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Bartosz Jóźwik, Phouphet Kyophilavong, Aruna Kumar Dash and Antonina Viktoria Gavryshkiv

Revisiting the Environmental Kuznets Curve Hypothesis in South Asian Countries: The Role
of Energy Consumption and Trade Openness
Reprinted from: Energies 2022, 15, 8709, doi:10.3390/en15228709 . . . . . . . . . . . . . . . . . . . 159

v



Zhuohang Li, Tao Shen, Yifen Yin and Hsing Hung Chen

Innovation Input, Climate Change, and Energy-Environment-Growth Nexus: Evidence from
OECD and Non-OECD Countries
Reprinted from: Energies 2022, 15, 8927, doi:10.3390/en15238927 . . . . . . . . . . . . . . . . . . . 179

Shenhai Huang, Chao Du, Xian Jin, Daini Zhang, Shiyan Wen, Yu’an Wang, Zhenyu Cheng,

et al.

The Boundary of Porter Hypothesis: The Energy and Economic Impact of China’s Carbon
Neutrality Target in 2060
Reprinted from: Energies 2022, 15, 9162, doi:10.3390/en15239162 . . . . . . . . . . . . . . . . . . . 199

Hongchen Li, Huijun Qi, Hongjian Cao and Li Yuan

Industrial Policy and Technological Innovation of New Energy Vehicle Industry in China
Reprinted from: Energies 2022, 15, 9264, doi:10.3390/en15249264 . . . . . . . . . . . . . . . . . . . 217

Lin Wang and Yuping Xing

Risk Assessment of a Coupled Natural Gas and Electricity Market Considering Dual
Interactions: A System Dynamics Model
Reprinted from: Energies 2023, 16, 223, doi:10.3390/en16010223 . . . . . . . . . . . . . . . . . . . . 235

Shaofeng Wu, Yanning Li, Changgan Fang and Peng Ju

Energy Literacy of Residents and Sustainable Tourism Interaction in Ethnic Tourism: A Study
of the Longji Terraces in Guilin, China
Reprinted from: Energies 2023, 16, 259, doi:10.3390/en16010259 . . . . . . . . . . . . . . . . . . . . 253

vi



Citation: Zhang, X.; Zheng, J.; Wang,

L. Can the Relationship between

Atmospheric Environmental Quality

and Urban Industrial Structure

Adjustment Achieve Green and

Sustainable Development in China?

A Case of Taiyuan City. Energies 2022,

15, 3402. https://doi.org/10.3390/

en15093402

Academic Editors: Junpeng Zhu,

Xinlong Xu and Luigi Aldieri

Received: 14 April 2022

Accepted: 3 May 2022

Published: 6 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Can the Relationship between Atmospheric Environmental
Quality and Urban Industrial Structure Adjustment Achieve
Green and Sustainable Development in China? A Case of
Taiyuan City
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2 School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
* Correspondence: zhengjiayuzjy@126.com (J.Z.); tyzfwlg@163.com (L.W.)

Abstract: Atmospheric environmental quality affects the high quality and sustainable development
of the economy. The optimisation and upgrading of the industrial system are important to improve
the operation efficiency of the economy and society. Firstly, this paper constructs the theoretical
analysis framework of coupling and coordination between the atmospheric environment system
and the industrial system and analyses the internal mechanism of the interaction and coordinated
development of the two systems. Then, it puts forward the combination of the coupling coordination
model and the VAR model (Vector autoregressive model) and presents the analysis and evaluation
method of the relationship between them from the two perspectives of “static” and “dynamic”.
Finally, the empirical study is conducted in Taiyuan, a resource-based city in China. The results show
that: (1) The two systems in Taiyuan have an obvious interaction and develop in the direction of
benign coupling. (2) The impact of the two systems on each other is mainly in the medium and long
term and dominated by the role of the atmospheric environment system on the industrial system.
This study provides a theoretical framework and evaluation methods for evaluating and analysing
the relationship between the urban atmospheric environment system and the industrial system in
China, and then provides suggestions for policymaking.

Keywords: atmospheric environmental quality; industrial structure; Taiyuan city; coupling coordination
model; VAR model

1. Introduction

Atmospheric environmental quality is the key index to measure economic quality
and sustainable development. After experiencing rapid industrialisation, China is also
facing problems, such as environmental pollution restricting economic development, and
endangering health. As early as 1982, China promulgated the standards and specifications
for evaluating atmospheric environmental quality, which were revised and improved in
1996, 2000, and 2012. Existing studies have conducted rich research on atmospheric envi-
ronmental quality evaluation methods. The main methods and models include the RBF
(Radial Basis Function) network analysis method [1,2], the fuzzy mathematics method [3],
the set pair analysis method [4], the grey clustering method [5], the AHP model (Ana-
lytic Hierarchy Process) [6,7], the DPSIR model (Drive-Pressure-State-Impact-Response
model) [8,9], etc. Lu et al. [10] studied and analysed that under the new air quality evalua-
tion standards, the atmospheric environment of more than 70% of prefecture-level cities
in China is overloaded. The improvement of environmental carrying capacity is very
urgent. Dong et al. [11] analysed China’s atmospheric environmental quality from 2015 to
2019 according to the data of monitoring stations and found that China’s air quality index
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Energies 2022, 15, 3402

and the concentration of six types of pollutants were significantly improved during the
study sample period. The study pointed out that PM2.5 (particulate matter) is the most
important pollutant affecting China’s air quality. As people pay more and more attention
to environmental issues, the Chinese government has adopted a positive action plan to
promote the governance of the atmospheric environment. In 2013, the action plan for
preventing and controlling air pollution was issued, which made specific action guidelines
for “winning the Blue-Sky Protection Campaign”. In 2018, the three-year action plan for
winning the Blue-Sky Protection Campaign was further released to deepen the governance
of end problems. The plan aims to improve air quality in key areas through coordinated
control of multiple pollutants. Based on the quasi-natural experimental method, Wu and
Yin [12] found that the implementation of the action plan can improve the atmospheric
quality through the impact on the industrial structure, especially in resource-based cities.
The study emphasises that compared with the development of the advanced industrial
structure, the rationalisation of the industrial structure plays a more obvious role in im-
proving air quality. Only when the adjustment of industrial structure is compatible with
the overall characteristics of the region can the policy really play a role.

Industrial structure adjustment is an important way to optimise economic and social
factors. William Petty first put forward the theory of industrial structure, while Clark
revealed the evolution law of industrial structure. How to measure the change in industrial
structure and whether the adjustment is reasonable is a more concerning issue in the
research of industrial structure adjustment. Fu [13] took the proportion of three industries
as the corresponding weight of each industry and aggregated it to build an advanced
index of industrial structure. Gan et al. [14] took the ratio of the tertiary industry to
the secondary industry to measure the upgrading of the industrial structure. However,
relevant studies believe that it is too one-sided to measure the rationality of the industrial
structure from the change of the proportion of three industries. Liu [15] believes that
the rationality evaluation system of industrial adjustment should have the functions of
judgment, selection, control, guidance, and early warning, and should follow the principles
of scientificity, comprehensiveness, independence, feasibility, and stability. Based on
the above functions and principles, 5 primary indicators, 13 secondary indicators, and
37 tertiary indicators are selected to build an evaluation system for industrial structure
rationalisation. In empirical research, most choices are mainly measured by constructing
the ratio of the output value of various industries to labour productivity [16–18].

How to coordinate the relationship between the upgrading of the industrial structure
and the improvement of atmospheric environmental quality is a very important issue for
China in the green transition period. Many scholars have also carried out research on this
issue. Zhang et al. [19] used the SDA method (structural decomposition analysis method) to
evaluate China’s economic development during the Eleventh Five Year Plan period. They
pointed out that if China does not change its economic structure and development model, it
may not be able to fulfil its commitment to reduce the emission of industrial air pollutants.
Zhang et al. [20] found that the adjustment of the industrial structure had a positive impact
on reducing carbon emissions based on the econometric model. Among them, the reduction
of the proportion of energy-intensive secondary industry and the optimisation of energy
structure have a particularly obvious effect on improving atmospheric environmental qual-
ity [21,22]. Ding et al. [23] have tried to analyse the relationship between industrial structure
and the atmospheric environment through an integrated and systematic method. They con-
structed the PSR-LQI (pressure–state–response and level–quality–innovation model) index
evaluation system and presented the corresponding evaluation results. Zheng et al. [24],
based on the threshold model and the empirical analysis of China’s provincial panel data,
found that the impact of the industrial structure on pollutant NOx and PM2.5 is divided
into three stages, while the impact mechanism of pollutant SO2 is two stages. The adjust-
ment of the industrial structure can improve the impact of economic development on air
pollution. Zhou et al. [25] pointed out that the strictness of environmental supervision
helps to optimise the industrial structure and then improve the quality of the atmospheric
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environment. Relevant studies also show that the impact of the industrial structure on
atmospheric environmental quality is long-term and increases with time [26].

What is the relationship between atmospheric environmental quality and industrial
structure adjustment? How important is the adjustment of the industrial structure to
improve atmospheric environmental quality? What difficulties are faced in the process of
improving atmospheric environmental quality through industrial structure adjustment?
Previous studies have fully analysed the single system of atmospheric environmental
or industrial systems and used the econometric model to empirically test and evaluate
the relationship between them. Many studies have also mentioned the long-term nature,
dynamic interaction, and segmentation of the relationship between the two systems [24–26].
However, the existing studies mainly analyse the relationship between the two systems
from the perspective of a single system or comparative static and have not been able
to analyse the dynamic process of the interaction between the two systems and present
an intuitive evaluation of the coupling and coordination between the two systems. The
development of the atmospheric environmental system has experienced a strategic change
from the total amount control of single pollutants to the quality improvement of multi-
pollutant collaborative control. To maintain the sustainable development of its own system,
it needs to maintain coordination with other economic and social subsystems through
continuous optimisation. On the other hand, after transforming the industrial structure
level from low to high level, the industrial system needs to consider the rationalisation
within the system. After reaching coordination and balance within the system, it will
develop in the direction of rationalisation among systems. The development between
the two systems can be roughly divided into three stages: the low-level coupling and
coordination stage, the mutual running in and coordination stage, and the high-level
coupling and coordination stage. In the first stage, the atmospheric environment system
has constraints on the industrial system, and the industrial system cooperates with the
realisation of the governance goal of the atmospheric environment system. In the second
stage, the regulation of the atmospheric environment system on the industrial system is
gradually optimised. The optimisation and improvement of the industrial system will
promote and guide the improvement of the atmospheric environment system. In the
third stage, the two systems maintain benign coupling and need coordination, and jointly
develop in the direction of sustainability. For the leapfrogging of different stages and the
drive of the system itself, the systems will also affect each other. The strategic improvement
of the atmospheric environment system will enhance the optimisation requirements of the
industrial system, and the improvement of the matching and adaptability of the industrial
system will also enhance its impact on the atmospheric environment system. Of course, due
to the complexity of the urban development model, the industrial system and atmospheric
environment system may not only promote each other’s leap forward, but also regress.
Therefore, this paper constructs the analysis framework of coupling and coordination
between the atmospheric environment system and the industrial system. As shown in
Figure 1, it analyses the internal and external evolution processes of the two systems in the
interaction process from the theoretical level, and then uses the coupling and coordination
model and the VAR model for empirical analysis.

There are three main contributions of this paper. Firstly, it constructs the theoretical
analysis framework of coupling and coordination between the atmospheric environment
system and the industrial system and clarifies the internal mechanism of the interaction
and coordinated development of the two systems. Secondly, the coupling coordination
model and the VAR model are combined to test the relationship between them from the
perspectives of “static” and “dynamic”, which not only provides an overall intuitive evalua-
tion of the relationship between them, but also analyses the dynamic process of interaction.
Thirdly, as a resource-based city in China, Taiyuan is typical and representative. This paper
selects the data of Taiyuan for the empirical test, provides an analytical framework and
comprehensive evaluation method for evaluating the situation of the two systems of the
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city, and provides support for government departments to formulate policies and evaluate
the effectiveness and rationality of urban policies.

Figure 1. Analysis framework of coupling and coordination between the atmospheric environment
system and the industrial system.

2. Study Area

Taiyuan is the capital city of Shanxi Province in China (as shown in Figures 2 and 3).
The terrain is surrounded by mountains in the east, west, and north. The central and
southern part is the Fenhe River valley plain. The whole terrain is high in the north and low
in the south, in the shape of a dustpan. Therefore, the average ground wind speed is small,
the static wind frequency is high, and the precipitation is scarce, which is unfavourable to
the city’s diffusion of air pollutants.

Figure 2. Location of the study area in China.
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Figure 3. Location of the study area in Shanxi Province.

As a typical resource-based city, Taiyuan has a special industrial structure. The
industry is mainly heavy. Coal mining and combustion greatly impact the quality of the
atmospheric environment. Taiyuan has also actively adjusted and upgraded its industrial
structure for many years. As shown in Figure 4, the proportion of primary industry in
Taiyuan is relatively small and in a downward trend, and the proportion of secondary
industry and tertiary industry shows a “K” trend. After 2009, the tertiary industry became
the leading industry in Taiyuan, basically maintaining a stable industrial pattern of “tertiary,
secondary, and primary industry”, reflecting the industrial structure characteristics of
urbanisation. However, from 2013 to 2020, the air quality ranking of Taiyuan was always
in the lower position of the environmental air quality ranking of national key cities. The
poor atmospheric environmental quality has become an important factor restricting the
development of Taiyuan.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

Proportion of added value of primary industry Proportion of added value of secondary industry

Proportion of added value of tertiary industry

Figure 4. Changes in the proportion of three industries in Taiyuan over the years.

3. Methods and Data

The coupling coordination model provides an intuitive measurement and evaluation
of whether the system elements can interact and the overall coordinated development.
The VAR model can measure the size and continuous influence of the interaction of ele-
ments between systems in the process of dynamic development. Referring to the practice
of Liao et al. [27], this paper combines the two models to comprehensively analyse the
coupling and internal mechanisms between atmospheric environmental quality and urban
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industrial structure adjustment in Taiyuan from the perspectives of “static” and “dynamic”.
This section will specifically introduce the above models and the required data.

3.1. Coupled Coordination Model

Coupling originates from the physical concept, which refers to the phenomenon that
two or more systems and their elements affect each other and finally achieve synergy
through interaction. The coupling degree in the model reflects the degree of mutual
dependence and restriction between systems. The coupling coordination degree reflects
the degree of benign coupling between systems in their interaction. The more obvious the
trend of orderly development between systems, the greater the index.

For the comprehensive system composed of the atmospheric environment subsystem
and the urban industry subsystem, subsystem i has n indicators, which are x1, x2, · · · , xn.
In order to eliminate the influence of dimensionality, the indicators need to be standardised
before using these indicators to construct the comprehensive index of subsystem i. Referring
to the existing research methods, this paper used the range method to process the data.
When using this method, it needs to distinguish and process according to the positive and
negative contributions of the index to the system. The greater the xij value, the better the
system function. It is called the positive index, and Formula (1) is used for standardisation.
The smaller xij value indicates the better system function, which is called the negative
index, and Formula (2) is used for standardisation. The specific formulae are as follows:

Positive index : dij =
(

xij − xijmin
)
/
(

xijmax − xijmin
)

(1)

Negative index : dij =
(

xijmax − xij
)
/
(

xijmax − xijmin
)

(2)

where dij is the standardised value of system i index j, 0 ≤ dij ≤ 1. xijmax is the maximum
value of system i index j, xijmin is the minimum value of system i index j, and xij is the
value of system i index j.

The comprehensive index of the atmospheric environment subsystem and the indus-
trial subsystem is based on the weighted synthesis of the contribution of all indicators in
each system to the subsystem, and its calculation formula is:

Ui =
n

∑
j=1

wij · dij (3)

where wij is the weight of index j of system i, where wij ≥ 0 and ∑ wij = 1. The weight
corresponding to each index reflects the ability of the index to provide comprehensive
information about the subsystem, so it needs to be determined according to the amount of
information contained in the index. The principal component analysis method can effec-
tively deal with the influence of information repetition and interaction between different
indicators. Therefore, this method is also used in this paper. Through principal component
analysis, the corresponding variance value of each index is obtained as the weight of the
corresponding value index, and then the comprehensive index of each system and the
coupling degree, C, between systems are calculated.

The calculation formula of coupling degree is as follows:

C =

[
∏m

i Ui

( 1
m ∑m

i Ui)
m

] 1
m

(4)

6
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where m is the number of subsystems. Since the number of subsystems of the atmospheric
environment and the urban industrial structure integrated system constructed in this paper
is 2, m = 2. Therefore, the above coupling calculation formula is simplified as follows:

C =

√√√√ U1U2

(U1+U2
2 )

2 =
2
√

U1U2

U1 + U2
(5)

where U1 and U2 are the comprehensive indexes of the atmospheric environment and the
industrial subsystem, respectively. The value of C is between 0 and 1. The greater the value of
C, the closer the relationship between systems. Referring to the median segmentation method
adopted by most studies, it can be divided into the following four stages, listed in Table 1.

Table 1. Median segmentation of coupling degree.

C Corresponding Stage

0 < C ≤ 0.3 Low-level coupling
0.3 < C ≤ 0.5 Antagonistic stage
0.5 < C ≤ 0.8 Running in stage
0.8 < C ≤ 1 High-level coupling

However, the coupling index only reflects the function degree of the two systems.
In order to account for the respective development of the two systems, it is necessary to
further study whether the two systems are coordinated. Coordination is used to measure
the degree of harmony of each subsystem. There is a close relationship between the
industrial and the atmospheric environment subsystems. On the one hand, the atmospheric
environmental carrying capacity requires the optimisation and upgrading of the industrial
structure, and the atmospheric environmental quality will react to the process of industrial
structure adjustment. On the other hand, the adjustment of the industrial structure not
only needs to realise the healthy and sustainable development of the industrial system,
but also needs to match with the carrying capacity of the atmospheric environment. The
coupling coordination degree can better evaluate the coordination degree of the interaction
coupling between industrial structure adjustment and atmospheric environmental quality
improvement. The calculation formula is:

T = αU1 + βU2 (6)

D =
√

C × T (7)

where D is the coupling coordination degree, C is the coupling degree, and T is the
comprehensive coordination index of the industry and the atmospheric environment,
reflecting the overall synergistic effect or contribution of industrial structure adjustment
and atmospheric environment quality improvement. α and β are the weights of the two
systems. This paper believes that the improvement of the atmospheric environment is as
important as the optimisation and upgrading of the industrial structure, so α = β = 0.5.

When the D value is larger, it shows that the coordinated development of the two sys-
tems is better. According to the judgment method of existing research [28], the coordination
can be divided into ten stages according to the coupling coordination degree, D, as shown
in Table 2.

7
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Table 2. Coupling coordination level segmentation.

D Coordination Level

[0, 0.1) Extremely uncoordinated
[0.1, 0.2) Seriously uncoordinated
[0.2, 0.3) Moderately uncoordinated
[0.3, 0.4) Slightly uncoordinated
[0.4, 0.5) On the verge of uncoordinated
[0.5, 0.6) Barely coordinated
[0.6, 0.7) Slightly coordinated
[0.7, 0.8) Moderately coordinated
[0.8, 0.9) Well-coordinated
[0.9, 1] Quality coordinated

Considering the availability of data and indicators’ comprehensive information-
carrying capacity, this paper constructs a comprehensive evaluation index system, as
shown in Table 3. Relevant data can be obtained from the official website of the Taiyuan
Bureau of Statistics (http://stats.taiyuan.gov.cn, accessed on 5 March 2022).

Table 3. Comprehensive evaluation index system.

Coupling Systems Indicators Unit Indicators Direction

Atmospheric
environment system

Industrial sulphur dioxide emissions 10,000 tonnes −
Industrial smoke (powder) dust emission 10,000 tonnes −

Days with air quality above grade II day +

Industrial system

Rationalisation of industrial structure (ISR) / −
Advanced industrial structure (ISH) / +

Comprehensive utilisation rate of general
industrial solid waste % +

Total investment in fixed assets 100 million yuan +

For the evaluation indicators of the atmospheric environment system, China mainly
evaluates the atmospheric environment by monitoring the concentration of six types of
pollutants (including PM10, PM2.5, O3, NO2, SO2, and CO) and the air quality index (AQI)
in practice. However, because some data are difficult to obtain, this paper selects three
indicators: industrial sulphur dioxide emission, industrial smoke (powder) dust emission,
and days with air quality above grade II.

As for the evaluation indicators of the industrial structure system, the upgrading of the
industrial structure aims to measure the degree of the evolution of the industrial structure
from low-level to high-level. This paper constructs the following indicators based on the
idea of Fu [13]:

ISHt = (q2t + q3t)× q3t

q2t
(8)

where q2t and q3t, respectively, represent the proportion of the secondary and tertiary
industries in Taiyuan’s GDP in the t period.

The rationalisation of the industrial structure is to consider the coordination between
different industries, the adaptability between input factors and output, and the adaptability
of structural transformation ability. The existing studies mostly use the structural deviation
degree improved by Gan et al. [14] based on the Theil index. This method was also used in
this paper. The specific calculation formula is:

ISRt =
3

∑
j=1

(
qjt

)
ln

Yjt/Yt

Ljt/Lt
(9)

8
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where qit indicates the proportion of the j industry in the region’s GDP during the t
period, Yjt refers to the gross domestic product of the j industry in Taiyuan during the
t period, and Ljt refers to the number of employees in the j industry in Taiyuan during
the t period. Yt and Lt, respectively, represent the regional GDP (Gross domestic product)
and total employment of Taiyuan in the t period. The closer ISR is to 0, indicating the
closer the industrial structure is to the equilibrium state, the more reasonable the industrial
structure is.

Referring to the index construction of the industrial rationalisation system by Liu [15],
the comprehensive utilisation rate of general industrial solid waste reflects the improvement
of factor utilisation within the industry. The total investment in fixed assets is a strategic
plan reflecting the industry’s long-term development. Therefore, this paper selected the
above four indicators as the evaluation indicators of the industrial system.

3.2. VAR Model

The coupling coordination model can conduct an intuitive evaluation of the coupling
coordination of the two systems from a comparative static point of view, and the VAR model
is an econometric model used to estimate the dynamic relationship of joint endogenous
variables. The model is established according to the statistical characteristics of the data
without setting any constraints in advance. Each variable in the system is regarded as
endogenous, and the lag term of all variables is included in the constructed function model.
The VAR model is mainly used to analyse the response of interconnected time-series
systems under the dynamic impact of system variables. The analysis of the model is mainly
to observe the impulse response function and variance decomposition of the system. The
former refers to the system’s response to a random impact of one of the variables and
how long this response will last. The latter is an important method to judge the dynamic
correlation between economic series variables. In essence, it decomposes the prediction
mean square error of the system into the contribution of the shocks of various variables
in the system. Through the Granger causality test, we can analyse the causal effect of
variables in time. This paper used the VAR model to analyse the dynamic action of the
atmospheric environment system and the industrial system in Taiyuan. The specific model
is constructed as follows:{

y1t = α10 + γ11y1,t−1 + . . . + γ1py1,t−p + β11y2,t−1 + . . . + β1pβ2,t−p + ε1t
y2t = α20 + γ21y1,t−1 + . . . + γ2py1,t−p + β21y2,t−1 + . . . + β2pβ2,t−p + ε2t

(10)

where y1 and y2 are the comprehensive indexes of the atmospheric environment system
and the industrial structure system, respectively. p represents the lag order, t represents
the time, γ and β represent the regression coefficient, α represents the intercept term, and ε
represents the residual term.

4. Results and Discussion

4.1. Descriptive Statistics

The original data of various indicators of the Taiyuan atmospheric environment system
and the industrial system can be obtained from the official website of the Taiyuan Bureau of
Statistics. Among them, the number of days with air quality above grade II, the upgrading
of the industrial structure, and the total investment in fixed assets include the data for
20 years, from 2001 to 2020. Industrial sulphur dioxide emission, industrial smoke (powder)
dust emission, and the comprehensive utilisation rate of general industrial solid waste
cover 15 years of data, from 2003 to 2017. The data of industrial structure rationalisation
include the data for 16 years, from 2003 to 2018, as shown in Table 4. Considering the
amount of information and availability of data, this paper finally selected the data from
2003 to 2017 for empirical analysis. Due to the different dimensions of the above data, the
range method was used to standardise the above data. According to the positives and
negatives of the index, we used Formulas (1) and (2) to deal with it, respectively. The results
are shown in Table 5.
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Table 4. Descriptive analysis of each index.

System Indicators Observed Value Mean SD Min Max

Atmospheric
environment system

Days with air quality above grade II 20 228.8 59.10 120 324

Industrial sulphur dioxide emissions 15 100,576 49,399 9759 183,656

Industrial smoke (powder) dust emission 15 44,052 15,140 17,086 72,171

Industrial system

Advanced industrial structure (ISH) 20 1.232 0.325 0.739 1.726

Rationalisation of industrial structure (ISR) 16 0.024 0.01 0.009 0.039

Comprehensive utilisation rate of general
industrial solid waste 15 0.488 0.0519 0.422 0.560

Total investment in fixed assets 20 978.0 610.2 122.7 2028

Table 5. Standardised treatment results.

Year
Days with Air
Quality above

Grade II

Industrial
Sulphur
Dioxide

Emissions

Industrial
Smoke

(Powder) Dust
Emission

Advanced
Industrial
Structure

(ISH)

Rationalisation
of Industrial

Structure
(ISR)

Comprehensive
Utilisation Rate of
General Industrial

Solid Waste

Total
Investment in
Fixed Assets

2003 0.117 0.011 0.000 0.106 0.139 0.059 0.000

2004 0.383 0.000 0.102 0.000 0.185 0.059 0.072

2005 0.512 0.191 0.285 0.279 0.788 0.177 0.128

2006 0.611 0.316 0.420 0.340 0.761 0.131 0.163

2007 0.660 0.443 0.469 0.184 0.975 0.000 0.204

2008 0.864 0.481 0.573 0.206 1.000 0.380 0.273

2009 0.827 0.536 0.609 0.492 0.608 0.462 0.317

2010 0.877 0.514 0.678 0.440 0.688 0.730 0.390

2011 0.901 0.434 0.508 0.410 0.812 0.784 0.450

2012 1.000 0.471 0.546 0.453 0.000 0.839 0.612

2013 0.000 0.545 0.638 0.513 0.169 0.892 0.804

2014 0.216 0.575 0.231 0.722 0.308 0.946 0.846

2015 0.420 0.684 0.684 0.910 0.250 1.000 0.999

2016 0.432 0.966 0.913 1.000 0.173 0.660 1.000

2017 0.080 1.000 1.000 0.896 0.298 0.039 0.417

4.2. Evaluation Results of Coupling Coordination Model

Since the indexes selected in this paper are inter-related and the information covered
is overlapped, this paper adopted the principal component analysis method to extract the
information contributed by each index to each subsystem, determine the corresponding
weight coefficient of each index according to the component matrix and corresponding
variance (see Table 6), and then calculate the comprehensive index of the atmospheric envi-
ronment system and the industrial system according to Formula (3). The comprehensive
index of atmospheric environmental and industrial systems, coupling degree, coupling
coordination degree, comprehensive coordination index, and corresponding coupling
coordination stages of the two systems are shown in Table 7 and Figure 5.
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Table 6. Corresponding weight of each index.

System Indicators Weight Coefficient

Atmospheric environment system

Days with air quality above grade II 0.278

Industrial sulphur dioxide emissions 0.333

Industrial smoke (powder) dust emission 0.389

Industrial system

Advanced industrial structure (ISH) 0.328

Rationalisation of industrial structure (ISR) −0.054

Comprehensive utilisation rate of general
industrial solid waste 0.352

Total investment in fixed assets 0.374

Table 7. Coupling and coordination of the atmospheric environment system and the industrial system
in Taiyuan.

Year
Atmospheric
Environment

System U1

Industrial
System U2

Coupling
Degree, C

Comprehensive
Coordination

Index, T

Coupling
Coordination

Degree, D
Coupling Stage Coordination Stage

2003 0.036 0.048 0.991 0.205 0.451 High level Verge of uncoordinated

2004 0.146 0.037 0.806 0.303 0.494 High level Verge of uncoordinated

2005 0.317 0.159 0.944 0.488 0.679 High level Slightly coordinated

2006 0.439 0.177 0.906 0.555 0.709 High level Moderately coordinated

2007 0.514 0.084 0.694 0.547 0.616 Running in Slightly coordinated

2008 0.623 0.249 0.904 0.660 0.773 High level Moderately coordinated

2009 0.645 0.410 0.975 0.726 0.841 High level Well-coordinated

2010 0.679 0.510 0.990 0.771 0.874 High level Well-coordinated

2011 0.592 0.535 0.999 0.751 0.866 High level Well-coordinated

2012 0.647 0.673 1.000 0.812 0.901 High level Quality coordinated

2013 0.430 0.774 0.958 0.776 0.862 High level Well-coordinated

2014 0.342 0.869 0.900 0.778 0.837 High level Well-coordinated

2015 0.611 1.011 0.969 0.900 0.934 High level Quality coordinated

2016 0.797 0.925 0.997 0.928 0.962 High level Quality coordinated

2017 0.744 0.448 0.969 0.772 0.865 High level Well-coordinated

0.0

0.2

0.4

0.6

0.8

1.0

1.2

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

U1(Atmospheric environment system) U2(Industrial system)
Coupling Degree C Comprehensive coordination index T
Coupling Coordination Degree D

Figure 5. Coupling and coordination trends of the atmospheric environment system and the industrial
system in Taiyuan from 2003 to 2017.
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It can be seen from the chart that the atmospheric environment of Taiyuan is systemati-
cally rising. From 2003 to 2010, it maintained a rapid upward trend, and the comprehensive
index increased from 0.036 to 0.679, indicating the continuous improvement of atmospheric
quality. However, the composite index fell in shock, and fell to 0.342 in 2014. This is
mainly because China revised the ambient air quality standard (GB 3095-2012) in 2012
and adopted more stringent standards. After four years of adjustment and adaptation to
the new standard, the development of the atmospheric environment system in Taiyuan
showed an upward trend again, and the comprehensive index reached 0.797.

In terms of the industrial system, the comprehensive index of the industrial system ba-
sically maintained an upward trend from 2003 to 2015, rising from 0.048 to 1.011. Taiyuan’s
industrial structure has experienced the transformation from “secondary, tertiary, and pri-
mary” to “tertiary, secondary, and primary”. The advanced index of the industrial structure
continued to rise. However, the rationalisation index fluctuated, which reflects that the
matching degree of elements in Taiyuan’s industrial system and the internal optimisation
of the three industries are important factors affecting the development of the system. After
2015, the decline of the comprehensive index of the industrial system also reflects this
situation to a certain extent. After 2017, Taiyuan also began to publish relevant statistical
data of strategic emerging industries and high-tech industries to refine and analyse the
development quality within the industry.

The coupling degree, C, of the two systems fluctuated greatly before 2009 and became
stable and close to 1 after 2009, indicating that the interaction between the atmospheric
environment system and the industrial system is obvious. The coupling and coordi-
nation dispatching, D, maintained an upward trend, indicating that the two systems
were developing in the direction of benign coupling. The coordination of the two sys-
tems has experienced the process of “uncoordinated—primary coordination—moderately
coordinated—well-coordinated—quality coordination”, indicating that the development
between the systems tends to be gradually synchronised. However, it is also noted that
the coupling coordination degree of the two systems slightly fluctuated, which reflects
that the two systems in Taiyuan are currently in the transitional stage of “mutual running
in and tend to coordination—high-level coupling coordination” in the above theoretical
analysis framework.

4.3. Results of the VAR Model

The coupling and coordination model mainly measured and evaluated the annual
coupling and coordination of the atmospheric environment and industrial systems from a
static perspective. In this section, the VAR model was used to analyse the interaction force
and continuous influence between the two systems. The specific steps and results were
analysed as follows.

4.3.1. Decision Lag Order

To estimate the VAR model, we first needed to determine the lag order, p, of the model
according to the information criterion. According to the results in Table 8, the lag order of
this model is 4.

Table 8. Decision lag order.

Lag LL LR df p FPE AIC HQIC SBIC

0 5.754 0.0017 −0.6825 −0.7280 −0.6101
1 14.611 17.714 4 0.001 0.0007 −1.5656 −1.7024 −1.3486
2 21.750 14.279 4 0.006 0.0005 −2.1364 −2.3644 −1.7747
3 29.907 16.314 4 0.003 0.0003 −2.8923 −3.2115 −2.3859
4 38.754 17.693 * 4 0.001 0.0003 * −3.7735 * −4.1839 * −3.1224 *

Note: * indicates the lag order selected by the corresponding information criterion.
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4.3.2. Stationary Test

In order to ensure the stability of the model, it was also necessary to test the stationarity
of the model. As shown in Figure 6, all unit roots were in the unit circle, indicating that the
model is stable.

Figure 6. Stationary test.

4.3.3. Granger Causality Test

The Granger test can analyse the causal relationship and action direction of variables
in time. It can be seen from Table 9 that the comprehensive index of the atmospheric
environment system is the Granger cause of the comprehensive index of the industrial
system, and the assumption that the comprehensive index of the industrial system is not the
Granger cause of the comprehensive index of the atmospheric environment system cannot
be rejected. This is consistent with the optimisation requirements of the industrial system
for the strategic improvement of the atmospheric environment system mentioned in the
theoretical analysis framework of this paper. From the results of coupling and coordination,
it can be seen that the development synchronisation of the two systems in Taiyuan needs to
be strengthened. Therefore, Taiyuan should continue to optimise its industrial system, so
as to enhance its role in the atmospheric environment system.

Table 9. Granger causality test results.

Hypothesis chi2 df df_r Prob > chi2 Conclusion

U2 is not the Granger cause of U1 0.961 1 8 0.3558 Cannot reject
U1 is not the Granger cause of U2 25.872 1 8 0.0009 Reject

4.3.4. Impulse Response

Since the VAR model contains many parameters, it cannot directly explain the eco-
nomic meaning of parameters, so it is mainly analysed through the impulse response.
Figure 7 shows the impulse response of the Taiyuan atmospheric environment system
comprehensive index U1 and the industrial system comprehensive index U2. The hori-
zontal axis represents the lag order of impact (unit: year), and the vertical axis represents
the response value of relevant variables. It can be seen from the figure that when the
comprehensive index U1 of the atmospheric environment system was used as the pulse
variable, the comprehensive index U2 of the industrial system fluctuated significantly dur-
ing phases 3–5, which shows that the optimisation of the atmospheric environment system
will have a positive impact on the industrial system in the medium and long term. When
the industrial system comprehensive index U2 was used as the impulse response variable,
the atmospheric environment system comprehensive index U1 had positive benefits in
phases 3–5, but the benefits were small.
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Figure 7. Impulse response.

4.3.5. Variance Decomposition

Variance decomposition can explain the contribution of each variable shock in the
system. It can be seen from Figure 8 that the change of the atmospheric environment
system mainly came from its own change impact, which is consistent with the practice
in China. The governance and improvement of the atmospheric environment system are
mainly regulated by administrative means. In the short term, the change of the industrial
system is attributed to itself, but in the long term, it is jointly affected by its own change
and the impact of the change of the atmospheric environment system. In phases 1–4, the
contribution rate of the impact of the industrial system itself to its variance was close
to 1, but it dropped to 37% in the subsequent phases. In comparison, the explanation
degree of the change of the atmospheric environment system U1 to the industrial system
U2 reached 63%.

Figure 8. Variance decomposition.

5. Conclusions

The quality of the atmospheric environment affects the high-quality and sustainable
development of the economy, and the optimisation and upgrading of the industrial system
is an important way to improve the efficiency of economic and social operations. Analysing
the relationship and interaction between the two systems is significant in promoting the
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coordinated development of the environment and economy. By constructing the theoretical
analysis framework of coupling and coordination between the atmospheric environment
system and the industrial system, this paper clarified the two systems’ internal mechanisms
of the interaction and coordinated development. Then, it put forward the combination
of the coupling coordination model and the VAR model and provided the analysis and
evaluation method of the relationship between them from the two perspectives of “static”
and “dynamic”.

The atmospheric environmental quality is an important factor affecting the devel-
opment of Taiyuan. For many years, Taiyuan has also been committed to adjusting the
industrial structure to make the industrial development adapt to the local environmental
carrying capacity. Therefore, based on the theoretical analysis framework and the proposed
evaluation method, this paper empirically analysed the data of the typical resource-based
city Taiyuan from 2003 to 2017. The results show that: (1) Based on the results of the
coupling coordination model, the interaction between the two systems in Taiyuan was
obvious and developed towards benign coupling. However, there were still fluctuations
in some years, reflecting that the two systems are still in the transition stage of “mutual
running in and tend to coordination—high-level coupling coordination”. (2) According to
the results of the VAR model, the impact of the two systems on each other was mainly in
the medium and long term and dominated by the effect of the atmospheric environment
system on the industrial system.

Based on the above analysis results, the following policy implications can be obtained.
Firstly, Taiyuan should continue to maintain the coordination and sustainability of atmo-
spheric environmental governance and industrial structure adjustment. It should promote
and maintain the synchronous and orderly development between the two systems. Sec-
ondly, it should be optimised from within the industrial system to improve the scientificity
and effectiveness of industrial policies, so as to enhance its internal and external benefits,
and then promote the sustainable development of the two systems in Taiyuan and make
the two systems enter a high-level coupling and coordinated development stage. Thirdly,
when formulating and evaluating urban environmental and industrial policies, central
government departments should fully consider the particularity of different urban devel-
opment stages and the long-term effect of policies so as to avoid “one size fits all” and
short-sighted behaviour.

This paper presented an analysis framework and long-term evaluation method of the
relationship between the urban atmospheric environment system and the industrial system,
which provides theoretical and methodological guidance for policymakers to evaluate
relevant policies. However, because some data cannot be obtained through public channels,
only the evaluation results of Taiyuan from 2003 to 2017 were presented. Relevant policy
departments can conduct the internal evaluation with reference to the methods proposed
in this paper and take measures according to the latest situation of the two systems. On
the other hand, this paper’s evaluation and analysis methods were mainly studied from
the macrosystem level. In the future, we can further analyse the response of micro-subjects
(such as enterprises) to different types of environmental regulation and industrial structure
adjustment policies in different stages, find the action mechanism at the micro-level, and
then provide more targeted policy suggestions. In addition, in recent years, the COVID-19
pandemic has had a significant impact on all economies in the world, and the global health
crisis has become an external factor that cannot be ignored. The impact of this factor on the
atmospheric environment industry coupling system proposed in this paper will be worthy
of more extensive and in-depth research in the future.
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Abstract: In today’s socio-economic context where environmental protection and sustainable develop-
ment are equally important, how renewable energy enterprises can achieve sustainable development
has become a topic of academic interest in recent years. This paper investigates the link between
sustainable growth (SG) of renewable energy firms, resource endowment (RE), and environmen-
tal regulatory (ERs) issues through a fixed-effects model and a GMM model. Through empirical
analysis, it was found that economical environmental regulations have the greatest positive impact
on sustainable growth, followed by legal environmental regulations and supervised environmental
regulations. Resource endowment is positively related to sustainable growth for non-state-owned
renewable energy enterprises, but the negative impact on sustainable growth reflects the effect the of
“resource curse”. In addition, resource endowment has a negative moderating effect on environmental
regulations and sustainable growth. Thus, the most significant effect is on the relationship between
economical environmental regulations and sustainable growth, followed by legal environmental
regulations and supervised environmental regulations. Therefore, the flexible and concurrent appli-
cation of multiple environmental policies is an important way to ensure effective regulations and
promote sustainable business growth.

Keywords: renewable energy business; fixed-effects model; GMM model; sustainable growth (SG)

1. Introduction

Energy is crucial to a country’s economy and people’s livelihoods since it is the
material underpinning for human survival and development [1]. The majority of people
have realized that excessive energy consumption and pollution from the production and
use of chemical products will cause an environmental crisis, despite the rapid expansion of
the renewable energy industry.

The need to strike a balance between energy corporations’ long-term expansion and
environmental protection has become a pressing concern [2].

According to Ren et al. (2018), the environmental regulations discussed in this paper
are related to those mandatory regulations issued by the government [3]. Environmental
regulation (ER) is one of the policies initiated by the government to control and protect
environmental resources [4]. Environmental regulation’s role has received a lot of aca-
demic attention. Telle and Larsson (2007) suggested that ER does not reduce industrial
productivity [5], but Xie et al. (2017) argued that environmental regulation can boost
enterprises’ industrial production competitiveness [6]. Wang, Y. et al. (2022) consider the
diversity of the regulatory role of environmental regulations on the energy sector [7]. ERs
have a favorable impact on sustainable growth up to a certain amount, but beyond that
point, environmental regulation is detrimental to sustainable growth. Later, it was further
suggested that environmental regulation has a facilitating effect on firms’ performance and
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sustainable growth [8]. In addition, ERs have a facilitating and then inhibiting effect on
the green economy [9]. Further, a combination of policy subsidies and carbon taxes is an
effective way to develop low-carbon environmental protection.

Sustainability is the ability to improve living standards within ecological tolerances.
Elkington (1994) proposed the concept of a sustainability floor based on social, economic,
and environmental perspectives, which is now widely recognized by the academic commu-
nity [10]. Das et al. (2020) argue that the concept of achieving growth without compromising
the prospects of the next generation is increasingly becoming a core concept in business
philosophy [11]. Salzmann et al. (2005) and Engert et al. (2016) argue that the regulatory
effect of ERs on the sustainability of a business or economy varies in effect in different situ-
ations [12,13]. There are three main relationships between ERs and SG: first, environmental
regulation has a positive contribution to sustainable growth [14]; second, Curtis and Lee
(2019) argue that environmental regulation has a reverse inhibitory effect on sustainable
growth [15]. Third, Curtis and Lee (2019) argue that the link between environmental regu-
lation and sustainable growth is considered to be a “hump-shaped” relationship that varies
over time [15].

Without resources, no business can expand sustainably, and resource endowment is the
most important aspect in promoting long-term success. Zhai and An (2020) discovered that
human capital, financial capabilities, technical innovation, and government conduct have a
significant positive impact on SG, based on survey data from 500 Chinese manufacturing
enterprises in 2017 [16]. The factors of education, expertise, and the availability of local
entrepreneurial capital, fluctuate along the stages of the entrepreneurial process [17]. It
has been argued that resource endowment has a long-term positive effect; specifically, the
opportunity cost since resource endowment has the impact of inhibition in the early stage,
and when it waits for the later order, resource endowment starts to show its positive effect,
thus favoring long-term growth. Wang, S et al. (2022) argue that countries and regions that
are rich in natural resources tend to have poorer green economic growth [18]. Government
subsidies are the main driver for the long-term growth of renewable energy firms (Yang
et al., 2019) [19], and they have been an important policy tool to nurture and promote the
renewable energy industry in China (Song et al., 2020) [20]. Peng and Liu (2018) argue
that government subsidies have a moderating effect on firm development, with negative
and then positive effects developing over time [4]. When businesses receive government
subsidies, it signifies that the government has accepted their legal status, which allows them
to obtain more resources [21]. According to Lu et al. (2020), finance and subsidy impacts
can raise the export size, impacting the long-term viability of firms’ export expansion,
and social capital plays an important role in fostering long-term growth, since high social
capital firms are subjected to more lenient non-price lending requirements, resulting in
lower bond interest rates [22].

With its large population and vast land area, China needs to import and use large
amounts of energy in its development. The energy structure of China is dominated by
traditional energy sources of fossil fuels, and the massive use of fossil fuels will certainly
lead to a slew of significant environmental issues, including energy scarcity and pollution.
Wu, L. et al. (2021) point out that energy endowment is a major factor in the growth of
carbon emissions [23]. People’s tolerance for environmental pollution decreases as their
money and living standards rise, and the strength of environmental regulation steadily rises,
opening up prospects for renewable energy development. Wang, Q et al.’s (2022) research
found that renewable energy gives a significant boost to the economy [24]. Renewable
energy is crucial for modifying the energy structure, lowering greenhouse gas emissions,
and fostering long-term growth. Renewable energy businesses have grown quickly in
recent years as high-tech industries throughout the world. Increased R&D expenditure
is required to strengthen technical innovation and promote long-term growth in order to
expand quickly and profitably. Furthermore, a major portion of China’s renewable energy
businesses are state-owned companies (SOEs), which have greater resources than private
businesses. As a result, the research object for this study is renewable energy enterprises.
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Do environmental regulations inhibit or promote sustainable company growth? How
do different types of environmental regulatory regimes affect the sustainable growth of
firms? With the increasing emphasis on resource endowment by firms, how does environ-
mental regulation affect resource endowment and further contribute to firms’ sustainable
growth? To address these questions, this paper will provide insights into the impact of
environmental regulation and resource endowment on firms’ sustainable growth from the
perspective of Chinese renewable energy firms and provide constructive suggestions for
the government to develop more accurate environmental and energy policies.

The following are the main contributions: First, this is the first article that divides
environmental regulation into three levels, including economic environmental regulation,
legal environmental regulation, and supervisory environmental regulation. Second, for
the first time, the impact of environmental regulation on the sustainable development of
renewable energy firms is studied and specifically analyzed from the perspective of micro
data of firms. Third, this paper is the first to study the relationship between environmental
regulation and sustainable growth using resource endowment as a moderating variable.
Fourth, this paper analyzes the ownership structure heterogeneity of the impact of resource
endowment on sustainable growth, which helps to provide targeted policy recommen-
dations for improving the sustainable growth of renewable energy firms with different
ownership structures. Fifth, considering the accuracy and comprehensiveness of variable
calculation, this paper uses a weighted algorithm to calculate environmental regulations
and principal component analysis to calculate resource endowments.

2. Literature Review

2.1. Impact of Environmental Regulations (ERs) on Sustainable Growth (SG)

Environmental regulations (ERs) are a collection of features for government envi-
ronmental policies aiming at reducing businesses’ influence on the natural environment
and providing an atmosphere conducive to environmental innovation [25]. According
to López-Gamero et al. (2010), ERs are a collection of environmental behaviors that are
either mandatory or discretionary and are disseminated directly or indirectly by economic
organizations or governments [26]. Pargal and Wheeler (1996) established the notion
of informal ERs, arguing that in poor nations where institutional regulation is weak or
non-existent, many communities have struck emission reduction agreements with local
firms [27]. Informal regulation is the term for this occurrence. For command and control
and market-based rules, Li and Ramanathan (2018) find a positive non-linear relation-
ship between Environmental regulations (ERs) and Sustainable growth (SG). [28]. The
informal ERs represented by environmentally related technology and education levels,
according to Wang and Shao (2019), have a favorable and substantial influence on SG [29].
ERs have a statistically significant and positive connection with SG, according to Javeed
et al. (2020a) [14]. Higher ERs intensity might drive manufacturing, resulting in a more
concentrated economy with lower CO2 emissions, hence promoting SG [30]. Firms can
increase staff quality at or beyond the ER threshold level, according to Song et al. (2018),
for additional gains in SG [31]. Labor cost and ERs, according to Zheng et al. (2019),
have a synergistic influence on company growth and structural adjustment [32]. Zhao
et al. (2018) suggested that if appropriate ERs are used, then in a short period of time, ERs
and financial returns can produce a win–win situation [33]. The effect of ERs on the link
between technical innovation and SG is theoretically good, but not substantial, showing
that there is still an “implementation gap” [34].

According to Ramanathan et al. (2017), depending on their resources and expertise,
firms that adopt a more dynamic approach to reacting to ERs innovatively and taking a
proactive approach to managing their environmental performance are generally better able
to reap the SG [35]. Regulatory and supervisory actions based on actual market conditions,
according to Xie et al. (2017), have a non-linear connection and can be favorably associated
with “green” production [6]. Dasgupta et al. (2001) discovered a substantial positive
correlation between the frequency of ER agency inspections and the SG [36]. According to
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Liu et al. (2018), ERs have a net negative effect on energy usage, which is advantageous for
reducing energy pressures [4]. In China, the energy-saving impact of ERs is dynamic, with
complicated outcomes arising from the “Green Paradox” and “compliance cost.” It has
also been found that ERs help stimulate technological progress in manufacturing, which
indirectly saves energy [37].

Based on Liu et al. (2018), this paper breaks down environmental regulations into
three aspects: economic, legal, and supervision [4], and makes the following hypotheses
about their relationship with sustainable growth (SG), respectively.

Hypothesis 1a (H1a). Economic environmental regulation is conducive to sustainable growth.

Hypothesis 1b (H1b). Legal environmental regulation is conducive to sustainable growth.

Hypothesis 1c (H1c). Supervised environmental regulation is conducive to sustainable growth.

2.2. The Impact of Resource Endowment (RE) on Sustainable Growth (SG)

Resource endowment (RE), also known as factor endowment, relates to a country’s
ownership of numerous production components such as labor, money, land, technology,
and management. The concept of the “resource curse” was coined by Auty (1993), where
the dependence on natural resources and its potentially detrimental relationship with
economic growth is referred to as a “curse”. His research found that the world’s natural
resource-rich countries were unable to use their environmental wealth to improve their
economies, and he introduced the concept of the “resource curse”, and as a result, their
economies grew at a slower rate than those without natural resources [38]. The evidence
that RE negatively impacts SG remains compelling, especially in Chinese cities that produce
fossil energy, and the direct influence of ERs on economic development exhibits an “N”
curve connection, according to survey data [39]. However, there was some dissent to this
widely held belief; Hilmawan and Clark (2019) found no evidence of a “resource curse”
using yearly fixed effects and first-order difference regression analysis [40]. It is worth
noting that even the most ardent proponents of the “resource curse” are not arguing that
states with abundant natural resources would be better off without them [39].

Basic and diverse resources are the two types of enterprise resources [41]. Human re-
sources, financial resources, material resources, technical resources, information resources,
and other basic resources are required for company technological innovation operations.
The heterogeneity of heterogeneous resources is expressed in the variability of the unique
use value [42]. Enterprise culture, which transforms basic resources into diverse resources
while encouraging technical innovation abilities, ensures the survival and development
of businesses. Energy companies’ RE is unique, and their financial RE mostly consists
of government subsidies and financing limits. The value contained in social interactions
between individuals or groups is referred to as social capital, which may help spread knowl-
edge, communicate information, and share resources, lower transaction costs, and enhance
financial performance. The “relationship finance hypothesis,” presented by Chakravarty
and Scott (1999), holds that social capital plays a crucial function in enhancing a company’s
ability to raise funds [43].

Government subsidies are the most visible kind of social capital in the energy sector.
The value of the government subsidy is derived from the company’s financial statements’
remarks. The value of government subsidy items is calculated using the amount from direct
subsidies, tax refunds, and other things [44]. The subsidies granted by the government can
help companies with customer service shortage of funds and are an important source of cash
for companies [45]. Hu (2001) found no evidence of a link between government subsidies
and increased productivity in subsidized firms in Chinese industries [46]. According
to Yang et al. (2019), government subsidy policies have a positive moderating effect on
investment in the renewable energy sector in China [47]. The contribution of government
subsidies to renewable energy investment increases significantly when energy consumption
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intensity is high, but bank credit is more restrictive, and the degree of economic growth
is below the threshold. Both cash subsidies and tax incentives can encourage renewable
energy investment, with tax incentives having a greater impact. Overall, government
subsidies are the main driver of renewable energy firms.

Another expression of RE in energy businesses is a financial limitation. Energy compa-
nies face three types of financial constraints: loan financing, equity financing, and internal
financing. Short-term liabilities, according to Cutillas and Sánchez (2014), can prevent
businesses from making unproductive investments [48]. Enterprises’ expansion initiatives
are directly hampered by financial restrictions [37]. The most significant impediment to the
development of SMEs is the absence of funding channels; high financing costs and lack of
professional advice are the main obstacles to external financing [49]. Access to funding is
a crucial growth restriction for SMEs, according to Beck and Demirguc-Kunt (2006), and
financial and legal institutions play a key role in alleviating this limitation [50]. Ferris
et al. (2017) found that social capital lowered the cost of equity borrowing using data from
1999 to 2012 [51]. Information asymmetry and the agency problem are reduced as a result
of social relationships, lowering the cost of equity. Hypothesis 2 is offered based on the
preceding discussion:

Hypothesis 2 (H2). A positive relationship exists between resource endowment and long-term growth.

2.3. The Role of Resource Endowment (RE) in Mediating the Connection between Environmental
Regulations (ERs) and Sustainable Growth (SG)

According to Yang and Song (2019), the link between ERs and the “resource curse” is
inverted U-shaped, and the “resource curse” can only be broken when the ERs’ intensity
passes the turning point [19]. In complete samples, ERs can also break the “resource curse”
issue indirectly by increasing green technical innovation, reducing resource reliance, and
speeding up enterprise development. Reducing financing constraints and implementing
government subsidies are one of the main sources of RE for energy firms. Financial and
tax assistance are the key way for SG of firms in nations with excellent renewable energy
development [52,53]. RE has the potential to not only assist the long-term growth of
energy businesses, but also to achieve the government’s environmental policy objectives.
Environmental management and debt finance, according to Xu and Chen (2020), have a
good association with firm sustainability [54]. When businesses have less social capital,
such as government subsidies and limited funding, their growth is constrained to some
extent. The impact of ERs on business SG will be readily apparent at this time. The better
the RE, the less influenced by Ers it is, reducing the impact of Ers on the SG of businesses
and promoting their long-term development.

In addition, this paper reviews in the literature review the findings of the effect of ERs
on factors such as CO2 emissions, firm structure, and SG in different research contexts in
different literature. Based on the results of existing studies, the hypotheses to be tested in
this paper are presented:

Hypothesis 3a (H3a). With the increased resource endowment, the impact of environmental
regulation on sustainable growth will be weakened.

Hypothesis 3a (H3b). With the decreased resource endowment, the impact of environmental
regulation on sustainable growth will be strengthened.

3. Research Methodology

3.1. Modeling

The experimental analysis in this paper is based on the following theoretical frame-
work, as shown in Figure 1.
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Figure 1. Conceptual framework.

First, the paper tests the effects of environmental regulations and resource endowments
on sustainable growth using the following model:

SGit = α0 + α1ERit + α2REit + α3Ctrlit + θit (1)

Ctrlit = ATit + HHIit + FDIit + FSit + LEVit + PPEit (2)

To measure the impact of environmental regulation on sustainable growth under the
moderating effect of resource endowments, Equations (1) and (2) are further extended in
this paper as follows.

SGit = β0 + β1REit + β2Ctrl it + μit (3)

SGit = γ0 + γ1ERit + γ2REit + γ3ERit × REit + γ4Ctrlit + εit (4)

where Equation (3) measures the effect of resource endowment per se on sustainable growth,
and Equation (4) measures the effect of resource endowment on the relationship between
environmental regulation and sustainable growth. Where i and t stand for listed businesses
and time periods, respectively. The dependent variable SG stands for long-term growth.
Environmental regulation is represented by ERs, resource endowment is represented by
RE, and the moderating influence of resource endowment on environmental regulation and
sustainable growth is represented by ER × RE. We have also added some important control
variables represented by Ctrl, such as asset turnover (AT), the Herfindahl–Hirschman Index
(HHI), foreign direct investment (FDI), firm size (FS), leverage (LEV), property, plant, and
equipment (PPE), etc.

α0, β0 and γ0 are constant term. α1, α2, α3, β1, β2, β3 and γ1, γ2, γ3, γ4 are estimated
coefficients of the independent variable, the moderator variable, and the cross multiplica-
tion of the independent variable and the moderator variable, respectively. θit, μit and εit
represent the random disturbance terms. In this paper, the panel data model is used to
estimate the coefficients.

3.2. Variables
3.2.1. Sustainable Growth (SG)

Sustainable growth (SG) is the result of a set of activities in the business process,
including two dimensions: sustainable business growth potential, and sustainable business
profitability. The capital approach to sustainable growth is known to be useful in explaining
sustainable development.

This paper uses the sustainable growth rate as proposed by Javeed et al. (2020b) to
measure SG [14].
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3.2.2. Environmental Regulations (ERs)

Referring to Liu et al. (2018), environmental regulations are government-initiated
environmental protection measures that are universally applicable to all businesses; this
paper breaks down environmental regulations from three perspectives: economic, legal,
and supervisory [4].

(1) Economical environmental regulation (ERA): ERA refers to the use of economic tools
to reduce or eliminate negative external consequences produced by pollution and is a
voluntary regulation. The ERA is represented in this article by the overall investment
share of industrial added value in pollution control.

(2) Legal environmental regulation (ERB): ERB refers to a set of severe restrictions that
limit the production and administration of businesses in order to safeguard the envi-
ronment; this is a market-based regulation. If a company violates environmental regu-
lations, the government can apply administrative fines. As an alternative indication of
ERB, we use the number of administrative penalty cases involving the environment.

(3) Supervised environmental regulation (ERC): ERC refers to government departments’
oversight of environmental contamination, forcing businesses to enhance current
equipment and technology in order to achieve cleaner output, and is command-and-
control regulation. The number of environmental protection agencies at the end of
each year is used as a proxy variable for ERC in this study.

3.2.3. Resource Endowment (RE)

In this paper, based on the studies of Xu et al. (2019) and Mtaturu (2020), the resource
endowment of firms is divided into five areas based on the source of resources: government,
and financing institutions such as banks, suppliers, customers, and other firms [55,56].
In addition, for the aspect quantitative analysis, this paper uses the data of government
subsidy income, short-term loans, accounts payable, accounts receivable, and long-term
equity investment of enterprises to represent the resource endowment of these five aspects
respectively. Different basic index weights were assigned using the principal component
analysis (PCA) approach, and the composite index RE was created.

3.2.4. Control Variables

Both the influence on RE and TIE should be considered while selecting control vari-
ables. AT, HHI, FDI, FS, LEV, and PPE are used as control variables in this study (Hille
et al., 2020) [57]. The definitions of variables, statistical descriptions of the variables, and
correlation analyses are shown in Tables 1–3, respectively.

Table 1. Variables and definitions.

Variable Abbreviations Definition Description

Dependent Variable
Sustainable growth SG PM × (1 − D) × (1 + L)/(T − (PM × (1 − D) × (1 + L)))
Independent Variables

Economical environmental regulation ERA The ratio of environmental pollution treatment investment to the
industrial added value

Legal environmental regulation ERB The number of year-end administrative penalty cases on
the environment

Supervised environmental regulation ERC The number of year-end environmental protection agencies
Resource endowment RE The principal component analysis
Control Variables
Asset turnover AT Ratio of total sales to total asset
Herfindahl–Hirschman Index HHI The HHI of industry
Foreign direct investment FDI Ratio between foreign direct investment and GDP
Firm Size FS Natural logarithm of total assets
Leverage LEV Ratio of total liabilities to total assets
Property, Plant, and Equipment PPE Ratio of property, plant, and equipment to total sales
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Table 2. Descriptive statistics of variables.

Variables Obs Mean Std. Dev. Min Max

SG 882 0.056 0.142 −0.673 0.491
ERA 882 0.060 0.047 0.014 0.246
ERB 882 11.36 1.098 8.617 13.61
ERC 882 9.359 0.689 7.403 10.22
RE 882 10.62 1.559 7.199 14.24
AT 882 0.390 0.238 0.044 1.462
HHI 882 0.065 0.008 0.052 0.076
FDI 882 7.182 1.373 3.866 9.864
FS 882 22.78 1.425 20.19 26.34
LEV 882 0.563 0.200 0.051 0.941
PPE 882 21.77 1.796 15.86 25.94

Table 3. Correlation analysis of variables.

Variables SG ERA ERB ERC RE AT HHI FDI FS LEV PPE

SG 1
ERA −0.015 1
ERB −0.003 −0.338 *** 1
ERC 0.011 −0.229 *** 0.251 *** 1
RE 0.050 0.095 *** 0.004 −0.300 *** 1
AT 0.048 −0.062 * −0.069 ** 0.074 ** −0.125 *** 1

HHI 0.022 −0.020 0.087 *** −0.075 ** −0.119 *** 0.181 *** 1
FDI −0.047 −0.462 *** 0.635 *** 0.191 *** −0.088 *** −0.004 0.297 *** 1
FS 0.140 *** 0.141 *** 0.010 −0.278 *** 0.900 *** −0.257 *** 0.206 *** 0.150 *** 1
LEV 0.175 *** 0.165 *** 0.203 *** −0.217 *** 0.481 *** −0.022 0.086 ** 0.362 *** 0.413 *** 1
PPE 0.098 *** 0.166 *** 0.095 *** −0.232 *** 0.772 *** −0.206 *** 0.163 *** 0.238 *** 0.882 *** 0.472 *** 1

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

4. Empirical Analysis

4.1. Data Source

The data for 91 renewable energy businesses were chosen for this study. The China
Statistical Yearbook and the RESSET database provided data for ER (ERA, ERB, and ERC),
while the CSMAR database provided data for RE and the WIND database provided data for
SG. The CSMAR database was used to obtain data for the control variables. Interpolation
was employed to supplement the data due to a lack of data for particular REs. All data
were tested for stability to determine that they are stationary.

4.2. Fitting Results for Hypothesis 1

The results of the empirical calculations around Hypothesis 1 are shown in Table 4.
The Hausman test values for models were 19.27, 18.98, and 21.32, respectively, at the
1% significance level, thus allowing the FE regression to be selected. Specifically, the
FE regression for model 1 shows a coefficient value of 0.019 for the ERA term at the 1%
significance level and a coefficient value of 0.273 for the ERA term at the 1% significance
level in the GMM regression. In the regression results for model 2, the ERB term has a
coefficient value of −0.3 at the 1% significance level in the FE regression and a coefficient
value of 0.165 in the GMM regression. The coefficient value was 0.165. The coefficient of
the ERC term in the FE regression of model 3 is 0.038 at the 1% level of significance, and in
the GMM regression, the coefficient of the ERC term is 0.054 at the 1% level of significance.
In summary, the results show that the economy, law, and supervision of environmental
regulation all contribute to sustainable development, so Hypothesis 1 holds. Among, them
ERA has the most significant contribution to SG compared to ERB and ERC.
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Table 4. Measurement results of the relationship between ER and SG.

Variables
Model 1 Model 2 Model 3

FE GMM FE GMM FE GMM

ERA 0.019 *** 0.273 ***
ERB 0.300 *** 0.165 ***
ERC 0.038 *** 0.054 ***
AT 0.120 ** 0.092 * 0.120 ** −0.029 * 0.126 ** 0.089 *
HHI 2.536 1.505 2.523 1.001 2.596 2.268
FDI −0.011 −0.001 −0.010 −0.005 −0.013 −0.005
FS 0.057 *** 0.068 * 0.057 *** −0.016 0.057 *** 0.040 *
LEV −0.396 *** −0.116 −0.396 *** −0.379 *** −0.388 *** −0.222
PPE −0.006 0.003 * −0.005 0.004 * −0.006 0.005 *
C −1.048 * −0.971 ** −1.018 * −2.178 −1.381 ** 1.211
R2 0.321 0.452 0.476
Hausman test 19.27 *** 18.98 *** 21.32 ***
Arellano–Bond
test
AR (1) 0.051 0.036 0.027
AR (2) 0.427 0.432 0.733
Sargan test 0.913 0.907 0.946
Observations 790 790 790 790 790 790
Number of id 91 91 91 91 91 91

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

4.3. Fitting Results for Hypothesis 2

The results of the empirical calculations around Hypothesis 2 are shown in Table 5.
Overall, the Hausman test values for Models 1, 2, and 3 were 21.22, 20.19, and 18.99 at
the 1% significance level, respectively, indicating that the FE regression could be chosen.
Specifically, in Model 1, the RE term has a coefficient of 0.414 in the FE regression and 0.284
in the GMM regression at the 10% significance level, indicating that RE has a significant
contribution to SG. The paper then divides RE into SOEs and non-SOEs, which are analyzed
in Model 2 and Model 3, respectively. According to Model 2 for SOEs, RE has a coefficient
of 0.389 in the FE regression and 0.179 in the GMM regression at the 10% significance
level. According to the results of Model 3 for non-SOEs, the RE term has a coefficient of
0.402 in the FE regression and 0.277 in the GMM regression at the 10% significance level.
In summary, the results can be that Hypothesis 2 holds and the contribution of resource
endowment to RE firms is more significant in non-state-owned firms.

Table 5. Measurement results of the relationship between RE and SG.

Variables
Model 1 Model 2 Model 3

FE GMM FE GMM FE GMM

RE 0.414 * 0.284 ** 0.389 * 0.179 * 0.402 * 0.277 *
AT 0.679 ** 1.021 ** 1.089 *** 2.315 * 0.857 *** 2.299 **
HHI 0.024 * 0.126 0.026 0.187 0.029 0.154 *
FDI −0.093 −0.105 * −0.087 −0.127 −0.089 ** −0.166
FS 0.209 ** 0.106 * 0.233 0.176 0.231 0.119 *
LEV −0.325 −0.421 −0.450 −0.298 * −0.312 −0.206 **
PPE 0.546 * 0.219 0.444 * 0.398 0.590 * 0.265
C 1.508 * 0.882 3.001 * 0.832 2.098 * 0.891
R2 0.545 0.547 0.550
Hausman test 21.22 *** 20.19 *** 18.99 ***
Arellano–Bond
test
AR (1) 0.039 0.027 0.025
AR (2) 0.593 0.642 0.589
Sargan test 0.899 0.915 0.907
Observations 790 790 588 588 202 202
Number of id 91 91 66 66 25 25

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.
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4.4. Fitting Results for Hypothesis 3

The results of the empirical calculations around Hypothesis 3 are shown in Table 6.
This paper determines the effect of RE on the relationship between ER and SG by measuring
the interaction term between ER and RE. Overall, the Hausman test values for Models 1, 2,
and 3 were 28.08, 21.67, and 20.59, respectively, at the 1% significance level, allowing for
the choice of FE regression. Specifically, in Model 1, the ERA × RE term has a coefficient
of −0.016 for the FE regression and −0.31 for the GMM regression at the 5% level of
significance. Model 2 shows that the ERB × RE term has a coefficient of −0.007 for the FE
regression and −0.259 for the GMM regression at the 1% level of significance. Model 3 has
the ERC × RE term at the 5% level of significance. In summary, Hypothesis 3 holds that RE
is able to inhibit the facilitative effect between ER and SG, and RE has the most pronounced
inhibitory effect on ERA and SG compared to ERB and ERC.

Table 6. Measurement results of the relationship between ER and SG with moderating effect of RE.

Variables
Model 1 Model 2 Model 3

FE GMM FE GMM FE GMM

ERA 0.011 ** 0.065 **
ERB 0.005 ** 0.072 **
ERC 0.037 *** 0.180 **
RE 0.020 ** 0.021 *** 0.021 *** 0.062 *** 0.020 ** 0.133 ***
ERA × RE −0.016 ** −0.310 **
ERB × RE −0.007 *** −0.259 ***
ERC × RE −0.012 ** −0.312 **
AT 0.126 ** 0.532 *** 0.126 ** 0.561 *** 0.126 ** 0.641 ***
HHI −4.152 −7.343 −3.967 −7.483 −3.823 −7.591
FDI 2.915 5.024 2.918 5.109 2.958 * 5.336 *
FS 0.076 *** 0.678 *** 0.076 *** 0.725 *** 0.074 *** 0.702 ***
LEV −0.366 * −6.368 * −0.359 * −5.319 * −0.365 * −6.160 *
PPE −0.006 * −3.517 −0.007 −2.980 −0.007 −3.874
C −1.307 * −4.271 * −1.632 * −5.295 ** −2.165 * −4.553 *
R2 0.449 0.453 0.446
Hausman test 28.08 *** 21.67 *** 20.59 ***
Arellano–Bond
test
AR (1) 0.060 0.051 0.059
AR (2) 0.588 0.546 0.607
Sargan test 0.919 0.923 0.904
Observations 882 882 882 882 882 882
Number of id 91 91 91 91 91 91

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

4.5. Robustness Test

To ensure that the empirical findings are accurate, this paper instead measures SG
using ROE (Cao and Wang, 2017; Song and Wang, 2018) [58,59]. The association between
ER, RE, and SG is then measured again and the test results are shown in Table 7. Models 1,
2, and 3 measured the relationship between ERA, ERB, ERC, and SG, respectively, and the
results showed that the coefficients of the ERA, ERB, and ERC terms were 0.216, 0.224, and
0.219, respectively, at the 5% level of significance. The relationship between the interaction
terms of the ER series variables and RE variables on SG was measured in Models 4, 5, and
6, respectively, and the results showed that at the 5% level of significance the coefficients of
the ERA × RE, ER × RE, and ERC × RE terms are −0.298, −0.344, and −0.316, respectively.
In summary, it can be seen that the results of the robustness tests are basically consistent
with the previous empirical results and the empirical findings are stable and valid.
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Table 7. Robustness test.

Variables
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

GMM GMM GMM GMM GMM GMM

ERA 0.216 *** 0.358 ***
ERB 0.224 *** 0.217 ***
ERC 0.219 ** 0.311 ***
RE 0.258 ** 0.299 ** 0.287 ** 0.375 ** 0.402 *** 0.395 ***
ERA × RE −0.298 **
ERB × RE −0.344 **
ERC × RE −0.316 **
AT 0.172 * 0.176 * 0.178 * 0.098 0.099 0.090
HHI 5.565 5.284 5.223 * 9.517 8.346 * 8.885 *
FDI 0.121 0.199 ** 0.124 ** 0.548 0.827 0.718
FS 0.049 0.048 0.0499 * 0.272 * 0.286 ** 0.262 *
LEV −1.746 * −1.934 * −1.689 ** −2.778 ** −2.899 ** −2.957 **
PPE 0.065 0.067 0.068 * 0.421 0.398 * 0.413
C 7.169 ** 7.206 ** 7.308 ** 5.477 ** 6.103 ** 6.890 *
Arellano–Bond
test
AR (1) 0.028 0.036 0.027 0.035 0.028 0.031
AR (2) 0.335 0.401 0.334 0.402 0.335 0.405
Sargan test 0.876 0.907 0.896 0.899 0.918 0.923
Observations 882 882 882 882 882 882
Number of id 91 91 91 91 91 91

Note: *** p < 0.01, ** p < 0.05, * p < 0.1.

5. Conclusions and Policy Recommendations

This paper studied the relationships between environmental regulation, resource
endowment, and sustainable growth by using a fixed-effects model and system GMM
method, and the research sample is the panel data of new energy enterprises from 2010
to 2019. This paper focuses on the impact of environmental regulation on the sustainable
growth of Chinese renewable energy enterprises, and introduced resource endowment
to examine its moderating effects. After empirical analysis, we obtained the following
conclusions: economical environmental regulations, legal environmental regulations, and
supervised environmental regulations are positively associated with sustainable growth.
Compared with legal environmental regulations and supervised environmental regulations,
economic environmental regulations have the greatest impact on sustainable growth. The
resource endowment is positively associated with sustainable growth, especially for non-
state-owned renewable energy enterprises, and resource endowment plays a moderating
role between environmental regulations and sustainable growth. Furthermore, resource
endowment has the greatest moderating effect on the relationship between economical
environmental regulations and sustainable growth. According to the above conclusion, we
propose the following suggestions.

The first one is based on the effectiveness of economic environment regulations.
Economic environmental regulations intuitively discourage the consumption of traditional
energy sources and promote the development of renewable energy from an economic
perspective. Governments can implement flexible and effective economic policies that
take into account local conditions, such as increasing taxes on traditional energy sources
while providing policy subsidies and tax incentives for renewable energy. By reducing
the financial pressure on renewable energy companies, new energy innovations can be
promoted to achieve sustainable growth.

Secondly, based on the effectiveness of legal environmental regulations. The use of
traditional energy sources inevitably leads to the consumption of environmental resources
and environmental pollution. For government policies, on the one hand, through the
establishment of a sound legal environmental regulation system, the use of traditional
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energy sources and the treatment and discharge of pollution can be regulated in order
to curb the consumption of natural resources and mitigate environmental pollution. On
the other hand, legal environmental regulations are also conducive to the management
of renewable energies, as they regulate the research and development and production of
renewable energies and promote the sustainable growth of new energy enterprises.

Thirdly, based on the effectiveness of supervisory environmental regulations. Strict
and effective regulation, based on sound laws and regulations, can ensure that legal
provisions are implemented. For example, strict monitoring of energy consumption and the
treatment and discharge of pollutants by energy companies can effectively force traditional
energy companies to transform and promote technological progress in the field of new
energy. Thus, strengthening supervisory environmental regulation is beneficial to the
sustainable growth of renewable energy companies.

Fourth, based on the effectiveness of resource endowment. Environmental endow-
ments are inherently conducive to sustainable growth, so governments should actively
guide energy companies to develop and build local resources with local characteristics,
and sufficient environmental resources to ensure sustainable growth. However, given
the ‘resource curse’ effect, local energy development should not be overly dependent on
the benefits of environmental endowments and should focus on the long-term benefits
of renewable energy. In addition, as resource endowments have a negative impact on
the influence of environmental regulations, as resource endowments increase, the role
of environmental regulation in sustainable growth decreases. Therefore, government de-
partments should be fully aware of the contradictions between resource endowments and
environmental regulation, and the link between resource endowment and environmental
regulation should be better coordinated. For example, for traditional energy sources, envi-
ronmental regulations should be strengthened to avoid the “resource curse” brought about
by overly strong resource endowments, while for renewable energy enterprises, resource
endowments can be moderately strengthened through the creation of a favorable financing
environment and research environment to promote sustainable growth. Whether starting
from an environmental regulatory perspective or a resource endowment perspective, the
final goal is to curb traditional energy sources and promote renewable energy development
so as to achieve sustainable growth. The government should be fully aware that technolog-
ical development is the basic driver of sustainable growth, reasonably integrating the local
environmental and social resources, enhancing resource-use efficiency, and encouraging
scientific and technological research and development so as to achieve sustainable growth.
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Abstract: Credit default prediction for the energy industry is essential to promoting the healthy
development of the energy industry in China. While previous studies have constructed various
credit default prediction models with brilliant performance, the class-imbalance problem in the
credit default dataset cannot be ignored, where the numbers of credit default cases are usually much
smaller than the number of non-default ones. To address the class-imbalance problem, we proposed
a novel CT-XGBoost model, which adds to XGBoost with two algorithm-level methods for class
imbalance, including the cost-sensitive strategy and threshold method. Based on the credit default
dataset consisting of energy corporates in western China, which suffers from the class-imbalance
problem, the CT-XGBoost model achieves better performance than the conventional models. The
results indicate that the proposed model can efficiently alleviate the inherent class-imbalance problem
in the credit default dataset. Moreover, we analyze how the prediction performance is influenced by
different parameter settings in the cost-sensitive strategy and threshold method. This study can help
market investors and regulators precisely assess the credit risk in the energy industry and provides
theoretical guidance to solving the class-imbalance problem in credit default prediction.

Keywords: credit default prediction; energy industry; class imbalance; cost-sensitive; threshold method

1. Introduction

In recent years, energy corporates experienced rapid development with continually
increasing investment and became one of the most important markets of the global econ-
omy [1]. As the China Energy and Carbon Report 2050 [2] states, the demand for investment
in Chinese new energy, energy conservation, etc., is about 7 trillion yuan. Under the massive
stress of funding needs, the most common financing method for China’s energy corporate
is bank credit [3]. The essential risk for the creditors is corporate credit default, which
means a firm fails to meet periodic repayments on a loan [4]. The financial damage caused
by corporate credit default cannot be ignored, which may be a severe negative social cost or
even a recession [5]. Hence, in order to promote the healthy development of China’s energy
industry, it is worthy of constructing an accurate corporate credit default prediction model.

A crucial issue in credit default prediction is the class-imbalance problem, which may
impact the efficiency of the model negatively [6]. In the real world, the frequency of default
cases is usually much smaller than that of non-default ones. It is challenging to develop an
effective default forecasting model if the class distribution is imbalanced, as rare default
instances are harder to be identified compared with common non-default instances [7,8].
For instance, assume the imbalance ratio of the two-class dat set is 99, with the majority
non-default class accounting for 99% and the minority default class accounting for 1%.
In order to minimize the error rate, the credit default prediction algorithms may simply
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classify all of the samples into the non-default class, where the error rate is only 1%. In such
a case, all the samples of a minority default class can certainly be recognized as being of
an incorrect class. Nonetheless, such a credit default predicting model is of little value
because the main aim is to correctly identify as many default instances as possible without
misclassifying too many non-default instances. Thus, the purpose of this study was to
construct a credit default prediction model which can efficiently assess the credit risk by
solving the inherent class-imbalance problem in default prediction work.

To avoid the negative effect of the class imbalance problem on credit default predic-
tion, previous studies have proposed various imbalance processing approaches, which
can be generally grouped into data-level methods, algorithm-level methods, and hybrid
methods [6]. Data-level methods focus on rebalancing the class distribution of the training
dataset before constructing the models [7,9,10]. Algorithm-level methods involve modi-
fying existing algorithms or proposing novel algorithms to directly tackle datasets with
class imbalances, and such learning algorithms can outperform previously existing algo-
rithms [11–13]. Recently, the hybrid methods have gained popularity for their superior
performance in learning from class-imbalanced datasets. Given the strong classification
ability of pure ensemble models, the hybrid methods usually incorporate the pure ensemble
models with data-level methods to construct novel models to deal with the class imbalance
problem [14,15]. However, data-level methods that are combined with ensemble models
have some inherent limitations, which might impact the efficiency of the model. For in-
stance, oversampling methods may increase the probability of overfitting when training
the learning algorithms, whereas undersampling methods may eliminate too much helpful
information from the majority class [16].

In this study, we propose a novel hybrid model to solve the class-imbalance problem
in credit default prediction. The novel model is a combination of an ensemble model and
algorithm-level methods for the class imbalance problem, which can avoid the limitations
of data-level methods in handling the class imbalance problem. Due to the superior
performance of XGBoost among common credit default prediction models [17–19], we
selected it as the ensemble model to be embedded. Then, the novel model CT-XGBoost is
proposed by combining the base XGBoost model with a cost-sensitive strategy that assigns
more misclassification costs for minority classes and a threshold method that sets a more
rational threshold for default classification. To assess the performance of our proposed CT-
XGBoost model on credit default prediction for class imbalance problems, we constructed a
database of credit defaults sourced from a commercial bank in western China. As in most
previous studies [20], we used the financial variables from the financial statements as the
predictors to assess whether the corporates (debtors) would default. As for the benchmark
models, we select previously commonly used models: logistic regression, support vector
machine (SVM), neural network, random forest, and XGBoost.

Our paper has the following contributions. First, this paper proposes a novel model
CT-XGBoost, which is a modified version of XGBoost that attempts to solve the class-
imbalance problem in credit default data. Over the years, the class imbalance in the credit
default dataset has been a crucial problem, where the number of default classes is much
smaller than that of non-default classes. Without considering the class-imbalance problem,
the classification model may be overwhelmed by the majority class and neglect the minority
class. Nevertheless, previous studies on class imbalance problems seldom combine the
ensemble model with multiple algorithm-level methods. We modified the XGBoost model
with both cost-sensitive strategy and threshold method and propose the new model CT-
XGBoost. Compared with the conventional intelligent model, our proposed CT-XGBoost
model has better performance in default prediction. Second, we also contribute to the
interpretability of the credit default prediction by identifying the top 20 most important
financial variables by measuring the variables’ ability to discriminate between the default
and non-default samples. In practice, a good default prediction model requires not only
strong classification ability, but also acceptable interpretability. Considering that research
has mainly focused on the accuracy of the model but ignores the interpretability, we
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calculated the importance values of financial features by measuring the contributions of
these features to classification. The more critical a financial feature is, the more attention it
should be paid when evaluating credit default probabilities.

2. Literature Review

In this paper, the primary purpose is credit default prediction with data suffering from
the class imbalance problem, and two main fields of literature are involved: credit default
prediction models and techniques for solving the class imbalance problem. Representative
studies are presented in the following.

2.1. Credit Default Prediction Models

In the field of corporate credit default prediction, statistical methods are first employed.
Date back to the work of Beaver [21], the univariate discriminant model was used for default
prediction, and the results demonstrate that the univariate linear model can utilize financial
information to forecast default effectively. The multivariate discriminant model was firstly
used by Altman [22] to construct the famous Z-score model, and the result shows that
its default predictive power is significantly better than that of single variable analysis.
The logit regression model, which can transform the dependent variable of corporate
default into a continuous one by logistic function, was more rational than the multivariate
discriminant model for default prediction [23]. Nonetheless, it requires that there is no
linear functional relationship among the predictor variables, which may cause a multi-
collinearity problem [24]. To alleviate this problem, Serrano-Cinca and Gutiérrez-Nieto [25]
proposed partial least square discriminant analysis (PLS-DA) for default prediction, which
is not affected by multi-collinearity. Using classical statistical methods, researchers can
identify the determinants most relevant to default prediction, which can help test default
theories and guide regulations of credit markets.

A significant strand of literature has found that intelligent models in credit default
prediction models are efficient in predicting corporate defaulting [20,26–28]. Without the
strict assumptions of the traditional statistical models (e.g., independence and normality
among predictor variables), intelligent techniques can automatically derive knowledge
from training data [28–30]. In addition, the intelligent methods permit non-linear decision
boundaries (e.g., neural networks and SVM with non-linear kernels), which provide better
model flexibility and predictive performance. In general, relative to statistic models, the
corporate default prediction performance of intelligent techniques is better. For instance,
Kim et al. [20] found that the neural network model outperforms logit regression. Similarly,
Lahmiri [31] documented that SVM is significantly more accurate than a linear discriminant
analysis classifier.

A trend in recent literature is adopting ensemble learning, which has achieved notable
success in real-world applications. Differently from the mechanisms of conventional
machine learning methods (such as SVM), which consist of a single estimator, ensemble
learning methods combine a number of base estimators to get better generalization ability
and robustness. In the work of Moscatelli et al. [27], ensemble models, including random
forest and gradient boosted trees, were applied to predict corporate defaults, and the
results showed that ensemble models perform better than models with a single estimator.
Compared with neural networks, the ensemble model named AdaBoost had better default
prediction performance in both cross-validation and test set estimation of the prediction
error [32].

Among the commonly used ensemble models, the decision-tree-based XGBoost re-
cently spread rapidly and is widely utilized in the field of credit default risk assess-
ment [10,33,34], achieving satisfactory prediction results with its strong learning ability. For
instance, in the study of Wang et al. [35], the XGBoost model was used to predict the default
risk of the Chinese credit bond market, and the results show that the XGBoost model can
accurately predict the default cases. For the personal credit risk evaluation, Li et al. [36]
compared XGBoost to logistic regression, decision tree, and random forest. Based on the
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dataset from the Lending Club Platform, the XGBoost model has better performance in
both feature selection and classification.

2.2. Techniques for Solving the Class-Imbalance Problem

While previous studies could effectively predict corporate default by intelligent meth-
ods, an important problem that cannot be ignored is the class-imbalance in the default
database. In the real world, the default class includes a small number of data points, and
the non-default class includes a large number of data points. After ignoring the class-
imbalance problem, the learning algorithms or constructed models for default prediction
can be overwhelmed by the majority non-default class and ignore the minority default
class [7]. As the primary purpose of the default predicting model is to identify default
corporates among all the corporates, the class-imbalance problem cannot be ignored.

To overcome the limitation of the class-imbalance problem, various imbalance process-
ing approaches have been proposed. Such approaches can be generally divided into three
categories: data-level methods, algorithmic-level methods, and hybrid methods [14].

Data-level methods focus on processing the imbalanced dataset before the model’s
construction. As the stage of data preprocessing and the stage of model training can be
independent, the data preprocessing methods resample the imbalanced training dataset
before training the model. To create a balanced dataset, the original imbalanced dataset can
be resampled by (1) oversampling the minority class, (2) under-sampling the majority class,
or (3) a hybrid of the two methods [6]. A widely used data-level method is the synthetic
minority over-sampling technique (SMOTE) [9]. SMOTE generates new artificial minority
cases by inserting them between existing minority cases and their neighbors. In credit
default prediction tasks, after preprocessing the imbalanced dataset with SMOTE, the
model based on the processed balanced training dataset can perform better [10,37]. The
simplest but most effective under-sampling method is random under-sampling (RUS) [38],
which involves the random elimination of majority class samples and helps improve the
performance of assessing credit risk [39]. Moreover, hybrid data preprocessing methods,
which combine the oversampling and undersample methods, were suggested to be helpful
by recent studies [14].

Algorithmic-level methods involve modifying existing learning algorithms or propos-
ing novel ones to directly solve the class-imbalance problem of the dataset; such algorithms
usually outperform previously existing algorithms [6]. Commonly used approaches in the
literature include (1) the cost-sensitive method, (2) the threshold method, and (3) one-class
learning. The most commonly used is the cost-sensitive method, which deals to the nature
of class imbalance by defining different misclassification costs for different classes [14]. The
threshold method focuses on setting different threshold values for different classes in the
model learning stage [13]. The main idea of the one-class method is to train the classifier
from a training set that contains only the minority class [12].

Recently, hybrid methods have gained more popularity in learning from imbalanced
datasets because of their superior performance [6]. The main idea of hybrid methods is
that ensemble methods, or individual classifiers, are coupled with data or algorithm-level
approaches [16], such as balanced random forests, which apply a random under-sampling
strategy to the majority class to create a balanced class dataset before training an ensemble
classifier with decision trees as base models [11]. SMOTEBoost combines the SMOTE
oversampling approach and a rule-based learner, which is a boosting procedure [40]. Simi-
larly, RUSBoost, which combines the random under-sampling approach with a boosting
procedure, performs simpler, faster, and less complexly than SMOTEBoost during the
model training [15]. Moreover, several studies combined the cost-sensitive method with
boosting models where different classes are assigned different misclassification costs [41].

In summary, previous literature on class imbalance learning has proposed various
methods, and hybrid methods have better performance. However, previous studies on
hybrid methods mainly focus on combining ensemble learners with data-level methods,
and hybridization of ensemble models with algorithm-level approaches has rarely been
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considered. Compared with the data-level methods, the algorithmic-level methods may
be more suitable to be combined with ensemble models for the class imbalance in credit
default data. The main two reasons are: (1) First, the data-level methods can alter the shape
of the original data, which may impact the efficiency of the model. The oversampling
strategy may increase the possibility of overfitting during the model learning process, and
the undersampling strategy might eliminate some valuable data present in the majority
class [16]. (2) Second, relative to data-level methods, algorithm-level methods are more
straightforward and efficient in computation, making them more appropriate for big-data
streams [14].

Thus, in this paper, we propose a novel algorithm that combines the algorithm-level
methods and the popular ensemble model XGBoost. The main reason to select XGBoost
is the superior performance of XGBoost in the credit default prediction task [17]. As for
the selection of algorithm-level methods, we selected the commonly used cost-sensitive
methods to combine with XGBoost. This is because the cost-sensitive method is widespread
in financial management, where businesses are usually driven by profit but not accuracy [6].
Moreover, we added the threshold method into the new model, where a more rational
threshold is set to classify the samples into two groups. Details of modification will be
explained in the next section.

3. Methods

In this section, we present the novel CT-XGBoost prediction model with cost-sensitive
and threshold methods. Figure 1 shows how XGBoost is modified into CT-XGBoost in
this paper. In XGBoost, the misclassification costs for both classes are the same, and the
threshold is simply set as 0.5. Thus, we improved XGBoost, turning it into CT-XGBoost, by
solving two challenges: How to assign misclassification costs for the two classes properly.
How do you set the threshold rationally? In this paper, two corresponding strategies
(cost-sensitive strategy and threshold method) are adopted to overcome the challenges,
misclassification cost is determined based on the imbalance ratio of the dataset, and a
threshold is set considering the number of different classes samples. Then, XGBoost is
modified into CT-XGBoost systematically.

Figure 1. The process of modifying XGBoost into CT-XGBoost.
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In order to introduce CT-XGBoost logically, we first explain the theory of XGBoost
and then illustrate how we modify XGBoost into CT-XGBoost. After that, the commonly
used default prediction models are introduced, which are used to compare with our
proposed model. Lastly, performance evaluation methods of the credit default prediction
are explained.

3.1. XGBoost

XGBoost [19], the full name of which is extreme gradient boost, is a distributed and
efficient implementation of gradient boost tree. It is an improved model based on the
gradient boosting decision tree (GBDT), which belongs to the family of boosting methods.
The chief idea of XGBoost is to incorporate a series of weak learners into a strong learning
algorithm [2]. By adding new weak learners, the probability of making mistakes is reduced
continuously, and the final output value is the sum of the results of many weak learners. To
better understand the mechanism of XGBoost, the prediction function, objective function,
and optimization process are introduced as follows.

Considering a dataset with n substances and m features, where D = {(xi, yi)|xi ∈ Rm,
yi ∈ R} and xi = {xi1, xi2, . . . , xim|i = 1, 2, . . . , n}. The basic idea of XGboost is to iteratively
construct t weak estimators to predict the output yi by the predictor xi.

ŷ0
i = 0

ŷ1
i = f1(xi) = ŷ0

i + f1(xi)

ŷ2
i = f1(xi) + f2(xi) = ŷ1

i + f2(xi)

. . .

ŷt
i =

t
∑

k=1
fk(xi) = ŷt−1

i + ft(xi)

(1)

Each weak estimator fk(xi), k = 1, 2, . . . t is generated from the iteration of the gradient
boosting algorithm, and the output value ŷt

i is the summation of the output value of
previous iteration ŷt−1

i and the present result ft(xi). To learn the set of estimators, the
objective function that needs to be minimized can be expressed as:

Lt(y, ŷt) = ∑n
i=1 l

(
yi, ŷt

i
)
+ ∑t

k=1 Ω( fk), (2)

where l
(
yi, ŷt

i
)

is the loss function that measures the difference between the target value
and the prediction value ŷt

i . The second term is the regularization of the model, which is
used to penalize the complexity of the entire model, and it can be calculated as follows:

Ω( fk) = γTk +
1
2

λ ∑Tk
j=1 w2

kj, (3)

Here, Tk represents the number of leaf nodes in the k−th base tree estimator, and γ is
the penalty parameter for the number of leaf nodes. Meanwhile, wkj represents the weight
of the j−th leaf node in the base tree estimator and λ is the penalty parameter for the leaf
node weight.

Up to now, we have a basic idea about the chief goal of XGBoost [19]. Next, we will
introduce the process of how to optimize the objective. First, considering the training
process is an additive consideration, as in Equation (1), ft is greedily added to minimize
the objective, when predicting the output value ŷt at the t-th iteration.

Lt =
n

∑
i=1

l
(

yi, ŷt−1
i + ft(xi)

)
+ Ω( ft) (4)
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Using the second gradient approximation of the Taylor explosion, Equation (4) can be
expanded as follows.

Lt ∼=
n

∑
i=1

[
l(yi, ŷt−1

i ) + gi ft(xi) +
1
2

hi f 2
t (xi)

]
+ Ω( fk) (5)

where gi and hi indicate first and second gradient statistics. By removing the constant term
l(yi, ŷt−1

i ), we can obtain the simplified objective as follows.

L̃t ∼=
n

∑
i=1

[
gi ft(xi) +

1
2

hi f 2
t (xi)

]
+ Ω( fk) (6)

Define the set of samples of the j leaf node as Ii = {i|q(xi) = j} and then expand the
regularization term.

L̃t ∼=
n
∑

i=1

[
gi ft(xi) +

1
2 hi f 2

t (xi)
]
+ γTt +

1
2 λ

Tt
∑

j=1
w2

tj

=
Tt
∑

j=1

[
Gjwtj +

1
2
(

Hj + λ
)
w2

tj

]
+ γTt

(7)

where Gj = ∑i∈Ij
gi and Hj = ∑i∈Ij

hi. Then, the optimal weight w∗
j of leaf j can be

computed by
w∗

j = −Gj Hj + λ (8)

and we get the corresponding optimal objective value by substituting − Gj
Hj+λ for w∗

j in
Equation (8).

L̃t(q) = −1
2

Tt

∑
j=1

G2
j

Hj + λ
+ γTt (9)

where L̃t(q) is used as the assessment function to evaluate the quality of the tree structure
q(x). Specifically, the smaller the value of L̃t(q), the higher quality of the tree structure.

So far, the model with the T base estimator has been basically constructed and the
prediction value of XGBoost is ŷt

i , which can represent the default probability of the i-th
corporate in this paper.

3.2. CT-XGBoost

XGBoost is a strong approach for various tasks. Nonetheless, the efficiency of the
model can be limited due to the class-imbalance problem in the credit default data. Thus, it
may be a good idea to modify XGBoost to adapt to the class imbalance of the credit default
dataset. Assume the credit default dataset for the training model contains N samples in
total, where the number of credit default samples is Nd and the number of non-default
samples is Nn. In the real world, the number of default samples is hugely greater than
the number of non-default samples, which causes the class-imbalance problem with the
imbalance ratio defined as Nn

Nd
. To solve the problem, we proposed a novel CT-XGBosot,

which is modified from the XGBoost model.
Specifically, we modified the XGBoost in two aspects: (1) The cost-sensitive strategy

is employed to assign more misclassification costs for default class samples relative to
non-default class samples. During the calculation of the loss function, a novel parameter,
called the penalty ratio in this paper, is added to control the ratio of misclassification costs
for different classes. (2) We set a more reasonable threshold considering the class imbalance,
which is used to classify the samples into two groups based on the predicting default
probabilities. The corporates with default probabilities above the threshold are classified as
the default group, and those with default probabilities below the threshold are classified as
the non-default group. The modification will be explained in detail as follows.
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3.2.1. Cost-Sensitive Strategy

In the process of default prediction model training, an important step is to calculate
the objective function. Equation (2) is the objective function of XGBoost. In Equation (2),
the first term ∑n

i=1 l
(
yi, ŷt

i
)

is the loss function, which measures the disparity between the
prediction results and the true results [23].

However, the importance of each sample to the loss function is the same. The mis-
classification costs of default class and non-default class samples are equal. Due to the
class imbalance problem where the non-default samples are the majority, the contribution
of non-default samples to the loss may be larger than that of default samples. The model
may wrongly take the chief aim of correctly classifying the non-default samples. Thus, it
is important to modify XGBoost by assigning more misclassification costs to default class
samples in the training process.

In CT-XGBoost, to increase the misclassification cost of default class samples, we
modify the loss function ∑n

i=1 l
(
yi, ŷt

i
)

as follows.

n

∑
i=1

[yi ∗ Cd ∗ l(yi, ŷt
i) + (1 − yi) ∗ Cn ∗ l(yi, ŷt

i)] (10)

where Cd, Cn are the weights of misclassification costs for default and non-default class
samples. Since the magnitudes of Cd, Cn do not influence the training process, we define a
new parameter p, called penalty ratio, which equals to Cd

Cn
. In this paper, we set penalty

ratio p as the dataset imbalance ratio Nn
Nd

. Then, the loss contributed by default samples will
be larger than before.

3.2.2. Threshold Method

Considering the default prediction is essentially a binary classification, a threshold is
crucial to be set to determine the predicted default probability should be divided into which
category. Corporates with default probabilities higher than the threshold are regarded as
default class, and those with default probabilities lower than the threshold are regarded as
the non-default class.

However, most of the previous prediction methods simply set 0.5 as the threshold,
which is not suitable for imbalanced data [42]. For instance, if the default probability
generated by the prediction model is a uniform distribution of [0, 1] and the threshold is set
as 0.5, half of the samples will be classified as a default class, which results in many non-
default samples being misclassified. Thus, how to set a rational threshold is an important
problem for default prediction.

In the CT-XGBoost model, we set a rational threshold which equals the Nd-th highest
default probability in the training dataset. After the default probability of the testing dataset
is predicted, corporates with default probabilities higher than the threshold are classified
as default corporates, and those with default probabilities lower than the threshold are
classified as non-default corporates.

3.3. Benchmark Prediction Models

For the performance evaluation of our proposed model, we compared its default
predictive ability to those of other models widely used in the literature. Thus, we con-
structed a statistical method with logit regression, and intelligent techniques, including
support vector machine and neural network. Moreover, ensemble models, random forest
and XGBoost [42], were also constructed as benchmark models. The following content will
simply introduce these benchmark models, except XGBoost, which has been explained in
Section 3.1.

3.3.1. Logistic Regression

Logistic regression is one of the most popular models in credit default prediction due
to its simplicity and interpretability [3]. Logistic regression overcomes the limitation of
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the linear regression model, which requires that the explained variables obey a normal
distribution and be continuous. To design a failure prediction model, this method aims to
estimate the probability of corporate failure based on the explanatory variables. The model
can be expressed as follows:

P(Y = 1|X) =
eβ0+β1X

1 + eβ0+β1X (11)

where X is the vector of explanatory variables, Y is the indicator of corporate failure, β1 is
a vector of coefficients, and β0 is a scale parameter. The parameters β0, β1 are estimated
by the maximum likelihood method. With this method, we can forecast corporate failure
by comparing the possibility to a threshold and further interpret the variables by the
coefficients of each variable. To prevent overfitting, we apply l1 and l2 regularization.

3.3.2. Support Vector Machine

As a distribution-free and robust machine learning method, SVM has been commonly
applied in the domain of credit default risk assessment [31]. In brief, SVM is a general-
ized linear model which constructs an optimal hyperplane as a decision boundary. The
decision boundary ensures the accuracy of correct classification while maximizing the
separation between the boundary and the closest samples. The samples nearest to the
optimal hyperplane are called support vectors [3]. All other training samples are irrelevant
for determining the optimal hyperplane. The optimized strategy of SVM is to address a con-
vex quadratic programming problem. To separate samples with non-linear relationships,
non-linear kernel functions are adopted to project input vectors into a high-dimensional
vector space in which the samples become more separable [42]. To avoid overfitting, we
adjust the penalty for misclassification.

3.3.3. Neural Network

Neural network, also called deep learning, is one of the most popular artificial in-
telligence techniques and has also been commonly used in the field of corporate failure
prediction. This model operates analogously to human neural processing and consists
of numerous neurons. When tacking the binary classification tasks, the neural network
typically includes three layers of network: (1) the input layer consists of as many neurons
as the dimensionality of input variables, (2) hidden layers consist of a given number of
neurons that is set by user, and (3) the output layer consists of one neuron which is used
to divide the input sample [5]. The neurons in a particular layer are linked to both the
preceding and the following layer. For every single neuron, the corresponding value is
calculated by the sum of its inputs with weights and a given non-linear function. During
the training procedure, the weight parameters in a neural network are adjusted step by
step by back-propagation to narrow the differences between outputs and true values [5].
When the epoch set beforehand arrives, the training process stops and the output value
is divided into a specific category according to a threshold. For the overfitting problem,
we employ the dropout method, which randomly switches off portions of the connection
during the training process.

3.3.4. Random Forest

Random forest is a supervised machine learning technique that consists of multiple
decision trees. It is a modification of the bagging ensemble learning approach, and the
classification process is determined by the integration of the categories output by a series of
individual trees. In this research, random forest built a number of decision tree classifiers
that were trained step by step on bootstrap replicates of the credit default dataset through
randomly selecting explanatory variables. According to the majority voting result from the
decision trees, the model provides the classification of observations. Moreover, the model
can identify the importance of each variable based on its information gain. Importantly, to
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obtain the generalization performance, we adopted the commonly used method in decision
trees by controlling the number of trees in the random forest.

3.4. Performance Evaluation for Credit Default Prediction

To assess the out-of-sample performances of credit default prediction models, we
adopted the split methods used by previous research [5]. We randomly divided the dataset
into a training dataset and test dataset in an 80% to 20% ratio. Due to the class imbalance of
the dataset in which non-default samples represent the majority group, we used a stratified
sampling method for splitting to ensure the same population structure of training data and
testing data.

Considering that credit default prediction is a binary classification problem, we can
evaluate the out-of-sample performance via the metrics for classification models. One
common metric is overall accuracy, defined as follows:

Overall accuracy =
TP + TN

TP + FN + FP + TN
(12)

where TP (true positive) is the number of default companies which are correctly classified
as default; FN (false negative) is the number of default companies which are wrongly
classified as non-default; TN (true negative) is the number of non-default companies which
are correctly classified as non-default; and FP (false positive) is the number of non-default
companies that are wrongly classified as default.

Given the class-imbalance problem for the credit default prediction, the prediction
performances of the two classes needed to be evaluated separately. For this purpose, type
I accuracy and type II accuracy were taken into account. Type I accuracy (or sensitivity) is
defined as the proportion of default samples predicted by the model correctly, and type
II accuracy (or specificity) is defined as the proportion of non-default samples correctly
predicted by the model.

Type I accuracy =
TP

TP + FN
(13)

Type I I accuracy =
TN

TN + FP
(14)

Moreover, the area under the receiver operating characteristic curve (AUC) is a popular
estimation of a classification model’s overall performance [5]. The ROC curve is a graph
consisting of two-dimensionality, on which one axis is the true positive rate (sensitivity)
and the other axis is the false positive rate (1-specificity). While changing the default
probability threshold, the curve would plot each point representing the true positive rate
and false positive rate. For the reason that AUC is a part of the unit square area, its value
shall always range from 0 to 1.0 [37]. In addition, AUC should be more than 0.5 for the
model to be realistic, and the closer it is to 1, the better the prediction performance of the
default prediction model.

4. Empirical Results

4.1. Data

We used a database of bank-loan defaults of firms in the west region of China for
2017–2021. The database was sourced from a bank in Xinjiang province of China. The
database consists of the loan information and the financial statements of firms that are
the debtors of the bank. According to the Industrial classification for national economic
activities in China (GB/T 4754), we selected the companies in the energy sector. A firm is
defined as defaulting if it fails to pay the loan periodically. The remaining companies are
defined as non-default. The number of default firms is 205, and the number of non-default
firms is 33, making the imbalance ratio about 6.21.

In determining the variables used to assess credit default risk, the majority of aca-
demic studies use financial variables as predictors of the default prediction models [43,44].
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For instance, representative work by Beaver [21] constructed 30 financial variables from
the financial statement, and the results demonstrated that the financial variables could
provide a superior ability to predict corporate default. Thus, in this paper, we construct
a comprehensive list of financial variables, including all accounting items in the financial
statements. The reason for the selection of all accounting items but not a portion of ac-
counting items was to avoid eliminating potentially useful information after discarding the
unselected variables.

4.2. Credit Default Prediction Performance

In this section, we present a comparative analysis between our proposed CT-XGBoost
model and other commonly used models, including logistic regression, SVM, neural net-
work, random forest, and XGBoost. Table 1 summarizes the average prediction results
of different models with ten times 5-fold cross-validation. Among conventional models,
XGBoost showed superior performance with an AUC value of 95.44%, and its other eval-
uation results are also superior. Similarly, Zhang and Chen [10] found that, compared
with logistic regression, SVM, random forest, and et al., XGBoost achieves better credit
default prediction performance: 91.4% AUC. Moreover, Wang et al. [35] constructed the
XGBoost model for default prediction and found that the prediction performance in terms
of AUC was 88.07%. By comparison, the credit default prediction performance in our study
is better than in previous studies. The main reason for the difference between the results of
this study and previous studies is the different default datasets used. We focused on the
credit default companies in the energy industry. Overall, these results demonstrate that the
XGBoost model is an efficient algorithm for credit default prediction, and it is rational to
select XGBoost as the model to be modified for its superior performance.

Table 1. Credit default prediction performance comparison analysis of different prediction models.

Models
Logistic

Regression
SVM

Neural
Network

Random
Forest

XGBoost CT-XGBoost

Overall accuracy (%) 94.34 93.05 94.17 94.17 94.54 89.58
Type I accuracy (%) 65.25 68.37 54.29 65.71 71.07 91.43
Type II accuracy (%) 96.36 98.24 98.03 98.53 99.02 89.27

AUC (%) 92.86 94.36 90.35 94.70 95.44 96.38

Note: The number in bold-face indicates the best performance for each metric.

It is notable that the chief aim of credit default prediction is to accurately identify as
many default samples as possible without misclassifying too many non-default samples.
However, the prediction performance of XGBoost has not met our expectations, with the
type I accuracy value of only 71.07%, whereas the type II accuracy value is 99.02%. The
reason for this phenomenon is the class imbalance problem, which causes the prediction
model to be overwhelmed by the majority of non-default samples. Thus, this study
proposes a novel CT-XGBoost to solve the class imbalance problem.

First, comparing the type I, type II, and overall accuracy, we can see that the CT-
XGBoost model is more rational than other conventional models. We can see that the
type I accuracy value of CT-XGBoost is 91.43%, which is 20.36% higher than that of the
representative XGBoost model. The result implies that our proposed model has a superior
ability to identify default class samples. Second, while the type II and overall accuracy
values of our proposed model are lower than those of other models, the accuracy values
of sacrifice are 9.75% and 4.96%, respectively, which are lower than the benefit in type I
accuracy. In addition, the main aim of credit default prediction is to accurately identify the
default class samples. Finally, as for the AUC value, which can evaluate the comprehensive
performance of the prediction model, we can notice that our proposed model is better than
benchmark models. The average AUC value of CT-XGBoost was 96.38%, which is better
than the AUC values of other default prediction models, which ranged from 90.35% to
95.44%. These results suggest that our proposed model, which modifies the XGBoost model
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with cost-sensitive and threshold methods, outperforms other benchmark models when
dealing with the class-imbalance problem.

4.3. The Importance of Predictor

A practical default prediction model should have not only good accuracy, but also
a clear, interpretable result. To make the model acceptable for users, transparency in the
decision process is indispensable. For instance, according to the Equal Credit Opportunity
Act of the U.S., the creditors are mandated to provide applicants, upon request, with specific
reasons underlying credit denial decisions. In previous studies [35,36], some methods are
proposed to identify the significant performance drivers of the XGBoost model in default
prediction. In this study, we applied the “Feature Importance” function to estimate the
importance of the financial features used in our proposed CT-XGBoost model.

Before introducing the “Feature Importance” function, the splitting mode of leaf nodes
in CT-XGBoost needs to be explained. First, a portion of features is selected as a candidate
set. Then, determine a split point of the leaf node in the tree by using a greedy algorithm
and calculating the Gini score to determine the best splitting point. Define IL and IR as the
sample sets of leaf nodes and right nodes after splitting. Assume I = IL + IR; then, the
objective function value L̃t

no−split before splitting and the objective function value L̃t
split can

be obtained as follows:

L̃t
no−split = −1

2
(GL + GR)

2

HL + HR + λ
+ γTno−split (15)

L̃t
split = −1

2

[
G2

L
HL + λ

+
G2

R
HR + λ

]
+ γTsplit (16)

where G, H are the first derivatives and the second derivatives after splitting, and subscripts
L, R indicate the left and the right node. Then, loss Gain value for leaf nodes in the t-th
tree can be calculated, and the node with the highest Gain value is determined as the
splitting point.

Gain =
1
2

[
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ

]
− γ (17)

The Gain value can be used to estimate the importance of features, which measures
the ability to classify the default and non-default samples. Considering that CT-XGBoost is
a model where a number of trees should be simultaneously considered, we calculated the
“Feature Importance” function for the r-th feature as follows:

Importancer =
∑t

k=1 Gaink
r

∑m
r=1

(
∑t

k=1 Gaink
r
) (18)

Gaink
r is the Gain value for the r-th feature in the k-th tree, t is the number of trees, and

m is the number of features. So far, the “Feature Importance” function has been explained,
and the importance of financial variables can be calculated with Equation (15).

Table 2 represents the feature importance results of the top 20 most important financial
variables, ranked based on the feature importance values from highest to lowest. Starting
with the most important, the ten features that contribute to the CT-XGBoost model’s
credit default prediction ability are: (1) other receivables, (2) sales expense, (3) long-term
deferred, (4) non-operating income, (5) accounts receivable, (6) taxes, (7) prepaid accounts,
(8) liabilities and owner’s equity, (9) capital reserves, and (10) cash flow generated from
operating activities net amount. The higher the feature’s importance, the stronger ability of
the financial variable to classify the default and non-default samples. The results may be of
great worth for practitioners, as they can help explain why an applicant is classified as a
credit default class.
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Table 2. Feature importance of the top 20 important financial variables in the CT-XGBoost model.

Rank Financial Features Feature Importance

1 Other receivables 0.237242
2 Sales expense 0.080695
3 Long-term deferred 0.051185
4 Non-operating income 0.048665
5 Long-term equity investment 0.044733
6 Accounts receivable 0.038403
7 Taxes 0.034495
8 Prepaid accounts 0.034344
9 Liabilities and owners’ equity 0.034228

10 Capital reserves 0.032203
11 Cash flow generated from operating activities net amount 0.030894
12 Intangible assets 0.026951
13 Operating costs 0.025119
14 Inventories 0.024920
15 Construction work in process 0.023612
16 Net increase in cash and cash equivalents 0.020937
17 Cash flow generated from investing activities net amount 0.019130
18 Advance from customers 0.017562
19 Operating revenue 0.016754
20 Bill receivable 0.015882

4.4. The Influence of the Parameter Setting in CT-XGBoost

As mentioned in Section 3.2, our proposed CT-XGBoost model has modifications in the
form of two algorithm-level methods: the cost-sensitive strategy and the threshold method.
The parameter in the cost-sensitive strategy is the penalty ratio, which can assign different
misclassification costs to different class samples, and the parameter in the threshold method
is the threshold value, which can be used to classify the default probabilities into two classes.
Considering that these two parameters can influence the performance of CT-XGBoost, we
further analyzed how the credit default performance changes with different parameters
and found the best parameter settings.

4.4.1. Parameter Setting for Cost-Sensitive Strategy

The chief aim of the cost-sensitive strategy in the CT-XGBoost model is to assign dif-
ferent misclassification costs to different class samples. The parameter for the cost-sensitive
strategy is the penalty ratio p, which is the misclassification cost ratio between the default
class and the non-default class. In Section 3.2.1, we set parameter p as Nn

Nd
, where Nn, Nd are

the numbers of non-default and default samples in the training dataset, respectively. The
results in Section 4.2 demonstrate that a cost-sensitive strategy in CT-XGBoost is helpful
for class imbalance credit default prediction. In this section, we investigate the influence
of penalty ratio p in the cost-sensitive strategy on the prediction performance of the CT-
XGBoost model. We set the penalty ratio p to range from 1 to 10 with increments of 1, and
also 6.21 (the imbalance ratio of the dataset). The higher p is, the more misclassification
costs are assigned to the default class samples. For fixing the parameters of the threshold
method to those in Section 3.3.2, the figure shows the results.

First, we can notice that there are fluctuations in the prediction performance at different
values of penalty ratio p. As the value of p increases from 1 to 10, the curves of the four
performance metrics changes with similar trends, which are roughly upward and then
downward. The results suggest that the default prediction performance can be better when
more misclassification costs are assigned to default class samples; at the same time, high
misclassification costs may not benefit the prediction model. This means that an appreciable
penalty ratio p is important for default prediction. As shown by the dotted line in Figure 2,
the prediction performance of the CT-XGBoost model was best when the penalty ratio
p was set as 6.21, which is the imbalance ratio in the training dataset. Thus, it is crucial
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to consider the class distribution in the dataset when setting the penalty ratio p for the
cost-sensitive method.

Figure 2. Performance of CT-XGBoost with different parameters for the cost-sensitive strategy.

4.4.2. Parameter Setting for Threshold Method

The role of threshold setting in CT-XGBoost is to classify samples with the predicting
default probabilities into two groups. The sample is considered as default when the default
probability is higher than the threshold, and non-default in reverse. As mentioned in
Section 3.2.2, we set the threshold value as the default probability value of the Nd-th sample
in the training dataset. In practice, the threshold determination is useful for controlling
credit risk, and the creditors, such as banks, can control the number of debtors by adjusting
the threshold for deciding whether to approve a loan. A higher threshold value means
more applicants will be considered as non-default and approved for a loan. Meanwhile,
the creditors will face higher credit risk. Therefore, investigating the influence of threshold
setting on the default prediction performance is very important. In this studies, we varied
the threshold value according to the predicting probabilities of samples in the training
dataset. For fixing the penalty ratio p to the optimal value of 6.21, the results are presented
in Figure 3.

Figure 3. Performance of CT-XGBoost with different parameters for threshold method. (The AUC
performance is not shown because its value was unchanged with different thresholds).
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We can see that as the threshold increases from 0 to 1, the curve of type I accuracy shows
a downward trend, and the curves of type II and overall accuracy show similar upward
trends. These results demonstrate that the prediction performance can be significantly
influenced by threshold setting. When setting a lower threshold value, more potential
credit defaults can be identified, but more true non-default cases can be mis-considered as
default. In addition, the three curves in Figure 3 intersect when the threshold value is 0.74;
default and non-default samples can be identified equally accurately. When the threshold
value increases based on 0.74, the type I accuracy decreases rapidly, but the type II accuracy
increases slightly. Thus, it is proper to set the threshold to around 0.74 in this case.

Moreover, the creditor can find the optimal threshold value based on its credit risk
tolerance ability. When the creditor has weak credit risk tolerance ability, the threshold can
be set low to obtain a high type I accuracy, which means the majority of potential default
applicants are identified. However, we should notice that the type II accuracy can be low
caused by a low threshold, which means a large number of risk-free clients would be turned
away. To avoid losing huge benefits, assuming that the creditor can tolerate about 10% of
default cases, the proper type II accuracy threshold is about 0.74, which means that about
89% of potential credit default applicants can be accurately identified. At the same time,
the type II accuracy can be limited to 89%, which means that the creditor would only lose
about 11% of free-risk clients.

5. Conclusions

In order to accurately predict the credit defaulting of energy corporates, the class-
imbalance problem in the default dataset cannot be ignored. To tackle the problem, this
paper proposed a novel and efficient default prediction model, CT-XGBoost, which was
modified from the strong classification model XGBoost with the cost-sensitive strategy
and threshold method. In the empirical analysis, we constructed a corporate credit de-
fault dataset from a commercial bank in China, which suffers from the class-imbalance
problem. In order to evaluate the performance of our proposed CT-XGBoost, we selected
five commonly used credit default prediction models as benchmark models, including
logistic regression, SVM, neural network, random forest, and XGBoost. The empirical
results demonstrate that our proposed CT-XGBoost outperforms the benchmark models.
Therefore, the novel model CT-XGBoost can be helpful to solve the class-imbalance problem
and assess the credit risk of energy companies efficiently.

We further analyzed the feature importance of the input financial variables, in order
to identify the significant drivers which contribute to identifying the corporate defaults
in the energy industry. The results show the top 10 most important features are: (1) other
receivables, (2) sales expense, (3) long-term deferred, (4) non-operating income, (5) accounts
receivable, (6) taxes, (7) prepaid accounts, (8) liabilities and owner’s equity, (9) capital
reserves, and (10) cash flow generated from operating activities’ net amount. In practice,
these financial variables in the company’s financial statements might be the key information
for creditors to estimate the credit risk in the energy industry.

Moreover, we conducted sensitivity analysis to investigate how the different parameter
settings in CT-XGBoost influence the prediction performance. The results show that the
parameter in the cost-sensitive strategy, which represents the attention focused on the
minority default companies, should be determined according to the actual ratio between
the number of credit default and non-default companies. In addition, as the threshold value
in the threshold method is set lower, type I accuracy decreases and type II accuracy increases.
In practice, the threshold value represents the percentage of loan applications approved by
creditors. According to their risk tolerance, the creditors can find the optimal threshold,
which not only can control real losses caused by credit default but also the opportunity cost
of rejecting too many loan applications.

In general, the novel model proposed in this study can efficiently estimate the credit
risk of bank loans for energy companies, which is helpful for creditors who are making
decisions. According to the results, this study proposes some recommendations: (1) As the
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crucial industry for economic development, energy companies should make the most of
loan funds and avoid credit risk arising from cash flow problems. Meanwhile, energy com-
panies should disclose more transparent information in timely manner, to help investors
comprehensively understand the company’s operation and accurately assess the company’s
credit risk. (2) In the credit loan market, the credit rating institutions should improve the
credit rating system, which not only can efficiently assess the credit default probability
but also can provide explainable reasons to ensure the reliability of the system. (3) The
government and regulators should establish sound laws and regulations to promote a
healthy development environment for the energy industry, including policy-based financial
support, financial subsidies, fair credit law, etc.

Nonetheless, our research has several limitations which could promote future research.
First, the class-imbalanced problem not only exists for credit default but also for financial
fraud, as the fraudsters make up a minority of whole samples. Thus, it would be interesting
to investigate whether our proposed model can help solve the class-imbalance problem in
the default identification task. Second, in this paper, the information used to predict credit
default is the financial variables of corporates, which is in a structured form. Future research
can extend the horizons to investigate the default predicting ability of other unstructured
information, such as news reports and meeting audio.
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Abstract: The purpose of this study is to explore the impact of pollution control on industrial
production efficiency in 31 provinces and cities in the Yellow River and Non-Yellow River basins in
China from 2013 to 2017, using the methods of the directional distance function (hereinafter referred
to as DDF) and the technology gap ratio (hereinafter referred to as TGR) in parallel, while taking the
industrial production sector (labor force, total capital formation, energy consumption and industrial
water consumption) and the pollution control sector (wastewater treatment funds and waste gas
treatment funds) as input variables. Undesirable outputs (total wastewater discharge, lead, SO2

and smoke and dust in wastewater) and an ideal output variable (industrial output value) are taken
as output variables. It is found that the total efficiency of DDF in the Non-Yellow River Basin is
0.9793, which is slightly better than 0.9688 in the Yellow River Basin. Among the 17 provinces
and cities with a total efficiency of 1, only Shandong and Sichuan are located in the Yellow River
Basin. The TGR values of 31 provinces, cities and administrative regions are less than 1, and the
average TGR value of the Yellow River Basin is 0.3825, which is lower than the average TGR value of
the Non-Yellow River Basin of 0.5234. We can start by improving the allocation of manpower and
capital, implementing the use of pollution prevention and control funds, improving the technical
level of industrial production, improving pollutant emission, and increasing output value to improve
overall efficiency performance. This study uses the parallel method, taking the industrial production
department and the pollution control department as inputs, to objectively evaluate the changes in
industrial production efficiency and technology gap in the Yellow River and Non-Yellow River basins,
which is conducive to mastering the situation of pollution control and industrial production efficiency,
and provides the reference for SDG-6- and SDG-9-related policy making.

Keywords: DDF; TGR; wastewater; waste gas; treatment funds; Yellow River

1. Introduction

While pursuing industrial and economic development, wastewater and air pollu-
tion have short-term and long-term impacts on the environment and human beings [1,2].
Countries around the world have invested a lot of money and resources to try to solve
the problems of wastewater and air pollution caused by production and manufactur-
ing. Human beings need to take sustainable actions within the existing environmental
resources [3]. Therefore, the agenda for sustainable development sets out 17 sustainable
development goals to be achieved by 2030 and will mobilize countries around the world
to incorporate sustainable development goals into their national development strategies.
Sustainable development goals SDG-6 (sustainable development of water resources) and
SDG-9 (development of inclusive sustainable industry) play a vital role in environmental
protection, economic development and the promotion of human well-being in achieving
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these sustainable development goals. In China, since the implementation of the reform and
opening-up policy after 1980, prosperity and affluence have gone deep into the mainland
from the early coastal areas. According to data released by the World Bank (as shown in
Figure 1), we can see the impact of the 2008 financial tsunami and the 2019 COVID-19
pandemic on the global GDP growth rate. In addition, China’s GDP growth rate is better
than that of the world.

Figure 1. Analysis of GDP growth in the world and China (annual%).

The destruction of environmental resources caused by development has directly
affected national health and the environment for human survival. According to China’s
“industrial classification of national economy”, industries are divided into three categories:
the primary industry is mainly agriculture, the secondary industry is mainly industry
and the tertiary industry is mainly the service industry. According to the data of the
National Bureau of Statistics of China (National Bureau of Statistics of China: http://
www.stats.gov.cn/tjsj/ndsj/, accessed on 1 February 2022) (as shown in Figure 2), from
1978 to 2020, the fastest growth of China’s GDP is in the secondary industry, followed
by the service industry. The rapid development of China’s economy largely depends
on energy consumption, which has caused serious pollution [4,5]. In order to achieve
energy conservation and emission reduction and strengthen pollution control [6], we
must pay attention to the relevant issues of sustainable development goals SDG-6 and
SDG-9. In order to improve environmental quality, improve national health and well-
being, maintain environmental resources and pursue sustainable development, which has
become a universal common value, the State Council of China put forward the outline of
the Yellow River Basin Ecological Protection and High-Quality Development Plan in 2021
(Outline of Ecological Protection and High-Quality Development Plan for the Yellow River
Basin (2021): http://www.gov.cn/zhengce/2021-10/08/content_5641438.htm, accessed
on 1 February 2022). In addition to investing in pollution prevention and control funds,
it also standardized the high energy consumption and high-pollution enterprises in the
region. It includes various pollutant discharge standards and monitoring systems to ensure
that significant progress will be made in the ecology and development of the Yellow River
Basin by 2025.

As mentioned above, the government’s policy and financial expenditure on environ-
mental protection have a certain input–output relationship and impact mechanism between
regional energy use and pollutant emission (Figure 3). When the industrial production
department promotes economic development due to the investment of labor, capital, en-
ergy and water resources, the pollution control department is due to the investment of
government prevention and control funds. It is beneficial to improve the unintended

52



Energies 2022, 15, 5697

substances discharged from the production process, such as SOx and smoke dust in waste
gas, heavy metal lead in wastewater, etc., to maintain the natural environment and the
health of people. Therefore, this study uses DDF and TGR methods to objectively evaluate
the impact of pollution control on the production efficiency of the Yellow River Basin and
Non-Yellow River Basin in China from 2013 to 2017. The structure of this study is as follows:
Section 2 analyzes the literature on industrial production efficiency, energy efficiency, water
efficiency, air pollution emission and treatment; Section 3 introduces the methods; and
Section 4 introduces the data, narrative statistics and empirical result analysis. The last part
puts forward conclusions and suggestions for future research.

Figure 2. China’s GDP index from 1978 to 2020.

Figure 3. Input and output process of variables in this study.

2. Literature

Previous studies on industrial production efficiency, such as the one conducted by [7],
used the SDG-9 index to assess the degree of industrialization of countries, as well as social
inclusiveness, less use of natural resources and environmental impact. Ref. [8] using the
DEA method, discusses the relationship between the American manufacturing industry
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and environmental performance. The unintended output is reported as SOx, NOx, Co,
etc. It is found that air pollution is mainly a by-product of manufacturing activities. The
share of the manufacturing industry in the total amount of state-owned products and
the share of the polluting industry in the total amount of manufacturing activities are
two important factors determining the intensity of pollution. Using DEA, Ref. [9] discuss
the energy conservation and carbon reduction efficiency of China’s industrial production
from 2006 to 2010. The input variables are labor, capital and energy consumption, and the
output variables are SO2, wastewater and GDP. It is found that the energy conservation
and emission reduction efficiency in East China is the best. Ref. [10] using the DEA
method, evaluated the environmental efficiency of 46 countries in 2002, 2007 and 2011.
The input variables are labor, capital and energy use, and the output variables are GDP,
CO2 and NOx. The study found that the energy efficiency of countries rich in oil and
natural gas resources is relatively poor. Ref. [11] using the DEA method, discuss the
analysis of the energy and environmental efficiency of two petrochemical plants in China
from 2012 to 2013, and divide the output into expected output and unexpected output.
It was found that by analyzing the energy efficiency and environmental efficiency of the
ethylene production process in complex chemical processes, the energy saving and emission
reduction potential of ethylene plants can be obtained, and the efficiency performance
of DMU can be improved by improving energy efficiency and reducing carbon emission.
Research on energy efficiency by [11] evaluated the efficiency of the water, food and
energy (WEF) relationship in 30 provinces and municipalities in China from 2005 to 2017.
Inputs were labor force, water resource use, energy use, food consumption and other
variables, and outputs were social benefits, wastewater discharge and solid discharge. The
researchers analyzed the weight of the WEF relationship, and put forward the strategy
of sustainable resource management. Ref. [12] discussing the research results of DEA
application in the field of energy and environment from the 1980s to 2010, found that
the development process will produce various pollutants to air, water and other types
of pollutants which are related to health and climate change. Therefore, it is necessary
to strike a balance between economic growth and pollution mitigation. Ref. [13] using
the DEA method to explore the impact of U.S. economic growth on the environmental
efficiency of the power sector, found that there is a stable n-shape relationship between
environmental efficiency and regional economic growth, while in the case of local pollutants,
there is an inverted n-shape relationship between environmental efficiency and regional
economic growth. For policymakers, climate change needs to consider the relationship
between economy, environment and society at the same time. On the research related
to water use efficiency, Ref. [14] evaluated the efficiency of SDG-6 and a serious water
shortage in the Medjerda Basin in Tunisia. Ref. [15] used the DEA method to explore
the water use efficiency of 10 cities in the Minjiang River Basin in China in 2018. The
research found that the input of social water and economic water are different, and the
output of GDP and unintended wastewater are the factors affecting water use efficiency.
Ref. [16] using TFP and Tobit models, discuss the water use efficiency of 30 provinces and
municipalities in China from 2006 to 2015. The study found that the efficiency of water
use in the administrative regions of provinces and cities is low, so we should establish
the awareness of water conservation from the investment of education, so as to balance
economic development and water use efficiency. Ref. [17] used the DEA method to explore
China’s regional ecological efficiency from 2003 to 2014. The input variables were labor
force, water consumption, energy consumption, etc., and the output variables were GDP,
SO2, smoke and dust, industrial wastewater, household waste, etc. The study found that
the efficiency and progress rate of the eastern region are better than other regions, and
there is still room for improvement in China’s overall environmental efficiency. Ref. [18]
used DDF to evaluate the water resources and wastewater discharge efficiency of China’s
industrial sector. The input variables were labor, capital and industrial water consumption,
and the output variables were industrial output value, chemical oxygen demand, etc. The
study found that the eastern region has made progress in science and technology, and the
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pollutants discharged by industrial production in the western region are more serious.
Ref. [19] using the DDF model, evaluated the efficiency of administrative water removal
in 31 provinces and cities in China from 2011 to 2015. The study found that there were
significant differences between the efficiency performance and technology gap in Eastern,
Central and Western China. Ref. [20] evaluating the relationship between China’s industrial
water efficiency and regional differences from 2005 to 2015, found that the industrial water
efficiency values of administrative regions in 31 provinces and cities are less than 1, among
which the per capita water resources, R&D investment, regulation formulation, GDP and
industrial structure will affect the industrial water efficiency. Ref. [5] using the SBM model,
studied the economic production and sewage treatment efficiency of 30 provinces and
cities in China from 2011 to 2017. The input variables were labor force, domestic and
industrial water, investment in sewage treatment projects and the number of sewage
treatment plants. The output variables were GDP, chemical oxygen demand of wastewater
discharge and heavy metal pollution. The study found that there are great differences
in inefficiency in different regions of China. The efficiency in the economic production
stage is significantly higher than that in the sewage treatment stage. The sewage treatment
efficiency is the main drag factor of the overall efficiency. Ref. [21] assessed the regional
differences of China’s provincial air pollution efficiency from 2006 to 2015. The study
found that there were significant differences in air pollution emission efficiency in various
regions. Air pollution emission efficiency was significantly positively correlated with
economic development level, industrial structure optimization, technological innovation
and foreign direct investment (FDI), and negatively correlated with energy consumption
structure. Ref. [22] used DEA and regression analysis to explore China’s energy efficiency
performance from 2001 to 2013. Input variables included labor, capital and energy use, and
output variables were GDP, industrial wastewater, solid waste and air pollutants. The study
found that technological innovation has a positive impact on TFEE. The government should
pay attention to technological innovation, which will be conducive to the effectiveness
of energy conservation and emission reduction and environmental pollution prevention
and control. Research on pollution control costs, such as [23], discusses the efficiency
of China’s iron and steel industry and pollution control. It is found that the production
efficiency of China’s iron and steel industry is low and causes serious pollution to the
environment. Enterprises must improve the overall efficiency by increasing environmental
protection investment, introducing foreign advanced technology and strengthening the
R&D of pollutant management.

As for the discussion on energy consumption and pollution control technology,
for example, in a paper by [24], it is estimated that Beijing, China, will improve its air
quality by adjusting its industrial structure, controlling pollutant emissions, controlling
vehicle pollution emissions and other measures and regulations due to rapid industrializa-
tion, urbanization and motorization, the continuous growth of energy consumption and
the resulting emissions of a variety of pollutants. Ref. [25] assessing the impact of foreign
investment on greenhouse gas emissions in developing countries, found that foreign in-
vestment enabled technology transfer, improved labor, reduced greenhouse gas emissions,
improved energy efficiency and achieved sustainable development goals.

As mentioned above, most previous studies focused on industrial production effi-
ciency, energy efficiency, pollutant emission and control. Therefore, this study uses the
DDF method to explore the impact of pollution control on the production efficiency of
31 provinces and municipalities in the Yellow River Basin and Non-Yellow River Basin in
China from 2013 to 2017, and uses TGR to measure the change in the technology gap. We
objectively evaluate the efficiency difference of pollution control in different provinces and
cities to provide an effective reference basis for policy formulation and budget control.

The main contributions of this study are as follows:

(1) Different from the previous literature results, this study uses the parallel method and
takes the industrial production department and the pollution control department as
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input variables to objectively evaluate the impact of pollution prevention and control
funds on industrial production efficiency in 31 provinces and municipalities in China;

(2) This study compares the changes in industrial production efficiency and the technology
gap between the Yellow River Basin and Non-Yellow River Basin, which is conducive
to mastering the situation of pollution control and production efficiency in 31 provinces
and municipalities in China, and provides objective suggestions as a reference for
SDG-6- and SDG-9-related policy making.

3. Research Method

Ref. [26] first put forward the concept of a deterministic nonparametric front in 1957.
It is used to measure the production level of a decision-making unit. Then, Ref. [27]
proposed the CCR model. Ref. [28] proposed the BCC model. Over time, Ref. [29] (1996)
proposed the directional distance function (DDF). In addition, Ref. [30] introduced the VRS
super-efficiency Nerlove–Luenberger (N–L) model to solve the unreasonable problem. This
method can adjust the input and output levels in the same proportion, and the efficiency
value obtained under the VRS super-efficiency of DDF can be used for ranking all DMUs.
The directional distance function model under variable return to scale (VRS) and the
calculation method of efficiency values used in this study are as follows:

3.1. Directional Distance Function, DDF

This study uses [31] to extend the non-oriented method in the DDF model based on
the SBM described by [32]. All models can evaluate the general efficiency value (≤1) at the
same time, and its calculation method is as follows:

Non-oriented DD model

In this case, we have

max β

s.t. Xλ + βgx ≤ xk (1)

Yλ − βgy ≥ yk

∑ λ = 1

λ ≥ 0

(d(I), d(IN), d(O), d(ON), d(OBad)) = ( x(I)
o , 0 , y(O)

o , 0 , y(OBad)
o ) (2)

[DD-C]

ξ∗ = MAXξ

st.X(I)λ + ξx(I)
o + s(I) = x(I)

o

X(IN)λ + s(IN) = x(IN)
o

Y(O)λ − ξy(O)
o − s(O) = y(O)

o (3)

Y(ON)λ − s(ON) = y(ON)
o

Y(OBad)λ + ξy(OBad)
o + x(OBad) = y(OBad)

o

ξ ≥ 0 , λ ≥ 0 , s(I) ≥ 0, s(IN) ≥ 0, s(O) ≥ 0, s(ON) ≥ 0 , s(OBad) ≥ 0 .

We define the efficiency value of DMU(xo, yo) as

θ∗ = 1 − ξ∗.

3.2. Technology Gap Ratio, TGR

Since the production boundary of g groups is included in the common production
boundary, the technical efficiency under the common boundary must be less than that
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under the group boundary. The ratio of the two is called the technical efficiency gap ratio
(TGR), as follows:

TGR =
Technical efficiency under common boundary

Technical efficiency under group boundary
(4)

4. Data Analysis and Empirical Results

4.1. Selection of Data Sources and Variables

This study evaluates the impact of pollution control in 31 provinces and municipalities
of China on China’s industrial production efficiency from 2013 to 2017. The publicly
quantifiable data are obtained from the statistical yearbook of China’s National Bureau
of Statistics (National Bureau of Statistics of China: http://www.stats.gov.cn/tjsj/ndsj/,
accessed on 1 February 2022) from 2013 to 2017, and the efficiency is analyzed through
open and objective data. The relevant contents of the selected variables are as follows:

Labor force: including manufacturing, power, heat, gas and water production and
supply, and the number of employed persons in urban units. Employed persons refer to per-
sons aged 16 and above who engage in certain social work and obtain labor remuneration
or business income. Unit: 10,000 persons.

Total capital formation: refers to the total value of fixed assets acquired by permanent
residents less fixed assets disposed of in a certain period of time. Fixed assets are assets
produced through production activities with a service life of more than one year and a
unit value of more than the specified standard, excluding natural assets. It can be divided
into total tangible fixed capital formation and total intangible fixed capital formation. Unit:
100 million yuan.

Energy consumption: electricity consumption by region. Unit: 100 million kWh.
Industrial water consumption: industrial water consumption by region. Unit: 10,000 tons.
Wastewater treatment fund: the completion of wastewater treatment investment

generated by industrial pollution. Unit: 10,000 yuan.
Waste gas treatment funds: the completion of waste gas treatment investment gener-

ated by industrial pollution. Unit: 10,000 yuan.
Total wastewater discharge: total wastewater discharge by region. Unit: 10,000 tons.
Lead in wastewater: the discharge of main pollutants in wastewater. Unit: kg.
SO2: emission of sulfur dioxide in waste gas by region. Unit: 10,000 tons.
Smoke and dust: emission of smoke (powder) dust in waste gas by region. Unit:

10,000 tons.
Industrial output value: regional industrial output value. Unit: 100 million yuan.

4.2. Input and Output Variables Statistical Analysis

As shown in the narrative analysis of various variables from 2013 to 2017 (Table 1),
the average part shows a growth trend in labor force, total capital formation, energy
consumption, waste treatment funds and industrial output value. The amount of industrial
wastewater, wastewater treatment funds, lead, SO2, smoke and dust in wastewater show a
downward trend. The total amount of wastewater discharge has little change. In the largest
part, labor force, total capital formation, energy consumption, waste gas treatment funds
and industrial output value show a growth trend. Lead, SO2, smoke and dust in wastewater
show a downward trend, and other variables change little. In the minimum part, total
capital formation, energy consumption, total wastewater discharge and industrial output
value show a growth trend, the wastewater treatment funds and waste gas treatment funds
show a downward trend, and the other variables have little change.

57



Energies 2022, 15, 5697

Table 1. Input–output variables from 2013 to 2017 statistical analysis.

Labor Force
Total Capital

Formation
Energy

Consumption

Total Industrial
Water

Consumption

Wastewater
Treatment

Funds

Waste Gas
Treatment

Funds

Average

2013 148.6032 11,812.7645 1723.3352 459,258.0645 45,272.5484 83,133.5484
2014 182.6548 12,682.8452 1794.7323 453,709.6774 40,284.6129 206,745.4194
2015 182.1581 13,043.6935 1836.5487 437,548.3871 37,176.5806 254,643.0645
2016 176.2806 13,773.8355 1927.3248 430,580.6452 38,198.0645 168,325
2017 170.4032 14,564.3548 2034.7742 421,935.4839 34,916 181,119.3871

Max

2013 561 30,952.9 4956.62 1,931,000 263,797 303,865
2014 1052.4 33,780.8 5235.23 2,201,000 150,634 701,240
2015 1046 35,587.4 5310.69 2,380,000 175,141 1,281,351
2016 1011.7 34,647.1 5610.13 2,390,000 164,863 781,673
2017 991 39,657.5 5959 2,486,000 158,518 966,722

Min

2013 1.5 899.1 30.65 17,000 922 174
2014 2.1 1052.1 33.98 17,000 572 466
2015 2.1 1032 40.53 17,000 90 1453
2016 2.3 1162.8 49.22 14,000 893 273
2017 1.6 1376.1 58 16,000 15 47

St. Dev

2013 134.3751 7620.3602 1242.815 440,588.3164 51,282.9423 73,775.0457
2014 209.0452 8142.8745 1289.1049 460,820.1524 38,242.0501 162,597.069
2015 211.8303 8407.9079 1365.0845 475,238.4551 37,554.2495 260,514.5884
2016 205.8528 8924.2812 1451.4981 479,438.3363 41,606.7403 159,393.1626
2017 200.9428 9999.0218 1520.3991 490,473.7122 38,104.0369 197,602.603

Total
Wastewater
Discharge

Lead in
WASTEWA-

TER
SO2 Smoke and Dust

Industrial
Output Value

Average

2013 224,336.5161 2455.2355 85.181 41.231 8629.4897
2014 231,024.1613 2360.7935 63.6906 56.1532 8946.4632
2015 237,200.8387 2562.2484 59.9719 49.6135 8874.8148
2016 229,385.5806 1707.4355 35.5765 32.6023 9199.2548
2017 225,697.129 1237.0387 28.2394 25.6861 9731.27

Max

2013 862,471 24,318.6 663 131.33 27,426.26
2014 905,082 21,609.3 159.02 179.77 29,144.15
2015 911,523 18,172.8 152.57 157.54 30,259.49
2016 938,261 14,564.8 113.45 125.68 32,650.89
2017 882,020 7656.9 73.91 80.37 35,291.83

Min

2013 5005 2.6 0.42 0.68 61.16
2014 5450 2.5 0.42 1.39 66.16
2015 5883 3.6 0.54 1.71 69.88
2016 6143 5.1 0.54 1.65 86.44
2017 7176 3.7 0.35 0.66 102.16

St. Dev

2013 184,430.1127 4632.3228 114.938 30.1237 7120.6401
2014 190,473.1071 4170.2846 39.6557 42.5921 7468.1265
2015 195,601.8016 4068.4679 37.3853 38.3135 7741.992
2016 194,225.7237 3159.2792 25.0893 26.6502 8400.5834
2017 185,112.1309 1898.2696 19.5832 18.5803 9102.946

4.3. Empirical Results

In this study, 31 provinces and municipalities in China were divided into two groups:
the Yellow River Basin and the Non-Yellow River Basin. The DDF method was used
to evaluate the difference in industrial production efficiency between the two groups.
The common boundary efficiency and group boundary efficiency of the two groups are
evaluated by the TGR method to find the technology gap ratio. The results and analysis are
as follows.
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(1) Industrial production efficiency of DDF in the Yellow River and Non-Yellow River
Basins

The empirical results show that (as shown in Figure 4 and Appendix A) the best
average value of the total efficiency of the Yellow River and Non-Yellow River basins is 1
in 17 provinces and cities, including Beijing, Tianjin and Hebei, of which only Shandong
and Sichuan are located in the Yellow River Basin, and a total of 15 provinces and cities
are located in the Non-Yellow River Basin. The average total efficiency of the Non-Yellow
River Basin is 0.9793, and the three worst-performing regions are Yunnan (0.7804), Xinjiang
(0.9188) and Guizhou (0.9257). The average value of the total efficiency of the Yellow
River Basin is 0.9688, which is slightly lower than that of the Non-Yellow River Basin. The
three regions with the worst performance of the total efficiency are Gansu (0.8604), Shanxi
(0.9417) and Ningxia (0.9592). We further explore the period efficiency of each year in the
Non-Yellow River Basin, with the best performance in 2015 and 2016, the efficiency value
is 0.982, the worst performance is 0.9741 in 2013, of which Yunnan (0.7197) has the worst
efficiency performance. In the part of efficiency in each year of the Yellow River Basin, only
0.9863 performed best in 2013, slightly higher than 0.9741 in the Non-Yellow River Basin.
In the next four years, the overall efficiency performance lagged behind the Non-Yellow
River Basin. The overall efficiency performance was the worst in 2015 (0.9561), of which
Gansu (0.7593) performed the worst in 2015.

Figure 4. Efficiency of DDF in the Yellow River and Non-Yellow River Basins from 2013 to 2017.

This study further uses the Wilcoxon rank sum test to make α = 0.05; the confidence
interval is 95%, and the result shows that z = −3.517, which indicates that there are regional
differences in DDF efficiency between the Yellow River Basin and the Non-Yellow River
Basin, and the efficiency value of the Non-Yellow River Basin is better than that of the
Yellow River Basin.

(2) Analysis of TGR technology gap ratio between the Yellow River and Non-Yellow River
Basins

We use TGR to objectively measure the level of industrial production efficiency. When
the TGR value is closer to 1, it means that the industrial production efficiency is relatively
high and the efficiency is better. On the contrary, the lower or closer the TGR value is to
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0, the more it indicates that there is still room for significant improvement. According to
the TGR of 31 provinces and cities in China from 2013 to 2017 (Figure 5 and Appendix B),
the TGR values of 22 provinces and cities in the Non-Yellow River Basin are less than 1,
indicating that the technical level has not reached the technical level on the common
boundary, which can improve the efficiency of industrial production and pollution control.
The average value of TGR is 0.5234, and a total of 12 regions are higher than the average
value. The better-performing regions are Tibet (0.9876), Hainan (0.8965) and Liaoning
(0.8675), the three worst-performing regions are Hubei (0.1413), Guangxi (0.1321) and
Hunan (0.1156). The TGR values of nine provinces, cities and administrative regions in the
Yellow River Basin are also less than 1. The average TGR value is 0.3825, which is lower
than the average TGR value of the Non-Yellow River Basin by 0.5234. In total, the four
regions are higher than the average value. The better-performing regions are Ningxia
(0.7545), Qinghai (0.5708) and Shandong (0.5411), and the three worst-performing regions
are Sichuan (0.1965), Shaanxi (0.1822) and Inner Mongolia (0.1152).

Figure 5. TGR analysis of the Yellow River and Non-Yellow River basins from 2013 to 2017.

Based on the combined analysis of DDF efficiency and TGR results of the Yellow
River and Non-Yellow River basins from 2003 to 2007 (Figure 6), the overall efficiency
performance of the two regions has little change during the study period. Among them,
the Yellow River Basin was only slightly better than the Non-Yellow River basin (0.9863) in
2013 (0.9741), but in the TGR part, the performance of the two regions still has room for
significant improvement. Among them, the TGR of the Yellow River Basin is significantly
behind the Non-Yellow River Basin. Through reasonable human and capital allocation,
we can implement the use of pollution prevention and control funds, and improve the
technical level of industrial production to improve pollutant emission and increase output
value, to improve the overall efficiency performance.
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Figure 6. Analysis of DDF efficiency and TGR in the Yellow River and Non-Yellow River basins from
2013 to 2017.

5. Conclusions and Suggestions

Using DDF and TGR methods, this study invested industrial production departments
and pollution control departments in parallel to explore the impact of pollution control on
industrial production efficiency in 31 provinces and municipalities in the Yellow River and
Non-Yellow River basins of China.

5.1. Conclusions

(1) During the study period, the total efficiency of the Non-Yellow River Basin was 0.9793,
slightly better than that of the Yellow River Basin of 0.9688. Among the 17 provinces
and cities with a total efficiency of 1, only Shandong and Sichuan were located in
the Yellow River Basin, and the other 15 provinces and cities were located in the
Non-Yellow River Basin, indicating that the industrial production efficiency still had
significant regional differences due to the input of production factors and pollution
control funds.

(2) During the study period, the TGR values of 31 provinces and municipalities in the
Yellow River Basin and Non-Yellow River Basin were less than 1, while the average
TGR value of the Yellow River Basin was 0.3825, which was lower than the average
TGR value of Non-Yellow River Basin by 0.5234, indicating that the technical level
did not reach the technical level on the common boundary, and there is still room for
substantial improvement. In order to achieve the sustainable development goals of
SDG-6 and SDG-9, in addition to the cost of pollution prevention and control, clean
energy should be developed to reduce pollution, and rational allocation of resources
should be used to improve industrial production technology and overall efficiency.

(3) The main contribution of this study is in introducing the method of parallel DEA; in
addition to many input variables in the industrial production sector, we also discuss
the impact of the financial input of the pollution control department on wastewater,
exhaust emissions and total efficiency. In addition, this study covers the research scope
of the Yellow River Basin and the Non-Yellow River Basin, which helps to provide
broader policy recommendations.

5.2. Research Recommendations

The open and quantifiable data of the Yellow River and Non-Yellow River basins in
this study are taken from the database of the National Bureau of Statistics of China. The
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pollution control is carried out through open and objective data. The analysis of China’s
industrial production efficiency has restrictions on the selection of input- and output-related
variables due to the difficulty in obtaining and omission of some data. It is suggested that,
in the future, scholars more widely consider relevant data and extend the observation
period to make the research results more objective. In addition, this study mainly focuses
on the Yellow River and Non-Yellow River basins. It is suggested that different basins such
as the Yangtze River and the Pearl River be added as object of discussions in the future to
make a longer-cycle cross-basin comparison with each other, to understand China’s efforts
in industrial production and pollution control, and to provide analysis and basis for SDG-6
and SDG-9 sustainable development goals and policies.
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Appendix A

Table A1. Efficiency of DDF in the Yellow River and Non-Yellow River basins from 2013 to 2017.

DMU 2013 2014 2015 2016 2017 Average

Non-Yellow
River Basin

Beijing 1 1 1 1 1 1
Tianjin 1 1 1 1 1 1
Hebei 1 1 1 1 1 1
Liaoning 1 1 1 1 1 1
Jilin 1 1 1 1 1 1
Black Dragon River 1 1 0.9822 1 0.9153 0.9795
Shanghai 1 1 1 1 1 1
Jiangsu 1 1 1 1 1 1
Zhejiang 1 1 1 1 1 1
Anhui 1 1 1 1 1 1
Fujian 0.9452 0.9623 0.9628 0.9739 1 0.9688
Jiangxi 1 1 1 1 1 1
Hubei 0.9752 1 1 1 1 0.9950
Hunan 1 1 1 1 1 1
Guangdong 1 1 1 1 1 1
Guangxi 0.9851 0.9599 0.9883 1 0.9535 0.9774
Hainan 1 1 1 1 1 1
Chongqing 1 1 1 1 1 1
Guizhou 0.8202 0.8524 0.956 1 1 0.9257
Yunnan 0.7197 0.7832 0.8194 0.8017 0.7779 0.7804
Tibet 1 1 1 1 1 1
Xinjiang 0.9856 0.9906 0.8959 0.829 0.8928 0.9188

Average 0.9741 0.9795 0.9820 0.9820 0.9791 0.9793
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Table A1. Cont.

DMU 2013 2014 2015 2016 2017 Average

Yellow River
Basin

Shanxi 0.9803 0.9184 0.8889 0.9211 1 0.9417
Inner Mongolia 1 1 1 1 0.9912 0.9982
Shandong 1 1 1 1 1 1
Henan 1 0.9553 0.9696 1 1 0.9850
Sichuan 1 1 1 1 1 1
Shaanxi 1 1 0.9871 1 1 0.9974
Gansu 0.9196 0.9101 0.7593 0.8367 0.8763 0.8604
Qinghai 1 1 1 0.9816 0.9041 0.9771

Ningxia 0.9771 0.9183 1 1 0.9005 0.9592

Average 0.9863 0.9669 0.9561 0.9710 0.9636 0.9688

Appendix B

Table A2. TGR analysis of the Yellow River and Non-Yellow River basins from 2013 to 2017.

DMU 2013 2014 2015 2016 2017 Average

Non-Yellow
River Basin

Tibet 0.9999 0.9905 0.9475 0.9999 1.0000 0.9876
Hainan 0.8629 1.0000 1.0000 0.6278 0.9917 0.8965
Liaoning 0.7303 0.9488 0.9319 0.8129 0.9134 0.8675
Black Dragon River 1.0000 0.8539 0.7762 0.8059 0.9007 0.8673
Beijing 0.3992 0.8811 1.0000 0.9602 1.0000 0.8481
Tianjin 0.8239 0.8445 0.8448 0.6499 0.9749 0.8276
Chongqing 0.7837 0.6317 0.8055 0.7210 1.0000 0.7884
Shanghai 0.6246 0.8022 0.6441 0.5595 1.0000 0.7261
Hebei 0.5811 0.6070 0.5647 0.5945 0.6271 0.5949
Jilin 0.6069 0.6110 0.5334 0.4927 0.7060 0.5900
Jiangsu 0.4275 0.4250 0.4565 0.6617 0.8183 0.5578
Zhejiang 0.5043 0.5831 0.4352 0.5733 0.5748 0.5341
Guizhou 0.2885 0.2245 0.6365 0.8179 0.3949 0.4725
Xinjiang 0.4264 0.4511 0.4149 0.2540 0.2649 0.3623
Yunnan 0.1555 0.1228 1.2204 0.1098 0.1180 0.3453
Guangdong 0.2396 0.2759 0.2457 0.2527 0.3327 0.2693
Fujian 0.1190 0.1098 0.1074 0.5034 0.2717 0.2223
Anhui 0.1420 0.1688 0.1492 0.2067 0.3441 0.2022
Jiangxi 0.2279 0.1759 0.1545 0.1403 0.1336 0.1664
Hubei 0.1083 0.1171 0.1063 0.1685 0.2065 0.1413
Guangxi 0.1500 0.1202 0.1116 0.1289 0.1498 0.1321
Hunan 0.1053 0.0971 0.1026 0.1043 0.1685 0.1156

Average 0.4685 0.5019 0.5540 0.5066 0.5860 0.5234

DMU 2013 2014 2015 2016 2017 Average

Yellow River
Basin

Ningxia 0.7257 0.5888 0.9243 1.0000 0.5335 0.7545
Qinghai 0.5908 0.5105 0.6123 0.5184 0.6219 0.5708
Shandong 0.4784 0.5117 0.5014 0.7260 0.4879 0.5411
Shanxi 0.5274 0.3898 0.2413 0.6932 0.8063 0.5316
Gansu 0.2921 0.2695 0.2941 0.2438 0.2970 0.2793
Henan 0.1332 0.1277 0.2076 0.2589 0.6282 0.2711
Sichuan 0.2343 0.2222 0.1036 0.2253 0.1971 0.1965
Shaanxi 0.1672 0.1651 0.1600 0.1811 0.2375 0.1822
Inner Mongolia 0.1090 0.1059 0.1154 0.1205 0.1254 0.1152

Average 0.3620 0.3213 0.3511 0.4408 0.4372 0.3825

Note: the total average value of TGR in the Yellow River and non yellow river basins is 0.4825.
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Abstract: Climate anomalies are affecting the world. How to reduce carbon emissions has become an
important issue for governments and academics. Although previous researchers have discussed the
factors of carbon emission reduction from environmental regulation, economic development, and
industrial structure, limited studies have explored the carbon emission reduction effect of a city’s
spatial structure. Based on 108 Chinese cities from the Yangtze River Economic Belt between 2003
and 2017, this paper examines the impact of the city cluster policy on city carbon emissions using
the difference-in-differences (DID) method. We find that: (1) The city cluster policy has significantly
reduced the cities’ carbon emissions by 7.4%. Furthermore, after a series of robust and endogenous
tests, such as parallel trend and PSM-DID, the core conclusion still remains. (2) We further identify
possible economic channels through this effect, and find that city cluster policy would increase city
productivity, city technological innovation, and industrial structure optimization. The conclusions of
this paper have important practical significance for China to achieve carbon neutrality and facilitate
future deep decarbonization.

Keywords: carbon emission reduction; city cluster policy; difference-in-difference method

1. Introduction

Air pollution, from sources such as climate anomalies, melting glaciers, and haze,
has become an important issue around the world. China, as the world’s largest emitter
of CO2 and SO2 [1,2], is facing serious domestic environmental pollution problems and
tremendous international community pressure [3]. In 2021, China committed to peaking its
carbon emissions by 2030 and becoming carbon neutral by 2060. Therefore, the question of
how to balance economic development and ecological protection has become an important
issue. The city cluster policy can provide a potential solution. the city cluster is not only
the most promising and dynamic area in China’s economic development, but also the area
with the highest concentration of ecological and environmental problems. The city cluster
will have a profound impact on regional resource utilization and environmental protection,
but it is not clear through which specific path. These are issues of interest to many cities
and economists.

How to reduce carbon emissions is a crucial issue for sustainable development. The
Chinese government has established a series of environmental regulation policies, such
as the Air Pollution Prevention and Control Action Plan in 2013, which is also noted as
China’s Clean Air Action [4–6], carbon emission trading system in 2014 [7–10], and so on.
Although previous scholars have discussed the air governance effect of environmental
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regulation [11,12], they have seldom exploited the environmental effect of a city’s spatial
layout [13,14], especially the impact of the city cluster on carbon emission reduction.
Therefore, to fill academic gaps, this paper will examine the impact of the city cluster policy
on carbon emissions, based on the sample of China’s Yangtze River Economic Belt.

Based on city-level panel data from 108 Chinese cities in the Yangtze River Economic
Belt between 2003 and 2017, this paper examines the impact of city cluster policy on carbon
emissions using the difference-in-differences (DID) method. We found that: (1) The city
cluster policy has significantly reduced the cities’ carbon emissions, with an average reduc-
tion of 7.4% in city carbon emissions; furthermore, after a series of robust and endogenous
tests, such as parallel trend and PSM-DID, the core conclusion still remains. (2) We further
identify possible economic channels through this effect, and find that city cluster policy
would increase city productivity, city technological innovation, and industrial structure
optimization. (3) The emission reduction effect of the city cluster policy only exists in the
nation’s city clusters.

There are three reasons why we choose China as the background to study the impact
of city clusters on carbon emission reduction. First, China is the world’s most populous
country and the world’s second-largest economy. It is of practical significance to evaluate
the impact of carbon trading pilot policies. Secondly, China is the largest carbon emission
emitter and an emerging country [15]. Conclusions from such research on China may
provide a useful reference for other developing countries to implement carbon trading pilot
programs. Finally, China is a centralized country that adopts a vertical management and
organizational structure. The environmental policies are initially formulated by the central
government of China, and then implemented by local governments, which ensures the
exogenous nature of the policy. In addition, there are 30 provinces in China, allowing us to
use this cross-sectional variation to determine the policy effect of the city cluster.

There are two main contributions to this paper. For one thing, this paper has a potential
academic contribution. Previous scholars have discussed the air governance effect from the
perspective of environmental regulation [4–6], but they have seldom discussed the city’s
spatial layout. In this paper, we use China’s city cluster policy in 2011 to examine the effect
of city integration on carbon emissions. For another thing, this paper has strong policy
implications. Based on China’s city cluster policy in 2011, this paper examines the effects
of the city cluster on carbon emissions. We found that the city cluster will reduce carbon
emissions. The conclusions provide useful policy implications for policy-makers to reduce
city carbon emissions. Rich results from a heterogeneity analysis provide policy-makers
with an understanding of economic facts, and point out the direction for improving the
carbon trading system.

The rest of the paper is organized as follows: the second part is the theoretical analysis,
the third part presents the data and empirical design, the fourth part presents the empirical
results, the fifth part is the further discussion, and the sixth part consists of the conclusions
and policy implications.

2. Theoretical Analysis

A large number of theoretical and empirical studies show that the city cluster can have
a positive effect on economic productivity, technological innovation capacity, and industrial
structure optimization through the agglomeration of factors. Details are as follows.

First, the city cluster can reduce carbon emissions by improving city productivity.
Generally speaking, the public infrastructure construction of member cities in the city
cluster can be further improved, by, for example, improving the railway station [16].
Infrastructure improvements can help foster city networks that enable the flow of people
and capital among cities [17]. The formation of a city cluster can improve the capacity of
resource allocation in a larger region. It helps the flow of production elements from large
to small and medium-sized cities, and improves the aggregation economic and ecological
efficiency of small and medium-sized cities [18]. In addition, the scale effect generated by
the city cluster has contributed to an increase in city productivity.
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With the implementation of the city cluster, the production costs and price index of
products would decrease, leading to the expansion of local demand and market size. The
increased returns to scale resulting from this expansion will further promote agglomeration
and thus increase regional productivity. The increasing returns to scale generated by
expansion further promote agglomeration and improve regional production productivity.

Secondly, the city cluster can reduce carbon emissions through technology. On the one
hand, economic growth in cities is accompanied by the build-up of human capital and the
overflow of knowledge. The city cluster can increase opportunities for the inter-regional
exchange of people and learning, and promote collaborative research and development [19],
thus accelerating the diffusion and application of knowledge and new technologies within
the region and promoting technological progress. Therefore, the clustering spillover effects
of sharing, matching, and learning mechanisms within large cities are more obvious than
those in small cities [20], which will accelerate the dissemination and application of knowl-
edge and new technologies within the region and thus promote technological progress.

On the other hand, the city cluster significantly improves market openness and facili-
tates the aggregation of high-quality factors in the city cluster. Non-local enterprises bring
the cross-regional flow of enterprise innovation factors, creating favorable conditions for
inter-regional knowledge spillover and improving innovation efficiency [21]. In conclusion,
the knowledge spillover brought by the city cluster can not only promote local technological
progress, but also have a significant impact on the technological progress of neighboring
regions as well through the cross-regional flow of innovation factors.

Finally, the city cluster can reduce carbon emissions through industrial structure
upgrading. The optimization of industrial structure and energy efficiency are key factors
in carbon reduction [22,23]. The city cluster reduces barriers for non-local enterprises
and foreign investment to enter the local market by lowering trade barriers within cities,
which accelerates competition among enterprises within the market. To survive, enterprises
will eventually choose industrial structure upgrading through the market competition
mechanism. At the same time, the hierarchy produced in the development of the city cluster
is inevitably accompanied by various degrees of specialization. Diversified metropolises
will take on the role of incubators for innovative industries, while small and medium-sized
cities will use their comparative advantage in production factors to reduce production costs
and become agglomerations for some industries [24]. Referring to Ó Huallacháin and Lee
(2011) [25], specialized production facilitates eco-efficiency through channels such as the
promotion of economic factor aggregation, technological progress, resource intensification,
and Marshallian externalities. Therefore, the optimization of a city system stemming from
the development of the city cluster will promote the industrial structure upgrading.

Therefore, based on the above analysis, this paper puts forward three assumptions, as
shown in Figure 1.

Hypothesis 1. City cluster pilot policy can reduce carbon emissions by increasing city productivity.

Hypothesis 2. City cluster pilot policy can reduce carbon emissions by improving the level of
technological innovation.

Hypothesis 3. City cluster pilot policy can reduce carbon emissions through optimizing industrial
structures.
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Figure 1. Theoretical hypothesis framework.

3. Data and Empirical Design

3.1. Data

We investigate the impact of city cluster policy on carbon emissions according to the
panel data of 108 Chinese cities in the Yangtze River economic belt from 2003–2017. Our
carbon emissions data were obtained from the Carbon Emission Accounts and Database
https://www.ceads.net/ (accessed on 5 May 2022); other city data are from the China City
Statistics Yearbook. The carbon emissions data are only updated to 2017. Our final sample
consists of 1620 city-year observations covering the 2003–2017 period.

3.2. Empirical Design

The purpose of this study is to examine the effect of city cluster policy on CO2 emis-
sions. As a classical method for policy evaluation, the difference-in-differences (DID) model
has been widely adopted by most scholars, and we also use this method. This method
can examine the difference in CO2 emissions before and after the city cluster policy imple-
mentation, and assess the average effect of city cluster policy on carbon emissions. The
benchmark model is as Formula (1).

LnCO2c,t = α+ β× Treatc × Postt +∅× Controlc,t + δc + μt + εc,t (1)

where c is the city and t is the year. Independent variable LnCO2c,t indicates the carbon
emissions of city c in year t. Our dependent variable is the city cluster policy (Treat*Post).
The coefficient on Treat*Post, β, is the one with the main interest. Thus, β reflects the
impact of the city cluster policy on carbon emissions. A negative β implies that a city
cluster policy will reduce carbon emissions in cities. Control is our control variable. δc and
μt are city-fixed effect and year-fixed effect, respectively, and εc,t is a random error term.

3.3. Variables
3.3.1. Independent Variables

Our independent variable consists of city-level CO2 emissions (LnCO2). Unfortunately,
only provincial-level CO2 data and county-level CO2 data are available in the Carbon
Emission Accounts & Database. Meanwhile, we have also noticed that county-level CO2
is measured by light intensity, not real CO2 emissions. Given such two dimensions of
CO2 data structure, this paper uses two methods to construct city-level CO2 emissions.
One method uses county-level CO2 emission data directly added to the city level [26].
Another method uses county-level CO2 data to calculate the proportion of each city in its
province. Based on this proportion, provincial-level CO2 is allocated to each city by this
proportion weight, and the weighted city CO2 is constructed. We would use weighted city
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CO2 emissions from the second method in the benchmark regression. We also use the CO2
emissions from the first method in the robustness test.

3.3.2. Dependent Variables

Our dependent variable is the city cluster policy (Treat*Post). It is an interaction item
between Treat and Post. The Treat variable equals one in the city cluster list. The city cluster
list in the Yangtze River economic belt contains the Chengyu city cluster (Nation), the
Dianzhong city cluster (Region), the Yangtze River city cluster (World), the Yangtze middle
river city cluster (Nation), the Qianzhong city cluster(Region), and zero otherwise. Post
equals one in a year that is equal to or larger than 2011, and zero otherwise.

3.3.3. Control Variables

Following prior research, we add several control variables to the model, which include:
city economic development (LnGDP), city openness (Open), city financial development
(Finance), city government scale (Gov), the ratio of city secondary industry (Sec_Ind), and
the ratio of city tertiary industry (Ter_Ind). Table 1 provides detailed definitions of all
variables. The definitions of the main variables are shown in Table 1.

Table 1. Variables Definition.

Variable Definition

LnCO2 The logarithm of city CO2

Treat*Post An indicator variable that equals one if the city is eventually included in the
low-carbon city pilot list by the end of our sample period, and zeroes otherwise

LnGDP the logarithm of city GDP
Open The ratio of the city actual utilization of foreign direct investment to city GDP

Finance The ratio of the city balance of bank deposits and loans to city GDP
Gov The ratio of the city government public finance expenditure to city GDP

Sec_Ind The ratio of the city added value of the secondary industry to city GDP
Ter_Ind The ratio of the city added value of the tertiary industry to city GDP

3.4. Descriptive Statistics

The dependent variable consists of city-level CO2 emissions (LnCO2). The average
LnCO2 is 2.704, the standard deviation is approximately 0.830, the average Treat*Post
value is 0.321, and the standard deviation is 0.467. This indicates that there are significant
differences in various cities. In terms of the standard deviation of the control variables,
there is a degree of variation among the cities; city-level CO2 emissions may be affected by
these differences. The descriptive statistics of the main variables are shown in Table 2.

Table 2. Descriptive statistics of the variables.

Variables Observations Mean Sd Min Max

Dependent Variables
LnCO2 1620 2.704 0.830 0.250 5.128

Independent Variables
Treat*Post 1620 0.321 0.467 0 1

Control Variables
LnGDP 1620 16.02 1.081 12.93 19.46
Open 1620 0.023 0.022 0 0.201

Finance 1620 2.084 0.873 0.764 6.255
Gov 1620 0.165 0.090 0.049 1.485

Sec_Ind 1620 0.482 0.093 0.187 0.759
Thi_Ind 1620 0.371 0.075 0.207 0.698
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4. Empirical Results

4.1. The Effect of City Cluster Policy on CO2 Emissions

The estimated results of Equation (1) are shown in Table 3. It can be seen that the
coefficient estimates of Treat*Post are significantly negative, suggesting that city carbon
emissions have decreased after the city cluster policy. This negative impact has economic
implications. For example, during our sample period, carbon emissions from cities declined
by an average of 7.4% after cities were classified as a city cluster. This result supports our
previous hypothesis. The path of the effect may come from the positive impact of the city
cluster on production efficiency, technological innovation ability and the rationalization
of industrial structure, which will be further examined in this paper. To sum up, the city
cluster policy helps cities reduce carbon emissions.

Table 3. The effect of city cluster policy on CO2 emissions.

(1) (2)

LnCO2 LnCO2

Treat*Post −0.099 *** −0.074 ***
(−6.235) (−5.032)

LnGDP 0.405 ***
(5.486)

Open 0.580 *
(1.746)

Finance 0.056 *
(1.879)

Gov 0.196
(1.249)

Sec_Ind 0.070
(0.409)

Thi_Ind 0.043
(0.202)

Constant 2.736 *** −3.975 ***
(418.071) (−3.311)

City FE YES YES
Year FE YES YES

Observations 1620 1620
Adj_R2 0.957 0.959

Note: t statistics are shown in parentheses; *** and * represent significance at the 1%, and 10% levels, respectively.
All variable definitions are in Table 1. The sample period covers 2003 through 2017. Regressions in all columns
control for year-fixed effects and city-fixed effects.

4.2. Parallel Trend Analysis

A parallel trend is a prerequisite for the DID model. It means that there is no systematic
difference in carbon emission trends between the two groups before the policy, or, even if
there are differences, the differences are fixed. Therefore, we followed Li et al. (2016) [27]
and Zhu and Xu (2022) [5], and constructed our model as:

LnCO2c,t = α+ βt × Treat × DYear(t) +∅× Controlc,t + δc + μt + εc,t (2)

DYear(t) is year dummy variables, and it is equal to 1 when year is t. For example,
D2006 is equal to 1 when year is 2006, and 0 otherwise. Therefore, the parameters of βt
identify t year policy effects. To avoid Treat × DYear(t) collinearity, we use the policy year
(i.e., 2011) as the base year. The estimation results are presented in Figure 2. We can see
that there is no pre-policy effect (before 2011), indicating that our identification satisfies the
parallel trend assumption. Furthermore, the policy has a strong continuity effect.
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Figure 2. Dynamic effects of the City Cluster.

4.3. Robustness Test
4.3.1. Propensity Score Matching DID (PSM-DID)

Of course, the city cluster policy is not a perfect quasi-natural experiment. There is a
certain degree of randomness in the selection of the city cluster. Strictly speaking, whether
a city can be selected as one of the city clusters is not a completely random selection process.
It will be disturbed by economic factors, political factors, and human factors.

These differences will affect the validity of the DID model. In order to reduce the
interference caused by these differences in model estimation, we will use the propensity
score matching (PSM) method proposed by Heckman et al. (1998) [28] to select comparable
treatment and control groups, and then use a DID model to estimate the policy effects [26].
We adopt the 1:1 nearest neighbor matching method. The estimation result is shown in
column (1) of Table 4. It can be seen that the Treat*Post is still significantly negative with
the city’s carbon emissions (lnCO2), indicating that our core findings remain valid after
alleviating the problem of sample selection bias.

Table 4. Robustness check of the effect of city cluster policy on CO2 emissions(PSM-DID).

(1) (2) (3) (4) (5) (6)

LnCO2 LnCO2_2 LnCO2

Treat*Post −0.026 * −0.064 *** −0.025 ** −0.069 *** −0.060 *** −0.056 ***
(−1.698) (−2.653) (−2.159) (−4.787) (−4.460) (−4.216)

PSM YES
Two-Stage YES
Replace Y YES

CAA
Policy YES YES

CET Policy YES YES
Control

Vars YES YES YES YES YES YES

City FE YES YES YES YES YES YES
Year FE YES YES YES YES YES YES

Observations 727 216 1620 1620 1620 1620
R-squared 0.987 0.996 0.969 0.962 0.963 0.963

Adj_R2 0.985 0.992 0.967 0.959 0.960 0.960
Note: t statistics are shown in parentheses; ***, **, and * represent significance at the 1%, 5%, and 10%
levels, respectively.
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4.3.2. Two-Period DID

The regression coefficients in the baseline regression may be overestimated due to
sequential correlation issues. To solve this problem, we will adopt a two-period estimation
strategy according to Bertrand et al. (2004) [29]. The data will be divided into two periods
based on the point in time of the policy. That is, the variables in the two periods are
averaged to construct a two-period DID sample.

The estimation result is shown in column (2) of Table 4. We find that the coefficient on
Treat*Post is significantly negative at the 1% level, suggesting that the city cluster policy
can reduce city carbon emissions even after considering potential serial correlation issues.

4.3.3. Alternating the Explained Variable

The estimated results may be sensitive to different definitions of critical variables.
To ensure whether the measurement of carbon emissions is robust, we use unweighted
CO2 emissions (LnCO2_2) as alternative measurements. The estimation result is shown
in column (3) of Table 4. It can be seen that the coefficient on Treat*Post is significantly
negative with LnCO2_2, suggesting that the basic conclusion remains unchanged even with
the replacement of the core explanatory variables.

4.3.4. The Impact of Related Environmental Policies

During our sample period, some environmental regulatory policies occurred in China,
which may affect carbon emissions. To eliminate the impact of these environmental policies
on city carbon emissions, in this section we will further control the effect of these policies.

Two major environmental regulatory policies were instituted during the sample pe-
riod. The first is the Clean Air Action policy (CAA) in 2013. Following Zhu and Xu
(2022), we manually collect cities’ air pollution targets and generate the variable CAA [5].
Following Zhu and Xu (2022), we measure CAA: CAA = Ln(air pollution targets) *
Post(year ≥ 2013) [5]. Adding CAA variables to the baseline model (1), the result is shown
in column (4) of Table 5. The Treat*Post is still significantly negative with the city carbon
emissions (LnCO2), suggesting that the basic conclusion is robust even if we control the
effect of the Clean Air Action policy on city carbon emissions.

Table 5. Other robustness check of the effect of city cluster policy on CO2 emissions.

(1) (2) (3)

LnCO2

Treat*Post −0.057 *** −0.074 *** −0.054 ***
(−3.615) (−4.661) (−3.936)

Control Pro_Trend YES
Control 2008 Finance

Crisis YES

Control outlier YES
Control Vars YES YES YES

City FE YES YES YES
Year FE YES YES YES

Observations 1620 1512 1620
Adj_R2 0.960 0.958 0.964

Note: t statistics are shown in parentheses; *** represent significance at the 1% levels, respectively.

The second is the provincial carbon emissions trading policy implemented in 2013
http://www.tanpaifang.com/tanjiaoyi/2012/0219/41.html (accessed on 5 May 2022). We
set a policy dummy variable CET that equals one if the province is eventually included
in the carbon emission system list by the end of our sample period, and zero otherwise.
Adding CET variables to the baseline model (1), the result is shown in column (5) of
Table 5. The Treat*Post is still significantly negative with the city’s carbon emissions
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(LnCO2), suggesting that the basic conclusion is robust even if we control the effect of
carbon emissions trading policy on city carbon emissions.

Finally, we control the impact of both the Clean Air Action (CAA) and the carbon
emissions trading policy (CET). The result in column (6) of Table 5 shows that the core
explanatory variable Treat*Post is still significantly negative with the city carbon emissions.
Although considering the interference of these two environmental regulatory policies, the
city cluster policy can still significantly reduce the city carbon emissions.

4.3.5. Other Robustness Check

In addition to the above four robustness tests, other robustness tests are discussed to
ensure the robustness of the results in this paper.

Control provincial trend. To exclude the impact of the variation of some characteristics
of provinces over time trend on the city carbon emission, we add to control the provincial
trend. The result is shown in column (1) of Table 5. The Treat*Post is still significantly
negative with the LnCO2.

Eliminate the impact of the financial crisis. A financial crisis affects economic de-
velopment, which affects the city’s carbon emissions. Therefore, we should exclude the
2008 sample, which would eliminate the impact of the 2008 financial crisis on city carbon
emissions. The result is shown in column (2) of Table 5. The Treat*Post is still significantly
negative with LnCO2.

Winsorize the data. In baseline regression, some variables may lead to extreme values
in the data. Therefore, to alleviate the impact of extreme values on the estimated results in
this paper, we process the data with 1% winsorizing. The result is shown in column (3) of
Table 5. The Treat*Post is still significantly negative with LnCO2.

Placebo test of the experimental group. Following Li et al. (2016) [27], we randomly
select a city cluster for placebo testing. Figure 3 shows the distribution of the regression
coefficients of the “artificial” processing variable Treat*Post in the simulation. It can be
observed that the randomly assigned estimated values are concentrated around zero, while
the truly estimated coefficients are on the left side of Figure 3. It verifies that the city cluster
policy has significantly reduced the city’s carbon emissions.

Figure 3. Placebo test of the experimental group.
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In a word, the robustness above indicates that the core conclusion still remains when a
series of possible and potential interference factors are excluded.

5. Further Discussion

5.1. Economic Channels

In this section, we will explore the three plausible underlying economic channels by
which city cluster policy affects city carbon emissions. The economic channels build on
existing theories, and factors such as productivity, technological innovation, and industrial
structure optimization are important in reducing city carbon emissions.

5.1.1. Productivity Effect

In this section, we will examine whether the city cluster improves city productivity
through the city scale effect, which reduces carbon emissions. Based on the article of Chen
et al. (2022) [30], we measure an index of the city’s total factor productivity (TFP) and
examine whether the city cluster has an impact on city productivity based on model (3).

TFPc,t = α+ β× Treatc × Postt + ∅ × Controlc,t + δc + μt + εc,t (3)

The empirical results are shown in Column (1) of Table 6. The core explanatory
variable Treat*Post is significantly positively correlated with the explained variable TFP
at the confidence level of 5%. The TFP level of the city increased by 22% after cities
were classified as the city cluster. Compared to other cities, China’s Yangtze River Delta,
Pearl River Delta, and Beijing–Tianjin–Hebei region have more advanced infrastructure
development, providing a more favorable environment for the flow of production factors.
This urban network further creates a scale effect and promotes urban productivity.

Table 6. Mechanism analysis of the effect of city cluster policy on CO2 emissions.

(1) (2) (3)

TFP LnRD ISO
Treat*Post 0.22 ** 0.611 *** −0.006 *

(2.515) (11.235) (−1.796)
Control Vars YES YES YES

City FE YES YES YES
Year FE YES YES YES

Observations 1547 1584 1618
R-squared 0.845 0.951 0.971

Adj_R2 0.842 0.946 0.969
Note: t statistics are shown in parentheses; ***, **, and * represent significance at the 1%, 5%, and 10%
levels, respectively.

5.1.2. Technological Innovation Effect

In this section, we will examine whether the city cluster enhances city innovation,
which reduces carbon emissions, through city knowledge spillovers. Therefore, based on
the article of Du et al. (2021) and Lyu et al. (2019) [31,32], we take city R&D input as a
proxy variable of city innovation and will examine whether the city cluster has an impact
on city innovation based on model (4).

LnRDc,t = α+ βt × Treatc × Postt +∅× Controlc,t + δc + μt + εc,t (4)

The empirical results are shown in Column (2) of Table 6. It can be seen that the core
explanatory variable Treat*Post is significantly positively correlated with the explained
variable LnRD at the confidence level of 5%. The city R&D input increased by 61.1%
after cities were classified as the city cluster. It can be seen that the flow of production
factors brought by the city cluster does significantly enhance the knowledge spillover

76



Energies 2022, 15, 6210

effect, and cross-regional knowledge spillover creates favorable conditions for improving
innovation efficiency.

5.1.3. Industrial Structure Optimization

In this section, we will examine whether the city cluster improves city industrial
structure upgrading by reducing the proportion of secondary industries, which reduces
carbon emissions. Therefore, based on the article of Liu et al. (2021) [33], we measured an
index of the rationalization of industrial structure, which can reflect the coupling degree of
the element inputs and outputs.

Formula (5) will be used to measure the rationalization degree of industrial structure.

ISOi,t =
3

∑
j=1

yijt

Yit
ln
(yijt

Yit
/

lijt
Lit

)
(5)

where i is the city, t is the year, and j is the industry. Variable yijt indicates the carbon
emissions of the industry j in city i and year t. Variable Yit indicates the gross of the industry
of city c in year t. Variable lijt indicates the number of employees of the industry j in city i
and year t. Variable Lit indicates the total number of employees of city c in year t. Obviously,
the closer ISO is to 0, the higher the coupling degree between the allocation and output
ratio of employees in the three industries is and the more reasonable the industrial structure
is. On the contrary, the industrial structure is unreasonable.

We will examine whether the city cluster has an impact on city industrial structure
upgrading based on model (6).

ISOc,t = α+ βt × Treatc × Postt + ∅ × Controlc,t + δc + μt + εc,t (6)

The empirical results are shown in Column (3) of Table 6. It can be seen that the core
explanatory variable Treat*Post is significantly negatively correlated with the explained
variable ISO at the confidence level of 10%. The ISO index decreased by 0.6% after cities
were classified as the city cluster. Therefore, the optimization of a city system stemming
from the development of the city cluster will promote the industrial structure upgrading.

5.2. The Effect of City Cluster Policy on CO2 Emissions across City Cluster Positioning Level

The level of the city cluster positioning determines the resource allocation capacity
of the city cluster. The city cluster with a high positioning level can provide favorable
organizational leadership and abundant human, financial, and other resources, which
support the implementation of the city cluster to reduce city carbon emissions. However,
the regional-level city cluster governments have a limited ability to allocate resources. In
this case, they cannot provide appropriate policies and funds to attract talents and promote
the transformation and upgrading of enterprises. The world-level city cluster also does
not affect the reduction of carbon emissions. The reason is that the goal of the world-class
city cluster is to create a more open Chinese market, and attracting foreign investment is
the top priority. As a result, the policy benefits of regional and world-level city cluster
cannot be realized. The national-level city cluster has sufficient allocation capacity to reduce
carbon emissions.

The result is shown in column (1) of Table 7. Only variable Nation*Treat*Post is signifi-
cantly negative with LnCO2, the regional and world city cluster positioning show weak pol-
icy effects, neither variables World*Treat*Post nor Region*Treat*Post are significantly affected.
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Table 7. The effect of city cluster policy on CO2 emissions across city cluster positioning level.

(1)

LnCO2

World*Treat*Post −0.020
(−0.528)

Nation*Treat*Post −0.103 ***
(−6.854)

Region*Treat*Post 0.030
(1.031)

Control Vars YES
City FE YES
Year FE YES

Observations 1,620
R-squared 0.963

Adj_R2 0.959
Note: t statistics are shown in parentheses; *** represent significance at the 1% levels, respectively.

6. Conclusions and Policy Implications

6.1. Conclusions

Based on 108 Chinese cities from Yangtze River Economic Belt between 2003 and 2017,
this study examines the impact of the city cluster policy on cities’ carbon emissions using
the difference-in-differences method. The main conclusions are as follows.

(1) The city cluster policy has significantly reduced the level of cities’ carbon emissions.
During our sample period, carbon emissions from cities declined by an average of 7.4%
after cities were classified as the city cluster. After a series of robustness tests, the conclusion
remains robust.

(2) Productivity, technological innovation, and industrial structure optimization are
three essential mechanisms for the city cluster policy to reduce carbon emissions. We find
that the TFP level of the city increased by 22%, the city R&D input increased by 61.1%, and
the ISO index decreased by 0.6% after cities were classified as the city cluster. It means that
cities are more productive, innovative, and have a more reasonable industrial structure.

(3) There is a difference in the effect of the positioning level of the city cluster on
the reduction of carbon emissions. The effect of city cluster policies on carbon emission
reduction is significant only in the national-level city cluster. The carbon emissions from
the national-level city cluster declined by an average of 10.3%.

6.2. Policy Implications

This paper has the following three policy implications:
First, this paper finds that the city cluster will significantly reduce city carbon emis-

sions. Therefore, the government should adopt a more diversified approach to air control.
It can not only reduce air pollution through environmental regulation but also reduce
carbon emissions by setting up the city cluster through city spatial layout. Policymakers
should actively adhere to the city cluster model. They should not only continue to vigor-
ously promote the development of mature city clusters in the Yangtze River Delta, Pearl
River Delta, and Beijing–Tianjin–Hebei region, but also strengthen the concentration of city
clusters in the Yangtze River, Chengdu–Chongqing, and Central Plains.

Second, based on the mechanism analysis, the city cluster can reduce city carbon
emissions by improving productivity, improving innovation, and optimizing industrial
structure. Therefore, the government can take “industrial transfer and innovation drive” as
an opportunity to actively promote the transfer of traditional industries from core cities
(or big cities) to non-core cities (or small and medium-sized cities). It can improve the
efficiency of the utilization of production factors in the city cluster through specialization
and industrial upgrading. At the same time, guide the core cities to build innovation
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systems. The government can achieve the goal of carbon emission reduction by optimizing
the industrial structure of the city.

Third, based on the heterogeneity analysis, only the national-level city cluster can
achieve the purpose of city emission reduction. Therefore, the government should set up
more nation-level city clusters, rather than regional-level or world-level city clusters. It
needs to further improve the resource support capacity of the national-level city cluster
and promote the transformation and upgrading of enterprises through the introduction of
talents and financial subsidies.

6.3. Limitations and Future Research Possibilities

However, this paper also has some limitations: on the one hand, the research sample
of this paper is the data from the city level in China. In the future, when carbon emissions
data at the corporate level becomes available, we can investigate the carbon effect of the
city cluster policy from a micro-enterprise perspective. On the other hand, although this
paper explores the carbon reduction effect of the city cluster policy, it does not examine its
impact on human health. In the future, we will merge relevant micro-survey data to study
the impact of city cluster policy on individual health.
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Abstract: Nowadays, increased urbanization is visible in most European Union countries. At the
same time, it can be noticed that in the studied period (2000–2018), GDP per capita increased, and CO2

emissions per capita and energy consumption per capita decreased. These trends should be assessed
in an unequivocally positive way. Considering these trends, especially with regard to economic
development, our research goal is to answer the following questions: is there a long-run relationship
between urbanization, energy consumption, economic growth, and carbon dioxide emissions, and
what roles do urbanization and energy consumption play in the concept of the environmental
Kuznets curve? This study aims to contribute to this growing area of research by exploring the
European Union countries in the period covering the accession of new member states from Central
Europe that needs intensifying European environmental policy. In order to test cointegration, we
used Pedroni and Westerlund’s panel tests. To estimate the long-run coefficients, we employed the
FMOLS, MG, CCEMG, and AMG tests. Our findings confirmed the long-run relationship between
variables. We find that urbanization has a high negative impact on carbon dioxide emissions per
capita. Interestingly, our studies’ results differ from those in most of the previously published articles
about European countries. For this reason, our results provide a new insight for policymakers in
European Union institutions.

Keywords: environmental Kuznets curve; carbon dioxide emissions; CO2; urbanization; energy
consumption; European Union

1. Introduction

Nowadays, over half of the world’s inhabitants live in cities. The United Nations’
prognoses point out that the total population in the world in 2050 will reach 9.31 billion,
while the urban population will increase to 6.25 billion, and the urbanization index will be
67.2% [1]. It is largely the civilization advance, together with all the accompanying effects,
which has made the population in cities grow dramatically. However, all these aspects and
assumptions have consequences as far as the natural environment, the population growth,
and the population distribution in particular areas of the globe, especially in cities, are
concerned. In the European Union countries, urbanization is progressing continuously,
extending into new regions. In the years 2000–2018, its increase was visible in most
countries. The urbanization index dropped only in four countries: Slovak Republic, Austria,
Cyprus, and Poland. Minor changes (less than 1%) in this respect occurred only in the Baltic
countries (Estonia, Latvia, and Lithuania), the Czech Republic, and Belgium (Table A1 in
Appendix A). Based on World Bank Statista data, in 2019, 75% of the population lived
in cities and the suburbs of the European Union countries, while only 25% lived in rural
areas. It is noteworthy that at the same time, a decrease in carbon dioxide emissions can be
observed along with the process of growing urbanization.

In most countries, a decreasing carbon dioxide emissions tendency is seen in com-
paring the emissions in the years 2000 and 2018. For example, Luxembourg, the leader
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in this ranking in 2000, witnessed significant changes in the field of applied policy con-
cerning emissions reduction. In this region, the estimated decrease in emissions was from
19.7 metric tons per capita in 2000 to 15.3 in 2018 (Table A1 in Appendix A). The visible
changes (more than 1%), in this respect, proceed in another direction in the Baltic countries
(Lithuania, Latvia, and Estonia). There, an increase in carbon dioxide emissions took place
by 1.03, 1.13, and 1.50 metric tons per capita, respectively. However, it must be noted that
in most countries, the ongoing changes are an element of the idea of climate neutrality,
which is the aim of the European Union for the next decades.

The European Union treats the problem of climate change in a very emphatic way,
and it undertakes activities in this direction. Prevention of those changes is one of its
priority goals, reflected in the tasks designed for the decades to come, for example, through
a reduction in greenhouse gas emissions [2]. The European Green Deal is a strategy
for growth, transforming the economic and political union of 27 European democratic
countries into places that are neutral to climate. The activities accompanying the major goal
refer to significant aspects. Firstly, it is the establishment of a modern, resource-efficient,
and competitive economy where there will be no net emissions of greenhouse gases in
2050. Secondly, it is a separation of economic growth from the use of resources. The third
aspect refers to guaranteeing the protection and strengthening of neutral capital. Finally,
the fourth, but nonetheless very important point, is to ensure citizens’ health protection,
security, and well-being, which is aimed at protecting them from the environmental effects
of climate change.

Considering the formulated aims of climate neutrality, as well as the economic de-
velopment and the progressing process of urbanization in the European Union countries,
our main research goal is to answer the question, is there a long-run relationship between
urbanization, energy consumption, economic growth, and the carbon dioxide emissions,
and what roles do urbanization and energy consumption play in the concept of the envi-
ronmental Kuznets curve? This study aims to contribute to this growing area of research
by exploring the European Union countries in the period, which covers the accession of
new member states from Central Europe. This enlargement needs intensifying cooperation
between EU member states, especially in environmental policy. The relationship is tested
using the concept of the environmental Kuznets curve, where, apart from carbon dioxide
emissions and economic growth, urbanization and final energy consumption are considered.
To this aim, the Pedroni and Westerlund panel cointegration tests are used. To estimate the
long-run coefficients of the cointegration association, we employed the panel Fully Modified
Ordinary Least Squares (FMOLS) test. To test the robustness of the estimation results, we
used the Pesaran and Smith Mean Group (MG) estimator, the Pesaran Common Correlated
Effects Mean Group (CCEMG), and Augmented Mean Group (AMG) estimators.

The remaining sections of this research are planned as follows. Section 2 presents
a brief literature review on the relationship between urbanization, environmental degra-
dation, and economic growth, analyzed within the environmental Kuznets curve (EKC)
concept. Section 3 contains the data, model and empirical methodology. The research
results and discussion are presented in Section 4. Section 5 concludes the research and
provides policy recommendations.

2. Literature Review

Research on the effect of urbanization on the quality of the environment is frequently
conducted using the concept of the environmental Kuznets curve, which appeared at the
beginning of the 1990s in the work by Grossman and Krueger [3]. The Authors proved that
the scale of environmental pollution is connected with the level of economic development
of a given country. In the initial stages of economic development, an increase in the level
of pollution related to the exploitation of natural resources also takes place, intending to
create welfare. This tendency is reversed after a certain level of income (turning point) is
trespassed. Then, the situation changes, and expenditures on environmental protection
start to increase. The conclusions drawn by Grossman and Kruger became the basis for

82



Energies 2022, 15, 6412

creating a model according to which the relationships between economic growth and the
emissions of pollutants have an inverted U-shaped curve. In recent years, the popularity
of the environmental Kuznets curve, which additionally used different variables, grew.
A complex review of the literature in this area can be found, for instance, in Shahbaz
and Sinha [4,5], Purcel [6], Koondhar et al. [7], and Xia et al. [8]. This article focuses on
research that primarily considers the variables characterizing the urbanization process,
urban population, and energy consumption.

It needs to be emphasized that this research was carried out in various regions
and states with different levels of economic development, for instance, in emerging
economies, developing countries, or developed countries. Most of those studies con-
firm the relationships defined by the environmental Kuznets curve, but the results of the
effect of urbanization on the quality of the environment are not conclusive. For example,
Maneejuk et al. [9] analyzed the relationship between GDP per capita, urbanization, fi-
nancial development, the industrial sector, and the emissions of CO2 for the Association
of Southeast Asian Nations (ASEAN), the European Free Trade Association (EFTA), the
European Union (EU), Group of Seven (G7), Gulf Cooperation Council (GCC), Mercosur,
the North American Free Trade Agreement (NAFTA) and the Organization for Economic
Co-operation and Development (OECD) in the years 2001–2016. The findings indicate that
the EKC hypothesis is valid in only three out of eight international economic communities,
namely, the EU, OECD, and G7. It follows from the research that urbanization, as well as
financial development and the industrial sector, increase CO2 emissions, while the use of
renewable energy reduces degradation of the environment. In the case of urbanization,
statistical significance and the highest positive effect were displayed by ASEAN (0.823),
and then by GCC (0.563), Mercosur (0.553), UEU (0.123), and G7 (0.019). In the other groups,
the effect of urbanization on CO2 emissions was statistically insignificant.

Similar results were obtained by Wang et al. [1]. The Authors analyzed the effect
of urbanization on economic growth and the quality of the environment in the period
1996–2015 based on data from 134 countries. Studies confirmed the occurrence of an
inverted U-shaped relationship between economic growth and CO2 emissions for the
countries in the lower middle-income group, and a U-shaped relationship for the high-
income group of countries. The Authors showed that the emissions of CO2 increased
together with increased urbanization. The same direction of the effect of urbanization on
carbon dioxide emissions was defined by Sun Y. et al. [10], who conducted research on the
Middle East and North African (MENA) economies.

However, it deserves to be pointed out that an increase in urbanization can in-
crease the emissions of carbon dioxide only to a certain level, after which its further
progress will reduce these emissions. Such relationships were confirmed in the studies by
Gierałtowska et al. [11], who indicated that urbanization has an inverted U-shaped rela-
tionship with CO2 emissions in the group covering 163 countries over the period from
2000 to 2016. This relationship can be confirmed by the results of studies obtained by Li
and Haneklaus [12], where the Authors showed that increased urbanization decreases
CO2 emissions in the group of G7 countries in the years 1979 to 2019, and by Balsalobre-
Lorente et al. [13] in the BRICS states in the years 1914–2014. Likewise, studies by Saidi and
Mbarek [14], on the effect of urbanization, income, trade openness, and financial develop-
ment on the carbon dioxide emissions in nineteen emerging economies during 1990–2013,
indicate that urbanization decreases CO2 emissions. According to the Authors, this is a
powerful argument for politicians and city planners in shaping contemporary policies in
those regions.

Previous studies conducted in European countries indicated the opposite results.
Based on research carried out in 33 European countries and covering the period 1996–2017,
Ali et al. [15] showed that urbanization together with economic growth, export, import, and
energy consumption are the main factors that increase environmental degradation. The
coefficients associated with urbanization are positive and statistically significant: 0.188 for
model I, and 0.011 for model II. At the same time, the Authors point to energy innovation,
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which should help to reduce the rate of environmental degradation. A similar group of
European countries (36) was studied by Wang et al. [16], who indicated a positive and
significant effect of urbanization, as well as economic growth and foreign direct investment,
on CO2 emissions in the years 2000–2018. A slightly bigger group was examined by
Khezri et al. [17]. The results of studies for 43 European countries between 1996 and
2018 also confirmed the relationship defined as the environmental Kuznets curve and
urbanization’s positive effect on carbon dioxide emissions (coefficients 0.659–0.760).

Comparable results, but for smaller groups of European countries, were obtained by
Balsalobre-Lorente et al. [18]. The Authors studied the relationships between GDP per
capita, urbanization, foreign direct investment, renewable energy consumption, and CO2
emissions in Portugal, Ireland, Italy, Greece, and Spain, in the years 1990–2019. The study
confirmed the relationship between economic growth and CO2 emissions in the inverted
U-shaped and N-shaped curves. The urbanization process increases the emissions of CO2
in such a way that an increase in urbanization by 1% increases CO2 emissions within the
range from 0.44% to 6.36%, depending on the adopted model. Verbič et al. [19] conducted
studies for the countries of South-Eastern Europe in the years 1997–2014. The evidence
points to an inverted U-shaped relationship between GDP per capita and the emissions
of carbon dioxide in the long run in the whole sample. Short-term estimates evidence the
existence of EKC in the inverted U-shape only for Greece and Moldavia. The Authors
pointed to a statistically significant positive influence of urbanization on CO2 emissions
(coefficient 1.057, FMOLS).

However, not all studies confirm the negative or positive effects of urbanization on
the emissions of carbon dioxide. To give an example, no relation between urbanization
and carbon dioxide emissions was indicated by Destek et al. [20]. Their research sample
comprised Central European countries such as Albania, Bulgaria, Croatia, the Czech
Republic, Macedonia, Hungary, Poland, Romania, Slovakia, and Slovenia. The main
goal was to find the relationship between CO2 emissions, urbanization, GDP per capita,
energy consumption, and trade openness in the years 1991–2011. Studies confirmed the
hypothesis of the environmental Kuznets curve in the sample. Results indicate a short-run
two-directional causal relation between CO2 and GDP per capita as well as between GDP
per capita and energy consumption. There is no relation, however, between urbanization
and carbon dioxide emissions. Similar results were obtained by Amin, et al. [21], who point
out that urbanization in European countries does have a positive effect on environmental
pollution, but it is statistically insignificant. Interestingly, the Authors saw a need to
analyze the transport sector as a consequence of the process of urbanization. The Authors
argue that transport significantly affects the air quality. They also point out that using
renewable energy reduces carbon dioxide emissions from transportation. At the same
time, they emphasize that necessary measures should be taken to increase ecological
consciousness, especially among the urban population. In this process, it is important to
promote environmentally friendly and energy-efficient means of transportation.

Although, the impact of urbanization on the environment in the European Union is
related to the fact that some countries have undergone deindustrialization and offshored
the environmental effects of their consumption to other countries. Research on industrial-
ization’s impact on carbon dioxide emissions mainly focuses on structural changes, where
structural changes towards services, usually at higher levels of economic development,
improve environmental quality [22–24]. Previous works, including Cherniwchan [25], and
Raheem and Ogebe [26], have shown that industrialization is an important determinant
in environmental quality changes. Another problem is offshoring the negative ecological
impacts, which is often the result of differences in carbon prices in different regions. This
phenomenon can lead to the production of energy-intensive goods into “carbon havens”,
thus creating a “carbon leakage”. The observed industry relocation is a significant problem
for the European Union and national policymakers [27].
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3. Materials and Methods

We use the model that characterizes the relationships between economic development
and the degree of environmental pollution. The first studies on these relationships included
those by Grossman and Krueger [3,28], Shafik and Bandyopadhyay [29], Panayotou [30],
and Selden and Song [31]. A fast increase in the number of studies led to the formulation of
the concept of the environmental Kuznets curve, for example, see Gruszecki and Jóźwik [32].
It assumes a relationship between economic escalation (GDP per capita) and the level
of nature contamination (e.g., due to carbon dioxide emissions), mostly in the inverted
U-shaped curve. It happens because industrialization is followed by certain negative
consequences (for example, pollution of man’s natural environment), which grow to a
certain point, after which they decrease, even though economic development proceeds.
This, on the other hand, follows on from the fact that at a certain stage of advanced
economic development, a change can be noticed in the mechanism of demands exhibited
by consumers who then, to function, need more services and a cleaner environment.
Technological progress also takes place, which does away with the negative effects of
contamination of the surrounding world following economic development.

Considering the realization of our research goal, an important problem proves to
be the aforementioned relationship described by the environmental Kuznets curve and
the observed increase in urbanization and technological progress in the European Union
countries. This relationship induces a search for the answer to the following question:
is there a long-run relationship between urbanization, energy consumption, economic
growth, and carbon dioxide emissions, and what roles do urbanization and energy con-
sumption play in the concept of the environmental Kuznets curve? We use the econometric
model with the urbanization variable to answer the questions. The model with the urban-
ization variable was employed, for example, by Kasman and Duman [33], Ozatac, Gok-
menoglu, and Taspinar [34] as well as by Kirikkaleli and Kalmaz [35], Musa et al. [36], and
Anwar et al. [37]. Our model will also consider final energy consumption.

The relationship between carbon dioxide emissions, GDP per capita, urban popu-
lation (urbanization), and final energy consumption per capita is expressed in model I
(Equation (1)). We also use model II (Equation (2)) for a robustness check where environ-
mental degradation is proxied as greenhouse gas emissions, expressed in units of CO2
equivalents. All variables are transformed into a natural logarithm format, to avoid multi-
collinearity issues, reduce the possible outliers from the dataset, as well as overcome the
chances of data sharpness and normality [13].

LnCO2it = β0 + β1 ln GDP + β2(ln GDP)2 + β3 ln URB + β4 ln ENC + μit (1)

LnGHGit = β0 + β1 ln GDP + β2(ln GDP)2 + β3 ln URB + β4 ln ENC + μit (2)

where β—regression coefficients, CO2—carbon dioxide emissions in metric tons per capita,
GHG—greenhouse gas emissions per capita, GDP—gross domestic product per capita
(constant 2015 USD), URB—urban population (% of total population), ENC—final energy
consumption in tonnes of oil equivalent per capita, μit—error correction term. It should
be pointed out that in many scientific studies, the standard measure of urbanization is the
share of the population living in urban areas [38].

Before estimating the models, some preliminary tests need to be applied to the panel
data. Figure 1 shows the entire research procedure. Initially, we test for cross-section
dependence using the Pesaran CD-test [39]. Afterward, in order to discover whether the
data of selected variables have stationarity or non-stationarity, we apply the Im–Pesaran–
Shin panel unit root test [40] and the second-generation unit root test in the presence of
cross-section dependence proposed by Pesaran [41]. Next, we test the long-run relationship
(cointegration) among selected variables. To do this, we performed the Pedroni [42,43] and
Westerlund [44] panel cointegration tests. These tests are recommended when inter-country
convergence is confirmed [45]. The final step of the empirical analysis is estimating the
long-run coefficients (elasticities) of the cointegration association concerning urbanization.
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For that purpose, we employed the panel Fully Modified Ordinary Least Squares test, the
Pesaran and Smith [46] Mean Group estimator, the Pesaran [47] Common Correlated Effects
Mean Group, and Augmented Mean Group estimators.

Figure 1. The model estimation method. Notes: FMOLS—Fully Modified Ordinary Least Squares
test; MG—Pesaran and Smith Mean Group estimator; CCEMG—Pesaran Common Correlated Effects
Mean Group estimator; AMG—Augmented Mean Group estimator.

Our study sample consists of 28 countries for which we have complete data for the
2000–2018 period (532 observations for each variable). All data were retrieved from the
World Bank and Eurostat databases. Table 1 describes the variables and sources of data.
Table 2 shows the summary statistics. It should be noted that the differences between the
values of the variables are appreciable in our research sample. The CO2 emissions range
between 2.97 metric tons per capita in Latvia and 25.67 in Luxemburg, while GDP per
capita ranges between USD 3668.65 in Bulgaria and 105,454.7 in Luxemburg. At the same
time, we observe considerable differentiation in the urban population, where the smallest
values occur in Slovenia (59.7), and the biggest in Belgium (98.0).

Table 1. Variables descriptions and sources of data.

Variable Description Data Source

dependent variable
CO2 carbon dioxide emissions (metric tons per capita) WDI

GHG greenhouse gas emissions per capita. Indicator expressed in units of
CO2 equivalents in metric tons per capita EEA

Independent variable
GDP gross domestic product per capita (constant 2015 USD) WDI
URB urban population (% of total population) WDI
ENC tonnes of oil equivalent per capita WDI

Notes: WDI—World Development Indicators; EEA—European Environment Agency.

Table 2. Summary statistics.

Variable Mean Std. Dev. Min. Max. Variance Kurt.

CO2 8.104 3.975 2.927 25.669 15.799 6.260
GHG 10.426 4.157 4.3 30.8 17.278 8.304
GDP 29,163.460 19,691.830 3668.654 105,454.7 3.880 6.012
URB 72.140 12.444 50.754 98.001 154.861 2.129
ENC 2.487 1.372 0.930 9.630 1.883 12.648

Notes: CO2—carbon dioxide emissions (metric tons per capita); GDP—GDP per capita (constant 2015 USD);
URB—Urban population (% of total population); ENC—Energy final consumption (tonnes of oil equivalent)
per capita.

Figure 2 presents changes in aggregated variables for the European Union countries in
the years 2000–2018. In the examined period, a decrease in per capita CO2 and greenhouse
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gas emissions, final energy consumption, and an increase in GDP per capita and urban
population occurred. These trends should be assessed in a positive way. Another issue is a
growing proportion of the population living in cities (urbanization), which is undoubtedly
connected with the demographic changes, economic development, and technological
advance observed in economically developed countries.

 

Figure 2. CO2 emissions per capita, greenhouse gas emissions per capita, GDP per capita, urban
population, and final energy consumption per capita in the European Union between 2000 and 2018.

4. Results and Discussion

As outlined above, the first step in our method is to observe whether series are generat-
ing common shocks in the long run. To this aim, we test for cross-section dependence in our
panel time-series data. The outcomes of the Pesaran cross-sectional dependency test [39] are
shown in Table 3. The test results rejected the null hypothesis and confirmed the presence of
cross-country dependency, which is not unexpected because the European Union countries
share a common market and economic policy. A number of the conducted studies point to
systematic economic convergence between these countries in recent years, for example, see
Jóźwik [48] or Bernardelli et al. [49]. Because of this convergence, one country’s economic
and environmental transformations can easily be transferred to its neighboring countries.
Therefore, we need to use a proper stationarity approach to circumvent the common effect
and provide reliable results [45].

In the second step, we identify the order of integration of the variables by employing
the Im–Pesaran–Shin panel unit root test. We subtracted the cross-sectional averages from
the series and requested that the number of lags of the series be chosen in such a way that
the AIC for the regression is minimized (max AIC is four). The stationarity test results in
Table 4 confirm that the data series is unstable at this level. However, after considering the
first difference, the test confirmed that the series became stationary at the 1% significance.
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Table 3. Results of cross-sectional dependency Pesaran test.

Variable Cd-Test p-Value Corr Abs (Corr)

ln CO2 45.12 *** 0.000 0.532 0.666
lnGHG 40.12 *** 0.000 0.473 0.711
lnGDP 58.27 *** 0.000 0.688 0.768

lnGDPsq 58.26 *** 0.000 0.687 0.768
lnURB 26.65 *** 0.000 0.314 0.843
lnENC 24.48 *** 0.000 0.289 0.565

Note: Under the null hypothesis of cross-section independence CD ~ n(0,1). *** denotes statistical significance at
the 1% level.

Table 4. Im–Pesaran–Shin Panel unit root test (W-t-bar statistics).

Variables Drift and No Trend p-Value Drift and Trend p-Value

at level

ln CO2 −0.8740 0.1910 −3.8365 *** 0.0001
lnGHG −0.6831 0.2473 −4.6078 *** 0.0000
lnGDP −0.0958 0.4618 −1.2311 0.1091

lnGDPsq −0.2414 0.4046 −1.4185 ** 0.0780
lnURB −0.7913 0.2144 4.1977 1.0000
lnENC −0.7915 0.2143 −4.6526 *** 0.0000

at 1st difference

ln CO2 −15.6464 *** 0.0000 −10.9659 *** 0.0000
lnGHG −14.9536 *** 0.0000 −10.1475 *** 0.0000
lnGDP −6.6989 *** 0.0000 −4.1460 *** 0.0000

lnGDPsq −6.7379 *** 0.0000 −4.5406 *** 0.0000
lnURB −2.4104 *** 0.0080 −6.2014 *** 0.0000
lnENC −14.1526 *** 0.0000 −8.6068 *** 0.0000

Notes: H0: All panels contain unit roots. Ha: Some panels are stationary. Cross-sectional means removed. Max
AIC is 4. The number of lags of the series is chosen in such a way that the AIC for the regression is minimized.
**, *** denote statistical significance at the 5% and 1% levels, respectively.

In addition, we employed the panel second generation unit root test in the presence of
cross-section dependence proposed by Pesaran [41]. We assume that the serial correlation
order to be tasted with the Breusch–Godfrey Lagrange multiplier test in each regression
is one, and the number of lags is four. Table 5 displays results for two deterministic mod-
els’ specifications: with individual-specific intercepts and incidental linear trends. The
test results confirm that the variables are stationary at the first difference, almost all at
the 1% significance.

Table 5. Pesaran panel unit root test in the presence of cross-section dependence.

Variables At Level At 1st Difference

Individual-Specific Intercepts Incidental Linear Trends Individual-Specific Intercepts Incidental Linear Trends

ln CO2 −2.065 −2.801 ** −4.291 *** −4.334 ***
lnGHG −2.202 ** −3.034 *** −4.331 *** −4.460 ***
lnGDP −2.023 ** −2.183 ** −3.024 *** −3.068 ***

lnGDPsq −1.978 −2.160 ** −2.941 *** −3.060 ***
lnURB −0.903 −1.126 −2.174 ** −3.680 ***
lnENC −1.436 −2.908 *** −4.205 *** −4.171 ***

Notes: critical values: at ***—1% significant level is −2.32 and at **—5% is −2.15; the serial correlation order to be
tasted with the Breusch–Godfrey Lagrange multiplier test in each individual regression is 1; the number of lags is 4.

As noted previously, environmental degradation can be proxied in various ways. We
selected CO2 emissions as a proxy for environmental degradation in the model I, but for a
robustness check, we also used the greenhouse gas emissions per capita variable. In this
respect, we checked the cointegration (long-run relationship) between variables using the
Pedroni and Westerlund tests. The tests have a common null hypothesis of no cointegration.
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The alternative hypothesis of the Pedroni tests is that the variables are cointegrated in all
panels. In the version of the Westerlund test in which the AR parameter is panel specific,
the alternative hypothesis is that the variables are cointegrated in some of the panels. In
the version of the Westerlund test in which the AR parameter is the same over the panels,
the alternative hypothesis is that the variables are cointegrated in all the panels. In the
Pedroni tests, we subtracted the cross-sectional averages from the series and requested that
the number of lags of the series be chosen in such a way that the AIC for the regression is
minimized (max AIC is four), as in the panel unit root tests calculations. Table 6 reports
results for cointegration where six out of seven Pedroni tests confirm cointegration in
Model I and Model II. The results of the Westerlund tests indicate that the variables are
cointegrated in some of the panels.

Table 6. Pedroni and Westerlund panel cointegration tests results.

Tests Model I Model II

Pedroni test AR parameter: Same

Modified variance ratio −3.2956 *** −3.5891 ***
Modified Phillips–Perron t 0.9245 1.1932

Phillips–Perron t −8.0501 *** −6.8419 ***
Augmented Dickey–Fuller t −10.4652 *** −10.1033 ***

Pedroni test AR parameter: Panel specific

Modified Phillips–Perron t 3.0399 *** 3.1541 ***
Phillips–Perron t −8.6913 *** −7.3555 ***

Augmented Dickey–Fuller t −12.4472 *** −11.0408 ***

Westerlund test AR parameter: Same

Variance ratio −1.2798 −1.3705 *

Westerlund test AR parameter: Panel specific

Variance ratio −2.5575 *** −2.6808 ***
Notes: Westerlund test AR parameter: Same. Ha: All panels are cointegrated; Panel specific. Ha: Some panels are
cointegrated. *, *** denote statistical significance at the 10% and 1% levels, respectively.

In the final step, we estimated the coefficients of Equations (1) and (2). Table 7 provides
the FMOLS test results. To test the robustness of the estimated results, we used the Pesaran
and Smith Mean Group estimator, the Pesaran Common Correlated Effects Mean Group, and
the Augmented Mean Group estimators. These tests, which concern with correlation across
panel members (cross-section dependence), were introduced by Eberhardt and Teal [50] and
Bond and Eberhardt [51]. The advantage of using these estimators is that they are designed
for ‘moderate-T and moderate-N’ macro panels. These results are presented in Table 8.

Table 7. Panel FMOLS test results.

Variable Coefficient t-Stat p-Value

model I

lnGDP 29.81 *** 813.83 p < 0.00001
lnGDPsq −1.41 *** −854.28 p < 0.00001

lnURB −5.02 *** −123.71 p < 0.00001
lnENC 1.05 *** 248.03 p < 0.00001

model II

lnGDP 17.65 *** 702.78 p < 0.00001
lnGDPsq −0.82 *** −752.76 p < 0.00001

lnURB −6.54 *** −144.88 p < 0.00001
lnENC 0.83 *** 209.09 p < 0.00001

Notes: The number of observations is 532. p-value for two-tailed hypothesis. *** denotes statistical significance at
the 1% level.
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Table 8. Mean Group (MG), Augmented Mean Group (AMG), and Common Correlated Effects Mean
Group (CCEMG) estimation results.

Test Coefficient

lnGDP lnGDPsq lnURB lnENC Const.

model I

MG 44.505 **
(0.023)

−2.038 **
(0.024)

−4.289 ***
(0.002)

0.994 ***
(0.000)

−223.513 **
(0.038)

AMG 25.251 *
(0.076)

−1.176 *
(0.083)

−3.688
(0.205)

0.907 ***
(0.000)

−118.128
(0.121)

CCEMG −10.037
(0.350)

0.511
(0.302)

−6.895
(0.159)

0.951 ***
(0.000)

57.116
(0.330)

model II

MG 28.605 **
(0.041)

−1.290 **
(0.047)

−6.067 ***
(0.004)

0.8170 ***
(0.000)

−130.276 *
(0.087)

AMG 29.452 **
(0.019)

−1.375 **
(0.021)

−10.449
(0.194)

0.672 ***
(0.000)

−109.249
(0.076)

CCEMG −10.037
(0.350)

0.511
(0.302)

−6.895
(0.159)

0.951 ***
(0.000)

57.116
(0.330)

Notes: numbers in parentheses are p-value. ***, **, * denote statistical significance at the 1%, 5%, and 10%
level, respectively.

As can be seen from Tables 7 and 8, in both models, the significant coefficients of
the real GDP per capita are positive, whereas those of the squared GDP per capita are
negative. It means that the long-run linkage between CO2 emissions per capita and GDP
per capita is an inverted U-shape implying that the environmental Kuznets curve concept
is verified for the whole group of the European Union countries. The economic growth
and development are supportive of carbon emissions in that region. Similar results of
studies for the group of European countries were recently obtained by Destek et al. [20],
Maneejuk et al. [9], and Verbič et al. [19], as well as by Balsalobre-Lorente et al. [18]. Despite
significant technological advances in the European Union countries, energy consumption
still positively influences carbon emissions per capita. Our results are similar to the
papers mentioned earlier, as well as to those that have been published recently, namely,
Khezri et al. [17], Kar [52], and Mohsin et al. [53].

Interestingly, all results from Tables 7 and 8 indicate that urbanization negatively
impacts carbon emissions per capita. However, there are differences in the significance
level of the coefficients depending on the method used. Nevertheless, this shows that
urbanization has an essential effect on environmental protection in the European Union
area, nowadays. For example, the results of FMOLS for model I show that a 1% increase
in a share of the urban population decreases emissions per capita by 5.02% if all other
variables remain the same. We want to highlight that our study on the urbanization
process’ effect on carbon dioxide emissions points to different results than many studies
mentioned in the literature review section. As we remember, the significant results indicate
that urbanization positively impacted the carbon dioxide emissions in different groups
of European countries. To give an example, in an article by Ali et al. [15], coefficients
are positive and equal to 0.188 and 0.011; in the study by Balsalobre-Lorente et al. [18],
between 0.44 and 6.36; while in the studies by Destek et al. [20] and Amin et al. [21]
there was no relationship. This difference probably results from a few reasons, some of
which include research methods, samples, and periods. Another reason can be related to
trespassing the threshold after which both increased income per capita and the coefficient
of urbanization give rise to improved quality of the environment, which was indicated by
Gierałtowska et al. [11]. This effect can be enhanced by the deindustrialization process we
wrote about in the literature review. Dong et al. [54] highlighted that from the perspective of
income level, industrialization contributes to the growth in carbon emissions. The effect of
industrialization on CO2 emissions gradually increases in the low- and intermediate-income
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levels. Azam et al. [55] also state that the industrialization process in OPEC economies
increases environmental pollution, while the impacts on income are the opposite. However,
the effect of industrialization begins to weaken at the high-income level according to research
conducted by Dong et al. [54]. Probably this effect is observed in the European Union
countries with a high-income level. Furthermore, economic development supports human
capital, which significantly improves environmental quality [56]. Thus, our results indicate
that studies in this area should be extended to different research models and methods.

5. Conclusions and Recommendations

In our research, we took into consideration two trends. First is the urbanization
process, which increased the urban population in most European Union countries in
years 2000–2018, and the second trend is a decrease in carbon dioxide emissions, which is
indirectly the consequence of technological advances and the applied European climate
policy. Considering these two trends, our research goal was to answer the following
question: is there a long-run relationship between urbanization, energy consumption,
economic growth, and carbon dioxide emissions, and what roles do urbanization and
energy consumption play in the concept of the environmental Kuznets curve in European
Union countries? We used the data from 28 European Union countries to assess the
relationships. Our findings confirmed the long-run relationship between variables. We
validated the environmental Kuznets curve hypothesis, indicating that economic growth
has an inverted U-shaped effect on CO2 emissions.

However, energy consumption still positively influences carbon emissions per capita,
even though European Union countries have made significant economic and technological
progress. At the same time, urbanization has a highly negative impact on carbon dioxide
emissions per capita. If all other variables remain the same, a 1% increase in a share of the
urban population decreases CO2 emissions per capita by 5.02%. The result of our study
is different from the results in the majority of earlier published articles. This difference
probably arises from a few reasons. One of them may be the fact that the threshold after
which both an increase in income per capita and urban population causes a decrease in
carbon dioxide emissions in European Union countries has been trespassed in recent years.

Our results provide new insights for policymakers in European Union institutions.
The findings suggest that the European policy should support the process of urbanization
in a complex manner to fulfill the European Green Deal and achieve the Sustainable
Development Goals related to improving environmental quality, especially by promoting
urbanization with a low-carbon infrastructure and transport (smart technology and energy-
efficient hybrid vehicles). A positive coefficient associated with energy consumption
indicates that local authorities should support the development of home renewable energy
infrastructure, for example, energy-efficient electric appliances and solar energy. Another
important practical implication is related to human capital. The urban population can
be motivated to adopt a sustainable lifestyle, including energy-saving, renewable energy
sources, and public transportation [56]. It is very important in this context that urbanization
be carried out according to environmental norms, possibly without social compromises
in this respect. In addition, modern technological solutions enable the development of
intelligent cities that are environmentally neutral.

However, we only conducted a preliminary empirical analysis of the relationship
between environmental degradation and urbanization, and our study has a few limitations.
The first limitation refers to sample size. The sample covers the period 2000–2018, this
means we should be cautious in generalizing the findings. Second, although we have robust
results using an alternative measure of environmental degradation, the two proxies (CO2
and greenhouse emissions) might limit the ecological degradation effects. Additionally, it
would be interesting to examine the consumption environmental impacts offshored to other
countries and the deindustrialization processes. Third, we did not divide the European
Union countries, for example, into less developed countries (Central European countries)
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and developed countries (Western European countries) to make a comparative analysis.
These limitations could be addressed in future research.

Undoubtedly, in further research, we must also remember that climate neutrality is a
global challenge. This means that it requires international dialogue and cooperation between
the states. Although the pressure applied usually refers to particular countries and their
economic structures, international activity is also an issue that plays a predominant role. It is
especially important due to the necessity of creating a synergy between the European and
international climate initiatives. For this reason, understanding that adaptation to climate
changes is important; however, this is not in itself the aim, but rather a principle. It should,
however, be a component of properly functioning and developing countries and societies.
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Appendix A

Table A1. CO2 emissions per capita and urban population in the European Union countries.

Country

CO2 Emissions
(Metric Tons per Capita)

Urban Population
(% of Total Population)

2000 2018 2000 2018

Austria 17,690 15,476 60,213 58,297
Belgium 11,441 8180 97,129 98,001
Bulgaria 5303 5855 68,899 75,008
Croatia 4040 4056 53,428 56,947
Cyprus 7495 6079 68,648 66,810

Czech Rep. 12,011 9641 73,988 73,792
Denmark 12,011 9641 85,100 87,874
Estonia 10,609 12,103 69,368 68,880
Finland 10,645 8043 82,183 85,382
France 6127 4619 75,871 80,444

Germany 10,097 8558 74,965 77,312
Greece 8742 6083 72,716 79,058

Hungary 5350 4746 64,575 71,351
Ireland 11,201 7624 59,155 63,170

Italy 7662 5376 67,222 70,438
Latvia 2927 3959 68,067 68,142

Lithuania 3003 4137 66,986 67,679
Luxembourg 19,665 15,330 84,216 90,981

Malta 5460 3198 92,368 94,612
Netherlands 10,191 8773 76,795 91,490

Poland 7729 8235 61,716 60,058
Portugal 5992 4841 54,399 65,211
Romania 3960 3845 53,004 53,998

Slovak Rep. 7065 6059 56,233 53,726
Slovenia 7310 6775 50,754 54,541

Spain 7230 5520 76,262 80,321
Sweden 6005 3538 84,026 87,431

United Kingdom 9001 5399 78,651 83,398
Source: World Development Indicators.
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32. Gruszecki, L.; Jóźwik, B. Theoretical reconstruction of the environmental Kuznets curve. Gospodarka Narodowa. Pol. J. Econ.
2019, 299, 95–117. [CrossRef]

33. Kasman, A.; Duman, Y.S. CO2 emissions, economic growth, energy consumption, trade and urbanization in new EU member and
candidate countries: A panel data analysis. Econ. Model. 2015, 44, 97–103. [CrossRef]

34. Ozatac, N.; Gokmenoglu, K.K.; Taspinar, N. Testing the EKC hypothesis by considering trade openness, urbanization, and
financial development: The case of Turkey. Environ. Sci. Pollut. Res. 2017, 24, 16690–16701. [CrossRef] [PubMed]

35. Kirikkaleli, D.; Kalmaz, D.B. Testing the moderating role of urbanization on the environmental Kuznets curve: Empirical evidence
from an emerging market. Environ. Sci. Pollut. Res. 2020, 27, 38169–38180. [CrossRef] [PubMed]

36. Musa, K.S.; Maijama’a, R.; Yakubu, M. The causality between urbanization, industrialization and CO2 emissions in Nigeria:
Evidence from Toda and Yamamoto Approach. Energy Econ. Lett. 2021, 8, 1–14. [CrossRef]

37. Anwar, A.; Sinha, A.; Sharif, A.; Siddique, M.; Irshad, S.; Anwar, W.; Malik, S. The nexus between urbanization, renewable energy
consumption, financial development, and CO2 emissions: Evidence from selected Asian countries. Environ. Dev. Sustain. 2022,
24, 6556–6576. [CrossRef]

38. Aller, C.; Ductor, L.; Grechyna, D. Robust determinants of CO2 emissions. Energy Econ. 2021, 96, 105154. [CrossRef]
39. Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels’ IZA; Discussion Paper No. 1240; 2004. Available

online: https://www.iza.org/publications/dp/1240/general-diagnostic-tests-for-cross-section-dependence-in-panels (accessed
on 5 July 2022).

40. Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [CrossRef]
41. Pesaran, M.H. A Simple Panel Unit Root Test in The Presence Of Cross-section Dependence. J. Appl. Econom. 2007, 22, 265–312. [CrossRef]
42. Pedroni, P. Critical values for cointegration tests in heterogeneous panels with multiple regressors. Oxf. Bull. Econ. Stat. 1999,

61, 653–670. [CrossRef]
43. Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the

PPP hypothesis. Econ. Theory 2004, 20, 597–625. [CrossRef]
44. Westerlund, J. New simple tests for panel cointegration. Econom. Rev. 2005, 24, 297–316. [CrossRef]
45. Sharma, R.; Shahbaz, M.; Kautish, P.; Vo, X.V. Analyzing the impact of export diversification and technological innovation on

renewable energy consumption: Evidences from BRICS nations. Renew. Energy 2021, 178, 1034–1045. [CrossRef]
46. Pesaran, M.H.; Smith, R.P. Estimating long-run relationships from dynamic heterogeneous panels. J. Econom. 1995, 68, 79–113. [CrossRef]
47. Pesaran, M.H. Estimation and inference in large heterogeneous panels with a multifactor error structure. Econometrica 2006,

74, 967–1012. [CrossRef]
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Abstract: Exploring the relationship between the tourism carbon environment and high-quality
economic development in the Yellow River Basin is a national strategy to meet the realistic require-
ments of the goal of “Carbon Peak and Carbon Neutral”. It is also conducive to the realization of
“Ecological Protection and High-quality Development Strategy in the Yellow River Basin”. Therefore,
based on the calculation of tourism’s carbon emission efficiency and the evaluation of the tourism
economy’s high-quality development, the interaction mechanism between them was observed. The
results showed that, firstly, the tourism carbon emission efficiency of the Yellow River Basin in-
creased slightly from 2010 to 2019, with an average of 0.9782, which was at a medium efficiency
level. Secondly, the tourism economy’s high-quality development level is rising, and the speed of
development is fast, especially in western provinces. Thirdly, there is a parasitic relationship between
the two, but in each province, there is a positive or negative asymmetric symbiotic relationship. The
tourism economy’s high-quality development has a greater impact on the efficiency of tourism’s
carbon emissions. Fourthly, energy and capital input, as well as coordination and innovation factors,
are important driving factors of the symbiosis between the two, among which the role of labor
input was gradually revealed, and the impact factor experienced the changing process of “sharing-
coordination-innovation”. This study provides a theoretical framework and evaluation methods
for evaluating and analyzing the relationship between tourism’s carbon emission efficiency and the
tourism economy’s high-quality development, and it provides data support and policy suggestions
for the real development.

Keywords: tourism carbon emission efficiency; tourism economy high-quality development;
interactive mechanism; the Yellow River Basin

1. Introduction

China is the world’s largest emitter of greenhouse gases, and its low-carbon develop-
ment faces huge challenges. In September 2020, China proposed the climate goal of “carbon
peak by 2030 and carbon neutral by 2060” for the first time at the UN General Assembly.
The Central Economic Work Conference in December 2020, the Government Work Report
in March 2021, and the 14th Five-Year Plan have repeatedly reaffirmed this climate goal.

Tourism has become one of the major sources of global climate change [1]. The carbon
emission of tourism accounts for 5% of the total global carbon emission, and the greenhouse
effect formed by the carbon emission of tourism accounts for about 14% of the total global
effect. By 2035, tourism’s carbon emissions are expected to increase by 152%, and its
contribution to the greenhouse effect is expected to increase by 188% [2]. In response to this
problem, more attention should be given to key issues such as sustainability and adaptation
to climate change [3]. Tourism should strive to reduce carbon emissions and improve the
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efficiency of tourism’s carbon emissions, and some actions based on anticipatory action
planning are needed in the tourism sector [4]. The availability and sharing of knowledge
and information related to tourism’s carbon emissions is a basic requirement for the
successful planning of the tourism sector regarding this phenomenon [5].

Global tourist arrivals are expected to maintain an annual growth rate of 3.3% between
2010 and 2030 to reach 1.8 billion arrivals [6], generating rapid economic growth for the
tourism industry as well as huge challenges. As a pillar industry of China’s national
economy, the economic development of tourism is also an important issue that requires
attention. The China Tourism Economy Blue Book (No. 13) put forward the tourism
economy’s high-quality development. The development of the tourism economy is closely
related to social, economic, and ecological environments [7,8]. Studies have shown that,
with the passage of time, tourism consumption and total tourism emissions are roughly 2:1
in direct proportion [9]. Therefore, the next step is to realize how “ecological benefits” and
“economic benefits” go hand in hand. It is important to study the interaction mechanism
between tourism’s carbon emission efficiency and the tourism economy. It helps to realize
low-carbon tourism and the high-quality development of tourism.

The Yellow River Basin is an important economic belt and ecological barrier in China.
The general secretary’s speech in 2019 at the Symposium on Ecological Protection and
High-quality Development in the Yellow River Basin, as well as the proposal made at the
6th Meeting of the Financial and Economic Commission of the CPC Central Committee in
2020 to make overall planning and coordinated progress based on the whole Basin and the
ecosystem, all illustrate the importance of achieving a win-win situation between economic
development and environmental protection in the Yellow River Basin. Therefore, this
paper analyzed tourism’s carbon emission efficiency (TCEE) and the tourism economy’s
high-quality development (TEHQD) in nine provinces in the Yellow River Basin from
2010 to 2019. Then, we explored the symbiotic interaction mechanism between TCEE and
TEHQD. This is part of the tourism industry’s active response to climate change. It provides
a basis for the tourism economy’s high-quality development, and it also provides ideas and
paths for the realization of low-carbon tourism and high-quality economic development in
the Yellow River Basin.

There are three main contributions of this paper. Firstly, from a theoretical perspective,
this study is conducive to deepening the research on low-carbon tourism, exploring the
tourism economy’s high-quality development (TEHQD) from a low-carbon perspective,
improving the research on the relationship between tourism’s carbon emission efficiency
(TCEE) and the tourism economy from the symbiotic perspective, enriching the research
framework of the interaction mechanism. Secondly, this study adapted to the goal of
“Carbon Peak and Carbon Neutral” and the requirements of the tourism economy’s high-
quality development. Research on the carbon emission efficiency of tourism can guide
the development of tourism to better assume corresponding responsibilities for carbon
reduction. The evaluation system for the tourism economy’s high-quality development
(TEHQD) was established, which can help to evaluate the development level of the tourism
economy comprehensively and provide ideas for the tourism economy’s high-quality devel-
opment. Thirdly, this study contributes to the realization of the Ecological Protection and
High-quality Development strategy in the Yellow River Basin. Taking the nine provinces in
the Yellow River Basin as the study area, the study of tourism’s carbon emission efficiency
(TCEE) was used to connect with ecological protection, and the study of the tourism econ-
omy’s high-quality development was used to correspond with a high-quality development
strategy, which can not only promote the development of the two but also contribute to the
integration of the two.

The rest of this paper is organized as follows. The second part reviews the relevant
literature of this paper. The third part introduces the model, the data source, the specific
evaluation index system, and the formula. The fourth part is the empirical analysis of this
paper, including the evaluation of TCEE, the evaluation of TEHQD, the evaluation of the
symbiosis between TCEE and TEHQD, and the construction of the symbiosis interaction
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mechanism between TCEE and TEHQD. Following that, the research conclusion, the
countermeasure suggestion, the shortage, and the prospect are given in the fifth part.

2. Literature Review

Tourism’s carbon emission efficiency (TCEE) refers to tourism’s ecological efficiency
based on carbon emissions from the perspective of low carbon, which is used to observe
the value that can be achieved by the cost of carbon emissions. At present, research on
tourism’s ecological efficiency has covered concept [10], mechanism analysis [11], counter-
measures and suggestions [12], model building [13,14], and efficiency measurement [15,16].
In terms of the specific content of the research, it mainly includes research on the input and
output effect of tourism resources. For example, Jiang (2022) took tourism’s CO2 emission
efficiency as undesired output, established an index system based on the input and output
of tourism’s CO2 emission efficiency, and measured the tourism CO2 emission efficiency of
Chinese provinces [17]. The application of tourism’s ecological efficiency to destination
management, as well as the research on energy consumption and carbon emission inten-
sity generated in the process of tourism are also receiving attention. Reilly (2010) studies
have shown that tourism traffic is the most important part of energy consumption, and
promoting the efficiency of transportation energy will help to enhance the efficiency of
tourism ecology [18]. From the perspective of research methods, the current evaluation
of tourism’s ecological efficiency mostly adopts the single ratio method [19], carbon foot-
print model [20], life cycle assessment [21], carrying capacity of the low-carbon tourism
environment model [22], DEA model [23], and SBM-DEA model [24]. Some researchers
who use the single ratio method to measure tourism’s carbon emission efficiency usually
choose the two indexes of tourism’s carbon emissions and tourism’s income for account-
ing [25]. However, most researchers choose to use the “input-output” index and calculate
the tourism carbon emission efficiency by establishing a model. From the perspective of the
“input” index, it mainly focuses on capital input, labor input, resource input, and energy
input [24]. From the perspective of “output” indicators, desirable output indicators such
as tourism’s income and number of tourists are mainly used [26]. In terms of influencing
factors, urbanization, economic development level, government regulation, and tourism
development level have an impact on tourism’s ecological efficiency [27]. Other researchers
analyzed the impact of foreign direct investment [28] and technology embedding [29] on
tourism eco-efficiency. It can be seen that, at present, research on the influencing factors
of tourism’s carbon emission efficiency are mostly focused on the single level of economy,
industry, and technology, while the influencing factors of humanities, society, and environ-
ment are relatively rare. the exploration of multi-faceted influencing factors has not yet
received attention. Researchers mostly use exponential decomposition [24], the regression
model [28], or the spatial econometric model [24] to study the influencing factors and
analyze the linear relationship between each influencing factor and tourism’s ecological
efficiency, but they rarely consider the dynamic relationship and interaction mechanism
between each influencing factor and tourism’s ecological efficiency.

Tourism development is closely related to economy, culture, and ecological environ-
ment [30]. With China’s requirements of high-quality development, the tourism economy’s
high-quality development (TEHQD) has also entered the horizon of researchers. Research
on the influencing factors of the development quality of the tourism economy has always
been the focus of scholars [31]. It has been found that resource conservation, ecologi-
cal environmental protection, and sustainable development are the important goals of
tourism’s economic development and the important content of quality improvement [32].
Efficiency improvement, structural optimization, and environmental coordination are the
core contents and important ways to promote the development of the tourism economy [33].
Scientific and reasonable arrangements should be made to maximize the adjustment of
tourism’s resource development and ecological environment protection to improve the
sustainable development capacity of the tourism economy [34].
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The relationship between the development of the tourism economy and other factors
has always been an important issue, such as the relationship between carbon emissions and
international tourism growth [35], between tourism investment and energy innovation on
carbon dioxide emissions [36], between tourism economy and regional integration [37], and
between tourism economic development and government policy [38,39]. With the develop-
ment of tourism and the improvement of the quality requirements of the tourism economy,
the relationship between tourism and the ecological environment is increasingly concerned.
Tourism development not only brings economic benefits to the local area, but it also in-
creases the pressure on the local ecological environment [40]. Therefore, it is necessary to
take certain measures to promote the coordination between tourism and the environment
to realize the sustainable development of tourism [41]. In terms of research content, studies
on the tourism economy and ecological environment mainly include their interaction [42],
their coupling and coordinated development evaluation [43], influencing factors [44], poli-
cies and paths to promote their joint development [45], tourism’s ecological footprint
measurement [46,47], tourism’s ecological efficiency [24], tourism’s environmental capac-
ity [48,49], and tourism’s ecological security [50]. From the perspective of research methods,
in addition to macro qualitative description, spatial data analysis [24], and econometric
analysis [28], the coupled coordination model is the most common quantitative study [51].

To sum up, the evaluation of tourism’s efficiency from the perspective of ecology is
the basis and premise for the realization of the high-quality and sustainable development
of tourism, when low carbon tourism has become the goal and mode of tourism devel-
opment. However, the current research on tourism’s carbon emission efficiency usually
focuses on the form of tourism’s ecological efficiency and less directly considers the more
detailed tourism carbon emission efficiency. In the calculation of tourism’s carbon emission
efficiency, the single ratio method is mainly used, and the research method needs to be
expanded urgently. The construction of the “input-output” evaluation index of tourism’s
carbon emission efficiency rarely considers the undesired output. The few evaluation
systems that include an undesired output rarely take tourism’s carbon emissions as a spe-
cific index. The influencing factors of tourism’s carbon efficiency focus on a single aspect,
such as economy, industry, technology, society, and environment factors, and multifaceted
influence factors are uncommon. Research on the relationship between various influenc-
ing factors and tourism’s ecological efficiency that gives priority to a linear relationship
between the interaction mechanism and dynamic relationship is relatively lacking. The
consideration of the development of the tourism economy is mainly based on a single factor,
such as industry or technology, and lacks the comprehensive consideration of the tourism
economy’s high-quality development. Studies on the relationship between the tourism
economy and other factors are mainly about social and industrial factors; the relationship
between the tourism economy and the ecological environment needs more attention. Most
of the studies on tourism’s economic development related to the ecological environment
are focused on the environment of the whole society, and few of them are detailed towards
tourism or even tourism’s carbon emission efficiency. The research methods are mainly
coupled and coordinated, while other methods should be applied.

3. Research Methods and Data Sources

3.1. Modeling and Data Sources
3.1.1. Modeling

The empirical analysis in this paper was based on the following analysis framework, as
shown in Figure 1. This paper first used the Super-SBM model to calculate tourism’s carbon
emission efficiency (TCEE) of the Yellow River Basin from 2010 to 2019. Secondly, the
entropy method and linear weighting were used to comprehensively evaluate the tourism
economy’s high-quality development (TEHQD). Finally, taking tourism’s carbon emission
efficiency (TCEE) and the tourism economy’s high-quality development (TEHQD) as the
symbiosis unit, the symbiosis degree model was used to reflect the correlation degree of
their mutual influence. The symbiosis coefficient was used to measure the mutual influence
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degree between the two, and the geographical detector was used to explore the driving
factors and obstructive factors affecting the symbiosis development of the two to construct
an interactive mechanism model of tourism’s carbon emission efficiency (TCEE) and the
tourism economy’s high-quality development (TEHQD).

Figure 1. Analysis framework of the symbiotic interaction model between tourism’s carbon emission
efficiency (TCEE) and the tourism economy’s high-quality development (TEHQD).

3.1.2. Data Sources

This study covered nine provinces in the Yellow River Basin from 2010 to 2019. In
the establishment of the index system of this paper, the actual operability and feasibility
were considered. Thus, the statistical data from government departments were selected.
The original data were from the “China Tourism Statistical Yearbook”, the “China Energy
Statistical Yearbook”, the “China Transportation Statistical Yearbook”, the EPS database,
the provincial statistical yearbook, and the social and economic development bulletin. In
this paper, data with inconsistent accounting ranges in different years were processed, and
some missing data were supplemented and improved by third-order moving average.

The “bottom-up” method was used to calculate the carbon emissions in advance for
the undesired output data of tourism’s carbon emission efficiency (TCEE). The “bottom-
up” carbon emission calculation method is based on the six elements of tourism, such as
tourism transportation, tourism accommodation, and tourism activities. It is actually the
best choice for the carbon emission calculation, according to the actual situation in China,
and this method has been widely used in the tourism field in China. Because China has
yet to establish a dedicated database of carbon accounts for tourism satellites, much of the
data are not available. Therefore, the “bottom-up” carbon emission calculation is more
reasonable and effective. The data measured by the symbiotic interaction model come
from the evaluation results of tourism’s carbon emission efficiency (TCEE) and the tourism
economy’s high-quality development (TEHQD).
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3.2. Tourism’s Carbon Emission Efficiency (TCEE) Evaluation Index System and
Evaluation Method
3.2.1. Evaluation Index System of Tourism’s Carbon Emission Efficiency (TCEE)

The input-output index system of TCEE was established as shown in Table 1. Among
them, energy input was expressed by the ratio of the tertiary industry energy consumption
to the total energy consumption. The desirable output included tourism income and tourist
reception. Tourism income was measured by the ratio of the sum of the income of star
hotels, travel agencies, and tourist attractions to the total tourism income, and tourist
reception was measured by the ratio of the total number of tourists in tourist attractions to
the total number of tourists.

Table 1. Evaluation index system of tourism’s carbon emission efficiency (TCEE).

TCEE System Indicator Type Indicators
Indicators
Direction

Input A1 Capital input A11 Original value of fixed assets of star hotels/thousand yuan +
A12 Original value of fixed assets of travel agency/thousand yuan +

B1 Resource input B11 Number of star-rated hotels +
B12 Number of travel agencies +

B13 The scenic area number +
C1 Labor input C11 Number of hotel employees +

C12 Number of travel agency employees +
C13 Number of employees in scenic spots +

D1 Energy input D11 Total energy consumption/tons of standard coal +
D12 Energy consumption in the tertiary industry/tons of standard coal +

Output E1 Desirable output E11 Tourism revenue/100 million yuan +
E12 Star hotel operating income/100 million yuan +

E13 Travel agency revenue/100 million yuan +
E14 Tourist attractions operating income/100 million yuan +

E15 Total number of visitors in tourist attractions/100 million yuan +
E16 Total number of visits/100 million yuan +

F1 Undesirable output F11 Tourism transport carbon emissions/tone −
F12 Tourism accommodation carbon emissions/tone −

F13 Tourism activity carbon emission/tone −

3.2.2. Super-SBM Model

Since the traditional DEA model has the deviation of efficiency value caused by
the relaxation of input and output, the undesirable output was incorporated into the
evaluation system [52]. The non-radial and non-directional Super-SBM model based
on relaxation variables was used to achieve the effective ordering of decision-making
units [53]. Suppose there are n DMU (decision units), and each DMU has m input indi-
cators, s1 desirable output indicators, s2 undesirable output indicators, and x, ye, and yu

are the elements of the corresponding input matrix, desirable output matrix, and unde-
sirable output matrix, respectively. Input matrix X = [x1, x2, x3, · · · , xn] ∈ Rm×n, and
desirable output matrix Ye =

[
ye

1, ye
2, ye

3, · · · , ye
n
] ∈ Rs1×n. The undesirable output matrix

Yu =
[
yu

1 , yu
2 , yu

3 , · · · , yu
n
] ∈ Rs2×n. The Super-SBM model containing the

undesired outputs is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minρ =
1
m ∑m

i=1
x

xik

1
s1+s2

(
∑

s1
r=1 ye

ye
rk

+
∑

s2
t=1 yu

yu
rk

)

x ≥ ∑n
j=1, �=k xijλj; ye ≤ ∑n

j=1, �=k ye
rjλj; yu ≥ ∑n

j=1, �=k yd
tjλj;

x ≥ xk; ye ≤ ye
k; yu ≥ yu

k
λj ≥ 0, i = 1, 2, · · · , m; j = 1, 2, · · · , n, j �= 0;

r = 1, 2, · · · , s1; t = 1, 2, · · · , s2

(1)
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x, ye, and yu represent the input, desirable output, and undesirable output vectors
considering the slack variables, respectively, j represents the decision unit, n is the number
of decision-making units, k is the production period, and λj is the weight vector of decision-
making units. ρ is the efficiency value, ρ ≥ 1 is a relatively effective decision unit, and
0 < ρ < 1 is a relatively invalid decision unit.

3.3. Evaluation Index System and Evaluation Method for the Tourism Economy’s High-Quality
Development (TEHQD)
3.3.1. Evaluation Index System of the Tourism Economy’s High-Quality
Development (TEHQD)

The evaluation index system of TEHQD was established from five dimensions of
“innovation, coordination, green, openness and sharing”, as shown in Table 2. A21 tourism
R&D expenditure is represented by “the whole society R&D expenditure” multiplied by
“the ratio of tourism production value to the gross national economic product”. A22 is
represented by “R&D personnel in the whole society” multiplied by “ratio of tourism
employees to total employment in the region”. A23 is represented by “total social fixed
asset investment” multiplied by “ratio of tourism output value to GDP”. B24 is represented
by the difference between “turnover of local passengers” and “total turnover of national
passengers”. C22 is represented by the ratio of “garden green space area” to “total urban
area”. D22 is represented by the ratio of “international tourists per 10,000 people” to
“tourism employees”. E22 is expressed by the ratio of “park area” to “total population”.

Table 2. Evaluation index system of the tourism economy’s high-quality development (TEHQD).

TEHQD System Indicator Type Indicators
Indicators
Direction

Tourism economy
high-quality
development

A2 Innovation A21 Tourism R&D expenditure/yuan +
A22 Tourism R&D personnel +

A23 Investment in fixed assets of tourism/thousand yuan +
B2 Coordination B21 Proportion of the primary industry in tourism economy/% +

B22 Proportion of the secondary industry in tourism economy/% +
B23 Proportion of the tertiary industry in tourism economy/% +

B24 Regional difference in passenger turnover/100 million passenger-km +
C2 Green C21 Green coverage rate of built-up area/% +

C22 Tourism greening contribution/% +
C23 Per capita green area of park/ square meters +

C24 Proportion of investment in environmental governance in GDP/% +
D2 openness D21 Proportion of foreign tourists in inbound tourists/% +

D22 Number of international tourism employees per 10,000 people +
D23 Foreign exchange income from tourism/100 million dollars +

D24 Foreign investment in tourism/100 million dollars +
E2 Sharing E21 Tourism employment contribution/% +

E22 Per capita public recreation area m2/person +
E23 Capita disposable income of households/yuan +

E24 Capita GDP/yuan +

3.3.2. Entropy Value Method

The method of assigning weight to entropy can avoid subjective judgment and ensure
a scientific and effective index score [54]. First of all, standardized treatment should be
carried out according to the basic indicators, and the formula is as follows:

xij =

⎧⎪⎨⎪⎩
Xij−Xj,min

Xj,max−Xj,min
positive indicators

Xj,max−Xij
Xj,max−Xj,min

negative indicators
(2)

In the formula, Xij is the original value of the j index of the i sample, xij is the
normalized value of Xij. Xj,max and Xj,min are the maximum and minimum values of the
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j index, respectively, and there are m samples and n indexes. Since there is a value of 0
after normalization, xij is shifted to the right by 1 unit to obtain x′ij prime for logarithmic
operation in the information entropy.

Determine the entropy value of item j:

Hj = − 1
lnm ∑m

i=1(Pij × lnPij) , Pij = x′ij/ ∑m
i=1 x′ij (3)

Determine the weight of item j:

wj =
(
1 − Hj

)
/ ∑n

j=1

(
1 − Hj

)
(4)

The linear weighted model was adopted to measure the comprehensive develop-
ment level of the tourism economy’s high-quality development (TEHQD). The formula is
as follows:

vE = ∑n
j=1 wjeej (5)

vE is the value of TEHQD, wje is the weight of each index of TEHQD, and ej is the
standardized value of each index of TEHQD.

3.4. Symbiotic Interaction Model between Tourism’s Carbon Emission Efficiency (TCEE) and the
Tourism Economy’s High-Quality Development (TEHQD)
3.4.1. Symbiosis Model

Symbiosis can describe the correlation degree of the variation of quality parameters
between two symbiosis units or systems and reflect the correlation degree of their mutual
influence [55]. This paper took tourism’s carbon emission efficiency (TCEE) and the tourism
economy’s high-quality development (TEHQD) as symbiotic units and selected the added
value of the comprehensive score of TCEE and TEHQD as the main quality parameters.
Then, the symbiotic degree of TCEE and TEHQD is:

δCE =
dvC/vC
dvE/vE

=
vE
vC

dvC
dvE

(6)

Similarly, the symbiosis degree between TEHQD and TCEE is:

δEC =
dvE/vE
dvC/vC

=
vC
vE

dvE
dvC

(7)

If δCE = δEC > 0, it indicates that TCEE and TEHQD are in a positive symbiotic
state. If δCE �= δEC > 0, then the two parties are in a positive asymmetric symbiosis. If
δCE = δEC < 0, it indicates that TCEE and TEHQD are in a state of reverse symmetry
symbiosis. If δCE �= δEC < 0, it indicates that both parties are in a state of reverse asymmetric
symbiosis. If δCE > 0 (=0, <0), δEC < 0 (=0, >0), it indicates that the two parties are in the
parasitic, coexisting, and parasitic states, respectively.

3.4.2. Symbiosis Coefficient

The symbiosis coefficient is usually used to measure the degree of mutual influence
between symbiosis units. The symbiosis coefficient of the main quality parameters of
tourism’s carbon emission efficiency (TCEE) and the tourism economy’s high-quality
development (TEHQD) can be expressed as follows:

θM
C =

|δm
CE|

|δm
CE|+ |δm

EC|
(8)

θM
E =

|δm
EC|

|δm
CE|+ |δm

EC|
(9)
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θM
C + θM

E = 1 (10)

If θM
C = 0, it indicates that TCEE has no influence on the TEHQD. If θM

C = 1, it indicates
that the TEHQD has no impact on the TCEE, but only the TCEE has an impact on the
TEHQD. If 0 < θM

C < 0.5, it indicates that the TEHQD has a relatively large impact on TCEE.
If θM

C = 0.5, the interaction between TCEE and TEHQD is the same. If 0.5 < θM
C < 1, it

indicates that TCEE has a relatively large impact on the TEHQD.

3.4.3. Geographical Detector

The spatial differentiation of tourism’s carbon emission efficiency (TCEE) and the
tourism economy’s high-quality symbiotic development (TEHQD) in the Yellow River
Basin is explored by using geographic detectors [56]. The driving factors behind it were
revealed, and the interactive mechanism of the two was explored.

Factor detection was used to analyze the spatial differentiation of dependent variable
Y and the explanatory power of independent variable Xi to the dependent variable, which
is measured by the q value and expressed as follows:

q = 1 − 1
Nσ ∑L

h=1 Nhσ2
h = 1 − SSW

SST
, SSW = ∑L

h=1 Nhσ2
h , SST = Nσ2 (11)

where q represents the explanatory power of the influencing factor Xi, q ∈ [0, 1]. The larger
the q value is, the stronger the explanatory power of the independent variable X to attribute
Y is, and vice versa. N is the total number of provincial units, and Nh is the total number of
units in the province of the layer h divided by the variable factor. σ2 is the total variance of
Y value, and σ2

h is the variance of the h layer. SSW and SST are the sum of variances and
total variances within layers, respectively.

4. Empirical Analysis

4.1. Calculation of Tourism’s Carbon Emission Efficiency (TCEE)

Under the condition that tourism’s carbon emissions are taken as an undesirable
output, according to Formula (1), the Super-SBM model was used to calculate the tourism
carbon emission efficiency (TCEE) of nine provinces in the Yellow River Basin from 2010
to 2019. The results are shown in Table 3. Tourism’s carbon efficiency in the Yellow
River Basin has been fluctuating, rising slightly in 2010 compared to 2019. The average
TCEE was 0.9782, in the medium level of efficiency, with the frontier still having room for
improvement. Obviously, there is a big waste and diseconomy in tourism resources, and
tourism’s carbon efficiency has great development potential.

Table 3. Tourism’s carbon emission efficiency (TCEE) in the nine provinces in the Yellow River Basin.

Province
Year

Average Rank
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Qinghai 0.1047 0.1345 1.2473 0.5643 1.3090 1.0319 1.0355 1.8984 1.7581 1.5516 1.0635 4
Sichuan 1.3264 1.2662 1.1335 1.5001 1.4894 1.2915 0.3882 0.2755 1.2859 1.2586 1.1215 2
Gansu 0.1967 1.1340 1.0840 0.2268 1.1552 1.0129 1.4472 0.3416 1.2239 1.0352 0.8858 7

Ningxia 1.3979 0.3129 1.2439 1.0934 1.1844 1.2531 1.3906 1.3607 1.1325 1.1486 1.1518 1
Inner Mongolia 1.1012 1.2510 1.2799 1.9010 0.6844 1.7658 0.4246 1.2377 0.3222 1.1193 1.1087 3

Shaanxi 0.0759 0.2193 0.4543 0.4235 0.3780 1.5434 1.0347 1.1039 0.4875 1.3300 0.7051 8
Shanxi 0.3560 1.3070 1.4161 1.5774 0.6610 0.2497 1.0480 1.9854 0.3656 1.2464 1.0213 6
Henan 1.1705 0.1923 1.1614 0.5534 1.3091 0.2008 2.1081 0.3329 1.6483 1.8764 1.0553 5

Shandong 1.4482 1.3876 0.3019 1.1720 1.2028 1.0578 0.1059 0.0629 0.0443 0.1241 0.6908 9
Yellow River Basin 0.7975 0.8005 1.0358 1.0013 1.0415 1.0452 0.9981 0.9555 0.9187 1.1878 0.9782 —

From the perspective of spatial distribution, there were six provinces whose average
TCEE exceeded 1 and whose TCEE was effective, which were, respectively, Ningxia, Inner
Mongolia, Sichuan, Qinghai, Henan, and Shanxi. Among them, Ningxia ranked first in
tourism’s carbon emission efficiency (1.1518). The last three provinces, Gansu, Shaanxi, and
Shandong, had relatively low efficiency of tourism’s carbon emissions. Among them, the
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efficiency of Shandong was at the bottom of the Yellow River Basin (0.6908). The difference
of TCEE between Shandong and Ningxia was 0.461, and the latter was 1.67 times of the
former, indicating that there is a large inter-provincial difference in TCEE in the Yellow
River Basin.

From the perspective of time distribution, the inter-annual change rates of TCEE in
the Yellow River Basin from 2010 to 2019 were higher in Henan, Gansu, and Qinghai, while
the inter-annual change rates were lower in Ningxia, Sichuan, and Shandong. In 2019, the
TCEE of all provinces was effective, except for Shandong. Compared to 2010, the TCEE
increased significantly in Qinghai, Gansu, Shaanxi, Shanxi, and Henan provinces, and it
decreased significantly in Ningxia and Shandong provinces. It can be seen that the TCEE
in the Yellow River Basin also had a large time difference.

From the perspective of the weight of each resource index of TCEE (Table 4), the
weight of the output index was higher than that of the input, indicating that input factors
need to be strengthened in order to achieve a higher efficiency of tourism carbon.

Table 4. Weight of tourism’s carbon emission efficiency (TCEE) evaluation index of the nine provinces
in the Yellow River Basin.

TCEE System Indicators Qinghai Sichuan Gansu Ningxia Inner Mongolia Shaanxi Shanxi Henan Shandong

A1 (0.0981)

A11
(0.0198) 0.0117 0.0132 0.0276 0.0138 0.0346 0.0198 0.0184 0.0286 0.0102

A12
(0.0156) 0.0147 0.0141 0.0136 0.0092 0.0169 0.0173 0.0139 0.0141 0.0262

B1 (0.0792)

B11
(0.0221) 0.0184 0.0186 0.0253 0.0297 0.0271 0.0179 0.0212 0.0187 0.0222

B12
(0.0192) 0.0192 0.0179 0.0155 0.0168 0.0228 0.0179 0.0140 0.0338 0.0149

B13
(0.0220) 0.0114 0.0175 0.0206 0.0154 0.0331 0.0331 0.0210 0.0216 0.0247

C1 (0.0899)

C11
(0.0258) 0.0188 0.0259 0.0235 0.0229 0.0372 0.0359 0.0235 0.0135 0.0309

C12
(0.0169) 0.0139 0.0117 0.0124 0.0290 0.0098 0.0359 0.0109 0.0168 0.0118

C13
(0.0166) 0.0183 0.0138 0.0201 0.0098 0.0099 0.0241 0.0113 0.0160 0.0259

D1
(0.1136)

D11
(0.0289) 0.0406 0.0138 0.0393 0.0153 0.0345 0.0283 0.0226 0.0351 0.0304

D12
(0.0202) 0.0260 0.0142 0.0137 0.0153 0.0221 0.0205 0.0290 0.0222 0.0191

E1
(0.2879)

E11
(0.0330) 0.0376 0.0322 0.0349 0.0265 0.0326 0.0370 0.0350 0.0378 0.0231

E12
(0.0269) 0.0256 0.0542 0.0123 0.0096 0.0237 0.0240 0.0364 0.0188 0.0378

E13
(0.0162) 0.0185 0.0118 0.0117 0.0160 0.0116 0.0186 0.0258 0.0200 0.0118

E14
(0.0346) 0.0248 0.0490 0.0429 0.1001 0.0225 0.0240 0.0216 0.0160 0.0106

E15
(0.0329) 0.0320 0.0224 0.0433 0.0319 0.0285 0.0263 0.0411 0.0279 0.0425

E16
(0.0431) 0.0417 0.0339 0.0295 0.0252 0.0346 0.0313 0.0359 0.0361 0.1196

F1
(0.1356)

F11
(0.0183) 0.0217 0.0205 0.0292 0.0172 0.0154 0.0132 0.0134 0.0193 0.0151

F12
(0.0264) 0.0188 0.0141 0.0385 0.0322 0.0616 0.0111 0.0241 0.0183 0.0185

F13
(0.0218) 0.0187 0.0489 0.0161 0.0133 0.0124 0.0237 0.0179 0.0182 0.0273

In terms of input index, energy input had the highest weight (0.1136), while resource
input had the lowest weight (0.0792). Among them, total energy consumption (0.0289)
had the highest weight. It can be seen that this index plays a significant role in TCEE. It
is especially significant for the provinces with sparse population and abundant energy
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resources, such as Qinghai, Gansu, and Inner Mongolia, and the provinces with developed
economy and large energy consumption, such as Henan and Shandong. The weight of the
index of fixed asset investment of travel agencies (0.0156) was low, which shows that the
existing capital investment of travel agencies cannot provide enough development space
for tourism and needs to be strengthened, especially for Shanxi, Gansu, and Ningxia.

In terms of output index, the weight of desirable output (0.2879) was significantly
higher than that of the undesirable output (0.1356), among which the weight of total number
of visits (0.0431) was the highest, which is more significant for Qinghai, Sichuan, Inner
Mongolia, Shanxi, and Henan. While the effect of total number of visits on Shandong is not
obvious, the number of visitors plays a more important role in TCEE. The income of travel
agencies (0.0162) had a low weight, and the contribution rate in Sichuan, Gansu, Inner
Mongolia, and Shandong provinces was low, which is more dependent on the income of
star hotels and scenic spots.

4.2. Evaluation of the Tourism Economy’s High-Quality Development (TEHQD)

According to Formulas (2)–(5), the comprehensive evaluation value of the tourism
economy’s high-quality development (TEHQD) in the Yellow River Basin can be obtained,
as shown in Table 5. From 2010 to 2019, the TEHQD in the Yellow River Basin showed a
positive upward trend, except Shanxi, where the level of TEHQD fluctuated greatly. Other
provinces had a gentle growth.

Table 5. Comprehensive evaluation of the tourism economy’s high-quality development (TEHQD) of
the nine provinces in the Yellow River Basin.

Province
Year

Average Rank
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Qinghai 0.1006 0.1488 0.1429 0.1849 0.2030 0.2317 0.3208 0.3672 0.3411 0.3849 0.2426 2
Sichuan 0.1102 0.1293 0.1500 0.1824 0.1978 0.2195 0.2688 0.2961 0.3300 0.4475 0.2332 3
Gansu 0.1101 0.0930 0.1603 0.2071 0.1945 0.2084 0.2522 0.2611 0.3122 0.4094 0.2208 5

Ningxia 0.0926 0.0988 0.1157 0.1451 0.1547 0.1733 0.2322 0.3333 0.3441 0.4503 0.2140 8
Inner Mongolia 0.1096 0.1191 0.1263 0.1675 0.1971 0.2387 0.2460 0.2908 0.3097 0.3963 0.2201 7

Shaanxi 0.1245 0.1116 0.1545 0.1881 0.2491 0.2667 0.3051 0.3431 0.3679 0.4224 0.2533 1
Shanxi 0.1528 0.1889 0.2312 0.2738 0.1992 0.1811 0.2351 0.2228 0.2771 0.3425 0.2304 4
Henan 0.1573 0.1332 0.1295 0.1388 0.1472 0.1818 0.2471 0.3053 0.3408 0.4212 0.2202 6

Shandong 0.1213 0.1221 0.1592 0.1711 0.2053 0.2162 0.2429 0.2750 0.2853 0.3021 0.2100 9
Yellow River Basin 0.1199 0.1272 0.1522 0.1843 0.1942 0.2131 0.2611 0.2994 0.3231 0.3974 0.2272 —

From the provincial TEHQD, it had the following three characteristics. First of all,
the evaluation of TEHQD increased significantly, with an average growth rate of 3.3 times.
Ningxia, Sichuan, and other western regions are developing faster because the economic
development and policy dividend brought a series of advantages, such as industrial struc-
ture adjustment and tourism development, while the development speed of Shandong,
Henan, and Shanxi are lower than the average level due to the eastern region as a whole
entering the stage of slow development. The central region, such as Shanxi, should strive
to adjust the industrial structure, change the current development mode, and pay more
attention to the tourism economy’s high-quality development. Secondly, the TEHQD in
different provinces is more and more obvious. In 2010, there was a difference of 0.0646
between Henan (0.1573), which ranked first, and Ningxia (0.0926), which ranked last. By
2019, there was a difference of 0.1482 between Ningxia (0.4503), which ranked first, and
Shandong (0.3021), which ranked last, in the comprehensive evaluation value of TEHQD.
The difference in 2019 was 2.3 times of that in 2010. Thirdly, from the average value of
comprehensive evaluation, there was a certain similarity between the TEHQD and the
evaluation of TCEE; thus, there was a co-existing relationship to some extent.

From the perspective of the weight of each resource index of TEHQD (Table 6), the
open index (0.1363) and the sharing index (0.1194) had a large weight, indicating that these
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two indexes play a more obvious role in promoting TEHQD in the Yellow River Basin than
other indexes. However, the coordination index (0.0928) had the smallest weight; thus,
in order to realize the high-quality development of the regional tourism economy in the
Yellow River basin, attention should be paid to the coordinated development of regions,
industries, and other aspects.

Table 6. Weight of the tourism economy’s high-quality development (TEHQD) evaluation index of
the nine provinces in the Yellow River Basin.

TEHQD
System

Indicators Qinghai Sichuan Gansu Ningxia Inner Mongolia Shaanxi Shanxi Henan Shandong

A2
(0.0959)

A21
(0.0363) 0.0432 0.0413 0.0353 0.0347 0.0349 0.0429 0.0339 0.0357 0.0245

A22
(0.0277) 0.0231 0.0390 0.0184 0.0234 0.0210 0.0292 0.0296 0.0365 0.0292

A23
(0.0319) 0.0401 0.0324 0.0306 0.0259 0.0330 0.0350 0.0309 0.0352 0.0244

B2
(0.0928)

B21
(0.0214) 0.0270 0.0275 0.0173 0.0230 0.0207 0.0209 0.0208 0.0156 0.0194

B22
(0.0191) 0.0169 0.0351 0.0153 0.0200 0.0180 0.0180 0.0221 0.0148 0.0120

B23
(0.0318) 0.0269 0.0153 0.0307 0.0202 0.0485 0.0269 0.0320 0.0591 0.0270

B24
(0.0205) 0.0235 0.0219 0.0201 0.0179 0.0197 0.0231 0.0212 0.0185 0.0183

C2
(0.0953)

C21
(0.0251) 0.0274 0.0316 0.0204 0.0251 0.0192 0.0223 0.0244 0.0318 0.0236

C22
(0.0248) 0.0183 0.0108 0.0171 0.0490 0.0268 0.0193 0.0285 0.0295 0.0236

C23
(0.0209) 0.0174 0.0266 0.0231 0.0246 0.0140 0.0161 0.0149 0.0313 0.0196

C24
(0.0245) 0.0415 0.0151 0.0314 0.0122 0.0121 0.0302 0.0301 0.0256 0.0226

D2
(0.1363)

D21
(0.0254) 0.0196 0.0164 0.0265 0.0161 0.0299 0.0185 0.0533 0.0178 0.0308

D22
(0.0283) 0.0171 0.0154 0.0315 0.0396 0.0118 0.0224 0.0438 0.0333 0.0401

D23
(0.0299) 0.0335 0.0244 0.0366 0.0408 0.0210 0.0270 0.0431 0.0260 0.0168

D24
(0.0527) 0.0499 0.0574 0.0672 0.0640 0.0541 0.0550 0.0409 0.0433 0.0427

E2
(0.1194)

E21
(0.0371) 0.0415 0.0548 0.0283 0.0183 0.0641 0.0371 0.0225 0.0344 0.0325

E22
(0.0286) 0.0415 0.0241 0.0297 0.0484 0.0149 0.0335 0.0181 0.0261 0.0208

E23
(0.0360) 0.0410 0.0400 0.0346 0.0326 0.0340 0.0411 0.0350 0.0327 0.0330

E24
(0.0177) 0.0183 0.0229 0.0159 0.0148 0.0112 0.0216 0.0179 0.0203 0.0164

In terms of the innovation index, the weight of tourism R&D expenditure was the
highest (0.0363), indicating that this index plays a significant role, especially for the central
and western provinces such as Qinghai, Sichuan, and Shaanxi. For the economically
developed eastern regions, such as Shandong, tourism R&D personnel are more important.
In terms of the coordination index, the proportion of the tertiary industry in the tourism
economy had the highest weight (0.0318), and the index weight of Inner Mongolia and
Henan was higher than the average level of the Yellow River basin, indicating that the
industrial coordination degree has brought great dividends to the high-quality development
of the local tourism economy. However, the proportion of the tertiary industry of the
tourism economy in Sichuan and Ningxia is very low, indicating that this index has not
brought the advantage of the high-quality development of the tourism economy to the
local area. The proportion of the secondary industry of the tourism economy in Sichuan
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and the proportion of the primary industry of the tourism economy in Ningxia play a
more important role. In terms of green indicators, the weight of each indicator is above
0.2, indicating that all indicators of green development play an important role. Among
them, the weight of green coverage in built-up areas is the highest (0.0251), especially for
cities with a high urbanization rate and a relatively developed economy, such as Sichuan,
Henan, and Shandong. However, central and western provinces such as Qinghai, Gansu,
Shaanxi, and Shanxi, with slower tourism and economic development and more serious
environmental pollution, had the highest proportion of investment in environmental
governance in GDP. For areas with excellent tourism development and sparse population
such as Ningxia and Inner Mongolia, the contribution of tourism greening has become an
important green index in TEHQD. In terms of the opening index, the foreign investment in
tourism (0.0527) had the highest weight, but the foreign investment of tourism in Shanxi
is relatively insufficient. The proportion of foreign tourists in the number of inbound
tourists plays a more significant role in Shanxi (0.533), indicating that the proportion of
foreign tourists in Shanxi is relatively large, which brings advantages to TEHQD. In terms
of the sharing index, tourism per capita GDP (0.0177) had the lowest weight and needs
to be strengthened.

4.3. Symbiotic Interaction between Tourism’s Carbon Emission Efficiency (TCEE) and the Tourism
Economy’s High-Quality Development (TEHQD)
4.3.1. Calculation of Symbiosis Degree

According to Formulas (6) and (7), the symbiosis degree of tourism’s carbon emission
efficiency (TCEE) and the tourism economy’s high-quality development (TEHQD) in the
Yellow River Basin can be obtained, as shown in Table 7. In general, the average symbiosis
degree of the Yellow River Basin is δCE = 0.2617 > 0, δEC = −2.1192 < 0, which indicates
that there is a parasitic relationship between TCEE and TEHQD.

Table 7. Symbiosis between tourism’s carbon emission efficiency (TCEE) and the tourism economy’s
high-quality development (TEHQD).

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Qinghai δCE 0.0677 −4.4416 −0.6215 −0.5463 −0.3869 0.1920 −1.0987 1.2779 −0.5807 −0.6820
δEC 14.7786 −0.2251 −1.6090 −1.8306 −2.5847 5.2080 −0.9102 0.7825 −1.7220 1.3208

Sichuan
δCE −1.4406 0.0702 −0.8545 0.5205 0.5550 0.7392 −0.6277 −1.4235 0.8648 −0.1774
δEC −0.6942 14.2513 −1.1703 1.9212 1.8018 1.3528 −1.5932 −0.7025 1.1564 1.8137

Gansu
δCE −0.8155 −0.6781 −0.2908 1.1998 1.4569 −0.8283 2.8167 −1.2152 1.5376 0.3537
δEC −1.2263 −1.4747 −3.4391 0.8335 0.6864 −1.2073 0.3550 −0.8229 0.6504 −0.6272

Ningxia δCE −12.7345 0.5669 −0.5746 −0.4786 −0.1739 −0.0509 −0.0745 5.8721 −0.0968 −0.8605
δEC −0.0785 1.7639 −1.7405 −2.0894 −5.7503 −19.6466 −13.4288 0.1703 −10.3330 −5.6814

Inner Mongolia δCE 0.0498 0.6651 −1.0111 −0.4304 −0.1089 12.9749 −2.9512 2.5985 0.5747 1.3735
δEC 20.0948 1.5036 −0.9891 −2.3235 −9.1804 0.0771 −0.3388 0.3848 1.7400 1.2187

Shaanxi
δCE 0.4897 0.1655 −0.7004 −0.5425 −2.7104 1.2113 0.1498 3.2747 −2.2085 −0.0968
δEC 2.0420 6.0428 −1.4278 −1.8434 −0.3689 0.8256 6.6734 0.3054 −0.4528 1.3107

Shanxi
δCE −1.0298 0.0404 −0.0081 −0.2984 −1.0413 0.2521 1.7477 0.4055 0.3821 0.0500
δEC −0.9711 24.7507 −123.6111 −3.3511 −0.9603 3.9674 0.5722 2.4664 2.6174 −10.5022

Henan
δCE 0.4666 2.0937 −0.0325 1.5051 −0.0237 −0.1591 0.5901 −2.0234 0.0757 0.2769
δEC 2.1432 0.4776 −30.7391 0.6644 −42.1233 −6.2838 1.6946 −0.4942 13.2040 −6.8285

Shandong δCE 23.9285 −2.2827 −2.3001 −1.0972 −0.6460 1.2108 −0.1528 0.9130 −0.5104 2.1181
δEC 0.0418 −0.4381 −0.4348 −0.9114 −1.5481 0.8259 −6.5463 1.0953 −1.9593 −1.0972

Yellow River Basin
δCE 0.9980 −0.4223 −0.7104 −0.0187 −0.3421 1.7269 0.0444 1.0755 0.0043 0.2617
δEC 4.0145 5.1835 −18.3512 −0.9923 −6.6698 −1.6534 −1.5024 0.3539 0.5446 −2.1192

From a provincial perspective, the results show that, firstly, the average symbio-
sis of Qinghai, Sichuan, Gansu, Shaanxi, Shanxi, Henan, and Shandong provinces are
δCE > 0, δEC < 0 or δCE < 0, δEC > 0, indicating that the TCEE and TEHQD in these regions
are parasitic, but from the point of view of each year, it is positive or negative asymmetric
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symbiosis. The difference of the symbiosis coefficient in each year resulted in the deviation
of the overall mean coefficient. Secondly, the average symbiosis degree of Ningxia was
δCE = −0.8605 �= δEC = −5.6814 < 0, indicating that the TCEE and the TEHQD show
a reverse asymmetric symbiosis. Thirdly, as the average symbiosis degree δCE and δEC
were close, it can be considered that the TCEE and the TEHQD in Inner Mongolia have
approximately presented a positive symbiosis and experienced a transition from positive
asymmetric symbiosis to reverse asymmetric symbiosis to positive asymmetric symbiosis
from 2010 to 2019.

4.3.2. Calculation of Symbiosis Coefficient

According to Formulas (8) and (9), the symbiosis coefficient of tourism’s carbon emission
efficiency (TCEE) and the tourism economy’s high-quality development (TEHQD) in the Yellow
River Basin was calculated, as shown in Table 8. The results all meet the feature that the sum of
the symbiosis coefficients is 1 in Formula (10). In general, the average symbiosis coefficient of
the Yellow River Basin is 0 < θM

C = 0.3885 < 0.5, 0.5 < θM
E = 0.6115 < 1, indicating that TEHQD

has a relatively large impact on TCEE.

Table 8. Symbiosis coefficient of tourism’s carbon emission efficiency (TCEE) and the tourism
economy’s high-quality development (TEHQD).

Province 2011 2012 2013 2014 2015 2016 2017 2018 2019 Average

Qinghai θM
C 0.0046 0.9518 0.2786 0.2298 0.1302 0.0356 0.5469 0.6202 0.2522 0.3389

θM
E 0.9954 0.0482 0.7214 0.7702 0.8698 0.9644 0.4531 0.3798 0.7478 0.6611

Sichuan
θM

C 0.6748 0.0049 0.4220 0.2132 0.2355 0.3533 0.2826 0.6696 0.4279 0.3649
θM

E 0.3252 0.9951 0.5780 0.7868 0.7645 0.6467 0.7174 0.3304 0.5721 0.6351

Gansu
θM

C 0.3994 0.3150 0.0780 0.5901 0.6797 0.4069 0.8881 0.5962 0.7028 0.5174
θM

E 0.6006 0.6850 0.9220 0.4099 0.3203 0.5931 0.1119 0.4038 0.2972 0.4826

Ningxia θM
C 0.9939 0.2432 0.2482 0.1864 0.0294 0.0026 0.0055 0.9718 0.0093 0.2989

θM
E 0.0061 0.7568 0.7518 0.8136 0.9706 0.9974 0.9945 0.0282 0.9907 0.7011

Inner Mongolia θM
C 0.0025 0.3067 0.5055 0.1563 0.0117 0.9941 0.8970 0.8710 0.2483 0.4437

θM
E 0.9975 0.6933 0.4945 0.8437 0.9883 0.0059 0.1030 0.1290 0.7517 0.5563

Shaanxi
θM

C 0.1934 0.0267 0.3291 0.2274 0.8802 0.5947 0.0220 0.9147 0.8299 0.4464
θM

E 0.8066 0.9733 0.6709 0.7726 0.1198 0.4053 0.9780 0.0853 0.1701 0.5536

Shanxi
θM

C 0.5147 0.0016 0.0001 0.0818 0.5202 0.0597 0.7534 0.1412 0.1274 0.2444
θM

E 0.4853 0.9984 0.9999 0.9182 0.4798 0.9403 0.2466 0.8588 0.8726 0.7556

Henan
θM

C 0.1788 0.8143 0.0011 0.6938 0.0006 0.0247 0.2583 0.8037 0.0057 0.3090
θM

E 0.8212 0.1857 0.9989 0.3062 0.9994 0.9753 0.7417 0.1963 0.9943 0.6910

Shandong θM
C 0.9983 0.8390 0.8410 0.5463 0.2944 0.5945 0.0228 0.4546 0.2067 0.5331

θM
E 0.0017 0.1610 0.1590 0.4537 0.7056 0.4055 0.9772 0.5454 0.7933 0.4669

Yellow River Basin
θM

C 0.4400 0.3892 0.3004 0.3250 0.3091 0.3407 0.4085 0.6715 0.3122 0.3885
θM

E 0.5600 0.6108 0.6996 0.6750 0.6909 0.6593 0.5915 0.3285 0.6878 0.6115

From a provincial perspective, the results show that, firstly, the symbiosis coefficient
(θM

C ) of Qinghai, Sichuan, Ningxia, Inner Mongolia, Shaanxi, Shanxi, and Henan is between
0 and 0.5, indicating that TEHQD has a greater impact on TCEE. That means TEHQD can
play a positive impact on TCEE. Its development process fluctuated from 2010 to 2019,
which is related to multiple factors such as provincial tourism development, economic
development speed, and environmental background. Secondly, the symbiosis coefficient
(θM

C ) of Gansu and Shandong was between 0.5 and 1, indicating that TCEE has a relatively
large impact on TEHQD. That is to say, the improvement of TCEE can promote the TEHQD
to some extent. Among them, in recent years, Shandong province gradually changed into a
TEHQD with a greater impact on TCEE, while Gansu province was in the promotion stage
of TEHQD before 2014 (0 < θM

C < 0.5) and began to change into a TCEE with a greater impact
after 2014. Thirdly, the symbiosis coefficient (θM

C ) of Inner Mongolia, Shaanxi, Gansu, and
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Shandong was close to 0.5, which can be approximated as the state of interaction between
TCEE and TEHQD, forming a relatively benign symbiosis state.

In conclusion, with the continuous development of economy, society, the demand of
the nation, and people changing and under the influence of the national policies about the
Yellow River Basin, tourism’s carbon efficiency has improved, and the tourism economy is
changing to high quality development. In this procession, the TEHQD has undoubtedly
contributed to the local economy, environment, and other aspects. At the same time, the
improvement of TCEE can not only benefit the carbon environment, but it can also play an
important role in the efficient and high-quality development of tourism, thus promoting the
TEHQD. It can be seen that TCEE and the tourism economy in the Yellow River Basin form
a corresponding symbiotic interface in the symbiotic environment, influencing, promoting,
and developing each other in the symbiotic state.

4.4. Symbiotic Interaction Mechanism between Tourism’s Carbon Emission Efficiency (TCEE) and
the Tourism Economy’s High-Quality Development (TEHQD)
4.4.1. Research on the Influencing Factors of Symbiotic Interaction

From the symbiotic interaction between TCEE and TEHQD, through the analysis of the
explanatory power q of each effective factor, it was found that (Table 9), firstly, on the whole,
energy input and capital input are the most important factors affecting the symbiosis
between the TEHQD and the TCEE. Among them, D11 (the total energy consumption
(0.9726)), C11 (the number of employees in hotels (0.9112)), and A11 (the original value of
fixed assets of star hotels (0.8983)) have q values greater than 0.89, which are the key factors
affecting symbiosis. Secondly, in 2011, energy factors were important factors affecting
the symbiosis between the TEHQD and TCEE, and there was a large gap in explanatory
power q with other factors. Among them, D11 (the total energy consumption (0.9612)) and
D12 (the energy consumption of tertiary industry (0.9599)) were the key factors affecting
symbiosis. Thirdly, in 2015, the effect of energy input factors was still significant, but the
desirable output became the most important factor affecting the symbiosis between the
TEHQD and TCEE. The gap between the explanatory power q of each factor gradually
narrowed, and the explanatory power gap of other factors was very small except for the
resource input, which all become relatively important influencing factors. Among them,
E15 (the total number of visitors at scenic spot (0.9942)), E16 (the total number of visitors
(0.9928)), and F13 (the carbon emission from tourism activity (0.9928)) are the most critical
factors affecting symbiosis. Fourthly, compared to 2015, the explanatory power q of each
factor decreased in 2019, and the gap widened. Capital input and labor input are important
factors affecting the symbiosis between TEHQD and TCEE. C11 (the number of employees
in hotels (0.9918)), A11 (the original value of fixed assets in star hotels (0.9854)), and D11
(the total energy consumption (0.9736)) are the key influencing factors. To sum up, with
the development of time, the role of capital and labor input in TCEE gradually emerges,
experiencing a development process from “energy” to “capital”. Among them, D12 (the
effect intensity of tertiary industry energy consumption) and C12 (travel agency employees)
decreased significantly, while the effect of C13 (scenic area employees), E12 (star hotel
operating income), E15 (tourist attractions total number of reception), A11 (star hotel fixed
assets), and other indicators gradually increased and changed significantly. Indicators such
as D11 (total energy consumption), E14 (operating income of tourist attractions), and C11
(number of hotel employees) were important influencing factors in recent years.
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Table 9. Factor detection of symbiosis between tourism’s carbon emission efficiency (TCEE) and the
tourism economy’s high-quality development (TEHQD).

Year 2011 2015 2019 Average

Variable q p q p q p q

A11 0.7484 0.0401 * 0.9610 0.0000 * 0.9854 0.0000 * 0.8983
A12 0.7620 0.0314 * 0.9470 0.0000 * 0.7445 0.0036 * 0.8178
B11 0.7659 0.0281 * 0.9628 0.0000 * 0.7178 0.0130 * 0.8155
B12 0.7567 0.0343 * 0.9806 0.0000 * 0.8544 0.0010 * 0.8639
B13 0.7551 0.0351 * 0.4231 0.2745 0.7473 0.0189 * 0.6418
C11 0.7691 0.0148 * 0.9727 0.0000 * 0.9918 0.0000 * 0.9112
C12 0.7702 0.0264 * 0.9565 0.0000 * 0.6250 0.0391 * 0.7839
C13 0.7327 0.0285 * 0.9628 0.0000 * 0.8507 0.0012 * 0.8487
D11 0.9612 0.0000 * 0.9830 0.0000 * 0.9736 0.0000 * 0.9726
D12 0.9599 0.0000 * 0.9724 0.0000 * 0.4939 0.1655 0.8087
E11 0.7604 0.0323 * 0.9806 0.0000 * 0.8410 0.0017 * 0.8607
E12 0.7484 0.0401 * 0.9628 0.0000 * 0.8507 0.0012 * 0.8540
E13 0.7406 0.0258 * 0.9780 0.0000 * 0.7593 0.0139 * 0.8260
E14 0.7739 0.0246 * 0.9876 0.0000 * 0.8567 0.0009 * 0.8727
E15 0.7659 0.0281 * 0.9942 0.0000 * 0.8559 0.0009 * 0.8720
E16 0.7567 0.0342 * 0.9928 0.0000 * 0.6785 0.0253 * 0.8093
F11 0.3164 0.5999 0.9705 0.0000 * 0.7170 0.0299 * 0.6680
F12 0.7692 0.0281 * 0.9628 0.0000 * 0.8559 0.0009 * 0.8626
F13 0.7659 0.0281 * 0.9928 0.0000 * 0.4819 0.1888 * 0.7469

A21 0.8874 0.0008 * 0.9400 0.0000 * 0.9450 0.0000 * 0.9241
A22 0.8980 0.0001 * 0.7125 0.0459 * 0.7165 0.0561 * 0.7757
A23 0.8847 0.0009 * 0.9791 0.0000 * 0.9450 0.0000 * 0.9363
B21 0.9021 0.0004 * 0.8199 0.0084 * 0.9333 0.0000 * 0.8851
B22 0.8846 0.0004 * 0.9584 0.0000 * 0.8525 0.0011 * 0.8985
B23 0.8859 0.0009 * 0.8633 0.0027 * 0.8353 0.0022 * 0.8615
B24 0.8868 0.0008 * 0.9375 0.0000 * 0.9661 0.0000 * 0.9301
C21 0.9977 0.0000 * 0.7020 0.0365 * 0.6456 0.0347 * 0.7818
C22 0.9039 0.0003 * 0.8520 0.0032 * 0.9669 0.0000 * 0.9076
C23 0.6082 0.1367 0.9439 0.0000 * 0.7845 0.0013 * 0.7789
C24 0.8850 0.0009 * 0.8284 0.0068 * 0.9342 0.0000 * 0.8825
D21 0.8696 0.0007 * 0.8087 0.0054 * 0.7171 0.0326 * 0.7985
D22 0.9004 0.0001 * 0.8488 0.0032 * 0.8935 0.0001 * 0.8809
D23 0.9010 0.0004 * 0.8306 0.0058 * 0.6382 0.0107 * 0.7899
D24 0.8851 0.0009 * 0.8061 0.0059 * 0.8240 0.0028 * 0.8384
E21 0.9036 0.0003 * 0.7917 0.0165 * 0.7234 0.0517 * 0.8062
E22 0.9959 0.0000 * 0.9439 0.0000 * 0.4467 0.4316 0.7955
E23 0.9961 0.0000 * 0.8087 0.0115 * 0.7333 0.0492 * 0.8460
E24 0.8337 0.0060 * 0.8559 0.0003 * 0.8144 0.0037 * 0.8347

* Indicates that the factor is valid after passing the significance test at 0.05 level.

From the symbiotic interaction between TEHQD and TCEE (Table 9), through the
analysis of the explanatory power q of each effective factor, it can be found that, firstly,
overall, coordination and innovation were the most important factors affecting the sym-
biosis between TCEE and TEHQD. The q values of A23 (tourism fixed asset investment
(0.9363)), B24 (tourist turnover (0.9301)), A21 (tourism R&D expenditure (0.9241)), and
C22 (tourism greening contribution (0.9076)) were all greater than 0.9, and these are the
key factors affecting symbiosis. Secondly, in 2011, sharing factors were the most important
factors affecting the symbiosis between TCEE and TEHQD. Among them, C21 (the green
coverage rate of built-up area (0.9977)), E23 (the per capita disposable income of residents
(0.9961)), and E22 (the per capita public recreation area (0.9959)) were the key factors
affecting the symbiosis. Thirdly, in 2015 and 2019, coordination became the most impor-
tant factor affecting the symbiosis between TCEE and TEHQD, followed by innovation.
In 2015, A23 (tourism fixed asset investment (0.9791)), B22 (tourism economy secondary
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industry proportion (0.9584)), C23 (per capita park green area (0.9439)), E22 (per capita
public recreation area (0.9439)), and A21 (tourism R&D expenditure (0.94)) were the key
factors affecting symbiosis. By 2019, compared to 2015, in addition to A21 (tourism R&D
expenditure (0.945)) and A23 (tourism fixed asset investment (0.945)), C22 (tourism green-
ing contribution (0.9669)) and B24 (tourist turnover regional differences (0.9661)) became
important influencing factors. To sum up, with the change of time, the role of innovation
and coordination factors in TEHQD gradually came into prominence. It experienced a
development procession of “sharing-coordination-innovation”. C21 (the effect intensity of
built-up area green coverage rate), E23 (residents per capita disposable income), E22 (per
capita public recreation area), and D23 (tourism foreign exchange income) decreased signifi-
cantly. A23 (tourism fixed asset investment), C23 (per capita park green area), A21 (tourism
R&D expenditure), B24 (regional differences in tourist turnover), and C24 (environmental
governance investment in GDP) gradually increased and changed significantly. C22 (con-
tribution to tourism greening) and D22 (number of international tourism employees per
10,000 people) have been important influencing factors in recent years. However, the gap
between the explanatory power q of each influencing factor gradually widened.

4.4.2. Interactive Mechanism Model

1. Based on the symbiotic system theory

Based on the symbiotic system theory, a symbiotic interaction mechanism model of
tourism’s carbon emission efficiency (TCEE) and the tourism economy’s high-quality de-
velopment (TEHQD) was established by taking TCEE and TEHQD as two main symbiotic
units (Figure 2). TCEE can evaluate the development quality of tourism from the dual
perspectives of economy and ecology, and the TEHQD is based on a tourism economic
development concept of “innovation, coordination, green, open and sharing”, which also
involves many aspects such as economy, ecology, and tourism’s development quality.
Therefore, there is a quality parameter compatibility between the two symbiotic units.
That is, some attributes of the symbiotic units are related, so it can be judged that there
is a symbiotic interaction between the two units. The symbiotic interface is the energy
transmission channel between symbiotic units, and the transmission of different types of
energy requires different symbiotic interfaces. Because the symbiosis between TCEE and
TEHQD is relatively complex, involving multiple symbiotic internal and external environ-
ments, such as politics, economy, culture, society, and ecology, the tourism market, as the
result of the comprehensive effect of TCEE and TEHQD, can represent the comprehensive
interaction between the two symbiotic units and, thus, can serve as the symbiotic interface
of the symbiotic interaction mechanism.

2. Influencing factors based on interaction mechanism

From the perspective of the influencing factors of the interaction mechanism, symbio-
sis is a phenomenon of mutual influence and interaction between the two symbiotic units
of TCEE and TEHQD (Figure 3). Through various interactions, the symbiotic relationship
between the two symbiotic units can generate a new energy or achieve energy transforma-
tion, namely symbiosis energy generation. The specific performance is the symbiosis unit’s
ability to improve. From the interactive influence of TCEE on TEHQD, energy input and the
capital input factor are the main factors driving the two symbiotic coordination interaction.
From the interactive impact of TEHQD on TCEE, coordination and innovation are the main
factors promoting the symbiotic coordination and interaction between the two. It can be
found that the total energy consumption, the number of hotel employees, and the original
value of fixed assets of star hotels are the key attraction factors affecting the symbiosis
from the perspective of the symbiotic interaction between TCEE and TEHQD. From the
perspective of the symbiotic interaction between TEHQD and TCEE, the investment in
fixed assets of tourism, the R&D expenditure of tourism, regional differences in passenger
turnover, and the tourism greening contribution are the key attraction factors affecting
the symbiosis.
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Figure 2. Symbiotic interaction mechanism model of tourism’s carbon emission efficiency (TCEE)
and the tourism economy’s high-quality development (TEHQD) in the Yellow River Basin.

Figure 3. Interactive mechanism model of tourism’s carbon emission efficiency (TCEE) and the
tourism economy’s high-quality development (TEHQD) in the Yellow River Basin.
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5. Conclusions and Suggestions

5.1. Research Conclusions

Based on the calculation of tourism’s carbon emission efficiency (TCEE) and the evalu-
ation of the tourism economy’s high-quality development (TEHQD), this paper discussed
the symbiotic interaction mechanism between TCEE and TEHQD in nine provinces of the
Yellow River Basin. The main conclusions are as follows:

• From the perspective of TCEE, the TCEE of the Yellow River Basin was in a state of
fluctuation from 2010 to 2019, with a large time difference. The average value of TCEE
in the Yellow River Basin was 0.9782, which is in the middle efficiency level. However,
there was a large spatial difference in the TCEE of each province.

• From the perspective of TEHQD, the evaluation of TEHQD in the Yellow River Basin
increased from 2010 to 2019, and the speed of development was fast, especially in
western provinces. The inter-provincial differences in the TEHQD gradually widened.

• From the perspective of the symbiotic interaction between TCEE and TEHQD, on the
whole, there was a parasitic relationship between TCEE and TEHQD in the Yellow
River Basin. However, from the perspective of each year, all provinces showed positive
or negative asymmetric symbiosis. The TEHQD in the Yellow River Basin has a greater
impact on the TCEE. The TCEE and the TEHQD in Inner Mongolia, Shaanxi, Gansu,
and Shandong provinces showed mutual influence and interaction (θM

C is close to 0.5),
forming a relatively harmonious symbiotic state.

• From the influencing factors of symbiotic interaction between TCEE and TEHQD, energy
input and capital input were the most important influence factors, but as time changed, the
role of the energy input factor significantly reduced, and the role of labor input gradually
emerged. Capital investment is always the key factor of symbiotic interaction between
TCEE and TEHQD. Coordination and innovation are two important factors that affect
the symbiosis between TCEE and TEHQD. With the change of time, the main influencing
factors experienced a process of “sharing-coordination-innovation”.

5.2. Research Suggestions

Based on the above conclusions, the following suggestions and countermeasures
are proposed:

• In terms of tourism’s carbon emission in the Yellow River Basin, especially in Shan-
dong, Henan, Sichuan, and other provinces with large carbon emissions, tourism
transportation carbon emissions should be taken as the main body of emission re-
duction, focusing on the rail infrastructure and related supporting construction. The
construction of central and western provinces especially need to strengthen the trans-
port network and expand the advantages of rail transport to reduce high carbon
emissions from air and road transport. Secondly, tourism’s energy consumption
should be changed from the internal source. For example, the government can regu-
late the high energy consumption behavior of tourism enterprises and individuals by
carbon emission tax, subsidy, and other ways. Tourism enterprises can also provide
corresponding incentives and compensation measures for tourists.

• In terms of tourism’s carbon emission efficiency (TCEE), firstly, on the basis of strength-
ening desirable output, input and undesirable output should be continuously reduced.
Secondly, the Yellow River Basin provinces should make efforts to break the adminis-
trative regional barriers and promote experience exchange among provinces. Full play
should be given to the leading role of provinces with high efficiency in tourism carbon
emissions and the intercommunication of technology, concept, management, and other
aspects among provincial administrative regions should be realized in the Yellow
River Basin. In particular, the eastern region needs to focus on the issue of tourism’s
carbon emission efficiency to solve the existing large regional differences. Thirdly,
the creation of structural (tangible) measures are fundamental [5]. Governments and
municipal councils should issue guidelines and establish participatory networks to
involve various stakeholders related to tourism and planning.
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• In terms of the tourism economy’s high-quality development (TEHQD), firstly, we
should focus on the “coordinated” development of regions, industries, and other
aspects. Secondly, giving full play to the advantages of the provinces, the construction
of the tourism economy’s high-quality development should be promoted in the Yellow
River Basin. For example, Shandong and Henan rely on their good location conditions
and economic advantages; thus, they should enhance the level of innovation and open
up, promoting the development of green. At the same time, two-way interactions
with the central and western regions should be strengthened to narrow the gap in the
quality development of the tourism economy in different regions. Some provinces,
such as Inner Mongolia, Shaanxi, and Shanxi should, on the basis of maintaining their
current development status, give full play to their geographical advantages to link
the east with the west and play the role of a bridge for regional connection. Qinghai,
Sichuan, Ningxia, and Gansu should make full use of the advantages of good tourism
resources, increase the input and output of tourism efficiency, and promote the tourism
economy’s high-quality development.

• In terms of the symbiotic interaction between tourism’s carbon emission efficiency
(TCEE) and the tourism economy’s high-quality development (TEHQD), the efficiency
of tourism’s carbon emissions should be improved to meet the tourism economy’s
high-quality development, from the parasitic development to the symbiotic devel-
opment. Secondly, each province should put forward countermeasures for its own
problems according to local conditions. For example, Ningxia should focus on im-
proving the efficiency of tourism’s carbon emissions; at the same time, they should
strengthen the construction of the high-quality tourism economy, so that the reverse
asymmetric symbiosis can gradually change to a positive symbiosis. Inner Mongolia
should continue to maintain the approximate positive symbiosis relationship between
tourism’s carbon emission efficiency and the tourism economy’s high-quality develop-
ment and should promote its transition to positive symbiosis. Thirdly, the Yellow River
Basin should pay more attention to the improvement of tourism’s carbon emission
efficiency, while Gansu and Shandong should focus on improving the high-quality
development level of the tourism economy.

• In terms of the influencing factors of symbiotic interaction between tourism’s carbon
emission efficiency (TCEE) and the tourism economy’s high-quality development
(TEHQD). Firstly, energy input and capital input in tourism’s carbon emission effi-
ciency should be strengthened. Energy utilization efficiency should be improved,
and the green development level of tourism’s carbon emission efficiency should be
promoted. Tourism capital input should be increased and the development of tourism
boosted. Importance should be attached to the role of influencing factors such as total
energy consumption, the number of hotel employees, and the original value of fixed
assets of star hotels in tourism’s carbon emission efficiency in particular. Secondly,
importance should be attached to the role of “coordination” and “innovation” in the
tourism economy’s high-quality development. Increasing investment in innovation,
increasing research and development funds, and cultivating innovative talents should
all be priorities. Striving to narrow the gap between regions, industries, and depart-
ments, and realizing the coordinated and sustainable development of them should be
considered as well. In particular, attention should be paid to the effects of fixed assets
investment, R&D expenditure, regional differences in tourist turnover, and sharing
degrees of tourism greening.

5.3. Limitations and Future Research Directions

This paper presented an evaluation method and constructed a symbiotic interaction
mechanism between tourism’s carbon emission efficiency and the tourism economy’s high-
quality development in the Yellow River Basin, which provides theoretical support for the
subsequent evaluation and practical basis for subsequent policy practice. However, due to
the availability of data and the inadequacy of previous relevant studies, the selection and
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establishment of the index system may have deficiencies. At the same time, the selection of
indicators are quantitative indicators without qualitative evaluation, which has limitations.
To select a case in this paper, on the other hand, there is a limit too. It can only reflect the
status of the Yellow River basin, a single specific area. At the same time, the influencing
factors of the interaction mechanism were not further subdivided, such as the different
effects of political, economic, cultural, social, and ecological factors on the interaction
mechanism.

Thus, in the future, the measurement of tourism’s carbon emission and its efficiency
should be more precise and specific. For example, a variety of methods can be used to
compare to obtain more accurate results, or the carbon emissions of the ecosystem in terms
of technogenic pollution can be taken into account. Further exploration will be carried
out from the aspects of technology and energy efficiency, such as studying the impact
of existing technologies on tourism’s carbon emission efficiency and further on tourism
economy or the impact of innovative technologies on energy efficiency in tourism. Secondly,
the symbiotic interaction mechanism between tourism’s carbon emission efficiency and the
tourism economy’s high-quality development can be explored from multiple regions and
multiple levels. On the basis of expanding the research area, different research scales were
explored from different levels, such as region, city, county, or village to build a complete
interactive mechanism model. Thirdly, the symbiotic interaction mechanism between
tourism carbon emission efficiency and tourism economy high-quality development was
studied from multiple perspectives. To improve the selection of influencing factors and
the establishment of the index system, different mechanisms of action can be studied
from the internal and external aspects of the symbiotic interaction system. On this basis,
different types of influencing factors can be explored separately to find the commonality
and individuality of each type of factor.
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Abstract: In recent years, China has increasingly emphasized green development. Therefore, it is of
theoretical and practical significance to study the green economic effect and carbon reduction effect of
tourism development for the transformation of economic development. Using the superefficient EBM
to measure the green economic efficiency of 280 cities from 2007–2019, we rely on the spatial Durbin
model to explore the spatial spillover utility and nonlinear characteristic relationship of tourism
development on green economic efficiency and carbon emission intensity and test the mediating
effect of carbon emission intensity. The findings are as follows: (1) Under the exogenous shock test
of the “low-carbon city” pilot policy, the spatial spillover effect of tourism development on urban
green economic efficiency and carbon emission intensity is robust to spatial heterogeneity. (2) The
spatial spillover effects of tourism development on the green economic efficiency and carbon emission
intensity of cities show a nonlinear characteristic relationship of “U” and “M” shapes. After tourism
development reaches a certain high level, the green economy effect and carbon emission reduction
effect are significantly increased. (3) Carbon emission intensity has a significant mediating effect on
the impact of tourism development on urban green economic efficiency.

Keywords: tourism development; green economy; carbon emissions; spillover effect; superefficient
EBM

1. Introduction

Anthropogenic activities such as deforestation and burning of fossil fuels produce a
large amount of greenhouse gases, and the continued increase in carbon dioxide emissions
is expected to have a catastrophic impact on the global climate system. Therefore, it has
become the consensus of various countries around the world to mitigate the negative
impacts of climate change and ensure sustainable development by continuously reducing
carbon emissions [1]. The United Nations Environment Programme (UNEP) proposed
in 2011 that a green economy can improve human well-being and social justice and that
it can serve as a pattern for building a resource-efficient and environmentally friendly
society. It is also an important way to promote sustainable development and aid in poverty
eradication. Since its reform and opening up, China’s economy has grown at a rapid
rate of 9.7% per year [2], rapidly becoming the world’s second largest economy, ranking
among the upper middle-income countries and lifting 800 million people out of poverty [3].
However, China’s economic development still has serious problems due to the widespread
use of energy that exploits the environment to promote economic growth. According to
the World Bank, China has become the world’s largest energy consumer. China accounts
for 27.6% of the world’s CO2 emissions [4], and the Chinese government has committed to
ensure that carbon emissions peak by 2030. Thus, the Chinese government has recognized
that current and potential environmental degradation poses a serious threat to China’s
sustainable development and that the previous aggressive development model is no longer
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appropriate. Solving China’s problems will not only benefit the quality of China’s economic
development but also provide a model in balancing economic growth and the environment
that could be used by other developing countries around the world. However, based
on economic stability, ensuring the achievement of this goal is an important challenge
for the Chinese government, and improving economic efficiency is certainly an effective
way of achieving it [5]. For European countries, tourism, as a key sector of the European
economy, is an important source of income and employment in Europe [6]. However, carbon
intensity in Europe is growing steadily. Therefore, these countries must also mitigate carbon
emissions through tourism reforms [6]. It can be seen that both developing and developed
countries are actively seeking a balance between energy consumption and economic growth,
exploring the carbon reduction effect of the tourism industry, the green economy effect and
its interaction, so that the research results can become a guide to the reality of the dilemma
between tourism and environmental protection.

In the economic sense, economic efficiency usually refers to how to obtain as much
output of economic goods from as few factor inputs as possible, mainly considering the
input–output ratio of labor and capital inputs [7]. In 2010, Yang and Hu first proposed
green economic efficiency as a key indicator to measure the level of the green economy, and
green economic efficiency further addresses the issues of energy constraints and undesired
output [8]. Therefore, green economic efficiency can be defined as an economic production
system that can achieve greater economic output or less environmental pollution with
constant or reduced factor inputs, taking into account the constraints of resources and the
environment [5,9,10]. For studies of green economy efficiency, data envelopment analysis
(DEA) is a common method used by most scholars [11–16]. However, DEA is either input-
or output-oriented and cannot consider both output and input, which is a limitation of the
DEA measurement method. To avoid such problems, some scholars use the slack-based
measurement (SBM) method to measure green economic efficiency [5,17–23]. Although the
SBM model achieves a balance of inputs and outputs, it also ensures different proportional
changes in inputs and outputs, which are closer to the true values [5]. However, the
SBM model cannot solve the problem of undesired outputs. In recent years, the EBM
method has been increasingly used by scholars to study energy efficiency or environmental
efficiency [24–28]. Therefore, this paper adopts the EBM model to measure the green
economy efficiency level of 280 prefecture-level cities in China.

It is widely acknowledged that the tourism industry makes a significant contribution
to economic development in terms of income generation, tax revenue and employment [29].
After reform and opening up, tourism has developed along with China’s economic take-
off, and it has become a pillar industry of China’s economy. According to data from the
China Tourism Research Institute, the number of domestic tourists rose from 2.13 billion to
6.006 billion from 2010 to 2019, and the total revenue from tourism rose from 1.57 trillion
RMB to 6.63 trillion RMB. This rise in tourism is not only the case in China; the tourism
industry is also a key sector of the European economy, prioritized by the EU as an important
source of income, employment and economic growth [6]. As the contribution of tourism
agglomeration increases, scholars are increasingly looking at the relationship between
tourism development and economic growth [6]. During the continuous development
of tourism, the carbon emissions generated by the activities of tourism itself, such as
transportation, accommodation and catering [30], as well as tourism-related industries [31],
have gradually increased. For countries or regions with large populations or developed
tourism industries, the relationship between tourism and carbon emissions has received
much attention [32], for example, in China [33], the European Union [6] and Southeast
Asia [32].

Compared with other industries, tourism is less polluting, less ecologically damaging
and less energy-consuming, which are hallmarks of a typical green industry and demon-
strate that it contributes to the development of the green economy in cities [34]. Therefore,
based on the uniqueness of tourism, the relationship between tourism development, carbon
emissions and economic growth has been a hot topic of research [6,32,35–42]. After the
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introduction of the concept of the green economy, what is the relationship between tourism
as a green industry and carbon emissions and the green economy? Is there a necessary
link between tourism development, carbon emissions and a green economy? As cities
become more frequently and closely connected, the development of neighboring cities is
mutually linked and influenced, so it is necessary and important to consider spatial effects.
Furthermore, with the global advocacy for green development, it is crucial to understand
the relationship between urban tourism development, carbon emission intensity and green
economic efficiency. This is not only important for China to achieve the goal of reducing
carbon emissions but also has important practical significance for the global exploration of
green economic development paths.

The contribution of this paper may be as follows. First, the article defines the relation-
ship among tourism development, carbon emission intensity and green economic efficiency.
Supported by the data of 280 prefecture-level cities in China from 2007–2019, this paper con-
firms that urban tourism development has a significant positive effect on the reduction in
carbon emission intensity and the improvement of green economic efficiency. Meanwhile, it
confirms that carbon emission intensity plays a significant mediating role in the promotion
of urban green economic efficiency by tourism development. Second, this paper compares
the spatial relationship between tourism development on carbon emission intensity and
green economic efficiency. By using the spatial Durbin model and introducing spatial ef-
fects, this paper confirms that tourism development has a significant spatial spillover effect
on the mitigation of carbon emission intensity and the improvement of green economic effi-
ciency. On this basis, this paper tests the robustness of the spatial spillover effect of tourism
development on carbon emission intensity and green economic efficiency by introducing
the “low carbon city” pilot policy as an exogenous shock. Third, the paper compares the
nonlinear characteristic relationship of tourism development on carbon emission intensity
and green economic efficiency. Based on the previous influence relationship, this paper
further explores the nonlinear characteristic relationship of tourism development on the
reduction in carbon emission intensity and the improvement of green economic efficiency
and elaborates the influence of tourism development on carbon emission intensity and
green economic efficiency.

In order to introduce the research of this paper more clearly, the main contents of each
chapter are introduced in the form of flowcharts in the order of the research catalog of this
paper, as shown in Figure 1. The literature review and research hypotheses are given in the
next section. The econometric methodology and model utilized in this study are provided
in section three. Section four addresses the empirical results, and the last section provides a
discussion of the findings together with policy implications.
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Figure 1. Flow chart.

2. Theoretical Foundations and Research Hypotheses

Although there is no unified academic definition of the green economy, scholars have
recognized that achieving a positive interaction between economic growth and the eco-
logical environment is the core connotation of green economic development [14,43]. The
tourism industry is inextricably linked to the regional economy, both in terms of GDP
contribution and employment contribution [6,36], and plays an important role in promot-
ing economic development. In addition, the tourism industry is both dependent on the
destination’s ecological environment and protective of it. A good ecological environment
improves the quality of the elements of tourism development, while tourism development
further protects the local ecological environment and realizes the sustainable development
of the regional ecology. From the core connotation of the green economy, the impact of
tourism development on the green economy is mainly reflected in two aspects [44,45]:
ecological and environmental effects and economic growth effects.

In the process of tourism development, it will have direct and indirect effects on
the local economy and environment, which will affect the level of local green economic
efficiency. As shown in Figure 2, tourism development and environmental pollution
have an “EKC” effect, i.e., the environmental Kuznets curve is introduced into tourism
development, and the two are found to have an “inverted U” curve relationship [32].
At the same time, tourism development has both positive and negative environmental
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externalities. The positive environmental externality refers to tourism as a friendly industry
that does not involve industrial pollution [46] and has a significant carbon reduction
effect [6]. The negative environmental externality, on the contrary, refers to the high-
carbon nature of the tourism industry, which is a major contributor to greenhouse gas
emissions [47]. Although it is recognized that the tourism industry itself has significant
economic driving power [6], Corden et al. found that tourism development has a “Dutch
disease” effect, i.e., tourism development promotes economic growth in the short term, but
depresses the economy in the long term [48]. Based on the “Dutch disease” effect, scholars
have shown that tourism development has a non-linear effect. More specifically, different
levels of tourism specialization can have differential effects on economic growth [49]. These
studies demonstrate that tourism development has a direct effect on economic efficiency
and thus on green economic efficiency.

Figure 2. The mechanism of the impact of tourism development on green economy efficiency.

In addition to the direct impact, tourism development can also indirectly affect the effi-
ciency of the green economy by influencing environmental and economic factors. Tourism
development can optimize the ecological environment, industry linkage and integration,
technological innovation and industrial structure. Tourism needs an excellent natural
environment, so the development of tourism will inevitably require the relocation and
withdrawal of highly polluting enterprises, performing a passive adjustment of industrial
structure. In conclusion, environmental friendliness and economic growth are the core
concepts of the green economy, tourism development in the process directly and indirectly
affecting the local ecological environment and economic growth, with practical benefits
and results to illustrate the existence of overlap between tourism development and green
economic efficiency.

In terms of environmental benefits, the “environmental Kuznets” effect of tourism
development is obvious [50], as the tourism industry produces environmental pollution
such as waste gas and wastewater in the process of development, causing certain negative
impacts on the ecological environment, but the economic growth effect brought by tourism
development directly “compensates” by allowing environmental protection. In terms
of indirect effects, tourism development can force the original industrial structure to be
adjusted and optimized through the “crowding-out effect”. In addition, the “dependency”
of the local economy on the tourism industry raises the environmental awareness of the
government and residents, creating formal and informal monitoring of the ecological
environment and further optimizing the development environment. At the same time,
tourism development also brings economic growth. For example, tourism development
can directly lead to increased GDP and employment in cities and contribute to poverty
alleviation in the destination. Moreover, the increasing integration of tourism with other
industries not only facilitates the innovation and transfer of technology but also has a
positive impact on the optimization of the industrial structure and market environment [21].
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Hypothesis H1: The impact of tourism development on the green economic efficiency of cities has
a spillover effect.

Hypothesis H2: The impact of tourism development on urban green economic efficiency has a
nonlinear relationship.

The impact of tourism development on urban carbon emission intensity is mainly
studied from the perspective of tourism industry agglomeration, and the environmental
effect of tourism carbon emission reduction is mainly realized through externalities, which
is a proven consensus [6,31,32,51]. The research on the relationship between tourism de-
velopment and carbon emissions is mainly based on the environmental Kuznets curve
hypothesis (EKC) proposed by American economists Grossman and Krueger. This hypoth-
esis suggests that environmental quality deteriorates and then improves as the level of
economic development increases, and there is an inverted “U” shaped relationship between
environmental quality and economic development. The environmental effect brought by
the development of the tourism industry is mainly studied from the two perspectives of
the tourism economy and industrial agglomeration. On the one hand, the growth of the
tourism economy follows the environmental Kuznets curve hypothesis, with a nonlinear
characteristic relationship between the two [32], but at the same time, some scholars ques-
tion this and test the relationship between the tourism economy and the decoupling of
carbon emissions [33]. On the other hand, in the early stage of tourism industry agglomera-
tion, the industry development method is relatively crude, and large-scale enterprises may
be concentrated in the same area. Although this increases the regional GDP, as a process
with fierce competition, it can also easily waste resources and energy and lead to a negative
impact on the ecological environment [52]. As the level of agglomeration increases, the
agglomeration of the tourism industry brings about a reduction in the cost of raw material
transportation and transaction, a saving in energy and resources, and the agglomeration of
enterprises with backward and forward linkage makes the exchange of knowledge and
technology more convenient. The exchange and cooperation between tourism and other
industries are likely to collide with new technologies, expand knowledge and technology
spillover effects, and achieve synergistic innovation in technology, which in turn have a
suppressive effect on carbon emissions and improve environmental pollution [6].

Hypothesis H3: The impact of tourism development on urban carbon emission intensity has a
spillover effect.

Hypothesis H4: The impact of tourism development on urban carbon emission intensity has a
nonlinear relationship.

Tourism development must both reduce carbon emissions and increase the GDP: on
the one hand, tourism development needs to pay attention to reducing carbon dioxide
emissions, both from tourism itself and from the manufacturing sector. According to
existing research, tourism is not only highly correlated with manufacturing but also has a
certain “crowding-out effect” on regional manufacturing [46]. Therefore, while developing
tourism, clean energy should be used to reduce air pollution, thus attracting more tourists
and generating more tourism revenue. This is also a mutually reinforcing process, as the
development of tourism to a certain extent squeezes out the high-pollution manufacturing
industry, which also alleviates regional carbon intensity. The ability of cities to reduce
carbon emissions in turn directly affects the development of the urban green economy,
and carbon emission intensity has a direct negative impact on the improvement of the
urban green economy efficiency level [5,53,54]. Tourism development tends to consider the
effect of its carbon emissions while influencing the efficiency of the urban green economy,
which shows that carbon emissions have a very important role in the green development
of tourism.
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Hypothesis H5: Carbon emission intensity has a mediating effect on the relationship between
tourism development and urban green economic efficiency.

3. Model Setting and Data Description

3.1. Model Construction
3.1.1. Superefficient EBM Model

The hybrid distance function model (EBM) can be compatible with the radial ratio of
input frontier values to actual values and realize the effective combination of radial and
nonradial methods in data envelopment analysis. The model makes up for the deficiencies
of DEA and SBM, giving more consideration to the efficiency level [24–28]. The following
superefficient EBM model with undesired outputs and nondirectional and constant payoffs
of scale is used to measure the green economic efficiency of 280 cities across China, and the
obtained combined efficiency value (GEE) is used as the core explanatory variable of the
spatial econometric model.

r∗ = min θ−εx ∑m
i=1 wi

−si
−/xi0

ϕ+εy ∑s
r=1 wr+sr+/yr0+εz ∑

q
p=1 wp z−sp z−/zp0

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑n

j xijλj + si
− = θxi0 (i = 1, 2, · · · , m)

∑n
j=1 yrjλj − sr

+ = ϕyr0 (r = 1, 2, · · · , s)
∑n

j=1 zpjλj + s−p = ϕzp0 (p = 1, 2, · · · , q)
λj � 0, s−i , Sr+, sp

− � 0

(1)

Regarding the specific meaning of these variables, r* denotes the combined efficiency
value, and x, y and z denote the input, desired output and undesired output elements,
respectively. m, s and q denote their quantities. λ denotes the relative importance of
the reference unit, ε is the core parameter representing the importance of the nonradial
component, and θ is the efficiency value in the radial condition. wi, wr and wp denote the
i-th input, r-th desired output and p-th nonweights of the expected output indicators.

3.1.2. Spatial Durbin Model

This study adopts the spatial Durbin model (SDM) to test the spatial spillover effect of
the tourism development level on urban green economic efficiency and carbon emission in-
tensity and explores the nonlinear characteristic relationship on this basis. The acceleration
of regional economic integration makes it possible for green economic efficiency to interact
spatially among different cities. The spatial econometric model makes up for the deficiency
that traditional measurement cannot introduce spatial factors, the spatial Durbin model
contains the spatial dependence of both dependent and independent variables [14,20,21],
and models (1)–(4) are as follows:

lnGEEit = ρWlnGEE + β1lnTCit + β2lnCONit + θ1WlnTCit + θ2WlnCONit + δi + μt + εit
lnGEEit = ρWlnGEEit + β1lnTCit + β2 ln2 TCit + β3lnCONit + θ1WlnTCit + θ2Wln2TCit + θ3WlnCONit + δi + μt + εit

lnCIit = ρWlnCIit + β1lnTCit + β2lnCONit + θ1WlnTCit + θ2WlnCONit + δi + μt + εit
lnCIit = ρWlnCIit + β1lnTCit + β2 ln2 TCit + β3lnCONit + θ1WlnTC + θ2Wln2TCit + θ3WlnCONit + δi + μt + εit

(2)

where i and t denote region and time, respectively, W represents the spatial weight matrix,
and βi and θi are the parameter vectors to be estimated and the spatial regression coeffi-
cients of the tourism development level. “Green economic efficiency” is GEE, CI is “carbon
emission intensity”, TC is “tourism development”, CON is the control variable, and ρ is the
spatial regression coefficient. “Tourism development” is TC, CON is the control variable,
and ρ is the spatial regression coefficient. δi is the individual fixed effect, μt is the time
fixed effect, and εit is the random error term.

3.1.3. Semiparametric Panel Spatial Lag Model

The semiparametric panel spatial lag model not only analyzes the influence of spatial
factors but can also test the spatial nonlinear relationship between variables. To further
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analyze the spatial nonlinear effects of tourism development on urban green economic
efficiency and carbon emission intensity, this paper draws on the related research [55] to
further construct a semiparametric panel spatial lag model.

lnGEEit = αi + ρWlnGEEit + β1lnCONit + θ1WlnCONit + G(lnTCit) + εit
lnCIit = αi + ρWlnCIit + β1lnCONit + θ1WlnCONit + G(lnTCit) + uit

(3)

where G(lnTCit) represents the nonparametric part of the unknown function, αi represents
the individual effect, εit and uit represent the random perturbation term.

3.1.4. Mediating Effect Model

To test whether tourism development affects urban green economic efficiency through
carbon emission intensity, a mediating effect model is constructed by drawing on the related
research [14,21].

lnGEEit = α0 + α1lnTCit + ∑n
j=2 αjlnCONit + ηi + εit

lnCIit = β0 + β1lnTCit + ∑n
j=2 βjlnCONit + ηi + εit

lnGEEit = δ0 + δ1lnTCit + δ2lnCIit + ∑n
j=3 δjlnCONit + ηi + εit

(4)

ηi is the individual fixed effect.

3.1.5. Exogenous Shock Testing Model of the Low-Carbon City Pilot Policy

1. Endogenous Relationship between Low-carbon Cities and Tourism Development

Low-carbon cities achieve green development by adjusting the industrial structure,
reducing disposable energy use, using renewable resources as much as possible, and devel-
oping low-carbon transportation systems. Tourism can influence industrial optimization,
clean energy use and low-carbon transportation. Under the “double carbon” strategy,
low-carbon tourism is undoubtedly one of the paths for low-carbon city reform, and in
addition to the low consumption of tourism itself and the low carbonization of the tourism
process, the strong correlation of tourism itself with a reduction in carbon emissions can
lead to the low-carbon transformation of more industries. Tourism development is in line
with the essence and connotation of low-carbon city development, and low-carbon tourism
can also be an effective path for green economic development in low-carbon cities [45].
Therefore, this paper uses the exogenous shock of low-carbon city pilots to evaluate the
existing model and test the robustness of the spillover effect of tourism development on
the green economic efficiency and carbon emission intensity of cities.

2. Model Setting and Testing

The dummy variable is constructed as to whether the city is a “low-carbon city” pilot
or not, and takes the value of 1 if the city is already a “low-carbon city” pilot at the end of
the year and 0 otherwise [56].

Based on the spatial Durbin model, a multitemporal spatial DID expansion estimation
was constructed based on relevant studies [56], and the coefficients of the variables were
estimated by randomly selecting cities and any year as the sample size and rerunning the
model test. Comparing whether there is a significant difference between the true value
and the estimated interval can indicate whether the model estimation is biased by omitting
city-time-level variables.

3.2. Description of Variables
3.2.1. Tourism Development

Compared with a single indicator, this paper adopts tourism development indica-
tors [57], including the tourism economy and tourism scale, to measure the level of tourism
development more comprehensively. Based on the domestic tourism income and number
of people, inbound tourism income and the number of people under the city scale, the
entropy weight TOPSIS method is used to obtain the tourism development level (TC)

126



Energies 2022, 15, 7729

of 280 cities nationwide, which is used as the core explanatory variable of this spatial
econometric model.

3.2.2. Carbon Emission Intensity

Urban carbon emissions include carbon emissions from direct energy consumption as
well as carbon emissions from electric energy and thermal energy consumption. Drawing
on the related research [58], carbon emissions from liquefied petroleum gas, transportation,
electric energy and thermal energy consumption are summed to obtain the total urban
carbon emissions. The ratio of the total carbon emissions of a city to its GDP is used to
measure the intensity of carbon emissions of the city.

3.2.3. Green Economy Efficiency

The green economy is an economic development model that maximizes resource
utilization by improving development efficiency and reducing environmental pressure.
According to the current situation of social, environmental and resource problems, taking
into account the availability and consistency of data, the green economy efficiency index
system of cities is constructed from the perspective of resource input-economic output-
pollution output regarding relevant research. Based on the existing studies [14,20–22,59],
we add “the number of industrial enterprises above the scale” to the labor factor level
and change the previous consideration from the number of employees to the number of
employees and enterprises to improve the index system. Table 1 shows the green economy
efficiency measurement indicators.

Table 1. Urban green economy efficiency measurement index system.

Guideline Layer Indicator Layer Guideline Layer Indicator Layer

Input metrics

Labor

The number of employees in the
city at the end of the year

Output indicators

Expected output

Urban green area

Number of industrial enterprises
above designated size Real GDP

Capital

Local financial expenditure on
science and technology

Total retail consumption
per capita

Investment in fixed assets

Undesirable output

Industrial wastewater
discharge

Area of urban construction land Industrial sulfur dioxide
emissions

Energy
Total air supply Industrial soot emissions

Total water supply
Total electricity consumption

3.2.4. Control Variables

Based on previous studies, such as Tong Yun [60], the current studies mostly analyze
the effects of the economic level, environmental regulation, technological innovation and
foreign investment on urban green economic efficiency and carbon emission intensity, while
variables such as industrial structure, government intervention and financial development
are gradually added as the research progresses. To reduce the estimation bias, the following
control variables are chosen in this paper: industrial structure (is), using the share of
secondary industry value added in GDP as a proxy variable [21,61]; economic development
(eco), using the GDP per capita representation [59]; foreign investment (fdi), using the
share of foreign direct investment in urban GDP as a proxy variable [14]; technological
innovation (ino), using the share of science and technology expenditure in urban GDP [14];
environmental regulation (env), characterized by the comprehensive utilization rate of the
industrial fixed waste [25].

3.3. Data Description

Two hundred and eighty prefecture-level cities in China are the subject of the data in
this paper, which involve a total of 21 variables in the fields of energy, tourism, environment,
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and economy; the data collection was challenging; most city statistics were not updated in
a timely manner, leading to a significant amount of missing data in 2020; and artificially
completing the data would interfere with the validity of the research findings. Likewise, the
pace of China’s tourism development has slowed down dramatically as a result of the new
crown pandemic, taking into account that force majeure circumstances will compromise
the validity of the findings and have a negative influence on tourism’s contribution to the
green economy. Given the aforementioned justifications, based on the availability and
consistency of data, this paper selects the relevant data of 280 cities in 30 provinces from
2007 to 2019, excluding the data of Tibet, Hong Kong, Macao and Taiwan. Due to the
long period and the change in some city data, this paper takes 2019 prefecture-level cities
as the benchmark, excludes the data of merged cities, and retains the data related to the
removal of counties and promotion of cities. The relevant data are obtained from The China
City Statistical Yearbook, China City Construction Statistical Yearbook, China Energy Statistical
Yearbook and Tourism Statistical Yearbook of each city. Carbon emission data were calculated
based on county-level data from the literature. The list of pilot low-carbon cities is based
on the list announced by the National Development and Reform Commission. To avoid the
interference of multicollinearity and pseudo-regression, the VIF test and unit variance test
were conducted on the panel data, and the results showed that the variance inflation factor
of the panel data was less than three, and they all passed the LLC test and Fisher-ADF
test at the 1% significance level, so there was no multicollinearity problem, and the data
were smooth. In addition, the effect of heteroskedasticity was eliminated by taking the
logarithms of all variables.

4. Results

4.1. Spatial Autocorrelation Test and Spatial Econometric Model Selection

Urban carbon emission intensity and green economic efficiency are spatially correlated,
which is a prerequisite for spatial econometric modeling [60]. Stata.23 is used to calculate
the global Moran index to explore the spatial agglomeration characteristics. As shown in
Table 2, the GEE Moran index is positive for all the years from 2007 to 2019, and the spatial
agglomeration strengthens year by year except for 2013–2015, all of which pass the 1%
significance level test. During the observation period, the Moran index of Carin is positive
in all cases, and the degree of spatial agglomeration increases in fluctuation. Overall, both
urban green economic efficiency and carbon emission intensity have significant spatial
agglomeration characteristics.

Table 2. Global Moran Index test results for green economy efficiency and carbon emission intensity.

Year GEE CI

2007 0.011 *** 0.043 ***
2008 0.007 ** 0.041 ***
2009 0.010 *** 0.039 ***
2010 0.014 *** 0.045 ***
2011 0.013 *** 0.041 ***
2012 0.017 *** 0.039 ***
2013 0.016 *** 0.042 ***
2014 0.012 *** 0.045 ***
2015 0.014 *** 0.057 ***
2016 0.020 *** 0.071 ***
2017 0.021 *** 0.074 ***
2018 0.034 *** 0.092 ***
2019 0.035 *** 0.083 ***

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Based on passing Moran’s I test, the spatial effect econometric model can be selected.
Additionally, to measure the nonlinear characteristics of tourism development on urban
carbon emission intensity and green economic efficiency, models (3) and (4) containing
quadratic terms of tourism development variables were introduced. First, the LM test, LR
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test and Wald test were performed to identify the spatial econometric models. Both the
LM spatial lag test and LM spatial error test showed high significance, so both the SAR
model and SEM were suitable for this study, and we chose the SDM model that combined
both. Then, the LR test and Wald test were applied to further determine whether the SDM
could be degraded to the SAR model or SEM. The comprehensive test results showed
that the SDM was better than the SAR and SEM, so the SDM was selected as the baseline
regression model in this paper. Based on the SDM model [62], all matrices passed the
Hausman test at a 1% significance level except for model (1), which had a negative value, so
the fixed-effects model was selected. As shown in Table 3, the overall R2 of the individual
fixed-effects model is significantly better than that of the time-point fixed-effects and double
fixed-effects models. Finally, the individual fixed-effects spatial Durbin model is chosen to
analyze the impact of tourism development on urban carbon emission intensity and green
economic efficiency.

Table 3. Spatial econometric model selection.

Statistics
Model (1) Model (2) Model (3) Model (4)

GEE CI GEE CI

LM Spatial Lag 450.385 *** 37.215 *** 426.884 *** 21.279 ***

Robust LM Spatial Lag 84.494 *** 84.324 *** 79.038 *** 55.872 ***

LM Spatial Error 1692.191 *** 1814.403 *** 1612.687 *** 1702.513 ***

Robust LM Spatial Error 1326.301 *** 1861.513 *** 1264.841 *** 1737.106 ***

Compare SDM
with SAR

LR
Inspection 89.18 *** 26.86 *** 75.61 *** 30.43 ***

Wald
Inspection 89.01 *** 26.65 *** 75.99 *** 30.17 ***

Compare SDM
with SEM

LR
Inspection 65.77 *** 42.60 *** 63.78 *** 44.58 ***

Wald
Inspection 42.35 *** 31.01 *** 39.89 *** 31.67 ***

Hausman Inspection −2.24 404.17 *** 40.01 *** 403.47 ***

Time fixation effect R-squre 0.2189 0.1865 0.0560 0.0339

Individual fixation effect R-squre 0.2660 0.2849 0.2789 0.2404

Double fixed effect R-squre 0.0290 0.2711 0.0124 0.2009

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

4.2. Spatial Spillover Effects of Tourism Development on Urban Carbon Emission Intensity and
Green Economic Efficiency

The spatial spillover effect can be decomposed into the direct effect, indirect effect and
total effect. Among them, the direct effect includes the direct effect of tourism develop-
ment on the explained variables and the feedback effect caused by tourism development
affecting the explained variables in adjacent areas. The indirect effect represents the spatial
spillover effect of tourism development, including the influence of tourism development
in neighboring areas on the explained variables in the region and the influence of tourism
development in neighboring areas on their own explained variables, which in turn has an
impact on the explained variables in the region. The total effect, on the other hand, is the
sum of the direct and indirect effects, reflecting the average effect of tourism development
on the explanatory variables.

As seen from Table 4, the total effect coefficient (lnTC) of the impact of tourism
development on urban green economic efficiency is significantly positive, indicating that
the development of tourism is conducive to enhancing urban green economic efficiency.
On the one hand, tourism is a resource-dependent industry, and good ecological and
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environmental conditions are the basis of its development, so tourism investment involves
financial support for the ecological and environmental restoration of tourism destinations.
On the other hand, tourism development produces change in the industrial structure of
destinations, forcing enterprises to conduct energy restructuring, and especially has a
crowding-out effect on industries, but due to market demand, tourism development can
have a significant impact on the service sector. However, tourism development can optimize
the service and manufacturing industries due to market demand and technology spillover,
reduce their pollution emissions, and thus improve the efficiency of the destination’s
green economy. The direct effect of tourism development is not significant. Tourism itself
has low pollution emissions, and tourism development does not act directly on green
economic efficiency but indirectly enhances urban green economic efficiency by forcing
local industrial structure optimization and other forms through high correlation with other
industries. For example, for every 1% increase in the tourism development level, the
green economic efficiency of neighboring areas is indirectly enhanced by 0.442%, i.e., the
promotion effect of tourism development on urban green economic efficiency is mainly
manifested as an indirect effect, i.e., spillover effect [60]. Therefore, hypothesis H1 is
verified.

Table 4. Benchmark regression results on the impact of tourism development on urban carbon
emissions and green economic efficiency.

Variable
GEE CI

Direct Effects Indirect Effects Total Effect Direct Effects Indirect Effects Total Effect

lnTC 0.010 0.442 *** 0.452 *** 0.028 −1.336 *** −1.307 ***
lnis −0.034 *** −0.055 −0.09 −0.022 −2.95 *** −2.972 ***

lneco 0.026 * −0.193 −0.167 −0.068 1.235 ** 1.168 **
lnfdi −0.003 −0.231 ** −0.234 ** −0.004 *** −0.021 −0.024
lnino 0.113 *** 0.011 0.125 *** −0.006 0.092 0.086
lnenv 0.005 0.062 0.057 0.045 *** −1.026 ** −0.981 **

R-squared 0.253 0.1548
Log-likelihood 885.249 −446.1593
Observations 3640 3640

City FE YES YES
Year FE NO NO

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

As seen from Table 4, the total effect coefficient of the impact of tourism development
on the intensity of urban carbon emissions is significantly negative, indicating that tourism
development can mitigate urban carbon emissions and achieve urban emission reduction.
On the one hand, because tourism itself is a low-consumption and low-carbon industry,
its development is based on the ecological environment. On the other hand, the tourism
development model is constantly updated, and green development has been a basic require-
ment, especially the development of the digital economy in recent years, which provides
the basis for the creation of a digital tourism model and, to a large extent, relieves the
pressure of urban carbon emission reduction. As tourism development affects the green
economic efficiency of cities, the urban carbon reduction effect of tourism development
also shows a significant spillover effect, with each 1% increase in the tourism development
level indirectly reducing the carbon emission intensity of neighboring areas by 1.336%.
The development of tourism is one of the main paths for carbon reduction in cities [32].
Therefore, hypothesis H3 is verified.

From the control variables, the effect of industrial structure on green economic effi-
ciency mainly works as a direct effect, and the effect on carbon emission intensity mainly
works as an indirect effect. Tourism development leads to an increase in factor costs, which
makes the maximum use of energy structure through reasonable resource allocation and
reduces the redundancy of resource inputs and pollution emissions such as carbon dioxide.
The results of the effect of economic level on green economy efficiency are not significant,

130



Energies 2022, 15, 7729

indicating that economic development and green economy development are not equiv-
alent. Meanwhile, the effect of the economic level on carbon emission intensity shows a
significant positive direction, which integrally indicates that most of China’s cities are still
trying to eliminate the severe development model, and are still sacrificing resources and
the environment for the improvement of the economic level, which does not correspond to
the development of the green economy. To a certain extent, the enhancement of the city’s
reputation and the brand effect, in addition to the management experience provided by
foreign investment, improved production processes, technological innovation and improve-
ment of the business environment caused by the growth of tourism development promote
the city’s carbon emission reduction and green economy development [6]. The direct and
indirect effects of technological innovation on the efficiency of the green economy are
significantly positive, and innovation has been an important variable that has helped green
economic development to reach a turning point. Under the stimulation of the policy of
cultural tourism integration, “tourism +” continues to push out new ideas and become
richer in industries, but “tourism + technology” still has serious deficiencies that inhibit
economic growth and green development, but the development of the technology level is
not enough to significantly reduce carbon emission intensity in most cities at present [63].
The spillover effect of environmental regulation variables is significant [64]; environmental
regulation is necessary due to pollution externalities; in the short term, it is inhibitory to
economic development, and the direct effect is not obvious. Tourism development causes
the agglomeration of the tourism industry, which not only promotes the improvement of
the carbon emission efficiency of tourism but also promotes the expansion of the service
industry and the development of manufacturing services by forcing the optimization of in-
dustrial structure, bringing the “innovation compensation” effect and ultimately achieving
a Porter “win-win” [64]. Through the interaction and correlation with foreign investment
and environmental regulations, tourism development drives technological innovation and
industrial structure optimization, reduces the intensity of urban carbon emissions, and
enhances the efficiency of the green economy.

4.3. Heterogeneous Effects of Tourism Development on Urban Carbon Intensity and Green
Economic Efficiency in Different Regions

Considering the possible spatial heterogeneity of the impact of tourism development
on urban green economic efficiency and carbon emission intensity, this paper divides
regions and urban agglomerations, and the criteria for making these divisions are shown in
relevant documents (For regional division standards, see the National Bureau of Statistics’
“Methods for the Division of East, West, Central and Northeast Regions”) and the literature [65].
The region is divided into four parts, eastern, central, western and northeastern, and cities
are categorized into two groups, urban agglomeration and non-urban agglomeration, to test
the regional heterogeneity of tourism development on urban green economic efficiency and
carbon emission intensity. Tables 5 and 6 show the spatial heterogeneity impact of tourism
development on green economy efficiency and carbon emission intensity, respectively.

Table 5. Regional heterogeneity of the impact of tourism development on urban green economic
efficiency.

Variable Eastern Region Central Region
Western
Region

Northeast
Region

Urban
Agglomeration

Non-Urban
Agglomerations

lnTC 0.043 * (1.800) 0.015 (0.560) 0.047 * (1.700) 0.113 *** (3.54) 0.024 (1.380) −0.005 (−0.240)
W×lnTC 0.182 * (1.760) 0.330 *** (2.580) 0.184 ** (2.010) 0.245 *** (2.78) 0.183 ** (2.060) 0.413 *** (4.640)

R-squared 0.308 0.256 0.179 0.2210 0.292 0.204
log-likelihood 456.936 446.489 50.027 113.5438 574.890 311.798
Observations 1118 1040 1040 442 2158 1482

City FE YES YES YES YES YES YES
Year FE NO NO NO NO NO NO

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.
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Table 6. Regional heterogeneity of the impact of tourism development on urban carbon emission
intensity.

Variable
Eastern
Region

Central Region
Western
Region

Northeast
Region

Urban
Agglomeration

Non-Urban
Agglomerations

lnTC 0.047 (0.57) 0.104 (0.98) 0.149 ** (2.03) −0.224 ** (−1.95) 0.014 (0.24) 0.018 (0.29)

W × lnTC 0.121 (0.39) −0.849 ***
(−2.79) 0.095 (0.44) 0.263 (0.91) −0.034 (−0.17) −0.030 (−0.15)

R-squared 0.0281 0.0739 0.0225 0.0778 0.0144 0.0535
log-likelihood −1007.2842 −986.6959 −945.4118 −455.7187 −1983.2718 −1442.5192
Observations 1118 1040 1040 442 2158 1482

City FE YES YES YES YES YES YES
Year FE NO NO NO NO NO NO

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

In the eastern region, tourism development makes a significant contribution to local
and neighboring green economic efficiency, and the effect is inferior compared with the
western and northeastern regions, which may be due to the weakening of the marginal
effect of tourism development on urban green economic efficiency as the economic level
increases, and the economic level implies to a certain extent that technological innovation
and industrial structure optimization are also higher in the eastern region due to the
developed tourism industry. Green economic development tends to be flat growth. The
effect of tourism development in the eastern region on urban carbon emission intensity is
not significant, probably because the industrial structure of cities in the eastern region is
no longer dominated by the severe secondary industry development model, and tourism
development no longer has the extrusion effect on the high carbon emission secondary
industry. The local effect of tourism development in the central region is not significant,
and the effect of tourism development in the central region on the green economic efficiency
and carbon emission intensity of neighboring cities is significant. On the one hand, the
level of tourism development in the central region is low, and the promotion effect is not
obvious. On the other hand, in the context of integrated development of the central city
cluster, many factors can interact with one another, which leads to the obvious spillover
effect of tourism development. Tourism development in the western region can not only
improve the efficiency of the local green economy but also promote the development of the
green economy in neighboring areas, and the urban carbon emission reduction effect of
tourism development is mainly local. That is, tourism development in the western region
still has an optimization effect on the industrial structure of the local cities but the “resource
curse”, and the “Dutch disease effect”, which inhibit green economic efficiency and carbon
emission reduction in cities, are also evident [48]. The effect of tourism development in
Northeast China on the green economic efficiency of cities is significant, but the spillover
effect on carbon emission reduction is not obvious, which indicates that the development
of tourism in Northeast China, as a heavy industrial base, helps to alleviate local pollution
emissions and is beneficial to the development of the urban green economy. From the
city cluster heterogeneity, the local effect of tourism development on green economic
efficiency both inside and outside the city cluster is not significant, and the spatial spillover
effect on neighboring cities is significant. There is no significant effect on urban carbon
emission reduction, partly because the development of city clusters is not synergistic, and
city clusters do not bring due opportunities to specific cities. In summary, there is no
“siphon effect” in urban agglomerations, with significant differences between the eastern,
central, western and northeastern regions, and again, the spatial spillover effect of tourism
development on urban green economic efficiency is more significant than the direct effect.
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4.4. Nonlinear Effects of Tourism Development on Carbon Emission Intensity and Urban Green
Economic Efficiency

To investigate whether there is a similar phenomenon of tourism development on
urban green economic efficiency and carbon emission intensity [64], this paper introduces a
quadratic term of the logarithm of tourism development level based on the spatial Durbin
econometric model to test the nonlinear characteristic relationship between tourism devel-
opment and carbon emission intensity and urban green economic efficiency. The results are
shown in Table 7. The positive coefficient of the quadratic term of tourism development
on urban green economic efficiency indicates that there is a positive U-shaped nonlinear
characteristic relationship between tourism development and urban green economic ef-
ficiency, and similarly, there is an inverse U-shaped nonlinear characteristic relationship
between tourism development and urban carbon emission intensity [32]. Similarly, there
is an inverse U-shaped nonlinear relationship between tourism development and urban
carbon emission intensity. Furthermore, to accurately measure the degree of nonlinear
effects, a semiparametric spatial lag model is introduced, and the nonlinear relationship
between tourism development and urban green economic efficiency and carbon emission
intensity can be visually observed by drawing the partial derivatives of G(lnTC) in the
model, as shown in Figures 3 and 4, where the horizontal coordinates indicate the level of
tourism development and the vertical coordinates indicate the marginal effects.

Table 7. Nonlinear effects of tourism development on urban carbon intensity and green economic
efficiency.

Variable
GEE CI

x W × x x W × x

lnTC 0.124 *** 0.424 *** −0.086 ** −0.458 **
lnTC2 0.011 *** 0.034 ** −0.011 *** −0.016 *

lnis −0.031 *** 0.116 −0.012 −0.805 ***
lneco 0.023 * −0.064 −0.071 *** 0.349 ***
lnfdi −0.003 −0.07 ** −0.004 −0.023
lnino −0.12 * 0.065 *** 0.003 0.015
lnenv 0.006 0.054 0.047 *** −0.372 ***
rho 0.544 *** 0.728 ***

R-squared 0.2748 0.1386
Log-likelihood 903.8068 −438.8832
Observations 3640 3640

City FE YES YES
Year FE NO NO

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

From Figure 3, it can be seen that tourism development has a positive “U” shaped
nonlinear effect on urban green economic efficiency, but the curve is always above 0, which
means that the marginal effect of tourism development on urban green economic efficiency
is always positive, i.e., it always shows a facilitating effect. The curve in Figure 3 shows
that although the tourism industry has always had a positive effect on the green economic
efficiency of the city, there are roughly three stages. The first stage is lnTC between −8
and −7, with decreasing marginal effects, which indicates that the development of tourism
does produce certain pollution in the initial stage or will attract a large number of manu-
facturing industries to gather in the tourist destination, thus causing some suppression of
the marginal effect of tourism development on green economic efficiency. This causes a
certain suppression of lnTC from −7 to −2. The second stage is between lnTC from −7 to
−2, and the positive marginal effect of tourism development in this stage grows slowly and
represents the exploration stage of the green tourism development model. The third stage is
the stage after lnTC-2, which fully demonstrates the positive effect of tourism development
on urban green economic efficiency. Therefore, hypothesis H2 is verified.
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Figure 4 shows that tourism development has an “M” shape on urban carbon intensity,
which is different from the inverted “U” shape obtained in the previous paper, and the
“U” shape may only be part of the “M” shape. In contrast, the marginal effect of tourism
development on urban carbon intensity is overwhelmingly below 0, indicating that tourism
development is beneficial for cities to reduce carbon emissions. Similarly, it can be seen
that the mitigation effect of tourism development on urban carbon emission intensity is
relatively stable until lnTC is −3, with a brief rise in the curve between −3 and −2. The
marginal effect ushers in a rapid decline after −2. As with the marginal effect of green
economic efficiency, tourism development, after a certain point, has a positive impact.
Therefore, hypothesis H4 is verified.

Figure 3. Partial derivative of tourism development on urban green economic efficiency.

Figure 4. Partial derivative of tourism development on urban carbon emission intensity.

4.5. Mediating Effect of Urban Carbon Emission Intensity on the Role of Tourism Development on
Green Economic Efficiency

To examine whether urban carbon emission intensity has mediating utility in the
effect of tourism development on urban green economic efficiency, the mediating utility
model is used, and a second test is conducted by bootstrapping to ensure the robustness
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of the test results. Tourism development has a significant positive impact on urban green
economic efficiency, which is consistent with the previous results, while urban carbon
emission intensity has a significant negative impact on urban green economic efficiency, and
urban carbon emissions have an inhibitory effect on the improvement of green economic
efficiency, which also confirms the robustness of the mediated utility model. The test result
of model (7) shows that urban carbon emission intensity has a significant mediating effect
on the influence of tourism development on urban green economic efficiency (Table 8);
meanwhile, the result of the bootstrap test shows that the upper and lower bounds of BC
do not contain 0 between them, and the test is passed, which proves the mediating utility
of urban carbon emission intensity. Therefore, hypothesis H5 is verified.

Table 8. Results of the mediating effect test of urban carbon emission intensity.

Variables Model (5) Model (6) Model (7)

TC 0.603 ***
(−14.36)

0.510 ***
(−11.69)

CI −0.723 ***
(−18.75)

−0.128 ***
(−7.13)

Constant 0.0874
(−1.31)

−1.799 ***
(−29.45)

−0.143
(−1.94)

Bootstrap Inspection
(Direct effects)

0.51045561
(BC: 0.4023555, 0.6608595)

Bootstrap Inspection
(Indirect effects)

0.09251758
(BC: 0.0558356, 0.1304556)

Control YES YES YES
Individual fixation effect YES YES YES

Time fixation effect NO NO NO
N 3640 3640 3640
R2 0.6294 0.1578 0.6345
F 1031.22 114.65 903.31

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

4.6. Exogenous Shock Impacts of Low-Carbon City Pilot Policies

The parallel trend test allows the use of multiperiod DID for policy assessment analysis.
In this paper, the low-carbon city pilots enacted in China in 2010 and afterward are used as
dummy variables, which are low-carbon city pilots recorded as 1 and 0 otherwise. First, the
traditional multiperiod DID is used for estimation, as shown in Table 9. The traditional DID
results show that with or without control variables, the exogenous shock of the low-carbon
city pilot policy has a significant positive effect on city green economic efficiency and
carbon emission intensity, and under the spatial DID model, the low-carbon pilot city
policy shock on both city green economic efficiency and carbon emission intensity shows a
significant spillover effect. As shown in Figures 5 and 6, the kernel density distribution of
the estimated coefficients by 1000 randomly generated treatment groups shows that the red
curves are all above the horizontal line of 0.1, and the blue curves have p values of mostly
approximately 0. The values of the true coefficients are shown as red dashed lines, which
are significantly different from the red curves on the left, and the placebo test indicates
that the estimation results are not biased. The low-carbon city pilot reflects the realistic
path of tourism development to adjust the industrial structure, and tourism development
promotes green economic efficiency and reduces the carbon emission intensity of the city
in the construction of the low-carbon pilot city, so the exogenous test in this study further
verifies the robustness of the effect of tourism development on urban green economic
efficiency and urban carbon emission intensity.
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Table 9. Exogenous impacts of low-carbon city pilot policies.

Variables
DID Spatial DID

GEE GEE CI CI GEE CI

LC 0.245 ***
(11.17)

0.176 ***
(8.58)

−0.477 ***
(−12.80)

−0.078 ***
(−2.71)

0.049 ***
(2.72)

0.001
(0.02)

W×LC / / / / 0.906 ***
(8.08)

−0.574 ***
(−3.88)

Control NO YES NO YES YES YES
R-squared 0.476 0.575 0.7280 0.8506 0.234 0.1688
Observations 3640 3640 3640 3640 3640 3640

City FE YES YES YES YES YES YES
Year FE NO NO NO NO NO NO

Note: ****, **, and * represent significance levels of 1%, 5%, and 10%, respectively.

Figure 5. Placebo test of the impact of low-carbon city pilot policies on urban green economic
efficiency.

Figure 6. Placebo test of the impact of low-carbon city pilot policies on urban carbon emission
intensity.
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5. Conclusions and Discussion

5.1. Conclusions

In this paper, based on the mechanism of the influence of tourism development on
urban green economic efficiency and carbon emission intensity, we measured the levels of
tourism development and urban green economic efficiency and carbon emission intensity of
280 prefecture-level cities from 2007 to 2019 using entropy TOPSIS and superefficiency EBM
and tested the spatial spillover effect of tourism development on urban green economic
efficiency and carbon emission intensity using the spatial Durbin model. The spatial
heterogeneity and nonlinear characteristics of the spillover effects from cities are further
analyzed. Finally, the mediating role of urban carbon emission intensity in the impact of
tourism development on urban green economic efficiency is examined.

Tourism development has a significant enhancing effect on urban green economic
efficiency and carbon emission intensity mitigation, and it also decomposes the role effect.
It is found that the green economic effect and carbon emission reduction effect of tourism
development are mainly manifested as spillover effects. From the perspective of regional
heterogeneity, it is found that the green economic effect and carbon emission reduction
effect of tourism development are much less effective in the eastern region than in the
central, western and northeastern regions. The results show that the green economic effect
and carbon emission reduction effect of tourism development are not affected by urban
agglomeration [60], which is basically consistent with Tong Yun’s conclusion.

The green economic effect and carbon emission reduction effect of tourism devel-
opment are nonlinear, with a positive “U” shape and an “M” shape, respectively. It is
found that although tourism development has a certain degree of negative impact on green
economic efficiency and carbon emission intensity at the early stage, the overall impact
is positive. At the same time, the green economic effect and carbon emission reduction
effect of tourism development significantly increase after the level of tourism development
reaches 0.135 or above, and by calculation, only 13% of the cities have reached this level
in 2019.

The results of the intermediary effect show that carbon emission intensity has a signifi-
cant intermediary effect in the influence of tourism development on the green economic
efficiency of cities. Tourism development can achieve a green economic effect through its
carbon emission reduction effect. Moreover, the low-carbon city policy not only verifies
the positive effect of the policy on carbon emission reduction and the green economic
development of cities but also proves that the green economic effect and carbon emission
reduction effect of tourism development are robust.

5.2. Discussion

This study complements and enriches the impact and spillover effects of tourism
development on urban green economic efficiency and carbon emission intensity. It also
examines the spatial heterogeneity of urban clusters and different regions and demonstrates
the nonlinear characteristic relationship between tourism development and urban green
economic efficiency and carbon emission intensity strength.

The possible marginal contributions of this study are as follows: this study is supported
by the data of 280 prefecture-level cities in China from 2010 to 2019 and uses the “low-
carbon city pilot” as an exogenous shock to test the spatial spillover effects of tourism
development on urban green economic efficiency and carbon emission intensity. At the
same time, this study measures the development of the tourism industry in terms of both
tourism scale and tourism economy, and the results are more representative. This study
explores the nonlinear characteristic relationship between tourism development on urban
green economic efficiency and carbon emission intensity, further improving and enriching
the study of the spillover effect of tourism development on urban green economic efficiency.
Moreover, this paper confirms the mediating role of carbon emission intensity in tourism
development for urban green economic efficiency spillover.
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Meanwhile, the following policy insights are obtained from this paper. First, the
spillover effect of tourism development on urban green economic efficiency and carbon
emission intensity has significant spatial heterogeneity, and different regions should de-
velop differentiated strategies according to their development conditions [66]. The marginal
spillover effect of tourism development in the eastern region is weakened, and tourism
development should be shifted to high-end and low-carbon sectors, strengthening the
linkage and integration with other industries, encouraging technological innovation, and
providing technical support for resource-saving development models. Second, there is
regional heterogeneity in the spillover effects of tourism development on urban green
economic efficiency and carbon emission intensity, which highlights the importance of
mutual coordination and cooperation within strategic alliances for regional tourism co-
operation [67]. On the premise of breaking down administrative barriers, we actively
promote the rational matching of resource elements between regions. Third, to promote
the green development of cities, it is necessary to focus on both the green economic effects
of tourism development and to explore the mode of green development of tourism itself. It
is important to focus on the negative impact of tourism development on the environment,
and to focus on the sustainable development of tourism at a reasonable pace [60].

In the future, the green economy effect and carbon emission reduction effect of tourism
development will be more prominent, but the intermediary role of carbon emission inten-
sity in the impact of tourism development on green economy efficiency may not be clear.
On the one hand, global enthusiasm and efforts in carbon reduction will be maintained,
and the green transformation of industries is a trend. Meanwhile, the tourism industry,
contributing to the implementation of carbon emission reduction in several regions and
countries, has outstanding green economy attributes. On the other hand, in many more
backward developing regions, tourism is a rough economic pattern due to the lack of expe-
rience in tourism development and late development history. Although these countries or
regions attract a large number of tourists by virtue of their unique tourism resources, they
cause more damage to the ecological environment than before development. Likewise, the
issue of carbon emissions is not taken into account in the process of tourism development,
resulting in a potentially unsatisfactory relationship between tourism development and
green economic effects and carbon reduction effects. In addition, as the COVID-19 epidemic
continues to impact the tourism industry, new forms of tourism are emerging. Many real
tourism activities are shifted to virtual tourism activities, in which case the negative envi-
ronmental externalities of the tourism industry itself may be weakened, as well as the EKC
effect, positive environmental externality effect and indirect effect of tourism development.

Compared with previous studies, this paper refines the traditional subject of “tourism,
carbon dioxide and economic growth” [6] to “tourism, carbon emissions and green eco-
nomic efficiency”, and further confirms Tong’s conclusion on the green economic effect of
tourism [60]. On the basis of this paper, we further find that the green economy effect of
tourism has a positive “U” nonlinear characteristic, which is one of the important points
of innovation in this paper. This paper also confirms that tourism development has a
significant carbon reduction effect [6,32], and also finds that there is an “M” type nonlinear
relationship between tourism development and carbon emission intensity, which is differ-
ent from the “inverted U” type relationship obtained by Reza et al. [32]. To be more precise,
the same “inverted U” type was found in this paper, but after the accurate measurement
of the nonlinear effect by the semi-parametric spatial lag model, it was found that the
“inverted U” type is only a vague form of the “M”. The “inverted U” shape is only a fuzzy
form of the “M” shape. In order to further confirm whether the carbon emission reduction
of tourism affects the green economy effect of tourism, this paper innovatively uses carbon
emission intensity as a mediating variable and concludes that tourism development affects
green economy efficiency through carbon emission reduction. Although the article has
conducted a detailed study on the relationship between tourism development, carbon
emission intensity and green economic efficiency, there are also the following shortcomings.
First, the article takes 280 prefecture-level cities in China as examples, but the tourism
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development of these cities is uneven, which may cause some interference in the results.
Subsequent research can further discuss the formation mechanism among the three factors.
Second, the impact mechanism is not thoroughly explored in this paper, which leaves room
for further discussion of the formation mechanisms between the three. Instead, this paper
only discusses the relationship between tourism development, carbon emission intensity
and green economy efficiency in detail.
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Abstract: The “Two Control Zones” (TCZ) policy is the first air pollution regulation policy in China.
We aim to examine the impact of the TCZ policy on green technological progress applying a difference–
in–differences (DID) approach, using a city–level panel data set from 1990 to 2016. We show that
the TCZ policy effectively increases the number of green patents of the cities in the two control
zones. In particular, the TCZ policy has a significantly positive effect on the quantity and structure of
human capital, including the number of inventors of patents and green patents, and the percentage
of population with a higher education level. Moreover, the effects are heterogeneous, that is, the
TCZ policy has a greater impact on the number of green patents in the control zones, where there are
better R&D bases and more foreign investments.

Keywords: environmental regulation; green innovation; TCZ policy; human capital

1. Introduction

In recent years, global economic development began facing severe challenges, so
economies are seeking new drivers for economic growth. Innovation is considered an
important means to break through the bottlenecks and shape new advantages in economic
development. In the meantime, economic development resulted in serious environmental
pollution problems all over the world. To balance environmental protection and sustainable
economic development, the ability to innovate green technologies is seen as a potential
solution. Green technology innovation refers to an economic behavior that emphasizes en-
vironmental performance improvement and can effectively balance economic development
and ecological protection issues. Hence, with the increase in the challenges of resources
and the environment, it is essential to promote the development of a green economy by
promoting green technologies [1–3]. The sustainable development can thus be achieved
through the innovation and progress of green technology [4]. Green technologies raised
public attention in both academics and industry.

In the 2000s, Porter and Van Der Linde [5] proposed that environmental regulation
can reduce the pollution caused by enterprises and incentivize enterprises to innovate to
make up for the cost of pollution. Since then, a number of studies explored the relation-
ship between environmental regulation and innovation from the perspectives of different
industries, regions, and countries [6]. The Porter hypothesis is examined in developed
economies [7,8], but it remains unclear whether it applies to emerging economies. Lan-
jouw and Mody [9] argued that environmental regulation in emerging economies cannot
enhance domestic investment in pollution control technologies or green patents. Instead,
it may increase the probability of importing green technology from advanced economies
and strengthen foreign patents. It is, therefore, still worthwhile to investigate whether
the environmental regulation has a significant impact on green innovation and provide a
rigorous theoretical analysis and causal identification framework to test the impacts.
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As an emerging economy, China’s rapid economic development brought numerous
forms of material national wealth. However, it brought a series of environmental problems,
such as resource shortage, environmental pollution, and ecological deterioration, which
became a public concern. To address these issues, the Chinese government took several
environmental regulatory measures. However, we still have little knowledge about whether
these regulatory measures have a positive effect on regional technological innovation,
especially green innovation capacity. To fill in the gap, this study aims to examine and
provide a robust estimation on the impacts of environmental regulation on green technology
innovation within the Chinese context. Specifically, we focus on the “Two Control Zones”
(TCZ) policy carried out in 1998, which was the first regulation policy for air pollution
in China.

To control acid rain and sulfur dioxide pollution effectively, the Chinese government
approved and implemented the “Two Control Zones” (TCZ) policy in 1998. The two control
zones include the acid rain control zone and the sulfur dioxide control zone. In particular,
the acid rain control zone is the region where the average pH value of rainfall is less than
or equal to 4.5; the sulfur dioxide control zone is the area where the average sulfur dioxide
concentration exceeds the national secondary standard of the past three years. The total
area of the two control zones accounts for 11.4% of the total area of the national territory,
the total population of the two control zones accounts for about 39% of the country’s
population and the GDP accounts for 67%, indicating a wide coverage of the impacts of
the “two control zones” policy. The cities on the list of the two control zones are subject to
strict environmental regulation, including restrictions on high–energy consumption, use of
heavy–polluting energy sources, and sulfur dioxide emissions.

In our study, we are interested in whether and how the TCZ policy affects green
technology innovation. To provide a robust estimation, we apply our analysis to a city–
level panel data set from 1997 to 2016 in China, and examine the effects of environmental
regulation policies on green innovation, considering the implementation of TCZ policy
as a quasi–natural experiment. We apply a DID model, which is considered as the most
effective model for policy evaluation. We find that the TCZ policy effectively increases
the number of green patents of cities in the two control zones. In particular, the TCZ
policy has a significantly positive effect on the quantity and structure of human capital,
including the number of inventors of patents and green patents, the ratio of incumbents
and newcomers, and the percentage of population with higher education levels. The
effects are heterogeneous, that is, the TCZ policy has a greater impact on the number of
green patents of cities in the two control zones where there are more R&D bases and more
foreign investment.

To our knowledge, our study makes three main contributions to the literature: (1) This
study is among the first to investigate the effects of TCZ policy on green technological
progress from the perspective of environmental regulation–influenced regions; (2) we
apply a DID technique to address the potential endogenous issue arising from omitted
variables. It provides reliable and robust empirical evidence for analyzing the impacts
of the environmental policy of TCZ on green technological progress; (3) we examine the
mechanism of environmental regulation policy impacting the green technology innovation
from different perspectives of human capital. It provides a new perspective to explain
how environmental regulation policy affects green technology innovation. In addition, the
heterogeneous effects of environmental regulation on green technological innovation are
examined in terms of R&D base and foreign investment, thus revealing the comprehensive
impacts of environmental regulation on green technological innovation.

The remainder of the paper is organized as follows: Section 2 presents a literature re-
view and theoretical analysis, Section 3 presents the data and empirical design, Section 4 re-
ports the empirical results, followed by the discussion in Section 5, and Section 6 concludes.
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2. Literature Review and Theoretical Hypothesis

2.1. Literature Review

Many studies focused on the impact of environmental regulation on environmental
quality and economic output. For example, studies argue that environmental regula-
tion can effectively constrain pollutant emissions from firms [10–12] and greenhouse gas
emissions [13–15], such as environmental protection taxes and emissions trading sys-
tems [12,16,17]. The existing studies also tested the pollution haven hypothesis (pollution
haven hypothesis) [18–20], which argues that FDI will increase pollutant emissions [21],
in which case areas with lax environmental regulation will be more attractive to FDI than
strict areas, becoming pollution havens [22].

Then, a part of the study focuses on the microeconomic behavior of firms. It argues
that environmental regulation may have some negative effects, such as reducing firm
productivity [23], increasing unemployment [24,25], and reducing firms exports [26], among
others. However, others also found positive effects, such as favoring industrial structure
upgrading [27–29], boosting total factor productivity [30,31], and improving the capacity
utilization of firms [12].

In addition, other studies focused on the influence of environmental regulation on
corporate innovation, but they remain inconclusive. Based on the Porter hypothesis, rea-
sonable environmental regulation can promote firm innovation [8]. According to the
innovation compensation theory, environmental regulation is a triggering factor for techno-
logical change, inducing technological innovation that can compensate for environmental
regulation payments [32–34]. Environmental regulation can incentivize companies to
green upgrade through advanced technologies, such as cleaner production and green
manufacturing [35,36]. Zhao and Sun [37] and You et al. [38] confirmed the validity of
Porter’s hypothesis.

In contrast, some scholars hold a different opinion that environmental regulation
hinders corporate innovation, as strict environmental regulation adds unnecessary costs
to firms [39–41]. Influenced by environmental governance costs [42], resources for tech-
nological innovation will be squeezed [40,43], which leads to a reduction in innovation
activities [44]. Overall, there are many heterogeneities in regions and firms hardly following
consistent rules of behavior, and different individuals exhibit differentiated technological
innovation behavior under environmental regulatory policy constraints [45,46]. Bitat [47]
used a panel of German firms to show that traditional regulatory measures cannot trigger
innovative behaviors efficiently on a firm level. Moreover, some studies argued that the im-
pact of environmental regulation on technological innovation is indeterminate and shows a
non–linear relationship [48,49].

Given the uncertainty of the above findings, this paper suggests that different envi-
ronmental regulatory measures and regional characteristics may be responsible for such
contrasting results [37], and that the implications of the Porter hypothesis require further
research. Moreover, although studies concentrated on the effect of environmental policy
implementation on technological innovation, only a few studies examined the effect on
green technological innovation [48,50–52]. Related studies show that environmental in-
novation has a positive impact on firms’ competitive capability but may have a negative
impact on the ecological footprints [53,54]. There is a positive correlation between green
entrepreneurship and green innovation [55]. However, the influence of government behav-
ior on enterprise environmental innovation and upgrade remains uncertain [56,57]. At the
same time, the specific impact path of environmental policy on green technology innovation
is no further distinction. There are potential endogeneity problems in the existing methods
of assessing the effectiveness of environmental regulation.

Based on this, this paper explores how to achieve a win–win outcome for both envi-
ronmental protection and economic development by studying the impact of environmental
regulation on green innovation. The study focused on identifying the direct impact of
China’s TCZ policy on regional green innovation and the specific effect paths. We seek to
expand the theoretical framework between environmental regulation and green innovation.

145



Energies 2022, 15, 7746

2.2. Theoretical Hypothesis

Due to the market scale effect and production endowment advantage, enterprises
are reluctant to conduct green technology innovation activities. Faced with a market fail-
ure dilemma, designing and implementing scientifically sound environmental regulation
increasingly became an effective means of addressing energy and environmental issues.

Environmental regulation releases a signal that the pollution will be controlled and
regulated by the government effectively, indicating that the environmental quality will be
improved. According to existing studies, air pollution is harmful to human health and
leads to an increasing probability of cardiovascular and respiratory diseases [58,59]. Thus,
air pollution leads to population outflow by significantly increasing residents’ willing-
ness to migrate internationally [60]. In contrast, there is a positive relationship between
environmental quality and residents’ health, implying that the environmental quality is
better, and the city has a higher level of residential health [61,62]. The more educated or
labor–productive groups are, the more sensitive they are to air pollution [63]. Because the
population with high education and labor productivity has more knowledge and skills,
they have more choices for work. Therefore, they will choose the cities with better urban en-
vironmental quality as the place of working and living. Environmental regulation becomes
one of the guarantees of city quality, contributing to the inflow of labor and accumulation
of human capital for the target cities.

According to the generalized Hicks theory, the incentive of environmental regulation
towards the performance of green technology innovation stems from the implicit com-
pliance costs of firms [50]. Under environmental regulation, companies have to improve
their production processes, procedures, or equipment to meet the goal of maintaining legal
emission standards over time at a lower cost. In such a case, pollution raises the cost of
employing a highly qualified workforce, as they will demand higher salaries to participate
in a heavily polluted city. Environmental regulation decreases that cost to a degree. Environ-
mental regulatory policy promotes the internalization of environmental management costs
and provides incentives for firms to make green innovation decisions. Thus, environmental
regulatory policy, as an exterior compulsory driving force, creates a stimulating effect for
green innovation and encourages firms to engage in green technological innovation [64].

At the same time, with the inflow of the workforce, especially high–quality human
capital, the accumulation of knowledge and absorptive capacity related to environmental
innovation can be increased, leading to improved innovation efficiency [65]. Especially in
developing countries, access to external technology spillovers is an important channel for
firms to acquire technological innovation capabilities. Under environmental regulations,
firms will also have to import more high–quality intermediate goods and capital equipment
from outside in the short run to meet higher environmental requirements. The technology
spillover effects of trade provide firms with more learning opportunities, thus increasing
their level of innovation [66].

Therefore, Hypothesis 1 is proposed according to the mentioned analysis: environ-
mental regulation has a positive effect on green innovation performance.

Hypothesis 2 is proposed according to the mentioned analysis: environmental reg-
ulation has a positive impact on green technology innovations by attracting human
capital inflow.

3. Data and Empirical Design

3.1. Data

To evaluate the impact of TCZ policy on green innovation performance, the number of
green patents of the city is used to measure the development of green technology innovation.
Green patent data are from the Chinese invention patent database, and the identification of
green patents is based on the International Patent Classification (IPC) system code of the
“IPC Green Inventory” published by the World Intellectual Property Organization (WIPO)
on 16 September 2010. We can merge the Chinese invention patent database with IPC code
to identify whether the patent is green or not. Green inventory patents are those related to
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non–fossil fuel–based methods of propulsion, such as electric or hydrogen cars and related
technologies (e.g., batteries). After classifying whether each patent is a green patent, we
build a year–city level green patent database based on the city and year information of
the patent.

The cities in two control zones are identified by the state document named “The
Official Reply of the State Council Concerning Acid Rain Control Areas and Sulfur Dioxide
Pollution Control Areas”. The document specifies 175 cities and regions in the two control
zones, including 158 prefecture–level cities, 13 regions, and 4 municipalities directly under
the central government.

The city–level data comes from China City Statistic Yearbook (CCSY) from 1990
to 2016. The control variables include total population, annual gross regional product,
investment in fixed assets, foreign investment utilized, number of students in higher
education institutions, number of teachers in higher education institutions, the proportion
of employment in the secondary industry, employment at the end of the year, and number
of new contracts signed in the current year.

Table 1 summarizes the statistic (observations, mean value, and stand deviation) of the
main characteristics we used in this paper. The logarithm of the number of green patents
each city applies for is 1.109 on average per year. The average annual total population
is 5.652 ten thousand persons. The average annual gross regional output value is CNY
14.895 ten thousand. On average, the investment in fixed assets and foreign investment
utilized in each city is CNY 13.809 ten thousand and USD 8.225 ten thousand per year,
respectively. The logarithm of the number of students and teachers in higher education
institutions is 8.87 and 6.537 per year on average, respectively. Approximately, the logarithm
of employment and proportion of employment in the secondary industry is 3.746 and 3.503
on average in each city. The log number of new contracts each city signs is 3.746 on average
per year.

Table 1. Summary statistic.

Variables Obs Mean Std. Dev

Number of green patent applications (unit) 9234 1.109 1.409
Tcz × Post dummy (unit) 9234 0.342 0.474
Total population (ten thousand persons) 7857 5.652 0.832
Annual gross reginal product (CNY ten thousand) 7830 14.895 1.561
Investment in fixed assets (CNY ten thousand) 7830 13.809 2.084
Number of students in higher education institutions (persons) 7776 8.870 2.752
Number of teachers in higher education institutions (persons) 7776 6.537 2.059
Foreign investment utilized (USD ten thousand) 7750 8.225 2.898
Proportion of employment in the secondary industry (%) 9000 3.503 0.488
Employment (ten thousand persons) 8947 3.746 1.036
Number of new contracts signed (unit) 7578 3.221 1.589

Notes: Number of green patent applications, number of students in higher education institutions, number
of teachers in higher education institutions, the proportion of employment in the secondary industry, and
employment number of new contracts signed are measured in logs.

3.2. Empirical Design

To estimate the efficacy of TCZ policy for green technological innovations, a difference–
in–differences (DID) model is used. Compared to changes in cities that were never under
environmental regulation, we focus on how the number of green patents of cities in two
control zones changed when the TCZ policy was enacted.

The DID method is adept at catching pre–existing differences between treated cities
and untreated cities, thus eliminating selection bias while controlling for confounding
variables that are likely to impact both sets of cities. The estimated equation is as follows:

Gi,t = βTczi × Postt + ηXi,t + γi + δt + εi,t (1)
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where i represents cities, t represents year; Gi,t represents green technological innovations,
which are measured as the log of the number of green patents applied by city i at year t; Tczi
is 1 if city i is in two control zones and equals 0 if city i is not; Postt equals 1 for all years after
1998 (TCZ policy period) and otherwise equals 0. Tczi × Postt is the interaction between
the Tczi and Postt, which captures the average difference change in the number of green
patents of treated cities compared to untreated cities. Therefore, we focus on the coefficient
measuring the DID effect and we posit β is positive, which means the TCZ policy will
increase the number of green patents effectively. Xit represents city–level control variables,
including total population (Pop), annual gross regional product (GDP), investment in
fixed assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of
students in higher education institutions (Students), the logarithm of number of teachers in
higher education institutions (Teachers), the logarithm of the proportion of employment
in the secondary industry (Second), the logarithm of employment at the end of the year
(Employment) and the logarithm of the number of new contracts signed in the current
year (Contracts). The control variables represent the number of labors, development of
economy and education, as well as degree of investment and openness. γi is a vector of city
dummies and δt is a vector of year dummies to control city–fixed effects and year–fixed
effects, respectively.

4. Empirical Results

4.1. The Impact of TCZ Policy on the Green Innovation Performance

Table 2 shows the DID results on the green innovation performance for TCZ policy
corresponding to Equation (1). In column (1), we include no additional control variables,
city–fixed effects, or year–fixed effects. The coefficient of the interaction term (Tcz × Post) in
column (1) is significantly positive. In column (2) we include control variables, suggesting
that TCZ policy increases the number of green patent applications by 71.8% on average
and the p–value is less than 0.01. In column (3) we include control variables and control
for city–fixed effects, while in column (4) we control for city–fixed effects, and year–fixed
effects. Both of the results of column (3) and (4) remain highly significant (at the 1 percent
level), and column (4) indicates there is a 53.4% increase in green patent applications of
the cities in two control zones compared to the other cities. The finding is consistent with
the hypothesis that more green patents were applied by target cities after the TCZ policy
was enacted.

Table 2. Baseline Estimate.

Green Patent Applications

(1) (2) (3) (4)

Tcz × Post 0.760 *** 0.718 *** 0.596 *** 0.534 ***
(0.079) (0.098) (0.089) (0.084)

Pop −0.451 *** −0.745 *** −0.316 ***
(0.052) (0.068) (0.078)

GDP 0.559 *** 0.597 *** 0.219 **
(0.070) (0.084) (0.094)

Fixedinvest 0.183 *** 0.228 *** −0.069
(0.040) (0.047) (0.048)

Students −0.013 −0.007 −0.044 *
(0.027) (0.032) (0.023)

Teachers 0.135 *** 0.005 −0.037
(0.039) (0.050) (0.035)

FDI −0.016 −0.019 −0.018
(0.018) (0.021) (0.018)

Second −0.053 0.065 0.098
(0.071) (0.086) (0.080)
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Table 2. Cont.

Green Patent Applications

(1) (2) (3) (4)

Employment 0.254 *** 0.188 *** 0.217 ***
(0.051) (0.058) (0.051)

Contracts 0.063 *** −0.039 0.078 ***
(0.021) (0.027) (0.029)

Constant 0.153 *** −8.399 *** −7.178 *** −0.054
(0.018) (0.420) (0.598) (0.930)

City FE No No Yes Yes
Year FE No No No Yes
Observations 9234 7464 7463 7463
R2 0.245 0.699 0.775 0.814

Note: For each regression, the log volume of green patent applications is used as an outcome variable. Controls
include total population at the end of the year (Pop), annual gross regional product (GDP), investment in fixed
assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of students in higher education
institutions (Students), the logarithm of number of teachers in higher education institutions (Teachers), the
logarithm of proportion of employment in the secondary industry (Second), the logarithm of employment at
the end of the year (Employment), and the logarithm of number of new contracts signed in the current year
(Contracts). Standard errors in parentheses are clustered at the city–year level. * p < 0.10, ** p < 0.05, *** p < 0.01.

4.2. Parallel Trend Analysis

Parallel growth in treated and control groups is the key identifying assumption of
using the DID method. Thereby, we assume that there is the same rate of change in the
amounts of green patents applied by cities out of the two control zones as cities in the
two control zones, except for the implementation of the TCZ policy. Figure 1 plots the
difference in the volume of green patent applications of cities that entered two control zones
relative to those cities that did not, using an 8–year window before and after TCZ policy.
Figure 1 displays no significant differences in pre–trend, implying that the difference in
green patent applications the years before TCZ policy is normalized to 0, and the parallel
trends assumption holds. After the year of TCZ policy, the estimated coefficients of TCZ–
year interaction terms are significantly positive, suggesting an increase in green patent
applications in the treated cities relative to the control group.

Figure 1. Treatment–year interaction coefficient for city–level green patent applications. Notes: Figure
presents coefficient and 95% confidence intervals on Tcz × year interactions from the regression of
Tcz × year interaction terms, including city–fixed effects and year–fixed effects. TCZ policy was
implemented in 1998 (current), the year before TCZ policy was excluded (pre1). Standard errors in
parentheses are clustered at the city–year level.
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4.3. Validity Checks
4.3.1. Propensity Score Matching DID (PSM–DID)

DID estimation is most appropriate when the experiment is random. Considering that
the assignment of the treated group by TCZ policy in our study may be not random, we
should first use the Propensity Score Matching (PSM) approach to find and construct some
comparable cities as the untreated group, and then evaluate the average impact of the TCZ
policy on green patent applications using the DID model to examine whether our basic
empirical results remain robust. PSM uses a logistic regression of the outcome variable that
equals 1 if the city is in two control zones and equals 0 if it is not, and the independent
variables include characteristics before treatment that would influence the “propensity” of
cities in TCZ. Cities are matched to kernel values based on their propensity scores.

Firstly, we examine the results of treated and untreated cities before and after matching
using the PSM approach. Figure 2 shows city characteristic bias between treatment and
control groups before and after matching, implying that the deviation of all characteristics
in both groups dropped to zero significantly after matching. From the perspective of kernel
density, Figures 3 and 4 display the kernel density of treatment and control groups before
and after matching, respectively. We find that the kernel density of the two groups is much
closer. The above results indicate the validity of grouping using the PSM approach.

Figure 2. City characteristic bias before and after matching.

Figure 3. Kernel density of treated and control groups before matching.
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Figure 4. Kernel density of treated and control groups after matching.

Secondly, the PSM–DID results are shown in Table 3. In column (1) the regression
includes no fixed effects, while column (2) only includes control city–fixed effects. Both
coefficients in column (1) and (2) are significantly positive. The estimated result is controlled
for city–fixed effects and year–fixed effects in column (3). The estimate for TCZ policy
is significantly positive (at the 1 percent level), implying that targeted cities have 37%
more green patent applications when the TCZ policy is enacted. Thus, the interference of
unobservable factors in the selection of the treated and untreated groups on the conclusions
of this study can be excluded.

Table 3. PSM–DID results.

Green Patent Applications

(1) (2) (3)

Tcz × Post 0.564 *** 0.405 *** 0.370 ***
(0.090) (0.080) (0.077)

Control variables Yes Yes Yes
City FE No Yes Yes
Year FE No No Yes
Observations 7052 7051 7051
R2 0.644 0.736 0.777

Note: For each regression, the log volume of green patent applications is used as outcome variable. Controls
include total population at the end of the year (Pop), annual gross regional product (GDP), investment in fixed
assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of students in higher education
institutions (Students), the logarithm of number of teachers in higher education institutions (Teachers), the
logarithm of proportion of employment in the secondary industry (Second), the logarithm of employment at
the end of the year (Employment), and the logarithm of the number of new contracts signed in the current year
(Contracts). Standard errors in parentheses are clustered at the city–year level. *** p < 0.01.

4.3.2. Test on the Number of Granted Green Patents

Apart from examining the efficacy of the TCZ policy for the number of green patent
applications, the further test is analyzing the policy’s effect on the number of green patents
granted. We put the log of the number of green patents granted into Equation (1) as
the outcome variable instead of the number of green patent applications. The results in
Table 4 show that all of the coefficients are statistically significant at the 1 percent level. In
column (4), we include control variables, city–fixed effects, and year–fixed effects. The key
interaction term’s coefficient is 0.565 and statistically significant at the 1% level, indicating
that the number of green patents granted increases by 56.5% in two control zones, which
examines the robustness of the conclusions of this study.
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Table 4. The effect of TCZ policy on green patents granted.

Green Patent Granted

(1) (2) (3) (4)

Tcz × Post 0.675 *** 0.675 *** 0.592 *** 0.565 ***
(0.069) (0.069) (0.073) (0.073)

Control variables No No Yes Yes
City FE Yes Yes Yes Yes
Year FE No Yes No Yes
Observations 9234 9234 7463 7463
R2 0.555 0.703 0.616 0.735

Note: The dependent variable in each regression is the log of the number of green patents granted. Controls
include total population at the end of the year (Pop), annual gross regional product (GDP), investment in fixed
assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of students in higher education
institutions (Students), the logarithm of number of teachers in higher education institutions (Teachers), the
logarithm of the proportion of employment in the secondary industry (Second), the logarithm of employment at
the end of the year (Employment), and the logarithm of the number of new contracts signed in the current year
(Contracts). Standard errors in parentheses are clustered at the city–year level. *** p < 0.01.

5. Further Discussion

5.1. Heterogenous Effect of TCZ Policy

There is large heterogeneity contained by the average TCZ policy effect on green
technological innovations. We further conduct our analysis to examine how environmental
regulation impact differs for the R&D base and foreign investment utilized. R&D base is
measured by cumulative amounts of total patents granted over the past five years, and
foreign investment utilized is measured by FDI of the city in that year. We put the two
new interaction terms (TCZ × post × R&D and TCZ × post × FDI) into Equation (1),
respectively. Table 5 column (1) reports the result of the heterogeneous effect on the R&D
base. The coefficient of TCZ × post × R&D is significantly positive, implying that the
better the R&D base cities have, the larger the number of green patents they can apply for.
Compared to the city with a relatively weaker R&D base, the city with a strong R&D base
usually puts more emphasis on innovation activities and accumulates more experience in
developing green technology innovation, indicating that it has more ability and recourses
to conduct the development of green patents when the environmental regulation regime
is enacted. As the results show in column (2), the coefficient of TCZ × post × FDI is
positive and statistically significant at 1% level with the value of 0.167. The cities in two
control zones with more FDI have better green innovation performance. Foreign firms
usually have to face more strict environmental regulations in their home country, resulting
in larger amounts of green technologies in the firms. Those target cities are likely to get
more technology spillover from multinationals by FDI after the TCZ policy.

Table 5. Heterogenous effect of TCZ policy.

Green Patent Applications

(1) (2)

TCZ × post × R&D 0.061 **
(0.031)

TCZ × post × FDI 0.167 ***
(0.032)

Control variables Yes Yes
City FE Yes Yes
Year FE Yes Yes
Observations 7463 7463
R2 0.871 0.828

Note: For each regression, the log volume of green patent applications is used as an outcome variable. Controls
include total population at the end of the year (Pop), annual gross regional product (GDP), investment in fixed
assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of students in higher education
institutions (Students), the logarithm of number of teachers in higher education institutions (Teachers), the
logarithm of the proportion of employment in the secondary industry (Second), the logarithm of employment at
the end of the year (Employment), and the logarithm of the number of new contracts signed in the current year
(Contracts). Standard errors in parentheses are clustered at the city–year level. ** p < 0.05, *** p < 0.01.
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Therefore, the effect of environmental regulation on green innovation is significantly
affected by the city’s R&D base and FDI. For example, Beijing and Shanghai, as the pilot
cities of TCZ policy, both have a high number of accumulated patents and a high level of
FDI, and they are also the two cities with the largest number of green innovation patents
in China.

5.2. Mechanism

We further examine the channels for cities in two control zones to increase green
patents for environmental regulations. Theoretically, human capital is a crucial factor for
technology innovation, indicating that the higher quality workforce a city has, the larger
the number of green patents the city has. Environmental regulation has a positive impact
on pollution reduction and urban quality, which attracts more talents to come to target
cities. Thus, human capital is a significant mechanism in TCZ effect.

Table 6 reports the estimated results of the city and year–fixed effects models using
the log number of patent inventors (Inventors), the log number of green patent inventors
(Ginventors), and the percentage of population with college and higher education (Unipop)
as the dependent variables according to Equation (1). We include control variables and
control city–fixed effects and year–fixed effects. The coefficients are found to be positive and
statistically significant at the 1% level. Column (1) and (2) lists the results of environmental
regulation policy impact on patent inventors and green patent inventors. The estimates
show that the number of patent inventors increases by 52.3% and the number of green
patent inventors increases by 78.4% in treated cities compared to untreated cities by TCZ
policy. As the result is shown in column 4, the TCZ policy increases the percentage of the
population with high education by 0.9%.

Table 6. Mechanism of human capital.

Inventors Ginventors Unipop

(1) (2) (3)

TCZ × Post 0.523 *** 0.784 *** 0.009 ***
(0.094) (0.114) (0.002)

Control variables Yes Yes Yes
City FE Yes Yes Yes
Year FE Yes Yes Yes
Observations 7463 7463 747
R2 0.911 0.782 0.906

Note: The dependent variable in each regression is the log number of patent inventors (Inventors), the log number
of green patent inventors (Ginventors), and the percentage of the population with college and higher education
(Unipop). Controls include total population at the end of the year (Pop), annual gross regional product (GDP),
investment in fixed assets (Fixedinvest), foreign investment utilized (FDI), the logarithm of number of students in
higher education institutions (Students), the logarithm of number of teachers in higher education institutions
(Teachers), the logarithm of the proportion of employment in the secondary industry (Second), the logarithm of
employment at the end of the year (Employment), and the logarithm of the number of new contracts signed in the
current year (Contracts). Standard errors in parentheses are clustered at the city–year level. *** p < 0.01.

6. Conclusions

To cope with air pollution, the “Two Control Zones (TCZ)” policy was issued and
enacted by China’s government in 1998. As the first air pollution regulation in China, the im-
pact of the TCZ policy influences the development of following environmental regulations.

The results in our study use a difference in difference model that explores the effect of
environmental regulation on green technology innovations and the role of human capital
in it. We find evidence consistent with the hypothesis that the TCZ policy significantly
increases the number of green patents of cities in two control zones. The result is also robust
through the method of PSM–DID and changing the dependent variable. Most importantly,
our study also points out the crucial role human capital plays in the mechanism. TCZ
policy, as the signal of regulating air pollution and improving urban quality, has a positive
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effect on the quantity and structure of human capital, leading to providing a talent pool for
green technology innovation to reduce pollution.

To exploit the heterogeneity covered under the average treatment effect, the finding
shows that TCZ policy is different in the R&D basis and foreign investment utilized. TCZ
policy tends to improve more amounts of green patents in the cities with a stronger R&D
base or with more FDI. The R&D base provides innovative talents for green technology
innovation and FDI provides technology spillover and R&D funding for green technology
innovation. The cities with those two characteristics have more ability to undertake the
development and application for green patents to cope with TCZ policy.

The findings of this paper provide new insight into the Porter hypothesis, offering
some valuable policy recommendations for developing economies. In the context of
globalization, developing countries, as a link in the downstream production chain, are
highly susceptible to becoming pollution havens. Policymakers of emerging economies
draw environmental regulations to control pollution, while promoting the development of
green technology innovation by attracting more high–quality human capital. In addition,
based on our study, the government should pay more attention to strengthening its R&D
base and attracting more FDI, as both of these conditions will enhance the positive impact
of environmental regulation on green innovation performance.

There are also some limitations. First, the research sample of this paper is the city–
level data in China. We can only control for regional and year effects. In the future, when
the green patent data at the corporate level becomes available, we can study it from the
perspective of micro firms. Second, green technological innovation can also be subdivided
in terms of production processes, such as green process innovation and green product
innovation. However, the data refinement is limited, and this paper only uses the number
of green patent applications granted to measure the overall green technology innovation of
cities. With the increasing availability of data, a comparative analysis of the variability in
the impact of environmental regulations on the green production processes of cities will
also be worthy of further research.
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Abstract: South Asian countries have seen remarkable economic growth and development in the past
few decades. This has been driven by financial sector reforms, industrialization, and expansion of
foreign trade. The present study is designed to identify the long- and short-run relationships among
environmental degradation, economic growth, energy consumption, and trade openness in the South
Asian region. Our research contributes to the literature by employing a new approach (the NARDL
method). We examine annual data for four South Asian countries between 1971 and 2014. We found
that there was a long-run equilibrium relationship between environmental degradation, economic
growth, energy consumption, and trade openness. The results confirmed the inverted U-shaped
EKC hypothesis only for India and Pakistan. However, the long-term coefficients related to energy
consumption were statistically significant only in Pakistan. The most interesting finding was that only
in Sri Lanka did the long-run coefficients associated with trade openness shocks significantly impact
carbon dioxide emissions. These impacts were based on the scale effect. Our study has some policy
implications. Foremost, the governments of South Asian countries should promote and subsidize
green energy use by increasing R&D spending on renewable energy.

Keywords: environmental Kuznets curve; South Asian countries; trade openness; energy consumption;
economic growth; carbon dioxide emissions; NARDL model; ARDL model

1. Introduction

In the past few decades, South Asian countries have seen remarkable economic growth
and development. This is attributable to financial sector reforms, industrialization, and
expansion of foreign trade. The region’s gross domestic product increased more than
17-fold—from 190.7 to 3241.9 billion US dollars from 1960 to 2020, with an average annual
growth rate of 4.92%. It is noteworthy that this region’s growth rate has been higher
compared to the world’s. Between 1961 and 1979, the world’s growth rate was ahead
of the growth rate of South Asian countries several times. However, this relationship
changed from 1980 onwards, due to financial sector reform. In the early 1980s, financial
sector reform, particularly banking sector reform, was initiated by South Asian countries to
increase their competitiveness. As a result, policies have been adopted to restructure public
sector banks and allow private sector banks to promote competition in the banking sector,
and efforts have been taken to liberalize the financial sector [1]. Between 1980 and 2020, the
South Asian region’s growth rate was above the world’s growth rate. Notably, only in 1984,
2000, and 2020 was the world’s growth rate ahead of that of the South Asian region.

Although this region’s growth performance is impressive, South Asia is globally
perceived as an underprivileged region, where more than 50% of the world’s poor live.
To eliminate poverty and unemployment, the South Asian region supports fast economic
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growth. This, however, is done without assessing the vulnerabilities of the environment [2].
The curtailment of energy consumption is not an easy task as it slows down the economic
growth and development of a country [3].

Noteworthy, one of the necessary components of the economic growth of a country
is trade openness and expansion in foreign trade, which enhances economic activities
and energy demand [4]. Trade openness enables many underdeveloped or developing
countries to import the latest technology from developed nations, which in turn helps
them to produce more output while lowering energy intensity. Trade openness may
simultaneously determine income and environmental quality. In South Asian countries,
the volume of trade has shown an increasing trend since the early 1980s, which might be
due to the financial sector reform in 1980. The merchandise trade, which is the combination
of exports and imports, worth 6.6 billion US dollars in 1960, increased to 39.9 billion US
dollars in 1980 and reached 1083 billion US dollars in 2018. At the same time, the total
amount of CO2 emissions increased from 0.26 to 1.53 metric tons per capita from 2006 to
2018. In 2018, South Asian countries exported 41% of manufactured products [5]. Trade
openness leads to deterioration of the environmental quality due to large-scale production
of merchandise goods, which causes higher energy consumption and CO2 emissions.

Foreign trade expansion and industrialization results in a growing demand for energy
consumption. For example, the total fossil fuel energy consumption in the South Asian
region amounted to 33.87% in 1971 and more than doubled in 2014 to 71.52%. The consensus
believes that the consumption of fossil fuels (coal, natural gas and oil) led to a rapid
increase in CO2 emissions, disrupting environmentally sustainable growth in South Asia.
India, Bangladesh, Pakistan, and Sri Lanka consume more fossil fuel compared with
other countries of that region. South Asia’s percentage share of the world’s fossil fuel
consumption increased from 40 to 88% from 1971 to 2014.

Many studies have been conducted on the environmental Kuznets curve hypothesis
in South Asian countries; for example, the recently published studies by Sadiq et al. [6], Ali
et al. [7], Mehmood et al. [8], and Tan et al. [9]. However, the empirical results for those
countries are mixed. Most researchers have used the conventional cointegration approaches.
In this study, we make several contributions to the current literature. First, we used a
method that does not ignore the asymmetry effect. Second, we consider the roles of energy
consumption and asymmetric shocks in trade openness in the environmental Kuznets
curve. Third, we describe how government programs could influence environmental
quality, especially in India and Pakistan, where the long-run coefficient for squared GDP
per capita is negative and significant. These coefficients indicate that we should expect
increased environmental quality.

Our aim is to identify long-run and short-run relationships between environmental
degradation, economic growth, energy consumption, and trade openness in South Asian
countries. We examine annual data for four South Asian countries (India, Bangladesh,
Sri Lanka, and Pakistan) for the period between 1971 and 2014. The selection of the time
period and sample was determined by data availability. All annual time series data come
from the World Bank collection of development indicators.

The remainder of the paper is structured as follows: Section 2 reviews literature on
environmental degradation in South Asian countries and the linkages between energy
consumption, trade openness, and carbon dioxide emissions; Section 3 describes the data
and methodology; Section 4 presents the empirical results. In this section, we present
both linear and non-linear ARDL models. Section 5 includes conclusions and highlights
policy implications.

2. Literature Review

2.1. Environmental Degradation in South Asian Countries

The South Asian region faces large-scale environmental issues compounded by the
overlapping factors of growing industrialization, urbanization, population growth, and
increasing international trade [10]. In recent years, countries in South Asia have seen
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growing urbanization and industrialization, which has led to rising rates of greenhouse
gas emissions and increasing levels of environmental degradation [11,12].

This region has enjoyed some successes in reducing poverty. This was possible
thanks to rapid industrialization and the implementation of liberal economic reforms.
India and Bangladesh have been overly involved in expanding heavy industries due to
their partial adoption of the development model. This has led to an increased industrial
output and acceleration of environmental deterioration. According to Mehmood and
Tariq [13], globalization led to an increase in CO2 emissions in South Asian nations. This
trend was observed from 1972 to 2013. It does not mean that rising production is always
positively connected with environmental degradation indices; instead, environmental
degradation depends on the use of contemporary technology and regulations adopted to
protect the environment.

The International Energy Agency (IEA) predicted that during the next few decades,
the demand for energy in the South Asian region would increase at a rate more than twice
as fast as the average growth rate for the entire world. The rise in economic activity results
in higher energy demand, contributing to the economy’s expansion and growth. Rahman
and Velayutham [14] examined the effect of consumption of renewable and non-renewable
energy, and the effect of fixed capital formation on economic growth for a panel of five South
Asian countries over the period of 1990–2014. Their findings indicated that these factors
positively contributed to economic growth. In this scenario, increased economic activity
may hasten the exhaustion of natural resources and lead to environmental deterioration in
the absence of sufficient regulations. Greater consumption of resources results in a rise in
carbon dioxide emissions and a decline in environmental quality, negatively influencing
human health [8,15].

Increasing population growth, widespread poverty, lack of public awareness of en-
vironmental issues, failure to properly and robustly implement environmental laws and
regulations, and failure to monitor environmental conditions—all these factors contribute
to the deterioration of the environment. The vast majority of the unemployed in South
Asia are low-skilled workers earning daily wages in the informal sector. One could argue
that widespread poverty is the most significant contributor to the deterioration of the
environment in this region. People who live below the poverty line are highly reliant on the
services provided by ecosystem services, for their livelihoods [16]. They focus on satisfying
their immediate needs rather than achieving future security regarding resources. People
are driven to desperate measures by lack of financial resources. As a result, they are cutting
down forests for fuel, encroaching on marginal lands, and overgrazing grasslands with
livestock. A lack of laws and regulations in this area may be linked to the deterioration of
the local environment.

As in many other parts of the world, environmental degradation is becoming so severe
that it undermines economic growth in South Asia. According to the World Bank [17],
South Asian countries should take immediate action to reduce their carbon emissions.
If this is not done, the impact will become even more severe. Growth in the economy,
which can be encouraged through liberalization and industrialization policies, brings gains
from a short-term perspective. In the long run, however, it increases the vulnerability of
South Asian countries to environmental deterioration and the risks that are associated with
it. The article presents some newly released research results on the relationship between
economic expansion and environmental degradation in that region. These results are shown
in Table 1.
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Table 1. Literature review on environmental degradation in South Asian countries. Recently pub-
lished papers.

Author(s) Country/Period Variables Results

Khan et al.
[18]

5 South Asian
countries
(1972–2017)

CO2 emissions, economic growth,
non-renewable energy
consumption, KOF index of
globalization

The results support the inverted U-shaped EKC
hypothesis. Research identified the causality
between GDP growth and carbon emissions and
found bidirectional causality between economic
growth and energy use.

Tan et al.
[9]

South and
Southeast Asian
countries
(2013–2019)

biodiversity loss, economic growth,
agricultural land, corruption

The results strongly support an inverted U-shaped
relationship between income and biodiversity loss.
Control of corruption and biodiversity loss are
negatively associated, while agricultural land has a
significant and positive effect on biodiversity loss.

Sadiq et al.
[6]

5 South Asian
countries
(1972–2019)

CO2 emissions, economic growth,
non-renewable energy
consumption, KOF index of
globalization

The results support the inverted U-shaped EKC
hypothesis. Economic growth Granger causes CO2
emanations. Heavy dependence on fossil energy
consumption is not environmentally friendly for
sustainable development in this region.

Mehmood et al.
[8]

4 South Asian
countries
(1972–2019)

CO2 emissions, economic growth,
renewable energy consumption,
tourism

The results support the inverted U-shaped EKC
hypothesis in Pakistan and India. The findings
show mixed results regarding the impact of
tourism on CO2 emissions.

Sharma et al.
[19]

4 South Asian
countries
(1990–2016)

carbon intensity, economic growth,
renewable energy consumption,
stock market capitalization,
technological innovations, trade

Stock market development, per capita income, and
trade expansion increased carbon intensity in
South Asian countries.

Murshed et al.
[20]

South Asian
countries
(1995–2015)

CO2 emissions, ecological
footprints, economic growth,
renewable energy consumption

The results confirmed the validity of the EKC
hypothesis. The use of renewable energy is
associated with environmental betterment in all
five South Asian countries. The results imply that
economic growth is both the short-run cause and
long-run solution to the environmental adversities
in South Asian countries.

Fong et al.
[21]

9 South-east Asian
countries
(1993–2012)

SO2 emissions, NOx, PM2.5
concentration, economic growth,
renewable energy consumption,
primary energy intensity, urban
population, services sector, foreign
direct investment

The results support the inverted U-shaped EKC
hypothesis for all pollutants. Spatial spillovers are
not found for NOx emissions but are supported for
SO2 and PM2.5 emissions. Most countries are still
on the upward sloping portion of the curve.

Ullah and
Awan
[22]

Developing Asian
countries
(1973–2010/2016)

CO2 emissions, SO2 emission,
PM2.5 concentration, economic
growth, income inequality, foreign
direct investment, trade openness,
population density, urban
population

The results support the inverted U-shaped EKC
hypothesis. Moreover, the findings reveal that
income inequality is positively related to CO2 and
SO2 emissions and PM2.5 concentrations.

2.2. Energy Consumption and Environmental Degradation

Economic prosperity and growth have always constituted part of the policy agenda of
every country. They are of utmost importance for South Asian countries, where 40 percent
of the world’s poor live. Excessive population leads to excessive human activity and
excessive consumption of energy, which results in CO2 emissions. Nowadays, South Asian
countries can achieve improved economic growth, but at the cost of environmental degra-
dation caused by increased consumption of natural resources [23]. Consequently, they are
confronted with the dual problem of generating higher economic growth while at the same
time containing the progression of environmental damage. This is particularly apparent in
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South Asian countries, which are desperate to achieve higher economic growth to alleviate
poverty and improve the standard of living. By comparison, developed countries face
fewer challenges. Energy consumption is one of the most significant variables for rapid
economic expansion, industrialization, and urbanization. This consumption in South Asian
countries comes from non-renewable energy sources, in particular oil, coal, and natural
gas, which in turn drive carbon dioxide emissions.

The connection between rising energy use and worsening environmental conditions
is significant from the point of view of economic policy. Much research has been carried
out to investigate this nexus, taking into account a variety of energy sources utilized in
South Asian nations. For instance, Rahman [24] found that the use of energy had a negative
long-term impact on the quality of the environment in a group of 11 Asian countries
over the period 1960–2014. Similar findings were published by Dong et al. [25]. They
found that using natural gas had a considerable negative influence on CO2 emissions for
a panel of 14 Asia-Pacific nations between 1970–2016. In their study, Munir and Riaz [26]
reviewed the data of three South Asian countries (Pakistan, India, and Bangladesh) from
1985 to 2017, and concluded that an increase in the use of gas, coal, and electricity led
to a rise in CO2 emissions. Mujtaba et al. [27] demonstrate that a positive shock in oil
prices is associated with an increase in energy consumption, which in turn has a positive
and significant influence on CO2 emissions in India. Additionally, the research findings
regarding the amount of foreign direct investment brought into this country lend credence
to the pollution haven hypothesis.

It is interesting to note that the consumption of renewable energy has a positive im-
pact on environmental quality in this region. This is something that should be taken into
consideration. A significant portion of the existing body of knowledge focuses on this
problem. Recent research by Anwar et al. [28] shows that the use of renewable energy
sources resulted in lower carbon dioxide emissions in 15 Asian economies from 1990 to 2014.
Additionally, Murshed et al. [20] found that increasing the levels of renewable energy con-
sumption and renewable electricity outputs reduced the ecological and carbon footprints
of five South Asian economies (Bangladesh, India, Pakistan, Sri Lanka, and Nepal) during
the period 1995–2015. Similar results for different regions and countries were published by
Shahbaz et al. [29], Ma et al. [30], Ulucak and Yucel [31], and Erdogan et al. [32].

The continued expansion of economic activity in South Asian countries along with
a growing population will boost energy consumption in the following decades. It is
anticipated that by 2040 the demand for energy in developing countries, including South
Asian countries, will be 33 percent higher than it is today. However, the current economic
growth patterns in this region, particularly in India, are environmentally unsustainable
due to the country’s reliance on fossil fuel-based energy consumption and imported crude
oil, which significantly degrade the environment. This is especially true in India [29].

2.3. Trade Openness and Environment Degradation

The advent of globalization has made it possible for numerous nations to engage in
cross-border international transactions. Since the opening of the economy in the early
1990s, a growing body of literature has investigated the impact of trade openness on
the environment. This nexus is essential for policy-makers because it will assist them
in achieving their goals of simultaneously accelerating economic growth and improving
environmental quality. Though the nexus is significant from the point of view of policy-
makers, the environmental implications of trade openness have not received much attention
in South Asian nations.

The impact of trade openness on pollution is described by means of the scale effect,
composition effect, and technology effect. The scale effect is connected with adverse
environmental consequences. It is believed that trade openness causes pollutant emissions
due to increased economic activity. Trade increases production volume and energy use,
which in turn causes an increase in CO2 emissions and a decline in environmental quality.
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The composition effect is based on the principles of factor endowment or the Hecksher
Ohlin theory. Therefore, the economy should focus on the industries with a competitive
advantage. Countries with abundant labor supply should specialize in and export labor-
intensive products. Similarly, countries where capital is abundant should specialize in
and export capital-intensive products. The South Asian nations, where there is a plentiful
supply of labor, should specialize in and export goods that need much labor. Theoretically,
labor-intensive industries should not cause an increase in pollution. However, several
study findings indicate that trade openness has a detrimental impact on the environment of
lower-income countries, where “dusty industries” are exported by industrialized nations,
according to the factor endowment theory and pollution haven hypothesis [33]. The
policy-makers feel that the developing and less developed nations pursue rapid economic
growth to raise their living standards and combat poverty. Consequently, they are relaxing
environmental rules and regulations to attract more foreign direct investors, who take
advantage of lax legislation and harm the host country’s environment [34].

The technological effects of trade openness bring modern eco-friendly technology
that will reduce pollution. The question arises among policy-makers, researchers, and
practitioners under what circumstances trade openness benefits the environment. Trade
is environmentally beneficial as long as the technological effects outweigh the scale and
composition effects. The empirical findings on the trade-environment nexus in developing
nations are unresolved in this regard and need to be empirically tested.

There are two camps of opinion on the impact of international trade on CO2 emissions.
On the one hand, it is contended that trade openness enables each nation to gain access
to the world market, and in this way increase its market share. Access to global markets
encourages less developed and emerging nations to import more environmentally friendly,
energy-efficient, and modern technologies to replace the outdated ones. As a result, pollu-
tion levels decrease [35,36]. The studies that support a positive association between trade
openness and environmental quality are Ahmed et al. [37], Antweiler et al. [38], Copeland
and Taylor [39], Cherniwchan [40], Dogan and Turkekul [41], Frankel and Rose [42], Kanjilal
and Ghosh [43], and Shahzad et al. [44].

On the other hand, it is claimed that trade openness adversely affects the quality
of the environment as it leads to large-scale export production and the establishment of
“manufacturing hubs”, and what follows higher energy use and higher CO2 emissions.
Foreign trade increases foreign direct investments in the industrial and logistics sectors,
which are energy-based activities that lead to an increase in emissions, according to Hakimi
and Hamdi [45], and Lopez [46]. Schmalensee et al. [47], and Copeland and Taylor [48]
argue that growing global trade is to blame for the depletion of natural resources, which
in turn results in higher CO2 emissions and worse environmental conditions. Other
researchers who share the view that trade openness increases pollution include: Al-Mulali
and Sheau-Ting [49], Jun et al. [34], Jalil and Feridun [50], Kellenberg [51], Managi and
Kumar [52], Shahbaz et al. [53]. Because of this, we decided to verify the hypothesis that
trade openness significantly impacts carbon dioxide emissions in South Asian countries.

It is interesting to note that the literature suggests conflicting and mixed impacts be-
tween trade openness and CO2 emissions, demonstrating the inconsistency of the findings.
One of the reasons why these results are inconsistent is connected with different levels of
economic development in the countries under study. Le et al. [54], for instance, assert that
trade openness increases pollution in middle- and low-income nations while reducing it
in high-income countries. Similarly, Baek et al. [55] found that trade openness negatively
affected the environment’s quality in less developed nations due to failure to enforce laws
and regulations. On the other hand, strict environmental regulations in industrialized
nations drove multinational corporation investment overseas.

Another reason for the inconsistent results is the quality of the economic policy. This is
exemplified in the studies undertaken by Grossman and Krueger [56], who argue that the
environmental impact of international trade depends on economic policies; Copeland [57],
who highlights that trade openness improves environmental quality in the presence of
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good governance; and Chang [58], who found that trade openness reduced CO2 emissions
in countries with low levels of corruption while increasing CO2 emissions in countries
where corruption was high.

Contrary to the findings above, some authors argue that there is no association or
insignificant effect between trade openness and environmental pollution: Farhani et al. [59],
Jalil and Mahmud [60], Jayanthakumaran et al. [61], and Sharma [62]. Our study will fill
the literature gaps.

3. Data and Methods

The paper examines annual data for four South Asian countries: India, Bangladesh,
Sri Lanka, and Pakistan. The period for the analysis (1971–2014), was selected based on
data availability. The annual time series data came from the World Bank collection of
development indicators, and include the following variables: C—carbon dioxide (CO2)
emissions per capita (in metric tons); Y—GDP per capita (in constant 2010 US$); E—energy
consumption per capita (kg of oil equivalent), and T—trade openness (% of GDP). Carbon
dioxide emissions are defined as emissions that result from cement manufacturing and
fossil fuel combustion. They also include CO2 emissions produced during the consumption
of gas fuels and gas flaring, and liquid and solid fuels. Energy consumption refers to
primary energy use; i.e., before it is transformed to other end-use fuels. It is equal to
domestic production plus imports and stock changes, minus exports and fuels used in
international transport (World Bank Development Indicators). Trade openness is defined
as the sum of imports and exports of services and goods measured as a share of GDP.

Table 2 shows a data description. According to the skewness and kurtosis measures,
we found that the series of some countries showed evidence of asymmetry, fat tails, and
high peaks for all variables. These results indicated that the non-linear ARDL approach
is suitable for our analysis. Additionally, we performed the test for parameter instability
by Andrews [63] and the Brock, Dechert, and Scheinkman (BDS) test [64] to check the
data. The test for parameter instability confirmed the instability for all variables in all
countries (Table A1). The BDS test confirmed the failure of the assumption of iid residuals
(linear model) for some variables in some countries (Table A2). These results also show that
applying the non-linear ARDL approach is appropriate for this study.

Table 2. Descriptive statistics of the variables.

lnCO2 lnE lnY lnY2 lnT lnCO2 lnE lnY lnY2 lnT

Bangladesh India

Mean −0.828 2.121 2.679 7.194 1.927 −0.150 2.571 2.827 8.030 9.103
Median −0.867 2.097 2.637 6.956 1.840 −0.156 2.561 2.780 7.730 9.115
Maximum −0.384 2.360 2.978 8.870 2.625 0.217 2.804 3.215 10.336 9.203
Minimum −1.278 1.938 2.508 6.292 1.522 −0.441 2.427 2.582 6.664 8.895
Std. Dev. 0.242 0.119 0.133 0.727 0.367 0.190 0.111 0.196 1.126 0.084
Skewness 0.3826 0.1665 0.0315 * 0.0215 * 0.0426 ** 0.5562 * 0.1600 0.1731 ** 0.1175* 0.0196 *
Kurtosis 0.0683 0.1445 0.4937 * 0.6683 * 0.0906 ** 0.0358 * 0.1663 0.0180 ** 0.0479* 0.7892 *
Jarque-Bera 2.211 2.879 4.848 * 5.364 * 5.199 * 2.110 2.866 3.615 3.827 5.171 *
Probability 0.331 0.237 0.089 0.068 0.074 0.348 0.239 0.164 0.148 0.075

Sri Lanka Pakistan

Mean −0.433 2.562 3.147 9.944 2.793 −0.250 2.592 2.858 8.183 2.409
Median −0.518 2.509 3.116 9.708 2.76 −0.216 2.619 2.894 8.376 2.396
Maximum −0.072 2.741 3.545 12.565 3.213 −0.060 2.699 3.023 9.138 2.567
Minimum −0.699 2.458 2.839 8.058 2.390 −0.511 2.455 2.654 7.041 2.269
Std. Dev. 0.212 0.086 0.206 1.313 0.261 0.136 0.078 0.114 0.648 0.077
Skewness 0.3742 *** 0.1176 *** 0.3589 * 0.2415 * 0.8526 *** 0.1211 * 0.1997 *** 0.2594 * 0.3200 * 0.7817
Kurtosis 0.0000 *** 0.0004 *** 0.0374 * 0.0728 * 0.0000 *** 0.0258 * 0.0002 *** 0.0129 * 0.0093 * 0.2074
Jarque-Bera 4.987* 5.033* 2.502 2.701 3.360 3.998 4.467 3.203 3.055 1.155
Probability 0.083 0.081 0.286 0.259 0.186 0.135 0.107 0.202 0.217 0.561

Sources: The authors’ estimation. Note: *, ** and *** show the significance at the 10%, 5% and 1% level,
respectively.
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Our model is based on the EKC hypothesis, which postulates an association between
economic growth and environmental degradation. The pattern of economic growth can
affect environmental quality in many ways. According to Grossman and Krueger [65], this
influence can occur through three channels: scale effect, composition effect, and technique
effect. Following the literature (e.g., Soytas et al. [66], Shahbaz et al. [67], Kyophilavong
et al. [68], Kisswani et al. [69], Jóźwik et al. [70], and Soylu et al. [71]), we assume that the
EKC has an inverted U-shape. This means that at the initial stage of development, countries
focus more on economic growth, which results in increasing environmental pollution and
decreasing environmental quality. Once their threshold level of income (i.e., beyond some
level of per capita income) has been achieved, they become more concerned about the
environment by implementing more restrictive environmental laws and regulations and
encouraging investment in eco-friendly projects. As a result, the pollution level is reduced
and environmental quality increases.

Our aim is to identify the long-run relationship and causality between environmental
degradation, economic growth, energy consumption, and trade openness in South Asian
countries. This association can be expressed as follows:

CO2 = f
(

E, Y, Y2, T
)

(1)

All data in the model have been transformed into natural logarithms. Thus, the ARDL
model (Equation (2)) and NARDL model (Equation (3)) are rewritten as:

ln CO2 t = α + β1 ln Et + β2 ln Yt + β3(ln Yt)
2 + β4 ln Tt + εt (2)

ln CO2 t = α + β1 ln Et + β2 ln Yt + β3(ln Yt)
2 + β+

4 ln T+
t + β−

4 ln T−
t + εt, (3)

where CO2 is carbon dioxide emissions in metric tons per capita in year t, Et is energy
consumption in kilogram of oil equivalent per capita, Yt is real GDP per capita (in constant
prices 2010 US$), Y2

t is real GDP per capita squared, Tt defines trade openness (% of GDP),
T+

t and T−
t represent positive and negative shocks of foreign trade (trade openness), and

εt is the error term. As was pointed out earlier all the data were collected from the World
Bank (World Development Indicators).

The sign of the coefficient β1, which is associated with energy consumption, is usually
positive, indicating that an increase in energy consumption, which leads to higher economic
growth, triggers CO2 emissions. But recent research has suggested that the impact of energy
consumption on environmental quality is heavily conditional and dependent on energy
sources; for example, Fatima et al. [72], Saidi and Omri [73], Ma et al. [30], and Shahbaz [29].
In our research, it is essential to note that the majority of South Asian countries have
traditionally been overwhelmingly dependent on non-renewable fossil fuels to meet their
increasing energy demand [20,74].

The signs of coefficients β2, and β3 associated with GDP per capita can have positive
and negative values. According to the inverted U-shaped EKC hypothesis, the relationship
requires that β2 should be positive and β3 should be negative [75,76]. If coefficient β3 is
statistically insignificant, there is a monotonic increase in the relationship between CO2
emissions per capita and real GDP per capita.

In liberalized South Asian countries, the expected sign of coefficient β4 associated
with GDP per capita is positive. According to Copeland and Taylor [39], the environmental
effects of trade liberalization can be classified into five categories: scale effects, structural ef-
fects, technology effects, direct effects, and regulation effects. Three of them were explained
earlier. The expected sign of the coefficient for trade openness is negative if trade openness
promotes energy-efficient technology through the import of new technologies, encouraging
cleaner domestic products, and imposing stricter environmental regulations [77]. On the
other hand, the coefficient is positive if trade openness increases pollution-intensive export
and promotes a pollution haven for foreign direct investment [56,67,78].
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The ARDL framework of Equation (2) can be written as:

Δ ln CO2t = α+β0 ln CO2t−1 + β1 ln Et−1 + β2 ln Yt−1 + β3(ln Yt−1)
2 + β4 ln Tt−1

+
p

∑
i=1

ζ0Δ ln CO2t−i +
r

∑
i=0

ζ1Δ ln Et−i +
r1

∑
i=0

ζ2Δ ln Yt−i

+
r1

∑
i=0

ζ3Δ(ln Yt−i)
2 +

r1

∑
i=0

ζ4Δ ln Tt−i + εt

(4)

where Δ denotes the operator, r denotes the lag lengths, and εt is the error term. The null
hypothesis is that there is no relationship (cointegration) between CO2 emissions and the
determinant variables, and the alternative hypothesis states that a long-run relationship
(cointegration) between the variables exists.

Additionally, we investigate an asymmetric impact of trade openness on CO2 emis-
sions. To do this, we apply the NARDL approach, which has been widely used in empirical
studies since the mid-1990s, when a substantial body of work considered the joint issues
of non-linearity and non-stationarity. Among the recently published studies, we can men-
tion Rahman and Ahmad [79], Qamruzzaman et al. [80], Sheikh et al. [81], and Mujtaba
et al. [82]. The main idea of an asymmetric impact is that a positive shock may have a
larger absolute effect in the short run while a negative shock has a larger absolute effect
in the long run (or vice-versa). The NARDL has several advantages compared to the
ARDL model [83]. First, the ARDL approach does not consider the asymmetric relationship
between the variables. The positive and negative variations of independent variables have
the same effect on the dependent variable. Second, the NARDL approach enables us to test
for hidden cointegration, which helps differentiate between linear cointegration, non-linear
cointegration, and lack of cointegration. The concept of hidden cointegration (which means
that no cointegration is detected when using conventional techniques, but cointegration is
found between positive and negative components of the series) was developed by Granger
and Yoon [84].

The NARDL framework of Equation (3) can be written as:

Δ ln CO2t = α+δ0 ln CO2t−1 + δ1 ln Et−1 + δ2 ln Yt−1 + δ3(ln Yt−1)
2 + δ+4 ln T+

t−1

+δ−4 ln T−
t−1

+
p

∑
i=1

ζ0Δ ln CO2t−i +
r

∑
i=0

ζ1Δ ln Et−i +
r

∑
i=0

ζ2Δ ln Yt−i

+
r

∑
i=0

ζ3Δ(ln Yt−i)
2 +

r

∑
i=0

(
ζ+4 Δ ln T+

t−i + ζ−4 Δ ln T−
t−i

)
+ εt

(5)

where T+
t and T−

t represent positive and negative shocks of foreign trade (trade openness).
The long-run and short-run changes are represented by coefficients δi and ζi, respectively.

The short-run NARDL model estimations with an error correction mechanism can be
estimated with the following equation:

Δ ln CO2t = α+
p

∑
i=1

ϕ0Δ ln CO2t−i +
p

∑
i=0

ϕ1Δ ln Et−1 +
p

∑
i=0

ϕ2Δ ln Yt−1

+
p

∑
i=0

ϕ3Δ(ln Yt−1)
2 +

p

∑
i=0

(
ϕ+

4 ln T+
t−1 + ϕ−

4 ln T−
t−1

)
+ ψECMt−1

(6)
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The long-run symmetry and asymmetry are tested with the standard Wald test. The
asymmetric cumulative dynamic multipliers effect on ln CO2 of a unit change in ln T+

t and
ln T−

t can be obtained as follows:

m+
h =

h

∑
i=0

Δ ln CO2t+i

Δ ln T+
t

m−
h =

h

∑
i=0

Δ ln CO2t+i

Δ ln T−
t

(7)

Finally, we applied the asymmetry causality test developed by Hatemi [85]. The
causality testing is asymmetric in the sense that positive and negative shocks may have
different causal impacts.

4. Results and Discussion

In the first step, we use the Augmented Dickey-Fuller and Phillips-Perron unit root
tests to check if all variables are stationary. The null hypothesis of the ADF and Perron tests
is that the variable contains a unit root, and the alternative is that the variable is generated
by a stationary process. The results of the tests with intercept and trend can be found in
Table A3. The null hypothesis can be rejected at the 1% level of significance for all variables
at the first difference. This implies that all variables used in this study are integrated on the
order of one I(1).

After confirming the ordering of the integration, we apply the ARDL and NARDL
approaches to examine long-run relationships (cointegration) and estimate the coefficients.
To implement these approaches, the selection of appropriate lag length is necessary. We
chose one lag based on the results of Akaike’s information criterion and Schwarz’s Bayesian
information criterion. Tables 3 and 4 provide the results of ARDL and NARDL tests for
cointegration. In the NARDL test, the null hypothesis of no cointegration between variables
was rejected at the 10% level of significance in Bangladesh, India and Pakistan, and at 5% in
Sri Lanka. The estimated F-statistics were larger than the critical upper bounds. The results
of the NARDL test were more significant (Table 4). The null hypothesis was rejected at the
1% level of significance in India and Pakistan, and at 5% in Bangladesh. We also rejected
the null hypothesis for Sri Lanka, accepting that the F-statistic was slightly smaller than
the upper bound at the 10% level of significance. In summary, these results show that all
equations are co-integrated.

Table 3. Results of the ARDL test for cointegration. Model: LnCo2 = f(LnE, LnY, LnY2, LnT+, LnT−).

Country F-Statistic Result

Bangladesh 25.571 * Cointegration
India 7.840 * Cointegration
Sri Lanka 3.071 ** Cointegration
Pakistan 8.038 * Cointegration

Critical Value for F-Statistic Lower Bound I(0) Upper bound I(1)

1% 3.29 4.37
5% 2.56 3.49
10% 2.2 3.09

Sources: The authors’ estimation. Note: * and ** show the significance at 10%, 5% and level respectively.

The differences between coefficients estimated by the ARDL and NARDL approach are
highlighted in Table 5. The NARDL estimation captures richer insights into the asymmetric
effects of trade openness on CO2 emissions. As specified in Equation (3), trade openness is
split into positive and negative shocks in the NARDL model. Table 5 compares the long-run
and short-run coefficients.
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Table 4. Results of the NARDL test for cointegration. Model: LnCo2 = f(LnE, LnY, LnY2, LnT+, LnT−).

Country F-Statistic Result

Bangladesh 3.473 ** Cointegration
India 18247.93 *** Cointegration
Sri Lanka 2.901 * Cointegration
Pakistan 4.291 *** Cointegration

Critical Value for F-Statistic Lower Bound I(0) Upper bound I(1)

1% 3.06 4.15
5% 2.39 3.38
10% 2.08 3.00

Sources: The authors’ estimation. Note: *, ** and *** show the significance at 10%, 5% and 1% level respectively.

Table 5. Results of ARDL and NARDL tests.

Variables Bangladesh India Sri Lanka Pakistan Bangladesh India 1 Sri Lanka Pakistan

ARDL Analysis Results

Long-run coefficients Short-run coefficients 1

lnE 0.781 0.555 1.074 0.889 * 1.543 * 0.000 2.040 * 1.248 *
lnY 3.022 7.594 *** −10.268 ** 5.246 * 2.522 −0.012 21.455 * 15.451 *
lnY2 −0.315 −1.097 *** 1.427 ** −0.813 * −0.159 0.002 −3.472 * −2.614 *
lnT −0.122 *** −1.755 1.554 * 0.076 −0.041 −0.999 * 0.524 ** 0.016
C −8.107 0.798 10.605 −11.081 *
ECTt−1 −0.938 * 0.001 * −0.611 * −0.707 *

NARDL Analysis Results

Long-run coefficients Short-run coefficients

ΔlnE 5.550 0.978 0.827 0.945 *** 37.464 *** 0.007 1.976 *** 1.153 ***
ΔlnY −0.108 0.021 −12.173 ** 9.985 *** −7.349 *** −0.003 19.006 *** −2.176
ΔlnY2 −3.625 −1.180 * 1.663 ** −1.787 *** 0.940 *** 0.004 −3.111 *** 0.429
ΔlnT_NEG −0.075 −2.209 *** 1.594 ** 0.157 *** −0.106 ** −1.002 *** −0.171 0.115 *
ΔlnT_POS 0.255 0.272 1.877 ** 0.461 0.179 *** −0.996 *** 1.087 *** −0.056
C −7.366 −1.177 18.562 * −16.708 ***
ECTt−1 −0.289 *** 0.011 *** −0.684 *** −0.555 ***

Sources: The authors’ estimation. Notes: 1 The lag length for CO2 in India is 2; thus, additional coefficients were
estimated: 0.825 * (ΔLNCO2t−1); −0.001 (ΔLNEt−1); −0.020 ** (ΔLNYt−1); 0.004 ** (ΔLNY2

t−1); 0.824 * (ΔLNTt−1).
*, ** and *** show the significance at the 10%, 5% and 1% level, respectively.

As outlined above, the signs of the coefficients associated with GDP per capita can
have positive and negative values. Based on the inverted U-shaped EKC hypothesis, the
relationship requires that β3 should be negative (and β2 should be positive). We observe
similar coefficients in the ARDL and NARDL models. Similarly, Dong et al. [25], Murshed
et al. [20], Khan et al. [18], and Sadiq et al. [6] proved the inverted U-shaped EKC hypothesis
in that region. Dong et al. [25] pointed out that the turning points lie at $1181.60 in Pakistan,
$1861.49 in India, and $1937.23 in Bangladesh, while the turning years were estimated in
2041, 2039, and 2048, respectively. Other studies indicate that using renewable energy is
associated with environmental betterment [20], and sustainable development policies can
revisit the conflict between globalization and environmental degradation [6,18].

In the NARDL model, the long-run coefficient for squared GDP per capita is negative
and significant in India (−1.180 *) and Pakistan (−1.787 ***), while it is positive in Sri Lanka
(1.663 **). The coefficients for India and Pakistan indicate that we should expect increased
environmental quality. Notably, the Indian government has taken many initiatives to
reduce environmental degradation in recent years. For example, the International Solar
Alliance’s launch summit was co-chaired by Prime Minister Narendra Modi and French
President Emmanuel Macron in March 2018, demonstrating India’s leadership in support-
ing renewable energy (ISA). In January 2019, the Ministry for Environment introduced
the National Clean Air Program (NCAP), which gives the states and union government
a framework to tackle air pollution. Since 2018, India’s 2019 climate change index (CCPI)
performance has improved from 14th to 11th place [86]. Pakistan has recently given se-
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rious thought to addressing the world’s escalating environmental concerns, according to
the United National Development Program 2020. Several Acts have been promulgated
along with some policies and public sector initiatives currently in effect. For example,
clean and green initiatives have been implemented; environmental protection agencies
at the federal and provincial levels have been strengthened; environmental laboratories
and courts, national environment quality standards, the National Energy Efficiency and
Conservation Authority (NEECA), and national environmental quality standards have all
been developed [87].

Another potential environmental problem is that the coefficient associated with GDP
per capita is relatively high in Pakistan. Let us recall at this point that the coefficients of
GDP per capita indicate the scale effect, which is associated with adverse environmental
consequences. It is highly probable that high trade openness causes pollutant emissions due
to increased economic activity. Our study corroborates the findings by Ullah et al. [88] and
Khan et al. [89], who found that trade liberalization (trade openness) led to increased CO2
emissions in Pakistan. This positive relationship can be explained by scale effects where
large-scale manufacturing operations, particularly in fossil-fueled and export-oriented
industries, increase emissions of pollutants. This is because in the early stages of the
development process, more emphasis is placed on economic growth than on pollution
control. At this stage, less developed countries are often “hungry” for rapid economic
growth to fight against poverty. The negative sign of β2 in Sri Lanka should definitely be
assessed in a positive way.

The results of the long-run coefficients associated with energy consumption, both in the
ARDL and NARDL model, surprised us. Usually, energy consumption significantly impacts
the dioxide carbon emissions in such a way that there is a positive long-run relationship
between these two (cf. Wang et al. [90], Gierałtowska et al. [91] and Verbič et al. [92]). Energy
consumption should likely be associated with other factors. This relationship is visible
in developed countries. For example, Wang et al. [90] indicate that energy intensity and
foreign direct investment and urbanization strongly impact carbon dioxide emissions. In
our research, these long-run coefficients are significant only in Pakistan (ARDL 0.889 * and
NARDL 0.945 ***). By contrast, these coefficients are highly significant in the short run in
Bangladesh (37.464 ***), Sri Lanka (1.976 ***), and Pakistan (1.153 ***) in the NARDL model.

The most interesting finding was that the long-run coefficients associated with trade
openness shocks, both negative and positive, significantly impacted CO2 emissions only
in Sri Lanka (at the significance level of 5%). These research results did not support the
hypothesis that trade openness significantly impacts carbon dioxide emissions in South
Asian countries. The estimated coefficients of trade openness with positive and negative
shocks are 1.887 and 1.594, respectively. Therefore, increasing trade openness by 1%
increases carbon dioxide emissions by 1.887%, while reducing trade openness decreases
carbon dioxide emissions by 1.594%. These impacts are based on the scale effect. The
primary contributors to Sri Lanka’s economy are tourism, tea export, textile and garment
manufacturing, rice and other agricultural goods, and food products. Gasimli et al. state
that domestic investors do not use environmentally friendly technology [93]. Additionally,
imported technology in the form of machinery does not have a positive impact on the
environment. In the cases of India and Pakistan, trade openness coefficients are significant
at 1% only for negative shocks. For example, in India, an increase in trade openness has no
significant impact on carbon dioxide emissions, while a reduction by 1% increases carbon
dioxide emissions by 2.209%. Otherwise, a recent study by Shahbaz et al. [94] reports that
the discussion on the energy-led growth of India necessitates the cross-border movement
of resources, which influences the carbon dioxide emissions pattern. As the Indian import
portfolio was majorly dependent on crude oil, the import substitution policies have reduced
the import of crude oil and other petroleum products and, consequently, the level of carbon
dioxide emissions.

The results for short-run trade openness coefficients, for positive and negative shocks,
are significant in Bangladesh and India. Moreover, positive and negative shocks perform
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considerably differently in Bangladesh. For example, a positive shock (0.179 ***) impact is
greater than a negative shock (−0.106 **), which demonstrates that positive shocks have
more profound effects than negative shocks. This proves the significant impact of trade
openness on the environment in the short run. But in 2021, Sharma et al. [19] published
a paper describing the importance of importing innovative solutions to reduce environ-
mental degradation in the long run. Domestic enterprises will try to import innovative
technological solutions to improve their energy efficiency and reduce their carbon footprint.

Finally, we examine the stability of the model. Table 6 presents the diagnostic tests
for serial correlation, heteroscedasticity, normality, and Ramsey. The diagnostic tests of the
ARDL model indicate problems with serial correlation in all countries, heteroscedasticity in
Sri Lanka, and non-linearity in Bangladesh and India. However, we found no serial correla-
tion, heteroscedasticity problem, or normality problems in the NARDL. This diagnostic
test confirmed that the NARDL was more appropriate than the ARDL model.

Table 6. Diagnostic checks of the ARDL and NARDL tests.

Test Bangladesh India Sri Lanka Pakistan

ARDL Analysis Results

Serial Correlation 0.000 0.000 0.060 0.006
Heteroscedasticity 0.174 0.172 0.090 0.629
Normality 0.784 0.391 0.819 0.553
Ramsey 0.092 0.013 0.714 0.431

NARDL Analysis Results

Serial Correlation 0.341 0.112 0.029 0.364
Heteroscedasticity 0.717 0.731 0.107 0.152
Normality 0.664 0.598 0.853 0.612
Ramsey 0.318 0.036 0.601 0.841

Sources: The authors’ estimation. Note: They are p values.

5. Conclusions and Recommendations

In recent years, environmental pollution has become a global threat. In this study,
we attempted to establish the short-run and long-run relationships among environmental
degradation, economic growth, energy consumption, and trade openness in South Asian
countries. Additionally, we verified the hypothesis that trade openness significantly impacts
carbon dioxide emissions in South Asian countries. To do so, we used annual data for
four South Asian countries (India, Bangladesh, Sri Lanka, and Pakistan) covering the
period between 1971 and 2014. Our selection of countries for the study was based on the
availability and uniformity of data in that period. We used the linear ARDL and non- linear
ARDL (NARDL) model, which allowed us to analyze the impact of positive and negative
shocks in trade openness on CO2 emissions. Both methods show the long-run equilibrium
relationship between environmental degradation, economic growth, energy consumption,
and trade openness. The empirical outcome shows that the environmental Kuznets curve
holds for India and Pakistan out of the four analyzed countries.

In the NARDL model, the long-run coefficients for squared GDP per capita are sta-
tistically significant and negative for India and Pakistan, while for Sri Lanka they are
statistically significant and positive. Bangladesh’s squared GDP per capita is negative but
not statistically significant. According to the environmental Kuznets curve, the coefficients
for India and Pakistan indicate that environmental quality is expected to improve as in-
come increases in the long run. The estimated long-run coefficients associated with energy
consumption in the ARDL and NARDL models surprised us. They are statistically signif-
icant only in Pakistan. This indicates that energy consumption significantly aggravated
environmental degradation only in Pakistan. This may be associated with poor institutional
quality due to political instability in Pakistan.

The most interesting finding was that the long-run coefficients associated with trade
openness shocks, both negative and positive, significantly impact CO2 emissions only in
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Sri Lanka. These impacts are based on the scale effect. On the other hand, the results for
short-run trade openness coefficients, for positive and negative shocks, are significant in
Bangladesh and India. In Bangladesh, positive shock increases carbon dioxide emissions,
while negative shock decreases them. However, positive and negative shocks in India
reduce environmental pollution. These research results did not support the hypothesis that
trade openness significantly impacts carbon dioxide emissions in South Asian countries.

This study has some policy implications. But first, we assumed that if the environmen-
tal Kuznets curve is confirmed over a long period in India and Pakistan, there is a high
probability that this relationship will exist for a long period. Then we can propose some
recommendations. South Asian countries’ governments require adequate policy directions
to use clean energy while producing output and generating income. Like other low- and
middle-income countries, they have limited environmental regulatory capacity. Due to
poverty, low-income populations rely on timber wood for food and heating in the winter,
causing significant pollution. The region’s reliance on fossil fuel energy consumption is
not environmentally friendly for long-term development. The consensus believes that
developing renewable energies, including wind, solar, and hydroelectric power plants, will
replace the infrastructure powered by fossil fuels.

With increased income in this region, governments should prioritize green growth,
which is critical for sustainable development. Such actions have been taken in the past. For
example, the Pradhan Mantri Ujjwala Yojana (PMUY) is a flagship scheme of India launched
on 1 May 2016, by Hon’ble Prime Minister Shri Narendra Modi. The program aims to make
clean cooking fuels such as LPG available to rural and deprived households that would
otherwise rely on traditional cooking fuels such as firewood, coal, or cow-dung cakes. From
a practical point of view, the Indian government should focus on maintaining an affordable
price for LPG cylinders, along with taking more steps toward poverty reductions and
keeping inflation at a desirable level, especially nowadays when its rate is high. Otherwise,
poor people will revert to traditional food preparation methods, which can cause severe
health and environmental problems. Consequently, Ujjwala Yojana policy paralysis may
occur, leading to increased carbon dioxide emissions.

To combat environmental pollution, the governments in South Asian countries should
promote and subsidize green energy by increasing their R&D spending, among others.
The fifth-largest economy in the world, India, should take the lead in reducing pollution
in the region. Usually, as income levels rise, so does the demand for a cleaner environ-
ment, putting pressure on the government to enact stricter environmental regulations.
Governments should focus on developing advanced technology, implementing strict envi-
ronmental policies, and introducing carbon pricing for polluting industries to contribute
to sustainable development. Policy-makers should implement some measures to raise
environmental standards without lowering income and output levels. Additionally, the fi-
nancial sector should support companies and households that use environmentally friendly
projects to reduce pollution. These findings should be helpful both to policy-makers when
developing environmental and trade policies in the South Asian region, and practitioners.
There is also a need for more and more awareness to be created among the students at pri-
mary, secondary, and tertiary education levels for effective energy utilization and moving
toward green energy. All these efforts may provide desirable outcomes. We assume that
the success or failure of any policy depends on people’s acceptance or rejection of a policy.
Therefore, collective efforts are required to reduce pollution.

Although our study has some limitations, it has the scope for further research. The
first limitation refers to the sample size. Based on data availability, we examined annual
data only for four South Asian countries from 1971–2014. Second, the analysis uses a
limited number of factors determining economic growth and environmental degradation.
We recommend that other essential variables, such as institutional quality, financial sec-
tor development, and urbanization should be considered to understand the relationship
between energy use and CO2 emissions in South Asian countries. Moreover, this study
did not examine the specific effects of renewable and non-renewable energy sources on
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emissions in South Asian countries. Finally, our research can act as a baseline study for
other South Asian countries, as the issues discussed pertain to most developing countries.
Therefore, the policy recommendations discussed in the study can be generalized.

Author Contributions: Conceptualization: B.J., A.K.D., P.K. and A.V.G.; methodology, P.K. and B.J.;
software, P.K. and B.J.; formal analysis, P.K., B.J. and A.V.G.; data curation, P.K., B.J. and A.V.G.;
writing—original draft preparation, B.J., A.K.D. and A.V.G.; writing—review & editing, B.J.; project
administration and funding acquisition, B.J. All authors have read and agreed to the published
version of the manuscript.

Funding: The APC was funded by the John Paul II Catholic University of Lublin.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://data.worldbank.org (accessed on 28 September 2022).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; collection, analyses, or interpretation of data; writing of the manuscript; or the decision
to publish the results.

Appendix A

Table A1. The parameter instability test results.

Bangladesh India Sri Lanka Pakistan

Sup LR 27.730 *** 39.963 *** 6.387 *** 11.134 ***
Sub Wald 138.650 *** 199.814 *** 31.935 *** 55.67 ***
Exp LR 10.432 *** 16.876 *** 1.836 *** 3.877 ***
Exp Wald 65.891 *** 96.474 *** 13.387 *** 25.204 ***
Mean LR 5.556 *** 17.400 *** 2.656 *** 4.842 ***
Mean Wald 27.781 *** 86.999 *** 13.279 *** 24.211 ***

Sources: The authors’ estimation. Note: *** shows the significance at the 1% level.

Table A2. The Brock, Dechert, and Scheinkman (BDS) tests results.

Bangladesh

Dimension lnCO2 lnE lnY lnY2 lnT

2 1.057 0.509 4.06 *** 3.863 *** 2.592 ***
3 0.407 −0.436 4.838 *** 4.566 *** 2.336 **
4 0.379 −0.759 5.552 *** 5.3 *** 2.448 **
5 0.704 0.036 5.908 *** 5.66 *** 2.536 **
6 0.593 −0.208 6.192 *** 5.969 *** 2.552 **

India

2 0.021 −0.917 0.218 −0.433 0.122
3 −0.889 −2.39 ** 0.316 −0.345 −1.235
4 −0.781 −1.679 * −0.037 −0.78 −0.993
5 −1.14 −1.333 0.272 −0.39 −0.963
6 −1.079 −1.044 0.572 −0.089 −0.735

Sri Lanka

2 −2.209 ** 1.617 1.968 ** 2.319 ** 1.196
3 −2.083 ** 0.719 1.112 0.974 1.587
4 −1.852 * 0.576 −0.154 −0.335 1.84 *
5 −1.169 0.642 −0.237 −0.669 1.341
6 −0.564 0.619 −0.606 −1.183 1.335

Pakistan

2 0.351 −1.247 0.366 0.348 −0.202
3 0.004 −1.497 0.226 0.031 0.072
4 −0.465 −1.938* −0.408 −0.695 −0.035
5 −0.073 −1.605 −0.53 −0.505 0.232
6 −0.097 −1.118 −0.921 −0.804 −0.495

Sources: The authors’ estimation. Note: *, ** and *** show the significance at the 10%, 5% and 1% level,
respectively.
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Table A3. ADF and PP unit root tests results.

Variable

ADF Test PP Test

At Level At First Difference At Level At First Difference

Intercept With Trend Intercept With Trend Intercept With Trend Intercept With Trend

Bangladesh

lnCO2
−1.726 −13.956 *** −33.796 *** −32.765 *** −1.957 −9.249 *** −30.575 *** −29.935 ***

(0) (0) (0) (0) (3) (5) (1) (3)

lnE
1.679 −1.001 −8.252 *** −8.656 *** 2.126 −1.001 −8.255 *** −9.015 ***

(1) (0) (0) (0) (6) (0) (2) (3)

lnY
2.894 −2.132 −0.934 −12.936 *** 3.312 −2.129 −8.810 *** −15.548 ***

(0) (0) (2) (0) (1) (3) (4) (1)

lnY2 3.351 −1.672 −0.674 −12.549 *** 3.810 −1.652 −8.100 *** −14.466 ***
(0) (0) (2) (0) (1) (3) (4) (1)

lnT
0.049 −2.648 0.262 *** −6.514 *** −0.063 −2.990 −5.556 *** −6.566 ***

(0) (0) (0) (0) (1) (8) (1) (5)

lnT_NEG
−8.490 *** −10.474 *** −8.007 *** −5.809 *** −10.376 *** −6.230 *** −6.291 *** −7.510 ***

(9) (9) (9) (9) (13) (7) (1) (5)

lnT_POS
0.417 −1.719 −5.547 *** −5.509 *** 0.319 −1.821 −5.558 *** −5.523 ***

(0) (0) (0) (0) (2) (1) (2) (2)

India

lnCO2
1.694 −1.064 −7.228 *** −7.863 *** 1.917 −1.106 −7.209 *** −7.735 ***

(0) (0) (0) (0) (2) (3) (3) (3)

lnE
3.795 −0.169 −4.793 *** −6.152 *** 3.669 −0.345 −5.023 *** −6.210 ***

(0) (0) (0) (0) (2) (3) (4) (3)

lnY
3.305 −1.830 −6.388 *** −8.280 *** 5.396 −1.940 −6.386 *** −14.602 ***

(0) (0) (0) (0) (5) (4) (4) (10)

lnY2 4.040 −1.327 −5.741 *** −8.158 *** 6.890 −1.363 −5.802 *** −14.638 ***
(0) (0) (0) (0) (6) (6) (4) (12)

lnT
2.429 −0.318 −3.225 ** −7.844 *** 2.939 −0.226 −6.722 *** −7.717 ***

(0) (0) (1) (0) (1) (3) (4) (3)

lnT_NEG
2.662 −2.076 −2.745 * −3.128 2.391 −0.754 −6.080 *** −6.784 ***

(0) (3) (1) (1) (3) (4) (4) (4)

lnT_POS
−1.908 −1.586 −7.137 *** −7.404 *** −2.409 −1.460 −7.267 *** −8.838 ***

(0) (0) (0) (0) (8) (2) (4) (9)

Sri Lanka

lnCO2
−0.070 −2.243 −7.258 *** −7.409 *** 0.099 −2.178 −7.258 *** −7.411 ***

(0) (0) (0) (0) (3) (2) (0) (1)

lnE
0.078 −2.335 −7.290 *** −6.521 *** 0.436 −2.157 −7.399 *** −7.840 ***

(0) (0) (0) (1) (5) (2) (2) (6)

lnY
3.038 −0.709 −5.867 *** −6.445 *** 3.203 −0.767 −5.870 *** −6.432 ***

(0) (0) (0) (0) (4) (1) (2) (2)

lnY2 3.830 −0.233 −5.226 *** −6.135 *** 4.149 −0.330 −5.258 *** −6.144 ***
(0) (0) (0) (0) (5) (2) (2) (2)

lnT
3.830 −0.233 −5.226 *** −6.135 *** 4.149 −0.330 −5.258 *** −6.144 ***

(0) (0) (0) (0) (5) (2) (2) (2)

lnT_NEG
−2.304 −3.464 * −6.790 *** −6.872 *** −2.362 −3.456 * −6.826 *** −6.905 ***

(0) (0) (0) (0) (3) (3) (2) (2)

lnT_POS
−0.137 −2.570 −6.099 *** −6.022 *** −0.115 −2.719 −6.119 *** −6.035 ***

(0) (0) (0) (0) (3) (1) (4) (4)

Pakistan

lnCO2
−0.690 −1.808 −8.538 *** −8.947 *** −0.695 −2.173 −8.303 *** −9.035 ***

(0) (0) (0) (0) (1) (3) (2) (1)

lnE
−2.111 0.349 −5.085 *** −5.768 *** −1.986 0.243 −5.110 *** −5.769 ***

(0) (0) (0) (0) (2) (1) (2) (1)

lnY
−1.846 −1.468 −5.675 *** −5.969 *** −1.117 −1.303 −5.758 *** −5.982 ***

(1) (1) (0) (0) (3) (3) (3) (2)

lnY2 −1.588 −1.581 −5.565 *** −5.749 *** −0.934 −1.452 −5.612 *** −5.754 ***
(1) (1) (0) (0) (3) (3) (2) (1)

lnT
−2.052 −4.724 *** −6.958 *** −6.778 *** −2.293 −4.782 *** −7.475 *** −7.282 ***

(0) (0) (0) (0) (3) (2) (4) (4)

lnT_NEG
−0.251 −3.165 −7.298 *** −7.263 *** −0.004 −3.165 −8.482 *** −9.317 ***

(0) (0) (0) (0) (6) (0) (7) (8)

lnT_POS
−0.52 −2.6 −6.132 *** −6.062 *** −0.518 −2.741 −6.128 *** −6.055 ***

(0) (0) (0) (0) (2) (1) (2) (2)

Note: *, ** and *** show the significance at 10%, 5% and 1% level respectively.
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Abstract: With economic growth and rising incomes, increasing consumption of fossil energy is
leading to environmental pollution and climate change, which requires increased innovative inputs
to promote the efficiency of renewable energy use. Considering the important impact of innovation
input and climate change on renewable energy consumption, greenhouse gas emissions, and green
economic growth, this study uses simultaneous equation and sys-GMM model to explore the dynamic
nexus of innovation input, climate change, and energy-environment-growth in OECD and non-
OECD countries, with panel data covering 2000 to 2019. The empirical results show that renewable
energy consumption in non-OECD countries significantly promoted green economic growth, while
OECD countries did the opposite. Moreover, renewable energy consumption significantly reduces
greenhouse gas emissions caused by climate change, especially for OECD countries. When the level
of economic growth exceeds a certain inflection point, greenhouse gas emissions begin to turn from
positive to negative, which further verifies the EKC hypothesis. In addition, this study found that
innovation input has significantly increased renewable energy consumption, reduced greenhouse gas
emissions, and promoted green economic growth in OECD countries. Finally, this study also found
that the impact of innovation input in OECD and non-OECD countries on the energy-environment-
growth nexus is greater in the short term and more significant in the medium and long term, while
the impact of climate change on the energy-environment nexus in OECD and non-OECD countries is
more significant in the medium and long term.

Keywords: innovation input; climate change; renewable energy consumption; greenhouse gas
emissions; green economic growth; simultaneous equation model

1. Introduction

Increasing fossil energy consumption aggravates the problems of energy shortage
and environmental pollution, resulting in an increase in greenhouse gas emissions [1,2].
While long-term large-scale greenhouse gas emissions are the key reason for extreme
weather change [3]. To strengthen the governance of global climate and environment to
promote green economic growth, the Paris Climate Agreement clearly puts forward the
development of a low-carbon economy [4]. However, the increasing weather events further
exacerbate the energy consumption for temperature regulation [5]. Driven by economic
growth and increasing income, the energy consumption and greenhouse gas emissions in
Organization for Economic Co-operation and Development (OECD) countries tend to be
higher than that in non-OECD countries, and then needs to increase innovation input and
improve the utilization rate of renewable energy [6]. Therefore, this paper explores the
dynamic nexus of innovation input, climate change, and energy-environment-growth in
OECD and non-OECD countries, which helps the policymaker to formulate differentiated
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energy and environmental policies to promote innovation input, increase renewable energy
consumption and achieve green economic growth

Most studies have shown that energy consumption in response to temperature change
varies greatly among countries in different climate regions [7–9]. Specifically, OECD
countries are generally located in high latitudes with huge temperature differences, that is,
hot summer and cold winter, while non-OECD countries are on the contrary In addition,
according to the Environmental Kuznets Curve (EKC) hypothesis, when the economic
income of OECD countries reaches a certain level, they begin to gradually pay attention to
the improvement of the ecological environment [10]. With the support of high innovation
input, energy efficiency and renewable energy consumption began to improve significantly,
and greenhouse gas emissions gradually decreased [11]. In this context, based on the panel
data of 35 OECD and 36 non-OECD countries from 2000–2019, this paper further examines
the nexus of energy-environment-growth under the differentiated innovation input, which
provides theoretical support for the EKC hypothesis.

Compared with the existing literature [12–14], using simultaneous equation and
system generalized method of moments (sys-GMM) model is an effective method to explore
the dynamic nexus of innovation input, climate change, and energy-environment-growth.
As we all know, from the perspective of the production function, the framework of energy-
environment-growth includes three important equations: production equation, energy
consumption equation, and pollution equation, and each equation provides a reference
for further research in this field [15,16]. Moreover, cross-validation shows that the three
equations should not be studied separately, which confirms that the simultaneous equations
can effectively estimate the dynamic nexus of renewable energy consumption, greenhouse
gas emissions, and green economic growth, and help to generate reliable empirical research
conclusions [17,18].

This paper is dedicated to exploring the impact of innovative inputs, climate change on
renewable energy, consumption of greenhouse gas emissions, and green economic growth.
The contributions of this paper are in the following four aspects: First, this paper creatively
introduces innovation inputs and climate change into the energy-environment-growth
research framework to study their effects on renewable energy consumption, greenhouse
gas emissions, and green economic growth. Second, this paper analyzes the differences in
the effects caused by the heterogeneity of the sample intervals, and examines the dynamic
relationship between innovation inputs, climate change, and energy-environmental growth
comprehensively and systematically in the short (2015–2019), medium (2010–2019), and
long term (2000–2019), respectively, further confirming the EKC hypothesis. Third, this
paper uses frontier simultaneous equations and sys-GMM models to reveal the dynamic
relationship among innovation inputs, climate change, and energy-environmental growth,
which can better solve the heteroskedasticity, autocorrelation, and endogeneity problems in
the model. Fourth, considering the accuracy and comprehensiveness of variable calculation
this paper uses principal component analysis to construct the green economic growth index
from four dimensions: economic development, resources and environment, globalization,
and urban construction (see Table 1). Finally, according to the research results, this paper
provides targeted suggestions for the government to develop differentiated energy and
environmental policies to promote carbon emission reduction and green economic growth.

180



Energies 2022, 15, 8927

Table 1. Indicator system of green economic growth.

Primary Index Secondary Index Tertiary Indicators Symbol Unit

Per capita GDP X1 Dollar
Economic Final consumption expenditure X2 Dollar

development Inflation consumer Prices
Taxes on income, profits, and capital gains

X3
X4 Dollar

Green
economic
growth
index

Resource
environment

Per capita energy consumption
Total natural resources rents in GDP

CO2 emissions
Forest area

X5
X6
X7
X8

kg of oil
%
Kt

Sq.km

Globalization
Urban

construction

Proportion of exports of goods and services in GDP
Proportion of trade in GDP

Agriculture, forestry, and fishing, value added per worker
Population growth

X9
X10
X11
X12

%
%

Dollar
%

2. Literature Review

Energy-environment-growth nexus studies the causality among energy consumption,
environmental pollution, and economic growth. Considerable foregoing discussions about
this nexus have employed the method of the Granger causality test [19], while the simulta-
neous equation model is less familiar. To be specific, the granger causality test can only
detect whether there is a causal relationship between the concerned variables, but not the
relationship sign and sensitivity. However, the simultaneous equation model does not have
this limitation. It can not only detect the sign and sensitivity between variables, but also
add other essential control variables to avoid missing variables.

In recent decades, the energy-environment-growth nexus has been the subject of a
great deal of academic research. There are three branches of research in the literature that
deals with the relationships between target variables. The first branch of research focuses on
the relationship between economic growth and environmental pollution. Existing literature
relies heavily on the Environmental Kuznets Curve (EKC) hypothesis when studying the
relationship between the two variables. Stern [20] asserts that the degree of environmental
degradation first increased and then decreased with the increase of the GNP per capita. In
addition, the degree of environmental degradation is usually measured by air pollution.
Some empirical studies verify the EKC hypothesis, such as Naseem et al. studied the
relationship between economic development and pollutant gas emissions in OECD and
non-OECD countries [21]. And Nasir and Ur-Rehman [22] and Saboori et al. [23] confirmed
the existence of the EKC hypothesis by examining the long-term relationship between
greenhouse gas emissions (GHGs) and income in Malaysia and Pakistan, respectively.

The second branch investigates the relationship between energy consumption and
economic growth. Since the initial study of Kraft [24], the nexus between energy and
economy has been the focus of discussion among scholars [25–27]. However, in the existing
literature, scholars have several different views on the existence and direction of the causal
relationship between these two variables. Soytas and Sari [28] believed that there is no
significant causal relationship between energy consumption and economic growth, and
supports the neutral hypothesis. Huang et al. [29] pointed out that in middle-income
and high-income countries, the economy can affect energy consumption, and supported
the conservation hypothesis. In addition, Saidi and Hammami [30] indicated that energy
consumption has a significant stimulative effect on economic growth, which supported
the feedback hypothesis that there is a two-way causal relationship between the two
variables [31,32]. The third branch is related to energy consumption and GHGs. There is a
consensus that energy consumption is the main source of GHGs [33–35].

2.1. Climate Change and the Energy-Environment-Growth Nexus

According to the vast majority of literature now available, the energy-environment-
growth nexus studies which use the simultaneous equation model have not considered that
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climate affects energy and the environment in many ways, although extreme temperature
changes could distinctly affect energy consumption, and thus GHGs. For example, Consi-
dine [36] evaluated the driving factors of GHGs, and the results of the linear logit model
indicated the impact of weather changes on GHGs is considerable. That is, the hot summer
increases the demand for air conditioning and electricity, which in turn increases energy
consumption. While cold winter increases the demand for heating fuel, such as coal, oil,
and natural gas. Studies have shown that the consumption of traditional energy sources
in both OECD and non-OECD countries will inevitably lead to an increase in greenhouse
gases and thus affect economic growth [37].

The environment affects the economy and energy in many ways, and there is hetero-
geneity in the impact of the environment on economic growth and energy efficiency in
OECD and non-OECD countries [38,39]. At the same time, the abnormal temperature will
affect the economy in many aspects, causing damage to green economic growth [40,41].
The emergence of extreme temperatures hinders short-term and long-term economic devel-
opment and affects indicators such as employment and profitability [42,43]. However, the
impact of climate change on green economic growth has not been widely studied in the
existing literature.

2.2. Innovation Input and the Energy-Environment-Growth Nexus

On the role of innovation input in economic growth, a large amount of literature gives
almost the same conclusion. In contrast, there are fewer studies on the impact of innovation
input on GHGs and energy consumption, especially the impact of innovation input on
the energy-environment-growth nexus. Chen and Lei [44] suggested that technological
innovation has played an important role in improving energy efficiency and reducing
energy consumption. But technological innovation has a greater impact on countries
with higher GHGs than on countries with lower GHGs. Zakari et al. studied the factors
influencing green innovation in OECD and non-OECD countries respectively [45]. And
Khan et al. [26] examined that technological innovation can reduce GHGs and boost
economic growth in BRICS countries. The improvement of innovation input is helpful to
develop renewable energy and improve energy efficiency, to ensure energy security and
achieve green economic growth.

2.2.1. Innovation Input and Economic Growth

A large number of existing literature believed that innovation input is the pillar of
economic growth, a key factor to promote green economic growth, and even the power
and source of human social development [46,47]. From the perspective of neoclassical
economics, Thompson [48] elaborated his point of view: with the development of an
innovation economy, social capital will grow internally with the increase of monopolistic
competitors’ profits and production. In other words, innovation input and economic
growth can promote each other and develop together. Adak [49] cites structural changes
in Turkey’s economy over the past 35 years as evidence of the impact of technological
progress and innovation input on economic growth. In this model, innovation input has
become a key endogenous variable of the total production function, and innovation input
has brought high productivity and rapid positive growth to the economy.

2.2.2. Innovation Input and Environment Pollution

With regard to innovation input and environment pollution, most scholars believe
that the impact of innovation input on GHGs is linear and one-way [50,51]. In a detailed
analysis of G20 countries, Erdoğan et al. [52] argue that innovation input in different sectors
will have different impacts on GHGs. Increased innovation input in the industrial sector
leads to reduced GHGs, while increased innovation input in the construction sector leads
to the opposite result. At the same time, a few studies believe that there is a non-linear two-
way relationship between them. For instance, Carrión-Flores and Innes [53] pointed out
that there is a two-way causal relationship between innovation input and environmental
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pollution. Innovation input was an important driving force of environmental pollution,
and strict pollution control targets will promote the improvement of innovation input.

2.2.3. Innovation Input and Energy Consumption

Sun et al. [54] examined the relationship between innovation input and energy con-
sumption, and testified that innovation input has a positive impact on improving energy
efficiency and reducing energy intensity. Wurlod and Noailly [55] analyzed the impact
of innovation input on the energy intensity of 14 industrial sectors in 17 OECD countries,
and found that innovation input contributed to the decline of energy intensity in most
industrial sectors. In conclusion, these studies compelling indicate that climate change and
innovation input play a very important role within the energy-environment-growth nexus.
Therefore, in the following study on the energy-environment-growth nexus, this paper
introduced the two variables of climate change and innovation input.

In general, the existing literature mostly studies the correlation between fossil energy
consumption, carbon emissions, and economic growth. It is found that when the economic
income level is low, fossil energy consumption and carbon emissions are more, while when
the economic income level is high, it is the opposite. The difference is that this paper
creatively introduces innovation input and climate change into the framework of renewable
energy consumption, carbon emissions, and green economic growth further analyzes the
dynamic nexus of innovation input, climate change and energy-environment-growth, and
then verifies the EKC hypothesis.

3. Methodology

3.1. Production Function

Many countries are interested in energy-environment-growth nexus, which has gradu-
ally become a worldwide problem [56]. In this context, this paper draws on the research
results of other scholars and regards energy consumption as a production factor within
the nexus [57]. Moreover, innovation input is rarely included in the nexus, which reflects
a country’s science and technology level. In summary, the augmented Cobb-Douglas
production function is as follows:

geg = Akα1eα2 (1)

where geg is the green economic growth, which is calculated by the PCA method and
consists of twelve indicators as shown in Table 1 [58,59]. A is the total factor productivity, k
is the capital per capita, and e is the proportion of renewable energy consumption.

After logging, i denotes the country and t denotes the time period as follows:

gegit = αit + α1kit + α2eit (2)

Assuming that green economic growth depends on innovation input it becomes:

ait = α0 + α4inoit + ε1,it (3)

Combining Equations (3) and (4), we can get:

gegit = α0 + α1kit + α2eit + α3inoit + ε1,it (4)

Because capital, renewable energy consumption, and innovation are conducive to
green economic growth, they are expected to have a positive impact on green economic
growth, indicating that α1, α2, and α3 should be positive. Since pollution is not significant
in the estimation and obeys the standard production function theory, we do not introduce
pollution as an explanatory variable.
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3.2. Energy Consumption Function

Referring to previous literature on the energy-environment-growth nexus [60,61],
innovation input and climate change are included in the energy consumption function
as follows:

eit = β0 + β1gegit + β2indit + β3inoit + β4stempit + β5wtempit + ε2,it (5)

where e is the proportion of renewable energy consumption, geg is green economic growth,
ind is industrialization, ino is innovation input, stemp is the average temperature of three
months in summer and wtemp is the average temperature of three months in winter, ε2 is
the error term.

3.3. Pollution Function

To update the pollution function [62], innovation input and climate change have been
included in the pollution function as follows:

polit = γ0 + γ1gegit + γ2geg2
it + γ3eit + γ4ino + γ5stempit + γ6wtempit + γ7urbit + γ8 poli + ε3,it (6)

where pol denotes greenhouse gas emissions; geg denotes green economic growth; geg2

denotes geg squared; e denotes the proportion of renewable energy consumption; urb
denotes urbanization; poli denotes climate policy measured by whether the Kyoto Protocol
is signed before 2016 or participation in the Paris Agreement after 2016. If the sample has
participated in the above two agreements, we will record it as 1, on the contrary, we will
record it as 0. Besides, stemp and wtemp respectively represent the average temperature of
three months in summer and winter; and ε is the error term. All variables are logarithmic
except stemp and wtemp.

From Equations (4)–(6), A three-dimensional simultaneous equation framework is
used to analyze the energy-environment-growth nexus. In conclusion, the structural
equations look as follows:

gegit = α0 + α1kit + α2eit + α3inoit + ε1,it

eit = β0 + β1gegit + β2indit + β3inoit + β4stempit + β5wtempit + ε2,it

polit = γ0 + γ1gegit + γ2geg2
it + γ3eit + γ4ino + γ5stempit + γ6wtempit + γ7urbit + γ8 poli + ε3,it

(7)

3.4. The Estimation Method

As shown in Figure 1, based on the theoretical framework, the system estimation is
applied to study the nexus of energy-environment-growth.
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Figure 1. Conceptual framework.

The generalized method of moments (GMM) was first proposed by Hansen and
has become one of the most popular measurement methods. Arellano and Bond [63]
proposed a first difference GMM (diff-GMM) estimation method. However, Blundell and
Bond [64] have found the first-order diff-GMM estimation method is vulnerable to the
influence of weak instrumental variables and gets biased estimation results. To overcome
the influence of weak instrumental variables, Arellano and Bover [65] and Blundell and
Bond [64] proposed another more effective method system GMM (sys-GMM). With the
energy-environment-growth nexus, Saidi and Hammami [66] and Sekrafi and Sghaier [67]
used diff-GMM in their studies, while Bhattacharya et al. [68] used sys-GMM in the
interrelationship of energy-environment-growth. The main advantage of these methods
over other methods is that they rely on internal instruments for estimation. However,
in the case of a reverse causal relationship, external instruments are the best. However,
finding external tools is a difficult task, which varies across units and periods. Fortunately,
Farhadi et al. [69] concluded that the internal tools used are different, and sys-GMM is the
best choice to control the endogenous nature of explanatory variables.

yit = xitβ + ϕyi,t−1 + ci + εit (8)

where t denotes time, and i denotes the cross-section units (countries). It appears that the
error terms consist of the fixed individual effects ci and the idiosyncratic shocks εit. The
properties of fixed individual effects and idiosyncratic shocks are attributed as

E(ci) = E(εit) = E(ciεit) = 0 (9)

By taking the difference to eliminate the individual effects ci from Equation (8) result-
ing in:

Δyit = (Δx)itβ + ϕ(Δyi,t−1) + Δεit (10)

where Δ denotes the first difference operator.
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Since Roodman [70] indicated that the diff-GMM and sys-GMM estimator is suitable
for data sets with large groups and few periods, the current energy-environment-growth
studies do not always follow this rule. However, if groups are too small, the test of cluster
robust standard error and sequence correlation becomes inaccurate. Another problem is
that the quantity of instruments is quadratic in the periods, which may lead to overfitting
the equation because there are too many instruments compared to the sample capacity. To
overcome the problem, the quantity of instruments is expected to be less than the groups.
To achieve this goal, we can limit the lag of the instruments and collapse the instrument
matrix. Table 2 provides the definition and source of the variable. Descriptive statistics are
shown in Table 3, which is divided into OECD and non-OECD groups.

Table 2. The definition and source of variables.

Variables Definition Source Calculation by the Author

Dependent variable

Energy consumption Renewable energy consumption (%
of total) IEA

Economic growth

It covers four aspects: Economic
development, Resource
environment, Globalization, and
Urban Construction

Khan et al. (2021) and
Zhou et al. (2022) Calculation by PCA

Environment pollution Total greenhouse gas emissions (kt
of CO2 equivalent)

World Bank’s World
Development Indicators

Independent variable

Innovation input % Research and development
expenditure of total GDP

World Bank’s World
Development Indicators

Average temperature
over summer months

Average temperatures in June, July,
and August for countries with
capitals in the Northern
Hemisphere, and January, February,
and December for countries with
capitals in the Southern
Hemisphere

World Bank: monthly average
temperatures for countries;
CIA (2018): latitudes of
country capitals

Calculation of average
temperatures over summer
months based on monthly
data

Average temperature
over winter months

Average temperatures in January,
February, and December for
countries with capitals in the
Northern Hemisphere, and June,
July, and August for countries with
capitals in the Southern
Hemisphere

World Bank: monthly average
temperatures for countries;
CIA (2018):
latitudes of country capitals

Calculation of average
temperatures over winter
months based on monthly
data

Control variable

Climate Policy
Signing Kyoto Protocol before 2016
or Joining the Paris Agreement after
2016

Kyoto Protocol and The Paris
Agreement

The number 1 represents
joining the Paris Agreement or
Kyoto Protocol and the
number 0 represents no
joining

Industrialization % Value added of industry of total
GDP

World Bank’s World
Development Indicators Interpolated

Divided by population
Capital Capital stock at constant 2010

national prices (in mil. 2010USD) Penn World Table

Urbanization % Urban population of the total
population Penn World Table
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Table 3. Descriptive statistics.

Variable Group Obs Mean Std.Dev Min Max

pol OECD 700 11.21 1.852 4.094 13.81
Non-OECD 720 11.35 1.800 7.534 16.33

geg OECD 700 1.173 0.575 0.345 3.222
Non-OECD 720 0.656 0.577 0.211 11.37

k OECD 700 2.851 1.537 0.860 14.49
Non-OECD 720 1.288 1.008 −2.232 3.633

e OECD 700 2.568 0.926 −0.368 4.113
Non-OECD 720 2.617 1.755 −5.021 4.545

ino OECD 700 0.277 0.756 −2.040 1.600
Non-OECD 720 −1.156 1.203 −5.482 0.954

ind OECD 700 3.249 0.245 2.353 3.856
Non-OECD 720 3.360 0.287 2.301 4.252

stemp OECD 700 19.91 3.663 12.86 31.42
Non-OECD 720 24.62 5.416 8.830 37.01

wtemp OECD 700 4.326 7.432 −14.19 26.62
Non-OECD 720 12.60 12.23 −26.85 31.01

urb OECD 700 4.379 0.593 4.020 8.946
Non-OECD 720 4.031 0.353 2.901 4.605

poli OECD 700 0.844 0.363 0 1
Non-OECD 720 0.850 0.357 0 1

4. Results

4.1. Data Source

For econometric analysis of the proposed models, this paper uses the panel data
of 35 OECD and 36 non-OECD countries from 2000 to 2019, which are from the World
Bank, Penn World Table, and IEA. In addition, the sample interval is divided into short-
term (2015–2019), medium-term (2010–2019), and long-term (2000–2019) for longitudinal
comparison. To make the data stable, all variables except temperature are logarithmically
transformed.

4.2. The Results of the Production Function

The results of the production functions for the OECD and non-OECD sample groups
are shown in Tables 4 and 5. Firstly, in all models, the number of countries is signifi-
cantly greater than the number of instrumental variables, and the Hansen test presents
the instrumental variables are valid at a risk level of 0.05. Furthermore, the results of the
Arellano-Bond test indicate that the estimators are consistent. According to the function es-
timation results, the coefficient of capital per capita is positive in both tables, indicating that
capital and wealth are conducive to the development of a green economy in any country
and that this effect is more pronounced in non-OECD countries. In contrast, the coefficients
on renewable energy consumption are both significant, which is a good indication of the
importance of renewable energy for the growth of a green economy. Finally, in agreement
with other results in the literature, the coefficients of the innovation input variables are
positive and significant, indicating that innovation input has a significant effect on green
economic growth in both OECD and non-OECD countries, confirming the importance of
innovation input in promoting energy restructuring, increasing the utilization of renewable
energy and thus achieving green economic growth. Similar to the effect of the capital per
capita variable, the effect of innovation inputs on green economic growth is greater in
non-OECD countries due to their lower overall strength than in OECD countries.
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Table 4. The production function (OECD).

Variables
Group (1) Group (2) Group (3) Group (4)

Diff-GMM Sys-GMM Diff-GMM Sys-GMM

L.geg 0.925 *** 0.919 *** 0.934 *** 0.910 ***
(0.00407) (0.00218) (0.00574) (0.00301)

k 0.0251 *** 0.0124 *** 0.0282 *** 0.0104 ***
(0.00329) (0.000664) (0.00499) (0.000803)

e −0.0369 *** −0.0289 *** −0.0382 *** −0.0271 ***
(0.00255) (0.00170) (0.00277) (0.00203)

ino 0.00769 * 0.0184 ***
(0.00412) (0.00166)

Constant 0.146 *** 0.150 ***
(0.00436) (0.00571)

Observations 630 665 630 665
Sample 35 35 35 35
AR(1) 0.00221 0.00183 0.00223 0.00189
AR(2) 0.785 0.597 0.808 0.598
Hansen test 0.427 0.586 0.381 0.658

Note: Robust standard errors in parentheses, *** p < 0.01, * p < 0.1.

Table 5. The production function (non-OECD).

Variables
Group (1) Group (2) Group (3) Group (4)

Diff-GMM Sys-GMM Diff-GMM Sys-GMM

L.geg 0.130 *** 0.493 *** 0.185 *** 0.489 ***
(0.00928) (0.00724) (0.0102) (0.00730)

k 0.249 *** 0.202 *** 0.322 *** 0.178 ***
(0.00274) (0.00327) (0.00372) (0.00462)

e 0.0471 *** 0.0691 *** 0.0839 *** 0.0595 ***
(0.00548) (0.00283) (0.00586) (0.00529)

ino 0.124 *** 0.0306 ***
(0.00298) (0.00391)

Constant −0.103 *** −0.00680
(0.00524) (0.0129)

Observations 648 684 648 684
Sample 36 36 36 36
AR(1) 0.248 0.230 0.256 0.228
AR(2) 0.310 0.303 0.306 0.306
Hansen test 0.385 0.527 0.358 0.531

Note: Robust standard errors in parentheses, *** p < 0.01.

4.3. The Results of Energy Consumption Function

The results of the estimated energy consumption function are shown in Tables 6
and 7, the results show that these estimates are consistent, and the number of instrumental
variables is significantly less than that of all model countries. According to the model
estimation results, it can be seen that: firstly, the coefficient of the green economic growth
variable shows a positive value in the sample group of OECD countries, indicating that
green economic growth can promote renewable energy consumption. In contrast, according
to the estimation results for the sample of non-OECD countries, the relationship between
green economic growth and the renewable energy consumption is the opposite. Secondly,
for the effect of industrialization on renewable energy consumption, industrialization is
able to promote renewable energy consumption in OECD countries, while in non-OECD
countries, the effect of industrialization on renewable energy is negative. This may be due
to the fact that most of the OECD countries are more developed economies and therefore
have more developed industries and more diverse and sophisticated energy systems than
the non-OECD countries. Whereas the non-OECD countries, most of which are developing
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countries, are at a stage of industrialization where they are using a lot of fossil fuels.
Therefore, industrialization in non-OECD countries is negatively correlated with renewable
energy consumption.

Table 6. The energy consumption function (OECD).

Variables
Group (1) Group (2) Group (3) Group (4) Group (5) Group (6) Group (7) Group (8)

Diff-
GMM

Sys-GMM
Diff-
GMM

Sys-GMM
Diff-
GMM

Sys-GMM
Diff-
GMM

Sys-GMM

L.e 0.835 *** 0.947 *** 0.844 *** 0.939 *** 0.767 *** 0.943 *** 0.774 *** 0.947 ***
(0.0649) (0.0187) (0.0534) (0.0274) (0.0820) (0.0316) (0.0852) (0.0288)

geg 0.171 *** 0.117 *** 0.0328 0.0581 0.217 *** 0.0977 *** 0.0791 0.0673
(0.0482) (0.0371) (0.0634) (0.0460) (0.0499) (0.0323) (0.0691) (0.0438)

ind −0.131 0.0472 0.122 0.143 *** −0.223 * −2.92 × 10−5 −0.0136 0.135 **
(0.0982) (0.0434) (0.141) (0.0523) (0.118) (0.0420) (0.173) (0.0529)

ino 0.213 *** 0.126 *** 0.186 *** 0.108 **
(0.0664) (0.0488) (0.0696) (0.0500)

stemp −0.00681 −0.00893 ** −0.00251 −0.00668 *
(0.00440) (0.00444) (0.00445) (0.00401)

wtemp 0.00502 * −9.13 × 10−5 0.00399 0.000999
(0.00288) (0.00292) (0.00296) (0.00237)

Constant −0.138 −0.391 ** 0.225 −0.265
(0.208) (0.186) (0.172) (0.195)

Observations 630 665 630 665 630 665 630 665
Sample 35 35 35 35 35 35 35 35
AR(1) 0.00326 0.00193 0.00108 0.00109 0.00320 0.00189 0.00170 0.00111
AR(2) 0.865 0.816 0.959 0.843 0.915 0.840 0.976 0.850
Hansen
test 0.481 0.734 0.696 0.621 0.495 0.676 0.545 0.525

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 7. The energy consumption function (non-OECD).

Variables
Group (1) Group (2) Group (3) Group (4) Group (5) Group (6) Group (7) Group (8)

Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM

L.e 0.672 *** 0.871 *** 0.403 *** 0.873 *** 0.726 *** 0.824 *** 0.409 *** 0.815 ***
(0.0493) (0.0318) (0.0728) (0.0332) (0.0570) (0.0309) (0.103) (0.0339)

geg −0.137 ** −0.0291 −0.0146 −0.0326 −0.101 −0.0954 0.0125 −0.0488
(0.0665) (0.0462) (0.0720) (0.0499) (0.0633) (0.0592) (0.0884) (0.0581)

ind 0.0184 −0.259 *** 0.161 −0.246 *** −0.0459 −0.297 *** 0.272 −0.279 ***
(0.0845) (0.0494) (0.130) (0.0544) (0.0882) (0.0533) (0.201) (0.0551)

ino −0.108 *** 0.00606 −0.146 *** −0.00251
(0.0307) (0.0223) (0.0509) (0.0266)

stemp −0.0185 *** −0.0337 *** 0.00104 −0.0373 ***
(0.00691) (0.00695) (0.0123) (0.00831)

wtemp 0.0142 *** 0.00416 0.0264 *** 0.00360
(0.00432) (0.00558) (0.00594) (0.00652)

Constant 1.231 *** 1.195 *** 2.328 *** 2.352 ***
(0.244) (0.251) (0.286) (0.287)

Observations 648 684 648 684 648 684 648 684
Sample 36 36 36 36 36 36 36 36
AR(1) 0.273 0.234 0.371 0.234 0.270 0.232 0.345 0.231
AR(2) 0.164 0.149 0.226 0.145 0.192 0.154 0.953 0.160
Hansen test 0.192 0.212 0.349 0.176 0.133 0.106 0.0967 0.0597

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05.

Compared with similar studies, it is confirmed that innovation input is positive to the
renewable energy consumption of OECD countries, and the innovation input is negatively
related to the renewable energy consumption of non-OECD countries, which may be due
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to the fact that compared to developed OECD countries that develop renewable energy
technologies, innovation input in non-OECD countries is not reflected in the application
of renewable energy. This may be due to the fact that innovation input in non-OECD
countries is not reflected in the use of renewable energy compared to R&D in developed
OECD countries. Finally, in the results of the estimation of the effect of climate variables on
the consumption of renewable energy, the estimates for the OECD and non-OECD country
samples are largely consistent, with renewable energy consumption being negatively
correlated with summer temperatures and positively correlated with winter temperatures.

4.4. The Results of the Pollution Function

Tables 8 and 9 show the results of the pollution function, these instrumental variables
appear to be effective, because the number of instrumental variables is less than that of these
countries. According to the model estimation results, first, the estimated results of green
economic growth and its squared term coefficient are basically the same in both OECD
and non-OECD country samples, both show positive primary squared term coefficient and
negative squared term coefficient, indicating an inverted U-shaped relationship between
green economic growth and greenhouse gas emissions, which also confirms that renewable
energy consumption plays an important role in reducing greenhouse gas emissions. Second,
renewable energy consumption is significantly and negatively correlated with greenhouse
gas emissions, a result that is undoubtedly consistent with the objective rule.

Table 8. The pollution function (OECD).

Variables
Group (1) Group (2) Group (3) Group (4) Group (5) Group (6) Group (7) Group (8) Group (9) Group (10)

Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM

L.pol 0.486 *** 0.932 *** 0.396 *** 0.929 *** 0.434 *** 0.939 *** 0.337 *** 0.933 *** 0.339 *** 0.949 ***
(0.0190) (0.0123) (0.0231) (0.0212) (0.0278) (0.00804) (0.0382) (0.00834) (0.0407) (0.0121)

geg 0.246 *** 0.0218 0.666 *** 0.186 *** 0.263 *** 0.142 *** 0.577 *** 0.202 *** 0.523 *** 0.170 ***
(0.0293) (0.0390) (0.0777) (0.0488) (0.0310) (0.0283) (0.0789) (0.0462) (0.0971) (0.0522)

geg2 −0.0591 *** −0.0283 ** −0.173 *** −0.0754 *** −0.0640 *** −0.0582 *** −0.146 *** −0.0753 *** −0.126 *** −0.0727 ***
(0.00847) (0.0131) (0.0239) (0.0165) (0.00909) (0.0111) (0.0277) (0.0159) (0.0356) (0.0138)

e −0.0750 *** −0.0211 *** −0.0844 *** −0.00393 −0.0864 *** −0.0114 *** −0.0873 *** −0.0115 *** −0.0772 *** −0.000620
(0.00550) (0.00226) (0.00746) (0.00409) (0.00914) (0.00208) (0.0107) (0.00270) (0.0105) (0.00468)

ino −0.0715 *** −0.0288 *** −0.0462 ** −0.00687 −0.0503 ** −0.00740
(0.0205) (0.00779) (0.0208) (0.00558) (0.0223) (0.00756)

stemp −0.00797
***

−0.00295
***

−0.00763
***

−0.00273
***

−0.00844
*** −0.00160

(0.000931) (0.000890) (0.00110) (0.000725) (0.00118) (0.00104)
wtemp 0.000670 0.00482 *** 0.000523 0.00544 *** 0.000498 0.00389 ***

(0.000535) (0.000776) (0.000819) (0.000740) (0.000924) (0.000853)
urb 0.0255 ** 0.0282 ***

(0.0112) (0.00645)
poli 0.0105 **

(0.00415)
Constant 0.847 *** 0.720 *** 0.684 *** 0.700 *** 0.374 ***

(0.139) (0.230) (0.0934) (0.0829) (0.124)
Observations 630 665 630 665 630 665 630 665 630 665
Sample 35 35 35 35 35 35 35 35 35 35
AR(1) 0.000294 0.000137 0.000385 0.000123 0.000526 0.000150 0.00126 0.000158 0.00188 0.000112
AR(2) 0.597 0.474 0.927 0.522 0.639 0.281 0.939 0.261 0.976 0.392
Hansen
test 0.977 0.995 0.985 0.989 0.980 0.998 0.993 0.998 0.993 0.997

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05.
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Table 9. The pollution function (non-OECD).

Variables
Group (1) Group (2) Group (3) Group (4) Group (5) Group (6) Group (7) Group (8) Group (9) Group (10)

Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM

L.pol 0.928 *** 1.009 *** 0.914 *** 0.980 *** 0.923 *** 0.995 *** 0.913 *** 1.002 *** 0.785 *** 0.986 ***
(0.00832) (0.00982) (0.0149) (0.0109) (0.00801) (0.00855) (0.0226) (0.00978) (0.0334) (0.0155)

geg 0.0553 *** −0.113 *** 0.0641 *** −0.0139 0.0687 *** −0.0865 *** 0.0822 *** −0.0356 ** 0.0755 *** −0.0398 ***
(0.0137) (0.0179) (0.0205) (0.0149) (0.0155) (0.0238) (0.0270) (0.0175) (0.0231) (0.0129)

geg2 −0.00377
*** 0.00968 *** −0.00447 ** 0.000539 −0.00492

*** 0.00721 *** −0.00611
*** 0.00294 * −0.00585

*** 0.00317 ***

(0.00129) (0.00176) (0.00185) (0.00145) (0.00147) (0.00210) (0.00210) (0.00158) (0.00178) (0.00111)
e −0.0403 *** −0.0143 *** −0.0421 *** −0.0384 *** −0.0390 *** −0.0273 *** −0.0408 *** −0.0324 *** −0.0325 *** −0.0351 ***

(0.00229) (0.00160) (0.00281) (0.00360) (0.00328) (0.00547) (0.00238) (0.00464) (0.00448) (0.00574)
ino 0.00475 ** −0.00849 ** 0.000567 −0.0100 *** 0.0105 0.00264

(0.00214) (0.00368) (0.00572) (0.00318) (0.00685) (0.00542)

stemp 0.00342 ** −0.00264 * 0.00331 −0.00414
*** 0.000712 −0.00359 **

(0.00173) (0.00159) (0.00220) (0.000676) (0.00174) (0.00143)
wtemp −0.00223 ** 0.00148 *** −0.000910 0.00217 *** −0.00149 0.00163 ***

(0.000971) (0.000520) (0.00195) (0.000287) (0.00151) (0.000352)
urb 0.356 *** −0.0749 ***

(0.0519) (0.0281)
poli 0.0121 **
Constant 0.0237 0.342 *** 0.243 *** 0.161 0.655 ***

(0.103) (0.129) (0.0891) (0.117) (0.169)
Observations 648 684 648 684 648 684 648 684 648 684
Sample 36 36 36 36 36 36 36 36 36 36
AR(1) 0.000407 0.000177 0.000378 0.000353 0.000253 0.000351 0.000283 0.000522 0.000548 0.000468
AR(2) 0.425 0.482 0.420 0.419 0.341 0.526 0.350 0.551 0.382 0.561
Hansen
test 0.971 0.988 0.965 0.997 0.965 0.997 0.967 0.997 0.966 0.997

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

In addition, innovation input is also negatively correlated with greenhouse gas emis-
sions, suggesting that an increase in innovation input can significantly improve the utiliza-
tion efficiency of fossil energy and increase the proportion of renewable energy consump-
tion. This is also an important determinant of the reduction of greenhouse gas emissions,
such as the stronger the innovation input, the lower the greenhouse gas emissions. Finally,
the temperature variable has a significant impact on greenhouse gas emissions, because
climate change inevitably increases the consumption of energy for temperature regulation.

4.5. The Heterogeneity of Sample Interval

To analyze the dynamic relationship between climate change, innovation input, and
energy-environment-growth in terms of differences between sample zones, the sample
was divided into three phases, as shown in Tables 10 and 11. From a green economy
growth perspective, innovation investment has a significant contribution to green economy
development in both the OECD and non-OECD country samples, and the intensity of the
effect decreases gradually depending on the short, medium, and long term of the period.
This also suggests that for a green economy to be sustainable, countries need to invest in
innovation in the long term. From the perspective of energy consumption, the contribution
of innovative input to renewable energy consumption is also significant, with the intensity
of the contribution decreasing in the short, medium, and long term.
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Table 10. Differences of sample interval (OECD).

Sample
Interval

Variables
Production Energy Consumption Pollution

Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM

2015–2019

ino 1.190 *** −0.0164 0.402 * 0.447 ** −0.582 ** 0.0229
(0.370) (0.0182) (0.244) (0.208) (0.582) (0.0154)

stemp
Wt 0.0108 0.0149 0.0173 * −0.00528

(0.0126) (0.0143) (0.0103) (0.00387)
wtemp −0.00319 −0.00367 0.000773 −0.00652 **

(0.00414) (0.00483) (0.00647) (0.00264)

2010–2019

ino 0.486 ** −0.00290 0.121 −0.0371 −0.186 ** −0.00415
(0.197) (0.0190) (0.245) (0.152) (0.0759) (0.00392)

stemp
Wt −0.00888 −0.00320 0.00403 0.00378 ***

(0.0155) (0.0128) (0.00409) (0.00102)
wtemp 0.0120 ** 0.0171 *** −0.00161 −0.0021 ***

(0.00561) (0.00566) (0.00115) (0.00042)

2000–2019

ino 0.00769 * 0.0184 *** 0.186 *** 0.108 ** −0.0503 ** −0.00740
(0.00412) (0.00166) (0.0696) (0.0500) (0.0223) (0.00756)

stemp
Wt −0.00251 −0.00668 * −0.00844 *** −0.00160

(0.00445) (0.00401) (0.00118) (0.00104)
wtemp 0.00399 0.000999 0.000498 0.00389 ***

(0.00296) (0.00237) (0.000924) (0.000853)

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 11. Differences of sample interval (non-OECD).

Sample
Interval

Variables
Production Energy Consumption Pollution

Diff-GMM Sys-GMM Diff-GMM Sys-GMM Diff-GMM Sys-GMM

2015–2019

ino 1.014 * −0.0358 0.0137 * −0.00337 0.0131 −0.0206 *
(1.181) (0.0355) (0.0786) (0.0546) (0.0602) (0.0117)

stemp
Wt −0.00278 0.0103 −0.00128 −0.000340

(0.0137) (0.00646) (0.00662) (0.00331)
wtemp −0.0180 −0.00542 −8.57 × 10−5 0.00107

(0.0118) (0.00447) (0.0100) (0.00152)

2010–2019

ino 0.563 *** 0.0882 *** 0.0304 0.0838 * −0.0961 *** −0.00994 **
(0.0976) (0.0200) (0.126) (0.0745) (0.0260) (0.00431)

stemp
Wt −0.0270 −0.0318 * 0.00655 * 0.000566

(0.0260) (0.0167) (0.00362) (0.000621)
wtemp 0.0504 ** 0.0394 *** −0.00647 *** 2.57 × 10−5

(0.0207) (0.0116) (0.00189) (0.000346)

2000–2019

ino 0.124 *** 0.0306 *** −0.146 *** −0.00251 0.0105 0.00264
(0.00298) (0.00391) (0.0509) (0.0266) (0.00685) (0.00542)

stemp
Wt 0.00104 −0.0373 *** 0.000712 −0.00359 **

(0.0123) (0.00831) (0.00174) (0.00143)
wtemp 0.0264 *** 0.00360 −0.00149 0.00163 ***

(0.00594) (0.00652) (0.00151) (0.000352)

Note: Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

In addition, the impact of climate change factors represented by temperature on
renewable energy consumption is not significant in the short term and only begins to
be significant in the medium to long term, which may make it possible that because
climate change is not evident to people in the short term, it is often experienced over a
long period of time before significant climate change is manifested, which in turn affects
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people’s energy consumption activities. From the perspective of greenhouse gas emissions,
innovation input has a dampening effect on greenhouse gas emissions in OECD countries
that diminishes over time. In non-OECD countries, on the other hand, innovation input
has a significant dampening effect only in the medium term. The effect of climate variables
on GHG emissions in different countries is weaker in the short term than in the medium
and long term.

In summary, compared with similar studies, it is confirmed that innovation input
and climate change are important variables affecting renewable energy consumption,
greenhouse gas emissions, and green economic growth. In contrast to other literature,
this paper finds that the effects of industrialization and innovation inputs on energy
consumption are significantly different in OECD countries. This should be because OECD
countries are mostly developed countries, while non-OECD countries are developing
countries, and being an OECD country or not indicates being at different stages of economic
development. The different development realities and needs lead to different effects of
industrialization and innovation inputs. In addition, the paper finds that the intensity of
the impact of innovation inputs on economic growth, energy consumption, and pollution
emissions varies over time, which indicates the time lag in the application of technological
innovations generated by innovation inputs, and on the other hand the fact that new
technology will eventually fall behind over time, which is the reason for the need to
constantly innovate inputs and technological innovations.

5. Conclusions and Policy Recommendations

The results of this paper show that: firstly, both renewable energy consumption and
innovation inputs have a significant impact on green economic growth, and the impact of
innovation inputs is stronger in non-OECD countries. Secondly, green economic develop-
ment, industrialization, and innovation inputs all boost renewable energy consumption in
OECD countries, while the opposite is true for non-OECD countries. Third, while climate
change increases energy consumption, renewable energy consumption significantly reduces
greenhouse gas emissions in both OECD and non-OECD countries, especially for OECD
countries with high renewable energy consumption and high energy efficiency. Fourth,
innovation inputs contribute to green economic growth in both OECD and non-OECD
countries. Innovative inputs have significantly increased renewable energy consumption
and reduced greenhouse gas emissions in OECD countries. Finally, innovation inputs
have a large impact on the energy-environment-growth nexus in the short term, while the
impact is more significant in the medium to long term. At the same time, the impact of
climate change on the energy-environment nexus in OECD and non-OECD countries is
more significant in the medium to long term.

Based on the above empirical results, the policy implications are as follows:

(1) Renewable energy consumption promotes green economic growth and vice versa.
Therefore, OECD and non-OECD countries should speed up the transformation and
upgrading, increase the proportion of new and renewable energy sources, promote
the low carbonization of the energy system, fully develop and utilize renewable
energy such as solar energy, thermal energy, wind energy, biofuels and nuclear energy,
and build an efficient and clean energy consumption system. In addition, OECD
countries can also build an industrial chain system for energy storage and then to
the application link, realize the coordinated development of the upstream, middle
and downstream, and produce high-quality, high-tech, and high-value-added green
products, to achieve green economic growth.

(2) Renewable energy consumption reduces greenhouse gas emissions caused by climate
change. Therefore, OECD and non-OECD countries should give priority to promoting
the development of renewable energy and adjusting the energy structure, gradually
increasing the proportion of non-fossil energy consumption, and accelerating the
construction of a clean, low-carbon, safe, and efficient energy system. At the same
time, non-OECD countries should also strengthen the macro policy guidance and legal
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protection functions related to renewable energy development and set sustainable
development goals and strategic ideas.

(3) Innovation investment promotes green economy growth in OECD and non-OECD
countries. Therefore, OECD and non-OECD countries should pay close attention to
the iterative trend of global renewable energy technologies and increase financial
support for renewable energy technology R&D, increase support for energy conser-
vation and emission reduction technology R&D through financial allocations, tax
exemptions, simplified administrative approvals, and scientific and technological
innovation incentives, support the development of high-tech industries, establish
and improve the energy conservation and emission reduction technology industrial
system, thus achieving continuous innovation and development of technology. In
addition, OECD and non-OECD countries should also strengthen the guiding role of
financial funds in technology research and development, enrich the construction of
research and development mechanisms, open up production, learning, and research
channels, and attach importance to the long-term applicability and social effects of
renewable technology selection and deployment.

(4) The impact of innovation input on the energy-environment-growth nexus is greater in
the short term and more significant in the medium and long term. Therefore, OECD
and non-OECD countries should set up a long-term renewable energy development
strategy, clarify the long-term goals of renewable energy development and make
long-term arrangements for the research and development of key renewable energy
technologies such as solar and nuclear energy. At the same time, OECD countries
should increase innovation investment, pay attention to renewable energy talent
training, research and development, and industrial system construction, establish
specialized R&D institutions, support the development of renewable energy scientific
research, technology development, and industrial services, and train generations of
talents with innovative consciousness, core technologies, and challenging spirit, thus
promoting the long-term development of renewable energy technology progress and
industrialization.

(5) The impact of climate change on the energy-environment nexus is more significant
in the medium and long term. Therefore, OECD and non-OECD countries should
formulate long-term sustainable policies to cope with climate change, closely follow
the implementation of policy objectives, and give flexibility to dynamic adjustment of
policies. OECD countries should pay attention to the binding role of laws, timely study
and launch climate law, and “legalize” the medium and long-term emission reduction
targets. At the same time, OECD and non-OECD countries should strengthen practical
cooperation with countries along the belt and road in the fields of green production
capacity cooperation and green financial standards, to build a fair and reasonable
global climate governance system with win-win cooperation.
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Abstract: The process of carbon neutrality does have economic costs; however, few studies have
measured the cost and the economic neutral opportunities. This paper uses a dynamic computable
general equilibrium (CGE) model to simulate China’s carbon neutrality path from 2020 to 2060 and
analyzes its economic impact. This paper innovatively adjusts the CGE modeling technology and
simulates the boundary of the Porter hypothesis on the premise of economic neutrality. The results
show that the carbon neutrality target may reduce the annual GDP growth rate by about 0.8% in
2020–2060. To make the carbon pricing method under the carbon neutrality framework meet the
strong version of the Porter hypothesis (or economic neutrality), China must increase its annual
total factor productivity by 0.56–0.57% in 2020–2060; this is hard to achieve. In addition, the study
finds that China’s 2030 carbon target has little impact on the economy, but the achievement of the
2060 carbon neutrality target will have a significant effect. Therefore, the paper believes that the key
to carbon neutrality lies in the coexistence of technological innovation and carbon pricing to ensure
that we can cope with global warming with the lowest cost and resistance.

Keywords: carbon neutrality; China; economic impact; computable general equilibrium model;
carbon tax; carbon emission trading scheme

1. Introduction

This paper studies the possible economic impact of China’s carbon neutrality process
and studies how many total factor productivity increases can make up for the economic
losses; that is, under what conditions the strong version of the Porter hypothesis can be
established. The strong version of the Porter hypothesis [1] means that reasonable and
strict environmental regulation can stimulate enterprise innovation and hedge the costs
caused by environmental regulation.

1.1. Background and Motivation

Many countries have announced their target goals on carbon neutrality. In the low-
carbon development process, EU countries are at the forefront of the world both in tech-
nologies and management [2,3]. The EU proposes to achieve the goal of carbon neutrality
by 2050, and China has announced the goal of carbon neutrality in 2060, indicating that
nearly 1/3 of the world’s emissions will go zero in 2060 [4,5]. However, no matter how we
talk about carbon neutrality, we still need to consider the economics of carbon neutrality
because there is indeed a strong trade-off between emission mitigation and economic devel-
opment [6–8], regardless of many opposite hypotheses, such as the Porter hypothesis [9,10].
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If the cost of emission mitigation is beyond expectation, governments may reduce their
interest in reducing emissions.

Certainly, measuring the cost of emission mitigation, especially carbon neutrality, is
essential for us human beings. The existing literature has estimated the marginal cost or
efficiency cost of emission mitigation in many ways from different perspectives. Qin et al.
(2019) [11] simulated the cost-effectiveness of China’s green transition during the 12th
five-year plan (2011–2015). Wang et al. (2016) [12] found that different regions have totally
different abatement costs (measured by shadow price), and potential emissions (measured
by the growth rates of emissions and economic outputs), highlighting the importance of
specializing the carbon mitigation policies among the different regions. Cui et al. (2014) [13]
applied a computable general equilibrium model to simulate the cost-saving effect of the
emission trading scheme (ETS) and found that the carbon emissions trading only covered
the pilots and that the unified carbon emissions trading market could reduce the total
abatement costs by 4.50% and 23.67%.

However, only measuring the economic cost may not be enough. The economic
cost varies by space and time. Using the directional distance function model, Wang et al.
(2020) [14] measured the policy effects on CO2 emission mitigation and abatement costs
during the 13th Five-Year Plan (2016–2020) in China. They found high emission mitigation
targets accompanied by high emission reduction costs. In the short term, the impact on
different targets is not that obvious, but as time goes by, the effect increases. Uncertainties
also affect the cost. Guo et al. (2019) [15] used a stochastic dynamic programming model to
evaluate the impacts of uncertainties on the abatement planning process and found that
uncertainties could increase the total abatement costs by around 5–7%.

Reducing the cost of the carbon mitigation policy is an essential topic of emission
mitigation strategies [16]. Scholars have focused on the following methods: the clean
development mechanism (CDM) [17], certified emission reduction (CER), carbon linkage,
and low-carbon technologies. Wang et al. (2016) [18] analyzed the cost–benefit of waste-
to-energy projects under China’s clean development mechanism. They found that with or
without the CDM, there is still a huge GHG reduction potential in solid waste management
in China, which may reduce the cost of emission mitigation in China. Li et al. (2019) [19]
found that the Chinese Certified Emission Reduction (CCER) scheme saves the national
carbon trading system costs by applying a game theory. Zhang et al. (2019) [20] found
that carbon linkage could reduce China’s ETS pilots’ carbon emission trading scheme’s
cost. Sun et al. (2018) [21] argued that most low-carbon technologies are cost-effective, with
average annual cost savings of 71.43 billion CNY. Johansson et al. (2020) [22] found that
the biofuels mandate in the United States reduced the emission reduction cost significantly,
ranging up to 20 USD per ton. The Canadian case study finds a similar perspective [23].

Similar to the perspectives in the literature above [13], this paper also considers carbon
pricing as a relatively cost-effective way to reduce emissions. Carbon pricing has proven
effective in many regions and has been studied from many perspectives [24–27]. Among
them, carbon emission trading schemes and carbon tax (CT) are two of the most popular
mitigation strategies.

In 1990, the Netherlands began to levy a carbon tax: one of the earliest countries in the
world to impose carbon taxes [28]. Sweden and Denmark also have strong and effective
carbon tax policies [29–31]. The carbon tax policies of many countries, such as the United
States, Australia, France, China, and Japan, are full of twists and turns. However, in most
of these countries, a new kind of carbon pricing occurred: ETS. California seems to be
the only state in the USA that has implemented a cap-and-trade scheme since 2013 [32].
EU-ETS is the first and the largest ETS in the world currently [33,34]. In 2010, the world’s
first city-level compulsory emission trading system was established in Tokyo, Japan. Then,
Saitama Prefecture established the emission trading system in 2011. Saitama Prefecture’s
ETS is mainly a copy of the Tokyo ETS [35]. China’s ETS pilot started in 2013 [36], and
China’s national ETS has already officially commenced on July 16, 2021. The revenue
recycling scheme is one of the most concerning topics that may affect emission mitigation
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efficiency. For example, Liu and Lu (2015) [37] argued that the recycling scheme matters
in the long-term effect of the carbon tax and the sectors’ burden. Sun et al. (2021) [38]
designed a recycling scheme to improve the emission mitigation effect and reduce the gross
domestic product (GDP) loss.

Until now, there have been many studies focusing on the comparison of carbon pricing
strategies [39]. However, it seems that there is little in the literature focusing on the
economic losses of the strategies and no paper measuring how much of the productivity
should be improved to neutralize the economic losses, or in other words, the boundary of
the Porter hypothesis. It is the knowledge gap that this paper wants to fill. To fill the gap,
the paper first measures the GDP loss of ETS and CT under carbon neutrality, then focuses
on the changes by carbon neutrality and the boundary of the strong Porter hypothesis
using CGE modeling technology.

1.2. Contributions and Paper Structure

Although existing papers focus on carbon neutrality, little in the literature studies
the economic cost of carbon neutrality by applying carbon pricing [40–42]. Thus, this
paper wants to fill the knowledge gap, for exploring the impact of carbon neutrality
by emission trading and carbon tax from the perspective of GDP loss, energy structure,
the compensation of the total factor productivity, and commodity price. The specific
contributions and findings of the paper are shown below:

1. The paper finds that the cost of achieving carbon neutrality is in reducing the average
annual growth rate in 2020–2060 by about 0.8%. The annual growth rate of the GDP
will decrease from 1.2% to 1.8% in 2050–2060.

2. Carbon tax and carbon trading can significantly increase the share of renewable energy
and make the energy system cleaner. Coal consumption in the counterfactual scenario
will be cut in half compared with the benchmark, and the total energy demand will
be reduced significantly because of the high actual energy prices.

3. If the whole society wants to make up for the loss of GDP, then in 2020–2060, society’s
average annual total factor productivity (TFP) must increase by 0.56–0.57% compared
with the benchmark scenario. In other words, an additional 0.56–0.57% of the annual
TFP growth could meet the strong Porter hypothesis.

4. The improvement of TFP can further stimulate the renewable energy structure and
may reduce the producer’s price of all kinds of goods. Therefore, technological
progress may be the key to reducing the negative impact of achieving the carbon
neutrality target.

The rest of the paper is organized as follows: Section 2 is the scenario design, which
is the paper’s exogenous assumptions. Section 3 introduces the paper’s methodology,
including the introduction of the computable general equilibrium (CGE) model used in the
article, the dynamic method, and the data source. Section 4 presents the results of carbon
neutrality impacts during 2020–2060 and discusses the results. Section 5 further assumes
that the increase in TFP makes the process of carbon neutrality economically neutral (no
impact on GDP), then presents and discusses the results. Section 6 discusses the key results
found in the paper and compares them with other examples in the literature. Section 7
concludes the paper’s results and proposes policy implications.

2. Scenario Design

The most important part of carbon neutrality is carbon emissions. This paper does not
consider the impact of adding negative carbon emission technology at present because if
negative carbon emission technology is to be added (such as forest carbon sequestration
and carbon capture), more assumptions will be included in the model, which may affect
the robustness of the model’s conclusions.

We need to consider the remaining emissions by fossil energy consumption which are
challenging to replace, such as air transportation, marine transportation, and energy chemi-
cals, that will be captured by negative carbon emission technology. The paper calculates the
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emission share of these sectors from the total emissions in 2019 from the CEADs database
(https://www.ceads.net.cn/, accessed on 1 November 2022) to be about 9%. Considering
how other sectors may have positive emissions (increasing remaining emissions) and land
transportation may be substituted by electric vehicles (reducing remaining emissions), the
paper holds the assumption of 9% remaining. Thus, we have assumed a significant reduc-
tion in carbon emissions by 2060 caused by carbon neutrality measures such as ETS and CT,
which is 91% lower than the baseline (BAU) scenario (Figure 1). Although negative carbon
emission technology is not included in the model, we still need to assume the existence of
negative carbon emission technology to ensure the reliability of the scenario simulation.

Figure 1. Energy-related CO2 emissions during 2020-2060 in all scenarios. Notes: the bar chart shows
the carbon emissions in 2020-2060 under different scenarios. The line chart shows the reduction
rate of carbon emissions in the CF scenarios in each year compared with the BAU scenario. The CF
scenarios include the ETS and the CT scenarios, which are illustrated in Table 1.

Table 1. The first scenario design.

Scenario Design Descriptions

BAU Assuming that there are no carbon pricing measures.

CT Assuming that carbon tax is imposed in 2021 and full carbon tax
coverage will be introduced in 2040.

ETS Assuming that carbon emission trading is constructed in 2021 and
full coverage of ETS will be introduced in 2040.

This paper assumes that China mainly uses carbon pricing to achieve the goal of
carbon neutrality. The carbon tax is a long-discussed carbon pricing strategy for Chinese
policymakers. Although a national carbon trading market was online in 2021, the current
carbon trading market only covers the power generation industry, mainly because of
the poor quality of data detection [43]. Therefore, a carbon tax may be a supplementary
policy for China’s carbon trading market or may even become the primary emission
mitigation strategy.

In other words, at present, the carbon trading mechanism is relatively mainstream,
and the positive stimulating effect of such a mechanism on enterprises seems to be more
pronounced. Therefore, China may gradually improve the quality of monitoring, reporting,
and verification (MRV) and cover more industries in the carbon trading system. Thus, ETS
may also become the primary emission mitigation strategy in China.

Therefore, this paper first considers the construction of a CGE model based on the
benchmark scenario, named the BAU scenario, and then constructs the CGE model based
on the carbon tax or carbon trading scenario under the carbon neutrality framework and
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then compares the results of the carbon neutrality scenarios and the BAU scenario through
similar analyzing methods for the experimental group and the control group. The scenario
design is shown in Table 1. The paper assumes that the coverage of CT and ETS is in
line with China’s government plan; all the energy-intensive industries will be covered by
carbon pricing [44]. Moreover, in 2040, carbon pricing will cover all kinds of enterprises.

3. Methodology

3.1. CGE Model
3.1.1. Why Do We Choose CGE Model?

Generally speaking, if we want to simulate an event that does not actually happen,
and the event will lead to significant changes in the economic structure, the data-driven
empirical evidence model will no longer be applicable, such as the econometric model
(for example, the panel model, generalized method of moment model, time-series model),
and machine learning (such as the BP neural network algorithm, genetic algorithm, and
hybrid algorithm).

Therefore, when considering the simulation of 2060 carbon neutrality, we need to use
the scenario analysis model, which is good at simulating counterfactual events. For exam-
ple, the LEAP (long-range energy alternatives planning system) model, system dynamics,
DSGE (dynamic stochastic general equilibrium) model, and the CGE model.

However, among these scenario analysis models, only the CGE model can describe
the relationship between industries in detail because the CGE model is the model with the
largest data demand (requiring the input-output table and other data, energy, and emission
data of various departments), and it is also a model with relatively weak assumptions.
The CGE model can simulate the behavior of maximizing the utility/profit of enterprises,
residents, governments, and foreign manufacturers. Additionally, the model considers the
mutual restriction relationship between different actors.

3.1.2. The Brief Introduction of CGE Model

The model is widely used to simulate various policies’ macro impact [45–47]. This
paper’s CGE model is from the existing literature, and the exogenous parameters in the
model are basically passed through several rounds of inspection [48–50], and the substitu-
tion elasticity is set based on a well-known CGE model [51,52]. The CGE model constructed
in this paper includes more than 3200 endogenous variables and corresponding equa-
tions. It considers the behavior patterns of residents, enterprises, the government, and
international firms. It is mainly based on a general equilibrium theory (advanced theory
of game theory) and a large number of microeconomic theories (such as manufacturer
behavior theory, resident consumption theory, etc). In order to couple the energy and
environment block, we additionally considered the relevant theories of energy economics
and environmental economics.

The applied model’s name is the China Energy-Environment-Economy Analysis 2.0
(CEEEA) model, and it is a dynamic recursive model considering multi-sector and multi-
households. The flow chart for establishing and simulating the CGE model is shown in
Figure 2. It has five blocks:

1. Production block. This block describes the production behavior in all sectors. These
behaviors are simulated by the constant elasticity of substitution (CES) production
function considering the energy input, labor input, capital input, Leontief technology,
and the intermediate inputs aggregation.

2. Trade block. The block expresses the import behavior of domestic consumers and the
export behavior of domestic sectors. The former is simulated by the CES function,
and the latter is simulated by constant elasticity of transformation (CET) technology.

3. Income and expenditure block. This block expresses the cash flow among four main
economic entities: government, households, firms, and the foreign world.

4. Energy and environment block. The block describes the relationship between energy
use in the energy balance table and energy input in the input-output table, the rela-
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tionship between energy use and CO2 emissions, and the carbon pricing strategies of
the government.

5. Macroscopic closure and market-clearing block. This block is used to simulate the clo-
sure conditions and market-clearing assumptions of the whole economy. Based on the
neoclassical macro-closure conditions, the model considers the clearing of commodity
and factor markets and assumes that there is no factor redundancy or shortage.

Figure 2. Flow chart of constructing and simulating the CGE model.

3.2. Dynamics

In this paper, the recursive method is used to make the CGE model dynamic. In
general, the dynamic strategy under Neoclassical assumptions entails the growth of labor
endowment, capital endowment, and technological progress. This paper makes fundamen-
tal assumptions about labor growth and calculates capital endowment using the perpetual
inventory method. This paper simulates the total factor productivity (TFP) by setting
exogenous GDP as an economic growth path and endogenous TFP first. Then, the pa-
per uses TFP as the exogenous variable to simulate all scenarios, considering the steady
technological progress.

Except for carbon pricing and leading to different carbon emission pathways, this
paper assumes that all exogenous variables in the counterfactual (CF) scenario are the same
as in the BAU scenario. The model additionally assumes the same total CO2 emissions in
the CT and ETS scenarios. The significance of this assumption is that it is assumed that the
government’s carbon pricing parameters are used to control the total amount of carbon
emissions, and that the CT and ETS scenarios have the same carbon emissions making the
scenario comparison more scientific.

3.3. Data Source

Most of the data in China’s input-output table, the energy consumption data in China’s
energy statistical yearbook, and CO2 emission data in the CEADs database are required in
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the model. Based on these data, the study compiles a social accounting matrix and energy
balance table. The paper re-classifies the sectors, as presented in Table 2.

Table 2. Sector classification.

Abbreviation of the Sectors Sectors

AGR Primary industry
COL Coal mining

COLP Coal processing
O_G Oil and gas exploitation

REFO Refined oil
REFG Refined gas
OMIN Other mining’s
LGT Other mining industries
CMC Chemicals
BMTL Building material

STL Steel
MTL_P Metal products

MFT Manufacturing
THP Thermal power
HYP Hydropower
WDP Wind power
NCP Nuclear power
SOP Solar power
CST Construction

TSPT Transportation
SER Services

At present, the latest input-output table has been updated to 2020, but we have not
adopted it. The main reasons are: (1) The 2020 table is an extended table based on the 2017
table, and there may be a larger difference between the intermediate input value in the
table and the actual situation. (2) The year 2020 witnessed the COVID-19 pandemic, so the
data on transportation, tourism, and other industries cannot reflect the normal economic
operation. Therefore, in order to ensure the reliability of the simulation, we conducted the
simulation based on the table in 2018 (there was no input-output table in 2019). In addition,
we believe that the epidemic will eventually pass and that society will gradually return to
normal. Therefore, it is significantly better to simulate the relationship among industries,
households, and government with data in 2018 than with data in 2020.

This paper obtains the physical quantity of energy consumption in various industries
through China’s energy statistical yearbook. However, the energy consumption data by
industry in the China energy statistics yearbook is different from the industrial division in
this paper, and the article integrates the sectors. For the sectors that need to be split, this
paper separates them through the corresponding input-output coefficient.

Data on carbon emissions. Based on the calculated energy consumption data of re-
classified sectors, IPCC’s carbon emission calculation references and data, such as the
average low calorific value, carbon content per unit calorific value, and carbon oxidation
rate, are calculated in this paper through the carbon dioxide emission of these sectors.

Tax and resident income. The cash flow among the government, households, and firms
is also simulated in this paper. So, factor income and direct tax are required and derived
from the CEIC database (https://www.ceicdata.com/en, accessed on 1 November 2022).

It should be noted that if we have IOT from different regions and some relevant
data, after sector adaptation and parameter calibration, the model can be used in any
country with data support. However, due to the difference in the industry classification,
productivity level, and trade relations in different countries, the results will be very different.
Therefore, although the model in this paper can be applied to most countries, the research
conclusion can only be considered unchanged.
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4. Simulation Results

4.1. The Basic Situation in the BAU Scenario

The BAU scenario is the benchmark scenario of the paper; that is, almost all results
are based on the comparison between the CT/ETS scenario and the BAU scenario. So, the
paper needs to report the basic information about the BAU scenario first.

The CO2 emissions in 2060 will be about 16.1 billion tons, increasing by 43% compared
with 2020 emissions, which is illustrated in Figure 1. In terms of the primary energy
structure, in the BAU scenario in 2060, China’s primary fossil energy accounts for 32.0%, and
the primary electricity (renewable energy) accounts for 68.0%. The energy structure is much
better than the current situation, but there is still a big gap from in carbon neutrality goal.

Because this paper uses a long-term model, we do not consider using Keynesian macro
closure conditions but neoclassical macro closure conditions. That is, the factor is fully
utilized. Therefore, the main constraints of the whole model come from factor endowment.
Thus, in the dynamic process, this paper considers the technological progress and changes
in factor endowment (Section 3.2). The changes in capital and labor endowments and
technological progress will lead to an increase in GDP. Without carbon constraints, the
GDP in the BAU scenario will increase to 739 trillion CNY in 2060, with the primary sectors
accounting for 9.3%, the secondary sectors accounting for 25.2%, and the tertiary sectors
accounting for 65.5%. In the labor market, the labor population of the primary sectors
accounts for 16.9%. Among them, the secondary sectors account for 16.0%, the tertiary
sectors account for 65.5%, and the tertiary industry accounts for 67.1%.

4.2. Impacts on GDP

Figure 3 shows the impact of CT and ETs on the gross domestic product (GDP). The
bar shows the GDP every five years, and the line shows the average annual growth rate of
these five years. In the BAU scenario, China’s GDP growth rate gradually decreases. The
growth rate will be 5.5% in 2020–2025 but will reduce to 4.50% in 2055–2060. The BAU
scenario’s GDP settings are similar to several relevant studies. For instance, compared with
Fang et al. (2015) [53], the path is pessimistic about the GDP growth from 2020 to 2040
but relatively optimistic from 2040 to 2060. However, in general, it is a fairly optimistic
estimate compared with the other literature [54] because this paper considers that China is
a developing country with a vast population and is implementing the rural revitalization
strategy, so there is still much room for GDP growth in rural and backward areas.

Figure 3. Impacts on GDP during 2020–2060.

Note that from 2021 to 2060, the average annual growth rate of the CT scenario was
4.23%, and in the ETS scenario, the average annual growth rate was 4.22%, indicating that
the growth rate in the two counterfactual scenarios is similar to each other. As under the
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same emission mitigation path, there may be little differences between the economic impact
of the full coverage carbon tax and carbon trading [39].

In the long run, it seems that there is no apparent difference in the impact of the carbon
tax and carbon trading covering the same industry and emission mitigation on the total
economy. In the early stage of the carbon neutrality process (2020–2040), the economic
loss caused by the carbon pricing method will not be substantial. However, with the strict
carbon emission reduction targets, economic losses gradually increased. From 2035 to 2040,
the target of carbon neutrality will reduce economic growth by 0.6%; from 2055 to 2060, the
economic growth will decrease by 1.7% in the final period of carbon neutrality. In summary,
in the year 2020–2060, the average growth rate of the BAU scenario is about 5.0%, while the
average growth rate under the carbon-neutral framework is around 4.2%: a decrease of
about 0.8%.

4.3. Impacts on the Energy Mix

As renewable energy is the key to further energy supply [55], we need to focus
on the energy mix in the long-term simulation. Figure 4 illustrates the impacts on the
primary energy structure in 2060 and the energy mix in the 2020 BAU scenario. The electric
power industry is the main source of carbon emissions in China, especially the coal-fired
plant [56]. In the BAU scenario, the primary fossil energy has significantly reduced to
32.0% in 2060. A total of 21.0% of the primary energy is from coal consumption, and oil
and gas account for 11.04%, while renewables account for 68.0%. Under China’s current
investment situation (dynamic investment preference of each scenario), China’s renewable
energy will significantly thrive and accounts for a large share. However, coal still accounts
for about 1/5 of the primary power. Many examples in the literature also believe that
the carbon pricing mechanism may increase the renewable energy share, consistent with
relevant research [57,58].

In CT and ETS scenarios, coal consumption will be nearly cut in half in 2060. Moreover,
the share of renewables will increase by 3.7–4.8%. The increase will be more significant
in the ETS scenario by 4.8%. The percentage of oil and gas will increase by 6.0% and
4.8% in CT and ETS scenarios, respectively. However, the increasing share does not mean
increasing consumption, as the total energy demand will significantly reduce under carbon
neutrality scenarios. Under the carbon neutrality target, it seems that oil will be more
difficult to remove than coal. The main reason for this may be that oil is more inclined to be
used by the transportation industry and service industry, which is somehow irreplaceable,
especially in air and water traffic.

4.4. Impacts on the Producer Price Index

Figure 5 depicts the impact on all sectors’ producer price indexes in 2060. We found
that energy-intensive industries are the most vulnerable sectors when achieving carbon
neutrality targets. Energy processing sectors, such as the processing of coal, oil, and gas
(COLP, REFO, and REFG), will be the first three most affected sectors. The results are
similar to the relevant literature [59,60]. The prices in 2060 will increase by more than 300%
compared with the 2060 BAU scenario. Steel and thermal power prices will increase by
about 200% because coke (COLP sector) and raw coal (COL sector) are among the main
upstream products of steel and thermal power. The rise in raw materials is a significant
factor in the price rises of these sectors.
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Figure 4. Impacts on energy structure in 2060. (a) BAU scenario in 2020; (b) BAU scenario in 2060;
(c) CT scenario in 2060; (d) ETS scenario in 2060.

Figure 5. Impacts on producer price index in 2060.
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In addition, we noticed that the price of low energy-intensive sectors, such as agri-
culture and services, may not be affected too much by the carbon neutrality target. The
price of agriculture and services will increase by about 17.5% and 18.5%, respectively. The
price rises in these industries may be caused by the combined effects of the price rise of
other industries.

5. The Boundary of Porter Hypothesis under Carbon Neutrality

5.1. Scenario Design

The Porter hypothesis is an important issue related to carbon constraint. The weak
version of the hypothesis describes how appropriate environmental regulations will stim-
ulate technological innovation, while the strong version expresses that environmental
regulation positively affects total factor productivity (TFP) or business performance by
stimulating technological innovation. This paper focuses on TFP to test the boundary of
the Porter hypothesis rather than green productivity, such as in many papers [61] because
the definition of the strong version of the hypothesis is productivity.

The two types of carbon pricing models studied in this paper belong to environmental
regulation. Therefore, the article wants to simulate the border of the Porter hypothesis in
the CT and ETS scenarios. In the CGE model, the TFP of the sector is given exogenously.
Therefore, the CGE model implies a critical assumption: the carbon pricing strategy will
not affect the change in TFP. Thus, the model cannot use the CGE model to directly verify
whether the Porter hypothesis is valid in a region. However, it can study the boundary
of the Porter hypothesis through modeling technology: the changes in endogenous and
exogenous variables. This section intends to discuss how much additional TFP is needed
to increase and meet economic neutrality under carbon neutrality. In other words, what the
study wants to know in this section is how much more TFP the enterprise needs to improve
and meet the carbon neutrality target without reducing GDP.

Based on this idea, additional research and designs are carried out. We first add the
endogenous TFP exchange rates to the scale factor in the CES production function in a
value-added bundle and make GDP exogenous to be the same as BAU’s GDP. Specifically,
the modeling technology changes can be described in the CES production function and
GDP calculation, as presented in Equations (1) and (2):

Yit = Ait

(
∑j δij Inputρi

ijt

)1/ρi
(1)

GDPt = ∑i(XPit + XGit + XVit + EXit − IMit) (2)

where Yit is the gross output in sector i and period t. The sector produces goods and
services through the CES production function technology. Ait is the TFP in sector i and
period t. δij is the share parameter of input j in the production process by sector i, and
ρi is the elasticity parameter. Inputijt is the total input of factor j in period t. GDPt is the
gross domestic product in period t, while XPit, XGit, XVit, EXit, and IMit are household
consumption, government consumption, investment, export, and import.

Usually, Ait is the exogenous variable and GDPt is the endogenous variable in the
model, which means that we performed the comparative analysis based on the same
technology level, and we can analyze different external shocks on GDP or other endogenous
variables. However, this section wants to explore the border of the strong version of the
Porter hypothesis. So, the TFP should be the endogenous variable, and GDP should be
controlled to be equal to BAU’s GDP in other scenarios. Therefore, the paper changes the
model by Equations (3) and (4):

Yc f
it = (1 + ϑ)Ait

(
∑j δij Inputc f

it
ρi
ijt

)1/ρi
(3)

GDPt = ∑i

(
XPc f

it + XGc f
it + XVc f

it + EXc f
it − IMc f

it

)
(4)
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where ϑ, which is an endogenous variable that catches the changes in TFP in the condition
of the same GDP. The variables with superscript c f denote that they are endogenous
variables in this section whose values are different from those in the previous section. GDPt
is an exogenous variable, which is the same in all scenarios in this section. Other settings
are the same as in Section 4. The scenario design in this section is described in Table 3.

Table 3. The second scenario design.

Scenario Design Descriptions

BAU Assuming that there are no carbon pricing measures.

CT-TFP
Assuming that carbon tax is imposed in 2021 and full coverage of
carbon tax will be introduced in 2040. The average TFP will be
increased additionally to meet economic neutrality.

ETS-TFP
Assuming that carbon emission trading is constructed in 2021 and
full coverage of ETS will be introduced in 2040. The average TFP will
be increased additionally to meet economic neutrality.

5.2. Results
5.2.1. Additional TFP: Boundary of Strong Porter Hypothesis

Figure 6 depicts the additional TFP needed for economic neutrality during 2020–2060.
The additional TFP required for carbon peak (2030) is not large, but after 2035, a higher TFP
growth is needed every year to maintain GDP unchanged. For reaching the emission peak,
only an additional 0.056% of total factor productivity per year is required to keep the GDP
unchanged during 2020–2030. In contrast, 0.564–0.568% additional TFP is needed per year
during 2020–2060 to keep the GDP unchanged for the carbon neutrality goal in 2060. It
shows that the difficulty of carbon neutrality may be far more incredible than that of carbon
peaking. To achieve the goal of carbon neutrality, we may need both policy guidance and
technological change.

Figure 6. Additional TFP needed for economic neutrality during 2020–2060 (five-year smoothing index).

5.2.2. Impacts on the Energy Mix

Figure 7 illustrates the energy structure of all countermeasure scenarios. To better
compare the impact of TFP improvement, we also put the CT scenario and the ETS scenario
into Figure 7 for better comparative analysis. The results show that an increase in TFP will
further increase the share of renewable energy. The share of renewables will increase by
3.7–3.9% in CT-TFP and ETS-TFP scenarios compared with that in CT and ETS scenarios.
A possible reason is that technological progress leads to the increase in TFP, which leads
to lower prices and higher demand. Simultaneously, due to the limitation of carbon
emissions, more energy demand can only be satisfied by the growth of renewable energy.
Thus, TFP growth may increase the share of renewable energy under the constraint of
carbon emissions.
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Figure 7. Impacts on energy structure in 2060. (a) CT scenario in 2060; (b) CT-TFP scenario in 2060;
(c) ETS scenario in 2060; (d) ETS-TFP scenario in 2060.

5.2.3. Impacts on PPI

Figure 8 expresses the PPI changes. Due to the improvement of TFP, PPI changes
in various products and services show apparent inconsistency. Specifically, the prices
of energy-intensive commodities (such as refined oil and refined gas) have increased
to a certain extent. Nevertheless, the PPI of non-energy-intensive enterprises, such as
agriculture, light industry, and service industry, has decreased significantly.

The overall PPI is declining, but there is heterogeneity in the PPI of different in-
dustries. The main reason is that the increase in total factor productivity reduces the
production cost of enterprises, so the overall price will decrease. However, due to the
constraints of carbon emissions under the carbon neutrality target, carbon pricing will
increase due to the increased energy demand, which will increase the product prices of
energy-intensive enterprises.
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Figure 8. Impacts on producer price index in 2060.

6. Discussions

The results of this paper show that the economic cost of carbon neutralization is very
large. If we want to make up for this part of the economic loss, we need an additional TFP
growth of about 0.564–0.568% per year.

How difficult is the 0.564–0.568% annual additional TFP growth? According to Park
(2012) [62], the TFP growth in most Asian countries (such as China, Japan, Korea, Thailand,
Pakistan, and India) will range from 0.95% to 2.66% during 2010–2030. Additionally, the
US’s TFP growth ranged from 0%–3% during 2000–2020 [63]. Although we could not find
the literature about the long-term TFP growth projection, it is certain that China’s TFP
growth will no longer be higher than China is used to, and the annual growth rate may
range from 1% to 2.5%. Thus, the additional 0.568% TFP growth means that the TFP growth
should increase by 22.72% to 56.8%.

The paper also finds other examples in the literature identifying Porter’s hypothesis
from which to take references. Zhao and Sun (2016) [64] argued that flexible control policies
meet the weak Porter hypothesis using 2007–2012 enterprise-level data. Lin and Chen
(2020) [65] supported the strong Porter hypothesis in the non-ferrous metal industry using
province-industry level data in China. Zhou et al. (2021) [66] found that the weak version
hypothesis for China’s revised environmental protection law does not hold using the listed
company’s data. Lanoie et al. (2008) [67] found an average of 3% TFP growth in the
Quebec manufacturing sector brought by environmental regulation. Their study has data
for six years, so the annual additional TFP growth is about 0.5%, which is similar to this
study; however, rather than for the manufacturer, this study is for the whole society. Other
examples in the literature on testing the hypothesis also prove how hard it can be made in
the context of carbon neutrality.

7. Conclusions, Policy Implications, and Limitations

7.1. Conclusions and Policy Implications

The Chinese government announced the goal of achieving carbon neutrality by 2060.
This paper analyzes the impact of carbon pricing (carbon tax and carbon trading) on
the economy and energy through the CGE model. In addition, according to the strong
Porter hypothesis, this paper constructs new scenarios to explore the additional TFP value
under the assumption of GDP neutrality and carbon neutrality, which provides a marginal
contribution to the current literature.

This paper simulates carbon pricing (carbon tax and carbon trading) to achieve carbon
neutrality in 2060. It was found that achieving the carbon neutrality target would reduce
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China’s annual economic growth by about 0.6% during 2020–2060. Carbon pricing can
significantly reduce the share of fossil energy consumption and reduce overall energy
consumption but also partially increase the irreplaceable energy share (such as water and
air transportation and oil consumption). The process of carbon neutrality will significantly
increase the price of energy-intensive products, such as energy-processing products and
steel, and such a process will hardly have a significant impact on agriculture and services.

According to the strong Porter hypothesis, environmental regulations may lead to
technological innovation, thus improving enterprise productivity. In addition, this paper
simulates the additional total factor productivity needed to recover the economic loss
caused by the carbon neutrality target. The results show that TFP needs to increase by
about 0.056% every year from 2020 to 2030 to make up for the economic losses caused by
the 2030 carbon peak. However, if we want to make up for the economic losses caused by
carbon neutrality in 2060, TFP needs to be increased by about 0.568% annually in 2020–2060.
From this point of view, the impact of carbon neutrality on the economy may be far greater
than that of carbon peaking, and the economic cost should be carefully considered. By
referring to the other literature, this paper believes that additional 0.568% annual TFP
growth is hard to achieve, not to mention the cost of increasing productivity.

The growth of TFP will lead to improved production efficiency, and the prices of
most commodities will be reduced by varying degrees, especially the prices of non-energy-
intensive commodities. However, the prices of energy-intensive commodities will rise
due to the dual effects of TFP and carbon neutrality. The main reason for this is that
the increase in TFP will make the factor demand rise, but due to carbon constraints, the
supply of energy-intensive products is restrained. Therefore, in the case of rising demand
and limited supply, the price of energy-intensive products will rise relatively. Similarly,
the growth of TFP will increase the share of renewable energy, mainly because under
the carbon constraint, the additional energy demand must be provided by renewable
energy rather than fossil energy. At the same time, the paper also finds that the price of
renewable generation increases in TFP-related scenarios, which also shows that the demand
for renewable energy will increase with the increase in energy demand and the limitation
of thermal power generation.

These conclusions have a specific significance for our scientific understanding of
carbon neutrality. TFP in 2020–2030 only needs an additional 0.056% to make up for the
economic loss caused by the peak of carbon emissions; however, we need an annual TFP
increase of 0.568% to make up for the economic loss caused by carbon neutrality, and the
GDP growth loss is about 0.6% every year. Therefore, in the process of carbon neutrality,
encouraging enterprise innovation and improving efficiency may be the key to reducing
economic loss and welfare loss.

7.2. Limitations

The boundary of the Porter hypothesis in this paper assumes that all industries should
increase the same level of TFP growth to meet the economic neutrality goals, and it is not the
real case. However, we cannot know the actual change value of TFP in different industries
under the carbon neutrality target. Therefore, we need to understand this boundary as the
average boundary of additional TFP increases in the total society.

Another potential bias of this paper is that the model does not consider the cost of
technological progress. Although the proportion of R&D investment in the total social cost
is low, it may increase under carbon neutrality. Therefore, technological progress is not free.
This paper has no appropriate reference to describe the cost of technological progress. Thus,
the paper may underestimate the boundaries of strong Porter’s hypothesis to some extent.
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Abstract: Promoting the development of new energy vehicles is one of the important measures to
ensure energy security and deal with global warming. Technological innovation is an inexhaustible
driving force for the development of the new energy vehicle industry. This study considered listed
enterprises in China’s new energy vehicle industry as research samples and used the fixed effect model
to study the impact of government subsidies on the quantity and quality of technological innovation
in the new energy vehicle industry. The empirical results show that government subsidies have a
significant positive impact on the quantity of technological innovation in the new energy vehicle
industry; however, government subsidies have no significant impact on the quality of technological
innovation. Government subsidies increase the quantity of technological innovation in the new energy
vehicle industry by increasing R&D investment, mitigating financing constraints, and improving
the external attention of enterprises. Compared to downstream enterprises in the industrial chain,
government subsidies have a better incentive effect on the technological innovation of upstream
enterprises, which increases the number of patents and enhances the quality of utility model patents.
Government subsidies have a better effect on promoting the quantity of technological innovation in
large enterprises.

Keywords: new energy vehicle industry; technological innovation; industrial policy; government
subsidy; innovation quality

1. Introduction

The new energy vehicle industry is a strategic emerging industry that China focuses
on developing. Over the past 40 years, China’s economic development has progressed
significantly. The Chinese government has constantly adjusted economic policies to achieve
coordinated development between the economy and environment. Developing strategic
emerging industries is the key to achieving high-quality development in China. The new
energy vehicle industry has been listed as one of the seven key strategic emerging industries
in the file issued by the State Council named Decision on Speeding up the Cultivation and
Development of Strategic Emerging Industry in 2010. Today, the development of the new
energy vehicle industry can ensure China’s energy security and is an important means of
low-carbon consumption under carbon peaking and carbon neutrality goals (China aims
to reach a CO2 emissions peak before 2030 and achieve carbon neutrality before 2060 to
accelerate the world’s transition to green and low-carbon development).

Developing a new energy vehicle industry is vitally important to energy security for
China, since it has relatively insufficient oil resources and a low crude oil reserve, but has
a very high demand on oil consumption as China has become the world’s second largest
oil consumer in recent years due to economic growth. The country depends significantly
on imported oil from foreign countries, and China’s dependence on imported oil has been
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rising from 5% in the early 1990s to as high as 70% by 2020. The increasing dependence
on imported oil reflects the great risk of China’s energy security. New energy vehicles use
electricity and clean energy fuels as driving forces that can reduce China’s demand on oil
resources, and further ensure China’s energy security.

Developing the new energy vehicle industry can help China achieve carbon peaking
and carbon neutrality goals. In September 2020, the Chinese government proposed the
goals of reaching peak carbon emissions in 2030 and carbon neutrality in 2060. China’s
transportation, thermal power generation, and steel industries are the most important
industries for carbon dioxide emission. Automobile carbon emissions account for up to
three-quarters of the total carbon emissions in the field of transportation [1]. The use
of new energy vehicles has enormous advantages in reducing carbon emissions. The
well-to-wheel greenhouse gas emission intensities of battery electric vehicles (BEVs) is
22–293 g CO2eq/km, while that of gasoline internal combustion engine vehicles (ICEVs)
is 227–245 g CO2eq/km [2]. Developing new energy vehicles is a fast and effective way to
achieve the goal of carbon peaking and carbon neutrality in China.

The development of a new energy vehicle industry cannot do without technological
innovation. Many studies have shown that to promote industry development and achieve
low-carbon transformation, it is necessary to gradually shift from factor driven to innova-
tion driven. Zhao et al. [3] analyzed the R&D incentive mechanism of China’s photovoltaic
industry based on the system dynamics model, and believed that technological progress
in the photovoltaic industry could reduce carbon emissions. Wu et al. [4] studied the
listed companies of new energy vehicles in China as a sample, and found that the firm’s
technological capability is an important factor to promote industrial development and
increase R&D investment. These studies all show that technological innovation is a driving
force for industrial development.

The new energy vehicle industry and its technological innovation have strong positive
externalities. Technological innovation has a long cycle and causes great uncertainty. At
the same time, the benefits generated by innovation are difficult to be fully owned by
private individuals [5], which is prone to “free riding” behavior, thus inhibiting the R&D
momentum of micro subjects [6]. Therefore, the Chinese government has paid much
attention to the guidance of industrial policies in the new energy vehicle industry and its
technological innovation.

The Chinese government has started to provide policy guidance for the new energy
vehicle industry since the beginning of the 21st century. Before 2009, there were few
supporting policies for China’s new energy vehicle industry, and these mainly focused on
planning from the production-side. From 2009–2015, China’s new energy industry policy
has focused on consumption. Meanwhile, the central government and local governments
have launched industrial policies intensively to stimulate the technical breakthrough of
key links such as new energy vehicle drive systems, battery management systems, and
vehicle integration, and also began to encourage the construction of new energy vehicle
supporting facilities. Since 2015, the government’s industrial policy has begun to attach
importance to the combination of promising governments and effective markets. The Notice
on the Financial Support Policy for the Promotion and Application of New Energy Vehicles from
2016–2020 in 2015 indicated that the subsidy would gradually decline after 2016. “The dual
credit policy” issued in 2017 represents the industrial policy’s impact on leading the new
energy vehicle industry transit from being policy driven to market driven, the gradual
withdrawal of subsidy policy, and the function of the market mechanism (In September
2017, the Ministry of Industry and Information Technology and other five departments
jointly issued the measures for the parallel management of average fuel consumption and new
energy vehicle credits of passenger vehicle enterprises (hereinafter referred to as “the double
credits policy”), which was implemented on 1 April 2018. “The double credits policy” set up
two credits for the average fuel consumption of automobile manufacturers and new energy
vehicles, and established a credit trading mechanism. “The double credits policy” is an
assessment system. The assessment indicators are the average fuel consumption credits and
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new energy vehicle credits. The purpose is to promote enterprises to develop new energy
vehicles to alleviate the energy and environmental pressure.) The subsidy policy for energy
vehicles after 2018 has increasingly higher standards for key technical indicators such as
the energy density of power battery systems, vehicle energy consumption, and endurance
to stimulate the innovation vitality of enterprises and improve the product quality [7].

Government subsidies are the most common industrial policy tool in China’s new
energy vehicle industry. However, industrial policies such as government R&D subsidies
may lead to distortions in resource allocation and incentives, resulting in negative effects [8].
Therefore, the policy’s impact on technological innovation remains controversial. Some
scholars have shown that government subsidies have a positive impact on the technological
innovation of enterprises. Hottenrott and Lopes-Bento [9] used the Belgian Community In-
novation Survey data and found that public R&D support had a significant incentive effect
on enterprise innovation output. Huergo and Moreno [10] used Spanish company data and
found that obtaining any type of direct assistance significantly increased the possibility of
carrying out R&D activities. However, some believe that government subsidies have had a
negative impact on the enterprises’ technological innovation. Wallsten [11] found that the
Small Business Innovation Research (SBIR) program funding in the United States had a sig-
nificant negative effect on enterprise R&D expenditure. Link and Scott [12] also found that
the commercialization probability of the R&D achievements funded by the SBIR program
was very low, while other studies have shown that the impact of government subsidy on
technological innovation is uncertain. Marino et al. [13] used the data of French companies
from 1993 to 2009, and based on the DID model, found that public subsidies had neither
an incentive effect nor crowding out effect on private R&D expenditure. Montmartin and
Herrera [14] used a database of 25 OECD countries and found that there was a nonlinear
relationship between R&D subsidiaries and financial investments implemented within a
country and private R&D.

The effects of government subsidies on the new energy vehicle industry are also
controversial. Some scholars hold a positive attitude toward the effect of government
subsidies on the new energy vehicle industry. Using data from 32 European countries,
Münzel et al. [15] found a significant positive correlation between financial incentives and
plug-in electric vehicle (PEV) adoption. Xing et al. [16] found that federal income tax credits
from the United States could increase the sales of electric vehicles. Breetz and Salon [17]
found that government subsidies could significantly improve the cost competitiveness of
new energy vehicles by studying 14 cities in the United States. Jiao et al. [18] and Wang
and Li [19] believe that government subsidies could significantly promote the expansion
of China’s new energy vehicle market. Gao and Hu [20] found that the subsidy policy for
new energy vehicles played a significant role in promoting enterprise performance through
two mechanisms: enterprise size and patent behavior. Some scholars also hold a negative
attitude toward the implementation effect of government subsidies for the new energy
vehicle industry. Zhang et al. [21] found that in Beijing, the license plate lottery policy
was better than the subsidy policy in promoting electric vehicles. Sheldon and Dua [22,23]
explored the impact and cost-effectiveness of electric vehicle subsidies by using the data of
U.S. new car buyers and Chinese new vehicle consumers. Both research results showed
that the cost of the subsidies was too high and the subsidy target should be determined
according to the policy objectives.

Reviewing the existing studies, scholars have used data from various countries to
conduct extensive research on the impact of industrial policies on energy vehicles and their
technological innovation. Relevant research includes the impact of industrial policies on
the use and diffusion of new energy vehicles [24], the new energy vehicle industrial policies
on environmental pollution [25], and industrial policies on the R&D and development
strategies of new energy vehicle enterprises [26]. Only a few studies have examined
the impact of industrial policies on technological innovation in the new energy vehicle
industry [27,28]. So far, whether the existing industrial policies have really improved
the technological innovation level of the new energy vehicle industry is open to debate.
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Furthermore, the impact of government industrial policies on the quantity and quality of
technological innovation in the new energy vehicle industry has not been compared and
analyzed yet. This study examined the impact of government subsidies on technological
innovation in the new energy vehicle industry from the dimensions of the quantity and
quality of technological innovation and explored how government subsidies impact the
effect of policies to enrich the research in related fields.

The marginal contributions of this study are as follows. First, the different effects of
government subsidies on the quantity and quality of technological innovation in the new
energy vehicle industry were investigated; it was found that government subsidies could
significantly promote the quantity of technological innovation but could not improve the
quality of technological innovation. Second, it was found through empirical study that
the industrial policy could increase the number of innovations in the new energy vehicle
industry through three mechanisms: improving the attention of enterprises, increasing
the R&D investment, and mitigating the financing constraints. Third, we examined the
differences in the impact of industrial policies on technological innovation in different links
of the industrial chain, which provides valuable insights for industrial policies to promote
technological innovation in the new energy vehicle industry.

The rest of this paper is organized as follows. Section 2 introduces the empirical
method and data. Section 3 presents the benchmark regression and robustness test results.
Section 4 discusses the mechanism test and a series of heterogeneity analyses. Section 5
concludes the study and puts forward policy implications.

2. Method and Data

2.1. Model Design

This paper used the two-way fixed effect model for estimation, which can make the
estimation result control some individual heterogeneity that will not change over time and
is difficult to observe as well as reduce the problem of missing variables. The following is
the benchmark model of this paper:

innov_nit = β0 + β1subit + β2Xit + f irmi + yeart + εit (1)

innov_qit = β0 + β1subit + β2Xit + f irmi + yeart + εit (2)

where innov_n represents the quantity of technological innovation including tpatent (the
number of total patents); ipatent (invention patents); and upatent (utility model patents).
innov_q represents the quality of technological innovation including width (patent quality);
iwidth (invention patent quality); and uwidth (utility model patent quality). sub repre-
sents the government subsidy; X represents a series of control variables including capital
structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe),
proportion of independent directors (dir), enterprise age (age), enterprise growth ability
(gov), and enterprise human capital (hc). f irm is the enterprise fixed effect; year is the year
fixed effect; ε is the random disturbance term.

2.2. Definition of the Variable

(1) Quantity and quality of technological innovations
Patents are generally considered good indicators of technological innovation. Com-

pared to utility model and design patents, invention patents have higher requirements and
are more innovative and breakthrough. Utility model patents represent the improvement
in existing technology by enterprises to a certain extent, but the improvement is relatively
small. The patent does not contain any technological innovations. Therefore, this study
selected the number of invention patent applications and utility model patent applications
to measure the quantity of technological innovation.

This study used patent knowledge width to measure the quality of technological
innovation. The patent knowledge width can measure the quality of patents based on the
complexity and universality of the knowledge contained in patents. Therefore, this study
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used the practices of Zhang and Zheng [29] and Aghion et al. [30] to measure the quality
of each patent using the knowledge width method, which can measure the complexity
of knowledge contained in a patent. In this study, the formula for calculating the width
of patent knowledge is width = 1 − ∑ x2; x is the proportion of each group of patent
IPC classification numbers. We then added the patent knowledge width to the enterprise
level according to the average value. The greater the knowledge width value of a patent,
the wider the knowledge involved in the patent, and therefore the higher the quality of
innovation.

(2) Government subsidies
In this study, the data of government subsidy were processed logarithmically.
(3) Control variables
In order to exclude the influence of other factors on the regression model and estima-

tion results, referring to the research of Chen et al. [31], this study selected some variables
related to the nature and capabilities of the enterprise for control including: capital structure
(lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion
of independent directors (dir), enterprise age (age), enterprise growth ability (gov), and
enterprise human capital (hc) (see Table 1 for the definition of variables).

Table 1. Definition of the variables.

Variable
Classification

Variable Symbol Definition

Dependent variable

Quantity of technological
innovation

tpatent ln(Number of invention patent applications +
number of utility model patent applications + 1)

ipatent ln(Number of invention patent applications + 1)
upatent ln(Number of utility model patent applications + 1)

Quality of technological
innovation

width Quality of patent
iwidth Quality of invention patent
uwidth Quality of utility mode patent

Independent variable Government subsidy sub ln(Government subsidy)

Control variable

Capital structure lev Asset liability ratio
Profitability roa Net interest rate of total assets

Enterprise size size ln(Number of employees)
Proportion of fixed assets ppe Net fixed assets/total assets

Proportion of independent
directors dir Number of independent directors/numbers of board

of directors
Enterprise age age ln(Year—establishment year + 1)

Enterprise growth ability gov Year on year growth rate of operating revenue
Enterprise human capital hc Number of undergraduates/number of employees

2.3. Data
2.3.1. Data Source

This study used the listed enterprises in the field of new energy vehicle industry as
the research object. China’s support policies for the new energy vehicle industry began to
grow rapidly after 2010. In this study, enterprises listed on energy vehicles from 2010 to
2019 were selected as the research samples, and the samples were processed as follows:
(1) the samples with ST and ST* marks were excluded; and (2) eliminated samples with
missing data. Finally, we obtained 242 new energy automobile enterprises, with a total of
1671 observations. To prevent interference from extreme values, all continuous variables
were subjected to tailing reduction.

The patent data for this study came from the Incopat database. First, the name of each
listed company and its subsidiaries was extracted from the Chinese Research Data Services
(CNRDS) database. Then, the names of the listed companies and their subsidiaries were
manually retrieved by patent applicants through the Incopat database, and the patent data
of the listed companies and their affiliates were counted. Finally, the number and quality
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data of patents applied for by enterprises every year were obtained through sorting and
statistics. Government subsidies and other financial data received by the enterprises were
obtained from the Wind and CSMAR databases.

2.3.2. Descriptive Statistics

Table 2 presents the descriptive statistics for the main variables. The average number
of enterprise patents (tpatent) was 3.559, the average number of invention patents (ipatent)
was 2.628, and the average number of utility model patents (upatent) was 3.017. It can
be seen that new energy vehicle enterprises apply for more utility model patents. The
maximum values of the invention patents, utility model patents, and total patents were
6.443, 6.724, and 7.407, respectively. The standard deviation was also relatively large,
which indicates that there is a large gap in the level of technological innovation between
different enterprises. The average quality of patents (width) was 0.219, the average quality
of invention patents (iwidth) was 0.245, and quality of utility model patents (uwidth) was
0.18. It can be seen that the average quality of the utility model patents was significantly
lower than that of the invention patents. The maximum patent quality, invention patent
quality, and utility model patent quality were 0.723, 0.75, and 0.57, respectively. The
maximum value of the government subsidies was 20.88, the minimum value was 12.68,
and the standard deviation was 1.537. It can be seen that there were certain differences in
the government subsidies received by enterprises.

Table 2. Descriptive statistics.

Variable N Mean SD Min Max

tpatent 1671 3.559 1.582 0 7.407
ipatent 1671 2.628 1.498 0 6.443
upatent 1671 3.017 1.612 0 6.724
width 1671 0.219 0.133 0 0.723
iwidth 1671 0.245 0.164 0 0.75
uwidth 1671 0.18 0.12 0 0.57

sub 1671 16.53 1.537 12.68 20.88
lev 1671 0.417 0.187 0.0681 0.933
roa 1671 4.88 5.916 −22.11 18.1
size 1671 7.9 1.15 5.733 11.46
ppe 1671 0.204 0.104 0.0157 0.541
dir 1671 0.37 0.0486 0.333 0.556
age 1671 2.841 0.294 2.079 3.526
gov 1671 17.32 28.56 −41.29 130
hc 1446 18.45 13.02 3.16 73.28

In order to see the development of technological innovation in China’s new energy
vehicle industry in detail, Table 3 presents the annual mean value of the dependent variables.
As shown in Table 3, from 2010 to 2019, the number of invention and utility model patents
of the listed companies in the new energy vehicle industry maintained a steady upward
trend. In 2010, the average annual number of patents of enterprises was 40.99, which nearly
quadrupled to 159.32 in 2019, with an average annual growth rate of 16.28%. Overall,
in 2010, the annual average patent quality of the listed companies in the new energy
vehicle industry was 0.195, and the patent quality increased to 0.275 in 2019. The patent
quality fluctuated from 2010 to 2015 and improved rapidly after 2015. In terms of the
patent type, the quality of invention patents was significantly higher than that of the utility
model patents.
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Table 3. Descriptive statistics of the dependent variables by year (mean value).

Year Tpatent Ipatent Upatent Width Iwidth Uwidth

2010 40.99 13.61 27.38 0.194 0.194 0.151
2011 69.63 25.36 44.27 0.176 0.2 0.126
2012 76.98 29.05 47.94 0.191 0.207 0.148
2013 97.87 36.46 61.41 0.177 0.195 0.136
2014 106.7 40.99 65.71 0.187 0.213 0.159
2015 109.8 42.61 67.14 0.188 0.197 0.156
2016 132.6 55.37 77.28 0.228 0.248 0.174
2017 140.9 59.28 81.66 0.244 0.282 0.202
2018 160.6 71.1 89.45 0.247 0.29 0.206
2019 159.3 69.4 89.93 0.275 0.314 0.247

3. Empirical Results and Analysis

3.1. Analysis of Benchmark Regression Results

First, we discuss the impact of government subsidies on the number of new energy
vehicle patents. It can be seen from columns (1)–(3) in Table 4 that the coefficients of
government subsidies were significantly positive at the level of 1%, and the coefficients
were 0.173, 0.147, and 0.162, respectively. The number of enterprise patent applications
increased by 0.173%. The more subsidies the government gives to enterprises, the more
invention patents and utility model patents the enterprises apply for.

Table 4. The regression results of government subsidies on the quantity and quality of technological
innovation.

(1) (2) (3) (4) (5) (6)

Tpatent Ipatent Upatent Width Iwidth Uwidth

sub 0.173 *** 0.147 *** 0.162 *** 0.00003 −0.00295 0.00211
(4.540) (4.483) (4.284) (0.00791) (−0.428) (0.443)

Constant −4.693 * −6.205 ** −4.382 0.577 * 0.194 0.186
(−1.849) (−2.414) (−1.632) (1.958) (0.564) (0.749)

CONTROLS YES YES YES YES YES YES
COMPANY FE YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
N 1446 1446 1446 1446 1446 1446
R2 0.465 0.425 0.443 0.120 0.133 0.138

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

Second, we discuss the impact of government subsidies on the NEV patent quality
of new energy vehicles. As shown in columns (4)–(6) in Table 4, the coefficients of sub
were relatively small and not significant, indicating that government subsidy had no
significant impact on the quality of patents. The reason is that enterprises encouraged by
industrial policies will significantly increase their patent applications in order to obtain
more government subsidies. However, due to many uncertain risks in the process of early
research and development, some enterprises prefer to carry out low-quality technological
innovation with relatively short cycles and low investment than high-quality technological
innovation to reduce the costs and risks [32–35].

3.2. Endogenous Test

Considering the endogeneity problem of reverse causality may exist between gov-
ernment subsidies and the amount of technological innovation of enterprises, that is, the
higher the level of the technological innovation of enterprises, the easier it is for them to
meet the standards for granting subsidies and obtain more government subsidies. This
study selected the mean value of government subsidies in the new energy vehicle industry
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lagging behind the first phase and government subsidies lagging behind the second phase
as instrumental variables for the two-stage least squares estimation [36]. Reasons for select-
ing tool variables are as follows. (1) When applying for government subsidies, enterprises
are likely to refer to the subsidy amount applied by other enterprises in the same industry
in the previous period to ensure that the maximum subsidy amount can be obtained on
the basis of successful application; and (2) if the enterprise can obtain government support
in the early stage, it may send a positive signal to the government, which is conducive to
the enterprise applying again for government subsidies. Table 5 shows that government
subsidies had a significant effect on the total number of patents, invention patents, and
utility model patents at the 5% level. The impact of government subsidies on patent quality
was still insignificant. These results are consistent with the benchmark regression results.

Table 5. Regression results of the endogenous test.

(1) (2) (3) (4) (5) (6)

Tpatent Ipatent Upatent Width Iwidth Uwidth

sub 0.257 * 0.226 ** 0.290 * −0.0187 −0.000443 −0.0105
(1.819) (2.033) (1.886) (−1.057) (−0.0175) (−0.573)

CONTROLS YES YES YES YES YES YES
COMPANY FE YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
Hansen-J P 0.8786 0.5249 0.9651 0.4827 0.9791 0.5214
N 1117 1117 1117 1117 1117 1117
R2 0.408 0.376 0.378 0.127 0.145 0.130

Note: z-statistics are given in parentheses * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes capital structure
(lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of independent directors
(dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

3.3. Robustness Test
3.3.1. Replace Dependent Variables

This study replaced the quantitative index of technological innovation with the number
of patent applications provided by the CNRDS database (cpt, cpi, cpu). The patent quality
index was replaced by the number of cited patents (cited) and patent claims (claim). The re-
gression results are presented in Table 6. It can be seen that after replacing the measurement
indicators, the regression results are consistent with the benchmark regression results.

Table 6. Robustness test: Replace the dependent variables.

(1) (2) (3) (4) (5)

cpt cpi cpu Cited Claim

sub 0.159 *** 0.122 *** 0.149 *** 0.0476 0.0894
(5.151) (3.969) (4.631) (0.734) (1.383)

Constant −4.182 * −5.951 ** −3.090 4.525 2.781
(−1.693) (−2.327) (−1.208) (0.922) (0.720)

CONTROLS YES YES YES YES YES
COMPANY FE YES YES YES YES YES
YEAR FE YES YES YES YES YES
N 1446 1446 1446 1374 1374
R2 0.410 0.335 0.455 0.467 0.281

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

3.3.2. Subsample Regression

Considering that some enterprises may enter the new energy vehicle industry in a
certain period, this paper verified the time when each enterprise entered the industry by
consulting the annual report of the enterprise, and then selected the sub-sample after the
enterprise entered the new energy vehicle industry for regression. The regression results are
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shown in Table 7. We can see that the regression results are consistent with the benchmark
regression results.

Table 7. Robustness test: Subsample.

(1) (2) (3) (4) (5) (6)

Tpatent Ipatent Upatent Width Iwidth Uwidth

sub 0.154 *** 0.131 *** 0.145 *** 0.00142 −0.00320 0.00405
(4.187) (4.081) (3.855) (0.275) (−0.433) (0.804)

Constant −4.157 −4.821 ** −4.354 0.667 ** 0.269 0.195
(−1.592) (−2.012) (−1.527) (2.050) (0.729) (0.683)

CONTROLS YES YES YES YES YES YES
COMPANY FE YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
N 1350 1350 1350 1350 1350 1350
R2 0.443 0.407 0.420 0.120 0.130 0.141

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

3.3.3. Panel Tobit Model

Because the patent quantity and quality data were non-negative, and had the charac-
teristics of truncated data [37], this study used the panel Tobit model to estimate, and the
results are shown in Table 8. The results show that the coefficients of sub on the quantity of
technological innovation were all significantly positive, and the coefficients on the quality of
technological innovation were still not significant, which is consistent with the benchmark
regression results.

Table 8. Robustness test: Panel Tobit model.

(1) (2) (3) (4) (5) (6)

Tpatent Ipatent Upatent Width Iwidth Uwidth

sub 0.211 *** 0.199 *** 0.193 *** 0.00253 −0.000928 0.00443
(7.950) (7.220) (6.744) (0.685) (−0.189) (1.187)

Constant −4.646 *** −5.863 *** −4.945 *** 0.338 ** 0.383 ** 0.151
(−4.532) (−5.595) (−4.450) (2.448) (2.103) (1.086)

sigma_u 0.867 *** 0.869 *** 0.969 *** 0.0866 *** 0.112 *** 0.0658 ***
(18.44) (18.07) (18.44) (15.83) (15.29) (12.83)

sigma_e 0.711 *** 0.730 *** 0.761 *** 0.104 *** 0.137 *** 0.110 ***
(47.61) (46.60) (46.24) (46.31) (44.77) (44.48)

CONTROLS YES YES YES YES YES YES
COMPANY FE YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
N 1446 1446 1446 1446 1446 1446

Note: z-statistics are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes capital structure
(lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of independent directors
(dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

3.3.4. System-GMM Model

Considering that the level of technological innovation in the previous period may
have an impact on the level of technological innovation in the current period, this paper
introduced the independent variable lagging behind the first phase and used the system-
GMM model to estimate. As shown in Table 9, it was found that the quantity and quality
of technological innovation in the previous period had a significant positive impact on the
quantity and quality of technological innovation in the current period. The government
subsidies had a significant positive impact on the quantity of technological innovation, but
had no significant impact on the quality of technological innovation, which is consistent
with the benchmark regression results.
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Table 9. Robustness test: System-GMM model.

(1) (2) (3) (4) (5) (6)

Tpatent Ipatent Upatent Width Iwidth Uwidth

L.tpatent 0.549 ***
(7.313)

L.ipatent 0.507 ***
(8.150)

L.upatent 0.529 ***
(6.411)

L.width 0.205 ***
(3.511)

L.iwidth 0.224 ***
(4.103)

L.uwidth 0.113 **
(2.110)

sub 0.183 ** 0.238 *** 0.156 * 0.000848 −0.0117 0.000674
(2.374) (4.138) (1.846) (0.112) (−1.116) (0.0719)

Constant −4.646 *** −5.863 *** −4.945 *** 0.338 ** 0.383 ** 0.151
(−4.532) (−5.595) (−4.450) (2.448) (2.103) (1.086)

CONTROLS YES YES YES YES YES YES
COMPANY FE YES YES YES YES YES YES
YEAR FE YES YES YES YES YES YES
AR(1) 0.000 0.000 0.000 0.000 0.000 0.000
AR(2) 0.259 0.228 0.133 0.546 0.785 0.142
Hansen p value 0.264 0.460 0.321 0.676 0.675 0.255
N 1446 1446 1446 1446 1446 1446

Note: z-statistics are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes capital structure
(lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of independent directors
(dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

4. Mechanism Test and Heterogeneity Analysis

4.1. Mechanism Test

In order to empirically test the mechanism of government subsidies affecting the
amount of technological innovation of new energy vehicle enterprises, this paper designed
the following mechanism test econometric models:

attentionit = β0 + β1subit + β2Xit + f irmi + yeart + εit (3)

R&Dit = β0 + β1subit + β2Xit + f irmi + yeart + εit (4)

f undit = β0 + β1subit + β2Xit + f irmi + yeart + εit (5)

where attention represents the degree of external attention of an enterprise; R&D represents
an enterprise’s R&D capital investments; f und represents the external financing of an
enterprise. The other symbols have the same meaning as in Models (1) and (2).

In this paper, the logarithm of the number of analysts who make profit forecasts for
enterprises every year was taken as the proxy variable that enterprises are concerned by
the outside world [38]. The logarithm of an enterprise’s annual R&D expenditure was used
to measure R&D. f und was measured by the ratio of net cash flow from financing activities
to total assets [39].

4.1.1. Improving the External Attention of Enterprises

Table 10 presents the regression results of the mechanistic tests. It can be seen from
column (1) that government subsidies can significantly improve the number of analysts
who pay attention to the subsidized enterprises. The more government subsidies the
enterprises receive, the more attention they will receive from the outside world, which will
increase the possibility of enterprises integrating various external innovation resources [38].
Therefore, government subsidies can promote technological innovation by increasing the
attention of the enterprises.
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Table 10. Mechanism test.

(1) (2) (3)

Attention R&D Fund

sub 0.162 *** 0.0688 ** 0.00962 *
(2.910) (2.306) (1.775)

Constant −6.235 * 10.94 *** 0.195
(−1.727) (5.637) (0.757)

CONTROLS YES YES YES
COMPANY FE YES YES YES
YEAR FE YES YES YES
N 1138 1412 1446
R2 0.190 0.662 0.072

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

4.1.2. Increasing R&D Capital Investment

Column (2) in Table 10 indicates that the coefficient of sub was 0.0688, which was
significant at the 5% level, indicating that government subsidies play an important role
in promoting the enterprises’ R&D capital investment. Many studies have proven that
R&D capital investment can significantly improve the enterprises’ innovation output [40].
Therefore, government subsidies promote technological innovation by increasing enterprise
R&D capital investment.

4.1.3. Mitigating Financing Constraints

Column (3) in Table 10 shows that the coefficient of sub was 0.00962, which was signif-
icant at the 10% level, indicating that government subsidies are conducive to enterprises
obtaining more external financing. This alleviates enterprise financing constraints and
promotes an increase in the quantity of technological innovation [41].

In general, these three mechanisms were significant. In comparison, the role of
improving the attention of enterprises was greater, while the role of alleviating financing
was relatively small.

4.2. Heterogeneity Analysis
4.2.1. Industrial Chain Perspective

This study divided enterprises into upstream, midstream, and downstream industries
according to the industrial chain. Table 11 shows the regression results of the impact of
government subsidies on the quantity of the enterprises’ technological innovation in all
links of the industrial chain. The results show that increasing government subsidies can
increase the technological innovation across the entire industrial chain.

To test whether there was a difference in the significant impact of government subsidies
on upstream, midstream, and downstream enterprises, we conducted an inter-group
coefficient difference test. First, we set the dummy variables chain1, chain2, and chain3.
The dummy variable chain1 is 1 when the enterprise belongs to the upstream, otherwise it is
0. The dummy variable chain2 is 1 when the enterprise belongs to the midstream, otherwise
it is 0. The dummy variable chain3 is 1 when the enterprise belongs downstream, otherwise
it is 0. Second, we multiplied the three dummy variables with the main independent
variable (sub) to form the interactive terms sub_chain1, sub_chain2, and sub_chain3. Third,
we set the three interactive terms in Model (1) for regression. The results are presented in
Table 12. When government subsidies increased, Panel A shows that upstream enterprises
applied for more utility model patents than the other links. Panel B shows that although the
quantity of technological innovation in midstream enterprises increased, it was significantly
less than the upstream and downstream enterprises. Panel C shows that compared to other
links, downstream enterprises applied for more invention patents. Overall, government
subsidies can promote technological innovation across the entire industrial chain. The
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number of invention patents of downstream enterprises increased the most, while the
number of utility model patents of the upstream enterprises increased the most.

Table 11. Heterogeneity analysis: Industrial chain perspective (quantity of technological innovation).

(1) (2) (3)

Tpatent Ipatent Upatent

Panel A: upstream
sub 0.210 ** 0.161 ** 0.241 ***

(2.650) (2.360) (3.034)
Constant −10.64 * −11.17 ** −13.15 *

(−1.857) (−2.225) (−1.910)
N 247 247 247
R2 0.539 0.474 0.543

Panel B: midstream
sub 0.109 ** 0.0805 * 0.107 **

(2.360) (1.786) (2.189)
Constant −1.281 −4.747 0.0820

(−0.452) (−1.581) (0.0287)
N 877 877 877
R2 0.477 0.424 0.456

Panel C: downstream
sub 0.233 *** 0.226 *** 0.203 ***

(3.051) (3.528) (2.795)
Constant −7.045 −5.189 −7.213

(−1.429) (−0.983) (−1.379)
N 322 322 322
R2 0.509 0.526 0.441

CONTROLS YES YES YES
COMPANY FE YES YES YES
YEAR FE YES YES YES

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

Table 12. Heterogeneity analysis: Comparison of inter-group coefficients of the industrial chain
perspective (quantity of technological innovation).

(1) (2) (3)

Tpatent Ipatent Upatent

Panel A
sub 0.161 *** 0.149 *** 0.134 ***

(3.854) (3.988) (3.256)
sub_chain1 0.0609 −0.00870 0.146 *

(0.663) (−0.116) (1.709)
Constant −4.674 * −6.208 ** −4.335

(−1.850) (−2.409) (−1.640)
N 1446 1446 1446
R2 0.465 0.425 0.446

Panel B
sub 0.235 *** 0.209 *** 0.222 ***

(4.136) (4.450) (4.219)
sub_chain2 −0.128 * −0.128 ** −0.125 *

(−1.753) (−1.992) (−1.769)
Constant −4.423 * −5.936 ** −4.118

(−1.737) (−2.302) (−1.531)
N 1446 1446 1446
R2 0.468 0.429 0.447

Panel C
sub 0.136 *** 0.0930 ** 0.147 ***

(3.229) (2.553) (3.327)
sub_chain3 0.116 0.169 ** 0.0461

(1.322) (2.299) (0.559)
Constant −4.486 * −5.903 ** −4.299

(−1.752) (−2.286) (−1.589)
N 1446 1446 1446
R2 0.467 0.430 0.443

CONTROLS YES YES YES
COMPANY FE YES YES YES
YEAR FE YES YES YES

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).
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Table 13 shows the impact of government subsidies on the quality of the enterprises’
technological innovation in all links of the industrial chain. The results showed that gov-
ernment subsidies had a significant positive impact only on the quality of the utility model
patents of upstream enterprises. This shows that government subsidies can improve the
quality of the technological innovation of upstream enterprises, but are limited in terms of
the quality of utility model patents, and have no impact on the quality of invention patents.

Table 13. Heterogeneity analysis: Industrial chain perspective (quality of technological innovation).

(1) (2) (3)

Width Iwidth Uwidth

Panel A: upstream
sub 0.00522 0.00176 0.0205 **

(0.713) (0.261) (2.045)
Constant 0.778 −0.351 −1.651 **

(0.598) (−0.296) (−2.299)
N 247 247 247
R2 0.130 0.161 0.228

Panel B: midstream
sub −0.00179 −0.00815 −0.00340

(−0.298) (−0.908) (−0.502)
Constant 0.332 −0.0793 0.495 *

(0.957) (−0.177) (1.804)
N 877 877 877
R2 0.117 0.131 0.125

Panel C: downstream
sub −0.00355 −0.00545 −0.00108

(−0.352) (−0.370) (−0.140)
Constant 0.685 0.715 0.403

(1.580) (1.400) (0.829)
N 322 322 322
R2 0.247 0.220 0.233

CONTROLS YES YES YES
COMPANY FE YES YES YES
YEAR FE YES YES YES

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS includes
capital structure (lev), profitability (roa), enterprise size (size), proportion of fixed assets (ppe), proportion of
independent directors (dir), enterprise age (age), enterprise growth ability (gov), and human capital (hc).

4.2.2. Enterprise Size Perspective

Enterprises are divided into large and small enterprises according to their scale.
Table 14 shows the impact of government subsidies on the technological innovation of
enterprises of different sizes. Panels A and B show the regression results for large and small
enterprises. The results show that an increase in government subsidies had a significantly
positive impact on the quantity of technological innovation in large and small enterprises.
To further analyze the difference between the two significant effects, an intergroup co-
efficient test was conducted. We set the dummy variable size1. When the enterprise is
large-scale, it is 1; otherwise, it is 0. Then, the dummy variable size1 was multiplied by
the main independent variable (sub) to form the interaction term sub_size1, and Model (1)
was added for regression (see Panel C for the results). The results show that compared
to small enterprises, large enterprises can apply for more invention patents after receiv-
ing government subsidies. There are two possible reasons for this finding. First, large
enterprises have a wider and better internal division of labor and a stronger ability to
use R&D networks and knowledge spillovers, which is more conducive to technological
innovation. Second, from the perspective of enterprise strategic objectives, large enterprises
pay more attention to long-term returns, so they have a stronger willingness to engage in
technological innovation activities.

Table 15 shows the impact of government subsidies on the technological innovation
quality of enterprises of different sizes. The results show that government subsidies had no
significant impact on the quality of the technological innovation of enterprises of different
sizes. This proves that the result of benchmark regression is robust. Overall, increasing
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government subsidies is significantly effective in increasing the technological innovation of
large and small enterprises, especially for large-scale enterprises. However, the enterprise
size heterogeneity does not significantly affect the effect of government subsidies on the
technological innovation quality.

Table 14. Heterogeneity analysis: Enterprise size perspective (quantity of technological innovation).

(1) (2) (3)

Tpatent Ipatent Upatent

Patent A: large
sub 0.225 *** 0.193 *** 0.218 ***

(4.098) (3.340) (4.028)
Constant −2.016 −5.175 −0.399

(−0.551) (−1.280) (−0.108)
N 728 728 728
R2 0.393 0.373 0.357

Panel B: small
sub 0.136 *** 0.117 *** 0.136 ***

(3.286) (3.347) (3.316)
Constant −1.325 −1.843 −3.152

(−0.383) (−0.552) (−0.791)
N 718 718 718
R2 0.353 0.268 0.359

Panel C: coefficient
compare
sub 0.198 *** 0.134 *** 0.206 ***

(4.297) (3.548) (4.555)
sub_size1 0.0374 0.118 ** −0.000342

(0.642) (2.360) (−0.00581)
Constant −2.098 −3.057 −2.145

(−0.880) (−1.238) (−0.847)
N 1446 1446 1446
R2 0.447 0.403 0.426

CONTROLS YES YES YES
COMPANY FE YES YES YES
YEAR FE YES YES YES

Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS in all models
includes capital structure (lev), profitability (roa), proportion of fixed assets (ppe), proportion of independent
directors (dir), enterprise age (age), enterprise growth ability (gov), and enterprise human capital (hc).

Table 15. Heterogeneity analysis: Enterprise size perspective (quality of technological innovation).

(1) (2) (3) (4) (5) (6)

Large Small

Width Iwidth Uwidth Width Iwidth Uwidth

sub −0.000816 2.47 × 10−5 −0.000319 −0.00354 −0.00888 0.00372
(−0.169) (0.00346) (−0.0574) (−0.437) (−0.800) (0.491)

Constant 0.146 0.0563 0.409 1.027 ** 0.668 0.281
(0.614) (0.133) (1.645) (2.125) (1.376) (0.620)

N 728 728 728 718 718 718
R2 0.218 0.149 0.186 0.094 0.148 0.133

CONTROLS YES YES YES YES YES YES
COMPANY
FE YES YES YES YES YES YES

YEAR FE YES YES YES YES YES YES
Note: Robust standard errors are given in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01. CONTROLS in all models
includes capital structure (lev), profitability (roa), proportion of fixed assets (ppe), proportion of independent
directors (dir), enterprise age (age), enterprise growth ability (gov), and enterprise human capital (hc).

5. Conclusions and Policy Implications

Against the background of carbon peaking and carbon neutrality goals, the new energy
vehicle industry is a strategic emerging industry with huge social and economic benefits,
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and needs reasonable guidance through industrial policies. Technological innovation is
the fundamental driving force to promote the high-quality development of the new energy
vehicle industry and is an important way to advance the low-carbon transformation of
energy. Taking the listed enterprises in the new energy vehicle industry from 2010 to
2019 as the research sample, this study compared the patent data of the Incopat database
with the financial data of enterprises in the Wind and CSMAR databases. The quantity
of technological innovation was measured by the number of patents, and the quality of
technological innovation was measured by the width of patent knowledge. The fixed effects
model was used to empirically test the impact of government subsidies on the quantity
and quality of technological innovation and the internal impact mechanism.

The conclusions are as follows. (1) The government subsidy only encouraged the
quantity of technological innovation in the new energy vehicle industry, but had no in-
centive effect on the quality of technological innovation. (2) There are three mechanisms
for government subsidies to promote the quantity of technological innovations in the new
energy automobile industry. First, as an approval from the government, the government
subsidy can increase the enterprises’ credibility in the market. Second, government subsi-
dies can encourage enterprises to increase their R&D capital investment. Third, government
subsidies can mitigate the financing constraints in technological innovation. (3) Govern-
ment subsidies can only materially improve the quality of the utility model patents of
upstream enterprises.

The policy implications of this study are as follows. (1) Optimizing the government
subsidy policy system for the new energy vehicle industry. First, the selection mechanism
for subsidy objects should be improved. We should strengthen the fairness and openness
of the selection of subsidy objects and provide a competitive environment for enterprises.
Second, the subsidy effect evaluation mechanism should be improved, the traditional
innovation evaluation system based on the number of innovations should be abandoned,
and the inspection of enterprise innovation quality should be strengthened. (2) Formulating
differentiated subsidy incentive policies. When the government grants subsidies, it is
necessary to fully consider the heterogeneity factors such as the location of the industrial
chain and the size of enterprises. The government should promote differentiated incentive
policies according to local conditions and improve the allocation efficiency of government
subsidy funds. The government should further improve the incentive effect of technological
innovation for midstream and downstream enterprises in the new energy vehicle industry
chain. For upstream enterprises of the new energy vehicle industrial chain, the incentives of
invention patents and high-quality innovation should be emphasized. At the same time, the
government should enhance the incentive effect of industrial policies on the technological
innovation output of small- and medium-sized enterprises.

There are still some limitations in this study. As above-mentioned, the purpose, object
and strength of the industrial policies of the new energy vehicle industry are different. This
study failed to distinguish the heterogeneity of the effects of the supply and demand side
on subsidy policies. There are many kinds of government subsidies related to China’s new
energy vehicle industry, but it is difficult to obtain the details of each subsidy received by
enterprises from the financial data of listed companies. This is the difficulty and direction
of future research.
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Abstract: Because reliance on gas for electricity generation rises over time, the natural gas and
electricity markets are highly connected. However, both of them are susceptible to various risk
factors that endanger energy security. The intricate interactions among multiple risks and between
the two markets render risk assessment more challenging than for individual markets. Taking a
systematic perspective, this study first undertook a thorough analysis of the evolution mechanism
that indicated the key risk factors and dual interactions, with real-world illustrative examples.
Subsequently, a system dynamics model was constructed for understanding the causal feedback
structures embedded in the operation of a coupled natural gas–electricity market in the face of risks.
Quantitative experiments were conducted by using data from China’s Energy Statistical Yearbook,
China’s Statistical Yearbook and other reliable sources to assess the effects of individual risks, depict
the evolutionary behavior of coupled markets and compare the risk response strategies. The findings
revealed the evolution of dominant risk factors and the aggregated effects of multiple risks in multiple
markets, suggesting the need to comprehensively monitor dynamic risks. Moreover, risk factors can
propagate from one market to another via interactions, yet it depends on multiple aspects such as the
severity of the risk and the intensity of the interactions. Demand compression and emergency natural
gas supply behave differently throughout the market’s recovery, necessitating a balance between
short-term and long-term risk response strategies.

Keywords: risk assessment; electricity market; natural gas market; system dynamics

1. Introduction

Driven by ever-increasing climate change, a worldwide consensus has been reached
on the urgency of transitioning global energy towards a green future [1,2]. Common
agreements such as the Kyoto Protocol and the Copenhagen Accord have been ratified by
hundreds of governments, forcing the replacement of coal-fired electricity generation with
cleaner and more reliable energy resources [3,4]. In this regard, being the cleanest fossil
fuel with a relatively high efficiency, natural gas has become an indispensable option for
supplying electricity demand [5]. The International Energy Agency (IEA) predicted in its
2017 report that, by 2040, natural gas would surpass oil as the second-largest fuel in the
global fuel mix, accounting for one quarter of the world’s energy demand [6,7]. Despite
the fact that reliance on gas for electricity has kept rising over the years, unanticipated
risks may occur and disrupt the gas-to-electricity progression. For instance, since natural
gas is distributed unevenly across the globe, certain countries rely heavily on the interna-
tional supply to satisfy their gas consumption needs [6]. However, due to human attacks,
economic disputes or geopolitical issues, the supply is subject to significant uncertainties
and fluctuations [8]. Examples include Russia’s suspension of natural gas shipments to
Ukraine in 2018 and the rupture of the Nord Stream pipelines in 2022, which resulted in
a severe shortage of gas in European countries [9]. In the most recent quarterly report of
the gas market [10], the IEA warned of an impending supply crisis and revised its 2022
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gas demand forecast downward. Additionally, the electricity market may be vulnerable to
a variety of hazards, such as natural disasters and technical issues, which can hinder the
functioning of energy markets [11]. Hence, to ensure energy security, a comprehensive risk
assessment approach is essential.

Alongside the diverse risks stemming from distinct sectors, complex interactions
render risk assessments of the coupled two markets more challenging than those of indi-
vidual energy markets. On the one hand, interactions may exist between multiple risks,
e.g., excessively cold weather may cause a surge in electricity demand while enhancing
the likelihood of a gas pipeline failure [12]. On the other hand, interactions between the
two energy sectors enable the transfer of risks from one market to the other, e.g., the
surge in electricity demand may drive an increase in natural gas demand, thus further
widening the demand–supply imbalance [3]. Markets may adapt to the disruptions and
dynamically evolve, e.g., a reduction in gas supply may result in a subsequent rise in gas
prices and discourage the use of natural gas, which may exacerbate the insufficiency of
electricity. The dynamic behaviors of numerous variables constitute feedback loops with
various time delays, and these are too complex for decision-makers to grasp [3,13]. In
light of these conditions, this study aimed to explore the impact of potential risks on the
overall gas–electricity market from a holistic perspective, taking the diverse interactions
into account.

In the current literature on energy security, many scholars have analyzed the risks
encountered in the natural gas and electricity markets. Regarding the natural gas market,
Chen et al. [6] established a worldwide gas trading network and examined the structural
risks using data from the gas import trade in 2015. Considering the risk of supply shortages,
Ding et al. [8] evaluated the resilience capabilities of China’s natural gas system by inte-
grating a system dynamics model and a resilience curve. Dong and Kong [14] investigated
the impact of risks affecting gas imports on the Chinese economy by analyzing three cate-
gories of risk, i.e., exporting countries, transportation and foreign dependency. Egging and
Holz [15] focused on three scenarios in a stochastic natural gas model and investigated the
infrastructure investments under various risks based on the data from Europe, North Amer-
ica and China. Some research has highlighted the inherent vulnerabilities of the market.
Using a natural gas pipeline in Zhuhai, China, Liu et al. [16] developed a simulation model
for assessing the risks to gas pipelines by considering the probability of failure, the conse-
quences of an accident and individual risks. Chen et al. [17] investigated the supply security
of a gas pipeline network with stochastic demand. Zarei et al. [18] used FMEA to study the
dynamic safety of a gas station and revealed that human error was the leading cause of
system failure. Regarding the electricity market, Ahmad et al. [13] reviewed the studies that
applied system dynamics in electricity sector modelling and highlighted the microworld
models facilitating the trade and risk analysis in electricity markets. Salman and Li [19]
proposed a framework for assessing multihazard risks in electric power systems exposed
to seismic and hurricane threats, which could be used for disaster preparedness, mitigation
and response planning. Based on the core elements of risk identification, measurement,
assessment, evaluation, control and monitoring, Tummala and Mak [20] developed a risk
management framework to improve the operations and maintenance of electricity transmis-
sion systems. Chiaradonna et al. [21] applied the stochastic activity network to construct
a framework for quantitatively analyzing interactions between electricity generation and
transmission infrastructures, so as to mitigate the losses induced by risks. Considering the
context of the new economic normal, He et al. [22] applied system dynamics to a power
consumption scenario for Tianjin to derive long-term energy demand predictions. Taking
a systematic overview of the electricity market, the natural gas market and other energy
markets, Burger et al. [23] investigated multiple categories of risks involved, as well as
stochastic models for electricity and gas.

A recent emphasis has also been placed on the coupling between and interactions of
the gas and electricity markets. Hibbard and Schatzki [24] reviewed multiple risk factors
rising from the interdependence between electricity and natural gas markets and provided
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prominent strategies for mitigating the most significant risks. Different levels of interaction
between gas and electricity systems were investigated in [25], and a two-stage stochastic
programming approach was utilized to develop an integrated operational model for these
systems with an unreliable power supply. Considering hourly real-time pricing in the gas
and electricity markets, Tian et al. [26] explored the influence of gas market reform on the
development of natural gas-fired units through a dynamic game-theoretic model. By ap-
plying a graph-theory-based technique, Beyza et al. [27] assessed structural robustness and
the vulnerability of coupled gas and electricity systems by considering their interactions.
Bao et al. [28] developed an integrated model to evaluate bidirectional cascade failures
in an electricity–natural gas system by including coupling components such as gas-fired
generators and electricity-driven gas compressors. Portante et al. [29] integrated two vali-
dated energy models (i.e., EPfast for electric power and NGfast for natural gas) to assess
the propagation impact of risks and disruptions through interdependencies between the
natural gas and electric power systems. Poljanšek et al. [30] constructed a probabilistic reli-
ability model of the European gas and electricity transmission networks from a topological
perspective, and the increased vulnerability resulting from market interdependencies could
be observed from the results. Nazari-Heris et al. [31] exhaustively analyzed the interactions
among electricity, gas and water systems, and improved the operation, economics and
pollutant emissions of the integrated systems. Some studies considered both the dynamism
and interactions involved in the coupled markets. Xiao et al. [1] analyzed the development
pattern and constraints of China’s natural gas power production, forecasting the natural
gas prices of generation by using the market netback pricing approach. Esmaeili et al. [3]
simulated the long-term impact of renewable energy resources’ penetration on the natural
gas–electricity market. Eusgeld et al. [32] constructed an integrated model to incorporate
interdependencies between critical infrastructures and demonstrated the cascading effects
of vulnerabilities and failures. Zhang et al. [33] coordinated the operations of power-to-gas
units and generators in order to smooth the load curve of an integrated electricity and
natural gas system.

These earlier studies established significant theoretical and methodological founda-
tions for identifying the risk factors affecting the natural gas market or the electricity
market, as well as the interactions between the two markets. However, the majority of
them either addressed various risks in an individual market or concentrated on the impact
of one specific risk event on interconnected markets, while the interactive behaviors of
multiple risks and multiple markets still call for a comprehensive analysis. With the aim of
observing the long-term behaviors of coupled natural gas and electricity markets under
various interrelated risks, this study contributes to the research field by extending the risk
assessment scenario to a more complex and dynamic setting, identifying prominent risks
affecting the markets and constructing a quantitative model incorporating dual interactions
between both risks and markets. System dynamics (SD) was introduced to support the
assessment because of its advantages in integrating nonlinear interactions and modeling
dynamic social systems [34].

The remaining sections of this article are structured as follows. The theoretical frame-
work is presented in Section 2, depicting the dynamism and complexity of the coupled
natural gas–electricity market. Section 3 proposes a system dynamics model with detailed
descriptions of each component. The simulation experiments and results are presented in
Section 4, followed by the conclusions.

2. Theoretical Framework

A thorough analysis of the mechanism of evolution can reveal the internal structure of
the natural gas and electricity markets, their interactions and the associated risks to facilitate
the risk assessment of coupled markets. The key risk factors and dual interactions are
depicted, with illustrative examples from real-world accidents. These risks and interactions
were determined on the basis of the relevant literature, by tracking news stories and through
expert interviews.
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2.1. Risk Evolution Mechanism

Taking a systematic perspective, a risk evolution mechanism of a coupled natural gas–
electricity market is presented in Figure 1. The risk system, the natural gas system and the
electricity system constitute a massive system-of-systems (SoS) [35,36], in which multiple
components in each market, multiple risks and multiple interactions among the risk factors
and market interactions interweave and evolve simultaneously. A key component of
assessing the impact of specific risks on the overall SoS is to quantify their potential impact
and aggregate the cascading disruptions induced by the interactions. To better understand
the development and characteristics of the complex risk evolution process, each system
and the interactive effects can be described as follows.

 

Figure 1. Mechanism of risk evolution in a coupled natural gas–electricity market.

Each market can be viewed as a collection of components functioning to achieve
the common goal of satisfying market demand. In a natural gas market, gas utilization
may be diverse, with electricity generation accounting for one of the major demands [1].
Natural gas is derived from multiple sources, including international trade and domestic
production. An electricity market must satisfy the electricity demand of residents and
industries. A diverse portfolio of fuels serves to supply the electricity, including natural gas,
oil, coal, wind, etc. As natural gas is the primary focus of this study, the other categories of
fuel were classified as “other fuels” in terms of the total proportion of electricity generation.

Nonetheless, the stochastic occurrence of unanticipated risks may result in market
chaos [35]. These risk factors may emerge externally or internally, interact with each other
and experience a rise or a decline during a certain period. The market’s reactions may create
counterintuitive side effects and cause the emergence of new risk factors [11]. Distinct
bidirectional interactions among the facilities from different markets also act as the most
prominent feature of the mechanism, as these are at the core of the complex risk assessment
process. Through these interactions, excessive risks on one market may cause system
inefficiency and then be transferred to another market. For instance, natural disasters or
attacks may damage part of the gas production facilities, resulting in a severe shortage in
the gas supply, which, in turn, would reduce the gas needed for supplying electricity and
hinder the electricity system.

2.2. Prominent Risks and Their Impact

The long-term operations of natural gas and electricity markets suffer from various
risks, such as natural disasters (e.g., hurricanes, earthquakes, extreme weather, etc.), hazards
of human origin (e.g., terrorist attacks, cyberattacks, operational errors, etc.) and technical
deficiencies (e.g., design defects, pipeline failures, corrosion, aging equipment, etc.) [11].
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To quantify their consequences, the most prominent risk factors were identified based on
evidence from multiple sources. After an in-depth investigation into the relevant litera-
ture [37–40], surveys [41] and online accident reports, a list of the risk factors affecting each
market was extracted. Interviews were conducted to obtain experts’ opinions regarding
the most salient risks or alternative risks associated with the two energy markets. Table 1
provides a summary of the most significant risk factors. These risk factors are dynamic in
nature, and each has its own evolutionary pattern and impact on the SoS.

Table 1. Prominent risk factors and their descriptions.

Systems Risk Factors Descriptions

Natural gas market

Pipeline defects Corrosion, pipeline aging and other performance defects continually
disrupt the natural gas supply.

Import shortages A sharp decline in cross-border trade or attacks posing a danger to
pipelines induce severe import shortages.

Extreme weather Excessively low temperatures cause a demand peak in the natural
gas market.

Geopolitical risk Risks associated with wars, terrorist acts and other geopolitical
conflicts cause a supply shortage of the natural gas market

Electricity market

Infrastructural damage Malfunctioning infrastructures results in ineffective electricity
production and transmission.

Electricity overload Peaks in electricity demand widen the demand–supply gap and may
even damage facilities.

Extreme weather Excessively low temperatures cause a demand peak in the
electricity market.

In this risk assessment of the natural gas market, our emphasis was on the four com-
mon factors identified above, which include pipeline defects, import shortages, extreme
weather and geopolitical risks [8,35,41,42]. First, according to a survey in [41], pipeline
defects such as corrosion account for 38.5% of cases of pipeline failure. They create a contin-
uous disruption of the pipelines’ normal operations. Second, international trade is one of
the main sources of natural gas supply [8]. With the escalation of international conflicts or
deliberate attacks, countries face the uncertainties of sharp declines in cross-border natural
gas trade. Due to a high dependence on imports, the decline can barely be compensated
by domestic production, resulting in a severe supply shortfall. Third, extreme weather
such as freezing stimulates the consumption of natural gas for heating, and thus a seasonal
peak may occur in natural gas demand [8,35]. As the most proportion of global natural
gas is supplied by specific countries, the geopolitical risks also convey much pressure on
the natural gas market. Severe gas-supply shortages induced by geopolitical issues have
been observed in a worldwide scope, including in Europe, Asia, America, the Eastern
Mediterranean region, etc. [42–44].

In the electricity market, the three primary risk factors triggering system failures were
also extracted. First, damage to the power grid’s infrastructure hinders the system from
maintaining a stable electricity supply [45]. The malfunction of infrastructure such as
substations and transmission lines results in inefficient electricity production and trans-
mission. Second, as residents’ and industries’ demand for electricity fluctuates with time,
temperature and location, demand peaks that surpass the normal supply of electricity
may occur [45]. This overload will further expand the demand–supply imbalance [35].
Third, various hazardous events such as hurricanes, earthquakes and freezing may inflict
significant harm on the power grid [46]. In terms of frequency and consequences, among
these natural hazards, extreme weather is also considered to be one of the main risks,
which induces a rise in electricity demand with excessively low temperatures. Based on
our analysis, extreme weather induces a demand peak in both the natural gas market and
the electricity market.
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2.3. Dual Interactions

Both the interactions among the risk factors and those between the markets constitute
the structure of the coupled natural gas–electricity system and serve as the driving force
for evolution. These interactions are highly dynamic and vary with stochastic events.
For instance, a sudden gas rupture may impair the normal operation of the natural gas
market, resulting in a gas supply shortage. In such a scenario, the electricity market may
seek alternative energy sources to mitigate the demand–supply gap. As the ratio of gas
to electricity declines, the interaction between the two systems decreases accordingly. To
elucidate the initial data on the type and strength of the dual interactions, expert judgments
were utilized. The cascading effects caused by the intricate interactions exert significant
influences on the aggregated risks of the coupled markets.

• Interactions among risk factors. A risk interaction is defined as a relationship between
one risk factor and another. Multiple risks may emerge concurrently. A typical
illustrative example is the successive occurrence of an earthquake, a tsunami and
a nuclear accident in Japan in March 2011 [35]. In the context of a coupled natural
gas–electricity market, causal interactions exist. For instance, extreme weather and
electricity overload are two interacted risk factors. There is a direct link between
extreme weather and electricity overload, since it is possible for an extremely low
temperature to produce a sudden rise in electricity demand. Owing to the interactions
among risk factors, energy markets may be exposed to disruptions from combined
direct and indirect risks.

• Interactions between markets. Interactions between the natural gas and electricity
markets generated by the coupling of energy components can dramatically influence
the strategic behavior of the SoS. Specifically, a failure or disruption in one market
could propagate to the other through the coupling components, impairing the opera-
tion of numerous SoS facilities. Worse still, the propagation of disruptions may create
negative feedback to the triggering system and result in even more severe ripple effects.
For instance, a natural gas supply deficit or an interruption in electricity transmission
may force the outage of electricity-driven compressors and further force gas generators
offline, causing more severe disruptions. This work mainly considered the functional
interactions involved in the coupled process of natural-gas-to-electricity generation.

3. Model Construction

To comprehensively investigate how multiple risks evolve and affect the coupled
natural gas–electricity market considering complex interactions, system dynamics (SD)
modeling was used for our analysis. SD is a simulation-based approach with the ability to
quantitatively model dynamic and complex problems, offering decision-makers an intuitive
interface for experimenting with numerous scenarios and revealing transparent results [34].
The basic principles of SD are that all outcomes of a system are determined by its unique
inputs, and the behavior of a system originates from its structure [47,48]. Descriptions in
the theoretical framework revealed the core structure of the systems, and physical activities
of the coupled markets will be thoroughly investigated in this section, based on which
the risk evolution processes, behaviors of multiple entities and state of the system can
be characterized by continuously changing variables. These variables are interrelated,
constituting feedback loops in response to system changes. Using differential equations,
the peculiarity of variables and hypothesized relations can be quantified, which is in turn
incorporated by SD software for the simulation.

Figure 2 depicts the SD model for a risk assessment of the coupled markets created
using the software tool Vensim DSS. This model was adapted from well-established and
verified models, including those developed by [1,8,22]. It portrays the general operation of
the coupled two markets, and this model is flexible and can be structured with additional
feedback loops representing specific ripple effects in other contexts. State variables such
as the natural gas reserve capacity and the total natural gas supply are modeled as stocks.
They are symbolized as containers or boxes, representing the accumulation of volume or
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capacity at a certain time. There might be inflows to or outflows from the stocks, which
are symbolized by valves, inducing variations in the box per unit of time. Auxiliary
variables, such as the import shortages and the electricity transmission efficiency, represent
constant values or intermediate steps in calculations. The interactions between the variables
are depicted as arrows, with “+” signifying a positive causal link and “−” signifying a
negative link.

Figure 2. System dynamics model for assessing the risk of the coupled natural gas–electricity market
(R: Reinforcing loop, B: Balancing loop).

We took China as an example, with China’s Energy Statistical Yearbook, China’s
Statistical Yearbook and other reliable data sources for setting the variables and conducting
experiments. As daily data are not accurately accessible for certain variables, we derived
daily statistics based on the yearly data and seasonal peaks to preserve reasonableness [8].
The model’s timescale was set from September to March (approximately 180 days), which
was sufficient to accommodate for understanding a typical risk event, and the time step was
set as 1 day. The mathematical settings of variables and links in Vensim DSS are illustrated
in the following subsections.

3.1. The System’s Boundaries and Structure

After analyzing the inherent interactions among the key risks and markets, this model
determined the main variables, as well as their mutual influences and causal relationships.
To describe the prominent variables and links in a structured way, the definitions and
functions of the components within each market are presented in the subsequent subsec-
tions. Two bold arrows represent the interactions between the natural gas and electricity
markets. Risk factors affecting each market may propagate to the coupled markets via
these interactions. Different strategies can be adopted in response to the risks, including
reducing demand and improving the emergency supplies [8], which can help the system to
recover from risks or amplify the losses. As described below, four causal feedback loops
can be easily observed.
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• Loop number 1 (length = 5): Natural gas market satisfaction rate → emergency supply
ratio → emergency natural gas supply rate → overall natural gas supply rate → actual
natural gas supply rate;

• Loop number 2 (length = 6): Natural gas market satisfaction rate → natural gas
demand compression rate → other sectors’ gas demand rate → overall natural gas
demand rate → actual natural gas demand rate → total natural gas demand;

• Loop number 3 (length = 6): Electricity market satisfaction rate → electricity demand
compression rate → other sectors’ electricity demand → overall electricity demand
rate → actual electricity demand rate → total electricity demand;

• Loop number 4 (length = 20): Electricity market satisfaction rate → electricity demand
compression rate → other sectors’ electricity demand → overall electricity demand
rate → actual electricity demand rate → electricity demand generated by natural
gas → electricity generation gas demand rate → overall natural gas demand rate →
actual natural gas demand rate → total natural gas demand → natural gas market
satisfaction rate → emergency supply ratio → emergency natural gas supply rate →
overall natural gas supply rate → actual natural gas supply rate → natural gas supply
rate for electricity generation → natural gas electricity generation rate → overall
electricity supply rate → actual electricity supply rate → total electricity supply.

Among the causal feedback loops, the notation “B” suggests a balancing loop that
stabilizes the systems, while the notation “R” implies a reinforcing loop that amplifies
the system’s changes. These feedback loops foster the complex evolution of the coupled
markets in the face of risks.

3.2. Natural Gas System

The supply subsystem and demand subsystem constitute the natural gas market, with
the variable of the natural gas satisfaction rate being the indicator of market efficiency.
Pipeline defects, import shortages and extreme weather are the risk factors affecting the
market, and a decline in the satisfaction rate induced by these risks may trigger an in-
crease in response strategies such as the natural gas compression rate and the emergency
supply ratio.

In the supply subsystem, the different sources of natural gas were divided into do-
mestic natural gas supply and international natural gas imports. According to the annual
data derived from the available reports, the daily amount of domestic natural gas supply
was set as 5.687 hundred million cubic meters per day (hMm3/d) and the normal import
rate as 4.603 hMm3/d. However, import shortages may influence the actual import rate
of natural gas. As defined in Equation (1), if the supply is cut or deliberate attacks occur
at time 20, an excessively large decline emerges, and these events can barely be resolved
within months. The supply of natural gas is transported to the end-users, during which,
pipeline defects may occur, creating continual disturbances on the pipeline’s efficiency,
as denoted by Equation (2). If the natural gas supply declines, the emergency natural
gas supply can supplement the supply shortage, which is constrained by the natural gas
reserve capacity, the emergency supply capacity and the emergency supply ratio, as shown
in Equation (3). According to real data and emergency policies, the natural gas reserve
capacity was set as 261 hMm3/d and the maximum daily emergency supply capacity
as 2.058 hMm3/d. The emergency supply ratio is highly dependent on the natural gas
market’s satisfaction rate; hence, a lookup function was used in Equation (4). When the
satisfaction rate is lower than 95%, a proportion of emergency gas is supplied, and if the
gap increases, the level of urgency rises. Full capacity is used if the market satisfaction rate
is below 80%.

Import shortages = IF THEN ELSE (Time plus > 20, 0.9, 0) (1)

Pipeline defects = RANDOM NORMAL (0.05, 0.25, 0.15, 0.05, 0.15) (2)
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Emergency natural gas supply rate = IF THEN ELSE (Natural gas reserve capacity > 0, Emergency supply
capacity × Emergency supply ratio, 0),

(3)

Emergency supply ratio = lookup (Natural gas market satisfaction rate). (4)

In the demand subsystem, demands from the residential sector, the electricity sector
and other sectors such as industry and transportation were considered. The daily residential
gas demand rate was 3.6 hMm3/d, with the other sectors’ gas demand rate being equal
to 5.16 hMm3/d. The demand for electricity generation is dependent on the proportion
of natural gas in electricity generation and the electricity demand generated by natural
gas, as denoted in Equation (5). According to the data for 2021, natural gas accounts for
3% of electricity generation in China. Extreme weather in the winter may cause a natural
gas demand peak. Normally, for every degree below 0 ◦C the temperature drops, the
natural gas demand rises by 2%, as shown in Equation (6). The rise in demand may also
cause dissatisfaction in the natural gas market, and a strategy of demand compression can
be applied to mitigate the gap. As the residential sector always has the highest supply
priority, we can assume that this compression occurs in other sectors such as in the industry.
Equation (7) demonstrates that a high-level emergency triggers demand compression, and
these actions experience a delay from the time when the market disruption occurred.

Electricity generation gas demand rate = Consumption of natural gas per kwh × Electricity demand
generated by natural gas,

(5)

Natural gas demand peak = IF THEN ELSE (Extreme weather ≥ 0, 0, 0.02 × (−Extreme weather)), (6)

Natural gas demand compression rate = DELAY1 (IF THEN ELSE (Natural gas market satisfaction
rate ≥ 0.8, 0, 0.2), 10),

(7)

3.3. Electricity System

The electricity market also consists of the electricity supply subsystem and the elec-
tricity demand subsystem, with the variable of the electricity satisfaction rate being the
indicator of market efficiency. Infrastructural damages, electricity overload and extreme
weather are the risk factors affecting the market, and a decline in the satisfaction rate
induced by these risks may trigger response strategies such as electricity compression. As
electricity cannot be stored, the additional supply under emergency circumstances was not
considered to be a prominent risk response strategy in our experiments.

In the supply subsystem, multiple fuels can be adopted for generating electricity. We
divided the sources into natural gas electricity generation and other fuels used for electricity
generation, as natural gas was our main research focus. As defined in Equations (8) and (9),
the natural gas electricity generation rate relies on the natural gas supply rate for electricity
generation, which, in turn, depends on the actual natural gas supply rate from the natural
gas market, as well as the proportion of electricity in natural gas consumption. According to
the annual statistical data, the percentage of natural gas used for electricity generation was
16% of the total natural gas supply. However, during the transmission of electricity, damage
to the infrastructure may also emerge and increase the rate of electricity transmission loss.
Efforts would be made to repair the damaged infrastructure and recover the efficiency of
electricity transmission to a normal level, as shown in Equations (10) and (11). China’s
Statistical Yearbook suggests a normal transmission loss rate of 5.26%.

Natural gas electricity generation rate = Natural gas supply rate for electricity generation/Consumption
of natural gas per kwh,

(8)

Natural gas supply rate for electricity generation = Actual natural gas supply rate × Proportion of
electricity in natural gas consumption,

(9)

Infrastructure damages = RANDOM NORMAL (0.3, 0.4, 0.3, 0.05, 0.3) × (STEP (1, 70) + STEP (−1, 120)), (10)
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Electricity transmission efficiency = 1 − Infrastructure damages − Normal transmission loss rate, (11)

In the demand subsystem, the residential and nonresidential sectors, such as the indus-
trial sector, were evaluated in Equation (12). The daily residential electricity demand rate
was 32.17 hundred million kWh/d, while the daily normal industrial electricity demand
rate equaled 195.52 hundred million kWh/d. Extreme weather in the winter may result
in an electricity overload for heating or other purposes. Normally, when the temperature
falls by 1 ◦C below 0, electricity consumption rises by 3%, as stated in Equation (13). The
rise in demand may also produce dissatisfaction in the electricity market. Thus, a demand
compression strategy might be utilized to close the gap. Since the residential sector always
has the greatest supply priority, we also assumed that this compression would happen
in other sectors. As illustrated in Equations (14) and (15), a high-level emergency gener-
ates demand compression, and these actions are delayed after the time when the market
disruption occurred.

Overall electricity demand rate = Other sector electricity demand + Residential electricity demand rate, (12)

Electricity overload = IF THEN ELSE (Extreme weather ≥ 0, 0, 0.03 × (−Extreme weather)), (13)

Electricity demand compression rate= DELAY1 (IF THEN ELSE (Electricity market satisfaction rate ≥ 0.8,
0, 0.2), 10),

(14)

Other sector electricity demand = Normal industrial electricity demand rate × (1 - Electricity demand
compression rate),

(15)

4. Experiment and Results

After constructing the model, we first conducted tests to verify its authenticity, then
the behaviors of coupled markets were simulated through multiple risk assessment ex-
periments, namely, (1) the impact of individual risks on the coupled markets; (2) how the
coupled natural gas–electricity market would evolve, considering the dual interactions;
and (3) the possible market adaptation behaviors, considering whether the risks could be
mitigated by different response strategies.

4.1. Authenticity Test

The validity of a model should be confirmed after the formulation of the model’s struc-
ture and data collection. It is very critical to ensure that the model dynamically captures
the relationships among the variables and that the model fits real-world conditions. First,
since the variables were specified using open and reliable data sources and expert opinions,
the equations were meaningful. A unit check using Vensim software was successful, and
thus the model was deemed to be suitable and reasonable. We assumed two extreme
scenarios and chose two representative variables to demonstrate if the coupled markets’
actions were compatible with reality. Figure 3 displays the results when the systems are
free from risks and when both the natural gas and the electricity markets collapse. We
can see that in the absence of any risks, the markets’ supply can meet demand at a good
rate, and the emergency supply is not activated, keeping the natural gas reserve capacity
constant. However, when both markets fail, we can see a rapid drop in the system’s overall
satisfaction rate. Additional natural gas will then be provided, depleting the natural gas
reserves. The natural gas reserves are exhausted on day 126, and the system continues
to collapse. The authenticity test results demonstrated that the model was both effective
and valid.

4.2. Assessment of Individual Risks

This study first evaluated the influence of the prominent risk factors on the coupled
markets when each risk factor functioned independently and the market did not apply
a risk response strategy. Given that extreme weather affects both the natural gas and
electricity systems, it disrupts the overall systems’ performance by influencing demand
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peaks in natural gas and electricity overload. Moreover, as illustrated by practical conflicts,
geopolitical risks often affect the natural gas market via its influence on the risk of import
shortages. Hence, we reduced the initial list of risk factors to four tests. Figure 4 exhibits the
input value of the risk factors described in the previous section, and Table 2 demonstrates
their impacts on the coupled natural gas–electricity market with regard to the reduction in
the satisfaction rate.

Figure 3. Authenticity test results: (a) the behavior of the coupled markets’ satisfaction rate under
two extreme scenarios; (b) the behavior of natural gas reserves under two extreme scenarios.

Figure 4. Effects of the experimental risk factors: (a) pipeline defects; (b) import shortages; (c) infras-
tructural damages; (d) extreme weather.
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Table 2. Market satisfaction losses induced by individual risks.

Risks Coupled Markets Natural Gas Market Electricity Market

Pipeline defects 7.35% 14.69% 0%
Import shortages 17.88% 35.52% 0.28%

Infrastructural damages 4.53% 0% 9.06%
Extreme weather 8.63% 8.23% 9.03%

Regarding pipeline defects, it can be observed that defects such as corrosion and
pipeline aging impose long-term and continual disruptions of the efficiency of natural gas
transportation, which, in turn, affect the satisfaction of the natural gas market. According to
the simulation’s results, pipeline defects reduce the natural gas satisfaction rate by 14.69%.
However, although it has an effect on the amount of natural gas supply that can be provided
to generate electricity, its impact on the electricity market’s satisfaction is invisible. This
could be because the losses caused by this risk factor are relatively minor. Because only 16%
of natural gas is used to generate electricity, and only 3% of the total electricity supply is
provided by natural gas generation, such a minor disturbance can be considered negligible
in an assessment of the electricity market.

Regarding import shortages, as previously indicated, if import shipments are cut off
or an intentional attack is carried out on the key pipelines, this would result in a significant
decrease in import supplies. In Figure 4, the natural gas market faces an import shortage
starting on day 20, lowering the efficiency of imports to 10% of the initial level. Because of a
lack of improvement in the global situation and the difficulty of reconstructing the pipeline,
gas imports were still not recoverable within the experimental period (180 days). In light
of the fact that natural gas imports constitute a proportion of China’s overall natural gas
supply, this significant import shortage would result in a loss of 35.52% in the satisfaction
rate. Although natural gas supply accounts for a small fraction of the electricity market,
the risk is transmitted to the overall markets through interactions as a consequence of the
severe supply crisis. This results in a loss of 0.28% in the electricity satisfaction rate, and
the loss rate of the coupled markets is around 17.88%.

If we consider damage to the infrastructure, despite the normal electricity transmission
loss rate, the transmission infrastructure is frequently exposed to abrupt disruptions owing
to exterior damage and other events, resulting in a considerable loss in transmission
efficiency. Over a period of time, the infrastructure may be restored and returned to
its normal transmission level. In Figure 4, the transmission infrastructure was severely
damaged on day 70 and rebuilt on day 120. This reduced the satisfaction rate of the
electrical market by 9.06%. However, because we ignored the impact of electricity supply
on natural gas production, and the electricity market demand remained constant, the risk
of infrastructural damage on the supply side of the electricity market was not propagated
to the natural gas market.

In terms of extreme weather, from September to March, the coupled natural gas–
electricity market first sees a decrease in temperature, followed by a rebound. In the
simulation, the temperature began to oscillate downward after day 40 and stayed exces-
sively low from day 90 to day 130, after which it rose upward to a warm situation. This risk
factor increased demand in both the natural gas and electricity markets, which ultimately
resulted in a decrease in the satisfaction rate of 8.23% and 9.03%, respectively. Note that in
accordance with Table 2, even though in terms of the average loss in the market satisfaction
rate of the coupled market, import shortages were ranked as the most significant risk
factor because of the severity of their effects, extreme weather could not be ignored, as it
influenced both markets.

4.3. Evolution of the Risk Behaviors Considering Dual Interactions

Section 4.2 quantitatively assessed the extent to which the risk factors, if functioning
independently, would ultimately cause losses to the coupled natural gas–electric market.
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If we consider the dynamism further, Figure 5 displays the evolutionary behavior of the
coupled markets’ key indicators over time when each of the four risk factors occur alone and
when all the risk factors operate in collaboration. In particular, we focused on three indicator
variables: the natural gas market’s satisfaction rate, the electricity market’s satisfaction
rate and the coupled markets’ satisfaction rate, which was calculated by combining the
first two.

Figure 5. Dynamic behavior of the key variables, considering multiple risks and dual interactions.

First, the satisfaction rate of the natural gas and electricity markets were investigated
separately. Consistent with the previous discussion, it could be observed that the natural gas
market was primarily influenced by three risk factors: pipeline failures, import shortages
and extreme weather. In contrast, the electricity market was heavily influenced by the risks
of extreme weather and damage to the infrastructure, whereas pipeline failures and import
shortages had negligible effects. For the natural gas market, pipeline failures lowered
the market satisfaction rate, but the emergence of import shortages caused the market
satisfaction rate to drop rapidly, surpassing pipeline failures as the most significant risk
factor after day 32. The disruption caused by extreme weather shifted from growing to
decreasing. However, even when the temperature had almost returned to the initial level,
the market satisfaction rate did not return to normal. Since import shortages persisted as
the most prevalent risk factor, the natural gas market satisfaction rate continued to decline,
reaching the lowest level of 50.40% at the end of the simulation. For the electricity market,
while infrastructural damage did not occur until day 70, after the emergence of extreme
weather, it soon became the dominant risk factor owing to the substantial damage. After
recovery of the damaged infrastructure on day 130, the satisfaction rate of the electricity
market progressively recovered after day 157. The satisfaction rate of the electricity market
showed a pattern of declining and then rising, with the lowest value occurring on day 121,
at around 76.90%.

We then looked into the coupled markets’ satisfaction rate. Considering the behavior
of both markets and their interactions, we could observe that as time progressed, the
dominant risk factors evolved, inducing more complexity for decision-makers attempting
to make an adequate risk assessment. First, the different risk factors had their own evolu-
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tionary patterns. While pipeline defects and import shortages occurred abruptly and then
persisted, infrastructural damages and extreme weather both showed a recovery trend,
and the recovery pattern of extreme weather was even more obvious than that in each
individual market. Second, various risk factors could be emphasized at different times.
For instance, after the import shortages exceeded pipeline defects as the dominant risk
factor, the disruptions induced by infrastructural damage also surpassed those induced
by pipeline defects for some time. Third, the aggregated effects of minor risks may have
serious effects on the coupled systems. While the disruptions from the most severe risk
factor caused a decline of 17.88%, the satisfaction rate of the coupled market dropped by as
much as 35.60% (e.g., on day 125). Hence, to better prevent crises, a holistic and dynamic
perspective is essential when monitoring the performance of energy markets.

4.4. Risk Response Strategies and Their Effects

In the preceding section, the two most common risk response strategies for the markets
were defined as demand compression and emergency supply. Similar tests were conducted
in four scenarios: no risk response, emergency supply only, demand compression only
and the two strategies together. As shown in Figure 6, both strategies were effective for
responding to the overall risks, and the system’s resilience was the highest when both
strategies were applied collaboratively. However, situations may arise in which decision-
makers have to choose between the two alternatives due to restricted resources and time.

Figure 6. Effects of the risk response strategies: (a) the behavior of the coupled markets’ satisfaction
rate for different risk response strategies; (b) the behavior of the capacity of natural gas reserves for
different risk response strategies.

To properly investigate the long-term effects of different strategies, we extended the
experimental duration from 180 days to 360 days. It can be observed that in the previous
short-term experiments, the emergency supply of natural gas quickly brought the coupled
market back to normal in the face of minor disturbances, and that even in a more severe
risk scenario (e.g., when import shortages occurred), its response efficiency was also higher.
At the end of day 180, the satisfaction rate of the coupled natural gas–electricity market
using the emergency supply strategy was 71.28%, while the demand compression strategy
achieved a rate of 69.49%. However, the improvements brought about by the emergency
supply of natural gas stagnated with time, and demand compression became the superior
strategy after day 297. This fact derives from the restrictions in the capacity of the natural
gas reserves. While supplementation by additional natural gas is beneficial for mitigating
the demand–supply gap induced by risks, the reserve capacity of a specific country is
limited. Without boosting that capacity, this strategy will collapse if a crisis persists for an
extended period of time.
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5. Conclusions

By considering the complexity of multiple risks, the interactions among risks and
market interactions, this study provided a comprehensive and transparent overview so
that decision-makers could understand the evolving patterns of the risks influencing
the coupled natural gas–electricity market. It first describes a list of the prominent risk
factors and dual interactions based on a literature review and by tracking news about
real-world accidents. Subsequently, a system dynamics model was constructed for the
risk assessment. Four causal feedback loops were formulated that captured the dynamism
and complexity embedded in the evolution of the coupled markets. Using China as an
example, all variables were determined using China’s Energy Statistical Yearbook, China’s
Statistical Yearbook, and other open and reliable data sources. After the construction of the
model, three experiments were conducted, investigating the impact of each individual risk
factor on the coupled market, the dynamic behaviors of the markets considering the dual
interactions and a comparison of the two risk response strategies. The main findings are
as follows.

• The dynamism and complexity all highly influence the results of the risk assessment.
On the one hand, the dominant risk factors may evolve and change over time. The
results in Table 2 demonstrated that among individual risks, the risk factor of import
shortages ranked as the most severe one. It is in line with previous findings in
the literature [8] concerning China’s relatively high natural gas import dependency.
However, the damage caused by this risk factor did not surpass that of pipeline defects
until day 32, calling for a transition of the risk assessment’s focus. On the other hand,
the aggregated effects of multiple risks and multiple markets may induce a severe
crisis even if the initial disturbances are minor. As illustrated in Figure 5, even though
the decline in satisfaction rate caused by individual risks did not exceed 17.88%, the
coupled market could see a decline of over 35% (e.g., on day 125).

• Risk factors can propagate from one market to another via interactions, yet they depend
on multiple aspects such as the severity of the risks and the intensity of the interactions.
In our experiments, given the fact that natural gas only accounts for about 3% of the
electricity generation in China, the propagation effect was not obvious (please see
Table 2, despite the extreme weather that affected both markets, only the abnormal
shock of import shortages was observed propagating from the natural gas market to
the electricity one). Compared with studies in other empirical backgrounds, however,
the situation is different. For instance, in the European Union, where the share of
electricity production from natural gas equals approximately 14%, the side-effects
of shortages in the natural gas market supply on other energy markets have been
partially observed [3,27]. This comparison provides transparent evidence to explain
why the development of alternative energy sources is encouraged to improve the
energy security, and to which extent it can save losses in the overall coupled market.

• Risk response strategies such as demand compression and emergency supply con-
tribute to the recovery of the markets. Considering these two commonly used policies
to tackle the natural gas and electricity insufficiency [8,25], our experiments revealed
that they performed differently with the varying lengths of time. In the short term, an
emergency supply will soon compensate the demand–supply gap, but this is always
constrained by the country’s reserve capacity. The demand compression strategy may
create persistent improvements in the markets and thus perform better for long-term
risk recovery. Note that as the expansion of reserve capacity calls for substantial
investments, and the compression of the gas or electricity demand has the potential
to influence the economy, the portfolio of risk response strategies should be further
investigated through a financial analysis.

The following are policy recommendations based on the findings presented above:
An isolated and static perspective of risk assessment is inevitably inaccurate; instead,
monitoring the process and controlling the overall market are required to avert crises. Using
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the developed approach, decision-makers can identify when various disruptions may occur
and which risk factors account for their occurrence and keep an eye on impending severe
risks. For countries like China who have started embracing a new era of clean energy,
determining the degree of long-term interactions between multiple energy markets is vital
to guarantee energy security. In addition, among the risk response strategies, while the
emergency supply strategy soon recovered the markets, the compression of demand had
a longer enduring impact. Hence, decision-makers should strike a balance between the
short-term and long-term effects of strategies, rather than adopting a myopic view.

The contribution of this study manifests in three aspects. First, it establishes an inte-
grated framework for multiple stakeholders from different sectors to have a more systematic
look at the underlying risks, with the objective of enhancing the overall performance of the
coupled market. Second, the proposed model quantitatively captures both the stochastic
nature of risks and the nonlinearity of interactions, offering a cost-effective and dynamic
instrument that supports the whole risk assessment process through explicit experiments.
Third, the visualization results in transparent graphics can help decision-makers to easily
examine the evolutionary impact of risks and compare the consequences of various policies.
Some limitations also exist that inspire future research. For instance, while the functional
interactions are under investigation, geographical interactions may also contribute to the
propagation of risks. It is possible to better characterize the complexity of relationships
by using hybrid models that incorporate both geographical and functional information.
Moreover, due to the complexity embedded, this study focuses primarily on how risks may
result in a supply–demand imbalance and how various strategies will mitigate the gaps.
Since resources in practice are often limited, when developing risk response strategies,
multiple factors regarding the financial constraints and the carbon emissions can also
be considered.
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Abstract: Energy and environment form a nexus in which residents are the owners of tourism energy
resources. Only a few studies have focused on the energy literacy of residents in ethnic tourism
destinations and its impact on sustainable tourism. Using a qualitative research approach through
field works and in-depth interviews in the Ping’an Village, Longji Terraces Scenic Area, this study
explored the relationships between the energy literacy of residents and sustainable tourism in ethnic
areas. The result showed that the energy literacy of the ethnic residents of Pingan village in terms of
knowledge, attitude, and behavior has increased in line with the development of tourism, and both
external and internal factors contribute to the improvement. Besides, the promotion of energy literacy
among the residents not only has a positive impact on the tourists’ behavior but also brings about
effective improvements in the local energy use structure and infrastructure, thus contributing to the
sustainable development of tourism. This research extends the understanding of energy literacy from
the perspective of ethnic residents and changes in energy literacy in remote ethnic villages under
tourism development. The results also deepen our understanding of such changes in the behavior of
tourists and tourism destination sustainability and enrich the empirical research to promote energy
conservation and sustainable tourism development in ethnic areas.

Keywords: Longji; ethnic areas; environment; ecological balance; tourism

1. Introduction

Energy is the basis for human survival and development and an essential resource
for enhancing socioeconomic development. With the decline in global energy reserves, the
issues of energy production and consumption have become a global concern. Although
humans use science and technology to create a high quality of life, they also cause increas-
ingly serious environmental pollution [1]. Energy and tourism are closely related; energy
not only becomes an attraction but also a limitation to the tourism industry, where there
is an increasing trend of energy consumption in tourism catering, accommodation, and
transport [2]. There needs to be a coordinated effort between residents and tourists to
effectively reduce the consumption of energy and emissions from tourism activities and
protect the tourism landscape and ecological environment.

Energy literacy is an important concept related to the multifaceted phenomenon of
energy consumption, and it has gained attention in many related fields and applications [3].
This concept can be explained as a person who is aware of the energy consumption of
the appliances in their home, how to take the necessary measures to save energy, and the
relationship between energy use and climate change [1–4]. Previous energy studies have
focused on the concept of energy literacy [5,6], the relationship between energy knowledge,
literacy and behavior, energy literacy scales, and factors that influence energy literacy [6,7];
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however, few studies have discussed the relationship between energy and other social
developments from a cross-disciplinary perspective. It is not surprising that the energy
literacy of residents in ethnic tourist destinations remains unclear, as well as how energy
literacy affects the development of tourist destinations.

Currently, tourism is an integrated industry in modern society that drives the flow
and consumption of large numbers of tourists and logistics, and the energy behavior
of its stakeholders is crucial for environmental sustainability [2]. Most of the energy-
related tourism studies have discussed the benefits [8,9] and the constraints [10,11] that
energy poses to tourism development, as well as the energy consumption and behavior
in tourism [12,13]. Yet the relationship between tourism development and the energy
literacy of residents remains unclear, particularly on how the energy literacy of ethnic
village residents in remote areas has changed as a result of tourism development. Previous
research on ethnic village tourism has mainly focused on the preservation of ethnic and
cultural heritage [14], the participation of community residents in tourism [15], and the
interaction between host and guest [16], with less attention paid to the energy environment
of ethnic tourism destination. However, understanding how ethnic areas can escape poverty
and gain knowledge of development for local economic and environmental sustainability
are important for harmonious social development. Thus, this study focused on the Ping’an
Zhuang Village in the Longji Terraces Scenic Area as an ethnic tourism site to explore the
impact of the energy literacy of ethnic residents on sustainable tourism development by
conducting field surveys and in-depth interviews and using qualitative research methods.
Two questions answered in this study are as follows: How has tourism development
brought about changes in residents’ energy literacy? How does a change in energy literacy
affect the sustainable development of local tourism? The results of this study can increase
the understanding of the relationship between energy literacy and tourism development
from a transdisciplinary perspective, enrich empirical research on energy literacy from the
perspective of ethnic residents, and promote energy conservation and sustainable tourism
development in ethnic areas.

2. Literature Review

2.1. Energy Literacy

Energy literacy is related to the perception and consumption of energy [5]. The ear-
liest research focused on knowledge [17], while more recently, researchers have become
increasingly aware of the importance of the willingness and actions of people [18]. When an
individual is energy-aware, they know the energy production and consumption in everyday
life, how to save energy in their home, how to adopt economic energy-efficient behaviors,
and how their energy choice may be related to climate change [1]. Although the definition
of energy literacy remains unclear, most authors have accepted that literacy should consist
of three domains: knowledge, attitude (affect), and behavior [1,6,7]. Knowledge is a critical
element in achieving energy literacy, comprising an understanding of energy efficiency,
awareness of the environment, and the social impacts of energy production, distribution,
and consumption [1,6,7]. Attitude refers to people’s perceptions of the impact of energy
issues on their lives and energy-related beliefs that are crucial for decision-making [1,6,7].
Though the affect may be instead of attitude in different studies, it means much the same
as attitude, which refers to how you think of energy use [6]. Behavior includes personal
attention to environmental issues and the need for energy efficiency, the responsibility each
individual feels to be a citizen worldwide, and commitment to energy efficiency [1,6,7].
Previous studies have paid more attention to the relationship between energy knowledge,
attitudes, and behavior. Hungerford and Volk found that knowledge contributes to behav-
ior because it plays an important role in environmental protection decisions [19], whereas
Alp et al. indicate that the energy attitudes of elementary school students significantly
influence their environmental behavior [20]. Rioux proposed that neighborhood attachment
as an affection variable is a critical element in the behavior of secondary school students.
Energy knowledge of people, as well as their willingness and ability to act, are important
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for literacy [21]. De Waters and Powers also proposed that energy behavior and affect are
more relevant than knowledge [6]. However, the traditional thinking that increasing knowl-
edge could increase affect and result in behavioral changes has been gradually challenged
by subsequent researchers. Numerous studies have reported that reasonable knowledge
does not necessarily translate into sound behavior to save energy. For example, although
Minnesota residents have already acquired some electricity-saving habits, they still show
resistance to replacing equipment with more efficient ones and using public transport or
more economical driving methods [1]. Similarly, although the Danes show a good energy
knowledge level, they do not use more efficient equipment or renewable energy [22]. Chen
et al. and Lee found that Taiwanese students achieved reasonable energy knowledge [23],
but it did not seem to determine behavior change. University students in Portugal also
showed a low level of concern and commitment to energy saving [24,25].

The scales and models of energy literacy also play an important role in energy literacy
research. The foundation for developing a competitive scale for measuring energy literacy
is still based on knowledge, attitude (affect), and behavior. In addition to the efforts of
DeWaters to develop an energy literacy scale, Bodzin et al. developed two instruments to
measure the energy literacy of middle-level education students: one related to knowledge
and the other related to attitude and behavior [26]. Similarly, Kyriazi and Mavrikaki
developed a scale to measure the environmental literacy of post-secondary students [27].
In general, the framework is defined as follows: (1) The knowledge dimensions refer to
the influences of energy development, various types of daily energy use, basic rules of
energy use, and the importance of efficient energy use. (2) The attitude dimensions refer to
the influences of energy use in the daily lives of people, and the behavioral dimensions
refer to the adoption of energy-efficient behaviors in daily life. Meanwhile, there are
two main aspects of the discussion of energy literacy models: the education and the
psychological model. The education model emphasizes the importance of acquiring energy,
knowledge, and skills, which closely contribute to actions and behaviors. The psychological
model encourages people to take responsibility for energy-saving actions. For example,
Kollmuss and Agyeman proposed that internal and external factors are directly related to
pro-environmental behavior [28].

The level of energy literacy is also related to personal characteristics and educational
background; from the perspective of personal characteristics, gender is one of the most
important factors. Studies have shown that although women have lower levels of energy-
related financial literacy [29–31], they have higher levels of energy literacy than men [32].
Studies have also reported that the primary factors determining energy literacy are gender,
going away from home to study, and the experience of energy poverty [33]. Meanwhile,
age played an important role, and the results showed that children and elderly people
presented lower levels of energy literacy [34]. Promoting the energy consumption habits of
children has become a critical program; this includes increasing the frequency of energy-
related curricular units, supplying a high level of parental education [35], and improving
the practice of educational games [36,37]. Different educational backgrounds were also
associated with different levels of energy literacy. As education programs can benefit
students by achieving proficiency levels of energy literacy, students in different areas may
have different opportunities to learn energy-saving knowledge and skills [38]. Differences
also existed among students from different disciplines. For example, the results showed
that students who majored in agriculture performed better than others [39]. Similarly,
students of geography, earth and environmental sciences, marine sciences, engineering,
and architecture obtained the broadest knowledge of energy issues from their education
and are perceived to have a superior level of knowledge on the subject [40]. More recently,
current research on energy literacy has been paying attention to more vulnerable energy
users, suggesting that they may experience inadequate access to affordable and reliable
energy services and have less financial and material resources to buffer harm [3].

Based on the above, previous studies on energy research have mostly discussed
the concept of energy literacy [5,6], the relationship between energy knowledge, literacy,
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and behavior [19–21], scales of energy literacy [26,27], and factors influencing energy
literacy [29,30,37], as shown in Table 1. However, few studies have addressed the relation-
ship between energy and other social developments from a transdisciplinary perspective.
Tourism, as an integrated industry in modern society, involves the flow and massive con-
sumption of people and services, and the energy behavior of its stakeholders is crucial for
environmental sustainability. Therefore, it is useful to focus on energy development from
the tourism perspective.

Table 1. The development of energy literacy review (Source: by own study).

Review Items Research Contents

the concept of energy literacy

the definition of energy literacy [1,6,7]

relationship between energy knowledge,
literacy, and behavior [6,19–21]

knowledge does not necessarily contribute to energy
save behavior [1,22–25]

scales of energy literacy
related to knowledge, related to attitude
and behavior [26,27]

the education and psychological model [28]

factors influencing energy literacy

Gender [29–32]; going away from home to study, and
the experience of energy poverty; age [33]

Different educational backgrounds [38]; different
disciplines [39,40]; energy literacy of vulnerable
energy users [41]

2.2. Energy and Tourism

Recent studies have shown that tourism and energy are interrelated. Energy tourism
is often associated with industrial tourism to attract tourists, as some former industrial sites
are still open or regenerated for tourism [8,9]. For example, decommissioned coal mining
sites or New York’s Highline park [41,42]. In addition, agritourism tourism can be consid-
ered a type of energy tourism since it is often connected to energy production activities on
the farm, such as producing biogas on-site, growing energy crops, or grazing sheep on the
meadow of photovoltaic plants [2,43]. Along with tourism destinations, energy tourism
could also play an important role in improving the energy literacy of people and changing
their energy use behavior, resulting in more sustainable energy citizens [44]. New forms like
environmental education, displays of new technologies, interactive science experiments,
and various outdoor activities, such as cycling, camping, or hiking, could be used in various
types of energy tourism, for example, in ecological education centers, observation towers,
and natural trails [2]. The aim is to improve energy knowledge through tourism; however,
energy may also impose restrictions on tourism. Energy facilities engaged in the extraction
and processing of energy resources can have a negative effect on the character and function
of many energy landscapes [2,10]. Environmental pollution and poor landscape vision may
discourage visitors from visiting these locations [45,46]. Previous studies also had different
views on visitors’ perceptions of different energy facilities. Some studies have suggested
that visitor perceptions may vary depending on the form, location, and concentration of
space; spatial closeness of the energy facility [2]; physical and social values of the local
environment [47]; and the type and sociodemographic characteristics of the tourist [48]. In
addition, some studies concluded that visually appealing energy facilities, such as large
wind farms, may influence the choices of visitors and their intention to revisit. Similarly,
studies have reported that there are no significant negative impacts of wind turbines on
local tourism [49].

Tourist needs also lead to extensive consumption of energy, for example, fuels burned
for traveling, heating, and cooling; chemical products for cleaning; and energy used for
cooking. According to a UN report, each tourist produces 1 kg of solid waste per day.
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Previous research on the environmental impact of energy consumption in tourism has been
broadly discussed. Research showed that new recreational facilities and accommodations
had been built to compete with more tourists, leading to more energy consumption [50].
Guests in hotels tend to use more towels, have longer showers and generate more waste
than at home; plastic particles such as bags and bottles are discarded in scenic areas [51].
Becken et al. argued that the duration of visitor stay is the main variable affecting total
energy use [52], but energy efficiency appears to rise with increasing stay [53]. While
these actions are not necessarily caused by malicious intent, they could incur additional
management costs, disturb residents, and endanger the ecosystem [54,55]. Furthermore,
Becken and Simmons suggested that accommodation in tourism has a low energy con-
sumption of fossil fuels while burning wood is a potential threat to the environment [56].
Fuelwood collecting is one of the prime causes of forest cover loss in remote tourism
destinations [57], which may cause landslides and air pollution. Recently some scholars
also stated that tourism could have negative externalities such as climate change and air
pollution [58]. Similarly, Qureshi et al. confirmed that both environmental variables and air
pollution are significantly associated with health services in Malaysia [59]. Some studies
also found that economic growth and energy consumption influenced carbon emissions as
more tourists arrived [60]. In addition, some studies have also discussed energy saving
and pro-environmental behavior in tourism. Given the impact of tourism consumption
on the environment, some researchers explored the factors that encourage more sustain-
able behavior, as these factors may bring about changes in visitor behaviors [61]. Such as
pro-environmental behavior are actions that minimize harm or even benefit the environ-
ment [62], and pro-environmental tourists refer to those who try to alleviate their negative
effects on the environment by adopting energy-saving behaviors in their trip [63]. Studies
point to factors such as moral, affective attitudes, and environmental awareness are impor-
tant to the formation of pro-environmental behavior [64]. Scholars also developed a scale
to measure the pro-environmental contextual force that affects urban tourists’ PEBs [51].

More recent studies also paid attention to energy literacy in tourism. Studies have
shown that tourists are less aware of energy literacy at hotels than at home [65,66]. As
previously mentioned, higher energy literacy contributes to energy protection; therefore, it
is not surprising that energy literacy has recently gained increasing attention in tourism
research. For example, Teng et al. discussed the impact of knowledge and the effect of
hotel employees on energy literacy [13]. In addition, some studies have investigated the
energy literacy characteristics of peasant households in rural tourism destinations. Zhang
also found significant links between the energy knowledge, affect, and behavior of tourism
farmers [4]. It has also been suggested that energy feedback is crucial in energy behavior
change, and personal values and energy literacy also have an impact on changing energy
consumption behavior [67].

Tourism results in a significant increase in energy consumption, which, in turn, leads
to an increase in CO2 emissions and climate change in the long term [68]. Hence, because
of the close links between energy consumption and carbon emissions, some studies share
significant similarities in carbon and energy literacy in terms of research targets. The
reduction in CO2 emissions depends on the social ethics and responsibility of tourists.
Several studies indicate that enhancing carbon literacy is important for reducing carbon
emissions and promoting public conversation [69,70]. Juvan and Dolnicar emphasized the
crucial role of efficient communication in the low-carbon decisions of tourists [65].

Some researchers have considered energy and carbon literacy. Horng et al. developed
a measurement scale for energy-saving literacy and carbon reduction in the tourism and
hospitality industries. They also found differences between Taiwanese and Malaysian
students in terms of knowledge, ecological concepts, attitude, sensitivity, locus of control,
action intention, and action strategy [12]. Similarly, Teng explored the energy and carbon
literacy structures in hospitality and tourism practices in Taiwan [71]. Some studies have
also suggested that energy-efficient policies are indispensable for tourism. As such, im-
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proving energy efficiency and reducing energy waste through energy literacy is important
for the sustainable growth of tourism.

Existing energy-related tourism research has primarily discussed energy tourism as
a tourist attraction [44], energy facilities’ impact on tourists’ energy literacy [44], and the
constraints that energy imposes on tourism development [10,11,45]. Some studies have
also highlighted that tourism is associated with significant energy consumption, while
others have discussed the energy literacy of hotel employees [12], types of energy literacy
of residents in rural tourism destinations [4], and links between energy and CO2 emis-
sions [12,13,69,70]. More recently, current research on energy tourism has been expanded to
measure the relationship between economic activities and energy consumption in ethnic re-
gions [72]. Some researchers also suggested cycling in ethnic areas is means of low-carbon
and fashionable traveling for sustainable tourism [73]. Similarly, the use of renewable
energy and locally developed energy-saving technologies is increasing in tourist lodges
in Nepal’s ethnic region [74]. Luo also found that the absolute total emissions per visitor
to one of China’s ethnic tourism destinations have reduced slightly [75]. However, few
studies have adequately discussed the relationship between tourism development and the
energy literacy of residents. Ethnic areas need to break out of poverty and gain knowledge
in development to promote local economic and environmental sustainability; these are
important issues that require attention in the context of harmonious social development.

3. Research Methods

3.1. Case Introduction

The Longji Terraces are located in Longsheng and Guilin, China. They are among the
most beautiful terraces in the world, as shown in Figure 1. According to historical records,
they were built in the Qin Dynasty, shaped in the Ming Dynasty, and completed in the early
Qing Dynasty nearly 2300 years ago. The terraces are charming and beautiful year-round.
Ping’an is the central village of the Longji Terraces Scenic Area, towering over the spine
of the Terraces. Since 1993, it has been developed for tourism for nearly 29 years and has
attracted amounts of tourists. The village is in a subtropical monsoon climate zone with an
average annual temperature of approximately 17.1 ◦C, with no heat in summer or cold in
winter. The rainy season in Ping’an is from April to August, which accounts for almost 72%
of the annual rainfall. This area is well watered, and the exposed hills are mostly sandy
rocks, which are mostly dark green.

Figure 1. Ping’an village and Longji Terraces (Source: Photo provided by villagers).

The Ping’an village comprises traditional pile-dwelling wooden buildings with typ-
ical stilt-style architecture and a “zigzag” stone path running through the entire village.
Residents of Ping’an village enjoy glutinous rice, bacon dried fish, and sour bamboo shoots,
and they have their own elegant ethnic costumes with strong folklore. In terms of beliefs,
there are land gods, thunder gods, frog gods, cows, ancestor worship, and Taoist gods,
which are mainly related to the cultivation of terraced agriculture. Presently, the village
is still dominated by the original Zhuang ethnic group, and participation in the tourism
business has become a major source of income for them, with a total of 108 large and small
hotels and dwelling houses, two bars, three Zhuang herbal footbaths, six external operators,
and two cafés.
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Compared to other ethnic tourist destinations, which rely on folk culture and natural
scenery, Ping’an Village is more attractive for its terraced landscape. These terraces come
from ancestors who reclaimed the land in front of deep mountains in order to survive. It
shows the world the strong will of humanity to survive in nature, the wisdom and strength
in understanding nature, and building a homeland.

In addition, the terraced landscape and tourism development in Ping’an village are
closely linked to energy sources. As a tourist attraction, the terraces require a high level
of water conservation. If construction waste from B&B and tourist waste leads to the
contamination of local water sources, this may affect the terraces and ecological sustain-
ability, as well as the sustainability of local water resources and hydropower generation.
Traditional pile-dwelling wooden buildings are also posing a safety hazard in terms of
fire use, and the development of tourism requires a large amount of energy. Therefore,
this village represents a typical case for discussing how ethnic tourism village residents
balance tourism development and energy use, which is a concept that needs to be explored
in further detail.

3.2. Data Collection and Analysis

The data for this study was mainly obtained from three ongoing field surveys that were
conducted from May–July 2022, and the data acquisition methods use an omnibus strategy,
including web-based information, participatory observation, and in-depth interviews, the
most cited format for qualitative research [76,77]. It is an approach that contains a mixture
of information-gathering techniques that include diverse forms of observation [78].

The first stage of this research was conducted in May 2022 through a field pre-survey
and web-based information collection [72–78]. The purpose of this stage was to under-
stand the basic situation of the natural environment, tourism resources, infrastructure,
and development status of the Longji terraces. The second stage of the research was con-
ducted in June 2022, and a total of 21 in-depth interview samples were obtained through
a convenience sampling method due to typical interviewees being more informative and
contributing to a deeper understanding [72–79]. The third stage was conducted in July
2022. Based on the collation and analysis of the pre-interview data and reflection, a total
of five in-depth interview samples were obtained using a purposive sampling method
because typical interviewees with rich information helped to understand the case in greater
depth. At the same time, to better understand the research context, the research team
followed up on the energy use of tourism in the village using participant observation to
understand the perceptions of the residents and their related behaviors towards energy
in the field. The semi-structured questions included the knowledge of local residents on
energy, the environment, and energy use before tourism development; energy consump-
tion by households after tourism development; energy consumption by tourists related
to water, electricity, transport, gas, waste, and sewage; the relationship between energy
and resources related to the tourism landscape; residents’ perceptions of tourists’ energy
use; and their own evaluations of energy awareness and opinions about the future of the
tourism landscape, environment, and energy use in harmony. The interviews and on-site
observations complemented each other during the study until the relevant material was
nearly saturated. All Interview recordings were transcribed into text and came to around
174,000 words. In addition, 21,000 words of memo notes were taken, as well as 475 photos
that were related to energy literacy and sustainable tourism.

The combined three studies resulted in a sample of 26 in-depth interviews, all of which
were within ~0.5–1.5 h and recorded with the consent of the other party. Of these, 15 were
male, and 11 were female. There were 23 local people and 3 external local businesses: Two
tourism managers in the village, 24 people directly involved in tourism (operating different
grades of B&Bs and tourism catering), one person working in tourism transport-related
jobs, and one student. As there are 108 households in Ping’an Village, the 26 interviewees
involved in the in-depth interviews are all from different households, and they come from
different types of businesses such as restaurants, accommodation, bars, souvenir selling,
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and transportation, etc., and three of them are engaged in the management of both the
scenic spot and the village, so they have an in-depth understanding and information of the
village. The qualitative research is committed to finding the right interviewees in relation to
the theory in the field, and our interviewees are typical, basically representing the different
types of business and demographic characteristics in the villages. Also, our third author is
of Zhuang ethnicity and knows the ethnic language of this village, enabling us to conduct
interviews in greater depth.

Finally, all collected material, including transcribed interview data, web material, field
notes, and photos, were stored in memos in NVivo 11 software for analysis [68]. Once
the data collection was complete, the authors attempted to obtain the main ideas and key
messages by reading transcripts of all observation notes and interview transcripts and then
analyzing and qualitatively interpreting all the material using Thematic analysis [79,80].
The data was analyzed and coded based on how the energy literacy of the residents
changed before and after tourism development; what contributed to the changes in the
energy literacy of the residents; and how the energy literacy of the residents brought
about changes in tourism destinations and tourists, thus contributing to the sustainable
development of local tourism.

To protect the privacy of the interviewees, the interviewees were coded as “S+ inter-
view No.”. The research data were analyzed using a thematic analysis approach, firstly
by open coding the original data, labeling and classifying the data sentence by sentence,
making initial naming, and marking them as free nodes. Secondly, concepts of similar
incidents were gathered to further abstract the free nodes that had previously been marked;
then, axial coding aims to put concepts and categories back together by making connections
between them. Based on situational understanding, 10 main categories were developed
in a long process of continuous breaking up and stitching together of all the material and
codes: low level of energy knowledge, unpleasant energy attitude, simple energy behavior
before tourism; upward energy knowledge, economic attitude towards energy and positive
energy behavior after tourism; external and internal factors; guiding tourist’s behavior,
change the structure of energy use and improve tourism infrastructure. In the open coding
and categorical coding process, the three authors first read all the data materials sepa-
rately and then open-coded them according to the main research questions; then, the three
authors exchanged coding results and made coding decisions after thorough discussion.
Finally, based on the coding decisions, all authors discussed the data in context and further
analyzed the relationships between the 10 independent clusters to develop the conceptual
framework. The overarching concepts and categories that emerged from this process are
shown in Figure 2.

Figure 2. Conceptual Framework of the relationships between energy literacy and sustainable tourism
(Source: by own study).
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4. Results and Discussion

4.1. Changes in the Energy Literacy of Residents under Tourism Impacts
4.1.1. Energy Literacy of the Ping’an Village Residents in Pre-Tourism

As shown by the field data, based on the perceptions of the residents and their
memories of their previous energy awareness during the interviews, energy literacy before
tourism development can be described as a low level of energy knowledge, unpretentious
energy attitudes, and simple energy behaviors.

Low Level of Energy Knowledge

Before tourism development, knowledge of energy was largely ignored by the res-
idents of the Ping’an village. Their knowledge of energy was still limited to traditional
energy sources, such as water, electricity, and fire, which are essential to their lives. In
particular, their awareness of new energy sources, the renewable status of traditional energy
reserves, and the impact of the use of energy on the environment were still insufficient. For
example, before the development of their tourism industry, villagers used to cut down trees
in the hills to produce firewood for cooking, and they were not fully aware of the other
types of energy for catering; they only prioritized the appearance of the wooden houses
in which they lived. Therefore, residents’ cognition of energy was at a low level before
tourism was undertaken, lacking systematic and profound cognition.

Unpleasant Energy Attitudes

Residents did not give much thought to their attitudes towards energy use nor a sense
of responsibility for energy conservation. For example, before the tourism drive, there was
no charge for water use in the village. The cost was the main consideration for electricity;
an important issue of concern was regarding the use of fire. As the whole village lived in
wooden houses, if they were not careful, not only could the wooden houses burn down,
but they would also pose a threat to the entire village.

Simple Energy Behavior

For Ping’an village residents, the energy behavior they showed was generally simple
before tourism development, particularly with regard to the use of water and electricity.
Even though there were no tariffs imposed on water, and they were less aware of the
importance of water as an energy source in the overall ecosystem, they do not waste water
because of their thrifty habits. Meanwhile, since water is fundamental in rice cultivation
in the terraces, village residents took an active interest in the use of water in the terraces
during the different seasons. For example, they created simple water storage facilities at
the top of the hill to irrigate the farmland during the dry season to prevent damage to the
rice harvest. In addition, the village did not have a unified sewage treatment site, and the
sewage generated by living organisms could only be treated through septic tanks built by
the villagers themselves. As the residents S16 mentioned in the interviews:

“Before there was no sewer pipe, we built a septic tank, divided into two to three septic cells. The sewage
flowed straight into the septic tank discharge. When it was full, we took it out to water the vegetables.”

4.1.2. Energy Literacy of the Ping’an Village Residents during Tourism Development

Under the influence of tourism, the living standards of the Ping’an village residents
have greatly improved, and their awareness and energy consumption are changing. With
the development of local tourism, the level of energy literacy of the residents has greatly
improved through their daily and continuous tourism practices.

Upward Energy Knowledge

As the data shows, residents are knowledgeable about their energy. For example, re-
garding water use, residents are familiar with the price of water and know the approximate
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amount of water they can use in their homes in a month, which can change during the low-
and high-tourist seasons and the number of visitors. Regarding electricity consumption,
most residents were aware of the price of electricity (RMB 0.56/kWh). Households in the
tourist business are also aware that their monthly electricity consumption varies depending
on the number of guests. For example, they are clear about the cost of electricity in their
homes during the low and high seasons, which is nearly 2000–3000 RMB in the high season
and 500 RMB in the low season. Residents are aware of the appliances that consume a large
amount of electricity in their homes, such as refrigerators, air conditioners, water heaters,
and other appliances that operate continuously (in addition to lighting and cooking). With
regards to the use of fire, due to the safety hazards in wooden houses, residents are aware
of the dangers that a fire can bring to the village. Each household has someone who knows
how to use fire extinguishers, and all households are very careful about the use of fire.
Furthermore, 19 out of 26 respondents are aware that the local electricity is generated from
hydropower and have a better understanding of the various new energy sources, such
as air heating, environmental oil, and other energy-saving products. They are also aware
that energy consumption and pollution can affect the natural environment, and they even
understand new energy sources that are not suitable for the area. They also mentioned that
because of the large number of tourists arriving, if they all drove into the scenic spot, the
carrying capacity would exceed the limit, and there would be too many exhaust emissions,
which would have a negative impact on the environment.

Economic Attitude towards Energy

Residents can clearly recognize the problems that exist in their villages that require
change because of tourism promotion. Twenty-three out of 26 respondents in the interviews
mentioned issues that were related to the development of tourism that had occurred, such
as excessive consumption of gas for tourist restaurants and excessive household water
waste; the excessive use of electricity in their hostel, particularly during the tourist golden
week where the village had even experienced power cuts due to the overload of electricity
consumption, excess littering of non-biodegradable waste brought by tourists, and lack of
road lights in the village, which made it difficult to consume and move around at night. In
addition, they can actively seek ways to change, which is important in making decisions to
change energy use. For example, when residents realize that the arrival of tourists brings
high electricity bills along with economic income, they actively consider whether there
are possibilities to reduce their electricity bills and find new energy sources. Water use
is a concern for residents in terms of sewage and waste disposal. Concerning the use of
water, residents are more sensitive to the disposal of sewage and waste because of the
need for clean water for the terraces, the core landscape resource of the area, and the need
to maintain the environmental cleanliness of the area. When 15 out of 26 respondents
recalled that there was an unpleasant smell resulting from excessive hotel water waste,
they mentioned the attitude and sense of responsibility of the scenic residents who took the
initiative to push for a solution when faced with the problem. For example, S24 mentioned,

“We asked the government and developer for a long time, hoping to build a sewage treatment station
. . . we also take turns to do cleaning for the whole village... and rubbish is transported out daily
from the village. It cannot be left in the village because it is not good for the soil and water; it affects
the terraces.”

Residents are also more aware of the environmental impact of excessive waste disposal
and actively address this issue. The positive attitudes of residents towards energy are often
more based on awareness of the need for sustainable tourism and more economical energy
consumption and less on attitudes towards energy conservation.
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Positive Energy Behavior

Residents of the village take positive actions in their energy use to solve the problems
mentioned earlier, thus saving and conserving energy. Firstly, new energy sources are used;
for example, the widespread use of air heaters is associated with new energy technologies
by residents who operate hotels, which largely reduces the cost of electricity. As resident
S01 described:

“Compared to electric water heaters, air energy water heaters are more energy efficient; air energy
heaters compress air to generate heat. In terms of price, electric water heaters demand more power,
reaching three to four thousand watts; if the wattage is too high, the circuit cannot withstand it, and
fire safety hazards are also present. However, the wattage of air energy is not very high, it is up to
more than thousand watts. Using an electric water heater is equivalent to two or three air energies,
and the capacity of air energy is much more affordable than the electric water heater.”

The descriptions from the residents further confirm that they are more concerned about
energy costs and willing to use new energy products and technologies in their tourism
services. With the use of new energy sources, residents have also influenced each other
to form a culture of energy conservation, such as the popularity of air energy use in the
village. In addition, streetlamps using solar electric panels in scenic areas have solved the
problem of lighting streetlamps at night, and villagers have used environmentally friendly
oil instead of gas for cooking, reducing gas consumption.

From a water perspective, the village needs to tackle sewage and maintain clean water
sources. In terms of sewage disposal, the entire village is built on a unified sewage pipe,
which has centralized the treatment. At present, the water in small ditches in the villages is
clean after sewage treatment.

Another requiring attention from the data shows that five large cisterns were es-
tablished for successive classification at the top of the hill for living, terrace irrigation,
agricultural production, and fire safety use, as shown in Figure 3. Meanwhile, to prevent
fires in wooden houses, the village has built fire hydrants in front of each house, which is
connected to the pipes of the cisterns used for fire safety. Finally, during tourism activities,
residents are also willing to influence tourists to behave in an energy-saving manner, such
as in the use of air conditioning in rooms, raising the temperature to the most energy-
efficient level in obvious places, and remembering to turn off lights and air conditioning
when going out.

Figure 3. One of the Cistern and Sewage Treatment Centres in Ping’an (Source: by author 1).

4.1.3. Factors Affecting Resident’s Energy Literacy Change

Along with the development of local tourism, locals have acquired more energy lit-
eracy in their daily tourism practices. According to the field data, the factors influencing
residents’ change in energy literacy are multiple. Both external and internal factors con-
tribute to the improvement of residents’ energy literacy in tourism development. On the
external side, economic development, communication with external tourists, diversified
access to knowledge, and government support are all factors that have contributed to the
change in energy literacy among Ping-an residents. Specifically, economic development has
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offered more possibilities for residents to choose new energy sources; communication with
external tourists, especially pro-environmental visitors, has allowed them to understand
that only sustainable environments can attract more tourists; the widespread use of mobile
phones has also enabled residents to learn more about energy knowledge from the internet;
as for government support, it includes investment in tourism infrastructure, attracts invest-
ment from outside, promotion resident’s energy knowledge, and other related policy. For
example, the local government’s continuous promotion of energy knowledge in villages,
such as fire and electricity safety, knowledge of energy conservation and environmental
protection, etc. All these external factors have contributed to the improvement of residents’
energy literacy.

In addition to these extrinsic reasons for promoting energy literacy, the key incentive
for local people to become more energy-literate lies in their initiative in tourism develop-
ment, also referred to as internal factors by residents. First, the goal of achieving better
tourism development and poverty alleviation has led them to take the initiative to address
the local energy problem. Before tourism, Ping’an Village was extremely isolated and poor.
Up until 1992, it was still dependent on relief to survive; the income of residents was mainly
from farming and working outside the village [66]. Since the development of tourism
from 1993, tourism has gradually become the main source of economic income, including
catering, accommodation, shopping, tour guide services, and ticket dividends [66]. By
2002, the villagers’ annual per capita income reached about 2000 RMB. Up to 2011, it rose
to 13,200 RMB [81]. By 2019 the villagers’ annual per capita income had reached 5000 RMB
just from the ticket income dividends, with some medium hotel annual income may reach
200,000 RMB. In this process, in order to get out of poverty and achieve wealth through
tourism, they made efficient use of a combination of external resources, such as the govern-
ment, developers, and new sources of energy in technological development, which helped
them solve local problems effectively.

Second, the initiatives of residents have a positive impact on their energy literacy. As
residents take the initiative to identify various energy problems that exist in local tourism,
they actively seek information from the outside to solve local problems. By taking the
initiative to learn and communicate with the outside, their energy literacy is enhanced.
Such as the resident manager S17 mentioned,

“In the off-season, several of our village committees have gone to other scenic spots around the
country to learn, to see how others are doing, to see how people are solving the problems we have,
and we often go out to see, which is very helpful to us. Sometimes we also watch Tik Tok and read a
lot of relevant knowledge on the internet. We also have two people in the village who specialize in
live-streaming terraces, they introduce our beautiful terraces to people outside, and sometime also
share and show the balance of our natural ecosystem here.”

4.2. Influence of Energy Literacy on Tourism Development in Ethnic Villages
4.2.1. Effect of Residents’ Energy Literacy on Tourists’ Energy Literacy

The host-tourist relationship has always been central to the tourism development
process. Along with tourism growth, energy consumption for restaurants, accommodation,
and transportation has shown a growing trend. To properly reduce energy consumption
and achieve energy savings and emission reduction in tourism activities, it is necessary for
residents and tourists to focus on the input and use of energy products in tourism activities.
Ethnic residents are the main actors in the operation of tourism activities and local culture,
particularly in ethnic tourism areas. As hosts, the improvement in the energy literacy of
residents can have a positive effect on the behavior of tourists.

Guiding Tourists to Focus on Energy and Acquiring Energy Knowledge in Tourism

As residents become more energy-literate, they apply their energy-related knowledge
to tourism activities, allowing visitors to gain energy-related knowledge while enjoying the
tourist landscape. For example, warning signs stating “please protect water sources” have
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been installed at prominent locations in the terraced landscape. In the tourist accommoda-
tion, there are various warning signs about water and electricity conservation and attention
to fire prevention to ensure tourists are aware of the importance of traditional energy
sources, such as water, electricity, and fire, to the village during their activities. In addition,
residents use their own energy knowledge to guide tourists about energy concerns. For
example, they remind tourists about fire in their communication with them; they also
caution them about most of their houses being wooden structures and the consequences a
fire can have on their village. To reduce costs, residents are actively concerned about the
consumption of water, electricity, and other energy sources and, therefore, proactively use
new energy-related products to save energy and reduce emissions in tourism. Residents
who provide tourist accommodation S05 mentioned,

“It’s cooler here at night, so locals don’t use air conditioning, but tourists do, and they wouldn’t stay
without it, so we have to install air conditioning in every room and remind them to turn it off when
they go on tours.”

In these ways, tourists can also feel the concern of the locals in conserving energy and,
thus, understand the importance of energy use for water use in the terraces and for tourism
in the villages, which essentially also raises their own energy awareness.

Guiding the Attention of Tourists to the Impact of Energy Consumption Based on
Energy Attitudes

Given the ecological fragility of terraces, it is important to understand the impact of
energy consumption on terraced-tourism development. Residents have a clear understand-
ing of the environmental impact of excessive energy consumption, such as the impact of
cleaning chemicals on water sources and, consequently, food production. Therefore, they
try to reduce the use of cleaning products or frequency of cleaning and guide visitors to
replace items, such as sheets and towels, as little as possible during continuous stays or
send these washed items out of the resort. Because residents recognize that plastic products
are harmful to the soil and water supply because they cannot degrade, they guide visitors
to reduce the use of plastic products in tourist catering to reduce the impact on the soil on
which the terraces depend.

Guiding Tourists to Save Energy and Reduce Carbon Emissions through Tourism Behavior

Residents guide tourist behavior mainly in the provision of tourist accommodation,
transport, and other tourist services. In terms of tourist accommodation and catering, air
conditioners were installed in rooms provided by the residents. In order to save electricity,
the residents provide signage near the air conditioners or on the remote control stating, “To
save electricity, it is recommended to turn it on to 26 degrees” to guide tourists. In terms of
tourism transport, in the Longji Terraces resort, the tourism management, and residents are
aware of the impact of car emissions on the local air and have consciously chosen electric
vehicles for their tourist transport services. However, owing to geographical constraints, the
lack of motive power of electric vehicles makes them difficult to use in local tourist transport;
therefore, tourist transport is mostly available by sightseeing vehicles and buses that burn
petrol. Residents involved in tourism management S17 at the resort company mentioned,

“The cars we use now still burn petrol, and the electric cars do not have enough power to go up the
mountain, so it’s hardly to use them, and burning petrol will definitely have an impact on the air,
but we have more trees here, so the impact will not be big.”

Nevertheless, the scenic area continues to guide tourists to reduce the use of private
cars to drive directly to the scenic area but rather take a scenic bus at the entrance of the
scenic area to reach the village, thus, reducing carbon emissions by reducing the amount of
vehicle travel.

265



Energies 2023, 16, 259

4.2.2. Transforming the Structure of Energy Use for Sustainable Tourism

Energy consumption relies on outsourcing instead of self-sustaining household energy
consumption. Before the onset of tourism, the energy consumption of residents was
minimal for basic subsistence use. However, when there was a large influx of tourists, a
substantial amount of energy was consumed for food and beverage, accommodation, and
transport. For example, leftovers generated by local hotels and restaurants were routinely
thrown out by owners into the rubbish collection pond at the entrance of the village at least
once a day during the high season and once every two–three days during the low season.
The waste was then transported out of the village daily to the rubbish disposal center. The
laundry of local hotels was sent to a professional cleaning company in Guilin city during
the high season, and used sheets were replaced once or twice a year during the high season.

New energy sources have been used instead of traditional energy sources. Electricity
consumption is an important type of energy consumption; before tourists arrived, the
villagers primarily used electric lighting. As tourism has grown, the demand for electricity
has been constantly increasing with the rapid rise in electricity use for lighting, night
landscape creation, air conditioning in tourism lodges, etc., which puts a higher demand
on the supply of electricity. Thus, power outages occurred from time to time, which created
negative experiences for tourists. To change the excessive demand for electricity, new
energy resources, such as solar streetlights and air energy heaters, have been adopted by
residents to reduce the reliance on traditional electricity. In particular, the use of air-energy
water heaters has effectively improved the problems of long usage time, high replacement
frequency, and high-power consumption caused by electric boilers.

A specialized sewage treatment system is used instead of direct discharge. Initially,
the sanitary sewage flowed freely into the village ditches; however, as the tourism industry
began developing, the ecosystem was no longer able to absorb domestic wastewater. Now,
the use of a sewage treatment system has improved the drainage route by separating
wastewater and clean water to effectively protect the ecological balance between the
terraces for irrigation and the daily use of hostels. As resident S14 said in the interview:

“Water was used to meet the needs of the tourists instead of the irrigation of the terraces earlier, so
that many terraces were deserted. Later, the abandoned terraced fields were gradually re-farmed
through the construction of the cistern. Before this was done, some of us connected the water pipes
randomly, similar to the discharge pipes.”

In addition, to avoid damage to vegetation and soil from the use of pesticides, the
use of herbicides has been banned instead of manual weeding. In addition, the number
of cisterns has increased from one to five, and the function is divided into irrigation for
terraces and water for fire protection.

4.2.3. Improved Infrastructure for Sustainable Tourism

Due to the need for tourism development in the village, residents and the manage-
ment committee, formed by themselves, are constantly appealing to the government and
developers for infrastructure changes. For example, traditional streetlights are insufficient,
posing safety hazards to tourists at night. The electricity costs were unevenly shared and
unmanaged. Improper treatment of sewage affects the irrigation of the terraces, which
has environmental and health implications. The improper management of traffic can lead
to congestion for visitors as well as excessive exhaust emissions that affect the ecological
environment. As owners of the resources, residents are constantly engaging with develop-
ers and the government to improve the infrastructure of the village, thus promoting the
sustainable development of tourism sites.

The landscape lighting system has been improved in the village. The use of solar-
powered streetlights saves electricity while solving the previous situation of no public
lighting system in the village at night as well as the apportion of the electricity bill for
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streetlights. It also creates a beautiful night landscape that enhances the tourism experiences
of visitors. As villager S16 said:

“We didn’t have enough streetlights before as well as no illumination in the tourist attractions.
However, the streetlights are now quite good. Whether it is a rainy or sunny day, solar streetlamps
can be bright for a few hours to improve the convenience and safeguard for tourists at night.”

The construction of the sewage treatment system, water storage, and firefighting
systems has promoted tourism sustainability. The construction of the sewage system in
the village was conducted from 2012–2014 near the village. The completion of the sewage
system solved the problem of the increasing domestic sewage resulting from the increasing
number of tourists, and it ensured irrigation of the terraces and residents’ daily use. Its
original sewage piping was the first sewage system built in the county. The water storage
system was constructed in batches. Before tourism, residents built a cistern at the top of
the hill for terrace irrigation. As tourism gradually developed, the villagers then pooled
together their money to build two cisterns to meet the need for tourism development
and to increase the number of tourists. When the tourism industry grew further, two
other cisterns were built with the help of the government and developer near the hiking
area for tourists, as well as to increase the firefighting facilities and equipment in the
village. More than 300 fire hydrants have been built throughout the village. Regarding
safety, as most houses are wooden and brick structures with fire hazards, residents are
equipped with fire extinguishers in their tourist accommodation, and the village committee
supervises autonomy to ensure the safety of tourist accommodation. Thus, the construction
of the water storage system and firefighting system not only ensured seasonal water usage
for terrace irrigation to increase tourist attractiveness by maintaining the integrity of the
terraced landscape but also ensured the safety of the residents.

Traffic facilities for tourists have been improved and preserved in scenic areas. The
construction of car parking at the main entrance of the scenic area and the extension of
sightseeing cars and new energy trams has effectively alleviated congestion and excessive
energy consumption for tourists. The buses are outsourced to Revitalize Sightseeing Ltd.
for their operation. Generally, group visitor cars with more than seven seats must be
replaced with scenic buses. The scenery now consists of 30–40 oil-burning vehicles, with
six or seven new energy trams added over the years. In addition to car parking at tourist
entrances, multi-story car parking has also been built at village entrances. After parking at
the gate, tourists are required to hike into the village. Only a few tour buses are available
for transporting day trippers to the viewing platform. These measures reduce the energy
consumption of the traffic load.

5. Discussions

Rather than the traditional discussion of households [1–5,17] and students [20,23,24],
this study extends the understanding of energy literacy from the perspective of ethnic
residents and discusses the changes in energy literacy in remote ethnic villages in the
context of tourism development. Previous studies of energy literacy have tended to discuss
the relationships between knowledge, attitudes, and behavior [6,19–21], focusing on the
synchrony perspectives [22–25], with less understanding of energy literacy from diachronic
perspectives along with the changing external environment. This study examines how
the energy literacy of ethnic minority residents has changed during the development of
tourism and the main reason for the changes. In contrast to previous studies that have
considered ethnic minorities as a vulnerable group in terms of energy use [3], this study
empirically demonstrates that tourism development in ethnic minority areas may also
contribute to the transformation of residents from a vulnerable group in terms of energy
use to a more energy literate group, thus contributing to the sustainability of tourism.

This study also deepens the understanding of the implications of such changes for local
tourism sustainability from a cross-disciplinary perspective and enriches empirical research
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to better promote energy conservation and sustainable tourism development in ethnic areas.
In addition, classical literature on energy and tourism has tended to discuss the impact
of energy resources as tourism attractions [8,9,42,43] or aim to improve tourists’ energy
literacy through tourism [2,10,45], yet how residents influence tourists’ energy behavior
remains unclear. Our research extends the understanding that an increase in residents’
energy literacy can also lead to an increase in visitors’ energy behavior. Furthermore,
beyond the traditional relationship of host and guest in ethnic tourism research [16], we
find that increased energy literacy among residents can also contribute to the structure of
energy use and infrastructure development in tourist destinations, which further enhances
the understanding of how energy literacy can influence the sustainable development of
tourist destinations.

6. Conclusions and Policy Implications

This study proposes a theoretical framework for understanding the relationship be-
tween the energy literacy of residents and sustainable tourism development in ethnic areas
and highlights the important role of the initiatives of residents in improving their energy
literacy in tourism development. The conclusions of this study are as follows:

As the tourism industry in the village has developed, the energy literacy of the res-
idents has changed. Prior to the development of tourism, the energy literacy of Ping’an
village residents could be summarized as a low level of energy knowledge, unpleasant en-
ergy attitudes, and simple energy behavior. With the development of tourism in Ping’an, the
energy literacy of residents has changed to upward energy knowledge, economic attitude
towards energy, and positive energy behavior. Both external and internal factors contribute
to the improvement of residents’ energy literacy in tourism development. External factors
contain economic development, communication with external tourists, diversified access to
knowledge, and government support. The key reason for this improvement is the internal
factors that form the initiative of residents in Ping’an to seek self-change by developing
tourism in order to get out of poverty and achieve wealth through tourism. This positive
determination to change the backward village has led to a greater increase in the energy
literacy of the residents in the village.

The improved energy literacy of the residents affects tourist behavior and sustainable
tourism destinations. In Ping’an village, residents guide tourists in three main areas,
guiding them to pay attention to energy and gain energy cognition in tourism; in energy
attitudes, guiding them to be concerned about the impact of energy consumption; and in
tourism behavior, guiding them to save energy and reduce carbon emissions. Moreover,
increasing the energy literacy of residents also impacts the sustainable development of the
tourist site mainly by changing the structure of energy use and improving the infrastructure
of the tourist site.

This study also has implications for policy makers and managers of tourist destina-
tions. When considering how to make public policy on energy literacy in tourist areas,
the initiative of residents can be used as a point of regulation. Before providing energy
education, in addition to attracting tourism investment, it would be useful to motivate
residents to seek their own initiative for tourism development. Only if residents can ac-
tively seek tourism development on their own will they be better able to promote their
demand for energy literacy improvement. Meanwhile, in the process of training in energy
literacy related to tourism, it is also necessary to provide guidance on the energy attitudes
of residents until they are internalized in their daily energy behavior, thus encouraging
them to optimize their energy use. For the managers of tourist resorts, they should also
recognize that improving the energy literacy of residents will contribute to guiding the
energy behavior of tourists, which will better protect local tourism resources and promote
sustainable tourism development. Therefore, resort managers should take the initiative to
cooperate with residents, identify the energy-related problems in the process of tourism
development, and guide the resources of various stakeholders to solve the corresponding
problems, so that the resort can obtain sustainable development.
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Although this study is based on a survey of Ping’an residents, the findings can be
extrapolated to other ethnic tourism areas and tourism products that are somewhat depen-
dent on energy and environmental requirements, such as ecotourism, mountain tourism,
and rural tourism. Due to the limitations of the research conditions, the research efforts
of the researchers, and the overall sample size of the village residents, this study mainly
collected data based on qualitative research through field surveys and in-depth interviews
to provide a relatively in-depth understanding of the energy literacy of ethnic residents
and sustainable tourism. However, it is also worth using quantitative research in the future
to measure the energy literacy of the perspectives of tourists to discuss the impact on local,
sustainable tourism.
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