to maintain the biomass growth and the overall conversion.

The mass balance equations read:

dS
dt

= − 1
YS

μ(S, O)X + Kh I (10)

dI
dt

= −Kh I +
1
YI

bX (11)

dX
dt

= μ(S, O)X − bX (12)

dL
dt

=
1

YL
μ(S, O)X (13)

dM
dt

= −
(

1− 1
YS

+
1

YL

)
μ(S, O)X +

(
1− 1

YI

)
bX (14)

dO
dt

= − 1
YO

μ(S, O)X + FOin (15)

where
μ(S, O) = μmax

S
KS + S

O
KO + O

(16)

describes the biomass growth, which is limited by the availability of soluble substrate and
oxygen. The numerical values of the parameters [31] are given in Table 1.

Table 1. Parameters’ values for the composting model [31].

Parameter Value Parameter Value

μmax 0.72 h−1 YS 0.53
KS 0.2573 mol/m3 YI 1.02
KO 2.822 mol/m3 YL 1.34
Kh 18 × 10−4 h−1 YO 1.12
b 0.1368 h−1 Oin 8 mol/m3
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3.5. Models’ Integration and Scheduling

In a biorefinery, several processes are connected in a cascade, where the output of
one process is fed as input to another process. Additionally, some processes may be
operated in continuous mode, while others may be operated in batch or fed-batch mode.
Hence, simulating the biorefinery operation and evaluating its efficiency requires models’
integration and scheduling.

The biorefinery designed in this work consists of two branches, and its operation
is indicated in Figure 7. The first branch comprises only one process, the steam refining
process. Steam refining is a process which is operated in batch mode. Depending on
the availability of wood waste and storage capacity, reactor size and considerations on
energy use, the treatment of wood waste could be accomplished in real life in either
one batch or repetitive batches. On the second branch, anaerobic digestion is a process
operated in continuous mode, composting is a process operated in batch mode while
ammonia stripping could be operated either continuously or in batch mode. For simplicity,
we consider that the ammonia stripping process is operated in continuous mode, at the
same rate as the anaerobic digestion process (q = qL). To buffer the transition between
the continuous and batch operations, the low ammonia digestate exiting the ammonia
stripping process is collected for a period of time �t (days) in a tank, whose content is then
transferred to a composting cell. Composting is a slow process which might not end in �t
days, the next period for filling in the buffer tank. Hence, several composting cells can be
used in parallel, as shown in Figure 7.

Figure 7. Biorefinery operation.

Assuming that no biochemical reaction takes place in the tank, its dynamics in terms
of the states of the composting model are given by

dV
dt

= q

dS
dt

=
q
V
· (Sin − S)

dI
dt

=
q
V
· (Iin − I) (17)

dM
dt

=
q
V
· (Min − M)

where V represents the volume of digestate accumulated in the tank, S, I and M are
respectively the concentrations of soluble, insoluble and inert matter in the tank, while Sin,
Iin and Min are respectively the concentrations of soluble, insoluble and inert matter in the
influent digestate.
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Generally, the models employed to simulate a biorefinery are built for each specific
process with the main goal of characterising its dynamics with a certain degree of detail.
Thus, connecting two such models requires a good mapping of the first model’s outputs to
the second model’s inputs. While anaerobic digestion is a complex process with a detailed
characterisation of organic matter, its connection with the ammonia stripping model is
straightforward, as the concentration of ammonia appears both in the effluent of the
anaerobic digestion model and the influent of the ammonia stripping model (SNH3 = CL,in).
Assuming that no reaction takes place during ammonia stripping, the next step is to match
the mix of digestate with wood to the states of the composting process.

In the first stage, the characteristics of digestate and the characteristics of wood are
individually mapped to the states of the composting model. The conversion factors are
respectively shown in Tables 2 and 3. Then, the initial states of the composting model are
calculated as follows:

• Compute the volume of digestate collected from the anaerobic digestion process as
VAD = q · �t, where �t(days) is the period of digestate collection and q (m3/day) is
the volumetric flow rate the anaerobic digester was operated with in the interval �t.
Note that VAD = V, the volume in the tank at the time instant τ = �t;

• Compute the volume of wood to be mixed with the digestate as Vw = w/ρ, where w
(kg) is the mass of the wood and ρ (kg/m3) is its density;

• The concentrations of the soluble substrate, insoluble substrate and inert material
entering the composting process are respectively given by

S0 =
x ·VAD + 22.15 · w

VAD + Vw
(18)

I0 =
y ·VAD + 12.75 · w

VAD + Vw
(19)

M0 =
z ·VAD

VAD + Vw
(20)

where x, y and z (mol C/L) are respectively the concentrations of the soluble substrate,
insoluble substrate and inert material in the tank at time instant τ = �t, i.e., S(τ),
I(τ) and M(τ) given by (17). In (17), Sin(t), Iin(t) and Min(t) are respectively the
concentrations of the soluble substrate, insoluble substrate and inert material in
the low-ammonia digestate entering the tank, which are calculated at each time
instant using the conversion coefficients shown in Table 3. The coefficients in (18)–(20)
(mol C/kg wood) are calculated based on data in Table 2.

Table 2. Conversion factors of wood characteristics into units of the composting model.

Component Chemical Formula Composting g/(kg Wood) [22] mol C/(kg Wood)

Rhamnose C6H12O6 S 1.00 0.0333
Galactose C6H12O6 S 6.70 0.223
Mannose C6H12O6 S 17.60 0.586

Xylose C6H12O6 S 209.30 6.97
Glucose C6H12O6 S 430.50 14.3

Klason lignin C81H92O28 I 177.00 9.47
Acid-soluble lignin C81H92O28 I 46.60 2.49

Acetyl group COOH I 35.40 0.786
Extractives / / 17.20 /

Others / / 58.70 /
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Table 3. Conversion factors from anaerobic digestion to composting.

State Conversion Factor
Reference

ADM1 Composting mol C/kgCOD

Ssu S 31.3 [25]
Saa S 27.2 own calculation, [32]
S f a S 21.7 [25]
Sva S 24.0 [25]
Sbu S 25.0 [25]
Spro S 26.8 [25]
Sac S 30.0 [25]
Xch S 31.3 [25]
Xpr S 27.2 own calculation, [32]
Xli S 22.3 own calculation, [32]

Xc I 25.2 own calculation, [32]

Xsu I 27.2 own calculation
(C5H7O2N)

Xaa I 27.2 own calculation
(C5H7O2N)

X f a I 27.2 own calculation
(C5H7O2N)

Xc4 I 27.2 own calculation
(C5H7O2N)

Xpro I 27.2 own calculation
(C5H7O2N)

Xac I 27.2 own calculation
(C5H7O2N)

Xh2 I 27.2 own calculation
(C5H7O2N)

Xac2 I 27.2 own calculation
(C5H7O2N)

XI M 30 [25]

4. Results and Discussion

The simulation results are based on the amounts and types of biowaste collected in
the commune De Pinte in Flanders (Belgium). Via home-to-home collection, food waste
is gathered every two weeks [18], while the wood waste is collected only once a year.
Based on data given in Table 4, which shows the seasonality of the waste, a total amount
of 395.508 tonnes of food waste is collected yearly. The yearly wood waste amount is
98.060 tonnes.

Table 4. Average amount of food waste collected per month in De Pinte [18].

Period
Collection Day

Day 1 [kg/month] Day 2 [kg/month]

October–March 9557 18,340
April–September 15,260 22,773

As illustrated in Figures 3 and 7, the wood waste needs pretreatment before entering
the steam refining process, while the reactor content needs posttreatment at the end of
the process to retrieve the products of interest. No dynamic models are employed for
these treatments but static blocks, which correct the amounts based on the experimental
evidence. The pretreatment steps include washing, chipping, sieving and drying. It is
assumed that after sieving, 95% of the wood chips has the proper size for steam refining,
while the remaining 5% represents the wood residue which is processed via composting.
Before entering the steam refining process, the small-sized wood chips need to be dried,
the treatment in which the wood mass reduces by 10%. Consequently, the amount of
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wood processed via steam refining (denoted as the main fraction of wood in Figure 3) is
83,841.3 kg, while the wood residue amount equals 4903 kg.

The steam refining conversion is influenced by the temperature and the length of the
experiment. Figure 8 shows the evolution of the model states for a temperature T = 200 ◦C
and various experiment lengths. For the evaluation included below, an experiment length
of 10 min is selected. This choice is motivated by the fact that no priority is given to any of
the products of interest: lignin (solubilised lignin Ls), fibres (L + XN + GN, where each
component is the sum of the fast- and slow-degradable fractions) and oligosaccharides
(XOS+ GOS). However, for longer experiments, the degradation of the products of interest
occurs: the solubilised lignin degrades to condensed lignin, which is of no practical interest,
while the oligosaccharides are converted into degradation products such as furfural (F)
and 5-hydroxymethylfurfural (HMF).
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Figure 8. Steam refining: (a) Solubilised and solid-state lignin. (b) Xylan and its derivatives. (c) Glu-
can and its derivatives.

Figure 9 shows the conversion of the wood waste and the amounts of the products
obtained, respectively, after steam refining (indicated in blue boxes) and after post-treatment
(indicated in red boxes). These amounts are calculated based on the products’ yields
corresponding to a treatment duration of ten minutes and the amount of dry matter
entering the process. The yields (see Figure 8) are as follows: 43.2% and 55.5% of original
lignin content of wood, respectively, for the lignin remaining in the solid phase (L) and the
solubilised lignin (Ls), 30 g/kg dry matter and 418.7 g/kg dry matter, respectively, for the
xylan (XN) and glucan (GN), 124 g/kg dry matter and 10 g/kg dry matter, respectively, for
xylo-oligosaccharides (XOS) and gluco-oligosaccharides (GOS). It is assumed that during
postprocessing, 3% of fibres and 5% of oligosaccharides are lost. Note that the extract
contains also monosaccharides (xylose and glucose) and can be used as a waste stream to
feed another process or can be processed by anaerobic digestion.
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Figure 9. Products and their amounts obtained from wood steam refining: green boxes indicate
feedstock, blue boxes show the products’ amounts after steam refining treatment, and red boxes show
the products’ amounts after post-treatment.

The entire food waste collected throughout the year is processed by anaerobic di-
gestion. Since this waste is available continuously, the simulation of the anaerobic di-
gestion process is also performed for one year, with a constant supply of waste equal to
1083.6 kg/day. Similar to [24], it is assumed that the waste has the water mass, which
implies that the digestor is operated with a constant flow q = 1.0836 m3/day. Since low
hydraulic retention times (defined as the ratio between the liquid volume and the feed
flow rate) may lead to the reactor wash-out, in this simulation, the reactor liquid vol-
ume is selected as Vliq = 12 m3 and the gas volume is chosen as Vgas = 3 m3. Figure 10
shows the obtained outflow rate of biogas, the outflow rate of methane, the volumetric
production of methane and the composition of biogas for the entire operation span. The ef-
fluent of the digestor is sent to the ammonia stripping process. The same liquid volume
and the same feed flow rate as for the anaerobic digestion is assumed for this process.
Air is continuously supplied such that efficiency of the removal in the range [80, 90]% is
achieved. Figure 11 illustrates the influent and effluent ammonia concentrations and the
corresponding removed amounts.

The digestate with low ammonia content is collected for a period of 100 days in a
storage tank. At the end of the collection period, the content of the storage tank is loaded in
a biocell for composting, which receives a continuous air supply during the operation such
that the oxygen is not limiting the growth of the aerobic microorganisms. Two biocells are
used; the first one is loaded on days 100 and 300, the second biocell is loaded on days 200
and 400. The volume of digestate loaded in the composting cells on days 100, 200 and 300
amounts to 108.36 m3, while the volume loaded on day 400 is 71.46 m3, as it was collected
only for 65 days. Figure 12 shows the evolution of the states of interest of the composting
process taking place in each of the two employed biocells (one column corresponds to
one cell). Note that the model predicts the content of compost expressed in mol C/m3,
while in the evaluation, one is interested in the amount of produced compost. For this, the
conversion factor 1 mol C compost = 25.7 g compost is used, which is determined based
on the chemical formula assumed for compost (C204H325O85N77S). The evaluation of the
second branch of the proposed biorefinery is illustrated in Figure 13.

Overall, it may be concluded that the waste produced during one year in the commune
De Pinte can be bioprocessed into 44,225.11 kg of fibres, 10,678.57 kg of oligosaccharides,
10,097.86 kg of lignin, 113,730 m3 of biogas, among which there is 56,728 m3 of methane,
and 30,887.3 kg of compost. Additionally, nitrogen fertilizer could be produced from the
removed ammonia. Although the obtained amounts are not obtained from an optimised
operation, the proposed biorefinery design allows for the production of several high-value-
added products.
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Figure 10. Anaerobic digestion: (a) Outflow rate of biogas. (b) Outflow rate of methane. (c) Volumetric
production of methane. (d) Methane percentage in biogas.
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Figure 11. Ammonia stripping: (a) Influent and effluent ammonia concentrations. (b) Efficiency of
the stripping process.

134



Processes 2022, 10, 829

0 100 200 300 400 500

Time (day)

0

500

1000

1500

2000

2500

3000

3500

4000

S
ol

ub
le

 s
ub

st
ra

te
 S

 (
m

ol
eC

/m
3 ) (a)

0 100 200 300 400 500 600

Time (day)

0

500

1000

1500

2000

2500

3000

3500

4000

S
ol

ub
le

 s
ub

st
ra

te
 S

 (
m

ol
eC

/m
3 ) (b)

0 100 200 300 400 500

Time (day)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

In
so

lu
bl

e 
su

bs
tr

at
e 

I (
m

ol
eC

/m
3 )

0 100 200 300 400 500 600

Time (day)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

In
so

lu
bl

e 
su

bs
tr

at
e 

I (
m

ol
eC

/m
3 )

0 100 200 300 400 500

Time (day)

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

C
om

po
st

 M
 (

m
ol

eC
/m

3 )

0 100 200 300 400 500 600

Time (day)

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

C
om

po
st

 M
 (

m
ol

eC
/m

3 )

Figure 12. Composting process: Soluble substrate, insoluble substrate, inert material (compost) in
(a) Cell 1 (left-hand-side column) and (b) Cell 2 (right-hand-side column).

 

Figure 13. Products and their amounts obtained on the second branch of the biorefinery.
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5. Conclusions and Perspectives

In this paper, the design of a small-scale biorefinery was presented and an evalua-
tion based on data characterising the available biowaste on a yearly basis in a commune
in Flanders was performed. The design started from the available feedstocks and was
performed such that the side streams were minimised. The reported outcomes and the
biorefinery operation represent a baseline scenario, which can be further improved through
optimisation. The proposed biorefinery layout can be used for evaluation of feedstocks’
potentials to produce high-valued products not only at the commune level but also at
regional level. One of the main advantages of the proposed biorefinery is that it provides
alternatives to the current practices at the local level, where food waste and landscaping
waste are traditionally composted and burned.

The models employed in this biorefinery layout and the knowledge for their inte-
gration are the building blocks of the processing toolbox, which is one of the three core
toolboxes in a decision support tool for the design of small-scale and flexi-feed biorefineries
in a local setting. The processing toolbox will be linked with two additional toolboxes:
(i) the bio-inventory toolbox [18] and (ii) the optimisation toolbox [33]. The former toolbox
allows for drafting a survey of the locally available biowaste feedstocks and selecting one or
multiple to be processed. Subsequently, this feedstock information will be employed by the
processing toolbox to model and assess a suitable local and small-scale biorefinery layout,
in a similar fashion as presented in this paper. To this end, the toolbox will be extended with
new processes to account for the conversion of various feedstocks and the production of
other high-value-added products [34,35]. Ultimately, as indicated above, the optimisation
toolbox will employ the proposed biorefinery layout to further optimise the design and/or
process settings. The decision support tool in its entirety will be detailed elsewhere.
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Abstract: Composting is a more environmentally friendly and cost-effective alternative to digesting
organic waste and turning it into organic fertilizer. It is a biological process in which polymeric
waste materials contained in organic waste are biodegraded by fungi and bacteria. Temperature,
pH, moisture content, C/N ratio, particle size, nutrient content and oxygen supply all have an
impact on the efficiency of the composting process. To achieve optimal composting efficiency, all
of these variables and their interactions must be considered. To this end, statistical optimization
techniques and mathematical modeling approaches have been developed over the years. In this
paper, an overview of optimization and mathematical modeling approaches in the field of composting
processes is presented. The advantages and limitations of optimization and mathematical modeling
for improving composting processes are also addressed.

Keywords: composting; optimization; mathematical modeling

1. Introduction

The steady growth of industrial production and trade in many countries of the world
has led to a rapid increase in the generation of municipal and industrial waste in the
last decade [1]. About 50% of the waste generated worldwide consists of organic matter,
generally from food, human and animal waste, garden and wood products [2]. A significant
portion of this waste ends up in landfills and, if not properly treated, can pose a significant
threat to the environment and human health [3]. The main producers are the agriculture
and food sectors. Their waste can be used as a raw material to produce high value-added
products, opening up a range of opportunities for sustainable production [4].

The treatment and disposal of waste is a very important and urgent issue, especially
for local authorities who have to deal with this problem within their jurisdiction. Of
course, many different strategies have been proposed to try to counteract and reduce waste
production, such as composting [5] or anaerobic digestion. Anaerobic digestion has been
suggested as an alternative method for high organic content waste. This method involves
the degradation of organic matter without the presence of oxygen producing a potential
energy source such as power generation or fuel gas [6]. Composting is an environmentally
friendly and cost-effective substitute for processing organic waste and converting it into
organic fertilizer. It is a biological process in which the polymeric waste materials contained
in organic waste are degraded by the accelerated growth of fungi and bacteria [2,7]. In
fact, it is a very complicated mechanism involving a variety of processes (microbiologi-
cal, physicochemical and thermodynamic), all of which seem to be interrelated [8]. The
products of the composting process are carbon dioxide and stable carbon forms that lead
to the decomposition and mineralization of organic matter and the production of humic
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substances [7]. During the composting process, microorganisms release heat and energy as
they decompose material. The heat generated increases the temperature of the compost pile,
which ensures the inactivation of pathogenic microorganisms. For this reason, measuring
the temperature of the pile is very important in evaluating the composting process [9]. The
performance of the composting process is influenced by factors such as temperature, pH,
moisture content, C/N ratio, particle size, nutrient content and oxygen supply [7,10,11].
The listed process variables can change frequently during the composting process. The
largest and most significant temperature variation is observed during the thermophilic
phase of the process. The changes in pH during composting are related to the proliferation
of microorganisms. In addition, moisture content has a significant effect on the physical and
chemical properties of the composting substrate. The C/N ratio and aeration are also very
important for the multiplication of microorganisms [10]. Thus, to achieve maximum effi-
ciency in composting, all these factors and their interactions must be considered. To obtain
a respectable and highly stabilized compost, the working conditions must be optimized,
which is crucial for setting up processes and improving their efficiency. Optimization is
very important to ensure good quality of the final product by performing the process under
experimental conditions that are the most suitable for specific phenomena taking place dur-
ing the composting. For example, the optimization of the compost maturity (expressed as
pH, or electrical conductivity, final C/N ration, germination index or ash content) requires
appropriate set-up design of C/N ratio, moisture content, and aeration rate to ensure the
conditions suitable for the microbial population growth which controls the organic matter
degradation and, respectively, compost maturity [11,12]. Different optimization approaches
have been described in the literature. For example, single-factor optimization has been used
to determine the best process conditions [13,14], but this approach is imprecise and may
lead to misinterpretation of data; it also does not illustrate the interacting effects of variables
and does not ensure the selection of optimal conditions. On the other hand, statistics-based
experimental designs allows simultaneous analysis of all variables affecting the process
as well as their interactions. This approach saves time and reduces errors in detecting the
interaction of process parameters and has recently been published in the literature [15–20].

A poorly performed composting process results in an insufficiently stabilized organic
matter or immature compost, which can affect the soil environment and plant growth, be a
source of disease, and cause damage to crops through phytotoxicity [21]. The quality of
compost is related to its stability and maturity. Stability is a term that refers to the resistance
of a product’s organic matter to extensive degradation or to greater microbiological activity,
while maturity describes the ability of a product to be used effectively in agriculture and is
related to plant growth and phytotoxicity aspects. Many physical, chemical and biological
tests have been proposed to evaluate the stability and maturity of compost, but there is still
no single accepted test to evaluate both parameters [22] that would provide the information
necessary for process control.

Composting is a dynamic process characterized by a large number of interrelated
effects. The main phases of composting are shown in a following graph (Figure 1). In
the first phase (mesophilic phase), energy-rich, easily degradable compounds such as
sugars and proteins are degraded by fungi, actinobacteria and bacteria. The increase in a
temperature higher than 45 ◦C leads to another composting phase called the thermophilic
phase which is important because of the elimination of pathogens, parasites and ensures
maximal sanitary conditions. The mesophilic microorganisms are replaced by thermophilic
because they are adapted to higher temperatures and they are degrading more complex
compounds. Compost temperature must not exceed 65 ◦C as this would destroy almost
all microorganisms and cause enzyme denaturation which can lead to the end of the
composting process. When the activity of the thermophilic microorganisms decreases
due to the exhaustion of the substrate, the temperature starts to decrease. That is the
beginning of the second mesophilic phase which is characterized by an increasing number
of organisms that degrade starch or cellulose. In the maturation phase, the compost pile
is stabilized for plant use and the proportion of fungi increases, while bacterial numbers

140



Processes 2022, 10, 229

decline. Also, during the maturation phase are formed compounds that are not further
degradable, such as lignin-humus complexes [12,23]. Bacteria, fungi, and actinomycetes
degrade organic materials, resulting in compositional change and release of energy and
water during the composting process.

Figure 1. The main phases during the composting process (according to [24]).

As mentioned, composting is a highly complex process including numerous inter-
connected physical, chemical and biological phenomena. The particular connections are
frequently non-linear and, therefore, numerous effects have to studied booth experimentally
and theoretically. Therefore, mathematical modeling tools can be useful for interpretation
of the complex dynamic interactions and for the development of the logical process design
framework [25]. Mathematical models have been extensively used to gain valuable insights
into the composting process [26–29]. Mathematical models of the composting process
assist getting information on how different process variables and conditions like substrate
composition, oxygen concentration, pollutants concentrations, composting duration, tem-
perature and etc. effect the compost quality during the process [8]. Furthermore, as noted
by Mason [30], mathematical models can reduce or even replace the need for experimental
work when investigating novel processes. Considering the difficulties and costs associated
with conducting laboratory and pilot experiments, it is desirable to improve the ability to
study novel processes using models. To describe the composition process, the model must
include the kinetics of the process as well as the mass and heat balances [2].

In this paper, an overview of optimization and mathematical modeling approaches in
the field of composting processes is presented.

2. Literature Search

A comprehensive systematic review of the important scientific articles was conducted
using the core collection in the Web of Science database for the period of the last 21 years
(period from 2000 to 2021). The keywords “composting” and “optimization” and “compost-
ing” and “mathematical modeling” were used to search the title and abstract of the articles.
Only indexed papers were selected for further analysis. For the field of optimization there
were 77 articles, for the field of modeling a total of 222 articles.

3. Optimization of Composting Process

The estimation of optimal process parameters using practical and reliable models
is still difficult and challenging and, therefore, multi-response optimization approaches
have seen substantial growth and extension over the years [31]. According to Šibalija and
Majstorović [32], optimization methods can be divided as follows:
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a. Conventional (statistical or mathematical based) method:

i. Iterative search techniques;
ii. Experimental design:

1. Method based on response surface methodology;
2. Methods based on factorial design;
3. Methods based on Taguchi design.

b. Non-conventional (artificial intelligence based) methods:

i. Method based on fuzzy logic;
ii. Methods based on artificial neural networks;
iii. Methods based on metaheuristic algorithms:

1. Genetic algorithm;
2. Simulated annealing;
3. Particle swarm optimization;
4. Ant colony optimization;
5. Tabu search;
6. Artificial bee colony algorithm;
7. Biogeography-based optimization;
8. Teaching-learning based optimization.

iv. Methods based on expert systems.

In the literature, there are several optimization strategies for the composting process.
Statistical optimization methods based on design of experiments and artificial neural
network modeling are the mostly used [11].

3.1. Statistical Design of Experiments

When designing or developing complex products or processes, multiple responses
have to be considered simultaneously [33] and the term “optimization” in this context
refers to increasing process productivity or improving product characteristics [34]. In order
to achieve process optimization, detailed knowledge of process performance is required,
which is why precise procedures are needed for experiments. The process of preparing
and conducting an experiment so that appropriate data can be collected and analyzed
using statistical methods to derive relevant conclusions from the experimental data while
reducing the number of experiments is referred to as statistical design of experiments
(DOE) [35]. Multivariate experimental design is an effective tool to improve the quality of
information obtained from an investigation while reducing the number of experiments to
be performed [36]. According to Said and Amin [36], process optimization using statistical
design of experiments can be divided into three steps:

(i) experimental design;
(ii) model development to describe the experimental data using statistics and regression

analysis; and
(iii) process optimization.

DOE optimization efficiently explores the space of the system under study at different
sample points, which reduces the computational cost and facilitates the analysis.

Design of experiments is an effective analytical method for modeling and analyzing
the effects of control elements on performance outcomes. The typical experimental de-
sign is challenging, especially when you are working with a large number of trials and
an increasing number of process variables. Selecting the most important process vari-
ables is the most important step in experimental design [37]. DOEs come in a variety
of forms, including full factorial, fractional factorial, Placket–Burman, central composite
design, Box–Behnken, Taguchi, and others [38]. The type of DOE is chosen based on the
objectives of the experiments and the set of variables to be studied [39,40]. For example,
the randomized complete block design (RCBD) approach is used to optimize only one
fundamental element that is expected to be the most influential parameter for variation
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in a process [39,40]. A full factorial experimental design ensures that all factorial effects
can be determined separately by conducting 2k trials (k is the number of factors studied).
However, it is not ideal in practice that the number of experiments required increases with
increasing number of factors [41]. Full factorial experimental designs can be simplified by
using fractional factorial experimental designs, where only the factor-specific effects are
examined. An example of a fractional factorial design is 2(k-p) (p is the proportion of the
design to be created) [42]. There are two types of fractional factorial experimental designs:
regular and non-regular. Regular fractional factorial designs are generated by detecting
associations between variables, although non-regular fractional factorial designs, such
as Placket–Burmann designs, are occasionally used in investigative studies because they
have a small run [43]. Moreover, response surface designs are limited to eight variables
and are only accessible to continuous factors, while the Taguchi robust experiment design
is based on the fractional factorial design and includes orthogonal designs [39,40]. By
definition, the Taguchi method is an experimental methodology that reduces the number
of experiments by using orthogonal arrangements and limiting the influence of control
variables. The Taguchi method is an approach that involves a plan of experiments with the
aim of obtaining data in a controlled manner, performing these tests, and analyzing the
data to gain knowledge about the behavior of the given process [37,44].

3.2. Application of Optimization Methodology in Composting Processes

The application of the optimization methodology in the composting process over the
last 20 years is shown in Figure 2 and Table 1. It can be seen that the interest in this field
has increased especially in the last 6 years probably due to growing interest in sustainable
waste treatment

 
Figure 2. Number of publications on composting optimization in Web of Science database.
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The analysis of the optimization methods presented in Table 1 shows that different
experimental designs (central composite experimental design, full factorial experimental
design, Box–Behnken experimental design, etc.) have been used for the analysis of the
composting process during the last 15 years. However, it should be emphasized that
most of the optimization procedures presented were carried out using the one-factor-
at-a-time method. The one-factor-at-a-time method was used by Waqas et al. [54] and
Chaher et al. [56] for the composting of food waste using in-vessel compost bioreactor
by adding biochar prepared from lawn waste. The results showed that the addition of
biochar improved the composting process and also the physiochemical properties of the
final compost. The quality of the compost was evaluated using stabilization indicators such
as moisture content, electrical conductivity, organic matter decomposition, change in total
carbon and concentration of mineral nitrogen expressed as ammonium and nitrate. The
same approach was described by Waqas et al. [57] for optimizing food waste composting
by adding zeolites. The authors investigated the effects of natural zeolite and modified
zeolite on the stability of compost produced in a bioreactor. Their results showed that
modified zeolite significantly affected the compost properties (moisture content, electrical
conductivity, organic matter, total carbon, mineral nitrogen, nitrification index, germination
index). Bian et al. [58] also applied the one-factor-at-a-time method for agricultural waste
composting with chicken manure, vegetable leaves and rice husks. The duration of thermal
phase and conversion time on moisture, nutrients, carbon content and C/N ratio of compost
were analyzed by seven composting experiments in a batch composter. Zhang et al. [59]
investigated the influence of turning frequency, straw and microbial inoculum on the
efficiency of dairy manure composting in a field composting process. Data variance analysis
(ANOVA) and non-parametric Spearman correlations were applied to analyze the effects of
each process variable on compost temperature, water content, and pH. Their results showed
that to improve composting, the frequency of turning, the addition of straw and microbial
inoculum at low temperatures (T < 0 ◦C, winter period of composting) must be adjusted.
The analyzed results showed that the ratio of dairy manure to straw 2:1 (v:v), 4 days of
turning and the addition of 1.3 L/t of inoculum were ideal for rapid heating and long
duration of the thermophilic stage. The same approach, one-factor-at-a-time optimization,
was used by Tabrika et al. [60] to optimize the composition of compost mixtures (tomato
waste, olive pumice, sheep manure, chicken manure and sawdust). Their results indicate
that the use of sheep manure and olive pumice improved the composting process of tomato
waste. Lew et al. [61] optimized the temperature, moisture content, humidity and volume
of liquid phase during composting of food waste in a smart bokashi composting system by
also using a factor-by-time approach. Li et al. [62] estimated the optimal concentration of
fulvic acid to improve the composting of straw and fungal residues based on the ANOVA
analyzes of the experimental data, while Song et al. [63] used ANOVA analyses of the
experimental data for optimization of the composting of food waste.

As described in the literature, statistical and mathematical optimization methods
enable a statistically designed experiment that is cost-effective and allows analysis of the
interactions between process variables. Sharma et al. [64] used a central composite design
and response surface methodology to optimize floral waste composting. The floral wastes
were composted using the stirred pile method with the addition of cow dung as inoculum
origin and the stability and maturity of the compost was evaluated by pH, total organic
carbon, electrical conductivity, ammonium nitrogen. C/N ratio, phosphorus, sodium,
germination index, potassium and carbon dioxide production. The results obtained showed
that second order polynomial equations can adequately describe the experimental data
based on the input variables of the model (mass of floral waste and mass of cow dung). In
the work of Calabi-Floody et al. [65], a three-level factorial design was used to evaluate the
effects of three process variables (particle size, nitrogen addition, and Trichoderma harzianum
inoculum concentration) on wheat straw composting. According to the results presented
with the use of ANOVA, all three input variables and their interaction had a significant
effect on the composting process. Multi-response optimization was used to investigate
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the effectiveness of the composting process to determine the technique most suitable to
modify the wheat straw. It was found that the decrease in particle size has positive effect
on the water holding capacity. Ajmal et al. [40] used Taguchi design method to optimize
the temperature and time for composting process of agricultural wastes (poultry manure,
vegetable wastes and rice straw) in vessels. They showed that performing the composting
process under optimal conditions reduces the production of undesirable by-products.
Moreover, Ajmal et al. [66] used Taguchi experimental design to optimize C/N ratio in
agricultural waste composting based on composting temperature, composting time and
initial inoculum amount in nine independent composting experiments.

Roman et al. [67] applied a Doehlert matrix experimental design (three variables at
three levels) to evaluate the influence of hydrotreatment time, initial compost mass and
hydrotreatment temperature on the municipal solid waste (MSW) composting process
(total organic carbon, conductivity, liquid fraction volume and solid fraction carbon were
the initial variables of the process) in 15 independent experiments simultaneously. From
the experiments conducted, it was concluded that compost volume was the most important
variable for the composting process. Gao et al. [19] applied simplex centroid design and
response surface modeling followed by analysis of variance to optimize the composition of
composting mixtures (pig manure, human feces, rice straw, and kitchen waste). In addition,
Sokač et al. [24], presented the efficient use of the Box–Behnken experimental design (four
variables at three levels) and response surface modelling (RSM) to optimize the composting
process of biowaste in an adiabatic reactor with and without bioaugmentation. In addition
to the optimization of the composting process, there are also examples of the application of
the response surface methodology to optimize soil nutrient quality after compost addition
(4–45% of compost based on soil weight) [60] and the application of RSM and artificial
neural network (ANN) modeling to optimize the adsorption efficiency of municipal solid
waste compost for the removal of reactive dyes from aqueous mixtures [61]. The results
presented by Mazumder et al. [68] showed that higher compost addition (>15%) increased
the amount of nutrients in the soil over time, while Dehghani et al. [69] stated that both
RSM modeling and ANN modeling have a significant ability to describe and optimize the
adsorption mechanisms.

Considering that the relationships between variables affecting the composting process
are mostly highly non-linear, it is necessary to use a non-linear modeling approach such
as artificial neural networks. This methodology has been described by Soto-Paz et al. [70]
for optimizing the composting of a mixture of biowaste and sugarcane filter cake. The
effects of mixing ratio and rotation frequency were modeled using the ANN model and the
optimal process settings were estimated using the particle swarm optimization algorithm.
Aycan Duemenci et al. [20] modeled and optimized the composting of olive mill waste
with the addition of five natural minerals using the ANN method with high precision.
An efficient application of machine learning based optimization was also reported by
Yamawaki et al. [71] for the degradation of bio-based plastics in the compost pile, where
the developed models predicted with high accuracy the molecular weight of biopolymers
based on the moisture content of compost, composting time, degree of crystallinity of
biopolymers in the pretreatment phase, and nuclear magnetic resonance spectra of the solid
phase of composting, and by Golbaz et al. [72] for the development of an optimal primary
composite for composting based on the wet weight of the sludge cake, the concentration
of volatile solids in the dry solids, the sludge density, the Kjeldahl nitrogen amount of the
dry solids in the sludge cake, the Kjeldahl nitrogen amount of the material for mixture
modification, the Kjeldahl nitrogen concentration of the filler component, and the Kjeldahl
nitrogen concentration of the recycled components in the sludge as input variables of the
model. Another example of the efficient use of ANN modeling to optimize the composting
process was given by Dragoi et al. [73]. They presented a method for developing the ANN
model for predicting the change in total concentration of petroleum hydrocarbons and
organic carbon during the composting process of oily sludge.
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Taking into account listed results it can be noticed that there is potential of usage
optimization methodology in the composting process. But there are still some limitations
especially regarding to optimization based on design of experiments. According to Deaconu
and Coleman [74] the major limitations of DOE are its degree of difficulty and number
of experiments that must be undertaken to achieve statistical differences. Other issues
include inability to manage specific variables (running the experiments with variables that
will never yield an optimum value), difficulties recognizing all of the variables’ impact on
the process, and non-linearity between the variables which makes the interpretation of
the interactions difficulty. So mentioned disadvantages tent to restrict how often DOE is
employed in process optimization.

4. Mathematical Modeling of Composting Process

4.1. Some Basic Principles of Composting Process Modeling

Composting is a complicated bioprocess that involves several physical and biological
processes. These interrelated and often highly non-linear processes produce a variety of
phenomena that are difficult to study experimentally and analytically. Therefore, mathemat-
ical modeling can be useful for approximating the complex dynamic interplay that occurs
during composting [75]. Mathematical modeling allows us to improve our knowledge of
the process, reduce the time and energy required for experimental optimization, and enable
computational simulations and development of process improvements [2]. According to
Hangos and Cameron [76], mathematical models can be classified:

(i) based on variables properties as deterministic (model variables are well known) and
stochastic (model variables are random);

(ii) based on deepened variable and their dependence on spatial position as lumped and
distributed model;

(iii) based on mathematical description of the process as continuous and discrete;
(iv) based on mathematical structure as linear and non-linear.

Furthermore, due to their complexity mathematical model describing environmental
process can be classified as:

(i) mechanistic (white box) models are developed when all required data about process
mechanisms are gathered;

(ii) empirical (black box) models are developed when only experimental data are available
and without understanding the mechanism in the process; and

(iii) combined (gray box) models [77].

Systematically, composting is a three-phase process: solid phase (solid composting
substrate), liquid phase and gas (air) [40]. Thus, it is a great challenge to describe all the
changes that take place in each phase and also between the different phases. As described
in detail by Mason [30], mathematical models of the composting process usually include dy-
namic heat and mass balances and the microorganisms’ growth. Growth of microorganisms
during the composting process is usually described by first-order kinetics, Monod kinetics
or empirical expressions developed for the specific set of experimental data. In addition to
Mason [30], Li et al. [10] reviewed the key variables affecting the food waste composting
process and modeling approaches for describing the phenomena occurring during com-
posting. In addition, Walling et al. [2], Ajmal et al. [8] and Yang et al. [13] also reviewed
the application of mathematical modeling in the composting process. Walling et al. [2]
discussed in detail the current limitations of the developed mathematical model and which
aspects should be further researched and developed. On the other hand, Ajmal et al. [8]
reviewed with special emphasis on the models describing the heat exchange during the
process and Yang et al. [13] with special emphasis on the changes of carbon, nitrogen,
phosphorus and potassium during the composting process.
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4.2. Application of Mathematical Modeling in Composting Process

The growing interest in using of mathematical modeling in the field of composting is
evident from the analysis of the data presented in Figure 3. It can be seen that the number
of papers published using this method has increased steadily over the last 20 years. The
increase in publications is mainly observed from 2016 to date.

 
Figure 3. Number of publications on composting modeling in Web of Science.

Some specific characteristics and a brief description of some of the models used to
describe the composting process from 2010 to 2021 can be found in Table 2. Based on the
models presented, it can be seen that different modeling approaches have been used over
the years.

There are examples of the use of simple empirical models [101], dynamic models [89–95]
and artificial neural network models [88]. In general, simple empirical models are insuf-
ficient for simulating complex nonlinear dynamic processes. This is especially expressed
when the analyzed process includes many performance modes with very different charac-
teristics. Therefore, the fuzzy logic modeling approach was implemented to overcome the
aforementioned limitations. As presented by Giusti and Marsili-Libelli [102], fuzzy logic
modeling is very efficient for describing heat exchanges during the composting process.
Moreover, Alavi et al. [103] applied kinetic modeling (first-order kinetic model was used for
tetracycline degradation) and highly non-linear modeling with machine learning (artificial
neural network modeling) to describe tetracycline elimination from chicken manure during
co-composting with bagasse. The applicability of modeling from ANN was also confirmed
by Roohi et al. [104] for planning phytoremediation of chromium- and zinc-contaminated
soils by Bromus tomentellus with household waste compost and by Alavi et al. [105] for
modeling the Elector–Fenton processing of compost leachate.
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Analyzing the data in Table 2, it can also be noted that there are numerous research
on the development of integrated models [89–93,96,98,100]. The integrated modeling ap-
proach aims to simultaneously describe and predict the physical, chemical and biochemical
processes occurring during the composting process based on independent data sets. The
described approach was also used by Vidriales-Escobar et al. [106] to model the composting
mechanism in a tubular reactor. It is a two-phase model (gas phase for oxygen supply
and solid phase containing the substrate for degradation) in the form of partial differential
equations describing the temporal and spatial changes of selected variables. According to
the authors, the presented model can represent with high precision the dynamic changes of
temperature and oxygen in the gas phase, as well as the temporal changes of temperature,
substrate and microbial biomass. Rentería-Tamayo et al. [107] also used a two-phase model
for aerobic composting of sewage sludge, wood chips and grass in a tubular reactor. The
aforementioned mathematical model described the growth of microorganisms (Contois
kinetic model), substrate consumption, oxygen and heat exchange in terms of partial differ-
ential equations. Alternatively, Luangwilai et al. [108] proposed a one-dimensional model
for the change in energy, oxygen, steam and liquid water during composting in the compost
pile, while He et al. [26] used a three-dimensional approach to describe the temporal and
spatial variations in temperature and oxygen concentrations during aerobic composting.
The importance of oxygen concentration variation during aerobic composting of organic
waste was also modeled by Martalo et al. [109]. Their model described the composting
process in the biocell, which is a closed system with no interaction with the surrounding
environment. The proposed model described aerobic degradation of dispersible substrate
by aerobic bacteria, conversion of insoluble substrate to soluble and biomass degradation in
terms of differential equations. Sokač et al. [24] described the adiabatic composting process
of organic waste composting by a mass balance and by heat balance. Their results showed
that the model used can describe the three temperature phases (mesophilic, thermophilic
and cooling phase) of the composting process. As the number of model variables increases,
the complexity of the model also increases. For the practical application of the model, it
is certainly better to use the simplest possible model. Considering this fact, Walling and
Vaneeckhaute [110], analyzed the applicability of six different modeling approaches to
describe the composting process based only on the substrate decomposition rate without
considering temperature, moisture and oxygen concentration.

Tsiodra et al. [111] created a dynamic model to describe the composting of olive
mill waste with particular emphasis on the degradation of fats and oils and the influ-
ence of oxygen on process efficiency, while Sable et al. [112] modeled the degradation
of polypropylene/polylactide/nanoclay blends/composite films in the co-composting of
MSW and used first-order kinetics to describe polymer film degradation. In addition,
Sable et al. [113] created a mathematical model to describe the biodegradation of acrylic
acid-grafted polypropylene in the composting process using mass balances for carbon
and carbon dioxide. The analyzed polymer degradation was described by the Komilis
model with apartment lag phase with high accuracy. Ebrahimzadeh et al. [114] analyzed
the kinetics of the kitchen waste composting mechanism. The experimental data on the
change of volatile solids over time of the composting process were fitted to the zero-order
kinetic model, first-order kinetic model, second-order kinetic model and nth-order kinetics.
The results showed that the zero-order kinetics was the most suitable for describing the
composting dynamics in a non-aerated reactor, while the nth-order kinetics was selected for
describing the composting dynamics with aeration. Samaei et al. [115] constrain and discrimi-
nate hexadecane-degrading bacteria from compost produced from food waste, paper waste,
garden waste, and organic material from municipal facilities. They modeled n-hexadecane
degradation by zero-order kinetics, first-order kinetics, and first-order pseudokinetics.

On the other hand, Rafiee et al. [116] developed a mass balance model to describe the
composting of organic waste (vegetable waste, fruit waste and food scraps). The developed
model was successfully validated for predicting anaerobic digestion rate, methane oxidation
and composting rate. In addition, Toledo et al. [117] used statistical modeling methods to
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predict odor emissions during composting of sewage sludge and olive leaves. The proposed
model described the relationship between microbial growth and odor emission considering
weather conditions (wind and temperature) at the composting pile. Ghinea et al. [118]
also applied an efficient statistical regression method to build a model to describe food
waste composting, while Soto-Paz et al. [119] applied integrated hierarchy-based modeling
to select the optimal fillers and substances for process improvement. Wang et al. [120]
created a three-phase nonlinear statistical model to analyze the thermal inactivation of
pathogenic microorganisms in chicken litter compost, while Calisti et al. [121] used a linear
programming algorithm to develop a new software tool for planning composting mixtures
based on the physicochemical properties of the substrate (moisture, C/N ratio, C/N ratio
availability, bulk density, and pH) and raw material cost. In developing the new software
tool, the authors assumed that all available raw materials would be used as much as possi-
ble and also proposed a successful minimization of the production cost of the composting
mixture. Sobieraj et al. [122] created a model to predict carbon monoxide accumulation
during composting of organic waste (dairy manure, grass clippings and pine sawdust) in
a horizontal static bioreactor. The first-order kinetic model was used to describe carbon
monoxide formation during the composting process. The effect of composting temperature
on carbon monoxide production rate was modeled using a polynomial regression expres-
sion and a Gompertz exponential model. The obtained result allowed to adjust the air flow
rate to the value required to keep the carbon monoxide concentration below the maximum
recommended concentration (<100 ppm). A very interesting approach to the analysis and
monitoring of the composting process was presented by Wojcieszak et al. [123], where
image analysis of compost samples was applied in conjunction with modeling ANN. The
developed ANN models were able to determine the dry matter and dry organic matter
of compost with high accuracy. The presented approach certainly has the potential for
practical application, considering the reduction of analytical methods required for compost
properties analysis. Based on the literature review presented, it can be concluded that
mathematical modeling is of great importance for the composting process, but there are
still some limitations. The most important one is the inability to develop generalize kinetic
model of substrate biodegradation. For this reason, most of the developed models can
only be used to describe the composting of the particular waste material. In addition, the
complexity of the models also affects their applicability.

5. Conclusions

In this paper, an overview of optimization and modeling methods or approaches for
the improvement of the composting process is presented. The operational performance
of the composting process is determined by numerous variables such as temperature, pH,
moisture content, C/N ratio, etc. To achieve optimal composting efficiency, all these vari-
ables and their relationships must be considered simultaneously. This can be achieved by
using optimization and modeling tools, which ensure precise and controlled experimental
design and data analysis, and allow the study of complex phenomena without extensive
experimentation. From the results presented, it can be concluded that both optimization
and mathematical modeling have significant potential to improve process conditions and
intensify the composting process, respectively. Currently, many researchers are engaged
in the development of integral models of the composting process, capable of describing
and accurately predicting all physicochemical and biochemical changes that occur during
composting. An acceptable model must provide a description of the multiphase process,
but also be robust and applicable to different process conditions.
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Vuković Domonac, M.; Zelić, B. An enhanced composting process with bioaugmentation: Mathematical modelling and process
optimization. Waste Manag. Res. 2021, 2021, 1–9. [CrossRef]
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Abstract: In this paper, we investigate the problem of species separation in minimal time. Droop
model is considered to describe the evolution of two distinct populations of microorganisms that
are in competition for the same resource in a photobioreactor. We focus on an optimal control
problem (OCP) subject to a five-dimensional controlled system in which the control represents the
dilution rate of the chemostat. The objective is to select the desired species in minimal-time and to
synthesize an optimal feedback control. This is a very challenging issue, since we are are dealing
with a ten-dimensional optimality system. We provide properties of optimal controls allowing the
strain of interest to dominate the population. Our analysis is based on the Pontryagin Maximum
Principle (PMP), along with a thorough study of singular arcs that is crucial in the synthesis of
optimal controls. These theoretical results are also extensively illustrated and validated using a direct
method in optimal control (via the Bocop software for numerically solving optimal control problems).
The approach is illustrated with numerical examples with microalgae, reflecting the complexity of
the optimal control structure and the richness of the dynamical behavior.

Keywords: optimal control; modelling; microalgae; chemostat; nonlinear control; Pontryagin’s
principle; singular control; Droop model; photobioreactor

1. Introduction

The interaction between species coexisting in an ecosystem is complex and affected
by external factors. Depending on their environment, some species will dominate, while
others, less adapted, will progressively decline. This Darwinian pressure, when it can be
manipulated [1], provides the opportunity of guiding the evolution of species of interest.
This concept can be applied to artificial ecosystems to select individuals with a desired trait.
Here, we focus on microalgae, unicellular photosynthetic microorganisms with promising
potential for industrial applications [2,3]. The great biodiversity of microalgae opens the
door for a large range of applications [4]. They are grown for their pigments, antioxidants or
essential fatty acids [5], and, over the longer term, their efficient way of producing proteins,
bricks for green chemistry, biofuel and CO2 mitigation [2,6,7]. To date, microalgae do not
have the place they deserve in biotechnology (see, e.g., [8–10]) and many optimization
steps must be carried out to improve the economic and environmental performances of
these processes at a large scale [6,11]. Currently, only wild organisms sampled in nature
are used on an industrial scale. One of the key challenges is to improve the productivity of
these strains.

Species in agriculture have been improved after centuries of selection and hybridiza-
tion. The objective of this work is to develop an alternative approach adapted to microor-
ganisms to select, on a shorter time scale, more productive microalgae strains, by Darwinian
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pressure. The idea is based on the competitive exclusion principle in a continuous reac-
tor [12] stating that the species which more efficiently uses the available resources will win
the competition. The conditions for a bacterial or microalgal species to win the competition
for a limiting substrate have been well established, and the outcome of the competition is
known to depend on the minimum requested substrate to support a growth rate equal to
the dilution rate [12,13].

Experimental works for maintaining a long-term selection process to favour indi-
viduals of interest have already been carried out [14,15]. Since the experiments can last
several months or several years, these approaches are costly in time. There is a margin of
improvement by applying optimal control theory [16] to enhance the selection process for
N strains competing for the same resource (the control parameter being the dilution rate).

One main issue is to decrease the operating time when the species of interest starts
to dominate. Several works addressed the question of improving the selection process in
minimal time in the case of the chemostat system with Monod’s laws [17,18]. Microalgae
are more complicated microorganisms better represented by the Droop model, taking into
account the internal accumulation of the limiting nutrient [19,20]. Such a model for two
strains in competition leads to a five-dimensional problem. The minimal time selection
problem with this model is the main focus of the paper. It has been tackled in [21,22]
after a simplification allowing for reducing the model dimension. This necessitated to
oversimplify the initial dynamics which can play a role in the minimal time selection.

Optimal control [23] strategies ensuring the domination of the strain of interest are
derived using the Pontryagin maximum principle [24]. Since the system is affine w.r.t. the
control, we obtain various possible structures for an optimal control, namely, the concate-
nation of several bang arcs or of a bang arc with a singular arc of first order satisfying
Legendre–Clebsch’s condition. The paper is structured as follows: in Section 2, we intro-
duce the model and present the optimal control problem. We also prove the reachability
of the target set. In Section 3, we make explicit the necessary conditions provided by the
Pontryagin Maximum Principle and we introduce properties of the switching function.
A thorough study of singular arcs is provided in Section 4 thanks to geometrical control
theory. The paper is concluded with numerical simulations of optimal strategies using a
direct method in Section 5.

2. The Optimal Control Problem (OCP)

2.1. Droop Model and Main Assumptions

We consider the Droop model [19]. This emblematic variable yield model represents
the growth rate of microorganims which can intracellularly store nutrients. When two
strains are in competition, it results in a five-dimensional system. The growth of each strain
depends on the intracellular quota-storage (q-variable) of the limiting nutrient (s-variable).
More precisely, when two species/strains, of biomass concentrations x1 and x2 are compet-
ing for one limiting nutrient s in the bioreactor, the Droop model reads as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡ = (sin − s)D(t)− ρ1(s)x1 − ρ2(s)x2,

q̇1 = ρ1(s)− μ1(q1)q1,

ẋ1 = [μ1(q1)− D(t)]x1,

q̇2 = ρ2(s)− μ2(q2)q2,

ẋ2 = [μ2(q2)− D(t)]x2,

(1)

where qi is the quota storage of the i-th species and sin is the input substrate concen-
tration. The dilution rate D(·) is a bounded non-negative control function such that
D(t) ∈ [0, Dmax], where Dmax > 0 is the maximal admissible value of the dilution rate,
above the maximum actual growth rates [22] (this will be made more precise in Section 2.3)
of the two species as shown in Figure 1. In addition, for i = 1, 2, ρi is a non-negative func-
tion representing the rate of substrate absorption, i.e., the uptake rate of the free nutrient
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s, and μi is also a non-negative function representing the growth rate of the i-th species
(see [25]).

Following for instance [25], we suppose that the uptake rates ρi(s) are expressed as,

ρi(s) =
ρmi s

Ki + s
, (2)

which corresponds to Michaelis–Menten’s kinetics. Here, the parameters Ki and ρmi are
positive, i = 1, 2. In addition, we assume that, for i = 1, 2, there is ki > 0 such that
cell division does not occur if k < ki. Concerning the Droop model, the kinetics μi are
defined by ∣∣∣∣∣∣

μi(qi) = 0, 0 ≤ qi ≤ ki,

μi(qi) = μi∞

(
1− ki

qi

)
, ki ≤ qi.

(3)

In addition, for i = 1, 2, let Mi stand for,

Mi := sup
s∈[0,sin ]

ρi(s) = ρi(sin) < ρmi ,

and let q̄1,q̄2 be such that μi(q̄i)q̄i = Mi, i = 1, 2 (observe that q̄1, q̄2 are uniquely defined).
Thus, one has,

ρi(sin) = μi(q̄i)q̄i.

System (1) satisfies the following invariance property.

Proposition 1. For every qm1 ≥ q̄1, and for every qm2 ≥ q̄2, the set

Ω := (0, sin)× [k1, qm1 ]×R
∗
+ × [k2, qm2 ]×R

∗
+, (4)

is forward invariant by (1).

Proof. First, observe that, for i = 1, 2, xi never vanishes whenever x0
i = xi(0) > 0. Now,

(0, sin) is clearly invariant by the dynamics of s(·) since ṡ ≥ 0 (resp. ṡ ≤ 0) whenever s = 0
(resp. s = sin). Similarly, for i = 1, 2:

qi = ki ⇒ q̇i = ρi(s) > 0,
qi = qmi ⇒ q̇i ≤ Mi − μi(qmi )qmi ≤ 0,

where the last inequality follows from the choice of Mi and the fact that qmi ≥ q̄i, i = 1, 2.
This ends the proof.

The parameter qmi represents the maximum internal storage quota. Since Ω is invariant
by (1) (Proposition 1), we notice that q̄i stands for the effective maximum internal storage quota
for s ∈ (0, sin). Thus, in the sequel, we consider without loss of generality that qmi = q̄i for
i = 1, 2. In the sequel, we also assume that ρ1, ρ2 fulfill the following hypothesis:

Assumption 1. The affinity of species 1 for the substrate is higher than the one of species 2,
i.e., Ks2 > Ks1 , or equivalently:

ρ′′2
ρ′2

>
ρ′′1
ρ′1

. (5)

From (2), we deduce that, for s ≥ 0,

ρ′′2 (s)ρ
′
1(s)− ρ′′1 (s)ρ

′
2(s) =

2K1K2ρm1 ρm2(K2 − K1)

(K1 + s)3(K2 + s)3 .

It means that species 1 with the lower Ki absorbs nutrients slightly faster.
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We are now in a position to formulate the OCP of interest.

2.2. Statement of the Optimal Control Problem (OCP)

In this work, we suppose that the first species (with biomass concentration x1) is the
one of interest. Our aim is to compute the best feeding strategy, that is, the optimal (dilution
rate) control function D(·), such that x1 becomes predominant in the photobioreactor in
minimal-time. This can be formulated and quantified in terms of the ratio between the two
competing species. Intuitively, we wish to find an adequate control strategy (if possible
optimal) D(·) for which, at the end of the process, we have x1

x2
� 1.

Firstly, the set of admissible controls is defined as,

D := {D : [0,+∞)→ [0, Dmax] ; D(·) ∈ L∞
loc(R+)},

where L∞
loc(R+) is the space of locally integrable functions on every compact on R+ and

Dmax > 0 is the maximum pump feeding capacity. In practice, Dmax is designed above the
maximum growth rates of the coexisting species (see Section 2.3).

To handle the selection process between the two species, let us define a subset T of
Ω as,

T := {X := (s, q1, x1, q2, x2) ∈ Ω ; x2 ≤ εx1}.

We choose the parameter ε > 0 such that ε � 1 in such a way to quantify the
contamination rate of the interesting strain x1. Whenever a trajectory reaches the target set
T , this means that the biomass of the first species is significantly greater than the other one
when reaching the target T at the terminal time (if possible).

Objective 1. The optimal control problem (OCP) can then be stated: determine a dilution-based
control strategy D(·) in such a way that trajectories of (1) starting from an initial condition within
the set Ω reach the target set T in minimal-time, i.e.,

inf
D∈D

tD
f s.t. X(tD

f ) ∈ T and X0 ∈ Ω, (6)

where X(·) is the unique solution of (1) associated with D(·) ∈ D such that X(0) = X0 ∈ Ω and
tD

f ∈ (0,+∞] is the first entry time of X(·) into the target set. In the sequel, we will use the simpler
notation t f instead of tD

f .

In other words, for every positive initial conditions X0 = (s0, q0
1, x0

1, q0
2, x0

2) such that
q0

i > ki, we are seeking an admissible control strategy D = DX0 ∈ D, steering the trajectory
X(t) of the system (1) from X0 to the target set T in minimal-time, for a fixed Dmax (Figure 1)
and a given contamination rate ε � 1. Note that, if one is able to synthesize such an optimal
control for every X0 ∈ Ω, then one is able to construct an optimal feedback control over Ω as
X0 �→ DX0(0). Such an optimal control problem falls into the class of minimal-time control
problems governed by a mono-input affine controlled system, for which the synthesis of an
optimal feedback control, thanks to geometric control theory, is a crucial (but also delicate)
issue. In particular, handling the high dimension of the Droop model in competition and
its resulting optimality system is challenging. Note also that the linearity of the problem
w.r.t. D (in contrast, for instance, with strictly convex cost functionals) leads to technicalities
because singular arcs usually occur in this setting, see Section 4.

2.3. Basic Properties

We now introduce the so-called actual growth rates. These key functions will have
an important role in the optimal separation strategy. For that, let us firstly start with the
following observations:

• The mapping ρi : [0, sin]→ [0, Mi] is one-to-one with Mi < ρmi ;
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• For every qi ∈ [ki, q̄i], one has qiμi(qi) ∈ [0, Mi] and qi �→ qiμi(qi) is one-to-one from
[ki, q̄i] into [0, Mi];

• It follows that the composition δi : [ki, q̄i]→ [0, sin] such that

δi(qi) := ρ−1
i (qiμi(qi)) =

Kiqiμi(qi)

ρmi − qiμi(qi)
, qi ∈ [ki, q̄i],

is well-defined and is also one-to-one;
• Hence, the mapping δ−1

i : [0, sin]→ [ki, q̄i] such that

δ−1
i (s) :=

kiKiμi∞ + (ρmi + μi∞ki)s
μi∞(Ki + s)

, s ∈ [0, sin],

is well-defined over [0, sin) with values in [ki, q̄i] and is one-to-one.

From these observations, one can immediately check that the mappings δi, i = 1, 2 and
δ−1

i are increasing.
Indeed, for i = 1, one can write δ−1

1 (s) = c1 +
c2

s+c3
with c1, c3 > 0 and

c2 := δ−1
i (s) = C + Ks1

[
kk1 μ1∞

k1μ1∞ + ρm1

− 1
]
< 0,

which implies that δ−1
i is increasing.

The actual growth rate of species i is then defined as the mapping μi ◦ δ−1
i ,

μi(δ
−1
i (s)) =

ρmi μi∞s
kiKiμi∞ + (ρmi + μi∞ki)s

, s ∈ [0, sin], i = 1, 2.

The resulting generic functions are illustrated in Figure 1: Let us now define,

Δ(s) := μ1(δ
−1
1 (s))− μ2(δ

−1
2 (s)), s ∈ [0, sin]. (7)

Throughout the paper, we suppose that Δ satisfies the following assumption.

Assumption 2. There is a unique ŝ ∈ (0, sin) such that Δ(s) > 0 for every s ∈ (0, ŝ) and
Δ(s) < 0 for every s ∈ (ŝ, sin). In addition, Δ has a unique maximum sc ∈ [0, ŝ].

Taking into account that Δ(ŝ) = 0, the inequalities satisfied by Δ according to
Assumption 2 can also be written:

Δ(s)(s− ŝ) < 0, s ∈ (0, sin)\{ŝ}.

If we assume that s is regulated to s∗(t) = sc using an appropriate control D, we notice
that the q-variables are regulated to some unique qic ∈ [ki, qmi], for i = 1, 2. The unique
point (sc, q1c, q2c), where sc ∈ [0, sin], plays a crucial role in the optimal control strategy of
(OCP) as discussed in Section 5. Finally, Dmax (the maximum dilution rate) is assumed to
be large enough in order to drive competition between the two species. More precisely, we
assume that Dmax satisfies the hypothesis:

Assumption 3. The maximal value of the dilution rate Dmax satisfies

∀s ∈ [0, sin], Dmax > max
(

μ1(δ
−1
1 (s)), μ2(δ

−1
2 (s))

)
.

These assumptions will ensure reachability (as detailed in the next section) of the
target T , and establishes a generic framework where both species may win the competition
for sufficiently large time (considering for instance various constant control parameters D
that favor species 1 or 2). Thus, under these considerations, we ensure the well-posedness
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of the optimal control problem of interest. In this general framework, the objective is then
to determine the optimal D that steers the trajectories in minimal-time to the desired target.

0
0

0
0

0

Figure 1. The illustrated absorption functions ρi and growth rates μi lead to a generic form of the
actual growth rates s �→ μi(δi(s)) where both species may win the competition. The maximum
dilution rate Dmax is a fixed constant value above the maximum of the functions s �→ μi(δi(s)) for
i = 1, 2, as stated in Assumption 3.

2.4. Reachability of the Target

Our next aim is to show that the target is reachable from every initial condition. First,
let us recall that the set

M := {X ∈ Ω ; x1q1 + x2q2 + s = sin} (8)

is an invariant and attractive manifold for (1) for a given persistently exciting control (i.e.,
an admissible control function D(·) such that

∫ +∞
0 D(t) dt = +∞).

Proposition 2. For every initial condition X0 ∈ Ω, there exists an admissible control D(·) and
a time te ≥ 0 such that X(te) ∈ T , where X(·) is the unique solution of (1), starting from X0,
associated with D(·).

Proof. Let s† ∈ (0, ŝ) and X0 ∈ Ω. Without any loss of generality, we may assume that
s(0) = s†. Indeed, observe that s = s† is not a steady-state of ṡ whenever D = 0 over R+ or
D = Dmax over R+. Thus, if we apply D = 0 (in that case ṡ < 0) or D = Dmax (in that case
ṡ > 0), then s(t) = s† is reached in a finite horizon. Consider the feedback control function,

D†(x1, x2) :=
ρ1(s†)x1 + ρ2(s†)x2

sin − s† ,

in such a way that the unique solution of (1) associated with this control satisfies s(t) = s†

for every time t ≥ 0 (Cauchy–Lipschitz’s Theorem). We claim that there exists t1 ≥ 0 large
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enough such that D†(x1(t), x2(t)) ∈ [0, Dmax] for every time t ≥ t1. Indeed, when t → +∞,
taking into account (8), it follows:

D†(x1(t), x2(t)) ∼ D̄(t) :=
ρ1(s†)x1(t) + ρ2(s†)x2(t)

x1(t)q1(t) + x2(t)q2(t)
.

Now, when t → +∞, it is easy to see that q1(t) converges to ρ1(s†)
μ∞

1
+ k1, since q1

satisfies the linear ODE q̇1 + μ∞
1 q1 = ρ1(s†) + μ∞

1 k1). At steady-state, we thus have

ρ1(s†) = q1μ1(q1).

In conclusion, when t → +∞,

D̄(t) ∼ q1μ1(q1((t))x1(t) + q2(t)μ2(q2(t))x2(t)
x1(t)q1(t) + x2(t)q2(t)

,

or, equivalently, using that, at steady state, s† = ρ−1
1 (q1μ1(q1)) that is, q1 = δ−1

i (s†), we
end up with

D̄(t) ∼ μ1(δ
−1
1 (s†))q1(t)x1(t) + μ2(δ

−1
2 (s†))q2(t)x2(t)

x1(t)q1(t) + x2(t)q2(t)
.

Thanks to Assumption 3, this last expression is upper bounded by Dmax for t large
enough, which proves our claim. Finally, posit yi := ln(xi) and observe that

ẏ1 − ẏ2 = Δ(s†) > 0.

It follows that y1(t)− y2(t)→ +∞ when t → +∞, which implies that limt→+∞
x2(t)
x1(t)

= 0.
This ends the proof.

2.5. Motivation of Studying the OCP

Thanks to Proposition 2, the target set is reachable from any initial condition, thus the
existence of an optimal control of (6) is standard (namely because the dynamics is affine
w.r.t. the control): it is an application of the Fillipov Theorem, see, e.g., [26–28]. Considering
such a control as in the proof of Proposition 2 then indeed allows the system to let the
species of interest dominate the reactor, but this process can be long (see, for instance,
Example 1). Another possible strategy is to use a constant control D. Following [12],
depending on the value of D, species 1 may win the competition, i.e.,

lim
t→+∞

x1(t) > 0 ; lim
t→+∞

x2(t) = 0.

In that case, this (simple) strategy indeed allows for reaching the target. However, this
convergence is asymptotic and depends on the value of D as in the competitive exclusion
principle. Roughly speaking, if D > μ1(q̃1) (where q̃1 and s† are such that q̃1 := δ−1

1 (s†)

and (μ1 ◦ δ−1
1 )(s†) = (μ2 ◦ δ−1

2 )(s†)), then species 2 wins the competition, whereas, if
D < μ1(q̃1), species 1 wins the competition. We refer to [12] for more details about the
asymptotic behavior of (1) for a constant control D. Thus, the target set may not always be
reachable with a constant control D. Our objective in this paper is precisely to propose a
methodology to compute a control strategy to reach the target set T faster, playing on the
control D(·) as illustrated in Figure 2.

Example 1. Let us consider the following parameters: ρ1m = 0.8, ρ2m = 0.95, Ks1 = 1, Ks2 = 1.4,
k1 = 1.1, k2 = 1.4, μ1∞ = 1.8, μ2∞ = 1.7, sin = 10. The contamination rate is fixed to ε = 0.05.
The initial conditions are given by: s0 = 2, q0

i = 2.5 and x0
i = 1. As illustrated in Figure 2,

the target T is reached after t f = 46.774 days using the control D(t) = Dopt, while x1 dominates
the culture after t f = 62.68 days using the constant control D = 0.48. Let us also point out

167



Processes 2022, 10, 461

that, using an arbitrary constant control D ∈ [0, Dmax], we are not even sure that x1 wins the
competition (trajectories do not reach the target in that case).

0 10 20 30 40 50 60 70
0

0.1
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0.3

0.4
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0 10 20 30 40 50 60 70
0

5

10

15

20

Figure 2. It is possible to find a constant feeding strategy D ∈ [0, Dmax] that could favor one species
or the other. However, this is a risky time-consuming process, while the target is reached much faster
using an optimized control Dopt, thus saving several days of costly cultures.

3. Necessary Conditions on Optimal Controls

We start this section by generalizing previously obtained results [22,29] characterizing
optimal solutions of (6). For that, we apply the PMP which allows for obtaining necessary
conditions satisfied by optimal controls of (6). We denote by X = (s, q1, x1, q2, x2) and
λ = (λs, λq1 , λx1 , λq2 , λx2), respectively, the state and adjoint variables (also called co-state
or covector). The Hamiltonian associated with the optimal control problem

H = H(s, q1, x1, q2, x2, λs, λq1 , λx1 , λq2 , λx2 , λ0, D),

is given by

H = λ0 − (ρ1(s)x1 + ρ2(s)x2)λs + (ρ1(s)− μ1(q1)q1)λq1 + μ1(q1)x1λx1

+(ρ2(s)− μ2(q2)q2)λq2 + μ2(q2)x2λx2 + D[(sin − s)λs − x1λx1 − x2λx2 ].

Let X0 ∈ Ω\T and let (X(·), u(·)) be an optimal pair such that X(·) reaches the
set T in a time t f ≥ 0. Thanks to the PMP, there exist an absolutely-continuous map
λ : [0, t f ]→ R

5 and λ0 ≤ 0 such that:

• The pair (λ(·), λ0) is non-trivial, i.e., (λ(·), λ0) �= (0, 0).
• The covector satisfies

λ̇(t) = −∇X H(X(t), λ(t), λ0, D(t)) a.e. t ∈ [0, t f ]. (9)

• The Hamiltonian maximization condition writes

D(t) ∈ arg max
ξ∈[0,Dmax]

H(X(t), λ(t), λ0, ξ) a.e. t ∈ [0, t f ]. (10)

• At the terminal time, the transversality condition writes:

λ(t f ) ∈ −NT (X(t f )). (11)

Here, NT (X) = {p ∈ R
5 ; ∀Y ∈ T , p · (Y − X) ≤ 0} stands for the normal cone to T

at some point X ∈ T , see [28]. The adjoint Equation (9) is equivalent to:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ̇s =
(
ρ′1(s)x1 + ρ′2(s)x2

)
λs − ρ′1(s)λq1 − ρ′2(s)λq2 + Dλs,

λ̇q1 = μ1∞λq1 − μ′1(q1)x1λx1 ,

λ̇x1 = ρ1(s)λs − μ1(q1)λx1 + Dλx1 ,

λ̇q2 = μ2∞λq2 − μ′2(q2)x2λx2 ,

λ̇x2 = ρ2(s)λs − μ2(q2)λx2 + Dλx2 .

(12)
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We define an extremal as a quadruplet (X(·), λ(·), λ0, D(·)) such that (λ(·), λ0) is non
zero and such that (1) and (9)–(11) is verified. Whenever λ0 = 0, we say that the extremal
is abnormal ; if λ0 �= 0, then we say that the extremal is normal. Because (6) is autonomous
(i.e., the system does not depend explicitly on time), the Hamiltonian computed along an
extremal is constant. In addition, since the terminal time is not fixed, we classically obtain,
following optimal control theory, that H = 0.

The transversality condition is crucial for obtaining properties on optimal controls by
reasoning backward in time from the terminal time t = t f . We shall next extend earlier
results [22] by taking into account explicitly the fact that T is a half-space of R

5 and
exploiting that X(t f ) belongs to the set E := {X ∈ R

5 ; x2 − εx1 = 0} (the boundary of the
target set). Then, condition (11) can be transformed more explicitly as follows. At X(t f ),
the normal cone to T writes

NT (X(t f )) = R+(0, 0,−ε, 0, 1).

Therefore, inclusion (11) is then equivalent to

λs(t f ) = λq1(t f ) = λq2(t f ) = 0, (13)

together with
λx1(t f ) + ελx2(t f ) = 0, (14)

and the inequalities λx1(t f ) ≥ 0 and λx2(t f ) ≤ 0. Actually, one has λx1(t f ) > 0 and
λx2(t f ) < 0. Suppose indeed that λx1(t f ) = 0. Then, (14) would imply λx2(t f ) = 0,
and, since (9) is linear w.r.t. λ, we would obtain λ ≡ 0 over [0, t f ]. Using the constancy of
H, we would also obtain λ0 = 0 contradicting the PMP. We can then conclude that

λx1(t f ) > 0 and λx2(t f ) < 0. (15)

Throughout the paper, we suppose that only normal extremals occur, i.e., λ0 < 0,
and, without any loss of generality, we may assume that λ0 = −1 (up to a renormalization
of the necessary conditions that are linear w.r.t. λ).

Remark 1. Abnormal extremals are not generic. They correspond to the optimal path reaching the
target set in some particular subset of the target set and are such that λ0 = 0 (and thus λ(·) �= 0).
From the conservation of H, this implies that μ1(q1(t f )) = μ2(q2(t f )) in such a way that λ(t f )
is not uniquely defined in contrast with the normal case (see below). At such a singular point, the
value function (the minimal time as a function of X0) is also non-differentiable.

Going back to the normal case, i.e., λ0 = −1, the covector λ at t = t f can be completely
determined (thanks to the conservation of H) as follows:

λs(t f ) = λq1(t f ) = λq2(t f ) = 0,

λx1(t f ) =
1

x1(t f )(μ1(q1(t f ))− μ2(q2(t f )))
> 0,

λx2(t f ) = −
λx1(t f )

ε
< 0.

(16)

Notice that the quantity μ1(q1(t f ))− μ2(q2(t f ))) is non-zero along a normal extremal.
As a consequence, the transversality condition (11) coupled with the conservation of H are
equivalent to (16). The computation of λ at t = t f is useful to integrate the state adjoint
system backward in time from the target set.

We now wish to exploit the Hamiltonian condition (10). It is of particular interest
to introduce the switching function, which allows us to determine the optimal control D
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according to the sign of the switching function. For that, let us denote by Φ̃ the switch-
ing function:

Φ̃ := −(x1λx1 + x2λx2) + (sin − s)λs,

associated with the control function D(·).

Φ̃(t) > 0 ⇒ D(t) = Dmax,
Φ̃(t) < 0 ⇒ D(t) = 0,

(17)

for a.e. t ∈ [0, t f ].
In the case where Φ̃ > 0, resp. Φ̃ < 0 over a time interval [t1, t2], we say that the

optimal control u is of bang type (denoted by B+, resp. B−). When the control D(·) is
non-constant in every neighborhood of a time tc ∈ (0, tc), we say that tc is a switching
time, and one must have Φ̃(tc) = 0. Next, when the switching function Φ̃ vanishes over
a time-interval [t1, t2], we state that a singular arc occurs. In this case, the corresponding
trajectory is singular over [t1, t2], and such an arc will be denoted by S . Singular arcs
are essential to optimize the time to steer an initial condition to the target set. Now, we
are ready to state some main features of the switching function Φ̃, and then investigate
properties of the singular paths.

Lemma 1.

(i) The function Φ̃ is continuously differentiable over [0, t f ] and, moreover,

˙̃Φ = (sin − s)(ρ′1(s)[x1λs − λq1 ] + ρ′2(s)[x2λs − λq2 ]). (18)

(ii) At the terminal time t = t f , it holds:

Φ̃(t f ) =
˙̃Φ(t f ) = 0. (19)

Proof. By differentiating Φ̃ w.r.t. t, we find that

˙̃Φ = −ṡλs + (sin − s)λ̇s − [ẋ1λx1 + ẋ2λx2 ].

Using (1) and (9), we obtain (18), which proves (i). For proving (ii), note that x(t f ) ∈ E
and λ(t f ) ∈ E⊥, thus Φ̃(t f ) = 0. Using (13), we also obtain ˙̃Φ(t f ) = 0, which ends
the proof.

Remark 2. Following the formalism of geometric control theory, ˙̃Φ never involves D explicitly,
but D is present in the expression of Φ̃(2k), k ≥ 1, see [27]. If k ≥ 1 is the first integer for which the
control is present in the expression of Φ̃(2k), we usually say that the singular arc is of order k.

At this step, an optimal control is a concatenation of bang and singular arcs:

B±,B±B∓,B±S ,B±B∓S ,B±B∓SB±, . . .

with possibly infinitely many crossing times (in particular, if there is a singular arc of
order 2 [27]). The occurrence and properties of singular arcs as well as the various (possible)
structure for an optimal control of (6) will be precisely the matter of the next section.
The goal is to reduce (if possible) the number of possible structures for an optimal control.

4. Singular Arcs and Insights into Optimal Solutions

4.1. Legendre–Clsebsch’s Necessary Condition and Computation of the Singular Control

The analysis of singular arcs requires to compute ¨̃Φ. Indeed, the Hamiltonian condition
does not give any information about an optimal control during a singular phase. Thanks to
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the next computations, we shall also be able to deduce an expression of the singular control
during a singular arc.

Doing so, let us define θ1, θ2 : [0, T]→ R as

θ1 := ρ′1(s)[x1λs − λq1 ] + ρ′2(s)[x2λs − λq2 ],

θ2 := ρ′′1 (s)[x1λs − λq1 ] + ρ′′2 (s)[x2λs − λq2 ].

Hereafter, to simplify the layout, we do not write the dependency of θi, s, xi, λs, λqi

w.r.t. the time. To shorten the notation, we also do not write explicitly the dependency of
certain functions w.r.t. some variables. Using (12)–(18), one can write

˙̃Φ = (sin − s)θ1 and λ̇s = θ1 + Dλs. (20)

Lemma 2.

(i) The derivative of θ1 can be expressed as:

θ̇1 =θ2 ṡ + [ρ′1x1 + ρ′2x2]θ1 + λs[x1μ1ρ′1 + x2μ2ρ′2]

− ρ′1[μ1∞λq1 − μ′1(q1)x1λx1 ]− ρ′2[μ2∞λq2 − μ′2(q2)x2λx2 ].
(21)

(ii) The second derivative of Φ̃ fulfills the equality:

¨̃Φ = [−θ1 + (sin − s)θ2]ṡ + (sin − s)[ρ′1x1 + ρ′2x2]θ1 + (sin − s)λs[x1μ1ρ′1 + x2μ2ρ′2]

− (sin − s)ρ′1[μ1∞λq1 − μ′1(q1)x1λx1 ]− (sin − s)ρ′2[μ2∞λq2 − μ′2(q2)x2λx2 ]. (22)

Proof. By differentiating θ1 w.r.t. t, we have

θ̇1 = θ2 ṡ + ρ′1[ẋ1λs + x1λ̇s − λ̇q1 ] + ρ′2[ẋ2λs + x2λ̇s − λ̇q2 ].

Using (20) and (12), we obtain (21). Using that ¨̃Φ = −ṡθ1 + (sin − s)θ̇1, we ob-
tain (22).

Note that these computations have been verified thanks to a symbolic computation
software. The next step is to establish whether Legendre–Clebsch’s condition is verified or
not along a singular arc. Recall that this condition is necessary for optimality and that it
can be stated as follows (see, e.g., [27,30,31]).

Theorem 1 (Legendre–Clebsch’s condition [27]). Let I = [t1, t2] be such that the trajectory is
singular over [t1, t2]. Then, one has:

¨̃Φ|D ≥ 0, (23)

which is fulfilled over I = [t1, t2].

Using the expression of the derivative ¨̃Φ given in (22), we provide in the next lemma
the expression of the second derivative, ¨̃Φ|D .

Lemma 3. Let I = [t1, t2] be such that the trajectory is singular over [t1, t2]. Then, one has:

¨̃Φ|D = (sin − s)2θ2 = (x1λs − λq1)
(ρ′′1 ρ′2 − ρ′′2 ρ′1)

ρ′2
. (24)

Proof. In (22), the only term involving the control D is related to ṡ. We obtain (24) using
that θ1 ≡ 0 over [t1, t2].

Proposition 3. Along a singular arc that occurs over a time interval [tc, t f ], it holds that:

λs = 0,
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over [tc, t f ] and Legendre–Clebsch’s condition (with a strict inequality) is fulfilled over [tc, t f ).

Proof. Because the trajectory is singular over [tc, t f ], one has θ1 ≡ 0 over this interval; thus,
λs(·) satisfies:

λ̇s = Dλs, λs(t f ) = 0.

It follows that λs ≡ 0 over [tc, t f ]. In a left neighborhood of t = t f , one has from (12)
λ̇q1 < 0; thus, since λq1 vanishes at t = t f , we necessarily have λq1 > 0 in a left neighbor-
hood of t f . Because λs is zero over [tc, t f ], we deduce that x1λs − λq1 = −λq1 < 0 over

[tc, t f ) (at t = t f , λq1 vanishes at t f , as well as ¨̃Φ|D ). Over [tc, t f ], we note that

λ̇x1 = λx1(D− μ1(q1)),

hence λx1 does not vanish over [tc, t f ]. Suppose that λq1 vanishes over [tc, t f ] at a time
t′ ∈ [tc, t f ]. Then, one must have λ̇q1(t

′) ≥ 0 since λq1 > 0 over (t′, t f ). However, at t = t′,
the adjoint equation implies that

λ̇q1(t
′) = −μ′1(q1(t′))x1(t′)λx1(t

′) < 0

because q1(t′) > k1, μ′1 > 0 over (k1,+∞), x1 > 0, and λx1 > 0 over [tc, t f ]. This is a
contradiction and thus λq1 does not vanish over tc, t f . Assumption 1 implies that ρ′′1 ρ′2 −
ρ′′2 ρ′1 < 0, thus ¨̃Φ|D > 0 over [tc, t f ) as desired. We can then conclude that Legendre–
Clebsch’s condition (with a strict inequality) is fulfilled over the whole interval [tc, t f ).

A consequence of the previous proposition is that, when a singular arc occurs over
some time interval [tc, t f ], then it is of order 1. Based on this proposition, we shall only
consider singular arcs of first order in the remaining of the paper. If Legendre–Clebsch’s
condition holds true, the singular arc is said to be of turnpike type [26]. The expression
defining the singular control can then be derived using (22). Next, let ς(X, λ) be defined by:

ς(X, λ) := θ2[ρ1x1 + ρ2x2]− λs(x1μ1ρ′1 + x2μ2ρ′2)− ρ′1[μ1∞λq1 − μ′1(q1)x1λx1 ]

− ρ′2[μ2∞λq2 − μ′2(q2)x2λx2 ].
(25)

We now give an expression of the singular control as a feedback of the state and covector.

Proposition 4. Suppose that an extremal is singular over [t1, t2] and that (23) is verified over
[t1, t2] with a strict inequality. Then, the singular control Ds is given by

Ds(X, λ) :=
ς(X, λ)

(sin − s)θ2
, (26)

where we recall that θ2 = ρ′′1 (s)[x1λs − λq1 ] + ρ′′2 (s)[x2λs − λq2 ] and ς is given by (25).

Proof. This expression follows from (22) in which ṡ is replaced by (sin − s)D− ρ1x1 − ρ2x2

and θ1 ≡ 0 (since ˙̃Φ = Φ̃ = 0).

Corollary 1. If the singular arc occurs over some time interval [tc, t f ), expression (26) simpli-
fies into

Ds(X, λ) :=
ς̃(X, λ)

(sin − s)θ2
, (27)

where ς̃ is given by

ς̃(X, λ) := θ2[ρ1x1 + ρ2x2]− ρ′1[μ1∞λq1 − μ′1(q1)x1λx1 ]− ρ′2[μ2∞λq2 − μ′2(q2)x2λx2 ],

and, in this case, θ2 simplifies also into θ2 = −ρ′′1 λq1 − ρ′′2 λq2 because λs ≡ 0.
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Remark 3.

(i) Note that Legendre–Clebsch’s condition (with a strict inequality) is equivalent to θ2 > 0 (and
that this condition is always verified over [tc, t f ) with tc close to t f .

(ii) In view of the general expression giving the singular control, see (26), there is no guarantee a
priori that the singular control Ds is always with values in [0, Dmax], i.e., that the singular
arc is always admissible (even if Legendre–Clebsch’s condition is verified). This can bring
additional difficulties; however, we may discard this point by choosing Dmax large enough.

(iii) Notice that (27) is at least active at t = t f in the case where a singular arc Ds steers the model
trajectories towards the target T , since the transversality conditions ensure that λs(t f ) = 0.

4.2. About the Occurrence of a Terminal Singular Arc at the Terminal Time

The aim of this section is to discuss the possibility of having a singular arc over some
time interval [t f − τ, t f ] (with τ > 0) and the structure of optimal controls. Our main
questioning is as follows:

Does any optimal trajectory contain a singular arc over some time interval [t f − τ, t f ]?

To analyze this point, let us summarize properties of the switching function at t = t f
(that are consequences of transversality conditions associated with the codimension 1 target):

• The switching function and its derivative vanish at t = t f :

˙̃Φ(t f ) = Φ̃(t f ) = 0. (28)

• The second derivative of the switching function satisfies:

¨̃Φ|D (t f ) = 0. (29)

• In addition, Legendre–Clebsch’s condition (23) is always satisfied along a singular arc
defined in a left neighborhood of the terminal time t = t f .

The necessary conditions (28) and (29) are a very good indication for the occurrence of
a singular arc and are thus strong arguments to answer positively to the above question.
Thus, we could now wonder whether or not conditions (28) and (29) are sufficient to ensure
the occurrence of a singular arc in some time interval [t f − τ, t f ]. It appears that this
question is complex and falls into the setting of geometric optimal control theory. As far
as we know, such conditions are not equivalent to the occurrence of a singular arc over
some time interval [t f − τ, t f ] (this may depend, in particular, on the initial condition).
It is, however, worth mentioning that these conditions (in particular (28)) are commonly
used numerically to implement a singular arc in shooting methods [32]. In our context
of Droop model, it is very interesting to notice that singular arcs are the cornerstone of
the optimal control, in particular for a large set of initial conditions that are biologically
meaningful (typically for heterogeneous cultures where x0

1/x0
2 ≈ 1). However, the answer

to the above question is not always true and depends on the initial condition (as it has
been confirmed using direct optimization methods, see Section 5). Indeed, as illustrated
in Example 2—Section 5, when the initial conditions x0

i are taken very close to the target
(x2(t f )/x1(t f ) = ε), and μ1(q0

1)− μ2(q0
2) > 0, the singular arc does not appear or appears

marginally at t = t f to satisfy the transversality conditions.

Recall that Φ̃(t f ) = ˙̃Φ(t f ) = 0. Hence, the sign of Φ̃ depends on ¨̃Φ(t f ) that is
computed in the next lemma.

Lemma 4. At the terminal time, one has

μ1(q1(t f ))− μ2(q2(t f )) > 0. (30)
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In addition, the second derivative of the switching function exists at t = t f and:

¨̃Φ(t f ) =
[sin − s(t f )][ρ

′
2(s(t f ))μ

′
2(q2(t f ))− ρ′1(s(t f ))μ

′
1(q1(t f ))]

μ2(q2(t f ))− μ1(q1(t f ))
. (31)

Proof. Inequality (30) follows from the expression of λ(t f ) and the transversality condi-

tion (16). The expression of ¨̃Φ(t f ) in (31) follows from (22).

We can now define the function:

t �→ ξ(t) := ρ′2(s(t))μ
′
2(q2(t))− ρ′1(s(t))μ

′
1(q1(t)).

From the previous lemma, we deduce the behavior of an optimal path near the
terminal time:

• First, the target set can only be reached at some point X(t f ) such that (30) is fulfilled.
• In addition, if ξ(t f ) �= 0, then, in a left neighborhood of t = t f , the optimal control

D(·) is of bang type and satisfies

D(t) = sign(ξ(t)).

• If a singular arc occurs in a left neighborhood of t = t f , then one must have ξ(t f ) = 0,
i.e., a singular arc reaches the target in the subset of T defined as:

T ′ := {X = (s, q1, x1, q2, x2) ∈ T ; μ1(q1)− μ2(q2) > 0 and

ρ′2(s)μ
′
2(q2)− ρ′1(s)μ

′
1(q1) = 0}.

4.3. Toward an Optimal Synthesis Characterizing the Optimal Solutions

Reducing the number of switching times is in general non-tractable for nonlinear opti-
mal control problems governed by a system in dimension greater than three. Nevertheless,
thanks to the properties of singular arcs, we obtained previously and of the switching
function at t = t f , we can expect a limited number of possible structures for an optimal
control as we formulate in the next conjecture.

Conjecture 1. Every initial condition in Ω is steered optimally to the target set via a control D that
has a finite number of switching times. In addition, for almost every initial condition, an optimal
control presents the following structure:

B±B∓S .

For a large set of initial conditions in some subset Ω† ⊂ Ω (far from the target), there is a
single bang arc and a terminal singular arc, whereas, for some initial conditions close to the target
set, no singular arc occurs (i.e., S is of zero duration).

This conjecture has been verified numerically for a large number of initial conditions
(see Section 5). Our argumentation to confirm this conjecture is as follows.

• From the PMP, we have seen that, for every initial condition in Ω, an optimal control
is a concatenation of bang arcs B± and singular arcs S .
Moreover, since the switching function Φ̃ satisfies the strong requirements ˙̃Φ(t f ) =

Φ̃(t f ) = 0, ¨̃Φ|D (t f ) = 0
(from the transversality conditions) as well as Legendre–Clebsch’s condition, we
conjecture that, for almost all initial conditions, an optimal control is singular in a
left neighborhood of the terminal time. This implies in particular that the number
of switchings is finite since we proved that any terminal singular arc is of first order.
In addition, the number of switchings is minimal in general (apart when chattering
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occurs, see [27], which is not the case here). Thus, an optimal control should be of type
B±B∓S with one or two bang arcs before the terminal singular arc.
As we have seen, we also must have ξ(t f ) = 0, which only involves state variables at
the terminal time. This surprising condition mixing the first derivative of the basic
functions in the Droop model, with the s variable on one side and the qi variables on
the other side, is, however, hard to interpret biologically.

• For some marginal—-but admissible—initial conditions outside of Ω†, the structure of
an optimal control of (6) may be of bang type for almost all t ∈ [0, t f ), or [0, t f − τ],
with very small τ > 0 (see, e.g., Example 2 in the next section). This is the case when
typically x0

1 � x0
2, i.e., the initial condition is very close to the target set T , with in

addition μ1(q0
1)− μ2(q0

2) > 0. Thus, the requirement μ1(q1(t f ))− μ2(q2(t f )) > 0 is
easily satisfied. Thus, in this particular situation, it comes as no surprise that the
fastest path to reach the target T is the one exploiting the fact that ẋ1(0) � ẋ2(0)
(since x0

1 � x0
2) along with D(t) = 0, since it maximizes ẋ1(t) (we recall that ẋi =

(μi(qi)− D(t))xi).

It is worth noticing that, when no singular arc occurs, the strategy mainly consists of
“pushing” x1 and x2 as quickly as possible towards the target T using D = 0, when the
initial conditions x0

1 and x0
2 are very close to T . Nevertheless, this strategy may not be the

optimal one whenever q0
1 and q0

2 are “far” from satisfying μ1(q1(t f ))− μ2(q2(t f )) > 0. This
is typically the case illustrated in Example 3 in the next section.

For an optimal control of type B±S , the occurrence of a singular arc is related to the so-
called turnpike phenomenon that we now explain in this framework. For a large subset of
initial conditions S† ⊂ Ω that are biologically the most relevant, the structure of the optimal
control is bang-singular B±S . The singular arc is the control Ds given in (27) that reaches the
target T . Moreover, this singular phase coincides with optimal trajectories (s(t), q1(t), q2(t))
that stay most of the time close to the critical point (sc, q1c, q2c) defined in Section 2.3 (related
to the actual growth rates and the function Δ(s) = μ1(δ

−1
1 (s))− μ2(δ

−1
2 (s))). Observe, for

instance, the trajectories s, q1 and q2 in Figure 3a.We also believe that the concatenation of
bang arcs before the major singular phase exclusively aims at moving (s0, q0

1, q0
2) towards

(sc, q1c, q2c). Then, the singular arc Ds takes over at a switching-time instant t = ts and
ensures that the associated singular trajectory, denoted (ss(t), q1s(t), q2s(t)), satisfies the
so-called turnpike inequality (see, e.g., [33]),

‖ss(t)− sc‖+ ‖q1s(t)− q1c‖+ ‖q2s(t)− q2c‖ ≤ a1

(
e−a2t + ea2(t−t f )

)
,

a1, a2 > 0, for all t ∈ [ts, t f ].
(32)
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Figure 3. (a) Optimal state in Droop model, (b) the resulting optimal co-state trajectories, which
satisfy in particular all the transversality conditions of the PMP.

This is, for instance, the case for optimal controls illustrated in Figure 4 (of type B−S)
and in Figure 5a (of type B−B+S). The inequality (32) usually holds when the time interval
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[0, t f ] is not excessively short [33–35], which is the generic case in the Droop model (1)
associated with (6). Indeed, in practice, the most significant biological experiments aim
to separate species and select x1 starting from an homogeneous culture (a well-balanced
initial culture with x0

1/x0
2 ≈ 1) or even from x0

2 � x0
1 with the challenging issue of selecting

the minority species (x1), which is not naturally promoted. In these cases, Droop’s kinetics
ensure that the minimum selection time t f cannot be excessively short and therefore
singular arcs as well as the turnpike-type behavior appear systematically in the optimal
strategy of (6).
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Figure 4. The optimal control in Example 2 (s0 = 4, q0
i = 1.9, x0

i = 0.3) is of bang(0)-singular type.
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Figure 5. (a) The optimal state trajectories s, q1 and q2 (associated with the optimal control D in
Figure 6) get closer over time to the critical point (sc, q1c, q2c). The target T , with ε = 0.08, is reached
quickly, without resorting to the singular arc. The transversality conditions are satisfied, and in
particular λs(t f ) = λq1 (t f ) = λq1 (t f ) = 0, as illustrated in (b).
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Figure 6. Evolution of the quantity ρ′2(s(t))μ
′
2(q2(t))− ρ′1(s(t))μ

′
1(q1(t)) along the optimal trajecto-

ries given in Figure 3a.
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5. Direct Optimization and Numerical Results

In this section, a direct-optimization approach is performed in order to solve (6) and
illustrate the different cases discussed in Section 4.3. The numerical direct methods that
we use throughout this paper are implemented in Bocop [36] (an optimal control toolbox),
and they have the characteristic to transform the studied (6) into a nonlinear programming
problem (NLP) in finite-dimension [37], through the discretization step of the control and
the state variables [38]. Numerical results are organized as follows:

• An optimal control of type B−S is developed throughout Example 1.
• An optimal control of type B− is developed throughout Example 2.
• An optimal control of type B−B+S is developed throughout Example 3.

In all the numerical examples, we consider the model parameters given in Table 1,
with the settings in Table 2.

Table 1. The model parameters used in Section 5.

ρmi Ki μi∞ ki

Species/strain 1 7 0.3 1.7 1.75
Species/strain 2 8 0.6 1.8 1.80

Table 2. Model and OCP settings. The contamination rate ε characterizes the target set T .

sin Control D Contamination Rate ε

6 [0, Dmax = 1.5] 0.08

Assumption 3 is verified when Dmax = 1.5, namely because Dmax is precisely chosen
above the maximum actual growth rates of the species. The contamination rate in all the
examples is fixed to a significantly small value, ε = 0.08.

In Bocop, the state variables (and even the time, in minimal-time OCPs) of the Droop
model (1) are discretized with a Lobatto scheme based on Runge–Kutta methods of type
Lobatto-IIIC of order 6, which uses an implicit trapezoidal rule. The main settings used
in Bocop are given in Table 3.

Table 3. Bocop settings used in Section 5.

Discretization Method Lobatto IIIC (Implicit, 4-Stage, Order 6)

Time steps 130
NLP tolerance <10−14

Example 2. In the first example, we consider the Droop model resulting from the parameters in
Table 1 and Figure 7, associated with the settings in Tables 2 and 3, and the initial conditions given
in Table 4.

Table 4. The initial conditions used in Example 2.

s0 q0
1 x0

1 q0
2 x0

2

4 1.9 0.3 1.9 0.3
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Figure 7. Growth and absorption (uptake) functions, respectively μi and ρi, i = 1, 2, produced using
the model parameters given in Table 1, and used throughout the Examples 1–3. We note that the
value of s that maximizes the function Δ(s) is given sc = 0.092. This point maximizes the difference
between the actual growth rates (as discussed in Section 2.3) and defines the unique static solution
(sc, q1c, q2c). All the assumptions that ensure the well-posedness of the generic (6) are satisfied in this
case. In particular, we highlight that Δ(s) can be positive and negative, and both species may win the
competition using an appropriate control D (see Section 2.4).

In this example, we have a well-balanced initial culture since x0
1/x0

2 = 1 (see Section 4.3).
The direct optimization method allows us to determine the optimal control D, given

in Figure 4, that steers the model trajectories towards T (with ε = 0.08) in minimal-time
t f = 18.3526 days.

We check and analyze the evolution of the switching function Φ̃, its derivatives, and the
co-state of the substrate s (Figure 8) in order to characterize the switching instant ts ∈ (0, t f ).
This time-instant coincides with λs = 0 (since the singular arc is the one reaching the target
T ), Φ̃ = ˙̃Φ = 0 (thus activating Ds, according to the PMP). We also notice that the condition
¨̃Φ(t f ) = 0 is also satisfied. The optimal state and co-state trajectories are depicted in
Figure 3, where we notice that s(t), q1(t) and q2(t) evolve around the static critical point
(sc, q1c, q2c) for almost all t ∈ [ts, t f ], see the turnpike-like property discussed in Section 4.3.

The optimal control strategy aims to maximize the difference between the actual
growth rates (the function Δ(s)) as illustrated in Figure 9. The initial arc bang(0) drives
s0 towards sc (we recall that ṡ = (sin − s)D − ρ1(s)x1 − ρ2(x2), s0 = 4, sin = 6, and,
sc = 0.092). The quantity μ1(q1(t))− μ2(q2(t)) is maximized, with a delayed-dynamics,
as a consequence of maximizing Δ(s). At the final time of t f = 18.3526 days, we have
μ1(q1(t f ))− μ2(q2(t f )) > 0. Finally, we check in Figure 6 that, at t = t f , we have

ρ′2(s)
ρ′1(s)

(t f ) =
μ′1(q1)

μ′2(q2)
(t f ).

178



Processes 2022, 10, 461

0 2 4 6 8 10 12 14 16 18 20
-10

-5

0

5

10

15

20

25

30

35
(a)

0 2 4 6 8 10 12 14 16 18 20
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
(b)

Figure 8. Characterization of the switching instant and of the singular arc in Example 2. (a) The
switching function and its derivatives. (b) The co-state of the substrate s.
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Figure 9. (a) Evolution of Δ(s(t)) and μ1(q1(t))− μ2(q2(t)) along the optimal trajectories. The opti-
mal control aims to maximize the function Δ. We also check in (b), using the optimal model trajectories
given in Figure 3, that s(t) + q1(t)x1(t) + q2(t)x2(t) converges towards sin (see Section 2.4).

The behavior of the optimal control and optimal trajectories described in Example 2
is definitively the most compelling one (with bang(0)-singular or bang(Dmax)-singular arcs)
from a biological standpoint, since it is the one that systematically appears when the final
time is not extremely short. Indeed, in practice, initial conditions start more commonly
sufficiently “far” from the target T , leading to a final time that allows the singular arc and
the turnpike-like behaviors to hold.

Example 3. Now, let us consider the initial conditions in Table 5.

Table 5. The initial conditions used in Example 3.

s0 q0
1 x0

1 q0
2 x0

2

1 2.5 1.2 2 0.1

It is worth noticing that the initial conditions in Example 3 are intuitively favourable
for reaching the target T in a very short time, since μ1(q0

1)− μ2(q0
2) > 0 and x0

2/x0
1 = 0.083,

while ε = 0.08 (very close to the target). The optimal control in this case is mainly a bang(0)
over time, as illustrated in Figure 10 (see Section 4.3 for more details). The optimal state
trajectories and co-state trajectories (that satisfy the transversality conditions) are illustrated
in Figure 5.
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Figure 10. The optimal control given in (a) is bang(0) almost everywhere over [0, t f ). It achieves
species separation (b) and selects the species x1 at t f = 1.1810 days, since x1(t f ) = 1.3425 and
x2(t f )/x1(t f ) = ε = 0.08.

Example 4. In the last example, let us consider the initial conditions in Table 6.

Table 6. The initial conditions used in Example 4.

s0 q0
1 x0

1 q0
2 x0

2

5 1.8 2.2 5 0.18

In this situation, we notice that initial conditions are still favourable for reaching
the target T in a very short time because x0

2/x0
1 = 0.0818 (with ε = 0.08, so x0

i are
very close to the target). However, we also note that μ1(q1(0)) − μ2(q2(0)) < 0, while
μ1(q1(t f )) − μ2(q2(t f )) should be positive at t = t f (see Section 3). Thus, the issue of
minimal-time separation is slightly more complex than Example 3, and we obtain a struc-
ture for the optimal control of bang(0)-bang(1)-singular type, as illustrated in Figure 11.
The corresponding model trajectories and optimal co-states are provided in Figure 12.
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Figure 11. The optimal control given in (a) is bang(0)-bang(Dmax)-singular over [0, t f ), where t f =

4.5541 days. A first switching instant from bang(0) to bang(Dmax) occurs around 0.3 days, then ts

occurs when λs = 0, as illustrated in (b), starting the singular arc that steers the model trajectories
towards T , with ε = 0.08.
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Figure 12. The optimal model trajectories (a), and the optimal co-state trajectories (b) that satisfy the
transversality conditions.

6. Conclusions

The minimal-time OCP for the competition between two microbial species accumu-
lating nutrients is a key issue. Progressing along this problem will definitely help for
experiments that nowadays last more than 6 months [14,15]. However, the competition
described by the Droop model turns out to be significantly more complicated than for
the Monod model in dimension 2 [17]. We have improved the preliminary results about
this problem to be found in [22,29] in order to provide an optimal synthesis depending on
the initial condition. In particular, we applied the PMP, we discussed the structure of the
optimal control, and we identified the singular arc steering optimal paths to the desired
target set in a minimal amount of time. This study also highlights the turnpike behavior [33]
although an exact verification in our case is not possible in our setting since the problem is
affine w.r.t. entries in contrast with [35] that, in general, requires coercive hypotheses on
the Hamiltonian w.r.t. entries. As usual in optimal control problems that are affine in the
control, the study of singular arcs via geometric methods is a crucial issue.

This study also raised a mathematical (open) question outside the scope of this pa-
per on the existence or not of a terminal singular arc whenever the switching function,
its derivative, and second derivative w.r.t. the input vanish on a terminal manifold of
codimension 1 (see, e.g., [39]).

Future work will focus on the determination of closed loop (sub-optimal) controllers
to be applied for bioreactor control subject to uncertainties that are inherently present in
biological systems. Finally, the proposed strategy must now be tested experimentally to
assess the gain in experimental time it can offer.
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Abstract: We consider one-step and two-step simple models of anaerobic digestion that are able
to adequately capture the main dynamical behaviour of the full anaerobic digestion model ADM1.
We do not consider specific growth functions. We only require them to satisfy certain qualitative
assumptions. These assumptions are satisfied for concave growth functions, but they are also satisfied
for a large class of growth functions found in many applications. We consider the maximisation of
the biogas production with respect to the operating parameters of the model, which are the dilution
rate and the substrate input concentration. We give the best operating conditions and we describe
them as a subset of the set of operating parameters. Our models incorporate biomass decay terms,
corresponding to maintenance. Numerical plots with specified growth functions and biological
parameters illustrate the obtained results.

Keywords: anaerobic digestion; biogas; chemostat; maintenance; operating diagram; optimization;
productivity; stability
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1. Introduction

Anaerobic digestion (AD) is a well known and established technology for treating
waste in the methanisation of sewage sludge from wastewater treatment plants. AD enables
the water industry to treat waste water as a resource for generating energy and recovering
valuable by-products. In the context of renewable energy, it has now become an attractive
alternative to fossil carbon [1]. AD is a complex biological process in which organic material
is converted into biogas (methane) in an environment without oxygen [2–6]. One of its
main disadvantages is its sensitivity to disturbances, which can lead to instability problems,
in addition to a decrease in the biogas production rate [7]. Indeed, the conditions and
technological parameters characterising the methane fermentation process include many
parameters: hydraulic retention time, organic loading rate, anaerobic sludge concentration
in the bioreactor, substrate dewatering, organic matter content, substrate dosage, mixing
method and frequency, temperature, and many others.

When the experimenter does not have a mechanistic mathematical model of the
process being studied, one method for selecting the best conditions for biogas production
is to carry out multi-variant tests and select the most efficient variants and then optimise
them and develop a mathematical model. This first approach is presented in [8–10]. On the
other hand, when the experimenter has a model of the process being studied and knows or
has identified its biological parameters, a good way to optimise biogas production is to look
for the optimal flow rate of the bioreactor that produces the most biogas. This approach
is presented in [11–21]. Therefore, mechanistic mathematical models are a good basis for
monitoring and developing control strategies to optimise the operation of such processes.
The present paper is a contribution to this second approach to the problem: we assume
that we know a mechanistic mathematical model of the process and that we have already
identified its biological parameters, and then we look to the best operating conditions for
biogas production.

Processes 2022, 10, 258. https://doi.org/10.3390/pr10020258 https://www.mdpi.com/journal/processes185
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However, having a model of AD is not that easy. Indeed, the complexity of AD has
motivated the development of mechanistic mathematical models, such as the widely used
Anaerobic Digestion Model Model No. 1 (ADM1) [2]. This model has a large number of
state variables and parameters. It is impossible to obtain an analytical characterization of
the steady states and to describe the operating diagram (OD), that is to say, to identify the
asymptotic behaviour of existing steady states as a function of the operating parameters
(substrate inflow concentrations and dilution rate). To the author’s knowledge, only
numerical investigations are available [3]. Therefore, although ADM1 is a complex model
that is widely accepted as a common platform for AD process modelling and simulation,
it has a large number of parameters and states that hinder its analytic study. Due to the
analytic intractability of the full ADM1, progress has been made towards the construction
of simpler models that preserve biological meaning. The simplest model of the chemostat
with only one biological reaction, where one substrate is consumed by one microorganism,
is well understood [22–24]. However a one-step model is too simple to encapsulate the
essence of AD.

More realistic models of AD are two-step models. An important contribution to the
modelling of AD as a two-step is the model presented in [25], hereafter denoted as the AM2
model and studied in [15,26]. It has been shown that under some circumstances, this very
simple two-step model is able to adequately capture the main dynamical behaviour of the
full ADM1 [27,28]. AM2 is a four-dimensional system of ordinary differential equations
and takes acidogenesis and methanogenesis into consideration. In the first step, the organic
substrate is consumed by the acidogenic bacteria and produces a substrate, the Volatile
Fatty Acids (VFA), while in the second step, the methanogenic population consumes VFA
and produces biogas.

Another interesting simple AD model, with eight state variables, was considered
in [21,29,30]. This model takes into consideration acidogenesis, acetogenesis, and methano-
genesis. We also mention the mathematical model considered in [31], which also added the
hydrolysis step in the model. It is also worth mentioning the models of AD that include the
evolution of biogas and hydrogen [32–34].

The problem of optimising biogas production for one-step AD models is studied
in [13,14] and for the AM2 model in [11,15–18]. This problem is also analysed in [21,31,35],
where models with more steps for AD are considered.

The OD of a model has operating parameters as its coordinates, and the various
regions defined within it correspond to qualitatively different asymptotic behaviours. The
operating parameters are the input concentrations of substrates and the flow rate. We
call them operating parameters, although they are not always under the control of the
experimenter. Indeed, in most practical cases, one can at best store material upstream and
control the flow rate. The concentration of the input substrate is rarely a control parameter.
However, this parameter is known to the experimenter and is not of the same nature as
the biological parameters, on which the experimenter can only act with great difficulty.
In most of the results, we will assume that the input concentration of substrate is fixed,
and we want to determine the corresponding optimal flow rate. Apart from the operating
parameters, which can vary, all other parameters have biological meaning and are fitted
using experimental data from ecological and/or biological observations of organisms and
substrates. When the biological parameters are determined, it is then easy to plot the
operating diagram and thus have a prediction of the behaviour of the system as a function
of the operating parameters.

The OD is then the bifurcation diagram that shows how the system behaves when we
vary the operating (control) parameters. This diagram shows how extensive the parameter
region is, where some asymptotic behaviours occur. This bifurcation diagram is very useful
to understand the model from both the mathematical and biological points of view. Its
importance for bioreactors was emphasized in [36]. This diagram is often constructed both
in the biological literature [15,29,35–38] and the mathematical literature [3,21,30,39–44].
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In the present work, we consider the one-step model and the AM2 model, and we give
the best operating conditions for biogas production, that is to say, we give the subset of the
OD corresponding to the maximal flow rate of the biogas. This set of the best operating
conditions in the OD indicates to the experimenter how to choose the operating condition
such that the system produces the maximum of biogas. The surprising result for AM2 is
that the optimal steady state can involve the extinction of the acidogenic bacteria [11]. This
property was also observed for more complex models [21,31]. We address this problem and
fully describe the operating conditions under which this situation is encountered. Another
very important phenomenon, which was observed in [35], is that the best biogas produced
is sometimes obtained for operating parameters for which the system has bistability. This
issue is also addressed, and the set of operating parameters for which the system may be in
such a situation is fully described.

The paper is organized as follows. In Section 2, we describe the one-step and two-step
models of AD that are studied in this paper. We give the steady states of the models and
their biogas flow rate or productivity. We state the problems of optimisation that will be
considered later. The results for one-step models are given in Section 3.1. The particular case
when the biomass mortality is neglected is considered in Section 3.1.8, and applications to
various growth functions that were considered in the literature are given in Appendix A.5.
The results for two-step models are listed in Section 3.2, and the applications of our theory
to the classical AM2 model are emphasized in Section 3.2.4. We discuss and compare our
results with the results of the existing literature in Section 3.3. Finally, Sections 4 and 5
draw some discussions, conclusions, and perspectives. The proofs and supplementary
information are given in Appendixes A and B.

2. Materials and Methods

We consider a continuous stirred-tank reactor (CSTR), also called a bioreactor or a
chemostat, where a single population of micro-organisms is growing on a single limiting
substrate. We also consider the more complex situation where this population produces
a substrate which is itself consumed by a second population. The limiting substrate is
fed into the culture vessel with a constant concentration at flow rate Q. The culture
medium is withdrawn at the same flow rate Q so that the culture volume V in the vessel is
kept constant.

The dilution rate D is defined as D = Q/V and is the inverse of the residence time.
We will take into account that the residence time of the liquid (culture medium) in the
bioreactor may be shorter than that of the solids (micro-organisms), which is common
in bioreactors.

We also take maintenance into account. Consumption of energy for all processes other
than growth is called maintenance. In situations where microbial cells are located in a
favourable environment, maintenance can often be neglected. In other situations, however,
a significant portion of the energy-yielding substrate that could be used for growth is
consumed for maintenance [45]. In the ADM1 model and also in some simple models of
AD, maintenance is taken into account as decay [2,37,38,43,44].

It is assumed that the other required substrates are provided in excess, that the culture
medium is perfectly mixed and that the environmental conditions (temperature and pH)
are regulated at appropriate constant values.

2.1. One-Step Models

Although the one-step model is too simple to encapsulate the essence of AD, it is
useful for the understanding of some basic facts concerning optimization of biogas in
bioreactors. Consider a one-step model of the form:

kS r−→ X + k1CH4 (1)
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where one substrate S is consumed by one micro-organism X and produces biogas with reac-
tion rate r = μ(S)X, where μ is the growth function and k and k1 are pseudo-stoichiometric
coefficients. Let D be the dilution rate and Sin the concentrations of input substrate. The
dynamical equations of the model are [22–24,46,47]

Ṡ = D
(
Sin − S

)
− kμ(S)X

Ẋ = (μ(S)− D1)X
(2)

where D1, the removal rate of the micro-organisms, takes the form

D1 = αD + a, (3)

where a is the decay term corresponding to maintenance effects and α ∈ (0, 1] is a parameter
allowing us to decouple the Hydraulic Retention Time, HRT = 1/D and the Solid Retention
Time SRT = 1/(αD). The stoichiometric coefficient k1 in (1) appears in the mathematical
equations of the model when we consider the biogas flow rate; see Section 2.1.2. The
stoichiometric coefficient k can be reduced to 1; see Appendix A.1. However, since the
stoichiometric coefficient has its own importance for the biologist, and since our aim is to
give the biologist a useful tool for the best operating conditions of the chemostat model,
we do not make this reduction and we present the results in the original model (2). The
mathematical analysis of (2) is well-known [22,24]. For the convenience of the reader, we
recall in this paper the main results and state them using the OD; see Appendix A.2.

2.1.1. Steady States

We assume that μ is not necessarily monotonic, i.e., that the inhibition by substrate S
can be taken into account in the model. We make now the following hypothesis.

Hypothesis 1. The function μ is C1 and satisfies μ(0) = 0, and there exists Sm ∈ (0,+∞], such
that μ′(S) > 0 for 0 < S < Sm. If Sm < +∞, then, in addition, μ′(S) < 0 for S > Sm.

The case Sm = +∞ corresponds to an increasing function. This case is called the
Monod case, since it is satisfied by the usual Monod growth function

μ(S) = mS
K+S . (4)

The case Sm < +∞ corresponds to an increasing and then decreasing function and
models the inhibition by the substrate at high concentrations. This case is called the Haldane
case, since it is satisfied by the usual Haldane growth function

μ(S) = mS
K+S+S2/Ki

. (5)

We need to define the break-even concentrations:

Definition 1. When Sm = +∞, the break-even concentration λ(D) is the unique solution of
equation μ(S) = D. It is defined for D < μ(+∞). When Sm < +∞, there can be two break-
even concentrations λ(D) and λ̄(D). They are the solutions of equation μ(S) = D, such that
λ(D) < Sm < λ̄(D). The first one is defined for 0 < D < μ(Sm). The second one is defined
for μ(+∞) < D < μ(Sm). They have the same limit value λ(Dm) = λ̄(Dm) for Dm = μ(Sm).
If D > μ(Sm), by convention we let λ(D) = +∞ and λ̄(D) = +∞.

Besides the washout steady state F0 = (Sin, 0), (2) has the positive steady states

F1 =
(

λ(D1), D
kD1

(
Sin − λ(D1)

))
, F2 =

(
λ̄(D1), D

kD1

(
Sin − λ̄(D1)

))
. (6)
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When Sm = +∞, only F1 exists. The conditions of existence an stability of the steady
state, together with the OD of (2), are given in Appendix A.2. Note that F1 is stable
whenever its exists, while F2 is unstable whenever its exists.

2.1.2. Steady State Optimization of Biogas Production

The biogas is simply a product of the biological reactions and it has no feedback on
the dynamical Equation (2). The biogas flow rate, denoted by GCH4, is proportional to the
microbial activity, as proposed in [46,48–50]:

GCH4 = k1μ(S∗)X∗ (7)

where (S∗, X∗) is a steady state of (2). Let us denote by Gi, the rate of production of biogas,
defined by (7), and evaluated at steady state Fi, i = 0, 1, 2. One has G0 = 0, and using the
components of the steady states F1 and F2 given in (6), G1 and G2 are given by

G1
(

D, Sin) = k1
k D
(
Sin − λ(αD + a)

)
for Sin ≥ λ(αD + a),

G2
(

D, Sin) = k1
k D
(
Sin − λ̄(αD + a)

)
for Sin ≥ λ̄(αD + a).

(8)

Our aim is to determine the set of operating conditions for which the biogas pro-
duction is maximal. We consider the biogas flow rate G2 corresponding to the unstable
equilibrium F2 because we do not know if this flow rate is always lower than that of the
stable equilibrium F1. If it was possible that, for some operating condition D and Sin,
G2
(

D, Sin) > G1
(

D, Sin), then the problem of the stabilization of the reactor at its unstable
steady state F2 by using some feedback control would have been an interesting challenge.
However, this possibility is excluded, as stated in the following remark.

Remark 1. Note that G2 is defined if and only if Sin ≥ λ̄(αD + a). Since λ̄(αD + a) > λ(αD +
a), G1 is also defined and we have G1(D, Sin) > G2(D, Sin).

Hence, the operating conditions D and Sin which produce the maximum of biogas are
obtained by the maximization of G1

(
D, Sin).

Problem 1. Determine the set of operating conditions for which G1 is maximal.

2.1.3. Steady State Optimization of Biomass Production

AD is used because it allows material to be degraded without producing too much
biomass, which is a good thing because in the environmental field we do not really know
what to do with the sludge produced. If we want to produce biomass, it is rather in
biotechnologies such as pharmaceuticals or food processing that we should be looking.
Let us forget about AD for a moment and assume that the industrial goal of the process
is the production of micro-organisms. When a continuous culture system is viewed as a
production process, its performance may be judged by the quantity of bacteria produced,
which is called the productivity of biomass. The total output from a continuous culture
unit in the steady state is equal to the product of flow rate and concentration of organisms.
Therefore, the productivity of (2) at steady state (S∗, X∗) is given by [20,47]

P = QX∗ (9)

where Q = VD is the flow rate, and V is the volume of the CSTR. Let us denote by Pi,
the productivity evaluated at steady state Fi, i = 0, 1, 2. One has P0 = 0 and using the
components of the steady states F1 and F2, given in (6), P1 and P2 are given by

P1
(

D, Sin) = VD2

k(αD+a)

(
Sin − λ(αD + a)

)
for Sin ≥ λ(αD + a),

P2
(

D, Sin) = VD2

k(αD+a)

(
Sin − λ̄(αD + a)

)
for Sin ≥ λ̄(αD + a).

(10)
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Our aim is to determine the set of operating conditions for which the productivity is
maximal. Note that, as for the biogas flow rate, the productivity at F1 is greater the the
productivity at F2: P1(D, Sin) > P2(D, Sin). Hence, the operating conditions D and Sin that
maximize productivity are obtained by maximizing P1

(
D, Sin).

Problem 2. Determine the set of operating conditions for which P1 is maximal.

2.1.4. The Case without Mortality

Note that when a = 0, we have

G1
(

D, Sin) = k1
k D
(
Sin − λ(αD)

)
, G2

(
D, Sin) = k1

k D
(
Sin − λ̄(αD)

)
,

P1
(

D, Sin) = V
kα D
(
Sin − λ(αD)

)
, P2

(
D, Sin) = V

kα D
(
Sin − λ̄(αD)

)
.

Therefore, Gi and Pi, i = 1, 2 are proportional. Hence, we can make the following
remark.

Remark 2. When a = 0, optimizing P1, given by (10), is the same as optimizing G1, given by (8);
that is, Problems 1 and 2 have the same solution. However, this is no longer true when a > 0.

For increasing functions (i.e., Sm = +∞), in the case a = 0, the equivalent Problems 1
and 2 have been solved in [51]; in the case a > 0, Problem 1 has been solved in [52] and
Problem 2 in [53]. In Sections 3.1.1 and 3.1.5, we will give the solutions to these problems
in the more general case where the growth function μ satisfies the Hypothesis 1 and is not
necessarily monotonic.

2.2. Two-Step Models

We consider the general two-step model with a cascade of two biological reactions,
where one substrate S1 is consumed by one microorganism X1 (acidogenic bacteria, in the
AM2 model), to produce a product S2 that serves as the main limiting substrate for a second
microorganism X2 (methanogenic bacteria in the AM2 model) as schematically represented
by the following reaction scheme (see [25]):

k1S1
r1−→ X1 + k2S2, k3S2

r2−→ X2 + k4CH4 (11)

where r1 = μ1(S1)X1 and r2 = μ2(S2)X2 are the kinetics of the reactions and ki, i = 1, . . . , 4
are pseudo-stoichiometric coefficients. In fact, biological reactions also produce CO2; see
Equations (1) and (2) in [25]. However, since in this section we are only interested in the
biogas production, we do not focus on the CO2 production. Let D be the dilution rate and
Sin

1 and Sin
2 the concentrations of input substrates S1 and S2, respectively. The dynamical

equations of the model take the form:

Ṡ1 = D
(
Sin

1 − S1
)
− k1μ1(S1)X1,

Ẋ1 = (μ1(S1)− D1)X1,
Ṡ2 = D

(
Sin

2 − S2
)
+ k2μ1(S1)X1 − k3μ2(S2)X2,

Ẋ2 = (μ2(S2)− D2)X2,

(12)

where, as in (3), the removal rates of the micro-organisms D1 and D2 take the form

Di = αiD + ai, i = 1, 2, (13)

where αi ∈ (0, 1], i = 1, 2, is a parameter allowing us to decouple the HRT and the SRT.
This decoupling is necessary when considering technology such as systems where biomass
is fixed onto supports (as in fixed or fluidized bed reactors) or still retained in the system
by membranes such as in MBRs (Membrane Bioreactors); see [54,55]. The model (12) is an
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extension of the AM2 model presented in [25], with α1 = α2, a1 = a2 = 0, and kinetics μ1
and μ2 of Monod and Haldane types, respectively.

The pseudo-stoichiometric coefficients ki in (12) can be reduced to 1; see Appendix B.1.
However, since these coefficients have their own importance for the biologist and since
our aim is to discuss the best operating conditions, we do not make this reduction and we
present the results in the original model (12). The model has a cascade structure which
renders its analysis easy. We give in Appendix B.3 the main results on the existence and
stability of the steady states of (12), and we express them using the OD.

2.2.1. Steady States

We consider (12) with general kinetics functions μ1 and μ2, satisfying the following
qualitative properties:

Hypothesis 2. The function μ1 is C1, μ1(0) = 0, μ′1(S1) > 0 for S1 > 0. Let m1 = μ1(+∞).

Hypothesis 3. The function μ2 is C1, μ2(0) = 0, μ2(+∞) = 0, and there exists Sm
2 > 0 such

that μ′2(S2) > 0 for 0 < S2 < Sm
2 , and μ′2(S2) < 0 for S2 > Sm

2 .

We consider the break-even concentrations as stated in Definition 1. The growth
function μ1 admits only one break-even concentration, denoted λ1, while the growth
function μ2 admits two break-even concentrations, which will be denoted λ2 and λ̄2. We
summarize in Table 1 the definitions of these break-even concentrations, together with two
auxiliary functions that are used in the description of the biogas flow-rates at steady states
of (12).

Table 1. Break-even concentrations and auxiliary functions.

λ1(D) is the unique solution of equation μ1(S1) = D, for D < m1

λ2(D) < λ̄2(D) are the solutions of equation μ2(S2) = D, for D < μ2(Sm
2 )

λ(0) = 0, λ̄2(0) = +∞ and λ(D) = λ̄2(D) for D = μ2(Sm
2 )

H1(D) = λ2(D2) +
k2
k1

λ1(D1),
H2(D) = λ̄2(D2) +

k2
k1

λ1(D1)

The system (12) can have up to six steady states, denoted Eij, where i = 0, 1 and
j = 0, 1, 2. The components of the steady states are given in Table A3. The existence and
stability conditions of the steady states of (12) are given in Appendix B.3. Note that E11 is
stable whenever it exists, while E01 is stable if and only if it exists and E11 does not exist.
Moreover the steady states E02 and E12 are unstable whenever they exist.

2.2.2. Steady State Optimization of Biogas Production

As in the one-step model, the biogas is simply a product of the biological reactions
and it has no feedback on the dynamical Equation (12). As we noticed in (7), the mass flow
of the methane production, denoted by GCH4 , is proportional to the microbial activity (see
Equation (12) in [25]):

GCH4 = k4μ2(S2)X2.

Let us denote by Gij the production of biogas at steady states Eij for i = 0, 1 and
j = 0, 1, 2. Using the components of the steady states given in Table A3, it is seen that
G00 = G10 = 0 and Gij for i = 0, 1 and j = 1, 2 are defined as in Table 2.
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Table 2. The biogas production at steady state Eij, i = 0, 1, j = 1, 2; λ2(D), λ̄2(D) and Hj(D), j = 1, 2,
are defined in Table 1.

Biogas Production Domain of Definition

G01

(
D, Sin

2

)
= k4

k3
D
(

Sin
2 − λ2(D2)

)
λ2(D2) ≤ Sin

2

G02

(
D, Sin

2

)
= k4

k3
D
(

Sin
2 − λ̄2(D2)

)
λ̄2(D2) ≤ Sin

2

G11

(
D, Sin

1 , Sin
2

)
= k4

k3
D
(

Sin
2 + k2

k1
Sin

1 − H1(D)
)

λ1(D1) ≤ Sin
1 , H1(D) ≤ Sin

2 + k2
k1

Sin
1

G12

(
D, Sin

1 , Sin
2

)
= k4

k3
D
(

Sin
2 + k2

k1
Sin

1 − H2(D)
)

λ1(D1) ≤ Sin
1 , H2(D) ≤ Sin

2 + k2
k1

Sin
1

Our aim is to find set of operating conditions for which the flow rate of biogas is
maximal.

Remark 3. We always have G01 > G02 and G11 > G12; see Section 3.2.1.

Hence, the operating conditions D, Sin
1 , and Sin

2 , which produce the maximum of
biogas, are obtained by the maximization of G01

(
D, Sin

2
)

or G11
(

D, Sin
1 , Sin

2
)
. The main

problem is then to compare the maximum of biogas production G11 at E11, where both
species are present, with the maximum of biogas production G01 at E01 where species
X1 is extinct and species X2 is present. Surprisingly, the optimal biogas production does
not always occur at E11, as was noticed by [11,21,31]. Therefore we have to solve the
following problem.

Problem 3. Determine the sets of operating conditions, for which G01 and G11 are maximal.
Compare the maximum of G01 to that of G11.

3. Results

3.1. One-Step Models

The OD of the one-step model (2) is described in Appendix A.2.

3.1.1. Best Operating Conditions for Biogas Production

Let G1 defined by (8) and Sin fixed. Our aim is to maximize the function D �→
G1(D, Sin). Note that this function is proportional to the function G defined by

G(D) = D(Sin − λ(αD + a)). (14)

The function G is depending on the parameter Sin. It is defined for D ∈ I(Sin), where
the interval I(Sin) is given by

I(Sin) =

{ [
0, δ(Sin)

]
if Sin < Sm

[0, δ(Sm)] if Sin ≥ Sm
with δ(S) = μ(S)−a

α (15)

The function G1 has an absolute maximum if G has one and this maximum is reached
at the same point where G reaches its maximum. By the Extreme Value Theorem, since G is
continuous on the closed interval I(Sin), it must attain a maximum. Let us consider the set
of arguments of the maximum of G, denoted by g(Sin) and defined by

g(Sin) = argmax
D∈I(Sin)

G :=
{

D∗ ∈ I(Sin) : G(D) ≤ G(D∗) for all D ∈ I(Sin)
}

. (16)

To obtain the maximum value of G(D), we differentiate (14) with respect to D, and
we solve the equation G′(D) = 0. The derivative of G is given by

G′(D) = Sin − γ(D)
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where γ is defined by
γ(D) = λ(αD + a) + αDλ′(αD + a). (17)

Remark 4. Since μ(λ(D)) = D, we have λ′(D) = 1/μ′(λ(D)). Therefore the function γ is
written

γ(D) = λ(αD + a) + αD
μ′(λ(αD+a)) .

We have the following result

Proposition 1. Let D∗ ∈ g(Sin). We have Sin = γ(D∗), where γ is defined by (17).

Proof. The proof is given in Appendix A.3.1.

Therefore, the curve
Γ =

{
(D, Sin) : Sin = γ(D)

}
(18)

of SOP contains the operating conditions for which G1 is maximal.
In Figure 1, we plot the Γ curve in the OD of (2). We have shown a curve Γ, which is the

graph of an increasing function. However, this does not always happen; see Appendix A.5.5.
When Γ is not increasing, there may be several maxima of the biogas flow. In Section 3.1.3,
we give sufficient conditions for the maximum to be unique. Since λ′(D) > 0, we deduce
that γ(D) > λ(αD + a) for D > 0. On the other hand,

γ(0) = λ(a), and lim
D→δ(Sm)

γ(D) = +∞.

From these properties we deduce the following remark.

(a) The Monod case (b) The Haldane case

Γ

D0

Sin

λ(a)

J1

J0

Λ

D0

Sin

λ(a)

Λ1Λ2

Λ

J1

J2

J0

Γ

Dc δ(Sm)

Sm

Sc

Figure 1. The OD of (2). The curve Γ is the set of best operating conditions.

Remark 5. If Sm = +∞, the curve Γ is contained in the region J1 (the green region) of the OD,
see Figure 1a. If Sm < +∞, Γ is contained in J1 ∪ J2 (the green and pink regions), and, since
μ′(Sm) = 0, the vertical line Λ1 is an asymptote of Γ, see Figure 1b. Note that in the Haldane case
(Sm < ∞), the curve Γ enters in the bistability region J2 at point (Dc, Sc).

3.1.2. How to Determine the Maximum of Biogas Production

From Proposition 1, to obtain g(Sin), we must solve the equation Sin = γ(D). However,
this equation can be complicated to solve because γ(D) is itself defined by λ(D), which
is the solution of the equation μ(S) = D. We have at our disposal another description of
g(Sin). Indeed, we can write

G(D) = 1
α H(λ(αD + a)), (19)
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where H is defined by

H(S) = (μ(S)− a)(Sin − S), for λ(a) ≤ S ≤ Sin (20)

From (19), it is deduced that the absolute maximum of G corresponds to the absolute
maximum of H and vice versa. To obtain the maximum value of H(S), we differentiate H
with respect to S and we solve the equation H′(S) = 0. The derivative of H is given by

H′(S) = μ′(S)(Sin − S)− μ(S) + a.

Hence, H′(S) = 0 if and only if Sin = η(S), where η(S) is defined by

η(S) = S + μ(S)−a
μ′(S) for S ≥ λ(a). (21)

We have the following result.

Proposition 2. Let S∗ be the maximum of H on (λ(a), Sin). Let D∗ = μ(S∗)−a
α . Then D∗ ∈

g(Sin). Moreover, we have Sin = η(S∗), where η is defined by (21).

Proof. The proof is given in Appendix A.3.2.

Remark 6. With the first method, we must first solve the equation μ(S) = D to obtain λ(D)
and then solve the equation γ(D) = Sin to obtain the optimal D∗ ∈ g(Sin). With the second
method, we simply solve the equation η(S) = Sin to get the maximum S∗ and then take D∗ =
μ(S∗)−a

α ∈ g(Sin).

3.1.3. Uniqueness of the Maximum

Hypothesis 1 is not enough to guarantee that the biogas flow rate admits a unique
global maximum; see Appendix A.5.5. We make the following hypothesis.

Hypothesis 4. For all Sin > 0, g(Sin), defined by (16), has a unique element, which is denoted by
D∗

G(S
in).

From Proposition 1 we deduce then the answer to Problem 1: assume that Hypotheses 1
and 4 are satisfied. Then, the set of best operating conditions for biogas production of (2) is
the curve Γ of SOP defined by:

Γ =
{
(D, Sin) : Sin = γ(D)

}
=
{
(D, Sin) : D = D∗

G(S
in)
}

. (22)

From Propositions 1 and 2, it is deduced that Hypothesis 4 is satisfied when the
equations

Sin = γ(D) or Sin = η(S)

have a unique solution. A sufficient condition for this is that the functions γ(D) and η(S)
are increasing. The following result gives sufficient conditions for Hypothesis 4 to be valid.

Lemma 1. Assume that Hypothesis 1 is satisfied and, in addition, μ is C2. The following conditions
are equivalent

1. γ′ > 0 on
(

0, μ(Sm)−a
α

)
.

2. (μ− a)μ′′ < 2(μ′)2 on (λ(a), Sm).

3.
(

1
μ−a

)′′
> 0 on (λ(a), Sm).

4. η′ > 0 on (λ(a), Sm).
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If these equivalent conditions are satisfied, then Hypothesis 4 is satisfied. If μ′′ < 0 on
(λ(a), Sm), then the conditions are satisfied.

Proof. The proof is given in Appendix A.3.3.

3.1.4. Best Operating Conditions

We first analyse the Monod case (Sm = ∞). We show in Figure 2 the set Γ of best
operating conditions and we describe how to use this set to obtain practically the maximum
of biogas production. Let Sin be fixed. The intersections of Γ and Λ with the horizontal line
where Sin is kept constant define the values D∗

G(S
in), defined in Hypothesis 4, and δ(Sin) =

μ(Sin)−a
α , defined by (15), see Figure 2a. The function D �→ G1

(
D, Sin) is defined on

[0, δ(Sin)] and attains its maximum G∗(Sin) for D = D∗
G(S

in); see Figure 2b.

(a) (b)

D0

Sin

Sin

λ(a)

D∗
G(Sin) δ(Sin)

Λ

Γ

D

y

D∗
G(Sin) δ(Sin)

G∗(Sin)

y=G1(D,Sin)

Figure 2. The best operating conditions of biogas flow rate for the Monod case. (a): The curve Γ in
SOP shows the optimal value D∗

G(S
in). (b): The function D �→ G1(D, Sin) is defined on [0, δ(Sin)],

and attains its maximum, G∗(Sin), for D = D∗
G(S

in).

In the Haldane case (Sm < ∞), the description is a little more complicated. If Sin

is fixed, the function D �→ G1
(

D, Sin) attains its maximum G∗
1 (S

in) for D = D∗
G(S

in),
obtained by taking the intersection of Γ with the horizontal line where Sin is kept constant,
as it is seen in Figure 3. However, there exist two threshold values Sc and Sm, depicted in
Figure 1b. If Sin ≤ Sm, only G1 is defined (see Figure 3a) while G1 and G2 are both defined
when Sin > Sm (see Figure 3b,c). On the other hand, if Sin > Sc, then the dilution rate
D∗

G
(
Sin), which maximises biogas production, corresponds to the bistability mode of the

chemostat; see Figure 3c. More precisely, we make the following remark.

Remark 7. Assume that Hypotheses 1 and 4 hold. Let D = Dc be the unique solution to equation
γ(D) = λ̄(αD + a). Let Sc = γ(Dc).

• If Sin < Sc then for the operating parameters Sin and D = D∗
G(S

in), F1 is GAS.
• If Sin > Sc then for the operating parameters Sin and D = D∗

G(S
in), F0 and F1 are both stable.

Indeed, since γ is increasing and λ̄ is decreasing, curves Γ and Λ2 have a unique inter-
section point (Dc, Sc); see Figure 1b. The OD shows that if Sin < Sc then

(
D∗

G(S
in), Sin) ∈

J1, that is to say, the best operating conditions are in the green region J1, where F1 is GAS
and if Sin > Sc, then

(
D∗

G(S
in), Sin) ∈ J2; that is to say, the best operating conditions are in

the pink region J2 of bistability of F0 and F1.
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(a) 0 < Sin < Sm (b) Sm < Sin < Sin
c (c) Sin

c < Sin

D D D

D D D

Sin Sin Sin

y y y

J1

J2

J0

J1

J2

J0

J1

J2

J0

Γ Γ Γ
Sin

D∗
G

(
Sin
)

δ
(
Sin
)

Sin

D∗
G

(
Sin
)↗

δ
(
Sin
)6⏐ ↖δ(Sm)

Sin

δ
(
Sin
)
D∗

G

(
Sin
)6⏐ ↖δ(Sm)

G∗
1(S

in)

D∗
G

(
Sin
)

δ
(
Sin
)

G∗
1(S

in)

D∗
G

(
Sin
)↗

δ
(
Sin
)6⏐ ↖δ(Sm)

G∗
1(S

in)

δ
(
Sin
)
D∗

G

(
Sin
)6⏐ ↖δ(Sm)

y=G1(D,Sin)

y=G1(D,Sin)

y=G2(D,Sin)

y=G1(D,Sin)

y=G2(D,Sin)

Figure 3. The set of best operating conditions Γ (in red) shows the optimal dilution rate D∗
G(S

in)

corresponding to three typical values of Sin.

Figure 3 shows three typical values of Sin and the corresponding optimal dilution rates
D∗

G(S
in). The corresponding biogas productions are depicted in the same figure. The main

results are summarized as follows:

• If Sin < Sm, the biogas production G1(D, Sin) is defined for D ∈
[
0, δ(Sin)

]
; see

Figure 3a.
• If Sin > Sm, the biogas production G1(D, Sin) is defined for D ∈ [0, δ(Sm)], and the

biogas production G2(D, Sin) is defined for D ∈
[
δ(Sin), δ(Sm)

]
; see Figure 3b,c.

• If Sin < Sc, and the chemostat is operated at the optimal dilution rate D∗
G
(
Sin), then

the system converges towards the positive steady state F1 giving the maximum of
biogas; see Figure 3a,b.

• If Sin > Sc and the chemostat is operated at the optimal dilution rate D∗
G
(
Sin), then,

according to the initial condition, the system converges either to the positive steady
state F1, giving maximum biogas, or the washout steady state F0, with no biogas
production; see Figure 3c.

3.1.5. Best Operating Conditions for Biomass Production

Let P1 be defined by (10) and Sin fixed. Our aim is to maximise the function D �→
P1(D, Sin). Note that this function is proportional to the function P : D �→ p(D) defined by

P(D) = D2

αD+a
(
Sin − λ(αD + a)

)
, for D ∈ I(Sin) (23)

where I(Sin) is defined by (15). Therefore P1 has an absolute maximum if P has one and
this maximum is reached at the same point where P reaches its maximum. As in the case of
the biogas flow rate, we consider the arguments of the maximum of P

p(Sin) = argmax
D∈I(Sin)

p :=
{

D∗ ∈ I(Sin) : P(D) ≤ P(D∗) for all D ∈ I(Sin)
}

. (24)

To obtain the maximum value of P(D), we differentiate (23) with respect to D, and we
solve the equation P′(D) = 0. The derivative of P is given by

P′(D) = D(αD+2a)
(αD+a)2

(
Sin − π(D)

)
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where π is defined by

π(D) = λ(αD + a) + αD(αD+a)
αD+2a λ′(αD + a). (25)

Remark 8. Using λ′(D) = 1/μ′(λ(D)), the function π can be written

π(D) = λ(αD + a) + αD(αD+a)
(αD+2a)μ′(λ(αD+a)) .

We have the following result

Proposition 3. Let D∗ ∈ p(Sin). We have Sin = π(D∗), where π is defined by (25).

Proof. The proof is given in Appendix A.4.1.

Therefore, the curve
Π =

{
(D, Sin) : Sin = π(D)

}
(26)

of SOP contains the operating conditions for which P1 is maximal. In Figure 4, this set is
shown in the OD depicted in Figure 1, together with the set Γ. Note that if a > 0, then

λ(αD + a) < π(D) < γ(D). (27)

Therefore, curve Π is above curve Λ and below curve Γ; see Figure 4.

(a) The Monod case (b) The Haldane case

D0

Sin

λ(a)

J1

J0

Λ

Γ

Π

D0

Sin

J1

J2

Λ1Λ2

Λ

J0

Γ

Π

↗
D∗

G(Sin)
↖

D∗
P (Sin)

↗
D∗

P (Sin)
↖

D∗
G(Sin)

Sin

Sin

Figure 4. The curves Γ (in red) and Π (in blue).

3.1.6. How to Determine the Maximum of Biomass Production?

From Proposition 3, to obtain p(Sin) we must solve the equation Sin = π(D), which
can be difficult to solve. We have at our disposal another description of p(Sin). We can
write

P(D) = 1
α2 Q(λ(αD + a)), (28)

where Q is defined by

Q(S) = (μ(S)−a)2

μ(S) (Sin − S), for λ(a) ≤ S ≤ Sin (29)

From (28), it is deduced that the absolute maximum of P corresponds to the absolute
maximum of Q and vice versa. To obtain the maximum value of Q(S), we differentiate Q
with respect to S, and we solve the equation Q′(S) = 0. The derivative of Q is given by

Q′(S) = (μ(S)−a)(μ(S)+a)μ′(S)
(μ(S))2

(
Sin − S

)
− (μ(S)−a)2

μ(S) .
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Hence, Q′(S) = 0 if and only if Sin = ρ(S), where ρ(S) is defined by

ρ(S) = S + (μ(S)−a)μ(S)
(μ(S)+a)μ′(S) , for S ≥ λ(a). (30)

More precisely, we have the following result.

Proposition 4. Let S∗ be the maximum of p on (λ(a), Sin). Then D∗ = μ(S∗)−a
α . We have

D∗ ∈ p(Sin). Moreover, we have Sin = ρ(S∗), where ρ is defined by (30).

Proof. The proof is given in Appendix A.4.2.

Remark 9. With the first method we must first solve the equation μ(S) = D to obtain λ(D),
and then solve the equation π(D) = Sin to obtain the optimal D∗ ∈ p(Sin). With the second
method, we simply solve the equation ρ(S) = Sin to get the maximum S∗ and then take D∗ =
μ(S∗)−a

α ∈ p(Sin).

3.1.7. Uniqueness of the Maximum

Hypothesis 1 is not enough to guarantee that the biomass productivity admits a unique
global maximum; see Appendix A.5.5. We make the following hypothesis.

Hypothesis 5. For all Sin > 0, p(Sin), defined by (24), has a unique element, which is denoted by
D∗

P(S
in).

From Proposition 3, we obtain the answer to Problem 2: Assume that Hypotheses 1
and 5 hold. Then, the set of best operating conditions for the productivity of (2) is the curve
Π of SOP defined by:

Π =
{
(D, Sin) : Sin = π(D)

}
=
{
(D, Sin) : D = D∗

P(S
in)
}

. (31)

From (27), we deduce that if a > 0, then D∗
G(S

in) < D∗
P(S

in); see Figure 4.
From Propositions 3 and 4, it is deduced that the uniqueness of D∗

P(S
in) is guaranteed

when the equations
Sin = π(D) or Sin = ρ(S)

have a unique solution. A sufficient condition for this is that the functions π(D) and ρ(S)
are increasing. The following result gives sufficient conditions for Hypothesis 5 to be valid.

Lemma 2. Assume that Hypothesis 1 is satisfied and, in addition, μ is C2. The following conditions
are equivalent

1. π′ > 0 on
(

0, μ(Sm)−a
α

)
.

2. (μ−a)(μ+a)
μ+2a μ′′ < 2(μ′)2 on (λ(a), Sm).

3. ρ′ > 0 on (λ(a), Sm).

If these equivalent conditions are satisfied, then Hypothesis 5 is satisfied. If μ′′ < 0 on (λ(a), Sm)

or
(

1
μ−a

)′′
> 0 on (λ(a), Sm), then the conditions are satisfied.

Proof. The proof is given in Appendix A.4.3.

3.1.8. The Case without Mortality

The functions γ, H, and η, defined by (17), (20), and (21), respectively, that were used
for the optimization of the biogas flow rate G are summarized in Table 3. Note that the
functions G and H are related by formula (19). Similarly, the functions π, Q, and ρ, defined
by (25), (29) and (30), respectively, which were used for the optimization of the productivity
P, are summarized in Table 3. Note that the functions P and Q are related by formula (28).
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Table 3. The functions γ, H and η used for the optimization of the biogas flow rate G. The functions
π, Q and ρ used for the optimization of the productivity P. Note that G(D) = 1

α H(λ(αD + a)) and
P(D) = 1

α Q(λ(αD + a)).

Biogas Production Biomass Productivity

G(D) = D(Sin − λ(αD + a)) P(D) = D2

αD+a (S
in − λ(αD + a))

γ(D) = λ(αD + a) + αDλ′(αD + a) π(D) = λ(αD + a) + αD(αD+a)
αD+2a λ′(αD + a)

H(S) = (μ(S)− a)(Sin − S) Q(S) = (μ(S)−a)2

μ(S) (Sin − S)

η(S) = S +
μ(S)−a

μ′(S) ρ(S) = S +
(μ(S)−a)μ(S)
(μ(S)+a)μ′(S)

Biogas Production = Biomass Productivity (a = 0)

G(D) = αP(D) = D(Sin − λ(αD))
γ(D) = π(D) = λ(αD) + αDλ′(αD)
H(S) = Q(S) = μ(S)(Sin − S)
η(S) = ρ(S) = S +

μ(S)
μ′(S)

Table 3 shows that in the case without mortality, one has G = αP, γ = π, H = Q, and
η = ρ. Hence, if a = 0, we have D∗

G(S
in) = D∗

P(S
in). In the following, this value is referred

to as D∗(Sin). Therefore, for the optimization of the biogas flow rate or the productivity of
the biomass, a first method consists in solving the equation

λ(αD) + αDλ′(αD) = Sin.

to obtain the optimal value of the dilution rate D∗(Sin). The second method consists in
solving the equation

η(S) = Sin, where η(S) := S + μ(S)
μ′(S) (32)

to get the maximum S∗(Sin) and then take D∗(Sin) = 1
α μ
(
S∗(Sin)

)
. Hence, without loss of

generality, one can put α = 1 and solve Equation (32) or equation

γ(D) = Sin, where γ(D) := λ(D) + Dλ′(D). (33)

The results of Lemmas 1 and 2 become the same in the case that a = 0. We summarize
them below, in this special case.

Lemma 3. Assume that Hypothesis 1 is satisfied and, in addition μ is C2. The following conditions
are equivalent

1. γ′ > 0 on (0, μ(Sm)), where γ is defined in (33).
2. μμ′′ < 2(μ′)2 on (0, Sm).

3.
(

1
μ

)′′
> 0 on (0, Sm).

4. η′ > 0 on (0, Sm), where η is defined in (32).

If these equivalent conditions are satisfied, then each of Equations (32) and (33) has a unique
solution; i.e., Hypothesis 4 is satisfied. If μ′′ < 0 on (0, Sm), then the conditions are satisfied.

In Appendix A.5, we apply the preceding results to various growth functions that
were considered in the literature.

3.2. Two-Step Models

The steady state and their stability of the two-step model (12) are given in Appendix B.2,
and the OD is described in Appendix B.3.
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3.2.1. Comparison of Biogas Flow Rates

Recall that E11 is stable whenever it exists; E01 can be stable but is unstable whenever
E11 exists, and E02 and E12 are unstable whenever they exist. Is it possible that for some
operating condition D, Sin

1 , and Sin
2 , the biogas production at an unstable steady state is

greater than at a stable one? This possibility is excluded, as is stated in the following result.

Proposition 5.

• For all operating conditions D and Sin
2 where G02 is defined, then G01 is also defined,

and G01
(

D, Sin
2
)
> G02

(
D, Sin

2
)
.

• For all operating conditions D, Sin
1 and Sin

2 where G12 is defined, then G11 is also defined,
and G11

(
D, Sin

1 , Sin
2
)
> G12

(
D, Sin

1 , Sin
2
)
.

• For all operating conditions D, Sin
1 and Sin

2 where G01 and G11 are both defined, we have
G11
(

D, Sin
1 , Sin

2
)
> G01

(
D, Sin

2
)
.

Proof. The proof is given in Appendix B.5.1.

This result shows that G01 > G02 and G11 > G12, which justifies Remark 3. Therefore,
in Problem 3, we can restrict our attention to the maximisation of G01 and G11. The result
also shows that when E11 and E01 are both defined, then we have G11 > G01. Table A6
shows that both E11 and E01 exist simultaneously only in regions I6, I7, and I8, and that in
this case E11 is stable while E01 is unstable. However, it is possible for one to be defined
without the other being defined, as shown in Table A6. Indeed, in the regions I1 and I2,
E01 exists and is stable, while E11 does not exist and in the regions I4 and I5, E11 exists and
is stable, while E01 does not exist. Therefore, the maximum of G11 and G01 can be obtained
for different values of the dilution rate D, and the last part of Problem 3 is to fix Sin

1 and Sin
2

and compare
max

D
G01(D, Sin

2 ) and max
D

G11(D, Sin
1 , Sin

2 ).

3.2.2. Best Operating Conditions for G01 and G11

Let us fix the operating parameters Sin
1 and Sin

2 . We restrict our attention to the case
a1 = a2 = 0 and α1 = α2 = α, which was considered in [11]. The general case can be
considered without added difficulty. Our aim is to compute the values of D for which the
functions

D �→ G01
(

D, Sin
2
)

and D �→ G11
(

D, Sin
1 , Sin

2
)

reach their maxima. These functions are proportional to the functions

G0(D) = D
(

Sin
2 − λ2(αD)

)
(34)

G1(D) = D
(

Sin
2 + k2

k1
Sin

1 − λ2(αD)− k2
k1

λ1(αD)
)

(35)

respectively, where λ1 and λ2 are defined in Table 1. Therefore, G01 has an absolute
maximum if G0 has one, and this maximum is reached at the same point where G0 reaches
its maximum. Similarly, G11 has an absolute maximum if G1 has one, and this maximum is
reached at the same point where G1 reaches its maximum. To obtain the maximum of G0,
we differentiate G0 with respect to D. The derivative is given by

G′
0(D) = Sin

2 − γ2(αD)

where γ2 is defined by
γ2(D) = λ2(D) + Dλ′2(D). (36)

Similarly, the derivative of G1 is given by

G′
1(D) = Sin

2 − γ2(αD) + k2
k1

(
Sin

1 − γ1(αD)
)
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where γ1 is defined by
γ1(D) = λ1(D) + Dλ′1(D). (37)

Remark 10. Using λ′1(D) = 1/μ′1(λ1(D)) and λ′2(D) = 1/μ′2(λ2(D)), the functions γ2 and
γ1 can be written

γ2(D) = λ2(D) + D
μ′2(λ2(D))

, γ1(D) = λ1(D) + D
μ′1(λ1(D))

.

We make the following assumptions:

Hypothesis 6. The function γ2 : I2 → (0 + ∞), defined on I2 = (0, μ2(Sm
2 )) by (36), is C1, and

for all D ∈ I2 we have γ′2(D) > 0.

Hypothesis 7. The function μ1 : I1 → (0 + ∞), defined on I1 = (0, m1) by (37), is C1 and for
all D ∈ I1 we have γ′1(D) > 0.

If Hypothesis 6 is satisfied, then the function γ2 is invertible, and for each Sin
2 , the

equation
Sin

2 = γ2(αD) (38)

has a unique solution, denoted

D∗
0
(
Sin

2
)
= 1

α γ−1
2 (Sin

2 ), (39)

where γ−1
2 is the inverse function of γ2. On the other hand, if Hypotheses 6 and 7 are

satisfied, the function γ2 +
k2
k1

γ1 is C1 and increasing, since it is the sum of two increasing
functions. Therefore, for each Sin

1 and Sin
2 , the equation

Sin
2 + k2

k1
Sin

1 = γ2(αD) + k2
k1

γ1(αD) (40)

has a unique solution, denoted

D∗
1
(
Sin

1 , Sin
2
)
= 1

α γ−1
(

Sin
2 + k2

k1
Sin

1

)
, (41)

where γ−1 is the inverse function of γ := γ2 +
k2
k1

γ1.
The following result gives the answer to the first part of Problem 3.

Proposition 6. Assume that Hypotheses 2, 3, 6, and 7 are satisfied. Then G01
(

D, Sin
2
)

reaches its
maximum at D∗

0
(
Sin

2
)
, defined by (39) and G11

(
D, Sin

2 , Sin
2
)

reaches its maximum at the right-hand
end of its defining interval, or at D∗

1
(
Sin

1 , Sin
2
)
, defined by (41).

Proof. The proof is given in Appendix B.5.2.

The set of best operating conditions for biogas production at E01 is the surface Γ0 of
SOP, defined by:

Γ0 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = γ2(αD)
}
=
{
(D, Sin

1 , Sin
2 ) : D = D∗

0
(
Sin

2
)}

(42)

It is the set of operating conditions that produce the maximum of G01. The set of best
operating conditions for biogas production at E11 is the surface Γ1 of SOP, defined by:

Γ1 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = γ(αD)

}
=
{
(D, Sin

1 , Sin
2 ) : D = D∗

1
(
Sin

1 , Sin
2
)}

(43)

This is the set of operating conditions which produce the maximum of G11.
We plot the sets Γ0 and Γ1 in the 2-dimensional ODs in the (D, Sin

1 )-plane shown in
Figure 5. Since Sin

2 is fixed, the set Γ0, in blue in the figures, is the vertical line D = D∗
0 (S

in
2 ),
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while Γ1, in red in the figures, is the curve of equation Sin
1 = k1

k2

(
γ(αD)− Sin

2
)
. Let Sin

1 and
Sin

2 be fixed. Consider the OD for which Sin
2 is equal to the fixed value considered and look

for the intersections of Γ0 and Γ1 with the horizontal line where Sin
1 is kept constant at the

fixed value considered. The abscissas of these intersections are the optimal dilution rates
D∗

0
(
Sin

2
)

and D∗
1
(
Sin

2
)

defined by (39) and (41), respectively.

(a) Sin
2 = 0 (b) Sin

2 = 15

(c) Sin
2 = Sm

2 ≈ 48.741 (d) Sin
2 = 150

Sin
1 Sin

1

Sin
1 Sin

1

D D

D D

I0 I0

I0 I0

I1↘

I1↘ I1↘ I2←

I3 I3

I3 I3

I4

I4

I5 I5

I6

I6 I6

I7→

I7 I7 I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ4 Λ4

Λ5 Λ5

Λ5 Λ5

Λ6 Λ6

Λ6 Λ6

Γ1 Γ1

Γ1

Γ1←

Γ0

Γ0

Γ0→

Figure 5. The 2-dimensional OD in
(

D, Sin
1

)
, obtained by cuts at Sin

2 constant of the 3-dimensional
OD shown in Figure A6. The curve Γ1, in red, is the set of maximisation of G11. The vertical line Γ0,
in blue, is the set of maximisation of G01.

Remark 11. As for the one-step model with a Haldane type growth function, shown in Figure 1b,
there exists a threshold value Sc

1 corresponding to the intersection point (Dc, Sc
1) of curves Γ1 and

Λ5, such that, if Sin
1 > Sc

1, then the best operating point lies in the bistability pink region; see
Figure 6a. The value D = Dc is the solution of equation

λ̄2(αD) = λ2(αD) + αDλ′2(αD) + k2
k1

αDλ′1(αD), (44)

which gives the abscissa of the point of intersection of Γ1 and Λ5, and Sc
1 is given by

Sc
1 = λ1(αDc) + k1

k2

(
λ̄2(αDc)− Sin

2
)
.
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(a) The threshold Sc
1 (b) The thresholds S0

1 and S1
1 (c) Biogas flows G01 and G11

Sin
1 Sin

1 y

D D D

Sc
1

S0
1

S1
1

P 0

P 1

Dc D1 D0 D1 D0

Λ1Λ5 Γ1Γ0 Γ1 Γ0

Λ1

y = G01(D,Sin
2 )

y = G11(D,S0
1 , S

in
2 )

← y = G11(D,S1
1 , S

in
2 )

Figure 6. (a): The point (Dc, Sc
1) = Γ1 ∩ Λ5. (b): A zoom showing the points P0 = Γ0 ∩ Λ1 and

P1 = Γ1 ∩ Λ1. (c): The function D �→ G01(D, Sin
2 ) in blue and the functions D �→ G11(D, Sin

1 , Sin
2 ),

in red, for Sin
1 = S0

1 and Sin
1 = S1

1.

3.2.3. The Maximum of G01 Can Be Larger than the Maximum of G11

In addition to the threshold Sc
1, Figures 5 and 6 show two other thresholds obtained by

considering the intersection of the Γ0 and Γ1 curves with the Λ1 curve. We depict in Figure 6
a typical situation and show in a zoom the points of intersection. Let P0 = (D0, S0

1) be the
point of intersection of Γ0 with Λ1; see Figure 6b. If Sin

1 = S0
1, then the productivity G11 is

defined for 0 ≤ D ≤ D0 and reaches its maximum for some D∗
1 (S

0
1, Sin

2 ) < D0. Moreover,
we have

max
D

G01(D, Sin
2 ) = G01(D0, Sin

2 ) = G11(D0, S0
1, Sin

2 ).

Therefore, see Figure 6c, we have

max
D

G11(D, S0
1, Sin

2 ) > max
D

G01(D, Sin
2 ).

Since the function Sin
1 �→ G11(D, Sin

1 , Sin
2 ) is increasing, the same result is true for any

Sin
1 > S0

1. Note that S0
1 depends on Sin

2 and is a solution of the set of equations

Sin
1 = λ1(αD), Sin

2 = γ2(αD)

which give the point of intersection of Λ1 and Γ0. Therefore, (S0
1, Sin

2 ) belongs to the curve

Σ0 =
{
(Sin

1 , Sin
2 ) : Sin

2 = γ2
(
μ1
(
Sin

1
))}

. (45)

Similarly, let P1 = (D1, S1
1) be the point of intersection of the curves Γ1 and Λ1; see

Figure 6b. If Sin
1 = S1

1 then the productivity G11 is defined for 0 ≤ D ≤ D1 and reaches its
maximum for D = D1. Since D1 < D0, we have (see Figure 6c),

G11(D1, S1
1, Sin

2 ) = G01(D1, Sin
2 ) < G01(D0, Sin

2 ).

Therefore,
max

D
G11(D, S1

1, Sin
2 ) < max

D
G01(D, Sin

2 ).

The same result is true for any Sin
1 < S1

1, because the function Sin
1 �→ G11(D, Sin

1 , Sin
2 ) is

increasing. Note that S1
1 depends on Sin

2 and is a solution to the set of equations

Sin
1 = λ1(αD), Sin

2 + k2
k1

Sin
1 = γ2(αD) + k2

k1
γ1(αD),

which give the point of intersection of Λ1 and Γ1. Therefore (S1
1, Sin

2 ) belongs to the curve

Σ1 =
{
(Sin

1 , Sin
2 ) : Sin

2 = σ1(Sin
1 )
}

, where σ1(Sin
1 ) = γ2

(
μ1
(
Sin

1
))

+ k2
k1

μ1(Sin
1 )

μ′1(Sin
1 )

. (46)
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The curves Σ0 and Σ1 are illustrated in Figure 7b. We have the following result.

Proposition 7. Let Σ0 and Σ1 be the curves of the (Sin
1 , Sin

2 ) plane defined by (45) and (46),
respectively. If (Sin

1 , Sin
2 ) is at the right of Σ0, then we have

max
D

G11(D, S1
1, Sin

2 ) > max
D

G01(D, Sin
2 ).

If the function μ1/μ′1 is increasing and (Sin
1 , Sin

2 ) is at the left of Σ1, then we have

max
D

G11(D, S1
1, Sin

2 ) < max
D

G01(D, Sin
2 ).

Proof. The proof is given is Appendix B.5.3.

(a) The curve Σ (b) The curves Σ, Σ0 and Σ1

Σ

Sin
1

Sin
2

Sin
1

Sin
2

Σ1

Σ0

Σ

Figure 7. To the left of the curve Σ we have max
D

G01 > max
D

G11 and to its right we have max
D

G01 <

max
D

G11.

Now, we give the curve Σ lying between the Σ0 and Σ1 curves, such that the maximum
of biogas flow rate is obtained for E01 at the left of Σ and for E11 at the right of Σ; see
Figure 7a. We need the following hypothesis.

Hypothesis 8. We assume that the function φ defined by φ(D) = D2λ′2(D) is increasing.

Therefore, φ has an inverse function φ−1 defined by D = φ−1(B) if and only if D is the
solution to equation φ(D) = B. Consider the curve Σ defined by the parametric equations

Sin
2 = γ2(Δ(D)), Sin

1 = γ1(αD) + k1
k2
(γ2(αD)− γ2(Δ(D))) (47)

where Δ(D) is defined by

Δ(D) := φ−1
(

α2D2
(

λ′2(αD) + k2
k1

λ′1(αD)
))

. (48)

The following result gives the answer to the second part of Problem 3.

Proposition 8. Assume that Hypothesis 8 is satisfied and, in addition, the curve C defined by the
parametric Equation (47) is the graph of an increasing function Sin

2 �→ Sin
1 . Then it is the subset of

the (Sin
1 , Sin

2 ) plane, where

max
D

G01(D, Sin
2 ) = max

D
G11(D, Sin

1 , Sin
2 ). (49)

To the left of C, we have max
D

G01 > max
D

G11 and to its right, we have max
D

G01 < max
D

G11.
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Proof. The proof is given in Appendix B.5.4.

Remark 12. By combining the result of Remark 11 with that of Proposition 8, we deduce that the
curve Σ and the straight line C defined by

C :=
{
(Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 < γ2(αDc) + k2

k1
γ1(αDc)

}
,

where D = Dc is the solution of Equation (44), divide the plane (Sin
1 , Sin

2 ) into three regions:

R0 :=
{
(Sin

1 , Sin
2 ) lies to the left of Σ

}
R1 :=

{
(Sin

1 , Sin
2 ) lies to the right of Σ and to the left of C

}
R2 :=

{
(Sin

1 , Sin
2 ) lies to the right of Σ and C

}
.

In the region R0, we have maxD G10 > maxD G11. In the region R1, we have maxD G10 <
maxD G11, and the optimal dilution rate corresponds to the global asymptotic stability of E11. In the
region R2, we also have maxD G10 < maxD G11, but the optimal dilution rate corresponds to the
bistability of E11 and E10.

Since the steady state E10 does not produce biogas, if the bioreactor is operated in
the R2 region, care should be taken to initialise it in the basin of attraction of E11 and not
in the basin of E10. The regions are illustrated in Figure 8a, obtained with the parameter
values given in Table A8. Let us illustrate the behaviour of G01(D, Sin

2 ) and G11(D, Sin
1 , Sin

2 ),
as functions of D, for the operating points ok ∈ Rk, k = 0, 1, 2, shown in Figure 8a. Figure 8b
shows the OD in the (D, Sin

1 ) plane and Sin
2 = 15. The horizontal lines Sin

1 = 1.5, 10, and
50, corresponding to the points o0 = (1.5, 15), o1 = (10, 15), and o2 = (50, 15), respectively,
give the optimal dilution rates. For o0, the maximum of the biogas flow is obtained for E01;
see Figure 8c. For o1, the maximum of the biogas flow is obtained for E11, and E11 is GAS;
see Figure 8d. For o2, the maximum of the biogas flow is obtained for E11, but E11 is only
LAS; see Figure 8e.

(a) The regions R0, R1 and R2 (b) The operating diagram for Sin
2 = 15

(c) Sin
1 = 1.5 (d) Sin

1 = 10 (e) Sin
1 = 50

Sin
2

Sin
1

y y y

Sin
1 D

D D D

↓
o0

o1 o2

R0 R1 R2

Γ1Γ0

Λ1Λ5 Λ2 Λ6

Λ4

Sin
1 = 1.5

Sin
1 = 10

Sin
1 = 50

y = G01(D, 15)

y = G01(D, 15)

y = G01(D, 15)
y = G11(D, 50, 15)

y = G12(D, 50, 15)

y = G11(D, 10, 15)

← y = G11(D, 1.5, 15)

Figure 8. The biogas flow rates D �→ G01(D, Sin
2 ) in blue, D �→ G11(D, Sin

1 , Sin
2 ) in red, and D �→

G12(D, Sin
1 , Sin

2 ) in dashed red, corresponding to the operating points (c) o0 = (1.5, 15), (d) o1 =

(10, 15) and (e) o2 = (50, 15). The flow rate biogas of a stable steady state is drawn in bold, while it is
drawn in dashed line when the steady state is unstable.
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3.2.4. Applications to the Classical AM2 Model

The dynamical equations of the model are

Ṡ1 = D
(
Sin

1 − S1
)
− k1μ1(S1)X1,

Ẋ1 = (μ1(S1)− αD)X1,
Ṡ2 = D

(
Sin

2 − S2
)
+ k2μ1(S1)X1 − k3μ2(S2)X2,

Ẋ2 = (μ2(S2)− αD)X2,

(50)

where the kinetics μ1 and μ2 are given by

μ1(S1) =
m1S1

K1+S1
, μ2(S2) =

m2S2
K2+S2+S2

2/Ki
, (51)

For the Monod and Haldane functions, Hypotheses 2 and 3 are satisfied and the
break-even concentrations can be calculated explicitly. For the convenience of the reader
we summarize in Table 4 the expressions of the break even concentrations and the auxiliary
functions that are needed in the description of the results. The OD in the three dimensional
SOP, corresponding to the biological value parameters given in Table A8 is shown in
Figure A6 of the Appendix. The two-dimensional diagrams in the (D, Sin

1 ) plane, where Sin
2

is kept constant, are depicted in Figure A7. The two-dimensional diagrams in the (Sin
1 , Sin

2 )
plane, where D is kept constant, are depicted in Figure A8.

Table 4. Auxiliary function in the classical AM2 model.

μ1(S1) = m1S1
K1+S1

λ1(D) = DK1
m1−D , Defined for 0 ≤ D < m1 = μ1(+∞)

μ2(S2) = m2S2
K2+S2+S2

2/Ki
, Sm

2 =
√

K2Ki, μ2
(
Sm

2
)
= m2

1+2
√

K2/Ki

λ2(D) =
(m2−D)−

√
(m2−D)−4D2K2/Ki

2D Ki, Defined for 0 < D ≤ μ2(Sm
2 )

λ̄2(D) =
(m2−D)+

√
(m2−D)2−4D2K2/Ki

2D Ki Defined for 0 < D ≤ μ2(Sm
2 )

γ1(D) = λ1(D) + Dλ′1(D), Defined for D < m1

γ2(D) = λ2(D) + Dλ′2(D), Defined for D < μ2(Sm
2 )

γ(D) = γ2(D) + k2
k1

γ1(D) Defined for D < min(m1, μ2(Sm
2 ))

Since μ′′1 < 0 and μ′′2 < 0 on (0, Sm
2 ), from Lemma 3 we deduce that γ′1 > 0 and γ′2 > 0.

Therefore Hypotheses 6 and 7 are satisfied. From Proposition 6, we deduce that the curves
Γ0 and Γ1, defined by (42) and (43) are the sets of best operating conditions for G01 and G11,
respectively. These sets are shown in Figure 5, for some of the ODs depicted in Figure A7.

On the other hand, since λ′′2 > 0, we deduce that φ′ > 0, where φ(D) = D2λ′2(D).
Hence Hypothesis 8 is satisfied. The inverse function of φ can be computed explicitly. We
have

φ−1(B) = m2
(m2Ki+2B)

√
BK2Ki(m2Ki+B)−(m2Ki+B)Ki B

K2m2
2K2

i +(4K2−Ki)(m2Ki+B)B

Note that the function μ1/μ′1 is increasing. Therefore, the result of Proposition 7 is
true. Straightforward computation shows that the curve Σ is increasing. Hence, the result
of Proposition 8 is true. The curve Σ of the (Sin

1 , Sin
2 )-plane,

max
D

G01(D, Sin
2 ) = max

D
G11(D, Sin

1 , Sin
2 ),

and the curves Σ0 and Σ1 are shown in Figure 7. Finally the regionsR0, R1, andR2 and the
behaviour of the biogas flow rates D �→ G01(D, Sin

2 ) and D �→ G11(D, Sin
1 , Sin

2 ) are depicted
in Figure 8 for three operating points oj ∈ Rj, j = 0, 1, 2.
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3.3. Relationship with Previous Results

The OD of the one-step model is well known in the existing literature [22,36]. In these
references, the dilution rate is shown on the vertical axis, and the input substrate concen-
tration is shown on the horizontal axis. In this paper, we have reversed the axes, because,
as we then consider the biogas flow rate, or productivity, as a function of the dilution rate,
it is interesting to have the dilution rate on the horizontal axis in all graphs.

In practical applications, when maximising biogas or biomass production, the substrate
concentration Sin is given and the optimal dilution rate D∗(Sin), depending on Sin, that
maximises biogas or biomass production must be determined. For the Monod function,
the formula giving the optimal dilution appears in several reference books; see for example
Formula (13.70) in [12] or Formula (6.83) in [19]. For the Monod and Haldane functions, it
appears in [20,21] and were used for the optimization of bioreactors by extremum seeking.
The approach used here is to try to directly exploit the equation of which the optimal D is a
solution and to represent its solutions in the OD. To the best of our knowledge, the set of
best operating conditions for biogas or bimass production have only recently been drawn in
the OD [51–53]. In these papers the main problem is to consider the optimisation of biogas
flow rate or biomass productivity in the serial chemostat and to compare the performances
of the serial chemostat with a single chemostat of the same total volume.

In the case without biomass mortality, the mathematical analysis of the two-step model
was given in [15], in the case α = 1, and in [26] in the case α ≤ 1. The OD was given in [42].
Here we have extended these results to the case including mortality. The maximization of
biogas flow for this model has been well studied in [11]. For example, the curves Σ0 and Σ1
were described( see Figure 4 in [11]), where the curves are called C2 and C3, respectively.
The existence of the curve Σ was predicted; see Remark 7 in [11]. However, neither its
analytical equation nor its numerical representation was given in [11]. Note that the curves
Σ0 and Σ1 have vertical asymptotes; see Figure 7. We deduce that the curve Σ also has
one. Therefore, the region R0 is not wide. That is to say, for an Sin

2 as large as one wants,
it is enough that Sin

1 exceeds a certain threshold, corresponding to the vertical asymptote,
for the system to be in the R1 or R2 region.

The representation of the set of optimal operating conditions in the OD, as well as its
use to deduce the various properties of biogas production, is not found in the existing
literature. In particular, the identification of the threshold at which the system will operate
in a bistability regime is new and answers practical questions of great interest for bioreac-
tors and their management. These questions are related to the so-called stability criteria
named “overloading tolerance” or “destabilization risk index” [26,56]. This index alerts the
experimenter as soon as the system approaches a regime of bistability. Bistability in the
model occurs when the unstable steady states E02 or E12 exist. For example, although the
steady state E12 is unstable, if it exists, its existence completely changes the functioning
of the system. Indeed, in this case, the steady state E10, of washout of the methanogenic
bacteria (without biogas production), becomes stable, and the positive steady state E11
loses its global stability. This important issue is not addressed in [11], where the authors
do not consider the steady states E02 and E12. They justify their disregard by the fact that
these steady states are unstable, that their biogas flow rate is lower than the biogas flow
rate of the associated steady states E01 and E11, and also because according to them their
conditions of existence are the same as those of the steady states E01 and E11; see Section 3
in [11]. The first two reasons are of course correct, but the third is not. Indeed, E11 can exist
without E12 existing. On the other hand, when E12 exists, E11 must also exist, and we have
the phenomenon of bistability of E10 and E11. In this paper, we considered all steady states,
which allowed us to highlight the important region of bistability (coloured in pink in the
figures) and thus to provide a valuable tool for the experimenter to avoid monitoring the
system in this region, or at least to be very careful if he should do so.
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4. Discussion

In this paper, we have determined the set of operating parameters that optimise
the biogas flow in simple AD models. We have represented these sets in the OD of the
model. This representation allowed us to obtain a simple graphic visualisation of the
optimal operating conditions. It also allows direct discovery of the properties of these
optimal conditions.

To illustrate the simplicity with which the properties appear in the OD, let us consider
the case with inhibition by the substrate when its concentration is high (Haldane function).
It is well known that when the inflowing substrate concentration of the bioreactor is high,
the system presents bistability, with a risk of convergence towards the washout steady state.
It is natural then to ask whether operating conditions that maximise the biogas flow can
lead to this bistability situation. This phenomenon was already observed, using the OD,
in a more complex system [35]. The main result of this paper is to address this problem and
to give a complete answer in one-step and two-steps models. Although we have an explicit
formula for the optimal dilution rate as a function of the substrate input concentration, this
formula does not allow us to easily determine whether or not the system is in the instability
zone. On the other hand, drawing the set of optimal conditions in the OD immediately
shows that this set enters the bistability zone and allows to find the critical threshold of the
substrate input concentration at which the system will operate in the instability zone; see
the threshold Sc in Figure 1b. This shows the value of the OD in understanding the model.

The contribution of the OD to the understanding of the system’s behaviour is even
more spectacular in the case of the AM2 model. In this case, there are three operating
parameters, and the OD must be represented in the plane formed by two of them by fixing
the third. The role of this third parameter is described by a series of diagrams. The sets of
optimal operating conditions are surfaces in the space of the three operating parameters,
whose traces in the two dimensional ODs are curves. It is immediately apparent whether
these curves fall within the areas where the system behaviour may be at risk and the
thresholds can be easily found. Three regions can then be determined in the plane of the
concentrations of the two input substrates. In one of the regions, the maximum biogas flow
rate of the steady state where both acidogenic and methanogenic bacteria are present is
reached for a value of the dilution ratio for which the acidogenic bacteria are washed out.
In a second region, the maximum is reached for a value of the dilution rate for which the
positive steady state is GAS. In a third region, the maximum is reached for a value of the
dilution rate for which the system presents à bistability behaviour; see Figure 8. These
regions have not been identified in the existing literature.

Some figures in this paper (see Figures 1–4, 6, A4, and A5) are made without gradu-
ations on the axes because they represent generic situations where the growth functions
verify our general hypothesis and the biological parameters are not specified. However,
in practice, to construct an OD, one fixes the growth functions and biological parameters
and then draws the curves separating the regions of the OD. Indeed, the OD is a tool for the
experimenter who knows the biological parameter values of the model he is considering,
and then plots its OD. We do that in Appendix A.5 for some classical growth functions;
see Figures A1–A3. See also Figures 5, 7 and 8 in Section 3.2, for the AM2 model, whose
biological parameters are given in Table A8. See also Figures A6–A8 in the Appendix B.

Another result obtained with the help of the OD of a two-step model is worth men-
tioning here. It was shown in [42,57] that under certain circumstances, increasing the
dilution rate can globally stabilize two-step biological systems. This kind of surprising and
unexpected result was obtained also for a two-step model where the first reaction has a
Contois kinetics instead of a Monod one [58]. These studies have shown how unexpected
properties can be discovered and studied by analysing the OD of the model. Our findings
in this paper are a further illustration of the relevance of the OD in the study of one-step
and two-step models.

The two-step models of the form (12) present a commensalistic relationship between
microorganisms. For definitions and complementary information on commensalism,
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the reader may consult [59]. Methanogenic bacteria use for their growth the product
of the acidogenic bacteria, but acidogenic bacteria are not affected by the growth of the
methanogenic bacteria. More complex models are those studied in [38–40,43], which
present a syntrophic relationship between the micro organisms: the first population is
affected by the growth of the second population. For more details and information on
commensalism and syntrophy, the reader is referred to [40,43,59–64] and the references
therein. The ODs of some of these models are well understood; see [38–40,43]. Studying
the biogas or biomass production for these more complex and more realistic models of AD
is a challenging question. It is the subject for future research directions. The determination
of the OD and the optimal productivity of synthetic microbial communities considered
in [65] is also an interesting question that deserves further attention.

5. Conclusions

In this work, we considered one-step and two-step simple models of AD which are
able to adequately capture the main dynamical behaviour of the full ADM1 and have
the advantage that a complete analysis for the existence and local stability of their steady
states is available. These models have been validated on real data. We considered that the
biological parameters of the models have been calibrated on the data. Therefore, the OD
of the model can be constructed, and the results can be illustrated in the OD. The best
operating conditions for biogas production or biomass production are obtained as subsets
of the OD.

For a one-step model, the set Γ of best operating conditions for biogas production is
described as a curve of equation Sin = γ(D); see Figure 2 for the Monod case and Figure 3
for the Haldane case. These curves permit the optimal dilution D∗

G(S
in) for which the

biogas production is maximal to be obtained graphically and easily. The explicit expression
for D∗

G(S
in) is not always available, and even when it is known, see Appendix A.5. On the

other hand, the graphical visualisation of D∗
G(S

in) in the OD allows us to predict the
behaviour of the system when it is operated at this optimal dilution rate, as illustrated in
Figures 2 and 3 and A1–A3.

When there are no maintenance terms included in the model, it is known that biogas
production and biomass production are given by the same expressions. Therefore, the max-
imum of these quantities is obtained for the same operating conditions. However, when
maintenance is included in the model, the subsets of best operating conditions for biogas
production and biomass production are not the same; see Figure 4.

For a two-step model, we obtain two subsets, Γ0 and Γ1, of maximal biogas production,
corresponding to the steady states E01 and E11, respectively; see Figure 5. The steady
state E01 corresponds to the washout of the first biomass, while E11 corresponds to the
persistence of the two populations. For certain operating conditions, the biogas production
of E01 can be higher than that of E11. We have determined the set of values for the input
substrate concentrations for which this occurs; see Figure 7. We have identified two other
subsets of operating conditions in which the system behaves in different ways; see Figure 8.
In one set the optimal dilution rate corresponds to an operating regime where the system
is functioning at a GAS steady state, while, in the second, there is bistability. It may be
in the experimenter’s interest to run the system with operating parameters that give rise
to bistability, since the biogas flow rate is then greater. However, they must be careful
to initialise it in the basin of attraction of the steady state E11, because otherwise it may
converge towards the steady state E10, which does not produce biogas.

Our findings illustrate how the OD is a useful tool for the understanding of the be-
haviour of one-step and two-step models. The OD can be constructed once the biological
parameters of the model are fixed. It can also be constructed qualitatively, without spec-
ifying the values of the biological parameters. It is therefore a powerful tool for the
mathematical analysis of a model when the growth functions are not specified. It is also
a tool that allows us to answer important and natural questions that we might not have
asked ourselves without this tool. Therefore, the OD allows new interesting questions to
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be asked and answered about the model. When studying any problem concerning the
chemostat, it is useful to represent the results obtained in the OD. This gives a very clear
overview of the system and its operating modes. In this paper, we have illustrated the
effectiveness of this approach in the study of the maximisation of the biogas flow rate and
the productivity of the biomass.
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Abbreviations

The following abbreviations are used in this manuscript:

AD Anaerobic Digestion
ADM1 The IWA Anaerobic Digestion Model No 1, see [2]
AM2 Anaerobic Digestion Model of [25]
CSTR Continuous Stirred Tank Reactor or Bioreactor, or Chemostat
GAS Globally Asymptotically Stable
HRT Hydraulic Retention Time
LAS Locally Asymptotically Stable
MBR Membrane Bioreactor
OD Operating Diagram
SOP Set of Operating Parameters
SRT Solid Retention Time
U Unstable
VFA Volatile Fatty Acids

Appendix A. One-Step Model

Appendix A.1. Model Reduction

We consider the chemostat model (2). It is usual in mathematical theory [22,24] to
make the change of variable x = kX, which transforms (2) into

Ṡ = D
(
Sin − S

)
− μ(S)x

ẋ = (μ(S)− D1)x

Therefore, the stoichiometric coefficient k can be reduced to 1 in (2).

Appendix A.2. The Operating Diagram of the One-Step Model

In order to construct the OD of (2), one needs to determine and compute the boundaries
of the regions of the diagram, i.e., to compute the parameter values at which a qualitative
change in the dynamic behaviour of (2) occurs. For (2), these boundaries are the curves

Λ =
{(

D, Sin) : Sin = λ(αD + a)
}

,
Λ2 =

{(
D, Sin) : Sin = λ̄(αD + a)

}
,

Λ1 =
{(

D, Sin) : αD + a = μ(Sm) and Sin ≥ Sm} (A1)
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These curves separate the Set of Operating Parameters (SOP)

SOP =
{
(D, Sin) : D ≥ 0 and Sin ≥ 0

}
,

in three regions, denoted J0, J1, and J2, corresponding to different behaviours of (2),
as depicted in Table A1.

Table A1. Existence and stability of steady states of (2) in the three regions of the operating space.
The last column shows the color in which the region is depicted in the OD shown in Figures 1–4 and
A1–A3.

Region F0 F1 F2 Color

J0 =
{(

D, Sin
)

: Sin ≤ λ(αD + a)
}

GAS Yellow

J1 =
{(

D, Sin
)

: λ(αD + a) < Sin ≤ λ̄(αD + a)
}

U GAS Green

J2 =
{(

D, Sin
)

: Sin > λ̄(αD + a)
}

LAS LAS U Pink

GAS, LAS, and U mean that the steady state is Globally Asymptotically Stable, Locally
Asymptotically Stable, or Unstable, respectively. No letter means that the steady state does
not exist in the region. Note that

Λ ∪Λ2 =
{(

D, Sin) : D = μ(Sin)−a
α

}
.

We plot in Figure 1 the curves Λ, Λ1, and Λ2 in SOP and the regions delimited by these
curves. This figure, together with Table A1, is the OD of (2). This diagram is well known
in the literature [22,36]. When Sm = +∞, then only Λ exists (Λ1 = Λ2 = ∅). In this
case, the OD contains only the regions J0 and J1. The main difference between Figure 1a,
obtained for the Monod case (Sm = +∞), and Figure 1b, obtained for the Haldane case
(Sm < +∞), is the appearance of the region of bistability J2. In this region, both steady
states F0 and F1 are LAS and the asymptotic behaviour of a solution depends on its initial
condition. If the initial condition belongs to the basin of attraction of F0, then the species
X is washed out from the chemostat. If the initial condition belongs to the basin of
attraction of F1, then, when t → +∞, the concentration X(t) of the species tends to
X∗ = D

kD1

(
Sin − λ(D1)

)
. The green region J1 is the “target” operating regions, as it

corresponds to the global stability of the steady state, where the species survive. The pink
region J2 corresponds to the bistability of F0 (no biogas production) and F1 (with biogas
production). If the chemostat is operated in the region J2, then, for a good operation of the
system, its state at start up should correspond to the convergence toward F1 rather than F0.

Appendix A.3. Maximization of Biogas Production

Appendix A.3.1. Proof of Proposition 1

The function G defined by (14) is C1 on the interior of I(Sin) and its derivative is given
by

G′(D) = Sin − γ(D),

where γ is defined by (17). Therefore, if g(Sin) is in the interior of I(Sin), by Fermat’s
theorem, any point D∗ ∈ g(Sin) is a critical point of G; i.e., G′(D∗) = 0, which is equivalent
to Sin = γ(D∗). The proof of the proposition is complete if we prove that the set g(Sin) is

in the interior of I(Sin). If Sin < Sm, then G is defined for 0 ≤ D ≤ δ, where δ = μ(Sin)−a
α , is

positive if 0 < D < δ and satisfies G(0) = 0 and

G(δ) = δ(Sin − λ(αδ + a)) = δ(Sin − λ(μ(Sin))) = δ(Sin − Sin) = 0.
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Therefore, the maximum cannot be attained in 0 or δ. Similarly if Sm < +∞ and
Sin ≥ Sm, then G is defined for 0 ≤ D ≤ δ, where δ = μ(Sm)−a

α , is positive if 0 < D < δ and
satisfies G(0) = 0 and

G(δ) = δ(Sin − λ(αδ + a)) = δ(Sin − λ(μ(Sm))) = δ(Sin − Sm) ≥ 0.

Moreover, if Sin > Sm, we have

lim
D→μ(Sm)

λ′(D) = +∞.

Hence,
lim
D→δ

G′(D) = −∞.

Therefore, the maximum cannot be attained in 0 or δ and g(Sin) is in the interior of
I(Sin).

Appendix A.3.2. Proof of Proposition 2

Since H(λ(a)) = H(Sin) = 0 and H(S) > 0 for λ(a) < S < Sin, the maximum of
H is attained at a point S∗ ∈ (λ(a), Sin). By Fermat’s theorem, S∗ is a critical point of H;
i.e., H′(S∗) = 0. We have

G′(D) = H′(λ(αD + a))λ′(αD + a).

Hence, H has a maximum at S∗ if and only if G has a maximum at D∗ = μ(S∗)−a
α . The

derivative of H is given by

H′(S) = μ′(S)(Sin − S)− μ(S) + a.

Hence, H′(S) = 0 if and only if Sin = η(S), where η is defined by (21). From H′(S∗) =
0, it is deduced that Sin = η(S∗).

Appendix A.3.3. Proof of Lemma 1

If μ is C2, so is λ and the derivative of γ is given by

γ′(D) = 2αλ′(αD + a) + α2Dλ′′(αD + a).

Using μ(λ(D)) = D, we have

λ′(D) = 1
μ′(λ(D))

and λ′′(D) = − μ′′(λ(D))λ′(D)

(μ′(λ(D)))2 . (A2)

Hence,

γ′(D) = αλ′(αD + a)
(

2− αDμ′′(λ(αD+a))
(μ′(λ(αD+a)))2

)
.

Since λ′ > 0 it is deduced that γ′(D) > 0 if and only if for all D ∈ (0, δ(Sm)),

αDμ′′(λ(αD + a)) < 2
(
μ′(λ(αD + a))

)2.

Using the change of variable S = λ(αD + a), this condition is equivalent to: for all
S ∈ (λ(a), Sm),

(μ(S)− a)μ′′(S) < 2
(
μ′(S)

)2.

Therefore (1)⇔ (2). Moreover, we have(
1

μ−a

)′
= − μ′

(μ−a)2 ,
(

1
μ−a

)′′
= 2(μ′)2−(μ−a)μ′′

(μ−a)3 .
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Hence, (1/(μ− a))′′ > 0 if and only if (μ− a)μ′′ < 2(μ′)2. Therefore (2)⇔ (3). The
derivative of η is given by

η′(S) = 2− (μ(S)−a)μ′′(S)
(μ′(S))2 .

Therefore (2) ⇔ (4). If μ′′ < 0 on (0, Sm), then since μ′ > 0 on (λ(a), Sm), the condi-
tion (μ(S)− a)μ′′(S) < (μ′(S))2 is obviously satisfied.

Appendix A.4. Maximization of Biomass Production

Appendix A.4.1. Proof of Proposition 3

The function P defined by (23) is C1 on the interior of I(Sin), and its derivative is
given by

P′(D) = D(αD+2a)
(αD+a)2

(
Sin − π(D)

)
,

where π is defined by (25). Therefore, if the set p(Sin) is in the interior of I(Sin), by Fermat’s
theorem, any point D∗ ∈ p(Sin) is a critical point of P; i.e., P′(D∗) = 0, which is equivalent
to Sin = π(D∗). The proof that p(Sin) is in the interior of I(Sin) is the same as the proof
that g(Sin) is in the interior of I(Sin) given in Appendix A.3.1.

Appendix A.4.2. Proof of Proposition 4

Since Q(λ(a)) = Q(Sin) = 0 and Q(S) > 0 for λ(a) < S < Sin, the maximum of
Q is attained at a point S∗ ∈ (λ(a), Sin). By Fermat’s theorem, S∗ is a critical point of Q,
i.e., Q′(S∗) = 0. We have

P′(D) = 1
α Q′(λ(αD + a))λ′(αD + a)

Hence, Q has a maximum at S∗ if and only if P has a maximum at D∗ = μ(S∗)−a
α .

Moreover, Q′(S) = 0 if and only if Sin = ρ(S), where η is defined by (30). From Q′(S∗) = 0,
it is deduced that Sin = ρ(S∗).

Appendix A.4.3. Proof of Lemma 2

If μ is C2, so is λ, and the derivative of π is given by

π′(D) = α αD+a
αD+2a

(
2(αD+3a)

αD+2a λ′(αD + a) + αDλ′′(αD + a)
)

.

Using (A2), we have

π′(D) = α αD+a
αD+2a λ′(αD + a)

(
2(αD+3a)

αD+2a − αDμ′′(λ(αD+a))
(μ′(λ(αD+a)))2

)
.

Since λ′ > 0 it is deduced that π′(D) > 0 if and only if for all D ∈ (0, δ(Sm)),

αD αD+2a
αD+3a μ′′(λ(αD + a)) < 2(μ′(λ(αD + a)))2.

Using the change of variable S = λ(αD + a), this condition is equivalent to the
following: for all S ∈ λ(a)0, Sm),

(μ(S)−a)(μ(S)+a)
μ(S)+2a μ′′(S) < 2(μ′(S))2.

Therefore, (1)⇔ (2). The derivative of ρ is given by

ρ′(S) = μ(S)
(μ(S)+a)2(μ′(S))2

(
2(μ(S) + 2a)(μ′(S))2 − (μ(S)− a)(μ(S) + a)μ′′(S)

)
.
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Therefore (2) ⇔ (3). If μ′′ < 0 on (λ(a), Sm), then, since μ′ > 0 on (λ(a), Sm),
the condition (μ(S)− a)μ′′(S) < (μ′(S))2 is obviously satisfied. Moreover, we have seen

in Lemma 1 that if the condition
(

1
μ−a

)′′
(S) > 0 holds, then we have

(μ(S)− a)μ′′(S) < 2(μ′(S))2.

Therefore, we have

(μ(S)−a)(μ(S)+a)
μ(S)+2a μ′′(S) < (μ(S)− a)μ′′(S) < 2(μ′(S))2,

which is the condition 2 in the lemma.

Appendix A.5. Applications to Some Usual Growth Functions

For simplicity, we restrict our attention to the case where α = 1 and a = 0. In this case,
D∗(Sin) is obtained by solving Equation (33). One can also solve Equation (32), to get the
maximum S∗(Sin), and then take

D∗(Sin) = μ(S∗(Sin)). (A3)

Appendix A.5.1. Monod Growth Rate

This growth function is given by (4). This function satisfies Hypothesis 1 with Sm =
+∞. Since μ′′ < 0, using Lemma 3, we obtain that Hypothesis 4 is satisfied. Straightforward
computations show that

λ(D) = DK
m−D , γ(D) = DK(2m−D)

(m−D)2 , η(S) = S2/K + 2S.

Hence, S∗(Sin), the (unique) solution of equation Sin = η(S), and D∗(Sin) are given by

S∗(Sin) =
√

K2 + KSin − K, D∗(Sin) = μ(S∗(Sin)) = m
(

1−
√

K
K+Sin

)
.

This formula for D∗(Sin) is well known in the literature; see for example [12,19,20].
In Figure A1a, we show the OD, together with the set of best operating conditions Γ and the
biogas flow rate G(D, Sin), with Sin = 10, for the Monod growth function (4), with m = 1
and K = 5. This figure shows how the optimal dilution rate D∗(Sin) can be graphically
determined. Although we have an explicit formula for D∗(Sin), this graphical construction
can be very useful as it allows the dilution rate that the experimenter should choose to
optimise the biogas flow rate to be visualised in the OD.

Appendix A.5.2. Hill Growth Rate

This growth function is given by

μ(S) = mSp

Kp+Sp , p ≥ 1. (A4)

This function satisfies Hypothesis 1 with Sm = +∞. Moreover, we have(
1
μ

)′′
(S) = p(p+1)Kp

mSp+2 .

Hence, (1/μ)′′ > 0, and using Lemma 3, we obtain that Hypothesis 4 is satisfied.
Notice that for p > 1, the Hill function (A4) is not concave on (0,+∞). Straightforward
computations show that

λ(D) =
(

D
m−D

) 1
p K, γ(D) =

(
D

m−D

)1/p (p+1)m−pD
p(m−D)

K, η(S) = K−pSp+1+(p+1)S
p .
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Hence, S∗(Sin), the (unique) solution of equation Sin = η(S) is the positive solution of
equation

K−pSp+1 + (p + 1)S− pSin = 0.

One has explicit formulas for S∗(Sin) when p = 1 (the Monod case) and p = 2

S∗(Sin) =
(

K2Sin +
√

K6 + K4(Sin)2
)1/3

− K2(
K2Sin+

√
K6+K4(Sin)2

)1/3 if p = 2.

We can deduce also the explicit expression of D∗(Sin), the (unique) solution to equation
Sin = γ(D) by using (A3). This example illustrates the fact that the second method is much
more practicable than the first one, since the direct resolution of equation Sin = γ(D) is
not easy.

In Figure A1b, we show the OD, together with the set of best operating conditions
Γ and the biogas flow rate G(D, Sin), with Sin = 10, for the Hill growth function (A4),
with p = 2, m = 1 and K = 5. This figure shows how the optimal dilution rate D∗(Sin)
can be graphically determined. This graphical construction is very useful as it allows the
dilution rate that the experimenter should choose to optimise the biogas flow rate to be
visualised in the OD. Indeed, the above explicit formula for S∗(Sin), and hence for D∗(Sin),
is not very informative. Moreover, for p > 2, we do not have an explicit formula for
D∗(Sin), whereas the graphical construction can be done for any p.

(a) μ(S) = S
5+S (b) μ(S) = S2

52+S2 (c) μ(S) = e−5/S

D D D

D D D

Sin Sin Sin

y y y

J1

J0

J1

J0

J1

J0

Λ
Λ Λ

Γ
Γ Γ

Sin

D∗(Sin
)

μ
(
Sin
)

Sin

D∗(Sin
)

μ
(
Sin
)

Sin

D∗(Sin
)

μ(Sin)

D∗(Sin
)

μ
(
Sin
)

D∗(Sin
)

μ
(
Sin
)

μ
(
Sin
)

D∗(Sin
)

y=G(D,Sin)

y=G(D,Sin)

y=G(D,Sin)

Figure A1. The set of best operating conditions Γ (in Red) shows the optimal dilution rate D∗(Sin)

for three increasing growth functions and Sin = 10, a = 0, α = 1.

Appendix A.5.3. Desmond–Le Quéméner and Bouchez Growth Rate

This growth function is given by [66]

μ(S) = me−k/S. (A5)

This function satisfies Hypothesis 1 with Sm = +∞. Moreover, we have(
1
μ

)′′
(S) = k

mS3

(
2 + k

S

)
ek/S.
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Hence, (1/μ)′′ > 0, and using Lemma 3, we obtain that Hypothesis 4 is satisfied.
Notice that the function (A5) is not concave on (0,+∞). Straightforward computations
show that

λ(D) = k
ln(m/D)

, γ(D) = k
ln(m/D)

(
1 + 1

ln(m/D)

)
, η(S) = S + S2

k .

Therefore

S∗(Sin) =
√

k2+4kSin−k
2 and D∗(Sin) = μ

(
S∗(Sin)

)
= me−

√
k2+4kSin+k

2Sin .

In Figure A1c, we show the OD, together with the set of best operating conditions Γ
and the biogas flow rate G(D, Sin), with Sin = 10, for the growth function (A5), with m = 1
and k = 5. This figure shows how the optimal dilution rate D∗(Sin) can be graphically
determined. Although we have an explicit formula for D∗(Sin), this graphical construction
can be very useful as it allows visualising in the OD the dilution rate that the experimenter
chooses to optimise the biogas flow rate.

Appendix A.5.4. Haldane Growth Rate

This growth function is given by (5). It satisfies Hypothesis 1, with

Sm =
√

KKi and maxS≥0 μ(S) = μ(Sm) = m
1+2

√
K/Ki

.

Since μ′′(S) < 0 on (0, Sm), using Lemma 3, we obtain that Hypothesis 4 is satisfied.
We have

λ(D) = m−D−
√

Δ
2D Ki =

2D
m−D+

√
Δ

K, λ̄(D) = m−D+
√

Δ
2D Ki,

where Δ = (m− D)2 − 4D2K/Ki, defined for 0 ≤ D ≤ μ(Sm). Note that Δ tends toward
(m − D)2 when Ki → +∞. Hence λ(D) → DK

m−D and λ̄(D) → +∞. We find the case of
Monod. Straightforward calculations show that

γ(D) = 2DK(2m−D+4DK/Ki)

Δ+(m−D+4DK/Ki)
√

Δ
, η(S) = (2K+S)KiS

KKi−S2 .

The solution of Sin = η(S) is given by

S∗(Sin) =

√
KKi((K+Sin)Ki+(Sin)2)−KKi

Ki+Sin .

Hence, D∗(Sin), the solution of Sin = γ(D), is given by (A3), i.e.,

D∗(Sin) = μ(S∗(Sin)) =
m(Ki+Sin)(

√
KKi((K+Sin)Ki+(Sin)2)−KKi)

2K((K+Sin)Ki+(Sin)2)+(Ki+Sin−2K)
√

KKi((K+Sin)Ki+(Sin)2)
.

These formulas for S∗(Sin) and D∗(Sin) are known in the literature [20]. Note that the
equation Sin = γ(D) is equivalent to an algebraic quadratic equation of degree two which
can be solved explicitly. We obtain the formula

D∗(Sin) =

⎧⎨
⎩ m

(
Ki

Ki−4K −
Ki+2Sin

Ki−4K

√
KKi

(K+Sin)Ki+(Sin)2

)
if Ki �= 4K,

m Sin(4K+Sin)
2(2K+Sin)2 if Ki = 4K.

Note that when Ki → +∞, then D∗(Sin)→ m
(

1−
√

K
K+Sin

)
. We find the case of Monod.

On the other hand, equation γ(D) = λ̄(D) is equivalent to the third-degree polynomial
equation:

(4K− Ki)
2D3 + 3mKi(4K− Ki)D2 + 3m2Ki(Ki − K)D−m3K2

i = 0.
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Therefore Dc, considered in Remark 7, is the unique positive solution of this equation
and can be computed explicitly. Let us illustrate the results of Section 3.1.4 in the particular
case of the Haldane function given by m = 1, K = 5, and Ki = 5. The OD and the set Γ
of best operating conditions are depicted in Figure A2. The biogas flow is shown for five
values of Sin. The curves Γ and Λ2 intersect at (Dc, Sc) = (0.293, 9.397). If Sin > Sc, then
the optimal dilution rate D∗(Sin) corresponds to the bistability region (pink region) J2.
Depending on the initial condition, the system can go to the washout of the species with no
biogas production, or its persistence, with maximal biogas production.

D

y

y = G1(D,Sin)

y = G2(D,Sin)

Sin=12

Sin=Sc

Sin=7

Sin=Sm

Sin=3

D

Sin

Sin=12

Sin=Sc

Sin=7

Sin=Sm

Sin=3

J1

J2

J0

Λ2 Λ1

Λ
Γ

Figure A2. The set of optimal biogas production for the Haldane function (5), with m = 1, K = 5,
Ki = 5. We have Sm = 5, Dc = 0.293, and Sc = 9.397.

Appendix A.5.5. An Example with Two Maxima

It is known that Hypothesis 1 is not enough to guarantee that the biogas flow rate
admits a unique global maximum (Hypothesis 4); see Figure 5.1 in [14]. Even if the function
f is increasing, it is possible that the biogas flow rates have two maxima. For example,
consider the function

μ(S) = mS6+S
K6+S6+S , with m = 2, K6 = 0.1,

which is obtained from the Hill function (A4) (with p = 6) by adding S to the numerator
and denominator. This function is increasing; see Figure A3a. However, for some values of
Sin, the biogas flow rate has three local extrema; see Figure A3d. Numerical exploration
shows that the the set of arguments of the maximum of G is as follows

g(Sin) =

⎧⎨
⎩

0.705 if Sin = 1
{0.786, 1.277} if Sin = 1.7625

1.475 if Sin = 2.1

This behaviour is consistent with the plot of the curve Γ; see Figure A3c. The function
η is given by:

η(S) = S + μ(S)
μ′(S) = S + (S+mS6)(K6+S+S6)

K6+5(m−1)S6+6K6mS5 .

The plot of this function shows that it is not increasing; see Figure A3b. Therefore,
from Lemma 3, we can easily predict that the function γ is not increasing, as depicted in
Figure A3c. Hence, Hypothesis 4 is not satisfied.
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(a) Growth function (b) Function η

(c) The curve Γ (d) Biogas flow rate y = G(D,Sin)

S

y

y = μ(S)

S

y

y = η(S)

D

Sin

J1

J0

Γ

Λ

D

y

Sin = 1.7625

Sin = 2.1

Sin = 1

Figure A3. An increasing growth function with two maxima of the biogas flow rate.

Appendix B. Two-Step Models

Appendix B.1. Model Reduction

The linear change of variables

s1 =
k2

k1
S1, x1 = k2X1, s2 = S2, x2 = k3X2

transforms (12) into

ṡ1 = D
(
sin

1 − s1
)
− f1(s1)x1,

ẋ1 = ( f1(s1)− D1)x1,
ṡ2 = D

(
sin

2 − s2
)
+ f1(s1)x1 − f2(s2)x2,

ẋ2 = ( f2(s2)− D2)x2,

(A6)

where
sin

1 = k2
k1

Sin
1 , sin

2 = Sin
1 , f1(s1) = μ1

(
k1
k2

s1

)
, f2(s2) = μ2(s2)

Therefore, the stoichiometric coefficients ki, i = 1, 2, 3 are reduced to 1. However,
as explained in Section 2.2, we do not work with the reduced model (A6) and we present
the results in the original model (12).

Appendix B.2. The Steady States of a Two-Step Model

The model (12) has a cascade structure, which renders its mathematical analysis
easy. There is no additional difficulty compared to the case considered in [26] in which
α1 = α2 = α and a1 = a2 = 0. We recall that the break-even concentrations were defined in
Table 1. We summarize in Table A2 the definitions of some additional auxiliary functions
that are used in the description of the steady states of (12).
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Table A2. Auxiliary functions. The functions λ1, λ2, and λ̄2 and Hi, i = 1, 2 are defined in Table 1.

Sin∗
2

(
D, Sin

1 , Sin
2

)
= Sin

2 + k2
k1

(
Sin

1 − λ1(D1)
)

X∗
1

(
D, Sin

1

)
= D

k1D1

(
Sin

1 − λ1(αD)
)

X21

(
D, Sin

2

)
= D

k3D2

(
Sin

2 − λ2(D2)
)

X22

(
D, Sin

2

)
= D

k3D2

(
Sin

2 − λ̄2(D2)
)

X∗
2i

(
D, Sin

1 , Sin
2

)
= D

k3D2

(
Sin

2 + k2
k1

Sin
1 − Hi(D)

)
, i = 1, 2

The system (12) can have up to six steady states, denoted Eij, where i = 0, 1 and
j = 0, 1, 2. The convention used is as follows: if i = 0, it means that X1 = 0 and if i = 1, then
X1 > 0. Similarly, if j = 0, it means that X2 = 0 and if j = 1, 2, then X2 > 0. It should be
noticed that E00, where X1 = 0 and X2 = 0, is the washout steady state where acidogenic
and methanogenic bacteria are extinct; E0i, i = 1, 2, where X1 = 0 and X2 > 0, is the steady
state of washout of acidogenic bacteria, while methanogenic bacteria are maintained; E10,
where X1 > 0 and X2 = 0 is the steady state of washout of methanogenic bacteria, while
acidogenic bacteria are maintained; E1i, i = 1, 2, where X1 > 0 and X2 > 0 is the steady
state of coexistence of acidogenic and methanogenic bacteria. The components of the steady
states are given in Table A3.

Table A3. The steady states of (12). The functions λ1, λ2, and λ̄2 are defined in Table 1. The functions
Sin∗

2 , X∗
1 , X2i and X∗

2i, i = 1, 2 are defined in Table A2.

S1 S2 X1 X2

E00 Sin
1 Sin

2 0 0
E01 Sin

1 λ2(D2) 0 X21

(
D, Sin

2

)
E02 Sin

1 λ̄2(D2) 0 X22

(
D, Sin

2

)
E10 λ1(D1) Sin∗

2

(
D, Sin

1 , Sin
2

)
X∗

1

(
D, Sin

1

)
0

E11 λ1(D1) λ2(D2) X∗
1

(
D, Sin

1

)
X∗

21

(
D, Sin

1 , Sin
2

)
E12 λ1(D1) λ̄2(D2) X∗

1

(
D, Sin

1

)
X∗

22

(
D, Sin

1 , Sin
2

)

Table A4. Necessary and sufficient conditions for the existence and stability of steady states of (12).
The functions λ1, λ2, λ̄2, and Hi, i = 1, 2 are defined in Table 1.

Existence Conditions Stability Conditions

E00 Always exists Sin
1 < λ1(D1) and Sin

2 /∈
[
λ2(D2), λ̄2(D2)

]
E01 Sin

2 > λ2(D2) Sin
1 < λ1(D1)

E02 Sin
2 > λ̄2(D2) Unstable if it exists

E10 Sin
1 > λ1(D1) Sin

2 + k2
k1

Sin
1 /∈ [H1(D), H2(D)]

E11 Sin
1 > λ1(D1) and Sin

2 + k2
k1

Sin
1 > H1(D) Stable if it exists

E12 Sin
1 > λ1(αD) and Sin

2 + k2
k1

Sin
1 > H2(D) Unstable if it exists
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Table A5. The surfaces Λi, i = 1 · · · 6 and the regions Ik, k = 0 · · · 8.

Λ1 =
{
(D, Sin

1 , Sin
2 ) : Sin

1 = λ1(D1) := λ1(α1D + a1)
}

Λ2 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = λ2(D2) := λ2(α2D + a2)
}

Λ3 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 = λ̄2(D2) := λ̄2(α2D + a2)
}

Λ4 =
{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = H1(D)

}
Λ5 =

{
(D, Sin

1 , Sin
2 ) : Sin

2 + k2
k1

Sin
1 = H2(D)

}
Λ6 =

{
(D, Sin

1 , Sin
2 ) : D = δ2 := μ2(Sm

2 )−a2
α2

}
,

I0 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D1) and Sin
2 < λ2(D2)

}
I1 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D1) and λ2(D2)<Sin
2 ≤ λ̄2(D2)

}
I2 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 <λ1(D2) and Sin
2 > λ̄2(D2)

}
I3 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1) and Sin
2 + k2

k1
Sin

1 < H1(D)
}

I4 =
{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 ≤λ2(D2) and H1(D)< Sin

2 + k2
k1

Sin
1 ≤H2(D)

}
I5 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 ≤λ2(D2) and Sin

2 + k2
k1

Sin
1 >H2(D)

}
I6 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), Sin
2 >λ2(D2) and Sin

2 + k2
k1

Sin
1 ≤H2(D)

}
I7 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1), λ2(D2) < Sin
2 ≤ λ̄2(D2) and Sin

2 + k2
k1

Sin
1 >H2(D)

}
I8 =

{
(
(

D, Sin
1 , Sin

2

)
: Sin

1 >λ1(D1) and Sin
2 > λ̄2(D2)

}

Appendix B.3. Operating Diagram

In order to construct the OD of (12), one needs to determine and compute the bound-
aries of the regions of the diagram, i.e., to compute the parameter values at which a
qualitative change in the dynamic behaviour of (12) occurs. These boundaries are six
surfaces, denoted Λi, k = 1 . . . 6, in the Set of Operating Parameters (SOP)

SOP =
{
(D, Sin

1 , Sin
2 ) : D ≥ 0, Sin

1 ≥ 0 and Sin
2 ≥ 0

}
.

These surfaces separate SOP in nine regions, denoted Ik, k = 0, . . . , 8. These regions
correspond to the system behaviour shown in Table A6.

Table A6. Existence and stability of steady states of (12) in the nine regions of the operating space.
The last column shows the color in which the region is depicted in Figures 5, 6, 8, A4, A5, A7, and A8.

Region E00 E01 E02 E10 E11 E12 Color

I0 GAS Red
I1 U GAS Blue
I2 LAS LAS U Cyan
I3 U GAS Yellow
I4 U U GAS Green
I5 U LAS LAS U Pink
I6 U U U GAS Green
I7 U U LAS LAS U Pink
I8 U U U LAS LAS U Pink

The definitions of the surfaces Λi and the regions Ik are given in Table A5. We plot in
Figure A6 these surfaces with the biological parameters fixed as in Table A8. Since it is not
easy to visualize regions in the three-dimensional operating parameters space, D and Sin

1
are used as coordinates of the OD, while Sin

2 is kept constant. The effects of Sin
2 are shown

in a series of operating diagrams; see Figures 5 and A7.
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Remark A1. In Figures 5, 6, 8, A4, A5, A7, and A8, presenting ODs, a region is coloured
according to the colour in Table A6. Each colour corresponds to different asymptotic behaviour:

• Red for the washout of both species; that is, the steady state E00 is globally asymptotically
stable (GAS), which occurs in region I0.

• Blue for the washout of acidogenic bacteria while methanogenic bacteria are maintained; that
is, the steady state E01 is GAS, which occurs in region I1.

• Cyan for the bistability of E00 and E01, which are both (locally) stable. This behaviour occurs
in region I1. Depending on the initial condition, the system can go to the washout of both
species or the washout of only the acidogenic bacteria.

• Yellow for the washout of methanogenic bacteria while acidogenic bacteria are maintained; that
is the steady state E10 is GAS, which occurs in region I3.

• Green for the global asymptotic stability of the positive steady state E11; which occurs in I4 and
I6. These regions differ only by the existence, in the second region, of the unstable boundary
steady state E01.

• Pink for the bistability of E10 and E11, which are both locally asymptotically stable. This
behaviour occurs in regions I5, I7, and I8. These regions differ only by the possible existence
of the unstable boundary steady states E01 or E02. Depending on the initial condition, the
system can go to the washout of methanogenic bacteria or the coexistence of both species.

Appendix B.3.1. Operating Diagram in (Sin
1 , Sin

2 ) Where D Is Kept Constant

The fact that there are nine regions is easily seen when considering the sections of SOP
through a plane (Sin

1 , Sin
2 ) where D is kept constant. Let us denote

δ1 = m1−a1
α1

, δ2 =
μ2(Sm

2 )−a2
α2

(A7)

The surface Λ1 is defined for D < δ1, the surfaces Λ2 and Λ3 are defined for D < δ2,
and the surfaces Λ4 and Λ5 are defined for D < min(δ1, δ2), where δ1 and δ2 are given
by (A7). The intersections of the surfaces Λi, i = 1 . . . 5, with a plane where D is kept
constant are straight lines: vertical line for Λ1, horizontal lines for Λ2 and Λ3, and oblique
lines forΛ4 and Λ5; see Figure A4. We consider in this figure the case δ1 > δ2. This case
corresponds to the situation where α1 = α2, a1 = a2, and

μ2(Sm) = max
S2≥0

μ2(S2) < max
S1≥0

μ1(S1) = μ1(+∞),

which is most likely to occur in a real model. The case δ1 ≤ δ2 is similar; see [42]. Since the
curves are straight lines, the nine regions of the OD are easy to picture. The regions are
coloured according to the colours in Table A6. This table gives the system behaviour in the
nine regions.

Figure A4 shows the following features. For 0 < D < δ2, all regions exist; see
Figure A4a. For increasing D, the vertical line Λ1 moves to the right and tends towards
the vertical line defined by Sin

1 = λ1(αδ2 + a1). At the same time, the horizontal lines Λ2
and Λ3 move towards each other and tend toward the horizontal line defined by Sin

2 = Sm
2 ,

so that the regions I1, I4, I6, and I7 shrink and disappear; see Figure A4b. For D = δ2,
the OD changes dramatically, since regions I1, I4, I6, and I7 shrink and disappear; see
Figure A4b, obtained for D < δ2 and D ≈ δ2. For D > δ2 and D ≈ δ2, regions I0, I3 invade
the whole operating plane, so that regions I2, I5, and I8 also disappear; see Figure A4c. For
δ2 < D < δ1, only regions I0 and I3 appear; see Figures A4d. For increasing D, the vertical
line Λ1 moves to the right and tends towards infinity, so that, for D ≥ δ1, only region I0
appears.

In Figure A4, the axes are not graduated, because the figure corresponds to a general
case where the growth functions μ1 and μ2 verify Hypotheses 2 and 3 and the biological
parameters are not specified. The intersections of the OD with planes where D is constant
provide an easy way to see that the OD contains nine regions. However, as we are interested
in this paper in the biogas flow rate as a function of D, it is preferable to have ODs that
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include D as a coordinate and in which, for example, Sin
2 is fixed. We describe these

diagrams in the following section.

(a) 0 < D < δ2 (b) D ≈ δ2, D < δ2

(c) D ≈ δ2, D > δ2 (d) δ2 < D < δ1

Sin
2 Sin

2

Sin
2 Sin

2

Sin
1 Sin

1

Sin
1 Sin

1

I0
I0

I0 I0

I1

I2

I2

I3
I3

I3 I3

I4 I5
I5

I6 I7

I8

I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ2 ≈ Λ3

Λ4 Λ5 Λ4 ≈ Λ5

Figure A4. The 2-dimensional OD in
(

Sin
1 , Sin

2

)
, obtained by cuts at the D constant of the 3-

dimensional OD of (12), where δ1 and δ2 are given by (A7). If D ≥ δ1, the region I0 invades
the whole plane.

Appendix B.3.2. Operating Diagram in (D, Sin
1 ) Where Sin

2 Is Kept Constant

Since we want to plot the intersections of the regions Jk with a
(

D, Sin
1
)
-plane, where

Sin
2 is kept constant, we must determine the intersections of the surfaces Λi with this plane.

These intersections are the curves whose equations are given in Table A7.

Table A7. Intersections of Λk with a
(

D, Sin
1

)
-plane, where Sin

2 is kept constant.

Λ1 Curve of function Sin
1 = λ1(α1D + a1) or D =

μ1(Sin
1 )−a1
α1

Λ2 Vertical line D =
μ2(Sin

2 )−a2

α2
or Sin

2 = λ2(α2D + a2), if Sin
2 ≤ Sm

2

Λ3 Vertical line D =
μ2(Sin

2 )−a2

α2
or Sin

2 = λ̄2(α2D + a2), if Sin
2 ≥ Sm

2
Λ4 Curve of function Sin

1 = k1
k2

(
H1(D)− Sin

2

)
restricted to Sin

1 > λ1(α1D + a1)

Λ5 Curve of function Sin
1 = k1

k2

(
H2(D)− Sin

2

)
restricted to Sin

1 > λ1(α1D + a1)

Λ6 Vertical line D =
μ2(Sm

2 )−a2
α2

or Sm
2 = λ2(α2D + a2) = λ̄2(α2D + a2)

From the equations of curves Λ4 and Λ4 and using the λ2 < λ̄2, we see that the curve
Λ5 is above the curve Λ4, which is itself above the curve Λ1. Note that Λ1 and Λ4 are
increasing, while Λ5 is not necessarily increasing, since H2(D) is the sum of the increasing
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function k2
k1

λ1(α1D + a1) and the decreasing function λ̄2(α2D + a2). In Figure A5, we have
depicted the curves in the particular case where the curve Λ5 is decreasing. The general
case is left to the reader. It is similar to the case (B) and (C) considered in [42].

(a) Sin
2 = 0 (b) 0 < Sin

2 < Sm
2

(c) Sin
2 = Sm

2 (d) Sin
2 > Sm

2

Sin
1 Sin

1

Sin
1 Sin

1

D D

D D

I0 I0

I0 I0

I1↘

I1↘ I1↘ I2←

I3 I3

I3 I3

I4

I4

I5 I5

I6

I6 I6

I7→

I7 I7 I8

Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ4 Λ4

Λ5 Λ5

Λ5 Λ5

Λ6 Λ6

Λ6 Λ6

Figure A5. The 2-dimensional OD in
(

D, Sin
1

)
obtained by cuts at the Sin

2 constant of the 3-
dimensional OD of (12).

From the equations of the curves given in Table A7, we deduce that if 0 ≤ Sin
2 ≤ Sm

2 ,
then curves Λ4, Λ5 and Λ6 intersect at point

Λ4 ∩Λ5 ∩Λ6 =
{(

δ2, k1
k2
(Sm

2 − Sin
2 ) + λ1(α1δ2 + a1)

)}
,

while curves Λ1, Λ2 and Λ4 intersect at point

Λ1 ∩Λ2 ∩Λ4 =
{(

δ(Sin
2 ), λ1(α1δ(Sin

2 ) + a1
)}

, where δ(Sin
2 ) =

μ2(Sin
2 )−a2
α2

;

see Figure A5a,b. Similarly, if Sin
2 = Sm

2 , then

Λ2 = Λ3 = Λ6 and Λ1 ∩Λ5 ∩Λ6 = {(δ2, λ1(α1δ2 + a1))};

see Figure A5c, and if Sin
2 > Sm

2 , then

Λ1 ∩Λ3 ∩Λ5 =
{(

δ(Sin
2 ), λ1(α1δ(Sin

2 ) + a1

)}
, Λ1 ∩Λ6 = {(δ2, λ1(α1δ2 + a1))};
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see Figure A5d. Therefore, the curves intersect as depicted in Figure A5, where the regions
are coloured according to the colours in Table A6. This figure shows the following features:
For Sin

2 = 0, only the regions I0, I3, I4, and I5 exist; see Figure A5a. For 0 < Sin
2 < Sm

2 ,
the curve Λ2 appears, giving birth to I1, I6, and I7 regions; see Figure A5b. For increasing
Sin

2 , Λ4, and Λ5 curves are translated downwards, while the vertical line Λ2 moves to the
right and tends towards the vertical line Λ6, as Sin

2 tends to Sm
2 . For Sin

2 = SM
2 , the curve

Λ4 disappears, while Λ2 becomes equal to Λ6, so that I4 and I5 regions have disappeared;
see Figure A5c. For Sin

2 > Sm
2 , the curve Λ3 appears, giving birth to I2 and I8 regions; see

Figure A5d. For increasing Sin
2 , the vertical line Λ3 moves to the left, while the Λ5 curve is

translated downwards.

Appendix B.4. The Operating Diagram to the AM2 Model

In this section, we show the ODs of the model (50,51), with the biological parameter
values given in Table A8. These parameter values can be found in Tables III and V of [25].
These values have been also used by [11]. The OD in the three-dimensional SOP is shown in
Figure A6. The two-dimensional diagrams in the (D, Sin

1 ) planes where Sin
2 is kept constant

are depicted in Figure A7. The two-dimensional diagrams in the (Sin
1 , Sin

2 ) planes where D
is kept constant are depicted in Figure A8.

(a) (b)

(c) (d)

D D

D D

S1in S1in

S1in S1in

S2in S2in

S2in S2in

Figure A6. The surfaces Λ1 (in Blue), Λ2 and Λ3 (in Green), Λ4 and Λ5 (in Red), and Λ6 (in
Yellow), defined in Table A5 separate the 3-dimensional operating space

(
D, Sin

1 , Sin
2

)
in 9 regions Ik,

k = 0, · · · , 8. Front (a), rear (b), left (c), and right (d) view of the surfaces Λi. The biological parameter
values are given in Table A8.
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(a) Sin
2 = 0 (b) Sin

2 = 5 (c) Sin
2 = 15

(d) Sin
2 = Sm

2 = 48.741 (e) Sin
2 = 150 (f) Sin

2 = 300

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

D D D

D D D

I0 I0 I0

I0 I0 I0

I1↘ I1↘

I1↘ I1↘ I1↘←I2 ←I2

I3 I3 I3

I3 I3 I3

I4 I4 I4

I5 I5 I5

I6 I6

I6 I6 I6

I7→

I7
I7 I7I8 I8

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ4 Λ4 Λ4

Λ2 Λ2Λ5 Λ5 Λ5Λ6 Λ6 Λ6

Λ5 Λ3Λ5 Λ3 Λ5Λ6 Λ6 Λ6

Figure A7. The 2-dimensional OD in
(

D, Sin
1

)
, obtained by cuts at Sin

2 constant of the 3-dimensional
OD shown in Figure A6.

(a) D = 0.92 (b) D = 0.96 (c) D = 1

(d) D = 1.05 (e) D = 1.07185121 (f) D = 1.07185122

(g) D = 1.5 (h) D = 2 (i) D ≥ 2.4

Sin
2 Sin

2 Sin
2

Sin
2 Sin

2 Sin
2

Sin
2 Sin

2 Sin
2

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

Sin
1 Sin

1 Sin
1

I0 I0 I0

I0
I0

I0

I0 I0 I0

I1 I1
I1

I1

I2 I2
I2

I2 I2

I3 I3 I3

I3 I3

I3

I3 I3

I4 I4 I4

I4

I5 I5

I5 I5

I6 I6 I6

I6

I7
I7

I7

I7

I8 I8
I8

I8 I8

Λ2≈Λ3

Λ4≈Λ5

Sm
2

Λ1 Λ1 Λ1

Λ1 Λ1 Λ1

Λ1 Λ1

Λ2

Λ3

Λ2

Λ3

Λ2

Λ3

Λ2

Λ3

Λ4

Λ5
Λ4 Λ5 Λ4 Λ5

Λ4 Λ5

Figure A8. The 2-dimensional OD in
(

Sin
1 , Sin

2

)
, obtained by cuts at D constant of the 3-dimensional

OD shown in Figure A6.
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Table A8. Nominal parameters values, and α = 0, used in Figures 5, 7, 8, A6, A7, and A8.

Parameter m1 K1 m2 K2 KI k1 k2 k3

Unit d−1 g/L d−1 mmol/L mmol/L mmol/g mmol/g

Value 1.2 7.1 0.74 9.28 256 42.14 116.5 268

Appendix B.5. Maximization of Biogas Production

Appendix B.5.1. Proof of Proposition 5

From Table 2, it is seen that G02 is defined if and only if λ̄2(D2) < Sin
2 . Since λ̄2(D2) >

λ2(D2), the results show that G01 is also defined and G01
(

D, Sin
2
)
> G02

(
D, Sin

2
)
. This

proves the first item of the proposition.
From Table 2, it is seen that G12 is defined if and only if H2(D) < Sin

2 + k2
k1

Sin
1 .

Since H2(D) > H1(D), the results show that G11 is also defined and G11
(

D, Sin
1 , Sin

2
)
>

G12
(

D, Sin
1 , Sin

2
)
. This proves the second item of the proposition.

If G11 is defined, then Sin
1 > λ1(D1). Hence,

Sin
2 + k2

k1
Sin

1 − H1(D) = Sin
2 − λ2(D2) +

k2
k1

(
Sin

1 − λ1(D1)
)
> Sin

2 − λ2(D2).

Therefore, if G01 is defined, we have G11
(

D, Sin
1 , Sin

2
)
> G01

(
D, Sin

2
)
. This proves the

third item of the proposition.

Appendix B.5.2. Proof of Proposition 6

The proof follows the same ideas and computations as the proof of Proposition 1. See
Appendix A.3.1 for the details.

Appendix B.5.3. Proof of Proposition 7

Since the functions γ2 and μ1 are increasing, the function Sin
1 �→ γ2

(
μ1
(
Sin

1
))

is increas-
ing. Therefore, the condition Sin

1 > S0
1 is equivalent to the fact that the point (Sin

1 , Sin
2 ) lies

to the right of the curve Σ0. Similarly, if the function μi/μ′1 is increasing, then the function

Sin
1 �→ γ2

(
μ1
(
Sin

1
))

+ k2
k1

μ1(Sin
1 )

μ′1(S
in
1 )

is increasing. Therefore the condition Sin
1 < S1

1 is equivalent to the fact that the point
(Sin

1 , Sin
2 ) lies to the left of the curve Σ1.

Appendix B.5.4. Proof of Proposition 8

Equation (49) is equivalent to the equation

G0(D∗
0 (S

in
2 )) = G1(D∗

1 (S
in
1 , Sin

2 ))

where D∗
0 (S

in
2 ) is the solution to (38) and D∗

1 (S
in
1 , Sin

2 ) is the solution to (40). Therefore, using
(34) and (35), we deduce that we need to solve the following system of three equations with
four unknowns Sin

1 , Sin
2 , D0, and D1.

D0

(
Sin

2 − λ2(αD0)
)
= D1

(
Sin

2 + k2
k1

Sin
1 − λ2(αD1)− k2

k1
λ1(αD1)

)
, (A8)

Sin
2 = γ2(αD0), (A9)

Sin
2 + k2

k1
Sin

1 = γ2(αD1) +
k2
k1

γ1(αD1). (A10)

Substituting (A9) and (A10) into (A8), we obtain

D0(γ2(αD0)− λ2(αD0)) = D1

(
γ2(αD1) +

k2
k1

γ1(αD1)− λ2(αD1)− k2
k1

λ1(αD1)
)

.
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Replacing γ2 and γ1 by their expressions (36) and (37), respectively, we obtain

D2
0λ′2(αD0) = D2

1

(
λ′2(αD1) +

k2
k1

λ′1(αD1)
)

.

Therefore, αD0 is a solution to equation

φ(αD0) = α2D2
1

(
λ′2(αD1) +

k2
k1

λ′1(αD1)
)

,

where φ is as in Hypothesis (8). Using this hypothesis, we obtain αD0 = Δ(D1), where Δ is
given by (48). Substituting in (A9) and (A10), we obtain

Sin
2 = γ2(Δ(D1)), γ2(Δ(D1)) +

k2
k1

Sin
1 = γ2(αD1) +

k2
k1

γ1(αD1).

These equations show that the point (Sin
1 , Sin

2 ) belongs to the curve C, defined by
equations (47). The system formed by the three Equations (A8)–(A10) shows that the
reciprocal is also true, i.e., any point on curve C is a point where maxD G0 = maxD G1.
Since the partial derivative of G1 with respect to Sin

1 is positive, we see that we have
maxD G1 > maxD G0 to the right of curve C.
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Abstract: In mammalian cell culture, especially in pharmaceutical manufacturing and research,
biomass and metabolic monitoring are mandatory for various cell culture process steps to develop
and, finally, control bioprocesses. As a common measure for biomass, the viable cell density (VCD) or
the viable cell volume (VCV) is widely used. This study highlights, for the first time, the advantages
of using VCV instead of VCD as a biomass depiction in combination with an oxygen-uptake- rate
(OUR)-based soft sensor for real-time biomass estimation and process control in single-use bioreactor
(SUBs) continuous processes with Chinese hamster ovary (CHO) cell lines. We investigated a series
of 14 technically similar continuous SUB processes, where the same process conditions but different
expressing CHO cell lines were used, with respect to biomass growth and oxygen demand to
calibrate our model. In addition, we analyzed the key metabolism of the CHO cells in SUB perfusion
processes by exometabolomic approaches, highlighting the importance of cell-specific substrate and
metabolite consumption and production rate qS analysis to identify distinct metabolic phases. Cell-
specific rates for classical mammalian cell culture key substrates and metabolites in CHO perfusion
processes showed a good correlation to qOUR, yet, unexpectedly, not for qGluc. Here, we present
the soft-sensoring methodology we developed for qPyr to allow for the real-time approximation of
cellular metabolism and usage for subsequent, in-depth process monitoring, characterization and
optimization.

Keywords: process analytical technologies (PAT); off-gas analytic; real-time monitoring; viable cell
biomass; perfusion process; continuous process; single-use bioreactor (SUB); oxygen uptake rate
(OUR); soft sensor

1. Introduction

Chinese hamster ovary cells (CHO) represent the backbone of commercial and research
expression hosts used for the manufacture of monoclonal antibodies (mAB) for therapeutic
purposes. In the last decades, a variety of different production strategies and processes have
been developed to ensure high yields and product quality as well as operational efficiency
and reproducibility [1]. In order to cope with these demands, a smart synergy of flexible,
state-of-the-art bioreactor systems and up-to-date process analytical techniques (PAT) is
essential and highly recommended by the FDA [2]. Single-use bioreactor (SUB) systems
have gained tremendous interest in the biopharmaceutical industry as these bioreactors
and their peripheral solutions can remarkably elevate the efficiency and, of course, the
flexibility of modern manufacturing processes [3]. SUB systems are currently an often
used alternative and cover a broad range of different applications despite lacking many
conventional engineering parameters or availability of compatible single-use sensors [4,5].
In the context of modern bioprocess development and optimization, the online monitoring
of crucial key performance indicators (KPIs) is necessary to ensure high process and
product quality [6]. Therefore, monitoring sensors that can be applied to SUB systems and
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deliver high-grade, real-time information is a significant need, especially for one of the
most valuable indicators, the biomass concentration [7,8]. Even if common sensor systems,
e.g., hard-type sensors that have been adjusted to match single-use bioreactor requirements,
are available [9], there is still a challenge to measure the biomass concentration online [10].
As hard-type sensor probes need to fulfill a variety of prerequisites, offline-based methods,
such as image analysis with trypan blue staining and subsequent cell counting, lack limited
amount of samples, are time consuming and require sample taking [11]. An appropriate
alternative for online measuring of biomass is soft sensors. Soft sensors constitute the
interoperation of hard-type sensors that can be implemented, or peripherally attached, to
the bioreactor system in numerous ways using a software-based model as estimator [12,13].
Utilization of different soft-sensor approaches for online determination of biomass has been
reported in many valuable contributions focusing on radio frequency impedance, Raman
spectroscopy or off-gas analytic techniques [10,11,14–20]. Online biomass estimation via
off-gas measurement generally relies on the oxygen uptake rate (OUR) as this variable
is one of the best indicators for cell physiological activity and correlates very well with
metabolic turnover rates and the concentration of viable biomass.

The knowledge of the OUR as a metabolic marker allows a deeper understanding of
intrinsic physiological performance of the biomass and can be merged with other process
variables to create meaningful new information in the sense of soft sensing [17,21–25]. The
online measure of the OUR can be achieved by the global mass balance (GMB) approach
which is easy to implement in SUB systems and enables a disturbance-free measure of the
OUR. In perfusion and continuous processes, process interventions or other perturbations
that might affect the steady-state mode are undesirable [24]. Only the knowledge of vol-
umetric flow, composition of the gas in the inlet and outlet and the fermenter volume is
required, constituting an advantage when compared to liquid-phase measurements, such
as the dynamic method [23]. Perfusion processes require an optimized perfusion strategy
to allow VCD and cellular biomass generation and continuous product formation and, at
the same time, avoid unintentionally high economical demands of perfusion media. The
exchange of unconditioned media is highly dependent upon the applied perfusion rate
D, which ensures a sufficient supply of substrates to keep, in the best case, the substrate
concentrations in a steady state. In parallel, the constant removal of conditioned media
preserves the level of known metabolites, such as lactate, ammonia and metabolic and
abiotic break-down products of amino acids, nucleotides and lipoid metabolism [26], as
well as unknown cytotoxic/cytostatic metabolites at uncritical levels. It has been shown
previously that the cell-specific nutrient uptake rates in perfused cell cultures correlated
with the cell-specific growth rate for hybridomas and recombinant CHO cell lines [27]. This
knowledge strengthens the goal to analyze and use cell- and biomass-specific rates and
further metabolic KPIs for process development and optimization. In this work, we present
a real-time off-gas-based biomass soft sensor that can be applied for the perfusion-based
biomass growth phase of continuous processes. We used a proof-of-concept data set of
14 similar SUB continuous fermentation processes including 14 different mAB expressing
CHO cell lines for model calibration. We aimed for this heterologous set-up of cell lines in
order to cover a broad spectrum of different metabolically active cells as the oxygen demand
between cell lines can differ significantly [24]. The soft sensor consists of two different models
to predict the biomass in terms of viable cell density (VCD) and viable cell volume concentra-
tion (VCV) using a multilinear regression approach. The OUR was measured as a major input
variable for both using the GBM technique and observed noise distortions were minimized
by data preprocessing to improve model accuracy. Model prediction quality assessment was
done by RMSE as well as MAPE and MdAPE calculation, enabling an in-depth analysis of
errors and their distribution. Real-time biomass prediction was then applied on three differ-
ent and unknown cell lines to the prediction models by utilization of two moving average
methods to remove the OUR signal noise. Furthermore, we elaborate on the question of how
biomass can be described most properly in modern bioprocesses. VCD, as a commonly used
measure, lacks the information of the cellular volume and refers solely to the number of cells.
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Our utilization of VCV as a measure for biomass delivers more information, taking into ac-
count cell volume, which can lead to more precise correlations with the OUR [14]. In addition,
cell size can have a direct impact on oxygen demand, leading to higher oxygen requirements
from larger cells compared to smaller cells, reflecting a positive correlation between OUR and
cell size [22]. We also highlight the advantage of the shown off-gas-based biomass soft sensor
in SUB continuous processes and illustrate how the biomass can be described best when VCD
or VCV are applied as descriptive measures. Process variables, such as specific oxygen uptake
rate per single cell or per viable cell volume, can raise a different picture when the volume
per cell is not constant.

2. Materials and Methods

2.1. Cell Lines

For this study, 17 different in-house-generated Chinese hamster ovary clonal cell lines
(CHO-K1), engineered to produce 14 different mAbs, were used (Table 1). All clones were
cultivated using a proprietary, chemically-defined (CD), serum-free, in-house base and
perfusion medium. In general, cells can also be cultivated in commercially chemical-defined
media, such as CD-CHO (Thermo Fisher Scientific, Waltham, MA, USA).

Table 1. Overview of all processes with their relation to the expressed antibody and clone that were
used to create the biomass prediction models and for validation.

No. Process Expressed Antibody Clone Purpose

1 P-01 A-01 C-01 Training
2 P-02 A-02 C-02 Training
3 P-03 A-03 C-03 Training
4 P-04 A-04 C-04 Training
5 P-05 A-01 C-05 Training
6 P-06 A-05 C-06 Training
7 P-07 A-06 C-07 Training
8 P-08 A-07 C-08 Training
9 P-09 A-05 C-09 Training
10 P-10 A-08 C-10 Training
11 P-11 A-09 C-11 Training
12 P-12 A-05 C-12 Training
13 P-13 A-10 C-13 Training
14 P-14 A-11 C-14 Training
15 P-15 A-12 C-15 Validation
16 P-16 A-13 C-16 Validation
17 P-17 A-14 C-17 Validation

2.2. Cell Cultivation and in Process Control

Cells were thawed in a shake flask and maintained in a humidified shaking incubator
(Multitron Cell, Infors AG, Headoffice, Switzerland) at 36.5 ◦C under 7% (v/v) carbon
dioxide (CO2), applying a constant shaking rate and relative humidity of 70%. Cell passage
took place every 3–4 days for scale-up purposes. After 10 days, cells were transferred into
a wave-mixed SUB (Biostat® RM, Sartorius Stedim Biotech GmbH, Göttingen, Germany)
for a 4 day long inoculation train as the batch phase for further cell propagation. During
this step, the temperature was controlled at 36.5 ◦C and device-internal optical probes were
used to control pH at 7.00 and dissolve oxygen (DO) to 30% saturation by gassing with a
mixture of process air, nitrogen (N2), carbon dioxide (CO2) and pure oxygen (O2). Rocking
motion was held constant at 15 rocks/min at an angle of 9 degrees.

After the inoculation train process was finished, cells were transferred to a stirred SUB
(HyPerforma™ SUB, Thermo Fisher Scientific, Waltham, MA, USA) with an appropriate
seeding cell density depending on the doubling time in the preceding inoculation train
process. Temperature was controlled to 36.5 ◦C and stirrer speed was set constant at
140 rpm. DO concentration was measured using a stainless steel optical probe (VisiFerm™
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DO ECS 225, Hamilton, Switzerland) and controlled to 30% saturation analogous to the
wave-mixed process. pH monitoring was done by pH probe (Inpro® 3253/225/PT100,
Mettler Toledo, Columbus, OH, USA) and regulated by CO2 gassing and 1 M sodium
carbonate addition to pH 7.00.

Cell retention was enabled using a hollow fiber module (KrosFlo® MBT®, Repligen,
Waltham, MA, USA) with 0.2 μm pore size. Perfusion was started 24 h after inoculation and
modified stepwise according to the following protocol: 24 h after inoculation, perfusion mode
was started with normalized fermentation volumes per day (vvdn) of 1 and increased to
2 vvdn after another 24 h. Further increase was done after 72 h to a vvdn of 3 until the last raise
was applied 120 h after inoculation up to a vvdn of 4.55 towards process end. During perfusion
mode, the fermentation volume was kept constant by weight-controlled addition of fresh
perfusion media and no cell bleed took place. After the dynamic state with altering perfusion
rates, the steady-state process would start with a constant normalized perfusion rate of
4.55 vvdn with parallel cell bleed to keep biomass concentration and product titer stable while
product yield rises (Figure 1A). The biomass soft sensor presented in this work is proposed
for automatically controlling cell bleeding during the steady-state perfusion process.

Offline samples were drawn at least once per day using a sterile syringe (Omnifix
Luer Lock Solo, B. Braun Melsungen AG, München, Germany) and aliquoted for further
analytic purposes.

2.3. Oxygen Balancing and OUR Calculation

To quantify the OUR, the well-known global mass balance approach is used as shown
in Equation (1):

dcO2

dt
= OTR(t)−OUR(t) (1)

The rate of oxygen that is transferred from the gas phase into the liquid phase (OTR) is
influenced by several factors, such as the fluid-side oxygen mass transfer coefficient (kLa),
maximum possible oxygen solubility (c∗o2) and the current dissolved oxygen concentration
(cO2,L). Therefore, Equation (1) can be written as:

dcO2

dt
= kLa(t)·(c∗O2(t)− cO2,L(t))−OUR(t) (2)

Since the oxygen saturation during all fermentation processes in this work was con-
trolled to 30%, steady-state conditions can be assumed, thus OTR equals OUR, leading
the temporal change of soluble oxygen concentration to 0. Within this condition, the OUR
calculation is possible using a sensitive off-gas analyzer and the further application of a
mass balance approach that is based on the mass of oxygen that enters (O2,in) and leaves
(O2,out) the bioreactor system [5]. Since the temperature of the gas mixture (consisting
of air, N2, CO2, O2) that flows into the system is known, the oxygen mass intake can be
calculated using the ideal gas law (R = gas constant, MO2 = molar mass of oxygen). The
same principle applies to the calculation of the oxygen mass leaving the system where
the measured oxygen volume fraction and the gas flow rate are used. As all fermentation
processes were operated without any overpressure, the inlet gassing flow rate equals the
outlet flow rate (Fin = Fout). Furthermore, the gas inlet and outlet temperature is presumed
to be equal due to the length of the tubing (Tin = Tout). Finally, the current liquid fermen-
tation volume (VL) and the ambient pressure (Pamb) are needed to calculate the OUR as
shown in Equation (3):

OUR(t) = (O2,in(t)−O2,out(t))·
1

VL(t)
=

(VO2,in(t)−VO2,out(t))·MO2·pamb
R·T·VL(t)

(3)

For the graphical representation in this study, the volumetric OUR was normalized to
the maximum value in the training data set.
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Figure 1. Schematic overview of (A) continuous process consisting of perfusion-based dynamic state (red marked area) and
cell-bleed-based steady-state phase and (B) the off-gas measurement set-up for continuous processes in single-use bioreactors.

2.4. Off-Gas Measurement Set-Up

To perform off-gas analytic measurements in single-use bioreactors, a bypass solution
was applied. The gas mixture enters the SUB at the bottom via a microsparger or open
pipe. After the gas leaves the bioreactor, it passes heated filters and is then transported
into a bottle that serves as a divider as well as a condensate trap. Here the gas stream is
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separated into two parts where the major part leaves the system via main exhaust whereas
a smaller portion is distributed by a self-made gas manifold chamber and actively drawn
using a membrane pump (Laboport® N96, KNF Neuberger GmbH, Freiburg, Germany) to
the gas analyzer (DasGip® GA4, Eppendorf AG, Hamburg, Germany). The gas manifold
and the multi-channel gas analyzer allow simultaneous off-gas measurements on up to
four fermentation systems in parallel. Therefore, no multiplexing or flushing steps were
necessary. We used gas-tight Teflon tubing for the whole transportation of the gas stream
after it leaves the heated sterile filters as silicone tubing tends to be permeable for gases
(Figure 1B). The gas analyzer was two-point calibrated before each process with air and
a defined gas mixture (Linde AG, Höllriegelskreuth, Germany) containing 10% CO2 and
2% O2. Unused gas analyzer channels were flushed with humidified air to preserve
sensor lifetime.

2.5. Data Collection and Preprocessing

All used offline and online data points for model generation were taken from perfusion-
based biomass growth phases of continuous processes (P-01 to P-14). These processes
were carried out in two identical SUB fermentation systems. Processes were technically
identical in terms of used media, cultivation conditions and process operating conditions,
as described above. Table 1 provides an overview on the respective cell lines, expressed
antibody and data used for model creation and validation. In order to build a biomass
prediction model, the collected OUR data gathered from off-gas analytics needed to be
preprocessed to remove signal noise and measurement distortions.

All OUR raw data were fitted by higher order polynomials using corresponding
regressions. The degree of the applied polynomials was chosen by the highest correlation
coefficient (R2) in order to select the most descriptive regression model for each process.
Since the OUR is the main factor affecting model quality, this pretreatment step was
mandatory for achieving high model prediction accuracy.

2.6. Model Generation and Assessment

The prediction model was built and evaluated using the statistical software JMP®

15.2.0 (SAS Institute, Cary, NC, USA). For the modeling procedure, treated OUR variables
(OURfitted), offline VCV and VCD and process time were used to fit a multilinear regression
model. To address model performance, the root mean square error (RMSE) with Bessel’s
correction was calculated as shown in Equation (4):

RMSE =

√
∑n

i=1(yi − yi
′)2

n− 1
(4)

In order to compare the performance of both prediction models, the mean absolute
percentage error (MAPE) was calculated (Equation (5)):

MAPE =
100
n

n

∑
i=1

∣∣∣∣yi − yi
′

yi

∣∣∣∣ (5)

In both equations, yi represents the observed values, yi
′ the corresponding predicted

values and n the number of fitted points in total. Since the RMSE and MAPE are based on
averages, outliers can negatively distort their predication [28]. Therefore, the MAPE was
also calculated using the median of absolute percentage errors (MdAPE) to paint a more
robust view on model accuracy.

2.7. Real-Time Prediction and Validation

The models were implemented in data visualization and analyzer software SEEQ
(SEEQ Corporation, Seattle, WA, USA) for calculation of VCV and VCD predictions in
real time. Therefore, three new data sets from technical replicate processes (P-15, 16 and
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17) with unknown cell lines to both models (C-15, 16 and 17) were used to validate the
prediction models. Because online OUR raw data have low signal-to-noise ratios, as
described above, two moving average smoothing algorithms were applied to assess their
impact on final prediction accuracy. The used algorithm was either a Savitzky–Golay
(SG) or a locally estimated scatterplot smoothing (LOESS) algorithm with equivalent
analytical design regarding the investigation and sample output time range. Through the
described analysis, real-time signal cleansing of OUR raw data was possible, leading to
more accurate predictions. Figure 2 gives an overview of the performed model generation
and validation workflow.

Figure 2. Workflow overview for biomass model generation and consequent validation.

2.8. Off-Line Measurements

All cell physiological measures, such as viable cell density (VCD), average cell diame-
ter (ACD), average volume per cell (AVC) and culture viability, were determined using an
automatic cell counting device (Cedex HiRes®, Roche Diagnostics, Mannheim, Germany).
In this work, the shape of a cell is assumed to be spherical, hence the AVC is calculated
as follows:

AVC =
4
3
π

(
ACD

2

)3
(6)

All samples were immediately processed after the sample was taken, as described in
Section 2.3. Accordingly, 300 μL of the cell containing sample was transferred into a Cedex
HiRes sample cup and measured directly to avoid long-term storage. Depending on VCD
concentration, the sample was diluted properly using 3% (m/v) Pluronic F68 dissolved in
PBS. Furthermore, the measured VCD was used to calculate VCV according to Equation (7):

VCV = VCD·AVC (7)

For the graphical representation in this study, the biomass measures VCD and VCV
were normalized to the maximum value in the training data set.
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A biochemical analyzer (Cedex Bio HT®, Roche Diagnostics, Mannheim, Germany)
was used to determine the metabolites glucose, lactate, pyruvate and ammonium. There-
fore, cell suspension was centrifuged (Heraeus Multifuge 1S-R, Thermo Fisher Scientific,
Waltham, MA, USA) at 3500× g for 10 min. The cell pellet was discarded, and the super-
natant was used subsequently.

Amino acid analysis was performed using an in-house LC-MS (Ultivo Triple Quadrupole
LC/MS System, Agilent Technologies Inc., Santa Clara, CA, USA) procedure with stable
isotope-labeled internal standards for calibration.

2.9. Cell-Specific Substrate and Metabolite Consumption and Production Rate, Product Formation
Rate and Yield Calculation

The cell-specific substrate consumption and metabolite production rates in the dy-
namic state of continuous process were calculated, as recently described by Bausch
et al., [29] according to the following balancing Equation (8):

dS
dt

= D(Sin − S) + qSX (8)

where S represents the molar concentration of the substrate or metabolite, D is the perfusion
rate, Sin is the substrate molar concentration in the perfusion medium, X is the cell number
and qS is the molar cell-specific substrate/metabolite production rate. In a simplified
approach neglecting abiotic degradation of instable compounds, the cell-specific qS at
discrete process time points, i, are calculated as described in Equation (9):

qSi =
1
Xi

(
(Si − Si−1)

(ti − ti−1)
−D(Sin − Si)

)
(9)

A negative and positive value for qS represent consumption and production of a com-
pound, respectively. The product formation rate qP can be calculated analogous to Equation (9).
The metabolic yield coefficients YLac/Glc and YNH4/Gln for the assessment of the metabolic state
and efficiency were calculated as follows in Equations (10) and (11), respectively:

YLac,i/Glc,i =
qLac,i

qGlc,i
(10)

YNH4,i/Gln,i =
qNH4,i

qGln,i
(11)

3. Results and Discussion

3.1. Online Parameter Evaluation and Preprocessing

To monitor the biomass formation of 14 different CHO cell lines expressing different
target proteins, we used an at-line-based viable cell density assessment, as described above.
Although all CHO lines were derived from the same native CHO host cell line, we detected,
as shown before by others, significant, process time-dependent differences in cell growth
characteristics, such as viable cell density formation and timing for cell doubling, as well
as in volume per cell among all tested clones (Figure 3A,C,E). Usually, biomass formation
analysis is performed only once per day, resulting in an erroneous, discrete monitoring of
this critical KPI, in conflict with the continuous use of this variable for dynamic calculations
of important bioprocess key performance indicators, such as the cell-specific product
formation rate and feedback control process strategies. Continuous assessment of cell
biomass formation is a prerequisite for efficient bioprocess development and economic
target protein production.

For the biomass soft-sensor model, general assumptions were made. Process variations
occur from: Media lot-to-lot differences, pH and DO probe behavior, mass flow divergences,
off-gas sensor response time and the metabolic performance of the used clone. These varia-
tions can influence the oxygen transfer and/or its solubility and, therefore, the oxygen level
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becomes a sum parameter. Specifically, the different metabolic behavior of the clones (that
leads to different controller responses and correction agent additions) might have the greatest
impact on the fermentation broth and its physicochemical characteristics in terms of oxygen
transfer. In addition, ambient conditions may vary during the course of a fermentation that
affect the off-gas measurement. Residence time of the off-gas in the headspace as well as
in the tubing and condensate trap bottles may further influence the proper calculation of
the OUR [30]. Differences in the gas inlet and outlet temperature also have an impact on
measured volume fractions, especially in cases where an off-gas cooler is used [16]. Since we
did not use any off-gas cooling, we assumed the inlet and outlet gas temperature difference
to be negligible. It has been shown that correction functions or description models generated
from perturbation experiments can be applied to enhance accuracy of off-gas measurements
for OUR calculations [30–32]. These approaches require considerable effort and profound
knowledge about the characteristics of O2 transport kinetics within the whole system. How-
ever, we took none of the mentioned factors into consideration as we wanted to create a robust
and relatively simple model that allows for easy implementation and good prediction quality
in contrast to alternative, soft-sensing approaches. As described most recently by Tuveri et al.,
precise estimation of bioprocess variables such as biomass can be realized by comprehensive
yet more complex approaches, such as the utilization of Kalman filters [33]. However, in
our study, we were aiming for a biomass soft-sensor model that can handle the metabolic
diversity and its effects on process properties that are caused by the varying clonal behavior
of not yet in-depth, characterized CHO cell lines.

All available online variables were investigated regarding their ability to predict the
biomass in terms of VCD and VCV. We found the OUR and process time (PT) to be the
most predictive variables using a JMP predictor screening algorithm, which confirmed the
known, high correlation of cellular biomass and respective volumetric OUR in cell culture
(Figure 3B). The assembled OUR data (OURraw) showed a low signal-to-noise ratio at the
beginning of all processes up to several process days. The ratio was heavily influenced by
low biomass concentrations as well as DO and pH controller response. Once the biomass
reached a critical level accompanied by higher oxygen demand, the measured OUR signal
became stable (Figure 4A).

Due to the use of different cell lines with diverse growth behavior as part of the data
set, this condition differed clearly with respect to process time (Figure 4B) and mainly
influenced the choice of the used higher order polynomials to describe the data set of each
process as accurate as possible. We found polynomials of the third to fifth degree to fit
best to the observed OUR raw data sets. Table 2 provides an overview of used polynomial
degree and their related R2.

Table 2. Overview of applied polynomial degree to describe the OUR raw data.

Process Polynomial Degree R2

P-01 5 0.863
P-02 4 0.983
P-03 4 0.878
P-04 4 0.888
P-05 4 0.712
P-06 4 0.971
P-07 4 0.991
P-08 3 0.892
P-09 3 0.982
P-10 3 0.977
P-11 3 0.918
P-12 4 0.956
P-13 4 0.977
P-14 4 0.954
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Figure 3. Time course of (A) normalized viable cell density (VCD), (B) normalized viable cell volume (VCV) vs. normalized
volumetric oxygen uptake rate (OUR), (C) cell volume, (D) cell-specific OUR, (E) cell doubling time and (F) cell-specific
OUR vs. normalized VCV of 14 different CHO cell lines (training data set, see Table 1) expressing different target proteins
in a seven-day perfusion process. Black arrows and blue dotted lines show the perfusion rate protocol with respective
normalized perfusion rate (in volume media per volume fermenter and day, vvdn) and timing strategy. The black lines
represent the fit among all tested clones and runs and the grey area highlights the confidence of the fit with α = 0.05.
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Figure 4. (A) Example of normalized OUR raw data fit from process P-04 with high signal–noise ratio in the first 100 h and
following stable signal towards end of fermentation. A polynomial fit of fourth grade was used to describe the OUR with
an R2 of 0.89. (B) Example of normalized OUR raw data fit from process P-09 with high signal–noise ratio in the first 85 h
and also towards end of fermentation. A polynomial fit of fourth grade was used to describe the OUR with an R2 of 0.95.

3.2. Biomass Model Generation and Assessment

Two descriptive models were built using the preprocessed OUR and process time
(PT) as input variables to predict the VCV and the VCD, respectively. Both regression
models allow a good description of the biomass for each variable (Figure 5A,B). The VCV
model has a normalized prediction error of RMSE = 0.0339, whereas the VCD model
reaches 0.0469. Referring to relative model performance evaluation, the accuracy for VCV
prediction was calculated as MAPEVCV = 31.79% and MdAPEVCV = 13.19%. Lower forecast
performance values were obtained from the VCD model with MAPEVCD = 56.59% and
MdAPEVCD = 19.78%. The differences between MAPE- and MdAPE-derived values can be
explained by the nature of the observed errors and their distribution during the fermen-
tations that were used to create these models. Despite the similarity from the observed
residuals to the normal distribution (Shapiro–Wilk for VCV residuals is 0.89 and 0.82 for
VCD), it is noticeable that, within both models, the difference between actual and pre-
dicted values begins to scatter with progressing process time and biomass concentration
(Figure 5C,D). Small dimension residuals were observed up to 60–80 h after the process
start and were highest towards the end of processes. However, the lack of prediction
performance of both models is located at the beginning of the processes, as the magnitude
of absolute percentage errors (APE) reveals (Figure 5E,F). Both prediction models show
comparable behavior regarding the APE distribution but, significantly, lower APE mag-
nitudes were found from the VCV model. This local APE density is mainly influenced
by the high signal noise produced by the OUR raw data combined with comparably low
biomass concentrations and, therefore, low oxygen demands. Despite the fact that the
OUR data is preprocessed as described, the impact of the low signal-to-noise ratio heavily
reduces the accuracy of both models. Furthermore, this is the leading cause for the de-
scribed differences between MAPE and MdAPE values as the median is not as affected
as the mean is by high APE occurrence, as mentioned. Additionally, a likely explanation
for an increase in scattering residuals might be related to the necessary dilution to stay
within the manufacturer’s specifications and calibration ranges for the Cedex HiRes® cell
density assay.
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Figure 5. (A) Soft-sensor model for VCV prediction with model assessment RMSE and R2. Black dots represent normalized
values, red line describes the found model with prediction confidence α = 0.05. (B) Soft-sensor model for VCD prediction
with model assessment RMSE and R2. Black dots represent normalized values, red line describes the found model with
prediction confidence of α = 0.05. (C) VCV normalized residuals plotted against normalized predicted values with process
time indication. (D) VCD normalized residuals plotted against normalized predicted values with process time indication.
(E) VCV-model-derived absolute percentage errors plotted against normalized predicted VCV values with process time
indication. (F) VCD-model-derived absolute percentage errors plotted against normalized predicted VCD values with
process time indication.
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Even if a high cell concentration in a given sample might decrease the measurement
error, the probability is increased when covering a more characteristic amount of cells
in the analyzed sample because pre-dilution procedures are prone to cause unintended
consequential errors [34,35]. Therefore, we consider the user-dependent and manually
applied dilution step as the root cause for the observed residual increase during the course
of the processes. The second input variable, process time, is further expected to represent
an indirect measure of biomass growth rate.

The estimation functions are listed below:

VCVPredicted,Normalized
= −0.0907 + 0.425·OURNormalized + 0.00194·PT

+(PT− 74.736)·((OURNormalized − 0.207)·0.00571)
(12)

VCDPredicted,Normalized
= −0.0994 + 0.362·OURNormalized + 0.00243·PT

+(PT− 74.736)·((OURNormalized − 0.207)·0.00554)
(13)

3.3. Real-Time Prediction and Quality of Online OUR Monitoring

Using the identified models as a biomass soft sensor under real-time circumstances
was considered as the chosen path of validation in this work. The estimator equations
were implemented in SEEQ to perform online biomass prediction of dynamic state for
the continuous processes (P-15, P-16 and P-17) with unknown cell lines (C-15, C-16 and
C-17) to both models. The processes were executed in the same manner as described
above, hence they are technical replicates, such as the processes P-01–P-14. In order to
remove the signal noise from the calculated OUR, two signal-smoothing algorithms were
applied in real time. As Bassey et al. [36] found the Savitzky–Golay (SG) filter algorithm to
be well suited for gas-sensor-derived signal smoothing, we also applied the SG filter to
remove signal distortions from the OUR signal. In addition, we tested a locally estimated
scatterplot smoothing (LOESS)-based algorithm on the OUR signal to evaluate its influence
on the final prediction quality. Both algorithms represent moving average functions that
investigate a filter time window of 25 min with a permanent output frame of 30 s.

Using this approach, the SG applies a polynomial regression of first order, whereas
the LOESS filter uses the best-fit line, which can either be a linear or a higher polynomial
function. Due to the growth rate of animal cells of about 24 h, we consider the filter time
delay to be negligible. Both soft-sensor models can predict the biomass in terms of VCV
and VCD with good prediction accuracy regardless of whether the real-time OUR smooth-
ing was done with the SG or LOESS algorithm (Figure 6A–D). Nevertheless, referring to
model assessment parameters, the VCV model shows a significantly higher goodness of
fit in each case (Tables 3 and 4). Calculated MAPE values are half the magnitude from
the VCV model (MAPEVCV,LOESS/SG ≈ 14%) compared to VCD-model-derived MAPE
(MAPEVCD,LOESS/SG ≈ 33%). Therefore, the VCV model is leading to predictions that
are more precise on average. Beyond that, the difference between MAPE and MdAPE
values is still noticeable in a comparable period after process start (Figure 6A,B) as the
same root cause of a high signal-to-noise ratio creates a high local APE density. How-
ever, MdAPE values between both models are quite comparable and are in the range of
MdAPEVCD,LOESS/SG ≈ 8% and, for the VCV model, MdAPEVCV,LOESS = 6.6% and
MdAPEVCV,SG = 8.3%. Half of the prediction errors are located above and below these
values and, in reference to the calculated average prediction errors, the VCV model has the
best prediction performance validated on the novel cell lines C-15, 16 and 17.

In contrast to offline-based measurements which usually consists of only one or a
few measurement points per day, the prediction provides a continuous description of
biomass during the processes, filling in the gaps between offline-derived measurements
(Figure 6E,F). These real-time predictions can be further utilized to calculate other mean-
ingful process variables in a soft-sensing manner, such as production or consumption rates
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(see Section 3.5). Additionally, high quality online biomass forecasts enable a verification
of erroneous offline-based readings, revealing possible measurement errors.

Figure 6. (A) Normalized measured VCV vs. real-time normalized predicted VCV data using the LOESS filter algorithm with
model assessment for all three processes represented by colored dots. (B) Normalized measured VCV vs. real-time normalized
predicted VCV data using the SG filter algorithm with model assessment for all three processes represented by colored dots.
(C) Normalized measured VCD vs. real-time normalized predicted VCD data using the LOESS filter algorithm with model
assessment for all three processes represented by colored dots. (D) Normalized measured VCD vs. real-time normalized
predicted VCD data using the SG filter algorithm with model assessment for all three processes represented by colored dots.
(E) Exemplary normalized predicted VCVLOESS/SG values (orange and gray lines) and actual normalized VCV values from
process P-15 with clone C-15 represented by blue dots. Error bars describe an assumed 11% error for all VCV measurements.
(F) Exemplary normalized predicted VCDLOESS/SG values (orange and gray lines) and actual normalized VCD values from
process P-15 with clone C-15 represented by blue dots. Error bars describe an assumed 10% error for all VCD measurements.
Biomass measures VCV and VCD are normalized to the maximum value in the training data set (P-01-P-14).
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Table 3. Overview of measured VCV and real-time predicted VCV data using SG or LOESS algorithm.

Process R2 RMSE (Normalized) MAPE [%] MdAPE [%]

SG LOESS SG LOESS SG LOESS SG LOESS

P-15 0.999 0.998 0.017 0.015 18.13 18.15 4.93 3.85

P-16 0.974 0.980 0.057 0.052 14.94 14.61 14.35 13.77

P-17 0.995 0.994 0.025 0.025 7.99 8.23 6.61 6.60

Table 4. Overview of measured VCD and real-time predicted VCD data using SG or LOESS algorithm.

Process R2 RMSE (Normalized) MAPE [%] MdAPE [%]

SG LOESS SG LOESS SG LOESS SG LOESS

P-15 0.997 0.995 0.035 0.033 33.09 32.57 9.85 8.29

P-16 0.965 0.971 0.072 0.068 16.75 15.21 19.43 11.16

P-17 0.996 0.995 0.025 0.031 48.81 49.71 6.79 7.99

Since the increase in biomass is always accompanied by a growth in cell number
and cell volume, we consider a description of the biomass solely by cell number in terms
of VCD to be insufficient. VCD is a coarse measure of the viable biomass, because even
small changes in mean cell diameter result in large differences in cell volume [37]. An
analysis of cell size, especially its distribution during fermentation process time, can deliver
valuable information that cannot be seen by only looking at cell numbers. Besides the
fact that trypan blue-based automatic cell counting enables a differentiation in viable and
nonviable cells, numerous publications can be found that highlight the advantages and also
the necessity of cell size in terms of cell volume measurements [37–41]. Mammalian cell
volume differs not only between cell lines but also during an ongoing process, which leads
to changing biomass in terms of volume and cellular mass itself. In addition, the process
mode, growth conditions and other parameters can influence cell size. For example, larger
cells tend to consume more oxygen than smaller cells, and the rapid adaptability of cells to
process conditions such as osmolality, where a rise results in cell size increase, underlines
the advantages of having cell size measured [22]. All factors support our preference for
more accurate correlations for a VCV-based biomass description. Furthermore, it has been
demonstrated that packed cell volume measurements can reach errors below 5%, whereas
standard trypan blue cell counting techniques still struggle with errors up to 15% [42].

3.4. Biomass-Specific Oxygen Demand and Key Metabolism Analysis

The metabolism of CHO cell lines during classical batch and fed-batch cultivation
is highly dynamic, and metabolic steady-state descriptions can be used to analyze the
coherences by mechanistic modeling approaches [43]. These significant metabolic changes
originate from alterations in the dynamic cell environmental media matrix composition,
such as substrate and cofactor consumption, (toxic) metabolite production and shifts
in chemicophysical parameters, such as medium osmolality, buffer capacity and redox
potential [44–47]. Perfusion cell cultivation processes can be used to overcome these media
matrix variations by an optimized constant replacement of conditioned media with fresh
media and by using parameters such as the cell-specific perfusion rate (CSPR). Nevertheless,
the optimization and analysis of CSPR was not the goal of this study.

We analyzed the biomass-specific OUR and metabolism of key substrates and metabo-
lites of tested CHO cell lines in SUB perfusion processes in more detail. As shown pre-
viously [14,48], the volumetric OUR of tested CHO cell lines followed the previously
described cell density kinetics during cell cultivation (Figure 3B). The observed cell density
formation consequently showed differences among each tested CHO cell line, and the
final volumetric OUR of the perfusion processes showed a constant increase over process
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time. At the end of the cultivation, the volumetric OUR showed a broad variation between
all tested CHO cell lines and, for C-05 and C-13, up to more than 100% more than the
respective variance observed for viable cell densities (Figure 3B). The cell-specific OUR
(qOUR), however, showed an initial slight increase followed by highly homogenous qOUR
for all tested clones and plateaued on a stable level of approximately 41.7 amol cell−1 s−1

from day 5 until the end of the perfusion process at day 7 (Figure 3D). The observed level
of qOUR fits well with previously reported qOURs for CHO suspension cells [24,27,48–50].
Plotting the viable cell volume of the process (VCV) vs. qOUR revealed very high qOUR
and, subsequently, a fast decrease of qOUR in the beginning of the perfusion cultivation
where low biomass was available, followed by a stable plateauing of qOUR (Figure 3F).
Both observations, the initial increase in qOUR followed by a stabilization at a lower qOUR
level at the later cell cultivation phases and the higher biomass levels, confirm previously
reported trends for CHO cells in perfusion cultivations [27,51]. The early qOUR peaks
were attributed to an initial metabolic acclimation phase when cells were seeded into an
unconditioned media with high substrate concentrations and the cultivation conditions at
start of cell culturing.

To understand the reason for this shift in early and late qOUR kinetics, we analyzed
the concentration and consumption/production rates of glucose, lactate, glutamine and
ammonia as key substrates in mammalian cell cultures. Significant changes in volumetric
glucose and glutamine substrate availability, as well as lactate and ammonium byproduct
levels, were observed by using the applied perfusion process strategy. Both glucose and
glutamine levels dropped during the course of the perfusion process, with an earlier
decline in glutamine, which may be due to additional abiotic degradation (Figure 7A). Both
byproducts, lactate and ammonium showed an initial increase followed by an intermediate
plateau phase between day 3 and 5 and a final metabolic inverse shift with a decreasing
level of lactate and, subsequently, an increase in ammonium from day 5 until the end of
perfusion fermentation at day 7 (Figure 7A). The analysis of the cell-specific rates of these
substrates and metabolites emphasizes the metabolic shift at day 5 with a stagnation in
low levels of cell-specific glutamine consumption qGln and lactate formation rates qLac
(Figure 7B).

The yield coefficients YLac/Glc and YNH4/Gln are characteristic bioprocess key parame-
ters (KPI) for assessing the metabolic status of cellular systems and the utilized pathways
for energy production. By applying these parameters, we temporally analyzed the yield
coefficient YLac/Glc and YNH4/Gln along the perfusion process time. Through our anal-
ysis, we identified three distinct metabolic phases: (i) from day 0 to day 3, a phase of
high anaerobic lactate production and glutaminolysis-driven ammonium formation with
a clone-dependent YLac/Glc of 1–2 mol/mol and YNH4/Gln of 0.5–3.6 mol/mol, (ii) from
day 3 to day 5, a metabolic transition phase switching to aerobic metabolism and low
glutaminolysis activity and (iii) from day 5 to day 7, an almost complete aerobic phase with
practically no lactate production and clone-dependent increasing glutaminolysis again
(YLac/Glc of 0.03–0.64 mol/mol, YNH4/Gln of 0.7–1.7 mol/mol) (Figure 7C,D).

The yield analysis by YLac/Glc and YNH4/Gln suggests an alternative reason for the
observed metabolic switch rather than substrate limitation since glucose and glutamine are
available in the fermentation media matrix in high amounts during the whole perfusion
process (Figure 7A). The limitation of pyruvate during the perfusion process was identified
as a putative reason for the metabolic switch. The slight increase of cell-specific glucose
consumption qGluc and of the glutaminolysis and ammonium formation qSNH4 from
day 5 onward correlates with the limitation of pyruvate (Figure 8A) and stagnation of
cell-specific pyruvate consumption rate qPyr (Figure 8B). In general, pyruvate is an im-
portant alternative, energy-generating carbon source for fast proliferating mammalian cell
lines and for reducing cell growth-inhibiting ammonium production in cell cultures [52].
Analysis of qPyr vs. the available global pyruvate concentrations in the culture suggests a
concentration-dependent shift of qPyr at levels lower than 2 mM, which correlates with the
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increase of cell-specific ammonium formation with the drop in cell doubling time (data
not shown).

In principle, the accumulations of cytostatic/toxic metabolic byproducts, other than
lactate and ammonium, originating from the amino acid break-down metabolism in CHO
fermentation processes are well characterized triggers which induce decreased biomass
formation and increased cell doubling time [53]. In our study, however, we focused on the
classical cell culture substrates and metabolites yet encouraged the analysis of these amino
acid break-down products in the future to allow for optimized perfusion process designs
with efficient depletion of known and unknown cytostatic/toxic metabolic byproducts.

Figure 7. Metabolic analysis of the dynamic state of continuous CHO SUB processes. Kinetic of key substrates glucose and
glutamine and metabolites lactate and ammonium concentrations (A,B) cell-specific rates. Time-resolved analysis of the
cell-specific rate-based yield coefficients (C) YLac/Glc and (D) YNH4/Gln. The colored dots represent the tested 14 clones and
the black, blue, red and green lines represent the fit of Gln concentration or cell-specific Gln consumption/production rate
qGln, NH4

+ concentration or cell-specific NH4
+ consumption/production rate qNH4, glucose concentration or cell-specific

glucose consumption rate and lactate concentration or cell-specific lactate consumption/production rate, respectively. The
black, blue, red and green areas highlight the confidence of the fits with α = 0.05. Black arrows and blue dotted lines show
the perfusion rate protocol with respective normalized perfusion rate (in volume media per volume fermenter and day,
vvdn) and timing strategy.
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Figure 8. Real-time prediction of qPyr in dynamic state of continuous CHO SUB processes. (A) Analysis of pyruvate
concentration over perfusion process time. The colored dots represent the tested 14 clones from the training data set and the
black line represents the fit with α = 0.05. (B) qPyr cell-specific consumption/production rates. The black area highlights
the confidence of the fit with = 0.05. (C) Actual vs. predicted plot of a logistic regression model for qPyr for all tested clones
from the training data set C-1 to C-14 (black dots) with regression model prediction (red line) and mean of all tested qPyr
(blue line). (D) Online prediction of qPyr for a model validation perfusion process with C-15 (grey line) with qPyr actuals
(blue dots). Error bars describe an assumed 10% error for actual qPyr values.

Mammalian amino acid metabolism is highly dependent upon the availability of
bioavailable oxygen as an electron acceptor to allow for an indirect regeneration of re-
dox equivalents NAD+ and FAD in the tricarbon cycle (TCA), which are finally needed
for the oxidative phosphorylation and energy production in cells [54]. Since there is no
report that describes the correlation of specific amino acid and key metabolite consump-
tion/production rates qS with qOUR of CHO cell lines in SUB continuous processes, we
aimed to analyze this important investigation in our experimental set-up. Unexpectedly,
cell-specific qGluc showed no correlation to qOUR (R2: 0.007, RMSE: 0.31 pmol cell−1 d−1)
yet the following important metabolic rates of key substrates and metabolites revealed a
sound correlation: qGln (R2: 0.389, RMSE: 0.13 pmol cell−1 d−1), qAla (R2: 0.540, RMSE:
0.06 pmol cell−1 d−1), qPyr (R2: 0.521, RMSE: 0.23 pmol cell−1 d−1), qLac (R2: 0.324, RMSE:
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0.32 pmol cell−1 d−1) and qNH4 (R2: 0.741, RMSE: 0.08 pmol cell−1 d−1) (Figure 9A). In
addition, the cell-specific product formation rate qP revealed no correlation to the cell
biomass-specific OUR (R2: 0.062, RMSE: 4.42 pg cell−1 d−1) (Figure 9B).

Figure 9. Correlation of (A) cell-specific substrate and metabolite formation/consumption rates and
(B) product formation rate. The colored dots represent the tested 14 clones and for (A) the black,
blue, red, green, violet and brown lines represent the fit of qGluc, qGln, qAla, qPyr, qLac and qNH4
cell-specific consumption/production rates and for (B) the black line represent the fit of qP. The dark
black, blue, red, green, violet and brown areas highlight the confidence of the fits with α= 0.05 and
light-colored areas the respective confidences of the predictions.

3.5. Online Prediction of Cellular Metabolic Rates

As shown in the previous section, the calculations and analyses of biomass-specific
substrate consumption and metabolite production rates, qS, are mandatory to identify
distinct cell metabolic phases, which can be preferably used to optimize perfusion media
and rates for an efficient continuous cultivation of CHO cell lines. Solely monitoring
global substrate and metabolite concentrations is not sufficient to allow for an equivalent
characterization of cell cultivation processes, such as the described CHO perfusion process
in SUBs.
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As a proof of concept, we developed a soft-sensor-based real-time prediction of the cell-
specific pyruvate consumption/production rate qPyr by using available real-time estimates
for qOUR and biomass measures, as described before. The importance of an immediate
estimation of the metabolic pyruvate flux into the cell is justified by its central role in the
direct and indirect control of the cellular energy metabolism. Pyruvate is funneled into the
TCA by the pyruvate dehydrogenase complex and/or by the anaplerotic reaction regulated
by the pyruvate carboxylase [55,56]. Therefore, monitoring coupled with tailored control
of qPyr is generally envisioned to improve the cellular energy state and avoid the lactate
accumulation in cell culture fermentation processes.

qPyr correlated well with discrete cell-specific qOUR values (R2 of 0.521, RMSE of
0.23) by using the discrete qPyr and real-time predicted qOUR data of the 14 different CHO
cell lines and perfusion processes (Figure 9), suggesting the possibility to directly use this
important information on the respiratory metabolism for a soft-sensoring approach for
real-time qPyr prediction. As a proof of concept, a suitable logistic multiregression model
was generated for the generalized, sigmoid qPyr time course by simply using the available
online OUR data and the predicted, SG-smoothed VCD, VCV and cell- and biomass-specific
qOUR values (R2 of 0.8, RMSE of 0.0334 pmol cell−1 d−1) (Figure 8C). The used estimation
functions for qPyr prediction are shown in following Equation (14):

qPyrPredicted = Logist
(
1.046·1012 + 67.365·Logist(OUR)− 0.259

·Logist(VCDPredicted) + 1.87·1014·qOURcellvolumePredicted
−2.092·1012·qOURcellPredicted

) (14)

We validated the prediction estimation model for qPyr by using a validation data
set with CHO clone C-15 and perfusion process P-15 (Table 1). By this, the real-time
prediction and discrete actuals for qPyr showed a technically relevant, good correlation
in this validation data set (Figure 8D). The reason for the observed offset likely originates
from the erroneous discrete qPyr measurement and respective error propagation by the
calculation and/or by the cell-specific metabolic nature, often described for CHO cells
with a high genetic plasticity [57]. The first 24 h of the prediction were not used due to the
high noise in the OUR signal due to reasons described before. In general, more elaborated
non-linear modeling approaches, such as decision trees and artificial neuronal nets, may
also be used in the future for an increased precise estimation of cell-specific rates such as
qPyr. Regardless, using these powerful modeling approaches requires large, annotated
data sets that can be technically realized simply over a longer period of time.

4. Conclusions

In this work, we present, for the first time, an off-gas-based soft sensor for real-time
biomass prediction in SUB continuous processes with CHO cell lines. The 14 different CHO
cell lines that were used to build the soft-sensor models cover a variety of phenotypically
different CHO cell lines. Given the diversity of our training data set, we expect the resulting
models to be applicable to a broad range of CHO cell lines. This application is underlined by
a high prediction accuracy achieved by the models on the bioprocesses of three novel CHO
cell lines which were previously unknown to both models. The detailed analysis of both
the model residuals as well as the absolute percentage errors disclosed some weaknesses
that are primarily process related. The noisy OUR raw signal that was observed during the
onset of all cell cultivation processes is caused by the pH controller response leading to
very high prediction errors for up to 80 h after the processes were started. Optimization of
pH controller settings and strategies or using more basic pH set points could overcome
these technical challenges (data not shown). In addition, a split into different forecast
models where altered pH controller interferences are present could lead to lower prediction
errors. In addition, alternative yet computational and model-calibration-intensive forecast
approaches such as Kalman filtering could significantly increase the prediction quality and
should be considered for further, more elaborated closed-loop variable predictions and
process control strategies [33].
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Our data also demonstrated that higher model accuracy was established when VCV
instead of VCD was used as biomass depiction. This strengthens our strong belief in a
paradigm change regarding biomass description in modern bioprocesses. VCD should
no longer be the leading, or the only, measurement looked at when it comes to biomass
determination. The cell size or volume, its distribution over time and, of course, the VCV
should be used by default to accurately describe the biomass and all derived metabolic
variables, such as mAB, lactate production rate, or glucose/oxygen consumption rates.
Conclusions, based only on cell density measurements, can lead to wrong assumptions,
calculations or other unforeseen misinterpretations, generating a fragmented picture of the
biomass [38,40]. As modern bioprocesses can be highly complex and dynamic, the biomass
and cellular metabolism analysis should be as comprehensive as possible to generate a
comparable and reproducible data basis. Furthermore, the utilization of an off-gas-based
soft sensor is easy to implement in SUB systems as well as in common stainless steel
plants. For this purpose, the installation of any hard-type probes inside the bioreactor is not
necessary and does not increase handling or decrease safety and therefore prevents possible
contamination risks. The fundamental correlation of biomass growth and increasing oxygen
demand can be used, optimized and extended to generate profound real-time knowledge
on diverse bioprocess variables such as the shown biomass and metabolic nutrient rate soft
sensor. Moreover, off-gas analysis can be used to determine the true bioreactor pH without
any sampling or as non-invasive method for online pCO2 monitoring, which underlines
the flexibility and outstanding character of having an off-gas analyzer implemented and
running [58].
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Abstract: In this work, the design of the hardware architecture to implement an algorithm for
optimizing the Hydrogen Productivity Rate (HPR) in a Microbial Electrolysis Cell (MEC) is presented.
The HPR in the MEC is maximized by the golden section search algorithm in conjunction with a
super-twisting controller. The development of the digital architecture in the implementation step
of the optimization algorithm was developed in the Very High Description Language (VHDL) and
synthesized in a Field Programmable Gate Array (FPGA). Numerical simulations demonstrated the
feasibility of the proposed optimization strategy embedded in an FPGA Cyclone II. Results showed
that only 21% of the total logic elements, 5.19% of dedicated logic registers, and 64% of the total
eight-bits multipliers of the FPGA were used. On the other hand, the estimated power consumption
required by the FPGA-embedded optimization algorithm was only 146 mW.

Keywords: MEC; hydrogen production; online optimization; golden section search; super-twisting
controller; FPGA

1. Introduction

Nowadays, biotechnological systems represent a very attractive option for hydrogen
production. The degradation of organic matter through the use of bacteria has gained great
interest in the scientific community because hydrogen can be produced in a clean way [1,2].
In contrast to current industrial methods, in which unfortunately 90% of the hydrogen
produced requires the use of fossil fuels generating a large amount of CO2 (10 tonnes of
CO2 per ton of H2) [3], Microbial Electrolysis Cells (MEC) represent a great alternative to
produce hydrogen because they require less energy compared to the classic techniques to
produce hydrogen, such as the electrolysis of water [4,5].

A MEC is an electrochemical device which uses electroactive microorganisms as
catalysts to convert the organic matter to hydrogen and provides a novel approach for pro-
ducing economically viable hydrogen from a wide range of renewable biomass sources [6,7].
Furthermore, a waste biorefinery based on MECs to produce clean and renewable electro-
fuel and valuable chemical compounds holds the flexible potentials for pollutants removal
and CO2 capture [8]. Broadly speaking, unlike a Microbial Fuel Cell, a MEC requires
the induction of a constant voltage supply generating a potential difference between the
electrodes to produce a flow of hydrogen as a result of the degradation of the organic
matter that is fed to the MEC.

Other widely biological approaches used for the production of hydrogen in a clean
way include Dark Fermentation (DF) in which bioreactors are fed by wastewater with
a high concentration of organic matter from domestic and industrial origin. However,
its efficiency to produce hydrogen compared to a MEC is relatively low (40% or less) [9].
Generally a MEC is fed with a controlled flow of wastewater which is rich in Volatile Fatty
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Acids (VFAs) that in turn might come from another Wastewater Treatment Plant (WWTP)
like a DF bioreactor.

The production of hydrogen at the industrial scale through biotechnological systems
is a challenge that has been dealt with from different approaches. For instance, in [10]
an optimization scheme to maximize the hydrogen productivity of a DF is presented. In
such study the optimization is achieved by a heuristic strategy with a nonlinear observer
consisting in a Luenberger observer coupled to a super-twisting observer. Then, a super-
twisting controller is used to lead the DF process to its maximum hydrogen productivity
rate. In [11] the optimization is focused on the effect of the operating conditions such as pH,
temperature, nutrient availability and substrate concentration. This involves mathematical
modeling of a fermentation process in such a way that biohydrogen production can be
predicted. On the other hand in [12] the hydrogen productivity was reported to increase
from 0.13 to 0.82 m3 [H2] per m3 per day improving the conductivity of the electrode in
a MEC and increasing the population of bacteria in the cathode biofilm. Another work
related to hydrogen optimization is presented in [13] where the authors demonstrated
that the MEC efficiency can be improved through the reduction of the apparent resistance.
The optimization strategy is integrated by both perturbation and observation algorithms
designed to track the minimal apparent resistance and adjusting the applied voltage used
as control input. Other works in literature are focused in MEC construction details, for
example, in [14] an effective strategy to improve the productivity performance through an
improved anode arrangement is presented. In such work, the anode is strategically located
in such a way that the solution resistance, the biofilm and the whole physical system are
reduced. The polarization of the MEC was considerably reduced, affecting directly 72–118%
the rate of hydrogen production.

The possibility of being able to implement control algorithms using digital systems
such as microcontrollers, Graphic Processing Units (GPUs) and Field Programmable Gate
Arrays (FPGAs) has been of great interest due to its great processing capacity, resources
optimization and low energy consumption. Besides, the parallelism in the execution of the
algorithms has given to the FPGAs a great advantage over other digital systems based on
microcontrollers and microprocessors. For example, in [15,16], an FPGA-based fuzzy-logic
controller is implemented and analyzed, and it is concluded that this technology is a
good choice for implementation. The parallelism offered by FPGAs is used in [17,18] to
implement complex control algorithms for a AC-DC converter and a DC-DC converter,
respectively. In these works the FPGA processing efficiency is highlighted. In [19] both, the
optimization of 80% of the hardware and reduction of 40% of the power consumption of a
distributed-arithmetic (DA)-based proportional-integral-derivative (PID) controller com-
pared to a multiplier-based scheme is demonstrated for temperature control. The efficiency
of the complete digital control system is demonstrated using a Xilinx Spartan-2E FPGA.
More recently, in [20] the authors proposed a combination of a direct torque control, space
vector modulation, input-output feedback linearisation, a second-order super-twisting
speed controller, and sliding-mode-load torque and stator-flux observers with stator resis-
tance estimation implemented in an FPGA. This control strategy demonstrated robustness
in presence of stator resistance variations and uncertainties when it was applied to an in-
duction motor drive. An interesting pipeline implementation of a super-twisting controller
to control ground vehicles is presented in [21]. The super-twisting controller was used
to control the lateral and yaw velocities in the vehicle dynamics that are described by a
discrete time model. The resulting implementation required shorter sampling times and
can be synthesized in a low-cost FPGA. A classical Proportional-Integral-Derivative (PID)
controller implemented in FPGA is proposed in [22]. With the objective to accelerate the
execution of the algorithm, to obtain great precision and to get highly commercial ability,
the implementation was based on smooth motion interpolation. The results from numerical
simulations and practical tests, demonstrated its correct performance. Nevertheless, to the
best of the authors knowledge, there is not FPGA-based control implementations applied
to bioprocesses.
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In the present work the optimization problem of maximizing the Hydrogen Production
Rate (HPR) in a MEC is addressed. The productivity function is approximated from the
MEC model in steady state, for which, a point of maximum performance in a well-defined
operating region is ensured. Using the golden section search optimization algorithm
coupled to a robust super-twisting controller, the MEC is online brought to its maximum
hydrogen production performance. The proposed optimization strategy is embedded in
an FPGA throughout different digital architectures that are executed in parallel without
hardware sharing. The resulting digital architecture has mainly two advantages, first,
the portability to be synthesized in an FPGA card from any manufacturer, and second,
the low power consumption compared to a personal computer. The implementation of
the optimization algorithm in an FPGA has the great advantage of being described in
hardware. This allows an easy adaptation in the use of communication protocols with
external devices.

The rest of the paper is organized as follows: in Section 2 the mathematical model of
the MEC is described, and the objective function as the HPR is presented. A description of
the optimization problem is described in detail in Section 3. In Section 4 the optimization
problem is addressed by using the Golden Section Search algorithm coupled to the discrete
time super-twisting controller. In addition, the maximum HPR numerically computed is
verified analytically. The FPGA-based implementation of the optimization algorithm is
presented in Section 5 including numerical algorithms for the implementation of arithmetic
operations like division, multiplication and square root. The results are presented in Section
6, where numerical simulations are carried out in an FPGA to verify the performance,
including both the truncation error and the synthesis report of the digital architecture.
Finally some conclusions are pointed out in Section 7.

2. Mathematical Model

One of the most used Microbial Electrolysis Cell (MEC) configurations currently con-
sists mainly of two chambers that are separated by a cathode membrane (see Figure 1). In
the anode chamber, the anode is covered by a biofilm where the existence of anodophilic
and methanogenic bacteria is considered. The degradation of VFAs in the MEC takes
place in the anode chamber, where hydrogen protons and electrons are produced. Protons
pass through a ionic membrane to the cathodic chamber where the production of hydro-
gen occurs. A relatively small voltage is supplied to the system generating a potential
difference between the two electrodes, which allows the electrons released in the anode
by the anodophilic bacteria to circulate and pass to the cathode to combine with the hy-
drogen protons. In the degradation process there is a competition between two types of
microorganisms, anodophilic and methanogenic, to decide who will consume the substrate.

This behavior is modeled by the following system of Ordinary Differential Equations
(ODEs) [23]:

ṡ = (sin − s)Din − kaμaxa − kmμmxm (1)

ẋa = μaxa − kd,axa − αaDinxa (2)

ẋm = μmxm − kd,mxm − αmDinxm, (3)

where s is the acetate concentration (mg/L−1), while xa and xm are the concentration of the
anodophilic and acetoclastic methanogenic microorganisms, respectively (mg/L−1); Din is
the dilution rate, Din = Fin/Vreac (d−1), where Fin is the input flow rate (Ld−1) and Vreac
is the reactor volume (L); αa and αm are the dimensionless biofilm retention constants.
μa and μm are the growth rates (d−1) for anodophilic and acetoclastic methanogenic
microorganisms, respectively, which are defined as follows:

μa = μmax,a
s

ks,a + s
1

1 + e−
F

RT η
(4)

μm = μmax,m
s

ks,m + s
, (5)
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where μmax,a and μmax,m are the maximum grown rates (d−1), ks,a and ks,m are the half-rate
Monod constants (mg (s) L−1), F is the Faraday constant (C mol−1 e−1), R is the ideal gas
constant (J mol−1K−1), T is the temperature (K), η = Eanode − EKa is the local potential,
where Eanode is the anode potential (V) and EKa is the half-maximum-rate anodic Electron
Aceptor (EA) potential (V) i.e., the potential that occurs when S = kS,a and the rate is half
of the maximum rate [24].
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Figure 1. Schematic diagram of the MEC.

MEC Productivity

The hydrogen flow rate in the MEC is modeled by Equation (6), where it can be seen
that the hydrogen produced is closely related to the current generated from the flow of
electrons between the electrodes.

QH2 = YH2 Aa
IMEC
mF

RT
P

, (6)

where YH2 is the dimensionless cathode efficiency, Aa is the anode area (m2), m is the
electrons per mol specie (mol e− mol−1 M−1) and P is the pressure inside the cathodic
chamber (atm). In the Equation (6) the methanogenic microorganisms consumption is
neglected and it is considered that only anodophilic microorganisms are responsible for
acetate degradation. The current in the MEC is modeled as:

IMEC =
(

γskaμaxaL f (1− f 0
s ) + γxbxaL f

)
Aa, (7)

where γs and γx (mFM−1W−1
s ) are the yield coefficients related to the number of coulombs

that it is possible to obtain from Ws (g mol−1) and Wx (g mol−1), i.e., the substrate, and the
biomass respectively; f 0

s is the dimensionless fraction of electrons used for cell synthesis, b
is the endogenous decay coefficient (d−1) and L f is the biofilm thickness (m).

The hydrogen production rate (HPR) QH2,p is defined as the hydrogen flow rate

produced per volume of reactor (L[H2] L−1d−1):

QH2,p =
QH2

Vreac
, (8)

where QH2 is the hydrogen flow rate defined by Equation (6).
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3. Problem Statement

The HPR is function of both, the dilution rate Din and the inlet acetate concentration
sin. Din is the optimization variable, while sin is considered as a disturbance. As it can be
seen in Figure 2, the HPR presents a maximum hydrogen productivity point related to an
optimal dilution rate (QH2,pmax, Din,opt) within a range of concentrations for the inlet acetate
sin [2000, 6000] mL−1. Therefore, the optimization problem consists in calculating the value
of the optimal dilution rate Din,opt that ensures the maximum performance QH2,pmax in
the MEC.

Figure 2. MEC hydrogen productivity rate in steady state on the operating region.

Maximizing the HPR in the MEC is possible if and only if a Din,opt of the productivity
function QH2,p(Din, sin) can be computed in an open neighborhood region (Γ) for each
acetate concentration in the inlet sin. Ensuring the existence of Din,opt implies the following
assumptions [25]:

Assumption 1. The function QH2,p is twice continuously differentiable in Γ with respect to Din
such that:

∂QH2,P (Din,opt ,sin)

∂Din
= 0

∂2QH2,P (Din ,sin)

∂D2
in

< 0

(9)

Assumption 2. The function QH2,p is convex, unimodal and any Din,opt is a global maximizer for
each sin in the operating region.

The optimization problem to maximize the hydrogen production rate in the MEC is
proposed as:

max
Din

QH2,p(Din, sin)

such that:

ẋ(t) = f (x, Din, sin)
y(t) = QH2,p(x),

(10)

where x = [s, xa, xm]T is the state vector, f (x, Din, sin) is defined by Equations (1)–(5) and the
measured output QH2,p(x) is the hydrogen production rate defined by Equations (6)–(8).
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As it is shown in Figure 2, only a maximum QH2,pmax can be observed for each
maximizer Din,opt in the operating region.

The optimization problem is online solved by the GSS algorithm coupled to a super-
twisting controller. The GSS algorithm calculates the value QH2,pmax using a hydrogen
productivity function in relation to both, the dilution rate and the inlet acetate concentration
of the MEC. The super-twisting controller uses QH2,pmax as a reference to track the MEC
productivity to the maximum value. The optimization scheme described before is depicted
in Figure 3.

GSS
ALGORITHM

DTST
CONTROLLER

MEC
MODEL

QH2,p
Din,c

QH2,p maxsin

Figure 3. Optimization scheme of the MEC.

In order to optimize the hardware resources and to reduce the power consumption,
the optimization strategy to maximize the HPR of the MEC is embedded in an FPGA. This
way, the energy cost required to bring the MEC to its maximum HPR can be consider-
ably reduced.

4. Optimization of the MEC Productivity

An optimum point (QH2,pmax,Din,opt) is possible if and only if the MEC achieves an
steady state [s∗, x∗a , x∗m]. The operating point of the system (1)–(3) as function of sin and Din
is given in steady state as:

s∗ =
ks,akd,a + ks,aαaDin

μmax,a
ψ − kd,a − Dinαa

(11)

x∗a =
(sin − s∗)Din

kaμa
(12)

x∗m = 0, (13)

with
ψ = 1 + e−

F
RT η . (14)

The objective function QH2,p(Din, sin), defining the input-output map in steady state,
is therefore expressed as:

QH2,p(Din, sin) =
L f AsurYH2 AaRTDin

mFPVreac
(sin − s∗)

[
γs(1− f 0

s ) +
γxbψ(ksa + s∗)

kaμmax,as∗

]
. (15)

In this work, the acetate concentration in the inlet sin is assumed as known.

4.1. The Golden Section Search Algorithm

Golden ratio (ϕ) has been of a great interest to mathematicians, physicists, philoso-
phers and artists. In antiquity, civilizations like Egyptians used the ϕ number as the main
criterion for the construction of the Great Pyramids. The Parthenon in Greece was also
built based on ϕ [26].

In relation to nature, the golden ratio is considered a natural constant that sets the
standard in reproduction, growth patterns of living beings such as plants and animals.
Their geometric relationship is described in Figure 4, where a line A–C is divided into two
segments l and r by a point B where l is greater than r such that the ratio l/r is equal to the
ratio (l + r)/l.
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The Golden Section Search (GSS) algorithm is an iterative process suggested to op-
timize one-dimensional, unimodal and well behaved functions [27], taking into account
that the optimum value must be into a search region defined by a lower bound (A) and an
upper bound (C), as described in Figure 4.

ϕ =
l
r
=

l + r
l

= 1.618033988... (16)

l r
A C

B

Figure 4. The golden ratio.

The optimization of the HPR in the MEC begins defining the search region of Equation (15).
In this case, the search region is defined by Din,A = 1 d−1 and Din,C = 3 d−1. Then, two inner
evaluation points Din,1 and Din,2 are selected as function of ϕ.

Din,1 = Din,A + d (17)

Din,2 = Din,C − d, (18)

with
d = (ϕ− 1)(Din,A − Din,C). (19)

The error used by the GSS algorithm to stop its operation is defined as:

err = (ϕ− 1)

∣∣∣∣∣Din,C − Din,A

Din,opt

∣∣∣∣∣. (20)

The complete GSS algorithm to calculate the optimum point (Din,opt, QH2,pmax) is
presented in Algorithm 1.

4.2. GSS Validation

First, let us analyze the stability of the nonlinear system (1)–(3) by calculating the
eigenvalues (λi) of its linear approximation. The indirect Lyapunov method establish
conditions that allow us to obtain conclusions about the stability of the nonlinear system in
an operating point.

Consider the nonlinear system (1)–(3) with the operating point x∗ = [s∗, x∗a , x∗m] that
has the following linear approximation

ẋ = Ax + Buu + Bww, (21)

where x = x− x∗, A, Bu and Bw are the Jacobian matrices of the system, u = Din −D∗
in

and w = sin − s∗in respectively.
The indirect Lyapunov method states that the nonlinear system (1)–(3) is asymptoti-

cally stable if and only if Re(λi) < 0 of the matrix A, ∀λi, i = 1, 2, 3, defined as:

A =
∂ f (x, Din, sin)

∂x
|(x∗ ,D∗

in ,s∗in)
. (22)

As it can be seen in Figure 5 the eigenvalues of the matrix A are Hurwitz in the
operating region of the MEC. It must be pointed out that the closer the dilution rate is to
the value 3 d−1, the more the eigenvalues λ1 and λ2 approach the origin.
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(a) λ1 (b) λ2

(c) λ3

Figure 5. Eigenvalues of the MEC model (1)–(3) linearized in the operating region.

Algorithm 1: GSS algorithm description

Input: (Din,A, Din,B, tolerance)
Result: (QH2,pmax, Din,opt)

f1 = QH2,p(Din,1);
f2 = QH2,p(Din,2);
while err > tolerance do

if ( f1 > f2) then
Din,A = Din,2;
Din,2 = Din,1;
Din,1 = Din,A + d;
f2 = f1;
f1 = QH2,p(Din,1);
Din,opt = Din,1;
QH2 max = f1

else
Din,C = Din,1;
Din,1 = Din,2;
Din,2 = Din,C − d;
f1 = f2;
f2 = QH2,p(Din,2);
Din,opt = Din,2;
QH2,p max = f2;

end

err = (ϕ− 1)
∣∣∣Din,C−Din,A

Din,opt

∣∣∣;
end

The optimum value Din,opt is then obtained by differentiating the objective func-
tion (15) with respect to Din and equating the result to zero (first-order optimally condition),
which leads to

∂QH2,p

∂Din
=

(
YH2 AaRT
mFPVreac

)
∂I∗MEC
∂Din

= 0, (23)
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where

∂I∗MEC
∂Din

= L f Asur[Din(sin − s∗)(
ψγxb

kaμmax,a

∂ρ

∂Din
) + (γs(1− f 0

s )+

γxb
kaμa

)(sin − s∗ − Din
∂s∗

∂Din
)]

(24)

∂ρ

∂Din
=

∂s∗
∂Din

(s∗ − (ksa + s∗))

s∗2 (25)

∂s∗

∂Din
=

ksaαa

(
μmax,a

ψ − kd,a − Dinαa

)
+ αa(ks,akd,a + ks,aαaDin)(

μmax,a
ψ − kd,a − Dinαa

)2 (26)

Figure 6. Hydrogen productivity for different sin.

Figure 6 shows the QH2,pmax value calculated both, by the GSS Algorithm 1 and by
substituting Din,opt, calculated by setting the Equation (23) equal to zero (see Figure 7),
in Equation (15). As it can be seen, the results of the GSS algorithm match the results
obtained analytically.

Figure 7. Derivative of QH2,p respect to Din.

4.3. Super-Twisting Controller

The MEC model (1)–(3) can be rewritten as follows:

ẋ = γ(x) + g(x)Din (27)
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y = QH2,p(x), (28)

where γ(x) and g(x) are vector functions defined as:

γ(x) =

⎛
⎝ −kaμaxa − kmμmxm

(μa − kd,a)xa
(μm − kd,m)xm

⎞
⎠ (29)

g(x) =

⎛
⎝ sin − s

−αaxa
−αmxm

⎞
⎠. (30)

The relative degree σ of System (27) and (28) is computed by differentiating the output
with respect to time as [28]:

ẏ =
∂QH2,p(x)

∂x
ẋ = βγ(x) + βg(x)Din, (31)

where β =

[
∂QH2,p

∂s ,
∂QH2,p

∂xa
,

∂QH2,p
∂xm

]
. Hence, the relative degree of the system (27) and (28)

is σ = 1.
In this work the super-twisting controller, Equations (32) and (33), is therefore consid-

ered to track the maximum hydrogen flow rate computed by the GSS algorithm with the
sliding variable defined as the tracking error [29].

Din,c = −ρ1

√
|εc|sign(εc) + Dnom (32)

dDnom

dt
= −ρ2sign(εc) (33)

In the super-twisting controller (32) and (33), the tracking error is defined as:

εc = QH2,pmax −QH2,p , (34)

ρ1 and ρ2 are the controller gains that ensure the finite-time stability of the tracking error,
while Din,c is the control input necessary to bring the MEC to the maximum value QH2,pmax.

For implementation purposes in an FPGA, the discrete time super-twisting controller (DT-
STC) is considered. The representative numerical solution showed in the Equations (35) and
(36) is obtained from Equations (32) and (33) using the Euler’s method. The controller uses
the value QH2,pmax as a reference to carry the real productivity to its maximum value in
finite time.

Din,c[k] = −ρ1

√
|εc|sign(εc) + Dnom[k] (35)

Dnom[k + 1] = Dnom[k]− τρ2sign(εc), (36)

In Equation (36), τ (d) is the sampling time considered.

5. FPGA-Embedded Optimization Algorithm

The FPGA-based implementation of the optimization algorithm is depicted in
Figures 8 and 9. Following the scheme presented in Figure 3, the implementation block
diagram is integrated by the GSS algorithm digital architecture coupled to the DTSTC
digital architecture. A finite state machine (FSM) and a down programmable counter are
used to ensure the proper operation of the optimization algorithm embedded in the FPGA.
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Figure 8. FPGA-based implementation of the hydrogen optimization algorithm.
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Figure 9. FSM_CONT_MEC module in the FPGA-based optimization algorithm.

The digital architecture of the optimization algorithm uses a fixed point format (16,24)
to represent all the input-output signals and inner operations. The hardware description
used to develop the digital architecture was VHDL and the target board used was the
Cyclone II EP2C35F672C6 integrated in the ALTERA DE2 educational board with a clock
frequency fCLK = 50 MHz.

The modules GSS_MEC and ST_CONTROLLER were designed for an easy interaction
with the FSM_CONT_MEC module and any other external device through the STG, EOG,
STCS and EOCS signals. When the input signals STG and STCS are assigned to the logical
value ‘1’ by the FSM_VCONT_MEC module, they will produce a busy mode of their
respective modules due to the latency time in the calculation of their final results. The busy
mode is indicated by the output signals EOG =’0’ and EOCS = ‘0’. On the other hand, when
EOG = ‘1’ and EOCS = ‘1’, it means that the modules GSS_MEC and ST_CONTROLLER
have finished and the results are ready to be read.
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5.1. Operation of the FPGA-Embedded Optimization Algorithm

The FSM depicted in the Figure 9 is a great help for understanding the operation of the
digital architecture. The FPGA execution can be divided in two steps, the initialization step,
which is controlled by the states S0 to S2, and the normal operation, which is controlled by
the remanding states of the FSM_CONT_MEC module. The initialization is executed when
the FPGA is energized and the INI signal has a binary value ‘1’ . Otherwise, the FPGA
remains in standby mode until an external source changes the value of that signal. In such
case, the initialization is started by a push-button (see the state S0). When INI = ‘1’ the
FSM changes to the state S1 where STG = ‘1’ and SEL = ‘0’ in the GSS_MEC module and
the two-one multiplexer. This will start the calculation of QH2,p ,max with the initial value
sin,0. In the next clock cycle, the EOMEC signal in the GSS_MEC module will change from
logic ‘1’ to logic ‘0’ indicating that this module is in the process of calculating QH2,p ,max. At
the same time, without any condition, a transition is made to the state S2 where the FSM
is waiting by the logic value ‘1’ in the EOMEC signal indicating that the result is ready.
When QH2,p ,max is ready to be used by the ST_CONTROLLER module, the FSM make a
transition to the state S3 where the initialization step is done, and the system now is in the
normal operation where SEL = ‘1’ and it is waiting for an external device to set the value
STOMEC = ‘1’. During the initialization step, the down counter is loaded with an initial
value decreased by one every sampling period until reaching the optimization period.

In the normal operation, the ST_CONTROLLER module and the down counter are
executed every sampling period with the aim of controlling the HPR in the MEC, and
decreasing the initial value of the counter. When the down counter reaches the value zero,
this means that the optimization period has expired and the GSS_MEC module is executed
to generate a new QH2,p ,max, after that, the down counter is reloaded with the initial value.

The normal operation starts in the state S3 and the digital architecture reads sin by
SEL = ‘1’ in the multiplexer. When the signal STOMEC = ‘1’, the FPGA-based optimization
algorithm generates the control input Din,c of the MEC after a latency time, otherwise, the
system is in standby. The execution of the ST_CONTROLLER and the down counter are
managed by the states S5 to S7 in the FSM every sampling period, while the states S8 and
S9 manage the GSS_MEC MODULE and the reinitialization of the down counter when
the optimization period has been reached. In order to know when the GSS_MEC module
should be executed, the FSM reads the signal Z from the down counter in the state S4.
When Z = ‘0’ this means that the optimization period has not yet elapsed and the FSM
is currently executing the ST_CONTROLLER module, otherwise, when Z = ‘1’ the FSM
executes one more time the GSS_MODULE and generates a new QH2,p ,max in function of
the current value sin. The down counter is reinitialized as well.

The most used arithmetic operations in the optimization algorithm are product, addi-
tion, division and square root. The hardware description was developed using standard
VHDL and therefore the designs presented in this work do not belong to any manufacturer.

5.2. GSS Implementation

The digital architecture of the GSS optimization strategy, described in Algorithm 1, is
depicted in Figure 10. The digital architecture of such algorithm is made up of registers, full
adders, 8-bit embedded multipliers, multiplexers and full comparators using the previously
mentioned fixed point format. Notice that the objective function shown in Equation (15)
was programmed in the block QH2,p . Its implementation needed a simplified representation
with the objective to calculate the hydrogen productivity with few hardware resources and
small latency time. By precalculating constant parameters and making a separation by
variables the following objective function is obtained:

QH2,p = β1x∗a (sin, Din)(β2μa(s∗(Din)) + β3), (37)

where the values of constants β1, β2 and β3 are defined in Table 1.
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Table 1. Constant parameters in QH2,p .

Constant Parameter Value

β1 2.1906× 10−8

β2 316.825

β3 40
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Figure 10. Digital architecture of the GSS algorithm.

The complete comparator that determines if f1 > f2, in Algorithm 1, was designed
taking into account that the operation involves real numbers and therefore the classical
definition of a complete comparator of binary numbers is not sufficient for this implemen-
tation.

5.3. DTSTC Implementation

The digital architecture of the DTSTC (see Figure 11) is simpler than that one of the
GSS algorithm. Although only combinational elements are required, its response speed is
quite fast to generate the control action compared to the speed of change to generate the
reference computed by the GSS algorithm.
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Figure 11. Digital architecture of the DTSTC.
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The controller correction term σ1
√
|ε| requires a digital circuit capable of computing

the square root of the tracking error. Particularly in this work, the Pencil and Paper algo-
rithm [30] proved to be very useful as a basis for the design of the SQRT arithmetic circuit.

The arithmetic circuit of the multiplier in the DTSTC architecture is based on the
Coordinate Digital Computer Algorithm (CORDIC) with its rotating linear version (see
Figure 12) [31], i.e.,:

xj+1 = xj,

yj+1 = yj + σj2−jxj, (38)

zj+1 = zj + σj2−j,

with

σj =

{
−1 if zj ≥ 0
+1 otherwise.

(39)

The results obtained after a sequence of fixed micro-rotations are given in the follow-
ing way:

x f = xin,

y f = yin + xinzin (40)

z f = 0.

The resulting operation y f in Equation (40) has the necessary shape to implement the
DTSTC. As it can be seen in Equation (35), Din,c can be calculated from the final result y f
by these two arithmetic operations; i.e., the product and the addition. The CORDIC-based
Multiplier Digital Circuit presented in the Figure 12 has the shape necessary to implement
DTSTC without the need of using embedded multipliers in the FPGA and it has a short
latency time.
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LUT

REGISTER

yin xin

-2-jxj 2-jxj

yj+1

j

yj
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-2-jxj

j
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Figure 12. Digital architecture of the linear vectoring CORDIC.
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6. Results

The feasibility of the FPGA-embedded optimization algorithm was demonstrated
through numerical simulations. The MEC model (1)–(6) was simulated in Matlab, the ODEs
were solved by the stiff solver ode15s. The parameters used in the numerical simulations
are listed Table 2. In order to demonstrate the robustness of the optimization strategy
proposed, modified parameters between ±30% from their nominal value were considered.
The hardware required for the verification test is depicted in the Figure 13. As it can be
seen, a serial communication was used to communicate the FPGA with Matlab, which
was executed in a personal computer with Windows 10, Intel Core i7 and memory RAM
DDR3 of 32 GB. In these conditions, six hours were needed to perform the verification
test of the optimization algorithm in a Cyclone II FPGA running at fclock = 50 MHz and a
reception-transmission data rate of 70 Mbps. The operation time of the MEC simulated in
the computer was of 200 d with a sampling period τ = 0.004 d. The hardware resources in
the target board are summarized in Table 3.

serial
communication
70MBaud rate

ALTERA
DE2 115

FPGA-based
Optimization
algorithm

MEC Model
simulation

Din,c

sin,H2,p

Figure 13. Implementation scheme for numerical simulation tests

Table 2. MEC Model parameter with uncertainties.

Description Symbol Value Variation (%)

Gas ideal constant (J mol−1K−1) R 8.31 0.00

Faraday constant (C mol−1e−1) F 96,485 0.00

Temperature (K) T 298.15 −20.00

Yield coefficient
(mg (s) mg−1 (xa))

ka 0.667 +15.00

Yield coefficient
(mg (s) mg−1 (xm))

km 4.7067 −20.00

Microbial decay (d−1) kd,a 0.05 μmax,a +5.00

Microbial decay (d−1) kd,m 0.05 μmax,m +2.00

Biofilm retention constant of xa αa 0.5 +12.00

Biofilm retention constant of xm αm 0.5 +5.00

Maximum grown rate (d−1) μmax,a 1.97 +28.00

Maximum grown rate (d−1) μmax,a 0.30 + 14.00

Half-rate constant (mg (s) L−1) ks,a 20 +15.00

Half-rate constant (mg (s) L−1) ks,m 80 −15.00

Local potential (V) η 0.3 +10.00
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Table 3. Specifications of the FPGA ALTERA DE2.

Device Digital Elements Total Resources

Logic Elements(L.E.) 33,216

Registers 3967

EP2C35F672C6 Number of pins 475

Embedded Multipliers 70

RAM bits (Kb) 4

PLLs 4

fmax,CLK 120 MHz

FPGA RS-232 transceiver and 9-pin
connector 120 Kbits/s

Expansion Headers two 40-pin

Toggle switches 18

Push button switches 4

The inlet acetate concentration sin used to feed the MEC in the numerical simulations
is depicted in Figure 14. The digital architecture verification test of the MEC optimization
algorithm consists mainly in comparing the results obtained from the FPGA working with
the fixed point format (16,24) with the results of the same algorithm executed in Matlab in
a floating point representation format.

Figure 14. Inlet Acetate concentration (sin).

The resulting HPR obtained by executing the optimization algorithm both in the FPGA
and in Matlab is shown in Figure 15. The green dashed-line represents the HPR by the
MEC model, the red line represents the maximum HPR computed in Matlab, while the
blue dashed-line represents the maximum HPR computed by the FPGA.
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Figure 15. QH2,pmax results in Matlab and FPGA.

On the other hand, the dilution rate computed by the optimization algorithm both
in the FPGA and in Matlab is shown in Figure 16. The green dashed-line represents the
optimum dilution rate computed by the GSS algorithm, the red line represents the dilution
rate computed by the DTSTC in Matlab, while the blue dashed-line represents the dilution
rate computed by the DTSTC in the FPGA. As it can be seen, the numerical representation
format used to design the optimizer’s digital architecture reduces properly the truncation
error due to the finite number of bits.

Figure 16. Dilution rate (Din,c) generated by FPGA and Matlab.

Initially, the optimization algorithm requires eighteen days to reach the optimal point,
as shown in Figure 15. The super-twisting controller requires this period for the control
error to converge to zero using the gains specified in Table 4. In this transitory period, the
GSS algorithm is initialized with 105 mL[H2] mL−1d−1 and this value was taken as the
initial reference for the DTSTC.

Table 4. Discrete time super-twisting controller gains.

Gain Value

ρ1 0.09

ρ2 0.19

Once the tracking error has converged to zero, the GSS algorithm reads the inlet
acetate concentration value sin, every optimization period equivalent to D−1

in,max = 0.33 d to
update the maximum productivity value QH2,pmax used as reference by the DTSTC.

The acetate concentration in the MEC is showed in the Figure 17. It is easy to see in
Figures 18 and 19 that the most of the acetate used to feed the MEC is consumed by the
anodophilic bacteria xa because there is a inhibition process in the methanogenic bacteria
growing xm. As expected, the current between the MEC electrodes is closely related to the
HPR (see Figure 20).
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Figure 17. Acetate concentration s in the MEC.

Figure 18. Anodophilic biomass concentration xa in the MEC.

Figure 19. Methanogenic biomass concentration xm in the MEC.

Figure 20. Current intensity in the MEC.

6.1. Error Analysis

The truncation error in the digital architecture of the optimization algorithm is mainly
due to the bits fixed quantity in the representation format established in this work. If the
resolution in the intermediate operations required to run the optimization algorithm on the
FPGA is not sufficient, the truncation error will propagate in such a way that the results
obtained are greatly affected.
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Figures 21 and 22 show the behavior of the truncation error throughout the simulation
process. It can be seen that the error is small enough to determine that the (16,24) format is
sufficient to implement the optimization algorithm architecture in the FPGA.

Figure 21. Truncation error in GSS algorithm implementation.

Figure 22. Truncation error in DTSTC implementation.

6.2. Hardware Report

The FPGA hardware resources needed for embedding the digital architecture of the
optimization algorithm on Figure 8 are summarized in Table 5. Only a 21% of the total
logic elements (L.E.), 5.19% of dedicated logic registers (D.L.R.) and 64% of total eight-bits
multipliers (8b-Mult.) in the chip Cyclone II were used. The input to output delay in
the implementation was of 150 μs. The estimated power consumption required by the
EP2C35F672C6 device using the aforementioned hardware resources is 146 mW. This
estimate was calculated by the PowerPlay Early Power Estimator spreadsheet for Cyclone
II family v8.0 SP1.

Table 5. Hardware resources used by the optimization algorithm.

Digital Elements Resources Used %

Total L.E. 7089 21.34%

Register only 33,216 291 0.87%

LUT/Register 1472 4.43%

D.L.R. 1724 5.19%

M4K 483,340 0 0.00%

8b-Mult. 70 45 64.00%

I-O delay (No. cycles) 50 MHz 7500 150 μs

The hardware resources used by the most important functional blocks in the opti-
mization algorithm are summarized in Tables 6–8. As it can be seen in Tables 6 and 7, 64%
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of the total 8-b multipliers in the FPGA are used in the GSS algorithm, where 48.57% is
destined to the QH2,p functional block where the objective function defined by Equation (15)
is processed. It should be pointed out that the QH2,p block is part of the GSS algorithm
functional block (see Figure 10). The GSS algorithm needs at least 4 cycles in the worse
of the cases to reach the tolerance error (err = 0.001) defined by Equation (20). Therefore,
embedded multipliers most be used in the GSS algorithm digital architecture to have a
short latency time.

Table 6. Hardware resources used by GSS algorithm.

Digital Elements Resources Used %

Total L.E. 5849 17.60%

Register only 33,216 191 0.57%

LUT/Register 1044 3.14%

D.L.R. 1235 3.71%

8b-Mult. 70 45 64.00%

I-O delay (No. cycles) 50 MHz 7500 150 μs

Table 7. Hardware resources used by QH2,p block.

Digital Elements Resources Used %

Total L.E. 5180 15.59%

Register only 33,216 183 0.55%

LUT/Register 727 2.18%

D.L.R. 910 2.74%

8b-Mult. 70 34 48.57%

I-O delay (No. cycles) 50 MHz 249 4.97 μs

Table 8. Hardware resources used by DTSTC algorithm.

Digital Elements Resources Used %

Total L.E. 1165 3.51%

Register only 33,216 100 0.30%

LUT/Register 374 1.13%

D.L.R. 473 1.42%

8b-Mult. 70 0 0.00%

I-O delay (No. cycles) 50 MHz 200 4 μs

On the other hand, the hardware resources used in the DTSTC and its inner functional
block, the CORDIC Multiplier, are summarized in Tables 8 and 9. Most DTSTC inner
operations are implemented using a CORDIC-based multiplier that has a latency time of
1.48 μs in the worse of the cases, before the tracking error converges to zero. After that,
the multiplier is executed faster than 1.48 μs. It should be noted that the CORDIC-based
multiplier internally uses an 8-bit expansion in the fractional part to substantially improve
the truncation error generated by the fixed-point format considered (see Figure 22).
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Table 9. Hardware resources used by CORDIC multiplier.

Digital Elements Resources Used %

Total L.E. 900 2.70%

Register only 33,216 99 0.30%

LUT/Register 219 0.66%

D.L.R. 300 0.90%

8b-Mult. 70 0 0.00%

I-O delay (No. cycles) 50 MHz 74 1.48 μs

Finally, the arithmetic operation
√
|ε| in the DTSTC is processed by the SQRT func-

tional block, which is based on the Pencil and Paper algorithm. Its digital architecture is
primarily based on bit additions and shifts. Table 10 shows the hardware resources needed.

Table 10. Hardware resources used by SQRT.

Digital Elements Resources Used %

Total L.E. 153 0.46%

Register only 33,216 1 0.00%

LUT/Register 89 0.26%

D.L.R. 90 0.27%

8b-Mult. 70 0 0.00%

I-O delay (No. cycles) 50 MHz 74 1.3 μs

7. Conclusions

In this work an FPGA-embedded optimization algorithm to maximize the hydrogen
production rate (HPR) of a microbial electrolysis cell (MEC) using the golden section
search (GSS) algorithm coupled to a discrete-time super-twisting controller (DTSTC) was
presented. The correct performance of the GSS algorithm was analyzed analytically. Fur-
thermore, it was proven that the relative degree of the MEC model is one, a necessary
condition to use the DTSTC to bring the HPR to its maximum performance point in
finite time.

To reduce the power consumption required to bring the MEC to its maximum perfor-
mance, a digital architecture of the optimization algorithm was designed and embedded
in an FPGA. Although the FPGA used in this work was the Cyclone II of ALTERA, the
digital architectures presented in this work were designed to be implemented in any FPGA,
regardless of the manufacturer.

The results of the FPGA-embedded optimization algorithm showed a correct per-
formance with low hardware resources and low power consumption compared with a
personal computer. Besides, the truncation error generated by the fixed point format used
in this work was practically negligible.

Such results allow us to conclude that the implementation of control and optimization
algorithms in FPGAs represents an excellent alternative to replace personal computers.
Particularly, as demonstrated in the previous section, the FPGA-embedded optimization
algorithm proposed to maximize the HPR in the MEC, represents a lower cost alternative
in terms of consumed power and resources.
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Abstract: An adaptive control system for the set-point control and disturbance rejection of
biotechnological-process parameters is presented. The gain scheduling of PID (PI) controller parame-
ters is based on only controller input/output signals and does not require additional measurement
of process variables for controller-parameter adaptation. Realization of the proposed system does
not depend on the instrumentation-level of the bioreactor and is, therefore, attractive for practi-
cal application. A simple gain-scheduling algorithm is developed, using tendency models of the
controlled process. Dissolved oxygen concentration was controlled using the developed control
system. The biotechnological process was simulated in fed-batch operating mode, under extreme
operating conditions (the oxygen uptake-rate’s rapidly and widely varying, feeding and aeration rate
disturbances). In the simulation experiments, the gain-scheduled controller demonstrated robust
behavior and outperformed the compared conventional PI controller with fixed parameters.

Keywords: PID (PI) control; gain-scheduling; mathematical model; biotechnological cultivation
process; dissolved oxygen concentration

1. Introduction

Intense global competition, business strategies that are mainly based on profit, promptly
developing social and economic conditions, high interest in better-quality control, increased
safety concerns, and stringent environmental norms are prompting many process industries
to automate their operations using accurate, robust, reliable, efficient, optimal, adaptive
and intelligent advanced control systems [1,2]. Control-system design is greatly influenced
by the number of nonlinearities present within the process. Classical controllers, such as
proportional–integral–derivative (PID) or proportional–integral (PI) are adequate if the
nonlinearity encountered is very mild. In presence of significant number of nonlinearities,
however, such linear models are ineffective, since even small disturbances can force the
process away from the operating point [3]. Control quality is influenced by the controller’s
ability to provide a stable performance while dealing with process variability and dis-
turbances [1,2,4]. Accurate control of technological parameters during microorganism
cultivation processes is necessary for retaining currency with desired technological regimes
and reproducibility of processes. However, the dynamical parameters of batch and fed-
batch cultivation processes vary widely over the cultivation cycle. Therefore, conventional
control systems with fixed-gain controllers are not able to provide the required perfor-
mance [5]. Temperature, pH, dissolved oxygen concentration, and other basic process
variables are usually controlled in these systems [6].

Adaptive control systems of various complexity have been developed for the auto-
matic control of cultivation process parameters under time-varying operation conditions.
The system, based on process tendency models and online measurements of process vari-
ables [4,7,8], provides high-quality control under extreme operating conditions (oxygen
uptake rate rapidly changing within a wide range, feeding and aeration rate disturbances).
However, development of a model-based control algorithm is a time-consuming task, and,
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in addition, online measurements of the process variables require advanced instrumen-
tation of the controlled process. Expert, knowledge-driven adaptive fuzzy systems are
effective; however, they require deep process knowledge [3,6,9]. An approach of develop-
ment for the control systems of dissolved oxygen concentration (DOC) and pH based on
artificial neural network (ANN) models is presented in [10,11]. A. Mészáros et al. present
ANNs that are trained off-line to predict the nonlinear dynamics of controlled processes
and the inverse ANNs are used in the control systems as feedback controllers [10]. Du, Xi-
anjun, et al. developed a radial basis function neural network based adaptive PID controller
for DOC control [11]. Such development of ANN model-based control systems requires a
sufficient amount of informative process data and time expenses for training the ANNs.
For to these reasons, application of complex control systems is not attractive in industrial
bioprocess-control engineering practice.

Model–reference adaptive control (MRAC) uses a reference model of the process that
defines how the process output should respond to a command signal [12]. Although MRAC
is a good alternative to PID it must be tuned for each particular process, and the tuning
depends on the presence of lag, delay and other factors. For non-well-known processes, the
controller must be tuned experimentally, and it could be a disadvantage from a commercial
or business point of view [3].

Several gain-scheduling approach-based control systems have been developed for
adaptive control of batch bioreactors. In the control systems, the oxygen uptake rate
(OUR) [13,14] and the carbon dioxide evolution rate (CER) [15] are used as gain-scheduling
variables. In the control systems, the OUR and CER are estimated from the online analysis
of an exhaust gas. A requirement for practical realization of the above systems is that the
bioreactor system is equipped with the exhaust gas analyzer.

DOC control systems have been also developed [16,17], in which the PID (PI) controller
adaptation does not require additional measurements of process variables. The controller
adaptation is based on the online statistical analysis of controller input and output data.
Computer simulations of the control systems performance show the working capacity of
the adaptation algorithms. However, optimal values of the algorithm tuning parameters
are determined by a “trial and error” approach that is time-consuming. Various other PID
controller-tuning approaches are presented in [18–21]. A feedforward–feedback controller
was proposed, in [22], in which processes that evolve exponentially were controlled.

In order to simplify controller adaptation algorithms and practical realization of the
adaptive control systems for cultivation process control, in this contribution the authors
propose the gain scheduling approach, which is based on controller input/output signals
only and does not require additional online measurements of cultivation process variables
for adaptation of controller parameters.

2. Materials and Methods

2.1. Development of Adaptation Algorithm for DOC Control

Dynamics of the dissolved oxygen concentration (DOC) in culture medium can be
represented by a simple tendency model based on the mass balance for DOC:

dc
dt

= KLa(csat − c)−OUR, (1)

where KLa is oxygen transfer coefficient:

KLa = αuβqγ, (2)

c is DOC, csat is saturation value of DOC, OUR is oxygen uptake rate, u is stirring speed
(control variable), q is air supply rate, α, β and γ are parameters, and t is time.
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Linearization of eq. (1) around the process state point at time tk with respect to the
state (c) and the control (u) variables represents the DOC dynamics equation at time tk:

dΔc
dt

= −
[
αuβqγ

]
t = tk

Δc +
[
αβuβ−1qγ(csat − c)

]
t = tk

Δu. (3)

From Equation (3), the DOC dynamics can be represented by a first-order transfer
function model:

GΔc/Δu(s) =
Δc(s)
Δu(s)

=
Kpr(tk)

Tpr(tk)s + 1
, (4)

where Kpr(tk) =

[
β(csat − c)

u

]
t = tk

, (5)

Tpr(tk) =

[
1

αuβqγ

]
t = tk

. (6)

Kpr(tk) and Tpr(tk) are process controller gain and integration time constant at time point tk,
respectively, s is Laplace operator.

The resultant dynamics of controlled process in the DOC control system also depends
on the stable dynamical parameters of the motor–stirrer system and the DOC electrode. As
the time constants of the above control system elements are significantly smaller, compared
with the time constant Tpr(tk), their influence on controlled-process dynamics is taken into
account by adding some time delay to the transfer function model (4).

Therefore, dynamics of the DOC control process can be roughly represented by the
first-order-plus-time delay (FOPTD) model:

GΔc/Δu(s) =
Kpr(tk)

Tpr(tk)s + 1
e−τ , (7)

where τ is time delay representing influence of the control system elements dynamics.
According to PI controller tuning rules (Ziegler–Nichols, internal model control (IMC),

etc. [23]), the controller gain Kc is proportional to the ratio Tpr/Kpr/τ and the integration
constant Ti is proportional to the resultant time constant Tpr. Taking into account the
functional relationships (5), (6), and assuming that the controlled value of the DOC during
cultivation process is close to the set-point value (c ∼= cset), a character of relationships
between the controller tuning parameters and the controller output and the set-point
signals can be estimated:

Kc ∼ Tpr/Kpr, /τ =
1

αuβqγ

u
β(csat − c)

. (8)

Based on relationship (8), the gain scheduling algorithm for controller gain adaptation
takes the following form:

Kc(tk) =
KKc

(u(tk))
β−1(csat − cset(tk))

, (9)

where u and cset are the gain scheduling variables; KKc is coefficient for tuning the controller
to obtain desired performance of the control system (approximate values of the coefficient
can be taken from the desired controller tuning rules). The power β of stirring speed in the
oxygen transfer rate estimation Equation (6) is typically β ∼= 2 [24] and the formula (9) for
scheduling the controller gain coefficient can be reduced to:

Kc(tk) =
KKc

u(tk)(csat − cset(tk))
. (10)
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A character of relationships between the controller integration constant and the con-
troller output is the following:

Ti ∼ Tpr =
1

αuβqγ
. (11)

Based on relationship (11), the gain scheduling algorithm for controller integration
time constant adaptation takes the following form:

Ti(tk) =
KTi

(u(tk))
2 , (12)

KTi = kTi
1

αqγ
. (13)

where kTi is coefficient for tuning the controller to obtain desired performance of the control
system (approximate value of the coefficient can be taken from the desired controller tuning
rules). DOC model parameter values and initial conditions of the state variables are given
in Table 1.

Table 1. DOC model parameter values and initial conditions of the state variables.

Model Parameters

H = 0.7906 L mmol−1 ε = 0.15 Tel1 = 10 s
Tel2 = 2 s Tq = 2 s Tu = 1 s

α = 0.8·10−7 β = 2 γ = 0.2
vmol = 0.0224 l mmol−1

Initial Conditions

cel(0) = 10% q(0) = 2 s−1 u(0) = 2.5 s−1

ca(0) = 0.0266 mmol L−1 yO2(0) = 0.2099 ael (0) = 10%

2.2. Mathematical Model of the Biotechnological Process

To simulate the biotechnological process, a mathematical model of an E.coli fed-batch
process similar to the one presented in [25] was used:

dx
dt

= μx− Fs + FpH

V
x, (14)

ds
dt

= −qsx +
FsS0

V
−
(

Fs + FpH
)
s

V
(15)

dV
dt

= Fs + FpH − Fsmp (16)

μ = μmax
s

Ks + s
Ki

Ki + s
ca

ca + kc
(17)

qs =
μ

Yxs
−m, (18)

Fs =
μsetxV

Yxs(S0 − s)
, (19)

where x—biomass concentration in the cultivation medium, gl−1; μ—biomass specific
growth rate, lh−1; V—cultivation medium volume, l; S0—substrate concentration in
feed, gl−1; Fsmp—sampling rate- Yxs—biomass/substrate yield coefficient, gg−1; ca is DOC
in absolute units, mmol L−1; kc is parameter, mmol L−1. The Luedeking–Piret model was
used to calculate the oxygen uptake rate [26]:

OUR = μYxV + mxV (20)
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Values of the model parameters are given in Table 2.

Table 2. Biotechnological model parameter values and initial values of the state variables.

Model Parameters

Y = 0.8646 gg−1 m = 0.018 gg−1 h−1 Yxs = 0.52 gg−1

μmax = 0.737 1 h−1 Ki = 93.8 gl−1 S0 = 450 gl−1

Ks = 0.02 gl−1 kc = 0.00265 mmol L−1 Fsmp = 0.025 lh−1

Initial Conditions

V(0) = 45 L x(0) = 0.25 gl−1 s(0) = 0.5 gl−1

A set of equations is used to model and simulate the controlled process [8]:

dq
dt

=
1
Tq

(qset − q), (21)

du
dt

=
1

Tu
(uset − u), (22)

dca

dt
= −OURv + αuβqγ

(yO2

H
− ca

)
, (23)

dyO2

dt
=

q
V
(

1
ε
− 1)

(
0.21− yO2

)
− αuβqγ(

1
ε
− 1)(

yO2

H
− ca)vmol , (24)

dael
dt

=
1

Tel1
(100

caH
0.21

− ael), (25)

dcel
dt

=
1

Tel2
(ael − cel), (26)

where qset is set value of air supply rate, lh−1; uset is set value of stirring speed (control
variable), h−1; yO2 is portion of oxygen in exhaust gas, -; OURV is volumetric oxygen
uptake rate, mmol L−1 h−1, ael is auxiliary variable, %; cel is signal from dissolved oxygen
(DO) electrode, %; H is Henry’s constant, L mmol−1; V is volume of cultural liquid, l;
vmol is volume of mmol of gas, L mmol−1; Tq, Tu, Tel1, Tel2 are time constants of air supply
system, motor-stirrer system, and DOC electrode, respectively, s; ε is gas holdup in the
gas-liquid dispersion. The dynamics of air supply and stirring systems is modelled by
Equations (21) and (22). Equations (23) and (24) represent mass balances on oxygen in
liquid and gaseous phases. Equations (25) and (26) are used to model the second-order
dynamics of DOC electrode. A scheme of the DOC control system is depicted in Figure 1.

 

Figure 1. Block diagram of the dissolved oxygen concentration (DOC) control system.
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As shown in Figure 1, the DOC adaptive control system uses only controller in-
put/output signals for the gain scheduling algorithms.

The DOC measurements were simulated by adding Gaussian noise:

cel_m(tk) =cel(tk)+σ Randn, (27)

where cel_m is measured value of DOC; σ is standard deviation estimated from real mea-
surements (σ ∼= 0.2%), Randn is a sequence of normalized Gaussian random numbers.

In the gain-scheduling and PI-control algorithms the time discretization step Δt = 0.18 s
was used throughout the simulation experiments. The simulations were carried out in
Matlab/Simulink environment.

Performance of the DOC adaptive control system was investigated for set-point
tracking and disturbance rejection. The developed system was compared with the standard
control approach with fixed PI controller parameters presented in Table 3.

Table 3. Fixed PI controller parameters for standard control.

Fixed Parameter Values

Kc Ti

DOC control 50%−1 h−1 3.6 × 10−4 h

The performance of the developed control algorithm was evaluated by calculating the
mean absolute error (MAE) and comparing it to the MAE of the conventional system with
fixed controller parameters.

3. Results and Discussion

3.1. DOC Control System Performance
3.1.1. DOC Set-Point Tracking Performance

The bioprocess was simulated by numerically solving the Equations (14)–(26) and by
applying the controller parameter adaptation rules defined by the Equations (12) and (13)
for DOC control. Typical trajectories of the bioprocess variables are presented in Figure 2
for the case when the DOC set-point tracking quality was investigated.

After inoculation, the biomass x (Figure 2a) grows in batch mode (until 1 h) consuming
a small initial amount of substrate s (Figure 2b). Culture broth volume V in the bioreactor
(Figure 2c) changes due to the feeding flow of the substrate Fs (Figure 2d), which is initiated
at the end of the batch phase (~1 h). The biomass specific growth rate depends on the actual
substrate concentration and DOC level (Equation (17), Figure 2e). Substrate oxidation
and subsequent biomass growth result in oxygen consumption, which is reflected by the
oxygen uptake rate OUR (Figure 2f).

During the cultivation process, DOC level is controlled by a PI controller. Both stan-
dard and gain-scheduled PI control systems were investigated and compared for the
DOC control.

To reduce the large number of the presented figures, the plots with trajectories of the
process variables (x, s, V, Fs, OUR) in the investigation of DOC disturbance rejection will
be omitted. Only the plots for the controlled variable (DOC), manipulated variable (N),
disturbance (q), and controller parameters (Kc, Ti) will be presented and discussed.

First, performance of the DOC adaptive control system was investigated for tracking
set-point. In the simulation experiments, time profile of the DOC set-point change, depicted
in Figure 3a was selected for the simulation fo close-to-realistic operating conditions in
fed-batch cultivation process.

Performance of the gain-scheduled controller for step changes of the set-point at 5
and 7.5 process hours is presented in Figure 4. The investigated adaptive control algorithm
yields in lower tracking error and shorter rise time.
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Figure 2. Trajectories of x (a), s (b), V (c), Fs (d), μ (e), and oxygen uptake rate (OUR) (f) during a DOC set-point tracking
simulation run.
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Figure 3. Trajectories of DOC (a), controller tuning parameter Ti (b), stirring speed N (c), and controller tuning parameter
Kc (d). Set-point change: PI controller with fixed parameters (red), adaptive PI controller with Gain Scheduling (blue); DOC
set-point (black).

 

Figure 4. DOC responses (a) and (b) to set-point change: PI controller with fixed parameters (red), adaptive PI controller
with Gain Scheduling (blue), DOC set-point (black).
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3.1.2. DOC Disturbance Rejection Performance

To evaluate the performance of disturbance rejection, the system was simulated at a
constant set-point of 10%. Air supply rate change was selected to simulate the disturbance.
The change of the air supply rate is depicted in Figure 5.

 

Figure 5. Air supply rate change during the simulation.

The system response and control performance are depicted in Figure 6a. The trajectory
of the manipulated stirring speed N is presented in Figure 6b. Figure 6c,d highlight the
adaptation of the controller tuning parameters during the simulation run.

 

Figure 6. Trajectories of DOC (a), controller tuning parameter Ti (b), stirring speed N (c), and
controller tuning parameter Kc (d). Disturbance rejection when using: PI controller with fixed
parameters (red), adaptive PI controller with Gain Scheduling (blue); DOC set-point (black).
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Performance of the gain-scheduled controller for disturbance compensation (the air
supply rate step change from 10,800 lh−1 to 14,400 lh−1 occurred at t = 5.5 h, and from
14,400 to 3600 lh−1 occurred at t = 7 h) is presented in Figure 7. The adaptive control system
yields lower tracking error, as well reduces the overshoot.

 

Figure 7. DOC disturbance compensation cases (a) and (b): PI controller with fixed parameters (red),
adaptive PI controller with Gain Scheduling (blue), DOC set-point (black).

Simulation results show that the gain scheduled PI controller ensures good control
quality of DOC under extreme operating conditions and evidently outperforms the conven-
tional PI controller. The integration time constant Ti and the controller gain Kc changed in a
wide range, therefore reflecting the significantly varying dynamics of the process. Analysis
of the simulation results shows that the adaptive system has reduced the mean absolute
error more than 2 times for the investigated control schemes. The rise time of the transient
processes caused by the set-point change was approx. 2 times shorter for the adaptive
system (see Figure 4a,b). However, both investigated systems yielded similar rise times
in case of disturbance rejection (see Figure 7a,b). The control performance of the investi-
gated systems is summarized in Table 4. The adaptive control algorithm outperforms the
standard system approx. 2 times in terms of mean absolute error.

Table 4. Tuning parameters and MAE values for the investigated DOC control systems.

Control Type Tuning Parameters
Mean Absolute Error

Disturbance Rejection Set-Point Tracking

Standard DOC Kc = 50%−1 h−1, Ti = 3.6 × 10−4 h 0.166 0.071
Adaptive DOC KTi = 0.6 × 105, KKc = 1.5 × 105 0.063 0.028

4. Conclusions

In this paper, a simple adaptive control system for the set-point control and disturbance
rejection of dissolved oxygen concentration is proposed, in which gain scheduling of PID
(PI) controller is based on the controller input/output signals only and, therefore, does
not require online measurements of process variables for development of gain scheduling
algorithms. Realization of the proposed system does not depend on the instrumentation
level of the bioreactor and is attractive for practical application.

The controller input/output-based gain scheduling algorithms were developed for
set-point tracking and disturbance rejection during DOC control for bioreactor operating
both in batch and fed-batch mode. Performance of the gain-scheduled PI controller un-
der extreme operating conditions was investigated by computer simulation. The results
demonstrate obvious advantage of the proposed control system compared to conventional
PI control systems.
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In future work, the authors are planning to perform further experimental investigation
by testing the system under real conditions.
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